Algebraic methods for geometric modeling

Julien Wintz

PhD defense, Sophia-Antipolis, May 5th 2008

・ 同 ト ・ ヨ ト ・ ヨ

Domain

Solids

- Constructive representation
- Boundary representation
- Curves and surfaces
 - Linear representations
 - Non-linear representations

CSG

- Primitive solids
- Boolean operations
- Rigid motions

B-Rep • Vertices • Edges • Faces

・ロン ・四 と ・ ヨ と ・ ヨ と …

~

Domain

Solids

- Constructive representation
- Boundary representation
- Curves and surfaces
 - Linear representations
 - Non-linear representations

Linear representations

- Meshes
- Inaccurate approximation
- Huge amount of data

Non-linear representations

- Parametric or implicit
- Accurate approximation

・ 同 ト ・ ヨ ト ・ ヨ ト

Compact

Problem

- Perform boolean operations on curves and surfaces
- Describe resulting shapes by their boundary

- 4 同 2 4 日 2 4 日 2 4

-

Problem

- Perform boolean operations on curves and surfaces
- Describe resulting shapes by their boundary

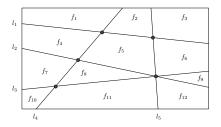


Figure: an arrangement of lines.

・ 一 ・ ・ ・ ・ ・ ・

э

-

Problem

- Perform boolean operations on curves and surfaces
- Describe resulting shapes by their boundary
- Representation difficult to manipulate
 - Topology
 - Intersection
 - Self-intersection
- Need of algebraic tools
 - Polynomial solving
 - Algebraic numbers
 - Resultants

Problem

- Perform boolean operations on curves and surfaces
- Describe resulting shapes by their boundary
- Representation difficult to manipulate
 - Topology
 - Intersection
 - Self-intersection
- Need of algebraic tools
 - Polynomial solving
 - Algebraic numbers
 - Resultants

< ∃ >

Previous work

Bibliography

G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.	1976.
J.L. Bentley and T.A. Ottmann. Algorithms for reporting and counting geometric intersections.	1979.
L. Gonzalez-Vega and I. Necula. Efficient topology determination of [] algebraic plane curves.	2002.
V. Milenkovic and E. Sacks. An approximate arrangement algorithm for semi-algebraic curves.	2006.
Iddo Hanniel and Ron Wein. Computation of Arrangements of Bezier Curves.	2007.

Sweep

- Focuses on critical points
- Implies projection
- Non adaptive scheme
- Does not easily extend to higher dimension

Subdivision

- Detects critical points
- Avoids projection
- Adaptive scheme
- Extends easily to higher dimension

Previous work

Bibliography

G.E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition.	1976.
J.L. Bentley and T.A. Ottmann. Algorithms for reporting and counting geometric intersections.	1979.
L. Gonzalez-Vega and I. Necula. Efficient topology determination of [] algebraic plane curves.	2002.
V. Milenkovic and E. Sacks. An approximate arrangement algorithm for semi-algebraic curves.	2006.
Iddo Hanniel and Ron Wein. Computation of Arrangements of Bezier Curves.	2007.

Sweep

- Focuses on critical points
- Implies projection
- Non adaptive scheme
- Does not easily extend to higher dimension

Subdivision

- Detects critical points
- Avoids projection
- Adaptive scheme
- Extends easily to higher dimension

・ロン ・四 と ・ ヨ と ・ ヨ と …

Approach

- Generic algorithm
 - Many dimensions
 - Heterogeneous
 - Static or dynamic
 - Subdivision scheme
- Abstract algorithm
 - Generic algorithm produces local problems
 - Isolation: Subdivision criteria
 - Solving: Local treatment

I ≡ →

Validation

- Specialization for curves
 - Non singular configurations
 - Singular configurations
- Specialization for surfaces
 - 2-dimensional strata
 - 1-dimensional strata
 - 0-dimensional strata
- Implementation within Axel

• = • •

Outline

1 Generic algorithm

Computing regions Locating conflicts Updating regions

2 Specialization for curves

Implicit curves Parametric curves

3 Specialization for surfaces

Implicit surfaces Parametric surfaces

An algebraic geometric modeler

User perspective Developer perspective

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Outline

1 Generic algorithm

Computing regions Locating conflicts Updating regions

- Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

▲□► ▲ □► ▲

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic incremental randomized dynamic algorithm

generic: works for different natures of objects.

incremental: objects are processed one by one.

randomized: data are inserted in random order.

semi-dynamic: new objects can be inserted.

・ 一 ・ ・ ・ ・ ・ ・

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic incremental randomized dynamic algorithm

generic: works for different natures of objects.

incremental: objects are processed one by one.

randomized: data are inserted in random order.

semi-dynamic: new objects can be inserted.

・ 一 ・ ・ ・ ・ ・ ・

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic incremental randomized dynamic algorithm

generic: works for different natures of objects.

incremental: objects are processed one by one.

randomized: data are inserted in random order.

semi-dynamic: new objects can be inserted.

A (1) > A (2) > A

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic incremental randomized dynamic algorithm

- generic: works for different natures of objects.
- incremental: objects are processed one by one.
- randomized: data are inserted in random order.
- semi-dynamic: new objects can be inserted.

A 3 5 4

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Outline

 Generic algorithm Computing regions Locating conflicts Updating regions
 Specialization for curves Implicit curves Parametric curves
 Specialization for surfaces

Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

▲□ ► < □ ► </p>

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

Input: an object o Output: a list of regions create an quadtree Q; create a list of cells C : $\mathcal{C} \leftarrow root(\mathcal{Q})$; while $\mathcal{C} \neq \emptyset$ do $c = \operatorname{pop}(\mathcal{C})$; if regular(o, c) then $\mathcal{Q} \leftarrow \text{topology}(o, c)$; else $\mathcal{C} \leftarrow \text{subdivide}(o, c)$; end end **return** fusion(Q) :

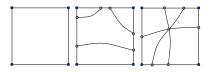


Figure: Regular cells.

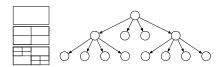


Figure: Subdivision algorithm.

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

The following operations remain to be clarified:

- **regularity:** the *specific* operation which checks if regions can be computed from an object within a cell of the subdivision, i.e. if the object is regular in the cell.
- **subdivide:** the *generic* operation which subdivides a cell into four children, saving computation effort.
- **topology:** the *specific* operation which computes regions in a regular cell.
- **fusion:** the *generic* operation which merges regions stored in each leave node of the tree.

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

The following operations remain to be clarified:

regularity: the *specific* operation which checks if regions can be computed from an object within a cell of the subdivision, i.e. if the object is regular in the cell.

- **subdivide:** the *generic* operation which subdivides a cell into four children, saving computation effort.
- **topology:** the *specific* operation which computes regions in a regular cell.
- **fusion:** the *generic* operation which merges regions stored in each leave node of the tree.

< 口 > < 同 > < 三 > < 三

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

The following operations remain to be clarified:

- **regularity:** the *specific* operation which checks if regions can be computed from an object within a cell of the subdivision, i.e. if the object is regular in the cell.
- **subdivide:** the *generic* operation which subdivides a cell into four children, saving computation effort.
- **topology:** the *specific* operation which computes regions in a regular cell.
- **fusion:** the *generic* operation which merges regions stored in each leave node of the tree.

< 口 > < 同 > < 三 > < 三

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

The following operations remain to be clarified:

- **regularity:** the *specific* operation which checks if regions can be computed from an object within a cell of the subdivision, i.e. if the object is regular in the cell.
- **subdivide:** the *generic* operation which subdivides a cell into four children, saving computation effort.
- **topology:** the *specific* operation which computes regions in a regular cell.
- **fusion:** the *generic* operation which merges regions stored in each leave node of the tree.

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivision

The following operations remain to be clarified:

- **regularity:** the *specific* operation which checks if regions can be computed from an object within a cell of the subdivision, i.e. if the object is regular in the cell.
- **subdivide:** the *generic* operation which subdivides a cell into four children, saving computation effort.
- **topology:** the *specific* operation which computes regions in a regular cell.
- **fusion:** the *generic* operation which merges regions stored in each leave node of the tree.

- 4 同 6 4 日 6 4 日 6

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Regularity

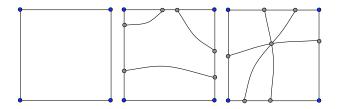


Figure: Allowed configurations of a cell of subdivision.

Given the representation of an object:

- compute the intersection of the object with the cell
- define and compute (x|y)-critical points
- define and compute *singular* points

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Subdivide

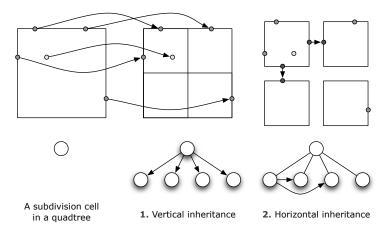


Figure: Inheriting computed information.

