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Chapitre 1

Résumé de la thèse
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1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
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1.1 Introduction

Figure 1.1 – Représentation schématique du double MZI proposée par Samuelsson et al. [74]. Les
électrons sont injectés au niveau des contacts 2 et 3, A, B, C et D étant des lames séparatrices. La mesure
de corrélation électronique croisée est effectuée entre les contacts 5 et 8. φ est la phase accumulée le long
de chaque trajectoire électronique. Par exemple φ1 est la phase accumulée le long des bords entre les lames
séparatrices C et A. La mesure de bruit en corrélation croisée entre les contacts 5 et 8 est sensible à la
phase Aharonov-Bohm à deux électrons : φ = φ1 + φ2 − φ3 − φ4
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Résumé de la thèse 7

L’objectif de cette thèse est d’observer la violation des inégalités de Bell pour un
conducteur mésoscopique. Le principe général s’inspire de l’expérience réalisée en 1982
par Aspect et al [9]. Cette expérience a été proposée pour la première fois en 2004 par
Samuelsson et al [74][60]. Nous avons représenté figure 1.1 la schéma de cette expérience
appelée double interféromètre de Mach Zehnder(MZI). Contrairement à l’expérience d’As-
pect et al. deux sources électroniques distinctes sont utilisées (numérotées 2 et 3 sur la
figure 1.1). Considérons dans un premier temps l’onde électronique émise par le réservoir
2. Elle sera soit transmise soit réfléchie par la première lame séparatrice C. Si elle est
transmise, elle accumulera la phase φ1 jusqu’à la prochaine lame séparatrice notée A. Si
elle est réfléchie, elle accumulera la phase φ3 jusqu’à la prochaine lame séparatrice notée B.
Considérons maintenant l’onde électronique émise par le réservoir 3. Elle sera soit transmise
soit réfléchie par la première lame séparatrice D. Si elle est transmise, elle accumulera la
phase φ2 jusqu’à la prochaine lame séparatrice notée A. Si elle est réfléchie, elle accumulera
la phase φ4 jusqu’à la prochaine lame séparatrice notée B. On effectue ensuite une mesure
de corrélation électronique entre les contacts 5 et 8. La mesure sur le contact 5 ne permet
pas de différencier l’électron émis par le réservoir 2 de l’électron émis par le réservoir 3.
On peut donc montrer que la mesure de corrélation électronique va ”sélectionner” la partie
intriquée de l’état à deux électrons. Cette mesure de la partie intriquée de l’état à deux
électrons est sensible à la différence de phase : φ1+φ2-φ3-φ4. Lorsque l’aire définie par ce
chemin électronique est soumis à un champs magnétique perpendiculaire, on peut faire
varier cette différence de phase via le champ magnétique appliqué. La partie intriquée sera
révélée par des oscillations Aharonov Bohm dans une mesure à deux électrons, le bruit. Une
fois ces oscillations observées, il s’agit de régler les différentes lames séparatrices afin d’ob-
tenir l’état maximalement intriqué, pour finalement procéder à la violation des inégalités
de Bell.

3

5

4φ

2φ
A

C

D

B

2

3φ

1φ

8

SG

Figure 1.2 – Les notations sont similaires à la figure 1.1. On note cependant ici la présence d’une
lame séparatrice centrale (notée SG) qui, lorsqu’elle est fermée, sépare le double MZI en deux simples
MZI, de façon a optimiser les réglages (étant convenu qu’il est est plus facile d’obtenir des oscillations
Aharonov Bohm à un électron qu’à deux électrons). Une fois cette la lame séparatrice ouverte, on retrouve
la configuration double MZI.

Expérimentalement nous n’appliquerons pas directement la géométrie proposée par Sa-
muelsson et al.. On peut montrer[60] que le double MZI peut être décomposé en deux MZI



8 Résumé de la thèse

simples séparés d’une lame séparatrice. Un réglage optimal du simple MZI [37] permet
d’observer des oscillations Aharonov Bohm à un électron. Une fois que les deux simples
MZI sont réglés afin d’obtenir la visibilité maximale, on ouvre le lame sépatrice centrale
pour se retrouver dans la configuration double MZI. Nous allons discuter maintenant des
outils mésoscopiques nécessaires à l’élaboration d’un MZI électronique.

1.2 Montage expérimental

Pour construire un MZI en physique mésoscopique nous avons besoin de deux éléments :
d’un faisceau d’électrons et de lames séparatrices. Pour obtenir un faisceau électronique
nous travaillerons en régime Hall quantique, dans un gaz bidimensionnel(AsGa/GaAlAs).
Nous savons en effet qu’en régime Hall quantique le transport électronique a lieu dans des
canaux de bord que l’on peut se représenter comme des conducteurs 1D chiraux. En effet
les électrons soumis à un champs magnétique perpendiculaire ont une trajectoire cyclotron.
Si loin des bords la vitesse moyenne des électrons est nulle, au bord de l’échantillon , les
électrons seront soumis au potentiel de bord. La représentation semi classique que l’on peut
se faire de ce phénomène est montrée figure 1.3.

edge states

x

y

Semi-classical representation
of edge states

Figure 1.3 – Représentation semi classique des canaux de bord en régime Hall quantique. La trajectoire
des électrons dans le bulk peut être décrite par une trajectoire cyclotron. Le long des bords de l’échantillon,
le centre de l’orbite cyclotron dérive.

Le long des bords les électrons rebondissent et le centre de l’orbite cyclotron dérive : en
moyenne la vitesse de dérive des électrons le long des bords n’est pas nulle. Si l’on considère
maintenant l’hamiltonien de l’électron dans un gaz 2D soumis à un champ magnétique per-
pendiculaire, on peut montrer que les niveaux d’énergie sont discrets (niveaux de Landau).
Lorsque l’on se rapporche des bords de l’échantillon, les niveaux de Landau vont être
déformés par le potentiel de confinement. Le transport électronique aura lieu au croise-
ment entre ces niveaux de Landau courbés et l’énergie de Fermi. Le nombre de canaux
de bord est égal au nombre de croisements entre niveaux de Landau et énergie de Fermi.
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Nos résultats ont été obtenus à facteur de remplissage 2 (ν=2) : deux niveaux d’énergie
croisent le niveau de Fermi, on travaille avec deux canaux de bord. Pour ce qui est des
lames séparatrices électroniques, les contact ponctuels quantiques (QPC) sont parfaitement
adaptés. Nous avons représenté figure 1.4(a) une vue SEM d’un QPC.

VG

IT

IR
I0

(b)

IT

IR
I0

(a)

Figure 1.4 – (a) Vue SEM d’un QPC. Une partie de l’onde électronique est réfléchie (transmise) notée
IR (notée IT ). (b) Vue SEM d’un QPC dans la partie centrale du MZI. En jaune nous avons représenté le
pont qui connectent les deux grilles du QPC, en rouge un contact ohmique connecté à la masse. Dans cette
représentation, une partie de l’onde électronique est transmise vers le deuxième QPC. La partie réfléchie
pourra être collectée par le contact à la masse.

Figure 1.4(b) ce même QPC mais intégré dans le MZI : en jaune un pont qui permet
de connecter les deux grilles du QPC. En appliquant une tension négative sur le QPC, on
déplète localement sous le QPC et on augmente le couplage entre canaux contre propa-
geants. On peut ainsi contrôler de manière très précise la probabilité de transmission ou de
réflexion d’une onde électronique. Nous avons désormais tous les outils pour comprendre
le principe général du MZI. Nous en avons représenté une vue SEM figure 1.5.

4 µm

I0

IT

G2
G1

G0

LG

ID
(u)

(d)

IR

Figure 1.5 – Vue SEM du MZI électronique. G0, G1 et G2 sont des QPC qui servent de lames sépratrices.
G0 permet une dilution du courant injecté, G1 et G2 sont les deux lames séparatrices de l’interféromètre.
LG est une grille latérale qui permet la variation de l’aire de la surface définie par (u) and (d). Le petit
contact ohmique central entre les deux bras du MZI permet de collecter le courant rétrodiffusé à la masse
grâce à un long pont en or.
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G1 et G2 sont les deux lames séparatrices de l’interféromètre. Lorsqu’il est réléchi(transmis)
par G1 l’électron passe par le chemin (u) (resp. (d)) pour ensuite être recombiné en G2.
Si on considère maintenant l’approche à une particule du formalisme Landauer-Buttiker,
l’amplitude de transmission t à travers le MZI est la somme de deux amplitudes de trans-
mission correspondant aux chemins (u) et (d). Pour des amplitudes de transmission et de
réflexion ti et ri du i ème QPC (avec |ri|2+|ti|2=1), l’amplitude de transmission est donnée
par :

t = t1e
iφdt2 − r1e

iφur2.

où φu (φd) est la phase accumulée le long du chemin supérieur (inférieur) . On obtient la
probabilité de transmission :

T = T1T2 + R1R2 +
√

T1T2R1R2sinϕ(ǫ) (1.1)

où ϕ(ǫ) = φu − φd et Ti =| ti |2= 1 − Ri. ϕ(ǫ) est le flux du champs magnétique à travers
l’aire définie par les deux trajetoires à l’énergie ǫ. On dispose donc de deux manières pour
observer les franges d’oscillations : soit en variant le champs magnétique soit en variant
l’aire définie par les deux trajectoires grâce à la grille latérale (notée LG sur la figure 1.5).

1.3 Visibilité à tension finie

La mesure de bruit en corrélation croisée, pour sélectionner la partie intriquée de
l’état à deux électrons, se fait à tension finie. Avant de réaliser cette mesure, il s’agit
donc de comprendre la visibilité 1 de la conductance à tension finie. La visibilité n’est pas
censée dépendre de la tension drain-source appliquée, mais la première expérience [37] a
montré une décroissance monotone de la visibilité avec la tension appliquée. Cette première
expérience réalisée à facteur de remplissage 2 ( deux canaux de bords) ne permettait pas
de séparer les deux canaux de bords envoyés sur le MZI. Plus récemment, le groupe du
Weizmann a ajouté un QPC (noté G0 sur la figure 1.5) qui permettait de séparer les deux
canaux de bord et de n’envoyer qu’un seul canal à la tension Vds sur le MZI. Cette modifi-
cation a entrâıné l’apparition d’un comportement assez spectaculaire de la visibilité avec la
tension : une structure en lobes. Nos premières mesures réalisées sur un échantillon de taille
moyenne (aire de 14µm2) et instable n’ont révélées qu’un seul lobe. Nous avons montré
que l’on pouvait très bien ajuster cette structure en lobe en supposant une enveloppe
Gaussienne de la conductance (voir figure 1.6(a)).

Plus récemment nous avons réalisé les mêmes mesures sur un échantillon de grande taille
stable (aire de 35µm2) et à faible champ (mais toujours à facteur de remplissage 2) et nous
avons obtenu une structure avec plusieurs lobes. L’ajout d’un terme cosinus permet de fitter
le cas mutli-lobes, mais demeure à ce jour inexpliqué (voir figure 1.6(b)). Cette approche
heuristique nous a permis de comprendre le couplage entre deux canaux de bord. De récents
travaux sur la dépendance de la visibilité en fonction de la transmission du premier beam
splitter (G1) en l’absence de grille (G0) [15] ont montré une augmentation inattendue de

1. La visibilité est définie par Tmax−Tmin

Tmax+Tmin
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Figure 1.6 – (a) Les cercles noirs représentent la visibilité du canal interférant. La courbe noire
représente notre formule qui suppose une enveloppe Gaussienne de la conductance.(b)Les points noirs
représentent la visibilité du canal interférant. La courbe noire représente notre formule qui suppose une
enveloppe Gaussienne de la conductance et d’un terme cosinus à ce jour inexpliqué.

la visibilité autour de la valeur Vds=0 pour certaines valeurs de T1 (transmission de G1).
Nous avons montré que ce comportement pouvait être compris en considérant le couplage
entre le canal interférant et le canal voisin. Les fits en excellent accord avec l’expérience
(voir figure 1.7) nous ont permis de dégager une énergie caractéristique qui augmente avec
T1.
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Figure 1.7 – Les points représentent les visibilités en fonction de V1 pour différentes valeurs de la
transmission T1 lorsque la première grille G0 est ouverte. On observe également une augmentation de la
visibilité autour de V1 = 0V pour T1 proche de 1. Les courbes sont les fits en considérant le couplage entre
canaux de bord. Ces fits nous permettent d’extraire une énergie caractéristique qui augmente avec T1.

Ce résultat est très différent de ce qui a pu être observé lorsque les deux canaux de
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bord sont séparés (le canal interne est réfléchi par G0). On peut montrer dans ce cas que
cette énergie caractéristique ne dépend que très peu de T1.

1.4 Longueur de cohérence phase à facteur de rem-

plissage 2 (ν = 2)

L’expérience sur le double MZI nécessite de savoir si la longueur de cohérence de phase
électronique est plus grande que le chemin à deux particules parcouru dans le MZI. La
longueur de cohérence de phase électronique est la longueur caractéristique pour laquelle
l’électron conserve sa cohérence de phase. Si des expériences se sont intéressées à cette lon-
gueur de cohérence [35], aucune n’a déterminé la valeur exacte de lϕ à ν = 2. Pour extraire
cette longeur de cohérence, nous avons mesuré la visibilité des oscillations en fonction de la
température. Deux conditions sont nécessaires pour déterminer lϕ. La première est de pou-
voir varier la taille de l’interféromètre : l’équipe du LPN (Dominique Mailly et Giancarlo
Faini, ainsi que Ulf Gennser pour les couches 2D) a donc fabriquer des échantillons de 3
tailles différentes, avec à chaque fois un rapport d’échelle dans les tailles. Dans un deuxième
temps, il s’agit de s’assurer que la baisse de la visibilité en fonction de la température n’est
pas causée par le ”thermal smearing”. Le ”thermal smearing” est dû aux fluctuations
des trajectoires électroniques avec la température : si la différence entre les trajectoires
électronique supérieure et inférieure n’est pas nulle, on peut être sensible au ”thermal
smearing”. Nous avons montré par des arguments de rigidité de phase sur une large gamme
d’énergie, que l’on pouvait exclure tout ”thermal smearing”. La figure 1.8 montre la visibi-
lité en échelle logarithmique en fonction de la température pour un échantillon de petite,
moyenne et grande taille.

On observe une dépendence exponentielle de la visibilité en fonction de la température,
avec une dépendence en champ magnétique qui est la même pour chaque échantillon, ce
qui nous permet d’écrire :

ν = ν0e
−2L/lϕ

avec

lϕ ∝ T−1

On trouve lϕ ∼ 20µm à 20 mK. Se posent alors deux questions : pourquoi a-t-on une
longueur de cohérence finie, et d’où vient cette dépendance en champ magnétique ?

1.5 Origine de la longueur de cohérence de phase finie

Pourquoi a-t-on une longueur de cohérence finie, et d’où vient cette dépandence en
champ magnétique ? Dans notre cas, puisque l’on travaille avec deux canaux de bord,
le canal interférant est fortement couplé au canal adjacent. Nous avons étudié de manière
systématique ce couplage entre canaux. Pour ce faire, nous avons polarisé le canal adjacent,
afin de l’utiliser comme une véritable grille latérale. Nous avons représenté figure 1.9(a) la
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Figure 1.8 – (a) ln(ν/νB)/(T - TB). en fonction de la température pour trois champs magnétiques
différents, pour les échantillons de taille petite, moyenne et grande. On note ν la visibilité, et νB la
visibilité à la température minimale TB .(b) Dépendance de ln(ν/νB)/(T - TB) avec le champ magnétique.

conductance différentielle en fonction de la tension V2 appliquée sur le canal adjacent : on
observe des oscillations Aharonov Bohm.

La tension nécessaire pour ajouter une phase de 2π est appelé paramètre de couplage
V0 : nous avons mesuré ce paramètre de couplage sur tout le plateau ν = 2. Ce que nous
voulons montrer maintenant, c’est que les fluctuations thermiques du canal adjacent sont
responsables de la longueur de cohérence finie. En considérant V0 le couplage entre canaux
et 4kBTRQ le bruit Johnson Nyquist du canal adjacent, on montre que l’on peut écrire la
visibilité :

ν = ν0e
−T/Tϕ ,

avec :

T−1
ϕ =

2 × 8π2kBRQ

V 2
0 ∆ν

, (1.2)

où ∆ν est la bande passante, seul paramètre inconnu du problème. Pour extraire cette
bande passante, nous avons procédé à une deuxième expérience. Nous avons partitionné le
canal adjacent, tout en lui appliquant une tension de bias V2. Nous avons étudié la visibilité
du canal interférant en fonction du bruit de partition généré par le canal adjacent. On
montre cette fois que la visibilité peut s’écrire :

ν = ν0e
−T0(1−T0)(V2−2kBT/e)/Vϕ , (1.3)

avec

V −1
ϕ =

4π2eRQ

V 2
0

∆ν,
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Figure 1.9 – a) :Balayage en phase en variant V2 avec T0 = 1 pour deux champs magnétiques différents
à 3.9T et 4.7T. La périodicité V0 dépend du champ magnétique. b) : Diminution de la visibilité en
fonction de V2 à T0 = 1/2 pour deux champs magnétiques différents 3.9T et 4.7T. Les lignes en trait

plein sont des fit aux données expérimentales V = V0e
−2π2

∆S22∆ν/V 2

0 avec une température électronique
de 25mK (pour une température de frigo égale à 20mK) et T0 = 1/2. A fort tension drain source le fit
V = V0 exp(−T0(1 − T0)V2/Vϕ) nous permet de déterminer Vϕ pour différents champs magnétiques.

où T0 est la transmission du canal adjacent, ∆ν la même bande passante et Vϕ un paramète
de déphasage. Nous avons représenté figure 1.9(b), le logarithme de la visibilité en fonction
de V2 à T0 fixé à 1/2, et figure 1.10 le logarithme de la visibilité en fonction de T0 pour
différents V2.
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Figure 1.10 – (couleur sur la figure)Dépendance de la visibilité en fonction de T0 pour
V2=0, 21, 31, 42, 53 et 63 µV de haut en bas. Les lignes en trait plein sont les fits aux
données expérimentales en utilisant l’équation 1.3 avec Vϕ = 7.2µV et T=25mK.

L’excellent accord avec la formule 1.3 confirme notre approche (approximation Gaus-
sienne du problème). Cette experience nous permet d’extraire Vϕ sur tout le plateau ν = 2.
Puisque l’on connâıt V0, nous somme capables d’extraire de Vϕ la bande passante, tous les
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Figure 1.11 – (couleur sur la figure) V0 et Vϕ en fonction du champs magnétique. La
courbe en pointillée est le comportement général de 4kBTϕ/e (right scale) mesuré sur le
même échantillon.

paramètres du problème sont maintenant connus.
Revenons maintenant à notre hypothèse première qui est que les fluctuations thermiques

du canal adjacent sont responsables de la longueur de cohérence finie. Si cette hypothèse
est vraie on devrait obtenir d’après 1.2 et 1.4 :

eVϕ = 4kBTϕ (1.4)

où Tϕ a été mesuré dans la précédente partie. Nous avons représenté figure 1.11 l’ensemble
de nos résultats sur le plateau ν = 2. On vérifie bien la relation 1.4 sur tout le plateau : notre
hypothèse première est vérifiée. La dépendence de la longueur de cohérence en fonction
du champs magnétique provient elle de la variation du paramètre de couplage V0 sur la
plateau. Cette déviation vient probablement d’une longueur de trajectoire électronique
effective variant avec B.

1.6 ”Voltage Probe”

Nous décrivons dans cette partie une expérience du type ”which path”. Le détecteur est
composé d’une petit contact ohmique flottant que l’on couple à un MZI par l’intermédiaire
d’une grille latérale (voir figure 1.12).

Lorsque la grille latérale est ouverte tous les électrons du bras inférieur vont être ab-
sorbés par le contact ohmique flottant puis vont être réémis avec une phase aléatoire. On
s’attend donc à voir la visibilité diminuer avec la transmission TP de la grille latérale. On
montre qu’elle s’écrit :

ν = ν0 ×
√

RP (1.5)

où RP =1-TP . Figure 1.13, nous avons représenté en point rouge la visibilité renormalisée
en fonction de RP =1-TP , la courbe noire étant le fit associé à la formule 1.5 : l’accord est
parfait.



16 Introduction

Figure 1.12 – Montage expérimental : le bras inférieur (b) du MZI peut être connecté à un contact
ohmique flottant qui joue le rôle de voltage probe. Les QPC G1 et G2 sont les lames séparatrices qui
séparent et recombinent les trajectoires électroniques. Le QPC GP permet de contrôler la probabilité de
transmission TP vers le contact de probe. G’1 et G’2 sont deux QPC additionnels qui sont pincés pendant
l’expérience.
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Figure 1.13 – (a) Visibilité renormalisée, RP et
√

RP en fonction de VGP , la tension appliquée sur GP.
(b) Visibilité renormalisée en fonction de RP . La courbe noire est la loi en

√
RP prédite par la théorie.

Cette expérience nous a permis de suivre la variation en phase causée par un état localisé
prêt du QPC et à le modéliser grâce à une approche du type matrice de scattering. Enfin
des mesures de bruit réalisées avec la grille latérale ouverte nous ont permis de confirmer
la relaxation en énergie dans un contact ohmique flottant.
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The goal of this thesis was the observation of the Bell’s inequalities violation in a
mesoscopic conductor. The violation of Bell’s inequality is the answer to an intense debate
between Bohr and Einstein during the 20’s. Einstein had doubts about the probabilistic
interpretation of the quantum physics defended by Bohr and the school of Copenhague.
In 1935, Einstein published his famous article :”Can Quantum-Mechanical description of
physical reality be considered complete ?” [27]. In this article Einstein et al. show that
quantum physics predicts state of two particles, with strong correlations in position and
velocity. In particularly this EPR state predicts that if we measure the position or the
velocity of one of the particle, we can extract the position or the velocity of the other
one. According to Einstein et al, since the two particles can be arbitrary far away from
each other, the measurement of one particle can not modify the state of the other one.
Einstein et al. have deduced that each particle owns the precise value of its position and
velocity before the measurement. Since quantum physics can not give simultaneously the
velocity and the position, quantum physics is not complete. Bohr immediately replied [54],
explaining that such a state can not be described as two individual states : the entangled
state was born. The entangled state constitutes a unique object whatever the distance
between the two electrons.

17



18 Introduction

In 1965, Bell [13] discovered that the ”EPR” state described by Einstein should lead to
a contradiction with quantum mechanics. This article was all the more important that it
opened new possibilities to give an experimental answer. If Bohr’s representation of quan-
tum mechanics was the correct one, in certain conditions, Bell’s inequality (later defined)
could be violated. A major experiment which has shown that indeed Bell’s inequality could
be violated with an entangled state of photons has been realized by Aspect et al. in 1982
[9].

The initial objective of this thesis was to realize the electronic analog of the Aspect et
al. experiment.

In a first part, I will define the entanglement, and I will show that for a certain tuning
of the polarizers (optical device used in the Aspect et al. experiment), the Bell’s inequality
can be violated. I will then introduce the violation of Bell’s inequality in mesoscopic physics
and describe the type of geometry that would enable us to observe this effect.

2.1 Toward Bell’s inequality in mesoscopic physics

2.1.1 Definition of the entanglement

We call tensorial product of two spaces E1 and E2, the space E noted E1

⊗
E2 generated

by the basis obtained ”juxtaposing” vectors of the two basis |Φ1
n〉 and|Φ2

p〉 :

|Φn,p〉 = |Φ1
n〉

⊗
|Φ2

p〉

We consider now two vectors of E1 and E2 : |Φ1〉 and |Φ2〉. Then :

|Φ〉 = |Φ1〉
⊗

|Φ2〉

is by definition a vector of E.
However the reciprocal is wrong : there exists some vectors that can not be factorized

in E and written as a tensorial product |Φ1〉
⊗ |Φ2〉. Such a state |Φ〉 is entangled.

2.1.2 EPR Paradox and Bell’s inequality

We start with the singlet state :

|Φ〉 =
1√
2
(|+z〉|−z〉 − |−z〉|+z〉)

This state is an entangled state. We now suppose that particles 1 and 2 are spatially
separated. The particle 1 is sent to Bob, the particle 2 to Alice. If Bob makes a measurement
of the polarization of the particle 1 along the axis z, he will be able to forecast the particle
2 state. For example, if he measures +1, he will deduce that particle 2 is in the state |−z〉.
There is a perfect correlation. It exists examples of perfect correlations in the classical
world. We consider a black and a white ball. One of the ball is given to Bob. He observes
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it, and notices that it is white : it deduces that Alice has the black one. But this example
is based on a fundamental hypothesis : each ball owns the information ”I form a pair white
ball-black ball”. Could we imagine the same hypothesis, but with an entangled system ?
For example the pair |+z〉|−z〉 would own the information ”I form the pair (|+z〉, |−z〉)”,
information that each particle would conserve when they are spatially separated. It means
here that the system owns some hidden variables.

More generally, if we note A(−→a ) (resp. B(
−→
b )), the measurement along −→a 1 (resp.

−→
b ),

the most general way to model this hidden variable is to write these measurements as

A(λ,−→a )( B(λ,
−→
b )) where λ is the hidden variable. I now make the hypothesis that each

hidden variable has a certain probability distribution P (λ) with :

∫
dλP (λ) = 1 and P (λ) ≥ 0

The values taken by A(λ,−→a ) and B(λ,
−→
b ) are :

A(λ,−→a ) ± 1 and B(λ,
−→
b ) ± 1

The average value of the resulting product is then written :

EQ(−→a ,
−→
b ) =

∫
dλP (λ)A(λ,−→a )B(λ,

−→
b )

I now consider 4 vectors −→a ,
−→
a′ ,

−→
b ,
−→
b′ and I introduce :

s(λ) = A(λ,−→a )B(λ,
−→
b ) + A(λ,

−→
a′ )B(λ,

−→
b ) + A(λ,

−→
a′ )B(λ,

−→
b′ ) − A(λ,−→a )B(λ,

−→
b′ )

This can be written in a different way :

s(λ) = (A(λ,−→a ) + A(λ,
−→
a′ ))B(λ,

−→
b ) − (A(λ,−→a ) − A(λ,

−→
a′ ))B(λ,

−→
b′ )

since A(λ,−→a ) = ±1 and B(λ,
−→
b ) = ±1, we immediately deduce that s(λ)=±2 or s=0.

Hence Bell’s inequality [13] :

|EQ(−→a ,
−→
b ) + EQ(

−→
a′ ,

−→
b ) + EQ(

−→
a′ ,

−→
b′ ) − EQ(−→a ,

−→
b′ )| ≤ 2 (2.1)

The theory of the hidden variables leads thus to the Bell’s inequality 2.1. We are going
to show that these inequality can be violated by the measurement of an entangled state,
confirming Bohr’s interpretation of quantum physics.

1. In optics, it can be, for example, the direction of a polarizer.
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2.1.3 Violation of the Bell’s inequality

I first express EQ(−→a ,
−→
b ) as a function of −→a and

−→
b , the direction of the two polarizers.

In the plane xOz, −→a is defined by the angle θ1 with the X axis :

|+−→a 〉 = cos(θ1)|+〉 + sin(θ1)|−〉

|−−→a 〉 = − sin(θ1)|+〉 + cos(θ1)|−〉

(we get similar results for
−→
b with the angle θ2). I now express |Φ〉 in the eigenstates basis

|±−→a 〉 for the particle 1 and |±−→
b
〉 for the particle 2, we get :

|Φ〉 =
1√
2
(sin(θ2−θ1)|+a, +b〉+cos(θ2−θ1)|+a,−b〉−cos(θ2−θ1)|−a, +b〉+sin(θ2−θ1)|−a,−b〉)

I deduce from this expression the probability to measure, for example, +1 for the particle

1 and +1 for the particle 2 (noted P (+a, +b)). EQ(−→a ,
−→
b ) is given by :

EQ(−→a ,
−→
b ) = P (+a, +b) + P (−a,−b) − P (−a, +b) − P (+a,−b)

This finally gives

EQ(−→a ,
−→
b ) = − cos(2(θ2 − θ1)) (2.2)

We consider now the configuration of the figure 2.1. It is straightforward to show that :

|EQ(−→a ,
−→
b ) + EQ(

−→
a′ ,

−→
b ) + EQ(

−→
a′ ,

−→
b′ ) − EQ(−→a ,

−→
b′ )| = | cos(6θ) − 3 cos(2θ)|

If we choose θ=π/8 then :

| cos(6θ) − 3 cos(2θ)| = 2
√

2 > 2

For certain values of θ, Bell’s inequality are violated. The hidden variables theory
combined with the principle of locality does not apply for entangled states. An entangled
state can not be interpreted as two individual states. It is a unique state composed of two
particles.

2.2 Electronic entanglement in the two-particle inter-

ferometer

In the previous part, we have used very general arguments to prove that for a certain
geometric configuration of the polarizers, the measurement of an entangled state violates
Bell’s inequality. In this part, I will detail how this experiment can be realized. I will
show that for an ingenious mesoscopic conductors geometry [74][73], we can obtain the
mesoscopic analogous of the optical experiment realized by Aspect et al. in the 80’s to
violate Bell’s inequality. [9].
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a’
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b’

Figure 2.1 – Geometric configuration to violate Bell’s inequality. Measurements are realized along
a,b,a’,b’, the different directions of the polarizers. The angle between a and b, a’ and b, a’ and b’ is equal
to θ. The angle between a and b’ is equal to 3θ. For θ = π/8 we obtain the maximally entangled state.

Entanglement in mesoscopic conductors

We are interested here in the system described figure 2.2. Electrons emitted by reservoirs
1 and 2 can be either transmitted to B or reflected to A. In the following, we will focus on
electronic correlations between regions A and B.

1 3

2 4

A+

A- B-

B+

BA

S

Figure 2.2 – Schematic representation of the conductor. A region source (S) composed of the injection
(reservoirs 1 and 2) and two beam splitters. Injected electrons are sent towards region A and B. Region
A(resp. B) is composed of one beam splitter and two detectors : ohmic contacts A+ and A- (resp. B+ and
B-).

Noise measurements and post-selection of an entangled state

The injected state is :

|Ψ〉 = a+
1 a+

2 |0〉

where a+
i is the creation operator of a particle at the ith contact. We introduce the operators

bAn and bBn that model electrons emitted by the contact n after the beam splitter from
the region S and that propagate respectively toward regions A and B. We can relate these
states to the injected states with the scattering matrix :
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(
bA1

bB1

)
=

(
r t′

t r′

) (
a1

a3

)

and

(
bA2

bB2

)
=

(
r t′

t r′

) (
a2

a4

)

The injected state thus becomes :

|Ψ〉 = [r2b+
A1b

+
A2 + t2b+

B1b
+
B2 + rt(b+

A1b
+
B2 − b+

A2b
+
B1)]|0〉

The cross correlation noise measurement 2 gives a no null result only for the two particles
states, where one particle is in the region A and the other in B. Consequently, the noise
measurement selects the state :

|Ψ0〉 = rt[|1〉A〉|2〉B − |2〉A〉|1〉B]

which is an entangled state. Since the scattering matrix is unitary, the beam splitter
has a transmission coefficient toward the ohmic contact A+ : t=sin(θA) (B+ : t=sin(θB)),
and a reflexion coefficient toward A- : r=cos(θA)(B- : r=cos(θB)). We obtain then :

(
|A+〉
|A−〉

)
=

(
cos(θA) − sin(θA)
sin(θA) cos(θA)

) (
|2A〉
|1A〉

)

and

(
|B+〉
|B−〉

)
=

(
cos(θB) − sin(θB)
sin(θB) cos(θB)

) (
|2B〉
|1B〉

)

We introduce the quantity :

Pαβ = Sαβ × h

−4e2V

where Sαβ ∼ 〈δIαIβ〉 is the cross correlated power noise spectrum, and α (resp. β) is
A+ (resp. B+) or A- (resp. B-). We obtain then :

PA+B− = PA−B+ =
1

2
[sin2(θA) sin2(θB)+cos2(θA) cos2(θB)+2 sin(θA) sin(θB) cos(θA) cos(θB) cos(φ0)]

and

PA+B+ = PA−B− =
1

2
[cos2(θA) sin2(θB)+sin2(θA) cos2(θB)−2 sin(θA) sin(θB) cos(θA) cos(θB) cos(φ0)]

(2.3)

2. I will detail the cross correlation measurement in the Chapter 3. For the moment, we just want to
determine the electronic correlation between region B and A without worrying about the actual way it can
be done.
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where φ0 is a phase term. We suppose first that φ0=0. The previous expressions now
becomes :

PA+B− = PA−B+ =
1

2
cos2(θA − θB) and PA+B+ = PA−B− =

1

2
sin2(θA − θB)

One can realize that the electronic and the optical problems are similar through the
correlation function :

E(θA, θB) = PA+B− − PA−B+ − PA+B+ + PA−B−

E(θA, θB) = cos(2θA) cos(2θB) + sin(2θA) sin(2θB)

which has the same form as formula 2.1. We know that the Bell’s inequality is given by
−2 ≤ SB ≤ 2 where :

SB = E(θA, θB) − E(θ′A, θB) + E(θA, θ′B) + E(θ′A, θ′B)

For θA=π/8 , θB=π/4, θ′A=3π/8, θ′B=π/2, we obtain SB = 2
√

2 and Bell’s inequality
are maximally violated.

2.3 From the simple Mach Zehnder Interferometer to

the two-particle interferometer

In the previous part, I have described the general geometry of a mesoscopic conductor
that would enable us to violate Bell’s inequality. Here, I present the double ”MZI” 3, a
feasible sample that fulfills all the conditions to violate Bell’s inequality. We will show
that before tuning the beam splitters to obtain the maximal violation, we must check that
noise measurements probe the entangled part of the state. In order to do that, we will vary
the Aharonov-Bohm phase defined by the different electronic trajectories and will show
that the entangled part of the state can be revealed by Aharonov-Bohm oscillations in the
cross-correlated noise measurements.

A schematic representation of the sample [74] is represented figure 2.3.

2.3.1 The two-particle Aharonov-Bohm effect

Contrary to the simple electronic MZI [37], two incoherent electronic sources inject a
current in the MZI. If we now compare this geometry to the one described in the previous
part (figure 2.2), we notice that it is very similar. The region S is now composed of the
ohmic contacts 2 and 3 that will inject electrons, with C and D the beam splitters that
will partition electrons. The regions A and B are now composed of the ohmic contacts
5 and 8 (the detectors), with A and B the beams splitters. The noise measurements are
realized between ohmic contacts 5 and 8. We are going to detail the state measured by

3. Association of two single MZI.
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Figure 2.3 – Schematic representation of the double MZI proposed by Samuelsson et al. [74] . Electrons
are injected from contacts 2 and 3. Cross correlation noise measurements are realized between contacts
5 and 8. Keeping in mind the notations of the figure 2.2, the source S is composed of ohmic contacts 2
and 3 and beam splitters C and D. Region A is composed of beam splitter A and ohmic contacts 5 and 6.
Region B is composed of beam splitter A and ohmic contacts 7 and 8. φ is the phase accumulated along
the trajectory of an edge. For example φ1 is the accumulated phase along the outer edge between the beam
splitters C and A. Cross correlation noise measurement between contacts 5 and 8 is sensitive to the two
electrons Aharonov-Bohm phase φ = φ1 + φ2 − φ3 − φ4

this cross correlation noise measurement and show that it depends on the ”two electrons
Aharonov-Bohm” phase.

