

Institut de Recherche en Electrotechnique et Electronique de Nantes-Atlantique.

Study of asymptotic models of electromagnetic wave scattering from natural interfaces – Application to a sea covered in oil –

Nicolas PINEL

PhD Supervisor:J. SaillardAdviser:C. Bourlier

IREENA Laboratory / Radar Team Polytech'Nantes

PhD Thesis Defense - Polytech'Nantes, Nantes (2006-10-16)

Outline Introduction Context 1 2. Objective Scattering from natural interfaces: Generalities 1. Scattering from a very rough interface III. Scattering from a very rough layer IV. **Conclusion & Prospects** V.

I.1. Context (2/2)

EM scattering → Scattering Coefficient (SC)

scattered power
 incident power

incident wave scattered wave

- one single interface: relatively well-known

SC

- two (or more) rough interfaces: research in progress

Case of 2 rough interfaces: Applications:

manumenter and

Oil slick 2

mannown

- ✓ Optics (characterization of optical materials, detection of defaults, etc.)
- Remote sensing (sand on granite, ice on sea, oil on sea, etc.)

✓ Biological tissues sounding, painting and varnish Industry, etc.

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

I.2. Objective (1/2)

Objective

 A fast method in order to determine the SC scattered by one or two rough interfaces separating homogeneous media

7

y ⊕---> **x**

Scattering from one rough interface

 $\Omega_1 \left(\epsilon_{r1}, \mu_0 \right)$

2D problem & 3D problem

Scattering in reflection as well as in transmission

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

slide 5

 $\Omega_1 (\varepsilon_{r1}, \mu_0)$

 $\Omega_2 (\varepsilon_{r2}, \mu_0)$

 $\Omega_3 (\varepsilon_{r3}, \mu_0)$

I.2. Objective (2/2)

asymptotic

Different possible approaches:

rigorous

- 'exact'
- extensive computing time
- extensive memory space

fast
restricted domain of validity

- cf. oil slick detection

Asymptotic models (validated by rigorous models):

Analytic determination of the EM response from rough surfaces (SC) => Integration in imagery simulators

Outline

Introduction

II. Scattering from natural interfaces: Generalities

- Natural interfaces: Statistical description
- 2. Case of sea and oil slick surfaces
- 3. Electromagnetic roughness: Rayleigh parameters
- III. Scattering from a very rough interface
- IV. Scattering from a very rough layer
- V. Conclusion & Prospects

II.1. Natural interfaces: Statistical description (1/3)

- Height distribution: $p_h(\zeta)$
 - Mean value $\zeta_0 = \langle \zeta(x) \rangle$
 - Characteristic dispersion around ζ_0 : Standard deviation σ_h

II.1. Natural interfaces: Statistical description (2/3)

Height autocorrelation function: W(x_d) = < ζ(x₁) ζ(x₂) >

 Correlation length L_c:

 $x_d >> L_c => M_1, M_2$ uncorrelated

II.1. Natural interfaces: Statistical description (3/3)

- Other statistical description tools:
 - Slope distribution $p_s(\gamma)$
 - Height spectrum $S(k,\phi)$ (FT of height autocorrelation function)
 - Slope spectrum $k^2 S(k,\phi)$
 - etc. (other derivatives of height spectrum)

Different types of distributions:

- Simple distributions: Gaussian, etc.
- Natural interfaces => more complex descriptions...

II.2. Case of sea and oil slick surfaces (1/6)

• Sea surface: Qualitative description: Gravity and capillarity waves:

II.2. Case of sea and oil slick surfaces (2/6)

- Sea surface: Statistical description:
 - Height distribution function $p_h(\zeta)$: ~ Gaussian
 - Height spectrum S_{sea}(k,φ):
 Elfouhaily et al. spectrum model [1]:
 - Semi-empirical model
 - Consistent with Cox & Munk experimental model [2] \rightarrow slope variance σ_s^2

– Slope distribution function $p_s(\gamma)$: ~ Gaussian

[1]: [Elfouhaily et al., Journal of Geophysical Research, 1997] [2]: [Cox and Munk, J. Opt. Soc. Am., 1954]

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

II.2. Case of sea and oil slick surfaces (3/6)

Sea covered in oil: Qualitative description: Damping of capillarity waves of both surfaces:

II.2. Case of sea and oil slick surfaces (4/6)

- Slope variance comparison:
 - Clean sea surface: σ_{sx}² ≈ 3.16×10⁻³ u₁₂ [2]
 - Sea covered in oil: $\sigma_{sx}^2 \approx 0.78 \times 10^{-3} u_{12} + 5 \times 10^{-3}$ [2]