<ロ> <同> <同> < 回> < 回>

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Topology

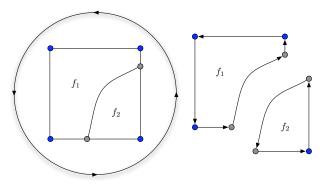


Figure: Generic scheme to compute a region from information on the border of a subdivision cell.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

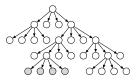
з

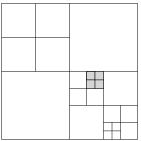
Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the quadtree
Output: a list of regions
if isLeaf(n) then
 return merge(n) ;
else
 $\mathcal{L}_1 = \text{fusion}(n.ne) \cup$ fusion(n.nw) ;
 $\mathcal{L}_2 = \text{fusion}(n.se) \cup$ fusion(n.sw) ;
 return merge($\mathcal{L}_1 \cup \mathcal{L}_2$) ;

end





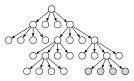
▲□ ► < □ ► </p>

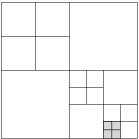
Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the quadtree
Output: a list of regions
if isLeaf(n) then
 return merge(n) ;
else
 $\mathcal{L}_1 = \text{fusion}(n.ne) \cup$ fusion(n.nw) ;
 $\mathcal{L}_2 = \text{fusion}(n.se) \cup$ fusion(n.sw) ;
 return merge($\mathcal{L}_1 \cup \mathcal{L}_2$) ;

end





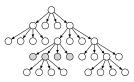
- 4 同 🕨 - 4 目 🕨 - 4 目

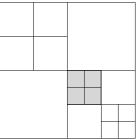
Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the quadtree
Output: a list of regions
if isLeaf(n) then
 return merge(n) ;
else
 $\mathcal{L}_1 = \text{fusion}(n.ne) \cup$ fusion(n.nw) ;
 $\mathcal{L}_2 = \text{fusion}(n.se) \cup$ fusion(n.sw) ;
 return merge($\mathcal{L}_1 \cup \mathcal{L}_2$) ;

end





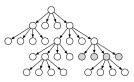
< 口 > < 同 > < 三 > < 三

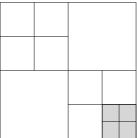
Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the quadtree
Output: a list of regions
if isLeaf(n) then
 return merge(n) ;
else
 $\mathcal{L}_1 = \text{fusion}(n.ne) \cup$ fusion(n.nw) ;
 $\mathcal{L}_2 = \text{fusion}(n.se) \cup$ fusion(n.sw) ;
 return merge($\mathcal{L}_1 \cup \mathcal{L}_2$) ;

end



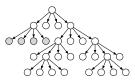


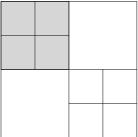
A (1) > A (2) > A

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the guadtree **Output:** a list of regions if isLeaf(n) then return merge(n); else $\mathcal{L}_1 = \texttt{fusion}(n.ne) \cup$ fusion(n.nw) ; $\mathcal{L}_2 = \texttt{fusion}(n.se) \cup$ fusion(n.sw); return merge($\mathcal{L}_1 \cup \mathcal{L}_2$); end



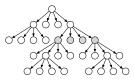


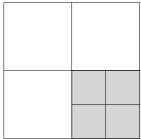
• □ > • □ > • □ > • □ > •

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the guadtree **Output:** a list of regions if isLeaf(n) then return merge(n); else $\mathcal{L}_1 = \texttt{fusion}(n.ne) \cup$ fusion(n.nw) ; $\mathcal{L}_2 = \texttt{fusion}(n.se) \cup$ fusion(n.sw); return merge($\mathcal{L}_1 \cup \mathcal{L}_2$); end





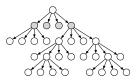
A (1) > A (2) > A

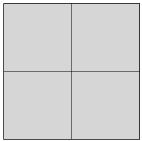
Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the guadtree **Output:** a list of regions if isLeaf(n) then return merge(n); else $\mathcal{L}_1 = \texttt{fusion}(n.ne) \cup$ fusion(n.nw) ; $\mathcal{L}_2 = \texttt{fusion}(n.se) \cup$ fusion(n.sw); return merge($\mathcal{L}_1 \cup \mathcal{L}_2$);

end



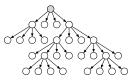


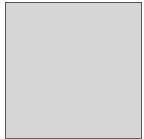
A (1) > A (2) > A

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Fusion

Input: a node n of the guadtree **Output:** a list of regions if isLeaf(n) then return merge(n); else $\mathcal{L}_1 = \texttt{fusion}(n.ne) \cup$ fusion(n.nw) ; $\mathcal{L}_2 = \texttt{fusion}(n.se) \cup$ fusion(n.sw); return merge($\mathcal{L}_1 \cup \mathcal{L}_2$); end





▲□ ► < □ ► </p>

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Outline

 Generic algorithm Computing regions Locating conflicts Updating regions
 Specialization for curves Implicit curves Parametric curves
 Specialization for surfaces Implicit surfaces

Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

The region segmentation

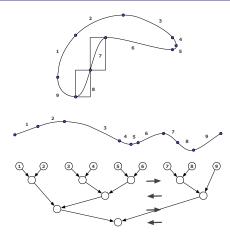


Figure: Building the region segmentation.

-

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Querying the segmentations

```
Input: two segmentation nodes n_1 and n_2
Output: a list of bounding boxes
create a list of bounding boxes \mathcal{L};
if !intersects(n_1, n_2) then
        return \mathcal{L}:
end
if isLeaf(n_1) and isLeaf(n_2) then
        \mathcal{L} \ll \text{intersect}(n_1, n_2) :
else if isLeaf(n_1) and !isLeaf(n_2) then
        \mathcal{L} \ll \operatorname{query}(n_1, \operatorname{left}(n_2));
        \mathcal{L} \ll \operatorname{query}(n_1, \operatorname{right}(n_2));
else if !isLeaf(n_1) and isLeaf(n_2) then
        \mathcal{L} \ll \text{query}(\text{left}(n_1), n_2);
        \mathcal{L} \ll \operatorname{query}(\operatorname{right}(n_1), n_2);
else
        \mathcal{L} \ll \operatorname{query}(\operatorname{left}(n_1), \operatorname{left}(n_2));
        \mathcal{L} \ll \operatorname{query}(\operatorname{left}(n_1), \operatorname{right}(n_2));
        \mathcal{L} \ll \operatorname{query}(\operatorname{right}(n_1), \operatorname{left}(n_2));
        \mathcal{L} \ll \operatorname{query}(\operatorname{right}(n_1), \operatorname{right}(n_2));
return \mathcal{L} :
```

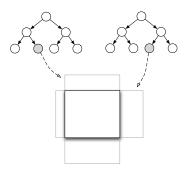


Figure: The segmentation query.

< 口 > < 同 > < 三 > < 三

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Outline

1 Generic algorithm

Computing regions Locating conflicts Updating regions

- 2 Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Conflicting regions

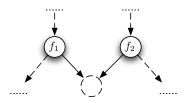


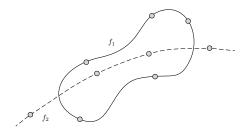
Figure: Updating the augmented influence graph.

- Resolved by computing the intersection of conflicting regions
- Append it to the graph, as a child of corresponding nodes

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region

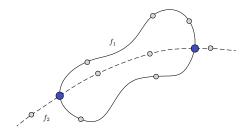


・ 一 ・ ・ ・ ・ ・ ・

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



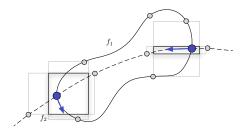
< 47 ▶

< ∃ → <

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region

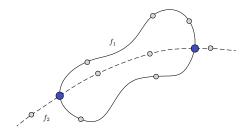


・ 一 ・ ・ ・ ・ ・ ・

Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

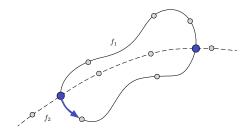
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

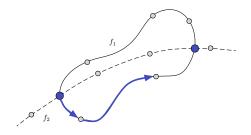
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

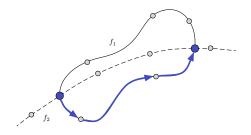
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

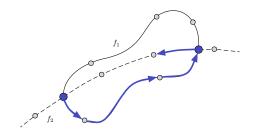
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

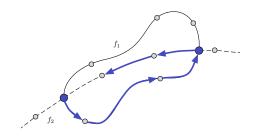
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

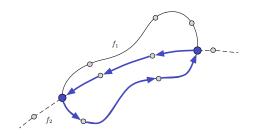
- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

