
HAL Id: tel-00347162
https://theses.hal.science/tel-00347162

Submitted on 14 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Methods for Geometric Modeling
Julien Wintz

To cite this version:
Julien Wintz. Algebraic Methods for Geometric Modeling. Mathematics [math]. Université Nice
Sophia Antipolis, 2008. English. �NNT : �. �tel-00347162�

https://theses.hal.science/tel-00347162
https://hal.archives-ouvertes.fr

Université de Nice Sophia-Antipolis

École Doctorale STIC

THÈSE

Présentée pour obtenir le titre de :

Docteur en Sciences de l’Université de Nice Sophia-Antipolis

Spécialité : Informatique

par

Julien Wintz

Algebraic Methods for Geometric Modeling

Soutenue publiquement à l’INRIA le 5 Mai 2008

devant le jury composé de :

Président : André Galligo Université de Nice, France

Rapporteurs : Gershon Elber Technion, Israel

Tor Dokken Sintef, Norway

Examinateurs : Pascal Schreck Université Louis Pasteur, France

Christian Arber Missler, France

Directeur : Bernard Mourrain Inria Sophia-Antipolis, France

Algebraic methods for geometric modeling

Julien Wintz

Abstract

The two fields of algebraic geometry and algorithmic geometry, though

closely related, are traditionally represented by almost disjoint communi-

ties. Both fields deal with curves and surfaces but objects are represented

in different ways. While algebraic geometry defines objects by the mean of

equations, algorithmic geometry use to work with linear models. The cur-

rent trend is to apply algorithmic geometry algorithms to non linear models

such as those found in algebraic geometry. Such algorithms play an im-

portant role in many practical fields such as Computer Aided Geometric

Design. Their use raises important questions when it comes to developing

software featuring such models. First, the manipulation of their representa-

tion implies the use of symbolic numeric computations which still represent

one major research interest. Second, their visualization and manipulation is

not straightforward because of their abstract nature.

The first part of this thesis covers the use of algebraic methods in geometric

modeling, with an emphasis on topology, intersection and self-intersection

for arrangement computation of semi-algebraic sets with either implicit or

parametric representation. Special care is given to the genericity of the

algorithms which can be specified whatever the context, and then specialized

to meet specific representation requirements.

The second part of this thesis presents a prototype of an algebraic geometric

modeling environment which aim is to provide a generic yet efficient way to

model with algebraic geometric objects such as implicit or parametric curves

or surfaces, both from a user and developer point of view, by using symbolic

numeric computational libraries as a backend for the manipulation of the

polynomials defining the geometric objects.

Résumé

Les domaines de géométrie algébrique et de géométrie algorithmique, bien

qu’étroitement liés, sont traditionnellement représentés par des commu-

nautés de recherche disjointes. Chacune d’entre elles utilisent des courbes

et surfaces, mais représentent les objets de différentes manières. Alors que

la géométrie algébrique définit les objets par le biais d’équations polynomi-

ales, la géométrie algorithmique a pour habitude de manipuler des modèles

linéaires. La tendance actuelle est d’appliquer les algorithmes tradition-

nels de géométrie algorithmique sur des modèles non linéaires tels que ceux

trouvés en géométrie algébrique. De tels algorithmes jouent un rôle impor-

tant dans de nombreux champs d’application tels que la Conception As-

sistée par Ordinateur. Leur utilisation soulève d’importantes questions en

matière de développement logiciel. Tout d’abord, la manipulation de leur

représentation implique l’utilisation de calculs symboliques numériques qui

représentent toujours un domaine de recherche majeur. Deuxièmement, leur

visualisation et leur manipulation n’est pas évidente, en raison de leur car-

actère abstrait.

La première partie de cette thèse porte sur l’utilisation de méthodes algé-

briques en modélisation géométrique, l’accent étant mis sur la topologie,

l’intersection et l’auto-intersection dans le cadre du calcul d’arrangement

d’ensembles semi-algébriques comme les courbes et surfaces à représentation

implicite ou paramétrique. Une attention particulière est portée à la généri-

cité des algorithmes qui peuvent être spécifiés quel que soit le contexte, puis

spécialisés pour répondre aux exigences d’une certaine représentation.

La seconde partie de cette thèse présente le prototypage d’un environnement

de modélisation géométrique dont le but est de fournir un moyen générique et

vi

efficace pour modéliser des solides à partir d’objets géométriques à représen-

tation algébrique tels que les courbes et surfaces implicites ou paramétriques,

à la fois d’un point de vue utilisateur et d’un point de vue de développeur,

par l’utilisation de librairies de calcul symbolique numérique pour la manip-

ulation des polynômes définissant les objets géométriques.

Contents

Preface xi

Introduction 1

1 Algebraic preliminaries 7

1.1 Bernstein basis . 7

1.1.1 Univariate Bernstein basis 8

1.1.2 Multivariate Bernstein basis 9

1.2 Bernstein solvers . 9

1.2.1 Univariate Bernstein solver 10

1.2.2 Multivariate Bernstein solver 11

1.3 Algebraic numbers . 14

1.4 Resultants . 17

2 Geometric preliminaries 23

2.1 Curves . 23

2.1.1 Piecewise linear curves 24

2.1.2 Parametric curves . 24

2.1.3 Implicit curves . 28

2.2 Surfaces . 30

2.2.1 Piecewise linear surfaces 30

2.2.2 Parametric surfaces 33

2.2.3 Implicit surfaces . 36

2.3 Solids . 37

2.3.1 Constructive representation 37

vii

viii CONTENTS

2.3.2 Boundary representation 39

2.3.3 Semi-algebraic sets . 40

2.4 Software . 42

2.4.1 Applications . 42

2.4.2 Toolkits . 48

3 Algorithmic preliminaries 53

3.1 Generic framework . 55

3.1.1 Terminology . 55

3.1.2 Data structures . 59

3.2 Topology . 62

3.3 Intersection . 69

3.4 Arrangements . 75

4 A generic arrangement algorithm 85

4.1 Computing regions . 87

4.1.1 Regularity . 89

4.1.2 Subdivision . 91

4.1.3 Topology . 92

4.1.4 Fusion . 93

4.2 Segmenting the boundary of a region 95

4.3 Locating conflicts . 97

4.4 Updating regions . 98

5 Specialization for curves 101

5.1 Implicit curves . 102

5.1.1 Regularity . 104

5.1.1.1 Regular domains 104

5.1.1.2 Singular domains 108

5.1.2 Topology . 112

5.1.2.1 Regular domains 113

5.1.2.2 Singular domains 113

5.2 Parametric curves . 116

5.2.1 Regularity . 116

5.2.2 Topology . 117

5.3 Image of an implicit curve . 118

5.4 Piecewise linear curves . 119

CONTENTS ix

6 Specialization for surfaces 121

6.1 Implicit surfaces . 122

6.1.1 Regularity . 124

6.1.1.1 Spatial implicit curves 124

6.1.1.2 2-dimensional stratum 127

6.1.1.3 1-dimensional stratum 127

6.1.1.4 0-dimensional stratum 128

6.1.2 Topology . 129

6.1.2.1 2-dimensional stratum 129

6.1.2.2 1-dimensional stratum 130

6.1.2.3 0-dimensional stratum 130

6.2 Parametric surfaces . 131

6.3 Piecewise linear surfaces . 138

7 Applications 139

7.1 Trimming of parametric surfaces 139

7.2 Voronoi diagram of rational curves 143

8 Axel algebraic geometric modeler 147

8.1 User perspective . 149

8.1.1 Objects . 149

8.1.1.1 Curves . 149

8.1.1.2 Surfaces . 151

8.1.2 Tools . 153

8.1.3 Interface . 157

8.2 Developer perspective . 160

8.2.1 Framework . 161

8.2.2 Plugin system . 164

8.2.3 Kernel system . 165

9 Examples 169

9.1 Topology . 169

9.2 Intersection . 172

9.3 Self-intersection . 174

9.4 Arrangement . 176

Summary and outlook 179

x CONTENTS

A Axel data formalism reference 183

A.1 File architecture . 183

A.2 Objects . 186

A.3 Tools . 196

B Axel kernel system: the Sisl case 197

B.1 Kernel design . 198

B.2 Kernel implementation . 200

B.3 Example . 203

C Axel plugin system: the Irit case 205

C.1 Plugin design . 206

C.2 Plugin implementation . 207

C.3 Example . 210

D A virtual modeling environment 211

D.1 The principle of 3D imaging 211

D.2 Hardware . 213

D.3 Software . 213

D.4 Design . 214

Bibliography 219

Index 231

Preface

La thèse se décompose en deux parties intrinsèquement liées. La première,

plus théorique, correspond à la proposition d’un algorithme générique de cal-

cul d’arrangement de courbes ou surfaces par subdivision. Cet algorithme

de haut niveau mêle des méthodes algébriques telles que des calculs de topo-

logie, d’intersection et auto-intersection, avec des méthodes algorithmiques

de segmentation et de parcours de graphes.

La seconde, plus pratique, correspond au prototypage d’un modeleur qui se

veut algébrique géométrique, en ce sens qu’il permet la manipulation de la

représentation algébrique des objets géométriques telles que les courbes et

surfaces implicites ou paramétriques au moyen d’algorithmes à la frontière

entre la géométrie algébrique et la géométrique algorithmique tels que ceux

évoqués dans la première partie de cette thèse.

Préliminaires algébriques. Les courbes et surfaces en géométrie algé-

brique sont généralement représentées par morceaux au moyen de diverses

équations polynomiales. Les méthodes telles que l’intersection ou l’auto-in-

tersection de ces objets peuvent se réduire à la résolution de systèmes non

linéaires d’équations polynomiales exprimées dans la base monomiale ou la

base de Bernstein. D’autres opérations géométriques utilisent des techniques

de projection pour lesquelles le calcul de résultant est un outil algébrique très

pratique. Les techniques de subdivision, peuvent avoir recours aux nombres

algébriques pour exprimer les racines d’un polynôme de manière exacte. Le

chapitre 1 introduit les notions mathématiques nécessaires à la lecture de ce

xi

xii PREFACE

document.

Préliminaires géométriques. Traditionnellement, la modélisation géo-

métrique identifie un ensemble de techniques servant à modéliser certaines

classes de formes. Elle a d’importantes applications dans plusieurs domaines

industriels dont l’automobile, l’aérospatial ou l’architecture.

Les courbes et surfaces en sont les principales entités et sont utilisées pour

décrire des formes réalistes. Il est donc nécessaire pour la communauté scien-

tifique de s’intéresser à ce type d’entités géométriques et aux méthodes as-

sociées. Les sections 2.1 et 2.2 définissent de telles courbes et surfaces.

De manière combinée, ces courbes et surfaces définissent des solides repré-

sentant des objets physiques en s’appuyant principalement sur deux grandes

classes de représentation : la réprésentation par les bords et la représentation

constructive.

Un choix de représentation est primordial pour un logiciel dans la mesure

où les techniques de modélisation sont directement liées à la nature des

objets géométriques. Dans la section 2.4, nous donnons un aperçu rapide de

certains logiciels proposant des courbes et des surfaces pour la modélisation

géométrique.

Préliminaires algorithmiques. La géométrie algorithmique a permis de

grandes avancées, principalement sur le traitement des objets discrets. Ce-

pendant, les objets géométriques continus présentent de nombreux avantages

par rapports aux objets géométriques discrets. D’abord, leur représenta-

tion est exacte. Il est par exemple impossible de définir une sphère avec

un maillage alors qu’une surface Nurbs le permet. Ensuite, leur représen-

tation est infiniment plus compacte. Par exemple, approcher une sphère de

manière précise demande un nombre de sommets et de faces directement

proportionnel au niveau de détail requis alors qu’une équation polynomiale

décrit le même objet de manière implicite. Les préliminaires algorithmiques

de cette thèse commencent par définir une terminologie non ambiguë pour

l’expression des problèmes géométriques qui composent ce manuscrit, ainsi

que les structures de données utilisées par les algorithmes. Ensuite un état de

l’art résume les dernières avancées dans les domaines du calcul de topologie,

PREFACE xiii

d’intersection et d’auto-intersection de courbes et surfaces à représentation

implicite ou paramétrique en opposant les techniques à base de balayage et

celles à base de subdivision.

Algorithme générique d’arrangement. La première contribution de

cette thèse est une méthode générique de calcul d’arrangement par subdi-

vision. Un arrangement d’une collection d’objets est la décomposition de

l’espace en sommets, arrêtes, faces etc, induites par ces objets.

La méthode proposée est générique à plusieurs titres. D’abord, elle est

indépendante de la dimension, quand bien même elle sera spécialisée en

dimension 2 pour le calcul d’arrangement de courbes dans le plan et en di-

mension 3 pour le calcul d’arrangement de surfaces dans l’espace. Les mêmes

méthodes ont été appliquées avec succès en dimension 4 dans l’espace des

paramètres des deux surfaces paramétriques par exemple. Ensuite, elle est

hétérogène. Elle sera spécialisée pour des représentations implicites comme

paramétriques ou linéaires par morceaux. Enfin, elle peut être appliquée soit

de manière dynamique pour maintenir une structure d’arrangement suppor-

tant l’insertion de nouveaux objets ou la suppression d’objets existants, soit

de manière statique en considérant une collection fixe d’objets et en calcu-

lant le résultat en une seule passe. Cette généricité est rendue possible par

la flexibilité de l’approche par subdivision.

Quelle que soit la dimension, le type d’objet ou la méthode de calcul, l’algo-

rithme a un très bon comportement numérique. D’abord les calculs pouvant

nécessiter des outils approchés sont effectués une seule fois afin de certifier

le résultat et d’assurer la cohérence de la méthode. Ensuite, l’utilisation

de structures de segmentation permet d’exhiber des conditions nécessaires

à l’intersection d’objets qui permettent de filtrer les appels aux outils de

résolution et de limiter leur nombre au strict minimum.

Toute méthode de partitionnement adaptative est guidée par un critère de

subdivision, aussi la méthode procède de la façon suivante : tant que l’on ne

peut déduire la topologie d’un objet (resp. d’un ensemble d’objets) dans le

domaine courant, ce dernier est subdivisé et les cellules de subdivision ainsi

obtenues sont testées à leur tour. Les régions définies par la topologie de

l’objet (resp. des objets) sont finalement déduites localement dans les cellules

xiv PREFACE

qui ont passé le test avec succès puis assemblées de manière ascendante à

travers la structure hiérarchique de subdivision pour obtenir l’ensemble des

régions définies globalement par l’objet (resp. les objets) dans le domaine de

départ.

Spécialisation aux courbes. Le chapitre 5 est la spécialisation de l’algo-

rithme générique de calcul d’arrangement par subdivision au cas des courbes

dans le plan. Cette spécialisation revient à fournir un test de régularité (uti-

lisé comme critère de subdivision dans l’algorithme générique) pour chaque

type de courbe parmi implicite, paramétrique et linéaire par morceaux. Ce

test de régularité permet de vérifier que la topologie d’un objet (resp. d’un

ensemble d’objets) peut être déterminé à partir d’informations sur le bord de

la cellule de subdivision. Le calcul de topologie étant directement lié au test

de régularité, ce dernier est également fourni par la spécialisation. La gestion

globale étant fournie par l’algorithme générique, ce chapitre ne s’intéresse

qu’à traiter le problème localement.

Le calcul d’arrangement de courbes implicites est celui qui pose le plus de

problèmes. La section 5.1 distingue le cas de cellules non singulières de celui

de cellules singulières. Dans le premier cas les dérivées partielles des po-

lynômes qui représentent la courbe fournissent les informations nécessaires

à l’analyse du comportement des segments d’une même courbe dans une

cellule. En utilisant des indices pour une direction donnée, un algorithme

de connexion de branches permet d’obtenir localement la topologie de la

courbe, puis d’en déduire les régions. Dans le second cas, celui d’une auto-

intersection transverse ou tangente, ou d’un point isolé, un calcul de degré

topologique permet de déduire le nombre de branches émanant du lieu sin-

gulier et ainsi de fournir un algorithme trivial de connexion. Dans tous les

cas, les points d’intersection de la courbe avec le bord de la cellule, les points

critiques, extremums et singuliers sont obtenus au moyen des solveurs par

subdivision présentés dans le chapitre 1 en utilisant la représentation de

Bernstein des polynômes qui représentent les courbes. En considérant des

bornes inférieurs et supérieurs pour les coefficients des polynômes dans la

base de Bernstein, nous obtenons une technique d’enveloppement qui per-

met la gestion optimisée de courbes représentées par des polynômes de haut

degré à grand coefficients.

PREFACE xv

Le cas paramétrique ne pose pas de problème majeur. En effet les points d’in-

tersection de la courbe avec le bord de la cellule de subdivision et les points

critiques sont aisément calculés. L’obtention des points singuliers tels que

les points de rebroussement est rendue possible par l’utilisation de solveurs

non linéaires à condition que la représentation des courbes soit polynomiale.

Des méthodes de segmentation permettent également d’approcher les points

critiques et singuliers à une précision donnée par un pas d’échantillonnage de

l’espace des paramètres. Les algorithmes de connexion sont sensiblement les

mêmes que dans le cas implicite, seules les méthodes utilisées pour calculer

les entités géométriques intermédiaires varient.

La gestion de courbes linéaires par morceaux (séquence de segments de

droite) peut conceptuellement se déduire du cas parametré de par le fait

qu’une séquence de segments s’apparente à l’échantillonnage d’une courbe

paramétrique. Pour obtenir les points critiques et les points d’auto-inter-

section, on utilise une structure dite de segmentation monotone qui permet

l’isolation efficace des changements de direction des segments de droites.

Spécialisation aux surfaces. Si le cas des courbes commence à être bien

documenté pour ce qui est des calculs de topologie et d’intersection, le cas

des surfaces pose encore bien des défis et de nombreuses propositions sont

régulièrement publiées principalement pour le calcul d’intersection de sur-

faces paramétriques (polynomiales rationnelles, Bézier, B-spline ou Nurbs).

L’intersection de surfaces implicites mène au calcul topologique d’un courbe

implicite spatiale par définition même de leur lieu d’intersection.

La topologie d’une surface implicite peut se caractériser localement de la

manière suivante. À proximité d’une strate de dimension 2, la topologie de

la surface est similaire à celle d’un hyperplan. À proximité d’une strate de

dimension 1, la topologie de la surface est similaire à celle d’un cylindre.

À proximité d’une strate de dimension 0, la topologie de la surface est si-

milaire à celle d’un cône. L’intersection d’une surface avec les bords de la

cellule de subdivision (un cube dans l’espace) peut être de deux natures :

soit une courbe implicite quand il s’agit d’une face, soit un point quand

il s’agit d’une arrête ou d’un coin. Le lieu singulier d’une telle surface est

contenu dans sa silhouette que l’on définit formellement par la variété po-

laire de la surface. Aussi dans le cas d’une strate de dimension 2, le critère

xvi PREFACE

de régularité opère uniquement sur les faces en utilisant l’outillage que nous

fournit la spécialisation aux courbes implicites. Dans le cas d’une strate de

dimension 1, le critère de régularité s’enrichit par le test de régularité de la

variété polaire de la surface. Ce dernier nécessite le calcul de la topologie

d’une courbe implicite spatiale définie comme l’intersection de deux sur-

faces implicites, fournit en suivant une approche par subdivision exploitant

le champ de vecteurs tangents à la courbe. Finalement, nous traitons le cas

d’une strate de dimension 0 par le test de régularité de la projection de la

variété polaire sur la plan défini par l’unique point singulier de la strate dans

la cellule.

Contrairement au cas des courbes, les problèmes d’intersection et d’auto-in-

tersection de surfaces à représentation paramétrées ne sont pas triviaux et

mènent naturellement à la manipulation de courbes implicites dans l’espace

des paramètres. Aussi, les critères exhibés dans le chapitre 5 sont directement

applicables aussi bien pour traiter la topologie singulière d’un objet que pour

traiter les conflits qui peuvent survenir entre deux objets. La subdivision

étant conduite dans l’espace euclidien, il est cependant nécessaire de garder

un certain contrôle sur le résultat de ces tests dans l’espace des paramètres.

En vérifiant que les images des espaces respectifs ne s’intersectent pas dans

l’espace euclidien, on garantit la nature injective de l’approche.

Applications. Le chapitre 7 introduit deux applications immédiates de

l’algorithme générique d’arrangement. La première illustre son utilisation

statique dans un contexte de CAO où des surfaces rognées sont définies

soit au moyen d’une procédure d’intersection soit par nature dans le cas

d’une surface qui s’auto-intersecte comme c’est souvent le cas des surfaces

construites par extrusion. L’algorithme d’arrangement, appliqué dans l’es-

pace des paramètres de la surface permet l’identification des régions à sup-

primer.

La seconde application proposée constitue une avancée majeure en géométrie

algorithmique, elle permet le calcul du diagramme de Voronoi d’un ensemble

de courbes définies de manière paramétrique par des polynômes (courbes

appelées rationnelles). Cette application utilise de manière dynamique le

calcul localisé de régions dans l’espace des paramètres formé par les courbes

en conflit. Une succession d’opérations booléennes sur les régions obtenues

PREFACE xvii

permet de définir incrémentalement le diagramme de Voronoi avec une com-

plexité optimale en termes de calculs d’intersection.

Un modeleur algébrique géométrique. La seconde contribution de

cette thèse est un prototype de modeleur algébrique géométrique nommé

Axel. Le logiciel tient une place importante dans chacune des communautés

scientifiques de géométrie algébrique et géométrie algorithmique. Alors que

le premier produit des systèmes de calcul algébrique (CAS) et des librairies

de calcul symbolique et numérique comme Maple, Magma, Singular, Ma-

themagix, Synaps etc, le second fournit des librairies algorithmiques telles

que Cgal. D’autres solutions, plus dédiées à la CAO sont aussi disponibles

comme l’environnement Irit ou les librairies Sisl et GoTools.

D’un point de vue utilisateur, Axel permet la visualisation et la manipu-

lation interactive des objets géométriques tels que les courbes et surfaces

paramétriques, implicites ou discrètes. La visualisation dynamique d’objets

géométriques à représentation implicite est en soit une avancée majeure ren-

due possible par des calculs topologiques dans un domaine où les solutions

proposées jusqu’à lors fournissent un résultat statique au moyen de tech-

niques basées sur le lancer de rayon. La manipulation est non seulement

rendue possible par un système avancé de calques tri-dimensionnels et par

les points de contrôle de certains modèles paramétrés, mais aussi par le biais

d’algorithmes qui manipulent directement la représentation algébrique des

objets géométriques.

D’un point de vue développeur, Axel est une application qui fournit une in-

terface virtuelle sur les objets élémentaires en modélisation géométrique dans

une architecture modulaire basée sur un système de noyaux et de plugins.

Cette architecture a pour vocation de simplifier la connexion avec d’autres

outils et leur interopérabilité.

Le chapitre 8 présente le logiciel à la fois d’un point de vue utilisateur et

d’un point de vue développeur. Les objets et les outils sont d’abord présentés

en illustrant les calculs de topologie, d’intersection, d’auto-intersection et

d’arrangement, ainsi que les diverses interfaces de flux de fichier, de script

et l’interface graphique qui fournit des moyens interactifs et intuitifs d’in-

teragir avec la représentation algébrique des objets géométriques. Ensuite,

xviii PREFACE

l’architecture interne du logiciel est passée en revue, en particulier avec ses

hiérarchies de classes virtuelles pour les objets et les outils qui permettent

un double niveau de sélection et des facilités de codage. Finalement, les

concepts de noyau et de plugins sont brièvement introduits.

Annexes. Le premier annexe correspond au manuel de référence du format

de fichier défini par Axel, basé sur XML. Il rappelle les concepts de base du

métalangage de description puis définit la grammaire du langage et illustre

chaque spécification d’objet par des exemples.

Le second annexe illustre le mécanisme de noyaux et ses capacités de conne-

xion avec pour exemple la librairie Sisl. Il illustre le mécanisme de bijection

entre les objets virtuels d’Axel et les instances des objets fournies par des

librairies connectées au noyau géométrique et son utilisation dans, entre

autres, des calculs d’offset.

Le troisième annexe illustre le mécanisme de plugins et ses capacités de

connexion avec pour exemple le système Irit. Il illustre en particulier com-

ment définir un nouveau type objet à l’intérieur du plugin et comment le

raccrocher à la hiérarchie virtuelle d’objets d’Axel. Dans cet exemple, le

plugin modifie l’interface graphique de l’application en ajoutant des entrées

de menu pour invoquer ses parseurs. Les objets chargés sont ensuite graphi-

quement rendus par Irit dans Axel à travers le système de plugins.

Le dernier annexe rend compte du portage des modules internes d’Axel à un

environnement de réalité virtuelle. Ce travail est basé sur l’enrichissement

par l’équipe d’ingénieurs de recherche de l’Inria Sophia Antipolis du moteur

3D Ogre pour la gestion des concepts et du matériel utilisés par un tel

environnement.

Introduction

Domain. Solid modeling has emerged as a central area of research in such

diverse applications as CAD (Computer-Aided Design) and CAM (Computer-

Aided Manufacturing) in automobile, aeronautic, architecture or movie in-

dustries.

To specify elaborated shapes, solid modeling mainly has recourse to two fam-

ilies of representations. The first one is a constructive representation called

CSG (Constructive Solid Geometry) which consists in assembling elements

of simpler geometry such as cubes or spheres by the mean of boolean oper-

ations like union, intersection or difference. With this approach, a solid is

represented by a tree which leaves are primitive solids and internal nodes are

either rigid motions (translation, rotation, scaling) or boolean operations.

The second one, called B-Rep (Boundary Representation), describes ob-

jects by their boundaries in terms of n-dimensional entities such as vertices

(0-dimensional entity), edges (1-dimensional entity), faces (2-dimensional

entity), volumes (3-dimensional entity) and so on. The topological model is

then a structure gathering these n-dimensional entities together with inci-

dency and adjacency relationships.

CSG and B-Rep representations have inherent strength and weaknesses.

CSG models are intuitive and offer an easy workflow for design. B-Rep

models are more flexible for many operations. As a consequence, there is a

strong tendency to combine these two representations to benefit from both

their advantages.

1

2 INTRODUCTION

As a field, solid modeling spans several disciplines from computer science

to mathematics. It is therefore a broad subject that benefits a diversity of

viewpoints. In particular it finds its main entities in geometric modeling

with curves and surfaces which have brought powerful design possibilities

e.g. with freeform surface modeling.

Curves and surfaces with algebraic representation feature many advantages

which have made of them the representation of choice in CAD. First they

provide better accuracy by their exact nature. Second, they yield compact

models. Such representations include implicit and parametric ones.

Problem. To use such curves and surfaces in solid modeling it is neces-

sary to be able to perform boolean operations on them and to describe the

resulting shapes by their boundary. Arrangements are high-level algorithms

that allow to solve such problems.

Arrangements of geometric objects have been intensively studied in combi-

natorial and computational geometry for several decades. Given a collection

of objects their arrangement is the decomposition of the space into regions

induced by these objects. They allow to perform any boolean operation on

the input objects and represent regions by a set of vertices, edges, faces and

so on. The problem is then to be able to compute an arrangement of implicit

or parametric curves or surfaces.

Besides the fact that implicit or parametric curves or surfaces have numerous

advantages, their representation is however difficult to manipulate. Alge-

braic methods therefore play then an important role in geometric modeling

and so, in solid modeling as well.

Computing an arrangement of objects with such representations implies one

to carry out topology computation, intersection computation and possibly,

self-intersection computation.

All these operations may necessitate algebraic computations such as poly-

nomial system solving, resultant computation or algebraic numbers manip-

ulation, which enlarges even more the scope of methods needed by an ar-

rangement computation.

INTRODUCTION 3

Approach. We propose a generic approach to the arrangement computa-

tion using a subdivision scheme.

The method is generic in several respects. First, it does not dependent on

the dimension, even though it will be specialized in dimension 2 for the

computation of an arrangement of curves in the plane and in dimension 3

for the computation of an arrangement of surfaces in the space.

Secondly, it is heterogeneous. It can be specialized for either implicit, para-

metric or piecewise-linear representations.

Finally, it can be applied either dynamically in order to maintain an ar-

rangement structure while new objects are inserted or existing objects are

removed, or statically considering a collection of objects and computing the

result in a single pass. This genericity is made possible by the flexibility of

the subdivision scheme.

Any method of adaptive partitioning is guided by a subdivision criterion.

The method proceeds the following way: while we can not infer the topology

of an object (or a set of objects) in the current subdivision cell, the latter is

subdivided and resulting cells are tested in turn. This test, called regularity

criterion has a local nature and is provided by a specialization of the generic

algorithm.

Regions are then locally defined by the topology of the object (or objects)

in so called regular cells. Their definition is directly related to the regularity

test and therefore also provided in a specialization of the algorithm.

The generic part then merges all these local regions across the hierarchical

subdivision structure to obtain the set of regions globally defined by the

object (or the set of objects) in the input domain.

The use of a subdivision scheme, as opposed to a sweep scheme, allows to

avoid costly projections at critical points as well as subsequent numerical

errors, by enclosing these critical parts in a region in which the configuration

can be deduced from information on its boundary.

Whatever the dimension, the type of the objects or the computation method,

the algorithm has a very good numerical behavior. First, some computations

that may require approximate tools are performed only once to ensure the

consistency of the method. Second, the use of segmentation structures brings

4 INTRODUCTION

necessary conditions for the conflict of regions that allow to filter the use of

algebraic solvers and reduce the algorithm complexity.

Validation. We specialize the generic algorithm to the case of curves and

surfaces. These specializations first consist in providing a regularity test that

will serve as a subdivision criterion for the generic algorithm for each type

of object among implicit, parametric and piecewise linear. It assures that

objects in a cell of subdivision are in a configuration that allows to deduce

regions from information on the boundary of the cell. The determination of

regions from the topology of objects within the cell is directly linked to the

regularity test, it is therefore also provided by the specialization together

with the regularity test. The overall management being provided by the

generic algorithm, a specialization only deals with the problem locally.

For the case of curves, we will distinguish two major families of configura-

tions: non-singular configurations and singular configurations. In the first

case, algebraic tools permit us to ask for a certain level of monotony of the

objects within the cell of subdivision so that we are able to provide an al-

gorithm connecting intersection points of the curves with the border of the

cell to obtain branches locally isotopic to the input objects. In the second

case, using degree theory to compute the topological degree of a unique sin-

gular point within the cell, we want to ensure a star shaped configuration

by counting the number of branches stemming out from a singular point.

The corresponding connection algorithm is then trivial.

If the case of curves begins to be well documented as far as topology and

intersection computation are concerned, surfaces still pose many challenges

and many proposals are regularly published mainly for the computation

of the intersection of parametric surfaces (rational polynomial, Bézier, B-

spline or Nurbs). The intersection of implicit surfaces leads to a topology

computation of an implicit space curve by definition of the intersection locus.