From experiments

II.3. Electromagnetic roughness: Rayleigh parameters (1/6)

• EM roughness \rightarrow term **non intrinsic** to the surface: dependent not only on λ , but also on (σ_h, θ_i)

 θ_{i}

- Determines the choice for the asymptotic method to be used to solve the problem
- Characterized by a parameter: Rayleigh roughness parameter (R_a): R_a ← Δφ_{M1M2}

 $\Delta \phi_{M1M2}$ = phase difference between two arbitrary points (M_1, M_2) of the surface

 Ω_1 : ε_{r1}

 Ω_2 : ε_{r^2}

X

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

R_a: expressed for the case of reflection on the surface

• For a surface of infinite extent: $R_a = 2\pi (\sigma_b/\lambda) \cos\theta_i$

Qualitatively, it is said for the choice of asymptotic models:

- $-\sigma_h \ll \lambda$: Small Perturbation Method (SPM) can be used
- $-\sigma_h >> \lambda$: Geometric Optics Approximation (GOA) can be used

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

II.3. Electromagnetic roughness: Rayleigh parameters (3/6)

Scattered wave E_s

in

multiple directions

mannantermanne

$$\mathsf{E}_{\mathsf{s}} = \langle \mathsf{E}_{\mathsf{s}} \rangle + \delta \mathsf{E}_{\mathsf{s}}$$

Mean component In specular direction: $< E_s > ~ E_{r0} \exp(-2R_a^2)$ (Gaussian)

Random component In multiple directions

Incident

wave

Scattered power $P_{s} \sim \langle |E_{s}|^{2} \rangle$ $\begin{cases}
Coherent power P_{s,coh} \sim |\langle E_{s} \rangle|^{2} \sim |E_{r0}|^{2} \exp(-4R_{a}^{2}) \\
Incoherent power P_{s,inc} \sim \langle |\delta E_{s}|^{2} \rangle
\end{cases}$

$$\begin{cases} P_{s,coh} \gg P_{s,inc} \implies \mathbf{R_a} <<1 \implies \sigma_h <<\lambda/2\pi \\ P_{s,coh} << P_{s,inc} \implies \mathbf{R_a} >>1 \implies \sigma_h >>\lambda/2\pi \end{cases}$$

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

II.3. Electromagnetic roughness: Rayleigh parameters (4/6)

- GOA Model (single scattering):
 - $P_{s,coh} << P_{s,inc} => R_a >> 1 => \sigma_h >> \lambda/2\pi \text{ (moderate } \theta_i\text{):}$ Strongly rough surface σ_h comparatively to the EM wavelength λ

– Single scattering: $\sigma_s < 0.5$

[Ishimaru et al., PIER 14, 1996] [Bourlier et al., WRM, 2004]

- SC ~ $p_s(\gamma)$, with $p_s(\gamma)$ surface slope PDF

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

 $R_{a,t} = \mathbf{k_0} \sigma_h \quad (n_1 \cos \theta_i + n_2 \cos \theta_i)/2, \quad \text{with } n_1 \sin \theta_i = n_2 \sin \theta_i$ $R_{a,r} = \mathbf{k_0} \sigma_h \quad n_1 \cos \theta_i$

Comparison between R_{a,r} and R_{a,t}: Slightly / Strongly rough surface in case of Ref. or Trans.

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

A surface can be rougher / smoother in reflection / transmission

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Outline

Introduction

II. Scattering from natural interfaces: Generalities

III. Scattering from a very rough interface

- 1. Analytic methods: State of the art
- 2. Kirchhoff Approximation and Geometric Optics Approximation
- 3. Energy conservation of the model
- IV. Scattering from a very rough layer
- V. Conclusion & Prospects

a single rough interface

III.1. Analytic (asymptotic) methods: State of the art

Topical Review: [Elfouhaily & Guérin, WRM, 2004]

Small Perturbation Method ($\sigma_h <<\lambda$)Low FrequencyReduced Rayleigh Equations ($\sigma_h <<\lambda$)approximations

Kirchhoff Approximation ($R_c > \lambda$)

Geometric Optics approximation ($R_c > \lambda + \sigma_h > \lambda/2$) ⇒ Scalar Kirchhoff Approximation ($R_c > \lambda + \sigma_h < <\lambda$) High Frequency approximations

III.2. First-order Kirchhoff Approximation (KA-1)

Multiple scattering phenomenon

Only the first scattering is taken into account:

KA-1

valid for $\sigma_{s} <~ 0.5 (~30^{\circ})$ [5,6] $R_{c} > \lambda$

> [5]: [Ishimaru et al., PIER 14, 1996] [6]: [Bourlier et al., WRM, 2004]