A generic boolean operation

- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

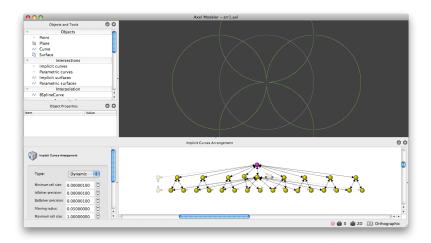
A generic boolean operation

- Walk-about on the border of regions
- Computing intersection points
- Computing navigation information
- Computing the resulting region



Specialization for curves Specialization for surfaces An algebraic geometric modeler Computing regions Locating conflicts Updating regions

Demonstration



《曰》《聞》《臣》《臣》

-

Implicit curves Parametric curves

Outline

- Generic algorithm Computing regions Locating conflicts Updating regions
- Specialization for curves Implicit curves Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

< 🗇 > < 🖃 >

Implicit curves Parametric curves

Specialization

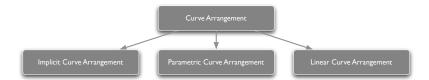
Generic algorithm

- Global problem
- Any representation

Specific algorithm

- Local problem
- One representation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Implicit curves Parametric curves

Specialization

Characterize the situation:

- Empty cells
- Non-singular cells
- Singular cells

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

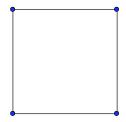
з

Implicit curves Parametric curves

Specialization

Characterize the situation:

- Empty cells
- Non-singular cells
- Singular cells



▲ □ ▶ ▲ □ ▶ ▲

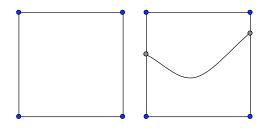
э

Implicit curves Parametric curves

Specialization

Characterize the situation:

- Empty cells
- Non-singular cells
- Singular cells



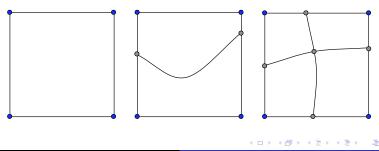
・ 一 ・ ・ ・ ・ ・ ・

Implicit curves Parametric curves

Specialization

Characterize the situation:

- Empty cells
- Non-singular cells
- Singular cells



Implicit curves Parametric curves

Outline

 Generic algorithm Computing regions Locating conflicts Updating regions

Specialization for curves Implicit curves

Parametric curves

Specialization for surfaces Implicit surfaces Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

< 🗇 > < 🖃 >

Implicit curves Parametric curves

Definitions

Monomial basis

We denote by $f_k(x, y) \in \mathbb{R}[x, y]$ the polynomial defining the implicit curve corresponding to the object o_k .

Bernstein basis

The specific operations will be performed on the Bernstein representation of f_k on $D = [a, b] \times [c, d]$:

$$f_k(x,y) = \sum_{i=0}^{d_{x,k}} \sum_{j=0}^{d_{y,k}} b_{i,j}^k B_{d_{x,k}}^i(x;a,b) B_{d_{y,k}}^j(y;c,d),$$

where $B_d^i(x; u, v) = {d \choose i} (x - u)^i (v - x)^{d-i} (v - u)^{-d}$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Implicit curves Parametric curves

Definitions

Critical points

Solve with multivariate subdivision solver:

$$\left\{egin{array}{ccc} f_k(x,y)&=&0\ \partial_x f_k(x,y)&=&0\ \end{array}
ight.$$
 and $\left\{egin{array}{ccc} f_k(x,y)&=&0\ \partial_y f_k(x,y)&=&0\ \end{array}
ight.$

Singular points

Solve with multivariate subdivision solver:

$$\left\{egin{array}{ccc} f_k(x,y)&=&0\ \partial_x f_k(x,y)&=&0\ \partial_y f_k(x,y)&=&0\ \end{array}
ight.$$

イロト イポト イヨト イヨト

Implicit curves Parametric curves

Definitions

Curve-Cell intersection points

Solve with univariate subdivision solver:

- $f(x, y_{min})$ and $f(x, y_{max})$ in x.
- $f(x_{min}, y)$ and $f(x_{max}, y)$ in y.

Curve-Curve intersection points

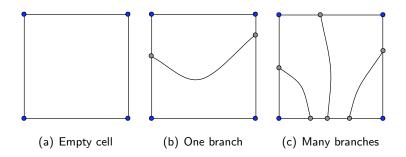
Solve with multivariate subdivision solver:

$$\left\{ \begin{array}{rcl} f_k(x,y) &=& 0\\ f_l(x,y) &=& 0 \end{array} \right.$$

(人間) ト く ヨ ト く ヨ ト

Implicit curves Parametric curves

Regularity criteria: non singular cells



Implicit curves Parametric curves

Regularity criteria: non singular cells

Definition

A domain \mathcal{D} is *x*-regular (resp. *y*-regular) for \mathcal{C} if \mathcal{C} is smooth in \mathcal{D} and it has no vertical (resp. horizontal) tangents. This is algebraically formulated as the following condition: $\mathcal{Z}(f, \partial_y f) \cap \mathcal{D} = \emptyset$ (resp. $\mathcal{Z}(f, \partial_x f) \cap \mathcal{D} = \emptyset$).

Proposition

Let C = Z(f). If D is a *x*-regular domain, the topology of C in D is uniquely determined by its intersection $C \cap \partial D$ with the boundary of D.

Implicit curves Parametric curves

Regularity criteria: non singular cells

Definition

For a point $p \in C \cap \partial D$, we define its x-index.

- + if C enters D locally: there exists a local left (resp. right) tangent lying outside (resp. inside) D.
- if C exits D locally: there exists a local left (resp. right) tangent lying inside (resp. outside) D.
- +- if C is tangent to D and does not enter it locally: $C \{p\}$ locally lies outside C.
- -+ if C is tangent to D and does not exit it locally: $C \subset D$.

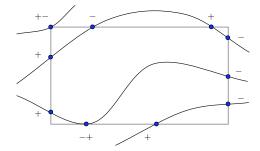
イロト イポト イヨト イヨト

Implicit curves Parametric curves

Regularity criteria: non singular cells

Lemma

If C is x-regular in D, then a branch of $C \cap D$ connects a point p of x-index + to a point q of x-index -, such that $x_p < x_q$.

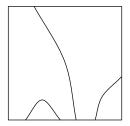


A ►

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
          a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
             \mathcal{C} in \mathcal{D}
```

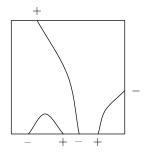


・ 同 ト ・ ヨ ト ・ ヨ

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
            a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
               \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
```

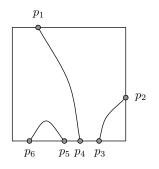


・ 同 ト ・ ヨ ト ・ ヨ

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
              a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
                  \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D}) :
```

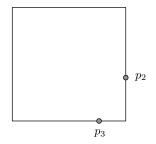


- 4 同 ト 4 ヨ ト 4 ヨ ト

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
               a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
                   \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
\mathcal{L} \ll \operatorname{order} (\mathcal{C} \cap \partial \mathcal{D}) :
while \mathcal{L} \neq \emptyset do
       choose(p,q);
       \mathcal{B} \leftarrow \mathfrak{b} = [p,q];
       \mathcal{L} = \mathcal{L} \setminus p;
       \mathcal{L} = \mathcal{L} \setminus q;
end
```

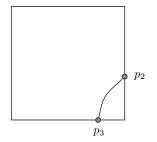


□ > < = > <

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
               a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
                   \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D}) :
while \mathcal{L} \neq \emptyset do
       choose(p,q);
       \mathcal{B} \leftarrow \mathfrak{b} = [p,q];
       \mathcal{L} = \mathcal{L} \setminus p;
       \mathcal{L} = \mathcal{L} \setminus q;
end
```

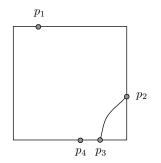


/□ ▶ < 글 ▶ < 글

Implicit curves Parametric curves

Topology: non singular cells