The topology of a surface can be locally characterized as follows. Nearby

a 2-dimensional stratum, the topology of a surface is similar to the one of

a hyperplane. Nearby a 1-dimensional stratum, the topology of a surface

is similar to the one of a cylinder. Nearby a stratum of dimension 0, the

topology of a surface is similar to the one of a cone. The singular locus of

INTRODUCTION 5

such a surface is contained in its silhouette that is formally defined by the

polar variety of the surface. The general idea to deal with implicit surfaces

is to compose regularity criteria using the planar ones on the facets of the

subdivision cell together with the analysis of the polar variety in the case of

1-dimensional strata or of its projection in the case of 0-dimensional strata.

Since parametric surfaces naturally lead to the definition of implicit curves

in some parameter space we will see how the local treatment of a cell of

subdivision in an arrangement of parametric surfaces can benefit from the

local treatment of implicit curves.

We validate this study into an algebraic geometric modeling environment

called Axel. It allows the visualization and manipulation of geometric ob-

jects with algebraic representation such as implicit or parametric curves or

surfaces.

Its main features are topology, interpolation, approximation, intersection,

self-intersection and arrangement computation of implicit and parametric

curves and surfaces.

The arrangement implementation follows its design. Using the template

method design pattern together with virtual methods it is generic and runs

inside the modeler as a daemon which looks for insertions or deletions of

objects to maintain the arrangement structure.

Outline. The first three chapters set the framework with an emphasis

on objects, algorithms and software. These preliminaries aim at setting

the terminology used throughout this thesis and remind some state of the

art investigations namely in the fields of geometric modeling, algorithmic

geometry and algebraic geometry.

Second, the main theoretical achievement of the thesis, arrangement compu-

tation, is presented. Chapter 4 introduces the generic subdivision approach

and the next two chapters specialize it to the cases of curves and surfaces.

The latter are followed by the evocation of immediate yet very useful appli-

cations of the algorithm. Most of the necessary mathematical background

is presented in chapter 1, however, some concepts that are used only once

are discussed right where they are introduced.

Chapter 8 illustrates the main technical achievement of the thesis, the pro-

6 INTRODUCTION

totyping of a new kind of software to let the disjoint fields of algebraic and

algorithmic geometry meet in a geometric modeling context. The appendices

give more details about its data file formalism, its highly modular architec-

ture using dynamic kernels and plugins built on top of external computa-

tional libraries as a support and finally a first attempt at using its internals

in a virtual reality environment.

Chapter 1

Algebraic preliminaries

Curves and surfaces in algebraic geometry are usually represented by piece-

wise polynomial equations of various types. Many interrogations on such

objects such as intersection or self-intersection reduce to solving systems

of non linear polynomial equations in either monomial or Bernstein basis.

Many geometric operations use projection techniques for which a resultant

computation is a very convenient algebraic tool. Subdivision solving meth-

ods provide approximate solutions but algebraic numbers allow to exactly

represent roots of polynomials.

This chapter presents some algebraic ingredients that will be extensively

used in the different computations proposed in this thesis.

1.1 Bernstein basis

The Bernstein basis is often used in a subdivision process involving algebraic

geometric objects since they have a number of useful properties [48] which

make them a convenient tool to encode their representation within a given

domain. The representation of a polynomial in the Bernstein basis is known

to be numerically more stable than the monomial basis representation [49].

Moreover, it has a direct geometric meaning, in terms of control points

and useful properties such as the convex hull and the variation diminishing

properties.

7

8 CHAPTER 1. ALGEBRAIC PRELIMINARIES

1.1.1 Univariate Bernstein basis

Given an arbitrary univariate polynomial function f(x) ∈ K, we can convert

it to a representation of degree d in Bernstein basis, which is defined by:

f(x) =
∑

i

biB
d
i (x) (1.1)

Bd
i (x) =

(

d

i

)

xi(1 − x)d−i (1.2)

where bi is usually referred to as control coefficients. The above formula

can be generalized to an arbitrary interval [a, b] by a variable substitution

x′ = (b− a)x + a. We denote by Bi
d(x; a, b) =

(

d
i

)

(x− a)i(b− x)d−i(b− a)−d

the corresponding Bernstein basis on [a, b].

There are several useful properties regarding Bernstein basis given as follows.

Property 1.1 (Convex-Hull): Since
∑

i B
i
d(x) ≡ 1 and Bi

d(x; a, b) ≥ 0

for all x ∈ [a, b], where i = 0, ..., d, the graph of f(x) = 0, which is given

by (x, f(x)), should always lie within the convex-hull defined by the control

coefficients (i
d , bi) [48].

Property 1.2 (De Casteljau Subdivision): Given x0 ∈ [0, 1], f(x) can

be represented piece-wisely by:

f (0)(x) =

d
∑

i=0

b
(i)
0 Bd

i (x), x ∈ [0, x0] (1.3)

f (1)(x) =

d
∑

i=0

b
(d−i)
i Bd

i (x), x ∈ [x0, 1] (1.4)

b
(k)
i = (1 − x0)b

(k−1)
i + x0b

(k−1)
i+1 (1.5)

Definition 1.1: The number of sign changes V (b) is defined recursively for

a sequence of coefficients bk = b1 . . . bk:

V (bk+1) = V (bk) +

{

1, if bibi+1 < 0

0, otherwise
(1.6)

1.2. BERNSTEIN SOLVERS 9

1.1.2 Multivariate Bernstein basis

The univariate Bernstein basis representation can be generalized to multi-

variate ones. Briefly speaking, we can rewrite the definition (see equation

1.1) in the form of tensor products. Suppose for x = (x1, ..., xn) ∈ Rn,

f(x) ∈ K[x] having the maximum degree d = (d1, ..., dn) has the form:

f(x) =

d1
∑

k1=0

...

dn
∑

kn=0

bk1...kn
Bd1

k1
(x1)...B

dn

kn
(xn) (1.7)

The De Casteljau subdivision for the multivariate case proceeds similarly

to the univariate one, since the subdivision can be done independently with

regards to a particular variable xi. The Descartes’ law also applies for the

multivariate case. For a polynomial of n variables, the coefficients can be

viewed as a tensor or dimension n.

1.2 Bernstein solvers

A critical operation, which we will have to perform in geometric computa-

tions on curves and surfaces, is to solve polynomial equations. In such com-

putations, we start with input polynomial equations (possibly with some

incertitude on the coefficient) and we want to compute an approximation of

the real roots of these equations or boxes containing these roots. Such op-

eration should be performed very efficiently and with guarantee, since they

will be used intensively in geometric computations.

This section describes subdivision solvers which are based on certified ex-

clusion criteria. In other words, starting from an initial bounded domain,

sub-domains which are guaranteed not to contain a real solution of the poly-

nomial equations are removed. A parameter ǫ > 0 is controlling the size of

the boxes that are kept while existence and uniqueness criteria are applied to

produce certified isolation intervals which contain a single root. The inter-

est of these subdivision methods (e.g. [63]), compared to homotopy solvers

[103], [60] or algebraic solvers [85] is that only local information related to

the initial domain are used, avoiding an approximation of all the complex

roots of the system. The methods are particularly efficient for systems where

10 CHAPTER 1. ALGEBRAIC PRELIMINARIES

the number of real roots is much smaller that the number of complex roots

or where the complex roots are far from the domain of interest. Multiple

roots however usually reduce their performance if their isolation is required,

in addition to their approximation.

1.2.1 Univariate Bernstein solver

Let us consider first an exact polynomial f =
∑d

i=0 aix
i ∈ Q[x]. Our objec-

tive is to isolate the real roots of f , i.e. to compute intervals with rational

endpoints that contain one and only one root of f , as well as the multiplicity

of every real root. Here is the general scheme of the subdivision solver that

we consider, augmented appropriately so that it also outputs the multiplici-

ties. It uses an external function V (f, I), which bounds the number of roots

of f in the interval I (see property 1.1).

Algorithm 1.1: Real root isolation

Input: A polynomial f ∈ Z[x], such that deg(f) = d.

Output: A list of intervals with rational endpoints, which contain one and

only one real root of f and the multiplicity of every real root.

Compute the square-free part of f , i.e. fred ;

Compute an interval I0 = (−B,B) ;

Initialize a queue Q with I0 ;

while Q 6= ∅ do
Pop an interval I from Q and compute v := V (f, I) ;

if v = 0 then discard I ;

if v = 1 then output I ;

if v ≥ 2 then split I into IL and IR and push them to Q ;

end

Determine the multiplicities of the real roots, using the square-free

factorization of f ;

Another interesting property of the univariate Bernstein representation re-

lated to the Descartes’ law of signs (see proposition 1.3) is that there is a

simple and yet efficient test for the existence of real roots in a given interval.

Property 1.3 (Descartes’ Law of signs): Given a polynomial f(x) =
∑n

i biB
d
i (x; a, b), the number N of real roots of f on]a, b[is less than or

1.2. BERNSTEIN SOLVERS 11

equal to V (b), where b = (bi)i=1...n and N ≡ V (b) mod 2.

With this property,

• if V (b) = 0, the number of real roots of f in [a, b] is 0.

• if V (b) = 1, the number of real roots of f in [a, b] is 1.

The approach can also be extended to polynomials with interval coefficients,

by counting 1 sign variation for a sign sub-sequence (+, ?,−) or (−, ?,+), 2

sign variations for a sign sub-sequence (+, ?,+) or (−, ?,−), 1 sign variation

for a sign sub-sequence (?, ?, ?), where ? is the sign of an interval containing

0. Again in this case, if a family f of polynomials is represented by the

sequence of intervals b̄ = [b̄0, . . . , b̄d] in the Bernstein basis of the interval

[a, b]:

• if V (b̄) = 1, all the polynomials of the family f have one root in [a, b],

• if V (b̄) = 0, all the polynomials of the family f have no roots in [a, b].

This subdivision algorithm, using interval arithmetic, yields either intervals

of size smaller than ǫ, which might contain the roots of f = 0 in [a, b] or

isolating intervals for all the polynomials of the family defined by the interval

coefficients.

1.2.2 Multivariate Bernstein solver

We consider here the problem of computing the solutions of a polynomial

system:














f1(x1, . . . , xn) = 0
...

fs(x1, . . . , xn) = 0

(1.8)

in an interval I := [a1, b1] × · · · × [an, bn] ⊂ Rn. The method for approx-

imating the real roots of this system, that we describe now, uses the rep-

resentation of multivariate polynomials in Bernstein basis, analysis of sign

variations and univariate solvers (section 1.2.1). The output is a set of small-

enough boxes, which contain these roots. This subdivision solver which can

be seen as an improvement of the Interval Projected Polyhedron algorithm

in [97], is described in more details in [80].

12 CHAPTER 1. ALGEBRAIC PRELIMINARIES

In the following, we use the Bernstein basis representation of a multivariate

polynomial f in the domain I := [a1, b1] × · · · × [an, bn] ⊂ Rn:

f(x1, . . . , xn) =

d1
∑

i1=0

· · ·
dn
∑

in=0

bi1,...,in Bd1

i1
(x1; a1, b1) · · ·Bdn

in
(xn; an, bn).

Definition 1.2: For any f ∈ R[x] and j = 1, . . . , n, let:

mj(f ;xj) =

dj
∑

ij=0

min
{0≤ik≤dk,k 6=j}

bi1,...,in B
dj

ij
(xj ; aj , bj) (1.9)

Mj(f ;xj) =

dj
∑

ij=0

max
{0≤ik≤dk,k 6=j}

bi1,...,in B
dj

ij
(xj ; aj , bj) (1.10)

Theorem 1.1 (Projection Lemma): For any u = (u1, . . . , un) ∈ I, and

any j = 1, . . . , n, we have

m(f ;uj) ≤ f(u) ≤ M(f ;uj) (1.11)

As a direct consequence, we obtain the following corollary:

Corollary 1.1: For any root u = (u1, . . . , un) of the equation f(x) = 0 in

the domain I, we have µ
j
≤ uj ≤ µj where:

1. µ
j

(resp. µj) is either a root of mj(f ;xj) (resp. of Mj(f ;xj)) in [aj , bj]

or equal to aj (resp. bj) in the case where mj(f ;xj) (resp. Mj(f ;xj))

has no root on [aj , bj]

2. mj(f ;u) ≤ 0 ≤ Mj(f ;u) on [µ
j
, µj].

The solver proceeds in the following main steps: 1. apply a preconditioning

step to the equations, 2. reduce the domain, 3. if the reduction ratio is too

small, split the domain, until the size of the domain is smaller than a given

epsilon.

The following important ingredients parameterize the algorithm.

Preconditioning strategy. That is, a transformation of the initial sys-

tem into a system, which has a better numerical behavior. Solving the

1.2. BERNSTEIN SOLVERS 13

system f = 0 is equivalent to solving the system M f = 0, where M is an

s×s invertible matrix. As such a transformation may increase the degree of

some equations, with respect to some variables, it has a cost, which might

not be negligible in some cases. Moreover, if for each polynomial of the

system not all the variables are involved, that is if the system is sparse with

respect to the variables, such a preconditioner may transform it into a sys-

tem which is not sparse anymore. In this case, we would prefer a partial

preconditioner on a subset of the equations sharing a subset of variables.

We consider global transformations, which minimize the distance between

the equations, considered as vectors in an affine space of polynomials of a

given degree and local straightening (for s = n), which locally transform the

system f into a system J−1f , where J = (∂xi
fj(u))1≤i,j≤s is the Jacobian

matrix of f at a point u of the domain I, where it is invertible.

It can be proved that the reduction based on the polynomial bounds m

and M behaves like Newton iteration near a simple root, that is, we have a

quadratic convergence with this transformation.

Reduction strategy. That is, the technique used to reduce the initial

domain for searching the roots of the system. It can be based on convex hull

properties as in [97] or on root localization, which is a direct improvement

of the convex hull reduction and consists in computing the first (resp. last)

root of the polynomial mj(fk;uj), (resp. Mj(fk;uj)), in the interval [aj , bj].

The current implementation of this step allows us to consider the convex

hull reduction, as one iteration step of this reduction process.

The guarantee that computed intervals contain the roots of f , is obtained

by controlling the rounding mode of the operations during the De Casteljau

computation.

Subdivision strategy. That is, the technique used to subdivide the do-

main, in order to simplify forthcoming steps for searching the roots of the

system. Some simple rules can be used to subdivide a domain and reduce

its size. The approach, that we are using in our implementation is the pa-

rameter domain bisection: a domain b is then split in half in a direction

j for which |bj − aj | is maximal. But instead of choosing the size of the

interval as a criterion for the direction in which we split, we may choose

14 CHAPTER 1. ALGEBRAIC PRELIMINARIES

another criterion depending also on the values of the functions mi,Mj or fj

(for instance where Mj − mj is maximal).

A bound for the complexity of this method is detailed in [80]. It involves

metric quantities related to the system f = 0, such as the Lipschitz constant

of f in B, the entropy of its near-zero level sets, a bound d on the degree of

the equations in each variable and the dimension n.

1.3 Algebraic numbers

Algebraic numbers are of particular importance in geometric problems such

as arrangement or topology computation. In geometric modeling the treat-

ment of algebraic curves or surfaces implicitly or explicitly leads to the

manipulation of algebraic numbers. They provide an exact representation

of the roots of the polynomials defining theses curves or surfaces.

An algebraic number is a root of a polynomial p(x) with coefficients in K

(p(x) ∈ K[x]). An algebraic integer is a root of a polynomial where the

leading coefficient is 1.

Let α be an algebraic number and p(x) be a polynomial of degree d with

p(α) = 0. If p(x) is irreducible over K (cannot be written in K[x] as the

product of two polynomials different from 1), it is called the minimal poly-

nomial of α. The other roots α2, . . . , αd of the minimal polynomial in K

are the conjugates of α. The degree of the algebraic number α is the de-

gree of the minimal polynomial defining α. If α, β are algebraic numbers,

then α ± β, α · β, α/β (if β 6= 0) and k
√

α are algebraic numbers. If α, β are

algebraic integers, then α ± β, α · β and k
√

α are algebraic integers.

A natural way to encode a real algebraic number α over Q is by using a

polynomial p(x) of Q[x], which vanishes at α, and an isolating interval [a, b]

containing α such that a, b ∈ Q and p(x) has exactly one real root in [a, b].

This representation is not unique, since the size of the interval [a, b] can

reduce to any ǫ > 0 close to 0. If we assume moreover that P is a square-

free polynomial (gcd(p, p′) = 1), then α is a simple root of p and the sign of

p changes at α.

1.3. ALGEBRAIC NUMBERS 15

Remark 1.1: An alternative representation is Thom encoding [12]. The

basic idea behind this representation is that the signs of all derivatives of

p obtained by evaluation over the real roots of p uniquely characterize and

order these real roots. This representation beside the uniqueness property

is also more general than the isolating interval representation. •

To compare algebraic numbers we have recourse to another algebraic tool,

namely, Sturm sequences.

Definition 1.3 (Sturm sequence): Let p, q be two univariate polynomi-

als. A polynomial sequence f0 = p, f1 = q, . . . , fs is a Sturm sequence if:

1. fs divides all the fi, i = 1 . . . s. Let δi = fi/fs, i = 1 . . . s.

2. If c is a real number such that δj(c) = 0 with 0 < j < s then

δj−1(c)δj+1(c) < 0 (1.12)

3. If c is a real number such that δ0(c) = 0 then δ0(x)δ1(x) has the sign of

x − c in a neighborhood of c.

For any sequence S of real polynomials and a ∈ R, we denote by V (S, a)

the number of variations of signs of the values of the polynomials in S at a.

Then we have the well-known theorem of Sturm (see for instance [12]).

Proposition 1.1 (Sturm theorem): Assume S = Sturm(p, p′q) and]a, b[

is an interval such that p(a)p(b) 6= 0. The difference V (S, a) − V (S, b) is

equal to the difference between the number of roots α of p in]a, b[(without

multiplicity) such that q(α) > 0 and the number of roots α of p in]a, b[such

that q(α) < 0:

V (S, a) − V (S, b) = Zq>0(p) − Zq<0(p) (1.13)

Remark 1.2: If in proposition 1.1, p or q is square-free, the computation

of Sturm(p, q) is sufficient. •

We recall here the definition of pseudo-remainder as defined in the book of

Basu-Pollack and Roy [12].

16 CHAPTER 1. ALGEBRAIC PRELIMINARIES

Definition 1.4 (Pseudo-remainder): Let

P = apx
p + · · · + a0 (1.14)

Q = bqx
q + · · · + b0 (1.15)

be two polynomials in D[x] where D is a subring of R. Note that the

only denominators occurring in the euclidean division of P by Q are bi
q, i ≤

p + q − 1.

The signed pseudo-remainder denoted Prem(P,Q), is the remainder in the

euclidean division of bd
qP by Q, where d is the smallest even integer greater

than or equal p − q + 1. Note that the euclidean division of bd
qP by Q can

be performed in D and that Prem(P,Q) ∈ D[x].

An efficient way to compute a Sturm sequence is to compute a Sturm-

Habicht sequence.

Definition 1.5 (Sturm-Habicht sequence): Let p and q be univariate

polynomials, d = max(deg(p),deg(q) + 1), coefk(p) the coefficient of xk in

p, and δk = (−1)k(k−1)/2.

The Sturm-Habicht sequence of p and q is defined inductively as follows:

1. Hd = p, hd = 1

2. Hd−1 = q

Assume that we have computed Hd, . . . ,Hj−1, hd, . . . , hj with hj 6= 0 and

Hj−1 6= 0. Let k = deg(Hj−1). Then if k < j−1, let Hk = δj−k
coefk(Hj−1)j−1−k

hj−1−k
j

Hj−1, hj−1 = 1 for l ∈ N with k < l < j − 1, let Hl = 0, hl = 0,

hk = coefk(Hk) Hk−1 = δj−k+2
Prem(Hj ,Hj−1)

hj−k+1

j

.

This Sturm-(Habicht) sequence can also be useful for gcd computations,

since the gcd corresponds to the last non-zero term of the sequence. In

particular, it yields a way to compute the square-free part p/(gcd(p, p′) of a

polynomial p ∈ Q[x].

Comparison. Let us describe briefly how we use Sturm’s theorem to com-

pare two algebraic numbers α = (p,]a, b[) and β = (q,]c, d[), assuming for

1.4. RESULTANTS 17

simplicity that α and β are simple roots of p and q. If b < c (resp. d < a) we

have α < β (resp. β < α). Let us assume now that a < c < b < d (the other

cases being treated similarly). First we compute the sign s of p(a)p(c). If

s < 0, then we have α ∈]a, c[and α < β. If s = 0, we have α = c (since

α 6= a), which implies that α < β. Otherwise s > 0, p has no root in the

interval [a, c]. We compute S = Sturm(p, p′q) and v := V (S, c) − V (S, b).

Let us assume first that q(c) > 0, q(b) < 0. Then if v = 1, by Sturm’s

theorem q(α) > 0 and α < β. If v = −1, q(α) < 0 and α > β. If v = 0,

then q(α) = 0 and α = β. If now q(c) < 0, q(b) > 0, we negate the previous

output. Finally, if q(c) and q(b) are of the same sign, then α < β.

1.4 Resultants

A projection operator is an operator which associates to an overdetermined

polynomial system in several variables, a polynomial depending only on the

coefficients of this system, which vanishes when the system has a solution.

Let us first overview the case of two univariate polynomials. Given two

polynomials f and g ∈ K[x] of positive degree, say

f = a0x
l + · · · + al, a0 6= 0, l > 0 (1.16)

g = b0x
m + · · · + bm, b0 6= 0, m > 0 (1.17)

the resultant of f and g, denoted Res(f, g), is the determinant of the (l +

m) × (l + m) matrix

Res(f, g) = det





































a0 b0

a1 a0 b1 b0

a2 a1
. . . b2 b1

. . .
... a2

. . . a0
... b2

. . . b0

al
...

. . . a1 bm
...

. . . b1

al a2 bm b2

. . .
...

. . .
...

al bm





































(1.18)

where empty positions are filled with zeroes is called the Sylvester matrix of

18 CHAPTER 1. ALGEBRAIC PRELIMINARIES

f and g.

Remark 1.3: The two most common representations for the resultant of

two polynomials in one variable are the Sylvester matrix and the Bezout ma-

trix [106]. Each entry of the Sylvester matrix is either zero or a coefficient of

one of the original polynomial equations. The entries of the Bezout matrix

are more complicated, but the Bezout resultant employs a much smaller ma-

trix. Resultants of two polynomials in one variable can also be represented

by hybrids of the Sylvester and Bezout matrices as well as by companion

matrices (see example 1.1). •

Property 1.4 (Integer polynomial): Res(f, g) is an integer polynomial

in the coefficients of f and g.

Property 1.5 (Common factor): Res(f, g) = 0 if and only if f and g

have a common factor in K[x].

Property 1.6 (Elimination): There are polynomials A and B ∈ K[x]

such that Af + Bg = Res(f, g). The coefficients of A and B are integer

polynomials in the coefficients of f and g.

Resultants are also useful to compute the squarefree part of a polynomial.

Theorem 1.2: Let f, g ∈ K[x] be two polynomials of degrees deg(f) = n >

0 and deg(g) = m > 0. Then f and g have a common factor of degree

greater than l ≥ 0 if and only if there are polynomials A and B in K[x],

with deg(A) < m− l and deg(B) < n− l which are not both zero, and such

that Af + Bg = 0.

As an immediate consequence we obtain a statement about the degree of

the greatest common divisor of f and g.

Corollary 1.2: The degree of the gcd of two polynomials f, g ∈ K[x] is

equal to the smallest index h such that for all polynomials A and B ∈ K[x],

with deg(A) < m − h and deg(B) < n − h: Af + Bg 6= 0.

Corollary 1.3: The degree of the gcd of two polynomials f, g ∈ K[x] is

equal to the smallest index h such that for all rational polynomials A and

1.4. RESULTANTS 19

B with deg(A) < m − h and deg(B) < n − h: deg(Af + Bg) ≥ h.

We are interested in determining the degree of the greatest common divisor

of two polynomials f and g. According to corollary 1.3 we have to test in

succession whether for l = 1, 2, 3, . . . there exist polynomials A and B, with

the claimed restriction of the degrees such that the degree of Af + Bg is

strictly smaller than l. The first index h, for which this test gives a negative

answer, is equal to the degree of the gcd. The test for l = 0 can be made by

testing whether the resultant of f and g is equal to zero. For l = 1, 2, 3, . . . ,

we proceed in a similar way. Let l be a fixed index and let

f(x) = fnxn + fn−1x
n−1 + · · · + f0, (1.19)

g(x) = gmxm + gm−1x
m−1 + · · · + g0. (1.20)

We are looking for two polynomials

A(x) = am−l−1x
m−l−1 + · · · + a1x + a0 (1.21)

B(x) = bn−l−1x
n−l−1 + · · · + b1x + b0, (1.22)

such that deg(Af + Bg) < l. There are m + n − 2l unknown coefficients

am−l−1, . . . , a0, bn−l−1, . . . , b0. The polynomial A(x)f(x)+B(x)g(x) has de-

gree at most n+m−l−1. The m+n−2l coefficients of xl, xl+1, . . . , xm+n−l−1

have to be zero in order to achieve deg(Af + Bg) < l. This leads to a linear

system

(am−l−1, . . . , a0, bn−l−1, . . . , b0) · Sl = (0, . . . , 0) (1.23)

where Sl is the submatrix of the Sylvester matrix of f and g obtained by

deleting the last 2l columns, the last l rows of f -entries, and the last l rows

of g-entries. We call Srl(f, g) = detSl the lth subresultant of f and g. For

l = 0, the equality Res(f, g) = Sr0(f, g) holds. In fact, Sl is a submatrix of

Si for l > i ≥ 0. The 2 l×2 l minors of the submatrix of the Sylvester matrix

of f and g obtained by deleting the last l rows of f -entries, can be collected

in order to construct a polynomial, which has interesting properties. To be

more specific, we need the following definition.

20 CHAPTER 1. ALGEBRAIC PRELIMINARIES

Definition 1.6 (Determinant polynomial): Let M be a s × t matrix,

s ≤ t, over an integral domain D. The determinant polynomial of M is:

detpol(M) = |Ms|xt−s + · · · + |Mt| (1.24)

where Mj denotes the submatrix of M consisting of the first s− 1 columns

followed by the jth column, for s ≤ j ≤ t.

Definition 1.7 (Subresultant): Let f, g ∈ K[x], two polynomials with

deg(f) = n > 0, deg(g) = m > 0. For 0 ≤ l ≤ min(f, g), we define:

Ml = mat(xn−l−1f(x), xn−l−2f(x), . . . , f(x), xm−l−1g(x), . . . , g(x)) (1.25)

Then the lth subresultant polynomial of f and g is Sl = Srl(f, g) = detpol(Ml).

Notice that the coefficient of xl in Sresl(P, g) is the lth subresultant coeffi-

cient, denoted Srj(f, g).

Proposition 1.2: [12, 104] Two polynomials f and g of positive degree have

a gcd of degree h if and only if h is the least index l for which Srl(f, g) 6= 0.

In this case, their gcd is Srl(f, g)(x).

Using subresultants, one can compute the squarefree part of a univariate

polynomial, as shown in algorithm 1.2.

Algorithm 1.2: Square free part of a univariate polynomial

Input: A polynomial f ∈ KZ[x].

Output: The squarefree part f r of f .

Compute the last non-zero subresultant Sr(x) of f(x) and f ′(x) ;

Compute f r = f/Sr(x) ;

Example 1.1 (Companion matrices): Using these resultant matrix for-

mulations, solving a polynomial problem can be reduced to solving the

generalized eigenvector problem T t(x)v = 0, where T (x) is a matrix of

size N × N with polynomial coefficients, or equivalently a polynomial with

N × N matrix coefficients. If d = maxi,j{deg(Tij(x))}, we obtain T (x) =

Tdx
d + Td−1x

d−1 + · · · + T0, where Ti are n × n matrices. The problem is

1.4. RESULTANTS 21

transformed into a generalized eigenvalue problem (A − λ B)v = 0:

A =













0 I · · · 0
...

. . .
. . .

...

0 · · · 0 I

T t
0 T t

1 · · · T t
d−1













, B =















I 0 · · · 0

0
. . .

. . .
...

...
. . . I 0

0 · · · 0 −T t
d















(1.26)

where A,B are N × d constant matrices. We have the following property:

T t(x)v = 0 ⇔ (A − xB)













v

xv
...

xd−1 v













= 0. (1.27)

This applies for implicit curve intersection problems, like in [21]. Given two

polynomials p, q ∈ Q[x, y], we compute their resultant matrix, with respect

to y. This yields a matrix T (x), from which we deduce the coordinates

of the intersection points by solving the generalized eigenvector problem

T (x)t v = 0. �

Generalizing this, suppose we are given n + 1 homogeneous polynomials

f0, . . . , fn in variables x0, . . . , xn and assume each fi has positive total de-

gree. Then we get n + 1 equations in n + 1 unknowns:















f0(x0, . . . , xn) = 0
...

fn(x0, . . . , xn) = 0

(1.28)

Since fi are homogeneous of positive total degree, these equations always

have the solution x0 = · · · = xn = 0, that we call the trivial solution. Hence,

the crucial question is whether there is a non trivial solution. In general,

the existence of a non trivial solution depends on the coefficients of the

polynomials f0, . . . , fn: for most values of the coefficients, there are no non

trivial solution, while for certain values, some exist.

Theorem 1.3: If we fix positive degrees d0, . . . , dn, then there is a unique

22 CHAPTER 1. ALGEBRAIC PRELIMINARIES

integer polynomial Res in the coefficients of f0, . . . , fn which has the follow-

ing properties:

1. Res(f0, . . . , fn) = 0 if (f0, . . . , fn) have a common factor in K[x]

2. Res is irreducible.

Remark 1.4: Resultants for multivariate polynomials have at least dozen

different representations many of which are valid in only special cases. The

Sylvester formulation represents the resultant by a single determinant each

of whose entries is either zero or one of the coefficients of the original

polynomial equations. The Dixon formulation uses smaller matrices than

the Sylvester one, but employs more complicated Bezoutian entries [29].

Macaulay represents the resultant as the ratio of two determinants whose

entries are similar to the Sylvester resultant [77]. There are also hybrid

representations and for low degree polynomial systems there are special for-

mulations such as the Jacobian representation [107]. •

Remark 1.5: There are two other techniques known in the literature for

eliminating a set of variables. They are Grobner bases and Ritt-Wu’s algo-

rithm. The algorithm for Grobner bases generates special bases for polyno-

mial ideals and was originally formulated by Buchberger in [18]. Eliminating

a set of variables is a special application of Grobner bases. Ritt-Wu’s al-

gorithm for variable elimination has been developed in [105] using an idea

proposed by Ritt [93]. •

Chapter 2

Geometric preliminaries

Geometric modeling traditionally identifies a body of techniques that can

model certain classes of curves or surfaces subject to particular conditions of

shapes and smoothness. It has important applications in several industries

including automobile, aerospace, architecture etc.

Curves and surfaces are main entities that can be used to describe realistic

shapes. There is therefore an emerging need to research the use of such

geometric entities and techniques to interrogate them. Sections 2.1 and 2.2

define such curves and surfaces.

Combined together, they describe solids representing shapes of physical ob-

jects mainly relying on two representations: boundary representation and

constructive representation, briefly presented in section 2.3.

