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Résumé en francais

1.1 Téte de pont

Figure 1.1: Les Demoiselles  d’Avignon, peinture de Pablo Picasso,
1907, Museum of Modern Art, New York. Récupéré de Wikipedia,
http://en.wikipedia.org/wiki/Image: Chicks-from-avignon.jpg

La figure 1.1 a quelque-chose d’étonnant. En effet, dans cette peinture de
Pablo Picasso, les deux demoiselles sur la droite ont des visages fort différents
de leurs consoeurs. Ceux-ci apparaissent comme décomposés, aplatis. S’il est
probablement illusoire de chercher a comprendre en détails pourquoi 'auteur a
décidé de peindre ainsi ces demoiselles-ci en particulier, on peut toutefois essayer
de savoir d’oul lui est venue cette étrange inspiration.




1.2. IHISTOIRE EN SCIENCES DE LA VIE

Cette information peut étre trouvée dans sa biographie : au début du vingtiéme
siécle, plusieurs artistes, dont Gauguin, Matisse et Picasso, ont été profondément
inspirés par la découverte d’arts anciens, ibérique et africain notamment. Ainsi,
en 1905, une exposition consacrée a l'art ibérique fut montée au Louvre, et a
I'automne 1906, Matisse montra une statuette africaine & Picasso, laquelle lui fit
dit-on forte impression. Dans les traditions ibériques et africaines (il est abusif
de parler d’art africain comme d’un tout homogéne néanmoins, car on y trouve
une grande diversité), les formes sont trés stylisées, et importance d’un élé-
ment est souvent représentée par sa taille. Les deux visages des demoiselles de
la droite, avec leurs grands yeux simples et démesurés ressemblent bien a des
statues africaines ou ibériques. Dés lors, on comprend que ces visages aplatis et
décomposés, qui préfigurent le mouvement cubiste, sont influencés par ces formes
d’art. Mieux comprendre 'art de Picasso nécessite de se plonger dans son histoire.

1.2 L’histoire en sciences de la vie

Il n’y a pas qu’en arts plastiques que I'histoire permet de mieux comprendre une
observation. Notre monde physique est soumis a ’empreinte du temps, et tous
les phénomeénes aujourd’hui observés sont le fruit d’une histoire, mélant hasard et
nécessité. Naturellement, le vivant ne fait pas exception, et c’est dans son histoire
que 'on peut comprendre comment sont apparues les formes de vie retrouvées
dans les fossiles ou observées de nos jours.

En biologie, la théorie de I’évolution permet d’expliquer la répartition et
I'organisation des organismes vivants, ou plus précisément comment les étres
vivants ont acquis leur répartition géographique et écologique actuelle, et com-
ment ils ont acquis leurs caractéristiques actuelles de forme, de fonction. Cette
théorie est basée sur de nombreuses données que je ne détaillerai pas ici, mais
peut étre chichement résumée en quelques points :

e Tous les étres vivants (plantes, Bactéries, homme, archées productrices de
méthane dans Pestomac des vaches...) sont apparentés. En effet, quand
on regarde comment fonctionnent tous ces organismes en détails, au niveau
moléculaire, on se rend compte que tous les étres vivants sont trés ressem-
blants, ce qui trahit leur ascendance commune. De méme, tous les organ-
ismes vivants sont construits autour d’un génome fait d’ADN, qui contient
tous les génes d’un organisme, et qui renferme toutes les recettes de cuisine
nécessaires a la construction et au fonctionnement d’'un étre vivant. Or,
quand on compare les génomes des différents étres vivants entre eux (et
c’est entre autres I'objet de cette thése), on se rend compte la-encore qu’il
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y a de grandes similarités entre tous les étres vivants. Corollaire : tous
les étres vivants descendent d’un lointain ancétre commun, que 'on appelle
souvent LUCA, ce qui correspond a Last Universal Common Ancestor, soit
dernier ancétre commun universel.

e Les étres vivants ont deux types de caractéristiques, des caractéristiques
innées qui émanent directement de leur génome, et des caractéristiques
acquises, qui sont le fruit de leur histoire personnelle. Seules les carac-
téristiques innées peuvent étre transmises a leur descendance au travers des
mécanismes de 1'hérédité.

e Au cours de la transmission de ces caractéristiques innées, des mutations et
des réarrangements peuvent survenir, ce qui a pour conséquence qu’un de-
scendant, méme s’il est treés semblable, est trés rarement rigoureusement
identique & son (ou ses) géniteur(s), parce que leurs génomes différent.
Avec le temps, les générations succédant aux générations, les mutations
s’accumulent, les génomes ressemblent de moins en moins au génome de
I’ancétre commun, et par conséquent les descendants ressemblent de moins
en moins a leur lointain aieul.

e Ces changements au cours de la transmission des caractéres innés font
qu’aucun étre vivant n’est la copie parfaite d’'un autre. On dit alors qu’il
y a une grande diversité entre étres vivants. Cette diversité fait que, étant
donné un environnement, certains étres vivants ont plus de facilités a avoir
des descendants, et donc peuvent en avoir plus, que d’autres. Ces facilités
sont généralement regroupées sous le terme anglais de fitness, qui corre-
spond a la capacité a priori d'un organisme a se reproduire, son adaptation
a son environnement. A un instant donné, les organismes ayant une plus
grande fitness ont en moyenne plus de descendants, mécanisme que 'on
nomme en général sélection darwinienne.

e Les organismes les plus adaptés n’ont pourtant pas toujours plus de de-
scendants que les autres : on s’attend a ce qu’ils en aient plus, mais si par
malheur la foudre s’abat sur eux avant qu’ils n’atteignent leur age adulte,
leur fitness aussi grande soit-elle n’aura pas eu beaucoup d’effet. Il y a donc
un effet important du hasard sur qui se reproduit et qui ne se reproduit pas
dans une population d’étres vivants. Cet effet du hasard est d’autant plus
fort que le nombre d’individus dans la population est faible : si on a 10%
d’individus trés adaptés dans une population au total de seulement 10 in-
dividus, il suffit d’un éclair pour que le meilleur d’entre eux n’ait pas de
descendant. On appelle cet effet aléatoire la dérive génétique, puisqu’il fait
dériver la fitness moyenne d’une population loin de ce qu’elle aurait été sans
lui.
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L’évolution des étres vivants est donc un mélange de plusieurs mécanismes.
Deux sont aléatoires : les mutations d’une part, et la dérive (sur qui tombe
la foudre) de Pautre. Le troisiéme est déterministe, et fait que certains indi-
vidus ont a la naissance, au regard de leurs caractéristiques génétiques et de
I’environnement présent, plus de chances d’avoir des descendants que d’autres.
Ces trois mécanismes s’associent et produisent la diversité entre individus et la
diversité entre espéces que 'on peut observer aujourd’hui.

1.3 Meécanisme et phylogénie

On peut étudier deux aspects de I’évolution :

1. D’une part, on peut s’intéresser aux changements qui sont survenus au
cours de 'histoire de la vie, et leur cause, soit (mutation+sélection), ou bien
(mutation+dérive). J'appellerai cet aspect le mécanisme de 1'évolution.

2. D’autre part, on peut chercher a décrire les relations de parenté entre étres
vivants. Cette représentation des relations de parenté entre organismes
s’appelle la phylogénie.

Au cours de ma thése je me suis intéressé a ces deux aspects de ’évolution. J’ai
cherché a préciser certaines relations de parenté, et je me suis également attaché a
découvrir certains changements qui ont pu se produire dans le passé. En fait, il est
naturel de s’intéresser aux deux & la fois, car ils sont trés dépendants. En effet, on
ne s’intéresse aux mécanismes de 1’évolution que dans le cadre d’une phylogénie
particuliére : si I’on placait les chauves-souris parmi les oiseaux et non parmi les
mammiféres (probléme qui reléve de la phylogénie), on ne se demanderait pas par
quel mécanisme elles ont acquis leurs ailes, mais plutdt par quel mécanisme elles
ont acquis leurs mammelles.

1.4 Une bréve histoire de la vie

Les géologues estiment que la terre a plus de 4.5 milliards d’années, et que la
vie y existe depuis au moins 3.5 milliards d’années (Schopf, 2006), peut-étre
plus. L’arriére arriére arriére ... grand pére de tous les étres aujourd’hui vivants,
LUCA, date donc probablement de cette époque. Les descendants de LUCA ont
ensuite donné naissance & d’autres organismes et, le temps aidant et les mutations
s’accumulant, a de nouvelles espéces, possédant des caractéristiques inédites. 3.5
milliards d’années plus tard, tous les étres vivants sont les descendants de ces
premiers organismes.
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1.4.1 L’analyse des génomes permet de reconstruire I’histoire
de la vie

Afin de représenter cette généalogie universelle, 'arbre de la vie, qui représente
les relations de parenté entre tous les étres vivants, on peut analyser les ressem-
blances et différences entre les formes des étres vivants, de la méme fagon que 'on
pourrait essayer de reconstituer un arbre généalogique en analysant les différences
physiques entre fréres, soeurs, oncles, tantes et grands parents. Néanmoins cette
approche n’est pas trés aisée, surtout lorsqu’on cherche a comparer des plantes
avec des animaux, des champignons, des bactéries... Depuis la fin des années
1970, d’immenses progrés ont été faits dans le séquencage de TADN, et I'on peut
désormais séquencer des génomes entiers. On peut ainsi analyser les génomes des
étres vivants et les comparer, afin de reconstruire les relations de parenté. Cette
derniére approche s’avére bien plus pratique.

Le génome d’un organisme contient toutes les recettes de cuisine utiles pour
produire et faire fonctionner cet organisme. En comparant les génomes, on a
donc directement acces a I'essence des caractéres innés d’un organisme. Comme
seuls les caractéres innés sont transmis par 'hérédité, en analysant les génomes,
on a accés a toute linformation qui a été transmise depuis LUCA jusqu’aux
organismes actuels. Ces génomes portent les traces d’événements de mutation,
sélection et dérive qui ont faconné les organismes vivants au cours de leur histoire,
et constituent des documents de I’histoire évolutive d’une qualité unique: simple-
ment en lisant des génomes, on peut tirer des conclusions sur les caractéristiques
et 'histoire des organismes qui les contiennent. Encore faut-il savoir les lire.

Afin de lire ces documents, il faut faire un peu de mathématiques, en I’occurence
des statistiques. A l'aide de modéles statistiques, il est possible d’estimer par ex-
emple la probabilité que les champignons soient plus proches parents des animaux
que des plantes, la probabilité qu’une mutation particuliére se soit produite & un
moment particulier dans I’arbre de la vie, la probabilité que cette mutation ait été
transmise a des descendants par sélection ou bien par dérive. On peut donc poser
des questions qui relévent de la phylogénie ou bien du mécanisme de 1’évolution.

1.4.2 L’arbre de la vie comme raconté par les génomes

L’analyse statistique des génomes a permis de découvrir que les étres vivants se
rangeaient dans trois grandes catégories (Woese et Fox, 1977) : les Archées, les
Bactéries, et les Eukaryotes.

e Les Archées comprennent des organismes composés d’une seule cellule,
que l'on trouve un peu partout mais aussi dans des milieux trés insolites,
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depuis la panse des vaches ou elles aident a la digestion en dégageant du
méthane, jusqu’aux sources thermales ou des archées peuvent vivre a plus
de 100°C, en passant par des milieux extrémement acides ou bien saturés
en sel (Forterre, 2007).

e Les Bactéries elles aussi sont souvent composées d’une seule cellule, vivent
dans toutes sortes de milieux, mais elles sont en général moins exubérantes
dans leurs préférences écologiques. On trouve notamment parmi les Bac-
téries les Cyanobactéries, qui peuvent utiliser I’énergie lumineuse pour vivre
et qui produisent de 'oxygéne. On trouve également parmi les Bactéries
des parasites des plantes ou bien des animaux, certaines d’entre elles cau-
sant plusieurs maladies bien connues, comme le typhus, le cholera, la lépre.
Toutes les Bactéries ne sont toutefois pas parasitiques, et bon nombre
d’entre elles sont nos symbiotes, nous aidant notamment a digérer.

e Enfin les Eucaryotes contiennent les étres vivants les plus connus, et no-
tamment les plus grands, qui peuvent posséder des milliards de cellules.
Ils contiennent champignons, animaux, plantes, amibes, infusoires. Ils sont
en général assez peu surprenants dans leurs gotits écologiques, n’appréciant
guere les températures, PH ou salinités extrémes. En outre, ils ne montrent
pas beaucoup de types de métabolismes différents, puisqu’il n’y a en gros
que deux types d’Eucaryotes de ce point de vue, ceux qui se reposent sur la
photosynthése, et ceux qui consomment la matiére organique produite par
d’autres étres vivants. Les Eucaryotes ont en général des organites dans
leurs cellules, petites structures qui renferment un génome particulier. Il
existe notamment deux types d’organites : les mitochondries, ot les sucres
sont dégradés pour faire de ’énergie, et les chloroplastes chez les plantes, ot
les rayons lumineux sont transformés en énergie puis en sucres. La présence
de plusieurs génomes dans une seule cellule a une explication historique que
j'expliquerai un peu plus tard.

On pense actuellement que les Archées et les Eucaryotes sont de plus proches
parents I'un de l'autre qu’ils ne le sont des Bactéries (Gogarten et al., 1989;
Iwabe et al., 1989). De nombreux travaux suggérent que 'arbre de la vie pourrait
ressembler, au moins dans ses grandes lignes, a ce qui est représenté Fig. 1.2.

Les deux grandes fléches colorées qui traversent 'arbre en Fig.1.2 permet-
tent d’expliquer la présence des organites chez les Eucaryotes. En analysant les
génomes des mitochondries et chloroplastes, les phylogénéticiens ont pu montrer
que ces organites étaient en fait d’anciennes Bactéries, kidnappées par les Eu-
caryotes (Zablen et al., 1975; Bonen et Doolittle, 1975; Bonen et al., 1977; Esser
et al., 2004; Deusch et al., 2008) et réduites a esclavage. Au final, les Eucaryotes
n’ont pas été imaginatifs en ce qui concerne leurs métabolismes, et en plus ils ont
volé le peu qu’ils savent faire des Bactéries. On peut concevoir une hypothése his-
torique pour expliquer ce manque d’originalité : si les Bactéries étaient présentes
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Figure 1.2: Arbre de la vie. L’extréme gauche de l'arbre a un dge de plus de 8.5 mil-
liards d’années, la partie droite concerne des organismes actuels. LUCA est représenté
avec un point rouge. Les organismes dont le nom est souligné vivent a plus de 80°C.
Les organismes figurés sur fond vert sont les Crenotes, et sur fond bleu les Furyotes,
les deux grandes classes d’Archées. Tous les animaux sont classés au sein des Metazoa,
tous les champignons se trouvent au sein des Fungi, et toutes les plantes sont placées
dans les Viridiplantae. Tous les organismes vivants que ["on voit a ['oeil nu représentent
donc une infime portion de lo biodiversité.

sur terre avant les Eucaryotes, alors la plupart des niches écologiques devaient
déja étre occupées. Les Eucaryotes se sont donc spécialisés dans une autre sorte
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d’activité : le vol et la prédation.

1.5 Mon travail de these

Au cours de ma thése, je me suis intéressé a quelques problémes particuliers
ayant trait a 1’étude des génomes pour reconstruire leur histoire. J’ai cherché a
améliorer les méthodes de reconstruction de I’évolution des génomes, et j’ai utilisé
ces méthodes pour répondre a des questions biologiques précises. Presque toutes
ces questions sont liées & la facon dont un caractére particulier, la température
préférée des organismes, a évolué.

J’ai signalé plus haut que certaines Archées pouvaient vivre & plus de 100°C
; en fait, la plupart des espéces ne sont capables de vivre que dans une petite
fenétre de températures : a 5 ou 10 degrés prés, un organisme peut ne plus
se développer normalement voire dépérir. Certains organismes ne peuvent donc
vivre qu’aux alentours de 37°C, d’autres qu’autour de 10°C, de 100°C, etc. On
caractérise généralement les organismes par leur température optimale de crois-
sance, la température a laquelle leur croissance est la plus rapide. Cette tem-
pérature est un parameétre important : & une température donnée correspond un
environnement particulier. Si un organisme a une trés haute température opti-
male de croissance, on sait qu’il vit proche d’une source thermale comme dans le
parc de Yellowstone ou bien comme au niveau des dorsales océaniques ; s’il vit &
trés faible température, on a également une idée assez précise des endroits ot il
pourrait vivre.

Dans la figure 1.2, les organismes dont le nom a été souligné ont des tem-
pératures optimales de croissance supérieures a 80°C, ce qui fait qu’on les appelle
des hyperthermophiles. Leur répartition dans I'arbre de la vie est intriguante :
de nombreuses archées sont hyperthermophiles, ce qui indiquerait que ’ancétre
de toutes les archées était lui-méme hyperthermophile. De méme, deux bactéries
situées a la base du domaine bactérien sont hyperthermophiles, ce qui suggére
que 'ancétre des Bactéries vivait peut-étre & haute température. Si les ancétres
des Bactéries et des Archées étaient tous deux hyperthermophiles, alors notre
grand pére a tous, LUCA, lui aussi pourrait avoir vécu a trés haute température,
et la vie serait donc intimement liée & ces environnements extrémes.

Je me suis donc attaché a étudier la phylogénie de ces deux grands domaines,
les Archées et les Bactéries, pour étudier les positions d’organismes dont la tem-
pérature optimale de croissance est clé pour la reconstruction de 1’évolution de
ce caractére. Plus particuliérement, j’ai étudié la position de la Bactérie Aquifex
aeolicus (groupe Aquificales sur la figure 1.2), car il n’était pas évident que sa po-
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sition & proximité des Thermotogales ne soit pas erronée : ’évolution du génome
de ces bactéries hyperthermophiles est en effet trés compliquée. Bien que je n’ai
pas réussi a pleinement surmonter toutes les difficultés associées a ’analyse du
génome d’Aquifex aeolicus, mon travail confirme que les Aquificales pourraient
étre proches parentes des Thermotogales. Chez les Archées, sur 'invitation de
Céline Brochier, Simonetta Gribaldo et Patrick Forterre, je me suis intéressé a
la position de Cenarchaeum symbiosum (groupe Thaumarchaeota sur la figure
1.2), dont la température optimale de croissance est de 10°C. L’analyse suggére
que cette archée est bien différente des autres, qu’elle ne peut pas étre affec-
tée simplement a un des deux grands groupes connus d’Archées, les Euryotes et
les Crénotes, mais qu’elle constituerait peut-étre un branchement trés basal de
I’arbre des Archées. Du fait de sa faible température optimale de croissance, ce
branchement semble remettre en cause 'idée selon laquelle I'ancétre des Archées
était probablement hyperthermophile.

Afin d’étudier I’évolution des températures optimales de croissance, j’ai égale-
ment suivi une approche plus directe. Cette température est une caractéristique
commune & toute une espéce, et donc émane du génome des organismes ; il existe
d’ailleurs des moyens de prédire avec un petit peu de statistiques et un ordi-
nateur, simplement a partir de la séquence du génome d’un organisme, quelle
est sa température optimale de croissance. Cela signifie que si on est capable
de reconstruire les séquences de génomes, ou méme simplement de morceaux de
génomes, d’anciens organismes, on peut prédire & quelle température vivaient ces
organismes. En collaboration avec des chercheurs de Montpellier, j’ai pu ainsi
estimer I’évolution des températures de croissance optimale au cours des derniers
3.5 milliards d’années, en reconstruisant les séquences de morceaux de génomes
ancestraux. Les résultats que nous avons obtenus sont représentés Fig. 1.3.

Nos résultats suggérent que LUCA ne vivait pas a trés haute température,
mais que ses deux descendants les ancétres des Archées et des Bactéries vivaient
a plus haute température que lui. Ensuite, chez les Bactéries (au moins), les tem-
pératures de croissance semblent avoir décru a nouveau. Cette décroissance a déja
été décrite chez les Bactéries en début d’année par Gaucher et al. (2008), qui 'ont
interprétée comme étant corrélée a la température des océans au cours des 3.5
derniers milliards d’années. La température optimale de croissance des Bactéries
aurait donc suivi la température moyenne a la surface de la terre. Les adaptations
paralléles a de hautes températures depuis LUCA sont par contre nouvelles. Nous
avons donc cherché des hypothéses pouvant expliquer ce phénoméne. Certaines
sont représentées Fig. 1.4.

Il est ainsi possible que LUCA ait vécu dans un environnement de température
moyenne, et ait donné naissance a de nombreux organismes. Parmi ceux-ci, les
mutations aidant, certains auraient été plus résistants aux fortes températures,
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Figure 1.3: Reconstruction des températures optimales de croissance le long de l'arbre
de la vie. La deuziéme partie de la courbe des Archées (vert) est en pointillé, cas nous
n’avons pas assez de données pour la connaitre avec suffisamment de certitude.

d’autres moins. On sait qu’il y a 3.8 milliards d’années, la fréquence de chutes
météoritiques a connu une grande augmentation (Gomes et al., 2005) (épisode
dit du Late Heavy Bombardment). Ces chutes de météorites ont probablement
causé d’importants dégats sur terre, et ont du considérablement augmenter la
température qui régnait & sa surface. Si LUCA avait vécu avant 3.8 milliards
d’années, alors seuls les plus résistants a la chaleur de ses descendants auraient
pu survivre. Ensuite, ces descendants auraient donné naissance aux Archées et
Eucaryotes d’une part, et aux Bactéries d’autre part. Selon cette hypothése, une
pression de sélection liée a des chutes météoritiques serait a ’origine de 1’évolution
profonde des températures optimales de croissance.

Une autre hypothése a été proposée par Forterre (2002) et suggére qu’une
mutation aurait pu faciliter les adaptations a de plus grandes températures chez
les descendants de LUCA. Selon cette hypothése, LUCA avait un génome dont
la molécule principale était TARN, et était donc sensible a la chaleur, alors que
ses deux descendants ont chacun indépendamment acquis la possibilité d’utiliser
I’ADN comme support de leur génome. Comme un génome & ADN serait plus
résistant a la température qu’un génome & ARN, cette mutation aurait permis
aux descendants de LUCA de vivre a de plus hautes températures.
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Figure 1.4: Scénario pour l’évolution des températures optimales de croissance depuis
LUCA jusqu’a ses descendants.

1.6 Conclusion

Mon travail de thése constitue un exemple de I'application de méthodes statis-
tiques & 'analyse de génomes afin d’étudier I’évolution des organismes vivants.
C’est une méthode puissante qui permet de traiter des questions qui sont inacces-
sibles a la plupart des autres sciences biologiques : la paléontologie notamment
est limitée par la rareté, la petitesse, et la dégradation des fossiles.

Il y a toutefois de nombreuses difficultés associées a ces études, et ma thése m’a
convaincu qu’il fallait développer de meilleurs modéles statistiques d’évolution
des génomes. En échange, il y aura beaucoup a apprendre sur ’évolution des
génomes, des étres vivants et de la terre.
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Introduction

2.1 Time counts

There is a huge diversity of spoken languages in South America, some of which
are endemic to this continent, and others also found elsewhere. If one considers
only European idioms, Portuguese is spoken in Brazil, English in Guyana, French
in French Guiana and Dutch in Suriname, while Spanish is the official language
in most other countries. The presence and geographical distribution of European
languages in a place far remote from Europe of course makes sense in the light of
history: European languages have been brought to south America by Furopean
colonizers.

In fact, all phenomena from the physical world obviously are the product of
processes that unfolded through time: time is a major variable in our physical
world, all objects are submitted to its footprint. Consequently, to explain the
existence and organisation of natural objects, time must be accounted for.

Notably, as for languages, the diversity and distribution of species around the
world can only be explained by looking at their history. In a famous passage of
“The voyage of the Beagle” (Darwin, 1845), Charles Darwin describes finches of
the Geospiza genus he sampled on the Galapagos islands, about 1,000 km West
from South America:

The most curious fact is the perfect gradation in the size of the
beaks in the different species of Geospiza, from one as large as that
of a hawfinch to that of a chaffinch, and (if Mr. Gould is right in
including his sub-group, Certhidea, in the main group), even to that
of a warbler.

He later turns towards a historical hypothesis to explain this diversity:

Seeing this gradation and diversity of structure in one small, in-
timately related group of birds, one might really fancy that from an
original paucity of birds in this archipelago, one species had been
taken and modified for different ends.
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Insights such as this one paved the way for the Origin of Species, which was
published 20 years later. Darwin considered that the range of species observed
on the Galapagos islands, with their similarities and geographical distribution,
could not be explained by instantaneous independent creations followed by stasis,
but was the trace of a historical process, which is now known as the theory of

evolution (Darwin, 1859):

The most striking and important fact for us in regard to the in-
habitants of islands, is their affinity to those of the nearest mainland,
without being actually the same species. Numerous instances could
be given of this fact. T will give only one, that of the Galapagos
Archipelago, situated under the equator, between 500 and 600 miles
from the shores of South America. Here almost every product of the
land and water bears the unmistakable stamp of the American con-
tinent. There are twenty-six land birds, and twenty-five of these are
ranked by Mr. Gould as distinct species, supposed to have been cre-
ated here; yet the close affinity of most of these birds to American
species in every character, in their habits, gestures, and tones of voice,
was manifest. So it is with the other animals, and with nearly all the
plants, as shown by Dr. Hooker in his admirable memoir on the Flora
of this archipelago. The naturalist, looking at the inhabitants of these
volcanic islands in the Pacific, distant several hundred miles from the
continent, yet feels that he is standing on American land. Why should
this be so? why should the species which are supposed to have been
created in the Galapagos Archipelago, and nowhere else, bear so plain
a stamp of affinity to those created in America? There is nothing in
the conditions of life, in the geological nature of the islands, in their
height or climate, or in the proportions in which the several classes
are associated together, which resembles closely the conditions of the
South American coast: in fact there is a considerable dissimilarity in
all these respects. On the other hand, there is a considerable degree
of resemblance in the volcanic nature of the soil, in climate, height,
and size of the islands, between the Galapagos and Cape de Verde
Archipelagos: but what an entire and absolute difference in their in-
habitants! The inhabitants of the Cape de Verde Islands are related
to those of Africa, like those of the Galapagos to America. I believe
this grand fact can receive no sort of explanation on the ordinary
view of independent creation; whereas on the view here maintained,
it is obvious that the Galapagos Islands would be likely to receive
colonists, whether by occasional means of transport or by formerly
continuous land, from America; and the Cape de Verde Islands from
Africa; and that such colonists would be liable to modification;-the
principle of inheritance still betraying their original birthplace.
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It is now accepted that the organisms one observes are the product of a
historical process. Considering that living matter has been shaped through time
can explain many puzzling observations. For instance, some marine vertebrates
have a horizontal caudal fin instead of a vertical caudal fin like most other ones,
because one of their ancestor was a terrestrial tetrapod; the structure of the
bones of our inner ear is partly explained by their origin as jaw bones in our fish-
and reptile-like ancestors; stochasticity and convergent evolution explains why
the mammalian fauna of Australia is largely dominated by marsupials, whereas
other continents contain mainly placental mammals. This cliché quotation from
Dobzhansky (1973) sums it up:

Nothing in Biology Makes Sense Except in the Light of Evolution.

2.2 Pattern and process

Once it is accepted that evolution has shaped biological diversity, i.e. for in-
stance the differences between species, the question remains as to how evolution
did shape this diversity. There are two aspects to that question, that Galtier et
Gouy (1998) named pattern and process. Pattern corresponds to the trajecto-
ries evolution has adopted to arrive at extant organisms, and is known as the
phylogeny. A phylogeny depicts relationships between organisms through time,
from a common ancestor to extant organisms; it shows which organisms are more
closely related than others. Once the pattern is in place, process corresponds to
how evolution did walk along these trajectories, ¢.e. what events occurred, and
when.

2.2.1 Pattern

The phylogeny represents family relationships between species: it can be seen as
a family tree of species (Fig. 2.1).
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2.2. PATTERN AND PROCESS

A few million
Speciation 1 years ago

grand grand grandmother
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. TIME
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Bonobo Human Orangutan  YNow
(first cousin) (third cousin)

Chimpanzee Gorilla
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Figure 2.1: A phylogeny of some apes. A phylogeny is very much like a family tree,
where family members are species. Here the family tree is centred on the Bonobo chim-
panzee. Ancestral nodes in a phylogenetic tree as well as in a family tree correspond to
ancestors. In a phylogenetic tree, they also correspond to speciations. Here, the first spe-
ciation separates Orangutan from Gorilla, Humans and the two species of Chimpanzees.

2.2.2 Process

Once the pattern is in place, one can use it as a framework for asking questions
about the process of evolution, i.e. events that occurred along the routes evolu-
tion has taken, and that explain the similarities and differences among species.
Questions related to the process of evolution could be: Did evolution go fast?
Did evolution proceed towards increases in size? Was evolution totally stochastic
so that no trend seems to be identifiable? In fact, both pattern and process are
intimately related, and usually knowing one permits to improve the study of the
other. Thus, when studying evolution, it is better to estimate at the same time
pattern and process.

During my thesis, I have developed methods to reconstruct phylogenies and
infer events along the branches of a phylogeny, and made efforts towards improv-
ing the tree of life, by studying particular species whose phylogenetic relationships
are disputed. I have focused on more ancient events than the speciations of great
apes, and notably on how the major classes of extant organisms came to be the
way they are. In the next section, I explain why biologists think that all living
beings share a common evolutionary history, and what are the major classes, or
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kingdoms, of life.

2.3 LUCA and the three kingdoms

2.3.1 The unity of life

In Fig. 2.1, phylogenetic relationships between only 5 species of apes are rep-
resented; much larger phylogenies can be built, that encompass birds, fishes,
insects, mollusks, mushrooms, plants, and all sorts of microorganisms. If such a
large phylogeny does not forget any sort of living being, it corresponds to a tree of
life. On Earth, all organisms can be included in such a tree of life, because they
share a few characteristics that hint at their common origin: they have so many
common points that it is more reasonable to assume that they inherited these
properties from a common ancestor rather than all evolve independently the same
characteristics. This means that all living beings that we now observe, grass, hu-
man, bacteria, heat-loving micro-organism, have the same grand grand grand...
grandmother. This grandmother of all has been named LUCA for Last Univer-
sal Common Ancestor, and is the object of much interest and many controversies.

Characters that show that all living beings have a single origin include their
common basic organisational unit, the cell. Most Bacteria and other unicellu-
lar organisms are made of only one cell; multicellular organisms such as yourself
may contain billions of them, that exchange information and interact to make the
whole organism function. In both cases however, a cell is delimited by a lipidic
membrane, that draws a boundary between the extracellular and the intracellu-
lar environments, filled with an intricate molecular menagerie. This menagerie
includes all sorts of molecules, some used as energy currency or storage, others as
infrastructures, others as nanoscopic machines, others as information storage...
Then, the way that these molecules are used is also universal: general processes
indispensable and central to the living of the cell are nearly identical in all organ-
isms. Eventually, all these similarities come from large similarities in the genomes
of all living beings, as genomes constitute an organism’s cookbook. Such large
similarities are best explained by the hypothesis of a common unique origin for
life on Earth. Therefore, all organisms are related, and their relationships are
represented by the tree of life.

Once it is understood that all life has a single origin, a giant family tree can
be built, that encompasses all kinds of living beings. Although the endeavour to
build such a tree is still very much a work in progress (ATol, 2008), some hy-
potheses of the basic organisation of the tree of life now seem to be nearly certain.
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2.3. LUCA AND THE THREE KINGDOMS

2.3.2 The three kingdoms

One important analysis led Woese et Fox (1977) to propose that the major divi-
sions of life, the “primary kingdoms”, were Eubacteria (hereafter named Bacteria),
The primary divi- Archaebacteria (Archaea), and Urkaryotes (Eukarya). This trichotomy has since

sions of life are Ar-
chaea, Bacteria and

then been mostly confirmed by more sophisticated analyses (see section 2.7 for

Eukarya. more details).

Eukarya have a nu- ®
cleus and organelles.

Many Archaea live ®
in extreme environ-
ments.

Among the three kingdoms, Eukarya are the most conspicuous, as they con-
tain most multicellular organisms. However, besides plants, animals, fungi
and amoeba, Eukarya also contain many groups of unicellular species. All
Eukarya have their DNA packed in a nucleus, and have their cells decorated
with many organelles. These organelles are lipid-membrane individualised
compartments that drive particular functions in the cell: for instance mi-
tochondria house the process of respiration, i.e. the oxidation of particular
molecules to yield Adenosin TriPhosphate (ATP), a small molecule that
can then be used as a provider of energy for all sorts of reactions in the
cell. Another well known example is the chloroplast, found in plants, and
where photosynthesis takes place: photosynthesis transforms light energy
into chemical energy, notably once again in the form of ATP. This chemical
energy can then be used in the chloroplast to produce small sugars, that
can be used or stored by the cell. Eukaryotic cells are further equipped with
a sophisticated cytoskeleton, which, associated with the fact that many Eu-
karyotes do not have a cell wall, gives them the ability to change their shape
and is a fundamental element of their ability to move or to engulf particles.
It is also used during cell division or intracellular trafficking.

Archaea contain mainly unicellular species, of smaller size than eukaryotic
cells, and have neither nucleus nor organelles. Most species are protected
by a cell wall, and the composition of their membrane is different from
that found in Eukarya and Bacteria. Contrary to Eukarya, Archaea display
a wide range of metabolisms. Notably, methanogenesis that reduces C'O,
with Hy to produce methane is only encountered among Archaea. There-
fore, if cows produce such huge amounts of methane, it is thanks to the
methanogenic archaea in their guts. Other Archaea are famous for their
ability to cope with inhospitable environments such as those encountered
in very hot volcanic sources, very salty ponds, or very acid mine wastes. In-
terestingly, although some symbiotic Archaea have been described (Preston
et al., 1996), no parasitic Archaea has been found so far. Recently, it has
become clear that Archaea could play important roles in the economy of the
Earth, by being major contributors to several biochemical cycles (Schimel,
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2004; Leininger et al., 2006; Lipp et al., 2008).

e Bacteria cannot easily be differentiated from Archaea simply based on
their morphology: accordingly, the three kingdoms were defined based on
the analysis of a gene sequence, not cell structure. Indeed, they are similarly
sized as Archaea, can be similarly shaped and do not contain organelles ei-
ther. Bacterial cells are also protected by a cell wall, and also harbour a
great diversity in their metabolisms and in their lifestyles. For instance,
they invented oxygenic chlorophyll-or bacteriochlorophyll-based photosyn-
thesis. Other types of metabolisms can also be found, with heterotrophic
or autotrophic species. Both symbiotic and parasitic Bacteria have been
discovered, with some pathogenic Bacteria very well known for the sin-
ister diseases they cause, such as Mycobacterium leprae (leprosis), Vibrio
cholerae (cholera), Treponema pallidum (Syphilis), Bacillus anthracis (an-
thrax), Yersinia pestis (bubonic plague).

All these types of organisms are the product of a history that can be inferred
through geology and phylogenetic analyses. Geology studies rocks that carry the
stigmas of ancient events, and thus can provide clues concerning the environment
and the living beings that reigned billions of years ago; such information is usually
very partial and eroded but cannot be obtained by other means. In the next
sections, I will present results obtained first through geology and second through
phylogenetics, a science that nicely complements geology.

2.4 A short history of life on Earth, as told by
rocks

The solar system may be older than 4.5675 billion years (the number of decimals
is due to Connelly et al. (2008)). Ancient rocks suggest that life has existed on
Earth for more than 3.5 billion years (Schopf, 2006) . This estimate is based on the
analysis and the datation of stromatolites (“accretionary sedimentary structures,
commonly thinly layered, megascopic and calcareous, interpreted to have been
produced by the activities of mat-building communities of mucilage-secreting
micro-organisms” (Schopf, 2006)), of microfossils (fossils of structures resembling
cells), of molecular biomarkers (molecules interpreted as being diagnostic of a
particular group of organisms) and of isotopic data (measure of the frequencies
of various isotopes of a given atom; these frequencies can be affected by biologi-
cal processes). T briefly describe these three types of methods and present some
of the insights into the deep history of life they provided. These insights have
been selected arbitrarily, and focus mainly on ancient history (older than 1 billion
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years ago). Interested readers are invited to read the books by Knoll (2004) and
Lane (2004) for more details.

2.4.1 Microfossils

Establishing the biological origins of stromatolites or microfossils is usually dif-
ficult, and can only be achieved through comparisons with more recent, uncon-
troversial examples. For instance, stromatolites can be convincingly described as
coming from biological processes if they display an important diversity in their
shape. Accordingly, Allwood et al. (2006) described seven different morphotypes
among 3.43 billion year old stromatolites from Australia, arguing that it seems
unlikely that non-biological processes would show such a diversity. The oldest
stromatolites discovered so far may thus be 3.43 bhillion years old. Similarly, mi-
crofossils showing two micrometer-sized spheres next to each other are usually
interpreted as an example of cell division. However, most convincing fossils are
those that combine microscopic and macroscopic clues of biological origins, such
as microfossils inside rocks resembling stromatolites. Such combined evidence
can also be strengthened by molecular biomarkers.

2.4.2 Molecular biomarkers

Living organisms produce molecules that cannot be obtained by non-biological
processes, that are characteristic of their metabolism and are thus named biomark-
ers. For instance, Cyanobacteria use 2-methylbacteriohopanepolyols in their
membrane; because derivatives of these molecules, named 2-methylhopanoids,
have been found in sediments 2.7 billion years old, this suggests that Cyanobac-
teria already existed at the time ((Summons et al., 1999; Brocks et al., 1999;
Summons et al., 2006) . Similarly, because some sterols diagnostic of Eukary-
otic membranes were detected in the same rocks, Brocks et al. (1999) proposed
that Eukarya may date as long ago as 2.7 billion years. The fact that putative
traces of Eukarya and Cyanobacteria are found in the same rocks is interesting,
as eukaryotic membranes contain cholesterol, which requires fairly high amounts
of oxygen for its synthesis. One could then imagine that the local production
of oxygen by Cyanobacteria was used by Eukarya to produce their membrane
cholesterol. However, this appealing hypothesis is ruined by a recent article in
Nature (Rasmussen et al., 2008) (but see also Rashby et al. (2007)), which shows
that the biomarkers found in these ancient rocks probably entered the rocks after
their formation. The oldest evidence for Eukaryotes is thus found at 1.78-1.68
billion years ago, and for Cyanobacteria at 2.15 billion years ago.
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Biomarkers were also used to characterise an ecosystem that produced rocks
from a 1.64 billion year old basin in Australia. Brocks et al. (2005) found
molecules diagnostic of Chromatiaceae, a group of gamma-Proteobacteria, and
of Chlorobiaceae, from the Bacteroidetes/Chlorobi group, which indicates that
this particular ecosystem was mainly anoxic. This finding is consistent with the
idea that oxygen remained fairly low until later than 1.64 billion years ago: some
environments thus remained quite protected from oxygen.

2.4.3 Isotope ratios

Another kind of marker is found in isotope ratios. Atoms come in different iso-
topes, that depend upon the number of non-charged particles, the neutrons, that
they contain. For instance, carbon atoms are found in three different flavours,
120, that contains 12 nucleons (6 neutrons and 6 protons) and makes for about 99
percent of all carbon, 13C, and *C that decays in a few thousand years. Volcanic
rocks can be dated by analysing the relative frequencies of different isotopes, no-
tably in the couple uranium-lead. Other geologic strata can be dated relatively
to these absolutely dated volcanic strata: this is how geologists can tell the age
of a rock.

Biological reactions tend to prefer lighter atoms: living matter is therefore
enriched in 2C compared to C and “C. When this living matter fossilises,
it produces rocks enriched in '2C: this makes it possible to establish the bio-
genicity of ancient rocks by measuring their *C'/12C ratio. Accordingly, Mojzsis
et al. (1996) measured the *C/!2C ratio in Greenland rocks they estimated to
be 3.8 billion years old, and found the depletion in **C' characteristic of biological
origins: they thus concluded that they had discovered the earliest traces of life.
This result is debated however, because the rocks that were used for this measure-
ment have been altered to the point that their dating is uncertain (Eiler, 2007).
Another measurement by Rosing (1999) nonetheless also finds a 3C/2C ratio
compatible with a biogenic origin in 3.7 billion year old rocks from Greenland.

Carbon isotopes have also been used to date the appearance of a particular
metabolism, methanogenesis. Ueno et al. (2006) measured carbon isotope ratios
in fluid inclusions in rocks from the Pilbara Craton in Australia, thought to have
been deposited more than 3.46 billion years ago. Because the *C/'(C ratio in
the embedded methane is consistent with a biogenic origin, and because abiotic
processes would also have produced other gases that have not been found in these
inclusions, the authors concluded that methanogen archaea must be at least 3.46
billion years old.

Other isotopic ratios offer insight into the early Earth. For instance, 80
and 3°Si have been used as palacothermometers of the ocean. Notably, Robert
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et Chaussidon (2006) estimated that during the last 3.5 billion years, average
oceanic temperatures decreased from about 70°C to about 20°C today. Their
reasoning was based on the fact that at high temperatures, these atoms are more
easily disolved in sea water. Consequently rocks that formed in a sea water at
high temperature tend to be depleted in *O and 3°Si compared to rocks that
formed in colder sea water. When they analysed a sample of rocks spanning the
last 3.5 billion years, and after discarding some rocks that may have been altered
by hydothermal fluids, they found that their two markers were in good agreement
and argued in favour of a decrease in oceanic temperatures. As temperature is a
major parameter affecting living organisms, these results have important impli-
cations for the evolution of life.

Still another atom whose isotopes are useful for the study of the early Earth
is found in sulphur. Sulphate-reducing bacteria combine hydrogen with sulphate
to produce hydrogen sulphide. In doing so, they tend to show some preference for
a particular sulphur isotope, the lighter 32S compared to 31S. Shen et al. (2001)
studied 3.47 billion year old baryte rocks in Greenland, that are rich in sulphate.
Their reasoning was that if sulphate reducing bacteria were present at the time,
they probably reduced some of the sulphate that gave rise to the baryte rocks. In-
deed they found some microscopic sulphide inclusion, and measured their 31.5/325
isotopic ratios, to estimate that these were consistent with their production by
sulphate-reducing bacteria. This means that this particular metabolism may be
at least 3.47 billion years old. Moreover, sulphate is more abundant in aerobic
milieux than in anaerobic ones, so that sulphate reduction must have been more
important when oxygen started rising. Accordingly, Canfield et al. (2000) found
an increase in sulphur fractionation between 2.75 and 2.2-2.3 billion years ago,
consistent with the record of oxygen concentration. More recently, Bekker et al.
(2004) measured sulphur isotope ratios in rocks from South Africa, and concluded
that by 2.32 billion years ago, oxygen had reached at least 107> times its present
level, whereas a few hundreds of million years earlier, oxygen was nearly absent
from the atmosphere. Then a few hundred million years later, a new oxygenation
episode took place. Between 0.58 and 0.55 million years ago, oxygen rose again,
simultaneously with the first appearance of multicellular animals, during what
is known as the Ediacara period (Fike et al., 2006). This coincidence may be
meaningful, as multicellular animals all need oxygen to live, and have developed
a range of exquisite systems for providing oxygen to their cells, from gill slits
and arterio-venal circulation to insects trachea. It is thus not unreasonable to
assume that only when oxygen levels reached a certain threshold could animal
multicellularity appear.

As a matter of fact, it is believed that oxygen had other spectacular influ-
ences on animal life. Notably, Ward et al. (2006) proposed that colonisation of
aerial, and not aquatic, ecosystems by arthropods and vertebrates occurred in
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two phases, each triggered by increases in O, concentrations. A few million years
later, about 0.3 billion years ago, in the carboniferous, oxygen reached nearly
twice its present-day level, which is believed to be the reason why giant animals
like a sea-scorpion 2.5 meters long (Braddy et al., 2008), a dragonfly 0.75 meter
wide (Dudley, 1998), or an amphibian 2 meters long (Dudley, 1998), are found in
the fossil record of this period (Berner et al., 2000): with higher partial pressures
in oxygen, larger animals would have been able to supplement their cells with
sufficient amounts of oxygen.

2.4.4 A sum-up of some insights from geological studies

Several types of indices suggest that life may be more than 3.5 billion years old
(Fig. 2.2). Several important metabolisms have even been dated to be more than
3.4 billion years old: methanogenesis is dated at 3.46, and sulphate-reduction
is dated at 3.47 billion years ago. Not surprisingly, these two metabolisms
work in anaerobic environments. Oxygenic photosynthesis, the cyanobacterial
metabolism that changed the face of the Earth by injecting en masse oxygen in
the atmosphere, must be at least 2.4 billion years old.

Although Cyanobacteria clearly changed the Earth environment, it took quite
some time for oxygen to reach its present level. Apparently, by 2.2 billion years
ago, oxygen was more than 107 times its present level, but it reached its present
level only around 0.6 billion years ago (Scott et al., 2008). This is in agreement
with the inference of the presence of two anaerobic groups, Chromatiaceae and
Chlorobiaceae, 1.64 billion years ago. The date when oxygen finally reaches its
present values coincides with the first appearance of multicellular animals; when
it peaks to about twice present values coincides with the appearance of giant
arthropods and giant amphibians. Oxygen has had a tremendous impact on the
evolution of life, and many interesting studies remain to be done to study the
link between this molecule and life history.

Robert et Chaussidon (2006) propose that oceanic temperatures were 70°C
3.5 billion years ago. This would suggest that early organisms lived at high
temperatures, and progressively adapted to temperatures that are now met on
the Earth. Article 6 shall detail a little bit what genomes have to say on this
expectation.
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Traces of life

Traces of sulphate-reduction
Traces of methanogeny
Traces of Cyanobacteria

Traces of Eukaryotes

Traces of Chromatiaceae
and Chlorobiaceae

Fossils of animals

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Billion years from now

Figure 2.2: Chronology of some events in the history of life.

2.5 The historical content of extant organisms

Digging for information about the history of living beings in rocks seems a fairly
natural quest, as rocks are full of fossils. As we have seen in the previous section,
fossils of all sorts show that life has existed for a long time, but they are not very
generous about the early phylogeny of living beings and how they came to be
the way they are. Rocks more than 3 billion year old are very rare: an attentive
reader may have noticed that studies that I reported in the former section all
came from Australia, South Africa or Greenland: few other places harbour very
ancient rocks (hopefully, climate change may grant us access to new areas of in-
teresting rocks). Moreover, they have often been very altered as eons passed. All
in all, they only give partial and shaky, but key, information.

Other documents of evolutionary history can be found in living organisms them-
selves: their morphology, their characteristics, but also their genome deliver in-
formation regarding evolution. Like rocks, extant species carry scars of ancient
events in their bones and genes.

2.5.1 Morphological data and homology

The arrangement of similarities and differences between organisms betrays how
they evolved from common ancestors. For instance, bonobos and chimps are, to
our eyes, nearly identical creatures, although one is more affectionate than the
other. This high similarity reflects their very recent divergence from a common
ancestor: both species had little time to accumulate morphological differences
one from the other. A slightly longer time in the past, chimpanzees and bonobos
also share a common ancestor with humans, which is again shown by the large
similitude between these African apes and their naked cousin. One can go on like
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that and assemble a tree of life by gathering more and more distant cousins until
no more living species is left that has not been invited to the family dinner. Such
a “pilgrimage to the dawn of evolution” has been described by Richard Dawkins
(2005), although for some reason he chose humans as focal species instead of
bonobos.

Rather than using eyeball estimations of overall similarity as estimates of re-
latedness, evolutionary biologists rely on well defined methods to sort out species
trees. One important step notably is to define characters and states, by individ-
ualising parts of the body. For instance, the forelimb in mammals may be such
a character, as it can be easily individualised from the rest of the body. Then,
for this character, states could be arm, wing, or flipper. Although the example I
chose is rather straightforward, usually a major problem is to identify such char-
acters. Why do we think it reasonable to consider that there were transitions
between arm and flipper and wing? Said differently, why do we think that all
three did not appear independently of each other but evolved from a single an-
cestral state in the ancestor of all animals under study? Said shortly, why do we
consider that they are homologous?

The definition of homology in evolutionary studies is of crucial importance.
If one wants to infer the evolution of a character, one needs to recognise properly
this character, under all the costumes it has disguised itself in primates, bats,
seals, or any species one is interested in. For morphological characters, homology
can be identified by looking at position, shape, time of occurrence in life his-
tory, or more recently pattern of gene expression. If there are lots of similarities
between two characters in different species, it seems more reasonable to assume
that these common points result from common descent, 7.e. are homologous,
than from parallel appearances.

If morphology may provide valuable information to build a phylogeny of great
apes, mammals or even vertebrates, it gets quite uncomfortable when one wants
to compare a plant with a hummingbird, a bacterial parasite with its insect host,
or a whale with an archaea living in the stomach of a cow: homologous characters
are uneasy to find and their evolution is, to say the least, complex. Nonetheless,
a proper tree of life should include all of life, if possible as a faithful depiction
of how they evolved from a common ancestor. Non-morphological characters are
thus much needed, and can be found in genomes.

2.5.2 Sequence data

Genomes are linear molecules made of four different types of sugars (nucleotides),
named adenine, cytosine, guanine, and thymine, or, more shortly, A,C,G and T.
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Reading the sequence of a genome therefore amounts to repeating A,C,G and Ts
a large number of times in a specific order. In practice phylogeneticists do not
compare genomes in their totality, although they could, but for practical reasons
select a few semantids (Zuckerkandl et Pauling, 1965b), which most often are
simply genes, i.e., approximately, functional segments of the genome sequence
that can be transcribed and possibly translated. In fact, to build a phylogeny, all
one has to find is portions of genome sequences that can be compared between
species, i.e., portions of genomes that are homologous.

When comparing semantid or genome sequences to build a phylogeny, char-
acters are single nucleotides. Homology between these sequence characters is
based on concepts inherited from morphological analyses. It is determined based
on overall sequence similarity: if two sequences show a lot of similarity, it is
unlikely that they arose independently of each other, and therefore they must
be homologous. Determining overall sequence similarity is achieved through se-
quence alignment, a procedure whose aim is to align sequences with respect to
each other so that their overall sequence similarity is maximised. In the end, if
the maximal score achieved is such that homology is most probable, sequences
can be used for phylogeny reconstruction. Several heuristics exist that can align
sequences together (Thompson et al., 1994; Notredame et al., 2000; Edgar, 2004;
Loytynoja et Goldman, 2008), or whose aim is to quickly search a database for

sequences similar (and then possibly homologous) to a query sequence (Altschul
et al., 1997).

Other sequence-based characters can be used, like the presence/absence of a
gene in the genome of an organism. In such a case, a character has only two
states, “present” or “absent”. However this type of analysis is usually less precise
than analyses that use sequences in their entirety. Actually, sequence data offer
several advantages compared to other data for evolutionary reconstructions.

First, it is very easy to obtain sequence data. As seen in television series, a
single hair can be used to extract DNA and sequence a gene from it. Then, it
is easier to establish homology for sequence data than for morphological data,
up to the point that a computer can do it. If there is a gene of interest in the
Bonobo genome, it is not that hard to find a homologous gene in Human, for
instance. If my bonobo gene is 500 characters long, I can decide that whatever
human gene has a sequence more than 70% identical (350 characters in common)
is a homologous gene. A quick computation shows this 70% identity criterion is
conservative: in DNA, there are 4 possible states at each site. 70% identity means
that among the 500 characters, more than 350 are identical between Human and
Bonobo. The probability that at least 350 sites are identical in 500 sequences
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can be computed as follows:

500

‘ 1. 3 .
P(more than 350 identical sites in 500 sites) = Z Coo X (Z)Z X (1)500_Z
=350
0 3500—i 0
= ZC‘éOOXW%,?XlO_
=350

The probability that the Bonobo and Human sequences are identical at 70%
by chance alone (in other terms, convergence) is so small (=g ) that it is nearly
certain that two sequences this similar descend from a single ancestor. Then I
can run a program that scans the whole human genome and reports all sequences
that are more than 70% identical to my gene of interest. All these sequences,

according to my conservative criterion, are homologous genes.

It is much more difficult to find objective criteria to establish homology for
morphological data: as said previously, to establish the homology of an organ, one
can consider its three-dimensional structure, its embryological origin, the genes
that are expressed during its formation, the developmental phase during which it
is formed... Simply gathering all this information requires a lot of tedious work.
In the end, if lucky, a researcher may have assembled a large body of data, some
of which may be advocating homology, others not. From these, the researcher
has to decide whether he can confidently assert homology or if he is unsure, and
no simple automatic method can help him.

Consequently, using sequence data is much more practical than using mor-
phological data; another advantage of sequence over morphological data will be
presented in section 2.6.3.

Once characters have been gathered, either morphological or sequential, a
crude way to reconstruct the phylogeny of species would be to use criteria akin
to “birds of a feather flock together” animals sharing the highest number of comparing genomes
states are expected to be the most closely related. More elaborate tools have "wres statistics.
been developed, and can be grouped under the flag of inferential statistics.

2.6 Statistics for inference

People who are fond of genealogy can search parish records for information about
their ancestors. This way they can discover the names and jobs of their grand-
grand-grand-grand-father, for instance. Another way to know more about their
forebears would be to find their brothers, sisters, and cousins, ask them to spit
in a tube, and then sequence their genomes. Then, by carefully analysing the
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genomes of his kin, and using his knowledge of how genes are passed from one
generation to the next, a genealogist might be able to reconstruct characteristics
of his glorious antecedents, and know if they could curl their tongue into a tube
and if they had wet earwax, for instance.

The phylogeneticist is faced with roughly the same choices: either he can
search the fossil record to find information about his ancestors, and do paleon-
tology, or he can look at his genome and the genomes of his cousins (of their
morphology), and do comparative genomics (or comparative anatomy). The only
difference here is the timescale. When the genealogist is interested in decades or
at best centuries, the phylogeneticist is interested in a history that spans thou-
sands to billions of years. The phylogeneticist cousins consequently may be more
hairy, much bigger, much smaller, in every respect very different from him. De-
spite possibly huge differences, he can study their morphology or, if morphologies
are different to the point that enough homologous characters cannot be recognised
anymore, their genomes. Hopefully, he may come up with a satisfying depiction
of the history of their family, and infer characteristics of their ancestors. To do
s0, he needs models of morphology and sequence evolution, and a bit of statistics.

In this section I am going to explain what I mean by “model” and statistics,
introducing these concepts with a simplistic example. Then I will rapidly present
models of evolution, and in subsequent sections I will present what such mod-
els of evolution can tell us about the history of life on Earth, and combine this
knowledge with what we’ve learnt from geology.