We introduce f(ǫ) the Fermi distribution of reservoirs 2 and 3, and f0(ǫ) the Fermi
distribution of the other reservoirs. We want to calculate the correlation current between
contacts 5 and 8. The general expression of the noise between contacts α and β can be
written as :

Sαβ =
−2e2

h
Σγδ

∫
dE(s+

αγsαδs
+
βδsβγ)(fγ − f0)(fδ − f0)

S58 =
−2e2

h

∫
dE|s∗52s82 + s∗53s83|2(f − f0)

2

(2.4)

where sαβ is the scattering amplitude between contacts α and β. When the gates trans-
missions are equal to 1/2 :

S58 =
−e2

4h
|eV |[1 + cos(φ1 + φ2 − φ3 − φ4)]

where φ1 is the phase accumulated between QPCs C and A, φ2 between QPCs D and B,
φ3 between QPCs C and B, φ4 between QPCs D and A (see figure 2.3). We suppose now
that we can add a magnetic flux through the sample. Due to the chirality of the electronic
trajectories, we obtain a positive contribution of the magnetic flux for the phases φ1 and
φ2, and a negative one for the phases φ3 and φ4. The global contribution related to the
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magnetic flux is thus equal to φ1 + φ2 − φ3 − φ4 =
∮ −→

dl .
−→
A where

−→
A is the potential vec-

tor. Varying the magnetic flux through the double MZI, we should observe two electrons
Aharonov-Bohm oscillations.

3

5

4φ

2φ

A
C

D
B

2 3φ

1φ

8

a)

b)

Figure 2.4 – (a) Schematic representation of the first version of our double MZI . There is no side gate
to tune each simple MZI separately. Electrons are collected via small inner ohmic contacts in yellow on the
figure.(b) Zoom of the central part of the double MZI with four gates, and two ohmic contacts connected
to the ground. The advantages of this sample was the very short length of the trajectory. The disadvantage
was the impossibility to tune the interferometer using conductance measurements.

Once two-electron Aharonov-Bohm oscillations measured, how can we violate Bell’s
inequality ? Comparing formula 2.4 to 2.2 obtained in the previous part, we then obtain :

P58 ∼
1

2
[sin2(θA) sin2(θB) + cos2(θA) cos2(θB) + 2 sin(θA) sin(θB) cos(θA) cos(θB) cos(φ0)]

with φ0 = φ1 + φ2 − φ3 − φ4 and TA=1-RA=sin2(θA) (TB=1-RB=sin2(θB)). Consequently
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once P58 measured, we have to set φ0=0, to reproduce the measurement with P67, P68 and
P57 tuning θA=π/8 , θB=π/4, θ′A=3π/8 and θ′B=π/2.

2.3.2 Technical realization

3

5

4φ

2φ
A

C

D

B

2

3φ

1φ

8

SG

Figure 2.5 – Schematic representation of the second version of our double MZI. Electrons are injected
from contacts 2 and 3. Cross correlation noise measurements are realized between contacts 5 and 8. Keeping
the notations of the figure 2.2, the source S is composed of ohmic contacts 2 and 3 and beam splitters C
and D. Region A is composed of beam splitter A and ohmic contact 5. Region B is composed of beam
splitter A and ohmic contact 8. φ is the phase accumulated along the trajectory of an edge. For example
φ1 is the phase accumulated along the outer edge between the contacts C and A. Cross correlation noise
measurement between contacts 5 and 8 should be sensitive to the two electrons Aharonov-Bohm phase
φ = φ1 + φ2 − φ3 − φ4. A side gate (SG) enables us to separate the upper MZI from the lower one. We
should first tune separately each simple MZI to obtain the highest visibility and then open the side gate
and realize noise measurements, as it has been done recently by the Weizmann group [60].

We started the experiment with a sample which was exactly the one proposed by
Samuelsson et al [74]. These samples (see figure 2.4) had the advantage to be very compact
hence leading to very short electronic trajectories. However these samples suffered from a
strong disadvantage : it was impossible to tune the magnetic field and/or the gate voltage
to obtain the highest visibility using conductance measurements. We have chosen then a
configuration pioneered by the Weizmann group [60] (see figure 2.5). The trick is to separate
two simple MZI by a gate : when the gate is closed, we tune separately the two MZI using
conductance measurements, to obtain the highest visibility on each. When the gate is
opened we get the double MZI configuration [60] and can perform noise measurements.

2.4 Conclusion

This chapter was a general introduction to this thesis. We have shown that it is theoreti-
cally possible to violate Bell’s inequality with a mesoscopic conductor. We have described
the geometry to achieve this experiment. Starting with two simple MZI tuned in order
to measure the highest visibility, we open the central gate and obtain the Double MZI
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configuration. We will then probe the entangled part of the state via electronic shot noise
measurements These measurements will be realized at finite bias voltage and finite tem-
perature. Consequently before measuring the noise, we need to study the visibility in a
simple MZI as a function of the sample size, magnetic field and applied bias.

1. We first have to extract a coherence length, since when we will open the central gate,
the surface of the interferometer will be doubled : we have to ensure that the two
electrons state remains coherent on the whole surface.

2. We have to find a magnetic field where this coherence length is the longest. This study
of the coherence length will give us the temperature dependence of the visibility : we
will then be able to know if the electronic temperature of our fridge (20mK) will be
low enough to measure the two electrons Aharonov-Bohm effect.

3. Finally since the noise measurements are realized at finite bias voltage, we must
understand the voltage bias dependence of the visibility. Recent experiments have
shown that the voltage bias dependence of the visibility was not monotonous [57] :
such results must be explained before performing noise measurements.

After all these preliminary studies, we will be able to answer this question : do we have
the noise sensitivity to violate Bell’s inequality with our experimental set up ?
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3.1 Introduction

This part is an introduction to the electronic MZI and the experimental set up. We
will first recall the historical experiment of the MZI realized in optics and we will explain
its general principle. In optics, interferometers are composed of beams splitters, mirrors
and source of photons. To realize interference experiments in mesoscopic physics which are
somehow a copy of the one realized in optics, we must find an experimental set up which
produces beam-like electronic motion, beam splitters, mirrors. We will show that the edge
states in the quantum Hall regime are 1D wires whose position can be easily controlled.
In a second step, we will take up the question of the beam splitters : we will show that
the quantum point contacts (QPC) are good candidates to mimic beam splitters. Then,
we will describe the geometry of the electronic MZI and explain how the conductance and
noise measurements are performed.

In a last part, we will detail the method that we have followed to obtain the highest
visibility on samples with a stable phase (several hours) and also with samples presenting
phase fluctuations.

3.2 From optics to mesoscopic physics : description of

the optical MZI

Beam Splitter 1

Beam Splitter 2Mirror

Mirror

Detector

Sample

Figure 3.1 – Schematic view of the optical MZI. A collimated beam is split by a first half-silvered
mirror (represented in grey). The two resulting beams (the ”sample beam” and the ”reference beam”) are
each reflected by a mirror (in black on the figure). The two beams are recombined on a second half-silvered
mirror and then enter in the detector.
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The Mach Zenhder interferometer 1 is a device which has been used for the first time
to determine the phase shift caused by a small object placed in the path of one of two
collimated beams issued from a coherent light source.

A collimated beam is split by a half-silvered mirror (a beam splitter). The two resulting
beams (the ”sample beam” and the ”reference beam”) are each reflected by a mirror. The
two separated beams are then recombined on a second half-silvered mirror and then enter
in the detector.

Because the coherence length of photons is larger than the size of the interferometer ,
the transmission amplitude t through the MZI is the sum of the two complex transmission
amplitudes corresponding to upper path and down path of the interferometer. For trans-
mission and reflection amplitudes ti and ri for the ith beam splitter (with |ri|2+|ti|2=1
(i=1,2)), the transmission amplitude t through the MZ is given by :

t = t1e
i(δke+kLu)r2 − r1e

ikLdt2.

where k is the wave vector of the monochromatic light, δk the wave vector variation
due to the inserted object and e the thickness of this object 2. It leads to the transmission
probability :

T = T1R2 + R1T2 +
√

T1T2R1R2sin(ϕ)

where ϕ(k) = k(Lu − Ld) + δke and Ti=|ti|2 = 1 − Ri.

To reveal oscillations, one has to vary the length difference between the two trajectories
by moving one mirror, or to introduce a phase shift by adding a sample along one of the
path.

One of the major difficulties when making an optical interferometer was to obtain a
focussed light beam and a monochromatic one, such that the coherence length of the source
(inversely proportional to its spectral width) is longer than the interferometer. For several
decades, the LASER has been very useful as it provides directly a focussed monochromatic
light.

Here, one wants to make interferences with electrons : the electronic wave function
replaces the electromagnetic one. If interferences with electrons have already been realized
in mesoscopic conductors [19][77], it is impossible to impose strictly two trajectories for
electrons without chirality 3(at least in conductors). This problem is circumvented here by
breaking the time reversibility of trajectories with a magnetic field. We will show that when
submitted to a perpendicular magnetic field, the electronic transport in 2D high mobility
electron gas is chiral and occurs along edge states which are 1D conductors. Consequently,
we will be able to control the trajectories of electrons just by designing the edge of the
sample. Another major difficulty when making an optical interferometer is the tuning
of beam splitters. The collimation of the transmitted and reflected beams must be very
precise, and the transmission of each beam splitter has to be set to 1/2 in order to obtain

1. Named after physicists Ludwig Mach and Ludwig Zehnder (1891) [47][89].
2. The sign minus in the reflection is a consequence of the unitary of the scattering matrix.
3. Motion in one direction, like a photon beam.
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the highest visibility. In mesoscopic physics, we will show that QPCs enable us a very
accurate tuning of the electronic beams transmissions. Last, ohmic contacts will serve as
detectors of electrons, and detection will be realized via voltage measurement between two
ohmic contacts.

3.3 An electronic beam : the edge state of the Integer

Quantum Hall regime

Before describing the edge states properties, I will give a brief introduction of the
quantum Hall effect. Then, I will describe the electronic transport in the quantum Hall
regime and show that the transport occurs in 1D wires along the sample edges : the edge
states.

3.3.1 The classical Hall effect

Classical Dynamics of electrons submitted to a magnetic field

We consider a 2D gas of electrons submitted to a perpendicular magnetic field
−→
B . We

introduce the complex notation z=x+iy to study the position of electrons. The dynamic
of electrons under the Lorentz force is :

mẍ = −eBẏ and mÿ = eBẋ

or z̈ = iωcż with ωc=eB/m∗, where¨denotes the second time derivative, and m∗ the effective
mass. The solution of this simple equation is given by :

z = C − iv0

ωc

eiωct

For non zero values of v0, the trajectory of the particle describes a cyclotron orbit with a
frequency ωc. The center of this orbit C is fixed.

Transport

In the classical Hall regime, the conductivity tensor Σ̂ (defined by
−→
j = Σ̂

−→
E ) is equal

to [7][38] :

Σ̂ =
Σ

1 + ω2
cτ

2

(
1 −ωcτ

ωcτ 1

)

where Σ is the conductivity at zero magnetic field, Σ=nse
2τ/m∗, τ being the Drude

collision time. We deduce from that expression the resistivity tensor :

ρ̂ = (Σ̂)−1 = ρ

(
1 ωcτ

−ωcτ 1

)
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with ρ=Σ−1 the resistivity at zero magnetic field. The longitudinal resistivity is given by
the diagonal elements of the tensor, and the Hall resistance (or transverse resistance) by
its non-diagonal elements. We note that in the classical regime, the longitudinal resistance
is not affected by the magnetic field and the Hall resistance is given by :

ρxy = ρωcτ =
1

nse
B

The classical Hall resistance varies linearly with the magnetic field and offers the possibility
to measure the electronic density. This classical description of the Hall effect is adapted
for ωcτ ≪ 1. The transition with the quantum Hall effect occurs when the collision time τ
of the electrons is larger than the inverse of the cyclotron frequency and the temperature
of the system T ≪ ~ωc.

3.3.2 The quantum Hall effect

The discovery of the Quantum Hall effect in 1980 by Von Klitzing [39] has been an im-
portant step in the comprehension of the electronic transport in 2D systems. Von Klitzing
et al. have characterized the variations of the longitudinal resistivity ρxx, and of the trans-
verse resistivity ρxy of a two-dimensional gas with the applied magnetic field. If in average
ρxy followed a linear slope with B as predicted by the classical approach, Von Klitzing
has observed some plateaus at 1.5K. These plateaus in the curves ρxy have the remarkable
property to appear at values equal to h

e2 × 1
ν

where ν is an integer : this quantification is
the mark of a quantum phenomenon (figure 3.2).

Figure 3.2 – Hall and longitudinal resistance as a function of the magnetic perpendicular field. We note
the integer Hall plateaus, and the Shubnikov-de-Haas oscillations between two plateaus. The longitudinal
resistance is null on the Hall plateaus.

For each plateau, Von Klitzing noticed that ρxx vanishes : the electronic transport is no
longer dissipative. He also observed some peaks of ρxx while ρxy was evolving continuously
between two plateaus. These oscillations are the expression of a well known phenomena for
electrons submitted to a uniform magnetic field : the Shubnikov-de-Haas oscillations. [28].
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3.3.3 Electrons without spin

To explain the origin of these plateaus, we first consider the simple case of an electron
moving in a 2D system, submitted to a perpendicular magnetic field. Here, we will neglect
electronic interactions. The Hamiltonian of the system is given by :

H0 =
1

2m∗ (−→p − e
−→
A )2 =

Π2

2m∗ =
1

2m∗ (Π2
x + Π2

y)

with m∗ the electron effective mass, e=−|e| its charge, −→p its moment, and
−→
A the potential

vector. In the cylindric gauge,
−→
A = 1

2

−→
B ∧−→r with

−→
B the magnetic field, we can show that

the hamiltonian is quadratic in position and in moment. The problem is thus analog to an
harmonic oscillator in two dimensions, Πx and Πy being conjugate :

[Πx, Πy] =
−i~2

l2m

where lm=
√

~/eB is the cyclotron length. We introduce the operators a and a† defined
by :

a =
lm

~
√

2
(Πx − iΠy) and a† =

lm

~
√

2
(Πx + iΠy) leading to [a, a†] = 1

The Hamiltonian H0 becomes :

H0 = ~ωc(
1

2
+ a†a)

The energy spectrum of this Hamiltonian is given by εn = ~ωc(n + 1
2
). These discrete

energy levels are called Landau levels. The charged particles can only occupy orbits with
discrete energy values : between two Landau levels, there are no available states. As the
density of state falls to zero between 2 Landau levels, it would mean that the system
should be a perfect insulator. In fact, the explanation of the Hall plateau is a little bit
more sophisticated. As an example the sample edges and the disorder play a crucial role.
Since H0 does not depend of the position of the center of the cyclotron orbit, energy levels
must be degenerated. The quantum operator that describes the position of the center of
the cyclotron orbit is defined by :

C = z + i
Π

m∗ωc

which leads to [Cx, Cy] = il2m

where z=x+iy stands for the position of the cyclotron orbit. 2πl2m represents the area of
one flux quantum φ0=h/eB. We now introduce operators b and b† :

b =
1

lm
√

2
(Cx + iCy) and [b, b†] = 1
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We can easily verify that [a,b]=[a†,b]=[H,b]=0, and thus diagonalize the Hamiltonian in
the eigenstates basis of operators a and b. The eigenstates basis of H0 can be written :

|n,m〉 =
(a†)n(b†)m

√
n!m!

|0, 0〉 and εn = (n +
1

2
)~ωc

Expressing a and b in function of z,z,∂/∂z and ∂/∂z, one can show that [46] :

Ψ0,0 =
1√
2πl2m

e
− zz

4l2m

Ψ0,m =
zm

√
2πl2m

√
2mm!

e
− zz

4l2m

We can now calculate the number of states per unity of surface for a Landau level, for
example the first one (n=0). The area occupied by all the states of the first level is given
by :

π〈m, 0|zz|0,m〉 = 2πl2m(0 + m + 1)

The area occupied by a state is exactly the area of a flux quantum h/eB. We define the
filling factor ν by :

ν =
ns

nφ0

with ns the electronic density and nφ0
the flux quantum density. Each state occupies a flux

quantum : when there is one electron per flux quantum the Landau level is full.

3.3.4 Electrons with spin

When we consider the spin of the electrons, we simply add the Zeeman energy to the
solutions of the Hamiltonian H0 :

ǫn,± = ~ωc(n +
1

2
) ± 1

2
g∗µBB

with µB the Bohr’s magneton, and g∗ the gyromagnetic factor of Landé. Consequently ,
when the temperature is low enough compared to g∗µBB, we will observe odd plateaux of
the quantum Hall effect.

3.3.5 Hall resistance and Shubnikov-de-Haas oscillations

If we now consider the semi-classical approach of the transport developed in the previous
part (part 3.3.1), the longitudinal resistance ρxx depends of the inverse of the collision
time : ρxx ∼ 1/τ . When the Fermi energy is located between two Landau levels, there is
a gap for the excitations and the electronic density of state at the Fermi level is zero. We
expect thus a divergence of τ between two Landau levels. This results in oscillations of the
longitudinal resistance, called Shubnikov de Haas oscillations (see figure 3.2).When all the
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states of a Landau level are full, the density of states ns = νnφ0
. Still in the semi classical

representation, the Hall resistance ρxy now reads :

ρxy =
B

nse
= ν−1 B

nφ0
e

=
1

ν

h

e2

When the Fermi level is located between two Landau levels, ν is an integer. The Hall
resistance only depends of h and e.

3.3.6 Edge states

In the bulk, electrons are not submitted to edge potentials, they follow circular tra-
jectories with a null average drift velocity. When we get closer to the edges, electrons are
submitted to the confining potential. The total energy being the sum of the Landau energy
and the confining potential, Landau levels are bent. When the Landau levels cross the
Fermi energy, one-dimensional gapless excitation modes form, which correspond to elec-
trons drifting along the edge of the sample. The drift velocity is not zero, electrons are
moving along the edges .

edge states

x

y

Semi-classical representation
of edge states

Figure 3.3 – Semi classical representation of edge states in the quantum Hall regime. The trajectory of
electrons in the bulk can be described by a cyclotron trajectory. Along the edge of the sample, the center
of the cyclotron orbit is drifting.

In the semi classical representation of edge states in the quantum Hall regime shown in
figure 3.3, the trajectory of electrons in the bulk can be described by cyclotron trajectories.
Along the edge of the sample, the center of the cyclotron orbit is drifting. The relation
between the drift velocity and the confining potential can be obtained in the following way.
We consider a sample designed in a 2D gas, submitted to a perpendicular magnetic field.
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We model the edges of the sample by a repulsive potential for electrons : we note V(z) this
edge potential. The Hamiltonian becomes :

H = ~ωc(a
†a + 1/2) + V (z)

If we suppose that Landau levels are barely coupled by this potential, we can write the
Hamiltonian projected on a Landau level :

Hn = 〈n|H|n〉 = ~ωc(n +
1

2
) + ˜V (Cx, Cy)

The first part of the Hamiltonian corresponds to a the cyclotron rotation of the electron,
while the second part represents the effect of the edge potential on the center of the
cyclotron orbit (Cx, Cy).

We consider the very simple case of an harmonic edge potential :

˜V (Cx, Cy) =
1

2
m∗ω2

0(y0 − W0)
2

where W0 is the center of the parable. Using the relation y0 = i ~

eB
∂

∂x0

= ~

eB
k0 (x0 and y0

are conjugate variables), the Hamiltonian becomes :

H = ~ωc(n +
1

2
) +

~2

2m∗(ωc/ω0)2
(k0 −

W0

l2m
)2

The first part of this Hamiltonian describes the cyclotron trajectory of the electrons, the
second part the drift of the center of the cyclotron orbit along the edges of the sample.
Energies of the eigenstates are given by :

ǫn(k) = ~ωc(n +
1

2
) +

~2

2m∗(ωc/ω0)2
(k0 −

W0

l2m
)2

The drift velocity of the electrons becomes :

vd(k0) =
1

~

dE(n, k0)

dk0

=
~2

m∗(ωc/ω0)2
(k0 −

W0

l2m
)

Due to the edge potential, electrons along the edge of the sample have a non null drift
velocity, while in the bulk the edge potential being equal to zero the drift velocity is null :
electronic transport occurs along edges of the sample. We define an edge state when its
energy is equal to the Fermi energy. There are as many edge states as occupied Landau
level in the bulk (see figure 3.4).

In this thesis, we have been principally worked at filling factor ν=2, with two edge
states and a Hall resistance equal to 12.9kΩ (see figure 3.5).
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Figure 3.4 – Edge states representation as a function of landau levels. Due to confining edge potential
(here we have represented a confining potential null in the center of the sample, varying on the edges),the
Landau levels are bent, gapless excitations form on the edge where the Landau levels cross the Fermi
energy. Hence, the electronic transport occurs at these crossing. From one edge to the other, the direction
of the electronic trajectory is inverse : the electronic transport is chiral.
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Figure 3.5 – Two points measurement of the Hall resistance realized in a MZI. Most of our results
presented in this thesis have been obtained at filling factor ν=2, with two edge states and a Hall resistance
equal to 12.9kΩ.

3.4 Electronic Beam Splitter : the Quantum Point

Contact

In this part, we will show that the QPC enables us to manipulate easily electronic
modes either by reflecting or partially transmitting them. They are, as a consequence, a
perfect candidate for the beam splitter in the electronic MZI. 4 We give in annexe A a more
detailed description of the QPC via the introduction of the the scattering matrix in the
Landauer-Buttiker formalism.

4. The QPC will be also used to sweep the phase of the MZI.
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3.4.1 The Quantum Point contact

VG

IT

IR
I0

(b)

IT

IR
I0

(a)

Figure 3.6 – (a) Top SEM view of a QPC. A part of the electronic wave is reflected (transmitted)
noted IR (noted IT ). (b) Top SEM view of a QPC in the MZI. We have colored in yellow the Au metallic
bridge that connects both gates of the QPC, and in red the grounded ohmic contact. In this representation
a part of the edge state is transmitted toward the second beam splitter. The reflected part of the current
can be collected by the grounded ohmic contact.

-0.2 -0.1 0.0 0.1 0.2 0.3 0.4 0.5

1

1/2

0

 

 

T
ra

n
s
m

is
s
io

n

V
gate

Figure 3.7 – Transmission behavior of a quantum point contact with the gate voltage at filling factor
ν=2. For a gate voltage of +0.5V (when the sample is cooled down, gates are biased with +0.5V) both
edge states are transmitted, the transmission is equal to 1. When the gate voltage is null, the transmission
is equal to 1/2, only the outer edge state is transmitted, the inner one being totally reflected. Since, we
will reveal Aharonov Bohm oscillations on the outer edge state, with a transmission equal to Tout=1/2,
gate voltages usually applied in our experiments are ∼ -0.15V.

The first experimental realization of the QPC, with the observation of the conductance
plateaus (giving the number of transmitted modes) has been realized by Van Wees et al.
at Delft University in 1988 [83][85].

The Quantum Point Contact (see figure 3.6) is composed of split gates evaporated on
the surface of a wafer containing the 2DEG 5.

5. These two gates are fabricated by electronic lithography which enables to reach a very small distance
between them (∼ 280nm).
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Most of our results have been obtained at filling factor ν = 2, meaning that two
edge states are injected into the interferometer. We measure the transmission defined by
T = dIT /dI0 with IT the transmitted current and I0 the injected current into the sample.
Varying the gate voltage, we modify the electronic density under the QPC and the coupling
between two counter propagating edge states. If the quantum point contact is opened,
both edge states will be transmitted and Tin(transmission of the inner edge state) =Tout

(transmission of the outer edge state)=1 (see figure 3.7). When the filling factor beneath
is equal to 1, we reflect one edge state while the other one is transmitted : in that case
the transmission of the outer channel Tout will be equal to 1 while the transmission of the
inner channel Tin will be equal to 0. This can be seen in Fig. 3.7 for values of Vgate between
-0.05 and 0.1. At pinch off (Vgate≤-0.15 on Fig.3.7), both edge states are reflected. For
intermediary values of the gate voltage, we will be able to set the transmission of an edge
state to 1/2 for example.

3.5 The electronic Mach Zehnder Interferometer

3.5.1 Description

4 µm

I0

IT

G2
G1

G0

LG

ID
(u)

(d)

IR

Figure 3.8 – SEM view of the electronic MZI with a schematic representation of the outer edge state.
G0, G1, G2 are quantum point contacts which mimic beam splitters. The pairs of split gates defining a
QPC are electrically connected via a Au metallic bridge deposited on an insolator (SU8). G0 allows a
dilution of the impinging current, G1 and G2 are the two beam splitters of the MZI interferometer. LG
is a side gate which allows a variation of the length of the lower path (b). The small ohmic contact in
between the two arms collects the back scattered current IR to the ground through a long gold bridge.

The electronic MZI is the electronic counterpart of the optical one[37][70][45], quantum
point contacts (QPC) functioning as beam splitters and ohmic contacts as detectors 6. As

6. Ohmic contacts enable us to link the surface of the sample and the 2D gas located at 100nm under
the surface. To fabricate them, we realize a deposit of an alloy gold, nickel germanium, and we heat during
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shown schematically in Figure 3.8 QPC G1 splits the incoming edge current to two paths (u)
and (d). The two electronic trajectories will follow the edge of the sample designed to assure
a zero length difference between the upper(u) and down(d) trajectories. They recombine on
QPC G2. This leads to interferences which are visible in the measured transmitted current.
The reflected part of current is collected with a inner tiny ohmic contact grounded. IT , the
transmitted current is the measured quantity. The lateral gate LG will act as a side gate
which allows a variation of the length of the lower path (d).
An additional QPC G0 will enable us to dilute the impinging current and to reflect the inner
edge state. Note that the upper trajectory is very far from the opposite edge (several µm)
to avoid any interaction between the interfering edge state and the counter-propagating
one. 7 At the beginning of my thesis, when we have tested the different MZI, there was
always a broken QPC or ohmic contact. Thus, we have decided to optimize each cooling
down of a sample : each sample was in reality composed of two MZI separated by the
side gate, both MZI being strictly symmetric. We were able then to test two electronic
MZI during each cooling down. Since the fabrication process is now very well mastered by
Dominique Mailly and Gian Carlo Faini, the fabrication success rate is very high (∼ 80%).

3.5.2 Fabrication process

The main difficulty of the experiment is indeed the fabrication of the samples which
combine several QPC in a tiny region. The fabrication of the samples has been realized by
Dominique Mailly and Giancarlo Faini at LPN, Marcoussis. They succeeded to put several
gold gates at the top of a 2D electron gas, the electronic gas (provided by Ulf Gennser)
being located at a distance of 100nm from the QPC. Furthermore, we will see that in
the electronic MZI, we will need 4 QPC’s + air bridges which reinforces the experimental
realization difficulty. The first step in the characterization of a sample, is to verify that all
the QPC correctly answer to a gate voltage. Moreover, as represented on figure 3.6(b), the
reflected part of current will be collected by the grounded ohmic contact. When testing
QPC, we will also verify that inner ohmic contacts are perfectly grounded. If not, some
current will be re-emitted into the MZI, altering the visibility.

3.5.3 The two dimensional electron gas

A two-dimensional electron gas, or 2DEG, is formed when a crystal heterostructure
(here GaAs/AlGaAs) is made such that free electrons feel a strongly confining potential in
one direction. The electrons so confined are effectively reduced to two degrees of freedom.

1mn at 450̊ C. The alloy will diffuse inside the GaAs to finally reach the 2D gas. We connect this ohmic
contacts to the measurement set up via gold microweld realized with an ultrasound bounding machine.
The ohmic contacts have a niche shape to maximize the exchange length between the contact and the 2D
gas, and to reduce the resistance between the 2D gas and the contatc.

7. We will see that Sukhorukov et al. [79] have considered this long range interaction between the
interfering edge state and the counter propagating one to justify the lobe pattern of the visibility with the
applied bias (see Chapter 4).
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Heterojunctions GaAs/AlGaAs used to fabricate our samples have been realized by epitaxy
which consists in depositing atoms on a heated crystal wafer [1][30]. MZIs were patterned
using e-beam lithography on a high-mobility two-dimensional electron gas with a sheet
density of nS = 2.0 × 1011 cm−2 and a mobility = 2.5 × 106 cm2/Vs).

3.5.4 Aharonov Bohm oscillations

Using the single particle approach of the Landauer-Buttiker formalism, the transmission
amplitude t through the MZI is the sum of the two complex transmission amplitudes
corresponding to paths (u) and (d) of the interferometer. ti and ri being the transmission
and reflection amplitude of the ith QPC (with |ri|2+|ti|2=1), the transmission amplitude
of the MZI is given by :

t = t1e
iφdt2 − r1e

iφur2.

where φu (φd) is the phase accumulated along the upper path (down path). It leads to
a transmission probability at the energy ǫ :

T =| t |2= T1T2 + R1R2 +
√

T1T2R1R2 sin(ϕ(ǫ)) (3.1)

where ϕ(ǫ) = φu − φd and Ti =| ti |2= 1 − Ri.
ϕ(ǫ) is the AB flux across the area defined by the position of the edge state at the

energy ǫ on the paths (u) and (d). This phase is related to the phase at energy ǫF by the
relation 8[25] :

ϕ(ǫ) = ǫ∆L/(~υD) + ϕǫF

with υD the drift velocity, ∆L=Lu−Ld (Lu(Ld) are the length of the trajectories (u) and
(d)) and :

ϕǫF
= 2π

e

h
φAB(ǫF )

The visibility of the oscillation is defined as :

ν =
Tmax − Tmin

Tmax + Tmin

where Tmax(Tmin) is the maximum (minimum) transmission. When nothing reduces the
visibility (noise, finite coherence length), the visibility is simply determined by the tran-
missions T1 and T2 :

ν =

√
T1T2R1R2

T1T2 + R1R2

The maximum visibility is obtained for T1 = T2=1/2.

8. We consider here a simple non interacting approach of the electronic transport at ν = 2. We will
see that the non interacting approach is not sufficient since it does not explain the lobe structure of the
visibility with bias (see Chapter 4).
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3.6 Experimental technics

In this part we detail the experimental technics we used. It will contain usual conduc-
tance measurement technics as well as noise measurement technics. At the end of this part,
we will explain the different way we used to determine the visibility from our measurement
set up.

3.6.1 Conductance measurements

C B

InOut
Lockin

1V at 418HzDivisor Bridge

DC Source

10MΩ Ω Ω Ω at 4K

1/1000

0.1nA at 418Hz

GateVoltage

GateVoltage Ampli

Fridge Cold Mass

20mK

4K

Ohmic Contacts

Figure 3.9 – Conductance measurement based on lockin detection. We also have the possibility to apply
a DC voltage in parallel with the AC signal generated by the lockin. Amplifiers are at room temperature,
while the 10MΩ resistance is thermalized at 4K. Ohmic contacts are used as current-tension converters.
Gates voltages are filtered via low pass filters.

The conductance measurement of Aharonov Bohm oscillations is represented in figure
3.9. We measure the differential transmission through the MZI by standard lock-in tech-
niques 9. An alternating current at frequency f0=418 Hz is sent on the sample. The output
voltage contains an alternating component synchronized to the excitation and a noisy com-
ponent. This output signal is amplified with low noise amplifier 10, and demodulated with
the reference signal at the frequency f0

11. The measured signal is finally the response of the
system excited at the frequency f0, around the energy eV , where V is the DC bias applied
in addition to the tiny excitation. Finally what we measure is the differential conductance

9. Model 5210, EGG Princeton Applied Research.
10. LI 75A
11. The lock-in amplifier realizes an average of the output signal during a time constant τ , and strongly

reduces the bandwidth defined by ∼ 1/τ and hence the noise.
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defined by :

G(eV ) =
dI

dV
(eV )

The AC excitation must be low enough. Indeed the AC excitation is the energy range
on which we probe the system. If one wants to be able to observe temperature dependent
properties, it is necessary that :

eV∼ ≪ kBT

In our experiment, the lowest electronic temperature was ∼ 20 mK, which imposes V∼ ≪
2µV . On the other hand, to have the best sensitivity we must choose a value of V∼ close
to this limit. Typically we injected an AC current of 0.1nA in our sample, which gives at
ν = 2 , for a 12.9kΩ input resistance, V∼ ∼ 1.3µV .

Regarding the AC signal frequency, it must be out of the interval of noise measurements
(ω0/2π ≤ 1kHz), and one must avoid multiples of 50 Hz. In some experiments 12 realized
on the MZI, we have used two lock-ins with 2 excitations frequencies ω1/2π=418 Hz and
ω2/2π=619 Hz. To protect the experiment from microwave pollution, the fridge is inside a
copper box that prevent electromagnetic waves from reaching the sample.

3.6.2 Noise measurements

The voltage between two ohmic contacts of the electronic MZI is amplified with a
low noise amplifier, that can be modelled by a source of current noise in parallel with a
source of voltage noise. It implies that when we measure the output signal autocorrelation,
we cannot neglect the component due to the voltage noise of the amplifier. To eliminate
this voltage noise, we realize cross correlation measurements [40][72]. We have represented
figure 3.11 the general principle of cross correlation measurements. The voltage between
the measured ohmic contact and the grounded ohmic contact of the MZI is amplified by
amplifier 1 and amplifier 2, then the spectrum analyzer performs the cross correlation of
these two amplified output signals.

We are now going to show the advantages of using a cross correlation measurement
compared to an auto correlation measurement. We note 〈V 2

N,1〉(resp. 〈V 2
N,2〉) and 〈I2

N,1〉(resp.
〈I2

N,2〉) the voltage and current noise of the amplifier 1 (resp. 2). We note RW the resistance
of the two amplification lines , TW the temperature of the wires (that we suppose equal
for both lines). Finally , we note V1 (V2) the voltage output tension for each line.

If only one line is used, the general principle of the noise measurement is represented
figure 3.10.

When we calculate the total noise, we have to take into account the voltage and current
noise of the amplifier. We thus obtain :

〈V 2〉 = G2(〈V 2
s 〉 + 〈V 2

W 〉 + 〈V 2
N〉 + (RW + Rs)

2〈I2
N〉) (3.2)

12. See Chapter 5, Part : Study of the coupling between the inner and outer edge state. When we wanted
to measure the transmission of the inner and outer edge state independently, we have used two lock ins
with two different frequencies of excitation.
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AmpliIN

VNTWires, RWires

Wires

TSample, RSample

Fridge

20mK 4K

Figure 3.10 – Unique amplification line set up. We model it by an amplifier of gain G, a voltage and
a current source noise. The auto correlation noise measurement is sensitive to Jonhson Nyquist noise due
to the wires, and also to the voltage noise of the amplifier.

with Rs the resistance of the sample. In this formula 〈V 2
W 〉 is simply given by the Johnson

Nyquist noise :
〈V 2

W 〉 = 4kBTW RW ∆f

where ∆f is the frequency interval where noise measurements are performed. We want to
extract 〈V 2

s 〉, but our measurement is also sensitive to other parasite noises, and above all
to the Johnson Nyquist noise due to wires and to the voltage noise of the amplifiers.