The representation of a shape is then a paramount choice for a geometric or

solid modeling software since modeling techniques are intrinsically linked to

the nature of the geometric objects. In section 2.4 we briefly overview some

software that propose curves and surfaces for geometric modeling.

2.1 Curves

Some important graphic problems are two dimensional and can be solved

with curves. Examples are technical drawing or Computer Aided Machining

23

24 CHAPTER 2. GEOMETRIC PRELIMINARIES

v1

v2

v3

v4

v5

vn−1

vne1

e2

e3 e4

en−1

Figure 2.1: A piecewise linear curve.

(CAM) in which material is cut along a given curve. A lot of research effort

has gone into curves and many methods are known, dealing with rather

general curves that can be classified into three main families: piecewise

linear curves, parametric curves or implicit curves.

2.1.1 Piecewise linear curves

A piecewise linear curve is a sequence of connected line segments. The

term is adequate in an algebraic geometry context to mark the difference

between linear and non linear representations of curves but some readers

may recognize this object as a planar mesh constituted of a set of vertices

and a set of edges together with adjacency relationships.

Figure 2.1 illustrates a piecewise linear curve composed of n vertices v1 . . . vn

and n − 1 edges e1 . . . en−1.

2.1.2 Parametric curves

Parametric representations are the most common in computer graphics since

they are, by nature, both easy to visualize and, in the case of splines, easy

to manipulate.

The representations of curves that we mention in what follows are based on

polynomials since they are simple functions that are easy to calculate and

flexible enough to create many different shapes. Any function can however

2.1. CURVES 25

t

pt = (x(t), y(t))

tmin
tmax

x

y

Figure 2.2: A rational curve.

be used to create a parametric curves e.g. trigonometric expressions.

Polynomial rational curves. A uniform rational polynomial curve is

defined by the formula

c(t) =

{

x(t)/w(t)

y(t)/w(t)
(2.1)

where x : R[t] 7→ R, y : R[t] 7→ R and w : R[t] 7→ R are polynomial

functions evaluated to obtain the image of t ∈ R[t] by c in R2 as the point

pt = (x(t)/w(t), y(t)/w(t)).

A uniform non-rational polynomial curve is derived by the previous formula

when w(t) = 1 or defined by the formula

c(t) =

{

x(t)

y(t)
(2.2)

B-spline curves. A B-spline curve is defined by the formula

c(t) =

n
∑

i=1

piBi,k,t(t) (2.3)

as a linear combination of a sequence of control points and B-spline basis

functions Bi,k,t uniquely determined by a knot vector t and the order k.

26 CHAPTER 2. GEOMETRIC PRELIMINARIES

p1

p2

p3

p4

t

Figure 2.3: A B-spline curve.

The complete representation of a B-spline curve consists of:

d The dimension of the underlying Euclidean space

n The number of vertices

k The order of the B-spline

t The knot vector of the B-spline: t = (t1, t2, . . . , tn+k)

p The control points of the B-spline curve

The parameter range of a B-spline curve c is the interval [tk, tn+1] and so

mathematically, the curve is a mapping c : [tk, tn+1] 7→ Rd, where d is the

Euclidean space dimension of its control points.

The data in the representation must satisfy certain conditions: 1. The knot

vector must be non-decreasing: ti ≤ ti+1 . Moreover, two knots ti and ti+k

must be distinct: ti < ti+k. 2. The number of vertices should be greater

than or equal to the order of the curve: n ≥ k.

A B-spline of order k is the sum of two B-splines of order k − 1, each

weighted with weights in the interval [0, 1]. In fact we define B-splines of

order 1 explicitly as box functions,

Bi,1(t) =

{

1 if ti ≤ t ≤ ti+1

0 otherwise
(2.4)

2.1. CURVES 27

and then the complete definition of a k-th order B-spline is

Bi,k(t) =
t − ti

ti+k−1 − ti
Bi,k−1(t) +

ti+k − t

ti+k − ti+1
Bi−1,k−1(t) (2.5)

B-splines satisfy some important properties for curve and surface design.

Each B-spline is non-negative and it can be shown that they sum to one,

n
∑

i=1

Bi,k,t(t) = 1 (2.6)

B-spline curves satisfy the convex hull property : the curve lies in the convex

hull of its control points. Furthermore, the support of the B-spline Bi,k,t is

the interval [ti, ti+k] which means that B-spline curves have local control:

moving one control point only alters the curve locally.

The control polygon of a B-spline curve is the polygonal arc formed by its

control points, p1, . . . ,pn. This means that the control polygon, regarded

as a parametric curve, is itself a piecewise linear B-spline curve of order two.

If we increase the order, the distance between the control polygon and the

curve increases. A higher order B-spline curve tends to smooth the control

polygon and at the same time mimic its shape. For example, if the control

polygon is convex, so is the B-spline curve. Another property of the control

polygon is that it will get closer to the curve if it is redefined by inserting

knots into the curve and thereby increasing the number of vertices. If the

refinement is infinite then the control polygon converges to the curve.

The knots of a B-spline curve describe the following properties of the curve:

1. The parameterization of the B-spline curve 2. The continuity at the joins

between the adjacent polynomial segments of the B-spline curve.

The number of equal knots determines the degree of continuity. If k consec-

utive internal knots are equal, the curve is discontinuous. Similarly if k − 1

consecutive internal knots are equal, the curve is continuous but not in gen-

eral differentiable. A continuously differentiable curve with a discontinuity

in the second derivative can be modeled using k − 2 equal knots etc.

B-spline curves do not in general pass through the two end control points.

Increasing the multiplicity of a knot reduces the continuity of the curve at

28 CHAPTER 2. GEOMETRIC PRELIMINARIES

that knot. The control polygon will coincide with the curve at a knot of

multiplicity k − 1, and a knot with multiplicity k indicates C−1 continuity

(a discontinuous curve). Repeating the knots at the end k times will force

the endpoints to coincide with the control polygon. Such knot vectors and

curves are known as clamped.

Figure 2.3 shows a clamped B-spline curve of order k = 4 defined by n = 4

control points, together with its control polygon and its knot vector made

up of n + k knots, distributed along the parameter range [tk, tn+1].

Nurbs curves. A Nurbs (Non-Uniform Rational B-Spline) curve is a gen-

eralization of a B-spline curve,

c(t) =

∑n
i=1 wipiBi,k,t(t)
∑n

i=1 wiBi,k,t(t)
(2.7)

In addition to the definition of a B-spline curve, the Nurbs curve c has a

sequence of weights w1, . . . , wn . One of the advantages of Nurbs curves over

B-spline curves is that they can be used to represent conic sections exactly

(taking the order k to be three). A disadvantage is that Nurbs curves depend

non linearly on their weights, making some calculations, like the evaluation

of derivatives, more complicated and less efficient than with B-spline curves.

The representation of a Nurbs curve is the same as for a B-spline except that

it also includes:

w A sequence of weights w = (w1, w2, . . . , wn)

Under the condition that weights are (strictly) positive, a Nurbs curve, like

its B-spline cousin, enjoys the convex hull property.

2.1.3 Implicit curves

Implicit curves can also by denominated level set or isocontour since they

correspond to the section of an implicit surface with a plane in the case of

planar curves or the intersection of two or more implicit surfaces in the case

of spatial curves. An implicit curve is said to be of degree n = max(i + j),

where n is the maximum sum of powers of all terms amximyjm .

2.1. CURVES 29

Figure 2.4: An implicit planar curve.

Planar implicit curves. A planar curve can be expressed in the implicit

form as

f(x, y) = 0 (2.8)

When f is linear in variables x and y, equation 2.8 represents a straight line.

If f(x, y) is of the second degree in x and y, 2.8 represents a class of plane

curves called conic sections.

A singular point of an algebraic curve is a point where the curve has “nasty”

behavior such as a cusp or a point of self-intersection. More formally, a point

(x, y) on a curve f(x, y) = 0 is singular if the x and y partial derivatives of

f are both zero at the point (x, y): f(x, y) = ∂xf(x, y) = ∂yf(x, y) = 0.

Figure 2.4 shows the curve represented by the a bi-variate polynomial of

degree 8. Its visualization is carried out through a topology computation in

the bounding box [−5, 5] × [−3, 3].

Spatial implicit curves. The implicit representation of a spatial curve

can be expressed as an intersection curve of two or more implicit surfaces:

f(x, y, z) = 0 ∩ g(x, y, z) = 0 (2.9)

Figure 2.5 shows for instance a spatial curve represented by two trivariate

30 CHAPTER 2. GEOMETRIC PRELIMINARIES

Figure 2.5: An implicit spatial curve.

polynomial equations of degree 4. Its visualization is performed through a

topology computation in the bounding box [−3, 3] × [−3, 3] × [−3, 3].

2.2 Surfaces

Similarly to the curve case, there are many ways to represent surfaces. This

section presents linear representation such as regular meshes or subdivision

surfaces as well as non linear representations such as implicit or parametric

representations.

2.2.1 Piecewise linear surfaces

A piecewise linear surface is a collection of vertices and polygons that defines

the shape of a linear geometric object.

Regular meshes. Also referred to as surface meshes or polygonal sur-

faces, they usually consist of triangles, quadrilaterals or other simple convex

polygons, since this simplifies rendering, but they can also contain objects

made of general polygons with optional holes.

An internal representation of a piecewise linear surface contains a list of

vertices, optionally a list of indexes describing which vertices are linked to

2.2. SURFACES 31

Figure 2.6: A piecewise linear surface.

form polygonal faces, a list of edges (pairs of indexes) and a list of polygons

that link edges.

The choice of a data structure for faces is governed by the application: it’s

easier to deal with triangles than general polygons, especially in computa-

tional geometry. For optimized algorithms it is necessary to have a fast

access to topological information such as edges or neighboring faces, this

requires more complex structures such as the winged-edge representation, a

doubly connected edge list (DCEL) or combinatorial maps.

Figure 2.6 shows a triangular piecewise linear surface made up of 1843 ver-

tices and 3560 faces.

Subdivision surfaces. A smooth surface can be calculated from a coarse

piecewise linear model as the limit of an iterative process of subdividing

each polygonal face into smaller faces that better approximate the smooth

surface. The resulting model is then called a subdivision surface.

The process starts with a given polygonal mesh. A refinement scheme is

then applied to this mesh in order to subdivide it, creating new vertices

and new faces. The positions of the new vertices in the mesh are computed

based on the positions of nearby old vertices. In some refinement schemes,

the positions of old vertices might also be altered (possibly based on the

32 CHAPTER 2. GEOMETRIC PRELIMINARIES

Figure 2.7: Subdivision surface using Catmull-Clark scheme.

positions of new vertices). Note that the resulting mesh can be passed

through the same refinement scheme again and so on.

Subdivision surface refinement schemes can be broadly classified into two

categories [23]: interpolating ones and approximating ones. Interpolating

schemes are required to match the original position of vertices in the orig-

inal mesh. Approximating schemes are not, they adjust these positions as

needed. In general, approximating schemes have greater smoothness, but

the user has less overall control of the outcome. This is analogous to spline

surfaces and curves, where Bézier splines are required to interpolate certain

control points, while B-Splines are not. Another division in subdivision sur-

face is the type of polygon that they operate on, some use quadrilaterals

while others operate on triangles.

In approximation schemes, the limit surfaces approximate the initial meshes

and, after subdivision, newly generated control points are not on the limit

surfaces. The following schemes are the most widespread:

Catmull-Clark use a generalization of bi-cubic uniform B-splines to produce

their subdivision scheme. For arbitrary initial meshes, this scheme generates

limit surfaces that are C2 continuous everywhere except at extraordinary

vertices where they are C1 continuous (see figure 2.7).

Doo-Sabin extend Chaikin’s corner-cutting method for curves to surfaces.

They use the analytical expression of bi-quadratic uniform B-spline surface

to generate their subdivision procedure to produce C1 limit surfaces with

arbitrary topology for arbitrary initial meshes.

Remark 2.1: Subdivision surfaces were discovered simultaneously by Ed-

win Catmull and Jim Clark [24] and Daniel Doo and Malcom Sabin [33]. •

2.2. SURFACES 33

Figure 2.8: A rational surface.

Remark 2.2: Subdivision surfaces share many properties with Nurbs sur-

faces such as the convex-hull property. •

2.2.2 Parametric surfaces

There are many types of parametric representations for surfaces. A relevant

point for organizing such geometric objects within a taxonomy is that even

though the encoding of the geometry may vary from a parametric represen-

tation to another, all parametric surfaces share common properties: they

are given in evaluation, e.g. defined by map s : R2 7→ R3.

Polynomial rational surfaces. In parametric representation, the coor-

dinates (x, y, z) of a point of a surface patch are expressed as functions of

the parameters, e.g. u and v, in the range [umin, umax] × [vmin, vmax]:

s(u, v) =











x(u, v)/w(u, v)

y(u, v)/w(u, v)

z(u, v)/w(u, v)

(2.10)

The functions x(u, v), y(u, v), z(u, v) and w(u, v) are continuous and possess

a sufficient number of partial derivatives. A parametric surface is said to be

of class r, if the functions have continuous partial derivatives up to order r,

inclusively.

34 CHAPTER 2. GEOMETRIC PRELIMINARIES

Figure 2.8 illustrates a polynomial rational surface defined by the polynomi-

als x(u, v) = u, y(u, v) = −v and z(u, v) = −u3 − v2 + 2v − 1 (w(u, v) = 1).

B-spline surfaces. A tensor product B-spline surface is defined as

s(u, v) =

n1
∑

i=1

n2
∑

j=1

pi,jBi,k1,u(u)Bj,k2,v(v) (2.11)

with control points pi,j and two variables (or parameters) u and v. The

formula shows that a basis function of a B-spline surface is a product of two

basis functions of B-spline curves. This is why a B-spline surface is called

a tensor-product surface. The following is a list of the components of the

representation:

d The dimension of the underlying Euclidean space

n1 The number of vertices with respect to the first parameter

n2 The number of vertices with respect to the second parameter

k1 The order of the B-spline surface in the first parameter

k2 The order of the B-spline surface in the second parameter

u The knot vector of the B-spline surface with respect to the first param-

eter, u = (u1, u2, . . . , un1+k1
)

v The knot vector of the B-spline surface with respect to the second pa-

rameter, v = (v1, v2, . . . , vn2+k2
)

p The control points of the B-spline surface

The representation of the B-spline surface must fulfill the following require-

ments: 1. Both knot vectors must be non-decreasing. 2. The number of

vertices must be greater than or equal to the order with respect to both

parameters: n1 ≥ k1 and n2 ≥ k2.

The properties of the representation of a B-spline surface are similar to the

properties of the representation of a B-spline curve. The control points

pi,j form a control net as shown in figure 2.9. The control net has similar

properties to the control polygon of a B-spline curve, described in section

2.1.2. A B-spline surface has two knot vectors, one for each parameter. In

2.2. SURFACES 35

Figure 2.9: A B-spline surface.

figure 2.9 we can see isocurves, surface curves defined by fixing the value of

one of the parameters.

Nurbs surfaces. A Nurbs (Non-Uniform Rational B-Spline) surface is a

generalization of a B-spline surface,

s(u, v) =

∑n1

i=1

∑n2

j=1 wi,jpi,jBi,k1,u(u)Bj,k2,v(v)
∑n1

i=1

∑n2

j=1 wi,jBi,k1,u(u)Bj,k2,v(v)
(2.12)

In addition to the data of a B-spline surface, the Nurbs surface has weights

wi,j . Nurbs surfaces can be used to exactly represent several common ‘an-

alytic’ surfaces such as spheres, cylinders, tori, and cones. A disadvantage

is that Nurbs surfaces depend non linearly on their weights, making some

calculations, like with Nurbs curves, less efficient. The representation of a

Nurbs surface is the same as for a B-spline except that it also includes

w The weights of the Nurbs surface, wi,j , i = 1, . . . , n1 , j = 1, . . . , n2, so

w = (w1,1, w2,1, . . . , wn1,1, . . . , w1,2, . . . , wn1,n2
).

36 CHAPTER 2. GEOMETRIC PRELIMINARIES

Figure 2.10: An implicit surface.

2.2.3 Implicit surfaces

An implicit surface is defined as the set of roots of a polynomial in the form:

f(x, y, z) = 0 (2.13)

An implicit surface is said to be of degree n = max(i + j + k), where n is

the maximum sum of powers of all terms amximyjmzkm .

When f is linear in variables x, y and z, it represents a plane. If f is of

second degree in variables x, y and z, it represents a quadric. Higher de-

gree surfaces are respectively called cubic surfaces, quartic surfaces, quintic

surfaces, sextic surfaces, septic surfaces, octic surfaces, nonic surfaces, decic

surfaces, dodecic surfaces etc.

Figure 2.10 shows the implicit surface defined by the polynomial x3 + y2 +

z2 − 1.

2.3. SOLIDS 37

2.3 Solids

The representations discussed in section 2.1 and 2.2 allow us to describe

curves and surfaces in 2 or 3 dimensions. Solids are higher level geometric

objects composed of curves and surfaces and present many properties, e.g. ,

they are manifold, they define an interior and an exterior.

Solid modeling addresses the representation of an object by two major dis-

tinct ways: boundary representation and constructive representation.

In constructive solid geometry (CSG), a solid is represented as a set of

theoretic boolean expressions of primitive solid objects of simpler structure.

Both the surface and the interior of an object are defined.

A boundary representation (B-Rep) on the other hand describes only the

oriented surface of a solid as a data structure composed of vertices, edges

and faces. The orientation convention permits us to decide on which side of

the surface the solid’s interior lies.

CSG and B-Rep representations have inherent strength and weaknesses. For

instance, a CSG object is always valid in the sense that its surface is closed,

orientable and encloses a volume, provided the starting primitives fulfill

these properties. A B-Rep object on the other hand is easily rendered on

a graphic system. As a consequence, there is a strong tendency to combine

both representations to benefit from both their advantages.

2.3.1 Constructive representation

A CSG object is constructed with a set of standard primitives using regular

boolean operations. These standard primitives usually are cubes, spheres,

cones, cylinders and torus. Each one of these primitives may be associated

to a local frame coordinate that must be related one to another with respect

to a common world frame coordinate.

The main boolean operations are union, intersection and difference. They

differ from the corresponding mathematical set theoretic operations in the

sense that they are used in a way which allows to eliminate unwanted lower

dimensional structures, their result is the closure of the operation on the

38 CHAPTER 2. GEOMETRIC PRELIMINARIES

A B

intersection interior closure

Figure 2.11: Regularized boolean intersection.

interior of the solid (we refer to [68] for more information). This results in

regularized boolean operators.

Figure 2.11 illustrates a regularized intersection. Two parallelepipeds are

first united to obtain an “L-shaped” solid, namely A, which is intersected in

turn with another gray filled parallelepiped B to obtain a cube. The usual

mathematical operation created a dangling edge which is removed by taking

the interior. The closure finally gives the result.

The CSG representation of a solid is conveniently represented by a tree,

called a CSG-tree. Leaves of this tree are primitive solids and interior nodes

are either rigid motions (translations, rotations, scaling) or boolean expres-

sions.

Figure 2.12 is the CSG-tree representing the construction of the solid oper-

ated in figure 2.11.

∪

∩

Figure 2.12: CSG-tree corresponding to the previous operation. Boolean
operations are regularized ones.

2.3. SOLIDS 39

2.3.2 Boundary representation

Boundary schemes are the most widely used representations for solids. In

boundary representation models are composed of two parts: topology and

geometry.

Briefly, the topological description specifies vertices, edges and faces ab-

stractly (see remark 2.3), and indicates their incidences and adjacencies.

The geometric description specifies, for examples the equations of the sur-

faces of which the faces are a subset, or the euclidean coordinates of a vertex.

Remark 2.3: Any of the curves described in section 2.1 can be used in B-

Rep to describe bounded edges and any of the surfaces described in section

2.2 can be used to describe bounded faces. •

The boundary representation implies to pay strict attention to preserve sev-

eral properties: manifoldness and orientability.

A manifold surface has the property that around every one of its points,

there exist a neighborhood that is homeomorphic to the plane.

Remark 2.4: The manifoldness property excludes to describe faces by self-

intersecting or touching surfaces. •

A manifold surface is orientable if one can distinguish its interior from its

exterior.

Remark 2.5: There exist a well known trick to decide whether a manifold

surface is orientable or not. It consists in defining an arbitrary orientation

at one point p and any closed path on the surface. If it is possible to return

to p while moving along that path with an opposite orientation then the

surface is not orientable, otherwise it is orientable. The Klein bottle is a

famous example of non orientable manifold surface. •

These properties are crucial requirements to certify further operations on

objects. For example, a boolean operation on non orientable surfaces may

provide a wrong result since the operation may use the orientation property.

40 CHAPTER 2. GEOMETRIC PRELIMINARIES

2.3.3 Semi-algebraic sets

Both implicit and parametric curves and surfaces actually are semi-algebraic

sets that we define now.

An algebraic set is the locus of zeros of a collection of polynomials. For

example, the circle is the set of zeros of x2 + y2 − 1 and the point at (0, 0)

is the set of zeros of x and y. The algebraic set {(x, 0)} ∪ {(0, y)} is the set

of solutions to xy = 0.

A semi-algebraic set is a subset of Rn which is a finite boolean combination

of sets of the form

{f(x1, . . . , xn) ≥ 0 ∪ g(x1, . . . , xn) = 0} (2.14)

where f and g are polynomials in x1, . . . , xn over the reals.

After Requicha [92], it can be shown that sets that are bounded, regular

and semi-algebraic possess all the desired properties, and therefore provide

appropriate models for solids. These sets are usually called simply r-sets.

Intuitively, r-sets are curved polyhedra with faces lying on algebraic surfaces.

A more precise characterization follows.

A semi-algebraic half space is a set of points that satisfy an algebraic in-

equality

{p : f(p) ≤ 0} (2.15)

where f is a polynomial. For example, the inequality

ax + by + cz + d ≤ 0 (2.16)

defines a planar half space, i.e. the portion of 3-space which lies to one side

of the plane defined by the equation

ax + by + cz + d = 0 (2.17)

A semi-algebraic set is the result of a finite number of (standard, unregu-

larized) set-theoretic operations on semi-algebraic half spaces. For example,

a finite solid cylinder is the intersection of three semi-algebraic half spaces.

One of these is cylindrical and the other two are planar, as shown schemat-

2.3. SOLIDS 41

Figure 2.13: A finite cylinder is the intersection of a cylindrical set and two
planar half spaces.

ically in figure 2.13 (each half space itself is unbounded, only bounded por-

tions of the half space boundaries are shown in the figure).

Because −f is also a polynomial, and −f ≤ 0 is equivalent to f ≥ 0, we

could have defined semi-algebraic half spaces with inequalities of the form

f ≥ 0. Furthermore, the intersection of the two half spaces f ≥ 0 and

f ≤ 0 is the set defined by the equation f = 0, and this is an algebraic set.

Therefore algebraic sets are special cases of semi-algebraic sets.

It can also be shown that the interior, boundary and closure of a semi-

algebraic set are also semi-algebraic. Therefore, a finite number of regu-

larized boolean operations on semi-algebraic sets produces another semi-

algebraic set. This implies that a set defined by boolean operations (as

found in CSG) on semi-algebraic half space primitives also is semi-algebraic.

Furthermore, if the primitives are r-sets, the result also is an r-set, because

regularized booleans preserve boundedness, regularity and semi-algebraicity.

This implies that CSG representations in the domain of r-sets are always

valid.

A polynomial has a finite number of coefficients, and a semi-algebraic set is

the result of a finite number of (non-regularized) boolean operations on a

finite number of half spaces defined by polynomial inequalities. Therefore,

a semi-algebraic set is always finitely describable.

It is also true that a bounded semi-algebraic set in 3-space is uniquely de-

termined by its boundary, which is semi-algebraic as well.

42 CHAPTER 2. GEOMETRIC PRELIMINARIES

∩ ∪

∪

\

Figure 2.14: A CSG tree on semi algebraic sets.

2.4 Software

Many geometric modeling software or toolkits are available either commer-

cially or open source. Applications usually feature a model representation of

choice depending on a targeted use. We briefly overview the characteristics

of some of them.

2.4.1 Applications

CAD suites. Autodesk is the leading CAD solution provider. It is di-

vided into four industry-specific business divisions: Manufacturing Solutions

(MSD), Architecture, Engineering & Construction (AEC), the Media and

Entertainment Division (M&E), and Platform Solutions & Emerging Busi-

ness (PSEB). Platform Solutions and Emerging Business division develops

and manages Autodesk’s flagship product, AutoCAD. The Manufacturing

Solutions Division develops and manages Autodesk Inventor Series and Au-

2.4. SOFTWARE 43

toCAD Mechanical. The Architecture Engineering and Construction divi-

sion develops and manages AutoCAD Architecture. The principal product

offerings from the Media and Entertainment Division are Maya and 3DS

Max that will be discussed later. Lets us focus on AutoCAD and Inventor.

AutoCAD is a CAD software application for 2D and 3D design and draft-

ing. In earlier releases, AutoCAD used primitive entities such as lines,

polylines, circles, arcs, and text as the foundation for more complex ob-

jects. Since the mid 90s, AutoCAD has supported custom objects through

its C++ API and now includes a full set of basic solid modeling and 3D

tools, but lacks some of the more advanced capabilities of solid modeling

applications.

AutoCAD’s native file format, DWG, and to a lesser extent, its interchange

file format, DXF, have become de facto standards for CAD data interoper-

ability. AutoCAD in recent years has included support for DWF, a format

developed and promoted by Autodesk for publishing CAD data. In 2006,

Autodesk estimated the number of active DWG files to be in excess of one

billion. In the past, Autodesk has estimated the total number of DWG files

in existence to be more than three billion.

Unlike AutoCAD, Inventor is based on the most advanced parametric mod-

eling techniques used by products like SolidWorks and Pro/ENGINEER. In-

ventor accomplishes this using an approach that Autodesk calls “Functional

Design”.

Inventor users begin by designing parts. These parts can then be combined

into assemblies or design within the context of an assembly. As a para-

metric modeler, it should not be confused with traditional CAD programs.

It is used in design and engineering to produce and perfect new products.

Whereas in non-parametric CAD programs the dimensions are geometry-

driven, a parametric modeler allows the geometry to be dimension-driven.

If the dimensions are altered, the geometry automatically updates based on

the new dimension. This allows the designer to store their design intent

within the model, whereas non-parametric modeling is more akin to a “dig-

ital drafting board”. Inventor also has tools for sheetmetal part creation,

welded part creation, and, starting with version 10, a rendering and anima-

tion environment called Inventor Studio based on the mental ray rendering

44 CHAPTER 2. GEOMETRIC PRELIMINARIES

engine.

As an example of workflow, in order to make a simple cube, a user would

first make a square sketch, then use the extrude tool to make a cube feature

out of it. If a user then wanted to add a shaft coming out of the cube, he

could add a sketch on the desired face, draw a circle, and then extrude that

circle to create a shaft. The best aspect of this design is that all of the

sketches and features can be edited later, without having to redo the entire

part. This system of modeling is much more intuitive than in older modeling

environments, where if you wanted to change basic dimensions, you would

usually have to delete the entire file and start over. As the final part of the

process, parts are then connected to make assemblies.

This method of modeling allows the creation of very large, complicated

assemblies, especially since sets of parts can be put together before they

are joined to the main assembly, and some projects may have many sub

assemblies.

Inventor uses specific file formats for parts (.IPT), assemblies (.IAM) and

drawing views (.IDW or .DWG) but the DWG file format can be also im-

ported/exported. Autodesk has been pushing Design Web Format (.DWF)

as the preferred 2D/3D data interchange and review format within the Au-

todesk family of products.

In the last several years Inventor has grown to include functionality con-

tained in many of the mid-level to high level 3D modelers. Inventor uses

Shape Manager as its geometric modeling kernel, which is proprietary to

Autodesk and was derived from the ACIS modeling kernel.

SolidWorks is a 3D mechanical CAD program that was developed by Solid-

Works Corporation - now a subsidiary of Dassault Systèmes. It uses the

Parasolid geometric modeling kernel. SolidWorks was introduced in 1995

as a low-cost competitor to CAD programs such as Pro/ENGINEER and

CATIA, and is currently one of the most popular products in the midrange

mechanical CAD market.

SolidWorks employs a parametric, feature-based approach for creating mod-

els and assemblies. Parameters refer to constraints or conditions whose val-

ues determine the size, shape, characteristics, and behavior of the model or

2.4. SOFTWARE 45

assembly. Parameters can be either numeric, for example dimension values

such as the diameter of a circle or the length of a line; or geometric, such

as conditions like tangent, concentric, coincident, parallel, horizontal, and

the like. Numeric parameters such as dimensions can easily be related to

each other through equations to capture even the most complicated design

intent. This approach brings advantages comparable to Autodesk Inventor.

CATIA (Computer Aided Three dimensional Interactive Application) is a

multi-platform CAD/CAM/CAE commercial software suite developed by

French company Dassault Systèmes and marketed world-wide by IBM. The

software was originally intended for the development of Dassault’s Mirage

fighter jet, but became a runaway success and was subsequently adopted

by numerous well known companies world-wide, such as Boeing and IBM.

The software was also famously used by architect Frank Gehry in his build-

ing of the Guggenheim Museum Bilbao. CATIA is written in the C++

programming language.

Commonly referred to as a 3D Product Lifecycle Management software suite,

CATIA supports multiple stages of product development. The stages range

from conceptualization, through design (CAD) and manufacturing (CAM),

until analysis (CAE).

CATIA provides an open development architecture through the use of in-

terfaces, which can be used to customize or develop applications. The sup-

porting application programming interfaces are as follows: Fortran and C

programming languages for version 4 (V4), Visual Basic and C++ program-

ming languages for version 5 (V5).

TopSolid is a 3D CAD software edited and developed by the company

Missler Software. Its range of software includes a whole family: from

the more general, mechanical oriented TopSolid’Design to job specific solu-

tions: sheet metal TopSolid’Fold, wood TopSolid’Wood, toolmaking: Top-

Solid’Mold for mold makers and TopSolid’Progress for press tool design-

ers. TopSolid also incorporates an integrated Computer Aided Manufac-

turing (CAM) line of products: Mechanical machining TopSolid’Cam, sheet

metal TopSolid’PunchCut, wood TopSolid’WoodCam, wire electroerosion

TopSolid’Wire. TopSolid also incorporates a 2D draft module TopSolid’Dra-

ft and a structural calculation module TopSolid’Castor.

46 CHAPTER 2. GEOMETRIC PRELIMINARIES

TopSolid is, therefore, a CAD/CAM solution based on the geometric mod-

eler ParaSolid. It is, of course, capable of reading and creating files in all

available formats as well as in such formats as Catia and ParaSolid.

TopSolid is sold worldwide and has been rated as the 2nd CAD/CAM editor

in France behind Dassault Systèmes (software Catia and SolidWorks). It

has been rated as the 1st French CAM editor and is ranked among the Top

10 CAD/CAM editors worldwide and is the fastest growing CAD/CAM

Company in 2007.