2.6.1 A leak example

Building hypotheses to understand an unexpected pattern

Let’s assume I have a small problem of water overconsumption. When I look at
the water that is used on a daily basis in my apartment, I have the impression
that some days too much water is wasted: I suspect that someone, let’s call her M,
may sometimes forget to properly close some tap before going to bed. However, I
cannot charge her unless I am really sure, and I also want to know how frequently
she forgets to turn off a tap, to know how big a punishment she deserves. All I
can do is look at the daily water consumption for a set of dates, and then try to
prove, based on these data only, that M did commit a water crime. To do this,
I can compare two cases: either taps are always properly closed before going
to bed and the days where we spend a lot of water are the fruit of an expected
variation in normal water consumption, or there are indeed some days where a
tap is not correctly turned off, which results in a waste of water. These two cases
correspond to two types of processes, one where the water consumption derives
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from only random variation around some average value (A), and one where it
derives from the random variation around some average value, plus sometimes an
additional quantity of wasted water (B). To catch M, I need to prove that (B)
happened, i.e. generated the data, not (A). To do so, I can compare what daily
water consumptions process (A) would produce and compare it to the real data,
and do the same for process (B). If process (B) produces data that more closely
resembles the real ones than process (A), then I can joyfully charge M.

Now comes the problem of knowing what data processes (A) and (B) would
engender. First, I could make “physical” simulations. For instance, I could build
a copy of my apartment, use water in the copy apartment as similarly as possible
as we do in the real apartment, and then in addition sometimes let a tap open
for a night. I could try to let the tap open 0 (model (A)), 1, 2, 3... n (model (B))
times, and see under which number of times water is spent in a similar way as
observed in the real data. However, this simulation technique would be tedious
and difficult to implement.

Instead, T can use computer simulations based on a probabilistic model.
This probabilistic model needs to incorporate the normal variation in daily con-
sumption, but also the occasional forgotten open tap. A simple model for daily
variation around an average quantity is provided by the normal, or Gaussian,
distribution. This distribution is defined by two parameters, the mean p and
the standard deviation o. For the occasional forgotten open tap, I assume that
with a probability p, a tap has not been turned off before the night, so that some
quantity @) of water is wasted. Obviously, this () parameter is a poor approxi-
mation of the reality: one does not expect that when a tap is left open, exactly
Q litres are wasted, whatever the duration of the night and the flow. However,
when building models of a real process, simplifications need to be made, and
I hope in these circumstances this simplification will not do much harm to the
applicability of my model. This model therefore totalizes 4 parameters. With
such a probabilistic model, I can run simulations n silico, which is much easier
and faster than in the real world.

Confronting the data

Now that I have my probabilistic model, T want to know how many times M
forgot to turn off a tap (with the possibility that this number of times is 0,
process (A)). To this end, I simulate data under my model with different values
for the parameters p, o, p and ). Then I compute distances between real data
and simulated distributions. For real data, I have monitored water consumption
for 365 days. To compare real and simulated distributions, I use the following
protocol:
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1. First I order the 365 real values r; on one hand , and the 365 simulated
values s; on the other hand

2. Then I compute Distance =3,y s65 [Ti — i

The distance that I compute is the simplest I could think of. It may not be
the best distance possible: for instance, this distance might be biased in some
way, or be little discriminating. Further studies should be made to ensure that
my statistical estimator is not too bad.

I simulate distributions with the following parameters:
e 1 all integers in [20;80], by increases of 2

e o: all integers in [0;40|, by increases of 4

e p: all real numbers in [0;1] by increments of 0.1

e (): all integers in [5;80] by increases of 5

For each set of values, I run ten simulations.

In the end I choose as my best estimates for p, o, p and @ the values that
produced the distribution closest to the true one.

When [ follow the above protocol, I find that the best estimates of my pa-
rameters are as follow:

e 1 60

e p: 0.1
e (): 20

This means that our best model according to our estimator predicts that on
average, we consume 60 litres per day, with a standard deviation of 4 litres, and
that M has forgotten about 36 (p x 365) times to switch off the tap, which may
have cost the loss of as much as 730 (@ x p x 365) litres in total. The fit of
our model is not too bad, as shown when I superpose the densities of the two
distributions Fig. 2.3. We can notably observe that the real distribution shows
some bumps on the right side, as the simulated distribution. These bumps most
likely come from leaks.
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Figure 2.3: Simulated distribution with best fit to the real distribution, and distribution
obtained under the model without occasional open tap.

It is probable that if T had tried more values for the parameters of my model,
I would have obtained a better fit. Moreover, I do not know whether there is
a huge difference between choosing these specific values for the parameters and
choosing other close values, or even choosing a model where p = 0 (process (A)):
perhaps other values provide a fit nearly as good as these values, in which case
the weight of evidence for these would be very weak. To get a qualitative idea
as to whether process (A) may have produced the real data, I have represented
the distribution closest to the true data when p = 0 in Fig. 2.3. Although it
is not that far from the real distribution, it does seem to be not as good as the
best distribution when p # 0: notably, it does not produce bumps as in the real
distribution. It would be probably safe to make sure that the model with p = 0
really cannot build a distribution as good as when p # 0, possibly with more sim-
ulations or by increasing the sample size, but I am going to trust this inference:
after all, not much is at stake.

When confronted with these results, M confessed that she had forgotten to
close a tap 24 times during the last 365 days. This shows the advantage of statis-
tics for running a household.
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2.6.2 Inferential statistics

The leak example showed that, when confronted with some unexpected data,
one can make hypotheses about the process that generated them, build a model
based on these hypotheses, and test how well this model (the hypotheses) fits the
data, according to some estimator. This whole procedure can be referred to as
inferential statistics.

As in our example, living species and their characteristics are the result of a
process that occurred through time, evolution. As in our example, we have no
way of knowing the process with certitude, because we have no time machine.
As in our example, we can resort to inferential statistics to make hypotheses and
confront them to data.

Inferential statistics need 4 elements:

1. The data. In the leak example, data were composed of quantities of water
spent per day; in biology, these data could be the presence/absence of some
characters (a cell nucleus for instance), an ecological factor (the optimal
growth temperature for instance), sequences, etc...

2. Hypotheses on the process that generated the data. When faced with data,
a statistician elaborates some hypotheses of how they came to be the way
they are, hypotheses about the process that generated the data. For the
leak example, one could think of two possible processes (A) and (B).

3. A model. Once the hypotheses have been enunciated, they need to be
translated into a mathematical model. Such a model needs to incorporate
the most important aspects of the real process: an optimal balance between
realism and tractability needs to be found.

4. An estimator. Once the statistician has a model of the processes he thinks
may have generated the data, he needs to find a way to analyse how closely
his model fits the data. In the leak example, I resorted to simulations and
computed distances between these simulations and the true data. Other
estimators have been found and studied in a wide range of problems, so
that when a particular estimator is used, one knows its characteristics.

When applied to biological data, the aim of inferential statistics is to recon-
struct past history, either past speciations to estimate the phylogeny, or past
events that occurred between speciations, to estimate the process of evolution.
We have already presented the data that phylogeneticists could use to infer the
history of life from extant organisms. With these data in hand, phylogeneticists
can use the lenses of models of evolution to look into the past.
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2.6.3 Models of evolution

Two different types of data impose two different types of models. Some characters
show a limited number of states: these are discrete characters: for n states, there
are n? possible transitions, including transitions from state i to itself. Other
characters do not have a limited number of states (for example, the size of an
organ or the number of hair on the back of a drosophila), but their evolution can
still be modelled probabilistically. 1 will not detail this second kind of models
as I have not used them; further details about these can be found notably in
Felsenstein (1973); Pagel (1999); Pagel et al. (2004). In the next few lines, I
briefly present models that have been used for discrete characters with a fixed
number of states.

Similar models of evolution can be used for morphological and sequence data.
For sequence data, the number of states is clearly defined: for DNA, there are 4
states. For morphological data, this number will vary: if forelimb is the character
of interest and its observed states are arm, wing, and flipper, this number is 3. In
both cases, models of evolution can be devised. Early evolutionary biologists had
(and for a great part we still have) no idea how morphological changes occurred,
and unfortunately did not have access to sequence data. Consequently, very few
hypotheses could be made about the processes that generated morphological di-
versity. The corresponding models were thus necessarily very simple, and very
subjective, giving a priori more probability to a particular transition than to
another. Moreover, early models were estimated by hand, as computers were
not available yet. This (although this is clearly not the only reason) imposed a
further constraint on model realism: when a character had different states in two
species, by default, one would count only one transition event, even if there may
have been several transitions in chain, especially if the two compared species have
diverged a long time ago, or if the character under study is little constrained and
undergoes many transitions. In consequence, such a model, named parsimony,
is known to be subject to bias when lots of events have occurred, because it
does always underestimate the true number of transitions, as has been repeat-
edly shown on sequence data (Felsenstein, 1978; Hasegawa et Fujiwara, 1993;
Kuhner et Felsenstein, 1994; Tateno et al., 1994; Huelsenbeck, 1997; Guindon
et Gascuel, 2003). Instead, especially on sequence data, people now use more
flexible models, that can estimate that a character has undergone several transi-
tions even if these transitions have left no observable trace, and that rely on an
explicit probabilistic model, where transitions are associated with probabilities
(Jukes T.H., 1969; Dayhoff et al., 1972; Kimura, 1980; Felsenstein, 1981; Lanave
et al., 1984; Hasegawa et al., 1985; Tamura, 1992; Jones et al., 1994; Whelan et
Goldman, 2001; Le et Gascuel, 2008). These transitions are parameters of the
model, which can be statistically inferred. Models of sequence evolution have
been thoroughly detailed in Felsenstein (2004); Yang (2006), for instance, or in
the theses of Galtier (1997); Guindon (2003). More details will also be provided
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in section 2.7.2.

The model of character evolution should not only account for the process,
with the transition probabilities, it should also account for the pattern, the path
that has been taken by evolution to yield the observed state distribution among
species. This pattern is usually modelled by a bifurcating acyclic rooted graph,
and represents a species phylogeny (Fig. 2.4). This graph is composed of nodes
and branches (according to the phylogenetics vocabulary), where the root node
represents the ancestor of all organisms found in the tree, internal branches join
two ancestors together, and external branches join a sampled species with its
most direct ancestor. In practice, one can impose a known species phylogeny, or
estimate the species phylogeny jointly with the other parameters of the model
of evolution. However, in such cases, one character is not enough to estimate it
all. When both species tree and character evolution are to be estimated, a large
number of characters are needed.

Internal

--------------------------- External
branches

T e branches

Bonobo Human Orangutan
Chimpanzee Gorilla

Figure 2.4: Example of a species tree. The species of interest are bonobo, chimpanzee,
human, gorilla and orangutan. Internal nodes are circled in red. The root of the tree is
the uppest node in the tree.

Here the second advantage of sequence data over morphology is very obvious,
as the number of sequence characters can be very large, and as each character
is fairly similar to the next one: a limited number of parameters may fit a large
number of sequence characters. On the contrary, morphological data are difficult
to acquire in large quantity, and may be less easy to model with a limited set of
parameters, as from one character (for example: the forelimb) to the next (for
example: the presence of mammary glands), states may differ (in our examples
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of characters, one may have a dozen of states and the other only two). As it is
more difficult to properly estimate parameters of a model when data are scarce,
using sequence data to reconstruct evolutionary history is a much more reason-
able endeavour.

Because it is easier to study sequence than morphology evolution, models of
sequence evolution have recently reached a degree of sophistication that models
of morphological evolution never reached. It is now known which kind of sub-
stitution among A, C, G, T is usually more frequent than the other one, that the
model of substitution can change depending on its position in the alignment, or
depending on the time in its history. More formal presentations of models of
evolution can be found in articles 4 and 8. Heterogeneity in models of evolu-
tion through time has been tackled in section 2.7.2 and articles 4 and 7, where
different models of evolution can be used on different branches of a phylogeny.
Heterogeneity in models of evolution between sites has been tackled in 8, where
different phylogenies are associated to different portions of a single semantid.

2.6.4 Estimators

Once a model of character evolution has been defined, to infer both species tree
and character evolution, all that remains to be found is an estimator. One could
use simulations and compute distances to the real data as was done in the leak
example. Instead, because in phylogenetics simulations would have no advantage
over them, more classical estimators are used. The first estimator that was used
was in the context of parsimony models, and is named maximum parsimony: this
estimator posits that the best model (here I understand model as the phylogenetic
tree only), is the model that supposes the smallest total number of transitions be-
tween states. It was first applied to molecular data by Edwards et Cavalli-Sforza
(1964), and an improved algorithm was devised by Fitch (1971) a few years later.
It may work finely when the characters under study have undergone few transi-
tions; however, some characters evolve very fast, so that their true history will
differ from the most parsimonious one. Therefore maximum parsimony should be
used with caution, and more flexible estimators be preferred. Mainly three such
estimators that rely on explicitly probabilistic models of transition between sites
have been used in practice, although mostly on sequence data. These estimators
are minimum evolution, mazimum likelihood, and Bayesian integration.

Minimum evolution (first exposed by Cavalli-Sforza et Edwards (1967)) is re-
lated in philosophy to maximum parsimony, as it likens the true evolutionary
history with the one that supposes the smallest number of transitions. In prac-
tice, very fast heuristics have been found that produce fairly good results ((Saitou
et Nei, 1987; Studier et Keppler, 1988; Gascuel, 1997), see for instance (Guindon
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et Gascuel, 2003) for their efficiency). However, this type of method does not
permit to accurately estimate parameter values other than the tree topology. For
instance, transition probabilities cannot be inferred with this estimator. This is a
drawback as knowledge of the process, or an estimate of the process, can improve
phylogenetic reconstruction.

Instead of a quantity of evolution, the focus of maximum likelihood and
Bayesian integration is probability. In practice, they are much slower than meth-
ods based on minimum evolution, but are more precise, and permit to use better
models of sequence evolution, as other parameters than the tree topology can be
estimated. Maximum likelihood takes as an estimator of the true evolutionary
history the one that permits to maximise the probability of the data (the like-
lihood of a model is proportional to the probability of the data given a model).
This is in essence very similar to the poor technique that I have used in the leak
example: if an infinite number of simulations were done, the maximum likelihood
model would be the one that produces the real data most often among all mod-
els considered. The algorithm used to compute the likelihood of a phylogenetic
tree for discrete characters proposed in 1981 by Joseph Felsenstein (Felsenstein,
1981) does not require simulations however but uses an analytical formula, and
is applicable to any type of data that can be described with a limited number of
states. Formulae for computing the likelihood of a phylogenetic tree are given in
articles 4 and 8.

Bayesian integration is different from all estimators discussed so far, as it
does not provide a point estimate of the best model (although it is possible to
extract point estimates from the result of an analysis by Bayesian integration).
It takes instead a more cautious approach, by acknowledging that any estima-
tion is associated with a certain amount of uncertainty: it produces a probability
distribution over the models of interest, which can then be summed up. The
probability used by Bayesian integration is posterior probability, not likelihood:
while likelihood is the probability of the data given the model (or is proportional
to it), the posterior probability is the probability of the model given the data.
Differently put, the model with the highest posterior probability is the model
that most probably generated the data. This allows one to naturally compare
models with each other: if model A has a posterior probability of 0.09 and model
B a posterior probability of 0.03, this means that model A is three times more
probable than model B. On the contrary, if model A has a likelihood of 0.09 and
model B a likelihood of 0.03, one cannot say that model A is three times more
probable than model B, but could say that data are three times more probable
under model A than under model B. In this case, one can say that model A
is three times more likely than model B, a distinction in terms due to Fisher
(1922). Let’s look at some formulae to better understand the difference between
likelihood and posterior probability.
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The likelihood L(M|D) of a model M is proportional to the probability p of
the data D given the model M:

L(M|D) = k x p(D|M)
Here, we consider that the proportionality constant k is 1:
L(M|D) = p(D|M)

The posterior probability PP(M) of a model is the probability of the model
given the data:
PP(M) = p(M|D)

In molecular phylogenetics, M corresponds notably to the set of transition
probabilities between states, and the phylogenetic tree. D corresponds to the
sequences under study.

When one considers two models A and B, one can compute their likelihoods
L(A) = p(D|A) and L(B) = p(D|B). These two likelihoods are probabilities,
but they are not from the same probability space. On the contrary the posterior
probabilities of models A and B are PP(A) = p(A|D) and PP(B) = p(B|D),
from the same probability space. As a consequence, for a given dataset, the sum
of posterior probabilities for all models is 1: > ,, PP(M) = >_,,p(M|D) = 1,
but the sum of likelihoods for all models is undefined.

More precisely, posterior probabilities permit building a probability distribu-
tion over all models, whereas likelihoods do not. Using likelihood, one could
also get a probability distribution, but a probability distribution over all possible
data, for one model: not interesting for a statistician, who usually only has got
one dataset, and wants to find the best models.

A probability distribution is a well-defined mathematical object, so powerful
techniques exist to work with them. It is notably possible to sample from them
“smartly”, i.e., here, to avoid wasting time sampling models that have a very
weak posterior probability, and not miss models that have a very high poste-
rior probability. Indeed, posterior probability distributions often cannot be fully
explored, because there are too many possible values. This is notably true in
phylogenetics, where the number of possible trees is huge. Instead, one samples
models, using techniques such as Markov chain Monte Carlo (MCMC) (Metropo-
lis et al., 1953). If run infinitely, these techniques guarantee that the set of models
sampled will be an unbiased sample from the full distribution. If run for a suf-
ficiently long time, one can expect that the obtained sample will be very good.
MCMC techniques work only for probability distributions: therefore to obtain
model probability distributions, MCMC techniques can only be used with poste-
rior probability distributions. Some authors have shown how to sample from the
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likelihood function through MCMC, but as far as I understood they used MCMC
on posterior probability distributions and then used a mathematical trick known
as importance sampling (or importance reweighting) to transform the posterior
probability sample into a sample of the likelihood function (Geyer, 1991; Kuhner
et al., 1995).

The application of Bayesian and MCMC methods to phylogenetics dates from
the mid-nineteen nineties, with the pioneering articles of Rannala et Yang (1996);
Yang et Rannala (1997); Mau et Newton (1997); Li et al. (2000). They have con-
siderably gained in popularity since then, and will probably get more used as
models of evolution become more elaborate. In this thesis, my work has used
maximum likelihood techniques, although all models and algorithms that I used
and developed can also be implemented in a Bayesian framework. In fact, likeli-
hood and posterior probability are intimately related by Bayes’ formula:

PPV — p(at| D) — PPIM) X p(M) _ L) x p(a)
p(D) p(D)

In this last formula, one can see that the posterior probability of a model is
proportional to the product of the model likelihood and of a prior probability
p(M) associated with the model, arbitrarily defined by the user of a Bayesian
program. Another term is found in p(D), the probability of the data. This
last term is difficult to compute, and is usually not computed, so the posterior
probability of a model can only be known up to a multiplicative term (zﬁ). In
practice, when MCMC techniques are used, this multiplicative term is cancelled
out of the equations.

In some cases, the most likely models will also be models of highest posterior
probabilities. This is notably true when the prior probabilities p(M) do not dif-
fer between models, i.e. VM, p(M) = ¢, with ¢ € [0;1] constant. In such cases,
PP(M) =p(D|M) x ¢ = L(M) x c. However, if the user of a Bayesian program
has some knowledge on which models are more probable than others, he can affect
different prior probabilities to the models. This may result in differences between
the most likely models and the models of highest posterior probabilities.

These differences are where proponents of maximum likelihood methods (fre-
quentists) and proponents of Bayesian integration (Bayesians) disagree, because
prior probabilities influence the result of an analysis. Frequentists think that it
is bad to influence what the data have to say, and Bayesians answer that their
method has more power, because it incorporates extra knowledge than what is
only found in the data. There are however cases where scientists have no idea
what prior distribution should be used. In such cases, Bayesians would suggest
using a uniform distribution; however frequentists answer that using a uniform
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distribution is far from an agnostic approach, as it amounts to supposing that
all hypotheses are equally probable (Edwards, 1972). All would agree that much
care must be devoted to assessing the impact of prior probability distributions
on the result.

To me, Bayesian integration methods are attractive notably because they
allow the statistician to handle models with more parameters than maximum
likelihood. Indeed, the quantity of data one can study is limited: therefore an
uncertainty is necessarily associated to the estimation of each parameter of a
model. When there are lots of parameters, there is some chance that a few
parameters will have a non-negligible amount of uncertainty. Relying on point
estimates for these propagates this uncertainty to all other parameters. Instead
Bayesian integration methods provide probability distributions for all parameters
of the model: the distribution will be flat if there is a lot of uncertainty, or very
pointy if there is a lot of signal in the data in favour of a particular value of the
parameter. If a parameter value is uncertain, a maximum likelihood analysis will
be highly uncertain; instead a Bayesian integration analysis will “integrate out”
this uncertainty to estimate other parameters, and will therefore be more robust.

The alert reader will have noticed that all aspects of Bayesian integration that
I praise are related to integration of uncertainty rather than to the use of prior
probabilities (although these prior probabilities can be very useful in some mod-
els , e.g. (Rannala et Yang, 1996; Ané et al., 2007)). As noted earlier, through
importance sampling, it is possible to sample from the likelihood function in-
stead of the posterior probability distribution. Such approaches lend robustness
to likelihood-based approaches.

Sequence data, models of evolution and estimators have been used in con-
junction to answer questions that geology and comparative anatomy could not
address.

2.7 A short history of life on Earth, as told by
genomes

In this section, I present some insights into the early evolution of life that were
gained through the analysis of gene and genome sequences through models of evo-
lution. Such analyses are complementary to geological studies. Geology provides
punctual information about a particular environment at a particular time. The
study of genomes in a historical framework gives another window into the past:
for each genome analysed, new information about an ancestor is gained. As the
number of genomes studied increases, the number of ancestors for which infor-
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mation is available increases, and can help fill the gaps of the geological record.
Moreover, the geological record can at best provide morphological data (and not
really at the timescales that I have considered in my work), which, as I said in
section 2.6.3 are less easy to analyse than sequence data. Overall, sequence data
provide an unmatched way to study ancient evolution.

2.7.1 The three kingdoms

A cellular genome was first sequenced in 1995 (Fleischmann et al., 1995); before
that date, molecular phylogeny was often based on single gene sequences. One
particularly important phylogeny based on sequences was even obtained with-
out knowing the precise sequence of the studied gene, small subunit ribosomal
RNA (rRNA) (Woese et Fox, 1977). Instead, the gene product, extracted for the
organism under study, was submitted to an enzymatic treatment (a digestion),
that cuts the molecule in little pieces. The way the molecule is cut depends on
its sequence, therefore one can compute distances between the digestion patterns
obtained for the rRNAs of different species, and extrapolate that this distance
between rRNAs is a good estimate of distances between species. When Woese
et Fox (1977) undertook their analysis, it was widely accepted that the primary
division was between Bacteria, on one hand, and Eukarya, on the other hand.
However, distances between rRNA sequences suggested that methanogenic bac-
teria were very different from the other ones, about as different from them as
Eukarya. Woese et Fox (1977) concluded that methanogenic bacteria were not
bacteria, and created a group for them, the Archaea. There were thus three
different groups of species: Bacteria, Archaea, and Eukarya (Fig. 2.5). These
three kingdoms have then been confirmed by the analysis of gene sequences,
as efficient techniques revealing sequences in their totality have been developed
(Sanger et al., 1977). More representatives of the Archaea have also been discov-
ered, which further convinced sceptics that there were three kingdoms (Forterre,
2007).
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Archaea Eukarya

Bacteria

Figure 2.5: Schema of a very simplified tree of life, with the three kingdoms Archaea,
Bacteria and Eukarya.

2.7.2 The root of the tree of life

The trichotomy between Archaea, Bacteria and Eukarya does not provide a way to
pinpoint the root of the tree of life, the organism from which all extant organisms
are descended, LUCA. Gogarten et al. (1989) and Iwabe et al. (1989) found an
elegant way to root the tree of life. To understand it, one first needs to remember
that LUCA is not the first living organism on Earth: LUCA is the Last Universal
Common Ancestor. Many organisms may have lived before it, some of which
may have left no descendant among extant organisms, others that would have
been ancestors of LUCA. In the ancestors of LUCA, mutations occured; notably,
some genes duplicated. With this in mind, they searched for gene families that
were older than LUCA, and that had duplicated before its appearance. Each
duplicate could then be used as an outgroup for the other one, and the tree of
life be rooted (Fig. 2.6).
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Archaea
LUCA;) L FEukarya
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D L Eukarya
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Bacteria

Figure 2.6: The use of anciently duplicated genes for rooting the tree of life. The
duplication event predating LUCA (red circle) is shown with a red dot. Such ancient
duplicates suggest that the first speciation was between Bacteria and a group consisting
of Archaea and Eukarya.

Analyses of anciently duplicated genes most often place the root between
Bacteria and Archaea-Eukarya (Zhaxybayeva et al., 2005). However, phylogenies
obtained using these ancient duplicates have been questioned as too many sub-
stitutions may have affected their sequences (Forterre et al., 1992; Philippe et
Forterre, 1999). In this thesis, when inferring events close to the root, I therefore
considered three possible roots, between each of the three kingdoms (articles 4, 6).

Few other ways have been proposed to root the tree of life. One possibility
is to date some nodes of the tree and make the hypothesis that the substitution
process is clockwise (Zuckerkandl et Pauling, 1965a; Huelsenbeck et al., 2002;
Kumar, 2005): under this hypothesis, the root of the tree should be the point
equidistant from all extant organisms. However, the substitution process is rarely
perfectly clockwise, especially when large evolutionary distances are considered,
and better models of evolution that relax the clock hypothesis can be used to
root a tree (Gillespie, 1984; Drummond et al., 2006; Rannala et Yang, 2007).
Although this method is interesting and deserves to be developed I shall not
comment further on it.

In principle, the pattern of substitution might also be used to root a tree:
under some models of sequence evolution, the direction of change has some im-
portance (Yang et Roberts, 1995; Galtier et Gouy, 1998; Huelsenbeck et al., 2002;
Yap et Speed, 2005; Boussau et Gouy, 2006). However, the use of such models
has been very rare, as it seemed less practical to search for a phylogeny using
them (for more information see article 4).
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All models of evolution assume that the substitution process follows a continuous-
time Markov chain, 7.e. that the next transition only depends on the present state,
and not on the former state. This chain can be represented with the following
matrix (), showing instantaneous rates of transition (here also called substitution)
¢ij between states ¢ and j, in the order A, C, G, T

— dca 4ca qra
Q= qac — dcc qrc
gac 4cc  — 4qra

gar dcr dqer  —

This matrix reads as follows: the instantaneous substitution rate from A to
C is gac, from A to G qag, etc. — is specified by the requirement that the
columns sum to 0. From these instantaneous rates of substitution, one can derive
probabilities of occurence for all possible substitutions during a time ¢ by taking
the exponential of the matrix ):

P(t) = {pi(t)} = e

If the matrix is irreducible, 7.e. all states can be obtained after a given time
whatever the starting state, then the chain has a stationary distribution, which
means that if the chain is run for an infinitely long time on a long sequence, start-
ing from any initial composition Fj, the end sequence composition will correspond
to the stationary distribution II:

TA

. . i TC
lim P(t) x Fy =11 = o
T

In addition, a model of substitution is said to be reversible if it satisfies the
following equation:

qZ‘jXﬂ—iZjSXTFj

This means that if sequences are evolved at equilibrium using a reversible
model, no matter how data are analysed, there is no way to tell in what direction
evolution has occured: there is no way to find the root of a tree with a substitution
model if sequences have been evolved under a reversible model. Conversely, had
sequences been evolved with a non-reversible model of evolution, if the resulting
data are analysed with a reversible model of evolution making the hypothesis
that the process of evolution was at equilibrium, the signal for irreversibility is
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ignored, and the root cannot be recovered.

In practice, most models of evolution that are used to reconstruct the history
of sequences are reversible, not because it is believed that the real biological pro-
cess of evolution is indeed reversible, but because it makes computations easier.
Consequently it is usually hypothesized that the substitution process is at equi-
librium, i.e. that sequence composition is the same all over the tree, and any
signal for non-reversibility is ignored.

There are therefore two drawbacks to using reversible models of evolution:
first the root cannot be identified based on sequences only even if there was a
signal in the data for it, and second it is hypothesized that sequence composition
has been constant throughout evolution, which is known to be wrong (for more
discussion on it, see articles 3, 4, 6, 7).

Instead, one can use non-reversible models of evolution, that do not verify
equation 2.1. In principle at least, these models permit one to find the root of a
tree. In my work, I used models that permit inferring the root of a tree, but all
substitution matrices that I used were reversible.

Indeed, a process of evolution can become non-reversible if it is made of sev-
eral reversible processes combined. Notably, I have used particular models of
evolution, called non-homogeneous or branch-heterogeneous models in this the-
sis, where different reversible substitution matrices are associated to different
branches of the tree. Although this model is composed of reversible matrices, it
is as a whole non-reversible, which may serve to pinpoint the root of a phylo-
genetic tree. I used this property to test several potential roots (article 4), but
found that on the data analysed, the method was not powerful enough to iden-
tify a root without a doubt. This lack of power echoes recent works (Huelsenbeck
et al., 2002; Yap et Speed, 2005) that had used non-reversible matrices and had
reached similar conclusions, but appears to be disappointing with respect to early
expectations (Yang et Roberts, 1995).

These types of models, where different matrices are associated to different
parts of the tree also have the advantage that they do not hypothesize that se-
quence composition has been constant throughout evolution; incidentally this
characteristic was the main motivation behind their development. 1 therefore
used such models to reconstruct sequence evolution from LUCA to extant organ-
isms (articles 3, 4, 6).

Although these efforts based on models of sequence evolution have not been
able to provide strong evidence in favour or against particular roots of the tree of
life, I am not pessimistic on the possibility to find new ways to place LUCA. For
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instance, one could combine non-homogeneous models of evolution with relaxed-
clock models to benefit from both signals, but could also incorporate other types
of information that permit to date a clade, like gene transfers (see article 10),
and could analyse much more data than has been done up to now.

2.7.3 Primary endosymbioses

Most Eukarya harbour organelles (section 2.3), notably mitochondria, and chloro-
plasts. These organelles have several morphological and biochemical similarities
with particular bacteria, which led Margulis (1970) to propose that these or-
ganelles were of a bacterial origin. One of these arguments was that organelles
have their own genome: this genome might be a relic of ancestral bacterial
genomes. The digestion technique of Carl R. Woese confirmed that these or-
ganelles derived from bacterial ancestors.

First, Zablen et al. (1975); Bonen et Doolittle (1975) showed that chloroplast
rRNA were more similar to cyanobacterial ones than to those from the eukaryotic
nucleus. This was later confirmed by many other studies, and refined to propose
that chloroplasts came from heterocyst-forming Cyanobacteria (Deusch et al.,
2008), i.e. Cyanobacteria that produce a particular cell, with a heavy cell wall,
in which nitrogen is fixed into amino-acids. This suggests that all Eukarya pos-
sessing chloroplasts are younger than heterocyst-forming Cyanobacteria. As these
Cyanobacteria may be between 2.45 and 2.1 billion years old (Tomitani et al.,
2006), chloroplast-bearing Eukarya did not appear before these dates. Rodriguez-
Ezpeleta et al. (2005) showed that it was probably in an ancestor of Viridiplantae
(plants in general), Rhodophyta (red algae), and Glaucophyta that the endosym-
biosis of chloroplast took place.

Second, Bonen et al. (1977) showed that the power-generating mitochon-
dria’s TRNA were more similar to bacterial ones than to those from the eu-
karyotic nucleus. The analysis of other genes has once again confirmed these
results many times, and permitted to show that mitochondria emerged from
alpha-Proteobacteria (Esser et al., 2004). This origin seems to make sense,
as alpha-Proteobacteria contain many organisms intimately associated to Eu-
karya, as parasites of animals or plants for instance. One hypothesis notably
proposes that alpha-Proteobacteria and a methanogenic archaea first associated,
the alpha-Proteobacteria protecting the methanogen from excess oxygen thanks
to its reducing waste product Hy (Martin et Miiller, 1998). Through time, the
once free-living bacteria was engulfed by the methanogen, and as eons went by,
the whole chimera turned into what we now know as Eukarya. This hypothe-
sis is based on the observation that many associations are now found between
methanogens and alpha-Proteobacteria; however, in phylogenies of the tree of
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life no methanogenic archaea is found at the root of Eukarya. As mitochondria
or mitochondrial remains have been detected in all Eukarya (Hrdy et al., 2004),
Eukarya are more recent than alpha-Proteobacteria. Geological studies (section
2.4) suggest that Eukarya may be at least 1.68 billion years old, thus so should
be alpha-Proteobacteria.

Other endosymbioses have happened in the eukaryotic kingdom, hence named
secondary endosymbioses. The particular propensity of Eukarya to engulf other
cells may be related to their fluid cellular membrane (that contains cholesterol)
and their cytoskeleton. It is interesting to note that a great part of the poor
metabolic diversity shown by Eukarya was borrowed from Bacteria. From a
metabolic point of view, Eukarya are annoying followers.

2.7.4 A view of the tree of life

Several studies have focused on particular parts of the tree of life, in order to
improve their phylogeny. Recent works usually rely on the consideration of a
large number of genes at the same time, in the hope that the average phylogenetic
signal may be a good estimator for a species phylogeny. Similar approaches have
been used in the three kingdoms of life.

Archaeal phylogeny

Céline Brochier, Simonetta Gribaldo and Patrick Forterre have made great ef-
forts to improve the phylogeny of Archaea (Matte-Tailliez et al., 2002; Forterre
et al., 2002; Brochier et al., 2004, 2005b,a; Gribaldo et Brochier-Armanet, 2006;
Brochier-Armanet et al., 2008; Elkins et al., 2008). To this end, they benefited
from recently published whole genome sequences to analyse a large number of
genes that are well conserved among all Archaea and therefore thought to be good
markers of the species phylogeny. They argue that a well supported phylogeny
is now emerging. However, it is still unclear where species such as Cenarchaeum
symbiosum and Candidatus Korarchaeum cryptofilum should be placed (article
5 and Elkins et al. (2008)), and the diversity of Archaea still needs to be better
sampled.

Classically, Archaea are divided in two phyla, Euryarchaeota and Crenar-
chaeota (Fig. 2.7). Crenarchaeota are the least well represented group, and
contain Thermoproteales, Sulfolobales and Thermococcales. Euryarchaeota con-
tain all other species, to the exception of the recently proposed Thaumarchaeota
(article 5), whose position is unclear, and is figured here at the base of all Ar-
chaea, but may also be at the base of Crenarchaeota. As lots of hyperthermophilic
(with optimal growth temperature above 80°C) species are found in Archaea and
as they are scattered in both Euryarchaeota and Crenarchaeota, it has been as-
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sumed that the ancestor of Archaea was a hyperthermophilic organism (Gribaldo
et Brochier-Armanet, 2006).

Methanogenesis is a metabolism endemic to Archaea, which is practised by
Methanopyrales, Methanobacteriales, Methanococcales, Methanomicrobiales and
Methanosarcinales. One can parsimoniously infer that methanogenesis appeared
in the last common ancestor of all these groups, which dates this node at more
than 3.46 billion years ago (Fig. 2.7). If such a constraint is applied to the tree
of Archaea, and if we choose for LUCA an age lower than 4 billion years, the
primary radiations in Archaea seem very close to each other.

Bacterial phylogeny

A few groups of scientists have endeavoured to analyse several genes combined
to propose a phylogeny of Bacteria (Battistuzzi et al., 2004; Beiko et al., 2005;
Bern et Goldberg, 2005; Ciccarelli et al., 2006; Choi et Kim, 2007; Bapteste et al.,
2008). I have also attempted to produce a bacterial phylogeny in article 3. Over-
all, all these phylogenies recover similar groupings. However, it is not clear that
these proximities in the tree reveal true evolutionary relationships: several con-
founding factors may produce artefactual groupings.

One confounding factor is notably found in lateral gene transfers, through
which pieces of genomes can be exchanged between species. Some believe that
gene transfers are so prevalent that a vertical history of the genomes, that would
record speciations and not transfers, cannot be recovered (Doolittle, 1999). Sev-
eral studies however suggest that a tree of the vertical history of Bacteria can be
reconstructed (Daubin et al., 2003; Beiko et al., 2005; Choi et Kim, 2007; Galtier,
2007; Soria-Carrasco et Castresana, 2008), and have been a motivation for article
3.

Better methods for phylogenetic reconstruction may clarify the history of
life in Bacteria, that clearly distinguish between species tree and gene trees. For
now, it seems that Aquificales and Thermotogales are particularly basal Bacte-
ria (Brochier et Philippe (2002) disagree, but they relied on a single gene). As
these two groups contain hyperthermophilic bacteria, it is unsure what was the
favourite temperature of the ancestor of all Bacteria. Article 6 treats such ques-
tions in details.

Few geological data permit to constrain dates on nodes of the tree of Bacteria.
However, alpha-Proteobacteria are necessarily older than Eukarya, as all Eukarya
possess mitochondria or mitochondrial remains (see 2.7.3). This constraint im-
plied that by 1.68 billion years ago, most bacterial phyla had already diversified.
This may be consistent with Boussau et al. (2004) who inferred through parsi-
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mony that the ancestor of all alpha-Proteobacteria may have lived in an oxygenic
environment. However, much work remains to be done to clarify the bacterial
tree and align it with the geological record.

Eukaryotic phylogeny

The eukaryotic phylogeny has been the subject of intense research as well as
intense debate, at nearly all taxonomic depths, from the phylogeny of mammalia
(Li et al., 1990; Graur et al.,, 1996, 1997; Madsen et al., 2001; Murphy et al.,
2001; Ranwez et al., 2007; Wildman et al., 2007), to the phylogeny of the whole
kingdom (Gouy et Li, 1989; Moreira et al., 2000; Philippe et al., 2004; Douzery
et al., 2004; Rodriguez-Ezpeleta et al., 2007b; Burki et al., 2008), passing by the
phylogeny of animals (Adoutte et al., 2000; Delsuc et al., 2006; Bourlat et al.,
2006; Marlétaz et al., 2006; Dunn et al., 2008), or the phylogeny of plants (Qiu
et al., 1999; Savolainen et al., 2000; Savolainen et Chase, 2003; Davies et al.,
2004; Jansen et al., 2007; Frohlich et Chase, 2007). Many relationships are still
unresolved however, and it is for instance far from clear where the root of Eu-
karya should be placed. Because Eukarya are the kingdom with the greatest fossil
record, people have endeavoured to analyse sequences accounting for these fossils.
Fossils permit to anchor in time some nodes of a phylogeny, and thus can be used
to get information about rates of evolution, but also about times. Using such
data, Douzery et al. (2004) estimated that Eukarya diverged around 0.95-1.259
billion years ago, much more recently than the estimate derived from geology,
1.68 billion years ago (see 2.4.2). Besides technical errors, this discrepancy may
come from an improper equation of cholesterol with Eukarya, or may also suggest
that Eukarya as we now see them are only the top of an iceberg, the bottom of
which would be now extinct.

Although many relationships are still unclear, the tree of life can now be de-
picted in broad strokes. The consideration of geological data permits to date
certain points in the tree (Fig. 2.7).
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Figure 2.7: A subjective view of the tree of life as revealed by analyses of genomes.
The phylogeny of Bacteria is as in article 3, the phylogeny of Archaea has been compiled
from Gribaldo et Brochier-Armanet (2006); Brochier-Armanet et al. (2008); Elkins et al.
(2008), and the phylogeny of Eukarya from Rodriguez-Ezpeleta et al. (2007a). Some
nodes of the tree have been constrained to agree with datations as obtained in section
2.4.4. Dates associated with non-constrained nodes should be ignored. Primary en-
dosymbioses have also been represented with arrows indicating the direction of transfer:
purple for the origin of mitochondria, and green for the origin of chloroplasts. Phyla
harbouring hyperthermophilic organisms have been underlined. Crenarchaeota are on a
green background, and Euryarchaeota on a blue background.
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2.8. ORGANISATION OF THE MANUSCRIPT

Although some nodes have been dated, we still do not have a proper temporal
framework to understand the evolution of life. A lot of interesting work remains
to be done to improve the tree, by identifying ancient relationships, estimating
the properties of extinct organisms, inferring the events that gave rise to biodi-
versity, and dating ancient nodes. In these purposes, the dramatic increases in
the amounts of data available offer an excellent starting point. With these data
in hand, better models of sequence evolution as well as better models of species
tree reconstruction need to, and can, be developed. Many people are working on
such projects right now, and the field is developing at an exciting pace. My own
thesis has revolved around such models of genome and sequence evolution.

2.8 Organisation of the manuscript

My thesis work has been in line with efforts to improve our knowledge of the early
evolution of life. T have tried to improve techniques of phylogenetic reconstruc-
tions, and have used some of these techniques to propose answers to particular
evolutionary problems.

This manuscript contains eight articles I have contributed to. I present them in
a non-chronological order, and start by an article that presents examples of diffi-
culties that are met when one attempts to phylogenetically place a species. Then
I present articles where these difficulties have been addressed by the development
of new methods, and examples of application of these new methods.

e The first article (3) attempts to clarify the phylogenetic position of Aquif-
icales, a group of bacteria living in hot environments. Their phylogenetic
placement is important to our understanding of the evolution of tolerance
to high temperatures, but has been difficult to estimate, as their genome
seems to contain lots of genes coming from other organisms, and has also
evolved in a peculiar manner under the influence of extreme life conditions
(it has developed a compositional bias). Although T could not get rid of all
potential artifacts, several clues suggest that they may be related to Ther-
motogales, another lineage of heat-loving organisms. This study showed me
some of the major difficulties that one has to face when trying to do “deep”
phylogenetics, and convinced me that better models of sequence evolution
should be developed. Notably, they motivated me to work on models ro-
bust to compositional bias (articles 4 and 7), recombination (article 8), and
lateral gene transfers (article 10).

e The second article (4), although the product of an earlier work, can be
seen as a very partial answer to the problems that the first article raised,
as it tackles the issue of compositional bias. In this article, we have shown
that models of sequence evolution more robust to compositional biases than
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commonly used ones could be used as easily, by looking carefully at how
the likelihood of a tree is computed. This idea was exemplified through the
development of a piece of software, nhPhyML, that we showed was more
robust to compositional bias than other common methods.

e This software was then used to try and place a particular organism, the
archaea Cenarchaeum symbiosum into the tree of life. We propose that
C.symbiosum may represent a third archaeal phylum, in addition to Eur-
yarchaeota and Crenarchaeota, as it branches far from the other archaea,
and as its gene content is distinct from both other phyla (article 5). My
little contribution did not bring very much, as nhPhyML did not deliver
a firm answer as to Cenarchaeum’s relationships. I believe some improve-
ments could be applied to the capabilities of nhPhyML to cope with high
numbers of sequences while correctly exploring the space of tree topologies.

e nhPhyML may not be great at exploring the space of tree topologies, it can
however accurately estimate the content in bases G and C in ancestral se-
quences, as I had shown in the second article. In rRNA, this G+C content
is correlated to the host organism’s optimal growth temperature, so that
estimating one permits to infer the other. Using this software as well as a
Bayesian software developed by co-authors of this article (6), we propose
that LUCA was much less a heat-loving organism than its two descendants.
This surprising pattern is in agreement with previously published hypothe-
ses, and suggests ways through which geology and evolutionary biology may
illuminate each other.

e The previous article benefited from a Bayesian software from our co-authors,
but it also showed me that much progress remains to be done to routinely
use models of sequence evolution that are robust to compositional bias, as
their program took weeks to run on a fixed topology and for 30 sequences.
I believe that the work presented in this article (7) may be a step in the
right direction, as it should help phylogeneticists easily test new ideas.

e Article (8) deals with another problem identified in the first article, that of
recombination, by which a gene is the product of two or more different evo-
lutionary histories. I propose two models to reconstruct these evolutionary
histories, and test them.

e The last difficulty identified in the first article is the fact that gene trees can
differ from the species tree. In this seventh article (9), I present a model
that separately infers a species tree from gene trees.

e This last article (10) also works as a conclusion to this manuscript. In the
course of my thesis, I have come to understand that probabilistic models
could provide great insight into the history of life by using the information

51




2.8. ORGANISATION OF THE MANUSCRIPT

contained in genomes. In this review, we present some recent progress that
has been made in models of evolution, and propose perspectives that we
believe are very promising.

As appendices, I have added two articles I contributed to before my the-
sis. One focuses on interpreting phylogenies of genes present in Chordates,
and the other attempts to reconstruct gene content evolution in alpha-
Proteobacteria.
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Phylogeny is not easy

This first article attempts to clarify the phylogenetic position of a particular
group of Bacteria, Aquificales. Meanwhile, several problems related to molecular
phylogeny are treated.

First, genomes from organisms living in similar environments can have con-
verged to similar characteristics. In the present case notably, Aquificales may be
artefactually grouped with Thermotogales because they share similar sequence
compositions. This compositional bias can mislead phylogenetic reconstruction.
Although we have tried in this article to diminish its impact, a better answer
may come from better models of evolution.

Second, lateral (or horizontal) gene transfer (LGT) can considerably alter phy-
logeny reconstruction, as in its presence, gene trees can differ from species trees.
Once again, in this article we have tried to do our best to infer a species tree
despite LGT, but better ways to do so could be found in new models of evolution.

In the end, our results suggest that Aquificales may be more related to Ther-
motogales than to other bacteria. They also call for better models of evolution
that could cope both with compositional biases and gene transfer.

This article has been accepted for publication in BMC' Evolutionary Biology.

Accompanying Supplementary Materials can be found at the following ad-
dresses:

http://biomserv.univ-lyonl.fr/~boussau/Articlel/AdditionalFilel.x1ls

http://biomserv.univ-lyonl.fr/~boussau/Articlel/AdditionalFile2.pdf
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Abstract

Background: Despite a large agreement between ribosomal RNA and concatenated protein
phylogenies, the phylogenetic tree of the bacterial domain remains uncertain in its deepest nodes.
For instance, the position of the hyperthermophilic Aquificales is debated, as their commonly
observed position close to Thermotogales may proceed from horizontal gene transfers, long
branch attraction or compositional biases, and may not represent vertical descent. Indeed, another
view, based on the analysis of rare genomic changes, places Aquificales close to epsilon-
Proteobacteria.

Results: To get a whole genome view of Aquifex relationships, all trees containing sequences from
Aquifex in the HOGENOM database were surveyed. This study revealed that Aquifex is most often
found as a neighbour to Thermotogales. Moreover, informational genes, which appeared to be less
often transferred to the Aquifex lineage than non-informational genes, most often placed Aquificales
close to Thermotogales. To ensure these results did not come from long branch attraction or
compositional artefacts, a subset of carefully chosen proteins from a wide range of bacterial species
was selected for further scrutiny. Among these genes, two phylogenetic hypotheses were found to
be significantly more likely than the others: the most likely hypothesis placed Aquificales as a
neighbour to Thermotogales, and the second one with epsilon-Proteobacteria. We characterized
the genes that supported each of these two hypotheses, and found that differences in rates of
evolution or in amino-acid compositions could not explain the presence of two incongruent
phylogenetic signals in the alignment. Instead, evidence for a large Horizontal Gene Transfer
between Aquificales and epsilon-Proteobacteria was found.

Conclusion: Methods based on concatenated informational proteins and methods based on
character cladistics led to different conclusions regarding the position of Aquificales because this
lineage has undergone many horizontal gene transfers. However, if a tree of vertical descent can
be reconstructed for Bacteria, our results suggest Aquificales should be placed close to
Thermotogales.
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Background

In the study of evolution, as in any scientific endeavour,
progress relies on the comparison of hypotheses with
respect to how well these succeed in accounting for a
range of observed data. In phylogenetics, a given tree, a
hypothesis, is confronted with trees inferred using other
data; resulting incongruences are then explained by a
methodological artefact, or the inability of a single tree to
properly depict the evolution of the biological entities
under consideration. The large agreement between the
ribosomal RNA (rRNA) bacterial phylogeny and phyloge-
nies built from a concatenated set of protein sequences
was therefore a strong piece of evidence that the tree of life
could be solved [1]. For instance, protein phylogenies
confirmed the monophyly of most rRNA-defined bacte-
rial phyla. Similarly, Aquificales are found close to Ther-
motogales both in trees built from rRNA and from
concatenated proteins. However, the position of the
Aquificales clade within the phylogeny of Bacteria has
often been questioned on the ground of single gene phyl-
ogenies, phylogenies built from gene or domain content
[2], and supposedly rare genomic changes such as inser-
tions-deletions [3-8]. Strikingly, many of these analyses
are congruent with each other and suggest that Aquificales
might be more closely related to Proteobacteria than to
Thermotogales. This new view has been adopted in recent
scenarios that explain the whole evolution of life on earth
[9], so it is important to our understanding of bacterial
evolution that the puzzling phylogenetic problem of the
position of Aquificales within the bacterial phylogeny gets
solved.

Species phylogenies built from the comparison of gene
sequences suffer from two major limitations: on one side
the true gene trees may differ from the species trees, and
on the other side, the signal contained in the gene
sequences might be too weak or too complex to be cor-
rectly interpreted by bioinformatics methods. Gene trees
will differ from species trees in cases of hidden paralogy,
closely spaced cladogenesis events or horizontal gene
transfers (HGT). This last phenomenon is particularly rel-
evant to the present study, as gene transfers are frequent
among prokaryotes. Phylogeneticists therefore often only
consider informational genes, involved in the processes of
transcription, translation and replication, which appear to
be less prone to HGTs over broad distances than other
genes, named operational [10]. The second limitation,
that of a phylogenetic signal so blurred or buried that tree
reconstruction methods fail to recover the true tree, may
come from a saturated history of mutations (long branch
attraction, [11,12]) or compositional biases [13,14]. Both
pitfalls are likely to affect genes used to reconstruct the
bacterial phylogeny, because Bacteria possibly date as far
back as 3.5 billion years ago [15], and because they dis-
play a great diversity in their genomic characteristics as
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well as in their ecological niches. More specifically, Aquifi-
cales may be placed close to Thermotogales not because
they last diverged from them, but because they share a
common ecological niche, i.e. they are both hyperther-
mophilic, which led both their rRNA [16] and their pro-
tein sequences [17] to adapt to high temperatures.
Sequence similarities between these two clades would
therefore be the result of convergences due to identical
selective pressures, not the result of common descent.
Consequently, recovering the bacterial species tree and
clarifying the relations between hyperthermophilic organ-
isms from comparison of gene sequences is a difficult task,
and has led several authors to search for more reliable
informative characters.

Such characters are cell-structural features, or of a genomic
nature: "rare genomic changes" [18], such as gene fusion/
fission or insertion-deletions (indels), and gene or
domain presence/absence. The main assumption con-
cerning all these characters is that they are nearly immune
to convergence: to be informative, a given character, mor-
phological or genetic, should only arise once. To our
knowledge, this assumption has never been thoroughly
tested. The genomic characters further depend on the
identification of orthologous genes in different genomes,
and consequently are subject to the pitfall of horizontal
gene transfers. Here again, this weakness is of particular
interest to our study, since both Aquificales and Thermo-
togales seem to be particularly prone to exchanging genes
with other bacterial species [19,20].

Therefore it appears that both approaches - sequence phy-
logenies and character cladistics — are potentially hin-
dered by defaults whose magnitude is sufficient to
question their conclusions. As in the case of the phyloge-
netic position of Aquificales their conclusions diverge, a
detailed study might clarify which approach has suffered
most from its drawbacks.

In this report, we used the HOGENOM [21] database to
survey the phylogenetic neighbourhood of Aquifex. This
database contains families of homologous genes from
complete genome sequences with associated sequence
alignments and maximum likelihood phylogenetic trees.
The automatic survey of all trees containing sequences
from Aquifex in the HOGENOM database reveals that
Aquifex is most often found as a neighbour to Thermoto-
gales. When genes are separated into informational and
non-informational genes we find that genes from the
former category seem to be less transferred than non-
informational ones. To this end, neighbour clades for
each gene from Aquifex were counted, separately for infor-
mational genes and for operational genes, yielding two
distributions. Then for each of the two distributions,
Shannon's index of diversity was computed [22]. This
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index measures whether the genes are evenly distributed
among all possible neighbourhoods or whether a specific
vicinity dominates. We find that the index value is signif-
icantly different between the two distributions: among
informational genes, one neighbourhood, between
Aquificales and Thermotogales, tends to dominate the
distribution much more than in operational genes. This
shows that there is one dominating phylogenetic signal
among informational genes, and much less among opera-
tional genes, which is consistent with the idea that opera-
tional genes experience more frequent HGT events than
informational genes.

To study the impact of saturation and compositional het-
erogeneity on the position of Aquificales, we concate-
nated a large dataset of putatively orthologous proteins
from a wide range of bacterial species (Additional file 1).
A phylogenetic tree was built, and then taken as a refer-
ence to test for the position of Aquificales: Aquificales
were first removed from the tree, and then re-introduced
in the topology in all possible positions. Site likelihoods
were computed for all these positions, which allowed for
the identification of sites favouring a given topology. Two
phylogenetic hypotheses were found to be significantly
more likely than the others: the most likely hypothesis
placed Aquificales as a neighbour to Thermotogales, and
the second one placed Aquificales with epsilon-Proteo-
bacteria. We characterized the genes that supported each
hypothesis, and found that differences in rates of evolu-
tion or in amino-acid compositions could not explain the
presence of two dominating phylogenetic signals in the
alignment. However, evidence for a large Horizontal Gene
Transfer between Aquificales and epsilon-Proteobacteria
was found. These findings suffice to explain why methods
based on concatenated informational proteins and meth-
ods based on character cladistics led to different conclu-
sions, and suggest that the vertical signal in the genomes
of Aquificales, i.e. the portion of the genome most likely
to have been inherited through descent and not through
HGT, relates them to Thermotogales.

Results and discussion

A whole genome view of Aquifex relationships

For each gene tree containing sequences from Aquifex
aeolicus in the HOGENOM database, the identity of the
group of sequences neighbouring Aquifex was recorded.
This gave counts of Aquifex genes found close to Thermo-
togales, Firmicutes, epsilon-Proteobacteria, among oth-
ers. Cases where Aquifex genes were found close to a non-
monophyletic group of species were discarded, which left
578 gene trees. Among these, Thermotoga is found as
Aquifex's closest neighbour 98 times, epsilon-Proteobacte-
ria are found 44 times, delta-Proteobacteria 84 times, Fir-
micutes 71, Thermus-Deinococcus 39, Euryarchaeota 74
(see Fig. 1). In view of such a distribution, it is difficult to
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argue in favour of any particular relationship: Horizontal
Gene Transfers appear so pervasive that no signal emerges
as clearly dominant. However, HGTs may not affect all
types of genes with similar frequencies. It has been pro-
posed that genes that are related to the universal processes
of transcription, translation and replication and known as
"informational genes" may be less transferred than "oper-
ational genes", involved in metabolism for instance [10].