When both amplification lines are used, as represented figure 3.11, one obtains for the
autocorrelation noise :

Ampli

VN

TSample, RSample

IN

Wires

Twires,Rwires

Ampli

VN

IN

Twires,Rwires

Wires

Spectrum analyserFridge

20mK 4K

Figure 3.11 – Two amplification lines set up. Both amplified signals are sent on the spectrum analyzer
that performs the cross correlation. Thanks to the cross correlation, the measurement is not sensitive
anymore to the voltage noise of amplifiers and to the Johson Nyquist noise of the wires.

n

〈V 2
1 〉 = G2

1(〈V 2
s 〉 + 〈V 2

W,1〉 + 〈V 2
N,1〉 + (RW + Rs)

2〈I2
N,1〉 + (Rs)

2〈I2
N,2〉) (3.3)
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and for the cross correlation :

〈V1V2〉 = G1G2(〈V 2
s 〉 + Rs(RW + Rs)〈I2

N,1〉 + Rs(RW + Rs)〈I2
N,2〉) (3.4)

We first notice that if the auto correlation is always sensitive to the voltage noise of the
amplifiers, it has disappeared in the cross correlation noise. Both Jonhson Nyquist noise
of the wires 1 and 2, and voltage noise of amplifiers 1 and 2 are not correlated, only the
current noise remains. Since RsIN ≪ VN in our case, the sensitivity of the cross correlation
measurement is higher than for an auto correlation measurement.

3.6.3 Measuring the visibility in the MZI

We recall the formula of the transmission probability through the MZI :

T = T1T2 + R1R2 +
√

T1T2R1R2 cos ϕ(ǫ) (3.5)

where ϕ(ǫ)∝φAB(ǫ). Consequently to observe oscillations, we must vary the Aharonov-
Bohm (AB) flux through the surface defined by the two arms of the interferometer. We have
realized measurements on samples of three different sizes : a small one (area of 8.5µm2), a
medium one (area of 17µm2) and a large one (area of 34µm2). Two methods are possible
to vary the AB phase 13 : either by varying the area defined by the paths (u) and (d) using
a lateral gate or exploiting the gradual decay of the magnetic field in persistent mode at
a rate of about ∼ 0.11mT/hour (∼ one quantum flux every 80 minutes on the small MZI
(area of 8.5µm2)). The side gate has the huge advantage to reveal oscillations very fast (5
seconds compared to 80 minutes for the gradual decay of the magnetic field).

Indeed, if exploiting the gradual decay of the magnetic field in persistent mode is adap-
ted for noise measurements (time constants are very long), for conductance measurement
we want to be able to compare magnetic field/side gate methods very quickly.

Unfortunately to sweep one quantum flux with the current source of the magnetic
coil, we need a ∼ 10−4A sensitivity. This sensitivity is not reached on our Oxford current
source 14 . We have then added a current source in parallel, and have verified the two
methods (magnetic field/side gate) on the same time scale (∼ 5sec for one oscillation).

We have represented figure 3.12 the two equivalent ways to reveal oscillations.

Tuning of the beam splitters in the MZI

We have noticed that applying a positive gate voltage (0.5V) while cooling down, stron-
gly enhanced the maximum visibility [18]. 15 Moreover, we have shown that to obtain the

13. We will see in the Chapter 6 that it is possible to reveal oscillations, by biasing the inner edge state.
We actually have three methods to observe oscillations.

14. We have a ∼ 10−2A sensitivity on the Oxford current source.
15. Our cooling down is very fast, from the room temperature to 4K in 30mn. From 4K to 40mK in 5

hours. The positive voltage on the gates enables us to avoid any instabilities on the QPC and to obtain
high visibility.
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Figure 3.12 – a) dIT /dI0 as a function of the lateral gate voltage. b) dIT /dI0 as a function
of the magnetic field. The interferences period is 0.46 mT which corresponds to a surface
defined by the arms equal to 8.5 µm2, in good agreement with the designed geometry of
the MZI (7.25 µm2). Interferences obtained at 4.6T and 20mK.

highest visibility, we had to tune very precisely the two beam splitters G1 and G2 to 1/2.
To realize a precise tuning, we have always used the following method : if the first beam
splitter G1 is tuned to T1=1/2, then the transmitted signal must be independent of G2.
Indeed, the average transmitted current is given by :

〈IT 〉ϕ = I0〈T1T2 + R1R2 +
√

T1T2R1R2 sin ϕ(ǫ)〉ϕ

or
〈IT 〉ϕ = I0(T1T2 + (1 − T1)(1 − T2))

where I0 is the injected current into the MZI, which can also be written :

IT = (1 − T1 + (2T1 − 1)(T2))I0

If T1 > 1/2, IT increases with T2. If T1 < 1/2, IT decreases with T2, and if T1 = 1/2, it
is constant. Once T1 is tuned to 1/2 following this method, we know that T2 is set to 1/2
for the maximum of visibility 16. With this method, we have reached up to 65% of visibility
(obtained on the smallest sample at 18mK ).

Measuring the visibility on a noisy sample

The first sample on which we have observed interferences had an unstable AB phase
whose exact origin remains unknown. We have then developed an original method [69] to

16. We have verified that T2=1/2 obtained with this method corresponds to T2=1/2 obtained indepen-
dently.
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measure the visibility, when instabilities (low frequency phase fluctuations) prevent direct
observation of the periodic interference pattern obtained by changing the magnetic flux
through the MZI (or the side gate).
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Figure 3.13 – Results obtained at 20 mK and 619Hz (lockin frequency) a)Transmission T = dIT /dI0 as
a function of the gate voltages VG1 and VG2 applied on G1 and G2. (◦) T = T1 versus VG1. (•) T = T2 versus
VG2. The solid line is the transmission T obtained with T1 fixed to 1/2 while sweeping VG2 : transmission
fluctuations due to interferences with low frequency phase noise appears. b) Stack histogram on 6000
successive transmission measurements as a function of the normalized deviation from the mean value. The
solid line is the distribution of transmission expected for a uniform distribution of phases. c)Visibility
of interferences as a function of the transmission T2 when T1 = 1/2. The solid line is the

√
T2(1 − T2)

dependence predicted by the theory.

We have followed the usual method (see preceding part) to reveal oscillations : we
have fixed the transmission T1 to 1/2 while sweeping the gate voltage of G2 (solid line of
figure (3.13a)). Whereas for a fully incoherent system T should be 1/2× (R2 + T2) = 1/2,
we have observed large temporal transmission fluctuations around 1/2. We show in the
following that they result from the interferences, expected in the coherent regime, but in
presence of large low frequency phase noise. This is revealed by the probability distribution
of the transmissions obtained when making a large number of transmission measurements
for the same gate voltage. Figure 3.13 (b) shows a histogram of T when making 6000
measurements (each measurement being separated from the next by 10 ms). The histogram
of the transmission fluctuations δT = T −Tmean displays two maxima very well fitted using
a probability distribution

p(δT/Tmean) =
1

2π
√

1 − ( δT
Tmean

)2 1
ν2

(the solid line of figure (3.13 b)). This distribution is obtained assuming interferences :

δT = Tmean × ν sin(ϕ) (3.6)
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and a uniform probability distribution of ϕ over [−π, +π]. Then 3.6 leads to a probability
distribution of δT equal to :

p(δT ) = Tmean × ν cos(ϕ)−1p(ϕ) =
1

2π
√

1 − sin(ϕ)2

Note that the peaks around |δT/Tmean| = ν have a finite width. They correspond to the
Gaussian distribution associated with the detection noise which has to be convoluted with
the previous distribution.

Although no regular oscillations of transmission can be observed due to phase noise,
we can directly extract the visibility of the interferences by calculating the variance of the
fluctuations (the approach is similar to measurements of Universal Conductance Fluctua-
tions via the amplitude of 1/f noise in diffusive metallic wires). All the results have been
obtained using the following procedure : we measured N = 2000 times the transmission
and calculated the mean value Tmean and the variance 〈δT 2〉. It is straightforward to show
that the visibility is

ν =
√

2

√
〈δT 2〉 − 〈δT 2〉0

Tmean

where 〈δT 2〉0 is the measurement noise which depends on the AC bias amplitude, the noise
of the amplifiers and the time constant of the lock-in amplifiers (fixed to 10 ms, lockin
frequency ∼ 619 Hz), measured in absence of the quantum interferences. As expected
when T1 = 1/2, the visibility extracted by our method is proportional to

√
T2(1 − T2),

definitively showing that fluctuations result from interferences(see figure 3.13c).
This method was the one we used on an unstable sample to study the finite bias visibility

of the interferences. Since then, we succeeded to obtain stable interferences. One can notice
that this method can also be applied for stable samples : sweeping very fast the side gate,
one just has to measure the amplitude of the output resulting oscillation.

3.7 Conclusion

In this part, we have shown how to build an electronic Mach Zehnder and what are the
experimental techniques involved in this PhD. At the beginning of my PhD, the fabrication
process and the method of observations were not settled. We tried at least 30 samples at
low temperature before observing noisy oscillations. Two years later, I succeeded to observe
oscillations with 65% visibility which has been a record during two months, before the work
of the Weizmann group [60] where they obtained 90% at 10mK. Fabrication technics and
observation methods are now well mastered. We are ready to study the physics of the MZI.
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Abstract

We present an original method to measure the visibility of interferences in an electronic Mach–Zehnder interferometer in the presence

of low frequency phase fluctuations. We studied the visibility of the interferences as a function of the energy and showed a gaussian

variation of the decoherence and/or phase averaging at finite energy. This gaussian variation leads to a visibility modulation with a single

side lobe.

r 2007 Elsevier B.V. All rights reserved.
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Quantum information experiments have been a fruitful

field of research in quantum optics partially thanks to the

extremely long coherence length of the light. Under

peculiar conditions, it is possible to realize experiments in

quantum conductors which mimic the optical ones. A

beamlike electron motion can be obtained in the integer

quantum hall effect (IQHE) regime using a high mobility

two dimensional electron gas in a high magnetic field at low

temperature. In the IQHE regime, the electrons carrying

the current drift along the sample edge equipotential and

are described as one-dimensional gapless excitation modes

called edge channels. The number of these edge channels

corresponds to the number of filled Landau levels in the

bulk. The chirality of the excitations yields to long collision

times between quasi-particles, making edge states very

suitable for quantum interferences experiments like the

electronic Mach–Zehnder interferometer (MZI) [1–3].

Surprisingly, despite some experiments which show that

equilibrium length in chiral wires is rather long [4], very few

is known about the coherence length or the phase

averaging in these ‘‘so perfect’’ chiral uni-dimensional

wires. In particular, while in the very first MZI experiment

the interference visibility showed a monotonic decrease

with voltage bias [1], in a recent paper, a lobe structure was

observed in the variations of the visibility with bias voltage

[5]. It is then difficult to conclude on the universality of

these results and more experiments are highly needed.

We report here on an original method to measure the

visibility n of interferences in a MZI when low frequency

phase fluctuations prevent direct observation of the

periodic interference pattern obtained when changing the

electronic phase with a magnetic or an electric field. We

studied the visibility at finite energy and we showed that

the decoherence and/or phase averaging is proportional to

expð�V 2=2V 2
0Þ, where V is the applied bias voltage.

The MZI geometry was patterned using e-beam litho-

graphy on a high mobility two dimensional electron gas in

a GaAs/Ga1�xAlxAs heterojunction with a sheet density

nS ¼ 2:0� 1011 cm�2 and a mobility of 2:5� 106 cm2/V s.

The experiment was performed in the IQHE regime at

filling factor nSh=eB ¼ 2 (magnetic field B ¼ 5:2T). Quan-

tum point contacts (QPC) controlled by gates G0, G1 and
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G2 define electronic beam splitters with transmissions T0,

T1 and T2, respectively. In all the results presented here,

the interferences were studied using the outer edge state

schematically drawn as black lines in Fig. 1(a), the inner

edge state being fully reflected by all the QPCs. The two

arms defined by the mesa are 8mm long and enclose a

14mm2 area. The current which is not transmitted through

the MZI, IB ¼ ID � IT, is collected to the ground with a

small ohmic contact. The impinging current I0 can be

diluted thanks to the beam splitter G0 whose transmission

T0 determines the dilution. We measure the differential

transmission through the MZI by standard lock-in

techniques using a 619Hz frequency 5mVrms AC bias

VAC superimposed to the DC voltage V. The transmission

T is defined as dIT=dI0.
When both beam splitters G1 and G2 are set to

transmission 1
2
, and at low temperature (18mK), we

observed large temporal transmission fluctuations around
1
2
(see Fig. 1b) which result from the interferences, expected

in the coherent regime, but in presence of large low

frequency phase noise. This is revealed by the probability

distribution of the transmissions obtained when making a

large number of transmission measurements for the same

gate voltage (Fig. 1b). The histogram of the transmission

fluctuations is well fitted (Fig. 1c) using a probability

distribution pðdT=TmeanÞ ¼ 1=ð2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðdT=TmeanÞ2=n2
q

Þ
obtained assuming a uniform probability distribution

of the phase j over ½�p;þp�, therefore demonstrating

the signature of coherent interferences. The deduced

visibility2 varies with the beam splitters transmissions

as expected within the Landauer–Buttikker theory

(Fig. 1d).

The visibility depends on the bias voltage with a one side

lobe structure shown in Fig. 2a. A fit, which is almost

perfect for the whole range of T0 (dilution), is

n ¼ n0e
�V2=2V2

0 1� VID

V 2
0 dID=dV

�

�

�

�

�

�

�

�

, (1)
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Fig. 1. (a) SEM view of the electronic Mach–Zehnder with a schematic representation of the edge state. The pairs of split gates defining a QPC (G0, G1

and G2) are electrically connected via a Au metallic bridge deposited on an insolator (SU8). G0 allows a dilution of the impinging current, G1 and G2 are

the two beam splitters of the Mach–Zehnder interferometer. LG is a lateral gate which allows to vary the length of the lower path. (b) When the

transmission T1 and T2 of beam splitters G1 and G2 are tuned to � 1
2
, the transmission through the MZI, T ¼ dIT=dI0 fluctuates with time around the

mean value T1T2 þ R1R2� 1
2
. (c) A stack histogram of the fluctuations reveals a distribution which results from a uniform distribution of phase noise

convoluted with the measurement noise (see text). (d) Fixing T1 ¼ 1
2
, the visibility is proportional to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

T2ð1� T2

p

Þ (the solid line).

2To deduce the visibility, we measured 2000 times the transmission and

calculated the mean value Tmean and the variance hdT2i. It is straightfor-
ward to show that the visibility is n ¼

ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hdT2i � hdT2i0
p

=Tmean, where

hdT2i0 is the variance of T due to measurement noise.
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where V 0 a fitting parameter and n0 the visibility at zero

bias. Eq. (1) is obtained upon assuming that the

decoherence and/or phase averaging is proportional to

expð�V 2=2V 2
0Þ (namely a phase noise dj2 / V 2). In such a

case, the coherent contribution to the current I� is

proportional to ID � expð�V 2=2V 2
0Þ. The measured coher-

ent part of the overall transmission, T� ¼ h=e2 dI�=dV
gives a visibility corresponding to formula (1) with a

zero value and a p shift of the phase when

VID=ðV
2
0 dID=dV Þ ¼ 1. One can see in Fig. 2a that the fit

with Eq. (1) is very good, even when the conductance is

non-linear (dID=dI0 varies with V, shown in Fig. 2b),

definitively demonstrating that the existence of a single side

lobe can be explained within our approach. Furthermore,

there is a clear increase of the robustness V0 when

increasing the dilution, not shown here [6].

One may ask how robust is the lobe structure, well fitted

by our approach. We indicate here some properties which

may help to find the underlying mechanism responsible for

the gaussian phase averaging. First of all, varying the

transparencies of the beam splitter G1 and G2 does not

change the energy scale. Increasing the temperature does

not alter the lobe structure. It reduces the visibility at zero

bias, but it merely adds a scaling factor. The variations of

the finite bias visibility normalized by the zero bias value

are not modified. However, we should point out that

sometimes the lobe structure is not symmetric. This is

particularly true when one applies a dc bias on the inner

edge state which, in principle, does not participate to

interferences. Moreover, when G0 is completely open, that

is when the inner edge state is injected into the inter-

ferometer with the same bias as the outer one, the lobe

structure disappears, and the interferences have a larger

visibility at finite bias. It means that we observe the lobe

structure when only the outer edge carries current, namely

when there is a finite spin current. As we also observe the

lobe structure at filling factor one, this may indicate that

finite spin current could play a role through, for example,

nuclear spin fluctuations. At this stage we cannot conclude.

It may be also possible that the physics of phase averaging

mechanism occurs at the beam splitter when the filling

factor in the depleted region beneath the QPC is less than

one. However, if it was the case, we should observe a

variation of the energy scale when varying the beam splitter

transmission which, we do not observe. Finally, we also

observed an increase of V 0 with the dilution. This effect

remains puzzling but it has been reproduced on many

samples.

To conclude, in addition to a new method to measure the

visibility of interferences in presence of low frequency

random phase fluctuations, we show for the first time that

edge channels decoherence is well accounted by a phase

noise proportional to V2 which, combined to the measure-

ment procedure, leads to a visibility modulation with a

single side lobe [6].
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4.1 Introduction

In this part, I investigate the finite bias properties of the MZI. This study is of impor-
tance as it will be necessary to apply a finite bias for noise measurements 1. In principle,
the visibility of the conductance oscillations should be independent of the bias. The reason
is the following one : when one measures the differential transmission at finite bias V , one
probes the differential transmission trough the MZI at energy eV . As a result, the phase
of interferences may change (only if the arms of the interferometer are of different length)
but, the amplitude of the visibility should not. Surprisingly, since the very first experiment
of Ji et al. [37], a monotonous decrease of the visibility with the bias has been observed.
Few years latter, in the same group, Neder at al. [57] have observed an intriguing lobe be-
havior in the visibility as a function of the bias, instead of a monotonous decrease. When
we started our own study on the MZI, there was neither confirmation of these strange
behaviors, nor theoretical explanation, apart from the theory of Sukorukov and Cheianov
[79] who proposed a mechanism based on long range interaction between the two counter
propagating edge states of the upper part of the MZI. I will present here a partial confir-
mation of the observation of Neder et al. [57]. I will show that our observations can be
explained assuming a gaussian decrease of the visibility with bias voltage. This gaussian
envelope (so far unexplained) leads to a one side lobe structure of the differential visibility
which we observe at the upper end of the ν = 2 plateau and at ν = 1.
In this chapter, I will first describe the existing experiment to extract the general properties
of the lobes. Then I will detail our experimental results and compare them with previous
experiments. We have proposed a Gaussian envelope of the visibility in the case of one
side lobe. With two side lobes, an additional term is necessary (unexplained). Finally, I
will carry out a critical approach of the different theories proposed and show that some of
them can explain the experimental observations, but never in a complete satisfactory way.

As you will see, the Gaussian envelope that we have observed and the analysis that
we have proposed has been since used by other experimental groups, demonstrating an
universality of this behavior.

4.2 Unexpected behavior of the visibility at finite bias

In the very first experiment [37](figure 4.1), the visibility voltage was monotonously
decreasing with the applied bias. In this pioneering experiment, there was no partition
gate G0 to reflect the inner edge state. In a second experiment, the inner edge state was
reflected and the visibility revealed an unexpected behavior with the bias : a lobe pattern.

1. As an example, the two ahoronov bohm oscillations, observed by Neder et al., have been observed
for V = 8µV [60].
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We will see why the reflection of the inner edge state is of importance to reveal side lobe
structures.

4.2.1 The very first experiment : a monotonous decrease

Figure 4.1 – The first experiment using the electronic MZI [37]. Visibility as a function of temperature
for V =0V (red plot), and as a function of V at the base temperature of the fridge (blue plot). Both gates
G1 and G2 were set to T1 ∼ T2 ∼ 0.5(Ji et al. [37]).

Ji et al. [37] were the first to study the dependence of the visibility with the bias.
They found a monotonous decay of it with the applied voltage (figure 4.1). To account
for this decay, Ji et al.[37] pointed out two voltage dependent dephasing mechanisms. One
might be due to low frequency noise (1/f type due to moving impurities), which might be
induced by a higher current, leading to fluctuation in the area and consequently, to phase
smearing. The other could be related to the self consistent potential contour at the edge.
Since it depends on the local density of the electrons in the edge state, fluctuations in the
density due to partitioning are expected to lead to fluctuations in the Ahoronov Bohm
area enclosed by the two paths and hence to phase randomization. For example, for B ∼
5.5T a mere 1∼2 angstroms shift of the edge suffices to add one flux quantum into the
enclosed area. Indeed these both mechanisms were plausible. The last one does correspond
to recent theories [88][55] where the charge noise due to the partitioning by the first beam
splitter generate phase randomization. I will detail this later.

4.2.2 One channel biased : an unexpected lobe pattern

In a second experiment [57] of the Weizmann group , most of the measurements were
conducted at ν = 2, with two edge channels. However, unlike in the first experiment, the
inner edge was now totally reflected by G0 and only the outer edge channel was injected
into the MZI.



Finite bias visibility 55

For zero DC bias on S2 and transmissions T1(T2) of G1(G2) equal to 1/2 (see figure 4.15
for the notations), the maximum visibility was ∼ 60%. In figure 4.2(a), I have represented
a two-dimensional color plot of the AC voltage measured by Neder et al. [57] as a function
of the modulation gate and the applied DC bias for ν=2. Figures 4.2(b) (ν=2) and (c)
(ν=1) provide the normalized amplitude (visibility) and phase of the AB oscillations at
different values of DC bias. Two features are common to Figures 4.2 (b) and (c). The
visibility evolves in a form of a decaying lobe pattern with increasing V , dipping to zero
periodically at specific biasing voltages. The phase is constant throughout each lobe but
slips abruptly by +π or -π at each zero. The lobes are more pronounced at ν=2 than at
ν=1. This behavior of a beating visibility and a rigid phase presents an energy scale of
∼ 10µeV .

4.3 General properties of the lobe structure

Before looking at parameters which affect the lobe structure, I have to say here that
the structure is temperature independent. It means that we recover exactly the same curve
as a function of V for different temperature, once renormalized to the zero bias visibility.

4.3.1 Magnetic field dependence

One parameter which affects the lobe structure is the magnetic field. Neder et al. [57],
have observed than the width of the lobe structure increases with the magnetic field, as
I have shown in figure 4.3 (figure 3 of ref.[[57]]). A multiple side lobe structure has never
been observed at filling factor 1. Indeed it raises an interesting question : is the presence
of several edge states necessary for a multiple side lobe ? One actually cannot answer to
that question as the increase of the lobe width with the magnetic field may also explain
the disappearance of the multiple side lobes : at higher magnetic field a multiple side lobe
may exist, but it is simply hidden by the general visibility decrease.

More recently, Litvin et al.[44] have studied this magnetic field dependence on a larger
range of the magnetic field from the end of the plateau ν = 2 to the beginning of the
plateau ν = 1. They found that the largest distance between the zeros was found around
ν = 1.5 and reduces, when ν moves from ν = 1.5 to ν = 1 or ν = 2. For ν > 1.5 more than
one pair of side lobes can be observed (see figure 4.4(a)). To fit their data, they consider the
product of an oscillatory function and a Gaussian envelope. They obtained this fit mixing
our approach 2(see part 4.4.2) and Levkivskyi and Sukhorukov’s result [43] which predicts
an additional cosine term combined with the expected visibility 3, which finally gives :

νI = νI0|cos(πV/VL)|exp(−V 2/2V 2
lob)

This formula contains the parameters VL as the period of the cosine term and Vlob as
the characteristic width of the envelope. In figure 4.4(b), I have plotted their measured

2. We will show later that they did not apply exactly our approach.
3. We will discuss this point in 4.7.3.
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Figure 4.2 – Interference oscillations and visibility. (a) Two dimensional color plot of the differential
transmission as a function of the applied DC bias.(b). The visibility and the phase of the interference
pattern at ν=2 as a function of the applied DC bias. Five major lobes are visible, each ∼ 14µV wide. The
phase at each lobe is constant and slips abruptly by π at each node. (c) A similar graph at ν =1 exhibiting
only 3 major lobes (or one side lobe) with similar stick-slip phase behavior (Neder et al. [57]).

magnetic field dependence of Vlob and VL. Both energy scales increase from the end of
ν = 2 to reach a maximum at ν = 1.5, and then decrease to ν = 1. It is important to
underline the differences between results obtained by Neder et al. and Litvin et al. When
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Figure 4.3 – Evolution of the lobe structure with the magnetic field. For lower magnetic field, the
maximum visibility is lower, but one can observe multi side lobes. At the end of the plateau ν = 2, the
visibility is higher, but one notes only one side lobe. (Neder et al. [57]).

Neder et al. studied the magnetic field dependence of the lobe pattern, they found that
the periodicity of the lobe increased from the beginning of the plateau ν = 2(∼ 10µV )
to reach ∼ 20µV at the end (see inset of the figure 4.3). Considering the figure 4.2(c), at
ν = 1 the lobe width ∼ 10µV which means that for intermediary values of the magnetic
field (between ν = 2 and ν = 1) the lobe width observed by Neder et al. should decrease.
For Litvin et al. the periodicity of oscillations is given by VL. The general behavior of VL

with the magnetic field is the same : it increases first and then decrease around ν = 1.5.
But they begin to observe oscillations at the very end of the plateau ν = 2, raising the
question of their definition of the homogeneity of the electronic density within the sample 4.
Moreover, their lobe width are in average ∼ 20µV , the double of Neder et al. This energy
scale seems sample 5 dependent.

4.3.2 Dependence on the dilution

A way to check whether the lobe structure is affected by e-e interaction between edge
states, or within one edge state is to dilute the incoming beam. This can be done by partly
reflecting the interfering edge channel with G0. Neder et al.[56] were the first to be interested
in the T0 dependence of the lobe pattern . I have represented their results in the figure
4.5 : for an occupation of 20% 6, the higher order lobes stretched out to higher voltages and
weakened significantly, but the main lobe remained almost invariant compared to T0=1.
It is interesting to note that they did not try to dilute more their impinging beam : their

4. Their geometry is different from the one of Neder et al. It may explain why their definition of the
filling factor in their sample is not the same than in the interferometer. It is quite surprising that they do
not observe oscillations on the plateau ν = 2 (as Neder et al. we observe oscillations on the whole plateau),
but this discrepancy between their and our results remain, to date, unexplained.

5. Or size dependent, but unfortunately the area of the Neder et al. sample seems not to be specified
in [57].

6. Namely the transmission T0 is set to 0.2.
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Figure 4.4 – Differential visibility of the small MZI. (a) Lobe structures at different magnetic fields.
General behavior is the same than Neder et al., supposing a shift in their definition of filling factor 2 (b)
Characteristic energies VL and Vlob as a function of the magnetic field. Their lobe width are in average
∼ 20µV (Litvin et al.[44]).In this figure ǫL≡ VL and ǫ0≡Vlob

minimum occupation is 20% meaning that they tune the transmission T0 to 0.2. We have
studied the dilution effect below this occupation of 20% and we have found that, in that
case, the main lobe is strongly affected by the dilution.

Figure 4.5 – The effect of beam dilution on the lobe pattern of the visibility. The dilution was performed
by reflecting a part of the impinging channel with G0. When the occupation of the incoming edge channel
was reduced to 20 %, the higher order lobes stretched and vanished while the main lobe remained almost
unaffected (Neder et al. [56]).

4.3.3 Two channels biased

In a recent experiment [15] Bieri et al. have studied the dependence of the visibility
with the tranmission of the first beam splitter (G1) when both edge states are fed with
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the same bias 7. They were mainly interested in the regime of weak tunneling (T1,out → 0)
and weak backscattering (T1,out → 1). In their experiment, only one side lobe seems to be
resolved. In the weak tunneling regime (WT) (figure 4.6(a)), they observe a lobe structure
analogous to the one reported by the other groups [57][69][44]. The phase gradually evolves
at small bias-voltage and a more complex curved pattern is observed at larger bias voltages
(figure 4.6(b)).

The visibility dependence with DC bias in the weak backscattering(WB) limit is very
different. In this regime, the visibility first increases with increasing DC bias, while at
larger bias voltages the visibility decreases. (figure 4.6(a))

Bieri et al. have realized several tests to check that this effect is intrinsic and does not
depend on the beam splitter properties. 8

We will show next, that this effect can be well understood within a simple model of
capacitive coupling between the inner and outer edge state. In particular, and this is the
main point, Bieri et al. have made the statement that they observed only one side lobe
and that in the WB this one side lobe was affected. I think that this is not correct. In
particular, I will show that in reality there is a double side lobe structure, the first lobe
being hidden. Indeed, since they do not have a partition gate G0, they cannot separate the
inner edge state from the outer one. Consequently they are mixing several phenomena :
lobe structure and capacitive coupling effects. Taking into account the inner edge state, we
will show that the increase of the visibility at finite bias simply results from the capacitive
coupling between the two edge states. I will show how one can fit their results with such a
model.

a) b)

Figure 4.6 – (a) Dependence of the ”intrinsic” visibility [15] for three different T1 values (T1 =0.93, 0.54
and 0.14) and QPC G2 fixed. In the weak backscattering limit the visibility first grows with increasing the
bias, whereas it decays in the opposite case of weak tunneling. The curves are guide to the eyes. (b)Phase
evolution as a function of the bias in the WB, WT and intermediate regime. (Bieri et al [15])

7. Like in the very first electronic MZI of Ji et al.[37], Bieri et al.[15] did not include a partition gate
G0.

8. They have reversed the magnetic field, the first(second) beam splitter becoming the second (first)
beam splitter. They have verified that this effect always depended on the first beam splitter.
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4.4 Our experimental results

4.4.1 Phase rigidity and visibility

Measurements realized on a middle size interferometer

Our first measurements of the visibility dependence with the bias voltage have been
realized on a middle size interferometer, at 4.8 Tesla (end of the Hall plateau at ν=2).
The two arms defined by the mesa are 8 µm long and enclose a 14 µm2 area.The first
measurements of the lobe pattern have been realized on a noisy sample, following the
method developed in the part 3.6.3. We have verified that we obtained the same results
on a stable middle size sample. I have represented in figure 4.8(a) the visibility versus the
DC bias voltage. We observe here only one side lobe structure. Figure 4.8(b) shows that
the phase is constant throughout each lobe but slips abruptly by +π or -π at each zero.
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Figure 4.7 – (a) The visibility of the interference pattern at ν=2 as a function of the applied DC bias.
Only three major lobes are visible. (b) Two dimensional color plot of the ∼ 400Hz AC MZI transmission as
a function of the applied DC bias (Vds) and the lateral gate voltage, at filling factor ν = 2 with transmission
T1 = T2 ∼ 1/2. The phase at each lobe is constant but slips abruptly by π at each node.

This first experiment did not reveal multi side lobe, although the sensitivity of our
measurements was high enough to observe a second one if it existed. We obtain a lobe
width of ∼ 20µV at the end of the plateau ν = 2 close to the one obtained by Neder et al.
(see inset of figure 4.3), but very different from the one obtained by Litvin et al.(see figure
4.4(b)). We have also realized measurements at ν = 1 and have observed a lobe structure
(only one side lobe) (see figure ??).

Measurements realized on a large size interferometer

We have also probed the finite bias visibility on a large size interferometer, at a lower
magnetic field (4.28 Tesla)(beginning of the plateau ν=2). The two arms defined by the
mesa are 11.3µm long and enclose a 35.5µm2 area. This experiment has revealed multi side
lobe as represented figure 4.9. If we now compare it to other groups results, we observe a
multi side lobe at the beginning of the plateau at ν = 2 once again in agreement with Neder



Finite bias visibility 61

-40 -30 -20 -10 0 10 20 30 40
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

 

 

V
is

ib
ili

ty

Vds (µV)

Figure 4.8 – The visibility of the interference pattern at ν=1 as a function of the applied DC bias.
Only three major lobes are visible. Compared to ν = 2, we notice a lobe width slightly smaller ∼ 13µV .

et al.(see inset of figure 4.3),but still in disagreement with Litvin et al. (see figure 4.4(b).
However if we consider the central lobe width, we find a periodicity ∼ 20µV comparable
to the one obtained with the middle size sample at the end of the plateau, whereas Neder
et al. and Litvin et al. both find a magnetic field dependence of this energy scale. However,
we have measured the lobe structure only for two values of B (at ν = 2) and for two
sample sizes : there may be (most probably) a size dependence of the lobe width. A more
systematic study with different sizes on the whole plateau ν = 2 should be realized to
answer this question (I did not realize this study) .
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Figure 4.9 – The visibility of the interference pattern at ν=2 as a function of the applied DC bias for
a larger sample (35.5µm2 area) and at a magnetic field of 4.28 Tesla. There, two side lobes are visible.
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4.4.2 A Gaussian shape visibility

Since no theory was available to understand the lobe structure 9, we aimed to find a
general expression that could fit our data. When we worked on that fit, we had carried
out measurements only at the upper end of the ν = 2 plateau, hence we considered only
one side lobe. Also in our very first experiment realized on the noisy sample, we did not
observe multi side lobes. We have found an almost perfect fit for this lobe structure whose
origin can be explained as following. I start with the general formula of the interfering part
of the current I∼ at the bias voltage V, assuming that there is a stochastic distribution of
the phase ϕ during the measurement. Hence I∼ writes :

I∼ =
e2

h
V

√
T1R2T2R1〈sin(ϕ)〉

where 〈〉 denotes the average of sin(ϕ) over the phase distribution. I now assume a Gaussian
phase averaging with a variance 〈δϕ2〉. 〈sin(ϕ)〉 becomes :

〈sin(ϕ)〉 = sin(〈ϕ〉)e−〈δϕ2〉/2

〈ϕ〉 being given by 〈ϕ〉=〈ϕ0〉+ eV ∆L
~vD

. Our sample being designed with ∆L=0, the mean
value 〈ϕ〉 does not depend of the bias. Then I will assume that the variance is given by :

〈δϕ2〉 =
V 2

V 2
lob

with Vlob a fitting parameter. The Gaussian distribution of the phase then leads to :

I∼ =
e2

h
V

√
T1R2T2R1 sin(〈ϕ〉)e

− V 2

2V 2

lob

where 〈ϕ〉 is the mean value of the phase distribution. The differential conductance G∼ =
dI∼
dV

is thus :

dI∼
dV

=
e2

h

√
T1R2T2R1 sin(〈ϕ〉)e

− V 2

2V 2

lob |1 − V 2

V 2
lob

| (4.1)

in the following 〈ϕ〉 will be noted ϕ
Such behavior gives a zero visibility accompanied with a π shift of the phase when

V 2/V 2
lob = 1. I have represented in figure 4.10(a) a fit to our data with Vlob ∼ 11µ V. One

can remark that the fit is excellent. In fact, our approach is in very good agreement with
all our data, except for our observation of multiple side lobes.