Creation suites. Blender is the leading open-source creation suite, with

a robust feature set similar in scope and depth to other high-end 3D soft-

ware such as SoftimageXSI, Cinema 4D, 3ds Max, Lightwave and Maya. Its

features include advanced simulation tools such as rigid body, fluid, and soft

body dynamics, modifier based modeling tools, powerful character anima-

tion tools, a node based material and compositing system and Python for

embedded scripting.

It covers the geometric workflow from modeling to rendering including tex-

turing, rigging and animation using uv-unwrapping, shading, physics and

particles, compositing and much more.

The software provides different representations for geometric objects but is

particularly efficient with subdivision surfaces. Its basic primitives include

plane, circle, cube, sphere, cylinder and cone. With any regular mesh as a

starting point, Blender can calculate a smooth subdivision surface on the

fly using Catmull-Clark algorithm, allowing high resolution mesh modeling

without the need to save and maintain huge amounts of data.

Blender also implements other representations such as Bézier, B-Splines and

Nurbs curves and surfaces. Models using such a representation are defined

by less data, they produce nice results using less memory at modeling time.

Some modeling techniques such as extruding a curve along a path or com-

puting a lofted surface (process called skinning in Blender) are only possible

when using such curves. Note however that even though so called “blobs”

are proposed, there is a lack of implicit surfaces. In particular, one could

expect modeling physical phenoma using low degree algebraic surfaces such

as quadrics.

2.4. SOFTWARE 47

Finally Blender integrates a node based compositor fully integrated within

the rendering pipeline and an internal file system that allows one to pack

multiple scenes into a single file (called a “.blend” file) which is less a struc-

tured specification of objects and relationships but closer to a direct binary

dump of the program’s memory space. This makes it very hard to con-

vert a “.blend” file to another format using external tools, although dozens

of import/export scripts that run inside Blender itself make it possible to

inter-operate with other 3D tools, accessing the object data via its python

API.

Maya is a popular, proprietary integrated node-based 3D software suite,

evolved from Wavefront Explorer and Alias PowerAnimator, now owned by

Autodesk. The software is released in two versions: Maya Complete (the less

powerful package) and Maya Unlimited. Maya Personal Learning Edition

(PLE) is available at no cost for non-commercial use, although rendered

images are watermarked.

Popular models such as Nurbs, polygons and subdivision surfaces are avail-

able, but it is with Nurbs that Maya gives the best of itself.

A feature that makes Maya even more powerful is that it can connect any-

thing to anything, e.g. one can use a color intensity of a shader to control the

movement of a door opening and closing. To control the node based system

of Maya, fully reconfigurable user interface can be scripted with MEL script

code. Maya 8.5 has introduced support for the Python scripting language.

Research tools. We finally mention a solid modeling environment emer-

ged from research in the field of CAD, which is what is most comparable

(but far more experienced) to what we have achieved in this thesis. Irit

is a solid modeling environment that allows one to design primitive based

models using boolean operations as well as freeform surface’s based models.

Beyond its strong support for Bézier and B-spline curves and (trimmed)

surfaces, it has several unique features such as strong symbolic computa-

tion, support of trivariate spline volumes, multivariate spline functions and

triangular patches, as well as numerous unique applications such as surface

layout decomposition, metamorphosis of curves and surfaces, and artistic

line art drawings of parametric and implicit forms. A rich set of compu-

48 CHAPTER 2. GEOMETRIC PRELIMINARIES

tational geometry tools for freeform curves and surfaces is offered, such as

offsets, bisectors, convex hulls, diameters, kernels, and distance measures.

The solid modeler is highly portable across different hardware platforms,

including a whole variety of Unix machines and Windows PC.

The system is designed for simplicity and is geared toward research. As

such, no graphical user interface exists or is planned in the near future. The

modeling is performed using the main module/executable of the system. A

textual interface (or PUI for programmable user interface) is available which

provides the interaction interface. An interpreter processes the user’s com-

mand and executes them. This interpreter includes general mechanisms that

are common in high level programming languages such as loops, conditional

sentences, and functions. In addition, features that can be found in mod-

ern languages such as operator overloading and object oriented design are

extensively used. This interpreter is best employed under the Emacs editor

that forks out Irit as a sub process (available both for Unix and Windows).

2.4.2 Toolkits

Open Inventor, originally IRIS Inventor, is a C++ object oriented re-

tained mode 3D graphics API designed by SGI to provide a higher layer

of programming for OpenGL. The strategy was based on the premise that

people were not developing enough 3D applications with OpenGL because

it was too time-consuming to do so with the low-level interface provided by

OpenGL. If 3D programming were made easier, through the use of an ob-

ject oriented API, then more people would create 3D applications and SGI

would benefit.

OpenGL is a low level library that takes lists of simple polygons and renders

them as quickly as possible. To do something more practical like “draw a

house”, the programmer must break down the object into a series of simple

OpenGL instructions and send them into the engine for rendering. One

problem is that OpenGL performance is highly sensitive to the way these

instructions are sent into the system, requiring the user to know which

instructions to send and in which order, and forcing them to carefully cull

the data to avoid sending in objects that aren’t even visible in the resulting

image. For simple programs a tremendous amount of programming has to

2.4. SOFTWARE 49

be done just to get started.

Open Inventor was written to address this issue, and provide a common base

layer to start working with. Objects could be subclassed from a number of

pre-rolled shapes like cubes and polygons, and then easily modified into new

shapes. The “world” to be drawn was placed in a scene graph run by Open-

Inventor, with the system applying occlusion culling on objects in the graph

automatically. OpenInventor also included a number of controller objects

and systems for applying them to the scene, making common interaction

tasks easier. Finally, OpenInventor also supplied a common file format for

storing “worlds”, and the code to automatically save or load a world from

these files. Basic 3D applications could then be written in a few hundred

lines under OpenInventor, by tying together portions of the toolkit with

“glue” code.

On the downside OpenInventor tended to be slower than hand-written code,

as 3D tasks are notoriously difficult to make perform well without shuffling

the data in the scene graph by hand. Another practical problem was that

OpenInventor could only be used with its own file format, forcing developers

to write converters to and from the internal system.

After many years of Inventor being solely available under proprietary licens-

ing from TGS, it was released under an open source license in August 2000,

which is available from SGI.

At approximately the same time, an API clone library called Coin3D was

released, written in a clean room fashion from scratch, sharing no code

with the original SGI Inventor library, but implementing the same API for

compatibility reasons.

Coin3D is built on OpenGL and uses scene graph data structures to ren-

der 3D graphics in real-time. Basic import, rendering, and interaction with

a 3D object can be implemented in just a few lines of code, and program-

mer efficiency is greatly increased compared with programming directly with

OpenGL. OpenGL code and Coin3D code can co-exist in the same applica-

tion, which makes gradual migration from OpenGL to Coin3D possible.

Crystal Space is primarily a Software Development Kit, a middleware for

developing 3D applications. There is a strong focus on games in particular,

50 CHAPTER 2. GEOMETRIC PRELIMINARIES

but Crystal Space itself is not limited to that. Notable features include

strong cross-platform support, numerous utilities, and bindings for multiple

languages.

Development-relevant features include basic helper classes such as e.g. con-

tainers, abstraction of platform-specific details, often requiring none to very

little platform-specific code in client applications, a plugin system for ex-

tensibility, customizability and versatility, and even, a custom build system,

that can also be used for client applications and provides conveniences such

as generation of Visual C++ projects.

While the “heart” of Crystal Space are the ‘engine’ and ‘renderer’, essentially

providing management of what should be rendered, and actual rendering,

there are also helper plugins providing and abstracting file input/output,

audio output, physics, input from joysticks, and GUIs. However, it does not

provide any game-specific logic, such as entity management.

Ogre (Object-Oriented Graphics Rendering Engine) is a scene-oriented,

flexible 3D rendering engine (as opposed to a game engine) written in C++

designed to make it easier and intuitive for developers to produce appli-

cations utilizing hardware-accelerated 3D graphics. The class library ab-

stracts the details of using the underlying system libraries like Direct3D

and OpenGL and provides an interface based on world objects and other

high level classes.

As its name states, OGRE is “just” a rendering engine. As such, its main

purpose is to provide a general solution for graphics rendering. Though it

also comes with other facilities (vector and matrix classes, memory han-

dling), they are considered supplemental. It is not an all-in-one solution

in terms of game development or simulation as it doesn’t provide audio or

physics support, for instance.

Generally, this is thought of as the main drawback of OGRE, but it could also

be seen as a feature of the engine. The choice of OGRE as a graphics engine

allows developers the freedom to use whatever physics, input, audio and

other libraries they want and allows the OGRE development team to focus

on graphics rather than distribute their efforts amongst several systems.

OGRE explicitly supports the OIS, SDL and CEGUI libraries, and includes

the Cg toolkit.

2.4. SOFTWARE 51

Currently OGRE is published under a dual license (one being LGPL, the

other one called OGRE Unrestricted License (OUL)), to make it possible to

be chosen for console development as well, because most of the publishers

reject using free/open-source software in that particular market.

OpenSceneGraph is an open source high performance 3D graphics toolkit,

used by application developers in fields such as visual simulation, computer

games, virtual reality, scientific visualization and modeling.

The toolkit is written in standard C++ using OpenGL, and runs on a variety

of operating systems including Microsoft Windows, Mac OS X, Linux, IRIX,

Solaris and FreeBSD.

Cgal, The Computational Geometry Algorithms Library, offers data struc-

tures and algorithms like triangulations (2D constrained triangulations and

Delaunay triangulations in 2D and 3D), Voronoi diagrams (for 2D and 3D

points, 2D additively weighted Voronoi diagrams, and segment Voronoi di-

agrams), Boolean operations on polygons and polyhedra, arrangements of

curves and their applications (2D and 3D envelopes, Minkowski sums), mesh

generation (2D Delaunay mesh generation and 3D surface mesh generation,

skin surfaces), geometry processing (surface mesh simplification, subdivision

and parameterization, as well as estimation of local differential properties,

and approximation of ridges and umbilics), alpha shapes, convex hull algo-

rithms (in 2D, 3D and dD), operations on polygons (straight skeleton and

offset polygon), search structures (kd trees for nearest neighbor search, and

range and segment trees), interpolation (natural neighbor interpolation and

placement of streamlines), shape analysis, fitting, and distances (smallest

enclosing sphere of points or spheres, smallest enclosing ellipsoid of points,

principal component analysis), and kinetic data structures.

All these data structures and algorithms operate on geometric objects like

points and segments, and perform geometric tests on them. These objects

and predicates are regrouped in CGAL Kernels.

Finally, the Support Library offers geometric object generators and spatial

sorting functions, as well as a matrix search framework and a solver for linear

and quadratic programs. It further offers interfaces to third party software

such as the GUI libraries Qt, Geomview, and the Boost Graph Library.

52 CHAPTER 2. GEOMETRIC PRELIMINARIES

Bibliographical notes

The first section of this chapter is dedicated to the definition of curves and

surfaces that will be encountered in this thesis. Some of them are inspired

by [89], which contains many additional properties as well as interrogation

methods, beyond the scope of the algorithms proposed in this work. Con-

cerning B-splines, we have preferred the definition of [30] and [48] since it

corresponds to the one of objects manipulated in our implementation (cf.

chapter 8). The discussion of solids and their representation follows the

point of view of [92] and [68]. Finally the presentation of software and

toolkits comes from our former experience and information available on the

Internet.

Chapter 3

Algorithmic preliminaries

To better understand the need of algorithms and algebra in the vast field

of geometric modeling and especially their demand in targeted applications

such as the ones found in CAD or CAM, let us start with an introductory

example.

Figure 3.1 shows the modeling of a motorcycle disc brake rotor, as those that

one can find in CAD, e.g. produced by some technical drawing software. The

left part is the final drawing whereas the right part shows some preliminary

steps of its design, where we can easily see that the final result has been

Final drawing Earlier step

Figure 3.1: Modeling of a disc brake rotor: final drawing and earlier step.

53

54 CHAPTER 3. ALGORITHMIC PRELIMINARIES

produced by assembling pieces of simpler geometry.

The representation chosen to define these simpler geometric entities is cru-

cial. Until recently, piecewise linear models have been used to design such

mechanical pieces. Their use raises important problems. First their defini-

tion implies a huge amount of data when fine accuracy is desired. Second

they represent an approximation of the shape. As shown in figure 3.2, this

poses many problems when it comes to finding intersection points: cross-

intersection points are approximate and tangential intersection points can

even be missed. The model is therefore not appropriate to physical simula-

tions.

Curve and surfaces with algebraic representation yield more compact yet

exact models. Indeed the circles which are used to define the rotor of figure

3.1 necessitate many vertices and edges if defined by meshes, whereas para-

metric models such as Nurbs are more compact and implicit curves allow to

define such a shape by the mean of a simple polynomial.

Since modeling such a physical entity consists in assembling several objects

all together, it is not only important to be able to accurately define each

one of them but one also needs interrogation tools to know what are their

features, whether they intersect, whether they self-intersect and especially

Figure 3.2: Piecewise linear models represent an approximation of the shape.

3.1. GENERIC FRAMEWORK 55

how considered all together they subdivide the ambient space.

This chapter settles a generic framework for computing with non-linear mod-

els and reminds major achievements concerning topology, intersection, self-

intersection and arrangements.

3.1 Generic framework

We expose a generic framework in-between the one of computational geom-

etry and the one of algebraic geometry. To this end, we address terminology

issues to set a non ambiguous base for the following discussions. It classi-

fies methods to compute with a collection of objects and schemes to drive

the computation. Then, we introduce elementary data structures which are

used to organize and manipulate the previously defined objects.

3.1.1 Terminology

As explained before, solid modeling consists in computing a combination of

objects. Many methods exist in computational geometry [16] to deal with a

collection of objects.

Incremental method. The most natural one is perhaps the incremental

method which consists in processing the input to the problem, one item at a

time. Algorithms implementing this method usually initiate the process by

solving the problem for a small subset of the input and maintain the solution

as remaining data is inserted one by one. If the order in which the data is

processed is random, the incremental method is then said to be randomized.

To determine the way the data is processed these incremental methods are

driven by a computational scheme.

Sweep scheme. The sweep scheme is deeply linked with the geometric

nature of the problem in hand. In 2 dimensions, numerous problems (in-

cluding topology, intersection or arrangement computation) can be solved

by sweeping the plane with a line. In higher dimensions, sweeping the space

56 CHAPTER 3. ALGORITHMIC PRELIMINARIES

with an hyperplane often reduces a d-dimensional problem into a sequence

of (d − 1)-dimensional problems much easier to deal with.

A sweep algorithm solves a two-dimensional problem by simulating a sweep

of the plane with a line, agreeing on a fixed direction in the plan, say the y-

axis, called the vertical direction. A line ∆ parallel to that direction sweeps

the plane when it moves continuously from left to right, from its initial

position x = −∞ to its final position x = +∞.

Algorithms that proceed by sweeping the plane use two data structures:

one structure Y called the state of the sweep and another X called the event

queue. The information stored in Y is related to the position of the sweep

line and changes when this line moves, the structure Y must be modified

only at a finite number of discrete positions (so called events) and the main-

tenance of this structure yields enough information to build the solution of

the original problem.

The event queue X stores the sequence of events yet to be processed. The

sweep algorithm initializes the structure Y for the leftmost position x = −∞
of the sweep line, and the sequence X with whatever events are known from

the start (in increasing order of their abscissae). Each event is processed in

turn, and Y is updated.

Example 3.1: Computing the intersection points of a set S of n line seg-

ments in the plane is a famous example of this kind of problem [13].

The naive solution is to test all the n(n− 1)/2 possible pairs. The resulting

algorithm would run in O(n2) time. Using the sweep scheme, one can design

an algorithm with an O((n + a)logn) where a is the number of intersecting

pairs.

Let’s assume the line segments are in general position, that is, no pair of line

segment share an endpoint, no line segment is vertical and no more than

two line segments intersect at the same point.

The sweep algorithm stores in the data structure Y the set of segments of

S which intersect the vertical sweep line ∆. Such segments are said to be

active at the current position of the sweep line, ordered by the ordinates of

their intersection point with ∆. This order is modified only when the line

sweeps over the endpoint of a segment or over an intersection point: 1. If ∆

3.1. GENERIC FRAMEWORK 57

∆

Figure 3.3: Computing the intersection of a set of line segment using a sweep
scheme.

sweeps over the left endpoint of a line segment S (that is to say, the segment

with the smaller abscissa), this segment is added to the structure Y, 2. If

∆ sweeps over the right endpoint of a line segment S (that is to say, the

segment with the greater abscissa), this segment is removed to the structure

Y, 3. If ∆ sweeps over the intersection of two line segments S and S′, they

switch their order in the structure Y.

The set of events therefore includes the sweep line passing over the end-

points of the segments of S, and over the intersections. The abscissae of

the endpoints are known as part of the input, and we wish to compute the

abscissae of the intersection points. A prospective intersection point I is

known when two active segments become consecutive in the sequence stored

in Y, the corresponding event is stored in the event queue X . The state of

the event queue is shown on figure 3.3 for a particular position of ∆.

At the beginning of the algorithm, the queue X stores the sequence of end-

points of the segments in S ordered by their abscissae. The data structure

Y is empty. As long as there is an available event in the queue X , the al-

gorithm extracts the event with the smallest abscissa, and processes it as

follows: 1. The event is associated with the left endpoint of a segment S.

This segment is then inserted in Y. If S intersects with its predecessor (resp.

successor) in Y, their intersection point is inserted into X . 2. The event is

associated with the right endpoint of a segment S. S is therefore removed

from Y. If the predecessor and successor or S in Y intersect in a point be-

yond the current position of the sweep line, this intersection point is queried

58 CHAPTER 3. ALGORITHMIC PRELIMINARIES

in X and the corresponding event is inserted if not yet present. 3. The event

is associated with the intersection point of two line segments S and S′. This

intersection point is computed and S and S′ are exchanged in Y. Assuming

S is the predecessor of S′ after the exchange, S and its predecessor are tested

for intersection. If they do intersect and if the abscissa of the intersection

point is greater than the current position of ∆, the corresponding event is

inserted into X . The same operation is performed for S′ and its successor.�

Subdivision scheme. The subdivision scheme is more general and pro-

vides a hierarchical context that can be used more easily to provide levels

of detail. Also, it avoids projections by enclosing the objects in boxes which

are reduced by the mean of a filtering technique which ensures some config-

uration of the subdivision cells. It is a very convenient scheme to filter the

computation using algebraic subdivision solvers.

Static or dynamic. Algorithms can also be classified depending on whe-

ther they require a preliminary knowledge of the input data or not. If an

algorithm requires a global knowledge of the input, that is, it can only com-

pute the solution of the input set in one pass, it is said static. On the

contrary if an algorithm can maintain a solution without looking ahead at

the data that remains to be inserted, it is said semi-dynamic. Fully dynamic

algorithms can maintain their solution to a problem under both insertions

and deletions. In fact, turning an incremental algorithm into a static or

dynamic one only ends up in interacting with the adapted data structure as

shown in the following subsection.

Objects. The objects that we consider in this framework are semi-algebraic

sets whose representation can either be discrete, parametric or implicit. We

will denote by O = {o1, . . . , on} the set of input objects of an incremental

algorithm. The set of objects defined at an earlier step, i.e. before inserting

the object on will be denoted On−1 = On \ on = {o1, . . . , on−1}.

Regions. Regions are connected components of the input space E, which

interior does not intersect the objects of O. They are constructed such that

their boundary is a set of edges (a bounded segment of a curved object)

3.1. GENERIC FRAMEWORK 59

and possibly (depending on the dimension of the problem) a set of faces

(a bounded segment of a surface) on objects of O. In addition to to this

information, a region will be associated to the set of objects involved in its

representation and which determine it. Sign conditions can also be associ-

ated to a region with regard of the type of objects which determine it.

Conflict. We say that two regions conflict together if their interior in-

tersects. To make the discussion easier, we may either say that an object

conflicts with a region, which means that a conflict exists between regions

determined by this object and another region, or that two objects conflict

together, which means that a conflict exists between regions defined by these

objects.

3.1.2 Data structures

The subdivision scheme employs tree data structures to decompose the input

space in smaller domains organized within a hierarchy. These structures are

called space partitioning data structures.

Trees. Trees are often used in space partitioning to offer efficient struc-

tures for computing and storing a partition of the space.

A kd-tree (short for k-dimensional tree) is a binary space-partitioning data

structure for organizing points in a k-dimensional space. It is a useful data

structure for searches involving a multidimensional search key [87].

A kd-tree uses only splitting planes that are perpendicular to one of the

coordinate system axes. This differs from BSP (Binary Space Partioning)

trees, in which arbitrary splitting planes can be used. In addition, in the

typical definition every node of a kd-tree, from the root to the leaves, stores

a point. This differs from BSP trees, in which leaves are typically the only

nodes that contain points (or other geometric primitives). As a consequence,

each splitting plane must go through one of the points in the kd-tree. kd-

tries are a variant that store data only in leaf nodes.

A quadtree [95] is a hierarchical data structure based on the principle of

recursive decomposition of the plane, in which each internal node has up to

60 CHAPTER 3. ALGORITHMIC PRELIMINARIES

(a) Recursive subdivision of a planar cell into quadrants and corresponding tree.

(b) Recursive subdivision of a spatial cell into octants and corresponding tree.

Figure 3.4: Space partitioning tree data structures.

four children. The root of the tree corresponds to the starting domain in

which the subdivision has been initiated.

We do not recall the terminology of tree and refer to [2] instead, but simply

remind that the depth of a tree is the size of the path (or the number of

subdivisions) from the root to a leaf of the quadtree.

Figure 3.5a shows a decomposition of the input space delimited by a bound-

ing box and the corresponding data structure.

Octrees are the three-dimensional analog of quadtrees as shown in figure

3.5b.

3.1. GENERIC FRAMEWORK 61

Graphs. Algorithms that compute a decomposition of the space organize

objects and regions in graph data structures.

Sweep based algorithms often construct a planar map induced by a set of

objects such as curves. A planar map is a bidirected graph and for every

node v the cyclic ordering of the edges out of v corresponds to the ordering

of the edges around v in the drawing. A crossing-free drawing of graph in

the plane partitions the plane into connected regions, called faces of the

drawing.

In order to be able to dynamically add or remove objects from a collection,

we use an augmented influence graph Ia (see figure 3.5), which is an influence

graph connected together with a conflict graph, that we describe now.

An influence graph is a directed, acyclic and connected graph. It possesses a

single root, and its nodes correspond to the regions created by an algorithm

during its execution. Therefore, a node corresponds to a region defined

over the current set of objects at some point during the execution of the

algorithm. The influence graph possesses two essential properties: at each

step of the algorithm, a region defined over the current set of objects is

associated with a leaf of the influence graph, and, the domain of influence

of a region associated with a node of the influence graph is contained in the

union of the domains of influence of the regions associated with the parents

of that node.

In addition to the usual information stored in the influence graph, the aug-

mented influence graph stores a conflict graph between the objects in the

current set O and the regions stored in the nodes of the influence graph.

This conflict graph is a system of interconnected lists: to each region stored

in a node of the influence graph, corresponds a list of objects of O with

which it conflicts, and, to each object in the current set O corresponds a list

of regions stored in the entire influence graph that conflict with it.

As shown in figure 3.5, each node contains a region of the arrangement,

connected together with a conflict graph which allows to keep track of which

object is said to be the determinant or the killer of a region.

Example 3.2: An arrangement is represented by the set of leaves in the

augmented influence graph, but, the latter still contains the information

62 CHAPTER 3. ALGORITHMIC PRELIMINARIES

F1 F2 F3

F4 F5F6

F7 F8

L′(F3)

L′(F5)

L(O2) F3 F5

O2

O2

Figure 3.5: Augmented influence graph.

required to be able to remove an object from it, or to add an object to

it. Indeed, leaf nodes constitute the current arrangement Ak, where k is

the number of objects in the arrangement, while other nodes (non-root and

non-leaf nodes) allow to keep track of the incremental construction of the

arrangement A1 . . .Ak−1.

To compute an arrangement An of a collection O of n objects o1 . . . on, we

randomly insert the elements of the collection into the arrangement structure

A. This structure can be maintained while removing for example the object

ok, leading to the arrangement AΣ where Σ = {o1 . . . ok−1, ok+1 . . . on} is the

corresponding chronological sequence.

Removing an object from an arrangement can be achieved following the

general design explained in [16]: after the deletion of an object ok, the

algorithm reinserts the objects ol of higher chronological rank l > k to

create new nodes and re-parent unhooked nodes in the augmented influence

graph. �

3.2 Topology

Algebraic curves and surfaces are compact representations of shapes, which

can be complex and have numerous advantages over parametric ones, such

as easy determination of inside/outside of the surface. This is particularly

3.2. TOPOLOGY 63

useful when we have to apply logical operations (union, subtraction, etc.)

between two solid objects, defined implicitly. In such problems, comput-

ing the intersection of two surfaces is a critical operation, which has to be

performed efficiently and accurately. Moreover, dealing with parameterized

surfaces naturally leads to the computation of implicit curves. Let us men-

tion in particular, the intersection curve of two surfaces, self-intersection

curves, plane sections and ridge curves. Such problems reduce to the analy-

sis of a curve defined by n−1 polynomial equations, in a space of dimension

n.

One major obstacle for adopting implicit representations instead of para-

metric representations concerns the piecewise linear approximation of such

curves or surfaces for visualization purposes. A brute force approach would

be an exhaustive evaluation for approximating the zero level set, which is

obviously very inefficient. A typical alternative scenario is to adopt a divide-

and-conquer approach. Larger undetermined domains are broken down to

smaller predictable domains in which the topological feature and eventually,

the curve/surface itself can be inferred efficiently.

The problem of computing the topology of curves has been approached in

different ways. A first family of methods is based on a sweeping approach.

For two dimensional planar algebraic curves, such approach has been studied

e.g. in [58] and [57]. It was later extended by Gatellier et al. in [56] to three

dimensional spatial curves resulting from the intersection of two algebraic

surfaces (see also [6]). These methods use a conceptual sweeping line/plane

perpendicular to some projection axis, and detect the critical topological

events, such as tangents to the sweeping planes and singularities. The fi-

nal output of these methods is a graph of connected vertices complying to

the topology of the original curve. A notable problem of aforementioned

approaches is that they rely on the computation of sub-resultant sequences,

which can be a bottleneck in many examples with large degree and large

coefficients.

Another family of methods are the subdivision based techniques, which use

a simple criterion to remove domains which do not contain the roots. A

crucial problem involved here is how to efficiently and reliably deduce the

root information in a given interval (or a bounding box). In these methods,

instead of using monomial representation, equations are represented using

64 CHAPTER 3. ALGORITHMIC PRELIMINARIES

Bernstein basis [48]. Among early attempts, Sederberg [96] converted an

algebraic curve into piecewise triangular Bernstein bases.

The application of subdivision methods for handling higher dimensional ob-

jects is not so well developed. In [70] a method which subdivides up to some

precision level, and applies dual marching cube approach to connect points

on the curve or to mesh a surface is described. The variety is covered by

boxes of a given size, and the connectivity of these cells is used to deduce

the piecewise linear approximation. In [3], a subdivision approach exploiting

the sign variation of the coefficients in the Bernstein basis in order to certify

the topology of the surface in a cell, is used for the purpose of polygonalizing

an implicit algebraic surface.

Example 3.3: To illustrate the quite systematic use of the sweep scheme

in topology computation, we present a method proposed by Tecourt in [56].

The topology computation of planar implicit curves is the key ingredient of

many geometric problems including arrangement computation of curves and

surfaces and intersection of surfaces as shown in chapters 5 and 6.

We consider a curve C defined as the zero locus V(f) of a polynomial in two

variables f(x, y) ∈ Q[x, y]. We can assume that f is square-free (if it is not

the case, we perform a gcd-computation).

We first present from a geometric point of view the way the topology is

computed. In this computation, we need to manipulate algebraic numbers.

Definition 3.1 (Critical point): A point (α, β) of C = V (f) is x-critical

if f(α, β) = ∂yf(α, β) = 0.

Definition 3.2 (Singular point): A point (α, β) of C = V (f) is singular

if f(α, β) = ∂yf(α, β) = ∂xf(α, β) = 0.

Definition 3.3 (Regular point): A point (α, β) of C = V (f) is regular if

it is not critical nor singular.

Definition 3.4 (Generic position): The curve C = V(f) is said to be in

generic position if: 1. The leading coefficient of f with respect to y (poly-

nomial in x) has no real roots. 2. For every α in R, the number of critical

points with x-coordinate α is at most 1.

3.2. TOPOLOGY 65

Remark 3.1: In generic position, the curve has no vertical asymptote and

its x-critical points have different x-coordinates. •

The geometric idea permitting to recover the topology of the curve from the

computation of some particular points is as follows.

1. We compute the sequence of the subresultants of f(x, y) and ∂yf(x, y)

viewed as polynomials in y.

2. We compute the x-critical points {Pi = (αi, βi)}.

3. We check that the curve is in generic position. If not we perform a random

change of variables and restart from step 1.

4. For each critical point Pi = (αi, βi), we compute the number of regular

points with x-coordinate αi which are above and below Pi using Sturm

sequences.

5. We compute the number of arcs above a value between two successive

abscissae αi, αi+1, which is constant. It can be done for example choosing

a rational x-coordinate a between αi and αi+1 and computing the number

of real solutions of f(a, y) = 0 using Sturm sequences. Then we compute

numerical approximations of those different points.

6. We construct the segments connecting the points we have just computed.

The algorithm is very simple and can be observed in figure 3.6. Consider a

section x = αi, i.e. all the points of the curve with abscissa αi and the next

section x = αi+1. We have chosen a rational point a ∈]αi, αi+1[and we

have computed the section corresponding to x = a.

In the section x = αi, there are λi points above (αi, βi) and µi below.

We connect the λi points above (αi, βi) with the λi points of largest y-

coordinate of the section x = a, respecting the order on the y-coordinate.

We connect the µi points under (αi, βi) with the µi points of smaller y-

coordinate of the section x = a, respecting the order on the y-coordinate.

After that, we connect the remaining points of the section x = a to the

critical point (αi, βi). �

66 CHAPTER 3. ALGORITHMIC PRELIMINARIES

Figure 3.6: The connection algorithm provide a planar graph of point that
is isotopic to the original curve.

Example 3.4: Another example is the one of using the sweep scheme in

higher dimension for computing the topology of a spatial implicit curve.

For the sake of clarity, we will consider here that the curve is described

as the intersection of two surfaces P1(x, y, z) = 0, P2(x, y, z) = 0, with

P1, P2 ∈ R[x, y, z]. We assume that the gcd of P1 and P2 in R[x, y, z] is 1,

so that V(P1, P2) = CC is of dimension 1, and all its irreducible components

are of dimension 1. We are interested in describing the topology of the real

part

CR = {(x, y, z) ∈ R3, P1(x, y, z) = 0, P2(x, y, z) = 0},

that we will denote hereafter by C.

Note that we do not consider examples such as surfaces intersecting tangen-

tially along C). Such a property can be tested by projecting into a generic

direction and testing if the equation computed from the resultant of P1, P2

is square-free.