```
Input: an algebraic curve C and
               a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
                   \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D}) :
while \mathcal{L} \neq \emptyset do
       choose(p,q);
       \mathcal{B} \leftarrow \mathfrak{b} = [p,q];
       \mathcal{L} = \mathcal{L} \setminus p;
       \mathcal{L} = \mathcal{L} \setminus q;
end
```

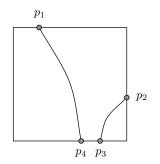


□ > < = > <

Implicit curves Parametric curves

Topology: non singular cells

Input: an algebraic curve C and a domain \mathcal{D} **Output**: the set \mathcal{B} of branches of \mathcal{C} in \mathcal{D} $index(\mathcal{C} \cap \partial \mathcal{D})$: $\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D})$: while $\mathcal{L} \neq \emptyset$ do choose(p,q); $\mathcal{B} \leftarrow \mathfrak{b} = [p,q]$; $\mathcal{L} = \mathcal{L} \setminus p$; $\mathcal{L} = \mathcal{L} \setminus q$; end

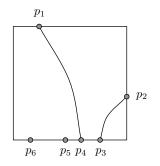


▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Implicit curves Parametric curves

Topology: non singular cells

Input: an algebraic curve C and a domain \mathcal{D} **Output**: the set \mathcal{B} of branches of \mathcal{C} in \mathcal{D} $index(\mathcal{C} \cap \partial \mathcal{D})$: $\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D})$: while $\mathcal{L} \neq \emptyset$ do choose(p,q); $\mathcal{B} \leftarrow \mathfrak{b} = [p,q]$; $\mathcal{L} = \mathcal{L} \setminus p$; $\mathcal{L} = \mathcal{L} \setminus q$; end

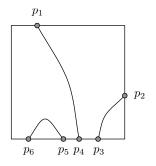


・ 同 ト ・ ヨ ト ・ ヨ

Implicit curves Parametric curves

Topology: non singular cells

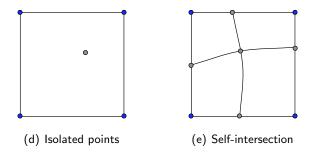
```
Input: an algebraic curve C and
               a domain \mathcal{D}
Output: the set \mathcal{B} of branches of
                   \mathcal{C} in \mathcal{D}
index(\mathcal{C} \cap \partial \mathcal{D}) :
\mathcal{L} \ll \operatorname{order}(\mathcal{C} \cap \partial \mathcal{D}) :
while \mathcal{L} \neq \emptyset do
       choose(p,q);
       \mathcal{B} \leftarrow \mathfrak{b} = [p,q];
       \mathcal{L} = \mathcal{L} \setminus p;
       \mathcal{L} = \mathcal{L} \setminus q;
end
```



・ 同 ト ・ ヨ ト ・ ヨ

Implicit curves Parametric curves

Regularity criteria: singular cells



A (1) > A (2) > A

э

Implicit curves Parametric curves

Regularity criteria: singular cells

Definition

A domain \mathcal{D} is simply singular for \mathcal{C} if $\mathcal{S} \cap \mathcal{D} = \{p\}$ and if the number n of half branches of \mathcal{C} at the singular point p is equal to $\#(\partial \mathcal{D} \cap \mathcal{C})$, the number of points of \mathcal{C} on the boundary of \mathcal{D} .

Proposition

Let \mathcal{D} be a simply singular domain. The topology of \mathcal{D} is conic, *i.e.* for any point p in the inside \mathcal{D} , $\mathcal{Z}(f) \cap \mathcal{D}$ can be deformed into $p \star (\partial \mathcal{D} \cap \mathcal{C})$.

How to count the number of branches ?

・ロト ・同ト ・ヨト ・ヨト

Implicit curves Parametric curves

Regularity criteria: singular cells

Definition

A domain \mathcal{D} is simply singular for \mathcal{C} if $\mathcal{S} \cap \mathcal{D} = \{p\}$ and if the number n of half branches of \mathcal{C} at the singular point p is equal to $\#(\partial \mathcal{D} \cap \mathcal{C})$, the number of points of \mathcal{C} on the boundary of \mathcal{D} .

Proposition

Let \mathcal{D} be a simply singular domain. The topology of \mathcal{D} is conic, *i.e.* for any point p in the inside \mathcal{D} , $\mathcal{Z}(f) \cap \mathcal{D}$ can be deformed into $p \star (\partial \mathcal{D} \cap \mathcal{C})$.

How to count the number of branches ?

< ロ > < 同 > < 回 > < 回 >

Implicit curves Parametric curves

Regularity criteria: singular cells

Definition (Topological degree)

The topological degree of F at p relative to D, denoted by deg[F, D, p], is defined by

$$deg[F, \mathcal{D}, p] = \sum_{\mathbf{x} \in \mathcal{D}: F(\mathbf{x}) = p} sign\left(det(J_F(\mathbf{x}))\right)$$

Theorem (Khimshiashvili)

Suppose that p is the only root of $\nabla f = 0$ in \mathcal{D} . Then the number N of real half branches at p of the curve defined by f(x, y) = f(p) is

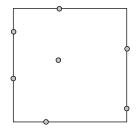
$$N = 2 \left(1 - \deg[\nabla f, \mathcal{D}, p] \right)$$

・ロト ・同ト ・ヨト ・ヨト

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end

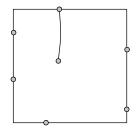


A 10

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end

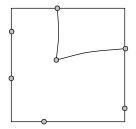


A 10

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end



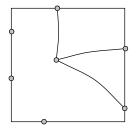
A 10

→ Ξ →

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end

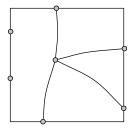


▲ □ ▶ ▲ □ ▶ ▲

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end

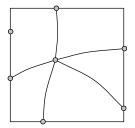


▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Implicit curves Parametric curves

Topology: singular cells

Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end

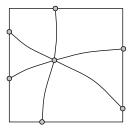


- 4 同 ト 4 ヨ ト 4 ヨ ト

Implicit curves Parametric curves

Topology: singular cells

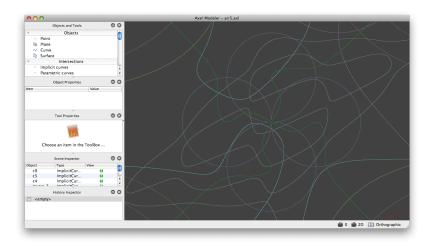
Input: an algebraic curve C and a domain DOutput: the set B of branches of C in D $Q = \{C \cap \partial D\}$; forall $q_i \in Q$ do $B \leftarrow [s, q_i]$; end



- 4 同 6 4 日 6 4 日 6

Implicit curves Parametric curves

Demonstration



-2

Implicit curves Parametric curves

Outline

 Generic algorithm Computing regions Locating conflicts Updating regions

- Specialization for curves Implicit curves Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces

An algebraic geometric modeler User perspective Developer perspective

< 🗇 🕨 < 🚍 🕨

Implicit curves Parametric curves

Definitions

Polynomial rational curve

A uniform rational polynomial curve is defined by the formula

$$x(t) = \begin{cases} x(t) \\ y(t) \end{cases}$$

where $x : \mathbb{R}[t] \mapsto \mathbb{R}$ and $y : \mathbb{R}[t] \mapsto \mathbb{R}$ are differentiable functions evaluated to obtain the image of $t \in \mathbb{R}[t]$ by c in \mathbb{R}^2 as the point $p_t = (x(t), y(t))$.

Implicit curves Parametric curves

Definitions

B-Spline curve

A B-Spline curve is defined by the formula

$$c(t) = \sum_{i=0}^{n} \mathbf{p}_{\mathbf{i}} B_{i,k,t}(t)$$

The complete representation of a B-spline curve consists of:

- n The number of vertices
- k The order
- **t** The knot vector: $\mathbf{t} = (t_1, t_2, \dots, t_{n+k})$
- **p** The control points: $p_{d,i}, d = 1 \dots dim, i = 1 \dots n$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implicit curves Parametric curves

Definitions

Critical points

Solve with univariate subdivision solver:

•
$$x'(t) = 0$$

•
$$y'(t) = 0$$

Self-intersection points

Solve with multivariate subdivision solver:

$$\begin{cases} x(t) - x(s) = 0\\ y(t) - y(s) = 0 \end{cases}$$

イロト イポト イヨト イヨト

-

Implicit curves Parametric curves

Definitions

Curve-Curve intersection points

Solve with multivariate subdivision solver:

$$\begin{cases} x_k(s) = x_l(t) \\ y_k(s) = y_l(t) \end{cases}$$

Curve-Cell intersection points

•
$$y(t) - y_{min} = 0$$
, $x_{min} \le x(t) \le x_{max}$

•
$$y(t) - y_{max} = 0$$
, $x_{min} \le x(t) \le x_{max}$

•
$$x(t) - x_{min} = 0, \ y_{min} \le y(t) \le y_{max}$$

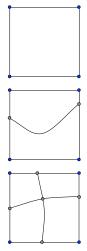
•
$$x(t) - x_{max} = 0, \ y_{min} \le y(t) \le y_{max}$$

イロト イポト イヨト イヨト

-

Implicit curves Parametric curves

Regularity criteria and topology computation

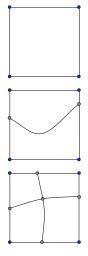


• Check that $\mathcal{C} \cap \partial \mathcal{D} = \emptyset$

- Check that there is at most one critical point.
- Check that $#(\mathcal{C} \cap \partial \mathcal{D}) = 2.$
- Check that there is at most one self-intersection point *s*.
- Check that $\#(\mathcal{C} \cap \partial \mathcal{D}) = \star(s)$.

Implicit curves Parametric curves

Regularity criteria and topology computation

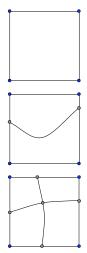


• Check that $\mathcal{C} \cap \partial \mathcal{D} = \emptyset$

- Check that there is at most one critical point.
- Check that $#(\mathcal{C} \cap \partial \mathcal{D}) = 2.$
- Check that there is at most one self-intersection point *s*.
- Check that $\#(\mathcal{C} \cap \partial \mathcal{D}) = \star(s)$.

Implicit curves Parametric curves

Regularity criteria and topology computation

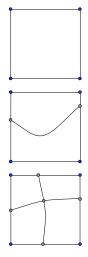


• Check that $\mathcal{C} \cap \partial \mathcal{D} = \emptyset$

- Check that there is at most one critical point.
- Check that $#(\mathcal{C} \cap \partial \mathcal{D}) = 2.$
- Check that there is at most one self-intersection point *s*.
- Check that $\#(\mathcal{C} \cap \partial \mathcal{D}) = \star(s)$.

Implicit curves Parametric curves

Regularity criteria and topology computation



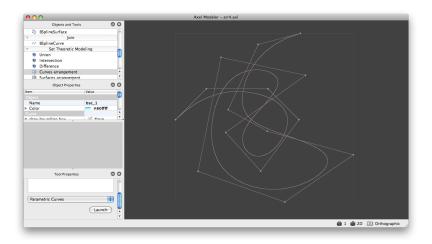
• Check that $\mathcal{C} \cap \partial \mathcal{D} = \emptyset$

- Check that there is at most one critical point.
- Check that $#(\mathcal{C} \cap \partial \mathcal{D}) = 2.$
- Check that there is at most one self-intersection point *s*.
- Check that $\#(\mathcal{C} \cap \partial \mathcal{D}) = \star(s)$.

< ロ > < 同 > < 回 > < 回 >

Implicit curves Parametric curves

Demonstration



-2

Implicit surfaces Parametric surfaces

Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces
 Implicit surfaces
 Parametric surfaces
- An algebraic geometric modeler User perspective Developer perspective

< 🗇 > < 🖃 >

Implicit surfaces Parametric surfaces

Specialization

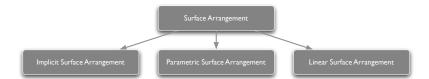
Generic algorithm

- Global problem
- Any representation

Specific algorithm

- Local problem
- One representation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >



Implicit surfaces Parametric surfaces

Specialization

Characterize the situation:

- Near a 2-dimensional stratum, the topology is the same as a hyperplane
- Near a 1-dimensional stratum, the topology is the same as a cylinder
- Near a 0-dimensional stratum, the topology is the same as a cone

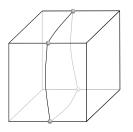
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Implicit surfaces Parametric surfaces

Specialization

Characterize the situation:

- Near a 2-dimensional stratum, the topology is the same as a hyperplane
- Near a 1-dimensional stratum, the topology is the same as a cylinder
- Near a 0-dimensional stratum, the topology is the same as a cone



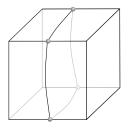
□ > < = > <

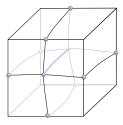
Implicit surfaces Parametric surfaces

Specialization

Characterize the situation:

- Near a 2-dimensional stratum, the topology is the same as a hyperplane
- Near a 1-dimensional stratum, the topology is the same as a cylinder
- Near a 0-dimensional stratum, the topology is the same as a cone





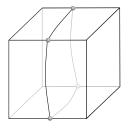
- 4 同 🕨 - 4 目 🕨 - 4 目

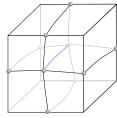
Implicit surfaces Parametric surfaces

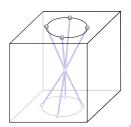
Specialization

Characterize the situation:

- Near a 2-dimensional stratum, the topology is the same as a hyperplane
- Near a 1-dimensional stratum, the topology is the same as a cylinder
- Near a 0-dimensional stratum, the topology is the same as a cone







Julien Wintz Algebraic methods for geometric modeling

Implicit surfaces Parametric surfaces

Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces Implicit surfaces

Parametric surfaces

An algebraic geometric modeler
 User perspective
 Developer perspective

< 🗇 > < 🖃 >

Implicit surfaces Parametric surfaces

Definitions

Monomial basis

We denote by $f_k(x, y, z) \in \mathbb{R}[x, y, z]$ the polynomial defining the implicit surface corresponding to the object o_k .

Bernstein basis

The specific operations will be performed on the Bernstein representation of f_k on $D = [a, b] \times [c, d] \times [e, f]$:

$$f_k(x, y, z) = \sum_{i=0}^{d_{x,k}} \sum_{j=0}^{d_{y,k}} \sum_{k=0}^{d_{z,k}} b_{i,j,k}^k B_{d_{x,k}}^i(x; a, b) B_{d_{y,k}}^j(y; c, d) B_{d_{z,k}}^k(z; e, f)$$

where $B_d^i(x; u, v) = \binom{d}{i} (x - u)^i (v - x)^{d-i} (v - u)^{-d}$.

イロト イポト イヨト イヨト

Implicit surfaces Parametric surfaces

Definitions

Critical points

Solve with multivariate subdivision solver:

$$\begin{cases} f_k(x,y,z) &= 0\\ \partial_y f_k(x,y,z) &= 0\\ \partial_z f_k(x,y,z) &= 0 \end{cases} \begin{cases} f_k(x,y,z) &= 0\\ \partial_x f_k(x,y,z) &= 0\\ \partial_z f_k(x,y,z) &= 0 \end{cases} \begin{cases} f_k(x,y,z) &= 0\\ \partial_x f_k(x,y,z) &= 0\\ \partial_y f_k(x,y,z) &= 0 \end{cases}$$

Singular points

Solve with multivariate subdivision solver:

$$egin{array}{rcl} f_k(x,y,z)&=&0\ \partial_x f_k(x,y,z)&=&0\ \partial_y f_k(x,y,z)&=&0\ \partial_z f_k(x,y,z)&=&0\ \partial_z f_k(x,y,z)&=&0 \end{array}$$

イロン イロン イヨン イヨン

Implicit surfaces Parametric surfaces

Definitions

Surface-Cell intersection curves

Variable substitution:

- $f(x, y_{min}, z)$ and $f(x, y_{max}, z)$ in x, z.
- $f(x_{min}, y, z)$ and $f(x_{max}, y, z)$ in y, z.
- $f(x, y, z_{min})$ and $f(x, y, z_{max})$ in x, y.

Surface-Surface intersection curves

The spatial implicit curve:

$$\begin{cases} f_k(x, y, z) = 0\\ f_l(x, y, z) = 0 \end{cases}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Implicit surfaces Parametric surfaces

Definitions

Definition (Polar variety)

The polar variety \mathcal{P}_f of a surface S defined by the polynomial equation f(x, y, z) = 0 cuts the surface at the points of self-intersection and the points that have vertical tangents:

$$\begin{cases} f(x,y,z) &= 0\\ \partial_z f(x,y,z) &= 0 \end{cases}$$

▲□ ► < □ ► </p>

Implicit surfaces Parametric surfaces

Spatial implicit curves