To fit the multi lobe pattern, we introduce an additional term :

I∼ ≈ eV × e−V 2/2V 2

lob cos(V/Vc) × sin(ϕ) (4.2)

9. There is a theory of Sukhorukov et al.[79] which explains the lobe structure considering the long
range interaction between two counter propagating edge states. However this theory should not apply
when the spatial separation between the counter propagating edge states is large compared to the length
of the interfering path which is the case in our samples.
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Figure 4.10 – (a) In blacks circles the visibility as a function of the bias. In black solid line, I have
plotted the formula 4.1. We obtain Vlob ∼ 11µV .(b) In blacks dots the visibility for the sample which
presented multiple side lobes. In black solid line, we have plotted our formula 4.2. We obtain Vc ∼ 13µV ,
Vlob ∼ 14µV .

where Vc is an unknown parameter. The Gaussian approximation approach regarding the
phase is always valid but the cos(V/Vc) term adds another oscillating term in the differential
visibility. The expression of the differential conductance now becomes :

dI∼
dV

∝ (−V

Vc

sin(V/Vc) + cos(V/Vc)(1 − V 2

V 2
lob

)) × e−V 2/2V 2

lob × sin(ϕ) (4.3)

I have represented figure 4.10(b) formula 4.3 fitting our experimental data, with Vc ∼ 13µV
and Vlob ∼ 14µV . It is noteworthy that this fit (Gaussian envelope) has worked for many
different samples with different sizes and different magnetic fields. It makes us confident
on the existence of a Gaussian shape of the visibility. As I have previously mentioned, this
kind of Gaussian profile has been recently used in a paper by Litvin at al. to analysis their
results. I have to stress here that we do not have precise idea on the origin of these terms.
But the lobe structure is not unexpected when there is only one side lobe structure. It
simply results from a particular attenuation of the interfering part of the current combined
to the measurement of the differential conductance. This gives an access to a typical energy
scale eVlob whose general properties are :

– It is not modified by the transmission of the first beam splitter 10

– It is not modified by the transmission of the second beam splitter.
– It is not affected by the temperature (when varying the temperature between 20 and

100mK) 11.
– It exists at ν = 1.
– It also exists when there is multiple side lobes. It suggests that we are in presence of

two effects : a Gaussian envelope and an additional term (unexplained) 12.

10. When the inner edge state is reflected. We will see that when both edge states are fed with the same
bias, eVlob varies with the transmission of the first beam splitter.

11. Once renormalized to the zero bias visibility.
12. Since this additional term is a cosine, we could think about a beating between two modes. This

possibility is the key point of the Levkivshyi and Sukhorukov’s [43] approach.
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In a previous part (4.3.1), I have shown that Litvin et al.[44] have proposed a very close
expression to fit multi side lobes :

dI∼
dV

∼ eV × e−V 2/2V 2

lob| cos(πV/VL)| × sin(ϕ)

with π×Vc = VL. We recognize in this expression the Gaussian envelope and an additional
cosine term directly inspired by Levkivskyi and Sukhorukov’s [43] (see also formula 4.16
in this chapter). However if this additional term has been theoretically obtained for the
differential conductance, I think that this is not correct to add the Gaussian envelop to the
differential conductance. For the differential conductance, one obtains necessarly a different
expression 13.

Finally, I have proposed a general expression that could fit the lobe pattern of the visi-
bility with the bias voltage. In the case of multi side lobes, an additional unexplained term
is necessary. A more detailed study at different magnetic field would allow to understand
evolutions of Vc and Vlob explaining why at high magnetic field only one lobe is observed.

4.4.3 Influence of the dilution
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Figure 4.11 – The transmission of the outer edge state T0,out as a function of the gate voltage applied,
T1 and T2 being tuned to 0. The transmission varies from 0 to 1 for gate voltages between -0.16V and
-0.23V.

In this part, I study the impact of a diluting beam on the lobe pattern. Up to now,
T0 was set to 1. I will show that when the impinging current is diluted (T0 close to zero,
see also figure 4.11 ) the lobe width increases, which in other words means that the energy
scale, responsible for the Gaussian envelop, is slightly modified. When the impinging cur-
rent is diluted the formula 4.1 is lightly modified since the diluted current ID is no more
proportional to V . This is not due directly to the dilution, but to the fact that the trans-
port becomes non linear. In the most general case, and above all, when T0 is close to 0,

13. The derivative of the Gaussian envelope with V adds another term in he expression of the visibility.
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dID/dV varies with V. To take into account these non linearities of ID, one must write
that the interfering current is proportional to ID :

I∼ ∝ ID × sin(ϕ)e
− V 2

2V 2

lob

The differential conductance thus becomes :

dI∼
dV

∝ |1 − V ID

V 2
lobdID/dV

|e
− V 2

2V 2

lob sin(ϕ), (4.4)

a formula which is exactly the same that 4.1 when ID/V
dID/dV

=1.
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Figure 4.12 – Visibility of the interferences as a function of the drain-source voltage I0h/e2

for three different values of T0. The curves are shifted for clarity. The energy width of the
lobe structure is modified by the dilution whereas the maximum visibility at zero bias is
not modified. Solid lines are fits using equation (1). From top to bottom, T0 = 0.02 and
V0 = 31 µV, T0 = 0.14 and V0 = 22 µV, T0 = 1 and V0 = 11.4 µV.

I have represented in figure 4.12 our experimental data in dots for different transmis-
sions. We first notice the strong impact of dilution on the lobe width : the lobe width is
enhanced when the transmission T0 decreased. The agreement between our model and the
experimental data is very good on the whole range of T0, definitively showing that the
existence of one side lobe, as observed in the experiment of [57] at ν = 2 (for the highest
fields) and at ν = 1, can be explained within our simple approach a Gaussian envelope.

We have summarized our results in figure 4.13, where we have represented Vlob on the
whole range of the transmission T0 for two different samples (a noisy one and a stable one).

We first note that Vlob increases with the dilution, namely when the transmission T0 at
zero bias decreases. An impact of the dilution has already been observed as it suppressed
multiple side lobes [56] (arXiv version of [57]), but the conclusion was that the width of the
central lobe was barely affected. Here, dilution plays a clear role, which is nevertheless not
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Figure 4.13 – V0 obtained by fitting the visibility with equation (1), normalized to V0 at
T0 = 1, as a function of T0 at zero bias.

easy to explain. At first, we thought that the length between the partition gate and the MZI
was smaller that the coherence length [70] and hence we expected the energy redistribution
to be negligible. This argument that we had used is merely wrong. Indeed at zero bias,
the coherence length is long but we do not know if it is actually true at finite bias. For
example, the Gaussian envelope could arise from a short inelastic collision process. Then,
the dilution effect could result from a redistribution in the wire leading ”de facto” to an
apparent increase of the energy scale associated to the lobe structure. In figure 4.14, we
have represented in blue dots experimental data plotting now T0 not defined at zero bias
but for the Vds that minimizes the visibility, and in red line the expected 1/T0 dependence
of the Vlob assuming a complete redistribution of the wire. Then, it may indicate that there
is a partial redistribution

4.5 Coupling between the inner and outer edge state

In this part, I will study the capacitive coupling between the inner and outer edge state.
I will show why in the very first experiment, Ji et al.[37] did not observe the lobe pattern.
I will also explain the ”unexpected” enhancement of the visibility obtained by Bieri et al.
[15].

Terminology : I will introduce T0 as the ”global” transmission of the edge states.
If I call T0,in(T0,out) the transmission of the inner (outer)edge state, I will define T0 =
T0,in +T0,out. As the channels are opened one by one, T0 = 2 when T0,in = 1 and T0,out = 1,
T0 = 1 when T0,in = 0 and T0,out = 1, T0 = 0 when T0,in = 0 and T0,out = 0

4.5.1 Modelling the capacitive coupling between edge states

I consider in this part the coupling between the inner and outer edge state, which in a
mean field approximation can be simply viewed as a capacitive coupling . The experimental
way that I used to feed the edge states with different bias is represented in figure 4.15. I
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Figure 4.14 – In blue dots Vlob obtained by fitting the visibility with equation 4.4, as a function of
T0. Now T0 is defined for the Vds that minimizes the visibility. Assuming a complete redistribution of the
wire, we should obtain a 1/T0 dependence of the Vlob(represented in red solid line). These data seem to
indicate a partial redistribution in the wire.
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Figure 4.15 – Tilted scanning electron microscope view of the device, with schematic representation
of the edge states. On this representation the gate G0 is set to transmission T0=1. Two edge states are
injected into the MZI : the outer edge-state drawn in red (bias voltage V1), and the inner one drawn in
blue (bias voltage V2). In our experiment, I have superimposed small AC signals at different frequencies on
source S1 and S2 in order to measure by standard lock-in technics the components of the total transmitted
current which oscillate synchronously at these two frequencies.

have represented in blue the inner edge state, in red the outer interfering edge state.

The first experiment showing the coupling between the inner and outer edge state
has been performed by Neder et al.[58]. They used the inner edge as a ”which path”
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detector to perform path determination in a two-path electron interferometer 14, leading
to full suppression of the interferences. This article was the first to reveal the interactions
between the inner and outer edge state, in a MZI. We propose here an approach based
on a simple mean field approximation that allows to catch almost all the picture of the
lobe structure when the two edge states are fed with the same bias. Indeed the mean field
approximation does not lead to a lobe structure. However assuming that it exists, I will
show that the coupling between edge states(cross talk effects) modifies their observation.
I will show that this can explain both the results by Bieri et al and also the absence of a
lobe structure in the pioneering experiment of Ji et al [37].

To study the interaction between the inner and the outer edge state, I first tune the
transmission of the first partition gate T0 to T0=1 and T1,out=T2,out=1/2 (see figure 4.16).
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Figure 4.16 – In red dots, the transmission of the first gate G1 as a function of the gate voltage applied.
In black dots the transmission of the second gate G2. Since interferences are obtained on the outer edge
state, transmissions vary between 1 and 0. To obtain the maximum visibility G1 and G2 are tuned to 1/2
namely, -0.335V for G2 and -0.295V for G1.

Then, I measure the visibility of the outer edge state emitted from S1 and its capacitively
induced signal on the inner edge state emitted from S2

15.
When I have derived the formula 4.2 , I have assumed that the charges in the inner edge

state did not modify the phase of the electrons in the outer edge state : this hypothesis is
not correct 16. When I apply a DC bias voltage on S2 (the way it is done is schematically
represented in figure 4.15), electrons of the inner edge state modify the potential seen by
the electrons in the outer channel, and hence their phase. In this picture, the inner edge
state can be viewed as a lateral gate. This is shown in the figure 4.17 where I have revealed
the interferences on the inner edge state by varying the voltage applied on the outer one.
From this measurement, I determine the coupling parameter V0, which is the periodicity
of the oscillation pattern revealed by this method.

14. The ”which path” words are the one used by Neder et al.[58] .
15. Experimentally, I use two lock-in with two different excitation frequencies : one for each edge state.
16. Fortunately, if the inner edge state is reflected, which was the case up to now, neglecting the inter-

action with the inner edge state still gives the good result for the visibility.
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Figure 4.17 – (a)Observation of the capacitive coupling between the inner edge state and the outer
edge state. These measurements are made on the large sample, at 4.66T. The first beam splitter G0 is
set to T0=1, whereas beam splitters G1 and G2 are both set to T1=T2∼1/2 in order to have the biggest
visibility. A DC voltage is then applied on the inner edge state (drawn in blue on figure 4.15). As one can
remark, the interferences are revealed by varying V2, the voltage applied on the inner edge state. The period
of the interferences obtained by this method is called V0. It characterizes the coupling between the two
edge states. (b) The DC voltage applied on the inner edge state is now suppressed. I study here separately
the impact of V2 and V1 by measuring the differential conductance dIT /dV1 and dIT /dV2 using lock-in
technics. One observes that the oscillations of dIT /dV1 versus the lateral gate voltage are in quadrature
with the one revealed in dIT /dV2. Although the inner edge state is just going along the MZI, it reveals
oscillations in phase quadrature with the reference signal of the outer edge state. This behavior is a direct
consequence of the capacitive coupling between the two edge states.

When I include this coupling in the phase of the oscillation. The formula 4.2 becomes :

I∼ ≈ IDe−V 2

1
/2V 2

lob × cos(φ − 2π

V0

× V2)

where V1 (V2) is the bias voltage applied on S1(S2). From this last formula, one can im-
mediately remark that when the two edge states are fed with the same bias (V2 = V1),
dI∼/dV1 contains a term resulting from the capacitive coupling. This case is obtained when
T0 = 2. Let first assume that V2 6= V1, in practice obtained when T0 = 1. In such a case :

dI∼
dV1

∼ (1 − V 2
1

V 2
lob

)e−V 2

1
/2V 2

lob × cos(φ − 2π

V0

× V2) (4.5)

dI∼
dV2

∼ 2π

V0

× V1e
−V 2

1
/2V 2

lob × sin(φ − 2π

V0

× V2) (4.6)

Figure 4.17(b) I have represented in black dots dI∼
dV1

for the outer edge state, and in blue

dots dI∼
dV2

for the inner edge state with V1=1.2µV and T0=1. Both signals are in quadrature,
in good agreement with formulas 4.5 and 4.6. Now that we have observed and characterized
the coupling between the inner and outer edge state, we are going to treat the case when
T0=2. The physics remaining the same, we can guess that the measured current will be the
sum of two terms 4.5 and 4.6.
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4.6 Discussion regarding the visibility

4.6.1 Only one edge channel is biased

When G0 is tuned to transmission T0=1, the lobes are well defined and the phase is
rigid with a π shift when the visibility is zero. However for T0=2, lobes almost disappear
and the phase is not rigid anymore [57]. Recently, E.Bieri et al.[15] have shown that at
T0=2 an unexpected enhancement of the visibility could be obtained for a transmission of
T1 close to 1. I will show that this result can be explained with the coupling that I have
characterized in the previous chapter.

I have first set T0=1 and T2=0.65 and studied the visibility versus V1 for three values of
T1 : 0.96, 0.6 and 0.12 (since T0=1, the outer edge state sees a grounded inner edge state).

As I have shown in the previous part, for this large sample at this magnetic field,
one observes a multi side lobe structure. Considering the formula 4.2, and the capacitive
coupling between the inner and outer edge state, the interfering part of the current becomes

I∼ ∝ IDe−V 2

1
/2V 2

lob cos(V1/Vc) × cos(ϕ − 2π

V0

× V2)

which finally gives :

dI∼
dV1

∝ (−V1

Vc

sin(V1/Vc) + cos(V1/Vc)(1 − V 2
1

V 2
lob

))e−V 2

1
/2V 2

lob × cos(φ − 2π

V0

× V2) (4.7)

dI∼
dV2

∝ 2π

V0

× V1 cos(V1/Vc)e
−V 2

1
/2V 2

lob × sin(φ − αV2) (4.8)

From which , I deduce a visibility of the interferences equal to :

ν1 = ν0 | −
V1

Vc

sin(V1/Vc) + cos(V1/Vc)(1 − V 2
1

V 2
lob

) | e−V 2

1
/2V 2

lob (4.9)

ν2 = ν0 |
2π

V0

× V1 cos(V1/Vc) | e−V 2

1
/2V 2

lob (4.10)

where ν0 is the visibility at zero bias.
I have represented figure 4.18 the visibility ν1 and ν2 for the different transmissions

of T1. The dots are the experimental data while the solid lines are fit to the data using
formulas 4.9 and 4.10. The very good agreement between our formula and our experimental
data validates our approach. I can extract from these fit parameters the Vc, V0 and Vlob.

I first notice that Vlob does not depend on the transmission of the first gate G1 in good
agreement with results described in the literature [69][56]. Secondly Vc is not modified by
the transmission : for T1=0.1, 0.6 and 0.9, Vc ∼ 13.9±0.2µV , ∼ 14±0.2µV , ∼ 13.9±0.2µV .
Finally, V0 is constant and equal to ∼ 32.5µV . Indeed we can show independently that V0

should not vary with T1 and V1. I have represented the conductance as a function of the
bias voltage V2 applied on the inner edge state for different values of V1 (T1 = 0.6) in figure
4.19. From this color plot one can extract V0 for each value of V1 : V0 is constant equal
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Figure 4.18 – B=4.28T. For the whole measurements G0 is set to T0=1, and beam splitter G2 is set to
T2=0.65. In black dots(solid line) experimental data(fit) for the interfering edge state (outer edge state).
In blue dots(solid line) experimental data(fit) for the induced signal on the inner edge state. (a) T1 is set
to 0.12. I obtain Vc ∼ 13.9µV , Vlob ∼ 14µV and V0 ∼ 32.5µV (b) T1 is set to 0.6. I obtain Vc ∼ 13µV ,
Vlob ∼ 14µV and V0 ∼ 32.5µV (c) T1 is set to 0.92. I obtain Vc ∼ 13.9µV , Vlob ∼ 14µV and V0 ∼ 32.5µV

to ∼ 32.5 µV. Figure 4.20, I have shown V0 for three different values of V1 (-18µV, 0µV,
18µV) and T1 (0.12, 0.6, 0.92). I obtain a constant value of V0 equal to ∼ 32.5 µV. 17

17. However, if V0 is constant with V1 and T1, we can show that V0 is magnetic field (and size) dependent
(see Chapter 6).
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Figure 4.19 – Color Plot of the differential conductance as a function of the bias V1 and V2 for T1 = 0.6.
One can observe a π shift of the phase coinciding with the annulation of the visbility. This figure reveals
that the capacitive coupling between the inner and outer edge state is independent of the bias voltage V1 .
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Figure 4.20 – Conductance oscillations versus the bias voltage V2 applied on S2, for different values of
V1 and T1. In blue V1=-18µV, in black V1=0µV and in red V1=18µV. (a) T1=0.12 (b) T1=0.6 (c) T1=0.92.
In these regimes V0 remains constant ∼ 32.5µV .

4.6.2 Two edge states are biased

Transmission evolution

When G0 is fully opened the inner and outer edge state are fed with the same bias,
thus I simulate in that way the very first experiment of Ji et al.[37] and Bieri et al.[15].
To calculate the visibility, I need to take into account the induced signal on the inner edge
state :

dI∼
dV

∝
√

[cos(V1/Vc)(1 − V 2
1

V 2
lob

) − V1

Vc

sin(V1/Vc)]2 + [
2π

V0

× V1 cos(V1/Vc)]2e
−V 2

1
/2V 2

lob cos(θ)

(4.11)
with

θ = φ − 2π

V0

× V1 − arctan(
2π
V0

× V1 cos(V1/Vc)

cos(V1/Vc)(1 − V 2

1

V 2

lob

) − V1

Vc
sin(V1/Vc)

) (4.12)
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Figure 4.21 – B=4.28T, V2=0V, G0 is set to T0=2, and beam splitter G2 is set to T2=0.65 (except
for (b) where T2=0.68). In dots the visibility of the output signal. In black solid line, our fit using formula
4.11(a) T1=0.11. I obtain Vc = 12.9 ± 0.2µV , Vlob = 11.9 ± 0.1µV and V0 = 37µV (b) T1=0.6. I obtain
Vc = 14.9± 0.2µV , Vlob = 16.2± 0.2µV and V0 = 37.35± 1.3µV (c) T1=0.95. I obtain Vc = 23.2± 0.4µV ,
Vlob = 19.1 ± 0.4µV and V0 = 38.4 ± 1.5µV .

I tune the partition gate to T2=2 and the second gate G2 to T2=0.65. Both channels are
now equally biased to V1. I study the dependence of the visibility with V1 and I repeat the
experiment for three different transmissions of the first gate G1 : 0.11, 0.6, 0.95. I obtain
on figure 4.21 similar results than a recent observation of E.Bieri et al.[15]. For large
transmissions (larger than 1/2), I notice an enhancement of the visibility when increasing
the bias voltage. This enhancement is more pronounced when T1 gets closer to 1. In that
case, the visibility is not maximum for V1=0 but for V1 ∼ 15µV . If I now fit these data
with our formula 4.11, I obtain a perfect agreement for each transmission. V0 is once again
constant as a function of T1(∼ 37µV ) 18 but the others parameters are significantly evolving
with the transmission T1. Vc is respectively equal to 12.9±0.2µV, 14.9±0.2µV, 23.2±0.4µV
for T1 equal to 0.11, 0.6 and 0.95 respectively. Similarly, Vlob increases from 11.9 ± 0.1µV
to 16.2± 0.2µV and 19.1± 0.4µV . I have finally extracted two characteristic energies that
both increase with the transmission of the first gate G1 as one can remark in figure 4.21.

Phase evolution

The formula 4.12 gives us the evolution of the phase with the bias voltage applied on
S1. When T0=2 it has been observed [57][15] that the phase was not rigid anymore. This
observation raises the question whether the phase rigidity is affected by the presence of

18. We note however a small difference with our previous determination of V0 when T0=1 (V0∼ 32.5µV )
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an inner edge state biased at the same potential, or is sill present simply hidden by the
capacitive coupling between the two edge states.
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Experiment Theory

Figure 4.22 – Color plot of the MZI transmission versus V1 and the voltage applied on the lateral
gate . The X axis represents the lateral gate voltage, and the Y axis the bias voltage V1. The color plot
indicates maximum and minimum of Ahoronov Bohm oscillations. (a) Experimental evolution of the phase
with the bias voltage V1 when T0 is tuned to 2. Contrary to T0=1 when the phase is rigid, the phase now
increases linearly with the bias voltage.(b) Color plot of the MZI transmission versus V1 calculated with
our formula 4.12. We notice a perfect agreement between our model and experimental data.

I have measured the phase evolution with the bias voltage V1, and found (see figure
4.22(a)) a linear increase of it. I have compared this result with our formula 4.12. We get
a perfect agreement between our model and experimental data (figure 4.22(b)).

This result is very important since it definitively confirms that the π shift always occurs
when visibility cancels. It means that, in reality the phase remains the same on the whole
interval of Vds and that we observe π shift because we measure the absolute value of the
visibility.

One channel biased versus two channel biased

When only one channel was biased we have shown (figure 4.18) that Vc and Vlob did not
depend on the first beam splitter transmission T1.

When two edge states are biased, we can extract Vc, Vlob and V0 for each transmission.
Since we know all the parameters of the capacitive coupling between the inner and outer
edge state, we can subtract from the global signal the expected induced signal ν2 and focus
on the ”true” visibility ν1. We have represented in figure 4.23(a) this expected visibility
for T1 = 0.11 and T1 = 0.95 deduced from formula 4.7, including the fact that Vc depends
on T1. We notice a strong impact of the first beam splitter to the lobe structure. This is
rather surprising as the lobe structure does not depend on the first beam splitter when
only on edge is biased. We aimed to confirm this difference trying to entirely simulate the
case when both edge states are fed by the same ohmic contact. Now T0 = 1, and we apply
the same bias on S1 and S2 (in figure 4.18, we had tuned T0 to 1, but the inner edge state
was grounded). We have represented our results in figure 4.23(b). We note an increase of
the lobe width with the transmission : even if the effect is very small, the general trend is
in agreement with our predictions. To conclude, when both edge states are equally biased,
the lobe structure depends of the transmission T1.
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Figure 4.23 – a) : ”True” visibility expected if we subtract from the global signal the expected induced
signal for two different transmissions T1 : 0.11 and 0.95. Contrary to the case when only one edge state is
biased, here the lobe structure clearly depends on the first beam splitter transmission. b) : T0 = 1, and
we apply the same bias on S1 and S2. We note an increase of the lobe width with the transmission : even
if the effect is very small, the general trend is in agreement with our predictions.

4.6.3 The lobe eraser

-40 -20 0 20 40
0,0

0,2

0,4

0,6

0,8

1,0

T
0

 

 

V
1
 (µV)

 -16µV
 0µV
 16µV

-40 -30 -20 -10 0 10 20 30 40
0,00

0,05

0,10

0,15

0,20

0,25

0,30

V
1
 (µV)

V
is

ib
ili

ty

 

 

  -16µV

-40 -30 -20 -10 0 10 20 30 40
0,00

0,05

0,10

0,15

0,20

0,25

0,30

V
1
 (µV)

 

 

V
is

ib
ili

ty

 0µV

-40 -30 -20 -10 0 10 20 30 40
0,00

0,05

0,10

0,15

0,20

0,25

0,30

V
1
 (µV)

V
is

ib
ili

ty

 

 

  +16µV

(a) (b)

(c) (d)

Figure 4.24 – T0,ou is tuned to 1/2. In dots the experimental data, in solid lines a guide to the eye. The
two steps shape of the distribution function strongly affects the visibility a)V2 = −16µV . b)V2 = 0µV .
c)V2 = +16µV .d)Mean value of the transmission of T0 with the bias voltage (T0 supposed to be tuned to
1/2)

Now that I have shown that the capacitive coupling between the edge states was respon-
sible for experimental artefacts when the two edge states are biased with the same voltage,
I will investigate the limitations of this approach. In particular, what happens when the
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inner and outer edge state are fed with two different bias, leading to a particular two step
distribution function in the wire. This may gives us some knowledge on the mechanism
responsible for the Gaussian envelope and/or why the multiple side lobe is affected by T1

when both edge are biased.
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Figure 4.25 – Same experiment but T0 is now tuned to 1.a) The visibility does not depend anymore
on V2. In black solid line : fit using formula 4.9. b) Mean value of the transmission of T0 with the bias
voltage (T0 supposed to be tuned to 1)

In this experiment, G1 and G2 are tuned to T1,out∼T2,out∼1/2. G0 is now set to T0,out=1/2,
so half part of the current is emitted from S1, the other one from S2 leading to a two steps
shape of the distribution function. I will apply different voltage on S2 (-16µV, 0µV, +16µV)
and will study the impact on the lobe structure.

I observe an unexpected result : we can erase one lobe of the lobe pattern without
affecting the other one. When we apply a positive(negative) bias, the lobe corresponding to
the negative(positive) bias is erased. This is clearly shown in figure 4.24a)b)c). In addition,
I have plotted (see figure 4.24d))the transmission as a function of the bias to show that
this effect does not arise from a variation of the transmission probability. Here, this is clear
that this is a two step distribution which is responsible for this behavior. As an example, if
one realizes an experiment where S2 is biased but with T0=1 (no two step distribution), the
lobe structure is clearly not affected (see figure 4.25). This is a very interesting result for
which we do not have a clear explanation. However, it shows that some inelastic processes
in the wire itself are involved in the Gaussian shape. This should be explored in the future.

4.6.4 The lobe width : comparison between the inner and outer
edge state

I have compared the lobe pattern obtained with the outer edge state (T1,out=T2,out=1/2)
and the inner edge state (T1,out=T2,out=1 and T1,in=T2,in=1/2) on the same sample. The
energy width of the lobe structure is modified : for the inner edge state Vlob,in= 6.4µV,
whereas for the outer edge state Vlob,out= 11.6µV. This brings us new information for the
theory interested in the lobe structure. When considering the theory of Levkivskyi and
Sukhorukov’s [43], the lobes arise from beating between two coupled excitations in the
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Figure 4.26 – In black dots, the visibility of the interferences of the outer edge state as a function
of the drain-source voltage applied on it. T0 is set to 1, and beam splitters G1 and G2 are both set to
T1,out=T2,out=1/2. In red dots, the visibility of the interferences of the inner edge state as a function
of the drain-source voltage applied on it. T0 is set to 1, and beam splitters G1 and G2 are both set
to T1,in=T2,in=1/2. Solid lines are fits using equation 4.1. Unexpectedly, the energy width of the lobe
structure is modified : for the inner edge state Vlob,in= 6.38µV, whereas for the outer edge state Vlob,out=
11.6µV.

inner and outer edge state. The collective excitations should not depend on the edge state
in which electrons are injected. Consequently, the lobe structure should not depend on the
edge state (I will discuss this theory in details in the next chapter). One of the parameter
that may change between the inner and outer edge state would be the drift velocity. The
drift velocity depends on the local confining potential. Our observations may be related to
a smaller (because the energy scale is smaller) drift velocity in the inner state, compared
to the outer one. However, we do not have proof of this.

4.7 Theoretical approach

We detail here different theoretical models that have been proposed to explain pro-
perties of the visibility with the applied bias voltage as a function of the transmission of
G0.

4.7.1 The non interacting model

In a theoretical paper, Chung et al. [25] have studied the effect of a voltage eV on
the visibility. This paper treats the non interacting case. It serves to understand what is
the impact of a finite temperature on the visibility. They first calculated how the phase
should vary with the energy when there is a length difference ∆L. For that purpose,
they have introduced the parameter s which measures directly the path length, i.e. x(s),
y(s)(coordinates of the electron). In addition at s, they introduce local coordinate s⊥
perpendicular to the equipotential line. In these coordinates, an edge state that follows the
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equipotential line at a small energy ǫ away from EF acquires the additional phase :

δϕ =

∫
ds

∆s⊥
l2B

where l2B = ~/eB and e(dU/ds⊥)∆s⊥= ǫ. Moreover, we know that the potential gradient
dU/ds⊥ is related to the local electric field by F(s) = -dU/ds⊥. From this relation we
can define the drift velocity of the guiding center of the cyclotron orbit at point s of the
edge state vD(s), with vD(s)= F(s)/B. Thus a small increase in energy leads to a phase
increment given by :

δϕ =
e

~vD

∫
dsF (s)∆s⊥

which gives finally :

δϕ =
ǫ × ∆L

~vD

(4.13)

where I have introduced ∆L, the length difference between the upper and down arm of the
MZI. One can then calculate the spectral current density :

j(ǫ) =
e

h
[f(ǫ) − f0(ǫ)][T1T2 + R1R2 + 2

√
T1T2R1R2 cos(ǫ/Ec + ΘAB)]

with ΘAB the Ahoronov Bohm (AB) phase through the area defined by the position of the
edge state at the Fermi energy, f0(ǫ) the distribution function of the grounded terminal, f(ǫ)
= f0(ǫ− eV ) the distribution function of terminal injecting the current and Ec = ~vD/∆L
. The current is given by :

I =

∫
j(E)dE

or

I =
e

h
[(T1T2 + R1R2)eV +

√
T1T2R1R2 ×

4πkBT

sinh(kBTπ
Ec

)
sin(

eV

2Ec

) cos(
eV

2Ec

+ ΘAB)] (4.14)

Experimentally, we measure the differential conductance, which within this theory is
related to T and V in the following way :

dI

dV
=

e

h
[(T1T2 + R1R2)e +

√
T1T2R1R2 ×

2πkBT

Ec × sinh(kBTπ
Ec

)
cos(

eV

Ec

+ ΘAB)] (4.15)

In the non interacting approach, the visibility does not depend on the voltage. However
this model gives a temperature dependence via the sinh, which leads to an exponential
dependence of the visibility with the temperature (also called thermal smearing) when
kBT > Ec. We will study the consequences of the thermal smearing in the Chapter 6.
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4.7.2 Interaction between counterpropagating edge states

In 2007, Sukhorukov et al. [79] proposed a model attempting to explain the lobe struc-
ture at ν = 1. They noticed that an important feature of the MZI setup [56][70][44] was the
existence of a counterpropagating edge state (labeled as φ3 in Figure 4.27), which closely
approaches the edge state forming the upper arm of the interferometer (labeled as φ2 in
Figure 4.27) and could strongly interacts with it 19. Being localized inside a finite interval of
the length L, the interaction leads to a resonant scattering of collective charge excitations
(plasmons), which carry away the phase information. As a result, interferences vanish at
certain values of bias accompanied by a π shift of the phase. However, this theory fails
to explain observations at ν = 2 for the following reasons. At ν = 2, when interferences
are realized on the outer edge state, the inner one should screen the interactions with the
counter propagating one. Moreover, in our experiment we have measured the same lobe
width as Neder et al.[56] even though in our sample, the counter propagating edge state
is much more distant. This interaction between edge states and the differences between
ν = 1 and ν = 2 raises an interesting question that I have already mentioned. The one
side lobe structure observed at ν = 1 and ν = 2 only needs a Gaussian envelope. However,
the multiple side lobe structure has only been observed at ν = 2. Does it mean that 2
neighboring edge states are necessary to explain the multiple side lobes ? This is in fact
the other model proposed by Sukhorukov that I will explain in the following.

Figure 4.27 – The main hypothesis of the Sukhorukov et al. theory [79] is that the counter propagating
state (red line on the figure) closely approaches the upper branch of the MZI interferometer (inside the
resonator shown by a dashed box) and strongly interacts with it

4.7.3 Short range interactions

More recently, Levkivskyi and Sukhorukov [43] have proposed another model based on
strong Coulomb interactions between the neighbor edge states to explain the evolution
of the lobe structure at ν = 2. This model only considers the regimes of weak tunneling

19. In our case the two counter propagating edge states are separated by several µm (∼ 5µm). Such an
interaction is unlikely.
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(T1 −→ 0) or weak backscattering (T1 −→ 1) for which bozonisation technics and per-
turbation development are allowed. One of the goal of this theory [43] is to explain the
unexpected enhancement of the visibility when both edge states are biased, around a zero
bias, observed by Bieri et al.[15]. In their model, they consider very short range intra edge
state interactions and two edge states interactions. Diagonalizing the Hamiltonian, descri-
bing the coupling, they find that coulomb interaction at ν = 2 leads to the separation of
the spectrum into collective excitations. They obtain two modes : a fast mode (that carries
the charge) with a speed u and a slow (dipole) one with a speed v. The corner stone of this
approach is that the electron is decomposed exactly in the same proportion (when u ≫ v)
in the two modes. Then, there are two excitations of same amplitude but with different
velocity : this leads naturally to beating effects. They consider then two experiments : one
edge state biased or two edge states biased.

Only one edge channel is biased

They suppose first, that only one edge channel is biased (experimentally occurs when
T0=1, namely the inner edge state is reflected) and that T1 is much smaller than 1/2 corres-
ponding to the weak tunneling regime (they obtain same results in the weak backscattering
regime if ∆L = 0).

They first calculate the variation of the Aharonov Bohm phase with the potential
(∆µ = eV )

∂∆φAB

∂∆µ
=

u + ν

2uν
∆L

Therefore, for the symmetric interferometer, ∆L=0, the phase shift is independent of
the bias. This may explain the phenomenon of phase rigidity observed [56][70][44], if one
assumes that the interferometer is symmetric. However, this conclusion is exactly the same
that we obtain when considering non-interacting quasi particle. Regarding the visibility,
this model gives :

|ν| = | cos(∆µL/(2v))| (4.16)

where L is the length of one arm of the interferometer. It simply describes the beating
between the two interferences leading to periodic zeros of the visibility with the bias.
This approach seems to contradict some experimental results. First, the period of the
calculated visibility is ∼ to v/L, and should thus depend on the size of the interferometer
in contradiction with our data since we have shown that for the middle and large MZI,
we obtained the same lobe width. 20 This model is unfortunately only valid in the weak
backscattering (tunneling) regime. However, it is known that far from the perturbative
limit, the theory does not apply. If one tries to extend their theory to higher (smaller)
value of T1, we can show that the visibility will be ∼ to v/((1− 2T1)×L) in contradiction
with experiments where it has been shown that the lobe pattern did not depend on T1 [69]
[57].

20. Note however that the lobe patterns have not been realized at the same magnetic field, which prevent
us from concluding definitively.
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Two edge states are biased

Levkivskyi and Sukhorukov[43] also considered the case when both edge states are
biased at the same potential (T0=2), in the weak tunneling regime. In this case the visibility
can be found exactly :

|ν| = |J0(∆µ∆L/2ν)| (4.17)

The visibility of the calculated oscillations is shown in figure 4.28. One can see that in
contrast to the case when only one channel is biased, the central lobe is approximatively
twice wider than side lobes, apparently in agreement with experimental observations [15].
Moreover, the width of lobes is determined by the new energy scale ǫ’=v/∆L. Finally inside
the lobes the phase shift ∆φAB = ∆µ(LD + LU)/2v always grows linearly with bias, so no
phase rigidity should be observed.