We therefore separated HOGENOM protein families into
informational and non-informational gene families. Fig.
1a shows that among informational genes, the genes plac-
ing Aquifex close to Thermotoga (32 genes) are twice more
numerous than the genes favouring the second best alter-
native hypothesis, i.e. the vicinity of Firmicutes (15
genes). On the contrary, among operational genes (Fig.
1b), differences between various hypotheses are much
narrower: Thermotoga is Aquifex's neighbour in only two
more cases than delta-Proteobacteria, 11 more cases than
Firmicutes, and 13 more cases than Euryarchaeota. To
quantify this comparison, Shannon's index of diversity
was measured for both sets of genes. This index measures
how evenly distributed observations are among categories
[22]: the higher the index, the more even the distribution;
conversely, the lower the index, the more a few categories
dominate. Shannon index values were 2.07 for informa-
tional genes, and 2.49 for operational genes (significantly
different according to a t-test, p-value < 0.001; a Pearson
x2 test between the two distributions is also significant, p-
value < 10-29), which means that operational genes are sig-
nificantly more evenly distributed among the various
neighbour groups than informational genes. The distribu-
tions depicted in Figs 1a and 1b result from a mixture of
lack of phylogenetic resolution at the single-gene level
and of HGT events. But the difference between them
strongly suggests that operational genes have been hori-
zontally transferred more often than informational genes,
which is consistent with the fact that Euryarchaeota are
almost never found as neighbour to Aquifex in informa-
tional genes (2%), but often found in operational genes
(11%). Interestingly, for both sets of genes, epsilon-Pro-
teobacteria are not one of the most frequent Aquifex
neighbours, as they are less frequent than Thermotoga, Fir-
micutes, and delta-Proteobacteria. For operational genes,
they are even less frequent than Euryarchaeota. These
results thus do not support the hypothesis that Aquificales
are epsilon-Proteobacteria [4]. However, if all Proteobac-
teria are to be counted as a single clade, the vicinity of
Aquifex with Proteobacteria becomes a high-scoring
hypothesis: Aquifex is most closely related to a Proteobac-
terium with 18 informational genes and 76 non-informa-
tional genes. According to operational genes, if anything,
Aquifex would be a Proteobacterium, as almost twice more
genes place it with Proteobacteria than with Thermotoga
(76 for Proteobacteria against 41 for Thermotoga); accord-
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ing to informational genes, Aquifex is close to Thermotoga,
as almost twice more genes place it with Thermotoga than
with Proteobacteria (18 for Proteobacteria against 32 for
Thermotoga). However, considering all Proteobacteria as a
single clade artificially groups a variety of different histo-
ries under the same hypothesis. It is thus more likely that
the high frequency of close relationships between Aquifex
and Thermotoga among informational genes reflects verti-
cal descent, and that the scattered distribution of Aquifex
closest homologs among operational genes results from
frequent horizontal transfers to or from the Aquifex line-
age.

Furthermore, this whole genome analysis may suffer from
compositional biases or long branch attraction. Conse-
quently, a subset of carefully chosen genes was concate-
nated and used to assess the importance of potential
artefacts: first a tree of the Bacteria was built, and then,
using this tree as a scaffold, the influence of saturation and
compositional biases on the position of Aquificales was
estimated.

Bacterial phylogeny obtained from a concatenated set of
putatively orthologous genes

Fifty-six genes that were nearly universal in Bacteria and
present as single copy in most genomes were concate-
nated (see Methods). Genes that showed a transfer
between Bacteria and Archaea had previously been dis-
carded because a gene showing evidence of a transfer
between very distantly related organisms might be espe-
cially prone to be transferred among species of the same
domain. Some of the 56 remaining genes may still have
undergone a transfer, and concatenating them may lead to
spurious results. Usually, transferred genes are discarded
before gene concatenation [23,24]. Here, we first checked
for possible tree building biases resulting from composi-
tion or evolutionary rate effects before proceeding to an
analysis designed to specifically identify genes that may
have been transferred between Aquificales and other spe-
cies. PhyML was used to build a starting phylogeny based
on the concatenated protein alignments, using the JIT
model and a gamma law discretized in four classes to
account for variation in the evolutionary rates. The discre-
tized gamma law [25] is widely used because of its math-
ematical convenience, not as a precise model of the
evolutionary rates of protein sequences. Therefore it is
expected that some sites are not properly modelled when
this approximation is made. To estimate how sites were
modelled by the discretized gamma law, we plotted the
distribution of expected relative evolutionary rates across
sites (Fig. 2) as found by BppML. This distribution shows
four peaks, each corresponding to the rate of a particular
class. The two largest peaks are at the limits of the distri-
bution: they comprise both sites whose rate is properly
approximated by one of the two extreme evolutionary
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Figure 2

Distribution of the site relative evolutionary rates.
Rates were estimated using a 4 class discretized gamma dis-
tribution. The 4 peaks correspond to the rates associated to
each class. The vertical red line corresponds to the threshold
above which sites have been discarded due to their high evo-
lutionary rate.

rates, but also sites whose rate would be smaller or larger,
if the discretized gamma law was able to provide a con-
venient rate. For instance, the leftmost peak contains sites
properly modelled by a relative rate of ~0.2, but also sites
evolving more slowly, such as constant sites. Per se,
improperly modelling constant sites probably does not
lead to biased phylogenetic estimations; however under-
estimating the evolutionary rate of some fast-evolving
sites (and this may be a by-product of improper model-
ling of constant sites) will lead to an underestimation of
the convergence probability. Such misspecified modelling
is therefore a potential cause for long branch attraction, as
underlined in another context [26]. We consequently
decided to conservatively discard sites whose evolutionary
rate was above the arbitrary threshold of 2.2 (red line,
Fig.2), in the hope of reducing risks of reconstruction arte-
facts. The resulting alignment contains 10,000 sites, and
has been submitted to an additional reconstruction
through PhyMIL, with a bootstrap analysis based upon
200 replicates.

Our tree comprises 94 bacterial species, spanning as
exhaustively as currently possible the diversity of Bacteria
(Fig. 3). The resulting topology is in good agreement with
rRNA trees [27], recently published concatenated-protein
phylogenies [28,29], as well as supertree phylogenies
[30]. In particular, we do recover the clade named "Terra-
bacteria" by Battistuzzi and co-workers, as well as the
clade named Gracilicutes by Cavalier-Smith [7], separated
with a high bootstrap support (BS 94%). It is interesting
to note that these three recent bacterial phylogenies all
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Figure 3

Unrooted phylogenetic tree of Bacteria. This tree was obtained after discarding all sites with evolutionary rate predicted
to be above 2.2. Stars indicate branches with 100% bootstrap support (200 replicates). Bootstrap supports between 80% and
100% are shown, bootstraps below 80% have been removed for clarity. Aquificales are represented in bright red. Names of
major groups are according to the NCBI taxonomy. Gracilicutes and Terrabacteria, two recently proposed superclades, are
shown as dashed frames, and their names are between quotation marks to mark their unconsensual status.

recover these two clades, which suggests that the global =~ Chlamydiales, [31]) seems to find a confirmation in our
picture of bacterial evolution might be slowly unveiling. = phylogeny where Planctomycetes and Chlamydiales are
The "PVC supergroup" (Planctomyces-Verrucomicrobia-  grouped with 100% BS. Many similarities are also found
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with the phylogeny proposed by Ciccarelli and co-workers
[32], or the supertree obtained by Beiko, Harlow and
Ragan [33], such as the monophyly of Proteobacteria, and
the grouping of Aquificales with Thermotogales.

However, many deep nodes do not obtain high bootstrap
supports. Two avenues might help fully resolve the bacte-
rial phylogeny: further increase the number of phyloge-
netic markers, and improve the interpretation of the
phylogenetic signal through the development of new
models of evolution. Such models would ideally be able
to deal with compositional heterogeneity, and would
safely handle saturation. As there is no efficient program
with these properties, we have chosen to filter out satu-
rated sites to try and diminish compositional heterogene-

1ty.

We have already attempted to remove the most saturated
sites. To assess the impact of compositional heterogeneity,
we performed Bowker's tests for symmetry in the evolu-
tionary process on the whole alignment [34,35]. Bowker's
test relies on the comparison of two sequences against
each other, therefore 94*93/2 = 4371 tests can be done on
our alignment. Among these 4371 tests, 3826 reject sym-
metry at the 5% level: though we have made no effort to
alleviate the multiple tests problem, compositional heter-
ogeneity might be an important issue for the reconstruc-
tion of bacterial phylogeny. Species that show the most
biased amino-acid usage, i.e. that fail the highest numbers
of Bowker's tests, include first AT-rich species (Buchnera
aphidicola, Borrelia burgdorferi), then GC-rich species (Ther-
mus Thermophilus) and finally hyperthermophilic species
(data not shown). This is in agreement with results based
on a multivariate analysis of proteome composition [36],
where the GC content of the genome was found to be the
major factor influencing amino-acid composition, before
thermophily.

To try and limit the influence of compositional bias, we
recoded the concatenated protein alignment in 4 states
based on the physico-chemical properties of the amino-
acids [37]. Such a recoding is expected to reduce the risk
of long branch attraction artefact as well as compositional
bias by decreasing the number of homoplasies. Accord-
ingly, after the recoding, 2818 tests reject symmetry: the
recoding seems to have diminished compositional bias at
least in 1008 cases, but clearly has not permitted to fully
erase heterogeneity. The tree we obtain on the recoded
alignment (Fig. 4) is very similar to the previous tree (Fig.
3), with Gracilicutes separated from Terrabacteria (BS
76%). Interestingly, Aquificales are still found as a sister
group of Thermotogales with a high bootstrap support
(96%), and Thermus-Deinococcus also clusters with these
hyperthermophilic organisms, although the bootstrap
support is negligible (36%). The grouping of the photo-
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synthetic lineages Chloroflexi and Cyanobacteria gains
support through the recoding, with a BS of 85% on the
recoded alignment against 77% on the original align-
ment. So does the clustering of these two photosynthetic
lineages with another lineage that contains photosyn-
thetic organisms, the Firmicutes: from 63% on the origi-
nal alignment, the BS increases to 73% with the recoded
alignment. The grouping of these three photosynthetic
lineages appears as an appealing hypothesis, but certainly
requires further inquiry, especially since horizontal gene
transfers are thought to have been part of the evolution of
photosynthesis [38]. Strikingly, Spirochaetes were found
to group with Chlamydiales, Planctomycetes and Bacter-
oidetes/Chlorobi with a high bootstrap support (83%) on
the original alignment, but grouped with epsilon-Proteo-
bacteria on the recoded alignment (bootstrap support:
18%), which shows that recoding can impact tree recon-
struction. Overall, the average bootstrap support is 87.1%,
not significantly lower than the average support for the
original alignment (90.3%, p-value = 0.065 with a Stu-
dent paired t-test, p-value = 0.154 with a Wilcoxon signed
rank test). This supports the conclusion of Susko and
Roger [39] that recoding does not lead to a substantial loss
of information.

As the trees obtained on the recoded and original align-
ments are in strong agreement, we conclude that we
obtain a fairly robust Bacterial tree, and that the clustering
of Aquificales and Thermotogales does not seem due to
saturation or compositional artefacts. However, since
more than 50% of Bowker's tests reject symmetry on the
recoded alignment, considerable compositional heteroge-
neity has escaped the 4-state recoding, and this analysis
cannot entirely rule out the hypothesis that Aquificales
and Thermotogales are attracted by compositional biases.
Nonetheless, the addition to the concatenated alignment
of sequences from two free-living epsilon-Proteobacteria,
Sulfurovum NBC37-1 and thermophilic Nitratiruptor
SB155-2 [40], does not affect this grouping either (see
additional file 2). Thus the Aquificales-Thermotogales
grouping does not seem to result from compositional
biases.

Does the Thermotogales-Aquificales cluster come from a
reconstruction artefact?

The topology that is found without Aquificales using
PhyML with the same parameters is perfectly congruent
with the tree obtained with Aquificales. Taking therefore
as reference the tree without Aquificales, we tested all pos-
sible positions for this group in the bacterial tree. The
most likely position was as found by the tree search heu-
ristics, with Thermotogales. The second most likely posi-
tion was very close, at the base of a clade comprising both
Thermotogales and Fusobacterium, and the third most
likely position was with epsilon-Proteobacteria, the only
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Fig. 3.
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placement not rejected at the 5% level according to an AU
test [41] as implemented in Consel [42] (p-value = 0.062).
Because the AU test is based on a multiscale RELL boot-
strap procedure, the fact that the second most likely
hypothesis is rejected by the AU test at 5% while the third
is not suggests that sites of high likelihood scores are the
same in the two first hypotheses, but are different from
the sites of high likelihood scores in the third hypothesis.
Consequently two contrasting signals can be found in the
data, coming from different sites in the alignment, that
support the two currently prevailing phylogenetic hypoth-
eses for Aquificales, one based on rRNA trees, and the
other heralded by Cavalier-Smith [4]. We decided to fur-
ther analyse the nature of the signal that favoured each of
these two placements, through a gene-wise analysis.

We built phylogenetic trees for each of our 56 genes with
PhyML. Among these 56 trees, 11 place Aquificales close
to Thermotogales (T genes), and only two place Aquifi-
cales close to epsilon-Proteobacteria (E genes). We com-
pared these two sets of genes, with respect to rates of
evolution and amino-acid composition, to see whether
one signal is the result of a long branch attraction or of a
compositional bias.

First, we computed the sum of the branch lengths for each
tree in our two datasets, and computed an average branch
length for each dataset. The average branch length was
0.163 for T genes, and 0.131 for E genes, which is not sig-
nificantly different according to an unpaired t-test (p-
value: 0.145). The discrepancy between the two datasets
does not seem to be explainable by a long branch attrac-
tion artefact.

Second, the position close to Thermotogales might be
favoured because of convergences instead of common
descent: as written above, both Thermotogales and Aquifi-
cales are hyperthermophilic organisms, so their sequences
are subject to partly similar selective pressures. Through
the analysis of many completely sequenced genomes, Zel-
dovich and co-workers [17] have found a positive correla-
tion between the proteome content in amino acids
IVYWREL and the organism optimal growth temperature.
As hyperthermophilic bacteria and archaea are not mono-
phyletic, this suggests that there exists a selective pressure
to increase the IV'YWREL content in organisms that thrive
best at high temperatures. If we find a higher proportion
of the amino-acids IV'YWREL in the Aquificales sequences
for T genes than for E genes, this would imply that com-
position biases could be at the origin of the signal favour-
ing the Thermotogales placement. We find that T genes in
Aquifex aeolicus and Sulfurihydrogenibium azorense contain
45,4% of IVYWREL amino-acids, against 44.4% for E
genes. As the difference is not significant (y2 test, p-value
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= 0.61), there is no evidence that the T signal is coming
from compositional artefacts.

Consequently it appears that neither the signal favouring
a close relationship between Aquificales and epsilon-Pro-
teobacteria nor the signal favouring a close relationship
between Aquificales and Thermotogales seem induced by
areconstruction artefact, namely long branch attraction or
compositional convergence. Similarly, this suggests that
the trees placing Aquificales close to Thermotogales in the
whole genome study may not come from long branch
attraction or compositional artefacts. Therefore, incongru-
ences found between the T and E groups of genes proba-
bly unveil different gene histories: at least one of these two
prevailing signals comes from HGTs.

Detection of Horizontal Gene Transfers in the
concatenate

We used the 181 possible Aquificales positions whose
likelihoods had been computed earlier to search for evi-
dence of HGTs affecting Aquificales genes. Because the
taxonomic sampling was as exhaustive as currently possi-
ble, and because all possible positions for Aquificales
among Bacteria have been tried, it is expected that few
HGTs affecting Aquificales might escape this screening.

Naturally, some genes from other Bacteria present in the
dataset also underwent transfers that will not be detected
using our approach. But neglecting such transfers should
not affect our results, since the focus of this study is the
position of Aquificales,.

The top curve of Fig. 5 shows the cumulative sum of the
log-likelihood differences between the tree in which
Aquificales are close to epsilon-Proteobacteria and the
tree in which Aquificales are close to Thermotogales. If
asked to divide this curve, one would probably cut it in
two parts, the first one decreasing, and the second one
increasing. This would plead for two signals, first one in
favour of the Thermotogales position, and then one in
favour of the epsilon-Proteobacterial position. However,
this division would be based on the comparison of only
two trees, whereas 181 different positions should be com-
pared.

We used the Maximum Predictive Partitioning (MPP)
algorithm to find what are the two prevailing signals in
the alignment among all 181 compared positions [43].
This algorithm identifies the best way of dividing the data
in two parts and assigning each to a specific tree position.
The results are displayed in the bottom panel of Fig. 5. The
MPP algorithm divides the alignment very close to the site
in which the curve changes from descending to ascending
trends. The most likely positions affected to each of the
two parts, among all 181 possible positions, are first the
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Comparison between site likelihoods when Aquificales are placed close to Epsilon-proteobacteria and when
they are placed with Thermotogales. Upper panel: summed differences between site log-likelihoods obtained when
Aquificales are placed with epsilon-Proteobacteria and when they are placed with Thermotogales. A descending trend means
that a consecutive series of sites favours the Thermotogales position (T signal), whereas an ascending trend means that a series
of sites favours the epsilon-proteobacterial position (E signal). Genes have been ordered according to their position along the
Aquifex genome. Dashed blue lines represent gene boundaries. The red interval represents the genes which appear to contain
most of the E signal. The green interval represents gene infB, in which the curve first decreases and then increases. Lower
panel: result obtained by the Maximum Predictive Partitioning algorithm when asked to find the most likely partition of the
sites in two segments. The a posteriori most likely model for the first segment is the tree in which Aquificales are sister group
to Thermotogales, and the second segment is best fitted by the tree in which Aquificales are sister group to epsilon-Proteobac-

teria.

tree in which Aquificales are close to Thermotogales, and
second the tree in which Aquificales are close to epsilon-
Proteobacteria. Therefore, the two dominant signals in the
alignment are T and E signals. Furthermore, the sequence
concatenate was built following the gene order in the
Aquifex aeolicus genome. Consequently, the fact that series
of consecutive sites support the same phylogenetic posi-
tion for Aquifex means that whole genes plead for each
hypothesis.

The issue now is to decide which of these two dominant
signals is most likely HGT, and which has the highest
chance of coming from vertical inheritance. One can rely
on the Aquifex aeolicus genomic map to find the solution:
if a hypothesis is favoured by an isolated island that con-
centrates a few genes, it is likely to be the signature of a
large horizontal transfer affecting a unique region of the
genome. Contrary to the T signal, the signal that favours a
close relationship between Aquificales and epsilon-Pro-
teobacteria is limited to a few clustered genes, mainly con-
sisting of the rplL-rpoB-rpoC operon (characterized in E.

coli, [44,45]), which seems conserved in most bacterial
genomes. This clustering strongly suggests that the epsi-
lon-proteobacterial signal comes from horizontally trans-
ferred genes, through a single transfer of the whole rplL-
rpoB-rpoC operon, from epsilon-Proteobacteria to Aquifi-
cales. Indeed, if only these three genes are concatenated
and submitted to phylogenetic analysis, Aquificales are
found clustered with epsilon-Proteobacteria with a fairly
high bootstrap support (79%, Fig. 6). As these transferred
genes are large, they contribute a substantial amount of
signal in the complete concatenate. This large transfer
appears unexpected, since it concerns informational
genes, involved in translation (rplL) and transcription
(rpoB-rpoC), but it has already been suggested by Iyer,
Koonin and Aravind [46]; the alternative hypothesis of
the E signal being the real phylogenetic signal would
require repeated HGTs of 11 genes between Thermoto-
gales and Aquificales along all the Aquifex genome (Table
1), or a very large HGT of 11 genes, subsequently scattered
along the Aquifex genome. Both explanations seem more
unlikely. Consequently, we favour the hypothesis of a sin-
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Table I: Position of Aquificales in phylogenies built from single genes present in the concatenated alignment

Position in the genome (locus index) Gene name Phylogeny: group neighbouring Aquificales

8 rps) Thermotogales

11 rplD Deinococcus/Thermus

13 rplB Fusobacterium nucleatum

16 rplV Thermoanaerobacter tengcongensis

17 rpsC Thermotogales

18 rplP Planctomycetes

20 rpsQ Chloroflexi

73 rpsK Planctomycetes

74 rpsM a clade comprising spirochaetes and Bacteroidetes/Chlorobi

123 rpsP Bdellovibrio

226 rpsO Planctomycetes

287 smb Thermotogales

461 gatB Thermotogales

609 hypothetical protein  Clostridiales

712 frr Chloroflexi

735 rpsL2 Thermotogales

792 cycBl a clade comprising Thermoanaerobacter tengcongensis and Bdellovibrio

946 rnc Thermotogales

1478 recR Leptospira interogans

1489 trmD Thermotogales

1493 dnaG a clade comprising Spirochaetes and Thermotogales

1645 rpsE Deinococcus/Thermus

1648 rplR Clostridiales

1649 rplF Thermotogales

1651 rpsH a clade comprising Thermotogales and Deinococcus/Thermus

1652 rplE Actinobacteria

1654 rpIN Mycoplasma

1767 rpsT Proteobacteria

1773 rpmA Borrelia

1777 infC Leptospira interogans

1832 rpsGl Thermotogales

1878 rpsl Desulfotalea psychrophila

1919 era2 Thermotogales

1933 rplK Thermotogales

1935 rplA Chloroflexi

1939 rpoB Campylobacter jejuni

1945 rpoC Campylobacter jejuni

2007 rpsB a clade comprising Thermotogales and Cyanobacteria

2032 infB a clade comprising Proteobacteria, Bacteroidetes-Chlorobi, Spirochaetes,
Chlamydiales

2042 rpll a clade comprising delta-Proteobacteria, Chloroflexi, and Planctomycetes

Results not unambiguously interpretable are not shown.

gle HGT of the whole rplL-rpoB-rpoC operon from an
ancestor of epsilon-Proteobacteria to Aquificales.

Such a hypothesis is relevant to the relative dating of
Aquificales and epsilon-Proteobacteria: a transfer from an
ancestor of epsilon-Proteobacteria to an ancestor of
Aquifex aeolicus and Sulfurihydrogenibium azorense implies
that these ancestors are contemporary. Although in trees
of life obtained from rRNAs or concatenated proteins and
rooted between Bacteria and Archaea-Eukaryota Aquifi-
cales are found very close to the root of Bacteria, the diver-
gence between Aquifex and Sulfurihydrogenibium should

not be more ancient than the divergence of epsilon-Pro-
teobacteria from other Proteobacteria.

A gene-by-gene analysis adds support to the hypothesis
that the dominating signal places Aquificales whith Ther-
motogales. Table 1 shows that, among the 39 gene phyl-
ogenies that can be unambiguously interpreted, 11 place
Aquificales with Thermotogales while only 2 (RpoB and
RpoC) place Aquificales with epsilon-Proteobacteria. The
phylogeny of rplL is difficult to interpret, with Aquificales
placed close to Delta-proteobacteria and epsilon-Proteo-
bacteria, which might be due to the short length of this
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Unrooted tree obtained from the concatenation of rplL-rpoB-rpoC. Colors and symbols as in Fig. 3.

Page 12 of 18

(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:272

gene (139 sites). Strikingly, 13 genes place Aquificales
with Gracilicutes, either close to Planctomycetes, to Spiro-
chaetes, to Bacteroidetes-Chlorobi or to Proteobacteria. A
single dominant pattern does not emerge from these gene
trees: therefore they do not argue in favour of a specific
relationship between Aquificales and a particular group of
Gracilicutes. These results rather suggest either uncertain-
ties in phylogenetic reconstruction or repeated horizontal
gene transfers between Aquificales and various Gracilicute
donors.

In conclusion, the epsilon-proteobacterial signal in the
concatenated carefully chosen proteins probably derives
from horizontally transferred informational genes, and
the Thermotogal signal might be the signal of vertical
descent. This conclusion is perfectly congruent with the
results from the whole genome analysis. However, the
epsilon-Proteobacterial vicinity hypothesis was originally
based upon rare genomic changes. How can this hypoth-
esis be reconciled with our conclusions?

The impact of horizontal gene transfers on rare genomic
changes

The prevailing cladistic study arguing that Aquificales
should be placed as a neighbour to Proteobacteria was
performed by Griffiths and Gupta [6], where inserts in 4
genes were found to support this hypothesis. These 4
genes are rpoB, rpoC, alanyl-tRNA synthetase and inor-
ganic pyrophosphatase.

Interestingly, two of these four genes, rpoB and rpoC, are
included in our concatenated alignment. Because they are
clustered in the Aquifex aeolicus genome and display the
same non-mainstream phylogenetic signal, we have diag-
nosed them as resulting from HGT from epsilon-Proteo-
bacteria. Therefore, the two large inserts that Griffiths and
Gupta found are no proof of a particular relatedness but
rather of a HGT.

The alanyl-tRNA synthetase has not been included in our
concatenate because tRNA synthetase genes are known to
be extremely prone to HGT [47]. The analysis of the ala-
nyl-tRNA synthetase gene family of the HOGENOM data-
base (family HBG008973), confirms that this gene might
not be a good phylogenetic marker. In the tree built from
this family with PhyML, Aquifex aeolicus is found close to
the spirochaete Leptospira, together close to Clostridiales,
the Planctomycete Rhodopirellula baltica is found as a
neighbour to Deinococcales (data not shown), among
other oddities. All these relations are inconsistent with the
tree built from the concatenate and inconsistent with cur-
rent ideas about bacterial taxonomy. Therefore, using the
alanyl-tRNA synthetase gene family to resolve bacterial
phylogeny appears inadequate.

http://www.biomedcentral.com/1471-2148/8/272

Finally, the inorganic pyrophosphatase tree as retrieved
from HOGENOM (family HBG000457) shows Aquifex
aeolicus inside Proteobacteria, close to Alpha-proteobacte-
ria, which are not monophyletic. It appears that this gene
family has undergone a duplication (Cyanobacteria are
represented twice in the tree in widely separated posi-
tions) as well as horizontal gene transfers (Archaea are
clustered in two groups widely separated in the tree, as
well as Chlamydiales). Overall, the history of inorganic
pyrophosphatase is probably too complex to be used as a
marker of species relationships.

Consequently, the rare genomic changes that were used to
argue for a specific relatedness between Aquificales and
Proteobacteria most likely come from HGT between these
two clades, as already observed in the above analyses (Fig.
1 for instance).

The fact that the outer membrane of Aquifex closely resem-
bles the outer membrane of other Proteobacteria was also
used [4] to argue that Aquificales are more closely related
to Proteobacteria than to Thermotogales. It is unclear why
this character would be particularly immune to HGT; the
outer membrane most likely possesses a strong adaptive
value, so that the transfer of the operational genes coding
for such a structure could be positively selected and rise to
fixation in a species. Given the very high rate of HGT seen
in Aquifex genome, it is not unreasonable to assume that
the proteobacterial type of outer membrane might have
been transferred to Aquificales. Similarly, the close rela-
tionship found between epsilon-Proteobacteria and
Aquificales in trees based on cytochromes b and ¢ might
also come from a HGT of a whole operon, as concluded
by Schutz et al. [48]. On the contrary, our counting analy-
sis confirms that informational genes are less prone to
HGT than operational genes, and their signal clusters
Aquificales and Thermotogales.

Further difficulties to resolve the tree of Bacteria

A possible approach to uncover a putative species tree of
Bacteria, or at least a tree for a core set of bacterial genes,
would be to remove transferred genes from a dataset, con-
catenate all genes that have not been detected as having
been transferred, and use them to build a phylogenetic
tree. Such an approach would be expected to yield better
trees, with higher bootstrap supports. However, the phyl-
ogeny obtained on the concatenate in the same condi-
tions as before (without recoding) but after removal of the
rplL-rpoB-rpoC genes does not show a significantly better
support for most of its nodes than the phylogeny shown
in Fig. 3 (average bootstrap support for the tree without
the three genes, 90.9, and for the tree with all genes, 90.3;
p-value = 0.17 with a Student paired t-test, p-value = 0.288
with a Wilcoxon signed rank test). This is probably due to
the fact that bootstrap supports increase with the number
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of characters; the length parameter therefore counters the
expected positive effect associated with the removal of dis-
cordant signal. Topologically, both trees are highly con-
gruent, with the main noticeable difference being the
placement of Fusobacterium nucleatum, which leaves its
position as sister-group to Thermotogales and Aquificales
in Fig. 3 to nest inside the Firmicutes as a sister group to
Mycoplasma. This placement might stem from a long
branch attraction, as both Mycoplasma and Fusobacterium
have long terminal branches, or alternatively might reveal
the true history of Fusobacterium nucleatum, as suggested
by Mira and co-workers [49]. Certainly this organism
deserves further study, possibly with techniques such as
those that were used in this article.

It is interesting to note that the removal of genes thought
to have been transferred has not improved the phylogeny.
A most promising avenue for further research in deep phy-
logenies would probably involve the development of
models explicitly taking into account HGT, as proposed
by Suchard [50] or, in other contexts, by Edwards, Liu and
Pearl [51,52] and Ané et al. [53]. HGTs should be mod-
elled as a genuine biological phenomenon on equal foot-
ing with vertical descent to represent the evolution of
bacterial genomes. The resulting species tree would corre-
spond to the history of those genome parts that have been
vertically inherited at any time during evolution. The ver-
tically inherited portions of a genome at a given time need
not be vertically inherited at all time, so that a species tree
could be inferred as long as, at any time, some vertical sig-
nal could be recovered.

Another additional difficulty might be that the gene is not
necessarily the atomic unit of transfer: transfers may affect
only parts of a gene, through recombination. In this
respect, the analysis of Figure 5 reveals a striking pattern
in the Initiation Factor 2 gene (infB, green line). In this
large gene (the Aquifex aeolicus protein is 805 amino-acids
long), the curve of the difference in log-likelihoods
between the epsilon-proteobacterial and the thermotogal
positions of Aquificales first decreases for about half its
length, and then increases. This pattern is suggestive of a
recombination event inside the gene.

To test for recombination, we divided the infB alignment
in two at the point where this curve changes trend and
built phylogenetic trees for both partial alignments (Fig.
7). In the first resulting tree, Aquificales plus Fusobacterium
nucleatum make together a sister group to Thermotogales
plus Deinococcus/Thermus. In the second tree, Aquificales
are a sister group to a subclade of Firmicutes. These two
branchings are consistent with the slope of the curve of
Fig. 5, first descending, as Aquificales are close to Thermo-
togales, and then ascending, as Aquificales are far from
Thermotogales. To assess whether the differences in the
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topologies were significant, Consel was used [42] on these
last two trees. The first part of the alignment strongly
rejected the tree obtained for the second part (AU test p-
value: 4.10-3%; SH and KH p-value: 0), and vice versa (AU
test p-value: 1.10°95; SH and KH p-value: 0). Therefore a
strong signal for recombination within the gene infB is
found, possibly between Firmicutes and Aquificales.

This indicates that the unit of transfer between Bacteria is
not necessarily the gene, but can also be parts of a gene.
Models aiming at resolving the bacterial tree may need to
take this additional complexity into account.

Conclusion

Overall, the signal in favour of a close relationship
between Aquificales and epsilon-Proteobacteria has been
shown to be coming from a lateral transfer and not verti-
cally inherited, both in protein phylogenies and in cladis-
tic analyses. A large HGT involving three consecutive
genes encoding two RNA polymerase subunits and a
ribosomal protein has been detected. This large gene
transfer between epsilon-Proteobacteria and Aquificales
can be understood in terms of a shared ecological niche:
some epsilon-Proteobacteria are indeed found in hyper-
thermophilic environments [54].

The present single-gene analyses suggested that gene
transfers may have frequently occurred between Aquifi-
cales and various Gracilicutes and Proteobacteria in par-
ticular, which explains why cladistic analyses of rare
genomic changes or of domain contents often place
Aquifex inside Gracilicutes.

Bacterial phylogeny is crucial to understand the evolution
of the biosphere, as it provides a backbone permitting to
integrate the evolution of life as revealed from molecular
phylogenies with the history of the earth, as dug up by
geology. There is no doubt that HGT has played a major
role in the evolution of Prokaryotes, to the point that
there might be no gene that has never undergone HGT;
however a few gene families may have seldom been trans-
ferred, and they might bear sufficient signal to unveil the
vertical history of the genome, provided powerful compu-
tational methods modelling both gene transfers and intra-
genic recombination are developed.

Nonetheless, because Aquificales are often found grouped
with Thermotogales, and because this phylogenetic signal
does not seem to result from known artefacts such as long
branch attraction or compositional bias, if there is a spe-
cies tree in Bacteria, Aquificales are to be considered as a
sister group to Thermotogales. This clarification does not
dramatically affect the scenario for the evolution of life
proposed by Cavalier-Smith [9], except that Aquificales
diverged earlier than proposed. However the present
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Figure 7

Unrooted trees corresponding to the infB gene. Left: tree corresponding to the first 301 sites. Right: tree correspond-

ing to the remaining 246 sites. Colors as in Fig. 3.

results question the methodology used to build this sce-
nario because the rare genomic changes method requires
that HGT does not affect used marker genes. In the case of
the Aquificales, we have shown that this requirement is
not fulfilled.

Methods

Whole phylome analysis

In order to get a whole genome view of Aquificales phylo-
genetic relationships, we queried the HOGENOM data-
base (release 03, October 2005) using the TreePattern
program in FamFetch [55]. HOGENOM is a database that
clusters sequences from whole genomes into homologous
gene families, and builds trees based on these families
with PhyML using a gamma law with 4 classes of substitu-
tion rates, with estimated alpha parameter and proportion
of invariable sites. Trees corresponding to all 892 families
in which there was a sequence from Aquifex aeolicus were
automatically analysed, and each sequence from Aquifex

was classified according to what group of species appeared
as its closest neighbour, not taking into account branch
support or branch length. This gave counts of Aquifex
genes found close to Thermotogales, Firmicutes, epsilon-
Proteobacteria, etc... Cases where Aquifex genes were
found close to a non-monophyletic group of species were
discarded, which left 578 gene trees. These counts were
further classified into two functional categories, "informa-
tional genes" and "non-informational genes", through
TIGRFAM annotations [56]. A functional category could
be determined for 351 families. "Informational genes"
were genes classified in TIGRFAMs whose function was
part of "Transcription”, "DNA metabolism", "Protein syn-
thesis"; "non-informational genes" were those whose role
was part of other major functional classes.

Concatenate assembly
Nearly universal gene families which had only one copy
per genome were used to minimize problems of ill-
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defined orthology. Consequently, gene families from the
HOGENOM database of families of homologous genes
(release 03, October 2005) that displayed a wide species
coverage with no or very low redundancy in all species
were selected. This provided 70 gene families. Sequences
from representative genomes from Archaea were retrieved
from these families, and sequences from genomes not
present in the release 03 of HOGENOM but whose phyl-
ogenetic position was interesting were included in the
families. These studied genomes are listed in Additional
files 1, 2 and 3 and were downloaded from the Joint
Genome Institute [57], The Institute for Genomic
Research [58] or the National Center for Biotechnology
Information [59], and were searched for homologous
genes using BLAST [60]; only the best hit was retrieved.
The gene families were subsequently aligned using MUS-
CLE v3.52 [61] and submitted to a phylogenetic analysis
using the NJ algorithm [62] with Poisson distances as
implemented in Phylo_Win [63]. During this step, fami-
lies in which there seemed to be a gene transfer between a
bacterial species and Archaea were discarded, as well as
amino-acid synthetases, which are known to be prone to
HGT [47]. In the rare families where there were two
sequences from the same species, the sequence showing
the largest terminal branch length or whose position was
most at odds with the NCBI classification was discarded.
This whole process provided 56 gene families and 94 bac-
terial species. Only bacterial sequences were used in the
rest of the study, because our focus is on the bacterial phy-
logeny itself. The 56 families were submitted to Gblocks
[64] to discard parts of the alignments that were unrelia-
ble, but using a non-stringent site selection, because the
subsequent analyses should permit to sort biased from
genuine signal. Consequently, the following Gblocks
parameters were used: the minimum numbers of
sequences used to define a conserved or a flanking posi-
tion were set at 50% of the total number of sequences, the
minimum length of a block was set at 2 sites, and all posi-
tions could be kept by the algorithm, even if they con-
tained gaps. The resulting alignments were then
concatenated using ScaFos [65], following the order of
genes along the Aquifex aeolicus genome. The amount of
missing data was low, reaching 21% at its maximum in
Thermotoga petrophila.

Phylogenetic analyses

A phylogenetic tree was built from the concatenate under
the Maximum Likelihood criterion using PhyML v.2.4.4
[66] with the JIT model [67], and a discretized gamma
law with 4 categories to model evolutionary rate variation.
This first tree was used to compute site-specific evolution-
ary rates using BppML from the Bio++ package [68],
which allowed for the removal of saturated sites. A new
tree was built using this refined alignment, with the same
parameters plus an estimated proportion of invariant sites
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and with a non-parametric bootstrap analysis (200 repli-
cates), and was used as a reference for the rest of the work.
An estimated proportion of invariant sites was not used in
the previous analysis because it had not been imple-
mented in the used version of Bio++. Noticeably, the
topology was found to be unchanged when Aquificales
were removed from the alignment and the tree re-com-
puted. Similarly, the topology was nearly identical when
two free-living espsilon-Proteobacteria  (Sulfurovum
NBC37-1 and thermophilic Nitratiruptor SB155-2 [40],)
were added, and the tree recomputed with PhyML v3.0;
for this tree, the minimum of SH-like and chi2-based sup-
port was computed instead of bootstrap support [69]. An
additional test was performed to assess the impact of com-
positional heterogeneity as well as saturation: the align-
ment without saturated sites was recoded in 4 categories
[70,37]. In this recoding, aromatic (FWY) and hydropho-
bic (MILV) amino-acids were grouped in a single state,
basic amino-acids (HKR) in another, acidic (DENQ)
amino acids in one more state, and the fourth state con-
tained all other amino acids (AGPST) to the exception of
cysteine which was coded as missing data. The recoded
alignment was subjected to a phylogenetic analysis with
the GTR model [71], an estimated proportion of invariant
sites, a gamma law discretized in 8 categories with its
alpha parameter estimated, and 200 bootstrap replicates.

The tree without the Aquificales was used as a scaffold
upon which all possible Aquificales positions were tried
in turn. The likelihoods for each of these positions were
computed using BppML from the Bio++ package. Evolu-
tionary rates per site as well as likelihoods per site were
simultaneously inferred. Site evolutionary rates were
obtained by computing the average of the gamma law rate
categories weighted by their posterior probabilities.

The tree containing only the rplL-rpoB-rpoC genes was
obtained with PhyML as described above and with a non-
parametric bootstrap analysis based upon 500 replicates.

Individual gene trees were built using PhyML with the
same parameters as above except that the gamma law was
discretized in 8 categories.

Concatenate segmentation and HGT identification

We wanted to know which was the most likely segmenta-
tion in two segments of the alignment according to site
likelihoods for all topologies. It was computed using Sar-
ment [72] with the Maximum Predictive Partitioning
algorithm [43]. This algorithm was input a matrix con-
taining the site log-likelihoods for all 181 topologies
tested (obtained by placing the Aquificales in all possible
positions in the backbone bacterial phylogeny) and for
the whole alignment. The best log-likelihood of a given
segmentation is the sum of the best log-likelihoods of its
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segments, that are computed as follows: on a segment, for
each of the 181 topologies tested, the log-likelihood of a
topology is the sum of all site log-likelihoods on the align-
ment. This procedure produces 181 log-likelihoods, the
maximum of which is the best log-likelihood of this seg-
ment. Once this maximum is found, it clearly associates a
most likely topology to each segment of the alignment. All
statistical analyses were done with the seqinR package
[73] in R [74].
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Improving Methods of Phylogenetic
Reconstruction

The preceding article showed that compositional heterogeneity was a very diffi-
cult problem for phylogenetic reconstruction, as it cannot be erased easily. The
best approach to reconstructing phylogeny when there are compositional biases
involves better models of evolution.

These better models of evolution are non-homogeneous (see section 2.7.2),
and were thought to be uneasy to work with, because they render the whole
process of evolution irreversible. Here we show that this irreversibility does not
prevent from using classical and efficient algorithms. As a proof-of-concept, I
programmed nhPhyML, an algorithm that implements a model designed to deal
with compositional heterogeneity.

This article has been published in Systematic Biology.
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Abstract.—Recent advances in heuristics have made maximum likelihood phylogenetic tree estimation tractable for hundreds
of sequences. Noticeably, these algorithms are currently limited to reversible models of evolution, in which Felsenstein’s
pulley principle applies. In this paper we show that by reorganizing the way likelihood is computed, one can efficiently
compute the likelihood of a tree from any of its nodes with a nonreversible model of DNA sequence evolution, and hence
benefit from cutting-edge heuristics. This computational trick can be used with reversible models of evolution without any
extra cost. We then introduce nhPhyML, the adaptation of the nonhomogeneous nonstationary model of Galtier and Gouy
(1998; Mol. Biol. Evol. 15:871-879) to the structure of PhyML, as well as an approximation of the model in which the set of
equilibrium frequencies is limited. This new version shows good results both in terms of exploration of the space of tree
topologies and ancestral G4-C content estimation. We eventually apply it to rRNA sequences slowly evolving sites and
conclude that the model and a wider taxonomic sampling still do not plead for a hyperthermophilic last universal common
ancestor. [Efficient algorithm; LUCA; maximum likelihood; molecular phylogeny; nonreversible model of evolution; PhyML;

origin of life; root of life.]

Research in molecular phylogeny aims at reconstruct-
ing historical relations between genes or species while
trying to capture the true nature of the evolutionary
process itself. Both can be estimated at the same time
through the use of statistical modeling. Maximum likeli-
hood or the Bayesian framework permit the estimation of
parameters of the evolutionary model such as the tran-
sition/transversion ratio, the equilibrium base compo-
sition, and the tree itself, topology and branch lengths
included. Optimizing all these parameters is computa-
tionally intensive: the number of possible topologies in-
creases factorially with the number of taxa considered,
which makes it necessary to use heuristics when explor-
ing the space of tree topologies. Most recent algorithms
(e.g., PhyML [Guindon and Gascuel, 2003], RAXML
[Stamatakis et al., 2005]) are able to find trees with ex-
cellent likelihood scores for hundreds of sequences, but
only with reversible models of evolution. All these re-
versible models are homogeneous and stationary, i.e.,
suppose that state evolution is constant all over the
tree. If this hypothesis were true, sequences sharing a
common ancestor would have the same expected base
frequencies.

More precisely, a process of evolution is homogeneous
when the state distribution probability simply depends
on the time separating it from a given past state dis-
tribution probability and not on the branch in the tree:
homogeneity is the feature of a process of evolution that
is constant in pattern over the whole tree. On the other
hand, stationarity is the feature of a process of evolu-
tion that keeps the state distribution probability constant
over the whole tree: the probability to draw a given state
is the same wherever on the tree the sampling is done.
A process can be stationary and not be homogeneous,
as is the case for Ziheng Yang’s codon model in which
the nonsynonymous-to-synonymous ratio varies across
branches while codon equilibrium frequencies remain
constant all over the tree (Yang, 1998). On the contrary,
nonstationarity induces nonhomogeneity, as the process
of evolution depends upon the equilibrium frequencies.

The analysis of extant sequences shows that homol-
ogous genes vary widely in their composition. As they
all stem from a common ancestor, this evidences that se-
quence evolution is at least not stationary: two sequences
in two different species or at two different periods evolve
towards different compositions.

The use of nonhomogeneous and nonstationary mod-
els that account for this variability in evolution permits
minimizing compositional biases and hence improving
phylogenetic reconstructions (Galtier and Gouy, 1998;
Tarrio et al., 2001; Herbeck et al., 2005). Unfortunately,
removing the homogeneity and stationarity hypotheses
implies abandoning reversibility, and hence prevents one
from using the most efficient algorithms, when those par-
ticularly variable-rich models would most eagerly need
it.

In this article we show in the general case that it is pos-
sible to use recent algorithms with nonreversible models
of sequence evolution. We first explain how the likeli-
hood of a tree is computed and how the reversibility
property is used in recent heuristics to avoid dispens-
able calculations during tree space search. We then prove
that the same computational trick can be used with non-
reversible models of evolution through a reorganization
of the way likelihood is computed. As reversible mod-
els of evolution can also be used in this framework, this
work can be considered as a generalization of the usual
formulas, which considerably broadens the amount of
models that can be used for a phylogenetic analysis, as
all nonhomogeneous as well as nonstationary models
can be used.

Eventually we report nhPhyML, the first adaptation
of PhyML (Guindon and Gascuel, 2003), a very fast and
efficient algorithm, to a nonreversible model of evolu-
tion; namely, the implementation of Tamura’s model at
each branch of a tree introduced by Galtier and Gouy
(Tamura, 1992; Galtier and Gouy, 1998). We also in-
troduce nhPhyML-Discrete, an approximation of nh-
PhyML. This implementation shows better performance
than nhPhyML in the exploration of the space of tree
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topologies and similar accuracy in the estimation of the
ancestral G4-C content. Eventually, we apply nhPhyML
to ribosomal RNA slowly evolving sites and conclude
that a wider taxonomic sampling than in Galtier et al.
(1999) still does not support a hyperthermophilic last
universal common ancestor.

COMPUTING THE LIKELIHOOD OF A TREE FROM ANY
NODE UNDER A NONREVERSIBLE MODEL OF DNA
SEQUENCE EVOLUTION

Computing the Likelihood of a Tree

We first explain how one computes the likelihood of
a phylogenetic tree with DNA sequences using the fol-
lowing example (Fig. 1).

Most commonly, sites are supposed to evolve inde-
pendently of each other: a site does not depend on its
neighbors’ states but only on its past state. As a conse-
quence, the likelihood of a tree for a whole sequence is
obtained by multiplying all the likelihoods obtained at
single sites.

The likelihood L; of the tree given in Figure 1 for a
single site s is computed as follows:

Ls = Z (P(R =x) X Z[sz(lA/ UA)Ls,low(RA)(A = z)]

xeQ zeQ
Z { xy lUr vu Z[ lB/ UB slaw(UB)(B = Q)]
yeR qeQ

X Z[Pyv(lC/ UC)Ls,low(UC)(C =

veQ

v)]}) 1)

where Py, (l4, v4) is the probability for base x to change

FIGURE 1. Example rooted tree for likelihood computation. This
tree is composed of a root R, an internal node U, three other nodes
or leaves A, B, and C, and four branches of length I,, I3, Ic, Iy, and
other evoluﬁonary parameters vy, vg, vc, Vy. We are here interested
in the likelihood of the tree for a single site. The internal node states
are unknown and then represented as variables x at node R, i at node
U, z at node A, g at node B, and v at node C. Arrows represent the
evolutionary direction, from the root of the tree to its leaves.

into base y along a branch of length I4 and other evo-
lutionary parameters v4, P(R = x) is the probability to
have base x at the root R, and Q@ = {A, T, C, G} is the
set of possible DNA bases. L; 1ou(r4)(A = z) is the lower
conditional likelihood (Felsenstein, 1981) of observing
the data downstream from branch RA conditionally on
the underlying subtree and on having base z at node A.
For each subtree, one can define four conditional likeli-
hoods, one for each DNA base. Once these conditional
likelihoods have been computed for a subtree, as long
as its topology and branch lengths do not change, they
can be re-used if one moves the whole subtree around
the topology. This property is used in recent heuristics to
search for the most likely phylogenetic tree. These condi-
tional likelihoods are defined as lower, in the sense that
they do not contain the root.

Lower conditional likelihoods are defined recursively.
For aleaf C:

1 if base v is at site s of leaf C

Ls owquc)(C = v) = {0 otherwise

@

And for a subtree whose root is in U:

Ltowruy(U = ¥) = Y [Py (I8, v8)Lsjowury(B = 9)]

qeQ

XZ[

veQR

v(lc, ve)Ls towwc)(C = v)]

®)

Computing the Likelihood When the Model of Evolution
Is Reversible

Reversibility—When computing the likelihood of a
phylogenetic tree, aroot R must be specified. If the model
is homogeneous and reversible, the process of evolution
is stationary: wherever the root is, its base proportions
are the same, i.e., they are the equilibrium frequencies of

the process, noted 7: P(R = x) = my. (1) can be rewritten:
Ls = Z (nx Z {ny(lu, vu)

xeQ yeQ

X Z[qu (Is, vB)Ls 10wy (B = q)]
qe

X Z[ lCr UC s Iow(UC)(C = U)]}
veQ

XS IPlla o Lesonea(A=2])
zeQ

Reversibility means that, averaged over the whole se-
quence, the flux from one base to another is equal to the
flux from this other base back to the first one:

7Txpxy(l/ v) = nypyx(l/ v)
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Supposing the model used is reversible, as is the case
with most current models of DNA sequence evolution,
we can rewrite the likelihood in (4) as:

Li=> <7Tyz {Pyx(lU/ vu)

yeQ xXeQ

X Z[PXZ(ZA/ UA)Ls,low(RA)(A = Z)]}

zeQ

X Z[qu (Is, vB)Ls 10wy (B = q)]

qe

X Z[Pyv(lCr ve)Ls towuc)(C = U)]) ®)

veQ

Expression (5) can be read as if the root was placed at
node U. The root can therefore be placed at any node, on
any branch of the tree, a property named “pulley princi-
ple” by Felsenstein (1981), and widely used in heuristics
to find most likely trees. Considering Figure 1, this makes
arrows meaningless.

The possibility to place the root of the tree wher-
ever is needed is thoroughly used in recent heuristics to
the problem of the most likely phylogenetic tree. Those
heuristics usually explore the space of tree topologies
by applying local rearrangements: “nearest neighbor in-
terchange” (NNI) swaps two subtrees around an inter-
nal edge (used in PhyML [Guindon and Gascuel, 2003]),
“subtree pruning and re-grafting” removes a subtree
from the whole tree and places it on another edge (used
in RAXML [Stamatakis et al., 2005]), and “tree bisection
and reconnection” splits the tree into two subtrees that
are rewired by any of their edges. In all these rearrange-
ments, whole subtrees remain fixed: their branches still
have the same parameters and their internal topology is
unchanged. By defining conditional likelihoods for fixed
subtrees, and by placing the root at the rearrangement
point, one can avoid much computation when explor-
ing the space of tree topologies. As the root is placed at
the rearrangement point, all the conditional likelihoods
can be considered as lower from a mathematical point of
view since none contains the root.

The most efficient algorithms first compute condi-
tional likelihoods for all subtrees, before they compute
an approximate likelihood for topologies obtained with
a given sort of rearrangement, using the previously
obtained conditional likelihoods. They apply the most
promising rearrangements, either all at once (PhyML)
or as soon as it is tried (RAxML), optimize evolutionary
parameters of the new tree, and eventually start a new
round of conditional likelihood calculation and explo-
ration of the space of tree topologies, until convergence.

Computing the Likelihood of a Tree with
a Nonreversible Model

Upper conditional likelihoods.—In the nonreversible
case, upper conditional likelihoods can be defined to ac-

count for the true root of the tree and the evolutionary
directions of the branches.

We define the upper conditional likelihood at branch
RU in the nonreversible case as:

Ls,upp(RU)(R =x) = P(R=x)
X Z[PXZ(IA/ vA)Ls 1ow(rA)(A = 2)]

zeQ

(6)

The underlying branches” upper likelihoods can also
be defined recursively:

Ls,upp(UB)(u = y) = Z[ny(lllr UU)Ls,upp(RU)(R = X)]

xeQ2

X Z[Pyv(lC/ ve)Ls towuc)(C = v)]

veQ

)

The main difference lies in the incorporation of the
root nucleotide frequencies in the definition of the upper
conditional likelihoods. This way, the root is not moved
around the topology, and the evolutionary direction is
conserved.

We now prove that the expression of the tree likelihood
is not changed when computed from other nodes of the
tree using upper and lower likelihoods.

Recurrence.—We show that for any branch, say UB,

Ls = Z[Ls,upp(UB)(u = ]/)]
yeQ

X Z[PW(ZB’ v8)Ls towun) (B = )]

qeQ

We initialize the recurrence with branch RU:

LS,RU = Z {Ls,upp(RU)(R = x)

xeQ

S [Pyt v0) Lt (U = y)]} ®)

YeQ

We expand it:

Loru =Y (P(R =x) Y [Peella, va)Ls touw(ra (A = 2)]

xeQ zeQ

X Z {ny(lu, vy) Z[qu(lB/ vB)Ls, low(uB)

yeQ qeQ

(B = )1 S [Pyllc, v0)Latouuic)(C = v)]})

veQR
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With (1):
LS/RU - Ls

The likelihood computed on the branch RU is the same
as the one computed at the root. This is also true for the
edge RA.

We now suppose we know the likelihood at a branch
RU and are interested in the likelihood at an underlying
branch UB.

LS,UB = Z {Ls,upp(UB)(u = y)

yeQ

% S [Pyy U, v8) Lo o (B = q)]} ©)

qeQ

We expand it, using (7):

Los=Y { S L sy (R = 1) Poyll, v0r)]

yeQ ~ xeQ

X Z[Pyv(lC/ ve)Ls jowwucy(C = v)]
veEQ

X Z[qu(lB/ vB)Ls lowwn)(B = q)]}
qeQ

And then rearrange it:

Ls,UB = Z {Ls,upp(RU)(R = X)

xeQ2

X Z[ny(lu, vu) L jowruy(U = y)]}

yeR
So that we have proved, with (8):
Ls,up = Lsru = Ls

By recurrence, we have shown that the likelihood
value can be computed from any branch of the tree,
which, as will be seen, is particularly useful when ex-
ploring the space of tree topologies.

Exploring the Space of Tree Topologies with
a Nonreversible Model

Efficient heuristics explore the space of tree topolo-
gies by local rearrangements such as nearest neighbor in-
terchanges (NNIs). In the nonreversible case, evolution
proceeds from the root of the tree to its leaves, so one
must keep this evolutionary direction unchanged. For
this purpose, a distinction is made between the branch
on which the root is placed and the others. Figure 2a
shows that being able to compute the likelihood from

branch UB permits to define four subtrees whose condi-
tional likelihoods can be used as constants to estimate the
likelihoods of the three alternate topologies. In the non-
reversible case, one uses upper conditional likelihood for
the root-containing subtree and lower likelihoods for all
other subtrees. With no loss of generality, NNIs around
branch UB only require exchanges of subtrees having
lower conditional likelihoods.

The likelihood of topology 1 Figure 2a can be com-
puted with:

Loat =Y {Ls,upp(RU)(R =x)> {(ny(lu, vu)

xeQ yeQ

X Z[Pyv(lCr ve)Ls 1owwue)(C = v)]
veQ

x Z{PW(ZB/ vB) Z[Pqt(lDr vp)Ls jowsD)(D =1)]
qeQ teQ

X Z[qu(lE/ UE)Ls,Iow(BE)(E = w)]}:| }
weR

The likelihoods of topologies 2 and 3 are computed
similarly.

In case the internal branch around which NNIs are to
be done possesses the root, the situation is slightly differ-
ent (Fig. 2b). As in the above case, three configurations
can be reached through interchanges between subtrees,
but here all conditional likelihoods are lower.