Let \mathcal{C} be a curve of \mathbb{R}^3 defined by f(x, y, z) and g(x, y, z).

Examine the tangent vector field:

$$\mathbf{t} = \bigtriangledown(f) \land \bigtriangledown(g) = \begin{vmatrix} \mathbf{e}_x & \mathbf{e}_y & \mathbf{e}_z \\ \partial_x f & \partial_y f & \partial_z f \\ \partial_x g & \partial_y g & \partial_z g \end{vmatrix}$$

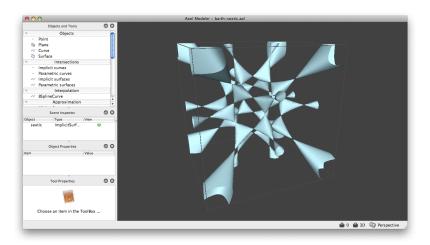
Remark

Singularities on the curve can be easily deduced, as ${\bf t}$ vanishes at those points.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Implicit surfaces Parametric surfaces

Spatial implicit curves

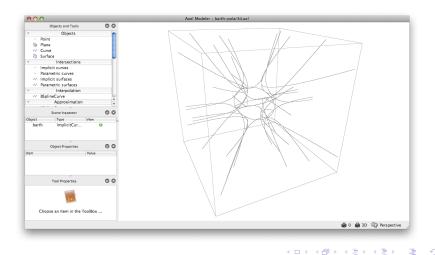


Julien Wintz Algebraic methods for geometric modeling

・ロン ・回 と ・ ヨ と ・ ヨ と …

Implicit surfaces Parametric surfaces

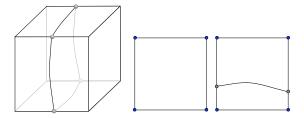
Spatial implicit curves



Julien Wintz Algebraic methods for geometric modeling

Implicit surfaces Parametric surfaces

Regularity: 2-dimensional stratum

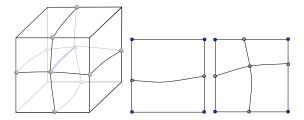


- Check each facet for 2-dimensional regularity:
 - empty cell
 - regular cell with one curve segment
- Check that the polar variety \mathcal{P} does not intersect \mathcal{D} $(\mathcal{P} \cap \mathcal{D} = \emptyset).$

▲ □ ▶ ▲ 三 ▶ ▲

Implicit surfaces Parametric surfaces

Regularity: 1-dimensional stratum

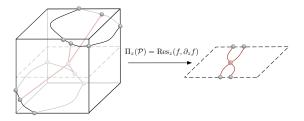


- Check each facet for 2-dimensional regularity:
 - regular cell with one curve segment
 - star shaped singularity with two curve segments
- Check that the polar variety *P* features only one regular branch in *D* (*P* ∩ *D* ≠ Ø).

• □ > • □ > • □ > • □ > •

Implicit surfaces Parametric surfaces

Regularity: 0-dimensional stratum

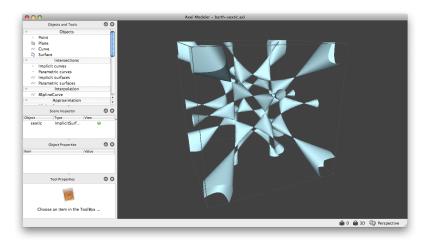


- Check each facet for 2-dimensional regularity:
 - empty cell
 - regular cell with one curve segment
- Check that the polar variety features only one singular point in \mathcal{D} .
- Compute the projection $\Pi_z(\mathcal{P}) = Res_z(f, \partial_z f)$
- Check that $\Pi_z(\mathcal{P})$ is 2-regular

- 4 同 🕨 - 4 目 🕨 - 4 目

Implicit surfaces Parametric surfaces

Topology



・ロン ・団 と ・ ヨン ・ ヨン …

Implicit surfaces Parametric surfaces

Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces
 - Parametric surfaces
- An algebraic geometric modeler User perspective Developer perspective

< 🗇 > < 🖃 >

Implicit surfaces Parametric surfaces

Definitions

Polynomial rational surface

A uniform rational polynomial surface is defined by the formula

$$s(u,v) = \begin{cases} x(u,v) \\ y(u,v) \\ z(u,v) \end{cases}$$

where $x : \mathbb{R}[u, v] \mapsto \mathbb{R}$, $y : \mathbb{R}[u, v] \mapsto \mathbb{R}$ and $z : \mathbb{R}[u, v] \mapsto \mathbb{R}$ are differentiable functions evaluated to obtain the image of $(u, v) \in \mathbb{R}[u, v]$ by s in \mathbb{R}^3 as the point $p_t = (x(u, v), y(u, v), z(u, v))$.

- 4 同 6 4 日 6 4 日 6

Implicit surfaces Parametric surfaces

Definitions

B-Spline surface

A B-Spline surface is defined by the formula

$$s(u,v) = \sum_{i=1}^{n_1} \sum_{j=1}^{n_2} \mathsf{p}_{i,j} B_{i,k_1,u}(u) B_{j,k_2,v}(v)$$

The complete representation of a B-spline surface consists of:

- d $\;$ The dimension of the underlying Euclidean space $\;$
- $n\mathbf{1}$ The number of vertices with respect to the first parameter
- $n2\;$ The number of vertices with respect to the second parameter
- $k1\;$ The order of the B-spline surface in the first parameter
- $k2\;$ The order of the B-spline surface in the second parameter
- \boldsymbol{u} ~ The knot vector of the B-spline surface wrt. the first parameter
- \boldsymbol{v} The knot vector of the B-spline surface wrt. the second parameter
- **p** The control points of the B-spline surface

▲ 白戸 ▶ ▲ 三 ▶ ▲

Implicit surfaces Parametric surfaces

Definitions

Surface - Cell edges intersection points

$$\begin{aligned} v_{x_i,y_j} &= \{ (x(s,t), y(s,t), z(s,t)) \in \mathcal{D} \mid (s,t) \in \mathcal{D}_p, x(u,v) = x_i, y(u,v) = y_i \} \\ v_{x_i,z_j} &= \{ (x(s,t), y(s,t), z(s,t)) \in \mathcal{D} \mid (s,t) \in \mathcal{D}_p, x(u,v) = x_i, z(u,v) = z_i \} \\ v_{y_i,z_j} &= \{ (x(s,t), y(s,t), z(s,t)) \in \mathcal{D} \mid (s,t) \in \mathcal{D}_p, y(u,v) = y_i, z(u,v) = z_i \} \end{aligned}$$

where $x_i \in \{x_{min}, x_{max}\}$, $y_i \in \{y_{min}, y_{max}\}$ and $z_i \in \{z_{min}, z_{max}\}$.

Surface - Cell faces intersection curves

$$e_{x_i} = \{ (y(s,t), z(s,t)) \mid (s,t) \in \mathcal{D}_p, x(s,t) = x_i \} \\ e_{y_i} = \{ (x(s,t), z(s,t)) \mid (s,t) \in \mathcal{D}_p, y(s,t) = y_i \} \\ e_{z_i} = \{ (x(s,t), y(s,t)) \mid (s,t) \in \mathcal{D}_p, z(s,t) = z_i \}$$

where $x_i \in \{x_{min}, x_{max}\}$, $y_i \in \{y_{min}, y_{max}\}$ and $z_i \in \{z_{min}, z_{max}\}$.

Implicit surfaces Parametric surfaces

Definitions

Tangent vectors

$$T_u(u,v) = \begin{pmatrix} \partial_u x(u,v) \\ \partial_u y(u,v) \\ \partial_u z(u,v) \end{pmatrix} \quad T_v(u,v) = \begin{pmatrix} \partial_v x(u,v) \\ \partial_v y(u,v) \\ \partial_v z(u,v) \end{pmatrix}$$

Normal vector

$$N(u,v) = T_u(u,v) \wedge T_v(u,v)$$

Implicit surfaces Parametric surfaces

Definitions

Critical points

$$\begin{cases} N_y(u,v) = 0 \\ N_z(u,v) = 0 \end{cases} \begin{cases} N_x(u,v) = 0 \\ N_z(u,v) = 0 \end{cases} \begin{cases} N_x(u,v) = 0 \\ N_y(u,v) = 0 \end{cases}$$

Singular points

$$\begin{bmatrix} N_x(u,v) = 0 \\ N_y(u,v) = 0 \\ N_z(u,v) = 0 \end{bmatrix}$$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sampling methods Work on approximations Algebraic methods Work on the representation

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

< ロ > < 同 > < 回 > < 国 > < 国 > < 国

Sampling methods Work on approximations

Algebraic methods Work on the representation

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

▲□ ► < □ ► </p>

Sampling methods Work on approximations Algebraic methods Work on the representation

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

- 4 同 🕨 - 4 目 🕨 - 4 目

Sampling methods Work on approximations

Algebraic methods Work on the representation

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

▲□ ► < □ ► </p>

Sampling methods Work on approximations

Algebraic methods Work on the representation

Implicit surfaces Parametric surfaces

Definitions

Intersection and Self-intersection

Sampling methods

- Algebraic methods
 - Analytic method
 - Sweeping method
 - Subdivision method

・ 同 ト ・ ヨ ト ・ ヨ

Sampling methods Work on approximations

Algebraic methods Work on the representation

User perspective Developer perspective

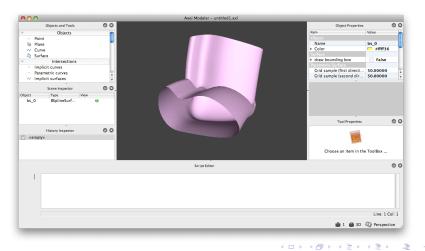
Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- 2 Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces
- An algebraic geometric modeler
 User perspective
 Developer perspective

▲ 同 ▶ → 三 ▶

User perspective Developer perspective

An algebraic geometric modeling environment