This result contradicts two experimental observations. First, we have shown (see part
4.6.2) that in reality the one side lobe observed in the weak tunneling regime by the Basel
group was in reality a multi side lobes simply hidden by the capacitive coupling between
the inner and outer edge states. The assertion ”the central lobe is approximatively two
times wider than side lobes” arises in fact from the trivial capacitive coupling. What is
more problematic is the new energy scale ǫ’=v/∆L which must be very large for symmetric
MZI. In our case, the litography precision enable us to have ∆L = 0 and we have shown
that energy scales were comparable whether only one edge state was biased or two.

Figure 4.28 – The intrinsic visibility of interferences in the case when two edge channels are biased
for strongly asymmetric interferometer, LD=1.8LU . In the model of Levkivskyi and Sukhorukov[43], the
visibility is plotted as a function of bias ∆µ in units of v/LU for the regime of weak tunneling (black line)
and for the regime of weak backscaterring (blue line)

In the weak backscattering regime and for a symmetric MZI, Levkivskyi and Sukhorukov[43]
obtain the following expression of the visibility :

|ν| = |∆t/t0 + (1 − ∆t/t0)e
i∆µt0|

where t0 = L/v is the propagation time of the slow mode between two QPCs, and ∆t is
defined by :

∆t = 2π∂∆ν(Q1ULU − Q1DLD)
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with Q1U(Q1D) the charge of the upper(down) trajectory and ∂∆ν the derivative as a
function of ∆ν. Whether the visibility grows or decays depends on the sign of the second
term. However in the weak backscattering or tunneling regime and for ∆L=0, Levkivskyi
and Sukhorukov[43] find that this formula gives a constant visibility. They had to consider
a strongly asymmetric interferometer with LD = 1.8LU to observe the enhancement of the
visibility for small bias voltages (see figure 4.28). Contrary to Bieri et al experiment, our
MZI is symmetric and we also obtain an enhancement of the visibility. This model is not
appropriate.

4.8 Shot noise generated by the first beam splitter

These works propose that the dephasing in the MZI is due to the shot noise generated
by the partition of the edge channel at the first QPC. Neder et al [55] and Youn et al
[88] consider that the shot noise generated at the input beam splitter of the MZI leads
to an ensemble of nonequilibrium electron density configurations in the two arms. Then
the electron interaction within each arm induces configuration-specific phase shifts of an
interfering electron, and the ensemble average of the phase shifts leads to nonequilibrium
dephasing. The combined effect of the shot noise and the interaction results in lobe patterns
and phase jumps. Both works are similar except that Neder et al [55] consider a regime of
stronger interaction strength than Youn et al [88]. Now, we will focus on Youn et al [88]
results, since they are particularly interested in the T1 dependence of the visibility which
can be easily compared to the experiments. In figure 4.29 I have represented their results :

Figure 4.29 – Visibility F (solid curves) and phase shift ηF (dashed) of dI/dV , as a function of δ
(δ is a parameter proportional to the bias). We notice a strong dependence of the lobe pattern with the
transmission of the first gate (not observed in the experiments)

the general behavior of the visibility and phase with the bias. This approach reveals the
multi side lobe pattern. But their visibility also strongly depends on T1 (see figure 4.29(c))
although experiments do not show such a dependence when one channel is biased [69]
[57]. Since interaction in the wire itself may be the origin of the multiple side lobes, I will
describe in more details this approach.
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4.8.1 Discussion of this model

This section is the result of a fruitful debate between Dr.Sim [88] and me.
The simplest way to understand the effect of shot noise within their model is to consider

the case when N≪ 1, with N the number of packets that have significant weight in the arms.
Thus for N≪ 1, only one packet has significant weight and the nonequilibrium ensemble
has two representative elements in each of which the nonequilibrium density appears in
the upper (down) arm with probability R1(T1). The electron in the upper path generates
a phase shift eiδ, the electron in the down path generates a phase shift e−iδ. Thus the
interfering part of the current I∼ is corrected by a dephasing factor D equal to :

D = |R1e
iδ + T1e

−iδ| =
√

cos2δ + (R1 − T1)2sin2δ (4.18)

We are now going to discuss this formula. However, it is important to precise that we
measure dI∼/dV and hence the relation between this parameter D and the lobe structure
that we observe in the differential conductance is not straightforward. In particular, the
first dip of the visibility on dI∼/dV interferences occurs at a voltage somewhere between
0 and the value at which D has the first dip.

G1 dependence of the lobe width

The formula 4.18 implies a strong dependence of the lobe width with the first beam
splitter. Even if the factor D has been obtained for N≪ 1 and for the MZI conductance,
this factor gives the general trends of the visibility. Indeed, when they consider a more
general model with N≤3, the lobes in D of the N≪ 1 case are maintained, though lobes
now acquire a decaying envelope. Consequently all the discussion of the Youn et al. model
will be based on the expression 4.18 of D. We have represented in figure 4.30, the evolution
of D with the transmission T1 of the first beam splitter G1. D shows lobe patterns with
periodic minima. The lobe width of this lobe pattern does not depend on the T1. However,
the minima strongly increase as T1 deviates from 0.5.

I have thus measured the visibility with the bias Vds for three different transmissions
of the first beam splitter : T1=0.12, 0.6, and 0.92. I find no dependence of the lobe width
with the transmission T1 (see figure 4.31)(confirmed by Neder et al. [56]). Moreover for T1

equal 0.12 we note a small increase of the minima compared to T1=0.6 in agreement with
formula 4.18 that predicts an increase of the minima as T1 deviates from 0.5 (unfortunately,
I don’t have the exact expression of the visibility used by Youn et al [88] for their numerical
simulations. I can only compare general trends.). However for T1=0.92, we find well defined
minima. Finally, we have found a transmission close to 1 where the visibility vanishes, in
disagreement with Youn et al [88] model.

4.8.2 An asymmetric configuration

I am now considering another asymmetric configuration : a voltage probe experiment
(for more details see chapter 7). As represented in figure 4.33, I have studied the lobe
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Figure 4.30 – Non equilibrium dephasing factor D ([88]) for different transmissions of the first beam
splitter G1. The lobe width does not depend on the transmission T1. However the minima increase as T1

deviates from 0.5

Figure 4.31 – Visibility as a function of the bias Vds for different transmissions of the first beam
splitter. In solid lines, fits using formula 4.7 (a) T1 is set to 0.12.(b) T1 is set to 0.6.(c) T1 is set to 0.92.
The lobe width does not depend on the transmission of the first beam splitter.
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Figure 4.32 – MZI transmission for different values of Vds. The mean transmission is equal to 1/2
confirming the good tuning of T2 to 1/2.

width as a function of Vds for different value of transmission TP toward the probe. If the
voltage probe is a good one, its voltage VP is VP = T1Vds = (1/2)Vds. The voltage probe is
another source generating an nonequilibrium ensemble of electron density configurations
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VP

Figure 4.33 – Schematic representation of the probe configuration. The upper MZI is connected to a
floating ohmic contact (for more details see chapter 7) via a gate probe. We are interested in the evolution
of the lobe width of the lobe pattern when we open the probe gate, breaking thus the symmetry of the
problem.
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Figure 4.34 – Visibility as a function of Vds for a MZI connected to a floating ohmic contact via a
probe gate (transmission TP ). When TP =1 the probe gate is opened. We do not observe any dependence of
the lobe width with TP .(a) color plot of the visibility as a function of Vds and VGP . When VGP =-0.18 the
gate is closed and TP =0, When VGP =-0.1 the gate is opened TP =1. We pass then continuously from TP =0
to TP =1. We notice a small asymmetry of the lobe pattern, since the visibility is larger for Vds=-15µV
than for Vds=+15µV . The lobe width is constant.(b) Lobe pattern of the visibility as a function of Vds

for three different values of TP : 0, 0.5 and 0.75. We can notice here that the lobe pattern is not perfectly
symmetric (visibility stronger for negative bias than for 0 bias). The visibility is not exactly equal to zero
between two maxima, I do not know exactly why.

in the MZI. Then, the MZI with the voltage probe is a complicated nonequilibrium circuit
with two nonequilibrium voltages Vds and VP . As the potential (voltage) along the lower
arm (that coupled to the probe) is fluctuating in time due to the shot noise at the first
beam splitter, there exists time-dependent current flow from the probe to the drain or from
the source to the probe, depending on the scattering event at the first beam splitter. Any
interfering electron should be then affected by the time-dependent current flow. Based on
the above argument, we are going to derive the factor D for the MZI with the voltage
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probe, when N ≪1 (for R1=T1=0.5) (result obtained by Dr. Sim) :

D = |TP (R1e
i(δ−δp) + T1e

−i(δ−δp)) + RP (R1e
iδ + T1e

−iδ)| (4.19)

D = |TP cos(δ − δp) + RP cos(δ)| (4.20)

The first term of Eq. 4.18 comes from the event A where the nonequilibrium electron
injected from the source exists in the upper arm (with probability R1) and at the same time
a nonequilibrium electron is injected from the probe into the lower arm (with probability
TP ). In this event A, the electron in the upper arm generates the phase shift eiδ to an
interfering electron, while the electron injected into the lower arm from the probe gives
another phase shift e−iδP . Here δP is proportional to VP = (1/2)Vds and to the path length
between the probe beam splitter and the second beam splitter of the MZI, and does not
depend on RP and TP . The second term of Eq. 4.18 comes from the event B where the
nonequilibrium electron injected from the source exists in the lower arm (with probability
T1) and it partially moves toward the probe passing through the probe beam splitter (with
probability TP ). In this event B, the nonequilibrium electron gives the phase shift of e−iδP .
Similarly, the third term of Eq. 4.18 comes from the event C where the nonequilibrium
electron injected from the source exists in the upper arm (with probability R1) and at the
same time no nonequilibrium electron is injected from the probe into the lower arm (with
probability RP ). For this event C, the phase shift is simply eiδ. Finally, the fourth term
of Eq. 4.18 comes from the event D where the nonequilibrium electron injected from the
source exists in the lower arm (with probability T1) and it fully moves toward the drain
without passing through the probe beam splitter (with probability RP ). For this event D,
the phase shift is e−iδ. In the limit of TP = 0, equation 4.18 corresponds to the expression
that we have obtained previously for a MZI without probe. Experimentally, we do not
observe any dependence of the lobe width with TP , as expected from 4.8.2.

4.9 Conclusion

In a first part, I have summarized different experimental observations regarding the
visibility variation with the voltage. In the very first experiment Ji et al. observed a mono-
tonous decay of the visibility since the two edge states were fed by the same ohmic contact.
Biasing only the outer edge state with an additional beam splitter G0, Neder et al. observed
an unexpected lobe structure of the visibility.

We have observed single side lobe and multi side lobes. We have shown that the single
side lobe could be understood supposing a Gaussian phase averaging. We have proposed
a simple model to explain recent observations of Bieri et al. We have shown that, taking
into account the capacitive coupling between the inner and outer edge state, the enhance-
ment observed by Bieri et al was not so unexpected. Still, we have extracted two energy
scales which increase with the transmission T1. Finally, I have compared our results with
the different theories available in the literature. Although each of them gives rise to an
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oscillation in the visibility, it seems that none can explain why the lobes are not affected
by the transmission of the first beam splitter and why there is a Gaussian envelop. Our
results suggest that we are probably in front of two effects : a Gaussian envelop, which
gives the general trend of the visibility at ν = 2 and also at ν = 1 and ”something else”
which appears at low magnetic field with two edge states. If it is the latter case, interaction
between the edge states seems to be the most plausible candidate for multiple side lobes.
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We present an original statistical method to measure the visibility of interferences in an electronic Mach-

Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe

structure shown to result from a Gaussian phase averaging whose variance is quadratic with the bias. To

reinforce our approach and validate our statistical method, the same experiment is also realized with a stable

sample. It exhibits the same visibility behavior as the fluctuating one, indicating the intrinsic character of finite

bias phase averaging. In both samples, the dilution of the impinging current reduces the variance of the

Gaussian distribution.
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Nowadays quantum conductors can be used to perform
experiments usually done in optics, where electron beams
replace photon beams. A beamlike electron motion can be
obtained in the integer quantum Hall effect �IQHE� regime
using a high mobility two dimensional electron gas in a high
magnetic field at low temperature. In the IQHE regime, one-
dimensional gapless excitation modes form, which corre-
spond to electrons drifting along the edge of the sample. The
number of these so-called edge channels corresponds to the
number of filled Landau levels in the bulk. The chirality of
the excitations yields long collision times between quasipar-
ticles, making edge states very suitable for quantum interfer-
ence experiments like the electronic Mach-Zehnder interfer-
ometer �MZI�.1–3 Surprisingly, despite some experiments
which show that equilibrium length in chiral wires is rather
long,4 very little is known about the coherence length or the
phase averaging in these “perfect” chiral unidimensional
wires. In particular, while in the very first interference MZI
experiment the interference visibility showed a monotonic
decrease with voltage bias, which was attributed to phase
noise,1 in a more recent paper, a surprising nonmonotonic
decrease with a lobe structure was observed.5 A satisfactory

explanation has not yet been found, and the experiment has

so far not been reported by other groups to confirm these

results.

We report here on an original method to measure the vis-

ibility of interferences in a MZI, when low frequency phase

fluctuations prevent direct observation of the periodic inter-

ference pattern obtained by changing the magnetic flux

through the MZI. We studied the visibility at finite energy

and observed a single side lobe structure, which can be ex-

plained by a Gaussian phase averaging whose variance is

proportional to V2, where V is the bias voltage. To reinforce

our result and check if low frequency fluctuation may be

responsible for that behavior, we realized the same experi-

ment on a stable sample: we also observed a single side lobe

structure which can be fitted with our approach of Gaussian

phase averaging. This proves the validity of the results,

which cannot be an artifact due to the low frequency phase

fluctuations in the first sample. In both samples, the dilution

of the impinging current has an unexpected effect: it de-

creases the variance of the Gaussian distribution.

The MZI geometry is patterned using e-beam lithography

on a high mobility two dimensional electron gas in a

GaAs/Ga1−xAlxAs heterojunction with a sheet density nS

=2.0�1011 cm−2 and a mobility of 2.5�106 cm2 /Vs. The

experiment was performed in the IQHE regime at filling fac-

tor �=nSh /eB=2 �magnetic field B=5.2 T�. Transport occurs

through two edge states with an extremely large energy re-

distribution length.4 Quantum point contacts �QPCs� con-

trolled by gates G0, G1, and G2 define electronic beam split-

ters with transmissions T0, T1, and T2, respectively. In all the

results presented here, the interferences were studied on the

outer edge state schematically drawn as black lines in Fig. 1,

the inner edge state being fully reflected by all the QPCs.

The interferometer consists of G1, G2, and the small central

ohmic contact in between the two arms. G1 splits the inci-

dent beam into two trajectories �a� and �b�, which are recom-

bined with G2 leading to interferences. The two arms defined

by the mesa are 8 �m long and enclose a 14 �m2 area. The

4 µm

I0

IT

G2
G1

G0

SG

ID
(a)

(b)

FIG. 1. Scanning electron microscope view of the electronic

Mach-Zehnder interferometer with a schematic representation of

the edge state. G0, G1, G2 are quantum point contacts which mimic

beam splitters. The pairs of split gates defining a QPC are electri-

cally connected via an Au metallic bridge deposited on an insulator

�SU8�. G0 allows a dilution of the impinging current, G1 and G2

are the two beam splitters of the Mach-Zehnder interferometer. SG

is a side gate which allows a variation of the length of the lower

path �b�.
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current which is not transmitted through the MZI, IB= ID

− IT, is collected to the ground with the small ohmic contact.
An additional gate SG allows a change of the length of the
trajectory �b�. The impinging current I0 can be diluted thanks
to the beam splitter G0 whose transmission T0 determines the
diluted current dID=T0�dI0. We measure the differential
transmission through the MZI by standard lock-in techniques
using a 619 Hz frequency 5 �Vrms ac bias Vac superimposed

to the dc voltage V. This ac bias modulates the incoming

current dID=T0�h /e2�Vac, and thus the transmitted current

in an energy range close to eV, giving the transmission

T�eV�=dIT /dI0.

Using the single particle approach of the Landauer-

Büttiker formalism, the transmission amplitude t through

the MZI is the sum of the two complex transmission

amplitudes corresponding to paths �a� and �b� of the interfer-

ometer; t= t0�t1 exp�i�a�t2−r1 exp�i�b�r2�. This leads to a

transmission probability T���=T0�T1T2+R1R2

+�T1R2R1T2 sin�������, where ����=�a−�b and Ti= �ti�
2

=1−Ri. ���� corresponds to the total Aharonov-Bohm �AB�
flux across the surface S��� defined by the arms of the MZI,

����=2�S����eB /h. The surface S depends on the energy �
when there is a finite length difference �L=La−Lb between

the two arms. This leads to a variation of the phase with the

energy, ���+EF�=��EF�+��L / �	vD�, where vD is the drift

velocity. When varying the AB flux, the interferences mani-

fest themselves as oscillations of the transmission; in

practice this is done either by varying the magnetic field

or by varying the surface of the MZI with a side gate.1,5,6

The visibility of the interferences defined as

V= �TMAX−TMIN� / �TMAX+TMIN� is maximum when both

beam splitter transmissions are set to 1/2. In the present

experiment the MZI is designed with equal arm lengths

��L=0� and the visibility is not expected to be sensitive to

the coherence length of the source 	vD /max�kBT ,eVac�. Thus

the visibility provides a direct measurement of the decoher-

ence and/or phase averaging in this quantum circuit.

In Ref. 1, 60% visibility was observed at low temperature,

showing that the quantum coherence length can be at least as

large as several micrometers at 20 mK �and probably larger

if phase averaging is the limiting factor�. At finite energy

�compared to the Fermi energy�, the visibility was also found

decreasing with the bias voltage.1,5,6 This effect is not due to

an increase of the coherence length of the electron source

which remains determined by eVac or kBT.7 In a first experi-

ment, a monotonic visibility decrease was found, which was

attributed to phase averaging, as confirmed by shot noise

measurements.1 Nevertheless, it remains unclear why and

how the phase averaging increases with the bias. In a recent

paper, instead of a monotonic decrease of the visibility, a

lobe structure was observed for filling factor less than 1 in

the QPCs.5 No noninteracting electron model was found to

be able to explain this observation, and although interaction

effects have been proposed,8 a satisfactory explanation has

not yet been found to account for all the experimental obser-

vations. So far, two experiments have shown two different

behaviors, raising questions about the universality of these

observations. Here, we report experiments where different

samples give consistent results, with a fit to the data clearly

demonstrating that our MZI suffers from a Gaussian phase

averaging whose variance is proportional to V2, leading to

the single side lobe structure of the visibility.

We have used the following procedure to tune the MZI.

We first measure independently the two beam splitters’ trans-

parencies vs their respective gate voltages, the inner edge

state being fully reflected. This is shown in Fig. 2�a� where

the transmission �T1 or T2� through one QPC is varied while

keeping unit transparency for the other QPC. This provides

the characterization of the transparency of each beam splitter

as a function of its gate voltage. The fact that the transmis-

sion vanishes for large negative voltages means that the

small ohmic contact in between the two arms can absorb all

incoming electrons, otherwise the transmission would tend to

a finite value. This is very important in order to avoid any

spurious effect in the interference pattern. In a second step

we fix the transmission T1 to 1 /2 while sweeping the gate

voltage of G2 �solid line of Fig. 2�a��. Whereas for a fully

incoherent system the T should be 1/2� �R2+T2�=1/2, we

observe large temporal transmission fluctuations around 1/2.

We show in the following that they result from the interfer-

ences, expected in the coherent regime, but in the presence of

large low frequency phase noise. This is revealed by the

probability distribution of the transmissions obtained when

making a large number of transmission measurements for the

same gate voltage. Figure 2�b� shows a histogram of T when

making 6000 measurements �each measurement being sepa-

rated from the next by 10 ms�. The histogram of the trans-

mission fluctuations 
T=T−Tmean displays two maxima very

well fitted using a probability distribution p�
T /Tmean�
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FIG. 2. Sample 1: �a� Transmission T=dIT /dI0 as a function of

the gate voltages V1 and V2 applied on G1 and G2. ��� T=T1 vs

V1. ��� T=T2 vs V2. The solid line is the transmission T obtained

with T1 fixed to 1/2 while sweeping V2: transmission fluctuations

due to interferences with low frequency phase noise appear. �b�
Stack histogram on 6000 successive transmission measurements as

a function of the normalized deviation from the mean value. The

solid line is the distribution of transmission expected for a uniform

distribution of phases. �c� Visibility of interferences as a function of

the transmission T2 when T1=1/2. The solid line is the �T2�1−T2�
dependence predicted by the theory.
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=1/ �2��1− �
T /Tmean�
2 /V2� �the solid line of Fig. 2�b��.

This distribution is obtained assuming interferences 
T

=Tmean�V sin��� and a uniform probability distribution of �

over �−� , +��. Note that the peaks around �
T /Tmean�=V

have a finite width. They correspond to the Gaussian distri-

bution associated with the detection noise which has to be

convoluted with the previous distribution.

Although no regular oscillations of transmission can be

observed due to phase noise, we can directly extract the vis-

ibility of the interferences by calculating the variance of the

fluctuations �the approach is similar to measurements of uni-

versal conductance fluctuations via the amplitude of 1 / f

noise in diffusive metallic wires�.10 As expected when T1

=1/2, the visibility extracted by our method is proportional

to �T2�1−T2�, definitively showing that fluctuations result

from interference: we are able to measure the visibility of

fluctuating interferences �see Fig. 2�c��.
The visibility depends on the bias voltage with a lobe

structure shown in Fig. 3, confirming the pioneering

observation.5 Nevertheless, there are marked differences.

The visibility shape is not the same as that in Ref. 5. We have

always seen only one side lobe, although the sensitivity of

our measurements would be high enough to observe a second

one if it existed. Moreover, the lobe width �see Fig. 3� can be

increased by diluting the impinging current with G0, whereas

no such effect is seen for G1 and G2. This apparent increase

of the energy scale cannot be attributed to the addition of a

resistance in series with the MZI because G0 is close to the

MZI, at a distance shorter than the coherence length.

An almost perfect fit for the whole range of T0 �dilution�
is

V = V0e−V2/2V0
2	1 −

VID

V0
2dID/dV

	 , �1�

where V0 is a fitting parameter. Equation �1� is obtained

when assuming a Gaussian phase averaging with a variance



�2� proportional to V2 and a length difference �L small

enough to neglect the energy dependence of the phase in the
observed energy range eV�	vD /�L. In such a case, the in-
terfering part of the current I� is thus proportional to
ID sin���. The Gaussian distribution of the phase leads to

I�� ID sin�
���e−

�2�/2, where 
�� is the mean value of the

phase distribution. The measured interfering part of the
transmission, T�=h /e2dI� /dV, gives a visibility correspond-
ing to formula �1� when 

�2�=V2 /V0

2. Such behavior gives a

nul visibility accompanied with a � shift of the phase when
VID / �V0

2dID /dV�=1. When T0�1, ID is proportional to V

and the width of the central lobe is simply equal to 2V0.
However, in the most general case, dID /dV varies with V.
One can see in Fig. 3 that the fit with Eq. �1� is very good,
definitively showing that the existence of one side lobe, as
observed in the experiment of Ref. 5 at �=2 �for the highest
fields� and at �=1, can be explained within our simple ap-
proach. Concerning multiple side lobes, we cannot yet con-
clude if they do arise from long range interaction as recently
proposed by Ref. 8 Our geometry is different from the one
used in the earlier experiment5 and the coupling between
counterpropagating edge states, thought to be responsible for
multiple side lobes,8 should be less efficient here.

To check if low frequency fluctuations have an impact on

the finite bias phase averaging, we have studied another

sample, with the same geometry and fabricated simulta-

neously �sample 2�, which exhibits clear interference pattern

�see Figs. 4�a�–4�c��. As one can remark in Fig. 4�d�, the

lobe structure is well fitted with our theory, definitively

showing that the Gaussian phase averaging is not associated

with low frequency phase fluctuations.
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FIG. 3. �Color online� Sample 1: Visibility of the interferences

as a function of the drain-source voltage I0h /e2 for three different

values of T0. The curves are shifted for clarity. The energy width of

the lobe structure is modified by the dilution whereas the maximum

visibility at zero bias is not modified. Solid lines are fits using Eq.

�1�. From top to bottom, T0=0.02 and V0=31 �V, T0=0.14 and

V0=22 �V, T0=1 and V0=11.4 �V.

-20 0 20
-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.4 0.6 0.8

b)

dI
T

/ dI
0

0.5 0.6 0.7
0.0

-0.5

-1.0

-1.5

-2.0

c)

dI
T

/ dI
0

a)

V (µV)

V
L
G

+
0

.3
V

(m
V

)

-40 -20 0 20 40
0.0

0.1

0.2

0.3

0.4

0.5
d) T

0
= 0.06

T
0

= 1

V
is

ib
ili

ty

Drain Source Voltage (µV)

FIG. 4. �Color online� Sample 2: �a� Gray plot of the transmis-

sion T as a function of the bias voltage V and the side gate voltage

VSG. Note the � shift of the phase when the visibility reaches 0. �b�,
�c� T as a function of the side gate voltage for two different values

of the drain source voltage corresponding to the dashed line of �a�
�0 and 16 �V, respectively�. �d� Lobe structure of the visibility

fitted using Eq. �1� for a diluted and an undiluted impinging current.

FINITE BIAS VISIBILITY OF THE ELECTRONIC… PHYSICAL REVIEW B 76, 161309�R� �2007�

RAPID COMMUNICATIONS

161309-3



Finite bias visibility 91

It is noteworthy that V0 increases �see Fig. 5� with the

dilution, namely when the transmission T0 at zero bias de-

creases. An impact of the dilution was already observed as it

suppressed multiple side lobes9 �arXiv version of Ref. 5�, but

the conclusion was that the width of the central lobe was

barely affected. Here, dilution plays a clear role whose T0

dependence is the same for the two studied samples, once

normalized to the not diluted case. This dilution effect is

nevertheless not easy to explain. For example, mechanisms

like screening, intra-edge scattering, and fluctuations medi-

ated by shot noise should have maximum effect at half trans-

mission, in contradiction with Fig. 5. More generally, it is

difficult to determine if the process responsible for the phase

averaging introduced in our model is located at the beam

splitters, or is uniformly distributed along the interfering

channels. However, setting T1=0.02 or 0.05, keeping T2

=0.5, leaves the lobe width unaffected. This shows that, if

located at the quantum point contacts, the phase averaging

process is independent of transmission.

To summarize, we propose a statistical method to measure

the visibility of “invisible” interferences. We observe a single

side lobe structure of the visibility on stable and unstable

samples which is shown to result from a Gaussian phase

averaging whose variance is proportional to V
2. Moreover,

this variance is shown to be reduced by diluting the imping-

ing current. However, the mechanism responsible for such

type of phase averaging remains yet unexplained.
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Chapitre 5

The Coherence Length at ν=2
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5.1 Introduction

In the physics of quantum conductors, one of the basic length scale which gives a
limitation to the manifestation of quantum effects, is the so-called quantum coherence
length lϕ. It characterizes the length on which an excitation exchanges information with
other degrees of freedom and hence looses its phase coherence. lϕ has been extensively
studied in diffusive wires in the last decade. It has been shown to result from electron
electron interaction as predicted by Altshuler-Aronov-Khmelnitsky [5], leading to a T−1/3

temperature dependence of lϕ in 3D diffusive wires [29]. Surprisingly, very little was known
about the coherence length in the Integer Quantum Hall Regime (IQHE), where transport
occurs through one dimensional chiral wires localized on the edge of the sample (the edge
states). In principle, for such ballistic wires, one expects the chirality to prevent energy
exchange processes, leading to a very long coherence length. An important step towards
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the determination of the coherence length in the quantum Hall regime has been realized by
Ji. et al [37] with the MZI. Since they obtained interferences with an interferometer’s area
of 45µm2, this experiment has set a lower bound ∼ 10µm at 20mK to the coherence length.
Indeed, to determine the coherence length several conditions are required. The first one is
to realize quantum interferences, as a finite coherence length will have a direct impact on
the visibility of these interferences. In a second step, one has to measure the dependence of
the visibility with different parameters (the bias, the temperature, the magnetic field). In
this chapter, I will essentially study the dependence with the temperature. Once we obtain
a visibility which depends on these parameters, it is not clear that we have measured
a coherence length. Hence, one has to vary the size L on which interference occurs and
check if the visibility follow some exp(-L/lϕ) law. Last, one has to check that the visibility
decrease does not come from spurious effect like it is the case with the so called thermal
smearing 1.

In a first part we will describe an experiment realized by Hansen et al. [35] who have
determined the coherence length in a 2D electron gas 2(at zero magnetic field) fulfilling the
different necessary conditions for that. They were able to probe different interferometers
size. Then they have subtracted the effect of thermal smearing to their temperature de-
pendence of the visibility to finally estimate the coherence length. I have chosen to present
this experiment because it provides the first measurement of lϕ in a ballistic conductor,
which has shown an unexpected 1/T dependence of lϕ. I think that this experiment is a
perfect introduction to our experiment since we will follow a similar procedure. We will
measure the decrease of the visibility for different interferometers of different sizes, then
we will show that this decrease is not due to thermal smearing. Then, we will be able to
extract a precise value of the coherence length.

5.2 Methodology

Figure 5.1 – SEM image of the ring before gate deposition. In the dark areas the donor layer is etched
away. The quantum wires defining the arms of the ring are etched 280 nm wide, while the wires connecting
the ring to the 2DEG reservoirs are 100 nm wide.

1. We will define thermal smearing in the part 5.4.
2. GaAs/GaAlAs heterostructure.
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In 2001, the group of Lindelhof [35] has studied the decoherence in mesoscopic Aharonov-
Bohm rings, in 2D systems (GaAs/GaAlAs heterostructure). Even if this experiment has
been realized at zero magnetic field, it is a useful example since it aimed to extract a precise
coherence length treating the case of thermal smearing. In their Aharonov-Bohm rings (a
SEM view of their rings is represented in figure 5.1), the interference of numerous paths
leads to conductance oscillations (revealed via a top gate) of period h/e in the magnetic
field flux enclosed by the paths. Measuring the visibility of the AB oscillations enables to
probe the coherence in their system. The trick here, is to study trajectories which have
enclosed the AB ring up to n = 6 time. As electrons have a strong probability of being
reflected in the constrictions, electrons tend to perform many turns in the loop. This is
observed as peaks in the Fourier spectra of the magnetoconductance at multiples ne/h
of the fundamental AB frequency. As higher harmonics correspond to electrons that have
performed more turns around the loop, they decay faster with increasing T : it is the ba-
sis of their determination of lϕ. In figure 5.2(a) we have shown their results, for different
temperatures. We can observe a little bump even at 6e/h meaning that they are sensitive
enough to detect electrons that have enclosed the ring up to 6 times.

Figure 5.2 – a) Fourier spectra at different temperatures, as a function of inverse magnetic flux, Φ
= Bπr2 through the ring. Since the phase of AB oscillations depends on the gate voltage applied on the
ring, the spectra have been averaged for 10 different gate voltages. The spectrum marked with a thick
line results from an average of 500 gate voltages and is offset vertically for clarity. b) Amplitude of h/e
oscillations as a function of gate voltage. The filled circles mark the 10 gate voltages used in the further
analysis. c) Amplitude of h/e and h/4e oscillations for 10 different gate voltages Vg, normalized to 1 and
0.1 at T = 0.3 K, as a function of temperature. The gate voltage increases from Vg = 0.51 V to 0.67 V in
order of the symbols plotted to the right.

In figure 5.2(c), they have represented the temperature dependence of the harmonic
amplitude for n=1 and n=4 : clearly the visibility decrease is more pronounced for n=4.
They summarize their results for n=1..6 in figure 5.3.

They assume then the visibility to be :

νn = e−nL/Lφ(T ) (5.1)
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Figure 5.3 – Measured amplitudes of the h/ne oscillations, n = 1 to 6, on a semi-log scale as a function
of temperature. Straight lines are fits with anexp(-bn/T).

where Lφ(T ) is the coherence length, and L is half the circumference of the ring. The
equation 5.1 implies that all h/ne amplitudes should have the same functional dependence
on T, as they observe. Furthermore, the damping rates bn (the slope of the lines in figure
5.3(a)) should increase linearly with n, which is not exactly the case. To solve this problem,
the author of ref.[35] explained the absence of scaling with the harmonics by the presence
of thermal smearing 3. They first studied the phase shift around the Fermi energy, and
were able then to extract the effect of thermal smearing in the temperature dependence
of the visibility. Above all, they have shown that thermal smearing was responsible for a
decrease of the visibility but much smaller than the measured amplitudes. Regarding the
dependence of bn with n, they observe that amplitudes decay faster for n odd that even.
Their argument lies on the fact that when n is even, the geometrical phase difference of
electronic paths is zero, and then is less sensitive to thermal smearing. When n is even, we
obtain a bn that varies linearly with n, as expected. From these results Hansen et al. were
able to extract the coherence length (∼ 5µm ± 1µm) at 1K for ballistic 1D wires at zero
magnetic field, and they found a 1/T temperature dependence. This result differs from the
diffusive wires where it has been observed a T−1/3 temperature dependence of lϕ [29]. This
is the very first experiment which has shown a coherence length in disagreement with the
AAK theory. One can notice that, in the same year, Seelig and Buttiker [76] have proposed
a mean field theory which very well explained the results of Hansen et al [35]. For 1D chiral
wires of the IQHE, only lower bounds to the lϕ have been determined. It has motivated us
in the precise determination of the coherence length in the quantum Hall regime at ν = 2.

3. We will detail the notion of thermal smearing in part 5.4. The idea is that we always measure
transport properties averaged on a ∼ kBT energy interval. If the phase of AB oscillations depends on
energy, this gives rise to thermal smearing.
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5.3 Determination of lϕ

As explained in the previous part, if one wants to measure the absolute value of lϕ and
not its lower bound, one needs to fulfill two conditions. First, as we want to determine the
coherence length, one needs to prove its existence. It will be done by varying the size on
which interferences occur. Secondly, one needs to show that the interferences have a phase
which does not depend on the energy of the quasiparticle (to exclude thermal smearing).
This is for these reasons that we have used the MZI which can be in principle designed in
such a way that the phase is energy independent (for equal interferometer arms length). To
prove that we were actually in presence of finite coherence length, we have studied three
MZI of different sizes to show a scaling of the temperature dependence of the visibility
with the interferometer arm length.

The experiments were performed in the IQHE regime at filling factor ν= 2. The first gate
G0 is tuned to fully reflect the inner edge state (T0=1). The sizes of the three interferometers
used in this study scale by up a factor

√
2 : the length of their arms are L = 5.6µm, 8µm and

11.3µm for enclosed areas of 8.5µm2 (referred to as small), 17µm2 (medium) and 34µm2

(large). 4

We know that (see chapter 3) the oscillations can be obtained using two equivalent
experimental procedures : either by superimposing a minute current to the large current
of the magnet, or by changing the surface defined by the MZI using a lateral gate.