The likelihood of the topology 1 (Figure 2b) can be
computed as follows:

Ls,hl = Z <P(R = JC) Z {sz(lA/ UA)

xeQ zeQ

X Z[Pzi(lF/ vr)Ls jowcary(F =1)]

ieQ

X Z[sz(lc, vG)Ls 10w(4c)(G = j)]}

jeQ

X Z {ny(lu, vy) Z[qu (Is, vB)Ls 1ow(uB)

yeR qeQ

(B =9)] Z[Pyv(lc, ve)Ls owuc)(C = U)]})

veQ

The likelihoods of topologies 2 and 3 are computed
similarly.

It can be shown that by only doing NNIs, the root can
be moved throughout the whole tree, to the exception
of leaves: as NNIs keep internal branches internal (and
external branches external), the root cannot be moved
to a leaf.

Thus, the exploration through NNIs of the space of
rooted tree topologies with a nonreversible model is as
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FIGURE 2. Use of conditional likelihoods when applying NNIs (Nearest Neighbor Interchanges) to an internal branch. (a) NNIs are applied
to internal branch UB. The root node is situated in the subtree noted “UPP.” The three other subtrees, named D, C, and E, are all lower. By
swapping lower subtrees, three different topologies noted 1, 2, 3 are obtained. One can use the conditional likelihoods (upper in one case, lower
in the three other cases) of the four subtrees to speed up the likelihood computation for these three alternate topologies. (b) The root node is now
situated on the branch around which the NNI is done. All the conditional likelihoods are therefore lower, so any swap can be done.

exhaustive as the exploration of the space of unrooted
trees with a reversible model, except that the root cannot
go to an external branch.

Once again, and in the same way as computing the
likelihood of a tree with a nonreversible model of evo-
lution can be considered as a generalization of the re-
versible case, the way the space of tree topologies can be
explored by NNIs with a nonreversible model of evolu-
tion can be seen as a generalization of the reversible case.
Overall, nonreversible models of evolution can easily fit
into recent heuristics such as PhyML to search for most
likely rooted phylogenies.

In the next part, we report a new program built on
the algorithmic architecture of PhyML, which explores
the space of tree topologies under the nonhomogeneous,
nonstationary model of Galtier and Gouy (1998).

NHPHYML, ADAPTATION OF PHYML ALGORITHMIC
STRUCTURE TO GALTIER AND GOUY’S MODEL

We adapted the fast heuristics of PhyML (Guindon and
Gascuel, 2003) to Galtier and Gouy’s nonhomogeneous
and nonstationary model, and we report here results con-

cerning the ability of the resulting nhPhyML program to
explore the space of tree topologies and to estimate the
ancestral G+C content.

Galtier and Gouy’s model is particularly variable
rich: in addition to common parameters such as branch
lengths and transition/transversion ratio, it incorporates
different equilibrium G+C contents for each branch and
an additional G4C content at the root. This makes it a
model containing 4n — 2 variables, with n the number
of taxa in the tree: 2n — 3 branch lengths, 2n — 2 equi-
librium G+C contents, the G+C content at the root, the
transition/transversion ratio, and an additional parame-
ter defining the position of the root on its branch; i.e., the
fraction of the branch length lying on the left side of the
root. All these parameters are estimated in the maximum
likelihood framework, which leads to a computationally
intensive model. For this reason, in all the studies that
used this model to find phylogenetic trees (Galtier et al.,
1999; Tarrio et al., 2001; Herbeck et al., 2005), no explo-
ration of the space of tree topologies was conducted; the
model was simply used to compare a limited set of input
phylogenies.
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The use of very efficient heuristics to find most likely
trees is then mandatory for this kind of model to be used
not just as an evaluation tool. PhyML (Guindon and
Gascuel, 2003) is such an algorithm that explores the
space of tree topologies around an input phylogeny. The
adaptation of Galtier and Gouy’s model to the algorith-
mic structure of PhyML permits for the first time to use
this nonstationary, nonhomogeneous model to explore
the space of phylogenies with dozens of sequences.

PhyML’s code was deeply modified to produce nh-
PhyML. nhPhyML starts from a user input-rooted topol-
ogy: the choice of the root depends upon the user and
is unchanged throughout the whole search for the most
likely tree, except for its position on its branch. Even if we
have shown that NNIs around the root branch could be
easily implemented, this has not been done in nhPhyML.
Data structures had to be slightly remodeled, as in Galtier
and Gouy’s model each branch has its own substitution
matrix, and algorithms had to incorporate the fact that
the root was fixed, both in the computation of likeli-
hood values for alternate topologies obtained by NNIs
(2) and in the computation of conditional likelihoods
themselves. Those conditional likelihoods are computed
almost as in PhyML, by first a postorder (the original
Felsenstein’s pruning algorithm; Felsenstein, 1981) and
then a preorder tree traversal, but starting from the root
of the tree, whereas in the reversible case the starting
point could be any leaf.

Equations (2) and (3) show that lower conditional like-
lihoods depend, if at a leaf, upon the base observed in
the sequence, or, if at an internal node, upon the values
of the underlying nodes lower conditional likelihoods.
Lower conditional likelihoods can then be obtained by
a postorder tree traversal starting from the root node:
the tree is traversed to its leaves, and then the condi-
tional likelihoods of the upper nodes are computed, from
the leaves up to the root. On the contrary, upper con-
ditional likelihoods depend both on underlying nodes’
lower conditional likelihoods and on above-lying nodes’
upper conditional likelihoods (Equations (6) and (7)): up-
per conditional likelihoods can then be computed once
lower conditional likelihoods have been computed, and
with a preorder tree traversal.

All the parameters of the model are optimized with the
Newton-Raphson method (Felsenstein and Churchill,
1996; Galtier and Gouy, 1998). Derivatives are computed
analytically except for the shape parameter of the gamma
distribution accounting for differences in substitution
rates across sites (Yang, 1993) whose derivatives are com-
puted numerically.

The topology is reorganized as in PhyML except that
when estimating the approximate likelihood of a given
NNI, not only the length but also the equilibrium G+C
content of the internal branch around which NNIs are
done are optimized.

Results obtained with nhPhyML suggested that the
program was prone to getting trapped in local maxima.
This prompted us to develop an approximate version
of the Galtier and Gouy model, named nhPhyML-
Discrete.

We thus adopted a strategy inspired by Foster (2004)
and only allowed a limited set of c equilibrium frequen-

cies, themselves permanently set to %, e, ﬁ Each
branch can still have its own equilibrium frequency, by
choosing from the few ones available.

Three changes were introduced in the algorithm. First,
the user sets the number ¢ of equilibrium G+C frequen-
cies. Second, before the exploration of the space of tree
topologies, each equilibrium frequency is tested for each
branch independently from the others, and the branch
length is optimized for each equilibrium frequency. The
best pairs (equilibrium frequency-branch length) are
recorded and ordered according to the gain in likelihood
they permit. When all branches have been tried, all the
best values are simultaneously used. If the likelihood
does not increase, only the first half of them, according
to the order previously defined, are applied, until in-
crease. This technique is very similar to the one used in
PhyML to optimize branch lengths. Third, the space of
tree topologies is explored as in PhyML, except that for
each NNI that is tried, all the equilibrium frequencies are
tried on the internal branch, and for each one the branch
length is optimized.

Ability of nhPhyML to Explore the Space of Tree Topologies

In order to estimate the ability of nhPhyML to explore
the tree topological space, we simulated the evolution of
1000-bp-long sequences according to Galtier and Gouy’s
model with a gamma-distributed rate across sites and the
rooted version of the trees containing 40 leaves that were
used to test PhyML (Guindon and Gascuel, 2003). The
ancestral sequence G+C content was uniformly drawn
from the interval [0.2; 0.8], and the equilibrium G+C fre-
quencies were uniformly drawn at each node from the in-
terval [0.1; 0.8], but the transition-transversion ratio was
kept constant on the whole tree. We then applied various
algorithms (neighbor joining, maximum parsimony and
maximum likelihood with PhyML) to estimate their abil-
ity to find the topologies that had been used to simulate
the evolution of the sequences (the “true topologies”)
and compared them to nhPhyML.

Among these algorithms, we distinguished programs
that do not need a starting topology (like distance-based
approaches) from the ones that reorganize a user in-
put tree to explore the space of tree topologies (like nh-
PhyML). PhyML and the parsimony algorithm can be
said to belong to the two classes, as they reorganize a
starting topology that can be input a priori by the user or
generated by the program itself. Two experiments were
then conducted, one in which algorithms that do not
need a user input topology were tested upon the sim-
ulated sequences (Fig. 3, white bars), and one in which
algorithms that can run starting from a user input topol-
ogy were compared (Fig. 3, grey bars). For this second
experiment, input topologies were obtained by perturb-
ing the “true topologies” by anumber of NNIs uniformly
drawn from [5; 20], while making sure that the ingroup
and the outgroup were not melted. This additional con-
dition is necessary as nhPhyML is not able to question
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FIGURE 3. Efficiency of various methods in reconstructing a phylogeny in nonhomogeneous conditions. White bars: Results obtained by
phylogenetic methods that do not start from a user input topology. Grey bars: Results obtained by phylogenetic methods that start from perturbed
input topologies. These results were obtained with the same 2000 different topologies taken from the PhyML test set. Error bars represent standard
deviations. Asterisks are displayed where Student paired ¢-tests are significant at the 1% level.

the position of the root when exploring the space of tree
topologies.

To estimate the efficiency of a method, Robinson
and Foulds” (R&F; Robinson and Foulds, 1979) average
distances between the true topologies and the recon-
structed ones were computed with the PHYLIP package
(Felsenstein, 1989). Results are given in Figure 3.

For both PhyML (version 2.4.4, under the TN93 model
[Tamura and Nei, 1993]) and nhPhyML, reconstruction
was made using a gamma law with eight categories to
account for across-site rate variation; parameter «, tran-
sition/transversion ratio, and the other parameters were
estimated by the programs. PhyML and the parsimony
method as implemented in PAUP* (Swofford, 2003) were
both used from their built-in starting topology and from
the perturbed input topologies. The neighbor-joining al-
gorithm was applied to pairwise distances estimated un-
der HKY85 (Hasegawa et al., 1985), LogDet (Lake, 1994;
Lockhartetal., 1994), GG95 (Galtier and Gouy, 1995), and
transversions-only observed divergence distances.

Figure 3 shows that PhyML is more efficient at finding
good topologies than parsimony, which also has better
results than distance methods. It is surprising to note

that the transversions-only observed divergence and the
GG95 distances perform worse than the HKY85 dis-
tance, because these methods were devised to be resis-
tant to G4C content biases. However, as expected, the
LogDet distance provides better results than the HKY85
distance.

Figure 3 (grey bars) compares the efficiencies of par-
simony, PhyML, and nhPhyML methods. The average
distance between the rearranged input topologies and
the true topologies is shown. All the methods tested are
able to explore the space of tree topologies to find better
trees than the input ones. Results obtained by PhyML
from the rearranged input phylogenies are better than
when PhyML departs from its own starting topology (a
distance-based tree). As the rearranged topologies are
further away from the true topologies than the distance-
based trees, this comes from the fact that distance trees
fail on subtrees also difficult to solve for the maximum
likelihood method, whereas the rearranged topologies
can be perturbed at the level of subtrees whose solution
is trivial.

It appears that PhyML is able to find better trees
than parsimony and surprisingly also better trees than
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nhPhyML (Student unilateral paired t-test, P-value
<1 x 1071%). This might be due to the large number of
parameters: nhPhyML has 2 x n — 2 additional parame-
ters when compared to PhyML, because an equilibrium
G+C content is associated to each branch. This might re-
sult in a likelihood surface with lots of local maxima, in
which the algorithm would get trapped.

The comparison of the likelihood values found by nh-
PhyML when launched from the rearranged topologies
to the likelihood values computed on the true topologies
comforts us in this hypothesis: the log-likelihood of
the true trees is on average 62.9 points higher than the
log-likelihood of the trees found by nhPhyML, which
have a better likelihood than the true trees in only
830 cases out of 2000. As a comparison, PhyML finds
topologies with a 1.2-point higher log-likelihood score
than the true topologies and finds topologies with better
likelihoods than the true ones in 1562 cases out of 2000.
This means that nhPhyML fails to correctly explore the
space of tree topologies, because it gets trapped in local
maxima and does not get to the real maximum. Being
particularly parameter rich, it seems that nhPhyML
can fit nearly any topology by taking advantage of its
numerous parameters.

An approximate and less flexible model was devel-
oped and was named nhPhyML-Discrete. This nonho-
mogeneous model still has the same number of free
parameters as nhPhyML, as each branch can have a
particular equilibrium frequency, but is also much less
“flexible,” because these equilibrium frequencies are
constrained to be in the limited set defined by the user.
These constraints have a positive impact on the results
of the algorithm. These are shown in Figure 3 for sets of
1 to 4 equilibrium frequencies.

nhPhyML-Discrete shows a better topological accu-
racy than PhyML even when using only one equilibrium
frequency: this can be due either to the fact that the root
base distribution is estimated in nhPhyML-Discrete and
notin PhyML, or to the fact that the ingroup and the out-
group cannot be swapped in nhPhyML-Discrete, thereby
avoiding the exploration of unreasonable tree topologies
contrary to PhyML. Increasing the number of equilib-
rium frequencies further increases nhPhyML-Discrete’s
topological accuracy, but this tendency quickly reverses,
as using 3 equilibrium frequencies yields better results
than 4 equilibrium frequencies (though the unilateral
paired Student t-test is not significant). When further
increasing the number of equilibrium frequencies, the
topological accuracy continues dropping, with, for in-
stance, an average distance to the true topologies of 2.23
for 10 equilibrium frequencies (data not shown), not bet-
ter than when using only 1 equilibrium frequency (2.18,
Student unilateral paired t-test P-value: 0.054). Overall,
it seems that using 3 equilibrium frequencies might be a
good choice, as it gets the best topological accuracy on
the simulations, which is the same performance as with
2 equilibrium frequencies, but with a lower standard
deviation.

When used with 3 G+C equilibrium frequencies, the
algorithm finds topologies closer to the true ones than

PhyML (nhPhyML-Discrete: 2.09, PhyML: 2.49, Student
unilateral paired t-test, P-value <1 x 1071°). This also
has an impact on the risk of getting trapped in local
optima: nhPhyML-Discrete finds topologies that have a
log-likelihood on average 37.5 points higher than the true
topology log-likelihoods, which is better than nhPhyML.
Moreover, it appears that nhPhyML-Discrete finds trees
with better likelihoods than the true tree in 1768 cases
out of 2000. Overall, it seems that nhPhyML-Discrete
shows a performance as good as PhyML’s one, with a
stronger variation in log-likelihood, which might hint
for a stronger discriminating power. Finally, this approx-
imation has a great impact on the computational speed,
nhPhyML used on average 40 min 42 s to give its re-
sults while nhPhyML-Discrete only needed 20 min 43 s:
it is faster to choose among a limited set of equilibrium
frequencies than to optimize the value of a continuous
parameter.

Figure 4 shows that nhPhyML-Discrete is, as PhyML
and parsimony, nearly insensitive to the distance of its in-
putphylogeny to the true one. On the contrary, nhPhyML
does not seem to be able to cope with distant topologies,
which is in agreement with the results above.

Estimation of Root G+C Content

The ancestral G+C content is a parameter of the model
in itself. We conducted tests to check the ability of the
program to estimate this parameter on trees containing
40 leaves, either from the true phylogenies or from the
phylogenies found by nhPhyML and nhPhyML-Discrete
when it was input perturbed topologies. nhPhyML-
Discrete results are shown Figure 5 for 3 equilibrium
frequencies.

Whether it is estimated from the true phylogenies, or
from the phylogenies found by nhPhyML or nhPhyML-
Discrete (Fig. 5), the ancestral G+C content is well es-
timated. The correlation coefficient between estimated
and expected G+C contents is above 0.99 in all cases.
Interestingly, results do not depend upon the number of
equilibrium frequencies: performances are highly sim-
ilar whether we use only 1 equilibrium frequency or
whether we use nhPhyML. The average of the squared
differences between the estimated and the true values
is ~0.000282 when inferred from the true phylogeny,
~0.000292 when inferred from the phylogenies found by
nhPhyML, and ~0.0003423 when inferred by nhPhyML-
Discrete with 3 equilibrium frequencies from the phy-
logenies it has found. It is interesting to note that even
if nhPhyML-Discrete does not model evolution as pre-
cisely as nhPhyML, being limited in its choice of equilib-
rium frequencies, it can still provide very good estimates
of the ancestral G+C contents, even from topologies that
are not the true ones.

Overall it appears that the limitation of the num-
ber and values of equilibrium frequencies has been
very successful, permitting to increase the ability of
the algorithm to explore the space of tree topologies
while retaining the capacity to estimate ancestral G+C
content.
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FIGURES. Ability of nhPhyML-Discrete to estimate ancestral G4-C
contents. nhPhyML-Discrete was used to estimate ancestral G+C con-
tents on sequences simulated on 2000 different topologies from the
PhyML test set (see text) from the phylogenies found by the program
itself, with 3 equilibrium frequency categories. In each experiment,
parameter « that accounts for across-site rate variation using an 8-
category discretized gamma distribution, transition/transversion ra-
tio, and the other parameters were estimated by maximizing the like-
lihood.

ESTIMATION OF THE UNIVERSAL PHYLOGENY
AND OF THE ANCESTRAL G+C CONTENT

The ability of nhPhyML-Discrete to explore the space
of tree topologies and to estimate the ancestral G+C con-
tent has then been demonstrated and can be applied to
real data.

As rRNA stem G+C contents are known to be cor-
related to the optimal growth temperatures in Bacteria
and Archaea (Galtier and Lobry, 1997), these genes are
especially good candidates for an analysis using Galtier
and Gouy’s model (Galtier and Gouy, 1998), and hence
nhPhyML-Discrete. Therefore, we reiterated the analy-
sis of Galtier et al. (1999), improving the taxonomic sam-
pling and benefiting from the heuristics of PhyML to
better scan the space of tree topologies.

The analysis was divided in two steps: first we
searched with nhPhyML-Discrete for the most likely
topology for which complete rRNA genes and the model
plead, and then, using the best topology we could find
and the stem portion of rRNA sequences, we estimated
the G+C content of the last universal common ancestor
(LUCA) with nhPhyML.

Phylogeny Estimation

Small and large rRNA subunit sequences were down-
loaded from the European Ribosomal RNA database
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(Wuyts et al., 2004) and from generalist databases for
a few missing sequences. Ninety-two species were se-
lected, representing the three domains of life with 22 Ar-
chaea, 34 Bacteria, and 36 Eukaryota. Small- and large-
subunit rRNA genes were concatenated, aligned using
ClustalW (Chenna et al., 2003), and manually curated.
The resulting alignment contained 2924 sites, with G+C
contents ranging from 43% to 71%, which highlights the
need for models robust to compositional biases.

Even if the ability of nhPhyML-Discrete to explore the
space of tree topologies appears as good as PhyML’s, it is
wise to run the program from various starting topologies
to diminish the risk of getting trapped in local optima.
Moreover, as the process of evolution in not reversible,
the position of the root influences the likelihood value.
For this reason, it was decided to build various topolo-
gies with distance-based and parsimony methods (as im-
plemented in Phylo_Win, Galtier et al., 1996), and then
to try three different rootings for each of these topolo-
gies. The trees were rooted either on the branch leading
to the Archaea, on the branch leading to the Bacteria, or
on the branch leading to the Eukaryota. This produced
57 starting phylogenies, among which 9 had identical
topologies.

Results obtained by nhPhyML-Discrete on these
trees were then analyzed using CONSEL (Shimodaira
and Hasegawa, 2001) and Treedist (PHYLIP package;
Felsenstein, 1989). Eighteen phylogenies were found to
be significantly more likely than the others (AU test P-
values <5%) among the 55 different topologies found,
which shows that even if nhPhyML-Discrete showed
good capabilities to explore the space of tree topologies,
onreal cases, with many sequences, the algorithm can get
trapped in a local maximum, even when starting from
two phylogenies with the same topologies but different
branch lengths. None of these 18 topologies were iden-
tical, so the majority rule (extended) consensus tree ob-
tained from these trees was built (Fig. 6) using Consense
from the PHYLIP package (Felsenstein, 1989).

The Tree of Life

Though we do not believe that a two-gene phylogeny
can clarify the Tree of Life, we think the analysis of rRNAs
using a nonhomogeneous model might bear some inter-
esting insights.

Most great clades are found monophyletic; e.g., Pro-
teobacteria, Metazoa, Crenarchaeota. In the Bacteria
kingdom, Firmicutes and Clostridia are found associated
in all trees. Planctomycetes appear monophyletic and
are associated to Chlamydiales but do not get a basal
position as in Brochier and Philippe (2002): this result
was found by getting rid of fastest evolving positions
on the small subunit rRNA gene and is not found when
coping with compositional heterogeneities on LSU and
SSU rRNA genes. Instead, hyperthermophilic Bacteria
are found at the root of the bacterial clade, as in first
rRNA phylogenies (Woese, 1987).

Ancestral G+C Content Estimate

The consensus universal phylogeny found using
nhPhyML-Discrete was used to infer the ancestral G4+C

contents of the small- and large-subunit rRNA genes
stem regions. The inference was performed using only
slowly evolving stem regions for two reasons. First, only
rRNA stems, that is, the fraction of the rRNA molecule
that folds as double helices, have a G4C content strongly
correlated with optimal growth temperature (Galtier and
Lobry, 1997). Second, Gowri-Shankar and Rattray (2006)
have recently shown that the ancestral G4C content es-
timate obtained with the Galtier and Gouy model was
biased towards the G+C content at slowly evolving sites
and that equilibrium frequencies were biased towards
fast-evolvingsites. Correlations between interacting sites
of the helices were not taken into consideration.

Stem regions were identified using the following pro-
cedure. The rRNA alignment downloaded from the
European Ribosomal RNA database (Wuyts et al., 2004)
was extended to the present sample of 92 sequences
by manually aligning missing sequences using Seaview
Galtier et al., (1996). A total of 1896 sites were predicted
in stems in Escherichia coli, Archaeoglobus fulgidus, and
Schizosaccharomyces pombe. Slowly evolving sites were
identified by using the COE program (Dutheil et al., 2005)
from the Bio++ package (Dutheil et al., 2006) and select-
ing sites predicted to undergo on average less than 0.1
substitution per branch under a HKY85 model with an
8-class discretized gamma law to model rate heterogene-
ity. Six hundred seventy-eight slowly evolving stem sites
were finally retained.

The correlation between rRNA stem slowly evolv-
ing sites G4+C content and optimal growth tempera-
ture (Topt) is high for both Bacteria (0.815) and Archaea
(0.953), which is in agreement with Galtier and Lobry
(1997). Because ancestral G+C content inferences are
known to be robust with respect to the tree topology
(Galtier etal., 1999; and Fig. 5 herein), those estimates are
expected not to depend strongly on the input phylogeny.

Because the location of the root of the universal tree is
not currently known (Brown and Doolittle, 1997; Forterre
and Philippe, 1999), the likelihoods of all three possible
rootings, that is, on the branch leading to each one of
the three domains, were computed using nhPhyML on
the slowly evolving stem sites. We chose not to use the
discrete version of nhPhyML in order to avoid any bias
that might arise from the fact that equilibrium frequen-
cies are set to a priori values. For instance, with three
G+C categories, the equilibrium frequencies are set to
0.25, 0.50, or 0.75, which may not model the evolution
of the slowly evolving stem sites appropriately, given
that their G4+C content range from 0.52 for Entamoeba
histolytica to 0.83 for Methanopyrus kandleri. Four rate cat-
egories were used to model rate heterogeneity, and the
parameter o of the gamma distribution and the transi-
tion/transversion ratio were optimized by maximizing
the likelihood. Since studies (Huelsenbeck et al., 2002;
Yap and Speed, 2005) have shown that there may be in-
formation in extant sequences for the identification of the
root position of a phylogenetic tree using nonreversible
models of evolution, we compared all three likelihoods
to see which root the model and the data were predict-
ing. We used the slowly evolving stem sites, as they are
expected to be less prone to saturation problems. The
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highest likelihood was obtained by the bacterial branch
rooting (log-likelihood: —15,139.94, ancestral G4-C con-
tent: 71.8%), whereas the least realistic rooting was found
on the archaeal branch (log-likelihood: —15,147.22, an-
cestral G+C content: 75.1%) and could be rejected us-
ing CONSEL (Shimodaira and Hasegawa, 2001) (AU test
P-value <5%). Hence, we chose to discard the archaeal
rooting from subsequent analyses. There was no signifi-
cant difference between the bacterial and the eukaryotic
rootings (log-likelihood: —15,141.61, ancestral G+C con-
tent: 69.2%). It seems interesting to note that the longest
branch (the eukaryotic branch) was not found to pro-
vide the most likely rooting: the model is then able to
find a signal that is independent from the evolutionary
distance.

To estimate the accuracy of the estimation of ancestral
G+C contents, we computed the likelihoods obtained
when setting the ancestral G+C content to various val-
ues, between 55% and 85%, and compared the results
using CONSEL. Ancestral G+C contents with AU test
P-values higher than 5% were considered to be in the
confidence interval. We found that, when rooting in the
eukaryotic branch, ancestral G4-C contents ranging from
63% to 75% could not be rejected, whereas when root-

ing in the bacterial branch, the confidence interval was
[67%; 76%]. The larger confidence interval found for the
eukaryotic rooting might be explained by the fact that
this branch is considerably longer than the bacterial one:
the extra length of the eukaryotic branch may provide
more latitude to accomodate nonoptimal ancestral G+C
contents.

Inferred ancestral G+C contents (Fig. 7) suggest a
mesophilic (optimal growth temperature below 60°C)
to thermophilic (optimal growth temperature between
60°C and 80°C) LUCA, in agreement with Galtier et al.
(1999). Interestingly, both confidence intervals do not
contain any value that seem to favour a hyperther-
mophilic LUCA. As a consequence, it appears that re-
ducing site rate heterogeneity to avoid the bias put forth
by Gowri-Shankar and Rattray (2006) does not contradict
Galtier et al.’s conclusion.

CONCLUSION

In this article, we have shown that by reorganizing
the way likelihood is computed, one can efficiently ex-
plore the space of tree topologies with a nonreversible
model of evolution. We modified the PhyML algorithm
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(Guindon and Gascuel, 2003) to cope with the nonho-
mogeneous, nonstationary model of Galtier and Gouy
(1998) and tested its abilities to find the right topology
and to estimate the G+C content at the root. An approx-
imate model was also tested, which showed good per-
formance in both tree topological space exploration and
ancestral G+C content estimation. We eventually used
the program to estimate the topology of the Tree of Life
from rRNA sequences and to estimate the ancestral stem
G+C content by only selecting slowly evolving sites. The
results agree with the ones obtained by Galtier and Lobry
(1999) and support a nonhyperthermophilic last univer-
sal common ancestor.

Genome sequences vary widely in their composition
between species. Therefore, when building a phyloge-
netic tree from such heterogeneous data, it is important
to use a method robust to compositional biases. Nonho-
mogeneous models of evolution are particularly suitable,
but their nonreversibility discarded them from most gen-
eral phylogeny packages and prevented their usein large
scale analyses. This work renders nonreversible models
of evolution useful for phylogeny reconstruction, which
considerably broadens the range of available models and
opens new opportunities for models explicitly dealing
with compositional biases.
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An Unexpected Archaea

Here, the precedently developed program nhPhyML was used to tackle another
phylogenetic issue, that of the position of the archaea Cenarchaeum symbiosum,
by analysing its rRNA sequences. The result did not permit to provide a firm
answer, but further work by Céline Brochier-Armanet, Simonetta Gribaldo and
Patrick Forterre led us to propose that Cenarchaeum symbiosum was so unlike
other Archaea that it might deserve to be part of a new archaeal phylum, Thau-
marchaeota.

When analysing a dataset containing more than 400 sequences, I was led
to see that nhPhyML had some problems exploring the space of tree topologies.

More work is required on the algorithmics associated with parameter-rich models.

This article has been published in Nature Reviews Microbiology.
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Mesophilic crenarchaeota:
proposal for a third archaeal phylum,
the Thaumarchaeota

Celine Brochier-Armanet*, Bastien Boussau®, Simonetta Gribaldo$ and

Patrick Forterre$ !

Abstract | The archaeal domain is currently divided into two major phyla, the Euryarchaeota
and Crenarchaeota. During the past few years, diverse groups of uncultivated mesophilic
archaea have been discovered and affiliated with the Crenarchaeota. It was recently
recognized that these archaea have a major role in geochemical cycles. Based on the first
genome sequence of a crenarchaeote, Cenarchaeum symbiosum, we show that these
mesophilic archaea are different from hyperthermophilic Crenarchaeota and branch
deeper than was previously assumed. Our results indicate that C. symbiosum and its relatives
are not Crenarchaeota, but should be considered as a third archaeal phylum, which we
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propose to name Thaumarchaeota (from the Greek ‘thaumas’, meaning wonder).

The RNA component of the small subunit of the ribos-
ome (referred to here as SSU rRNA) has been the ‘Rosetta
stone’ of modern evolutionary studies'. In particular, the
discovery of the archaeal domain and establishment of
the evolutionary relationships between archaeal species
were based entirely on rRNA studies*”. These analyses
led to the proposal that the archaeal domain should be
divided into two phyla, the Euryarchaeota (from the Greek
‘euryos’, meaning diversity) and the Crenarchaeota (from
the Greek ‘crenos’, meaning spring or origin)®. At that time,
the Euryarchaeota included a mixture of methanogens,
extreme halophiles, thermoacidophiles and a few hyper-
thermophiles. By contrast, the Crenarchaeota included only
hyperthermophiles (hence their name, which refers to a
‘hot origin oflife’ hypothesis). This division of the Archaea
was rapidly accepted, because it had been observed in
the early days of archaeal research that Sulfolobales and
Thermoproteales (two hyperthermophilic crenarchaeota
orders) are fundamentally different to other archaea in
terms of their SSU rRNA oligonucleotide catalogues’ and
RNA polymerase structures®.

More recently, genomic data® and gene phylogenies
that have been obtained from combined datasets'’-'?
have also confirmed the division of the Archaea into
two main lineages, although Euryarchaeota are some-
times paraphyletic in whole-genome trees, probably
owing to artefacts that have been introduced by hori-
zontal gene transfer (HGT) from bacteria'>'. Several
genes that are involved in key cellular processes in

the Euryarchaeota lack homologues in all hyperther-
mophilic crenarchaeota for which complete genome
sequences are available!®®. For example, there are
no homologues of the DNA polymerase from the
D family" and the cell-division protein FtsZ* in
hyperthermophilic crenarchaeota, both of which
are present in all sequenced complete euryarchaeal
genomes. Furthermore, this group of organisms lacks
homologues of the eukaryotic-like histone* and the
protein MinD (involved in chromosome and plasmid
partitioning'), both of which are present in most
sequenced euryarchaeal genomes. This indicates
that important differences in main cellular processes
were established shortly after the speciation of the
Euryarchaeota and Crenarchaeota'.

The discovery of mesophilic crenarchaeota

More than 20 years ago, direct PCR amplification of genes
that encode the SSU rRNA from environmental samples
gave rise to molecular ecology®. One of the major early
outcomes of this new discipline was the discovery of many
novel lineages of mesophilic or psychrophilic archaea®?**
(reviewed in REFS 25,26). The first environmental archaeal
sequences were detected in marine environments, and
were clearly separated into two groups (named group I
and group II) in an SSU rRNA tree that was rooted by
a bacterial outgroup®. Group I formed a sister group of
hyperthermophilic crenarchaeota, whereas group II
emerged within the Euryarchaeota®.
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Sister groups

In a phylogeny, two lineages
that share an exclusive
common ancestor.

Monophyletic group
Includes an ancestor and all its
descendants.

Possibly because they were discovered only 2 years after
the generally accepted proposal to divide Archaea into
2 phyla®, group I was classified as Crenarchaeota®?*, even
though it was only a sister group of hyperthermophilic
crenarchaeota and did not branch off within them. The
classification of group I archaea as Crenarchaeota was fur-
ther strengthened by the phylogenetic analysis of a DNA
polymerase sequence from Cenarchaeum symbiosum
(a marine archaeon that inhabits the tissues of a temperate
water sponge”’), which branched within sequences from
hyperthermophilic crenarchaeota®. Consistent with this, a
recent, and widely accepted, SSU rRNA tree that was pub-
lished by Schleper and colleagues®?, and has been widely
used to illustrate archaeal phylogeny, shows mesophilic
archaea of group I emerging within hyperthermophilic
crenarchaeota. This phylogenetic placement is consist-
ent with the assumption that mesophilic crenarchaeota
evolved from hyperthermophilic ancestors through adap-
tation to a mesophilic lifestyle''***-*2, However, this place-
ment remains controversial, because in most SSU rRNA
phylogenies, such as the one recently published by Pace’s
group®, group I sequences do not emerge within cultivated
hyperthermophilic crenarchaeota and form a distinct line-
age. Interestingly, the recent discovery of a eukaryotic-like
histone gene that was probably not acquired by HGT in
a genomic fragment from C. symbiosum™ suggests that
mesophilic crenarchaeota might have genomic features
that are substantially different from those of hyperther-
mophilic crenarchaeota. Indeed, homologues of this gene
are present in most euryarchaeal genomes, but never in
hyperthermophilic crenarchaeota.

The ecological importance of mesophilic crenarchae-
ota, an extremely diverse group that is widely distributed
in oceans and soils®, is being increasingly recognized.
Indeed, molecular environmental surveys have extended
the diversity of mesophilic crenarchaeota by revealing
several new lineages that are related to group I sequences,
such as SAGMCG-1, FES, marine benthic groups Band C,
YNPFFA and THSCI (reviewed in REFS 25,26). Some of
these crenarchaeota might be moderate thermophiles or
psychrophiles, even though the group is still designated
as mesophilic crenarchaeota. Mesophilic crenarchaeota
comprise organisms that are probably important partici-
pants in the global carbon and nitrogen cycles*?**¥, and
might be the most abundant ammonia oxidizers in soil
ecosystems”. For example, it was reported that Candidatus
Nitrosopumilus maritimus, a recently isolated mesophilic
crenarchaeon, can grow chemolithoautotrophically by
aerobically oxidizing ammonia to nitrite, which was the
first observation of nitrification in the Archaea®.

Investigating the phylogenetic position of mesophilic
crenarchaeota within the archaeal phylogeny, together
with their gene content and genomic features, could,
therefore, provide valuable information on the evolution
of the Archaea.

Can rRNA resolve deep archaeal phylogeny?

The phylogenetic position of mesophilic crenarchaeota is
currently based solely on SSU rRNA sequences. The trees
that were published by Schleper et al.** and Robertson
et al.* included a large number of sequences (1,344 and

712 SSU rRNA sequences, respectively), but both showed
poor resolution of the relative order of emergence of the
different archaeal lineages and it was pointed out that
the Crenarchaeota and Euryarchaeota appeared as poly-
tomies (star radiations)®. This lack of resolution showed
that SSU rRNA sequences do not contain enough phylo-
genetic signal to resolve the deepest nodes of the archaeal
phylogeny, probably owing to their size, which limits the
number of nucleotide positions that are available for phylo-
genetic analyses. However, the number of positions that
can be used for phylogenetic analyses can be increased
by a combined analysis of SSU and large subunit (LSU)
rRNA sequences.

FIGURE 1 shows a maximum likelihood phylogenetic
tree that is based on the concatenation of 226 SSU and
LSU sequences from complete genomes that are repre-
sentative of archaeal and bacterial diversity, as well as 18
mesophilic crenarchaeal or euryarchaeal fosmids that
contain both types of sequences. Mesophilic crenarchaeal
fosmid sequences belong to three distinct subgroups:
groups 1.1a and 1.1b%, and the recently proposed deep-
branching HWCG III group®. The bacterial part of the
tree shows a phylogeny that is consistent with those previ-
ously published (that is, high statistical support for the
monophyly of most bacterial phyla, but a low resolution
of their relative order of emergence (not shown)). For
the Archaea, the monophyly of most orders within both
Euryarchaeota and Crenarchaeota is robustly recovered
(FIG. 1). However, the relationships among most euryar-
chaeal orders are poorly resolved (bootstrap value (BV)
of less than 70%) (FIC. 1), and even the monophyly of the
Euryarchaeota is not significantly supported (BV of less
than 16%). Importantly, both mesophilic and hyperther-
mophilic crenarchaeota were recovered as two robust
monophyletic groups (BV of 99 and 100%, respectively),
which is consistent with the SSU rRNA tree published
by Robertson and colleagues®, but not with the tree that
was published by Schleper and colleagues®. Moreover,
mesophilic and hyperthermophilic crenarchaeota form
a sister group, but with low support (BV of 36%), and
the node is extremely unstable. For example, using a
different evolutionary model, the position of mesophilic
crenarchaeota was altered — they branched at the base of
the archaeal tree and, therefore, became the sister group
of a large group that included Euryarchaeota and hyper-
thermophilic crenarchaeota — but still with low statistical
support (BV of 20%; not shown).

A possible explanation for such poor resolution could
be the heterogeneity of G+C content among sequences.
Sequences from hyperthermophilic euryarchaeota and
crenarchaeota have higher G+C content compared
with that of mesophilic organisms. This well-known
compositional bias of RNA sequences might blur the
genuine phylogenetic signal®. To investigate this possi-
bility, we used a recently developed phylogenetic method
that reduces the biases that are due to convergent G+C
content (nhPHYML*'). We tested three possible deep
placements for mesophilic crenarchaeota, based on the
rRNA archaeal phylogeny of FIG. 1: first, as a sister group
of hyperthermophilic crenarchaeota; second, as a sister
group of a cluster that comprises Euryarchaeota and
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Figure 1| Maximum likelihood tree based on the concatenation of 226
SSU and LSU sequences from Archaea and Bacteria. For clarity, the
bacterial part of the tree is not shown. Sequences were aligned using
MUSCLE (multiple sequence comparison by log-expectation)®®. Resulting
alignments were manually refined using the MUST (Management Utilities
for Sequences and Trees) package®®, and only unambiguously aligned
regions were kept for phylogenetic analyses. Concatenation was performed
using home-developed software (C.B., unpublished data), which provided
afinal dataset of 3,305 nucleotide positions. The maximum likelihood tree
was computed by PHYML®, using the general time-reversible model of

Haloquadratum walsbyi
Haloferax mediterranei | a

Halobacteriales

sequence evolution by including a I"-correction (eight categories of
evolutionary rates, an estimated o-parameter and an estimated proportion
of invariant sites). Numbers at nodes represent non-parametric bootstrap
values (BVs) that were computed by PHYML®! (1,000 replications of the
original dataset) using the same parameters. For clarity, only BVs of more
than 70% are shown. The scale bar represents the average number of
substitutions per site. If a different evolutionary model (Hasegawa Kishino
Yano) was used, a sister grouping of hyperthermophilic crenarchaeota and
euryarchaeota, and a basal branching of mesophilic crenarchaeota was
recovered, albeit with weak statistical support (BV of 20%).
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Clade
A monophyletic group.

Long-branch attraction
artefact

A phylogenetic artefact that is
induced by differences in
evolutionary rates, and results
in the artificial grouping of
lineages that have long
branches in a phylogenetic
tree.

hyperthermophilic crenarchaeota; and, third, as a sister
group of Euryarchaeota (Supplementary information S1
(table)). All six tests significantly rejected the third topol-
ogy, whereas only two tests rejected the second topology.
This means that the tests discard the third topology, but
do not allow discarding the second topology in favour of
the first topology. It is likely that the phylogenetic signal
which is carried by rRNA sequences is too weak to con-
fidently resolve the position of mesophilic crenarchaeota
in the archaeal phylogeny, even if the number of posi-
tions is increased by combining SSU and LSU rRNA
sequences. Nevertheless, the phylogenetic analysis of the
rRNAs strongly supports the separation of mesophilic
and hyperthermophilic crenarchaeota into 2 distinct
lineages (BV of 100 and 99% for the monophyly of each
lineage, respectively). To clarify the position of meso-
philic crenarchaeota in the archaeal tree further, the use
of alternative markers thus becomes crucial.

Analysing ribosomal proteins

Although they were first discovered 15 years ago, the iso-
lation and cultivation of representative mesophilic crenar-
chaeota has proven to be a frustrating task. In fact, the first
genome of a member of this group, C. symbiosum, which
has still not been grown in pure culture, was published
only recently*?. The availability of this genome sequence
now permits an investigation of the phylogenetic position
of mesophilic crenarchaeota, based on markers other than
SSU and LSU rRNA.

Owing to the availability of an increasing number of
complete archaeal genomes, large concatenated datasets of
ribosomal (R) proteins are now widely used as an alterna-
tive to SSU rRNA to study archaeal phylogeny**. Indeed,
these proteins have the same evolutionary attributes as
rRNA, and their concatenation allows the construc-
tion of larger alignments. Although the trees that were
obtained using these markers were roughly congruent
with the rRNA trees®, they substantially improved the
archaeal phylogeny and resolved a number of impor-
tant nodes (reviewed in REFS 11,14). In particular, these
analyses have helped to clarify the phylogenetic positions
of ‘lonely’ archaeal species (those that lack sequenced
relatives), which are often misplaced, especially if they
are fast-evolving or have a biased sequence composition
(for example, the G+C content of rRNA sequences)*. For
example, Nanoarchaeum equitans was originally proposed
to represent a third (and basal) archaeal phylum based on
trees that were produced using SSU rRNA* and concate-
nated R proteins*. However, a subsequent analysis of R
proteins and additional protein markers suggested that this
species is not the earliest archaeal offshoot, but is probably
a fast-evolving euryarchaeal lineage that is possibly related
to Thermococcales®. Another example is the hyperther-
mophilic methanogen Methanopyrus kandleri, for which
phylogenetic placement is crucial to obtain an understand-
ing of the time of emergence of methanogenesis within
Euryarchaeota. In fact, although M. kandleri represents
the earliest euryarchaeal offshoot in SSU rRNA phylog-
enies™*, in trees that are based on R-protein concatena-
tions it robustly branches off after the non-methanogenic
lineage of Thermococcales'®'"*°. Further, a recent

phylogenetic analysis placed this archaeon as a sister group
of two other methanogen lineages (Methanococcales
and Methanobacteriales)®, which is in agreement with
phylogenomic studies of the genes that are involved in
methanogenesis® and gene-content analyses*. Globally,
these analyses indicate that methanogenesis might not be
the ancestral metabolism of euryarchaeota.

The examples of N. equitans and M. kandleri highlight
the power of R-protein combined datasets for phylogenetic
reconstruction. We therefore applied the same approach
to study the placement of C. symbiosum in the archaeal
phylogeny. FIGURE 2 shows a maximum likelihood phy-
logeny of the archaeal domain that is based on the con-
catenation of 53 R-protein sequences from 48 complete
archaeal genomes and was rooted using sequences from
16 eukaryotes. The phylogeny includes C. symbiosum,
33 Euryarchaeota and 14 hyperthermophilic crenarchae-
ota, which represents 21 new species (11 Euryarchaeota,
and 1 mesophilic and 9 hyperthermophilic crenarchaeota,
respectively) with respect to previous similar analyses'.
This tree is better resolved than the SSU/LSU rRNA tree
in FIC. 1 (note the higher BVs at nodes in FIC. 2), and the
positions of the newly included archaea are well supported
and in agreement with their classification. Consequently,
Thermofilum pendens, Caldivirga maquilingensis,
Pyrobaculum calidifontis, Pyrobaculum arsenaticum and
Pyrobaculum islandicum are grouped with Pyrobaculum
aerophilum (group of Thermoproteales; BV of 100%),
and Ignicoccus hospitalis, Staphylothermus marinus and
Hyperthermus butylicus are grouped with Aeropyrum

ernix (group of Desulfurococcales; BV of 97%), whereas
Metallosphaera sedula is grouped with other Sulfolobales
(BV 0f 100%). In Euryarchaeota, Natronomonas pharaonis,
Halorubrum lacusprofundi and Haloquadratum walsbyi
are grouped with other Halobacteriales (BV of 100%).
The four Methanomicrobiales (Methanocorpusculum
labreanum, Methanospirillum hungatei, Candidatus
Methanoregula boonei and Methanoculleus marisnigri)
are grouped together (BV of 100%) within a cluster that
also contains Methanosarcinales (including their new rep-
resentative Methanosaeta thermophila; BV of 100%) and
Halobacteriales (BV of 100%). Finally, Methanosphaera
stadtmanae emerges as a sister group of the other
Methanobacteriale Methanothermobacter thermau-
totrophicus (BV of 100%), whereas Methanococcus aeolicus
and Methanococcus vannielii are grouped with the other
Methanococcales (BV of 100%).

In contrast to the tree that is based on SSU and LSU
rRNA (FIG. 1), most relationships among the archaeal
orders are well resolved and in agreement with previous
studies', which highlights that R proteins are the phylo-
genetic markers of choice to study the archaeal phylogeny.
Importantly, the monophylies of both hyperthermophilic
crenarchaeota and Euryarchaeota are robustly recovered
(each has a BV of 100%; FIC. 2). Interestingly, C. symbiosum
constitutes a deeply branching lineage (BV of 99%), as it is
a sister group of a clade that contains both Euryarchaeota
(including N. equitans) and hyperthermophilic crenar-
chaeota. We think that this position is genuine and not
the consequence of a long-branch attraction artefact, as the
branch that leads to C. symbiosum is not particularly long
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Figure 2 | Maximum likelihood tree based on the concatenation of
53 R proteins from complete archaeal genomes. Homologues of each
R protein in complete genomes were retrieved by BLASTP and TBLASTN®®.
The concatenation included 53 alignments that harboured sequences from
at least 61 of 64 taxa. The maximum likelihood phylogenetic tree was
reconstructed using PHYML®!, with the Jones Taylor Thornton model
of sequence evolution, by including a I'-correction (eight categories of
evolutionary rates, an estimated o-parameter and an estimated proportion
of invariant sites). Numbers at nodes represent non-parametric bootstrap
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values computed by PHYML® (100 replications of the original dataset) using
the same parameters. The use of different evolutionary models and methods
did not produce differences in the resulting tree topology, at least for the
archaeal part of the tree (not shown). Asterisks indicate the 21 new species
(1 representative of the mesophilic crenarchaeota, Cenarchaeum
symbiosum, 9 representatives of hyperthermophilic crenarchaeota and
11 representatives of Euryarchaeota) that were included in this analysis
compared with previous work'’. The scale bar represents the average
number of substitutions per site.
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Figure 3 | Scheme showing the number of proteins
shared by Euryarchaeota, mesophilic crenarchaeota
and hyperthermophilic crenarchaeota.

in the tree (Fig. 2) or in individual R-protein trees (not
shown), which indicates that its R proteins are not par-
ticularly fast-evolving. Moreover, even the fast-evolving
Thermoplasmatales and lonely taxon N. equitans are not
artificially attracted at the base of the tree (FIC. 2). However,
a definitive exclusion of a long-branch attraction artefact®
that could affect the position of C. symbiosum in this tree
will only be possible by the addition of sequences from
its relatives.

In conclusion, in contrast to SSU/LSU rRNA, analysis
of R proteins improves the resolution of the deepest nodes
in the archaeal phylogeny and suggests that mesophilic
crenarchaeota could have diverged before the speciation
of Euryarchaeota and hyperthermophilic crenarchaeota.

A conserved crenarchaeal genomic core?

Our SSU/LSU rRNA analysis only weakly suggests that
mesophilic and hyperthermophilic crenarchaeota are sis-
ter groups (FIC. 1). By contrast, the analysis of R proteins
indicates a robust and deeper branching of C. symbiosum
that occurred before the speciation between Euryarchaeota
and hyperthermophilic crenarchaeota (FIG. 2). This place-
ment implies that mesophilic crenarchaeota are not more
related to hyperthermophilic crenarchaeota than they are
to Euryarchaeota. Thus, we investigated the presence in
C. symbiosum of genes that seem to be strictly specific to
Euryarchaeota (genes that are present in at least one rep-
resentative of each major order of Euryarchaeota, but are
absent from all representatives of Crenarchaeota); strictly
specific to hyperthermophilic crenarchaeota (genes that
are present in at least one representative of each major
order of thermophilic crenarchaeota, but are absent from
all representatives of Euryarchaeota); or that are com-
mon to Euryarchaeota and thermophilic crenarchaeota
(FIC. 3). This criterion might seem stringent, as it excludes
the markers that have been secondarily lost from some
lineages (for example, histones in Thermoplasmatales).
However, it has the advantage of focusing on genes
that comprise the strictly conserved genomic core of
Euryarchaeota and hyperthermophilic crenarchaeota,
but avoiding the introduction of ambiguities that are due
to genes with scattered distributions.

Using the NCBI COGs database (see Further informa-
tion)*, we identified 12 proteins that are strictly specific
to Euryarchaeota, 15 proteins that are strictly specific to
hyperthermophilic crenarchaeota (Supplementary infor-
mation S2 (table)) and 318 proteins that are common to
both phyla. Surprisingly, we found that C. symbiosum har-
bours 10 of the 12 euryarchaeal-specific proteins. Because
HGTs from Euryarchaeota to mesophilic crenarchaeota
were detected in a genome fragment from an uncultivated
mesophilic crenarchaeon®, we carried out a phylogenetic
analysis of the ten euryarchaeal-specific proteins that
were harboured by C. symbiosum. These trees, although
generally poorly resolved (not shown), revealed that only
three of these proteins might be present owing to HGT,
whereas the remaining seven are probably ancestral traits
that are common to Euryarchaeota and C. symbiosum
(FIC. 3; Supplementary information S2 (table)). By con-
trast, C. symbiosum lacks 14 of the 15 hyperthermophilic
crenarchaeal-specific proteins (including two R proteins)
(FIG. 3; Supplementary information S2 (table)). Thus, with
respect to the conserved genomic core, the mesophilic
crenarchaeon C. symbiosum seems to be more similar
to Euryarchaeota than to hyperthermophilic crenar-
chaeota. Importantly, a few of the euryarchaeal-specific
genes that are present in C. symbiosum encode proteins
that are involved in core cellular processes, such as DNA
replication and cell division (Supplementary informa-
tion S2 (table)), which shows that biologically important
differences distinguish this organism, and by extension
all mesophilic crenarchaeota, from hyperthermophilic
crenarchaeota.

In addition to the presence of most euryarchaeal-
specific proteins and absence of most proteins that
are specific to hyperthermophilic crenarchaeota,
C. symbiosum also lacks 25 proteins that are present
in both Euryarchaeota and hyperthermophilic cre-
narchaeota, including the R protein S24e and the
type I DNA topoisomerase of the A family (IA) (FIC. 3;
Supplementary information S2 (table)). The absence
of topoisomerase IA from C. symbiosum is surprising,
as a protein from this family is present in representa-
tives from the three domains of life*, including archaea.
Finally, C. symbiosum lacks the R protein L14e, which is
present in all available genomes from hyperthermophilic
crenarchaeota and basal euryarchaeota (Methanopyrales,
Methanococcales, Methanobacteriales, Thermococcales
and N. equitans), and the R protein L20a, which is present
in all archaeal genomes except Thermoplasmatales.
Moreover, we have identified potentially informative
insertions and deletions (indels) in two other proteins,
the R protein S27ae (hyperthermophilic crenarchaeota
harbour a three-amino acid insertion that is absent
from Euryarchaeota and mesophilic crenarchaeota)
and the elongation factor EF-1o. (both hyperther-
mophilic and mesophilic crenarchaeota harbour a con-
served seven-amino acid insertion that is absent from
Euryarchaeota). The distribution patterns of the features
in the genome of C. symbiosum discussed above are puz-
zling, because they suggest that mesophilic crenarchae-
ota have a combination of traits that are either specific to
hyperthermophilic crenarchaeota or Euryarchaeota.
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Mesophile

This term is normally restricted
to organisms that have optimal
growth temperatures of
between 20 and 50°C. Here,
however, the term mesophilic
crenarchaeota is given to all
non-hyperthermophilic
crenarchaeota, even though
some of them (presently
uncultivated) are psychrophiles
(optimal growth temperature of
between O and 20°C) or
moderate thermophiles
(optimal growth temperature of
between 50 and 70°C).

Similar genome-mining data were recently obtained
independently by Makarova, Koonin and co-workers®,
using an updated version of the NCBI COGs database
that focused on Archaea. These authors noticed that the
genome of C. symbiosum includes a much lower propor-
tion of archaeal COGs than other archaeal genomes and
groups with Euryarchaeota in a gene-content tree. They
concluded from their analysis that “C. symbiosum is nota
typical crenarchaeon (REF. 55)”.

A third archaeal phylum?

Our SSU/LSU rRNA tree (FIC. 1) and analysis of the
conserved genomic cores strongly reject the hypothesis
that mesophilic crenarchaeota evolved from hyperther-
mophilic crenarchaeota (BV of 100%, which supports
the monophyly of hyperthermophilic crenarchaeota).
Moreover, our R-protein concatenation tree (FIC. 2)
strongly rejects a sister-group relationship between
hyperthermophilic crenarchaeota and C. symbiosum.
Rather, it favours a deeper branching before the
speciation of hyperthermophilic crenarchaeota and
Euryarchaeota. The analysis of the genomic cores
shows that C. symbiosum shares more features with
Euryarchaeota than with hyperthermophilic crenar-
chaeota. This might indicate that C. symbiosum and its
uncultivated relatives either belong to, or are sister to,
Euryarchaeota. However, this is excluded by our phylo-
genetic analyses. Consistent with the basal emergence of
mesophilic crenarchaeota, the genes of the euryarchaeal
core that are shared with C. symbiosum can be inter-
preted as being ancestral characters that were present
in the ancestor of archaea and were secondarily lost in
the branch that led to hyperthermophilic crenarchaeota.
We predict that the genomes of other mesophilic crenar-
chaeota from marine and terrestrial environments®, such
as Candidatus N. maritimus, will confirm our results
when they become available for analysis. Moreover, this
will enable the identification of features that are specific
to the group, such as a conserved genomic core. One
such feature could be the presence of a type I DNA
topoisomerase of the B family (IB), which we detected
in the genome of C. symbiosum. Whereas members of
the topoisomerase IB family have never been identified
in archaea, they are almost universal in eukarya and
rarely present in bacteria®. This probably correlates
with the absence from C. symbiosum of topoisomerase
IA, which is present in all other archaea. Interestingly,
the topoisomerase IB of C. symbiosum branches as a
sister group to eukaryotes (not shown), which suggests
that it was not transferred from the sponge host. A
topoisomerase IB that was present in the last common
ancestor of archaea and eukaryotes could later have
been lost in the lineage that led to Euryarchaeota and
hyperthermophilic crenarchaeota after their divergence
from mesophilic crenarchaeota.