Julien Wintz Algebraic methods for geometric modeling

User perspective Developer perspective

Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- 2 Specialization for curves Implicit curves
 Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces
- An algebraic geometric modeler User perspective
 Developer perspective

▲ 同 ▶ → 三 ▶

User perspective Developer perspective

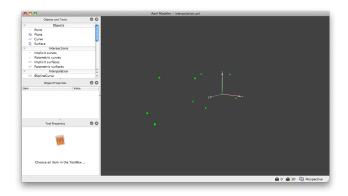
Objects

- Points
- Planes
- Curves
- Surfaces

<ロ> <同> <同> < 同> < 同>

User perspective Developer perspective

Objects



Points

- Planes
- Curves
- Surfaces

Julien Wintz Algebraic methods for geometric modeling

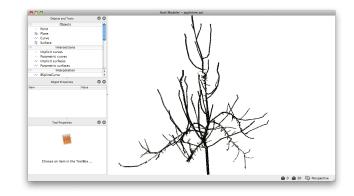
・ロン ・部 と ・ ヨ と ・ ヨ と …

-2

Figure: Points.

User perspective Developer perspective

Objects



Points

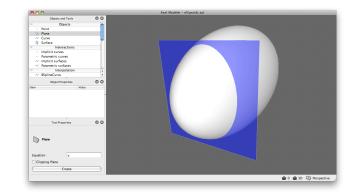
- Planes
- Curves
- Surfaces

Figure: Pointsets.

Julien Wintz Algebraic methods for geometric modeling

User perspective Developer perspective

Objects



- Points
- Planes
- Curves
- Surfaces

Julien Wintz Algebraic methods for geometric modeling

・ロン ・部 と ・ ヨ と ・ ヨ と …

-2

Figure: Planes.

User perspective Developer perspective

Objects

Points

Planes

Curves

Surfaces

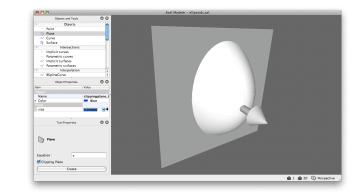


Figure: Clipping planes.

User perspective Developer perspective

Objects

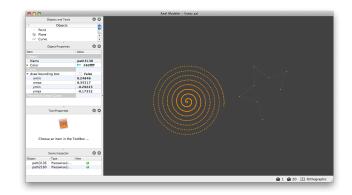


Figure: Piecewise linear curves.

・ロン ・部 と ・ ヨ と ・ ヨ と …

- Points
- Planes
- Curves
- Surfaces

User perspective Developer perspective

Objects

Points

Planes

Curves

Surfaces

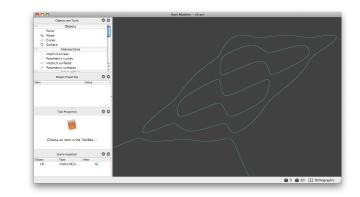
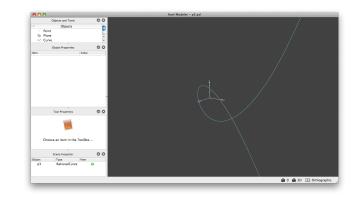


Figure: Implicit curves.

User perspective Developer perspective

Objects

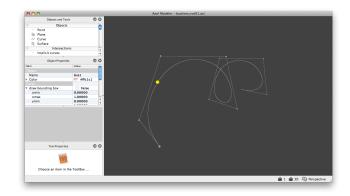


- Points
- Planes
- Curves
- Surfaces

Figure: Rational curves.

User perspective Developer perspective

Objects



- Points
- Planes
- Curves
- Surfaces

Figure: B-spline curves.

User perspective Developer perspective

Objects

Points

Planes

Curves

Surfaces

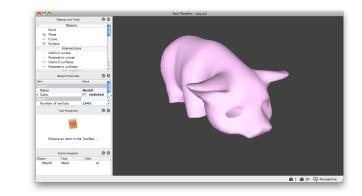


Figure: Piecewise linear surfaces.

User perspective Developer perspective

Objects

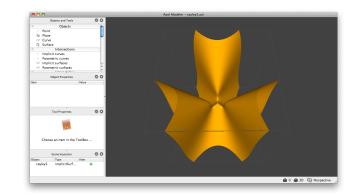


Figure: Implicit surfaces.

- Points
- Planes
- Curves
- Surfaces

User perspective Developer perspective

Objects

Points

Planes

Curves

Surfaces

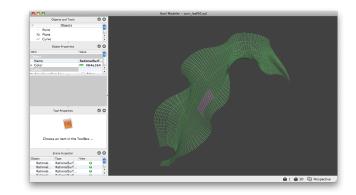
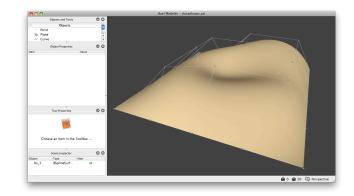


Figure: Rational surfaces.

User perspective Developer perspective

Objects



Points

- Planes
- Curves
- Surfaces

Figure: B-spline surfaces.

User perspective Developer perspective

Tools

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 同> < 同>

• Approximation

User perspective Developer perspective

Tools

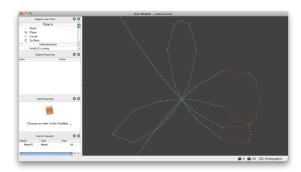


Figure: Implicit curves topology.

Topology

- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> (日) (日) (日) (日) (日)

Approximation

User perspective Developer perspective

Tools

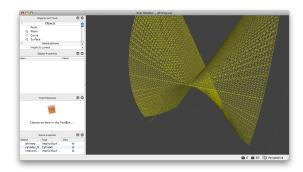


Figure: Implicit surfaces topology.

Topology

- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 同> < 同>

• Approximation

User perspective Developer perspective

Tools

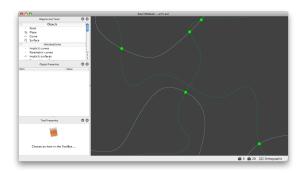


Figure: Implicit curves intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 回> < 回>

Approximation

User perspective Developer perspective

Tools

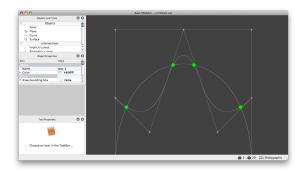


Figure: Parametric curves intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Approximation

User perspective Developer perspective

Tools

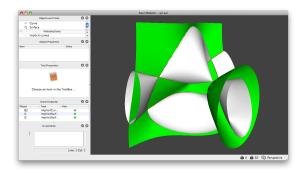


Figure: Implicit surfaces intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 回> < 回>

• Approximation

User perspective Developer perspective

Tools

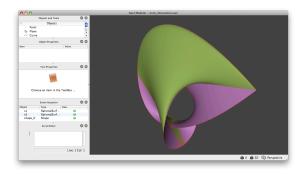


Figure: Rational surfaces intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 回> < 回>

Approximation

User perspective Developer perspective

Tools

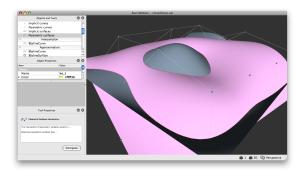


Figure: B-spline surfaces intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 回> < 回>

Approximation

User perspective Developer perspective

Tools

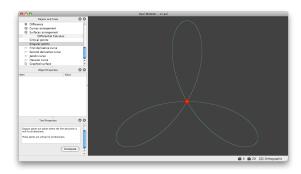


Figure: Implicit curve self-intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

• Approximation

User perspective Developer perspective

Tools

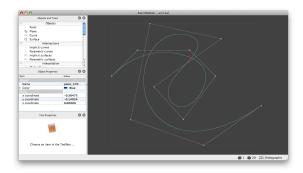


Figure: Parametric curve self-intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

Approximation

User perspective Developer perspective

Tools

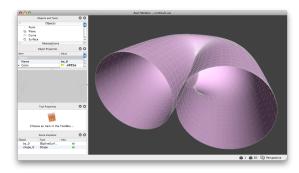


Figure: Parametric surface self-intersection.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

<ロ> <同> <同> < 回> < 回>

• Approximation

User perspective Developer perspective

Tools

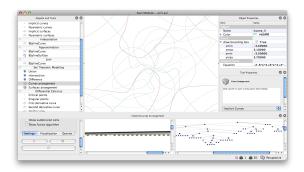


Figure: Implicit curves arrangement.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

Approximation

User perspective Developer perspective

Tools

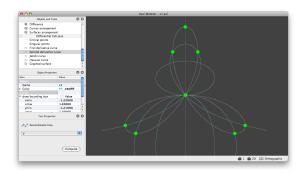


Figure: Critical point and derivative curves.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

Approximation

User perspective Developer perspective

Tools

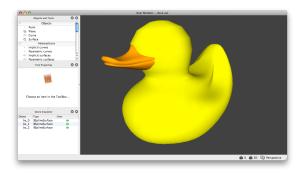


Figure: Approximation by rational patches.

- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

Approximation

User perspective Developer perspective

Tools

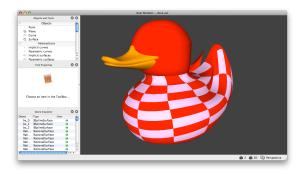


Figure: Approximation by rational patches.

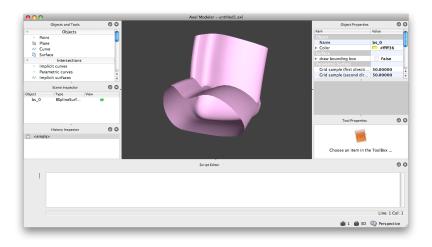
- Topology
- Intersection
- Selfintersection
- Arrangement
- Differential geometry
- Interpolation

イロト イポト イヨト イヨト

Approximation

User perspective Developer perspective

Graphical User Interface

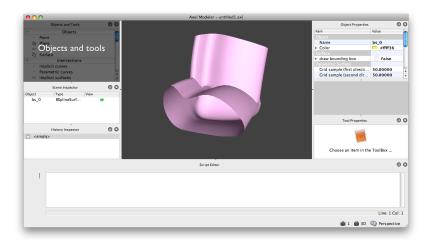


3

《曰》《聞》《臣》《臣》

User perspective Developer perspective

Graphical User Interface

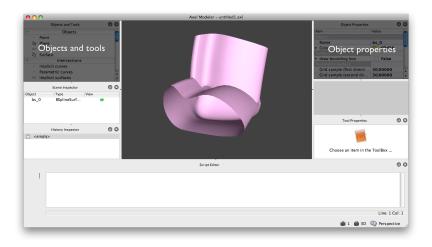


3

《曰》《聞》《臣》《臣》

User perspective Developer perspective

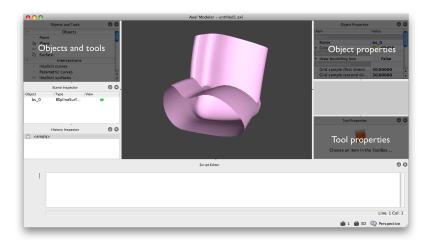
Graphical User Interface



・ロン ・部 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

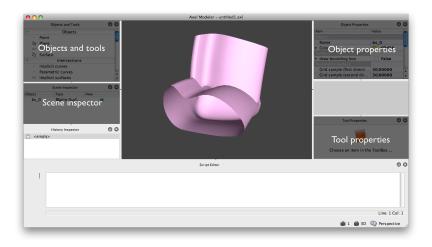
Graphical User Interface



・ロン ・部 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

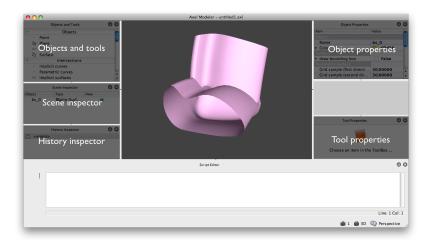
Graphical User Interface



・ロン ・部 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

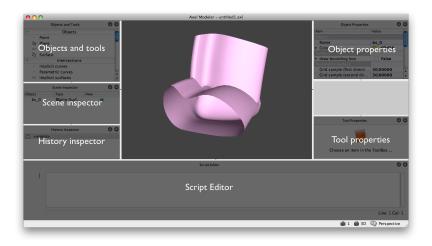
Graphical User Interface



・ロン ・雪 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

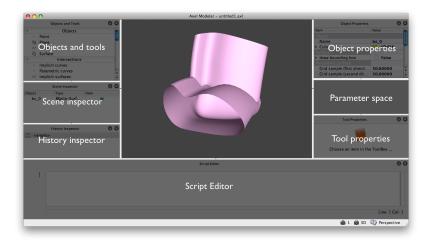
Graphical User Interface



・ロン ・部 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

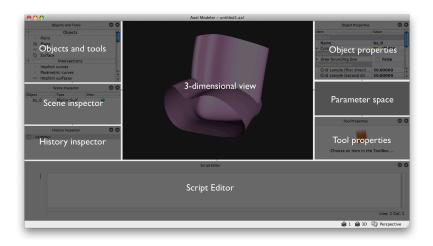
Graphical User Interface



・ロン ・雪 と ・ ヨ と ・ ヨ と …

User perspective Developer perspective

Graphical User Interface



3

(日) (同) (三) (三)

User perspective Developer perspective

File Interface

A B-spline curve.