The general idea behind the algorithm is as follows: we use a sweeping plane

in a given direction (say parallel to the (y, z) plane) to detect the critical and

singular points. We also compute the positions of such points in projection

on the (x, y) and (x, z) planes. Then, we connect the points of the curve

of C on these critical planes. This yields a graph of points, connected by

3.2. TOPOLOGY 67

x

y

z C

C′ = Resz(P1, P2)

C′′ = Resy(P1, P2)

Figure 3.7: Sweeping algorithm for the topology computation of implicit
spatial curve: state after step 4.

line segments, with the same topology as the curve C. Here is the algorithm

outline. We denote by C′ (resp. C′′) the projection of the curve C onto the

(x, y) (resp. (x, z))-plane.

1. Compute the x-critical points and their x-coordinates Σ := {σ0
1, . . . , σ

0
k}

with σ0
1 < · · · < σ0

k.

2. Check the generic position. If the curve is not in a generic position, apply

a random change of variables and restart from the first step.

3. Compute the square-free part g(x, y) of C′ = Resz(P1, P2).

4. Compute the square-free part h(x, z) of C′′ = Resy(P1, P2).

5. Compute the singular points of the curves g(x, y) = 0 and h(x, z) = 0

and insert their x-coordinate in Σ.

6. Insert new values in between the critical values of Σ: δ0 < σ1 < µ1 <

· · · < σl < δ1, where µi := σi+σi+1

2 for i = 0, . . . , l − 1, and δ0, δ1 are any

value such that]δ0, δ1[contains Σ. We denote by α0 < · · · < αm this new

refined sequence of values.

7. Compute Li, the set of points on C above αi, for i = 0, . . . ,m.

8. For each i = 0, . . . , l − 1, connect the points Li to those of Li+1. �

68 CHAPTER 3. ALGORITHMIC PRELIMINARIES

x

y

z

Figure 3.8: Sweeping algorithm for the topology computation of implicit
spatial curve: final result.

Remark 3.2: Note that sweep algorithms are very input sensitive concern-

ing the position of the critical points computed to get the topological graph

of an object. This is caused by the nature of the sweep scheme which natu-

rally leads to analyzing projections of the curve. Using a subdivision scheme

allows to avoid the need of such strong generic position conditions since we

can analyze the object in a domain of higher dimension. The subdivision

scheme is the one chosen for each realization of this thesis so it will be

discussed in great details in remaining chapters. •

Example 3.5: We finally mention that Mourrain and Técourt [83, 100]

have proposed a meshing algorithm for algebraic surfaces that is based on

sweeping a vertical plane over the surface (see figure 3.9).

We have already seen in previous examples that critical points play a crucial

role in determining the topological structure of a surface. Accordingly, the

algorithm uses such points to guide the sweep. It makes no smoothness

or regularity assumptions about the input surface (other than those which

follow from being an algebraic surface). The algorithm works for surfaces

with self-intersections, fold lines, or other singularities. It however makes

no guarantees about the geometric accuracy of the approximation. �

3.3. INTERSECTION 69

Figure 3.9: Computing the topology of an algebraic surface with a spatial
sweep algorithm by connecting a sequence of vertical cuts.

3.3 Intersection

Intersection is a fundamental process in geometry, needed to build and in-

terrogate models of complex shapes. We need intersection computation pri-

marily to evaluate set operations on primitive volumes in creating boundary

representations of complex artifacts. Such capability helps in the design rep-

resentation of complex objects, in finite-element discretization, in computer

animation, in feature recognition, and in simulation and control of manufac-

turing processes. Similarly, intersection is useful in scientific visualization

to provide methods for visualizing implicitly defined objects and to contour

multivariate functions representing some property of a system.

The fundamental issue in intersection problems is the efficient discovery and

description of all features of the solution with high precision, e.g. required

from the underlying geometric modeler. Reliability of intersection algo-

rithms is a basic prerequisite for their effective use in any geometric mod-

eling system. It is closely associated with the way the algorithm handles

such features as constrictions (near singular or singular cases, for example,

self-intersections), small loops, and partial surface overlap. The solutions

resulting from most present techniques, implemented in practical systems,

are further complicated by imprecision introduced by numerical errors in

finite precision computations.

If the curve intersection problem is well handled by now (see [15] ,[89] or

70 CHAPTER 3. ALGORITHMIC PRELIMINARIES

[96] for a list of algorithms), the one of surface intersection is still investi-

gated. It has strong links with curve interrogation problems, e.g. in [38],

the ruled surface intersection is reformulated in a problem equivalent to the

construction of an implicit curve in the plane.

After Patrikalakis [88], surface intersection methods can be classified in four

main categories: analytic, lattice evaluation, marching, and subdivision.

Most of the methods were developed in the context of polynomial surfaces.

Analytic methods rely on the derivation of a governing equation describ-

ing the intersection of two surfaces. For polynomial surfaces, the result-

ing equation is an algebraic curve f(u, v) = 0, where f is a polynomial

in u, v. This equation can, for example, be obtained by substitution of

the three Cartesian coordinate expressions of a rational polynomial surface

R = R(u, v) in the equation of an implicit algebraic surface f(R) = 0 (see

[68]). In theory, we can handle the intersection between two rational poly-

nomial parametric surfaces by obtaining an algebraic (implicit polynomial)

representation for one of the surfaces. The relatively high degree of this

algebraic representation and the subsequent substitution of the second ra-

tional polynomial surface into this high-degree equation lead to an algebraic

curve of even higher degree.

Detecting the topological configuration of a high-degree algebraic curve with

integer or algebraic number coefficients is a complex problem that we can

approach with cylindrical algebraic decomposition. Hoffmann [68] provides

an overview, and Sakkalis [94] proposed a more efficient extension. These

methods, as implemented in rational arithmetic, are topologically reliable

but need special attention because of large memory needs and inefficiency.

Lattice evaluation methods reduce the dimensionality of surface inter-

sections by computing intersections of a number of isoparametric curves of

one surface with the other surface. Then we connect the resulting discrete

intersection points to form different solution branches. For intersections of

parametric patches, the method reduces to the solution of a large number

of independent systems of non-linear equations. The reduction of problem

dimensionality in lattice methods involves an initial choice of grid resolution.

An inappropriate choice might cause the method to miss important solution

features such as small loops and isolated points that reflect near tangency

3.3. INTERSECTION 71

or tangency of intersecting surfaces, and thus provide incorrect connectivity.

Marching methods involve generating point sequences of an intersection

curve branch by stepping from a given point on the required curve in a

direction prescribed by the curve’s local differential geometry [10]. However.

such methods are by themselves incomplete in that they require starting

points for every branch of the solution. Starting points are usually obtained

using lattice and subdivision methods [11]. Marching methods also require a

variable stepping size appropriate for the local length scales of the problem.

Incorrect step size might lead to erroneous connectivity of solution branches

or even to endless looping in the presence of closely spaced features. We

can substantially improve the reliability of marching and lattice evaluation

methods by determining all border, turning, and singular points of the curve.

Subdivision methods, in their most basic form, involve recursive decom-

position of the problem into simpler, similar problems until we reach a level

of simplicity that allows direct solution (for example, plane/plane intersec-

tion). This is followed by a phase that connects the individual solutions

to form the complete solution. Initially conceived in the context of inter-

sections of polynomial parametric surfaces, subdivision methods can be ex-

tended to the computation of algebraic/rational polynomial parametric and

algebraic/algebraic surface intersections. Unlike marching methods, subdi-

vision techniques do not require starting points (an important advantage).

A disadvantage of subdivision techniques used in intersection curve evalua-

tion is that, in actual implementations with finite subdivision steps, correct

connectivity of solution branches in the vicinity of singular or near-singular

points is difficult to guarantee, small loops might be missed, or extraneous

loops might be present in the solution approximation. Furthermore, if we

use subdivision methods for high-precision evaluation of the entire inter-

section set, they lead to data proliferation and are consequently slow and

unattractive.

Remark 3.3: The work proposed in the following chapters addresses these

quite only disadvantages of subdivision methods. First using topological

degree, one can guarantee the local topology in singular configurations, also,

adaptive subdivision methods coupled with efficient local techniques to get

high accuracy offer the best known practical approach for the computation

72 CHAPTER 3. ALGORITHMIC PRELIMINARIES

of significant points. •

In Computer Aided Geometric Design (CAGD), the parameterized surfaces

are used for delimiting volumes. The computation of the intersection curve

between such two surfaces is thus crucial for the description of the CAGD

objects. An often used method to address this problem consists in using a

mesh for each surface, and then proceed to their intersection via intersection

of triangles. Other methods for the intersection problem deal with global

representations of the surfaces such as B-splines, however the usual CAGD

procedures (offsetting, drafting, . . .) do not conserve this model. In practice,

so-called procedural surfaces (i.e. given by evaluation) are used, in CAGD

systems, for representing sequences of constructions indicated by the user.

Then a B-spline approximation is computed for further processing.

So, even if the intersection methods are exact, they only provide an approx-

imation of the “real” intersection curve. Idealistically, approximations of

the surfaces should not be separated from the intersection process. Let us

remark that an intermediate strategy is to approximate the given surfaces

by meshes of algebraic shapes more complex than the triangles. Hence the

intersection locus will be more precise.

A good choice is to approximate by Bézier surface patches of small degree.

Then, it is crucial to be able to efficiently intersect such two polynomial

parameterized surfaces.

Example 3.6: In [25], the authors contribute to a robust solution of this

problem which avoid some drawbacks as large intermediate algebraic expres-

sions that appear in projection methods.

Let’s consider the intersection curves of two biquadratic Bézier surfaces

f(u, v) and g(r, s), both with parameter domains [0, 1]2. They are assumed

to be given by their parametric representations with rational coefficients

(control points). More precisely, these representations have the form

f(u, v) =

2
∑

i=0

2
∑

j=0

ci,jBi(u)Bj(v) (3.1)

with certain rational control points ci,j ∈ Q3 and the quadratic Bernstein

3.3. INTERSECTION 73

polynomials Bj(t) =
(

2
i

)

ti(1 − t)2−i (and similarly for the second patch

g(r, s)).

The intersection curve is defined by the system of three non–linear equations

f(u, v) = g(r, s) (3.2)

which defines the intersection as a curve (in the generic case) in [0, 1]4.

Similarly, self intersections of one of the patches are characterized by

f(u, v) = f(ū, v̄). (3.3)

In this case, the set of solutions contains the 2–plane u = u∗, v = v∗ as a

trivial component.

While these equations could be solved by using numerical methods, it is

possible to compute the intersections by using symbolic computations, in

order to avoid rounding errors and robustness problems.

The “generic” algorithm for computing the (self–) intersection curve(s), con-

sists of three steps:

1. Find at least one point on each component of the intersection,

2. Trace the segments of the intersection curve,

3. Collect and convert the segments into a format that is suitable for further

processing (depending on the application).

Several parts of the intersection curve may exist. Some possible types are

shown in figure 3.10 in the parameter domain of a Bézier surface f(u, v).

Points with horizontal or vertical tangent are called turning points, and

intersections with the boundaries of the patches generate boundary points.

Note that also isolated points (where both surfaces touch each other) may

exist.

The implicitization problem – which consists in finding an implicit equation

(an algebraic representation) for a given parameterized rational surface – can

be addressed by using several approaches, e.g. using resultants or Groebner

bases [26, 27, 67]. However, the implicitization is very time consuming

because of the degree of the implicit equation: for a generic parameterized

surface of bi-degree (n1,n2), the implicit equation has degree 2n1n2. Also,

74 CHAPTER 3. ALGORITHMIC PRELIMINARIES

u

v

Figure 3.10: Intersection curves in one of the parameter domains. Boundary
points are white ones and reversal points are gray ones.

all rational parametric curves and surfaces have an algebraic representation,

but the reverse is not true. The relationship between the parametric and

the algebraic representations can be very complex (problem of “phantom

components”). Thus, we can try to find an algebraic approximation of a

given parameterized surface for which the computation is more efficient and

which contains less phantom components.

Considering a polynomial parameterized surface f(u, v) with the domain

[0, 1]2, d a positive integer (the degree of the approximate implicit equation),

ǫ ≥ 0 (the tolerance), following [31] (see [101] as well), the approximate im-

plicitization problem consists in finding a non–zero polynomial P ∈ R[x, y, z]

of degree d such that

∀(u, v) ∈ [0, 1]2, P (f(u, v) + α(u, v)k(u, v)) = 0 (3.4)

with |α(u, v)| ≤ ǫ and ||k(u, v)||2 = 1. Here, α is the error function and k is

the direction for error measurement, e.g. , the unit normal direction of the

surface patch.

The main question of the approximate implicitization problem is how to

choose the degree. A key ingredient for this choice seems to be the topology,

especially if the initial surface has self–intersections. The use of degree 4 was

suggested by Tor Dokken, after several experiments he concluded that the

algebraic surfaces of degree 4 provide sufficiently many degrees of freedom to

3.4. ARRANGEMENTS 75

approximate most cases encountered in practice. In the case of a biquadratic

surface, where the exact implicit equation has degree 8, using degree 4 seems

to be a reasonable trade-off. �

3.4 Arrangements

Arrangements of geometric objects is a field of computational geometry

which has been studied for years [1], initially with simple objects such as line

segments [13], circular arcs and curves are still investigated [50, 62, 78, 110]

and can be used for computing an arrangement of surfaces [84]. The current

methods mainly use a sweep approach [13]. They focus on events, which are

critical points for a projection direction. The events are sorted before a crit-

ical value and the order after this critical value is deduced from information

at the critical points.

Example 3.7: The state of the art example is the one of computing the

vertical decomposition induced by a set of line segments in the plane, that

is, the first kind of arrangement of a collection of objects proposed using the

Bentley-Ottman way of sweeping the plane with a line (see example 3.1).

A set S of segments induces a subdivision of the plane into regions, or cells,

which are the connected components of E2 \ S. The vertical decomposition

of a set of line segments is obtained by subdividing each cell into elementary

trapezoidal regions. It is a structure which depends upon the choice of

a particular direction. Here let us assume this direction is that of the y-

axis, which we call the vertical direction. When we want to refer to this

direction, we speak of a y-decomposition. Let S be a set of n line segments

in the plane. As previously, we suppose that the segments in S are in general

position (meaning that no three segments have a common intersection) and

that the abscissae of their endpoints are all distinct. In particular, this

implies that no segment of S is vertical. From each point P in the plane,

one can trace two vertical half-lines both upward and downward, ∆1(P) and

∆2(P). Let Pi (i = 1, 2) be the first point of ∆i(P) distinct from P where

this half line meets a segment of S. Should no such point exist, we make

the convention that Pi is the point at infinity on the line ∆i(P). Segments

[P, P1] and [P, P2] are the walls stemming from the point P . Hence, the

76 CHAPTER 3. ALGORITHMIC PRELIMINARIES

P

P

P
1

2

Figure 3.11: Walls in a vertical decomposition of line segments in the plane.

walls stemming from a point P are the maximal vertical segments that have

P as an endpoint and whose relative interiors do not intersect segments of

S as shown in figure 3.11.

The vertical decomposition of S can be described as a planar map whose

vertices, edges, and regions subdivide the plane. The vertices of this map are

the endpoints and intersection points of the segments of S, and the endpoints

of the walls. Each region in the map has the shape of a trapezoid, the two

parallel sides of which are vertical. Some degenerate ones are triangular

(with only one vertical side), or semi-infinite (bounded at top or bottom

by a segment portion with two semi-infinite walls on both sides), or doubly

infinite (a slab bounded by two vertical lines on either side), or even a half-

plane (bounded by only one vertical line).

Each region of a vertical decomposition is thus a trapezoid, or a degenerate

one, and its boundary has at most four sides, two of which are vertical.

Each vertical side of a trapezoid consists of one or two walls stemming from

the same point. The non vertical side of a trapezoid are respectively called

ceiling and floor of the trapezoid. The floor or ceiling of a trapezoid is

always included in some segment of S and its endpoints are vertices of the

3.4. ARRANGEMENTS 77

vertical decomposition. Neither the floor nor the ceiling need to be edges of

the vertical decomposition, they can however be made up of several edges of

the planar map of the vertical decomposition. Indeed, several walls exterior

to a trapezoid can butt against its floor or its ceiling, as is the case for the

bottom cell in figure 3.11.

Let us directly begin with a semi-dynamic version of the algorithm, using

an influence graph to maintain the current arrangement (in this case, the

current vertical decomposition).

The algorithm maintains the set of regions R defined and without conflict

over the current set of objects, together with the influence graph correspond-

ing to the chronological sequence of objects currently inserted. The initial

step processes a small set of objects. For instance, it can be the minimal

number of objects needed to determine a region.

The algorithm computes the regions defined and without conflicts over the

set of these initial objects. The influence graph is initialized by creating a

root node, corresponding to a fictious region whose influence domain is the

universe of objects in its entirety. Figure 3.13a illustrates the initial step.

In the current step, the object O is added to R. The work can be divided

into two phases: we first locate O and then update the data structures.

Locating: In this phase, we must find all the regions that conflict with the

new object O. Starting from the root of the influence graph, we recursively

visit all the nodes that conflict with O, and their children. The regions

that conflict with O are said to be killed by O. Figure 3.13b illustrates the

location phase.

Updating: We now have to update the data structure that represents the

set of those regions defined and without conflict over the current subset of

objects. We also have to update the influence graph accordingly. A leaf of

the influence graph is created for each of the new regions. These are the

regions created by O. Each of these leaves is linked to its parents. Figure

3.13c illustrates the updating phase.

Using an influence graph naturally leads to the design of semi-dynamic al-

gorithms, that is, no removal of any object is possible. We propose to show

78 CHAPTER 3. ALGORITHMIC PRELIMINARIES

A BC DD

B

A C

(a) Initial step.

A BC D

B

D

(b) Inserting a new object O: old regions are killed by O.

A BC D

E F G H I

G I

DE F H

B

(c) Inserting a new object O: new regions are created by O.

Figure 3.12: Semi-dynamic decomposition of a line segment in the plane:
first two steps.

3.4. ARRANGEMENTS 79

how the combined use of both conflict and influence graph can yield a fully

dynamic algorithm.

The general idea behind this approach is to maintain a data structure that

meets the following two requirements: 1. It allows conflicts to be detected

between any object and the regions defined over the current subset of objects.

2. After deleting an object, the structure is identical to what it would have

been, had the deleted object never been inserted.

Such a structure is called an augmented influence graph, and can be imple-

mented using an influence graph together with a conflict graph between the

regions stored in the influence graph and the current set of objects.

We do not detail the removal of an object in great details since it requires

to distinguish lots of configurations and refer to [16] instead, but we give an

outlook of the method.

If Σ = {O1, . . . , On} is the chronological sequence corresponding to the

insertion of n objects, we denote by Σ′ = {O1, . . . , Ok−1, Ok+1, . . . , On} the

same sequence which corresponds to the incremental construction of the

solution if the object Ok had never been inserted.

Again, in the current step, the object Ok is removed from R. The work can

be divided into two phases: we first locate Ok and then rebuild the data

structures.

Locating: The phase is trivial, all the nodes that conflict with the object

Ok to be deleted, or that are determined by a subset containing Ok, are

visited together with their children. The algorithm identifies the destroyed

nodes (which were directly or not only linked to a node corresponding to a

region created by Ok) as well as unhooked nodes (the same type of nodes

but with at least two parents). These regions are called critical regions.

Rebuilding: The algorithm maintains the data structures by retrieving the

earlier step of the incremental construction of the vertical decomposition at

rank k − 1 and reinserts objects of Σ that have higher chronological rank

l > k by performing splits and joins on critical regions. �

More recently, sweep-line algorithms for computing an arrangement of arbi-

trary algebraic curves have emerged [34], making use of resultants to com-

80 CHAPTER 3. ALGORITHMIC PRELIMINARIES

pute roots when the sweep-line encounters an event. In [14] the authors

present another context for computing an arrangement of a set of curves

defined on a continuous two-dimensional parametric surface, while sweeping

the parameter space.

When using sweep methods, events are treated when the sweep line encoun-

ters points of interest where a projection on a line becomes critical, reducing

the dimension of the problem but increasing its computational difficulty (for

instance by computing resultants and by lifting points in the case of implicit

curves). Moreover the projection step onto a subspace of smaller dimension

is systematically followed by a lifting operation to come back to the initial

space. Most of the existing approaches rely on exact geometric computation

models. When dealing with segments, this is not really an obstacle, but for

general semi-algebraic objects, these operations are delicate from a numer-

ical point of view since we are working at critical values. They require the

manipulation of algebraic numbers, and their complexity could be a problem

with large input polynomials.

Example 3.8: Already Bentley and Ottmann observed that the sweep-

line algorithm can be used to handle arbitrary x-monotone curves (or x-

monotone segments of arbitrary planar curves).

This example, shows how the authors in [50] adapt the general sweep scheme

proposed by Bentley and Ottmann to handle algebraic curves in an arrange-

ment process.

Two implicit assumptions are made by the “classical” algorithm: a pair of

segments can intersect at most once, and two segments swap their relative

position when they intersect. These assumptions do not necessarily hold for

general curves, but one can easily remedy the situation:

• Instead of checking whether two curves intersect, we check whether

they have an intersection point to the right of the current event point

pe. If there are several intersection points lying to the right of pe, it

is sufficient, at the current event, to consider only the leftmost one.

However, if all intersection points are available, we can insert them all

into the X -structure.

• When we deal with an intersection event of two curves, we have to

3.4. ARRANGEMENTS 81

consider the multiplicity of the intersection point. If the multiplicity

is odd, the two curves swap their relative vertical positions and we

proceed as in the case of line segments. If, however, the multiplicity

is even, the two curves maintain their initial positions and no new

adjacencies are created in the Y-structure.

Suppose we wish to insert a planar curve Ci into an existing arrangement

Ai−1 of the curves C1, . . . , Ci−1. The insertion procedure of the first curve

into an empty arrangement is trivial, so we will assume that i > 1 and

Ai−1 represents the arrangement of a non-empty set of curves. We will

further assume that Ci is (weakly) x-monotone — if this is not the case, we

will subdivide it into several x-monotone segments and insert each segment

separately.

To insert an x-monotone curve Ci we execute the following procedure:

1. Locate Ci’s left endpoint (and in case Ci is a vertical segment we start

from its bottom endpoint) in Ai−1 and act according to the type of

the arrangement feature containing this endpoint:

(a) If the endpoint lies on an existing vertex, we have to update the

data associated with this vertex.

(b) If it lies on an edge, we have to split this edge, introducing a new

arrangement vertex associated with the endpoint.

(c) If the endpoint is contained in the interior of a face, we construct

a new vertex associated with the endpoint within the face.

2. Traverse the zone of Ci, the set of arrangement faces in Ai−1 that Ci

crosses (see figure 3.13 for an illustration). Each time we discover an

intersection along Ci with one of the existing arrangement elements,

we create a new arrangement vertex and cut Ci into two subcurves at

this point. We also have to split the edges and faces of Ai−1 that Ci

crosses. We continue the process with the right subcurve of Ci until

reaching Ci’s right endpoint.

3. In case Ci’s right endpoint lies on an existing vertex, update the data

associated with this vertex. Otherwise we add a new arrangement ver-

tex representing this endpoint (in case the endpoint lies on an existing

edge, we will also have to split this edge). We take special care of the

82 CHAPTER 3. ALGORITHMIC PRELIMINARIES

Figure 3.13: The insertion process of a new curve into an existing arrange-
ment. Newly introduced vertices are marked.

case where Ci lies entirely within a face of Ai−1 — that is, both its

endpoints lie in the same face and it crosses no existing arrangement

edge — as we have to initiate a new hole in the relevant face in this

case. �

The use of subdivision methods has recently emerged such as in [17] where

interval arithmetic is used to classify cells in the subdivision process. Sub-

division methods are also very efficient for isolating the roots of polynomial

equations, which appear in geometric problems [43, 55, 80, 97]. They have

also been extended for the approximation of one or two dimensional objects

[3, 70, 75]. Finally, we mention an attempt at computing elements of an

arrangement of implicit curves using interval arithmetic in a subdivision

process [66].

Back to our rotor design example, figure 3.14 shows an arrangement of circles

defining the rotor.

Vertices of the arrangement are intersection points between the objects.

Some extra vertices can appear when used to build the arrangement such

as critical points for a direction. Regions are defined by a set of vertices

and a set of connecting edges which are bounded curve segments. Their

orientation defines the interior of the structure. This structure, sometimes

called doubly connected edge list or Dcel for short allows a fast traversal of

3.4. ARRANGEMENTS 83

Figure 3.14: An arrangement of circles defining the disc brake.

the arrangement structure.

Bibliographical notes

The book “Algorithmic geometry” [16] serves as a reference for the clas-

sification of methods used in the field of the same name. It outlines the

sweep schemes in many applications and details associated data structures

together with the complexity of their query. The illustration of the sweep

scheme comes from the work of Jean-Pierre Técourt [100]. The discussion

of intersection methods comes from our previous considerations of the sub-

ject with Stéphane Chau e.g. in [25]. The illustration of the arrangement

computation of curves using sweep scheme is inspired by [50].

Chapter 4

A generic arrangement algorithm

Chapter 2 shows that geometric modeling aims at combining curves together

in order to represent solids either constructively or by their boundary. It is

therefore crucial to know how a collection of curves decompose the ambient

space into a set of connected regions. These regions should be maintain-

able under boolean operations such as intersection, union or difference, and

should be representable by their boundary.

An arrangement allows to solve such problems. It is a high level algorithm

making use of both topology, intersection and self-intersection algorithms

to decompose a given collection of objects in an input space into a set of

vertices, curved edges and faces describing regions that can be intersected,

united or subtracted.

The first contribution of this thesis is a generic approach to arrangement

computation using a subdivision scheme.

The method is generic in several respects. First, it is independent of the

dimension, even though it will be specialized in dimension 2 for the com-

putation of an arrangement of curves in the plane (see chapter 5) and in

dimension 3 for the computation of an arrangement surfaces in the space

(see chapter 6). Note that the same method has been successfully applied in

4-dimensional space parameter of two parametric surfaces in an intersection

context. Second, it is heterogeneous and specialized for various represen-

tations such as implicit, parametric or piecewise-linear. Finally, it can be

85

86 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

applied either dynamically to maintain an arrangement structure under the

insertion of new objects or the deletion of existing objects, or statically,

considering a collection of objects and computing the result in a single pass.

This genericity is made possible by the flexibility of the subdivision ap-

proach.

The use of a subdivision scheme, as opposed to a sweep scheme, allows to

avoid costly projections at critical points as well as subsequent numerical

errors, by enclosing these critical parts in a region in which the configuration

can be deduced from information on its boundary.

Whatever the dimension, the type of the objects or the computation method,

the algorithm has a very good numerical behavior. First, some computations

that may require approximate tools are made only once to ensure the con-

sistency of the method. Second, the use of segmentation structures brings

necessary conditions for the conflict of regions that allow to filter the use of

algebraic solvers and reduce the algorithm complexity.

We describe the dynamic version of the algorithm but its static counterpart

can easily be derived from it. Indeed, each time an object is processed, the

same computation can be achieved considering a set of objects instead. As a

consequence, only the first section is common to the both versions whereas

the following ones only make sense in a dynamic context. The insertion

operation of the algorithm contains the parts which are not related to the

type of input objects, assuming that type related functions will be found in

a specialization of it. Inserting an object ok into a structure built for a set

Ok−1 can be handled in four phases:

• Computing regions. In this phase, regions are computed from the

topology of ok independently of other objects of Ok−1.

• Segmenting the boundary. In this phase, computed regions are equip-

ped with additional data structures to help the introduction in the current

arrangement Ak.

• Locating conflicts. In this phase, newly computed regions are checked

for conflict with regions defining the current arrangement.

• Updating regions. In this phase, conflicts are dealt with, possibly lead-

ing to new regions which are inserted in the data structure.

4.1. COMPUTING REGIONS 87

4.1 Computing regions

To match the generic framework proposed in chapter 3, we consider the

object O together with a domain D0 (generally its bounding box). In a

dynamic context, this section explains how to compute the set of regions F

defined by O in D0.

Remark 4.1: In a static context, consider that O is a set of objects and

D0 a domain enclosing the objects (or at least a part of each one of them)

in which the arrangement computation has to be handled. •

The subdivision process decomposes the initial domain into sub-domains in

such a way that the structure (or the topology) of the objects inside these

sub-domains is uniquely determined from information computed on their

boundary. For that purpose, we need to check the existence and unicity of

some characteristic points inside these domains. The method exploits, as a

main ingredient, solvers which isolate the real roots of polynomial equations

defining the objects. They enclose distinct solutions into boxes which are

disjoint one from the other. This is the only requirement that we ask to

these external solvers.

Regions defined by an object within a given domain D0 cannot be computed

directly from its representation. To be able to compute a set of regions, from

an object in a given domain, we have to ensure that we are in a configuration

where we are able to deduce its topology from information on the border of

the bounding domain.

When an object is not in one of these configurations, it is subdivided into

smaller parts. This process is iterated until one of these configurations is

detected. An object in such a configuration is said to be regular. The

subdivision is then driven by a regularity test.

There is a strong link between determining whether a cell has been sub-

divided enough and computing the regions defined by the object within

the cell. These two type-related functionalities being dependent one from

another, they are left for the specialization of an algorithm computing an

arrangement of objects of type t. There is however a generic procedure to

get the set of regions defined by an object in a given domain.

88 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

To each object, we associate a hierarchical structure (a 2d-tree where d is

the dimension of the input objects, e.g. , a quadtree when D0 is planar, an

octree when D0 is spatial etc) used to keep track of the subdivision process

which allows to deduce regions. The root of the tree stores the domain D0.

A list of cells is initialized with the root node. While this list is not empty,

we check its first element for regularity: if O is deemed regular in the cell,

regions are computed from its topology within the cell and stored in the

corresponding node of the tree. Else, the cell is subdivided into 2d children

which are appended to the list of cells to be checked for regularity and the

tree is updated accordingly.

Once all cells have been processed, the leaves of the tree contain sub-regions

whose union constitutes the regions defined by O. To compute this union,

these regions are merged traversing the tree from its leaves to its root in a

process called fusion. The subdivision algorithm, summarized in algorithm

4.1 ends up with the root node representing the input domain D0 containing

the regions determined by O.

Algorithm 4.1: A generic subdivision algorithm.

Input: an object O and a box D0 ⊂ Rn.

Output: a list of regions defined by O.

Create a tree Q and set its root to D0;

Create a list of cells L and initialize it with [D0];

while L 6= ∅ do
c = pop(L) ;

if regular(O, c) then
Q ← topology(O, c) ;

else
L ← subdivide(O, c) ;

end

end

return fusion(Q) ;

The following operations remain to be clarified:

regularity: the specific operation which checks if regions can be computed

from an object within a cell of the subdivision, i.e. if the object is regular

in the cell.

4.1. COMPUTING REGIONS 89

Figure 4.1: Regular cells in the plane.

subdivide: the generic operation which subdivides a cell applying dynamic

programming to save computation effort.

topology: the specific operation which computes regions in a regular cell.

fusion: the generic operation which merges regions stored in each node of

the tree.