The diversity of mesophilic crenarchaeota based on
SSU rRNA sequences®?****7 js comparable to that of
hyperthermophilic crenarchaeota and Euryarchaeota,
which suggests that they represent a major lineage that
has equal status to Euryarchaeota and hyperthermo-
philic crenarchaeota. Indeed, environmental SSU rRNA

ANALYSIS

surveys have already revealed several likely order-level
subgroups within mesophilic crenarchaeota®2%3,
Moreover, the basal placement of one of their repre-
sentatives in the archaeal phylogeny (FIC. 2) suggests that
mesophilic crenarchaeota are an ancient lineage. This
leads us to propose that mesophilic crenarchaeota repre-
sent a third archaeal phylum that we suggest naming the
Thaumarchaeota (from the Greek ‘thaumas’, meaning
wonder). This choice was made to avoid any name that
referred to phenotypic properties, such as mesophily,
that could be challenged by the future identification of
non-mesophilic organisms that belong to this phylum
or the discovery of mesophilic relatives of cultivated
hyperthermophilic crenarchaeota.

We stress that the classification of archaeal group I
and its relatives as crenarchaeota was dubious from the
outset, because their sequences formed only a sister
group of hyperthermophilic crenarchaeota in the first
rRNA trees?. The acceptance of this classification was
probably influenced by the fact that the proposal to
split the archaeal domain between Crenarchaeota and
Euryarchaeota had only recently been made®. Clearly,
the current classification of mesophilic crenarchaeota
as Crenarchaeota is misleading, just as it is misleading
to call methanogens ‘methanogenic bacteria’ because
all methanogens are archaea. The proposal to establish
mesophilic crenarchaeota as a third archaeal phylum
goes beyond purely taxonomic purposes, and will
stimulate research on this group of organisms and,
more generally, on the Archaea.

Further phylogenetic analyses that include new
members of the Thaumarchaeota are required to
confirm the position of this phylum in the archaeal
phylogeny. In any case, even if the basal branching of
mesophilic crenarchaeota is challenged in favour of a
sister grouping with hyperthermophilic crenarchaeota,
this should not, in our opinion, change their phylum
status, as they would remain a highly diversified and
ancient group that have peculiar genomic character-
istics. If the emergence of Thaumarchaeota prior to
the speciation of Crenarchaeota and Euryarchaeota
(as supported by R-protein analysis) is confirmed,
this will leave open the nature of the last archaeal
ancestor, which might have been either a mesophilic
or psychrophilic organism (such as Thaumarchaeota) or
a hyperthermophilic or thermophilic organism (such
as cultivated crenarchaeota and some euryarchaeota).
Importantly, the nature of the archaeal ancestor pro-
vides a different meaning for the HGTs from meso-
philic euryarchaeota and bacteria to Thaumarchaeota
that were highlighted from environmental genomics
studies™. If the ancestor of Archaea was a hyperthermo-
phile, HGT might have enabled the adaptation of
hyperthermophilic thaumarchaeal lineages towards
mesophily, as has been previously suggested®.
Conversely, if the archaeal ancestor was a mesophile,
HGT might have occurred between organisms that
were thriving in the same low-temperature environ-
ments. Further studies on Thaumarchaeota will be
essential to gain fundamental insights into the origin
and early evolution of Archaea.
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Pattern, Process, and the Early
Evolution of Temperature on Earth

If nhPhyML could benefit from improvements in its capacity to explore the space
of tree topologies, it is however able to reconstruct part of the process of evolu-
tion, and notably how the sequence G+C content evolved. I used this program
to reconstruct the evolution or rRNA G+C contents along the tree of life. In par-
allel, Samuel Blanquart and Nicolas Lartillot analysed the evolution of protein
sequence composition. Correlations between sequence composition and growth
temperature found by Anamaria Necssulea allowed us to propose a scenario for
the evolution of growth temperatures along the tree of life.

Our results led us to consider the geological record in search of traces of
events that might have caused the evolutions that we observed. Other studies
might benefit from the associations of these two disciplines.

This article has been accepted for publication in Nature.

Accompanying Supplementary Materials can be found at the following ad-
dress:

http://biomserv.univ-lyonl.fr/~“boussau/Article3/SupplementaryMaterial.pdf
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Parallel adaptations to high temperatures in the

Archaean eon

Bastien Boussau'*, Samuel Blanquart®*, Anamaria Necsulea', Nicolas Lartillot*t & Manolo Gouy'

Fossils of organisms dating from the origin and diversification of
cellular life are scant and difficult to interpret’, for this reason
alternative means to investigate the ecology of the last universal
common ancestor (LUCA) and of the ancestors of the three
domains of life are of great scientific value. It was recently recog-
nized that the effects of temperature on ancestral organisms left
‘genetic footprints’ that could be uncovered in extant genomes ™.
Accordingly, analyses of resurrected proteins predicted that the
bacterial ancestor was thermophilic and that Bacteria subsequently
adapted to lower temperatures™. As the archaeal ancestor is also
thought to have been thermophilic’, the LUCA was parsimoniously
inferred as thermophilic too. However, an analysis of ribosomal
RNAs supported the hypothesis of a non-hyperthermophilic
LUCA®’. Here we show that both rRNA and protein sequences
analysed with advanced, realistic models of molecular evolution®’
provide independent support for two environmental-temperature-
related phases during the evolutionary history of the tree of life. In
the first period, thermotolerance increased from a mesophilic
LUCA to thermophilic ancestors of Bacteria and of Archaea—
Eukaryota; in the second period, it decreased. Therefore, the two
lineages descending from the LUCA and leading to the ancestors of
Bacteria and Archaea—Eukaryota convergently adapted to high
temperatures, possibly in response to a climate change of the early
Earth"*’, and/or aided by the transition from an RNA genome in
the LUCA to organisms with more thermostable DNA genomes'*"".
This analysis unifies apparently contradictory results’* into a
coherent depiction of the evolution of an ecological trait over the
entire tree of life.

Investigations into whether the LUCA was a hyperthermophilic
(optimal growth temperature (OGT) =80 °C), thermophilic (OGT
50-80 °C), or mesophilic (OGT =50 °C) organism have relied on
correlations between the species” OGT and the composition of their
macromolecular sequences. In extant prokaryotic species, the G+C
content of rRNA stems (that is, double-stranded parts) has been
shown to correlate with OGT". Exploiting this correlation, support
was obtained for a non-hyperthermophilic LUCA®. In contrast,
studies based on correlations between the composition of the
LUCA’s proteins and OGT concluded in favour of a hyperthermophi-
lic LUCA™'" and of hyperthermophilic ancestors for both Archaea
and Bacteria. The discrepancy between these results could come from
some unexplained incongruence between rRNA and proteins, or, as
we shall see, from differences between evolutionary models used.

These previous investigations™'*'* based their conclusions on com-
parisons of reconstructed ancestral sequence compositions with extant
ones. Accurate modelling of the evolution of compositions is therefore
crucial for such approaches. Two of these studies'' relied on homo-
geneous models of evolution which make the simplifying hypothesis
that substitutions occur with constant probabilities over time and across

all lineages. If genomes and proteins had evolved according to a homo-
geneous model, they would all share the same base and amino acid
compositions. Clearly, rRNA" and protein sequences’> do not.
Another approach® has been to use a branch-heterogeneous model of
RNA sequence evolution. Branch-heterogeneous models are computa-
tionally more challenging, but more realistic as they allow replacement
or substitution probabilities to vary between lineages, and thus explicitly
account for compositional drifts**”'*". Accordingly, they have been
shown to accurately reconstruct ancestral sequence compositions’.

We recently developed nhPhyML’, an efficient program for the
branch-heterogeneous modelling of nucleotide sequence evolution
in the maximum likelihood framework, and nhPhyloBayes®, which
implements a site- and branch-heterogeneous Bayesian model of pro-
tein sequence evolution. The latter combines the break-point
approach'” to model variations of amino acid replacement rates along
branches and the CAT'® mixture model to account for site-wise varia-
tions of these rates. These models have been shown to describe the
evolution of real sequences more faithfully than homogeneous
ones®"’, although neither homogeneous nor heterogeneous models
ensure that inferred ancestral sequences are biologically functional.
Using nhPhyML and nhPhyloBayes, we can reconstruct ancestral
sequences of both rRNAs and proteins with branch-heterogeneous
models, and estimate sequence compositions of all nodes of the tree
of life, including the LUCA and its descendants. These compositions
can be translated into approximate OGTs using the OGT/composi-
tion correlations observed in extant sequences'*".

A nucleotide data set of concatenated small- and large-subunit
rRNAs—restricted to double-stranded regions—from 456 orga-
nisms (1,043 sites), and an amino acid data set of 56 concatenated
nearly universal proteins from 30 organisms (3,336 sites), were
assembled, each data set sampling all forms of cellular life.
Correspondence analyses of the protein data set show that eukaryotes
and prokaryotes markedly differ in amino acid compositions and
that an effect of temperature on proteomes is detectable only among
prokaryotic species (Supplementary Figs 4 and 6b). Similarly, the
correlation between rRNA G+C content and OGT has only been
documented in prokaryotes'?. The ability to infer ancestral OGTs
from rRNA and protein compositions therefore applies only to pro-
karyotes. However, eukaryotic sequences were kept in the subsequent
analyses because they are part of the tree of life and as such provide
useful phylogenetic information for ancestral sequence inferences.

The effect of temperature on prokaryotic proteomes is independent
from genomic G+C contents', and was summarized in terms of
average content in the amino acids I, V, Y, W, R, E and L (hereafter
referred to as IV'YWREL). Accordingly, our correspondence analysis
identifies two independent factors accounting for most of the variance
in amino acid compositions of prokaryotic proteins (Supplementary
Fig. 5). The first factor (45.4% of the variance) highly correlates to
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genome G+C content (r= 0.81); the second (13.8% of the variance) is
strongly correlated to OGT (r=0.83) and to IVYWREL content
(r=0.73, Supplementary Fig. 6). The second factor was therefore used
here as a molecular thermometer. The rRNA-based and the protein-
based thermometers are thus independent, both because they come
from distinct genome parts and because they exploit different effects
of temperature on sequence composition. Furthermore, the correla-
tion between rRNA G+C content and OGT is not expected to vary
during evolutionary time because it stems from the different thermal
stabilities of G-C and A—U RNA base pairs'?. Thus, assuming that the
relationship between temperature and amino acid composition of
prokaryotes has also not varied since LUCA, the estimations of
rRNA G+C content and amino acid compositions through branch-
heterogeneous models provide two independent means to analyse the
evolution of thermophily.

For each data set, a phylogenetic tree was inferred and rooted on the
branch separating Bacteria from Archaea and Eukaryota
(Supplementary Figs 7 and 8). Because the location of the root in
the universal tree remains uncertain'®, the alternative rooting on the
eukaryotic branch was also considered. Correlations between G+C
content and OGT (Fig. 1a), and between the second axis of the amino

Archaea-
Bacteria  Eukaryota
ancestor ancestor
a LUCA — Archaea
ancestor
1004 - .

Q
°©
S
©
9]
g 60f------------- cremm =
5 . . .
<
T 401
[
(o2} .
© 4
£ 20
a
o 0

65 70 75 80 85

rRNA stem G+C content (%)
Archaea- Archaea ancestor
Eukaryota
b LUCA ancestor Bacteria
‘ancestor
Y A \A
& 1004 . . .
< B
9 B Y -
2 801 .
S o0
> Z P - - - -}
Q
IS
2
s .
2 40 .
g D RSt . & S I
—_ L PR N L ]
R e ' T
2 .
O — T T ° T T T
-0.10 -0.05 0 0.05 0.10 0.15

Second factor of the amino-acid correspondence analysis

Figure 1| Correlations between sequence compositions and OGT, and
estimates of key ancestral compositions. Black dots indicate extant
prokaryotes positioned according to their sequence composition and OGT.
Dashed coloured lines indicate predicted OGTs for various ancestors.

a, Correlation between rRNA G+ C content and OGT. The vertical coloured
bars indicate most likely nhPhyML estimates of ancestral G+C contents
with their 95% confidence intervals. b, Correlation between the second
factor of the correspondence analysis on amino acid compositions and OGT.
The vertical coloured bars indicate median ancestral compositions inferred
by nhPhyloBayes with their 95% confidence intervals. The LUCA is
significantly less thermophilic than its direct descendants (P < 0.005).
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acid correspondence analysis and OGT (Fig. 1b), were used to estimate
OGTs for the LUCA and its descendants (Fig. 2).

Proteins and rRNAs support similar patterns of OGT changes for
prokaryotes, so the discrepancy between previous rRNA- and pro-
tein-based investigations>'>'* was not a result of incongruence
between these molecules. Protein-derived temperature estimates
are generally lower than those based on rRNAs (Fig. 1), although
some protein and rRNA-based OGT estimates overlap if confidence
intervals of ancestral compositions are taken into account
(Supplementary Table 3). Both types of data support key conclusions
(Fig. 1). First, the LUCA is predicted to be a non-hyperthermophilic
organism, as previously reported’. Second, both archaeal and bac-
terial ancestors, as well as the common ancestor of Archaea and
Eukaryota, are estimated to have been thermophilic to hyperthermo-
philic (Fig. 2). This result is in line with previous studies>. Third,
within the bacterial phylogenetic tree, tolerance to heat decreased
(Fig. 2). This last result is congruent with recent estimates of the
evolution of OGTs in the bacterial domain based on ancestral recon-
structions and characterizations of elongation factor Tu proteins*.

Support for the hypothesis of a non-hyperthermophilic LUCA and
of subsequent parallel adaptations to high temperatures partly rests
on a protein content depleted in IVYWREL for the LUCA and sub-
sequently enriched in these amino acids. This is consistent with a
recent report that amino acids IVYEW might be under-represented
in LUCA’s proteins®. This finding has been interpreted as evidence
that these five amino acids were a late addition to the genetic code,
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Figure 2 | Evolution of thermophily over the tree of life. Protein-derived
nhPhyloBayes OGT estimates (and their 95% confidence intervals for key
ancestors) for prokaryotic organisms are colour-coded from blue to red for
low to high temperatures. Colours were interpolated between temperatures
estimated at nodes. The eukaryotic domain, in which OGT cannot be
estimated, has been shaded. The colour scale is in °C; the branch length scale
is in substitutions per site. A, archaeal; B, bacterial; E, eukaryotic domains.
Ac, Actinobacteria; Aq, Aquificae; Ba, Bacteroidetes; C, Cyanobacteria; Cf,
Chloroflexi; Ch, Chlamydiae; Cr, Crenarchaeota; DT, Deinococcus/
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and that the proteome of the LUCA had not yet reached composi-
tional equilibrium. Although such interpretation in terms of early
genetic code evolution is possible, our hypothesis of parallel adapta-
tions to high temperatures has the advantage of explaining the pat-
terns observed with both rRNAs and proteins.

Additional experiments suggest that the present analyses of rRNA
and protein sequences with branch-heterogeneous models of evolu-
tion uncover genuine signals of ancient temperature preferences and
are not affected by systematic biases.

First, these results are robust to changes in the topology chosen for
inference because analyses with alternative topologies yielded vir-
tually identical OGT estimates (Supplementary Fig. 10). Moreover,
phylogenetic trees rooted on the eukaryotic branch also suggest that
OGT increased between the universal ancestor and the divergence of
Archaea and Bacteria (Supplementary Figs 13—15).

Second, taxonomic sampling does not strongly affect these results.
With rRNA and protein data sets in which eukaryotic sequences were
removed, the signal for OGT increases between the LUCA and the
domain ancestors was essentially unchanged (Supplementary Fig.
36). Moreover, both for rRNAs and proteins, two artificially biased
data sets containing sequences from either thermophilic or mesophi-
lic prokaryotes were assembled (see Supplementary Information).
The signal for parallel increases in OGT is confirmed in all but one
of these four data sets: the mesophilic rRNA data set. However, the
longest of the two mesophilic alignments, the protein data set, sup-
ports the same pattern of OGT changes as the complete data sets
(Supplementary Figs 16 and 17). Notably, analysis of the protein
mesophilic data set shows that this pattern is independent of the
debated position of hyperthermophilic organisms in the tree of life.
Furthermore, with all rRNA and protein data sets, even with the
sampling limited to thermophilic prokaryotes, the LUCA remains
predicted as a non-hyperthermophilic organism (Supplementary
Figs 18 and 19).

Third, dependence of the results on models used for ancestral
reconstruction was investigated. Additional branch-heterogeneous
evolutionary models were applied, two to the rRNA data set, and
one to the protein data set (see Supplementary Information). All
these alternative branch-heterogeneous models confirm our results
(Supplementary Figs 21-23, 29 and 30). Compositional analyses were
also conducted using branch-homogeneous models of evolution:
GTR* for rRNA and proteins, and CAT" for proteins. All these
models tend to predict parallel adaptations to higher temperatures
from the LUCA to its descendants, suggesting the existence of a
genuine signal for such a pattern in the data (Supplementary Figs
24,26 and 28). However, only when models are realistic enough is the
LUCA predicted as significantly less thermophilic than its two des-
cendants. For instance, ancestral protein compositions predicted by
the GTR model for the LUCA and its two descendants strongly over-
lap, which may explain previously published results'?, whereas the
CAT model better separates these ancestral node distributions,
although less clearly than does the CAT-BP branch-heterogeneous
model (Supplementary Figs 26, 28 and 29). These experiments show
that as the evolutionary process is more accurately modelled, the
support for parallel increases in OGT from the LUCA to its offspring
is strengthened.

Fourth, it is known that the base compositions of fast and slowly
evolving sites and, particularly, of single- and double-stranded
regions of rRNA molecules differ and that this may bias ancestral
sequence estimates'®. To minimize this bias, only double-stranded
rRNA regions have been analysed here. Moreover, if fast-evolving
sites are removed, estimates still support parallel adaptations to high
temperatures (Supplementary Fig. 33).

Fifth, it has been shown that some ancestral reconstruction meth-
ods might improperly estimate the frequencies of rare amino acids®.
To control for that potential bias, the two rarest amino acids, cysteine
and tryptophan, were discarded from estimated ancestral sequences:
this had essentially no impact on results (Supplementary Fig. 34).
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Sixth, the sensitivity of the OGT estimates at the tree root to the
prior distribution of ancestral amino acid compositions used for
Bayesian analyses was investigated (Supplementary Fig. 35). This
prior distribution induces a flat, uninformative distribution over
OGTs, whereas the posterior distributions estimated for LUCA and
the bacterial ancestor have small variance, and thus reflect a genuine
signal in the data, rather than a bias from the prior. Moreover, even
with a strongly informative prior distribution that is biased towards
high temperature amino acid distributions, the posterior distri-
bution of the LUCA’s amino acid composition, although altered, is
centred at lower temperatures than that of the bacterial ancestor.

The present use of molecular thermometers requires that evolution
of the data sets under analysis can be modelled by a tree structure as far
as reconstruction of ancestral compositions is concerned. We
emphasize that our protein analyses are based on 56 genes that did
not undergo between-domain transfers (see Methods), which pre-
cludes that ancestral sequence reconstructions are confounded by
such gene exchanges. We do not exclude within-domain lateral trans-
fers of these genes; however, the robustness of the inferred ancestral
compositions to alternative domain phylogenies™ (see also
Supplementary Figs 10 and 20) suggests that these potential transfers
do not fundamentally affect the results for domain ancestors. Finally,
because molecular thermometers measure the average environmental
temperature of the hosts of ancestral genes, they apply even if ancestral
genes of extant prokaryotes originate from diverse organisms'’.

Thus, all our analyses support the hypothesis of a non-hyperther-
mophilic LUCA and of transitions to higher environmental tempera-
tures for its descendants. Although these organisms have not yet been
anchored in time*, a few geological and biological factors may explain
observed changes in temperature preferences. It has already been
observed® that the general trend of decreasing OGTs from the bacterial
ancestor to extant species strikingly parallels recent geological esti-
mates of the progressive cooling down of oceans shifting from about
70 °C 3.5 billion years ago to approximately 10 °C at present*. The
evolution of thermophily in the bacterial domain might therefore
stem from the continuous adjustment of Bacteria to ocean tempera-
tures, although the evidence for a hot Archaean climate remains
debated®. A similar conclusion may apply to Archaea as well, but
would require confirmation with additional genome sequences from
mesophilic Archaea. A hot Archaean ocean may preclude the existence
ofa cool little pond” where the LUCA could have evolved. Therefore, a
non-hyperthermophilic LUCA would suggest that moderate tempera-
tures existed earlier in the history of the Earth.

Geological data about palaeoclimates that old are very scarce.
However, some models of Hadean and early Archaean climates
(3.5-4.2 billion years ago) suggest that the Earth might have been
colder than it is today, possibly covered with frozen oceans"?.
Moreover, a hypothesis of brutal temperature changes involving
meteoritic impacts that boiled the oceans and therefore nearly anni-
hilated all life forms but the most heat-resistant ones has been pro-
posed"**. Huge meteorites probably impacted the Earth at least as
late as 3.8—4 billion years ago, most notably during the late heavy
bombardment®” and created a series of brief but very hot climates on
Earth'. As life may have originated more than 3.7 billion years ago®,
it is possible that early organisms, namely the LUCA’s offspring,
experienced such bottlenecks.

Alternatively, under the hypothesis that life originated extra-ter-
restrially, the transfer of life to the Earth from another planet in ejecta
created by meteorite impacts would have also entailed selection of
heat-resistant cells'. Overall, geological knowledge provides several
frames that might fit the predictions of our biological thermometers.

A biological hypothesis could provide an internal mechanism to
explain the observed pattern. It posits that the LUCA had an RNA
genome, and that its offspring lineages independently evolved the
ability to use DNA for genome encoding'®, possibly by co-opting it
from viruses''. Although our results do not bring direct evidence in
support of this hypothesis, they are compatible with it and could even

3
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help explain such independent acquisitions of DNA in adaptive
terms, as DNA is much more thermostable than RNA%.

Great care is necessary when attempting a reconstruction of events
that took place more than three billion years ago. However, the strong
agreement between results obtained using two types of data (proteins
and rRNAs), two independent temperature proxies (protein amino
acid composition and rRNA G+C content), and independently
developed statistical models, is remarkable. This suggests that a similar
approach could successfully be used to gain insight into other eco-
logical features of early life. For example, it has been shown that
aerobic and anaerobic bacteria differ in the amino acid composition
of their proteome™; future ancestral sequence reconstructions could
reveal the evolution of aerobiosis along the tree of life in relation with
the geological record of oxygen atmospheric concentration.

METHODS SUMMARY

Ribosomal RNA sequences were aligned according to their shared secondary
structure. Sites belonging to double-stranded stems were selected to obtain an
alignment of 1,043 stem sites for 456 organisms. Protein families with wide
species coverage and no or very low redundancy in all species were selected from
the HOGENOM database of families of homologous genes. Only sites showing
less than 5% gaps were kept, giving an alignment of 3,336 positions for
30 organisms. Phylogenetic trees were inferred using Bayesian or maximum
likelihood techniques. Ancestral nucleotide and amino acid compositions were
inferred for all tree nodes using the programs nhPhyML’ and nhPhyloBayes®,
respectively. The G+C contents of ancestral rRNA sequences were compared to
extant rRNA base compositions. The second factor of the correspondence ana-
lysis of amino acid compositions of extant prokaryotic proteins was used to
estimate ancestral environmental temperatures by adding ancestral amino acid
compositions as supplementary rows to the correspondence analysis. These two
procedures allowed us to estimate ancestral environmental temperatures with
the rRNA and the protein data sets, respectively. Confidence intervals for the
estimated environmental temperatures were as follows: in the case of rRNAs,
they contained 95% of the distribution obtained by a bootstrap procedure
(200 replicates); for Bayesian analyses, regular 95% credibility intervals were
computed from a sample of 2,000 points drawn from the posterior distribution.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

rRNA data set. Prokaryotic small (SSU) and large (LSU) subunit rRNAs were
retrieved in January 2007 from complete genomes available at the National
Center for Biotechnology Information (NCBI). SSU and LSU rRNA sequences
from ongoing genome projects or from large genomic fragments of important or
poorly represented groups (for example, Archaea or hyperthermophilic bacteria)
were added in June 2007. Eukaryotic SSU and LSU rRNA sequences were pro-
vided by D. Moreira; 65 slowly evolving sequences were selected from this data
set’’. Sequences were aligned using MUSCLE?*. Resulting alignments were con-
catenated and manually improved using the MUST package™. Regions of doubt-
ful alignment were removed using the MUST package; 2,239 sites were kept. A
distance phylogenetic tree was computed using dnadist (Jukes and Cantor
model) and neighbour from the PHYLIP package™. The final data set contained
65 eukaryotic, 60 archaeal and 331 bacterial sequences representative of the
molecular diversity in each domain. An additional data set of 60 sequences
sampling the diversity of the full data set was used in Bayesian analyses.
Secondary structure predictions were downloaded from the rRNA database®.
Sites that were predicted as double-stranded stems in Saccharomyces cerevisiae,
Escherichia coli and Archaeoglobus fulgidus were selected to give an alignment of
1,043 sites.

Protein data set. Nearly universal protein families with one member per genome
were used to avoid ill-defined orthology. Protein families from the HOGENOM
database of families of homologous genes (release 03, October 2005, S. Penel and L.
Duret, personal communication; http://pbil.univ-lyon1.fr/databases/hogenom3.
html) that displayed a wide species coverage with no or very low redundancy in
all species were selected. Additional sequences from other genomes whose phylo-
genetic position was interesting were considered. These were downloaded from the
Joint Genome Institute (Desulfuromonas acetoxidans), The Institute for Genomic
Research (Giardia lamblia, Tetrahymena thermophila, Trichomonas vaginalis) or
the NCBI (Kuenenia stuttgartiensis), and were searched for homologous genes
using BLAST®; only the best hit was retrieved. The protein families were subse-
quently aligned using MUSCLE* and submitted to phylogenetic analysis using the
NJ algorithm® with Poisson distances with Phylo_Win®. Proteins from mito-
chondrial or chloroplastic symbioses and families in which horizontal transfers
between Bacteria and Archaea may have occurred were discarded, and so were
aminoacyl-tRNA synthetases prone to transfers®. In the rare families with two
sequences from the same species, the sequence showing the longest terminal
branch or whose position was most at odds with the biological classification was
discarded. This provided 56 protein families (Supplementary Table 2) for 115
species, which were concatenated using ScaFos*. From the 9,218 concatenated
sites, 3,336 positions with less than 5% gaps were conserved. The whole data set was
used to compute the correspondence analysis and correlations between amino-
acid composition and optimal growth temperature. For Bayesian analyses, 30
species among 115 were selected sampling the diversity of cellular life
(Supplementary Table 1).

Multivariate data analyses. Correspondence analysis*' was performed on the
amino-acid compositions of the protein data set, using the ade4 package* of the
R environment for statistical computing.

Phylogenetic tree construction. An rRNA phylogenetic tree was built from the
456-sequence alignment with both stems and loops with PhyML_aLRT*** with
the GTR model, a gamma law with eight categories and an estimated proportion
of invariant sites. The tree for the 60-sequence data set was obtained in the same
manner. The phylogenetic trees for the three protein data sets (Supplementary
Table 1) were obtained using MrBayes 3.1.1 (ref. 45), using the GTR substitution
model and a gamma law with four categories for rates across sites. Chains were
run for 1,000,000 generations and samples were collected each 100 generations, a
burn-in of 1,000 samples was discarded. The majority rule consensus was com-
puted from the 9,000 remaining samples.

Identification of fast-evolving rRNA sites. Posterior probabilities for gamma
law rate categories were predicted for each site with PhyML_aLRT. Site evolu-
tionary rates were obtained by averaging gamma law rate categories weighted by
their posterior probabilities. Sites whose evolutionary rate was above the arbit-
rarily chosen threshold of 2.0 (Supplementary Fig. 2) were discarded, which left
940 sites.

nature

Estimation of ancestral compositions. For the maximum likelihood approach,
nhPhyML’ was applied to the rRNA stem sites alignment and the phylogenetic
tree described above, and used to estimate all evolutionary parameter values,
except tree topology, which was fixed. Site-specific ancestral nucleotide compo-
sitions at tree root and at internal node j descendant of node i were computed by:

Proot(%) = a(x) Loy (x at root)/L; a(A) = a(T) = (1 — w)/2;
a(C) = a(G) = w/2
pi(x) = (3, Lupp(y at node i) py.., Liow(x at node j))/L

where xand yare in{A, C, G, T}, Lis the total tree likelihood at this site, L;,, and
Lypp are site lower and upper conditional likelihoods, respectively’, w is the
maximum likelihood estimate of root G+C content, and p,, . is the probability
of the y to x substitution on the i to j branch. For Bayesian analyses,
nhPhyloBayes® was applied to trees described above. Ancestral sequence recon-
struction started, for each site, by drawing a state x at the root: x ~ w(x) Ljo, (x at
root), where @ was the Markov Chain Monte Carlo** (MCMC) estimate of root
amino acid or nucleotide frequencies. Then, states x have been recursively drawn
ateach node j: x ~ p, Lo (xat j), where y was the parental node state. Given a
realization of the model, this permitted the reconstruction of ancestral sequences
at all nodes. Posterior distributions were sampled by 2 (for proteins) or 4 (for
rRNA) independent MCMC chains, each with 1,000 to 2,000 realizations.
Posterior distributions of sequence compositions combined all realizations of
all chains. Protein ancestral compositions were projected on the second axis of
the correspondence analysis, and rRNA ancestral compositions were summed up
as G+C contents.

Statistical tests. In bootstrap analyses, all parameters but topology and branch
lengths were estimated under the maximum likelihood criterion for each rep-
licate. In tests of whether the LUCA is less thermophilic than one of its descen-
dants, P values were the fraction of cases where the temperature estimate for
LUCA in a bootstrap replicate or in an iteration of an MCMC chain was above
the estimate obtained for its descendant.
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CHAPTER 6. PATTERN, PROCESS, AND THE EARLY EVOLUTION OF
TEMPERATURE ON EARTH

Further tests

The present article argues in favour of a non-parsimonious pattern, with parallel
evolutions to high temperatures from LUCA to its descendants. Although several
tests have been performed to ensure that an artifact was not at the origin of this
pattern, we chose to make one more test, based on simulations. The question we
wanted to ask was: if a particular pattern comparable to what has been found in
the real data is simulated, can nhPhyML recover it? All we needed was a pro-
gram able to make simulations easily, with a non-homogeneous model of sequence
evolution. Such a program is presented in the next article (article 7).

We based our simulations on the results found by nhPhyML on the dataset
containing 456 rTRNA sequences 1043 bases long. On this dataset, nhPhyML
predicted a G+C content at the root around 73%, and equilibrium frequencies
towards the Bacterial and Archaea-Eukaryota ancestors of around 97% and 87%.

We therefore chose to simulate datasets as follows:

o We extracted a subtree of 20 leaves from the rRNA tree obtained in the
article, using the program bppphysamp, from the Bio+-+ library (Dutheil
et al., 2006), so that the sampling homogeneously covers all the diversity
present in the tree. We then used this tree topology to simulate datasets of
20 sequences 1043 bases long. For each dataset to simulate:

e We randomly pick a G+C content w at the root, w € [0.2;0.8]. Base
frequencies are obtained as follows: [A] = 0.4x (1—w); [C] = 0.4%x (w); [G] =
0.6 x (w);[T]=0.6% (1 —w)

e On each branch of the tree, a different HKY model (Hasegawa et al.,
1985) is used. An equilibrium G+C content 6 is defined, 6 € [0.1;0.9], and
equilibrium base frequencies are obtained as for the root base frequencies.
Because we want to simulate datasets comparable to the real one, for the two
branches coming from the root, we make sure that the absolute difference
between 6 and w is superior or equal to 0.15.

e Sequences are evolved given the root base compositions and the models
on each branch. During this evolution, a discretized gamma law (Yang,
1994) with 4 categories plus a category of invariant is used, with an alpha
parameter set to 1.0, and the transition/transversion ratio is set to 1.0.

We ran 150 such simulations. We then used nhPhyML on each of these simu-
lations (using a gamma law with four categories, and estimated alpha and transi-
tion/transversion parameters) with the true topology, and studied how nhPhyML
reconstructed the evolution of G+C content in LUCA and its two descendants.
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We defined three possible categories for the simulations, depending on the G+C
content evolution from LUCA to its descendants:

e Parallel increases in G+C content (I)
e Parallel decreases in G+C content (D)
e One increase and one decrease in G+C content (ID)

We compared the results obtained by nhPhyML to what had been simulated,
and obtained the following results:

Category I D ID
Proportion of correct reconstruction 53/56 (95%) 53/58 (91%) 33/36 (92%)

The above table shows that nhPhyML accurately reconstructs the true evolu-
tionary scenario. In all the rare cases where it fails to recognize parallel evolutions,
it recovers a situation where there is an increase in a branch, and a decrease in
the other branch (situation ID).

Interestingly, if we use the same simulation protocol, but this time do not use a
gamma law in nhPhyML to reconstruct the evolutionary scenario, the program’s
accuracy considerably drops, as shown in the next table:

Category I D ID
Proportion of correct reconstruction 51/56 (91%) 49/55 (89%) 26/39 (67%)

The drop is particularly striking when the root G4C content is between the
G+C contents of its descendants (situation ID), perhaps because in this case, the
signal for irreversibility is more feeble.

This reveals that the model uses rate heterogeneities to recover the true evo-
lutionary history in deep branches: in such circumstances, the model can distin-
guish slowly evolving from fast evolving sites and infer frequencies at the root
more reliably by trusting slow sites against fast ones.

This intuition is confirmed if we build consensus sequences of the rRNA align-
ment. When a position should be identical in 80% of the sequences to enter the
consensus, the consensus sequence has a G+C content of ~ 74.0% (and a length
of 584 sites); if the threshold is put at 90% instead, the consensus sequence has
a G+C content of ~ 71.4% (for a length of 419 sites). The consensus obtained
at the 90% threshold contains sites that have undergone less substitutions and
are less G+C rich than the consensus obtained at the 80% threshold. Part of the
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signal for a LUCA rRNA less G+C rich than its two descendants may therefore
come from the fact that slowly evolving sites in rRNA are less G+C rich than
faster sites.

The situation is probably the same for protein sequences, as Fournier et Gog-
arten (2007) found that the amino-acids occuring in higher frequencies in heat-
loving organisms occur in lower proportions among constant positions than in
other positions. Non-homogeneous models of evolution thus find signal for an-
cestral compositions where it lies, among fossil sites.
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Towards Better Non-Homogeneous
Models of Sequence Evolution

Previous works convinced me that more research needed to be done on models
able to cope with composition heterogeneity. The Bio+- libraries are a set of
C-++ routines for making phylogenetic analyses, notably. Julien Dutheil and I
implemented support for non-homogeneous models in Bio++. This should help
researchers experiment with new models or new algorithms, and may democratise
such models.

This article has been accepted in BMC Evolutionary Biology.
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Abstract

Background: Accurately modeling the sequence substitution process is required for the correct
estimation of evolutionary parameters, be they phylogenetic relationships, substitution rates or
ancestral states; it is also crucial to simulate realistic data sets. Such simulation procedures are
needed to estimate the null-distribution of complex statistics, an approach referred to as
parametric bootstrapping, and are also used to test the quality of phylogenetic reconstruction
programs. It has often been observed that homologous sequences can vary widely in their
nucleotide or amino-acid compositions, revealing that sequence evolution has changed importantly
among lineages, and may therefore be most appropriately approached through non-homogeneous
models. Several programs implementing such models have been developed, but they are limited in
their possibilities: only a few particular models are available for likelihood optimization, and data
sets cannot be easily generated using the resulting estimated parameters.

Results: We hereby present a general implementation of non-homogeneous models of
substitutions. It is available as dedicated classes in the Bio++ libraries and can hence be used in any
C++ program. Two programs that use these classes are also presented. The first one, Bio++
Maximum Likelihood (BppML), estimates parameters of any non-homogeneous model and the
second one, Bio++ Sequence Generator (BppSeqGen), simulates the evolution of sequences from
these models. These programs allow the user to describe non-homogeneous models through a
property file with a simple yet powerful syntax, without any programming required.

Conclusion: We show that the general implementation introduced here can accommodate
virtually any type of non-homogeneous models of sequence evolution, including heterotachous
ones, while being computer efficient. We furthermore illustrate the use of such general models for
parametric bootstrapping, using tests of non-homogeneity applied to an already published
ribosomal RNA data set.

Background been involved in parametric bootstrapping [2]. For
In phylogenetics, simulations have been widely used to  instance, simulations have shown that maximum likeli-
study the robustness of inference methods [1] and have = hood methods often more accurately reconstructed the

Page 1 of 12

(page number not for citation purposes)



BMC Evolutionary Biology 2008, 8:255

evolution of an alignment than distance or parsimony
methods [3,4], but could also fail in conditions where
compositional biases (a condition here referred to as non-
homogeneity) or rate heterogeneity along branches (a
phenomenon named heterotachy, [5]) were too intense
[6-8]. Similarly, simulations have been used to compare
topologies with respect to an alignment [9], or to assess
the fit of a model to a particular data set [10-13]. In this
last case, a model has a good fit to a particular data set if
the alignments it generates have properties similar to the
properties of the real alignment. Both for investigating
reconstruction methods and for parametric bootstrap-
ping, it is highly desirable that simulation methods model
as precisely as possible the conditions that shaped biolog-
ical sequences through evolution. However, widely-used
simulation programs cannot be easily tuned to precisely
reproduce the peculiar evolution of a particular data set.
Noticeably, non-homogeneity cannot be simulated by
Seq-Gen [14] or PAML [15], even if these phenomena are
all known to affect the evolution of many data sets [5,16-
20].

The ability to estimate parameters of sequence evolution
with realistic models, and then computationally evolve
sequences using these fitted parameters is crucial to better
characterize the behavior of reconstruction methods in
realistic settings.

Here we introduce extensions to the Bio++ package [21]
that permit first to estimate parameters of evolution on a
specific data set in a maximum likelihood framework, and
second to simulate the evolution of sequences using these
estimated parameters. Importantly, nearly any combina-
tion of non-homogeneous (including non-stationary
models) and heterotachous models of evolution can be
fitted to data, so that simulations may mimic very pre-
cisely the evolution of a data set. Such a flexibility should
enable one to probe how robust methods of phylogenetic
tree or ancestral state reconstruction are to more realistic
evolutionary conditions. Moreover, it offers the possibil-
ity to compare a large variety of models by assessing
through parametric bootstrapping their respective ability
to reproduce a given characteristic of interest, measured
on a real data set.

Implementation

Molecular phylogenetic methods are used by a wide range
of biologists, from bioinformaticians willing to character-
ize and improve models of sequence evolution to molec-
ular biologists trying to grasp the particular evolutionary
history of their gene of interest. These different types of
users have different needs: the former may benefit from
easy-to-assemble, high-level object-oriented code to con-
duct phylogenetic analysis, while the latter likes user-
friendly interfaces. However, both demand programs able

http://www.biomedcentral.com/1471-2148/8/255

to run the most recent models of evolution. The newly
introduced extensions are available in two flavors that
might fit different users' needs: (i) as classes in the Bio++
phylogenetic library, including a special class called Sub-
stitutionModelSet which implements the relationships
between models, parameters and branches, and (ii)
through the BppML and BppSeqGen programs, which can
respectively adjust these models to a data set and simulate
data from these models. These programs share a common
syntax for model specification and are hence fully inter-
operational and easy-to-use.

The SubstitutionModelSet class

The Bio++ libraries [21] provide data structures and algo-
rithms dedicated to analysis of nucleotide, codon and
amino acid sequences, phylogenetics and molecular evo-
lution, and are designed in an object-oriented way. These
include classes for storing phylogenetic trees, computing
likelihood under various models of substitution, and esti-
mating parameters. The likelihood classes take as input a
phylogenetic tree and a substitution model, and were
extended to allow the computation under non-homoge-
neous models (figure 1). This support is achieved through
the addition of parameters for the rooting of the tree, since
the likelihood may not be independent of the root posi-
tion with a non-homogeneous model [6], and through a
new class named SubstitutionModelSet. The Substitution-
ModelSet class essentially associates a substitution model
with each branch of the phylogenetic tree, and links each
substitution model to a list of corresponding parameters
(figure 2). It also provides a series of methods for the
developer to set up the general model, to assign parame-
ters to substitution models and substitution models to
branches.

Substitution models can be totally independent of each
other, or can share any number of parameters. Virtually
any non-homogeneous model can thus be set up, pro-
vided the alignment is not a mix of nucleotide, amino-
acid or codon sequences. All models available in Bio++
can be used with this class (e.g. K80, T92, HKY85, GTR,
JTT92, etc), including heterotachous models (Galtier's
model [22] and Tuffley and Steel's model [23]) and any
rates across sites model (i.e. Gamma and Gamma + invar-
iant distributions). The developer can also use the Substi-
tutionModelSet class with his own substitution model
through the Bio++ SubstitutionModel interface. The Sub-
stitutionModelSet class can be used in conjunction with
other Bio++ classes to reconstruct ancestral states or to
map substitutions, and hence allows to perform these
analyses in the general non-homogeneous case.

Estimating parameters
Estimation of numerical parameters is performed using a
modified Newton-Raphson optimization algorithm,
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General non-homogeneous model of substitution. The substitution model depicted here is Tamura's 1992 model of
substitution, which contains two parameters: x, the transitions/transversions ratio and 4 the equilibrium G+C content. In the
homogeneous case, fand k are constant over the tree (case 'a'). In Galtier and Gouy's 1998 model, xis constant over the tree
and one distinct G is allowed per branch (case 'b'). Between these two extrema lay models with certain branches, but not all,
sharing a common value of § (case 'c'). In the most general case 'd', there are two sets of parameters, one for x and another for

6, that are shared by the branches of the tree.

commonly used in phylogenetics [4,24,25], and therefore
requires computing derivatives with respect to parameters
of the model. Because the use of the cross derivatives leads
to numerical instabilities in the optimization (Nicolas
Galtier, personal communication), they are set to zero in
the Hessian matrix. Derivatives regarding branch lengths
are computed analytically, whereas derivatives regarding
the rates across sites distribution are computed numeri-
cally. Although the substitution model derivatives can be
computed analytically in the homogeneous case as well as
in Galtier and Gouy's model, they are difficult to compute
analytically in the more general case, and are conse-
quently computed numerically in Bio++. To prevent con-
vergence issues due to erroneous derivative values we use,
in the last optimization steps, Powell's multi-dimensions
algorithm, which does not rely on parameter derivatives
[26].

A general file format to describe non-homogeneous models
We introduced a new user-intuitive property file format to
describe non-homogeneous substitution models. This
format is an extension of PAML or NHML property file
formats, and uses a syntax of the kind

property_name = property_value

A parser that automatically instantiates the appropriate
SubstitutionModelSet object is included in the Bio++
libraries and is used by all programs in the Bio++ pro-
grams suite. Moreover, the same format is used for the
input file of the programs and for their output, so that the
output of one program (e.g. which adjusts a model to real
data) can easily be used as the input of another one (e.g.
which simulates data from a model). Figure 3 shows how
the models in figure 1 are coded using this format. The
core part of the description is the "model" property, which
is associated to one or several nodes of the phylogenetic
tree through node identifiers. These node identifiers can
be obtained from the programs in the Bio++ program
suite, or set by the user in his own program.

The BppML and BppSeqGen programs

Parameter estimation and simulation procedures are
available as dedicated classes in the Bio++ phylogenetic
library, and can hence be used in any C++ program. How-
ever, for users who would rely on appropriate software
rather than program their own tools, the Bio++ program
suite was designed. These programs, including BppML
(for Bio++ Maximum Likelihood) and BppSeqGen (Bio++
Sequence Generator) are command line driven and fully
parametrized using property files, as introduced above.
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Relations between branches, models and parameters. In the general non-homogeneous case, model parameters are
shared by different branches across the tree. These parameters are part of branch-specific substitution models, which specify
branch-wise probabilities of replacement between states. Branches are here defined according to their rightmost node. The
SubstitutionModelSet class stores dependencies between nodes, models and parameters.

They can thus easily be pipelined with scripting languages
as bash, python or perl. In addition to the BppML and
BppSeqGen programs, the Bio++ program suite also con-
tains programs for distance-based phylogenetic recon-
struction, sequence file format conversion and tree
manipulation.

Results and Discussion

Our new general non-homogeneous model implementa-
tion was applied to Boussau and Gouy's data set of con-
catenated small and large subunit ribosomal RNA
sequences and tree [6]. This data set contains 92
sequences and 527 complete sites. We first compare com-
putation time, memory usage and parameter estimation
for various models and software. We then show how the
general non-homogeneous model introduced here can be
used to study model fit through parametric bootstrap-

ping.
In this section, we use the following model notations:

H Homogeneous model, using a Tamura 1992 substitu-
tion model [27].

NH1 One-theta-per-branch non-homogeneous model
[24]. This model uses Tamura's 1992 substitution model,
with one 0 (equilibrium G+C content) per branch in the
tree, whereas « (transitions/transversions ratio) is shared
by all branches.

NH2 One-theta-per-kingdom non-homogeneous model.
In this general model, we allowed each kingdom (Bacte-
ria, Eukaryotes or Archaea) to have its own equilibrium
G+C content, while sharing the same transitions/transver-
sions ratio.

NH3 Same as NH2, but in addition the (hyper)ther-
mophilic Bacteria on one hand, and the eukaryote G+C-
rich genus Giardia on the other hand were allowed to
have their own equilibrium G+C content.

NH4 One-kappa-per-branch non-homogeneous model.
This model has one « per branch in the tree, whereas & is
shared by all branches.

Performance
We compared the likelihood of our implementation with
the NHML [22,24] and [nh]PhyML [4,6] programs (see
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a) b)
nonhomogeneous = no nonhomogeneous = one per branch
model.name = T92 nonhomogeneous.shared parameters
model. kappa =i2.5 = model.kappa

—— L model.theta = 0.65 model.name = T92

model. kappa = 2.5

3 model.theta = 0.65

L d)
nonhomogeneous = general

5 nonhomaogeneous.number of models = 3
4 modell.name = T92
modell. kappa = 2.5 c)
9 modell.theta = 0.65 nonhomogeneous = general
6 modell.nodes id = 1:3 nonhomogeneous .number_of_models = 2
8 model?.name = T92 modell.name = T92
model2. kappa = 1.5 modell. kappa =2.5
— 2 model2.theta = modell. theta modell.theta = 0.65

model2.nodes id = 4,5 modell.nodes id = 1:5
model3.name = T92 model2.name = T92
model3. kappa =39 model2. kappa = modell. kappa
model3.theta = 0.37 model2.theta = 0.65
model3.nodes id = 6:8 model2.nodes_id = 6:8

Figure 3

Model specification in BppML and BppSeqGen. A general file format is introduced to allow for the user-friendly descrip-
tion of virtually any non-homogeneous model. The tree shows the nodes identifiers, which can be obtained from the programs
or defined by the user in its own program. Each case presented here corresponds to a particular model in figure |, and was
labeled accordingly. Each parameter can be fixed to a specific value or optimized with BppML.

table 1 and Additional file 1). Several models have been
tested: Kimura two parameters (K80) for the homogene-
ous case, and Tamura 1992 (T92) derived models for the
non-homogeneous cases, with constant rate, Gamma dis-
tributed rates (4 classes), Gamma (4 classes) + invariant
and Galtier's 2001 site-specific rate variation model (cov-
arion-like). On all tested models, the optimization algo-
rithm in Bio++, while using numerical derivatives, leads
to similar or better likelihood values than other programs,
although at the price of an increase in computational
time. However this increase is not sufficient to prevent the
use of complex models on data sets of usual sizes, as it
takes a little bit more than an hour and a quarter to opti-
mize parameters with the richest models on a data set con-
taining 92 sequences. It is also noteworthy that the Bio++
implementation requires less memory than other pro-
grams. This is partly explained by differences in the algo-
rithms used to compute the likelihood [28]. The PhyML
programs, including nhPhyML, use a double-recursive
algorithm [6], which saves a lot of computation when
exploring the space of tree topologies but results in a three
fold increase in memory usage compared to the simple-
recursive algorithm. Because no tree space exploration
was involved, BppML computations used the simple-

recursive algorithm. If desired, however, Bio++ also offers
the double-recursive algorithm.

The convergence of the optimization algorithm was
assessed by two methods, using the NH3 model. First, we
used 100 distinct randomly chosen initial sets of parame-
ter values and the RNA data set (see methods). We found
that the estimated values obtained in each run were the
same for all parameters up to the 5th decimal. Second, we
simulated 100 data sets using the NH3 model with a
Gamma + invariant rate distribution, with parameter val-
ues estimated from the real data set and the same number
of sites. These parameters were then re-estimated for each
simulated data set using random initial values. The results
are displayed on figure 4, and show that the parameter
values are recovered without bias and with a good preci-
sion. The only exception is the proportion of invariant
sites which is slightly overestimated. These results also val-
idate the simulation procedure.

Example of application: parametric bootstrap and
Bowker's test for non-homogeneity

As most phylogenetic reconstruction models are homoge-
neous, they do not properly model the evolution of
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Table I: Comparison of the NHML, (NH)PhyML and BppML programs. Likelihood: - log (likelihood) of the optimized parameters, with
a fixed tree topology.

Likelihood
Rate Constant r4) r4)+1 Covarion
Model H NHI NH3 H NHI NH3 H NHI NH3 H NHI NH3
NHML 15307 15034 - 14145 13828 - - - - 13750 13397 -
PhyML 15187 15011 - 14141 13824 - 14128 - - - - -
BppML 15187 14920 15109 14141 13821 14029 14128 13810 14018 13747 13399 13615
Time
Rate Constant I'4) r4)+1 Covarion
Model H NHI NH3 H NHI NH3 H NHI NH3 H NHI NH3
NHML  0:01:40  0:02:28 - 0:03:07  00:02:13 - - - - 0:19:24  0:19:09 -
PhyML  0:00:07 0:01:43 - 0:00:34  00:02:29 - 0:00:35 - - - - -
BppML  0:00:27 0:11:57  0:01:12  0:00:47 00:35:46  0:00:48  0:01:01 0:29:40 0:01:38  0:02:52 1:14:32  0:14:27
Memory
Rate Constant re4 r4)+1 Covarion
Model H NHI NH3 H NHI NH3 H NHI NH3 H NHI NH3
NHML 16.38 20.48 - 55.30 65.54 - - - - 55.30 65.54 -
PhyML 10.24 28.67 - 30.73 77.82 - 30.72 - - - - -
BppML 08.19 08.19 08.19 14.34 14.34 14.34 14.34 16.38 16.38 12.29 14.34 12.29

Time is shown as hours:minutes:seconds. Numbers in bold font correspond to the best performance for each comparison. Memory corresponds to
the maximum memory usage during the program execution in megabytes. H: homogeneous case, with a K80 substitution model, NH|: theta per
branch model, with a T92 substitution model, NH3: clade-specific and G+C-rich species theta model, see methods. The PhyML program was used

for the H model, and nhPhyML for the NH| model.

homologous sequences that vary widely in their composi-
tions. Analyzing compositionally heterogeneous data sets
with homogeneous models of sequence evolution may
therefore lead to incorrect inferences, provided the heter-
ogeneity is large enough. Several tests have been devel-
oped to assess the amount of heterogeneity present in a
data set (see [29] for a review).

Estimating the amount of compositional heterogeneity in a data set
Most commonly, a matrix is assembled that contains
compositions in all characters for all sequences, and this
matrix is analyzed through y2 statistics [29]. However, this
approach usually does not distinguish between constant
and variable sites, and therefore may underestimate the
true amount of heterogeneity in a data set [29].

Recently, Ababneh et al. [30] re-introduced Bowker's pair-
wise test [31] for symmetry. Given two aligned sequences
S; and S, on a given alphabet of size n and characters

X{1,.np it compares the numbers of substitutions
between x;in S; and x;in S,, {i,j} € [1:n], with the num-
bers of substitutions between x;in S; and x;in S,. If these
pairs of numbers are equal for all {i, j} € [1 : n], the two
sequences may have evolved according to two identical
processes. Otherwise, the two processes were necessarily
different.

Bowker's test therefore permits to assess whether compo-
sitional differences have accumulated between two
sequences through non-homogeneous evolution. To
apply it to more than two sequences, Rodriguez-Ezpeleta
et al. [32] computed all pairwise Bowker's tests in their
alignment and computed the median value; one could
also have counted the number of Bowker's tests that are
significant at a 5% threshold according to a 2 table.

However, none of these tests permit to estimate if the

amount of heterogeneity that they detect in a given data
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set is sufficient to bias inferences made using homogene-
ous models, although this is likely the question an average
user would like to answer.

Assessment of the fit of evolutionary models with respect
to compositional heterogeneity

Here, we describe a method to reveal the ability of evolu-
tionary models to account for the compositional hetero-
geneity in a sequence alignment, which we measure using
the median of all Bowker's pairwise statistics, or the
number of significant Bowker's pairwise tests (in the fol-
lowing, we note the measure of compositional heteroge-
neity h). This method is tree-based, and uses parametric
bootstrapping [10-12]. In this respect, it is similar to the
method recently introduced in [13] in the Bayesian set-
ting. Our approach requires 5 steps to estimate the fit of a
model M to a data set D.

1. Compute the compositional heterogeneity measure h
for the data set D.

2. Estimate the parameters of model M based on the data
set D according to the Maximum Likelihood criterion.

3. Simulate a large number of data sets D' using the model
M previously estimated.

4. Compute the compositional heterogeneity measure h'
for each alignment D".

5. Compare the measure h obtained on data set D to meas-
ures h' obtained on data sets D". If h is outside 95% of the
distribution of h', the model does not properly reproduce
the heterogeneity of data set D.

Using such an approach, any model can be compared
with others with respect to their ability to handle the com-
positional heterogeneity of a given data set: the closest the
distribution of k' is from h, the highest is the fit. Ideally,
the distribution of measures h' obtained on the paramet-
ric bootstrap replicates of a good model should be cen-
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tered around the value obtained for the real alignment h,
with a very low variance. If one neglects potential prob-
lems linked with over-parametrization, the inferences of
the best model should be preferentially trusted compared
to a model that fails to account for an important feature
of a data set. Overall, our approach can be used for model
selection, although contrary to criteria such as AIC or BIC
[28] this approach does not take into account the number
of parameters; more importantly, it can also be used for
estimating model adequacy.

Application to an rRNA data set

Our approach to assess the composition-wise fit of evolu-
tionary models to a data set was applied to an alignment
containing ribosomal RNA sequences from Archaea, Bac-
teria and Eukaryotes [6]. First, several homogeneous and
non-homogeneous models were fitted to the data set,
using a Tamura 1992 model of substitution with a four
classes Gamma + invariant distribution of rates across
sites. Then, 10,000 artificial data sets were simulated in
each case using these estimated parameters. Eventually,
the real data set and the simulated data sets were com-
pared with respect to their compositional heterogeneity:
models able to simulate data sets with similar amounts of
heterogeneity as the real data set appropriately account for
this specific aspect of the data.