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

III.2. KA-1 improvement: the shadowing function

III.2. Simplifications to the model

Method of stationary phase (MSP):

The main contribution of the scattered field $E_{r,t}$ comes from regions around the specular direction:

 $\gamma_A \rightarrow \gamma_{r,t}^{0}$ determined by K_i and $K_{r,t}$

Geometric Optics Approximation (GOA) or ray optics:

valid if $P_{r,t,coh} << P_{r,t,inc} => k_0 \sigma_h >> 1$ (moderate θ_i) The scattered power $P_{r,t}$ contributes only for closely-located correlated points (A, A') of the surface: $|x_{A'}-x_{A}| << L_c$

=> Simple expressions of the SC $\sigma_{r,t}$: no numerical integration

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

A A

slide 28

E

III.2. Analytic expression of $\sigma_{r,t}$ under AK+MSP+GOA

Reflection / Transmission Scattering Coefficient $\sigma_{r,t}$

E.,

 $\sigma_{r,t} = f(\theta_i, \theta_{r,t}) \times p_s(\gamma_{A,r,t}^{0}) \times S(\theta_i, \theta_{r,t})$

dependent on the Fresnel reflection / transmission coefficient

θ.

E.

probability density function (gives the specular direction)

E.

A

 γ_t^0

θ

E_t

shadowing function $\in [0,1]$

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

III.3. Energy conservation of the model

Calculation of reflectivity and transmissivity: in 2D:

$$\begin{aligned} \mathcal{R}(\theta_i) &= \frac{P_r(\mathbf{K_i})}{P_i(\mathbf{K_i})} &= \int_{-\pi/2}^{+\pi/2} \sigma_r(\mathbf{K_r}, \mathbf{K_i}) \ d\theta_r, \\ \mathcal{T}(\theta_i) &= \frac{P_t(\mathbf{K_i})}{P_i(\mathbf{K_i})} &= \int_{-\pi/2}^{+\pi/2} \sigma_t(\mathbf{K_t}, \mathbf{K_i}) \ d\theta_t. \end{aligned}$$

In theory, one should have:

$$\eta(\theta_i) = \mathcal{R}(\theta_i) + \mathcal{T}(\theta_i) = 1$$

Comparison of energy conservation factor η(θ_i) with 1:
 => Validate the numerical codes
 => Validate the shadowing functions
 => Quantify the multiple scattering

III.3. Energy conservation of the model: Extension to the 3D case

Study of energy conservation factor $\eta(\theta_i, \phi_i)$

2D case:

In agreement with results of the literature: [Lynch and Wagner, JMP, 1970]

3D case:

Same conclusions as 2D case

Lower levels

In agreement with results of the literature: [Eom, AO, 1985], [Tsang and Kong, Wiley, 2001]

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Outline

Introduction

II. Scattering from natural interfaces: Generalities

III. Scattering from a very rough interface

IV. Scattering from a very rough layer

- Analytic methods: State of the art
- 2. Presentation of the new model developed
- 3. Numerical results

V. Conclusion & Prospects

Small Perturbation Method ($\sigma_h <<\lambda$) [Fuks & Voronovich, WRM, 2000] Reduced Rayleigh Equations ($\sigma_h <<\lambda$) [Soubret et al., PRB, 2001] Kirchhoff Approximation ($R_c > \lambda$) \searrow Scalar Kirchhoff Approximation ($R_c > \lambda + \sigma_h <<\lambda$) [Ohlidal et al., PO, 1995]

-Full Wave Model [Bahar et al., TAP, 1999]

IV.2. Approach of the method

Use of KA-1 on the upper interface Σ_A (A₁)
 => reflected & transmitted fields at the point A₁

Huygens' principle (Green function → Weyl representation)
 => E₁ & incident field on Σ_B (B₁)

Σ

• Use of KA-1 on the lower interface $\Sigma_{\rm B}$ (B₁)

• etc.