4.1.1 Regularity

The regularity test allows to determine if regions can be computed in a cell

from information on its boundary. It is a representation dependent operation

and therefore provided in one specialization of this generic algorithm.

Example 4.1: To illustrate how the regularity test behaves, let us consider

the configurations, shown in figure 4.1, in which the object is said to be

regular, in a specialization of this generic algorithm to the case of curves.

The first case is the easiest configuration in which, the region is the whole

cell. The regularity test just ensures that O does not intersects the cell.

The second case is a cell in which the curve has no x-critical (or no y-critical)

point. In this case, the object is deemed regular and the topology of the

curve inside the cell is uniquely determined from its intersection with the

boundary. The connecting algorithm used to get the curve segments from

points on the border of the cell will be described e.g. in section 5.1. The set

of the regions defined by the curve is obtained from its topology as shown

later.

90 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

Figure 4.2: Subdivision result in the plane.

In the last case, all the branches of the object are intersecting at a unique

(singular) point of the cell, in a star-shaped configuration. This case implies

to be able to compute the number of branches stemming out from a self-

intersection point so that the regularity test ensures that no other curve

segment intersects the cell. Again, see e.g. section 5.1 for an algorithm to

test such a configuration and connect singular regions.

Figure 4.2 shows the result of the subdivision driven by a simple regularity

criterion which accepts empty cells or cells containing at most one monotonic

curve segment in both directions. �

Testing an object in a cell for regularity involves many interrogation on the

curves such as computing their critical points or their intersection with a

cell of subdivision. These operations will be supplied in a specialization of

the generic subdivision arrangement algorithm using only the subdivision

solvers defined in chapter 1.

Remark 4.2: This strategy of subdivision can be enriched to deal with

some degenerated cases such as intersection points of more than 2 curves in

4.1. COMPUTING REGIONS 91

a static context. It can also be optimized by requiring a limited number of

active objects or of branches of these objects in the cell. If for instance, we

require at most one branch per cell, the region computation will be simplified

but the depth of the subdivision might increase, depending of the geometric

configuration. •

Remark 4.3: Even though the regularity criteria are evoked in the case of

curves, the method naturally extends to higher dimension (3 or more), as

sketched in chapter 6. •

4.1.2 Subdivision

When a cell is not deemed regular, it is subdivided into smaller parts, gener-

ally more likely to be regular. When we subdivide the cell, we compute the

intersection of the active objects in the cell (one object in a dynamic con-

figuration, several objects in a static configuration) with the new boundary

and update the geometric information attached to the cell such as points of

interest on the border or inside the cell.

Example 4.2: As an example, a planar subdivision cell is defined by its co-

ordinates (minimums and maximums in each direction), a list of intersection

points of the objects that it contains with its border, a list of critical points

(e.g. critical points or singularities of implicit curves) computed for the ob-

jects that it contains and a list of intersection points between the objects

that it contains. When a cell is subdivided, this information is inherited to

its children, simply by locating the corresponding vertices in child cells. �

The subdivision reducing the size of a cell, already computed points will

be found in child cells and can therefore be distributed during the subdivi-

sion. We call this process vertical inheritance, since points of interest are

distributed from a parent, to its children, in a tree hierarchy of cells. This

inheritance is processed by locating the points in the children.

Another way to save computation effort is to consider adjacency relation-

ships between child cells. Indeed, once a cell has been checked for regularity,

generated points on the border of the cells can be inherited to its neighbor-

hood. This process takes place inside one level of the hierarchical tree, from

92 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

!"#$%&'('#')*"+,--"

'*"."/$.&01,, !""2,10'+.-"'*3,1'0.*+, #""4)1'5)*0.-"'*3,1'0.*+,

Figure 4.3: Inheritance of information in the plane.

a sibling to another, it is therefore called horizontal inheritance.

Remark 4.4: Things behave the same way when subdividing in higher

space, except additional levels of inheritance are to be considered. In three

dimensions for example, points of interest inside the box and points com-

puted on the edges of the boxes are inherited following as well as intersection

curves on each facet of the box. •

Remark 4.5: Beyond the performance profit, this inheritance ensures the

information shared by different cells to be consistent, especially if solvers

used to compute the intersections of an object with a cell are approximate,

as it may be the case when using subdivision solvers. •

4.1.3 Topology

The construction of regions is based on a connection algorithm, which gen-

eral idea is illustrated in figure 4.4 for the case of curves. Regions are

constructed while turning around the border of the cell and connecting in-

tersection points of the curve with the border of the cell together in loops.

The orientation is a paramount aspect chosen so that a face lies on the left

of an edge, turning around the cell is then performed in counterclockwise

4.1. COMPUTING REGIONS 93

f1

f2

f1

f2

Figure 4.4: Generic scheme to compute a region from information on the
border of a subdivision cell.

order.

It is even more easy in the case of a star-shaped curve, since each intersection

point of the object and the boundary of the cell is connected together with

the singular point lying in the cell. This requires to check whether the

number of branches stemming out from a singular point strictly corresponds

to the number of intersection of the curve with the border of the cell. This

test is provided in a specialization of the algorithm (e.g. 5.1).

4.1.4 Fusion

At the end of the subdivision process, a tree contains regions computed in

regular cells in its leave nodes, internal nodes keep track of the subdivision

structure. To get the set of regions defined by one object, or by a set of

objects, omitting the subdivision process which locally ensures a correct

topology in regular cells, these small local regions have to be merged to get

global regions. To do so, we traverse the tree from its leaves to its root,

merging the regions inside a level of the tree and across levels, in a process

called fusion.

To take care of being consistent regarding adjacency relationships children

94 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

f1

f2 f3

f4

v1

v2 v3

v4 v5

v6

v1

v2

v5

v6

f2 ∪ f3

f1 ∪ f4

v3

v4

Figure 4.5: Fusion of regions.

nodes of an internal node are merged in the order illustrated in figure 4.6:

the two cells located in top nodes, the two cells located in bottom nodes

and the resulting top cell together with the resulting bottom cell. Regions

determined in the corresponding cells are merged together, resulting in a

new set of regions which are the unions of adjacent regions as shown in

figure 4.5.

This algorithm brings local regions determined in regular cells associated to

leave nodes, up to the root, computing their union if they are adjacent across

the levels of the tree. The root node finally contains regions determined by

the object or the set of objects for which the subdivision process has been

initiated.

Once these regions have been computed, they are inserted in the augmented

influence graph, the data structure used to represent the decomposition of

the space (see definition in section 3.1.2).

!"#$%&'()$!"#$%&*+)$

,"-$%&'()$,"-$%&*+)$

!"&."#/0"1$+2&3(#4/14

!"#$%

,"-$%

#"&5(#$/6+2&3(#4/14

Figure 4.6: Merging schema.

4.2. SEGMENTING THE BOUNDARY OF A REGION 95

4.2 Segmenting the boundary of a region

The previous subdivision scheme assures the transition from the represen-

tation of an object to its geometry, producing regions, either considering

objects one by one (in a static context) or all together (in a dynamic con-

text).

This section focuses on defining in great details the structure of a region and

associated data structures used to facilitate the manipulation of regions.

A region is traditionally defined by a set of elements of incremental dimen-

sions regarding the one of the input space: vertices, edges, faces and so on

with adjacency relationships. When computing an arrangement of algebraic

curves for example, regions are faces which edges are curved segment keep-

ing their continuous representation, the vertices being some markers that

help to somehow provide a discretization of these continuous objects.

The set of vertices of an arrangement is mainly defined by intersection op-

erations on the input objects. In some cases, stronger conditions on the

edges can be assumed such as a monotony requirement. In this case, consid-

ering critical points for both directions as vertices will turn the edges into

monotone ones. Also, some objects may have a representation which can

induce degenerate points such as isolated or self-intersection points, usually

referred to as singularities, that, if considered as vertices, will provide a

better accuracy in the description of regions and a certified topology.

This data structure can be enriched to enhance further operations in the

case of a dynamic arrangement algorithm which maintains its solution under

insertion or removal of objects, for which conflict detection is a paramount

operation which needs to be performed efficiently.

Finding all the regions that conflict with a new object is a frequent operation

in the arrangement computation so we need to pay special attention to its

complexity. Indeed, a naive tree traversal of the augmented influence graph

Ia where each region (stored in a node) is checked for intersection with the

regions (stored in newly created nodes) to be inserted would lead to a O(p2)

complexity, where p is the number of nodes in Ia. To efficiently find out

the set of regions of Ia which conflict with regions created by ok we build a

structure called the region segmentation.

96 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

!

"
#

$

%
&

'

(

)

!

"

#

$ %
& '

(

)

! " # $ % & ' ()

Figure 4.7: Building the region segmentation.

A region segmentation is a balanced tree data structure in which each node

has two children (internal nodes), or none (leaves). Leaf nodes contain the

edges defining the boundary of the region as well as their bounding boxes,

and internal nodes are associated to the union of the boxes of their children.

This way, the root of the tree defining the segmentation is associated to a

domain of influence, a subset of the bounding box from which the region

has been computed, containing the whole region.

For more efficiency when querying the tree, we propose a simple procedure

to build a balanced tree from the list of edges defining a region. As shown in

figure 4.7, to build the segmentation, the list of edges is “flattened”, ordered

and traversed to build the tree. First, a node is created for each edge and

the bounding box of the edge is associated to it, yielding a list of nodes.

Second, this list is traversed to build the tree. Since we want the tree to

be balanced, the traversal is performed from left to right at step k, then

from right to left at step k + 1. Each time a couple of nodes is found in

4.3. LOCATING CONFLICTS 97

the list, we create a node containing the union of their bounding boxes and

re-parent the couple of nodes to it, until no more nodes exist in the list.

This structure leads to an efficient algorithm to check whether two regions

conflict together and helps dealing with them.

4.3 Locating conflicts

Once regions have been processed to build the segmentation, it is very easy

to find out whether two regions are intersecting, whatever the type of objects

defining their edges.

To get the list of conflicting zones, we simply compare the segmentations of

the regions stored in the nodes of the augmented influence graph with the

segmentation of the region currently inserted.

Algorithm 4.2: Querying region segmentations for conflict.

Input: two segmentation nodes n1 and n2

Output: a list L of conflict zones

if !intersects(n1, n2) then
return L ;

end

if isLeaf(n1) and isLeaf(n2) then
L ≪ pair(n1, n2) ;

else if isLeaf(n1) and !isLeaf(n2) then
L ≪ query(n1, left(n2)) ;

L ≪ query(n1, right(n2)) ;

else if !isLeaf(n1) and isLeaf(n2) then
L ≪ query(left(n1), n2) ;

L ≪ query(right(n1), n2) ;

else
L ≪ query(left(n1), left(n2)) ;

L ≪ query(left(n1), right(n2)) ;

L ≪ query(right(n1), left(n2)) ;

L ≪ query(right(n1), right(n2)) ;
return L ;

To do so, we “intersect” the respective segmentations associated to two re-

gions, that is, beginning with the roots, we check the nodes and recursively

98 CHAPTER 4. A GENERIC ARRANGEMENT ALGORITHM

proceed to their children as long as their associated boxes do intersect. If two

bounding boxes associated to leave nodes (containing the edges) do intersect,

the algorithm 4.2, provides a list of conflict zones, in which actual intersec-

tion points can be computed using representation specific procedures.

If the resulting list is not empty, the intersection of the curve segments are

computed using type specific intersection methods according to the type of

the objects defining the edges in question. If several intersection points are

found, we refine the boundary segmentations in order to have at most one

intersection per box.

If the resulting list of pairs of intersecting boxes is empty and if there is no

inclusion of a region in the other, there is no conflict and the region can

be inserted into Ia. The inclusion test simply consists in locating one point

of the region to be inserted. If the latter falls inside the other region, and

since we already know there is no intersection of edges, we can conclude

that the inserted region lies inside the other one. It is then inserted in the

graph as a child node of the one representing the other region. To locate

a point in a region, we only have to count the number of intersections of a

half-line stemming out from the point in an arbitrary direction. The point

is inside the region if this number of intersections is odd, the point is outside

the region otherwise. The intersection test can be carried out in a reduced

complexity using the region segmentation. Indeed, we only test the half-line

for intersection with an edge of the region if the latter intersects its bounding

box from the segmentation.

This query on the respective segmentations of two regions provides an ef-

ficient test to check regions for intersection and does not require any extra

algebraic computation.

4.4 Updating regions

This section addresses the problem of resolving conflicts between regions.

This resolution consists in dividing conflicting regions in a set of regions

which union covers the conflicting regions. This set of regions is consti-

tuted of the intersection of conflicting regions and of the difference of this

intersection with original regions.

4.4. UPDATING REGIONS 99

f1

f2

(a) Computing navigation information.

f1

f2

f1 ∩ f2

(b) Walk-about border of regions.

Figure 4.8: A generic boolean operation.

When two nodes of the region segmentations do intersect, a conflict is de-

tected, yielding a conflict zone (or box). The intersection of the conflicting

regions is computed in three phases. First, intersection points between re-

gions are computed in the conflict box. Second, navigation information are

computed for each intersection point, as in [111] (see figure 4.9a). Finally,

a walkabout from an intersection point to another along the edges of the

intersecting regions is performed to construct the intersection (figure 4.9b).

Computing navigation information for each intersection point consists in

examining intersections of the edges with the conflict box, to know which

edge to follow from an intersection point to another during the walkabout.

To do so, we compute intersection points of each edge of each region (which

are oriented counter-clockwise for their outside border and clockwise for

their inside border if holes exist) with the bounding box.

When computing the intersection of regions, the walkabout proceeds along

the edge whose intersection point with the box is to the left of the other,

considering the orientation of edges. This can be easily obtained by sorting

intersection points on the boundary of the conflict box, see figure 4.9a and

4.9b.

The resulting intersection regions are segmented and then inserted in the

augmented influence graph as a child node of the regions from which they

have been computed.

Chapter 5

Specialization for curves

In chapter 4, we have presented a generic algorithm. Generic means that

its overall behavior will always be the same, assuming some functionalities.

The algorithm therefore provides an abstraction of representation related

functions. A generic algorithm can never be used out of the box, without

providing these specific functionalities, it has to be specialized.

To deal with the global problem, the generic arrangement algorithm pro-

duces easier local problems. This chapter shows how these local problems

are chosen by providing a specific regularity test which drives the generic

subdivision process and how they are dealt with by providing a specific

topology computation to compute local regions in these regular cells.

We emphasize that the output topology and arrangement are guaranteed to

be correct. Although, in section 5.1, we focus on the implicit case which

requires special attention, the specialization is also provided for parametric

curves in section 5.2 or piecewise linear curves in section 5.4 without much

additional work and no theoretical difficulties.

For each type of curve, we first provide a regularity test, that is, we want

to determine whether the topology of a curve C can be computed inside

an arbitrary rectangular domain D provided by the generic arrangement

algorithm. The method isolates singular points from regular parts and deals

with them independently. In the case of an implicit curve, the topology near

singular points is guaranteed through topological degree computation. In

101

102 CHAPTER 5. SPECIALIZATION FOR CURVES

either case the topology inside regions is recovered from information on the

boundary of a cell of the subdivision.

For each kind of domain, we also provide a connection algorithm that com-

putes a piecewise approximation of the curve inside simple domains of that

type.

In order to ensure the generic arrangement algorithm to be able to recon-

struct the global topology in D0 from which D is originating, we have to

ensure that the approximations on the Di agree on the boundaries. Our

connections algorithms have this property at no extra cost.

Finally, we provide intersection techniques needed to compute boolean op-

erations on resulting regions in the framework of our dynamic arrangement

algorithm.

5.1 Implicit curves

This section shows how the topology computation of an implicit curve is

used in order to get an arrangement of a set of such objects.

The implicit curves we manipulate are defined by squarefree polynomials in

Q[x, y]. For f ∈ Q[x, y], Z(f) = {(x, y) ∈ R2|f(x, y) = 0} will denote its

zero set. But when we deal with a single curve, we will just refer to it as C

and to its equation as f . The rectangular domain in which we carry out all

our computations is denoted by D := [a, b]× [c, d] ⊂ R2.

We use enveloping techniques, which allows us to compute with fixed preci-

sion numbers. To analyze the curve C defined by the polynomial f ∈ Q[x, y]

on a domain D = I × J , we convert f to the Bernstein basis on the domain

D using exact arithmetic:

f(x, y) =
∑

i,j

γi,j Bi
dx

(x; I) Bj
dy

(y;J) (5.1)

we round up and down to the nearest machine precision number:

γi,j ≤ γi,j ≤ γi,j (5.2)

5.1. IMPLICIT CURVES 103

so that, on D we have:

f(x, y) ≤ f(x, y) ≤ f(x, y) (5.3)

The set of singular points of C is denoted S := {(x, y) ∈ R2|f(x, y) =

∂xf(x, y) = ∂yf(x, y) = 0}.

The set of critical or extremal points of f is denoted Ze(f) := {(x, y) ∈

R2|∂xf(x, y) = ∂yf(x, y) = 0}.

We recall that a tangent to the curve C is a line, which intersects C with

multiplicity ≥ 2. In particular, any line through a singular point of C is

tangent to C.

For a subset S ⊂ R2, we denote by
◦
S its interior, by S its closure, and by

∂S its boundary . We call domain any closed set D such that
◦
D = D and

D is simply connected. We call region any open set R which is a connected

component of the complement of an algebraic curve.

We call branch (relative to a domain D), any smooth closed segment whose

endpoints are on ∂D.

We call half branch at a point p ∈
◦
D or half branch originating from p ∈

◦
D,

any smooth closed segment which has one endpoint on ∂D and whose other

endpoint is p.

We call loop, any smooth closed curve which does not intersect ∂D.

We distinguish three different types of simple domains: x-regular domains,

y-regular domains and simply singular domains.

Definition 5.1: A domain D is x-regular (resp. y-regular) for C if C is

smooth in D and it has no vertical (resp. horizontal) tangents. This is

algebraically formulated as the following condition: Z(f, ∂yf)∩D = ∅ (resp.

Z(f, ∂xf) ∩ D = ∅).

We might equivalently say that the curve C is x-regular (resp. y-regular) in

D instead of saying that D is x-regular (resp. y-regular) for C.

Remark 5.1: Pay attention to the fact that x-regularity is a condition on

104 CHAPTER 5. SPECIALIZATION FOR CURVES

the partial derivative along y. It ensures that the orthogonal projection on

the x-axis is locally surjective. The same remark applies to y regularity. •

Finally we say for short that a curve is regular in D, or equivalently that D

is regular for C if C is x-regular or y-regular in D.

Definition 5.2: A domain D is simply singular for C if S ∩ D = {p} and

if the number n of half branches of C at the singular point p is equal to

♯(∂D ∩ C), the number of points of C on the boundary of D.

5.1.1 Regularity

The regularity test ensures the generic algorithm that regions can be com-

puted in a cell of subdivision from the topology of the object(s) inside the

cell. We distinguish the case of non singular (simply regular) domains and

the one of singular domains.

5.1.1.1 Regular domains

We are going to show that if C is x-regular in D, then its topology can

be deduced from its intersection with the boundary ∂D. By symmetry the

same applies when C is y-regular.

We only require ∂D∩C to be 0-dimensional. This is a very mild requirement

that can be easily taken care of when choosing a partition of the initial

domain.

Remark 5.2: This is well defined because we required that ∂yf does not

vanish at any point of C in D. •

Definition 5.3: For a point p ∈ C ∩ ∂D, and for a sufficiently small neigh-

borhood U of p, by the implicit function theorem, C is a function graph over

the x-axis because ∂yf(p) 6= 0. We define the local right branch at p relative

to U as the portion of C in the half plane x > xp. We define the local left

branch at p relative to U as the portion of C in the half plane x < xp.

Definition 5.4: For a point p ∈ C ∩ ∂D, we define its x-index.

5.1. IMPLICIT CURVES 105

+

+

+

+

−

−

−

−

+−

−+

Figure 5.1: x-indexes of an x-regular domain.

+ if C enters D locally: there exists a local left (resp. right) tangent lying

outside (resp. inside) D.

- if C exits D locally: there exists a local left (resp. right) tangent lying

inside (resp. outside) D.

+- if C is tangent to D and does not enter it locally: C − {p} locally lies

outside C.

-+ if C is tangent to D and does not exit it locally: C ⊂ D.

Remark 5.3: This is well defined because if there exists a local left (resp.

right) tangent lying outside (resp. inside) D, then there cannot exist a local

left (resp. right) tangent lying inside (resp. outside) D. Moreover, we

necessarily fall into one of these cases because ∂D ∩ C is 0-dimensional. •

These conditions can be effectively tested using the sign sy of ∂yf , the order

k of the first x derivative of f that does not vanish, and the sign sx of ∂k
xf .

k is well defined because if all these partial derivatives were 0, the whole

horizontal line would be included in C which would mean C ∩ ∂D is not

0-dimensional.

Remark 5.4: As C is assumed x-regular (with no vertical tangent) in D =

[a, b] × [c, d] we can immediately see that if p ∈](a, c), (a, d)[, we have x-

index(p) = +. And if p ∈](b, c), (b, d)[, its x-index is −. •

106 CHAPTER 5. SPECIALIZATION FOR CURVES

In the following the points with double index (+- or -+) are considered as

double points, one with “smaller x component” than the other (although

they correspond to a single point that has only one x component). The one

with smaller x component gets the left part of the double index, and the

one to its right (bigger x component) gets the right part.

Lemma 5.1: If C is x-regular in D, then a branch of C ∩D connects a point

p of x-index + to a point q of x-index −, such that xp < xq. ♦

Proof 5.1: As the curve is x-regular, it has no vertical tangent and thus no

closed loop in D. Consequently, each of the interior connected components

of C ∩ D intersects ∂D in two distinct points p, q ∈ C ∩ ∂D (with xp ≤ xq).

Assume that the x-index of p, q are the same. Suppose that this index is +.

Then for an analytic parameterization s ∈ [0, 1] 7→ (x(s), y(s)) of the branch

[p, q] with (x(0), y(0)) = p, (x(1), y(1)) = q, we have ∂sx(0) > 0, ∂sx(1) < 0.

This implies that for a value 0 < s0 < 1, x(s0) > x(1) = xq ≥ x(0) = xp and

that there exists s′0 ∈]0, 1[such that x(s′0) = x(1). We deduce that ∂sx(s)

vanishes in [0, 1] and that the branch [p, q] of C has a vertical tangent, which

is excluded by hypothesis. If the index of p and q is −, we exchange the role

of p and q and obtain the same contradiction. As ∂sx(s) > 0 for s ∈ [0, 1],

we have xp < xq, which proves the lemma. �

Lemma 5.2: Suppose that C is x-regular in D and let p, q be two consecu-

tive points of C ∩∂D with: q such that xq is minimal among the points with

x-index= −, and xp < xq, then p, q belong to the same branch of C ∩ D. ♦

Proof 5.2: Suppose that p and q are not on the same branch. Let p′ the

other endpoint of the branch going to q. Let q′ this other endpoint of the

branch starting from p. By lemma 5.1, x-index(p′) = + and xp′ < xq. By

that same lemma, x-index(q′) = − and xp < xq′ .

The branch (p′, q) separates D in two connected components. We call Cr

the one whose boundary Br = ∂Cr contains the point p.

Because (p′, q) and (p, q′) do not intersect, p and q′ are in the same connected

component of D − (p′, q) and in Br.

Consider the sub-boundary {x ≥ xq}∩Br. It must be connected. Otherwise

the branch (p′, q) would intersect x = xq in two distinct points and the curve

5.1. IMPLICIT CURVES 107

would have a x-critical point in between. We denote by (q, q̃), the endpoints

of {x ≥ xq} ∩ Br (possibly with q = q̃). We decompose Br as the union of

arcs Br = (p′, q) ∪ (q, q̃) ∪ (q̃, p′) with (q, q̃) ⊂ ∂D, (q̃, p′) ⊂ ∂D.

By minimality of xq, we have xq′ ≥ xq so that q′ ∈ {x ≥ xq} ∩ Br = (q, q̃).

Because xp < xq and p ∈ ∂D, we have p ∈ (q̃, p′).

This proves that p is in-between p′ and q′ and q′ in-between p and q on ∂D.

Therefore, p and q cannot be consecutive points of C on ∂D. By way of

contradiction, we conclude that p and q must be on the same branch of C.�

Proposition 5.1: Let C = Z(f). If D is a x-regular domain, the topology

of C in D is uniquely determined by its intersection C∩∂D with the boundary

of D.

Proof 5.3: We prove the proposition by induction on the number N(C)

of points on C ∩ ∂D. We denote this set of points by L. Since the curve

has no vertical tangent in D and has no closed loop, each of the connected

components of C∩
◦
D have exactly two distinct endpoints on ∂D. Thus if

N(C) = 0, then there is no branch of C in D. Assume now that N(C) > 0,

and let us find two consecutive points p, q of L with x-index(p) = +, x-

index(q) = −, xp < xq and xq minimal. By lemma 5.2, the points p, q are

the endpoints of the branch of C. Removing this branch from C, we obtain

a new curve C′ which is still x-regular and such that N(C′) < N(C). We

conclude by induction hypothesis, that the topology of C′ and thus of C is

uniquely determined. �

Proposition 5.2: If C has at most one x-critical or y-critical point ∈ D,

which is also smooth, then its topology in D is uniquely determined by its

intersection with the boundary of D.

Proof 5.4: Suppose C has at most one x-critical point in D, which is

smooth, then the curve is smooth in D and has no closed loop inside D

(otherwise the number of x-critical points would be at least 2). Therefore,

the branches are intersecting ∂D in two points. If there is no x-critical

point on a branch, by Lemma 5.1 their x-index ∈ {−,+} are distinct. If

the branch has a x-critical point of even multiplicity, then the x-index of

the end-points of the branch in C are the same. If there are only two points

108 CHAPTER 5. SPECIALIZATION FOR CURVES

of C on ∂D, then this branch is connecting the two points. As the curve

is smooth, the branches are not intersecting. If there are more points, and

thus more than 2 branches, the branch with the even x-critical point is sep-

arating the set of branches into two disjoints subsets of branches with no

x-critical points. Changing the orientation of the x-axis if necessary, we can

find consecutive points p, q on ∂D which satisfies the hypothesis of lemma

5.2. By this lemma, they are necessarily on the same branch of one of these

two subsets. Removing this branch from C and processing recursively in

this way, we end up either with no point on ∂D or two points on ∂D with

the same x-index. These points are necessarily connected by the branch

containing the x-critical point of C in D. �

5.1.1.2 Singular domains

Let us now deal with simple singular domains. We will assume here that D

contains a unique critical point p of f and that the curve passes through it

(i.e. it is a singular point of C).

We explain how using topological degree, [76] one can count the number of

half branches of C at p and check if it is the same as the number of points

in ∂D ∩ C.

Topological Degree. We recall the definition of the topological degree in

two dimensions and how it can be computed. See [76, 98] for more details.

Let D be a bounded open domain of R2 and F = (f1, f2) : D → R2 a

bivariate function which is two times continuously differentiable in D.

A point p ∈ R2 is said to be a regular value of F on D if the roots of

the equation F (x, y) = p in D are simple roots, i.e. the determinant of the

Jacobian JF of F at these roots is nonzero) where the Jacobian matrix of

Fn = (f1, . . . , fn) ∈ R2 in x ∈ D is

JFn = ∇Fn(x) =

(

∂fi

∂xj
(x)

)

i = 1, . . . , n

j = 1, . . . , n

(5.4)

Definition 5.5 (Topological degree): Let p ∈ R2 and suppose further

that the roots of the equation F (x, y) = p, are not located on the boundary

5.1. IMPLICIT CURVES 109

∂D. The topological degree of F at p relative to D, denoted by deg[F,D, p],

is defined by

deg[F,D, p] =
∑

x∈D:F (x)=p

sign (det(JF (x)))

for p a regular value of F on D in the connected component of R2 − F (∂D)

containing p. If p is not regular, deg[F,D, p] is defined as the limit of

deg[F,D, pǫ] when pǫ → p.

It can be proved that this construction does not depend on the regular value

q in the same connected component of R2−F (∂D) as p [76]. If p is a regular

value of F on D, we can take q = p.

Remark 5.5: The topological degree has a geometric interpretation known

as the degree of the “Gauss map”. It is the number of times F (p) goes

around F (D) when p goes around D one time. And it is negative when F

reverses the orientation of D. The red arrows in fig. 5.2 picture the F (p) on

the boundary. This viewpoint allows to use the strong geometric intuition

behind the gradient field when F is the gradient map of f . •

Let us now give a more explicit formula for computing this topological de-

gree, which involves only information on the boundary of D.

Proposition 5.3: [98] Assume here that the boundary D is a polygon and

that it is decomposed in reverse clock-wise order into the union of segments

∂D = ∪g
i=1[pi, pi+1], pg+1 = p1,

in such a way that one of the component fσi
(σi ∈ {1, 2}) of F = (f1, f2)

has a constant sign (6= 0) on [pi, pi+1]. Then, for p a regular value:

deg[F,D, p] =
1

8

g
∑

i=1

(−1)σi−1

∣

∣

∣

∣

∣

sign(fσi
(pi)) sign(fσi

(pi+1))

sign(fσi+1(pi)) sign(fσi+1(pi+1))

∣

∣

∣

∣

∣

(5.5)

where f1 = f3 and sign(x) denotes the sign of x.

Thus in order to compute the topological degree of F on a domain D bounded

110 CHAPTER 5. SPECIALIZATION FOR CURVES

p1

p2

p3

p4 p5

p6

p7

p8p9

fy = 0

fx = 0

Figure 5.2: Computing the topological degree.

by a polygon, we need to separate the roots of f1 from the roots of f2 on

∂D by points p1, . . . , pg+1 at which we compute the sign of f1 and f2. This

will be performed on each segment of the boundary of D, by a univariate

root isolation method working simultaneously on f1 and f2.

Figure 5.2 shows a sequence of points p1, . . . , p9, which decomposes ∂D

into segments on which one of the two functions (f1 = 0 and f2 = 0 are

represented by the plain and dash curves) has a constant sign. Computing

the sign of these functions and applying formula (5.5) yields the topological

degree of F = (f1, f2) on D at p.

Counting the number of branches. Let us consider a curve C in a

domain D ⊂ R2, defined by the equation f(x, y) = 0 with f(x, y) ∈ R[x, y].

Let ∇f = (∂xf, ∂yf) be the gradient of f . A point p ∈ C is singular if

∇f(p) = 0. We define a real half branch of C at p, as a connected component

of C − {p} ∩ D(p, ǫ) for ǫ > 0 small enough.

The topological degree of ∇f can be used to count the number of half

branches at a singular point, based on the following theorem:

Theorem 5.1: (Khimshiashvili [8, 72, 99]) Suppose that p is the only

root of ∇f = 0 in D. Then the number N of real half branches at p of the

5.1. IMPLICIT CURVES 111

curve defined by f(x, y) = f(p) is

N = 2 (1− deg[∇f,D, p]). (5.6)

We will denote by N(f,D) the number given by formula (5.6).