Results are shown in figure 5 and table 2. Both the
number of significant Bowker's tests and the median of
their values give similar results. For instance, both indices
find that the real data set shows significantly more heter-
ogeneity than the distributions of data sets simulated
under the homogeneous model of sequence evolution (p-
value = 0.0008 for the number of significant pairwise tests
and p-value = 0.0028 for the median). The homogeneous
model therefore lacks parameters useful to account for
this particular feature of the data. Allowing different tran-
sition/transversion rates for each branch as in model NH4
does not solve this problem, as the obtained bootstrapped
distribution also significantly underestimates the hetero-
geneity in the real data (p-value = 0.0015 and p-value =
0.0047, respectively). It is noteworthy, however, that the
likelihood ratio test finds that this model describes the
data significantly better than the homogeneous one,
whereas the AIC and BIC criteria do not. On the contrary,
the NH1 model simulated sequences distribution sur-
rounds the value obtained on the real data set (p-value >
0.7 in both cases). This suggests that Galtier and Gouy's
modeling [24] properly accounts for the heterogeneity in
rRNA data sets, and that there may be no point in using
more parameter-rich models such as Yang and Roberts'
[33] on these molecules. The results even suggest that
NH1 might be slightly prone to over-estimating the
amount of heterogeneity. For instance, the median
Bowker's test value for simulated data sets are most often

http://www.biomedcentral.com/1471-2148/8/255

higher than the value obtained on the real data set. NH1's
behavior may be explained by over-parametrization: it is
likely that during sequence evolution, not all branches
witnessed significant shifts in mutational parameters or
selection pressures. To investigate further the impact of
the number of parameters on model fit, two other models
were tested: NH2, in which different equilibrium G+C
contents are associated to each kingdom, and NH3, which
further adds two equilibrium G+C contents, one for the
hyperthermophilic (G+C rich) Bacteria, and one for the
G+C rich Eukaryote Giardia. Hyperthermophilic (G+C
rich) Archaea were not considered separately from the
others as nearly all Archaea in our data set were ther-
mophilic or hyperthermophilic. The NH2 model seems to
lack useful parameters to properly account for the hetero-
geneity in the real data set, as its simulated data sets are
less heterogeneous than the real one (p-value = 0.0040 for
the number of pairwise tests, and 0.0141 for the median).
The NH3 model improves upon NH2 as its bootstrapped
distribution is more centered upon the observed value,
which is no longer rejected (p-value = 0.14 and 0.27).
However, the observed value is still on the right side of the
null-distribution, and it is very likely that the correct par-
ametrization lays between NH1, too rich with its 182
equilibrium G+C contents, and NH3, maybe too poor
with its 5 equilibrium G+C contents. However, as NH3
provides a fit nearly as good as NH1 with a much lower
amount of parameters, the best model may well have less
than a dozen equilibrium G+C contents. Interestingly,
Bowker's tests are in agreement with the Bayesian infor-
mation criterion (BIC, see table 2) and favor the NH3
model. Conversely, Akaike's information criterion (AIC)
and the likelihood ratio test (LRT) favor the more param-
eter-rich model NH1. Obviously, although a few works
already addressed this issue in the Bayesian framework
[11,13,34], automatic ways to explore and choose among
heterogeneous models in a maximum likelihood frame-
work are much needed. All the tools required for such a
project are now available in the Bio++ libraries.

Conclusion

Bio++ is a growing set of libraries designed for sequence,
phylogenetic and molecular evolution analyzes. In this
article extensions allowing to implement a wide variety of
non-homogeneous models of sequence evolution were
introduced. Combined with support for rates across sites
and heterotachous models of evolution, and with rou-
tines for optimizing parameters and tree topology in the
maximum likelihood framework, they provide a compre-
hensive platform for phylogenetic studies, either for bio-
informaticians willing to develop their own software, or
for biologists characterizing the evolution of a particular
set of sequences using the BppML and BppSegGen pro-
grams. Whilst being a generalist program implementing a
large variety of models, BppML was shown to be of a sim-
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Distributions of the Bowker's test statistics under various models. First column: number of pairwise tests significant
at the 5% level. Second column: median of the pairwise statistics. First row: homogeneous model (H). Second row: one theta
per branch non-homogeneous model (NH1). Third row: 3 thetas non-homogeneous model (NH2). Fourth row: 5 thetas non-
homogeneous model (NH3). Fifth row: one kappa per branch non-homogeneous model (NH4). All models use the Tamura
1992 substitution model with a 4-classes discrete Gamma + invariant rate distribution. The arrows indicate the observed val-
ues from the real data set and the resulting p-values.
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Table 2: Model comparisons.
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Model InL k LRT AIC BIC Bowker
H NH2 NH3 # tests median
H -14110.628293 185 28591.26 29380.69 0.0008 0.0028
NHI -13810.371502 368 600.51 556.74 416.97 28356.74 29927.07 0.7010 0.8110
NH2 -14088.739682 189 43.78 28555.48 29361.98 0.0040 0.0141
NH3 -14018.854234 191 183.55 139.77 28419.71 29234.74 0.1448 0.2672
NH4 -13970.841467 368 279.57 28677.68 30248.01 0.0015 0.0047

Comparison of the various non-homogeneous models with the homogeneous case, using different criteria. k is the number of parameters and InL is
the log likelihood of each model. The Akaike's information criterion (AIC) of each model is defined as 2k - 2-InL, and the lowest value,
corresponding to the best model according to this criterion is in bold font. The Bayesian information criterion (BIC) is computed as k- In(n) - 2:InL,
n = 527 being the number of observations. The lowest value is in bold font. The likelihood ratio test (LRT) allows to compare nested models only,
and is defined as minus two times the logarithm of the ratio of likelihoods. All LRT are significant at the 0.1% level. This ratio follows a 32
distribution with the number of additional parameters as the degrees of freedom. The last two columns show the p-values of the two Bowker's test

introduced in this paper.

ilar quality as programs dedicated to particular homoge-
neous or non-homogeneous models of evolution,
achieving higher likelihood scores with smaller memory
requirements while conserving reasonable running-times.
Its joint use with BppSeqGen permits to precisely study
the evolution of a particular data set through parametric
bootstrapping, and may be used to generate realistic arti-
ficial data sets to study the robustness of phylogenetic
reconstruction methods in the presence of heterogeneity
and heterotachy. Further developments may involve
methods to optimize the number of models necessary to
account for the heterogeneity in a data set, or methods to
explore the space of tree topologies with a broad range of
non-homogeneous models of sequence evolution.

Methods

Data and phylogeny reconstruction

RNA sequences from the small and the large subunit of
the ribosome were aligned and concatenated. Sequences
coming from 22 Archaea, 34 Bacteria and 36 Eukaryotes
were selected to yield a data set containing 92 sequences
and 527 complete sites, with G+C contents ranging from
43% to 71%. A phylogenetic tree was built with nhPhyML
[6]. For additional information, please refer to [6].

Comparing likelihood optimizations

The NHML, (NH)PhyML and BppML programs were used
to compare optimization performances. The programs
were run on the data set from [6], after all columns in the
alignment containing at least either a gap or an unknown
character had been removed. The phylogenetic tree from
[6] was used as a fixed topology, and the branch lengths
used as initial values for the optimization. To allow the
comparison between the three programs, the Kimura two
parameters model of substitution [35] was used for
homogeneous models and models derived from Tamura's
1992 model [27] for non-homogeneous models. Initial
values were set to 1 and 0.5 for the x and 6 parameters
respectively. A Gamma (4 classes) + invariant rates across

sites distribution was also tested, with initial value set to
0.5 for the Gamma shape parameter, and 0.2 for the pro-
portion of invariants. Galtier's 2001 [22] heterotachous
model was also tested, with 4 rate classes, initial values of
the shape parameter set to 0.5, and initial value of the rate
change parameter set to 0.5. The precision in the optimi-
zation algorithm was set to 0.000001 for the three pro-
grams. The total length of execution was corrected
according to the average CPU usage, and the memory
usage corresponds to the maximum reached during pro-
gram execution, as reported by the Unix "top" command.
All calculations were performed on a 64 bits Intel(R)
Core(TM)2 Duo, CPU 2.66 GHz.

Assessing the convergence of the optimization procedure
Different initial values were used as initial guesses for the
optimization algorithm. The GC frequencies and the pro-
portion of invariant sites were chosen randomly from a
uniform distribution between 0 and 1. The transitions/
transversions ratio and the alpha parameter of the rate dis-
tribution were picked from a [0, 5] and [0.2, 2] uniform
distributions, respectively. Branch lengths were taken
from a uniform distribution between 0 and 0.1.

Computing p-values for Bowker tests

Alignment-wise tests for non-homogeneity were per-
formed using two types of statistics:

¢ The number of 5% significant pairwise tests,

¢ The median of pairwise statistics.

In both cases, the global p-value was computed as

No+1

, 1
Nqi+1 M

p — value =

where N is the number of simulations performed under
the null model, and N, is the number of values of the sta-
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tistic in the simulations that were greater or equal to the
observed one, measured from the real data set. In this
study, N, was set to 10,000.

Program source code for performing Bowker's test is pro-
vided as Additional file 2. The data and scripts to run the
analyses are in Additional file 3.

Availability and requirements
Project name: The Bio++ libraries (version 1.6) and pro-
grams suite (version 1.0).

Project home page: http://kimura.univ-montp?2.fr/BioPP
and http://home.gna.org/bppsuite

Operating systems: Any platform with a C++ compiler
and supporting the Standard Template Library

Programming language: C++
Other requirements: The C++ Standard Template Library

License: The CeCILL free software license (GNU compat-
ible)
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Additional material

Additional file 1

Detailed results of model comparison. OpenDocument spreadsheet
(-ods) file containing detailed results from table 1, with parameter esti-
mates obtained.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-255-S1.0ds]

Additional file 2

Program to compute Bowker's test. Zip archive containing the C++ pro-
gram used to compute Bowker's test.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-255-S2.zip|

Additional file 3

Data set, tree and scripts for running Bowker's tests. Zip archive con-
taining the sequence alignment and phylogenetic tree used, together with
scripts for running the tests presented in this article.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2148-8-255-83.zip]
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Coping with Heterogeneous Evolutionary
Roads in a Single Gene

Article 3 showed that composition heterogeneity was not the only problem that a
phylogeneticist had to confront to build a phylogenetic tree. Lateral gene transfer
notably was a very important difficulty, that gets even tougher when one accepts
that not only whole genes are exchanged between species, but that so can be
parts of genes, through a process named recombination. In such circumstances,
one gene may have several different histories.

In this article, we developed models to estimate the histories that may lie hidden
in gene sequences. If many genes have undergone recombination events, it might
be important to use such models to reconstruct species phylogenies.

This article has not been submitted yet.
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Abstract

Homologous recombination is a pervasive biological process that affects sequences in all
living organisms and viruses. In the presence of recombination, the evolutionary history of
an alignment of homologous sequences cannot be properly depicted by a single bifurcating
tree: some sites have evolved along a specific phylogenetic tree, others have followed another
path. Methods available to analyse recombination in sequences usually involve a painstaking
analysis of the alignment through sliding-windows, or are particularly demanding in compu-
tational resources, and are often limited to nucleotidic sequences. In this article, we propose
and implement a Mixture Model on trees and a phylogenetic Hidden Markov Model to re-
veal recombination breakpoints while searching for the various evolutionary histories that are
present in the alignment. These models are sufficiently efficient to be applied to dozens of
sequences, and can handle indifferently nucleotidic or proteic sequences. We estimate their
accuracy on simulated sequences and test them on real data.



Introduction

Homologous recombination is a process through which genes descending from a same ancestor
exchange parts of their sequence. Consequently, sequences having undergone recombination will
display two different histories: one history for the non-recombining part of their sequence, and one
history for the recombining part. If the recombining genes have been parts of different lineages
long enough prior to this recombination event, the difference in the histories of the recombining
and non-recombining parts of the gene may translate into topological incongruencies between their
respective phylogenies.

If one applies classical phylogenetic methods onto an alignment that has undergone recom-
bination, only one tree will be recovered, with no guarantee that this tree corresponds to the
recombining part of the sequence, the non-recombining part, or any of these two. Several methods
have been developped to try and detect recombination in alignments [1, 2]; such methods can
therefore be used prior to phylogenetic analysis to see whether it is meaningful to describe the
history of an alignment by a single bifurcating tree. In cases where no recombination has been
detected, the subsequent analysis is classical phylogenetics. In cases where recombination has been
detected, there are few methods available that can analyse an alignment and precisely predict both
the recombination breakpoints and the evolutionary histories found in the alignment.

If we put aside methods based on sliding windows, that are painstaking and cannot precisely
pinpoint the recombination breakpoints, two groups have proposed methods to unveil both the
recombination positions and the phylogenetic trees. In 2000, Mcguire et al. [3], inspired by
the work of Felsenstein and Churchill [4], proposed a method based on a hidden Markov model
(HMM) in which the hidden states were the phylogenetic trees themselves. Therefore, a transition
between the states ought to be a recombination breakpoint. However, this first attempt was prone
to detecting recombination events where there was only rate heterogeneity. Husmeier subsequently
built upon this model to deal with heterogeneities in site evolutionary rates [5] by superimposing
another HMM whose states correspond to evolutionary rates: therefore two kinds of transitions
are allowed along the alignment, a transition between topologies, indicative of recombination, and
a transition between rates. Unfortunately, all these methods are computationaly demanding, and
can only be applied in cases where the space of tree topologies is very limited, as all topologies
need to be given a priori. Lastly, Kedzierska and Husmeier [6, 7] proposed a hybrid approach in
which a sliding window is first applied to the alignment to build phylogenetic tree distributions
along the alignment. Then, a HMM is run on the alignment, with its hidden states being the tree
distributions themselves. This approach allows to handle a greater number of sequences than the
previous ones, but is also probably less accurate in the detection of the breakpoints, because the
topology distributions are built from small arbitrary windows, which may not correspond to the
true recombination structure of the alignment.

In 2002, Suchard and co-workers [8] proposed a bayesian multiple-changepoint model to detect
recombination, and further improved it by adding a second changepoint process to account for
changes in the substitutional process [9, 10]. This sophisticated method however also suffers from
its computational requirements. In fact, both this method and the ones of Husmeier, Wright and
co-workers have been implemented to only deal with DNA sequences, and can not be used with
large numbers of sequences.

However, the detection of recombination should not be limited to recently diverged sequences.
When protein-coding sequences have diverged a long time ago, the nucleotide sequence may be
saturated, so that it becomes mandatory to resort to amino-acid sequences. In such conditions,
none of the previously described method can be used.

Most recently, Pond and co-workers developped GARD [11, 12], a software able to detect
recombination with any type of alphabet. This program estimates the phylogenetic trees, the
number of recombination breakpoints and their positions in a maximum likelihood framework. To
do so, it tries different numbers of breakpoints, and for each number, uses a genetic algorithm to
estimate the best breakpoint positions. During this procedure, phylogenetic trees are estimated
with the Neighbor-joining algorithm [13], and the best number and positions of breakpoints are
chosen according to the Akaike criterion. This considerable task can be achieved efficiently through



a parallelised architecture, which can be run on a cluster of computers.

In this article, we present two new methods to uncover the recombination structure of a protein
or nucleotidic alignment, that can be easily and efficiently run on a desktop computer. The
first method is based on a Mixture Model (MM), and the second is based on a phylogenetic
Hidden Markov Model (Phylo-HMM). We begin by introducing the mathematics behind these
models, shortly explain how these were implemented, and finally proceed to test them on both
simulated and real alignments. We discuss the merits and limits of our methods and propose a
few refinements.

Computing the Likelihood of a Single Tree

We first explain how one computes the likelihood of a phylogenetic tree [14] with nucleotidic or
protein sequences using the following example (Fig. 1).

Figure 1: Example rooted tree for likelihood computation.

Most commonly, sites are supposed to evolve independently of each other: a site does not
depend on its neighbors’ states but only on its past state. As a consequence, the likelihood of a
tree for a whole sequence is obtained by multiplying all the likelihoods obtained at single sites.

The likelihood L of the tree T given in Fig. 1 for a single site s is computed as follows:
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where Py (l4,v4) is the probability for base  to change into base y along a branch of length
la, with rate category g from the I' distribution and other evolutionary parameters v, P(R = )
is the probability to have base = at the root R, and € is the set of possible states (for instance,
Q = {A,T,C,G} in case of a DNA alignment). Lgo,(ra)(A = 2) is the lower conditional
likelihood of observing the data downstream from branch RA conditionally on the underlying



subtree and on having base z at node A. Note that computing the likelihood of a site when using
a distribution over the evolutionary rates amounts to averaging the likelihoods of the site obtained
when using each evolutionary rate in turn.

Computing the Likelihood with a Mixture Model on trees

As for the likelihood of a model where different rates are allowed, one can compute the likelihood
of a model where one allows different trees. Consequently, to get the likelihood of a model whose
parameters of interest are the trees that best describe the alignment, one can take at each site the
average over the likelihoods obtained with each one of the trees that are considered.

This is summed-up in the following formula for the likelihood of a single site, where T represents
the set of trees T currently in use, and |T'| the number of trees in T

1
Ls,T = Z mLS,T (2)

TeT

With such a formula, both rate heterogeneity and topology heterogeneity are taken into ac-
count, respectively by the gamma distribution and the Mixture Model on topologies. Once the
likelihood of a Mixture Model over trees has been computed and maximized , it is possible to
predict a posteriori the most likely tree for a given site (see below). This possibility can be used
to uncover the recombination structure in an alignment.

Toy example: it is possible to optimize the topologies with a Mixture Model on trees

In a setting where we search for |T'| trees 7 that describe an alignment, we try to find the set of
|T| trees whose likelihood as computed above in Eq. 2 is maximal. The object that is looked for
is the set T itself. This can lead in principle to something different than simply using many times
the maximum likelihood topology, as can be seen in this toy example, where |T'| = 4, with 4 sites:

Topologies | Site 1 likelihood | Site 2 likelihood | Site 3 likelihood | Site 4 likelihood
Topology 1 102 10714 1074 1074
Topology 2 1074 102 1073 1074
Topology 3 107 1074 1072 1074
Topology 4 1074 1074 1074 102

In this example, the most likely topology is Topology 2, with a log-likelihood of log(10™% x
1072 x 1073 x 107%) = —13. However, if one were to use a Mixture Model on trees in which 4
trees are allowed, this should not simply result in the same Topology 2 topology being found in
the 4 trees. Indeed, as for each site the average over the likelihoods for each topology is computed
along the alignment, one obtains the following log-likelihood:

107243 x107* 107243 x10~* 8 10724 2x 1074 +1073 y 107243 x 10~

~ —10.
1 % 1 1 1 ) 0-3

log(Lr) = log(

It is thus more likely on this example to use 4 different trees rather than a single tree. However,
had the alignment been homogeneous, this model could have resulted in the same tree repeated 4
times, possibly with branch lengths differing between trees.

This example shows that in case of an alignment altered by a recombination event, a set of |T'|
trees can be optimized to best account for the sequence evolution with a Mixture Model: it is not
necessary that the tree topologies are specified before the search for the recombination breakpoint
is undertaken.



A Phylogenetic Hidden Markov Model to detect recombina-
tion

The Mixture Model described above fails to account for an important property of the alignment:
it is expected that the topology that best describes a given site has a high probability of properly
describing the neighboring sites. Thus there is a dependency between sites, that can be modelled
through the use of a Hidden Markov Model, whose hidden states are the topologies themselves.
This model therefore belongs to the family of Phylo-HMMs. The rate heterogeneity is taken into
account through a mixture model on rates, through the commonly used gamma distribution.

Computing the likelihood with the Phylo-HMM

The likelihood of the Phylo-HMM can be computed with the forward algorithm, as already ex-
plained in the phylogenetics framework by Felsenstein and Churchill [4]. We rapidly go through
this algorithm here.

The algorithm starts from one end of the alignment and finishes at the other end; arbitrarily,
we will start by the beginning of the alignment, at site 1, and end at site n. We suppose that
individual site likelihoods have been already computed for all the trees. We note as L; , the
likelihood obtained with Felsenstein’s pruning algorithm (no dependency between sites) at site 1
for the tree 7. The likelihood of the alignment up to site k& with tree 7 affected to site k is denoted
L% The transition probability of going from tree T at site k to tree 7' at site k + 1 is written
P. ;. We define as |T| the total number of trees in the set 7.

At the first site, the likelihood of the alignment up to site 1, given that site 1 has tree 7 is
simply the likelihood of tree 7 for the site 1:

LY =Ly,
At the second site, the likelihood of the alignment up to site 2, given that site 2 has tree 7’:

L‘(rz') = LZ,T’ X Z PT,T’L(Tl)

T€T

This formula suggests a recursive scheme:

LU — Ly x Z Py L%
TeT

The first part of the formula before the multiplication symbol is the classical likelihood of a
tree for site k, which can be obtained through Felsenstein’s pruning algorithm [14] as in equation
1. The dependency between sites is introduced through the second part of the formula. At the
end of the alignment, at site n, the total likelihood of the alignment given the set of trees T' is
computed as follows:

1
- il (n)
Lphylo-Hrm = Y ks L7 (3)
TeT
In our model, the transition probability of going from tree T at site k to tree 7’ at site k + 1,
P, ; is defined as follows, with the help of the autocorrelation parameter A:
1-A
P‘r,‘r’ - )‘57',7" +
T
Here, 6,/ is the Kronecker delta function, which is 1 when (7 = 7) and 0 otherwise. This
means that at any site, there is a constant probability A that the same tree is kept for the next
site, and a probability 1 — A that another tree is drawn for the next site, with the possibility that
the same tree is drawn again.



Since one can compute the likelihood of the alignment with the Phylo-HMM, all parameters
can be estimated in the maximum likelihood framework (or in a bayesian framework). Therefore
in our program, both the trees (topologies, branch lengths, parameters of the models) and the
parameter A\ are estimated by optimizing the likelihood as computed in equation 3, through the
same algorithm as PhyML for common parameters, and through Brent’s numerical optimization
algorithm [15] for the autocorrelation parameter A.

Exploring the Space of Tree Topologies with a Mixture Model
on trees or with a Phylogenetic Hidden Markov Model

The problem of optimizing |T'| trees simultaneously is different from the problem of optimizing a
single topology |T'| times. At any given time, a topology is to be optimized taking into account the
other topologies. Indeed, if each topology were optimized independently of the other topologies,
the result would be |T'| identical trees: this would have been equivalent to solving the single tree
optimization problem |T| times, in parallel.

A parallel algorithm based on a server-client architecture, as described in Fig. 2, allows to ac-
knowledge the dependencies between topologies.

Figure 2: Server-Client architecture to efficiently find a set of topologies that best describe the
alignment,.
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The server exchanges data with clients. For each set of communications between the server and a
client, one red arrow corresponds to the sending by the server to the client of a matrix containing
all the site likelihoods for all the topologies, and the other one corresponds to the sending by the
client to the server of an optimized likelihood vector.

In this algorithm, each client is affected a topology, that it tries to refine through commonly
used tree search algorithms. However, while in common algorithms such as PhyML the client would
simply try to maximize the likelihood of the topology, here it needs to maximize the likelihood of
the MM or of the phylo-HMM as a whole, by only modifying the topology it has been affected,
while taking into account the other topologies. For instance, in the Mixture Model, the likelihood
function each client tries to maximize thus is Lrrece mizture = [[3 D rer %LS,T, which implies
that each client needs vectors of site likelihoods obtained from the other clients. The dependency
between topologies is only taken into account through a shared matrix of likelihood vectors.

The algorithm has been summed up in the pseudo-code below.



Algorithm 1 Searching for the most likely set of trees T.
likelihood threshold=1e-6
MAXIMUM=1e6
T|=2
if (server) {
get alignment aln
set_of trees T = Generate(|T|,aln)
Create |T'| clients
send _all alignment
send trees T
likelihood _matrix = receive _all likelihood _vectors()
oldlk=compute _likelihood(likelihood _matrix)
send _all(likelihood _matrix)
diff=MAXIMUM
while (diff>likelihood _threshold) {
receive(likelihood vector)
update(likelihood matrix)
newlk=compute likelihood(likelihood matrix)
diff=newlk - oldlk
oldlk=newlk
send _all(likelihood matrix)

send _all(stop _signal)
output_server results
}
else if client {
receive alignment
receive tree
compute_ likelihood
send (likelihood _vector)
receive(likelihood matrix)
while (not stop _signal)
{
optimize(tree, likelihood matrix)
send(likelihood _vector)

}

output_client results

At the beginning of the program, the number of topologies to consider needs to be set, as
this algorithm is not able to estimate the appropriate number of trees |T'| to consider to describe
the history of an alignment; in the pseudo-code above, it has been set to 2. In practice, setting
this parameter should hardly be a problem, as a gene sequence should not harbour more than
two (detectable) different evolutionary histories; it is however possible to specify more than two
topologies to be searched for in a single alignment. At the begining of the algorithm, the function
“Generate” divides the alignment in |T'| equal parts and builds a BIONJ [16] tree for each part.
This results in |T| trees used as starting topologies for the bulk of the algorithm (alternatively,
the user can also provide |T'| starting trees). Each client then receives the alignment and a tree it
is in charge of, computes the likelihood of this topology, and returns a vector of site likelihoods
to the server. The server assembles all vectors into a matrix, that is sent to all clients. Each
client subsequently modifies the specific tree it is in charge of, in order to maximize, L7, ce mizture
or Lppyio—mmn- Periodically, it sends an updated vector of site likelihoods to the server, which
updates the likelihood matrix containing all likelihood vectors. This updated matrix is subse-



quently sent to all clients, so that they continue optimizing their topologies acknowledging the
most recent changes in other topologies. In practice, communications between the server and the
client are asynchronous, so that slowly-computing clients do not slow down the other clients. For
the Phylo-HMM, the auto-correlation parameter A is also exchanged between the server and the
clients, and optimized by the server every ten times it receives a likelihood vector from one of its
clients.

This algorithm has been implemented to function with both the MM and with the Phylo-
HMM (where the autocorrelation parameter A is exchanged between the server and clients, and
periodically optimized by the server) in the PhyML-Multi program, based on PhyML v.2.4.4 code
[15]. This program can take advantage of a multi-processor or multi-core machine, by dispatching
clients in charge of trees to different processors. It has been compiled and tested on Linux machines
and is available on request.

As a result, each client outputs an optimized topology, and the server outputs the matrix
containing site likelihoods computed with each topology. If there have been recombination events
in the history of the alignment, there should be stretches of sites whose most likely topology is
the same. Through segmenting the matrix of site likelihoods, one should be able to uncover these
stretches of sites with a common history. The Phylo-HMM can directly output a most likely
segmentation; on the other hand, the Mixture Model does not provide such a segmentation.

Segmenting the matrix of site likelihoods output by the Mix-
ture Model

Methods to partition an alignment

Common approaches to segmentation involve the use of sliding windows, Hidden Markov Models
or of the Maximum Predictive Partitioning algorithm (MPP algorithm, [17, 18]). We have chosen
not to use sliding windows, as the fixed size of the sliding window does not allow to precisely
pinpoint the recombination events. Both the MPP algorithm and the HMM approach rely on
a statistical approach to segment a sequence: given a set of models, they infer the most likely
partitioning of the sequence into these models. In our case, the models are the trees themselves,
and the sequence is the alignment. For each model, the site likelihoods have been previously
computed by the MM. The partitioning of the alignment therefore is done according to these site
likelihoods, which are used during the computation or the segmentation likelihood.

The HMM approach permits to directly estimate a partitioning, which depends upon the
transition probabilities between models. These transition probabilities can be estimated with the
Baum-Welch algorithm. However, they constrain the length of the stretches of sites that share the
same model to follow a geometric distribution. In the case of the detection of recombination, this
can be problematic because there is no reason that the lengthes of all segments sharing a unique
history should follow such a distribution.

The MPP algorithm on the other hand does not require that transition probabilities are set,
and thus does not constrain the sizes of the segments. However, as a consequence, the MPP
algorithm does not provide a single most likely partitioning, but outputs a most likely partitioning
in two segments, three segments, four segments... In the end the user is faced with a range of most
likely partitionings, among which a choice is to be made according to some criterium.

Estimating the number of segments with the MPP algorithm

As the number of segments increases, the likelihood of the segmentation generally also increases,
not necessarily because adding a segment reveals a significant property of the alignment, but also
because adding a segment may permit to better fit a non-significant heterogeneity in a particular
part of the alignment. In other words, the improvement in likelihood observed when the number of
segments increases is due to the fitting of the “noisy” part of the signal rather than the meaningful
part.



Such non-significant gains in likelihoods can also be seen in alignments where sites have been
randomly swapped, erasing the meaningful signal of the recombination structure, but where non-
significant heterogeneities are expected to be found simply by chance. Therefore the comparison
between the true alignment and randomized versions of the alignment permits to distinguish
improvements in the likelihood of a partitioning due to the uncovering of a homogeneous segment
coming from a past recombination event from ‘“noise” improvements in the likelihood, due to the
fitting of non-significant heterogeneities.

To get an estimate of the number of segments in an alignment, the following protocol is thus
applied, for each number ¢ of segments in [1;n], with n defined a priori by the user:

e the likelihood of the most likely partitioning in i segments is computed using the MPP
algorithm, and stored in the value L

o the matrix of site likelihoods is randomized 100 times by swapping columns of site likelihoods
(which is equivalent to swapping sites in the alignment), and for each of these 100 replicates,
the likelihood of the most likely partitioning is computed using the MPP algorithm; the
average of these 100 likelihood replicates is computed and stored in the value [

e the value L* = £ is computed and used as a normalized likelihood for the partition in i

l
segments

In the end, all normalized likelihoods can be compared; the partitioning with the highest normal-
ized likelihood is considered as the most reasonnable partitioning.

Tests of the Mixture Model and the Phylo-HMM Model

HMM segment length follows a geometric law of parameter A, the autocorrelation parameter. This
law might not be appropriate to model the length segments in an alignment where there has been
recombinations. The MPP approach does not introduce such a constraint on segment length, and
may therefore produce different results from the HMM segmentation. The Phylo-HMM approach
and the MM + MPP approach may therefore complement each other, each having defaults that
the other does not have. This suggests that both approaches should be used in parallel, and their
results compared. In this purpose, we used simulations.

Simulation procedure

The first 100 trees from the PhyML test set [15] were selected. These trees contain 40 leaves, were
designed to resemble real-life datasets and should therefore provide an appropriate test-set. An
alignment affected by a recombination is an alignment whose part is best described by a particular
tree, and part by another tree. In the most difficult instances, the two trees corresponding to the
two parts of the alignment differ by a single clade whose position is in one place in the first tree, and
another place in the other tree. To obtain such pairs of trees, each of the 100 trees was subjected
to a Subtree Prune and Regraft operation (SPR), in which a subtree is detached from the tree
and attached in another position. This yielded pairs of trees separated by one recombination
event, with Robinson and Foulds distances ranging from 2, when the SPR regrafted the pruned
subtree very close to its original position, to 30, when the pruned subtree was regrafted far from
its original position. Alignments harbouring a recombination event were simulated by evolving a
portion of an alignment according to one of the 100 trees and the rest of the alignment according
to the same tree modified by the SPR. For each pair of trees, 9 1000-nucleotide alignments were
simulated with k sites according to one tree and 1000 — k sites according to the other tree, with
k taking the values 100, 200, 300, 400, 500, 600, 700, 800,900. Seq-Gen [19] was used to simulate
sequences, with the GTR model [20] and a continuous gamma rates across site distribution with
parameter alpha set to 0.8.
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Reconstruction of the recombination structure with the Mixture Model
and the Hidden Markov Model

Both the Mixture Model and the Hidden Markov Model were applied to the simulated datasets.
The number of trees were set to two for both examples, as none of the programs is able to estimate
the right number of trees to consider to faithfully describe an alignment. The evolutionary model
used was HKY [21] with a gamma distribution discretized in four classes to account for accross site
rate variation. The reconstruction model therefore does not exactly correspond to the simulation
model, as would be the case in a realistic setting where sequences have evolved according to an
unknown and complex process.

Ability to detect the right number of segments

The reconstruction models should detect two parts in the alignment. Figure 3 shows that both
models have a recovery rate that is dependent upon the position of the breakpoint. If the break-
point is too close to the begining or the end of the alignment, the recovery rate is lower than if
the breakpoint is more central. This is likely because lengths such as 100 or 200 nucleotide sites
contain too little information to properly reconstruct a tree topology. Such values may therefore
represent, the statistical limit below which our models cannot detect recombination. The Phylo-
HMM is superior to the MM in all cases, which indicates that acknowledging that it is highly
probable that neighbor sites have the same most likely tree improves the breakpoint detection.

Figure 3: Ability of the Mixture Model (left) and Phylo-HMM (right) to detect the number of
segments in simulated alignments.
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Ability to detect the breakpoint position

Both the MM and the Phylo-HMM most often detect two segments in the alignment. In such
cases, Figure 4 shows that the precision with which the breakpoint is predicted displays the same
dependency upon the length of the smaller segment as the ability of the models to detect the
number of segments. The phylo-HMM seems slightly better than the MM in detecting the precise
breakpoint position when the smallest partition is > 200 bases long. However, the Phylo-HMM
is less good that the Mixture Model when the smallest partition is 100 bases long. This is likely
a manifestation of the bias introduced by the geometrical distribution of segment length in the
HMM.
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Figure 4: Ability of the Mixture Model (left) and Phylo-HMM (right) to detect the breakpoint
position in simulated alignments.
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Ability to recover the true topologies

On average, the Phylo-HMM is better at recovering the trees used in the simulation than the MM,
and both models find it easier to get good trees if the alignment that has been simulated along
them is long. However, the quality of the reconstructed trees finds an optimum for alignments that
are 600 to 800 sites, not longer. When one of the two topologies found in the alignment represents
only 100 sites, both topologies, the one found in 100 sites and the one found in 900 sites, are less
well reconstructed.

Figure 5: Ability of the Mixture Model (left) and Phylo-HMM (right) to recover topologies from
simulated alignments.
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Computation times

Computations were run on the IN2P3 computing centre, on computers ranging from 2.2 to 2.8
GHz. It took on average 9min48s for the Mixture Model implementation to give a result on the
simulations, while only 3min45s for the phylo-HMM. The additional optimization of the autocor-
relation parameter has not resulted in an increased computational time, but a decrease, perhaps
because the HMM ensures that the set of sites pleading for a given topology is more stable through-
out the tree space search than when the MM is used. However, both models are very efficient on
datasets containing 40 sequences and on single desktop computers.

Conclusions on the simulations

Overall, the Phylo-HMM is better able to uncover the recombination structure of simulated align-
ments, since it more often finds the right number of segments, is more accurate at pinpointing
the recombination breakpoint, and also recovers trees closer to the true trees. This is proba-
bly because the HMM takes into account the dependency of neighboring sites. However, for the
smallest segments (100 site long), the Phylo-HMM appears less good than the MM at predicting
the breakpoint position, probably because a single autocorrelation parameter is used to describe
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the length of both segments, the one that is 100 bases long, and the one that is 900 bases long.
Allowing different autocorrelation parameters for different hidden states (here phylogenetic trees)
might correct this weakness; however, it would also increase the number of parameters of the
model. Instead, we recommend using both the MM and the Phylo-HMM to analyse datasets, as
the advantages of one compensates the drawbacks of the other.

Application to real protein sequences

Several studies have unveiled recombination events in viruses, for instance in HIV viruses. In 1999,
Gao et al. discovered that a recombination event in a chimpanzee host was at the origin of the
YBF30 (group N) HIV-1 virus: the begining of the genome of YBF30 was most closely related to
group M whereas the rest of its genome was most closely related to a chimpanzee virus, SIVcpzUS.
They based this conclusion on first a sliding window analysis where divergence between pairs of
sequences was computed, and second the reconstruction of trees for two portions of the alignment,
on each side of a putative recombination breakpoint, which had been identified by eye. Likelihood
tests confirmed the recombination event, showing that the first part of the alignment rejected the
tree obtained for the second part, and wvice-versa.

This study therefore provides a good test of the ability of the Mixture Model and the Phylo-
HMM to detect recombination in natural conditions. The two models were run on the alignment
from Gao et al., setting the number of trees to two. The Mixture Model predicted two breakpoints,
one at position 95, and the other at position 1354. The phylo-HMM predicted only one breakpoint,
at position 1353. The two models therefore agree on the presence of a breakpoint around position
1353, which falls very close to the recombination breakpoint determined by eye in the original
analysis, at position 1400. The additional breakpoint predicted by the MM is more uncertain as
it is not detected by the Phylo-HMM: it might be due to the higher sensitivity of the MM when
one of the two segments is small, or might be non-significant. Interestingly, both the MM and the
Phylo-HMM uncover the shifting position of YBF30, which first is close to group M sequences,
and then close to SIVcpzUS (see figure 6 for trees found with the Phylo-HMM).
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Figure 6: Trees found by the Phylo-HMM on Gao et al. data. The trees found by the Mixture
model are nearly identical.
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This example shows that the Phylo-HMM is also efficient on real sequence datasets. The use
of such a program offers an improvement over the sliding-window approach taken by Gao et al. :
indeed, if one is to look for a recombination event in any sequence, all sequences are to be analysed
two by two, which, for the 16 sequences present in the tree amounts to looking at 16« 15/2 = 240
plots of divergence. With programs such as ours, only two steps are required, as advocated by
Chan et al. [22]: first a statistical measure to detect the occurence of recombination needs to
be applied; if positive, our programs can then be used to precisely pinpoint the recombination
breakpoint and reconstruct phylogenetic trees. This way, all the sequences are analysed at once,
and the user input is minimal. Eventually, statistical tests such as implemented in Consel [23] can
be applied to confirm the occurence of recombination.

Conclusion

In this article, a Mixture Model and a Phylogenetic Hidden Markov Model to detect recombination
were presented. Both methods were tested on synthetic datasets, which showed that the Phylo-
HMM was superior to the Mixture Model in most circumstances, except when the recombination
event had only affected a small portion of the alignment. Notably, both methods were highly
efficient. The analysis of an already published dataset showed that the models could successfully
uncover recombination breakpoints and topologies. Future improvements might include searching
for the appropriate number of topologies to use, or constraining the topologies on each side of a
breakpoint to differ by no more than one rearrangement.
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Simultaneous Inference of a Species Tree

and of Gene Trees

Figure 9.1: Gene trees are deformed shadows of the species tree. If one wants to infer

a species tree, the best way to do so is to use models of gene family evolution. Painting
by Francoise Boussau-Janon.
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Article 3 is a clear illustration that gene trees can differ from species trees. In
this article, incongruences were thought to be due to gene transfer, but without
any proof. In fact, other biological phenomenons can render gene trees different
from species trees (for more on this, see article 10).

In the present article, I built a model to try and infer a species tree when gene
trees may differ from it because of gene duplications and gene losses. This model
was implemented in a program that can run on several computers simultaneously,
and that could be easily modified to cope with other causes of gene tree/species
tree incongruences.

This article has not been submitted yet.
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Abstract

Species trees are usually built as an average of the signal of several
genes. However, several biological processes can affect gene families to
the extent that gene trees may strongly differ from the true species tree.
Duplications and losses are two such processes. In order to reconstruct a
species tree from genes, we propose to model gene family evolution in the
presence of gene duplication and loss, and consequently separately infer
gene trees and species tree. In this model, each branch of the species tree is
associated to particular duplication and loss probabilities. We explain how
one can compute the likelihood of a species tree with such a model, what
algorithms can be used with it, and present a natural parallel architecture
to speed-up the computations. In addition to duplication and loss, this
framework could be easily extended to use models of gene transfers or of
trans-specific polymorphism.



Introduction

When inferring speciations that occured millions or billions of years ago, one
is tempted to use as much data as possible. Since 1964 and the first molec-
ular species tree built from seven sequences containing nineteen amino-acids
each (Doolittle and Blombaeck, 1964), this tendency has been facilitated by
progresses in sequencing techniques and computer science. Recently, data from
whole genome or large scale EST sequencing projects have permitted to anal-
yse dozens of genes for dozens of species simultaneously (Ciccarelli et al., 2006;
Delsuc et al., 2006; Dunn et al., 2008). However, the resulting trees are not
perfectly resolved and still contain weakly supported bipartitions.

These uncertainties may result from closely spaced cladogenesis events (Deg-
nan and Rosenberg, 2006), model misspecification (Felsenstein, 1978; Weisburg
et al., 1989), or the way orthology has been defined. Indeed, both currently avail-
able methods, the concatenation and the supertree approaches (Delsuc et al.,
2005), require that each species whose history is to be reconstructed is repre-
sented in each alignment by no more than one gene. This amounts to betting
that a gene present in single copy in all genomes under consideration is a bona
fide representative of the species phylogeny, and has not undergone series of
duplications and losses that might complicate its history. However, it is not
unfrequent that gene families underwent duplications, so that a gene family
history may not simply be the mirror image of the speciation history, to the
point that one species may harbour several paralogous copies of the same gene.
In such cases of obvious paralogy, if not too many species possess several genes
from a single gene family, before phylogenetic reconstruction, the phylogeneticist
chooses one copy based on a priori knowledge of some phylogenetic relation-
ships or based on the consideration of similarity scores, or altogether discards all
families which contain paralogous genes. Such an additional step conditions the
analysis, decreases the amount of data submitted to phylogenetic reconstruction,
and is highly dependent upon subjective choices of the researcher.

Here we present a hierarchical probabilistic model of gene tree reconciliation
and sequence evolution. It provides a robust and comprehensive approach to
species phylogeny, able to analyse thousands of gene families, paralogs included,
and simultaneously reconstruct highly resolved species and gene family trees.
Additionally, it also supplies reconciliated gene trees, and decorates the branches
of the species tree with counts of gene duplication and gene loss events. Because
we have not been able to produce a fully working algorithm in time, no example
of application will be provided.

A hierarchical model of gene family evolution

In Eukaryotes, gene families evolve mainly through duplication, loss and se-
quence divergence. The probabilistic modelling of sequence divergence has been
the object of a large body of litterature, starting with the model of Jukes
and Cantor (Jukes T.H., 1969), and continuously improving with the inclu-
sion of variablility of rates of evolution among sites (Yang, 1994; Felsenstein
and Churchill, 1996), and among branches (Tuffley and Steel, 1998; Galtier,
2001), variability of models of evolution among sites (Pagel and Meade, 2004;
Lartillot and Philippe, 2004), and among branches (Yang and Roberts, 1995;



Galtier and Gouy, 1998; Foster, 2004; Gowri-Shankar and Rattray, 2006; Blan-
quart and Lartillot, 2006; Boussau and Gouy, 2006; Gowri-Shankar and Rattray,
2007; Blanquart and Lartillot, 2008), to cite only a few recent examples. The
statistical modelling of duplication and loss is more recent. Parsimony recon-
structions of gene family evolution were first developped in 1979 (Goodman
et al., 1979), and since then have been the object of several articles attempting
to improve the algorithms (Mirkin et al., 1995; Guigo et al., 1996; Page and
Charleston, 1997; Zmasek and Eddy, 2001; Bansal and Eulenstein, 2008; Wehe
et al., 2008). More recently, statistical models of gene family evolution have been
developped (Arvestad et al., 2003; Dubb, 2005), in which gene duplications and
gene losses are modelled by a birth-death process, with birth and death proba-
bilities shared by all lineages. As for models of sequence evolution that are able
to infer “hidden” substitutions, and contrary to methods based on parsimony,
the use of a birth-death process permits to infer events of gene duplications
and gene losses that have not left any trace on the resulting topology. This
biological realism however does not come without a cost, and it seems difficult
for a program implementing such a model to analyse thousands of genes simul-
taneously, for dozens of species, to infer a species tree. Such datasets however
are already available, as more than 83 whole genomes from Eukaryotes have
been sequenced and published to date (Liolios et al., 2008). A model that could
achieve the analysis of such datasets without forfeiting too much on the realism
side is therefore needed.

A simplification inherent to the models of Arvestad et al. (2003) and Dubb
(2005) is that duplication and loss probabilities are constant over the whole
species phylogeny. However, all branches in a species phylogeny have not un-
dergone the same amount of duplications and losses: modelling such events with
a single probability for duplications and another one for losses, independently
of the position of the event in the species tree, may not be appropriate.

We therefore choose to associate a particular pair of duplication and loss
rates {d;,[;} to each branch i of the species tree. To compute the likelihood of a
rooted gene family tree, we use a reconciliation algorithm of Zmasek and Eddy
(2001) (Fig. 1), in which nodes of the gene tree are mapped onto nodes of the
species tree : the basic principle is to map the nodes of the gene tree to the
nodes of the species tree according to the following principle. For a node u, L(u)
denotes the set of species that have a gene that is a descendant of u, and for a
set of species S, lca(S) denotes the node that is the last common ancestor of
all species in S. Then a node w in the gene tree is mapped to A(u) = lca(L(u)).
Moreover, “hidden nodes” in the gene tree, i.e. nodes that are not visible in the
gene tree because one of their two descendants has been lost, are also mapped
to nodes of the species tree.

In Zmasek and Eddy (2001), this mapping aims at providing a most parsi-
monious scenario of duplications and losses in the gene family that explains the
difference between a rooted gene tree and a rooted species tree: a duplication
event is associated to a node u of the gene tree if it has as least one child v such
that A(u) = A(v), and a loss event is infered every time v is a child of u in the
gene tree, while A(u) is not a child of A(v) in the species tree.

Here, we do not infer scenarios, but integrate on all scenarios that may
explain this difference, to compute a likelihood. So for example if a gene loss is
infered by the algorithm of Zmasek and Eddy (2001), we consider the possibility
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Figure 1: Mapping between the species tree and a gene tree. a: Species tree, with
its nodes numbered, from 1 at the root to higher numbers as nodes are further
from the root. b: Gene tree rooted at a node showing the most parsimonious
duplication/loss scenario along the tree. The nodes are numbered in reference
to the species tree. c: Same gene tree rooted in a random position, numbered
in reference to the species tree. The most parsimonious rooting position is on a
branch linked by any extremity to a node numbered as 1.

of a duplication followed by two losses, or even more unparsimonious scenarios.
This integration thus accounts for hidden events, just as models of sequence
evolution account for hidden substitution events.

To each node u of the species tree, let 7 (u) be the subforest of the gene tree
which is the graph induced by all nodes mapped to u by the function A. For a
component T of 7 (u), a vertex is an exemplar if it is a leaf, or an internal node
of degree 2, or the root if it has degree 1. Every component T corresponds to a
number of duplications in the most parsimonious solution of Zmasek and Eddy
(2001), which is equal to the number of exemplars minus one. In particular, if T
is composed of a single node, it corresponds to an evolution without duplication
event in the branch 7 of the species tree leading to u. The number of exemplars
of a component T of 7 (u) gives the number of paralogous genes obtained by
the duplication process (one if T is a single node).

To take into account the possibility of unparsimonious scenarios, we use a
birth-death process, where birth corresponds to duplication, and death corre-
sponds to loss. Not all possible scenarios are yet taken into account, as we take
for granted the number of paralogous genes after a duplication process witnessed
by all the exemplars of a component of 7 (u). In case we count 0 exemplar in a
component, we neglect the probability that more paralogous copies have been
generated at node wu, and lost later. We believe this approximation may not be
too harmful to our model.

Formulas for computing the probability P, (k) that a component T of 7 (u)
has k exemplars, or that a loss of gene is inferred at node w (this corresponds
to the case & = 0) can be found in Thorne et al. (1991) who used a birth-death



process to model insertions and deletions in sequences:

P,(0) = 1, xp
Puk) = (1—dyxB)x (=1, xB) x (d, x )1 with k € [1;+o0[
where

1—edumlu

(1)

Using these branch probabilities, and assuming the evolution of a gene along
a branch is independent of its evolution along another branch, one can compute
a likelihood for a reconciliation (the duplication/loss evolution of a gene family),
L(reconciliation), as follows (Equation 2):

=3

u — Ay X etu—lu

L(reconciliation) = HPu(ku) with &k, € [0; +o00] (2)

This product is computed over all nodes u of the species tree, and for each
node u, over all components of 7 (u) and all losses events inferred by the algo-
rithm of Zmasek and Eddy (2001). Then k, is the number of exemplars in a
component T of 7 (u), or 0 for a gene loss.

Equation 2 allows to compute the likelihood of a reconciliation of losses
and duplications, but does not take into account sequence evolution. A family
likelihood, which combines the likelihood of a reconciliation and the likelihood
sensu Felsenstein (Felsenstein, 1981) of a gene tree, is obtained as follows:

L(family) = L(reconciliation) X Lpeisenstein(gene tree) (3)

L(family) permits to compute the likelihood of a gene family given a species
tree. This likelihood can then be maximized with respect to the gene tree, or
with respect to a species tree. If many gene families are to be analysed in
parallel, assuming that they evolved independently from each other, both gene
trees and species tree can be optimized, by maximizing the following likelihood

(eq. 4):

L(Species & gene trees) = H L (family) (4)
Ge{All gene families}

Such a joint search requires specific algorithms.

Algorithms to simultaneously infer species and gene
trees

Finding the best reconciliation between a gene tree and a
species tree: rooting the gene tree

For a given rooted binary gene tree and a given rooted binary species tree,
finding the reconciliation mapping A is achieved through an algorithm akin to
Zmasek and Eddy (2001). However, gene trees are not naturally rooted, unless
they are inferred through molecular clock models (Zuckerkandl and Pauling,
1962; Kumar, 2005) or through non-reversible models of evolution (Yang and



Roberts, 1995; Galtier and Gouy, 1998; Huelsenbeck et al., 2002; Yap and Speed,
2005; Boussau and Gouy, 2006). And even in such cases, there may be little
signal for the position of the root. Our procedure therefore roots gene trees
and searches for the root position on the best species tree. For a given rooted
species tree, the best root position on the gene tree can be found by comput-
ing the reconciliation likelihood for all possible root positions, and then taking
the root position that maximizes the likelihood. With this procedure, the most
likely root may differ from the most parsimonious root. However, this approach
is also very time-consuming, as for each gene tree with n leaves and each species
tree with ng leaves, 2n — 3 root positions need to be tried. In the algorithm of
Zmasek and Eddy (2001), a mapping between nodes of the gene tree and nodes
of the species tree must be obtained, through a gene tree traversal, which has
a complexity of O(n) in most cases. So the simplest algorithm to compute all
reconciliations for the 2n — 3 possible root positions would imply 2n — 3 tree
traversals, with a complexity in O(n?). Then scores need to be computed for
each of the 2n — 3 reconciliations. Computing the score of a reconciliation uses
equation 2, which involves O(n;) operations. If we consider that ny ~ n, we
obtain a total complexity on the order of O(n?) to get likelihood scores for all
possible rootings, which permits to choose the most likely one. To minimize the
number of tree traversals, Chen et al. (2000) relied on a double-recursive tree
traversal algorithm, which overall permitted to compute all scores associated
with the 2n — 3 reconciliations in O(n?). Instead, we used another approach
avoiding to try all root positions by considering that the most likely one should
not be too distant from the most parsimonious one: we save time by not com-
puting all 2n — 3 root scores. The rationale is based on the first step of Zmasek
and Eddy (2001) algorithm, which maps species tree nodes onto gene tree nodes
(Fig. 1). If the species tree has been numbered so that nodes close to the root
have smaller numbers than nodes far from the root, given an arbitrary root
position chosen on the gene tree, the most parsimonious rooting (Fig. 1b) will
be on a branch linked to a node whose index is the smallest on the gene tree
(Fig. 1c) (proof not shown).

Therefore, once a mapping has been computed given an arbitrary rooting,
to get the most parsimonious rooting, only branches linked to nodes with the
smallest index need to be tried. In our model, the most parsimonious rooting
may not be the most likely one; however, we assume that the most likely rooting
will not be very distant from the most parsimonious one. Consequently, to find
the root of a gene tree, the following procedure is applied:

1. Choose an arbitrary root and compute the mapping

2. Compute reconciliation scores obtained when rooting on a branch linked
to a node whose index is inferior to a certain threshold

3. Choose the most likely rooting

The threshold used is user-defined through a parameter ¢. For a gene tree with
smallest node index s, threshold = s + t.



Finding the best gene tree given a species tree: optimizing
the gene family likelihood

The preceding section explained how particular gene and species trees could be
compared to compute the most likely reconciliation score by looking for the gene
tree root. If gene trees could be known a priori, this reconciliation score would
be enough to search for the species tree by maximizing the product of all recon-
ciliation scores for all families. However, gene trees are not data but can only be
estimated based on a sequence alignment, for instance through maximization of
Felsenstein (1981) likelihood. The species tree can then be obtained according
to equation 4, and requires computing highest family likelihoods between gene
and species trees, where both reconciliation and Felsenstein (1981) likelihoods
are taken into account. To search for the highest family likelihood between a
gene tree and a species tree, only the gene tree is modified. This modification
can be obtained through commonly used tree search heuristics; for the sake of
rapidity, we used a simple Nearest Neighbor Interchange (NNI) (Guindon and
Gascuel, 2003) strategy, as follows:

1. For each branch of the current gene tree topology, a most likely reconcili-
ation score is computed for the two possible NNIs.

2. If a reconciliation score is better than the best current reconciliation score,
the reconciliation score is computed.

3. If a reconciliation score is better than the current reconciliation score,
the NNI is accepted and the algorithm resumes with the new gene tree
topology.

Step 1 in this algorithm implicitly assumes that the starting gene tree is the most
likely according to Felsenstein (1981) likelihood, as it only computes the recon-
ciliation score, which amounts to considering that only the reconciliation score
can increase. In practice, starting trees can be obtained by PhyML (Guindon
and Gascuel, 2003) for instance.

Finding the best species tree given several gene family
trees: optimizing the full likelihood

The likelihood defined in eq. 4 can be used to compute the likelihood of a species
tree and gene trees given sequence alignments. As the preceding sections have
shown how one could compute the likelihood of a gene family, what remains
to be explained to maximize this likelihood is how to explore the species tree
topology as well as explore the space of parameters ruling the branch-specific
probabilities of gene loss and gene duplication.

Finding the most likely species tree topology

To find the most likely species tree topology, classical algorithms can be used,
with the simplification that the species tree does not have branch lengths, and
the added difficulty that it needs to be rooted. The chosen algorithm is as
follows:

1. For each subtree (node) in the species tree:



e prune the subtree

e regraft the subtree in all possible positions in the species tree, and
compute the associated likelihood

e if such a Subtree Pruning And Regrafting (SPR) increases the likeli-
hood, keep it

2. On each branch of the current species tree topology, root the species tree;
as soon as a rooting improves the likelihood of the species tree, adopt it.

3. For each branch of the current species tree topology, perform all NNIs; as
soon as a NNI improves the likelihood of the species tree, adopt it.