Figure 5.4 – Interferences revealed upon varying the magnetic flux through the surface defined by the
two arms (u) and (d) of the interferometers. From the oscillation period δB we deduce the surface S =
h/(eδB) of the 3 different studied MZI. In blue : The small MZI (S = 8.7±0.2 µm2 )(60% of visibility). In
black : The medium MZI (S = 15.5 ± 0.4 µm2 )(30% of visibility). In red : The large MZI (S = 40.7 ±
0.8 µm2 )(30% of visibility). All these surfaces are in good agreement with the lithographic ones.

Figure 5.4 shows the AB oscillations of the transmission for the three interferometers,
showing a magnetic period inversely proportional to the area of the interferometer. For
precise determination of the visibility and its temperature dependence, we have always used

4. These values correspond to the sizes designed during the fabrication process. We can notice that the
lithography precision is in good agreement with the area extracted from Aharonov Borm measurements
(see figure 5.4).
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the lateral gate and run the magnet in the permanent-current mode, strongly reducing the
measurement noise. The maximum value of ν is always obtained at the lowest temperature.
ν can reach 65 % for the small interferometer at 18mK , whereas it typically attains 20-40
% for the medium and the large interferometer (see figure 5.4(b)).

5.3.1 Temperature dependence

For each interferometer we have studied the temperature dependence of the visibility. In
figures 5.5, we have plotted ln(ν/νB) versus temperature, where νB stands for the visibility
at TB=20 mK, for the small, middle and large size sample.

Figure 5.5 – (a) ln(V/VB)/(T −TB) as a function for the temperature at three different magnetic field,
for the small, middle and large samples. (b) Dependence of ln(V/VB)/(T − TB) with the magnetic field.

Clearly, the visibility decreases with temperature in all cases, and the larger the in-
terferometer, the stronger the temperature dependence is. More quantitatively, if a linear
regression of ln(ν/νB) = (T - TB)/T0 is done, one finds that T−1

0 is proportional to the
length of the interfering arms (see figure 5.6). In the following, we are going to show that
this behavior does not result from a thermal smearing.
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Figure 5.6 – Plot of the ln(ν/νB)/(T − TB)=1/T0 as a function of the interferometer arm length. We
find that the slope is proportional to the arm length. Note that the linear regression crosses the origin.

The exponential decrease of the visibility with temperature is robust against various
parameter variations, revealing an universal behavior. While the maximum visibility at the
lowest temperature is affected by varying the transmission T0 of the MZI and by applying
a finite bias, the slope ln(V/VB)/(T − TB) is found to be unaffected [69]. Moreover if one
of the beam spitter G1 or G2 of the MZI is detuned the slope remains the same.

5.4 Phase rigidity and absence of thermal smearing

5.4.1 Definition of thermal smearing

We start from the formula 4.13 5 :

δϕ =
ǫ × ∆L

~vD

where ∆L=Lu −Ld is the length difference between two arms of the MZI and vD the drift
velocity. Since we work at finite temperature, the energy is averaged over a typical energy
range of kBT , leading to an average of the phase of the order of kBT × ∆L/~vD. To be
more precise, the formula 4.15 leads to a visibility :

ν = ν0
πT

TS

1

sinh(πT/TS)
(5.2)

where we have introduced TS = ~vD

∆LkB
and ν0 the visibility at zero temperature. This

formula gives a quasi exponential dependence of the visibility with the temperature when
T& TS. We have to prove now that the exponential decay that we have observed does not
come from this effect.

5. Obtained in the part 4.7.
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5.4.2 Absence of thermal smearing

We have used equation 5.2 to fit our experimental data obtained for the three sizes of
the MZI in order to estimate what would be the length difference between the arms of the
MZI interferometer necessary to explain our results with thermal smearing. In figure 5.7
we have represented in dots experimental results, the solid lines are fit to the data using
the thermal smearing formula.
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Figure 5.7 – We have represented in dots the experimental data. The solid lines are fit assuming the
existence of thermal smearing (formula 5.2). For the small, medium, large samples (red, black, blue color
respectively) one obtains TS=66, 59, 44 mK.

It yields to TS=66, 59, 44 mK for the small, medium and large sample respectively.
Since TS is given by the formula TS = ~vD/∆LkB, we can extract the corresponding ∆L
supposing a drift velocity equal to 5.104ms−1. We find respectively for the small, medium
and large sample ∆L equal to 4, 5 and 6 µm which is impossible considering the lithographic
precision of our sample. But this argument is based on an estimation of the drift velocity 6.
We have another argument based on the observation of a phase rigidity as a function of
energy. In case of thermal smearing, we should observe a phase variation when applying
a DC bias voltage V on the interfering current. The formula 4.13, gives a phase variation
with the bias :

ϕ(V ) =
eV

kBTS

In figure 5.8(a) we have plotted a 2D graph of the differential transmission T(V ) as a
function of the lateral gate voltage and the dc bias, for the middle sample at 20 mK. From
this measurement we have deduced the phase Φ(eV ) which is shown to remain almost
constant over an energy range of ∼ 16µeV ∼200 mK (in figure 5.8(a)). As a comparison,

6. The drift velocity is not very well known. It should depend in principe of the electron density,
magnetic field and confining potential. The cited usual values are always around 104ms−1 to 105ms−1. As
an example in the experiment of Van der Wiel [81], one finds a discussion and a measurement of vD (inset
of the figure 3) leading to vD∼5.104ms−1 at 4 Tesla.
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Figure 5.8 – (a) 2D plot of dIT /dI0 as a function of the lateral gate voltage VLG and the DC bias V1 ,
for the middle sample at 20 mK. The visibility of interferences of the order of 40% decreases with V while
the phase of interferences remains almost constant. (b) In black dots phase of the middle sample deduced
from figure 5.8(a). In red line, the energy dependence of the phase which would be necessary to explain
our observed visibility decrease with thermal smearing

the red dots of figure 5.8(b) is the phase dependence which would be required (assuming
TS=59 mK) to explain the decrease of the visibility with thermal smearing. The conclusion
is straightforward : our sample does not suffer from thermal smearing. We have done the
same procedure for all the three samples 7 which exhibit a phase rigidity over at least
∼ 16µeV , meaning that all our samples have negligible thermal smearing in the explored
temperature range kBT < 16 µeV =200 mK.

5.5 Properties of lϕ

5.5.1 Determination of lϕ

Now that we have clearly proven that the temperature dependence of ν did not result
from the finite spectral width of the source we can claim that our measurements can be
interpreted by the introduction of a coherence length lϕ(T) such that :

ν = ν0e
−2L/lϕ

with

lϕ ∝ T−1

In figure 5.6 we have plotted the slope ln(V/VB)/(T − TB) for the three samples. It is
clear that the slope scales with the length of the interferometer arm defining, de facto, a
coherence length lϕ(T )∝ T−1. From the slope, and not from the absolute value of ν at the
lowest temperature, we found a coherence length of 20 µm at 20 mK.

7. This phase rigidity has been observed by every groups working on the electronic MZI with ∆L=0
[58][44].
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Figure 5.9 – (color online) Upper panel : The dashed, solid and dot lines are the two
point Hall resistance at filling factor 2 measured for the small, the medium and the large
sample respectively. lϕ has a general shape recovered by all the three samples, with a
maximum at the end of the Hall plateau. Lower panel : Coherence length at 20 mK
deduced from L × (T − TB)/ ln(V/VB) for the three different samples studied (L= 5.6 , 8
and 11.3 µm). The magnetic fields (x-axis) of the small and large sample has been shifted
by +0.25 and -0.1 Tesla respectively, such that the plateau centers coincide for the three
samples.

5.5.2 Magnetic field dependence of lϕ

The magnetic field variation of the deduced lϕ(T) is independent from the MZI size
(see figure 5.9) 8.

The maximum of the coherence length is reached at the upper end of the plateau
where the longitudinal resistance is usually minimum [39] 9. The magnetic field (x-axis) of
the small(large) sample has been shifted by +0.2(-0.1) Tesla respectively, such that the
plateau centers coincide for the three samples. This is due to a small variation of density
of the samples. As one can remark, the coherence length changes for a factor close to two
on the whole plateau. At that point, one may ask why we observe such a magnetic field
dependence. First, just considering a drift velocity varying like 1/B and a coherence length
given by lϕ = vDτϕ, where τϕ is a coherent time, magnetic field independent, we would
think that lϕ should vary like 1/B. But it does not seem to be the case. However, our
approach raises an important question : is the length L of the trajectories independent of
the magnetic field ? As we will see in the next part, this is most probably not correct :
the length changes with the magnetic field (probably due to disorder) leading to this non
monotonous variation of lϕ with B. However before starting the next part, it is important
to check if our result brings some universality or not. In the next chapter, I am going to

8. In order to compare the three samples at the same filling factor, we have shifted the magnetic fields
(x-axis) of the small (large sample) by +0.25(-0.1) Tesla. These values center the Hall plateaus all together.

9. We have checked this independently via four points Hall resistance measurements.
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compare our measured values with the different results in the literature.

5.6 Some universality ?

We can compare our results with previously available data from other groups. The first
experiment on the MZI realized at ν = 2 by Ji. et al [37] has set a lower bound ∼ 10µm
to the coherence length. With a value of ∼ 20µm at 20 mK ,these experiments are in
good agreement with our measured coherence length. Moreover, if one takes the pioneering
results of Ji. et al [37] and plot them in logarithm scale, one observes that the visibility
was also decaying exponentially with temperature (see figure 5.10).
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Figure 5.10 – Temperature dependencies of visibility for a large sample (∼ 45µm2) obtained in the
very first experiment of Ji. et al [37] and plot in logarithm scale. The visibility follows an exponential
decay which when fitted to the dependence ∼ exp(-T/T0) gives T0∼ 52 mK (in good agreement with our
measurement of T0 for the large sample).

More recently, Litvin et al. have reproduced our measurements for a small and a large
MZI [44]. They first considered our expression of the visibility :

νI = ν0e
−2L/lϕ = ν0e

−T/T0 with lϕ ∝ T−1 (5.3)

As demonstrated by the solid lines in Fig. 5.11, their data also vary exponentially with
T above 45 mK. However, at lower temperatures a crossover to a weaker temperature
dependence is observed. The presence of such a crossover is reflected by the extrapolated
values of νI0, which exceed the allowed maximum of 100%, and the fact that the fit lines
do not cross at T=0, but rather at 7 mK. Although it is notoriously hard to exclude that
electron heating contributes to the apparent saturation of νI at T < 45 mK (in figure 5.11),
the later two facts refer to the high temperature regime and indicate that the behavior
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of νI(T) may be more complex than a simple exponential at low temperature 10. Another
strong difference with us is that they find a T0 (see inset of the figure 5.11) that does
not scale with the length of their interferometer but with the area, which prevents them
from introducing a coherence length. Despite these important differences, their data also
confirm the magnetic field dependence of T0. They have measured T0 on a wider interval
of the magnetic field, have shown that T0 had a maximum around ν = 1.5 (see the inset
of the figure 5.11) and varied from 20mK to 30mK (we obtain similar values of T0).

Figure 5.11 – (a) Temperature dependencies of visibilities for large (open symbols) and small (full
symbols) MZIs at different magnetic fields. Inset : Characteristic temperatures T0 (2×T0) for the small
(large) interferometer extracted from the exponential fits according to Equation 5.3

Another MZI experiment has confirmed our observations. Bieri et al. [15] have studied
the visibility as a function of temperature : the visibility follows an exponential decay which
when fitted to the dependence ∼ exp(-T/T0) yields for the characteristic energy scale T0 a
value of 30 mK (arm length ∼15µm). Finally, for several experiments on samples fabricated
by different groups, with different experimental set up, different 2D gas (mobility), the
coherence length seems to be of the same order for the same magnetic field. This indicates
that this coherence length is more or less universal.

5.7 Conclusion

In this chapter, we have determined for the first time the value of the coherence length
in the edge states at filling factor ν = 2. By measuring the decay of the very high visibility
of AB oscillations in MZI with the temperature on different interferometers of different
sizes, we have extracted a coherence length of ∼ 20 µm at 20mK. We have shown that this
decay could not be attributed to thermal smearing since the phase remained rigid over an

10. If we look closer to the data of the middle sample, for one of the slope we also notice a saturation
around 35mK. But it seems to be a spurious effect since for other slopes obtained on the same sample
there is no saturation. I will explain in the next part what could be the fundamental reason for such a
saturation.
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interval of energy ∼ 200mK. Finally, we have found that this coherence length was strongly
magnetic field dependent. Since then, our results have been verified in other experiments
[15][44] confirming our observations.

However these measurements raise two questions :
– Why do we have a finite coherence length ?
– Why do we have a magnetic field dependence of the coherence length ?
We will answer these questions in the next part.



The Coherence Lenght at ν=2 105

Direct Measurement of the Coherence Length of Edge States in the Integer Quantum Hall Regime

Preden Roulleau, F. Portier, and P. Roche

Nanoelectronic group, Service de Physique de l’Etat Condensé, CEA Saclay, F-91191 Gif-Sur-Yvette, France
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effect regime. This was realized by measuring the visibility of electronic Mach-Zehnder interferometers of

different sizes, at filling factor 2. The visibility shows an exponential decay with the temperature. The

characteristic temperature scale is found inversely proportional to the length of the interferometer arm,

allowing one to define a coherence length l’. The variations of l’ with magnetic field are the same for all

samples, with a maximum located at the upper end of the quantum Hall plateau. Our results provide the

first accurate determination of l’ in the quantum Hall regime.
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The understanding of the decoherence process is a major

issue in solid state physics, especially in view of control-

ling entangled states for quantum-information purposes.

The edge states of the quantum Hall effect are known to

present an extremely long coherence length l’ at low

temperature [1], providing a useful tool for quantum-

interference experiments [2–6]. Surprisingly, very little

is known on the exact value of this length and the mecha-

nisms that reduce the coherence of edge states. This is in

strong contrast with diffusive conductors, where weak

localization gives a powerful way to probe l’. It has been

shown, in this case, that electron-electron interactions are

responsible for the finite coherence length at low tempera-

tures. In the integer quantum Hall effect (IQHE) regime,

the presence of a high magnetic field destroys any time

reversal symmetry needed for weak localization correc-

tions, making such an investigation difficult. Furthermore,

due to the unidimensionality of the edge states, electron-

electron interactions may strongly modify the single par-

ticle picture, and one can ask whether the notion of phase

coherence length is still relevant and how it depends on

temperature. In this Letter, we show for the first time that

one can define a phase coherence length and that it is

inversely proportional to the temperature.

Though the energy redistribution length has been

studied in the past [7,8], these scattering experiments do

not measure the phase coherence, which requires observa-

tion of electron interference effects. So far, experiments

have only been able to put a lower bound on l’ at low

temperatures [2,9–11]. The electronic Fabry-Pérot inter-

ferences occurring in ballistic quantum dots have been

used since the early days of mesoscopic physics [9].

These first studies showed an exponential decay of the

amplitude of the Aharonov-Bohm (AB) oscillations with

temperature [10]. However, this decay was attributed to

thermal smearing due to the contribution of thermally

activated one particle energy levels of the dot. Further-

more, the size of the interferometers was not varied, nor

was a Fourier analysis performed of the AB oscillations

that could yield an estimation of l’ [12]. Quantum-dot

systems also implicate the possible interplay of Coulomb

blockade effects [13]. The Mach-Zender interferometers

(MZI) [2,4,6] used in the present study do not suffer from

the same limitations. First, we will show that the observed

oscillations result from the interference of two paths of

equal length, making thermal smearing negligible. Second,

charge quantization effect leading to Coulomb blockade

are irrelevant here. Last, comparison between MZI’s of

various sizes allows us the unambiguous determination of

l’, as well as its dependence with temperature and mag-

netic field.

The sample geometry, presented in Fig. 1, is the same

as in [6]. MZIs of different sizes were patterned using

e-beam lithography on a high mobility two-dimensional

electron gas formed at the GaAs=Ga1�xAlxAs heterojunc-

tion (sheet density nS � 2:0� 10
11

cm
�2 and mobility �

2:5� 106 cm2=Vs). The experiments were performed in

the IQHE regime at filling factor � � nSh=eB � 2 (mag-

netic field B ’ 4:6 T). Transport occurs through two edge

states. Quantum point contacts (QPCs) G0, G1, and G2
define electronic beam splitters with transmissions T i (i �
0–2). In all the results presented here, the interferences

were studied on the outer edge state schematically drawn

as white lines in Fig. 1, the inner edge state being fully

reflected by all the QPCs. The first gate G0 is tuned to fully

transmit the outer (T 0 � 1) edge state. The interferometer

itself consists of G1, G2, and the small central Ohmic

contact in between the two arms. G1 splits the incident

beam into two trajectories (u) and (d), which are recom-

bined with G2, leading to interferences. Samples have been

designed such that (u) and (d) are of equal length. The sizes

of the three interferometers used in this study scale by up to

a factor of
���

2
p

: the length of their arms are L � 5:6 �m,

8 �m, and 11:3 �m for enclosed areas of 8:5 �m
2 (re-

ferred to as ‘‘small’’), 17 �m
2 (‘‘medium’’), and 34 �m

2

(‘‘large’’), respectively. The samples are cooled in a
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dilution fridge to temperatures ranging from 20 mK to

200 mK.

The labels are indicated in the upper part of Fig. 1. A

current I0 is injected into the outer edge state through the

interferometer. The current that is not transmitted, IB �
I0 � IT , is collected to the ground with the small central

Ohmic contact. I0 is made up of a minute ac part, with the

possibility to superimpose a dc bias V. The differential

transmission of the interferometer is defined as T �
G=G0 � dIT=dI0, where G � dIT=dV is the differential

conductance and G0 � e2=h. It is measured with a stan-

dard lock-in technique using a 619 Hz frequency and a

39 pArms amplitude ac bias. The corresponding bias volt-

age excitation (1 �Vrms) is always smaller than the energy

scale involved. The oscillations revealing the quantum

interferences can be obtained using two equivalent experi-

mental procedures: either by superimposing a minute cur-

rent to the large current of the magnet or by changing the

surface defined by the MZI using a lateral gate (LG).

Figure 2 shows the AB oscillations of the transmission

for the three interferometers, showing a magnetic period

inversely proportional to the area of the interferometer,

while Fig. 1(b) shows oscillations obtained using LG.

After checking that both methods lead to the same inter-

ferences amplitude, we have always used the lateral gate

and run the magnet in the permanent-current mode,

strongly reducing the measurement noise. The visibility

V of the AB oscillations is defined as the ratio of the half

amplitude of the oscillation of the transmission divided by

the mean value.

The maximum value of V is always obtained at the

lowest temperature. V can reach 65% for the small inter-

ferometer, whereas it typically attains 20%–40% for the

medium and the large interferometers [see Fig. 1(b)]. For

each MZI we have studied the temperature dependence of

the visibility. In Fig. 3, we have plotted ln�V =V B) versus

temperature, where V B stands for the visibility at TB �
20 mK. Clearly, the visibility decreases with temperature

in all cases, and the larger the MZI, the stronger the

temperature dependence. More quantitatively, if a linear

regression of ln�V =V B� � �T � TB�=T’ is done, one

finds that T�1
’ is proportional to the length of the interfer-

ing arms (inset of Fig. 3). In the following, we show that

this behavior does not result from a thermal smearing.

The transmission probability through the MZI at the

energy � is T ����T 1T 2�R1R2�z
�����������������������������

T 1R2R1T 2

q

�

sin������, where z 2 �0; 1� is a parameter accounting for

phase averaging and/or decoherence, and T i � jtij
2 �

1�Ri are the beam splitters’ transmissions [14,15].

���� is the AB flux across the surface S��� defined by

the energy dependent edge state positions in the two inter-
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FIG. 2 (color online). Interferences revealed upon varying the

magnetic flux through the surface defined by the two arms (u)

and (d) of the interferometers. From the oscillation period �B we

deduce the surface S � h=�e�B� of the 3 different studied MZI.

(a) The small MZI (S � 8:7	 0:2 �m2). (b) The medium MZI

(S � 15:5	 0:4 �m2). (c) The large MZI (S � 40:7	
0:8 �m2). All these surfaces are in good agreement with the

lithographic ones (see text).
FIG. 1 (color online). (a) Tilted scanning electron microscope

(SEM) view of the ‘‘small’’ MZI. G0, G1, and G2 are QPCs

whose split gates are connected with gold bridges over an

isolator responsible for the black color of the SEM view. LG

is a lateral gate. The white line on the SEM picture represents the

outer edge state. The small Ohmic contact in between the two

arms collects the backscattered current IB to the ground through

a long gold bridge. (b) A 2D plot of dIT=dI0 as a function of the

lateral gate voltage VLG and the dc bias V, for the large sample at

20 mK. The visibility of interferences decreases with V while the

phase of interferences remains almost constant. (c) Phase of the

large sample deduced from Fig. 1(b). The dashed line is the

energy dependence of the phase that would be necessary to

explain our observed visibility decrease with thermal smearing.
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fering arms, ���� � 2�S���eB=h. When there is a finite

length difference �L � Lu � Ld between the two arms,

the surface S depends on the energy �. Thus the phase

varies with the energy, ���� EF� � ��EF� � �=�kBTS�,
where kBTS � @vD=�L [15] and vD is the drift velocity

(104 to 105 ms�1) [16]. The differential conductance G
at bias V and at temperature T probes the transmission

probability at energy eV smeared over an energy range kBT
[15]: G�V� � G0

R
�1
�1 f0���T ��� eV�d� / f1�V 0 <

sin���eV��>kBT
g, where f0��� is the derivative of the

Fermi distribution. The energy dependence of the phase

� leads to a thermal smearing at finite temperature as the

phase is blurred. A complete calculation yields a visibility

decreasing like V � V 0�T=�TS sinh��T=TS�� [15]. In

order to fit the visibility decrease with thermal smearing,

this requires that TS 
 66, 59, and 44 mK, for the small,

medium, and large sample, respectively [17].

On the other hand, at low temperature, TS can be deter-

mined by measuring the phase of the interferences as a

function of the dc bias V: ��eV� � ��0� � eV=�kBTS�. In

Fig. 1(b) we have plotted a 2D graph of the differential

transmission T �V� as a function of the lateral gate voltage

and the dc bias, for the large sample at 20 mK. From this

measurement we have deduced the phase ��eV�, which is

shown to remain almost constant over an energy range of


16 � eV [Fig. 1(c)]. As a comparison, the dashed line of

[Fig. 1(c)] is the phase dependence that would be required

(TS � 44 mK) to explain the decrease of the visibility with

thermal smearing. The conclusion is straightforward: our

sample does not suffer from thermal smearing. We have

done the same procedure for all the three samples, which

exhibits a phase rigidity over at least 
16 � eV, mean-

ing that all our samples have negligible thermal smearing

in the explored temperature range kBT < 16 � eV �
200 mK. One can notice that phase rigidity with the

same order of energy range has been also observed in

Ref. [18], on similar MZI [19].

The exponential decrease of the visibility with tempera-

ture is robust against various parameter variations, reveal-

ing a universal behavior. While the maximum visibility at

the lowest temperature is affected by varying the trans-

missions T i of the MZI and by applying a finite bias [6],

T�1
’ is found to be unaffected. In practice, the results

presented here have been obtained with T 1 
T 2 
 1=2
and zero bias.

Indeed, and this is the central result of our Letter, our

measurements can be interpreted by the introduction of a

coherence length l’�T� such that

V � V 0e
�2L=l’ with l’ / T�1 (1)

as shown in Fig. 3. V 0 contains the temperature indepen-

dent part of the visibility. In the inset of Fig. 3, we have

plotted the slope T �1
’ for the three samples [20]. It is clear

that the slope scales with the length of the interferometer

arm defining, de facto, a coherence length l’�T� of about

20 �m at 20 mK. The magnetic field variation of the de-

duced l’ is independent from the MZI size (see Fig. 4). In

order to compare the three samples at the same filling

factor, we have shifted the x axis of Fig. 4 by �0:25 T

and �0:1 T for the small and large MZI, respectively.

These values center the Hall plateaus all together. The

maximum of the coherence length is reached at the upper
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FIG. 4 (color online). Upper panel: The dashed, solid, and

dotted lines are the two point Hall resistance at � � 2 measured

for the small, the medium, and the large sample, respectively. l’
has a general shape recovered by all three samples, with a

maximum at the end of the Hall plateau. Lower panel:

Coherence length at TB � 20 mK, l’ � 2L:T’=TB for the three

samples studied (L � 5:6, 8, and 11:3 �m). The magnetic fields

(x axis) of the small and large sample have been shifted by

�0:25 and �0:1 T, respectively, such that the plateau centers

coincide.
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FIG. 3 (color online). ln�V =V B� versus temperature for the

three samples, V B is the visibility measured at TB � 20 mK.

The measurement has been done at the magnetic field for which

the visibility decay is the smallest. Inset: The slope T�1
’ �

ln�V =V B�=�T � TB� is proportional to the arm length.
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end of the plateau where the longitudinal resistance is

usually minimum. However, our sample configuration

does not allow us to check if it is actually the case.

Let us now compare our results with previously avail-

able data from other groups. Although the variations of

V �T� were measured only for one interferometer size in

the following experiments, it is possible to fit the data with

Eq. (1) and to deduce a coherence length value at 20 mK. In

the Fabry-Pérot type interferometer [Fig. (5b) of

Ref. [10] ], our analysis, using l’ instead of thermal smear-

ing, leads to l’ 
 20 �m at 20 mK. Although these experi-

ments were performed with different filling factor,

magnetic field, mobility, density, and geometry, surpris-

ingly it gives the same result. The data from Ref. [2] yields

also a similar l’, although a direct comparison is difficult

without an exact knowledge of the MZI dimensions.

Finally, the results of Ref. [4], again interpreted by the

authors as resulting from thermal smearing, lead to l’ 


80 �m at 20 mK.

What kind of mechanism is responsible for a finite

coherence length varying with a T�1 temperature depen-

dence? Electron-electron collisions are known to limit the

coherence in non-unidimensional conductors (2D electron

gas, diffusive metallic conductors). For the MZI, a finite l’
coming from short range interaction (l’ / T�3), long

range interaction [l’ / T�1ln2�1=T�], or curvature of the

fermion dispersion (l’ / T�2) [21] cannot explain our

findings. Alternatively, interactions with environment elec-

trons, capacitively coupled to the arms of the interferome-

ter, have been proposed to describe the decoherence of

MZIs [22]. More specifically, decoherence is due to the

thermal noise of the dissipative part of the finite frequency

coupling impedance between the environment and the

reservoirs. This theory leads to

l’
L

�
�’
�

�
@

2�kBT

vD

L
; (2)

when �@CvD=�Le
2� � 1, C being a geometric capaci-

tance, which represents the coupling to the environment

and � being the time of flight. For vD � 5:104 ms�1 and

C=L
 �r�0, one finds �@CvD=�Le
2� � 1 and l’ 
 3 �m

at 20 mK. This result agrees rather well with our measure-

ments, although in the absence of an independent determi-

nation of vD and C, it is not possible to be more

quantitative. Moreover, the theory was developed for non-

chiral wires coupled to a perfect conductor [22]. Also, one

may ask what role may play the chirality and the environ-

ment of a nonperfect conductor.

We now turn to the nonmonotonic dependence of l’ with

the magnetic field B. If �’ is independent of B, as sug-

gested by Eq. (2), the apparent variation of l’ results from a

variation of �. As we have deduced l’ assuming a constant

trajectory length l � L, any variation of l, due to disorder,

would modify the deduced l’ � �’L� vD=l. Then, the

maximum of l’ shown in Fig. 4 corresponds to the mini-

mum of l=vD. In a naive picture, the drift velocity vD

varies like 1=B [16,23] barely leading to nonmonotonic

variations of l’. On the other hand, a nonmonotonic varia-

tion of l is all the more plausible. The maximum of l’
occurs on the upper end of the Hall plateau where one

expects minimum backscattering, thus a minimum l.
Assuming this explanation is correct, the overlap of the

three curves in Fig. 4 (lower panel) indicates that the

variations of l scale with the geometric length of the

MZI. The study of the influence of the sample disorder

on l’ and its dependence with magnetic field could bring

new insights supporting our assumption.

In conclusion, we have measured the visibility of Mach-

Zehnder interferometers of various sizes, operating in the

IQHE regime at filling factor 2, as a function of both the

temperature and the magnetic field. Our results provide a

direct and reliable measurement of the coherence length

found to be inversely proportional to the temperature and

maximum at the upper end of the Hall plateau. The order of

magnitude is compatible with theoretical predictions based

on a dephasing arising from the thermal noise of the

environment.
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110 Origin of the finite coherence length

6.1 Introduction

In this chapter, we will study the impact of the environment on the interferences. In
the precedent chapter we have measured the coherence length, and have shown that it
depended on the magnetic field. These measurements have raised the following questions :

Why do we have a finite coherence length ?

Where does this magnetic field dependence come from?

These questions are usually very difficult to answer, since interfering electrons are cou-
pled to the whole environment and in our case the environment can be the gates, electro-
magnetic fluctuations, nuclear spins, etc... Here, since we work at ν = 2 the environment is
specific : close to the interfering edge state, there is another edge state which, as we have
seen, is coupled to the interfering one. It has motivated us to study more precisely the
real impact of this inner edge state on the visibility of interferences realized on the outer
one. We will first focus on the coupling parameter V0 introduced in the part 4.5.1, and its
magnetic field dependence. Since we work at finite temperature, the intern potential of the
inner edge state fluctuates. Via the capacitive coupling, we will show that the inner edge
state induces phase fluctuations of the interfering edge state.

In order to do that, we will mimic a noisy environment by partitioning the inner edge
state, and study the impact on the visibility of the system. Comparing the effect of partition
noise with the effect of thermal noise, we will be able then, to quantify the impact of the
inner edge state on the interferences at finite temperature.

6.2 Coupling an Interferometer to a noisy environ-

ment

Several experiments have studied the coupling between an interferometer and a noisy
controlled environment. Some of them are interpreted as ”which path ” experiments. In
principle, a ”which path experiment” detection means that we are able to reconstruct the
interference with another experiment [14]. We are going to show that in our case the ”which
path” approach is not necessarily relevant.

6.2.1 Quantum dot detector

Bucks et al.[19] performed a which path experiment with an electronic double path
interferometer [5, 6], fabricated in a high mobility 2DEG. The arms are defined by gating
the 2DEG. In one arm, a quantum dot (QD) has been inserted (see figure 6.1).

A QPC is located near the QD, serving as a which path (WP) detector. It is expected
that an electron passing through the QD modifies the potential nearby the QPC and hence
its conductance. Even though there is no tunneling between the interferometer and the
QPC-detector, the two systems are entangled by their mutual interaction. The dephasing
induced by this entanglement is studied via measuring the visibility of the Ahoronov Bohm
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Figure 6.1 – (a) A schematic description of the top electrodes and contacts of the interferometer, and
the detector. The interferometer is composed of three different regions, emitter E, collector C , and base
regions B on both sides of the barrier with the two slits. The right slit is in a form of a QD (with area
0.4× 0.4 µm2 ) with a QPC on its right side serving as a WP detector. (b) A top view SEM micrograph
of the device. The gray areas are metallic gates deposited on the surface of the heterostructure. A special
lithographic technique, involving a metallic air bridge, is used to contact the central gate that depletes the
area between the two slits (it serves also as plunger gate of the QD).

conductance oscillations produced by the double path interferometer. The expression of the
visibility is given by [19] :

νD = 1 − 1

8
(

∆Td

σ(Td)
)2 (6.1)

where Td is the transmission probability of the QPC detector, ∆Td is the sensitivity of the
detector (maximum when Td ∼ 1/2, minimum for Td ∼ 0 or Td ∼ 1) and σ(Td) is the noise
of the detector. For a noisy detector, σ(Td) ≫ ∆Td , the detector provides no which path
information and νD ∼ 1. While for a quiet detector, σ(Td) ≪ ∆Td , one can determine, even
if ”in principle”, the path the electron takes and consequently the interference pattern is
expected to diminish. We have represented their results [19] in figure 6.2. In figure 6.2(a),
they have shown the transmission probability Td of the QPC detector, as a function of the
voltage Vg applied to the right gate of the QPC detector. In figure 6.2(b), the visibility of
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the Aharonov Bohm oscillations is plotted as a function of Vg for two values of the drain
source voltage Vd across the detector.

We first notice that the visibility is minimum between 0 and 1/2, since there is a
competition between the sensitivity of the detector and its noise, confirming the formula
6.1. Moreover, when Vd is too low, the detector is not sensitive enough to detect electrons
and the visibility remains constant.

If this experiment is described as a ”which path” experiment, the loss of coherence can
be understood from another point of view : via looking at the direct effect of the charge
fluctuations from the noisy environment on the visibility. In that case we do not need
entanglement between the detector and the interferometer to suppress interferences.

Figure 6.2 – (a) The transmission probability of the QPC detector, Td , as a function of the voltage
applied to the right gate of the QPC detector, Vg. (b) The visibility of the Ahoronov Bohm oscillations
as a function of Vg for two values of the drain source voltage across the detector, Vd .

6.2.2 Sprinzak et al. experiment

Sprinzak et al. [77] have coupled an interferometer(a double quantum dot) and a de-
tector in the quantum Hall regime (at ν=1). Following their terminology, the detector is
a noisy current, resulting from the partitioning of an edge state by a QPC. In figure 6.3,
we have represented the principle of this experiment. An edge state is partitioned at the

Figure 6.3 – A schematic of the DQD interferometer coupled to a QPC detector. The detector is a
noisy edge state generated via the QPC. The interferometer is composed of a double quantum dot. What
is studied here is the impact of a noisy edge state on the interferences (Sprinzak et al. [77]).
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Figure 6.4 – The area of the contour at half peak height as a function of the transmission probability,
Td, for two values of applied bias Vd = 0 and 2 mV. The dependence qualitatively agrees with the expected
Td(1 − Td).

QPC. The transmitted electrons interact with the interferometer and, depending on the
transmission of the QPC, the fluctuating number of electrons will have an effect on the
visibility of interferences. Two different approaches can model this interaction. The first
one is the ”which path” approach. If we suppose that the transmitted and reflected edge
state can be recombined after the interferometer 1, then we should be able to extract from
the dephasing between the two paths an information about the interferometer which will,
following the Bohr’s complementarity principle, destroy interferences. But the loss of co-
herence can be understood from another point of view : via looking at the direct effect of
the charge fluctuations from the noisy edge state on the visibility 2. For a weak interaction
between detector and interferometer the dephasing rate can be shown to have the form
[19] :

1

τϕ

=
eVd

8πh

(∆Td)
2

Td(1 − Td)
+

eVd

2h
Td(1 − Td)γ

2 (6.2)

where Td is the transmission of QPC, ∆Td is its variation induced by the interferometer 3,
Vd is the drain source voltage on the QPC and γ = ∆θt − ∆θr is a phase factor, with ∆θt

and ∆θt the respective phase changes induced by the interaction with the interferometer in
the transmitted and reflected electronic waves. Since the experiment is realized at ν = 1,
the transport is chiral and there is no feedback of the interferometer on the transmission of
the QPC so ∆Td=0 (furthermore the QPC is far away from the quantum dot). Finally the
dephasing rate is proportional to the shot noise generated by the QPC. They have used
a double quantum dot (QD) as an interferometer. A QD can be regarded as an electronic
version of the optical Fabry-Perot interferometer, where interferences take place between
the many trajectories that bounce back and forth between the two barriers connecting the
QD to the leads. The interference leads to sharp resonances in the transmission through

1. In the inset of the figure 6.3, Sprinzak et al. [77] have represented a schematic representation of such
an interference between the reflected and transmitted current.