In order to count the number of branches of C at a singular point p ∈ C, first

we isolate the singular point p in a domain D, so that ∇f does not vanishes

elsewhere in D. Then we compute the topological degree deg[∇f,D, p], as

described previously, by isolating the roots of ∂xf and ∂yf on ∂D.

Let us describe now the algorithm used to compute the topological degree

of ∇f in a domain D = [a, b] × [c, d]. According to formula (5.5), this

reduces to separating the roots of ∂xf ∂yf on the boundary of D, which

consists in 2 horizontal and vertical segments. The problem can thus be

transformed into isolating the roots of univariate polynomials on a given

interval. Hereafter, these polynomials will be called g1(t), g2(t) and the

interval [u, v] ⊂ R. For instance, one of the 4 cases to consider will be

g1(t) = ∂xf(t, c), g2(t) = ∂yf(t, c), u = a, v = b. We recall briefly the

subdivision method described in [46, 82, 86] and section 1.2.2, which can

be used for this purpose. First we express our polynomials g1(t), g2(t) of

degree d1, d2 in the Bernstein bases (Bi
dk

(t;u, v))i=0,...,dk
(k = 1, 2), on the

interval [u, v]:

gk =

dk
∑

i=0

λk,i B
i
dk

(t;u, v), k = 1, 2,

where Bi
d(t;u, v) =

(

d
i

)

(t−u)i(v−t)d(v−u)−d. The number of sign variations

of the sequence λk = [λk,0, . . . , λk,dk
] (k = 1, 2) is denoted V (gk; [u, v]). By

a variant of Descartes rule [12], it bounds the number of roots of gk on the

interval [u, v] and is equal modulo 2 to it. Thus if V (gk; [u, v]) = 0, gk has no

root in the interval [u, v], if V (gk; [u, v]) = 1, gk has exactly one root in the

interval [u, v]. This is the main ingredient of the algorithm [46], which splits

the interval using de Casteljau subdivision algorithm [48] if V (gk; [u, v]) > 1;

stores the interval if V (gk; [u, v]) = 1 and removes it otherwise. It iterates

the process on each sub-intervals until the number of sign variation is 0 or

1. The complexity analysis of the algorithm is described in [46]. See also

[36].

112 CHAPTER 5. SPECIALIZATION FOR CURVES

In our case, we need to compute intervals on which one of the polynomial

g1 or g2 has a constant sign. Thus we replace the subdivision test by the

following: if V (g1; [u, v]) = 0 or V (g2; [u, v]) = 0, we store the interval

[u, v]; otherwise we split it and compute the Bernstein representation of gk

(k = 1, 2) on the two sub-intervals using De Casteljau algorithm and repeat

the process.

This yields the following algorithm for computing the topological degree of

∇f = (f1(x, y), f2(x, y)) on D:

Algorithm 5.1: Topological degree of (f1, f2).

Input: a polynomial f(x, y) ∈ Q[x, y] and a domain D = [a, b]× [c, d]
Output: N the topological degree of ∇f on D at (0, 0)
B := {} (a circular list representing the boundary ∂D) ;
foreach side segment I of the box D do

Compute the restriction g1(t) (resp. g2(t)) of f1 (resp. f2) on this side
segment I and its representation in the corresponding Bernstein basis ;
L := {I};
while L 6= ∅ do

pop up an interval [p, q] from L ;
if V (g1; p, q) = 0 or V (g2; p, q) = 0 then
B ← clockwise(p, q) ;

else
L ← split([p, q]) ;

end

end

end
Compute N given by formula (5.5) for the points in the circular list B ;

If we assume that ∂xf and ∂yf have no common root on the boundary of D,

it can be proved (by the same arguments as those used in [12, 46, 82]) that

this algorithm terminates and outputs a sequence of intervals on which one

of the functions g1, g2 has no sign variation. The complexity analysis of this

method is described in [86]. This analysis can be improved by exploiting

the recent results in [46].

5.1.2 Topology

The regularity test ensures that we are able to locally compute the topology

of a curve within a given domain. The way of computing this topology

5.1. IMPLICIT CURVES 113

comes together with the regularity test. Again, we distinguish the singular

and non singular configurations of a curve inside a subdivision cell.

5.1.2.1 Regular domains

Propositions 5.1 and 5.2 lead to the following algorithm to connect points

on the boundary ∂D:

Algorithm 5.2: Connection for a regular domain.

Input: an algebraic curve C and a domain D = [a, b]× [c, d] ⊂ R2 such

that C has no vertical tangent in D

Output: the set B of branches of C in D

Isolate the points C ∩ ∂D and compute their x-index ;

Order the points of C ∩ ∂D with non-zero x-indexes clockwise and store

them in the circular list L ;

while L 6= ∅ do
Choose q such that xq is minimal in L with x-index − ;

Take the point p that follows or precedes q in L such that xp < xq

(thus x-index(p) = +) ;

B ← b = [p, q] ;

L = L \ p ;

L = L \ q ;

end

Notice that a sufficient condition for the x (resp. y) regularity of f in a

domain D is that the coefficients of ∂y (resp. ∂xf) in the Bernstein basis on

D are all > 0 or < 0. In this case the connection algorithm can be simplified

even further. See [3] for more details.

5.1.2.2 Singular domains

Finally we prove that the topology in a simple singular domain D is conic

and write a connection algorithm for theses domains.

Let A ⊂ Rn and p ∈ Rn. We call cone over A with center p the set p ⋆ A :=
⋃

q∈A[p, q].

114 CHAPTER 5. SPECIALIZATION FOR CURVES

Proposition 5.4: Let D be a convex, simply singular domain, i.e. D is

convex such that there is a unique singular point s and no other critical

point of f in D, and such that the number of half branches of C at s is

♯(∂D∩C). Then the topology of D is conic, i.e. for any point p in the inside

D, Z(f) ∩ D can be deformed into p ⋆ (∂D ∩ C).

Proof 5.5: s is the unique critical point of f in D. If the endpoint of a

half branch at s is not on ∂D, the half branch has to be a closed loop inside

D. In that case, f would be extremal at some point p (6= s) inside the

loop, and p would be another critical point of f inside D. Thus, by way of

contradiction, the endpoints of half branches at s have to be on ∂D.

The number of half branches at s is exactly ♯(∂D ∩ C). As no two half

branches can have the same endpoint on ∂D (that would be another singular

point in D), all points on ∂D are endpoints of half branches at s. Thus, at

this point, we know that the connected component of s inside D is conic.

But in fact, there is no other connected component. Suppose we have an-

other connected component α of C intersecting D. As all points of ∂D ∩ C

are connected to s, we have α ⊂ D. α is a smooth 1-dimensional manifold

because s is the only singular point. Therefore α is a closed loop inside

D (s might be inside it). We look at the complement of C in R2, it has a

bounded connected component because one of them is inside the loop α. As

f vanishes on the boundary of this component, f has an extremum inside

it. This extremum cannot be s as it is in the complement of f , which is

impossible. Thus, C ∩ D is connected.

This concludes our argument as we have proved that C ∩ D is equal to the

connected component of s inside D and that it has the topology of a cone

over ∂D ∩ C which is what we claimed. �

Remark 5.6: We do not have to suppose that D is convex, simply con-

nected would suffice. But we only work with convex sets (boxes) and the

denomination “conic topology” originates from the convex case. •

In the end the connection algorithm is extremely simple. We just proved

that the topology inside these domains is conic, that is C∩D can be deformed

into a cone over C ∩ ∂D. Therefore the connection algorithm for (convex)

5.1. IMPLICIT CURVES 115

simply singular domains is to first compute the points qi of C ∩∂D, compute

the singular point s inside D and finally for every qi, connect qi to s by a

half branch segment bi = [s, qi].

Algorithm 5.3: Connection for a singular domain.

Input: an algebraic curve C and a domain D = [a, b]× [c, d] ⊂ R2 such

that C has only one singular point s in D

Output: the set B of branches of C in D

B := {} ;

Isolate the points Q = {C ∩ ∂D} ;

forall qi ∈ Q do
Connect s to qi by a half branch segment bi = [s, qi] ;

B ← bi ;

end

Using the method described in section 5.1.2, we obtain the topology of the

curve within a regular cell of subdivision, applying the connection algorithm

5.2. The topology of local regions within the regular cell is easily deduced

from the topology of the curves lying in the cell together with its corner

points. The edges of regions are oriented counterclockwise to ease up fol-

lowing steps of the arrangement algorithm and specify on which side of the

border lies the interior of a region.

After the segmentation step, the detection of conflicts reduces either to

intersecting regular segments of two different objects or to testing that an

endpoint of a regular segment of an object belongs to a given region. To this

end, our favorite polynomial solver is used to solve the bivariate polynomial

equations fk, fl representing the the objects in potential conflict in the region

of interest.

The specialization of the generic arrangement algorithm to the case of im-

plicit curves has been completely implemented with the algebraic geometric

modeling software (see chapter 8). The efficiency of the topology algorithm

presented here allows a real time manipulation of algebraic objects within

the software, whereas current solutions usually only propose ray tracing

algorithm for visualization. Chapter 9 gives some significant illustrations.

The dynamic part of the arrangement algorithm has lead to a daemon in

the modeler which looks for insertions and removal of objects to maintain

116 CHAPTER 5. SPECIALIZATION FOR CURVES

its data structure. The generic part has lead to an abstract algorithm im-

plemented following the template method and visitor design patterns [54].

We have put a special emphasis on keeping the structure accessible to the

user. Using the model-view-controller pattern, data structures such as the

augmented influence graph and the various quadtrees can be interactively

displayed and queried for point location (see figure 9.13).

5.2 Parametric curves

The family of parametrized objects counts a large amount of representa-

tions. We present the case of polynomial rational curves and the one of

B-spline curves, giving a hint on how to compute the elements needed for

the specialization of our generic algorithm to these representations.

We denote by σk the parameterization of the curve C that we analyze.

5.2.1 Regularity

The regularity test for parametric curves also distinguishes singular cases (a

self-intersecting curve) and non-singular cases.

Empty cells. It is possible to compute intersection points of a uniform

rational curve (see definition in section 2.1.2) with any line segment parallel

to the axis, by solving the following univariate problems:























y(t)− ymin = 0 and xmin ≤ x(t) ≤ xmax

y(t)− ymax = 0 and xmin ≤ x(t) ≤ xmax

x(t)− xmin = 0 and ymin ≤ y(t) ≤ ymax

x(t)− xmax = 0 and ymin ≤ y(t) ≤ ymax

Should no such point exist, we ensure that the cell is empty.

Non-singular cells. In order to meet the configurations presented in fig-

ure 4.1, we first partition the interval [tmin, tmax] in intervals where x′(t) 6= 0

and y′(t) 6= 0 on the interior. On each one of these intervals, the curve is

5.2. PARAMETRIC CURVES 117

x and y monotonic. The corresponding bounding boxes of these curve seg-

ments are defined by image by σk of the end points of the interval. This

builds a monotonous segmentation of the curve which allows us to efficiently

test its monotony.

Critical points can be characterized as follows:

{

x′(t)w(t)− x(t)w′(t) = 0

y′(t)w(t)− y(t)w′(t) = 0

The curve C is deemed regular in D if it intersects it twice and features at

most on critical point in D.

Singular cells. Next, we localize which pairs of bounding boxes of two

non-consecutive segments intersect, using the segmentation structure de-

scribed in section 4.2. If we find two such boxes, which are the images of the

intervals I and I ′, we test if there exists (t, s) ∈ I × I ′ with t 6= s such that

x(t) = x(s) and y(t) = y(s). This reduces to solving a bivariate polynomial

system of equations.

Self-intersection points can be characterized as follows: ∃(t, s), t 6= s verify-

ing
{

(x(t)w(s)− x(s)w(t))/(t− s) = 0

(y(t)w(s)− y(s)w(t))/(t− s) = 0

The curve C is deemed regular in D if it intersects it four times and features

at most on singular point in D.

5.2.2 Topology

Again, we finally turn around these points on the border of the cell in

clockwise order and connect them to points of interest inside the cell, such

as self-intersection points or points where a vertical or horizontal tangent

exist.

To compute the intersection points of two parametric curves σk, σl (with

k 6= l), we solve the bivariate system σk(t) = σl(s), with t, s in the intervals⊂

[0, 1] corresponding to the curve segments. Here again, we can use again our

118 CHAPTER 5. SPECIALIZATION FOR CURVES

s

t y

σ

x

Figure 5.3: Mapping of an implicit curve defined in a parameter space.

polynomial solver (chapter 1) for this purpose. This allows to detect conflicts

between regions which edges are made up of parametric curve segments.

5.3 Image of an implicit curve

Another situation that will happen in following investigations is described

here. Consider the case, illustrated in figure 5.3, of a curve defined implicitly

by f(s, t) in a parameter space. A key ingredient that we will have to perform

is to analyze the curve in the parameter space to reach useful conclusions

concerning its mapping by some parameterization e.g. σ = (x(s, t), y(s, t))

such as the identification of critical or singular points.

As an example x-critical points are defined for a couple of parameters (s, t)

where ∂ux = 0, for u a local parameter of the implicit curve such that

f(s, t) = 0 is equivalent to f(s(u), t(u)) = 0. With such a local parameteri-

zation,

∂ux = 0⇔ ∂sx(s, t) ∂us + ∂tx(s, t) ∂ut = 0 (5.7)

In particular, (∂us, ∂ut) is the tangent vector to the curve f(s, t) = 0, and is

orthogonal to the gradient ∇f(s, t) of f , so we have the following relation:

(∂us, ∂ut) ⊥ ∇x(s, t)⇔ ∂sx(s, t) ∂tf(s, t)− ∂tx(s, t) ∂sf(s, t) = 0 (5.8)

5.4. PIECEWISE LINEAR CURVES 119

providing a formula which enables us to compute such points.

Similarly, we obtain the following formulation for y-critical points:

∂sy(s, t) ∂tf(s, t)− ∂ty(s, t) ∂sf(s, t) = 0 (5.9)

Singular points are the images of points either verifing both equations 5.8

and 5.9 or lying at the intersection of f(s, t) and g(s, t), where g is the curve

of self-intersection, i.e. the set of points having a common image by the pa-

rameterization σ. Note for example on the figure, where the self-intersection

curve is dashed, that the two cross marked points in the parameter space

both map to the cross marked singular point in the xy-space.

5.4 Piecewise linear curves

When computing an arrangement of piecewise linear curves, the only chal-

lenge is to be able to check if the line segments defining a curve are regular

in a cell of subdivision. Indeed, computing the intersection of a linear curve

segment with a cell border poses no problem since they have the same rep-

resentation and detecting self-intersection points is not difficult either since

it consists in intersecting two line segments. Besides, the topology of the

curve is included in its representation so we just have to deduce regions from

it in an efficient way.

The treatment of piecewise linear curves p0, . . . , ps (with pi ∈ R2) is simi-

lar to the case of parametric curves and is illustrated in figure 5.4. First,

to each segment pi, pi+1 we associate a so-called “monotony code” (corre-

sponding to the sign of the coordinates of the vector
−→

pipi+1. Then, seg-

ments are gathered in a monotonous segmentation, a balanced binary tree

data structure, similar to the region segmentation which is queried the

same way to compute self-intersection points. The only difference between

the region segmentation and the monotonous segmentation is that in the

latter, curve segments are gathered with regard of their monotony code,

Mk = M(tk, tk+1) = (sign(x(tk+1) − x(tk)), sign(y(tk+1) − y(tk))), figure

5.4(a). These segmentations are then compared to find non adjacent inter-

secting nodes (comparing the coordinates of their associated edges’ bound-

120 CHAPTER 5. SPECIALIZATION FOR CURVES

(−,−)

(+,−)
(+,+)

(+,−)

(−,−)

(−,+)

(a) Segmenting the curve.

(b) Querying the segmentation.

Figure 5.4: A generic procedure to compute features of a piecewise linear
curves.

ing boxes) in which, intersection points are computed using usual methods

5.4(b).

Chapter 6

Specialization for surfaces

The generic approach for computing an arrangement of objects presented in

chapter 4 is easily specialized in 2-dimensional space (as shown in chapter

5). Thanks to its subdivision scheme, we can specialize it in 3-dimensional

space as well. Even though this specialization is not yet implemented, we

sketch our proposition here.

Again, the specialization consists in providing regularity criteria which en-

sure that the topology of a surface S is well defined in a cell of subdivision

(a domain D which a cube in the space), together with corresponding con-

nection algorithms. These requirements are the same for both the static and

dynamic versions of the generic arrangement algorithm.

To dynamically deal with a collection of surfaces, the specialization must also

provide a way to check whether two objects are intersecting or not, and, if

so, the topology of their intersection. It is shown that the generic efficient

scheme to segment the boundary of regions also applies when computing an

arrangement in 3 dimensions.

Section 6.1 explores the case of implicit surfaces, following a classification

of the different regularity cases that can happen. In particular, intersection

or self-intersection curves of implicit surfaces are defined by spatial implicit

curves. It is therefore important to be able to compute the topology of such

a curve and be able to analyze how it behaves in a given domain.

Section 6.2 explains how the generic algorithm can be specialized to the

121

122 CHAPTER 6. SPECIALIZATION FOR SURFACES

case of parametric surfaces. Since their topology computation does not pose

any problem, the challenging question is to efficiently compute intersection

and self-intersection of such objects and guarantee their topology thanks to

a regularity criterion so that regions can be computed in resulting regular

cells.

6.1 Implicit surfaces

In this section, we consider a surface S defined by the equation f(x, y, z) =

0, with f ∈ Q[x, y, z]. We assume that f is squarefree, that is f has no

irreducible factors of multiplicity ≥ 2. For more details, see [3].

For a subset S ⊂ R2, we denote by
◦
S its interior, by S its closure, and by

∂S its boundary.

We call domain any closed set D such that
◦
D = D andD is simply connected.

We call region any open set R which is a connected component of the com-

plement of an algebraic surface.

Unlike the 2 dimensional case, the shape of the surface and of its singu-

lar locus can be really complicated. Topologically we can characterize the

situation as follows:

• Near a 2-dimensional stratum the topology is the same as a hyperplane.

• Near a 1-dimensional stratum the topology is the same as a cylinder.

• Near a 0-dimensional stratum the topology is the same as a cone.

Moreover, we know that only one of these three situations, illustrated in

figure 6.1 can and will happen locally. So we just have to design a solution

for each one of the above three cases.

The regularity criterion to deduce regions from the topology of a possibly

singular surface consists in ensuring that the surface locally (in a box of

subdivision) corresponds to one of the criteria shown in figure 6.1. In addi-

tion to these configurations we obviously consider the case of an empty cell

where the topology is trivially obtained from the corners of the cell.

The first case illustrated corresponds to a regular surface patch. The second

case corresponds to a regular intersection of two patches of a surface. The

6.1. IMPLICIT SURFACES 123

Figure 6.1: Regularity criterion for surfaces.

third case corresponds to two or more surface patches touching at a singular

point.

The critical points in the x-direction (resp. y-direction and z-direction) can

be obtained by (resp.) solving:











fk(x, y, z) = 0

∂yfk(x, y, z) = 0

∂zfk(x, y, z) = 0











fk(x, y, z) = 0

∂xfk(x, y, z) = 0

∂zfk(x, y, z) = 0











fk(x, y, z) = 0

∂xfk(x, y, z) = 0

∂yfk(x, y, z) = 0

To compute singular points (isolated or self-intersection points), we solve

(e.g. using the multivariate subdivision solver):























fk(x, y, z) = 0

∂xfk(x, y, z) = 0

∂yfk(x, y, z) = 0

∂zfk(x, y, z) = 0

The intersection points of two surfaces defined by the polynomials fk, fl in

a cell are obtained by computing the spatial implicit curve:

{

fk(x, y, z) = 0

fl(x, y, z) = 0

Intersection curves of the surface patch with facets of the cell are trivially

obtained by a variable substitution in the polynomial defining the surface.

The polar variety will be used to check the subdivision cells for regularity.

124 CHAPTER 6. SPECIALIZATION FOR SURFACES

Definition 6.1 (Polar variety): The polar variety Pf of a surface S de-

fined by the polynomial equation f(x, y, z) = 0 cuts the surface at the points

of self-intersection and the points that have vertical tangents:

{

f(x, y, z) = 0

∂zf(x, y, z) = 0
(6.1)

6.1.1 Regularity

In this section, we consider a surface S in R3, defined by the equation

f(x, y, z) = 0 with f ∈ Q[x, y, z] and a domain D = [a, b]×[c, d]×[e, f] ⊂ R3.

To check a cell for regularity we will use the 2-dimensional planar regularity

criterion of section 5.1.1 for each facet of the cube, for each configuration

identified here before, and also analyze the silhouette of the surface in the

domain using the polar variety. The next section explains how to compute

the topology of such a curve, and also applies for any three dimensional

curve defined by two polynomials.

6.1.1.1 Spatial implicit curves

Let C be a curve of R3 defined by the two polynomials f(x, y, z) and g(x, y, z).

We assume that (f, g) is radical or equivalently that the resultant of f and

g with respect to z after a generic change of coordinate is squarefree.

The tangent vector on C serves as an indicator of the topological features of

the curve. While it is computationally prohibitive to compute the tangent

vector field at each point of C, we can reach some useful conclusion about

the topology of the curve by looking at the tangent vector field defined by:

t = ▽(f) ∧▽(g) =

∣

∣

∣

∣

∣

∣

∣

ex ey ez

∂xf ∂yf ∂zf

∂xg ∂yg ∂zg

∣

∣

∣

∣

∣

∣

∣

(6.2)

where ex, ey and ez are the unit vectors along the principle axis x, y and z.

Remark 6.1: Singularities on the curve can be easily characterized, as t

vanishes at those points. •

6.1. IMPLICIT SURFACES 125

Similar to the 2D case, we can represent f, g and each component of t in

the Bernstein basis for the domain D.

As we will see, the sign changes of the resulting Bernstein coefficients will

make it possible to test the regularity of the curve with minimal effort.

The following is a regularity criterion that applies for space curves which

allows us to deduce the topology of C in the domain D:

Proposition 6.1: [75] Let C be a 3D spatial curve defined by f = 0 and

g = 0. If 1. tx(x) 6= 0 on D, and 2. ∂yh 6= 0 on z-faces, and ∂zh 6= 0 and

it has the same sign on both y-faces of B, for h = f or h = g, then the

topology of C is uniquely determined from the points C ∩ ∂B.

A similar criterion applies by symmetry, exchanging the roles of the x, y,

z coordinates. If one of these criteria applies with ti(x) 6= 0 on D (for

i = x, y, z), we will say that C is i-regular on D.

From a practical point of view, the test ti(x) 6= 0 or ∂i(h) 6= 0 for i = x, y or

z, h = f or g can be replaced by the stronger condition that their coefficients

in the Bernstein basis of D have a constant sign, which is straightforward

to check. Similarly, such a property on the faces of D is also direct to

check, since the coefficients of a polynomial on a facet form a subset of the

coefficients of this polynomial in the box.

In addition to these tests, we also test whether both surfaces defining the

curve C penetrate the cell, since a point on the curve must lie on both

surfaces. This test could be done by looking at the sign changes of the

Bernstein coefficients of the surfaces with respect to that cell. If no sign

change occurs, we can rule out the possibility that the cell contains any

portion of the curve C, and thus terminate the subdivision early. In this

case, we will also say that the cell is regular.

This regularity criterion is sufficient for us to uniquely construct the topo-

logical graph G of C within D. Without loss of generality, we suppose that

the curve C is x-regular in D. Hence, there is no singularity of C in D. Fur-

thermore, this also guarantees that there is no “turning-back” of the curve

tangent along the x-direction, so the mapping of C onto the x axis is in-

jective. Intuitively, the mapped curve should be a series of non-overlapping

126 CHAPTER 6. SPECIALIZATION FOR SURFACES

line segments, whose end points correspond to the intersections between the

curve C and the cell. Such a mapping is injective.

This property leads us to a unique way to connect those intersection points,

once they are computed in order to obtain a graph representing the topology

of C, similarly to the two dimensional method (see section 5.1.2).

In order to apply this algorithm, we need to compute the points of C ∩ D,

that is to solve a bivariate system for each facet of D. This is performed by

applying the algorithm described in section 1.2.2.

The special treatment of points of C on an edge of D or where C is tangent

to a face requires the computation of tangency information at these points.

This is performed by evaluating the derivatives of the defining equations of

C at these points.

Collecting these properties, we obtain the subdivision algorithm 6.1, which

subdivides the domain D until some size ǫ, while the curve is not regular in

current subdivision cells. It relies on a bivariate solver, for computing the

intersection of the curve with the faces of the box.

Algorithm 6.1: Topology of an implicit spatial curve.

Input: A curve C defined by equations f1 = 0, f2 = 0, . . . , fk = 0, a
domain D = [a0, b0]× [a1, b1]× [a2, b2] ⊂ R3 and ǫ > 0

Output: A set of points p and a set of arcs connecting them
for 1 ≤ i < j ≤ k do

Compute the Bernstein coefficients of the x, y, z coordinates of
∇fi ∧∇fj in D ;
Check that they are of the same sign for one of the coordinates (say x) ;
Check the x-regularity condition on the facets of D ;

end
if such a pair (i, j) satisfying the previous regularity condition exists then

Compute the points of C ∩ ∂D and connect them ;
else if |D| > ǫ then

Subdivide D and proceed recursively on each sub-domain ;
else

Compute the points C ∩ ∂B and connect them to p ∈
◦
B ;

end

Proposition 6.2: For ǫ > 0 small enough, the graph of points and arcs

computed by the algorithm has the same topology as C ∩B.

6.1. IMPLICIT SURFACES 127

Figure 6.2: Regularity criterion for a 2-dimensional stratum.

6.1.1.2 2-dimensional stratum

Definition 6.2: The surface S is 2-regular in the domain D if the intersec-

tion curves of the surface patch with the cell S ∩ ∂D are regular and if no

critical point lie in the cell S∩
◦
D= ∅.

The regularity test in the case of a 2-dimensional stratum in a domain D

performs as follows:

1. Check each facet for 2-dimensional regularity using the following cri-

teria: (a) empty cell (b) regular cell with one curve segment

2. Check that the polar variety P does not intersect D (P ∩ D = ∅).

6.1.1.3 1-dimensional stratum

Definition 6.3: The surface S is 1-regular in the domain D if the inter-

section curves of the surface patch with the cell S ∩ ∂D are regular and if

S∩
◦
D6= ∅ and P is regular in D.

The regularity test in the case of a 1-dimensional stratum in a domain D

performs as follows:

1. Check each facet for 2-dimensional regularity using the following crite-

ria: (a) regular cell with one curve segment (b) star shaped singularity

with two curve segments

2. Check that the polar variety P features only one regular branch in D

(P ∩ D 6= ∅).

128 CHAPTER 6. SPECIALIZATION FOR SURFACES

Figure 6.3: Regularity criterion for a 1-dimensional stratum.

6.1.1.4 0-dimensional stratum

Definition 6.4: The surface S is 0-regular in the domain D if the inter-

section curves of the surface patch with the cell S ∩ ∂D are regular and if

Πz(P) = Resz(f, ∂zf) is regular and P has only one singular point in
◦
D.

Remark 6.2: P corresponds to the silhouette of the surface with respect

to the z axis. This could be a problem if some intersection points of the

curve with the border of the cell P ∩∂D coincide with the (unique) singular

locus of P for the z coordinate. A more general curve to characterize the

silhouette of S avoiding this problem can be obtained by shearing. In this

case, we would define P = {f = 0∩λ1∂xf +λ2∂yf +λ3∂zf = 0} for random

λ1, λ2, λ3 ∈ R and note ∆ the corresponding shearing direction. •

Πz(P) = Resz(f, ∂zf)

Figure 6.4: Regularity criterion for a 0-dimensional stratum.

The regularity test in the case of a 0-dimensional stratum in a domain D

performs as follows:

6.1. IMPLICIT SURFACES 129

1. Check each facet for 2-dimensional regularity using the following cri-

teria: (a) empty cell (b) regular cell with one curve segment

2. Check that the polar variety features only one singular point in D.

3. Compute the projection Πz(P) = Resz(f, ∂zf) where z is the z-coor-

dinate of s

4. Check that Πz(P) is regular in the 2-dimensional sense with a star

shaped configuration

6.1.2 Topology

The regularity test ensures that we are able to compute the topology of a

surface within a given domain. The way of computing this topology comes

together with the regularity test. Again, we distinguish the 2-dimensional,

1-dimensional and 0-dimensional strata configurations of a surface inside a

subdivision cell.

6.1.2.1 2-dimensional stratum

If a surface S is 2-regular in the domain D then its topology is uniquely

determined from information on the border ∂D of the domain D.

In such a configuration, the polar variety does not appear in D. The implicit

functions theorem applies and each patch can be seen as a graph of a function

over a planar domain. To each of these patches corresponds a loop for the

intersection of the surface with the boundary of D. In order to determine

these loops, it is sufficient to analyze the branches and their connections on

the facets of D.

Algorithm 6.2: Connection for a 2-dimensional stratum.

Input: A cell D and a 2-dimensional stratum of S in D

Output: The boundary B of the patch of S ∩ D

Compute the set V = S ∩ ∂D to get the vertices of the patch ;

Apply connection algorithm 5.2 to get the edges of the patch ;

Connect the edges together to get the face defined by the patch ;

130 CHAPTER 6. SPECIALIZATION FOR SURFACES

6.1.2.2 1-dimensional stratum

If a surface S is 1-regular in the domain D then its topology is uniquely

determined from information on the border ∂D of D.

Since there cannot be any isolated point in D and the polar variety is a

regular curve, the two surface patches intersect along the polar variety. For

two facets, intersection curves self-intersect at the endpoints of the polar

variety curve segment in a star shaped configuration. By connecting these

singular points for two facets we obtain the topology of the self-intersection

of the two surface patches that we connect with curves of intersection on

each facet.

Algorithm 6.3: Connection for a 1-dimensional stratum.

Input: A cell D and a 1-dimensional stratum of S in D

Output: The boundary B of the patch of S ∩ D

Compute the set V = S ∩ ∂D to get the vertices of the patch ;

Apply connection algorithm 5.2 on regular faces of D ;

Apply connection algorithm 5.3 on singular faces of D ;

Connect the edges together to get the face defined by the patch ;

6.1.2.3 0-dimensional stratum

If a surface S is 0-regular in the domain D then its topology is uniquely

determined from information on the border ∂D of the domain D and from

its unique singular point in D.

As in the 2-dimensional case, the problem is to locally ensure the topology

by counting the number of features stemming out from the unique singular

point s within the cell. To this end, we compute a projection of the polar

variety on the plane of same z-coordinate as s. The latter contains the

singular point as well as branches stemming out from it, corresponding to

the projection of the silhouette of S. By applying the regularity test of

section 5.1.1.2, we ensure the topology within the cell by connecting s to

points of interest on the border of the cell.