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

E

 θ_{i}

B

slide 39

Ε,

 \mathbf{E}_1

IV.2. Approximations of the method (2D problem) Within the 1st-order Kirchhoff approximation ($\sigma_s < 0.5$, $R_c > \lambda$):

calculus of the 1st-order SC:
 Simple

calculus of the nth-order SC (n≥2):
 L→ Too much complicated

Method of Stationary Phase: main contribution comes from regions around the specular direction Still too much complicated

mmmmmmmm

Geometric Optics approximation: $P_{s,coh} << P_{s,inc} => \sigma_h > 0.5 \lambda$ main contribution comes from closely-located correlated points

2D problem:

2(n-1) numerical integrations (rough lower interface)
 (n-1) numerical integrations (plane lower interface)

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

slide 40

momment

Bistatic SC $\sigma_1 \& \sigma_2$: Comparison with a reference numerical method... ... based on the Method of Moments [Déchamps et al., JOSAA, Feb. 2006]

 $\varepsilon_{r3} = i\infty$ (PC)

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

slide 42

V polarization

1st-order SC σ_1 : Comparison with a reference numerical method

2nd-order contribution σ_2 : Comparison with a reference numerical method

1st-order SC σ_1 : Comparison with a reference numerical method

2nd-order contribution σ_2 : Comparison with a reference numerical method

IV.3. Monostatic SC (dB): oil slick detection (2D)

IV.3. Extension of the model to the 3D case

Exactly the same methodology as the 2D case

- Number of numerical integrations: multiplied by 2:
 4(n-1) numerical integrations (rough lower interface)
 2(n-1) numerical integrations (plane lower interface)
 ⇒ Increase of numerical complexity
- Interest: Quantify the cross-polarizations

N.B.: No numerical or experimental validation:
 Complexity of numerical implementation (σ_h>λ/2: MoM not well adapted to high frequencies)

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Bistatic SC $\sigma_1 \& \sigma_2$ for a **plane** lower interface

In the plane of incidence $\phi_s = 0^\circ$:

Study of the co- and crosspolarizations

with respect to θ_s

ε_{r1}=1

 $\epsilon_{r2}=3$

θ

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

 $\overline{H} = 6\lambda$

 $\sigma_{sx} = \sigma_{sy} = 0.1$

Introduction

- II. Scattering from natural interfaces: Generalities
- III. Scattering from a very rough interface
- IV. Scattering from a very rough layer
- V. Conclusion & Prospects

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

 A fast approximate method developed (valid in the high-frequency limit):
 2D problem: Office PC (1GHz, 256Mo RAM): ~

~ **5" (approximate)** ~ 4h10' (exact, N=50)

 Numerical validation (2D problem) [Déchamps et al., JOSAA, Feb. 2006]

 Disposal of a fast method for two strongly rough interfaces (2D problem)
 => Laboratory: 2 rough surfaces: - a numerical method

- an asymptotic method

 Extension of the fast asymptotic method to a 3D problem (valid in the high-frequency limit)

PhD Thesis Defense - Polytech'Nantes, Nantes (2006-10-16)

Prospects:

- Extension of the formulation to a 3D problem:
 - Numerical results for rough lower interfaces (general case)
 - Numerical / Experimental validation?
- Extension to more than 2 interfaces
- More detailed study of transmission shadowing function
- Correlation between interfaces

• Taking into account of double scattering from the same interface => Extension of validity to higher rms slopes σ_s

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Publications:

- 1 published journal article (Optics Letters, Aug. 2005)
- 1 journal article in minor revision (Waves in Random and Complex Media)

5 international communications with selection committee:
3 as first author (Radar 2004, EuRAD 2005, APS/URSI 2006) ,
2 as second author (EuCAP 2006)

• 2 national communications with selection committee (JNM 2005, GdR Ondes 2005)

QUESTIONS?

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Prospects (2):

 \hat{K}_{i}

m

Â'

 A_2

• Second-order scattered power $P_{r,2} = \langle E_{r,2} E_{r,2} \rangle^* >$: Coincidental contribution: Anti-coincidental contribution:

Â.

Numerical validation

Â.

 \hat{K}_r

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

A'2

Introduction

- II. Scattering from natural interfaces: Generalities
- III. Scattering from a very rough interface
- IV. Scattering from a very rough layer
- V. Conclusion & Prospects

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Analytic expression of σ_2 (3D problem)

Second-order Scattering Coefficient $\sigma_2 \sim \langle E_2 E_2 \rangle^* >$:

\rightarrow This expression can be generalized to any order σ_n

PhD Thesis Defense – Polytech'Nantes, Nantes (2006-10-16)

Results & Consequences

Method of stationary phase (MSP) : The main contribution comes from regions around the specular direction:

 Σ_1

 Σ_{23}

 $\gamma_A \rightarrow \gamma_A^{\ 0}$ determined by k_{inc} and k_{s1} => E₂: { $x_{A1}, x_{A2}, z_{A1}, z_{A2}$ }: 4 variables... still too much!

θ

 \mathbf{B}_{1}

slide 61

E. 1

 γ_{A1}^{0}

k_{inc}

 Σ_{12}

E, 7

 k_{s1}