2. We have preferred this point of view in the different interpretations we have used in the electronic
MZI.

3. Feedback of the interferometer on the transmission of the QPC.
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the QD at certain energies, each resonance has an intrinsic energy width Γi. When coupled
to the noisy channel, dephasing leads to the broadening of the resonance peaks to Γi+~/τϕ.
We have represented in figure 6.4 the peak broadening dependence with Td for a fixed Vd.
It qualitatively follows the expression Td(1 − Td).

6.2.3 Rohrlich et al. experiment

Figure 6.5 – Scheme of the quantum dot, defined by biased metallic electrodes (two QPCs and a ”plun-
ger gate”) over a high-mobility two-dimensional electron gas (2DEG) of density 2 ×1011/cm2 embedded
in a GaAs-AlGaAs heterojunction. The experiment is done at filling factor 2 (magnetic field of 5-7 Tesla).
The inner edge state sees a Fabry Perot interferometer and the outer edge state is partitioned at a prior
quantum point contact, serving as a detector. Inset : SEM micrograph of the dot, 0.4µm wide inside.

The Rohrlich et al.[66] experiment is very similar to the Spinzak et al.[77] one, except
that they work at filling factor 2 and utilize one edge state as a detector and the other one
as an interfering one. The interferometer is a quantum dot that acts as an interferometer
of the Fabry-Perot type, composed of QPC1 and QPC2 ( figure 6.5). The detector is still
a noisy edge state partitioned by a quantum point. The advantage of this set up is to
enhance the coupling between the detector and the interferometer. Indeed they begin to
observe a strong effect on the visibility for Vd∼ 103µV (see figure 6.6) whereas Spinzak
et al. used to apply Vd ∼ 2mV to induce a detectable effect on the double quantum
dot interferometer (see figure 6.4). Looking more precisely on these results, it seems that
the expected ∼ exp(−Teff (1 − Teff )Vd) is observed at lower bias, but that there is some
deviation at higher bias. In our experiment the interferometer is an electronic Mach Zehnder
and the ”detector” is the inner edge state. This is the same experiment as the one realized
by Neder et al.[59]. However as you will see in the following, our results are significantly
different. We won’t consider the ”which path” approach, we will treat everything classically
considering that the inner edge state is a noisy object that couples to the interfering edge
state will reduce the visibility.
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Figure 6.6 – Peak full width at half maximum (FWHM), as a functions of the effective detector
transmission Teff and detector bias. Symbols represent experimental results.

6.2.4 A true Which Path experiment ?

In principle, a ”which path experiment” detection means that we are able to reconstruct
the interference with another experiment. Indeed the which path experiment relies on the
fact that the nearby interferometer induces a phase change in one of the propagating edge
states (in the transmitted wave of the detector). If the detector is phase coherent, we
should be able in principle to recombine the reflected and transmitted wave of the detector
to make them interfere. The phase change gives us an information about the position
of the electron in the interferometer which will destroy interferences. If we consider the
”noisy environment” approach, the phase coherence of the detector is not necessary. An
experimental proof to definitively keep the most adapted approach is to introduce between
the QPC and the interferometer a floating ohmic contact 4 (see figure 6.7(a)).

If the partitioned edge state is fully absorbed, electrons lose their phase coherence but
the environment remains noisy. Therefore if a non-coherent noisy edge state always have
an effect on the visibility of oscillations, it will mean that only the second approach is
more appropriated. We have represented their results in figure 6.7(b). They still observe
the decay of the visibility with the dephasor, the small variation in the dephasing being
attributed to the finite capacitance of the ohmic contact that shorts to ground high fre-
quency components of the shot noise. To conclude, it seems to me that the ”which path”
approach is not necessary.

Similarly to the Sprinzak et al. experiment, we can answer the question whether cou-
pling a noisy edge state with the MZI is a true ”which path” experiment or not. We will
detail in the following how to couple a noisy edge state to a MZI. We just give here the
general principle of the experiment, since it is very close to the one of Sprinzak et al. We
have represented a scheme of the experiment in the figure 6.8 where the interferometer is
in red, the detector in yellow.

4. In our experiment ”Voltage Probe” we have also used a floating ohmic contact to simulate total
energy redistribution. But contrary to them, we will control the probability that electrons are dephased
by the probe. In the present experiment, the gate is either open or closed.
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Figure 6.7 – (a) A schematic of the experimental setup with a floating ohmic contact introduced in the
transmitted wave. The ohmic contact serves as a dephasor for the transmitted electrons. A gate in front
of the ohmic contact allows removing this contact from the electrons path. (b) The area of the contour
at half peak height as a function of the transmission probability, Td, with and without the ohmic contact
in the electrons path. The decrease in the dephasing rate is attributed to the non-negligible capacitance
of the ohmic contact that shorts the high frequency components of the shot noise to ground, preventing
them from participating in the dephasing of the Double Quantum Dot.

6.2.5 Proposal with the MZI

In the first case (see 6.8 (a)), we tune beams splitters C and B to 1/2 to obtain the
maximum visibility. The detector is composed of a noisy edge state. In the first case (see 6.8
(a)), we tune the beam splitter D to 1/2 and we close the beam splitter A. Since the edge
state is noisy, we will be able to destroy interferences. To check whether it is due to a which
path detection or to a ”noisy environment”, we realize this second experiment (see figure
6.8 (b)). The beam splitter D is now closed, and the beam splitter A is set to 1/2. Before
being coupled to the interferometer, the noisy edge state is fully absorbed by a floating
ohmic contact. If this noisy edge state still have an effect on the interferences, it will mean
the the ”which path” approach is not necessary. I have not realized this experiment but I
have very few doubts on what would be the result. In principle, a ”which path experiment”
detection means that we are able to reconstruct the interference with another experiment.
This has been achieved in optics by Bertet et al.[14].

6.2.6 Optical experiment

Bertet et al.[14] have used an atomic double-pulse Ramsey interferometer, in which
microwaves pulses act as beam-splitters for the quantum states of the atoms, to mimic
a MZI (see figure 6.9). An atoms beam is split into two paths a and b and recombined
by two beam splitters B1 and B2. The quantum amplitudes associated with these paths
present a phase difference φ, swept by a retarding element. If B1 and B2 are macroscopic,
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Figure 6.8 – Experimental configuration of my proposal. (a) We tune beams splitters C and B to 1/2
to obtain the maximum visibility. We have represented in red the interferometer, in yellow the detector is
composed of a noisy edge state. We tune the beam splitter D to 1/2 and we close the beam splitter A.
Since the the edge state is noisy, we will be able to destroy interferences.(b) The beam splitter D is now
closed, and the beam splitter A is set to 1/2. Before being coupled to the interferometer, the noisy edge
state is fully absorbed by a floating ohmic contact.

the probability for detecting the particle in detector D exhibits a sinusoidal modulation
as a function of φ. Suppose now that B2 is a massive classical object, and B1 is a light
plate which may rotate around an axis perpendicular to the interferometer plane. When
the particle interacts with B1, it is, with a 50 % probability, either transmitted along
path a (the plate does not move) or reflected into path b (the plate receives a momentum
kick, resulting in a coherent state of motion). The particle + B1 system evolves into the
combined state :

Ψ = (1/
√

(2))(|Ψa > |ΨB1
(a) > +|Ψb > |ΨB1

(b) >)

where |Ψa > and |Ψb > represent the particle’s wave packets in paths a and b and |ΨB1
(a) >

and |ΨB1
(b) > the corresponding final states of B1. If B1 is light enough, it stores unambi-

guous information about the particle’s path and < ΨB1
(b)|ΨB1

(a) >= 0. If B1 is a heavy
macroscopic object insensitive to the particle’s momentum kick, |ΨB1

(b) >= |ΨB1
(a) >.

The probability for detecting the particle in D is :

P (φ) =
1

2
(1 + Re(< ΨB1

(b)|ΨB1
(a) > exp(iφ)))

The fringe contrast is the modulus of the scalar product of the two beam splitter final
states and directly measures the degree of entanglement between the particle and B1.

A microwave pulse R1 (figure 6.9) acts as a beam splitter which splits the Rydberg
atom’s state into two energy levels e and g, then recombined by pulse R2,before being de-
tected in D. If the R1 field, stored in a long-damping-time cavity C, is macroscopic, Ramsey
fringes are visible. If the R1 field is microscopic, its photon number records information
about the atom’s path, suppressing the interference. We have represented their results in
figure 6.10.
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Figure 6.9 – Mach-Zehnder and Ramsey versions of Bohr’s experiment. (a) In the Mach- Zehnder
interferometer, the particle trajectory is separated by beam splitter B1 into paths a and b, folded by
mirrors M and M’ and recombined by beam splitter B2 into detector D. The other output port (dashed
arrow) is not used. A dephasing element tunes the relative phase φ between the paths. B1 can rotate
around an axis perpendicular to the interferometer plane, crossing it at the center O of the B1MB2M’
square. A spring provides a restoring force. The moving assembly is initially in its ground state of motion.
If B1 has a large mass, fringes are visible (dotted lines in inset). If B1 is microscopic, its recoil records the
reflection of the particle into path b, washing out the fringes (solid lines). (b) Ramsey set-up. A Rydberg
atom’s state is split by microwave pulse R1 into two energy levels e and g, then recombined by pulse R2
downstream, before being detected by field-ionization in D. Interferences are obtained in the probability
for finding the atom in g. A field pulse between R1 and R2 tunes the relative phase φ of the interfering
amplitudes (Stark effect). If the R1 field, stored in a long-damping-time cavity C, is macroscopic, Ramsey
fringes are visible (dotted line in the inset). If the R1 field is microscopic, its photon number records
information about the atom’s path, suppressing the interference (solid line).

As expected, if the R1 field is macroscopic, fringes are visible. If R1 is microscopic, its
photon number records information about the atom’s path, suppressing the interference.
In this which path experiment, the information transfer between the interferometer and
the detector is realized, conserving the coherence of the whole system.

6.3 Inner and outer edge state coupling

To study the real impact of the inner edge state on the visibility of interferences realized
on the outer one, we must focus on the capacitive coupling between the inner and outer edge
state already introduced in the part 4.5.1. In particular, we will show that this coupling is
magnetic field dependent.
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Figure 6.10 – From quantum to classical interferometer. (a) Ramsey interference signal recorded
for various mean photon numbers N in the R1 pulse. The progressive evolution from the quantum to the
classical beam-splitter case is clearly observed. (b) Fringe contrast as a function of the mean photon number
N in R1. The points are experimental. The line represents the theoretical variation of the modulus of the
beam-splitter final- states scalar product, multiplied by a fixed factor η that accounts for interferometer
imperfections.

6.3.1 Characterizing the coupling

Here, all the measurements are realized at ν = 2. We will use the inner edge state as a
lateral gate. As represented in figure 6.11, we have modified the experimental set up. We
separate the inner edge state (in blue) from the outer edge state that interferes (in red),
using G0 (this is the same set up that we have used in 4.5.1).

The transmissions of each edge state are measured independently with two lock-ins at
two different frequencies. The inner edge state, being very close to the outer edge state is
capacitively coupled to this last. By applying a bias voltage V2 on the inner edge state one
can reveal the interference pattern. As already explained, since the phase depends on the
bias voltage V2, we must take into account this capacitive coupling in the expression of the
interfering part of the current I∼ ≈ ID × cos(φ− 2πV2

V0

) where V0 is the coupling parameter.

Figure 6.12(b) shows that we are able to sweep the phase of interferences and hence
to reveal the interference pattern by sweeping V2. This experiment was done on the large
sample (arm length equal to 11.3µm).

6.3.2 Magnetic field dependence of the coupling parameter

We have made here an interesting finding : the parameter V0 depends on the magnetic
field in a way which could remind the general slope of lϕ with the magnetic field. First,
we have checked that the inner edge state is well defined on the whole plateau. Indeed,



120 Origin of the finite coherence length

G1

IR

IT

G2

G0

SG

(u)

(d)

V2

~

I0

Figure 6.11 – Top-view scanning electron micrograph of the large device, with schematic representation
of the edge states. On this representation the gate G0 is set to 1. Two edge states are injected into the
Mach-Zehnder : the outer edge-state drawn in blue, and the inner one drawn in red. Thanks to the gate
G0, one can feed the inner and outer edge states with two different bias.

Figure 6.12 – (a) Phase sweeping by varying the side gate voltage VSG (b) Phase sweeping by varying
the bias voltage V2, applied on S2 (the measurements were done at 4.28 Tesla)

before characterizing the coupling one has to check if the two edge states are well defined,
or more precisely, on what range of magnetic field the Hall plateau extends.

This is done either with a two point measurement in the large region of the mesa (figure
6.13) or by measuring the transmission of the inner edge state when injecting the current
through S2 with T0=1 (in figure 6.14(b)).

This last experiment gives an access to the back scattering in the narrow regions of the
MZI. It gives ”de facto” a comparison between the filling factor in the MZI and the filling
factor in the wide region. One can see on the figure 6.14(b) that the total transmitted
current (T0 is set to 1 such that in principle just the inner edge state contributes to the
transport) remains equal to 1/2 and start to decrease at a magnetic field for which the
Hall resistance (figure 6.13) start to decrease. This indicates that filling factor in the MZI
and in the large part of the mesa are very close. We study then the dependence of the
coupling parameter V0 with the magnetic field. V0 increases linearly from 19.2µV at 3.65
T to 48.8µV at 4.66T, and then slightly decreases (see figure 6.15 and 6.16). We have
summarized the evolution of V0 with the magnetic field in figure 6.14(a).
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Figure 6.13 – Two points Hall resistance measurement. The filling factor ν=2 is defined from 3.7 Tesla
to 4.8 Tesla. From 4.8 Tesla to 5.2 Tesla, the Hall resistance start to increase.
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Figure 6.14 – (a)Dependence of V0 on the whole plateau at ν=2. We observe a monotonous increase
V0 from 20µV at 3.65Teslas to 48µV at 4.8Teslas. Between 4.8 and 5.2 Tesla, we observe a small decrease
of V0. (b) We check that the transmission of the inner edge state is well defined and equal to 1 in the
interval B=3.67 T to 4.8 T. However between 4.8T and 5.2T the inner edge state is still present.

Figure 6.15 – Dependence of V0 with the magnetic field in the interval B=3.67 T to 4.28 T

To conclude we have shown that the interfering edge sate is coupled to the inner edge
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Figure 6.16 – Dependence of V0 with the magnetic field in the interval B=4.4 T to 5.17 T

state. This capacitive coupling enables us to use the inner edge as a real lateral gate. We
have observed that this coupling strongly depended on the magnetic field. We are going
now to study the impact of a noisy inner edge state on the visibility of interferences.

6.3.3 Gaussian Noise dephasing

We have studied the impact of a noisy inner edge state on the visibility of a MZI. In this
experiment, the inner edge channel is partitioned and simulates thus a noisy environment
which lowers the visibility. The interaction between the inner and the outer channels was
characterized before the actual dephasing experiment by first fully reflecting the biased
inner edge channel emanating from S2 (with G0). Indeed, as we have shown in the previous
part, the full reflection (T0 = 1) had a strong effect on the phase of the interference
pattern, which varied linearly with V2 but with nearly no effect on the visibility. Regarding
the dependence of the visibility with bias voltage V2 for a transmission T0,in=1/2, we have
worked at different magnetic field. We have first checked that the transmission T0,in=1/2
was well defined on the interval B=3.67 T to 5.17 T for the whole range of V2. We never
observed any lobe structure of the visibility with V2 as Neder et al. [59]. (see next chapter :
Observation of non Gaussian noise).

For example, at 3.9 Tesla (resp. 4.7 Tesla) we obtain a 2π shift for V2 = 27.5µV (resp.
V2 = 49µV ) (see figure 6.17(a)).

In figure 6.17(b) we have represented the visibility decrease as a function of V2 when
T0=1/2. The logarithmic scale clearly shows an exponential decrease which is very well
explained by a Gaussian phase averaging of the AB phase of the MZI. The purpose of this
chapter is to explain what is the Gaussian approximation and how it leads to a decrease
of the visibility following ν ∼ exp(−T0(1 − T0)V2/Vϕ) where Vϕ is a parameter.

Alternatively, we have studied the visibility for a fixed value of V2 with the transmission
of G0. In figure 6.18 we observe an exponential decrease of the visibility proportional to
T0(1−T0) in perfect agreement with a Gaussian approximation. We do not obtain a V-shape
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Figure 6.17 – (color online) a) :Phase sweeping by varying V2 with T0 = 1 for two different magnetic
fields 4.7 and 3.9 T. The periodicity V0 depends on the magnetic field. b) : Visibility decrease of the
interferometer as a function of V2 at T0 = 1/2 for two different magnetic fields 4.7 and 3.9 T. The solid lines

are fit to the data V = V0e
−2π2

∆S22∆ν/V 2

0 with an electronic temperature of 25mK (for a base temperature
of 20mK) and T0 = 1/2. The high bias fit of the exponential decrease V = V0 exp(−T0(1 − T0)V2/Vϕ)
allows us to determine Vϕ which is found to depends on the magnetic field.

as Neder et al. [59].
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Figure 6.18 – (color online) Visibility decrease of the interferometer as a function of T0

for V2=0, 21, 31, 42, 53 and 63 µV from top to bottom. The solid lines are fits to the data
using Eq. 1 with V0=0.45, Vϕ = 7.2µV and T=25mK.

6.3.4 The Gaussian approximation

We detail here the Gaussian approximation. We have seen before that, due to the
coupling, the phase was related to V2 by δϕ = 2πV2/V0. Now if V2 fluctuates, it leads to
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fluctuations of the phase. We must take into account these fluctuations in the formula of
the interfering current. A phase-averaged transmission probability over these fluctuations
gives :

〈I∼〉 =
e2

h
V (T1T2 + R1R2 +

√
T1R2T2R1〈sin(ϕ)〉)

I now assume a Gaussian phase averaging with a variance 〈δϕ2〉. 〈sin(ϕ)〉 becomes :

〈sin(ϕ)〉 = sin(〈ϕ〉)e−〈δϕ2〉/2

where 〈δϕ2〉 is the variance of the Gaussian distribution. 〈δϕ2〉 is then simply related
to 〈δV 2

2 〉 through the coupling constant, and 〈δV 2
2 〉 is related to the noise power spectrum

S22 of V2 trough an unknown bandwidth ∆ν :

〈δϕ2〉 = (2π)2〈δV 2
2 〉/V 2

0 = (2π)2S22∆ν/V 2
0 (6.3)

If one generates partition noise on the inner edge state with the splitter G0, the resulting
excess noise :

∆S22 = 2eRQT0(1 − T0)V2(coth(
eV2

2kBT
) − 2kBT

eV2

) (6.4)

leads to a visibility decreasing exponentially with V2 when eV2 ≫ kBT :

ν = ν0e
−T0(1−T0)(V2−2kBT/e)/Vϕ , (6.5)

with

V −1
ϕ =

4π2eRQ

V 2
0

∆ν, (6.6)

and RQ = 1/GQ = h/e2. In equation 6.5, the unknown parameter is Vϕ which is related
to the bandwidth ∆ν ( Equation 6.6). This approach for the dephasing is valid only if ∆ν
is such that the fluctuations lead to a Gaussian distribution of ϕ. It implies that many
electrons have to be involved in the dephasing during the measuring time 1/∆ν, namely
that max(eV2, 2kBT ) ≫ h∆ν. This condition coincides with the fact that the noise power
spectrum S22 can be considered as frequency independent.

In figure 6.17(b) we have plotted the visibility versus V2 when T0 = 1/2 at 3.9T and
4.7T. ν decreases exponentially with V2. The solid lines are fits to the data using equation
6.5 with an electronic temperature of 25mK (for a fridge temperature of 20mK). Vϕ and
ν0 are the fitting parameters. Figure 6.18 shows the visibility for different values of V2 and
T0 at a magnetic field of 4.6 Tesla. The solid lines are fits to the data using equation 6.5
with Vϕ=7.2µV and T=25mK. Clearly at high bias there is no V-shape contrary to what
has been recently observed in [58] and [59]. Instead, the curves show that the Gaussian
approximation is valid. The agreement is perfect when T0 is well defined in our sample.
The dispersed data on the edges in figure 6.18 coincide to a strong dependence of T0 with
the voltage applied on G0, resulting on an energy dependent transmission T0

5.
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Figure 6.19 – Logarithm of the visibility as a function of V2 for different magnetic field in the interval
B=3.67 T to 4.28 T. From our fits we are able to extract Vϕ on the whole plateau at filling factor ν=2.

Figure 6.20 – Logarithm of the visibility as a function of V2 for different magnetic field in the interval
B=4.4 T to 5.17 T. From our fits we are able to extract Vϕ on the whole plateau at filling factor ν=2.

6.3.5 The magnetic field dependence

In the previous part, we have shown that the coupling between the inner and the outer
edge state strongly depended on the magnetic field.

To confirm our Gaussian approximation approach, we had to show that our fit (formula
6.5) is the good one on the whole plateau at ν = 2 6. We have, thus studied the decrease
of the visibility with the bias voltage V2, at transmission T0=1/2 for several magnetic
fields. In figure 6.19 and 6.20, we have represented our experimental data in black dots,

5. Non linearities are more pronounced when T0 is close to 1 and 0.
6. Indeed, we also have to show that the Gaussian approximation is valid, namely that ∆ν ≪

max(eV2, kBT ) on the whole plateau corresponding to the filling factor ν=2.
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Figure 6.21 – Dependence of Vϕ on the whole plateau at ν=2. We observe a monotonous increase Vϕ

from 2.4µV at 3.65Teslas to 7.5µV at 4.8Teslas. Between 4.8 and 5.2 Tesla, we observe a small decrease
of Vϕ.

with our fits in red solid lines from B= 3.67 Tesla to B= 5.17 Tesla. We first notice the
remarkable agreement with our fit on the whole plateau. Moreover the exponential decrease
strongly depends on the magnetic field : for each magnetic field, we can extract Vϕ. We
have summarized the evolution of Vϕ with the magnetic field in figure 6.21. The general
behavior of Vϕ seems to be similar to V0. We will go back to this point later.

6.4 An explanation to the finite coherence length

Now that we have characterized the impact of a noisy inner edge state, we will be able
to answer to this question : where does the finite coherence length come from ? Why does
the coherence length depend on the magnetic field ?

6.4.1 Impact of the inner edge state

We are now going to compare the exponential decrease of the visibility in the presence
of shot noise with our previous observation that the coherence length of edge states is
inversely proportional to the temperature. When eV2 ≪ kBT , the noise is dominated by
the Johnson Nyquist noise S22=4kBTRQ. The expression 6.5 becomes :

ν = ν0e
−T/Tϕ ,

with

T−1
ϕ =

2 × 8π2kBRQ

V 2
0

∆ν, (6.7)

Here, the factor 2 arises from the fact that the two arms of the interferometer suffer
from a coupling with a noisy channel, instead of one when creating partitioning. This can
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be easily understood thanks to the figure 6.22 where we have represented in white the
two independent source of Johnson Nyquist noise. In the expression 6.7 the bandwidth ∆ν
is still an unknown parameter, but remains the same than when we have mimic a noisy
environment 7. We have to compare the bandwidth to the expression of Vϕ given by :

V −1
ϕ =

4π2eRQ

V 2
0

∆ν

G1

IR

IT

G2

G0

~

I0

SG

(u)

(d)

V2

δI2

δI2

Figure 6.22 – The two arms of the interferometer suffer from a coupling with a noisy channel. We
have represented in white the two independent sources of Johnson Nyquist noise, which lead to a finite
coherence length.

We finally get :
eVϕ = 4kBTϕ (6.8)

If our hypothesis of a noisy inner edge state that would reduce the visibility due to thermal
fluctuations is correct, we should verify experimentally the last relation between Vϕ and Tϕ

(formula 6.8). Figure 6.23, we have collected V0, Vϕ and the general shape of Tϕ obtained
on the large sample on Hall plateau. Our data are in perfect agreement with equation
6.8. This definitively demonstrates that thermal noise and coupling between the two edge
states are responsible for the finite coherence length.

6.4.2 An approach valid on the whole plateau ν = 2

Once again this approach is valid only under the Gaussian approximation. From the
measurements of V0 and Vϕ, one can deduce using equation 6.6, that h∆ν varies from
∼ 3 to ∼ 7 µeV when changing the magnetic field. This value of h∆ν is . 2kBT , which
validates our approach of Gaussian and white noise 8.

7. This assumption is valid only if ∆ν ≪ max(eV2, kBT ).
8. It can lead to a small deviation from our theory at the lowest temperature (20mK) when eV2 .

2kBT ), which could explain the crossover at lower temperature with another temperature dependence
(observed by Litvin et al.[44]).
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Figure 6.23 – (color online) V0 and Vϕ as a function of the magnetic field. The dashed line
is the general behavior of 4kBTϕ/e (right scale) measured in ref.[70], on the same sample.

The figure 6.23 also brings a valuable point for the understanding of the underlying
physics : the proportionality of Vϕ to V0. This may be surprising at first sight : if ∆ν were
constant, according to equation 6.6, Vϕ would scale as V 2

0 . Instead as seen in figure 6.23, Vϕ

is proportional to V0. We will show that, varying the magnetic field most probably changes
the time of flight τ through the MZI, thus changing both the coupling between the edge
states and the bandwidth ∆ν. We are going to relate V0 and ∆ν to microscopic parameters
of the system and explain why ∆ν ∝ V0. But, before treating this point, we are going to
comment different results obtained on this experiment by the Weizman’s group [59][58].

6.5 Non-Gaussian noise

The first group who has studied the impact of a noisy inner edge state on the visibility of
a MZI was the Weizman’s group [59][58]. In their experiment, the inner edge channel served
as a path detector 9 (see figure 6.11). When G0 is tuned to partition the detector channel’s
(biased at V2), electrons in the upper path of the interferometer become entangled 10 with
those in the down path, resulting in a lower visibility. They interpreted this dephasing
process as a ”path detection”, or alternatively, as a phase scrambling due to potential
fluctuations in the partitioned detector channel. The interaction between the inner and
the outer channels was characterized before the actual dephasing experiment by first fully
reflecting the biased inner edge channel emanating from S2 (with G0). Indeed, as we have
shown in the previous part, the full reflection (T0 = 1) had a strong effect on the phase
of the interference pattern, which varied linearly with V2 (V0 ∼ 19µV in the Weizman’s
experiment), but with nearly no effect on the visibility.

When G0 was tuned to partition the inner channel (0< T0 <1), the visibility diminished
as V2 increased. We show in figure 6.24 the dependence of the visibility on T0 for three

9. This term ”path detector” refers to their ”which path” detection interpretation.
10. Again this vocabulary is linked to the ”which path” interpretation.
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Figure 6.24 – Neder et et al.[58] experiment : The effect of partitioning the detector channel ( by
G0) on the visibility of the interfering signal, at three different detector bias values. As V2 increases, the
dependance of the visibility on T0 turns from a smooth one to a sharp V-shape ( at V2= 14µV ). The
dashed line is the prediction of a single detector electron model (Equation 6.9). While the model agrees
with the experimental results at low bias (4µV , black line), it fails at larger bias. It predicts a V-shape
dependence, but at a lower bias V2 = 9µV (gray line). Inset : The conductance of G0 as a function of gate
voltage shows sharp resonances. This explains the lack of visibility measurements in the range 0.1< T0 <
0.4, and its dispersion at large detector bias (due to the dependence of the resonances on bias).

different detector voltages. As the bias V2 increased, the visibility turned from a smooth
parabolic curve to a sharp, V-shape like dependence, with a minimum at T0 ∼ 0.5. The
dispersion among the experimental points at higher bias resulted from resonances in T0.

To understand this result, Neder et al.[59] first studied a simple model where exactly one
electron in the detector scrambles the phase of an interfering electron. Detector electrons
were injected with a probability 1 − T0 into the channel that interacted with the interfe-
rometer. Depending on the presence or absence of a detector electron, the extra phase δφ
acquired by an interfering electron fluctuated between two values δφ = γV2 ( γ=2π

V0

=2π
19

rad/µV in Neder’s experiment [58]) and δφ =0 respectively. Averaging the cos(φ) over the
two possbilities leads to a visibility [10][77] :

ν = |T0 + (1 − T0)e
iγV2| (6.9)

For small γV2 equation 6.9 can be expanded to second order :

ν ∼ 1 − 1

2
(γV2)

2T0(1 − T0) ∼ e−
1

2
(γV2)2(T0(1−T0)) (6.10)

The two broken lines in figure 6.24 are the predictions of Equation 6.9 at detector bias
V2 = 4µV and V2 = 9µV . For the small bias the induced phase is small ( γV2 < π/2)
and both equation 6.9 and 6.10 agree well with the experimental data seen in figure 6.24.
However, for the larger bias the shape predicted by equation 6.9 deviates markedly from
the smooth Gaussian approximation, and shows a V-shape dependence : ν = |1 − 2T0| for
γV2 = π (V2 ∼ 9µV ). In figure 6.24 this shape is observed, but at a higher detector bias
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than the one predicted by equation 6.9 ( V2 = 14µV ) 11.

Figure 6.25 – Neder et et al.[58] experiment. Effect on a partitioned detector (T0 ∼ 0.5) on the
interference of the MZI. For poor path detection (V2 = 2µV ) the AB oscillations are strong with visibility
∼ 30%, but for an accurate detection (V2 = 24µV ) the visibility drops to merely ∼ 1.5% ; vanishing
altogether as V2 increases further. Here Vdet ≡ V2

Another way to study the impact of the noisy inner edge state on the interfering beam
is to tune T0 to 1/2 and to vary V2. In a first experiment, Neder et al.[58] have noticed a
monotonous decay of the visibility with V2 (see figure 6.25). In a second experiment Neder
et al.[59] have observed completely different results. Although the bias V2 necessary to
sweep the phase per 2π is the same, they obtained a new behavior of the visibility with
a non-monotonous decay (see figure 6.26). The visibility dropped to zero at V2 = 14µV
(instead of at 9.5µV according to Equation 6.9), increased afterwards to reach another,
yet smaller, maximum at V2 = 22µV , and finally vanished at higher bias. This observation
has been done in a region of G0 gate voltages which was relatively smooth and free of
resonances. Moreover, the phase of the AB oscillations increased monotonously with V2

(see figure 6.26 b) : 〈δφ〉=1 − T0γV2, but underwent a π phase slip when the visibility
reaches zero, as expected qualitatively from 6.9 12.

Their conclusion was the following : ” destruction of the interference with strong phase
randomization only by a few electrons in the detector. If n∼ eVdetτ

h
, with τ the dwell time

of an electron in the upper path of the MZI and V0 = 20µV , they find n∼ 1 − 2.5 (using
τ = L

vd
, path length L∼ 10µm and vd ∼ (2 − 5).104m/s−1 as an estimate of the edge

channel drift velocity)”. This interpretation raises however several questions. First, they
obtain which seems to be two contradictory results from one paper to the other. In the first
one [58], they obtain a monotonous decay of the visibility with V2 whereas in the second
one [59] they report a non monotonous decay of the visibility with V2. Both experiments
were done in the same conditions, except the fact that in the second experiment, they
worked in a region of G0 relatively smooth and free of resonances. It is not clear how their

11. This expression seems to us surprising. In the Neder et al. paper [59], this is so called the Gaussian
approximation while I have shown that a Gaussian approximation leads to ν ∼ exp(−γV2). The second
thing is that I do not understand why the phase shift induces by one electron changes with V2. I would
expect that V2 changes the number of electrons.

12. This result looks like the lobe pattern of the visibility with the applied bias, with a marked difference :
the phase is not rigid.
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Figure 6.26 – Neder et et al.[59] experiment. Effect on a partitioned detector (T0 ∼ 0.5) on the
interference of the MZI. Solid line : the non-monotonic behavior of the visibility has been interpreted as a
sign of dephasing by non-Gaussian noise. Dashed line : prediction of an improved theoretical model, which
takes into account fully the effects of binomial shot noise [59].

theoretical approach can explain their results obtained in the first experiment (the smooth
decay of the visibility with the detector DC bias). Moreover, they were able to pass from a
Gaussian to a non Gaussian regime only because the profile of the gate G0 was smoother.
It seems then that the noise generated in G0 is responsible from the observed behavior.
Up to now we have never succeeded to reproduce their results on non Gaussian noise. This
discrepancy remains puzzling.

6.6 Theory : Finite frequency coupling

In this part, we will model the impact of the noisy inner edge state on the interfering
one using a mean field approximation inspired by a work of Seelig and Buttiker [76].

6.6.1 The capacitive coupling

We first consider the capacitive coupling between edge states. Fluctuations of the charge
in the gate couple to the charge in the neighboring arm of the MZI and influence electron
transport in this arm. This interaction effect is taken into account by introducing a time
dependent potential V1(x, t) into the Hamiltonian

H = − ~2

2m∗
∂2

∂x2
+ E1 + V1(x, t) (6.11)

for the upper arm 13. Here E1 is the sub-band energy due to the lateral confining potential
of the arm and m∗ is the effective mass of the electron. We make the assumption that

13. Here, I strictly consider the approach developed by Seelig and Buttiker [76] to evaluate the phase
evolution.
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the fluctuating potential factorizes in a space- and time-dependent part, writing V1(x, t) =
h1(x)eU1(t). We will suppose for the following, that h1(x) is constant all along the length
of the interferometer L. To solve the Schrödinger equation with the Hamiltonian 6.11 we
make the ansatz :

ΨE(x, t) = e−iEt/~+ik1,Ex+iϕ(x,t)

where k1,E =
√

2m∗(E − E1)/~ and ϕ(t) is the phase accumulated due to fluctuations. We
introduce :

U1(t) =

∫
dω

2π
u1(ω)e−iωt

and

ϕ(x, t) =

∫
dω

2π
ϕ(x, ω)e−iωt

Since h1(x) is constant all along the length of the interferometer L, one obtains by WKB
approximation :

ϕ =

∫ τ

0

eU1dt

~

This last relation allows to relate the phase noise Sϕ(ω) to the potential noise SU1U1
(ω) :

Sϕ(ω) = 4
e2

~2
SU1U1

(ω)
sin2(ωτ/2)

ω2

where τ=L/vD is the time of flight through the MZI and L stands for the length of one
arm of the interferometer.

6.6.2 Admittance matrix and noisy inner edge state

To characterize the coupling at finite frequency, one has to know how the fluctuations
of the electro-chemical potential V2 are related to the fluctuations of the internal potential
U1 seen by the electrons in the MZI. The physics is the following one : when changing
V2, the charge of the inner edge state will change. This charge will lead to a variation of
the potential U1 which will be partially screened. This is the dynamic of the screening
[36][31][65][22] that we are describing here. The notations that I will used, as well as the
resulting electrical circuit are represented in figure 6.27.