In some cases, it could be difficult to “see” the polar variety and thus, to

apply the regularity criteria on its projection. In such cases, an alternative

6.2. PARAMETRIC SURFACES 131

consists in locally defining a box of some very small size ǫ, centered around

the singular point and counting the number of connected components com-

puted from the current object(s) with its boundary. If this number coincides

with the number of features computed for the current cell of subdivision, we

ensure a conic structure. This test can be used as a heuristic, choosing an

appropriate ǫ depending on the context.

Algorithm 6.4: Connection for a 1-dimensional stratum.

Input: A cell D and a 0-dimensional stratum of S in D

Output: The boundary B of the patch of S ∩ D

Compute the set V = S ∩ ∂D to get the vertices of the patch ;

Compute the singular point s of S in D ;

Compute the projection of the polar curve Πz(P) = Resz(f, ∂zf) where z

is the z-coordinate of s ;

Apply connection algorithm 5.2 on regular faces of D ;

Apply connection algorithm 5.3 on singular faces of D ;

Connect the edges together to get the face defined by the patch ;

Connect the edges endpoints to s and create incident faces accordingly ;

6.2 Parametric surfaces

As mentioned in chapter 4, the arrangement algorithm driven by a sub-

division scheme can be specialized to any kind of curve or surface in any

dimension as long as one is able to provide regularity criteria to drive the

subdivision process together with the corresponding topology computation

algorithm that is used to locally compute regions in the cells of subdivision

starting from the topology of the object(s) lying in the cell. We remind

that these local regions are then merged following a generic scheme which

performs unions of these piecewise entities through a hierarchical data struc-

ture.

The topology of a surface patch itself is easy to recover by nature when

computing with parameterized models given in evaluation. In particular,

rendering this kind of surface is an easy task.

To match the set of configurations shown in figure 6.1, we have to compute:

1. intersection points of the surface patch with the cell edges 2. intersection

132 CHAPTER 6. SPECIALIZATION FOR SURFACES

curves of the surface patch with the cell faces 3. self-intersection curves of

the surface patch 4. singular points of the surface patch. In either case, we

want to benefit from the exact nature of the model. This can be achieved

by performing the computations in the parameter space of the surface, i.e.

the domain Dp = [ssmin, smax]× [tmin, tmax].

The set of intersection points with the edges of a subdivision cell D for a

polynomial rational surface (defined in section 2.2.2) can easily be obtained

by respectively retrieving the sets

vxi,yj
= {(x(s, t), y(s, t), z(s, t)) ∈ D | (s, t) ∈ Dp, x(u, v) = xi, y(u, v) = yi}

vxi,zj
= {(x(s, t), y(s, t), z(s, t)) ∈ D | (s, t) ∈ Dp, x(u, v) = xi, z(u, v) = zi}

vyi,zj
= {(x(s, t), y(s, t), z(s, t)) ∈ D | (s, t) ∈ Dp, y(u, v) = yi, z(u, v) = zi}

where xi ∈ {xmin, xmax}, yi ∈ {ymin, ymax} and zi ∈ {zmin, zmax}.

The same way, an intuitive computation of the intersection curves to get the

edges of the patch on each facet of the subdivision cell is:

exi
= {(y(s, t), z(s, t)) | (s, t) ∈ Dp, x(s, t) = xi}

eyi
= {(x(s, t), z(s, t)) | (s, t) ∈ Dp, y(s, t) = yi}

ezi
= {(x(s, t), y(s, t)) | (s, t) ∈ Dp, z(s, t) = zi}

where xi ∈ {xmin, xmax}, yi ∈ {ymin, ymax} and zi ∈ {zmin, zmax}.

For each facets of the cube, we perform the analysis using the implicit rep-

resentation of the intersection curves of the surface with the cell in the

parameter space of the surface patch. To this end, we use the framework

exposed in section 5.3. This representation allows the computation with low

degree polynomials.

Remark 6.3: The intersection curves of the surface patch with the border

of the subdivision cell D can also be expressed by the mean of planar implicit

curves in euclidean space using resultant computation. Indeed for the faces

of coordinates xi ∈ {xmin, xmax}











x(s, t)− xi = 0

y(s, t)− y = 0

z(s, t)− z = 0

6.2. PARAMETRIC SURFACES 133

leads to the system










f(s, t, y, z) = 0

g(s, t, y, z) = 0

h(s, t, y, z) = 0

the resultant rx(y, z) = Ress,t(f, g, h) of which gives an implicit curve in the

yz-plane. Note that this computation provides high-degree polynomials but

seems reasonable for surfaces of bidegree (2, 2). •

We define the tangent vectors at C

Tu(u, v) =







∂ux(u, v)

∂uy(u, v)

∂uz(u, v)






Tv(u, v) =







∂vx(u, v)

∂vy(u, v)

∂vz(u, v)







and the normal vector

N(u, v) = Tu(u, v) ∧ Tv(u, v)

The critical points for x (respectively y, z) are expressed by the systems

{

Ny(u, v) = 0

Nz(u, v) = 0

{

Nx(u, v) = 0

Nz(u, v) = 0

{

Nx(u, v) = 0

Ny(u, v) = 0

The set of singular points is expressed by the system











Nx(u, v) = 0

Ny(u, v) = 0

Nz(u, v) = 0

The problem is then to compute either intersection curves in a static context

or self-intersection curves in a dynamic context. Even though a very fast

computation is proposed by Jean Pascal Pavone in [53], we opt for the

method of Stephane Chau [25] for the following reasons.

The first method is a sampling algorithm, which, driven by an injectivity

criteria ends up in computing the self-intersection curves using an approxi-

mation of the shape and a triangle intersection procedure. The result does

not provide any topological guarantee but note that is however allows a

134 CHAPTER 6. SPECIALIZATION FOR SURFACES

real time computation of the self-intersection curve for a result more than

sufficient in many CAGD contexts where computations are performed on ap-

proximations. For similar reasons, we do not choose the method proposed

in [101].

On the contrary, the second method, in its resultant based approach provides

an implicit representation of the intersection and self-intersection curves of

two parametric surfaces in their parameter space. Using such a method

allows us the reuse of our 2-dimension criteria for checking implicit curves

for regularity, assuming the fact that we are able to guarantee the result.

This is done by recursively checking that the images of the boxes defining

the respective parameter spaces do not intersect in the euclidean space.

The regularity test then occurs in the parameter space of the surfaces by

considering the curves corresponding to the polar varieties Nx(u, v), Ny(u, v)

and Nz(u, v) respectively for each direction x, y and z together with self-

intersection or intersection curves. Let us see how to obtain these curves

using the second method.

In this computation, we use the resultant to compute the intersection locus

between f(u, v) and g(r, s). We consider the algebraic variety

C = {(u, v, r, s) | f(u, v) = g(r, s)} (6.3)

we denote Dp its parameter space and we will suppose that C∩Dp is a curve.

We remind some basics about resultants. Let f1, f2 and f3 be three poly-

nomials in two variables with given monomial supports and N the number

of terms of these 3 supports. For each i ∈ {1, 2, 3} we denote by coeffs(fi)

the sequence of the coefficients of fi. The resultant of f1, f2 and f3 is, by

definition, an irreducible polynomial R in N variables with the property,

that

R(coeffs(f1), coeffs(f2), coeffs(f3)) = 0 (6.4)

if and only if these 3 polynomials have a common root in a specified domain

D. For a more precise description of resultants, see e.g. [19, 26, 27].

In our application to surface–surface–intersection, the resultant can be used

as a projection operator. Indeed, if f1, f2 and f3 are the three components

of f(u, v)− g(r, s) which are considered as polynomials in the two variables

6.2. PARAMETRIC SURFACES 135

r and s, then the resultant of f1, f2 and f3 is a polynomial R(u, v) and it

gives an implicit plane curve which corresponds to the projection of C in the

(u, v) parameters. More precisely, if f1, f2 and f3 are generic, then the two

sets
{

(u, v) ∈ [0, 1]2 | R(u, v) = 0
}

(6.5)

and
{

(u, v) ∈ [0, 1]2 | ∃(r, s) ∈ D : f(u, v) = g(r, s)
}

(6.6)

are identical. Several families of multivariate resultants have been studied

and some implementations are available, see [22, 71].

In what follows, we show how to characterize the intersection locus, useful

e.g. in a dynamic context or the self-intersection, useful e.g. in a static

context.

Application to the intersection problem. A strategy to describe the

intersection between f(u, v) and g(r, s) consists in projecting C on a plane

(by using the resultant). Many authors propose to project C on the (u, v)

(or (r, s)) plane and then the resulted plane curve is traced (see [52] and

[69] for the tracing method) and is lifted to the three dimensional space by

the corresponding parameterization. Note that this method can give some

unwanted components (the so called “phantom components”) which are not

in f([0, 1]2) ∩ g([0, 1]2). So, another step is needed to cut off the extra-

neous branches. This last part can be done with a solver for multivariate

polynomial systems (see [80]) or an inversion of parameterization (see [20]).

As an alternative to these existing approaches, we propose to project the

set C onto the (u, r) space. Note that, in the equations f(u, v) = g(r, s), the

two variables v and s are separated, so they can be eliminated via a simple

resultant computation. It turns out that such a resultant can be computed

via the determinant of a Bezoutian matrix (see [44] or [45]). First, consider

the (3, 3) determinant:

b = det

(

f(u, v)− g(r, s),
f(u, v)− f(u, v1)

v − v1
,
g(r, s)− g(r, s1)

s− s1

)

(6.7)

The determinant b is a polynomial and its monomial support with re-

spect to (v, s) is S = {1, v, s, vs} and similarly for (v1, s1), where S1 =

136 CHAPTER 6. SPECIALIZATION FOR SURFACES

{1, v1, s1, v1s1}. So, a monomial of b is a product of an element of S and of

an element of S1 . Then, we form the 4× 4 matrix whose entries are the co-

efficients of b indexed by the product of the two sets S and S1. This matrix

contains only the variables u and r and is called the Bezoutian matrix. In

our case, its determinant is a polynomial in (u, r) equal to the desired resul-

tant R(u, r) (deg(R)=24 and degu(R)=degr(R)=16) and it gives an implicit

curve which corresponds to the projection of C in the (u, r) space.

Then, we analyze the topology of this curve (see [57] and [90]) and we

trace it (see [52] and [69]). Finally, for each (u0, r0) ∈ [0, 1]2 such that

R(u0, r0) = 0, we can determine if there exists a pair (v0, s0) ∈ [0, 1]2 such

that f(u0, v0) = g(r0, s0) (solving a polynomial system of three equations

with two separated unknowns of bi-degree (2,2)) and thus we can avoid the

problem of the phantom components. We lift the obtained points in the 3D

space to give the intersection locus. Note that this method can also give the

projection of C in the (v, s) space by the same kind of computation.

Application to the self-intersection problem. In the parameter do-

main Dp, the self–intersection curve of the first patch forms the set:

{(u1, v1, u2, v2) ∈ Dp | (u1, v1) 6= (u2, v2) and f(u1, v1) = f(u2, v2)} (6.8)

This locus is the real trace of a complex curve. We assume that it is either

empty or of dimension 0 or 1. We do not consider degenerate cases, such as

a plane which is covered twice.

We use the following change of coordinates to discard the unwanted trivial

component (u1, v1) = (u2, v2). Let (u2, v1) be a pair of parameters in [0, 1]2,

(l, k) ∈ R2 and let u1 = u2 + l, v2 = v1 + lk. If we suppose that we have

(u1, v1) 6= (u2, v2), then l 6= 0. Hence f(u1, v1) = f(u2, v2) if and only if

f(u2 + l, v1) = f(u2, v1 + lk). We suppose now that (u2, v1, l, k) verifies this

last relation.

Let T̃ (u2, v1, l, k) be the polynomial 1
l [f(u2 + l, v1)− g(u2, v2 + lk)], its de-

gree in (u2, v1, l, k) is (2, 2, 1, 2) and the monomial support with respect to

6.2. PARAMETRIC SURFACES 137

(l, k) contains only k2l, k, l and 1. We can decrease the degree introducing:

T (u2, v1,m, k) = mT̃ (u2, v1,
1

m
, k). (6.9)

Then in T (u2, v1,m, k), the monomial support in (m, k) consists only of

1,m, k2 and km. So, we can write T in a matrix form:

T (u2, v1,m, k) =







a1(u2, v1) b1(u2, v1) c1(u2, v1) d1(u2, v1)

a2(u2, v1) b2(u2, v1) c2(u2, v1) d2(u2, v1)

a3(u2, v1) b3(u2, v1) c3(u2, v1) d3(u2, v1)

















1

m

k2

km











By Cramer’s rule, we get

m =
D2

D1
, k2 =

D3

D1
, and km =

D4

D1

with

D1 =

∣

∣

∣

∣

∣

∣

∣

b1 c1 d1

b2 c2 d2

b3 c3 d3

∣

∣

∣

∣

∣

∣

∣

, D2 =

∣

∣

∣

∣

∣

∣

∣

−a1 c1 d1

−a2 c2 d2

−a3 c3 d3

∣

∣

∣

∣

∣

∣

∣

and

D3 =

∣

∣

∣

∣

∣

∣

∣

b1 −a1 d1

b2 −a2 d2

b3 −a3 d3

∣

∣

∣

∣

∣

∣

∣

, D4 =

∣

∣

∣

∣

∣

∣

∣

b1 c1 −a1

b2 c2 −a2

b3 c3 −a3

∣

∣

∣

∣

∣

∣

∣

Lemma 6.1: Let Q(u2, v1) be the polynomial Q = D2
4D1 − D2

2D3. The

curve
{

(u2, v1) ∈ [0, 1]2 | Q(u2, v1) = 0
}

defined implicitly is the projection

of the self–intersection locus (given by the set (6.8) but in C4) into the

parameters domain (u2, v1) ∈ [0, 1]2. ♦

Proof 6.1: Q(u2, v1) = 0 is the only algebraic relation (of minimal degree)

between u2 and v1 such that ∀(u2, v1) ∈ [0, 1]2, Q(u2, v1) = 0 ⇒ ∃(m, k) ∈

C2, T (u2, v1,m, k) = 0. �

This lemma provides a method to compute the self–intersection locus. For

every point (u2, v1) on the curve Q(u2, v1) = 0, we obtain by continuation the

corresponding point (u1, v2) ∈ [0, 1]2 if it exists. So it suffices to characterize

the bounds of these curve segments.

138 CHAPTER 6. SPECIALIZATION FOR SURFACES

6.3 Piecewise linear surfaces

The topology of a piecewise linear surface is provided together with its repre-

sentation. The only thing we have to do in order to compute an arrangement

of such objects is to efficiently carry out intersection and self-intersection

tests. Again, to this end, we can build a monotonous segmentation of the

surface with respect to a direction.

Once (self-)intersection points and curves have been computed we just have

to follow adjacency relationships to deem the cell regular or not. Topology

of regions is then trivially obtained from the representation of the surface.

Chapter 7

Applications

This chapter evokes some major applications of the arrangement algorithm.

First, the well known problem of defining regions in a trimming process of

parametric surfaces can benefit from a static version of the generic subdi-

vision algorithm in the parameter space of the surface. This works either

when trimming a surface by another one using an intersection algorithm

or when trimming a self-intersecting surface by removing its “bad” regions.

Second, we show how the medial curve computation of rational curves can

be embedded into an incremental process to dynamically maintain a Voronoi

diagram of rational curves, using arrangement computation.

7.1 Trimming of parametric surfaces

In most CAD systems, a trimmed parametric surface is defined by two

things: the control information of the surface itself and the control informa-

tion of its trimming curves, which are usually defined as parametric curves

in the parameter space of the surface. Often, trimmed parametric surfaces

cause problems in the context of data exchange between CAD systems, sur-

face evaluation/rendering, and grid/mesh generation.

The problem of trimming surfaces has been approached by two distinct ways.

The first family of methods consists in computing a piecewise model which

union of patches corresponds to the trimmed surface (e.g. in [9]). The other

139

140 CHAPTER 7. APPLICATIONS

Figure 7.1: A self-intersecting pipe obtained in a CAD process.

major family of methods use ray tracing techniques (possibly exploiting the

GPU, [61, 74]) to render the surface resulting from the trimming process.

Trimmed surfaces are now used as a standard tool for modeling complex

objects, in various areas, such as computer animation or CAD modeling.

Several software systems (Maya, Lightwave, Catia, see chapter 2) have spe-

cific tools to define and to render trimmed surfaces. The most popular

technique to define a trimmed surface is to introduce a base parametric sur-

face and to specify the trimming area by a closed parametric curve. The

orientation of the trimming curve determines its inner and outer parts. The

trimming techniques using Nurbs and other parametric objects usually re-

quire a re-parameterization step in order to obtain a correct visual result.

Although the trimming technique based on parametric curves is very popu-

lar, it has some severe limitations. For instance, the trimming curve can not

self-intersect, and trimming area is a simple hole. It means that for every

hole one wants to model, he/she needs to define the corresponding trimming

curve on the surface. Furthermore, it is well known that set-theoretic oper-

ations on B-Rep models and on parametric surfaces suffer from the lack of

robustness, and unwanted holes and cracks often appear when performing

trimming operations.

Using an arrangement, one can easily remedy these limitations.

Another context in which the problem is even more crucial is the verification

7.1. TRIMMING OF PARAMETRIC SURFACES 141

of the output models of CAD constructions such as ones found in software

cited above. Let us consider for example the pipe shown in figure 7.1,

obtained by extruding a base curve along a path. To be able to use this

model in a simulation or as a part of a design process that could serve as an

input for a CAM system, it is very important to check whether the model

self-intersects or not. If so, identifying and removing the wrong regions

created by the self-intersection is important.

Again, using an arrangement, one can remedy this situation.

Figure 7.3b shows the self intersection curves in the parameter space of our

pipe, which top view is shown in figure 7.3a.

Let us outline the method which allows to compute the trimmed regions.

This is an adaptation of the algorithm 4.1 to handle the verification of the

mapping of the regions in euclidean space.

The arrangement is run in the parameter space of the parametric surface

and objects are self-intersection curves which can have any representation

among implicit, parametric or piecewise linear.

Remark 7.1: Note that thanks to the genericity of our subdivision arrange-

ment method, one can obtain the regions whatever the technique used to

get the self-intersection curves. •

(a) Computing the self-intersection cur-
ves as implicit curves in parameter
space.

(b) The (intersecting) self-intersection
curves can be dealt with in the parame-
ter space using an arrangement.

Figure 7.2: Trimming self-intersection parts of a parametric surface using
arrangements.

142 CHAPTER 7. APPLICATIONS

Remark 7.2: Since self-intersection curves of an object or intersection cur-

ves of two objects that define the trimming are computed for once and for

all, there is no need to maintain the arrangement structure dynamically. The

static version of the arrangement algorithm is therefore completely adapted.•

Algorithm 7.1: A generic subdivision algorithm.

Input: A set of curves C and the parameter space D0 ⊂ R2.

Output: a list of regions defined by C.

Create a quadtree Q and set its root to D0;

Create a list of cells L and initialize it with [D0];

while L 6= ∅ do
c = pop(L) ;

if regular(C, c) and map regular(C, c) then
Q ← topology(O, c) ;

else
L ← subdivide(O, c) ;

end

end

return fusion(Q) ;

The regularity test of algorithm 7.1 is enriched with another one which has

different meaning depending on whether the trimming process implies one

or two objects:

Figure 7.3: Computing the arrangement in parameter space controlling the
mapping of defined regions allows to obtain trimmed regions even with self-
intersection curves in degenerate configuration.

7.2. VORONOI DIAGRAM OF RATIONAL CURVES 143

• In the case of a self-intersection process, this additional regularity test

is optional.

• In the case of an intersection process, this additional regularity test

checks whether the images s1(c) and s2(c) of the subdivision cell c by

the maps defining surfaces S1 and S2 do not intersect each other.

Whenever these tests are fulfilled and the curves are regular as defined in

section 5.1.1, we obtain the regions defined by the (self-)intersection which

can be queried by various means (such as point location) and is exact by

exploiting the map whenever a query is performed.

7.2 Voronoi diagram of rational curves

Computing the Voronoi diagram of a set of objects is a famous problem

with many applications, especially in motion planning. If the problem is

well handled when the input is a set of points (called Voronoi sites, see

figure 7.4), computing the diagram of a set of curves causes many problems,

overviewed in [7].

Given a set O of n objects, the associated Voronoi diagram subdivides Rd

into regions, each region consisting of the points that are closest to one of

the objects. The set of all interior points that have equal minimum distance

(a) Set of input points P. (b) The Voronoi diagram Vor(P).

Figure 7.4: The Voronoi diagram of a set of points.

144 CHAPTER 7. APPLICATIONS

(a) A Voronoi diagram Vor(Oi−1). (b) Inserting a new object Oi.

(c) Creating new vertices. (d) Resulting diagram Vor(Oi−1).

Figure 7.5: Incremental construction of a Voronoi diagram of line segments.

from at least two objects is called the skeleton Skel(O) and the Voronoi

diagram is denoted Vor(O).

Incremental algorithms (see discussion in chapter 3) can be used to dynam-

ically maintain the Voronoi diagram of a set of objects. When adding a

new object Oi into a structure Vor(Oi) (figure 7.5(b)), the algorithm basi-

cally behaves as follows: 1. Compute the conflict skeleton (see figure 7.5(c)).

2. Create a new vertex at each point of the conflict skeleton. 3. Remove ver-

tices, edges and portions of edges that belong to Skel(Oi−1) ∩ Vor(Oi,Oi).

4. Connect the new vertices as to form the boundary of the new region (see

figure 7.5(d)).

Affine diagrams, i.e. diagrams whose cells are convex polygons, are well

understood. The situation is very different for curved Voronoi diagrams,

which arise in various contexts where the objects are not punctual and/or

7.2. VORONOI DIAGRAM OF RATIONAL CURVES 145

the distance is not the Euclidean distance.

The distance metric used to compute curved diagram is usually a medial

object computation. The problem of bisector curves has been studied in

[39, 40, 41, 42, 47] (see figure 7.6).

Computing the diagram of non trivial input curved objects implies to (1) ef-

ficiently carry out many operations such as computing the bisector curve

of two input objects (2) finding all intersections between two input objects.

For (1), we rely on the formulas given by Elber in [40]. For (2), we solve

systems of arbitrary polynomial equation [80].

Let us overview how to use the dynamic subdivision arrangement algorithm

in order to compute a Voronoi diagram of a set of rational curves.

1. Each time an object Ok is inserted, we retrieve the set of regions which

conflicts with Ok. This is done by traversing the current augmented influence

graph, checking for conflicts each node using the segmentation structure

associated to the region contained in the node. This yields a set of conflicting

regions {Ri}.

2. For each site Oi of which Ri is the corresponding region, we compute the

medial curve Mi of Ok and Oi and intersect it with Ri (that is, we consider

the half-part of Mi which lies in Ri). Mi is an implicit curve in the parameter

space of Ok and Oi. We insert Mi into the current arrangement, yielding

the new region Ri
k. Note that this insertion reduces Ri (Ri = Ri −Ri

k).

3. Finally, we merge the set of regions created by Ok to get the region

corresponding to this site (Rk =
⋃

Ri
k).

Example 7.1: Figure 7.6(a) shows the medial curve of two curves C1 and

C2. It divides the space into two regions R1 and R2. If C1 (resp. C2) is

a Voronoi site, R1 (resp. R2) is the corresponding region. The Voronoi

diagram corresponding to the set of objects O2 with chronological sequence

Σ = {C1, C2} is denoted Vor(O2).

1. C3 is inserted into Vor(O2). The set of regions conflicting with it is

{R1, R2} (see figure 7.6(b)).

2. The medial curve of C1 (resp. C2) and C3 is computed and intersected

146 CHAPTER 7. APPLICATIONS

R1

R2

C1

C2

(a) The medial curve of two rational cur-
ves defines two regions.

R1

R2

C1

C2

C3

(b) Inserting a new object in the dia-
gram: retrieve regions in conflict.

R1

R2

C1

C2

C3
R1

3

R2
3

(c) Compute corresponding medial cur-
ves.

R1

R2

R3

C1

C2

C3

(d) Maintain the arrangement of medial
curves.

Figure 7.6: A step in the dynamic computation of a Voronoi diagram of
rational curves.

with R1 (resp. R2). The yields the upper (resp. lower) half curve M1 (resp.

M2) in figure 7.6(c). M1 (resp. M2) is inserted in the current arrangement

to obtain the region R1
3 (resp. R2

3) (see figure 7.6(c)).

3. R1
3 and R2

3 are merged to get R3, the Voronoi region defined by C3. �

Remark 7.3: [64] addresses the problem of computing a Voronoi cell of

rational planar curves. It contains in particular some information for com-

puting the intersection of medial curves by splitting them into monotone

pieces, applying trimming constraints and a lower envelope computation. •

Chapter 8

Axel algebraic geometric modeler

Axel [108] is an algebraic geometric modeler which allows the visualization

and manipulation of geometric objects with algebraic representation such as

implicit or parametric curves or surfaces.

Its main features are topology, interpolation, approximation, intersection,

self-intersection and arrangement computation of implicit and parametric

curves and surfaces.

We expose objects and tools both from a user point of view, presenting the

software graphical, script and file interfaces, and from a developer point of

view, presenting internal hierarchies of data structures used to achieve both

genericity and efficiency, as well as the plugin system which allows anyone

to extend the software’s capabilities or wrap an external library to use the

application as its graphical frontend.

Current geometric modelers focus on discrete representations which present

many advantages: they are easy to understand, easy to manipulate, easy

to render. For all these reasons, meshes are models of choice for many

users from beginners to confirmed designers and if they are suitable in many

situations they present one major weakness: they are approximate and the

amount of data is closely related to the desired accuracy.

On the other hand, industry or researchers use non linear geometric models

to represent physical shapes or phenomena. Therefore, models need a more

accurate representation which implies a computational difficulty but a re-

147

148 CHAPTER 8. AXEL ALGEBRAIC GEOMETRIC MODELER

duced amount of data. Implicit or parametric curves and surfaces are such

geometric objects with a very compact representation.

Computer Algebra Systems (CAS) have an obvious need of visualization fa-

cilities for such objects. Even though some existing solutions allow to display

mathematical objects, they do not propose an interaction with it, they have

no edition support. MapleTM and MathematicaTM are such applications

with built in interactive plotting functionalities but they give unsatisfying

results mainly for singular points or singular curves. Singular [59] is dedi-

cated to polynomial computations with special emphasize on the needs of

handling singularities. It has a connection with Surf which provides static

images and lacks interaction. We finally mention [51], one of the first in-

dependent graphic tool aimed at being driven by an external CAS for the

visualization of mathematical surfaces.

The visualization of geometric objects having mathematical representation

such as curves or surfaces has been investigated for many years in many re-

search areas such as computational or algebraic geometry. Existing methods

usually depend on the nature of objects: while parametric models may be

evaluated on grids, the visualization of implicit surfaces has led to two types

of solutions. The most widespread one is the ray tracing method [32, 73]

which is convenient in the case of implicit curves or surfaces. The principal

inconvenient is that produced images are static, i.e. they are computed for

a given viewpoint and changing either position or orientation of the object

or of the user implies to recompute a picture. The other solution consists

in computing a piecewise linear approximation of the object and then to

dynamically display it. While marching cube methods [79, 91] usually are

time consuming and may produce uncertified results, new techniques guar-

antee the topological structure of curves and surfaces even in singular cases

[4, 5, 35, 57].

Axel aims at providing a unified framework for both the visualization and

manipulation of geometric objects with algebraic representation, manipu-

lating exact data to provide certified results even when the context requires

an approximation.

The application is designed to be either used standalone or connected to-

gether with external tools and therefore become a graphical frontend. Its

8.1. USER PERSPECTIVE 149

modular architecture using plugins makes easy the wrapping of external

libraries or the connection with other tools.

Following sections show the constant interaction between the geometric en-

tity and its algebraic representation which is dynamically manipulated in

the modeling environment.

8.1 User perspective

This section first overviews objects and tools provided in Axel. Then, it

shows how the user can interact with them through the graphical, script or

file interfaces.

8.1.1 Objects

Among elementary geometric entities such as points, planes etc. Axel aims

at providing an interface for the visualization and manipulation of curves

and surfaces with various representations: implicit, parametric or piecewise

linear.

8.1.1.1 Curves

Curves in two or three dimensions are widely used in computational mathe-

matics and geometric modeling either to build surfaces or to model surface

sections. They are the main ingredient of technical drawing software.

Implicit curves. Let f(x, y) be a polynomial in two variables with coef-

ficients in Q. If f is non-zero, then the real zero set of f is an algebraic

variety of dimension one or zero (a plane curve or isolated point(s)). Its

visualization is not straight-forward because of the difficulty to compute

a set of points (xi, yi) such that f(xi, yi) = 0. Moreover, detecting and

correctly handling singularities (i.e. points (x0, y0) such that f(x0, y0) =

∂xf(x0, y0) = ∂yf(x0, y0) = 0) represent a higher difficulty. For all these

reasons, the small amount of software used by mathematicians for the visu-

alization of implicit planar curves give unsatisfied results (especially in the

	Preface
	Introduction
	Algebraic preliminaries
	Bernstein basis
	Univariate Bernstein basis
	Multivariate Bernstein basis

	Bernstein solvers
	Univariate Bernstein solver
	Multivariate Bernstein solver

	Algebraic numbers
	Resultants

	Geometric preliminaries
	Curves
	Piecewise linear curves
	Parametric curves
	Implicit curves

	Surfaces
	Piecewise linear surfaces
	Parametric surfaces
	Implicit surfaces

	Solids
	Constructive representation
	Boundary representation
	Semi-algebraic sets

	Software
	Applications
	Toolkits

	Algorithmic preliminaries
	Generic framework
	Terminology
	Data structures

	Topology
	Intersection
	Arrangements

	A generic arrangement algorithm
	Computing regions
	Regularity
	Subdivision
	Topology
	Fusion

	Segmenting the boundary of a region
	Locating conflicts
	Updating regions

	Specialization for curves
	Implicit curves
	Regularity
	Regular domains
	Singular domains

	Topology
	Regular domains
	Singular domains

	Parametric curves
	Regularity
	Topology

	Image of an implicit curve
	Piecewise linear curves

	Specialization for surfaces
	Implicit surfaces
	Regularity
	Spatial implicit curves
	2-dimensional stratum
	1-dimensional stratum
	0-dimensional stratum

	Topology
	2-dimensional stratum
	1-dimensional stratum
	0-dimensional stratum

	Parametric surfaces
	Piecewise linear surfaces

	Applications
	Trimming of parametric surfaces
	Voronoi diagram of rational curves

	Axel algebraic geometric modeler
	User perspective
	Objects
	Curves
	Surfaces

	Tools
	Interface

	Developer perspective
	Framework
	Plugin system
	Kernel system

	Examples
	Topology
	Intersection
	Self-intersection
	Arrangement

	Summary and outlook
	Axel data formalism reference
	File architecture
	Objects
	Tools

	Axel kernel system: the Sisl case
	Kernel design
	Kernel implementation
	Example

	Axel plugin system: the Irit case
	Plugin design
	Plugin implementation
	Example

	A virtual modeling environment
	The principle of 3D imaging
	Hardware
	Software
	Design

	Bibliography
	Index