```
<axl>
```

イロト イポト イヨト イヨト 三日

User perspective Developer perspective

Script Interface

Creating a B-spline curve.

```
var white = new Color(255, 255, 255);
Viewer.setBackgroundColor(white);
Camera.setPosition(0.0, 1.0, 0.0);
var p1 = new Point(0.0 0.0 0.0);
var p2 = new Point(1.0 0.0 0.5);
...
var p8 = new Point(0.0 1.0 3.5);
var p9 = new Point(0.0 0.0 4.0);
var p10 = new Point(1.0 0.0 4.5);
var curve = ToolManager.interpolate();
```

・ロト ・同ト ・ヨト ・ヨト

User perspective Developer perspective

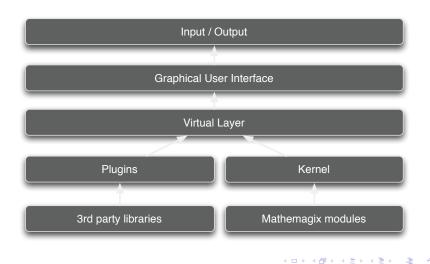
Outline

- Generic algorithm
 Computing regions
 Locating conflicts
 Updating regions
- 2 Specialization for curves Implicit curves Parametric curves
- Specialization for surfaces Implicit surfaces Parametric surfaces
- An algebraic geometric modeler
 - User perspective Developer perspective

▲ 同 ▶ → 三 ▶

User perspective Developer perspective

Framework



Julien Wintz Algebraic methods for geometric modeling

User perspective Developer perspective

Virtual hierarchy of objects

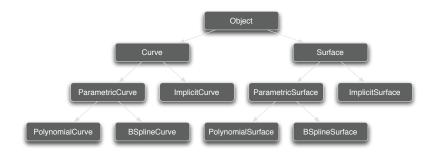


Figure: Virtual hierarchy of objects.

User perspective Developer perspective

Virtual hierarchy of tools

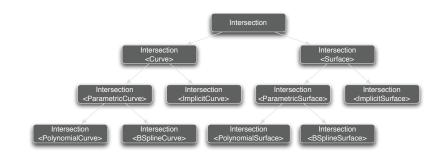


Figure: Virtual hierarchy of tools.

(a)

User perspective Developer perspective

Kernel system

Algebraic Kernel

- Univariate polynomials
- Multivariate polynomials
- Univariate bernstein solvers
- Multivariate bernstein solvers
- Embeds Mathemagix

Geometric Kernel

- Topology
- Intersection
- Approximation
- Embeds Sisl

User perspective Developer perspective

Plugin system

- Extend main application functionnalities
- Define new objects
- Define new tools
- Glue external libraries
- Hardware connection

・ 同 ト ・ ヨ ト ・ ヨ ト

User perspective Developer perspective

A virtual modeling environment

Summary

- Generic algorithm using a subdivision scheme
- Specialization for curves
 - Efficient topology
 - Efficient arrangement
- Specialization for surfaces
 - Hints for implicit surfaces
 - Hints for parametric surfaces
- Proof of concept implementation
 - Modular architecture of objects
 - Modular architecture of tools

Outlook

- Generic boolean operators
- Generic Voronoi diagrams
- Generic trimming procedures

・ 同 ト ・ ヨ ト ・ ヨ

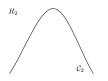
Outlook

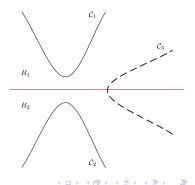
• Generic boolean operators

- Generic Voronoi diagrams
- Generic trimming procedures

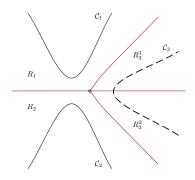
・ 同 ト ・ ヨ ト ・ ヨ

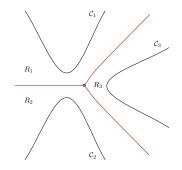
- Generic boolean operators
- Generic Voronoi diagrams
- Generic trimming procedures



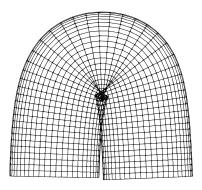


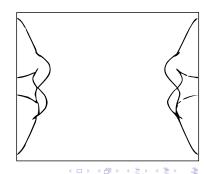
- Generic boolean operators
- Generic Voronoi diagrams
- Generic trimming procedures



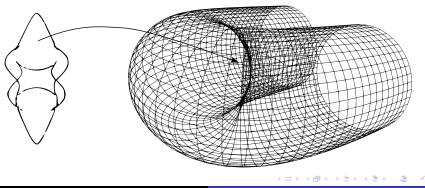


- Generic boolean operators
- Generic Voronoi diagrams
- Generic trimming procedures





- Generic boolean operators
- Generic Voronoi diagrams
- Generic trimming procedures





Algebraic methods for geometric modeling