4. Tterate points 1 to 3 until no improvement is observed for a large number
of steps.

Setting the branch-wise duplication and loss probabilities

In parallel to the species tree topology, values for the branch-wise rates of gene
duplication and loss need to be found. This research can use the fact that
branch-wise duplication and loss rates are independent of each other. Finding
the most likely d; and I; for a branch i therefore only requires considering the
counts of events on this branch i. To this end, one could use numerical optimiza-
tion techniques, or use an analytical solution. For the sake of rapidity, we chose
an approximate analytical solution. Normally, one should consider all counts
of times where there were k lineages at the end of branch i, with k € [0;00] ;
instead, we only use the numbers of times 0, 1 and 2 lineages have been found at
the end of branch i. Using these counts only, approximate maximum likelihood
values of d; and I; can be computed as follows:

L _InGREkE Y+

2x —yz — 22 +yzx

. _ln(zﬂZQjZ)x(y—&—Zz)

zx—yz — 22 +yx

where z,y, z are the numbers of times 0, 1,2 lineages are found at the end
of branch i, respectively.

The algorithm as a whole

To search for the most likely species tree and simultaneously for the most likely
gene family reconciliations under our model, we rely on a server-client architec-
ture, schematized in Fig. 2.
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Figure 2: Server-Client architecture of the program. The server is in charge
of the species tree search, as well as of the duplication and loss rates. It com-
municates with clients, each one in charge of one or more gene families, for
which they build reconsiliations and compute family likelihoods, using sequence
alignments.



The complete algorithm permitting to estimate the species tree simultane-
ously with gene trees is summarized in the following pseudo-code.

Algorithm 1 Optimizing the species tree as well as gene trees
likelihood threshold=1e-6
|T|=2
if (server) {
get initial Species tree (or build a random one) and store it into currentS
and into oldS
get the set of gene families to analyse
create n clients
send each client the set of gene families they are in charge of
send each client currentS and rates of duplication and loss
currentlk = -INFINITY
while (iterations_ without _improvement < limit) {
receive family likelihoods and counts of gene duplications and losses
from the clients
compute total likelihood (newLk) for currentS
if (newLk > currentLk)
then {0ldS = currentS ; iterations without improvement = O ;

else {currentS = oldS ; iterations without improvement ++ ;

change the topology of currentS and update rates of duplication and
loss
send each client currentS and rates of duplication and loss

}

else if client {
receive set of gene families
receive currentS and rates of duplication and loss
read alignments and PhyML pre-computed trees for each gene family
while (iterations without improvement < limit) {
compute family likelihoods
send to the server family likelihoods and numbers of gene duplications
and losses per species tree branch
receive currentS and rates of duplication and loss
}

Communications between the server and clients regarding the itera-
tions _without improvement variable are not shown.

Details of implementation

As the algorithm starts from a random species tree, reconciling gene family
trees with it can take a very long time. To save computation time, during the
first iterations, only reconciliation likelihoods are computed, i.e. gene family
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trees are not modified. During these steps, branch-wise duplication and loss
probabilities are the same for all the branches of the species tree, in order not
to be trapped in a local maximum. Once the species tree has been optimized, a
second optimization phase is started, where gene trees are modified, and values
of duplication and loss rates are truly branch-wise. The program has been im-
plemented with the help of the Bio++ (Dutheil et al., 2006) and Boost libraries
(Boost, 2008), and can run on clusters of computers using the Message Passing
Interface (MPI).

Conclusion

We have built a program that can run on several computers in parallel to recon-
struct a species tree simultaneously with gene trees in a maximum likelihood
framework. Several modifications or improvements could easily be implemented.
First, all gene trees are considered to have branch lengths independent of the
branch lengths of other genes. This is clearly unrealistic. Instead, one could
use an approach similar to Rasmussen and Kellis (2007), by associating branch
lengths to the species tree, and having one scaling parameter per gene family.
This would also offer the highly desirable possibility to produce a dated species
tree.

Second, better models of sequence evolution could be used. Noticeably, non-
homogeneous models, that tolerate datasets showing heterogeneities in compo-
sition, could be used. With such models, different models of evolution could be
associated to different branches of the tree, thus accounting for genome-wide
biases. This addition would add another signal for rooting the species tree, a
notoriously difficult problem, as non-homogeneous models are non-reversible.
Third, other events than gene duplications could be modelled, such as gene
transfer and trans-specific polymorphisms (Wiuf et al., 2004). Such events
would only affect the reconciliation likelihood and would thus be easy to in-
tegrate.

Fourth, dependencies between gene trees could be added. Genes may share
a history because they have remained close to each other on a chromosome
throughout their history, in which case Hidden Markov Models as in Hobolth
et al. (2007) may be useful, or because they interact as part of their function, in
which case the more general framework of gene-to-tree maps (Ané et al., 2007)
may be relevant. Searching for correlations between genes may require larger
changes in the programs however, as our algorithmic structure relies on the fact
that genes can be considered as independent of each other.

Fifth, our program could easily be modified to compute Bayesian posterior
probabilities instead of likelihoods, and to sample from posterior distributions
through Markov Chain Monte Carlo distributions instead of providing maxi-
mum likelihood estimates.

We believe that approaches such as this are going to be very useful in the future.
Distinguishing the species tree from gene trees may be costly but is a necessary
step towards a proper estimation of the tree of life.
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Problems and Perspectives for the
Evolutionary Study of Genomes

My thesis has addressed issues related to phylogenetic reconstruction, as well
as issues related to the reconstruction of the mechanistics of evolution. Both
fields are expected to make much progress in the next years, and this last arti-
cle attempts to foresee what these advances will be, by analysing recent literature.

This article has not been submitted yet.
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Abstract

As primary semantides (Zuckerkandl et Pauling, 1965), genomes conceal a vast intricate record of their
carriers descent and evolution. To unravel this information, Phylogenetics must assimilate all aspects
of genome evolution. In return, much biology can be learned. The emerging field of Phylogenomics
incarnates this power of genomics and evolution to mutually highlight each other. New approaches
integrating population genetics, genome evolution, geography, geology and/or ecology into phylogenetic
models are now emerging and arguably anticipate the future of this discipline. In this article, we review
recent advances, and discuss possible developments towards a comprehensive reconstruction of the history
of life.

1 Introduction

Like many brilliant ideas, the tree of life is a simple concept. When Charles Darwin, building on a theme
initiated by his precursor evolutionists, elaborated upon the metaphor of a tree “which fills with its dead and
broken branches the crust of the earth, and covers the surface with its ever branching and beautiful ramifi-
cations” (Darwin, 1859), he was probably picturing a rather plain, bifurcating, occasionally multifurcating
pattern of relationships among species. No doubt that, being familiar with the tendency of living systems
to produce exceptions to most rules, he would have been able to further anticipate the existence of complex-
ifying paths such as chimerism and endosymbiosis. However, the difficulty of the task of reconstructing a
fully resolved and dated history of life could hardly be foreseen only a few decades ago. The breadth of life’s
diversity, the interwoven routes of evolution, and the complexity of phylogenetically operational characters
still hamper attempts of evolutionists to produce a comprehensive picture of biological evolution. Sometimes
to the point of resignation (Doolittle, 1999; Rokas et Carroll, 2006). And in the current deluge of genome
sequences, it has become more and more difficult to retreat arguing that “more data are needed”.

Long before Zuckerkandl and Pauling proposed that genes could be used as documents of evolutionary
history (Zuckerkandl et Pauling, 1965), Sturtevant and Dobzhansky (Sturtevant et Dobzhansky, 1936) had
already built what is to our knowledge the first genome phylogeny: a tree of Drosophila pseudoobscura
strains, based on the parsimonious reconstruction of large chromosomal inversion scenarios. Since then,
many different approaches have been devised to exploit the information contained in genomes and build
species trees (see Snel et al. (2005); Delsuc et al. (2005) for recent reviews). Today that we have hundreds
of complete genome sequences, the results of these phylogenomic approaches are mixed: several “highly
resolved” Trees of Life have been published that conflict with each other (Brown et al., 2001; Battistuzzi
et al., 2004; Ciccarelli et al., 2006), and their interpretation has been controversial (Bapteste et al., 2005;
Dagan et Martin, 2006). However, this apparent dead end could be escaped by picking a few methodological
locks. The recent litterature is flourishing with first attempts at coupling inference of species and gene
phylogenies with models of population genetics or genomic evolution. These approaches pioneer the truly
integrative science that phylogenomics ought to be: a science that combines various levels of complexity
and different fields of evolutionary biology. In this paper, we propose to review specifically these recent
breakthroughs. We will also discuss and try to anticipate the further developments that are needed to
reconstruct a comprehensive history of life.

2 The “orthologous gene family” myth

Why have phylogenomics methods been unsuccessful at producing an undisputed tree of life? Although
abundant, molecular characters appear of considerable complexity for phylogenetics. Coined by Walter
Fitch (Fitch, 1970), the term “ortholog” designates genes that are related through speciation events, as
opposed to “paralogs”, which are the result of duplications. Therefore, with the intent of reconstructing a
phylogeny of species, the interpretation of trees based on orthologous genes should be straighforward. But
the combined effect of hidden paralogies, lateral gene transfer (LGT), trans-specific polymorphism (TSP)
and phylogenetic artifacts (Box 1) makes the process of reconstructing the history of species difficult.

A common opinion in the field of phylogenomics is that data are so abundant that one can generously
cut into them to get an ideal dataset. Indeed, one of the reasons why current approaches have been yet
unsuccessful at producing a comprehensive view of the evolution of life, is precisely because they are usually



not comprehensive. When reconstructing the tree of life through the combination of gene families, one usually
choses those genes having representatives in most species under study, and showing no obvious evidence for
complexifying events in their histories such as duplication or LGT. To infer deep phylogenetic relationships,
only a handful of genes are therefore used, with the hope that the phylogenetic signal for the species tree
will prevail. However, combining data in the presence of LGT, paralogy or TSP can be positively misleading
(Brown et al., 2001; Degnan et Rosenberg, 2006). Trying to first remove conflict among combined datasets
further decreases the number of genes under study, making the resulting tree appear as an anecdotal picture
of the history of life.

At the other extremum, exhaustive gene repertoires have been used for phylogenetic inference, but at
the price of ignoring the phylogenetic information carried by sequences to focus on the presence and absence
of genes in genomes. However, not considering gene histories seems unsound when we know so little about
the probabilities of gene transfers and losses, and the models of evolution applied for such reconstructions
are usually overly simple, with all genes having the same probability of being acquired or lost on the entire
tree. Although other rare genomic changes (RGC) (Rokas et Holland, 2000) have been used for phylogenetic
inference of deep phylogenies, most of them are expected to be just as sensitive to hidden paralogy and
lateral gene transfer.

The impact of most processes described in Box 1 is only expected to increase with more data. So what can
we do, when we come to admit that, in spite of the deluge of genomic sequences, there is no and will never be
a perfect dataset, devoid of lateral gene transfer, incomplete lineage sorting, hidden or apparent paralogies,
convergent gene losses, systematically biased or accelerated evolutionary rates etc...? The answer is probably:
exploit the evolutionary significance of these events. A proper modelling can not only improve phylogenetic
reconstruction, but also bring further insight into the evolution of life: lateral gene transfer may for instance
provide strong support for the monophyly of some groups of species and unvaluable information about the
relative timing of clade diversification and ecological affinities; duplications and losses being the hallmarks
of genome dynamics, can be used to better understand the relationships between genomes structure and
species diversification or ecology; incomplete lineage sorting offers previously unforeseen opportunities to
estimate ancestral population sizes and divergence times. Interestingly, these three sorts of phenomena can
be modelled similarly.

3 Phylo-gene-ethics

The reconstruction of gene histories traditionally relies solely on a gene alignment, and a model of nucleotide
or amino-acid substitution. There are however additionnal constraints that can be enforced to a gene tree
during the process of reconstruction: the most obvious biological knowledge that can be used to improve gene
tree reconstruction is the fact that every gene evolves within the banks of a species phylogeny. According
to this view, a gene tree is a deformation of the species tree through the prism of the evolutionary events
described above (Fig. 1). If we are able to correctly model the different processes that make genes and
species tree differ and if several genes that have evolved under this same constraint can be treated together,
then gene and species trees can be searched simultaneously, which should result in better trees as well as
increased knowledge of the processes (Maddison, 1997; Suchard et al., 2003) (Fig. 2).

Estimating genes and species history can thus be achieved through a hierarchical structure, on top of
which a species tree is inferred from gene trees through models of gene family evolution, themselves inferred
from sequence alignments through models of sequence evolution (Fig. 2). The relationship between the
species tree and gene trees is two-ways: the species tree induces a probability distribution over gene trees
(some gene trees are more likely than others given a particular species tree), and in return, the inferred
distribution of gene trees informs about the species tree along which they were generated.

Considering that genes evolve in the context of a species tree should result in better gene trees. Indeed,
there are several reasons why a reconstructed gene tree may differ from the true gene tree: gene sequences may
have undergone too many substitutions (possibly leading to long branch attraction), sequence compositions
may widely differ from one gene to the other (compositional heterogeneity), or gene sequences may be so
constrained or so small that there is simply not enough signal in these to reconstruct their history. In such
cases, classical phylogenetic methods will output gene trees that may be very different from the true trees.
Injecting a species tree into the process of inference can counterbalance reconstruction artifacts, and should
thus result in better gene trees.



Figure 1: Gene trees are deformed reflections of the species tree that constrained their evolution. Credit
Frangoise Boussau

Three natural processes may produce gene trees different from species trees: trans-specific polymorphisms,
duplications, and Lateral Gene Transfers (Box 1). Consequently three different models of gene family
evolution can be devised to model gene family evolution. In the next paragraphs, we will present models
and algorithms that have been developed to account for the processes of gene family evolution.

4 Population and species histories

It might not be obvious a priori why processes acting at the population level influence species phylogenies.
Recent work (Degnan et Rosenberg, 2006) however showed that, in some conditions of population sizes,
population structures and divergence times, most gene trees differ from the species tree, and concatenating
these genes will converge to an incorrect estimate of the species tree. Although the impact of population
genetics processes on gene tree topologies may not always be so severe, coalescent theory (Kingman, 1982)
predicts that under neutral evolution a proportion of gene trees will differ from the species tree through
TRANS-SPECIFIC POLYMORPHISMS (TSP) (Fig. 1). More precisely, if the number of generations separating
two speciations is not very large compared to the population size observed between these two speciations,
it becomes likely that the coalescence of genes present in two species is more ancient than the previous
speciations, which results in a gene tree different from the species tree. The amount and types of gene tree
/ species tree incongruences thus inform about divergence times and ancestral population sizes. Models of
population genetics improve the reconstruction of a species tree, and may even be the only way to get a
correct species tree in some cases (Degnan et Rosenberg, 2006; Kubatko et Degnan, 2007; Rosenberg et Tao,
2008).

Models of TSP based on the coalescent framework (Kingman, 1982) have been proposed several times
(Beerli et Felsenstein, 1999; Rannala et Yang, 2003; Maddison et Knowles, 2006; Liu et Pearl, 2007; Carstens
et Knowles, 2007). The first models assumed a known species phylogeny and estimated divergence times along
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Figure 2: Phylogenetic awareness: the two paths from sequences to species tree. In the “unaware” path (the
traditional way of inferring species phylogenies) each stage of the phylogenetic inference is essentially inde-
pendent from the steps up- and downstream. In addition, sequence alignments have to pass different filters in
order to make gene trees readily understandable as species trees (abscence of duplicates, LGT...). In contrast,
the “aware” path models the dependency between each step and degree of complexity using knowledge from
different fields of biology (red ellipses, the list is not exhaustive): alignments can be statistically estimated si-
multaneously with gene trees, using models of sequence evolution that incorporate insertion/deletion events;
and models of gene family evolution incorporating LGT, duplication and/or incomplete lineage sorting spec-
ify the dependency between gene trees and species tree. Two ways arrows represent these dependencies,
and continuous arrows represent gene tree and species tree searches. The dependency between gene family
annotation, alignment and phylogenetics has not been yet explored, but could theoretically be modelled (see
text for discussion). The schematic representation of the synchronous search for species trees, gene trees,
gene alignments etc... suggests an obvious achitecture for parallelizing this search.

with ancestral population sizes (Beerli et Felsenstein, 1999; Rannala et Yang, 2003; Maddison et Knowles,
2006); more recent ones can also estimate the species phylogeny (Liu et Pearl, 2007; Carstens et Knowles,
2007). Up to now, no approach has inferred both gene trees and species trees simultaneously, although this
would be the natural but costly approach to take. For instance, Carstens et Knowles (2007) first estimated
gene trees in the maximum likelihood framework from sequence alignments; they then used these trees to
compute the likelihoods of candidate species tree topologies according to the coalescent model. All evaluated
species trees were then compared using likelihood ratio tests. Simulations showed that this approach con-
siderably outperformed concatenation: species trees were correctly reconstructed using the coalescent-based
approach even for very recent and close speciations, whereas concatenation trees were most often different
from the true species tree in the same conditions. Instead of maximum likelihood, Liu et Pearl (2007) used



a Bayesian framework through MARKOV CHAIN MONTE CARLO (MCMC) sampling. They went a step
further towards the joint recontruction of gene trees and species trees, by recognizing that if species tree and
ancestral population sizes can be estimated based upon gene trees, they also influence gene trees in return.
Their approach is composed of three steps: first, gene trees are reconstructed using MrBayes (Huelsenbeck
et Ronquist, 2001), approximately accounting for an unknown species tree; second, a species tree is inferred
based on the distribution of gene trees obtained previously; third, the approximation made during the first
step is corrected. In the end, for each sequence alignment, a distribution of gene trees is obtained, as well
as distributions of species trees and ancestral population sizes. As for the formerly described approach, this
method was found to have a much better fit to the data than gene concatenation; moreover this Bayesian
approach is superior to the maximum likelihood one in several respects, as it can analyse a larger number
of species, allows different ancestral population sizes for different nodes of the species tree, and can estimate
all parameters of the model.

Several confounding factors from population genetics however may need to be modelled to get correct
estimates of species trees, gene trees, divergence times and ancestral population sizes. Notably, selection will
affect the gene trees in a way that can be misinterpreted in terms of population size. Balancing selection, for
instance, will favor TSPs in a manner virtually independent from population size and mimic the evolution of
a neutral gene in a large population; strong purifying selection on the other hand will mirror trees obtained
on neutral loci in small populations. Similarly, migration will also introduce discording gene trees, and
therefore calls for more complex models (Innan et Watanabe, 2006).

5 Duplications and losses

The combined action of gene duplication and loss considerably complexifies gene trees (Fig. 1). Even a
gene family with only one representative per species may harbour events of duplication and loss, yielding a
gene tree different from the species tree. Models of gene family evolution taking into account duplications
and losses have been proposed by Arvestad et al. (2003) and Dubb (2005). In both cases, the evolution
of a gene family is modelled by a birth-death process running along a species tree: “birth” corresponds to
gene duplication, and “death” to gene loss. If in their original model, both gene trees and species trees
were fixed, Arvestad and co-workers (Arvestad et al., 2004) later combined their model of gene family
evolution with a model of sequence evolution, so that given a species tree, likelihoods of gene trees can
be computed. The model has been implemented in a program that can estimate gene trees and gene
orthology /paralogy probabilities given a species tree, through Bayesian MCMC integration. The estimation
of a species tree however was only tackled theoretically, for computational reasons: the program therefore
needs a user-input species phylogeny, but can compute gene trees that are biologically more meaningful than
if they had been inferred based on a sequence alignment alone. In addition, this model provides posterior
probabilities of orthology and paralogy for each pair of genes, which could be further used as an aid for
functional prediction. However, to date, these models use a single duplication probability and a single loss
probability for all branches of a tree, even though it is known that different lineages undergo different rates
of duplication and loss. Future models should cope with this inhomogeneity of the evolutionary process to
properly depict gene family evolution. Moreover, relying on a known species tree for building accurate gene
trees is certainly optimistic in several cases: just as Arvestad et al. (2004) program integrates over scenarios
of duplications and losses with respect to a given species tree, a better statistical estimation of gene tree and
of orthology /paralogy probabilities should be obtained by integrating over the distribution of species trees.
Such a model would provide a species tree built using more than the genes that happen to be single-copy
in most genomes and may help resolve some difficult phylogenies (Dunn et al., 2008), and at the same time
clarify the dynamics of genome expansion/shrinking over the entire tree.

6 The reticulated tree

When modelling lineage sorting and duplication, it seems reasonable to consider that there exists an un-
derlying species tree, i.e. a tree depicting the history of vertical inheritance in the genome. In the case of
Lateral Gene Transfer however, the issue of whether the concept of a species tree applies has been discussed



at length (Doolittle, 1999; Ochman et al., 2000; Kurland et al., 2003; Daubin et al., 2003; Lerat et al., 2003).
Today, it seems clear that the phylogenetic information of gene trees is structured in a way that suggests at
least some vertical signal in the history of life, but the debate still doesn’t appear to be settled. The current
confusion on this topic might be due only to inappropriate methods. Indeed, most gene families have had
time, during their history, to be transferred among distant organisms. And if one could find a family devoid
of any evidence of transfer today, further sampling of genetic diversity would certainly bring some. However,
does it mean that there is no vertical signal to be found in gene trees? An appropriate modelling of LGT
would probably help to clarify the issue.

Suchard (2005) reached a first stage in the elaboration of such a model. In his model, a species tree
produces a distribution of gene trees through topological rearrangements mimicking LGT, and gene trees are
evaluated with respect to gene alignments. The whole model was implemented in the Bayesian framework
with MCMC sampling. The analysis produced further evidence for the “complexity hypothesis”, that genes
which are part of large protein complexes are less subject to LGT; however, the dimension of the topological
space that can be reached through LGT simulation from a single species tree limited the applicability of the
method to six species. Other approaches using fast algorithms reconciliating gene and species trees under
a LGT model may help tackle this problem (Addario-Berry et al., 2003; Hallett et al., 2004). The result of
a program implementing such a model would be a species tree decorated with LGT frequencies, and would
thus permit to formally test the “tree of life” hypothesis: are the frequencies of transfers found on each
branch such that no tree should be preferred over all the other possibilities? Are there a few tree topologies
that are found significantly more often than others? Can we relate these topologies to ancient events of
endosymbiosis or ecological shifts? Are species sharing similar ecological niches exchanging large numbers of
genes? Are different types of genes differentially transferred? These questions are the object of an impressive
amount of work (Beiko et al., 2005; Ge et al., 2005; Zhaxybayeva et al., 2006; Choi et Kim, 2007; Dagan
et Martin, 2007) that would strongly benefit from a proper statistical framework, that does not take gene
trees as data, but as statistical estimates from gene sequences themselves. In addition, gene transfer events
constitute informative characters for phylogenetic reconstruction (Huang et Gogarten, 2006), and provide
relative dates for nodes of a species tree: if a descendant from node A gives a gene to an ancestor of node
B, this means that node B is more recent than node A. Considering the immense difficulty of dating nodes
in the prokaryotic tree of life where fossils are scant and at best difficult to compare to extant species, such
a relative dating would certainly be highly valuable.

7 Computational challenges

The above-described models did not infer at the same time species tree, gene trees and parameters of the
model of gene family evolution, or did so for a very modest number of species (Suchard, 2005). In fact, the
hierarchical structure including models of gene family evolution (Fig. 2) represents an interesting challenge
for algorithmics. Searching for a gene tree based on an alignment is already an intimidating task, as the
number of topologies increases more than factorially with the number of leaves; searching for both a species
tree and several gene trees at the same time is even more difficult: for each species tree, one needs to
estimate/sample corresponding gene trees. This computational space explains why no program has yet been
devised that could efficiently infer both gene and species trees simultaneously. There is however an obvious
way to parallelise computations through an architecture based on a server and several clients: a server node
would be searching for a species tree, while client nodes would, for each species tree, search corresponding
gene trees. Such a parallelisation would be necessary to compute trees based not on a few genes for a few
species, but on whole genomes, which may require hundreds or thousands of computers running for several
days.

The most complete model of gene family evolution would account for gene transfers, duplications, losses
and discrepancies in lineage sorting, but may be difficult to devise while avoiding overparametrization (Box
2). However, progress in algorithmics may render such models computationally tractable (Hallett et al., 2004;
Than et al., 2007), and allow inference of the relative contributions of these events to the large amounts
of incongruences observed in Prokaryotes for instance. To be biologically realistic, such models should
associate different probabilities of gene duplication, loss and transfer to different branches of the species tree.
If modelling all three types of events for a given branch turns out to be too difficult, an economic alternative



would allow different kinds of events for different parts of the tree, or more elegantly automatically affect
models to regions of the tree.

Even a model incorporating trans-specific polymorphisms, LGT, and duplication/loss may be over-
simplistic if it does not account for dependencies between genes. For instance, two neighboring genes,
from a bacterial operon or from a Eukaryotic chromosome, are more likely to share a similar history than
genes from different regions of the genome. Coevolution may also affect genes that interact as part of their
function (Barker et Pagel, 2005; Sémon et Wolfe, 2007a; Aury et al., 2006). Accounting for effects of spatial
proximity on gene histories can be achieved through HIDDEN MARKOV MODELS (HMM), as recently used
by Hobolth et al. (2007) to infer recombination hotspots simultaneously with ancestral population sizes and
divergence times. Another more general approach to model coevolution may use gene-to-tree maps (Ané
et al., 2007), with adequate models of dependency. Gene-to-tree maps are objects which associate genes with
distributions of trees: two genes that have co-evolved for a part of their history will show partially similar
tree topologies. How similar their topologies will be depends on the type of coevolution, and this can be
injected into a statistical model through prior probabilities: for instance, two interacting genes are a priori
more likely to share tree topologies than genes that are part of two totally different pathways.

Overall, accounting for the evolutionary processes acting at the gene family level is mandatory if one
wants to avoid bias in estimating a species tree and gene trees; additionally, proper models of gene family
evolution could provide more information than the mere pattern of species diversification, such as divergence
times and ancestral species effective population sizes. Accurately reconstructing gene trees would even offer
new possibilities to study the evolution of genome contents: up to now, genome content reconstructions only
relied on counts of genes (Snel et al., 2002; Boussau et al., 2004; Hao et Golding, 2008). Using gene trees
instead would probably greatly improve inferences.

8 The alignment layer

No matter how sophisticated models of gene family evolution may get, if the alignments associated with
gene families are incorrect, so will probably be the resulting gene and species trees. The classical textbook
representation of phylogenetic reconstruction is a three step process: first homologous genes are selected,
then aligned (the phylogeneticist may intervene here and esthetically polish the alignment), and finally a tree
is built from the alignment (Fig. 2). This view however amounts to considering a sequence alignment as data
whereas it is an estimate: most alignment programs use heuristics to place gap characters into sequences
(lines) so as to organize putatively homologous sites into columns. The optimality of gap placement is
assessed with respect to a score, which penalizes gap insertions, gap extensions, and substitutions. In
the end, the alignment is the best estimate of the true alignment, according to arbitrary penalties which
may be unrealistic for the data under study, and according to a particular heuristics (Thompson et al.,
1994; Notredame et al., 2000; Edgar, 2004; Loytynoja et Goldman, 2008), which even if the penalties were
perfectly tuned to the data, may not find the optimum alignment; still, if the optimum alignment is found,
there is no guarantee that it is the true alignment. These sobering considerations have long been known, and
the limitations inherent to relying on a single alignment to infer a phylogenetic tree are now well accepted
(Lake, 1991; Landan et Graur, 2007; Wong et al., 2008). However, only recently have people tried to solve
the problem with a statistically sound approach, first with a probabilistic model of insertion and deletion
events combined with classical substitution matrices, and second by jointly estimating sequence alignments
and phylogenetic trees.

The first probabilistic model for the maximum likelihood alignment of two sequences was devised by
Bishop et Thompson (1986); a more realistic model was later proposed by Thorne et al. (1991), although
it considered only point insertions and deletions between two sequences. A year later, it was enriched to
account for multiple-site insertions and deletions (Thorne et al., 1992). Such models of statistical alignment
can be seen as relying on Hidden Markov Models (or on the closely related transducers (Bradley et Holmes,
2007)), in which states are “match®, "insertion“, and ”deletion”. More recently, as Bayesian methods have
become increasingly popular, several algorithms implementing Bayesian MCMC joint samplings of multiple
gene alignments and gene trees have been proposed (Mitchison, 1999; Hein, 2001; Holmes et Bruno, 2001;
Metzler, 2003; Lunter et al., 2005; Redelings et Suchard, 2005). Associating pairwise alignments based
on HMMs to each branch of a phylogenetic tree permits to easily compute the likelihood of a multiple
alignment (Holmes et Bruno, 2001), but integrating over the distribution of probable alignments and trees is



very computationally intensive. However, it appears as the best approach for estimating phylogenetic trees
while accounting for all the uncertainty in an alignment.

Moreover, Bayesian joint estimations of sequence alignments and phylogenetic trees offer the possibility
to better characterize the sequence evolutionary process, as probabilities of insertions and deletions can be
simultaneously estimated and compared with substitution probabilities. Contrary to most commonly used
software packages, programs that simultaneously estimate alignments and phylogenies do not treat gaps as
unknown characters, but can use insertion-deletion as phylogenetically informative events. In the case of SIV
and HIV viruses, this has been shown to improve resolution of the phylogenetic tree (Redelings et Suchard,
2007); as the rate of insertion/deletion is believed to be lower than substitution rates, their incorporation
into phylogenetic reconstruction may also help resolve ancient divergences. Moreover, as a deleted character
cannot be reinserted (otherwise it is not considered homologous), insertion-deletion events can impose a di-
rection on a phylogenetic tree, and therefore point to its root. Since rooting a phylogenetic tree is notoriously
difficult (Huelsenbeck et al., 2002; Yap et Speed, 2005), insertion-deletion events contain information worth
exploiting, for rooting gene trees, but also for rooting species trees. In this respect, working on a four-level
hierarchic model that would go from sequences to species trees through alignments and gene trees (Fig. 2)
may not harm too much the computational efficiency of alignment sampling. Indeed, the analysis of a single
alignment may be difficult in part because there is not much information contained in its sequences: there
may therefore be a lot of uncertainty on the phylogenetic tree, so that in a Bayesian setting, a large number
of gene trees need to be visited, and for each of these trees a large number of alignments need to be sampled.
However, if several genes were aligned in parallel, each gene would benefit from the information of other
genes through their common species tree: the distribution of probable gene trees would be narrower, and in
consequence it might take less time to jointly sample alignments and trees.

In addition to phylogenetic reconstruction, other sequence-based inferences can benefit from averaging
out the alignment. For instance, the detection of sites under positive selection has recently been shown to
depend upon the method of alignment used (Wong et al., 2008), and the reliablility of protein structure pre-
diction is inversely correlated to alignment ambiguity (Miklés et al., 2008): using a single alignment to predict
protein structure is therefore likely to lead to unproper inferences in portions of proteins that are uneasy to
align. Similar conclusions have been drawn for phylogenetic footprinting techniques. These methods benefit
from the comparison of several genomes to detect putatively functional regions, i.e. portions of sequences
that are more conserved than expected and therefore must be under purifying selection (Duret et al., 1993).
Their relying on a single alignment however affects the quality of inferences: when two different alignment
algorithms were used to annotate transcription factor binding sites in 12 drosophila genomes, they agreed
upon less than 60% (Stark et al., 2007). Consequently, Satija et al. (2008) devised an algorithm to detect
slowly evolving regions where the alignment was not fixed but integrated over, and showed that this inte-
gration could significantly improve binding site detection when the binding sites were not perfectly conserved.

9 Recombination and homology

As if the task of reconstructing gene and species histories was not complicated enough, considering gene
families as the unsecable bricks of phylogenetic reconstruction is incorrect. The shuffling of genetic material,
through the processes of recombination and gene fusion frequently produces genes with mixed phylogenetic
signals or even heterologous parts. Homologous recombination, the replacement of part of a sequence by a
relative will simply result in gene alignments with contadictory phylogenetic signal over their length. Gene
fusion will have a deeper impact, and affect the earlier steps of inference of gene homology, as only parts of
protein sequences can be considered homologous. In any case, the reconstruction of a gene family history
based on its entire length may be at best partial, or completely wrong. Although the only truly irreducible
homologous character is the nucleotide, these events may comprise relatively long streches of sequence, and
the conflicting signals can be identified.

Many approaches have been devoted to identifying events of homologous recombination in multiple gene
alignments, and recent models can simultaneously search for segment boundaries and histories in an alignment
(Minin et al., 2005; Kedzierska et Husmeier, 2006; Pond et al., 2006). Although this step has not been
undertaken yet, a species tree reconstruction model using multiple genes could be devised which introduces



these models of gene recombination into the LGT model described above.

Gene fusion and domain shuffling will probably be more complicated to model as they have an impact on
the primary hypothesis of homology, i.e., the attribution of a protein to a family. Protein homology is typi-
cally inferred from their overall similarity and several public databases propose automatically reconstructed
gene families based on this criterion. Although the clustering method used to group proteins may vary,
local similarities are usually dismissed, and protein sequences sharing homologous segments can be typically
placed in different (heterologous) families. The high significance of this protein modularity, which can be
viewed as a “level of homology” problem, can be gauged from the fact that there may be 19% of eukaryotic
exons that have undergone recombination with a non-homologous portion of the genome (Long et al., 2003).
Interestingly, compared to entire proteins, domains should provide information on deeper phylogenetic rela-
tionships. An ideal way of dealing with this issue would be to couple the processes of homology assignment,
sequence alignment, and phylogenetic reconstruction into a model able to reconstruct and combine trees at
different levels of homology.

10 Genome alignment

Reconstructing the evolution of genomes is not only reconstructing the history of their genes. Events such
as inversions, tandem duplications, chromosome fission/fusion also affect genomes, and need therefore to be
modelled to properly depict their evolution. However, the consideration of such events considerably com-
plexifies the alignment problem, and consequently most published approaches have been based on parsimony.
Recently, Larget et al. (2005) devised a Bayesian program to estimate distributions of ancestral genome ar-
rangements as well as the genome phylogeny in 87 animal species, using all the 37 genetic markers available
in the mitochondrial genome. The underlying model considered only inversions as possible rearrangements.
Using the same program Darling et al. (2008) analysed the distribution of rearrangement scenarios and finely
characterized the dynamics of 8 genomes of closely related bacterial strains, containing 78 conserved groups
of genes.

Devising a model of genome evolution taking into account inversions, duplications, losses, chromosome
fission /fusion would probably offer more insight into genome evolution, but constitutes a considerable chal-
lenge; further incorporating substitutions and insertions/deletions would build a model able to align whole
genomes in a statistical framework, and should result in improved understanding of genome dynamics, as it
is known that the genomic environment influences substitution pattern (Eyre-Walker et Hurst, 2001; Daubin
et Perriére, 2003; Lobry, 1996; Necsulea et Lobry, 2007). This may help test theories of speciation by chro-
mosomal rearrangements (Rieseberg, 2001), help detect and characterize whole genome duplications (Sémon
et Wolfe, 2007a), and pave the way for the reconstruction and study of ancestral genomes (Sturtevant et
Dobzhansky, 1936; Burt et al., 1999; Muffato et Crollius, 2008). Moreover, such approaches would offer an
integrative framework for the study of genome evolution and should help test for instance whether genome
complexity originates in small effective population sizes (Lynch, 2007). Additionally, it would provide an
excellent platform for genome annotation: if averaging out gene/region alignment improves robustness and
accuracy for a range of estimates (Wong et al., 2008; Satija et al., 2008; Mikl6s et al., 2008), one can expect
that averaging out genome alignment will improve annotation accuracy, as annotation is already known to
benefit from the comparative approach (Dewey et al., 2004; Engelhardt et al., 2005; Stanke et al., 2006).

11 Phenogenomics

Beyond information on molecular evolution and phylogeny, genomes conceal the footprints of ancient func-
tions, environmental constraints and selection pressures. Reconstructing the encoded phenotype of ancestral
organisms based on the analysis of the genomes of extant individuals may be the ultimate challenge of evo-
lutionary genomics. Recent attempts at combining models of phenotype and genome evolution foreshadow
the integrative approach that could solve this problem. It is possible to infer parts of an ancient organism
phenotype by reconstructing and characterizing one of its gene (for instance, (Gaucher et al., 2003, 2008)) or
by statistically predicting gene function with a model of function evolution (Engelhardt et al., 2005). Such
an approach could be extrapolated to the entire gene repertoire, thus improving previous approaches that
inferred phenotype based on gene content (Mirkin et al., 2003; Boussau et al., 2004; Makarova et al., 2006).
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However, much of a phenotype emerges from a network of interactions among genes. Using approaches
such as those described in preceding sections, the entire sequence of an ancestral genome may be inferred,
although with a great uncertainty for weakly constrained genome parts or for very ancient organisms. From
such sequences, an ancestral gene network can be resconstructed to infer the metabolic abilities of an ancient
organism, or get a glimpse at its morphology.
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Figure 3: Models of genome evolution: from raw genome sequences to ecosystems. Organisms can be
described at different levels of organisation, and for each level different models of evolution can be devised.
Jointly using these models of evolution can benefit the reconstruction of characteristics of ancient organisms.
The environment in which organisms live operates a direct selective pressure on the organism (continuous
arrow), which has repercussions on each organisation level (dashed arrows). Genomes may adapt to the
environment by shifting the composition of their genes, gene networks through the loss or acquisition of new
genes and new interactions between genes, and ecological networks by the appearance or disappearance of
new connections between organisms or altogether new organisms. There is thus a relation between the way
organisms function and their environment, which can be input into models of evolution for more accuracy.

To reconstruct the inner workings of million-years old cells, one would have to infer the entire signalling
pathways and complete metabolic cycles from genome data (Fig. 3). The reconstruction of regulation and
metabolic networks has been shown to greatly benefit from an explicit evolutionary model (Wiuf et al.,
2006; Ratmann et al., 2007; Pinney et al., 2007). Pinney et al. (2007) used a model of network evolution to
reconstruct the interaction network among bZIP transcription factors in the chordate ancestor. First, a phy-
logenetic tree of chordate bZIP proteins was built, and each node was identified as duplication or speciation
events. This information was then crossed with interaction data from extant proteins and a model of network
evolution was used to infer interactions in various ancestors in the Chordate tree. Interestingly, these au-
thors were able to show the robustness of this approach to experimental artefacts in determining interactions
between proteins. Such studies demonstrate the importance of evolutionary models to improve predictions
of protein interactions and genome annotation in general, as well as ancestral network reconstruction.

Once reconstructed, ancestral networks can be linked to phenotypic characteristics. Noticeably, metabolic
networks can be associated to the ecology of a microorganism, through “constraint-based reconstruction and
analysis” (Price et al., 2004). Using such an approach, Pal et al. (2006) simulated the reductive evolution of
intra-cellular endosymbiotic bacteria, and assessed the relative importance of stochasticity and selection in
the process. By randomly deleting genes from the genome of a free living Bacteria, monitoring the resulting
impact on the metabolic network and constantly selecting for viable intermediates these authors were able
to simulate a large number of artificial endosymbiont genomes. The resulting artificial genomes were similar
to each other and to actual endosymbiont genomes, which reflected selection for viable cells. However, they
also showed interesting differences inherent to the random order of gene deletions. In addition to simulations,
“constraint-based reconstruction and analysis” could be used for reconstruction: each reconstructed ancestral
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genome could be estimated under the constraint that the metabolic network it encodes should be able to
sustain a cell.

Signalling networks may also be linked to phenotypic variables, so that both could be jointly recon-
structed. For instance, based on empirical studies in mouse, Kavanagh et al. (2007) built a model of tooth
development which predicts the number and type of mollars based on the relative diffusion of two types of
proteins in the jaw mesenchyme. The model, which can predict dentition patterns in murine rodents, might
be able to predict tooth development among all mammals (Polly, 2007). The signalling pathway ruling the
development of teeth thus seems to have been broadly conserved for tens of million years. However, even
for networks that have undergone profound rearrangements in evolution, it may be possible to reconstruct
ancestral signalling networks jointly with phenotypic quantities using models of evolution of a continuous or
discrete character (Pagel, 1999; Pagel et al., 2004).

12 Ecologenomics

Among the scars that evolution has engraved in genomes are the traces of earth ancient ecosystems and
climates, geographical obstacles and geological catastrophes. Quite remarkably, models of sequence evolution
can also help assess ancient environments, transitory events and interactions among organisms.

For instance, mass extinctions may have left traces in the diversification pattern of species by promoting
the development of new branches of the tree of life on the ashes of the disaster. Testing this prediction
in mammals, Bininda-Emonds et al. (2007) found that the end-cretaceous extinction of dinosaurs did not
increase their diversification rate. However, broader genomes samples, better models of tree reconstruction
combined with models of diversification and extinction should improve our understanding of the factors
influencing speciation and extinction rates (Ricklefs, 2007).

Similarly, by distinguishing species tree and gene trees, models of trans-specific polymorphisms can
detect if a population is in the process of speciation (Knowles et Carstens, 2007). Studying speciation in this
framework could allow coupling external variables to assess the role of geographical or ecological factors in the
process. Integrative studies combining geography, ecology and sequence evolution are currently appearing,
and carry much promise (Wiens et al., 2007; Kozak et al., 2008).

One other type of external variable that could affect the evolution of a species is found in other species
with which it interacts. For instance, it has been hypothesized that the rise of angiosperms triggered the
diversification of ants (Wilson et Hdolldobler, 2005; Moreau et al., 2006). Generally, co-evolution between
species has been pervasive in the history of life, from examples as intricate as endosymbioses of mitochon-
drion or chloroplast to co-evolution between a host and its parasite (Biek et al., 2006; Linz et al., 2007). As
the evolution of two interacting partners informs each other’s, explicitly modelling such interactions would
benefit the inference of trees and life traits. Models of ecological evolution could be superimposed on models
of genome evolution to illuminate ancestral ecosystems through the reconstruction of ancestral ecological
networks (Fig. 3). Recently, Dunne et al. (2008) showed that food webs inferred from well-preserved fossil
assemblages dating from the Cambrian (>500 million years ago) were very similar to extant ones. Timeless
rules thus constrain ecological networks, suggesting that models of evolution could be devised to reconstruct
realistic ancestral food webs. From the study of coevolving species, one could go to the study of a whole
network of interacting organisms, and infer how they evolved through time, what were the changes in the
interacting partners or when a given species entered or left the network. Fully integrating evolution in the
study of ecology may prove useful if we are to predict how communities may react when affected by distur-
bance in trophic webs or by abrupt climate changes.

13 Geogenomics

If some species get extinct when confronted with a drastic environmental change, others survive and evolve
ways to cope with a new environment: a crisis may not be detectable only by its footprint on the pattern of
diversification and extinction, but because genomes have kept traces of an adaptative response. For instance
Christin et al. (2008) tested the hypothesis that a drop in atmospheric COs 32-25 million years ago triggered
the development of Cy metabolism in grasses, as Cy metabolism is more efficient than the more common
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C3 metabolism. To this end, they built a large dated phylogeny of extant grass species, and estimated
which ancestors already had a Cy metabolism through a probabilistic model. Then they tested whether Cy
metabolism had appeared significantly more often after the drop in atmospheric COy than before. Their
results showed that after 27.6 million years, transitions to C; metabolism occured at a very high rate and
transitions to C3 metabolism at a nearly null rate, whereas before that date, the rate of transitions to Cy
metabolism was null: this confirms there is a correlation between atmospheric CO, and the evolution of Cy
metabolism.

Prokaryotic organisms adapt to temperature through changes in the nucleotidic content of their ribosomal
RNAs (rRNAs) (Galtier et Lobry, 1997) as well the amino-acid content of their proteins (Zeldovich et al.,
2007). Consequently, by reconstructing ancient gene sequences, optimal growth temperature of extinct
organisms can be inferred. (Galtier et al., 1999) reconstructed ancient rRNA compositions of the last
universal common ancestor (LUCA) and found support for its mesophily. More recently, Boussau et al.
(2008) estimated growth temperatures for all prokaryotes in the tree of life, using both rRNAs and protein
sequences, and found evidence for two phases in the history of environmental temperatures: thermotolerance
first increased from a mesophilic LUCA to thermophilic ancestors of Bacteria and Archaea; and then steadily
decreased in the bacterial kingdom. This second phase had been previously reported by another study relying
on ancient gene resurrection (Gaucher et al., 2008), that showed that this decrease was very similar to the
evolution of ocean temperatures over the last 3.5 billion years (Robert et Chaussidon, 2006). Bacteria as a
whole may thus have continuously adapted their optimal growth temperatures to the average temperature
on Earth. Although this hypothesis is appealing and seems to fit the data very well, it would be even more
convincing if it relied on a statistical test of the correlation between these two tendencies. To this end, a
model could be built that reconstructs ancient gene composition, and simultaneously assesses the correlation
with environmental temperature as inferred from geology (Lartillot, 2008).

Overall, modelling interactions between species and with their environment through spatial or ecological
variables could greatly benefit the study of evolution. This should enable statistical tests of the significance
of correlations between environmental conditions and biological phenomena, and will enlighten how Earth
and its biosphere shaped each other in their billions of years of co-existence.

14 Conclusions and perspectives

“The past is never dead. It’s not even past” (Faulkner, 1951). The chronicles of life resonates in extant
genomes and we have only started to exploit the historical potential of macromolecules. New statistical
models of evolution, that fully exploit substitutions, gene duplication, loss and transfer, insertion-deletions
and rearrangements may not only yield a better resolved tree of life, but also a thorough representation of
the whole process. Through correlations between genomic properties and non-genomic variables, genomes
further document the history of interactions of organisms with each other and their environment. We can now
envision the reconstruction of the history of genomes along with those of metabolic or signalling networks,
phenotypes and environments.
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Boxes

Box 1: Discordance between a species tree and gene trees
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The identification of orthologous genes is not always unequivocal. First, Phylogeneticists usually rely on
the absence of duplicated copies in the datasets under study, but duplications may have occurred during
the history of a gene family without leaving obvious traces. This is particularly dramatic in the event of
reciprocal losses, when two species lose different copies of an ancestrally duplicated gene. The impact of this
phenomenon, known as hidden paralogy, is difficult to estimate on a large scale, but reciprocal losses have
been shown to be frequent after whole genome duplications in yeasts and fishes (Sémon et Wolfe, 2007b;
Scannell et al., 2007). Second, Lateral gene transfer (LGT) has been shown to be pervasive in the history
of life, and it is unsafe to assume a priori that the history of a gene is devoid of such events, whatever
its function. Third, even genes that would be considered genuine orthologs may not retrace the history of
species: the persistence of different allelic forms of a gene during long periods of time relative to the lapse
between speciation events, a phenomenon known as TRANS-SPECIFIC POLYMORPHISMS (TSP) (Wiuf et al.,
2004), may result in differences among gene trees (incomplete lineage sorting (ILS)) even in the absence of
paralogy or LGT. The assemblage of these processes makes it difficult to expect that a single gene history
would faithfully mirror a tree of species throughout several billion years of evolution. In addition to these
biological problems, even the most advanced phylogenetic methods are often unable to accurately model the
evolution of biological sequences, which can result in the inference of erroneous trees.

Box 2: Chosing the right numbers of parameters

Many processes have significantly contributed to the evolution of genomes, some related to the internal
mechanics of the cell, others to the interaction of the organism with its environment and other organisms.
It may be unreasonnable to devise a model accounting for all processes at once: only a limited quantity
of parameters can be estimated from a finite amount of data (Steel, 2005). Bayesian MCMC techniques
can certainly tolerate higher dimensionalities than Maximum Likelihood (ML) approaches, because MCMC
integrates over the distributions of parameters when ML only uses point estimates: in this latter case,
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any small error over the value of a variable can have snow-ball effects over the accuracy of other estimates,
especially when a large number of parameters are used. However, most certainly choices will have to be made,
and different models will be used depending on the question under scrutiny, where only the most relevant
parameters are included: too few parameters and estimates are biased; too many, and their large variances
prohibit any conclusion. In this respect, issues of model selection will be particularly pressing. Recently,
several works estimated the values of parameters, but also their numbers, through techniques such as Dirichlet
Process priors (Lartillot et Philippe, 2004; Huelsenbeck et al., 2006), reversible jump Markov Chain Monte
Carlo methods (Suchard et al., 2001; Huelsenbeck et al., 2004), or Poisson processes (Huelsenbeck et al.,
2000; Blanquart et Lartillot, 2006). Such techniques which auto-regulate their number of parameters will be
necessary to use complex models with large amounts of data.

Box 3: Soft-aware
Species and gene trees

e Best (Bayesian Estimation of Species Tree): Bayesian program to reconstruct species trees from gene
alignments accounting for Trans-Specific polymorphisms. http://www.stat.osu.edu/ dkp/BEST/

e Bucky (Bayesian Untangling of Concordance Knots): Bayesian program permitting to analyse several
gene families simultaneously, accounting for some correlations between gene histories through gene-to-
trees maps. http://www.stat.wisc.edu/ larget/bucky.html

e Prime: Set of software to analyse gene families in the presence of duplications and losses accounting
for a known species tree. http://prime.sbc.su.se/

Alignment and phylogeny

e BAli-Phy (Bayesian Alignment and Phylogeny estimation): Bayesian program to reconstruct align-
ments and phylogenetic trees. http://www.biomath.ucla.edu/msuchard /bali-phy/index.php

e StatAlign: Bayesian program to reconstruct alignments and phylogenetic trees. http://phylogeny-
cafe.elte.hu/StatAlign/

e SimulFold: Bayesian program to reconstruct RNA structural alignment as well as phylogenetic trees.
http://www.cs.ubc.ca/ irmtraud/simulfold/

e Dart (DNA, Amino and RNA Tests): Software package to build and analyse alignments and phy-
logenetic trees through transducers notably, for sequences as well as RNA secondary structures.
http://biowiki.org/DART

Inversions and phylogeny
e Badger (Bayesian Analysis to Describe Genomic Evolution by Rearrangement): Badger is a Bayesian
program to analyse genomic evolution through inversions. http://badger.duq.edu/

Character evolution

o Sifter (Statistical Inference of Function Through Evolutionary Relationships): Sifter predicts the func-
tion of genes in a gene family based on a model of function evolution and on a phylogenetic tree of the
gene family. http://sifter.berkeley.edu/

e Mesquite: Mesquite is a modular software gathering several packages allowing to run various types of
analyses. It allows one to analyse the evolution of discrete or continuous characters on a phylogeny as
well as the shape of a phylogeny. http://mesquiteproject.org/mesquite/mesquite.html

e BayesTraits: Bayesian program allowing one to analyse the evolution of discrete or continuous charac-
ters on a distribution of phylogenies. http://www.evolution.reading.ac.uk/BayesTraits.html
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e Ape: Package of functions to use in the R statistical software. Ape notably permits analysing the
evolution of discrete or continuous characters on a phylogeny, or studying shapes of phylogenies.
http://ape.mpl.ird.fr/

Definitions

Trans-specific polymorphisms (TSPs) The sharing among species of alleles inherited from an ancestor.
These alleles have diverged prior to speciation, so that gene trees reconstructed using these genes may
be different from the species tree.

Incomplete lineage sorting (ILS) Observed discrepancy between a gene tree and the species tree, due
to the conservation of ancestral polymorphisms in different species (trans-specific polymorphisms).

Markov Model Probabilistic model of a process in which the state at time ¢ 4+ 1 only depends on state
at time t, not at time ¢t — 1. Models of substitution assume the substitution process is markovian: a
substitution x — y does not depend on the state preceding x.

Hidden Markov Model (HMM) Probabilistic model used to describe a succession of states by associat-
ing hidden states with observed ones; a Markov Model is used to describe transitions between these
hidden states. Such hidden states may be “intron”, “intergenic” or “exon” for models predicting gene
structure, “slow” or “fast” for models predicting evolutionary rate, or different tree topologies for models

predicting gene trees or recombination.

Maximum Likelihood inference (ML) For a given probabilistic model M with specific parameters and
particular data D, the Maximum Likelihood values of these parameters correspond to the values under
which it is most probable that the model has generated the data. If one was to simulate new data with
model M, this is using these ML values that data D would be obtained most often.

Bayesian inference Likelihood is the probability of the data given the model; Bayesian inference instead
deals with the probability of the model given the data, also named “posterior probability”. This poste-
rior probability of a model is proportional to the product of the likelihood and of a “prior probability”.
Such a prior probability permits to incorporate exterior knowledge into an analysis: for instance, one
could assume that the prior probability over the transition/transversion ratio in a particular dataset
follows a uniform distribution on [1;10]. Contrary to Maximum Likelihood inference, the common
practice in Bayesian inference is not to return parameter values of highest posterior probability; in-
stead, whole distributions of parameter values are returned. To obtain these distributions, MCMC
techniques are often used.

Markov Chain Monte Carlo (MCMC) Algorithm used to sample from a probability distribution, by
building a Markov model whose equilibrium distribution is the desired probability distribution. This
means that when the chain has been run for a sufficiently long time, each state is visited with a
frequency equal to its probability.

Last Universal Common Ancestor (LUCA) The most recent ancestor of Bacteria, Archaea and Eu-
karyotes.
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Conclusion

This thesis has attempted to tackle issues related to the early evolution of life by
analysing the genomes of extant organisms. It relied on statistical approaches,
as it takes maths to accurately read genomes.

In article 6, the statistical approach to genomics led to the conclusion that life
started in warm conditions, then adapted to higher temperatures before decreas-
ing again. These variations could be matched with hypotheses from geological
studies.

Indeed, conclusions based on comparative genomics need to be confronted
with knowledge coming from other disciplines. For early evolution, geology is
the only relevant point of comparison. I believe new models of evolution should
benefit from both fields of study, and combine models of genome evolution with
models of the evolution of the Earth.

In this context, many examples of integrative phylogenomics, combining phy-
logeography, climatology or ecology with genome evolution may appear in the
next years, and provide a better picture of the evolution of the Earth and of its
inhabitants. This work gave me the desire to embark on such projects.
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Appendices

I have added two articles I contributed to during my license in Lyon and during
the first year of my master in Uppsala, in Sweden.

The first article (section 11.1) attempts to better characterize the large amounts
of gene duplications that occured at the base of the vertebrate clade. It was
already known that an intense phase of gene duplication occured in the chor-
date lineage after the split from cephalochordates (amphioxus), but then it was
unknown when this phase ended. By systematically building and analysing phy-
logenies for all genes from chondrichthyans (sharks, rays, and chimaeras) that
were present in databases at the time, we estimated that this phase of intense
duplication ended before the chondrichthyans separated from other vertebrates.

The second article (section 11.2) focuses on reconstructing ancestral gene
contents in alpha-Proteobacteria, the bacterial family that gave birth to mito-
chondria. To this end, I used maximum parsimony, and simply considered the
number of genes present in extant genomes, not their sequences. Despite its very
crude nature, this procedure allowed us to estimate that the ancestor of all alpha-
Proteobacteria was a free-living aerobe, and permitted to see genome reductions
at the origin of parasites, and genome expansions at the origin of plant-interacting
species.
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11.1. GENOME DUPLICATIONS AND SHARKS

11.1 Genome duplications and sharks
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Phylogenetic Dating and Characterization of Gene Duplications in
Vertebrates: The Cartilaginous Fish Reference

Marc Robinson-Rechavi,' Bastien Boussau, and Vincent Laudet
Laboratoire de Biologie Moléculaire de la Cellule, UMR CNRS5161, Ecole Normale Supérieure de Lyon, Lyon, France

Vertebrates originated in the lower Cambrian. Their diversification and morphological innovations have been attributed
to large-scale gene or genome duplications at the origin of the group. These duplications are predicted to have occurred in
two rounds, the “2R” hypothesis, or they may have occurred in one genome duplication plus many segmental
duplications, although these hypotheses are disputed. Under such models, most genes that are duplicated in all
vertebrates should have originated during the same period. Previous work has shown that indeed duplications started
after the speciation between vertebrates and the closest invertebrate, amphioxus, but have not set a clear ending.
Consideration of chordate phylogeny immediately shows the key position of cartilaginous vertebrates (Chondrichthyes)
to answer this question. Did gene duplications occur as frequently during the 45 Myr between the cartilaginous/bony
vertebrate split and the fish/tetrapode split as in the previous approximately 100 Myr? Although the time interval is
relatively short, it is crucial to understanding the events at the origin of vertebrates. By a systematic appraisal of gene
phylogenies, we show that significantly more duplications occurred before than after the cartilaginous/bony vertebrate
split. Our results support rounds of gene or genome duplications during a limited period of early vertebrate evolution and

allow a better characterization of these events.

Introduction

Vertebrates originated in the lower Cambrian (Shu
et al. 2001), and their diversification and morphological
innovations have been attributed to large-scale gene or
genome duplications at the origin of the group (Ohno 1970;
Holland et al. 1994). These duplications are predicted to
have occurred in two rounds, the “2R” hypothesis,
although it may have been one genome duplication plus
many segmental duplications (Gu, Wang, and Gu 2002;
McLysaght, Hokamp, and Wolfe 2002; Panopoulou et al.
2003). An interesting prediction of this hypothesis is that
most genes that are duplicated in all vertebrates should have
originated during the same period (for a discussion of
predictions of the model, see Durand [2003]). Gene
phylogenies consistent with this model are predicted to
contain most duplications during a given speciation
interval. The comparison of gene complexes, such as hox
(Holland et al. 1994; Force, Amores, and Postlethwait
2002) or MHC (Abi-Rached et al. 2002), between species
chosen for their key positions in the phylogeny of chordates,
thus consistently date a large number of gene duplications
after the divergence between the amphioxus and vertebrates
(fig. 1). The choice of complexes of linked genes limits the
insight these studies bring into the evolution of the whole
genome, because each group of linked genes only samples
one locus. Studies of the distribution and age of duplicated
genes in the whole human genome sequence have
established that gene duplications were indeed a massive
phenomenon at the origin of vertebrates (Gu, Wang, and Gu
2002; McLysaght, Hokamp, and Wolfe 2002). However,
because of their reliance on only one complete genome from
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a chordate and their reliance on the molecular clock, these
studies cannot be very precise with respect to the dating and
to the order of events, although efforts were done to add
more species to the gene trees. In a pioneering comparison
of phylogenies of unlinked genes, the tree topologies
obtained were inconsistent with a simple scenario of two
rounds of tetraploidization (Hughes 1999), but no dating of
events was proposed. Phylogenies of gene families from
various chordates show similar numbers of duplications
before and after the lamprey/hagfish/gnathostome split, but
results are not explained simply by two tetraploidizations
(Escriva et al. 2002). All of these results are consistent with
periods of intensive gene duplication, rather than genome
duplication (Gu, Wang, and Gu 2002), although a recent
phylogenetic study challenges even this scenario
(Friedman and Hughes 2003).

Overall, there is support for a large number of gene
duplications after the divergence between cephalochordates
and vertebrates (Panopoulou et al. 2003), both before and
after the lamprey/hagfish/gnathostome split (Escriva et al.
2002). This possibility leaves an important question mark
on the ending time of the duplication events, which could
represent a punctual event or could have occurred gradually
over a period of 160 to 300 Myr. Consideration of chordate
phylogeny (fig. 1) immediately shows the key position of
chondrichthyans: if the massive gene duplications occurred
almost exclusively before or after the chondrichthyan
(cartilaginous vertebrates)/teleostome (bony vertebrates)
split, this event supports “rounds” of duplications during
a limited period of early vertebrate evolution. Otherwise,
if gene duplications are evenly spread over the period
between the cephalochordate/vertebrate split and the
actinopterygian/sarcopterygian split, there is no evidence
for these “rounds,” but rather for a long period during
which duplication was more frequent than in sarcopterygian
evolution. Most studies do not include chondrichthyans,
with the exception of two genes linked to the MHC, which
were shown to be duplicated before the divergence of
chondrichthyans and teleostomes (Abi-Rached et al. 2002).

Lack of chondrichthyan genome data has led us to use
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Fic. 1.—Possible timing of duplication events in chordate phylogeny. Schematic view of phylogenetic relations between chordates and possible
timing of rounds of gene or genome duplication according to recent results (not including this work). The black bar represents relative confidence that
duplications occurred essentially after the cephalochordate/vertebrate split, whereas the gray area represents the incertitude over the period when the
duplication ended. Divergence dates are according to the fossil record (Samson, Smith, and Smith 1996; Shu et al. 1999; Zhu, Xiaobo, and Janvier
1999; Basden et al. 2000; Shu et al. 2001); molecular clock dates are shown in parentheses (Nikoh et al. 1997; Kumar and Hedges 1998). Although the
topology (urochordates, [cephalochordates, vertebrates]) is well established, the corresponding dates of divergence are not known, apart from estimates
of the date of apparition of chordates, given here as a conservative estimate of the first divergence among chordates.

the gene phylogeny approach to solve the question of when
vertebrate-specific gene duplications did happen, by
constructing phylogenetic trees of many protein-coding
genes sequenced in Chondrichthyes. As mentioned above,
if there were two major rounds of duplication, whether of
genes or genomes, we would expect most gene families to
show similar relative timing of speciation and duplication
events. It should be noted that we are only interested in
vertebrate-specific duplications here. Duplications that
predate the chordate/arthropod/nematode split (approxi-
mately the origin of bilaterian animals), or more recent
duplications such as frequently observed in actinopterygian
fishes (Robinson-Rechavi et al. 2001), are outside the scope
of this study.

Materials and Methods
Data Set

A first selection of gene families was done on
Hovergen (Duret, Mouchiroud, and Gouy 1994) version
42 (April 2002), with the following criteria: at least one
Chondrichthyes sequence, sequences from at least two
Teleostome classes (to distinguish vertebrate specific and
class specific duplications), and exclusion of mitochon-
drion-encoded genes. These criteria selected 149 gene
families, as defined in Hovergen, including 415 chon-
drichthyan protein sequences. Protein alignments corre-
sponding to the selected families were saved from
Hovergen and checked using Seaview (Galtier, Gouy, and
Gautier 1996). Outgroup sequences were added by Blast
(Altschul et al. 1990) searches on Swissprot+TrEMBL
(Boeckmann et al. 2003), excluding results from Vertebrata
and from viruses, as implemented at PBIL (Perriere et al.
2003), and by Blast searches on the genome sequences of
Drosophila melanogaster (Adams et al. 2000), Caeno-
rhabditis elegans (The C. elegans Sequencing Consortium

1998), Ciona intestinalis (Dehal et al. 2002), and Anopheles
gambiae (Holt et al. 2002). Twelve gene families for which
no outgroup sequence could be reliably identified were
excluded.

Gene families with duplications predating the arthro-
pod/nematode/chordate divergence (fig. 2A) were split into
subfamilies, which were then evaluated separately for
vertebrate-specific duplications. In cases of a vertebrate
gene without any known mammalian ortholog, additional
Blast searches were done on the human genome (In-
ternational Human Genome Sequencing Consortium
2001). In all Blast searches, an expect value of 0.01 and
the default filter for repeated sequences were used, and
potential new genes were assessed for relevance to our
study by a phylogenetic analysis. Once gene trees were
built (see below), 86 gene families were found to yield
phylogenies that could not be interpreted for dating of
events at the origin of vertebrates (see Results). Notably,
insufficient phylogenetic resolution was diagnosed when
the gene tree was strongly inconsistent with the expected
species phylogeny (for example, lamprey grouping with
chicken and mammals not monophyletic [NPY gene
family]) with very low bootstrap support (i.e., under 50%).

Phylogeny

All analyses were done using only complete sites (no
gap, no X). When the inclusion of partial sequences led to
less than 50 complete sites in the alignment, these
sequences were excluded manually in Phylo_win (Galtier,
Gouy, and Gautier 1996), taking care to keep representa-
tives of each taxonomic group (i.e., actinopterygians,
sarcopterygians, chondrichthyans, and outgroup) and of
each paralog, as much as possible. Sequences that did not
pass a > test for homogeneity of amino acid composition
(as implemented in Tree-Puzzle [Schmidt et al. 2002])
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timing of gene duplications in a gene family. The taxon names represent
gene sequences from these taxa, and “outgroup” represents sequences
from nonvertebrate species.The branch(es) that should be tested for the
classification of the gene family to be supported are in boldface. (A) No
vertebrate specific duplication occurred, although gene duplications may
(or may not) have occurred before the divergence of chordates from other
animal lineages. (B) Vertebrate-specific gene duplication after the
chondrichthyan/teleostome split. (C) Vertebrate-specific gene duplication
before the chondrichthyan/teleostome split; the broken line indicates that
the conclusion can be reached even if only one chondrichthyan homolog
has been sequenced.

were excluded. This exclusion meant that six gene families
no longer fulfilled the conditions set in terms of species
sampling and were thus excluded from the data set. Trees
were constructed using Neighbor-Joining (Saitou and Nei
1987) with distances corrected for multiple substitutions
under a gamma model of rate heterogeneity (Yang 1996);
the alpha parameter of the gamma model was estimated for
each alignment by Tree-Puzzle version 5.1 (Schmidt et al.
2002) with eight rate categories, using default parameters.
The following topologies were systematically compared
by an SH likelihood test (Shimodaira and Hasegawa
1999), under the VT substitution model (Muller and
Vingron 2000) with a y model of rate heterogeneity, as
implemented in Tree-Puzzle 5.1 (Schmidt et al. 2002): (1)
species tree with no duplication (fig. 2A4), (2) duplication
after the chondrichthyan/teleostome split (fig. 2B), (3)

Urochordata (ciona)
few
duplications
Cephalochordata (amphioxus)
? Myxiniformes (hagfishes)
? Petromyzontiformes (lampreys)

2 Chondrichthyes (sharks and rays)

many
duplications

Actinopterygii (ray-finned fishes)

few

ew Sarcopterygii (tetrapodes and allies)
duplications

FiG. 3.—Gene duplication history in chordates. Present knowledge
(including this work) of rounds of gene duplication mapped on the
schematic view of phylogenetic relations between chordates. Black boxes
represent characterized rounds of duplication, white boxes represent
characterized periods with little accumulation of duplicate genes, and
question marks represent lack of data to characterize duplications.

duplication before the chondrichthyan/teleostome split
(fig. 2C). When there were more than two vertebrate
paralogs, all relative positions of the chondrichthyan/
teleostome split and the duplications were compared; for
example (Chondr (Teleos-a (Teleos-f, Teleos-y))) versus
(Teleos-a (Chondr (Teleos-B, Teleos-v))) versus (Teleos-o
(Teleos-B  (Chondr, Teleos-y))) versus ((Teleos-a,
Chondr), (Teleos-B, Teleos-y)) and so on. Results were
considered supported if the likelihood of the favored
topology was significantly higher than that of the best
alternative topology (SH test; P < 0.05). Other results are
classified as “not supported.” It should be noted that we
are only interested in the relative order of events of gene
duplication and the chondrichthyan/teleostome split.
Thus, teleost fish-specific duplications, as well as contra-
dictions between gene phylogeny and teleostome phylog-
eny, as long as the latter were not statistically supported
(they never were), were not taken into consideration to
classify phylogenetic results, as far as they do not hamper
interpretation of the trees. Moreover, when there were
inaccuracies in teleostome phylogeny in the Neighbor-
Joining tree, likelihood tests were performed under both
the Neighbor-Joining and the species topology; signifi-
cance of results was robust to the change.

Results

We selected gene families for the study in three steps:
(1) selection on taxonomic criteria (sampling of cartilagi-
nous and bony vertebrates, outgroup sequence); (2) manual
consideration of phylogenetic trees, to assess whether the
gene families are appropriate to the question being asked;
and (3) evaluation of phylogenetic robustness. Notably,
a total of 86 gene families were eliminated in step 2. The
main causes limiting interpretation were (1) after splitting
into vertebrate-specific subfamilies, some genes no longer
fulfill the conditions set in terms of species sampling
(typically the chondrichthyan sequence fell in a subtree
with mammalian sequences and no other taxa); (2) very
short sequences (NPY genes for example) with no
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Distribution of Duplication Histories of Gene Families

Duplication Timing

None Before C/T Split After C/T Split
Outgroup Chordate Other  Chordate Other Chordate Total
Significant 0 0 16 3 0 19
Not significant 12 3 3 2 29
Total 15 (31%) 31 (65%) 2 (4%) 48

Note.—Numbers of gene families supporting each evolutionary history; no gene is counted twice. Phylogenetic support
is noted as “significant” if the position of the chondrichthyan gene(s) is supported by a likelihood test (P < 0.05). The “C/T” split is
the divergence between Chondrichthyes and Teleostomi. Chordate outgroups include ascidians, amphioxuses, lampreys, and

hagfishes.

phylogenetic resolution; (3) extremely conserved sequences
with no phylogenetic resolution (histones for example);
(4) clustered multigene families for which conversion and
recombination are well documented, typically from the
immunological system; and (5) other genes with no
phylogenetic resolution, such as hox genes, which include
a very conserved homeodomain, with little information, the
rest of the sequence being very divergent and with little
information also (see a discussion in Force, Amores, and
Postlethwait [2002]). It may be noted that while this
selection mostly reduced the number of gene families used,
splitting families with duplications predating the arthropod/
nematode/chordate divergence increased the number of
phylogenies analyzed (two additional “families” of pro-
teasome beta subunit genes and one additional “family” of
tyrosine phosphatase genes [see table 1 in Supplementary
Material online]). Overall, the three steps of selection lead
us from 149 gene families with cartilaginous and bony
vertebrate homologous sequences to 48 gene families
whose evolutionary history can be used to date duplication
events at the origin of vertebrates (eliminated gene families
in table 3 of Supplementary Material online), a figure very
similar to the numbers of genes analyzed in recent studies
using the same approach in other organisms (i.e., Langkjaer
et al. 2003; Taylor et al. 2003).

Results for each gene family are detailed in the first
table and the figures in the Supplementary Material online
at www.mbe.oupjournals.org. Gene families with a dupli-
cation before the chondrichthyan/teleostome split (fig. 2C)
clearly represent the majority of gene families we analyzed,
including all 19 genes with significant phylogenetic
resolution (table 1). Among the other 29 gene families,
phylogenetic resolution is not significant at the chon-
drichthyan/teleostome divergence level (table 1). These
include the only two gene families indicating a duplication
after the chondrichthyan/teleostome split: a mannose-
binding lectin, or tetranectin (HBG008208), and the PTP1D
tyrosine phosphatase (“tyrosines phosphatases (1)” in the
Supplementary Material online). Of note, a different result
was found for PTPID in a previous study that did not
include all available mammalian sequences (Ono-Koyanagi
et al. 2000). Finally, 15 genes show no evidence for any
vertebrate-specific duplication. Our classification of these
trees as “not supported” means that the species tree was not
significantly more likely than other positions of chon-
drichthyans. This is consistent with a previous study in
which individual nuclear genes had low power in solving

the phylogenetic position of chondrichthyans (Martin
2001). The low phylogenetic resolution for the position of
chondrichthyans among vertebrates is also consistent with
the small divergence time between chondrichthyans and
teleostomes reported in the fossil record (fig. 1). By
contrast, the good phylogenetic resolution for the position
of vertebrate-specific gene duplications may imply that the
divergence time between these duplications and the
chondrichthyan/teleostome split was important and that
the duplications occurred early in vertebrate evolution.

It is possible that the observed distribution of gene
duplications simply reflects the difference between the
time intervals considered as “before the chondrichthyan/
teleostome split” and “after the chondrichthyan/
teleostome split.” To test this, let us consider only the
27 gene families for which we have a vertebrate-specific
duplication and a chordate outgroup (table 1: 16 + 9 +
2 = 27), since they allow a more precise dating of events.
If we use paleontological datings (fig. 1), the interval
between chordate diversification and the chondrichthyan/
teleostome split is 98 Myr, whereas the interval between
this and the sarcopterygian/actinopterygian split is 45
Myr. Then we expect 31% (45/[98 + 45]) of vertebrate-
specific gene duplications to be after the chondrichthyan/
teleostome (C/T) split, under the assumption of a constant
rate of gene duplication; the 95% confidence interval of
this estimate is 14% to 49% ( f = 1.96 var = f(—=f)IN;
f = 031; N = 27). If we use molecular clock estimates
of divergence dates (fig. 1), we expect 26% of gene
duplications after C/T (confidence interval = 9.5% to
43%). The observed proportion of 7.4% (2/27) is signifi-
cantly lower than expected by chance in either dating system
(outside of the 95% confidence intervals). This conclusion
holds true if we only use the 16 significantly supported
phylogenies with a chordate outgroup (table 1): the observed
proportion of duplications after the C/ T split is 0%, whereas
the expected value’s confidence interval is either 8.7% to
54% (paleontological dates), or 4.5% to 47% (molecular
clock dates). Thus, gene duplications are significantly less
frequent after than before the chondrichthyan/teleostome
split, taking into account evolutionary time.

Although our data set is not meant for detailed testing
of duplication hypotheses in other branches of the tree, it is
interesting to compare duplications that appear specific to
either of the two major branches of teleostomes: out of 48
gene families, there are three with sarcopterygian-specific
duplications and eight with actinopterygian-specific
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duplications (see the second table in the Supplementary
Material online at www.mbe.oupjournals.org), consistent
with previous observations (Robinson-Rechavi et al.
2001). Interestingly, these more recent duplications
concern 28% of the 32 gene families for which we have
observed gene duplications ancestral to vertebrates but
only 12.5% of the 16 gene families without vertebrate
specific duplications.

Discussion

The “2R” hypothesis, modified from Ohno (1970),
can be summarized by the idea that major duplication
events occurred specifically in chordate genomes before
the emergence of bony vertebrates. This hypothesis
predicts that duplications should have occurred over a short
period of time, in much greater numbers than in the
previous or following periods. This prediction is shared by
more recent hypotheses that there may have been one
genome duplication and one major wave of segmental
duplications (Gu, Wang, and Gu 2002; McLysaght,
Hokamp, and Wolfe 2002; Panopoulou et al. 2003). The
beginning time has been relatively well established, with
studies showing that gene duplications occurred after the
cephalochordate/vertebrate split and both before and after
the gnathostome/jawless vertebrate split (Pennisi 2001;
Wolfe 2001; Abi-Rached et al. 2002; Escriva et al. 2002;
Gu, Wang, and Gu 2002; McLysaght, Hokamp, and Wolfe
2002; Panopoulou et al. 2003), but these studies did not set
an ending time to these events. Given the prevalence of
gene duplications in actinopterygian fishes (Wittbrodt,
Meyer, and Schartl 1998; Robinson-Rechavi et al. 2001;
Taylor et al. 2001), this raises the question of whether
something specific really happened at the origin of
vertebrates or whether gene duplications have been
a common phenomenon throughout chordate evolutionary
history, with the exception of sarcopterygians.

It is indeed noticeable that there has been no report of
genome duplications ancestral to sarcopterygians (Pennisi
2001; Wolfe 2001; Durand 2003) or to any of the well-
studied groups therein (e.g., tetrapodes, mammals, or
sauropsids). Our own data are consistent with previous
observations (Robinson-Rechavi et al. 2001; Taylor et al.
2001) that duplicate genes are significantly less abundant
in sarcopterygians than in actinopterygians. Analysis of
invertebrate chordate data also indicates that gene
duplications are not abundant in these lineages (Dehal
et al. 2002; Panopoulou et al. 2003).

Comparison of MHC-associated genes gave limited
evidence for duplications before the chondrichthyan/
teleostome split from two genes (Abi-Rached et al. 2002).
Our results show that this pattern is general, with almost
all vertebrate-specific gene duplications occurring before
the chondrichthyan/teleostome split (table 1). This, added
to all the previously published evidence, implies three
waves of gene or genome duplications, two between
the cephalochordate split and the chondrichthyan split and
the other in actinopterygian fishes, separated by a period
of “duplication calm” of about 45 Myr (which continued
for 400 Myr in tetrapodes), which, although short, is
significant. A major prediction of Ohno’s (1970) original

hypothesis, that of intense gene or genome duplication
activity before the origin of vertebrates, is thus confirmed
by the study.

Moreover, our results show that these gene duplica-
tions characterize all the jawed vertebrates and predict
similar genetic complexity in sharks and rays as in
tetrapodes. Consistent results are found for the evolution
of hox clusters, which allow a direct connection between
block duplications and morphological adaptations. Al-
though hox genes are very poor phylogenetic markers, as
illustrated by the difficulty in resolving the events that led
to the different clusters of gnathostomes and lampreys
(Force, Amores, and Postlethwait 2002; Irvine et al. 2002),
partial sequences from the horn shark indicate that the
duplications that led to four hox clusters in teleostomes
occurred before the chondrichthyan/teleostome divergence
(Kim et al. 2000). Moreover, horn shark and human
hoxA clusters are remarkably conserved (Chiu et al. 2002).
Thus, hox cluster analysis and our phylogenetic results
are consistent in establishing no relation between gene
duplications and the larger diversity of bony vertebrates
than of cartilaginous vertebrates.

Although the basal branching of chondrichthyans
among jawed vertebrates is considered extremely well
supported by morphological and paleontological data
(Janvier 1996), the analysis of complete mitochondrial
sequences suggests a very different phylogeny, with
chondrichthyans branching among bony ray-finned fishes
(Actinopterygii) (Rasmussen and Arnason 1999). This
surprising result has not been confirmed by any other
source of data, and molecular phylogenies based on
nuclear-encoded genes either are not informative (Martin
2001; this study) or strongly support the conventional
branching position of chondrichthyans (Takezaki et al.
2003). In any case, our results show that vertebrate-
specific gene duplications occurred before the divergence
between chondrichthyans, actinopterygians, and sarcop-
terygians, whatever the order of these latter events.

Our results are at odds with a recent study that used
a similar approach, dating gene duplications by their
phylogenetic position relative to speciation events (Fried-
man and Hughes 2003). There are several differences
between our methodology and that of Friedman and
Hughes, but the main difference is the criterion for
classifying gene duplications within speciation intervals.
We consider genes to be duplicated within a given interval
(i.e., between chordate diversification and the chon-
drichthyan/teleostome split) only if all relevant taxonomic
groups (and thus speciations) are represented in the gene
tree (i.e., a urochordate or a cephalochordate, a chon-
drichthyan, and a teleostome). Friedman and Hughes
(2003) classify duplications as soon as they can be dated
before or after one speciation. Moreover they used very
distant dating points (i.e. the primate/rodent, amniote/
amphibian, and deuterostome/protostome splits). It is
unclear why they did not date duplications relative to the
actinopterygian/sarcopterygian split, because this specia-
tion would have been more relevant to the “2R”
controversy, while taking advantage of genome data. As
amphibians are the only lineage involved for which
a genome sequence is not available, this may lead them



to include in the “before primate/rodent” category gene
duplications that occurred before the amphibian/amniote
split but for which they do not have amphibian sequences
in the tree. This in turn may introduce a bias in their
argument that the abundance of “before primate/rodent”
versus “before amniote/amphibian” duplications is evi-
dence against a peak of gene duplications at the origin
of vertebrates. We believe that in our study, the division
of the sequences into major taxonomic units, and our
separation of the results according to the outgroup
sequences used (table 1), preserve our results from such
biases. Thus, differences in the conclusions between that
study (Friedman and Hughes 2003) and ours probably
reflect different sampling strategies.

An interesting side observation from our data set is
that observations of gene duplications at the origin of
vertebrates, and more recently in either the actinopterygian
or sarcopterygian lineage, appear correlated. This may be
the result of sampling; for example, better detection of
duplications in more studied genes. Alternatively, it may
indicate that the function of certain genes makes them more
prone to persisting as duplicate copies. Such a tendency has
indeed been recently shown in yeasts, where certain genes
are retained independently as duplicates in different species
(Hughes and Friedman 2003).

This study and other recent studies draw an in-
creasingly precise picture of gene or genome duplication
waves in chordates (fig. 3), although questions remain.
Among the six branches of the chordate tree for which
sufficient data are available, three are characterized by
abundant preservation of duplicate genes, all of them in
vertebrates. It has also been suggested on the basis of
chromosome counts that polyploidy played an important
part in lamprey evolution (Potter and Rothwell 1970). Of
course it is probable that small-scale duplications have been
continuous on all branches of the tree (Lynch and Conery
2000; Gu, Wang, and Gu 2002). However, large-scale
duplications seem to have been frequent in vertebrate
evolution, and the branches where they are absent, such as
the origin of bony vertebrates, appear as the exception
rather than the rule.
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The a-proteobacteria, from which mitochondria are thought to
have originated, display a 10-fold genome size variation and
provide an excellent model system for studies of genome size
evolution in bacteria. Here, we use computational approaches to
infer ancestral gene sets and to quantify the flux of genes along the
branches of the a-proteobacterial species tree. Our study reveals
massive gene expansions at branches diversifying plant-associated
bacteria and extreme losses at branches separating intracellular
bacteria of animals and humans. Alterations in gene numbers have
mostly affected functional categories associated with regulation,
transport, and small-molecule metabolism, many of which are
encoded by paralogous gene families located on auxiliary chro-
mosomes. The results suggest that the a-proteobacterial ancestor
contained 3,000-5,000 genes and was a free-living, aerobic, and
motile bacterium with pili and surface proteins for host cell and
environmental interactions. Approximately one third of the ances-
tral gene set has no homologs among the eukaryotes. More than
40% of the genes without eukaryotic counterparts encode proteins
that are conserved among the a-proteobacteria but for which no
function has yet been identified. These genes that never made it
into the eukaryotes but are widely distributed in bacteria may
represent bacterial drug targets and should be prime candidates
for future functional characterization.

F undamental questions subjected to much debate concern the
extent to which microbial genomes are related by vertical
descent versus horizontal gene transfer (1-5). A direct approach
to address these questions is to estimate frequencies of dele-
tions/duplications and horizontal gene transfers for closely
related species and compare these estimates with estimates of
nucleotide substitution rates. The a-proteobacteria provide an
excellent model system for such studies because genome size
variation in this subdivision spans the entire size range for
bacteria, from 1 Mb in Rickettsia spp. to >9 Mb in Bradyrhizo-
bium japonicum (6-12). Furthermore, there is an amazing
variation in lifestyle characteristics in this subdivision, including
both obligate (Rickettsia and Wolbachia) and facultative (Bar-
tonella and Brucella) intracellular bacteria as well as soil-borne
plant symbionts and pathogens (Sinorhizobium, Agrobacterium,
and Bradyrhizobium), which enables correlations between gene
contents and lifestyle features to be examined.

The a-proteobacterial group has also attracted much interest
because one of its descending lineages is thought to be the
ancestor of mitochondria (13, 14). The acquisition of mitochon-
dria represents one of the earliest and most extreme cases of
horizontal gene transfer events known in the history of life.
Phylogenetic studies suggest that =630 eukaryotic genes were
transferred from the a-proteobacteria to the eukaryotes, includ-
ing many genes coding for modern mitochondrial protein func-
tions (15). For the majority of mitochondrial proteins, however,
no bacterial homologs were identified, indicating that they were
derived from nuclear, eukaryotic genomes via intragenomic
duplication and sequence divergence (14-16).

Based on results from pairwise genome comparisons, it has
been suggested that there is a correlation between genome size
alterations, microbial population sizes, and growth habitats (17).
For example, it has been shown that free-living bacterial species
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of large population sizes accumulate insertion/deletion and
rearrangement mutations relative to nucleotide substitutions at
much higher frequencies than host-dependent bacteria of small
population sizes, in which the influence of horizontal gene
transfers has been negligible (17). Algorithms for mapping the
presence and absence of genes onto inferred species trees in
multiple genome comparisons (18, 19) have been used to re-
construct ancestral gene sets and to obtain estimates of the flow
of genes along each of the individual branches. By using such
approaches, >500 genes have been assigned to the last universal
common ancestor (LUCA) (19), and 2,000 genes have been
assigned to the ancestor of the Archaea (18).

In this study, we used the a-proteobacteria as a model system
to examine the contents of ancestral genomes along with the
evolutionary basis for genome size differences. Our results
suggest that the a-proteobacterial ancestor contained several
thousand genes and was metabolically highly versatile. The flux
of genes along the individual branches of the tree highlights the
role of the auxiliary chromosomes as mediators of genome size
expansions and contractions in response to alterations in envi-
ronmental conditions.

Materials and Methods

Genome Analysis. The sizes and GenBank accession numbers of
a-proteobacterial genomes included in this analysis are given in
Table 1. The assignment of functional categories for proteins in
Rickettsia prowazekii, Rickettsia conorii, Brucella melitensis, Bru-
cella suis, Caulobacter crescentus, Agrobacterium tumefaciens,
Sinorhizobium meliloti, and Mesorhizobium loti was taken from
the Institute for Genomic Research (www.tigr.org). Uncatego-
rized proteins and proteins from Bartonella henselae, Bartonella
quintana, and B. japonicum were assigned a functional category
according to the best hit in similarity searches using BLASTP (E <
1 X 10719) against all classified proteins from The Institute for
Genomic Research (www.tigr.org). Additional proteobacterial
genomes included as outgroups in the analyses were Campy-
lobacter jejuni (NC_002163), Escherichia coli (NC_000913), Hel-
icobacter pylori (NC_000913), Pseudomonas aeruginosa
(NC_002516), Ralstonia solanacearum (NC_-003296), Salmonella
typhimurium (NC_003197 and NC_003277), and Xylella fastidiosa
(NC_002490).

Phylogenetic Inference. The species phylogeny was estimated by
using a data set of concatenated proteins that were selected on
the basis that they are encoded by genes that are located in
segments with largely conserved gene order structures in B.
henselae, B. quintana, B. melitensis, A. tumefaciens, S. meliloti,
and M. loti (see Fig. 6, which is published as supporting infor-
mation on the PNAS web site). Homologs of the selected
proteins B. quintana were inferred by BLASTP (20) searches (E <
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Table 1. a-Proteobacterial species included in the
reconstruction analysis

Species Total size, Mb GenBank accession no. (size, Mb)

R. prowazekii 1.1 NC_000963 (1.1)

R. conorii 1.3 NC_003103 (1.3)

W. pipientis 1.3 NC_002987 (1.3)

B. quintana 1.6 BX897700 (1.6)

B. henselae 1.9 BX897699 (1.9)

B. melitensis 3.3 NC_003317 (2.1), NC_003318 (1.2)

B. suis 3.3 NC_004310 (2.1), NC_004311 (1.2)

C. crescentus 4.0 NC_002696 (4.0)

R. palustris 5.5 NC_005296 (5.5)

A. tumefaciens 5.6 NC_003062 (2.8), NC_003063 (2.1),
NC_003064 (0.5), NC_003065 (0.2)

S. meliloti 6.7 NC_003047 (3.6), NC_003037 (1.4),
NC_003078 (1.7)

M. loti 7.6 NC_002678 (7.0), NC_002679 (0.4),
NC_002682 (0.2)

B. japonicum 9.1 NC_004463 (9.1)

1 X 10729) against the protein data set of each a-proteobacterial
genome. To exclude paralogs we included in the analysis only
genes without a second BLAST hit with an E value of <1 X 10720,
Another selection criteria for inclusion used was that orthologs
should be present in at least 12 of the 20 taxa, resulting in a final
set of 38 proteins (Table 3, which is published as supporting
information on the PNAS web site).

The alignment was performed by using CLUSTALW (21) on
individual protein sequences that were later concatenated.
Maximum-likelihood phylogenies were constructed by using
PHYML (version 2.1 beta) (22) assuming the Jones—Taylor—
Thornton model of protein evolution and four y-distributed rate
categories with the a parameter and proportion of invariable
sites estimated from the data. To assess the variation in the data,
100 bootstrap replicates were generated from the data set with
SEQBOOT from the PHYLIP 3.5¢c package (J. Felsenstein, Depart-
ment of Genetics, University of Washington, Seattle). Maxi-
mum-likelihood trees were estimated from the bootstrap matri-
ces as described above, and a majority-rule consensus tree was
generated from them by using CONSENSE, also from the PHYLIP
3.5C package.

Inference of Ancestral Gene Sets. The homologous groups were
created by using the Clusters of Orthologous Groups (COGs)
database (23) in its 66-genomes version. Proteomes classified in
COGs were retrieved from the COGs database. Six unclassified
proteomes (B. henselae, B. quintana, B. suis, B. japonicum,
Rhodopseudomonas palustris, and Wolbachia pipientis) were as-
signed COGs according to the following procedure: the proteins
in each unclassified proteome were used as first queries and then
databases in separate BLAST searches with all proteomes in the
COGs database. The unclassified proteins were added to the
COG to which it had the highest number of symmetric best hits
(BeTs) and BeTs >1. Because this procedure expanded the
COGs, the same was done for all the unclassified proteins from
the other species so as to also include proteins with BeTs to the
newly assigned proteins. New clusters were then created from
uncategorized proteins forming triangles of BeTs as described in
ref. 23. Finally, clusters containing only two proteins were made
from linear BeT relations, after which the remaining proteins
were included as single genes.

The most parsimonious scenarios of a-proteobacterial ge-
nome evolution and the a-proteobacterial ancestor were recon-
structed by character mapping by using generalized parsimony as
implemented in PAUP* (version 4.0b10 for Unix) (24) on a rooted
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species tree, with ACCTRAN (accelerated transformation) (see
Fig. 3) and DELTRAN (delayed transformation) (Fig. 7, which is
published as supporting information on the PNAS web site)
options for parsimony analysis. Fig. 3 shows the results for
penalties for duplications, deletions, and gene genesis of 1, 1, and
5, respectively. The selection of penalty values and results
obtained for different penalty values are described in Fig. 7.

The ancestral proteomes were inferred separately for protein
families assigned to auxiliary (mega-COG) and main (main-
COG) chromosomes. The criteria for inclusion in the mega-
COG family were that =30% of the protein members were
encoded on auxiliary replichores or symbiosis islands in the
Rhizobiales. By using these criteria, 43% of the proteins encoded
by the auxiliary replichores and 6% of chromosomally encoded
proteins were members of the mega-COG families on average.
Because many of the species-specific genes are located on the
auxiliary replichores, we used the complete a-proteobacterial
proteome for this analysis. The gene content of the inferred
a-proteobacterial ancestral genome was compared with the
estimated gene content of protomitochondria (15) and the
LUCA (19) by using the presence or absence of a COG rather
than the absolute numbers of genes.

Results and Discussion

Gene Function of a-Proteobacterial Genomes. To explore expan-
sions in gene function with genome size for the a-proteobacteria
(Table 1), we examined gene content statistics for 14 functional
categories (Fig. 1). The relationships between gene content and
genome size can be approximated with linear functions, with
slopes ranging from four genes per megabase for basic informa-
tion processes such as transcription and translation to >80 genes
per megabase for energy metabolism, transport, and regulatory
functions. Functional categories associated with environmental
interactions (e.g., transport and regulation) were found to be the
most variable among bacteria with different lifestyles. For
example, the small genomes of obligate and facultative intracel-
lular parasites have only a few regulatory and transport genes,
whereas the larger genomes of free-living soil bacteria that
alternate between environments of different nutritional quality
contain hundreds of such genes. A rapid increase in the number
of regulatory genes in relation to gene content has been observed
(25, 26) and may be a general feature of all bacterial genomes.

Extrapolation to the intercept of the y axis provides a measure
of the minimal set of genes shared among the a-proteobacteria,
which here is estimated to 250 genes (Table 4, which is published
as supporting information on the PNAS web site). This set
includes ~200 genes for DNA, RNA, and protein biosynthesis
and another 40 genes for nucleotide and cofactor biosynthesis.
This is comparable with the minimal set of core genes in
endosymbiotic bacteria (27) as well as to minimal gene numbers
inferred by computational approaches (28) and experimental
knockout mutants of Bacillus subtilis (29).

The Species Tree for a-Proteobacteria. To place the dramatic shifts
in genome size in an evolutionary context, we needed an
underlying reliable species tree onto which the gene sets could
be mapped. Because a few of the divergence nodes were not
conclusively resolved in our rRNA tree (data not shown), we
inferred the tree topology by using concatenated protein se-
quences (Fig. 2). To minimize topology inconsistencies caused by
horizontal gene transfer and gene paralogy, we selected for this
analysis a set of 38 genes sampled from regions with conserved
gene order structures in the Rhizobiales (Fig. 6 and Table 3).
The phylogenetic tree (Fig. 2), constructed by using the
maximum-likelihood method, provided strong support for a
clustering of the Rhizobiales to the exclusion of the more early
diverging lineages B. japonicum, C. crescentus, and the Rickett-
siales. The two Bartonella species formed a clade with Brucella
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Fig. 1. Plot of genome size against gene content for each of the functional

categories. RP, R. prowazekii; RC, R. conorii; BQ, B. quintana; BH, B. henselae;
BM, B. melitensis; BS, B. suis; CC, C. crescentus; AT, A. tumefaciens; SM, S.
meliloti; ML, M. loti; and BJ, B. japonicum. See Table 1 for genome sizes. The
data were separated into two sections (a and b) to prevent overcrowding.

with high bootstrap support, as did also 4. tumefaciens and S.
meliloti, which formed a separate clade. The position of M. loti
was placed with high support (>90%) close to the root of the
Bartonella/Brucella clade. However, the branches separating M.
loti from its neighboring clades are very short and the placement
of M. loti in the tree was found to be sensitive both to the methods
used and to the genes and species sampled (data not shown). For
all other divergences, the tree topology was robust. The branch-
ing order depicted in Fig. 2 represents our best estimate of the
underlying species tree.

Computational Inference of Ancestral Gene Sets. We inferred an-
cestral a-proteobacterial proteomes and estimated the number
of gene losses, duplications, and genesis events along each
branch of the topology shown in Fig. 2 with character mapping
using generalized parsimony (Figs. 3 and 7). Following the
routines of previous work (18, 19), we included in the analysis
proteins already classified in the COGs database (23) along with
proteins encoded by genomes not yet incorporated in the COGs
database but related to existing COGs by BeTs. This process
resulted in a first data set of 56,337 proteins, to which we added
384 COGs containing proteins not related to any existing COGs
but present in three or more species and internally related by
BeTs. With the inclusion of these proteins, the data set

9724 | www.pnas.org/cgi/doi/10.1073/pnas.0400975101

0.2

HP

Fig. 2. Phylogenetic relationship of 13 a-proteobacterial species (high-
lighted by the purple background) with 7 species from other proteobacterial
subdivisions as outgroups. The topology, branch lengths, and bootstrap
support are according to maximume-likelihood reconstructions with the
Jones-Taylor-Thornton + 4I'l model. Similar results were obtained with the
neighbor-joining method and after removal of positions with gaps. A list of
genes used for the phylogenetic reconstructions is given in Table 5. Abbrevi-
ations for species names are as described in the legend to Fig. 1 with the
addition of the following taxa: WP, W. pipientis; RhP, R. palustris; CJ, C. jejuni;
EC, E. coli; HP, H. pylori; PA, P. aeruginosa; RS, R.solanacearum; ST, S. typhi; and
XF, X. fastidiosa.

amounted to 58,171 proteins, and the a-proteobacterial ancestral
proteome was estimated to 3,300 proteins (Fig. 3a). The remain-
ing proteins were assigned into single or linear protein COGs,
which resulted in a data set that included all 73,658 proteins and
yielded an ancestral proteome of >5,000 proteins (Fig. 3b).
Because some of the species-specific genes may be rapidly
evolving or incorrectly annotated as genes, their inclusion prob-
ably results in an overestimate of the ancestral proteome size
(Fig. 3b), just as their exclusion may yield an underestimate (Fig.
3a). Thus, we define the lower and upper boundaries of the
ancestral a-proteobacterial proteome to 3,000 and 5,000 pro-
teins, respectively.

Metabolic Expansions and Contractions. The analyses of gene con-
tent alterations at the branches of the tree revealed two major
trends that are observed irrespectively of the different data sets
and methods used (Fig. 4). First, massive genome size expansions
accompanied the divergence of the plant-associated Rhizobiales,
particularly the evolution of M. loti and B. japonicum. There
seems to have been a gradual increase of genes encoding
transcriptional regulators and proteins involved in the transport
and metabolism of amino acids, nucleotides, carbohydrates,
coenzymes, lipids, inorganic ions, and secondary metabolites.
These expansions argue in favor of ancestral cells being visited
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to Figs. 1 and 2.

by highly dynamic plasmids that introduced novel genes by
duplication and/or genesis, some of which were maintained
selectively in response to the increased use of soil compounds
and the refined interactions with the progenitors of modern
plant cells.
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Fig. 4. Net gene loss or gain throughout the evolution of the a-proteobac-
terial species. Arrows pointing upward indicate net gains of genes (G), and
arrows pointing downward indicate net losses of genes (L). Colors and sizes of
arrows refer to the net number of genes gained or lost at each branch. Colors
of circles refer to the relative fraction of genes assigned to the different
functional groups in the modern and inferred genome at the node. Yellow,
information storage and processing; green, metabolism; red, cellular pro-
cesses; blue, poorly characterized. Clustering groups and estimated frequen-
cies are as described for Fig. 3a. Abbreviations for species names are as
described in the legends to Figs. 1 and 2.

Boussau et al.

Extreme reductions of size occurred twice independently: in
the ancestor of the obligate intracellular lineages Rickettsia and
Wolbachia and in the ancestor of the facultative intracellular
lineages Bartonella and Brucella. These losses have largely
affected protein families for transcription regulation, transport,
and metabolism of amino acids, nucleotides, carbohydrates,
lipids, and other small molecules. Particularly notable is the
independent loss of genes involved in secretory pathways, pilus
assembly, and flagellar biosynthesis. The loss of genes associated
with the transition from interactions with plants to animals in the
ancestor of Bartonella and Brucella was not balanced by a
corresponding gain of genes; no genes have homologs solely in
Bartonella and Brucella (E < 0.001).

The number of genes eliminated before the split of Rickettsia
and Wolbachia was estimated to 2,300-3,800 genes, as compared
with ~200-700 lost genes per lineage after the split (Fig. 3). The
inverse correlation between gene loss and branch lengths for this
part of the tree (compare Figs. 2 and 3) makes the lower
frequency of gene-elimination events in recent times all the more
striking. On average, the ratio of deletions to nucleotide substi-
tutions was 25-fold higher before the split of Rickettsia and
Wolbachia. A high frequency of gene loss relative to nucleotide
substitutions was also observed immediately before the emer-
gence of the intracellular lineages Bartonella and Brucella, which
is reminiscent of the more rapid loss of genes at an early stage
of genome reduction in aphid endosymbiont lineages, followed
by genomic stasis (17). Overall, we observed no correlation
between frequencies of amino acid substitutions and gene loss (12
= 0.14), gene duplication (7> = 0.02), or gene genesis (#* = 0.05),
indicating dramatically different fixation rates for these muta-
tions in the different lineages over time.

Gene Flux on Chromosomes and Auxiliary Replicons. Many species in
the Rhizobiales contain auxiliary chromosomes (Table 1) that
are characterized by less gene synteny than the main chromo-
somes (Fig. 6). To quantify the differences in mutational rates
and patterns for genes located on different replicons, we inferred
ancestral proteomes separately for COGs assigned to the aux-
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iliary replicons (mega-COG) versus those assigned to the main
chromosomes (main-COG). We classified a COG as a mega-
COG if >30% of its protein members were encoded on an
auxiliary replicon in A. tumefaciens, Brucella spp., S. meliloti, or
on the symbiosis islands in M. loti and B. japonicum. In total, we
classified 13% of the COGs as mega-COGs, which corresponds
to 2,349 COGs (8,662 proteins) out of the complete set of 17,669
COGs (73,658 proteins) included in the analysis.

The results showed that 20-24% of the losses that occurred
immediately before the Bartonella/Brucella divergence was as-
sociated with mega-COGs (Fig. 8, which is published as sup-
porting information on the PNAS web site). Likewise, a sub-
stantial fraction of the identified duplications involved proteins
in mega-COG families, as observed for example on the branch
leading to the Rhizobiales (23%) and also on the branch
separating these from R. palustris and B. japonicum (55%). In the
terminal branches for S. meliloti and A. tumefaciens, all three
types of mutational events were frequent for proteins classified
in the mega-COG family, including 30% of duplications, 25% of
losses, and 60% of gene-genesis events. Overall, mega-COGs
accounted for 21% of changes below the a-proteobacterial
ancestor. Considering that the mega-COGs only account for
13% of all COGs, the relative frequencies of deletions, dupli-
cations, and gene genesis was considerably higher for proteins
classified in these families. We speculate that the auxiliary
replicons were derived from plasmids that expanded by reiter-
ative processes of duplication/deletion and horizontal gene-
transfer events in the Rhizobiales.

Inferred Metabolism of the a-Proteobacterial Ancestor. Our pathway
analysis of the core ancestral gene set identified in all the
analyses (Table 5, which is published as supporting information
on the PNAS web site) suggests that it contained genes for
glycolysis and a complete system for aerobic respiration, as
expected for a unicellular organism that was well adapted to the
aerobic environment. Notable was its broad biosynthetic capa-
bility and the presence of multiple genes for regulatory and
transport functions. The analysis further identified genes for
flagellar biosynthesis and type III and type IV secretion systems.
Thus, the ancestor was probably a free-living, aerobic, and motile
bacterium that had evolved elaborate communication mecha-
nisms with other cells. Also present in the ancestor were genes
for phage-related functions; however, these genes may incor-
rectly have been assigned to the ancestor because of multiple
independent acquisitions of phage genes by horizontal gene
transfer in some of the derived lineages.

A comparison of the a-proteobacterial ancestral genome with
the gene content of the LUCA identified a small set of genes
inferred to be present in the LUCA (13) but absent from our
ancestral set. The number and identity of such genes depend on
penalty values, but even for the highest penalty values it was
observed that a set of genes, including those for homoserine
kinase, uridine kinase, endonuclease 1V, and glutamyl-tRNA
reductase, were predicted to be present in the LUCA but were
absent from the a-proteobacterial ancestor. These might have
been lost before the divergence of the a-proteobacterial ancestor
or, alternatively, been incorrectly assigned to the LUCA.

Comparing the a-Proteobacterial Ancestor with the Mitochondrial
Ancestor. The endosymbiotic theory postulates that mitochondria
evolved by massive gene loss and transfer of genes from the
common ancestor to the nuclear genome of the host cell. A total
of 630 orthologous groups display a close phylogenetic relation-
ship between eukaryotes and a-proteobacteria (15). These rep-
resent a minimal estimate of the protomitochondrial proteome,
because some gene transfers may have been missed because of
weak phylogenetic signals and others may have been lost from
the eukaryotic genomes included in the analysis. We compared
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sequence similarity to eukaryotic genes for different sLast score values. Esti-
mated number of COGs that shows similarity to eukaryotic genes in the
inferred proteomes of the a-proteobacterial ancestor (upper curve) and the
minimal protomitochondrial ancestor (lower curve) (15).

the 630 a-proteobacterial gene groups with the set of COGs
inferred to be putatively present in the a-proteobacterial ances-
tor. The protomitochondrial set includes 487 genes in 412
COGe-associated groups (15), all of which belong to the 3,300
genes in the >3,100 COGs of our ancestor (Fig. 3a). Of the 143
protomitochondrial groups not associated with a COG, 92 are
represented in the ancestral gene pool. Most of the 51 groups
missing from our data set consists of hypothetical proteins or
proteins with unknown functions.

Phylogenetic analyses of rRNA sequences, protein subunits of
the respiratory chain complexes, and concatenated protein
alignment suggest that mitochondria evolved from the «-
proteobacteria, with no evidence for multiple independent ac-
quisitions (12, 13, 30-32). Although several studies have placed
mitochondria as a deeply diverging sister clade near to the
Rickettsiales (30-32), the exact position is still debated. Here, we
consider the gene set of the reconstructed a-proteobacterial
ancestor as an upper limit of the protomitochondrial proteome.
To estimate how many of these ancestral genes may, at the most,
have been transferred to the host nuclear genome, we selected
the complete set of COGs present in the a-proteobacterial
ancestor and used them as queries in sequence-similarity
searches against eukaryotic genomes. As expected, the number
of COGs showing significant sequence similarity to eukaryotic
genes decreased with increasing BLAST scores from ~1,700
(score =50) to 850 (score =150) (Fig. 5). The remaining 1,144
ancestral COGs without eukaryotic homologs (score =40) rep-
resent putative gene losses. The genes in these COGs display a
broad taxonomic distribution in bacteria (data not shown), and
surprisingly many (>45%) encode proteins of unknown or
poorly characterized function (Table 2). Future functional anal-
yses of these genes may provide the answers as to why these genes
were not transferred to the eukaryotes.

Concluding Remarks

This study represents an attempt to quantify the different
mutational changes that underlie genome size alterations in the
a-proteobacteria. We observed no correlation between nucleo-
tide substitution rates and fixation rates for mutations that affect
genome contents. On the contrary, our results strongly suggest
that the inferred frequencies of deletions, duplications, and
horizontal gene transfers depend on population sizes and bac-
terial lifestyle features. In particular, the data support the
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Table 2. Relative fraction of COGs in the a-proteobacterial
ancestor (Fig. 3b) sorted according to broad
functional categories

Functional category +Hom* Mint —Hom*
Cellular processes 17 15 12
Information processes 15 15 6
Metabolism 45 53 14
Poorly characterized 20 17 45
New clusters* 3 0 23

*Values are percentages of COGs in the a-proteobacterial ancestor with
homologs (score =50) (+Hom) and without homologs (score =40) (—Hom) in
eukaryotic genomes.

*Values are percentages of COGs in the minimal (Min) protomitochondrial
genome (15) with homologs in eukaryotic genomes (score =50).

*Uncategorized clusters created in this analysis.

suggested correlation between transitions to intracellular growth
habitats and genome size reductions, with the highest frequen-
cies of gene loss at early stages of the transition (17).

The stability of the main chromosomes of the Rhizobiales,
displayed as segments with conserved gene synteny, contrasts
with otherwise high substation rates and extensive gene-content
differences. Expansions and contractions in the genomic reper-
toire have mostly affected genes involved in environmental
interactions; these typically are located on the auxiliary repli-
chores and evolve by very high turnover rates. It is possible that
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we have underestimated these rates at the internal branches of
the tree because of multiple insertion/deletion events. High
intrinsic rates for duplications/deletions and horizontal gene
transfers may serve as an efficient mutational engine that
enables rapid responses to alterations in the environmental
conditions when subjected to strong selective pressures.

Although the estimated frequencies of duplication and gene-
genesis events depend on the penalties assigned to these events,
our study clearly demonstrates the importance of gene duplica-
tions for expanding and diversifying the metabolic and regula-
tory capacities of the bacterial cell. A consequence of high
duplication and deletion rates is that the number of paralogous
proteins may be much larger than previously anticipated. In
effect, the many different protein variants do not necessarily
trace back to one ancestral giant gene pool but may have arisen
throughout evolution via reiterative processes of duplication and
loss. The continuous generation of novel paralogs may provide
one explanation for the difficulty to obtain congruent single gene
trees in phylogenomic surveys (1-5).

Computational inference of ancestral genomes with refined
models that account for the relative frequencies of the different
types of mutational events in the different lineages will provide
more detailed scenarios of genome size evolution in the a-
proteobacteria and other bacterial subdivisions.
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Evolution Profonde et Phylogénie

Durant cette thése je me suis intéressé a I’évolution profonde du vivant, depuis
le dernier ancétre commun universel (LUCA) jusqu’aux ancétres des trois grands
royaumnes, les Archées, les Bactéries et les Eucaryotes. J’ai notamment cherché a
placer quelques organismes dans I’arbre de la vie, tels que la bactérie Aquifer aeoli-
cus et 'archée Cenarchaeum symbiosum, et j’ai également étudié ’évolution des
températures de croissance il y a plusieurs milliards d’années. Pour ce faire, jai
développé des algorithmes afin de reconstruire I’évolution de séquences géniques,
puis j’ai utilisé ces séquences pour prédire les températures optimales de crois-
sances d’organismes aujourd’hui éteints. Mes collégues et moi-méme estimons que
LUCA ne vivait pas & trés haute température, mais que ses directs descendants
les ancétres des Bactéries et du groupe comprenant les Archées et les Eucaryotes
vivaient dans des environnements plus chauds. Cela signifie que les deux lignées
venant de LUCA ont subi le méme type d’évolution en paralléle, qui pourrait
avoir été causée par une seule et méme pression de sélection. Cette pression
pourrait étre le résultat d’un intense bombardement météoritique il y a 3.8 mil-
liards d’années, et avoir été accompagnée d’'un changement depuis un génome a
ARN pour LUCA vers des génomes & ADN pour ses descendants. Ensuite, dans
la lignée des Bactéries, les températures optimales de croissance ont chuté, ce qui
pourrait correspondre a I’évolution de la température des océans au cours des 3.5
derniers milliards d’années.

Early Evolution and Phylogeny

During this thesis, I studied the early evolution of life, from the Last Univer-
sal Common Ancestor (LUCA) to the ancestors of the three kingdoms, Archaea,
Bacteria and Eukarya. Notably, I have attempted to place a few organisms in the
tree of life, namely the bacteria Aquifer aeolicus and the archaea Cenarchaeum
symbiosum, and T also studied the evolution of optimal growth temperatures over
the last four billion years. To this end, T developed algorithms to reconstruct an-
cestral gene sequences, and used these sequences to predict the optimal growth
temperatures of now-extinct organisms. My colleagues and I estimate that LUCA
did not live in a very hot environment, but that its descendants the ancestors of
Bacteria and of the group containing Archaea and Eukarya both lived at higher
temperatures. This implies that the two lineages descending from LUCA under-
went the same kind of evolution in parallel, perhaps caused by the same unique
selection pressure. This pressure may have resulted from an intense meteoritic
bombardment 3.8 billion years ago, and have been accompanied by the transition
from an RNA genome in LUCA to DNA genomes in its descendants. Subse-
quently in the bacterial lineage, optimal growth temperature dropped, which
may correspond to the evolution of oceanic temperatures in the last 3.5 billion
years.
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