The admittance G12(ω)=dI1,ω/dV2,ω is calculated in detail in the Annex B. We just
give here the final result :

G12 =
dI1(ω)

dV2(ω)
=

GQ(1 − eιωτ )

2 + ιGQ(1 − eιωτ )/(ωC)

with V2(ω) the electro-chemical potential applied on S2 , I1(ω) the current along the outer
edge state, GQ = e2/h and C the capacitance between the inner and outer edge state. In
the low frequency limit, this expression becomes :

G−1
12 = 2

1

GQ(1 − eıωτ )
+

i

ωC
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Figure 6.27 – a) Schematic representation of the edge states coupled by a geometrical capacitance
C. b) Low frequency equivalent circuit with V1 set to 0 V. The coupling capacitance C is in series with
two relaxation resistances RQ/2 accounting for the non-ideality of the two gates of the capacitor and two
quantum capacitances CQ accounting for the density of states of the edges states.

We introduce Z(ω) = i
ωGQ(1−eıωτ )

and ZC = i
ωC

. Thus :

G−1
12 = 2Z + ZC

which can also be written in the low frequency limit :

G−1
12 =

i

ωCQ

+
RQ

2
+

i

ωC
+

i

ωCQ

+
RQ

2

with CQ = GQτ . We deduce from the expression the schematic representation of the cou-
pling between the inner and outer edge state figure 6.27. The outer edge state is composed
of a quantum capacitance CQ with a relaxation resistance RQ/2 in series[36][31][65][22].
Since the lateral gate is not perfect (inner edge state), it is also composed of a quantum
capacitance CQ with a relaxation resistance RQ/2 in series.

We are interested in the fluctuations of the potential U1(ω) as a function of V2(ω) :

U1(ω) =
1

ι
ω

e2

h
(1 − eιωτ )

Qtot
up,2(ω) = V2(ω)

C

2C + ι
ω

e2

h
(1 − eιωτ )

(6.12)

with Qtot
up,2 the total charge in the region 2. We obtain finally for the fluctuations of the

potential U1(ω) :

SU1U1
(ω) = | C

2C + ι
ω

e2

h
(1 − eιωτ )

|2S22(ω)

which can also be written :

|GQ(1 − eιωτ )|2SU1U1
(ω) = |G12(ω)|2S22(ω)
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We now consider the case of white partition noise S22 = 2eRQV2T0(1−T0) (or white thermal
noise S22 = 2 × 4kBRQT ). Using < δϕ2 >=

∫ ∞
0

Sϕ(ω)dω/2π, one finds :

V −1
ϕ =

e

~

∫ ∞

0

I(ω)dω, (6.13)

with I(ω) =
ω−2

1 + [tan(ωτ/2)−1 + GQ/Cω]2
.

In the low frequency limit I(ω) ≈ [ω2 + (eV0/h)2]−1 which leads to

V0 = π2Vϕ. (6.14)

This is a result of importance which tells that in principle the ratio between V0 and
Vϕ should be universal. It means that without screening of the interaction, whatever be
the coupling and the quantum capacitance, the ratio between V0 and Vϕ should be π2.
This is not what we have observed in our experiment (we measure V0/Vϕ = π2/1.4).
Indeed, the approach that we have developed is very simple and we have to think now on
the simplifications which are abrupt. The experimental data show that Vϕ is larger than
expected which means that there is less dephasing. A natural way is to include something
in the model which reduces the bandwidth on which fluctuations play a role. This can
be easily done by inserting screening effects which are modelled by two capacitances C0

which mimic the capacitive coupling of the wires to the ground and will short cut the
high frequency fluctuations. Indeed, this screening can also be viewed as modelling the
interaction in the wire itself : the larger C0 is, the fewer interactions there are. The next
part of this chapter will be devoted to the calculation of the dephasing in presence of
screening.

6.6.3 Screening of fluctuations

V2(w)

U1(t)U2(t)Z Z

CCQ CQ

RQ/2 RQ/2C0 C0

Figure 6.28 – Schematic representation of the screening via the introduction of two capacitances which
couple the two edge states to the ground.
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We model the screening of the interaction by the introduction of two capacitances C0

which connect the two edge states to the ground. We have represented in figure 6.28 a
schematic representation of the problem. A detail calculation of the new expression of Vϕ

is given in Appendix C. We just give here the final result :

V −1
ϕ =

4e

~

∫ ∞

0

dω
sin2(ωτ/2)

| R(ω) |2 ω2

with :

| R(ω) |2= A2 +B2sin2(ωτ/2)+ABsin(ωτ)+2ACcotg(ωτ/2)+
C2

sin2(ωτ/2)
+2BCcos(ωτ)

and :

A = 2(1 + 2α)

B =
2γ−1

ωτ

C = ωτ × αγ(1 +
α

2
)

with α = C0/C and γ = C/CQ = C/(GQτ). Always in C, we have calculated the expression
of U1 as a function of V2 in the low frequency limit :

U1 =
V2

2 + γ−1 + α(2 + 2γ + αγ)

hence :

V0 =
h

eτ
(2 + γ−1 + α(2 + 2γ + αγ))

We finally obtain the following relation between V0 and Vϕ :

V0

Vϕ

=
4π

τ
(2 + γ−1 + α(2 + 2γ + αγ))

∫ ∞

0

dω
sin2(ωτ/2)

| R(ω) |2 ω2

This integral is not easy to calculate and we have evaluated it numerically. In the screening
case on has a fitting parameter which is α = C0/C. In figure 6.29, we have plotted the
ratio ∆(α, γ) between the theoretical ( V0

Vϕ
)theo and the experimental one ( V0

Vϕ
)exp = π2/1.4.

As one can see in figure 6.29, when C0 tends to 0, ( V0

Vϕ
)theo is ∼ 1.4 time larger than ( V0

Vϕ
)exp.

Note here the range on which we have calculated ∆(α, γ). It corresponds to the expected
values of C/CQ (C∼ Lǫ0ǫR ∼ 1fF for L=11µm and CQ∼ 5fF for vD = 5.104ms−1) while
the range of C0/C corresponds to the range on which one obtains an agreement between
experiment and theory. The yellow region corresponds to ∆(α, γ)=1 and the solid line to
C0 ∼ 0.5(CCQ)1/2. Taking into account screening, we finally obtain a theory in agreement
with the experiment.
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)exp =

π2/1.4. The yellow region corresponds to ∆(α, γ)=1 and the solid line to C0 ∼ 0.5(CCQ)1/2.

6.7 Conclusion

In this part, we have studied the impact of the inner edge state on the interferences.
We have proven that the inner edge state was responsible of the finite coherence length
and of its magnetic field dependence. More precisely, we have shown that the inner edge
state, via capacitive coupling, induced phase fluctuations of the interfering edge state. We
have demonstrated that these phase fluctuations were generated by the thermal noise of
the inner edge state.

To achieve that, we have extracted all the parameters of the problem : the capacitive
coupling and the bandwidth. Mimicing an experiment of a noisy environment coupled to an
interferometer, we were able to confirm that the Gaussian approximation applies. We have
determined the bandwidth for different magnetic field and have validated the Gaussian
approximation on the whole plateau. Assuming that the thermal noise of the inner edge
state was responsible of the finite coherence length, we finally obtained this very simple
relation 14 :

eVϕ = 4kBTϕ (6.15)

in perfect agreement with experimental data. Finally, in a last part, we have explained the
proportionality between the capacitive coupling V0 and Vϕ. In particularly, we have shown
that to obtain the good experimental ratio, it was necessary to insert screening effect.

The next step, now, would be to reproduce this experiment without the inner edge
state namely at ν = 1 : we would expect a longer coherence length. However the physics
of edge states at ν = 1 is different from ν = 2 which could lead to additional effects on the

14. See 6.3.3 for the notations.
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coherence length. A similar study at ν = 1 would enable to answer these questions.
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Noise Dephasing in Edge States of the Integer Quantum Hall Regime
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1 An electronic Mach-Zehnder interferometer is used in the integer quantum Hall regime at a filling

factor 2 to study the dephasing of the interferences. This is found to be induced by the electrical noise

existing in the edge states capacitively coupled to each other. Electrical shot noise created in one channel

leads to phase randomization in the other, which destroys the interference pattern. These findings are

extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying

mechanism responsible for the finite temperature coherence time  ’ðTÞ of the edge states at filling factor

2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian

noise, which is found to be in excellent agreement with our experimental results.

DOI: PACS numbers: 73.43.Fj, 03.65.Yz, 73.23.Ad

Although many experiments in quantum optics can be

reproduced with electron beams using the edge states of the

Integer Quantum Hall Effect (IQHE), there exist funda-

mental differences due to the Coulomb interaction. As an

example, the Mach-Zenhder type of interferometer in the

IQHE [1] has recently allowed us to observe quantum

interferences with the unprecedented 90% visibility [2],

opening a new field of promising quantum information

experiments. Indeed, the edge states of the IQHE provide

a way to obtain ‘‘ideal’’ unidimensional quantum wires.

However, very little is known about the decoherence pro-

cesses in these ‘‘ideal’’ wires. Only very recently has their

coherence length been quantitatively determined as well as

its temperature dependence established [3]. Here, we show

that the underlying mechanism responsible for the finite

coherence length is the thermal noise combined with the

poor screening in the IQHE regime [4].

In the IQHE, gapless excitations develop on the edge of

the sample and form one dimensional chiral wires (edge

states), the number of which is determined by the number

of electrons per quantum of flux (the filling factor #). In
these wires, the electrons drift along the edge in a beamlike

motion making experiments usually done with photons

possible with electrons. The choice of the filling factor at

which one obtains high visibility interferences requires a

compromise between a magnetic field high enough to form

well-defined edge states, and small enough to still deal

with a good Fermi liquid. Naı̈vely, one could think that the

highest visibility would have been observed at # ¼ 1, but it

is not actually the case [1]. This is most probably due to

decoherence induced by collective spin excitations

(Skyrmions [5]) making spin flip processes possible. In

practice, the highest visibility (90% [2]) has been obtained

at filling factor 2, when there are two spin polarized edge

states. Here, chirality and unidimensionality prevent first

order inelastic scattering in the wires themselves [6], while

tunneling from one edge to the other requires spin flip [7].

To show that the origin of the finite coherence length is

related to the coupling between two neighboring edge

states, we have proceeded as follow. First, we have made

a which-path experiment inducing on-purpose shot noise

on the inner edge state (IES) while measuring the outer

edge state (OIS) interferences. The visibility decrease is

shown to result from a Gaussian noise, in opposition to a

recent experiment [8]. Using the parameters extracted from

the which-path measurements, we are able to calculate the

dephasing resulting from thermal noise (instead of shot

noise). The result is in perfect agreement with our recent

measurements of the finite temperature coherence length

[9]. Moreover, the magnetic field dependence of the co-

herence length is shown to result from a variation of the

coupling between the two edges. Finally, we have devel-

oped a theory which gives a full scheme of the dephasing

mediated by the electronic noise.

The interferences are obtained using an electronic

Mach-Zehnder Interferometer (MZI) which was patterned

on a high mobility two dimensional electron gas at a

GaAs=Ga1#xAlxAs heterojunction (density nS ¼
2:0 $ 10

11
cm

#2 and mobility ) ¼ 2:5 $ 10
6
cm

2=Vs).

Measurements have been done in the quantumHall regime,

at filling factor 2 (with a magnetic field B ¼ 5:2 T). In the

edge states, the electrons have a chiral motion with a drift

velocity of the order of 104–105 ms#1. A SEM view of the

sample as well as a schematic representation of the two

edge states are shown in Fig. 1(a). The outer incoming edge

state is split by G1 in two paths (a) and (b), which are

recombined at G2 leading to interferences. SG is a side

gate used to change the area S defined by the two arms of

the interferometer. The current which is not transmitted

through the MZ, IR ¼ I0 # IT , is collected to the ground
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via the inner Ohmic contact. The differential transmission

T ¼ dIT=dI0 have been measured at low temperature

(!20 mK) by standard lock-in techniques with an ac volt-

age (V1 ! 1%VRMS at 619 Hz).

It is straightforward to show that T / ½1þV sinð’Þ',
V being the visibility and ’ the Aharonov-Bohm (AB)

flux through S [9]. In the present study, we tuned the

transmission T 1 and T 2 of the beam splitters G1 and

G2 to 1=2 in order to have a maximum visibility. The

interferences are revealed by varying ’. It can be done

either by applying a voltage VSG on the side gate, or by

applying a voltage V2 on the IES (playing here a role

similar to the side gate). In Fig. 2, we have plotted the

interference pattern obtained by the two methods. The

periodicity V0 of interferences with respect to V2 depends

on the coupling between the two edge states which will be

shown to be related to the time of flights through the MZI.

In4 Fig. 4, one can notice that V0 exhibits a large5 non-

monotonic variation with the magnetic field on the Hall

plateau at ) ¼ 2.

Any fluctuations on V2 blur the phase. For a Gaussian

distribution of the phase (we will discuss this notion later),

the visibility is proportional to e(h+’
2i=2 [10] where h+’2i

is the variance of the Gaussian distribution. It is simply

related to the noise power spectrum S22 of V2 through the

coupling constant and the (unknown) bandwidth ,):
h+’2i ¼ ð2,Þ2h+V2

2
i=V2

0
¼ ð2,Þ2S22,)=V

2
0
. If one gen-

erates partition noise on the IES tanks to the splitter G0,

the resulting excess noise ,S22 ¼ 2eRQT 0ð1(

T 0ÞV2fcoth½eV2=ð2kBTÞ' ( 2kBT=ðeV2Þg [11,12] leads to
a visibility decreasing exponentially with V2 when eV2 -
kBT:

V ¼V 0ðTÞe
(T 0ð1(T 0ÞðV2(2kBT=eÞ=V’ ; (1)

with V(1
’ ¼

4,2eRQ

V2
0

,); (2)

and RQ ¼ 1=GQ ¼ h=e2.

In Eq. (1), the unknown parameter is V’ which is related

to the bandwidth ,) [Eq. (2)]. This approach for the

dephasing is valid only if ,) is such that the fluctuations

lead to a Gaussian distribution of ’. It implies that many

electrons have to be involved in the dephasing during the

measuring time 1=,), namely, that maxð eV2; 2kBTÞ -
h,). This condition coincides with the fact that the noise

power spectrum S22 can be considered as frequency inde-

pendent. Note that the dephasing rate increases with V2

because the number of involved electrons increases, not

because the coupling between electrons increases with V2

(as claimed in [8]). Figure 3 shows that our data are in

remarkable agreement with Eq. (2). In Fig. 3(a), we have

plotted the visibility versus V2 when T 0 ¼ 1=2, for two
different magnetic fields. V decreases exponentially with

V2. The solid lines are fits to the data using an electronic

temperature of 25 mK (for a fridge temperature of 20 mK).
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FIG. 2 (color online). (a) Phase sweeping by varying the side

gate voltage VSG. (b) Phase sweeping by varying V2 with T 0 ¼
1 for two different magnetic fields. The periodicity V0 depends

on the magnetic field as shown in Fig. 4.
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FIG. 1 (color online). (a) Tilted SEM view of the device, with

schematic representation of the edge states. G1 and G2 are

Quantum Point Contact (QPC) which define the two beam

splitters of the Mach-Zehnder interferometer. They are set to

transmissionT 1 !T 2 ! 1=2 for the OES, while fully reflecting
the IES. The two arms (a) and (b) are L ¼ 11:3 %m long

defining an area S of 34 %m2. The small inner Ohmic contact

is connected to the ground via an Au metallic bridge. SG is a side

gate. G0 is an additional beam splitter which makes it possible to

bias the IES by V2, while the other is biased by V1. G0 is tuned

such that the OES is fully reflected, while the IES is transmitted

with a probability T 0. (b) Schematic representation of the edge

states coupled by a geometrical capacitance C. (c) Low fre-

quency equivalent circuit with V1 set to 0 V, CQ ¼ 6=RQ.
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V’ and V 0 are the fitting parameters. The values of V’
deduced from these measurements depend on the magnetic

field in the same way as V0. In fact, V’ is found to be

proportional to V0 (see Fig. 4). The slope of the exponential

decrease is modified by the transmission of the beam

splitter following a T 0ð1 ! T 0Þ law. Figure 3(b) shows

the visibility for different values of V2 and T 0 at a mag-

netic field of 4.6 Tesla. The solid lines are fits to the data

using Eq. (1) with V’ ¼ 7:2 #V and T ¼ 25 mK. Clearly,

at high bias, there is no V-shape contrary to what has been

recently observed in Ref. [8]. Instead, the curves show that

the Gaussian approximation is valid. Note that the agree-

ment with our theory is perfect when T 0 is well defined in

our sample. The dispersed data on the edges in Fig. 3(b)

coincide to a strong dependence of T 0 with the voltage

applied on G0, resulting on an energy dependent trans-

mission T 0 [8].

We now compare the exponential decrease of the visi-

bility in presence of shot noise with our recent observation

that the coherence length of edge states is inversely pro-

portional to the temperature [3]. When eV2 $ kBT, the
noise is dominated by the Johnson-Nyquist noise S22 ¼
4kBTRQ. One obtains

V ¼ V 0e
!T=T’ with T!1

’ ¼ 2 % 8-2kBRQ

V2
0

+.: (3)

Here, the factor 2 arises from the fact that the two arms of

the interferometer suffer from a coupling with a noisy IES,

instead of one when creating partitioning. From Eqs. (2)

and (3), one gets 7

eV ’ ¼ 4kBT’: (4)

Figure 4, which is our main result, shows that Eq. (4) is

in very good agreement with our data. This demonstrates

for the first time that thermal noise and coupling between

the two edge states are responsible for the finite coherence

length measured recently [3]. From the measurements of

V0 and V’, one can deduce using Eq. (2) that h+. varies

from &3 to &7 #eV when changing the magnetic field.

This value of h+. is & max½2kBT; eV2(, which validates

our approach of white and Gaussian noise [13].

Figure 4 also brings a valuable point for the understand-

ing of the underlying physics: the proportionality of V’ to

V0. It can be understood using a simple model where N2 ¼
eV22=h (2 ¼ L=vD, L stands for the interferometer arm

length and vD the drift velocity) electrons in the IES causes

a dephasing of 6’ ¼ N2’2 in the OES. Hence, V0 ¼
2-h=ðe’22Þ and a Gaussian distribution of N2 due to

partitioning with h6N2
2i ¼ N2T 0ð1 ! T 0Þ leads to h6’2i

2
¼

-’2T 0ð1 ! T 0Þ=V0 and, therefore, V0 ¼ -’2V’. Our

experiment shows that ’2 & -=
ffiffiffi

2
p

, independent of the

magnetic field. Indeed, this simple approach does not

account from the fact that the number of electrons is not

a good quantum number in an open system, nor does it

gives an independent estimation of ’2. Following the work

of Seelig and Buttiker [4], we will show that interactions

between the edge states, in a mean-field approximation

without screening, should lead to ’2 ¼ -.
Figure 1(b) represents the description adopted here: arm

(a), carrying a chargeQ1, is capacitively coupled through a

capacitance C to the IES, carrying a charge Q2. The effect
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FIG. 3 (color online). (a) Visibility decrease of the interfer-

ometer as a function of V2 at T 0 ¼ 1=2 for two different

magnetic fields 4.7 and 3.9 T. The solid lines are fit to the data

V ¼ V 0e
!2-2+S22+.=V

2
0 with an electronic temperature of

25 mK (for a base temperature of 20 mK) and T 0 ¼ 1=2. The
high bias fit of the exponential decrease V ¼
V 0 exp½!T 0ð1 ! T 0ÞV2=V’( allows us to determine V’ which

is found to depends on the magnetic field. (b) Visibility decrease

of the interferometer as a function of T 0 for V2 ¼ 0, 21, 31, 42,
53, and 63 #V from top to bottom. The solid lines are fits to the

data using Eq. (1) with V 0 ¼ 0:45, V’ ¼ 7:2 #V, and T ¼
25 mK.
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PHY S I CA L R EV I EW LE T T E R S

3 3



Voltage Probe 141

of the electrochemical potential V2 applied on the IES can

be viewed as modifying the potentialU1 felt by electrons in

the OES without changing the area S of the MZI [4,10,14].

Fluctuations of U1 result in fluctuations of the phase ’ ¼
R
$
0
eU1dt=@. Within this approach, one relates U1 to V2,

and the phase noise spectrum S’ to S22. The total charge on

the capacitance is the sum of an emitted charge and a

screening charge: Qjð!Þ ¼ ,ð!Þ½Vjð!Þ $Ujð!Þ%, with

,ð!Þ ¼ iGQð1$ ei!$Þ=!, xðtÞ ¼
R
xð!Þe$i!td!, and

j ¼ 1 or 2. Charge neutrality (Q1 ¼ $Q2) and Uð!Þ ¼
U2ð!Þ $U1ð!Þ ¼ Q2ð!Þ=C, lead to

G12 ¼
dI1ð!Þ

dV2ð!Þ
¼

$i!

C$1 þ 2,ð!Þ$1
:

Figure 1(c) shows the associated low frequency equivalent

circuit: the coupling capacitance C is in series with two

relaxation resistances RQ=2 and two quantum capacitances

CQ ¼ GQ$. In the zero frequency limit, one gets U1 ¼

V2=ðCQ=Cþ 2Þ, leading to

eV 0=h ¼ ð2$
$1 þGQ=CÞ: (5)

Note that since both C and $ are proportional to L, V0 is

proportional to L$1. The phase noise S’ð!Þ can then be

related to the potential noise SU1U1
ð!Þ by

S’ð!Þ ¼ 4
e2

@
2
SU1U1

ð!Þ
sin2ð!$=2Þ

!2
: (6)

Equation (6) shows that the total phase fluctuations are

given by potential fluctuations integrated over a ),' 1=$
bandwidth. Finally, the potential fluctuations are related to

the electrochemical fluctuations by

j!,1ð!Þj
2SU1U1

ð!Þ ¼ jG12ð!Þj
2S22ð!Þ: (7)

We now consider the case of white partition noise S22 ¼

2eRQV2T 0ð1$T 0Þ (or white thermal noise S22 ¼ 2)

4kBRQT). Using h9’
2i ¼

R
1
0
S’ð!Þd!=2:, one finds

V$1’ ¼
e

@

Z 1

0

Ið!Þd!;

with Ið!Þ ¼
!$2

1þ ½tanð!$=2Þ$1 þGQ=C!%
2
:

(8)

It is noteworthy that the dephasing rates described by V’
and T’ scale with L$1, as does V0. As a consequence, the

ratios T’=V0 and V’=V0 should not depend on the size of

the interferometer, as confirmed by our observations. In the

low frequency limit, Ið!Þ - ½!2 þ ðeV0=hÞ
2%$1 which

leads to

V0 ¼ :2V’: (9)

Numerically, we find that the equality (9) stands for all

values of C=CQ within the [0.03, 0.3] expected range [3].

Although our approach naturally explains why V’ / V0

and gives the correct order of magnitude, it overestimates

the dephasing by a factor of'1:4. This discrepency can be
eliminated by including the screening by the compressible

regions of the 2DEG, which tend to shortcircuit high

frequency fluctuations [15]. The variation of V0 across

the , ¼ 2 plateau with a fairly constant V0=V’ most

probably results from a variation of the effective trajectory

length with B, due to the disorder, as all the microscopic

parameters (namely, CQ, C and the capacitance to ground

C0) scales with the length. However, one cannot totally

exclude a more subtile variation of the microscopic struc-

ture of the edge states, leading to variations of the coupling

and of the screening while keeping V0=V’ constant.

Indeed, an independent measurement of $ would shed light
on this. Last, we would like to stress that, while all of our

observations are very well explained by Gaussian fluctua-

tions, in very similar systems with a similar inter edge

coupling, a different behavior has been reported in [8],

which was attributed to non-Gaussian noise. The reason for

such difference remains puzzling.

To conclude, we have shown that the coherence length

of the edge states at filling factor 2 is limited by the

Jonhson-Nyquist noise. Changing the magnetic field

makes it possible to modify the coupling between the

edge states and thus modifies the coherence length. Our

results are well described by a mean-field approach that

relates the phase randomization to the fluctuations of the

electrostatic potential in the interferometer arms.

The authors would like to thank Markus Buttiker for

fruitful discussions.
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The Voltage Probe
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7.1 Introduction

One of the major advances in the physics of quantum conductors was the scattering
approach which considers the elastic scattering of in-going states toward out-going states
in a ballistic conductor. It has led to numerous theoretical predictions, among which the
quantification of the conductance in a quantum point contact was one of the first to be
verified experimentally. A limitation of the so-called Landauer-Büttiker theory is that it
treats elastic scattering. In principle, it should not be possible to determine how deco-
herence affects the electronic charge transfered through a quantum conductor and all its
moments (current I, noise I2, third moment ...) within this theory. This has been cunningly
circumvented by adding an additional reservoir whose connection to the studied quantum
circuit mimics decoherence. More precisely, quasi-particles which have been probed by this
additional reservoir (the voltage probe) when going through the quantum conductor, loose
their phase or, possibly, are replaced by another particle.
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To demonstrate the voltage probe properties of the ohmic contact, we have realized
an electronic Mach-Zehnder interferometer [37] in which one of the arms is connected to
a small floating ohmic contact through a quantum point contact [49]. Our measurements
constitute the first quantitative demonstration of the dephasing properties of a voltage
probe in a quantum conductor [68]. 1

In practice, the reservoirs in the physics of quantum conductors are defined as some re-
gions of the conductor which absorb all incoming particles and emits particles with a Fermi
statistic at the local electrochemical potential. Indeed, for an homogeneous conductor, one
cannot tell exactly where are the reservoirs. They are simply put at the multiple extremi-
ties of the considered conductor exhibiting quantum properties on a size scale determined
by the energy exchange length of excitations. In our experiment, the actual position of the
reservoir is known : it is a small floating ohmic contact which connects a high mobility 2D
electron gas to the macroscopic world. Connecting one arm of the quantum interferometer
to our voltage probe through a QPC, we are able to tune the transmission probability
TP toward the voltage probe. As a result, the voltage probe reduces the visibility of the
quantum interferences with a factor

√
1 − TP : the probability amplitude that a particle is

not probed by the small floating ohmic contact.
In a first part, I will describe the probe experiment, and show that we were able to

study the amplitude and phase evolution of oscillations with TP . Then, we will study the
phase evolution introduced by a resonance near the QPC connecting one of the path to the
probe, and we will show how it can be modelled. Finally, we will realize noise measurements
to probe process of dephasing in the MZI at high bias, and will compare them to the case
when one arm of the interferometer is connected to the floating ohmic contact.

7.2 Ohmic contact detector

7.2.1 Experimental set up

We have represented in figure 7.1 the scheme of the voltage probe experiment that
we have done. The most important element is the voltage probe itself which is a small
ohmic contact (with a projected surface smaller than 1 µm2). The effect of our which path
detector is straightforward to understand. We call T1 and T2 the transmissions through
the beam splitters of the MZI and TP the transmission to the voltage probe. The electron
source injects an input current I0 which has a probability IT /I0 = T = t∗t to go through
the MZI. The transmission amplitude t through the MZI is then the sum of three complex
amplitudes corresponding to path (a), path (b) and the others which go through the small
floating ohmic contact :

t = −r1 exp(iφa)r2 + t1rP exp(iφb)t2 + t1TP

∑

j

rj exp(iφPj
)t2

1. This kind of voltage probe has been proposed in reference [77] but the experimental set-up was not
able to exhibit its dephasing properties, since the probe was not integrated in an interferometer.
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Figure 7.1 – The experimental setup : the MZI is designed in such a way that one arm (b) can be
connected to a small floating ohmic contact. QPCs G1 and G2 are the beam splitters which split and
recombine the particle trajectories. QPC GP allows to control the transmission probability TP toward the
voltage probe. G’1 and G’2 are additional QPCs which are either at pinch off in the which-path experiment
or, fully open to measure the transmission through GP as a function of the gate voltage VGP . The top
view is a colored tilted STM view of the sample. The lines represent the edge states.

φPj
being random phases accumulated in the voltage probe. This leads to a transmission

probability
T = T1T2 + R1R2 +

√
T1R2R1T2RP sin[φa − φb]

The first term of this expression corresponds to the classical term whereas the second one,
which is the quantum one, oscillates with the phase difference between the two arms. The
visibility of the interferences is :

ν = ν0 ×
√

RP (7.1)

As expected, only the part of the wave function which does not go through the small ohmic
contact contributes to the interferences. Since the mean current is not affected because the
ohmic contact re-injectes all the charges that it has absorbed, the resulting visibility is
given by equation (7.1). Considering the ”which path” approach, the formula 7.1 tells us
that electrons transmitted into the voltage probe do not interfere anymore since it would
be possible ”in principle” to lift the ambiguity of the particle’s trajectory.

7.2.2 A specific design

In this experiment, we have to consider(see figure 7.1) 5 QPCs, G1, G2, G’1,G’2 and
GP. G1 and G2 are the two beam splitters of the MZI itself, with transmissions tuned to 1/2
to obtain a maximum visibility of the interferences [70]. GP(Gate Probe), which is located
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along the trajectory (b), has two functions. In the pinch-off regime, it is used to change
the length of (b) in order to reveal the interference pattern. GP also serves to connect (b)
to a small floating ohmic contact (the voltage probe). G’1 and G’2 are additional QPCs
necessary to establish the variation of the transmission trough GP (TP ) as a function of
its voltage VGP . One of the two edge states (the inner one, not represented in figure 7.1)
is fully reflected by G1 and G2. Thus, it does not contribute to the interferences. Here
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RP as a function of VGP , the voltage bias applied on
GP.(b) Normalized visibility ν/ν0 (ν0 is inferred for TP = 0) as a function of the measured transmission
through the lateral gate GP. The black solid line is the

√
RP law predicted by the theory.

dephasing occurs via inelastic relaxation : the voltage probe changes the quasi particle
phase and/or replace the quasi particle itself by another one. To perform a quantitative
voltage probe detection, we have determined the transmission TP as a function of VGP .
This is achieved by measuring TP = dIP /dI0 with T1 = 1 and T ′2 = 1. The result is shown
in the figure 7.2(a). Then we closed G’1 and G’2 such that IP = 0. To observe the

√
1 − TP

dependence of the visibility, we need to extract the visibility of oscillations independently
from the Gate voltage applied on GP. For each value of the Gate Voltage VGP , we have
swept the magnetic flux across the surface defined by the interferometer. The normalized
visibility as a function of RP = 1−TP is plotted in figure 7.2. The visibility is proportional
to

√
1 − TP . This experiment consists in the first complete quantitative realization of the

voltage probe. 2

7.2.3 Phase evolution

We can study the phase evolution of oscillations with the gate voltage VGP . A way to
characterize the phase evolution of oscillations is to do a color plot of the conductance
versus magnetic field ( X axis) and gate voltage VGP ( Y axis).

Figure 7.3(a) is a color plot that shows the experimental conductance of the MZI
showing Aharonov Bohm oscillations. Figure 7.3(b) represents the theoretical conductance

2. The measurement of TP is realized with G′

1 and G′

2 opened (∼ -0.15V), whereas the visibility depen-
dence with TP is done with G′

1 and G′

2 closed (∼ -0.3V) which generate a small offset in the gate voltages
(cross talk between gates ∼ 5mV).
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Figure 7.3 – Upper graph : reference of the period versus the gate voltage. We find a period of 1.15mV.
Down graph : (a) Experimental data : color plot of the MZI transmission versus the gate voltage of GP
(Y-axis).(b) Theoretical data : color plot of the MZI transmission versus the gate voltage of GP (Y-axis).
The period versus the gate voltage (magnetic field) is 1.15mV (3.5mT). The visibility is proportional to√

1 − TP .

using the Landauer Buttiker approach, taking into account the phase evolution due both
to the magnetic field and gate voltage. The visibility is set proportional to

√
1 − TP . We

obtain for the theoretical visibility :

I∼ = ν0 ×
√

RP × cos(−2πV

V0

+
2πB

B0

). (7.2)

with V0 = 1.15mV (resp B0 = 3.5mT ) the necessary gate voltage(magnetic field) to
observe a 2π shift of the phase.

The perfect agreement between experimental data and theory confirms that in a voltage
probe set up, we can both follow transmission and phase evolution.

7.3 Study of a resonance

Figure 7.2 also gives insight in process of phase shift close to a QPC. The MZI is sensitive
to phase shift occurring in each arm of the interferometer, induced by a localized state for
example. The detailed study of the phase evolution of the Aharonov Bohm oscillations
when we open the probe gate will enable us to study and model a resonance located close
to the probe gate.
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7.3.1 Effect of a resonance on the phase

In figure 7.4, we have zoomed the color plot of the figure 7.3 for VGP in the interval
[-0.14V ,-0.13V ] and [-0.12V ,-0.11V ]. In the interval [-0.14V ,-0.13V ], we obtain a linear
evolution of the phase with VGP as expected. However in the interval [-0.12V ,-0.11V ] one
notices a non linear behavior of the phase with VGP . This behavior is the consequence of
the additional phase introduced by a resonance (see also figure 7.2(a)). The resonance close
to the QPC can be understood as a coherent mechanism that modifies the trajectory of
electrons (and thus the Aharonov Bohm phase).
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Figure 7.4 – Color plot of the MZI transmission versus the gate voltage of GP (Y-axis)(a) Zoom of
the phase evolution for VGP = −0.14V to −0.13V . Phase evolution is linear with the voltage (b) Zoom
of the phase evolution for VGP = −0.12V to −0.11V . The non linear phase evolution is the mark of the
resonance (see the upper graph) that introduces an additional phase.

7.3.2 Modelling the resonance

y

y

y yout
3,in

1,out

1,in

j

y
2,out

y
2,in

y
in y

3,out

Figure 7.5 – Schematic representation of the resonance

We are going to model this small closed trajectory considering two counter propagating
edge states as represented in figure 7.5. We can divide this model in three parts. The first
one by the probability for the incoming edge state to be transmitted or reflected towards



148 Voltage Probe

y

y

y

y

out

3,in

1,out

1,in

y
2,out

y
2,in

y
in

y
3,out

S

S

a)

b)

1

2

Figure 7.6 – Modelling the resonance in terms of scattering matrix

the resonance, modelled by the scattering matrix S1 (figure 7.6(a)). We can express this
scattering matrix in terms of reflection and transmission amplitudes :

S1 =

(
ψout

ψ1,in

)
=

(
t1 r1

−r1 t1

)(
ψ1,out

ψin

)

A second composed of the localized state itself. When an electron makes the entire loop in
the localized state, it accumulates the phase ϕ. A third part is composed of a scattering
matrix S2 (figure 7.6(b)) that models the probability for the electron to be transmitted
towards the counter propagating edge state. This scattering matrix is given by :

S2 =

(
ψ2,in

ψ3,out

)
=

(
t2 r2

−r2 t2

)(
ψ3,in

ψ2,out

)

We consider here that ψ3,in = 0 We deduce from the scattering matrix the following
expressions :

ψout = r1ψin + t1ψ1,out = r1ψin + eiϕr2t1ψ1,in

We want to express ψout as a function of ψin since we measure | ψout |2 :

ψout = (r1 +
(1 − r2

1)r2e
iϕ

1 + r1r2eiϕ
)ψin

which finally gives for the reflection and the phase measured after this resonance :

RP =

√
((r2 − r2

1r2) sin(ϕ))2 + (r2 cos(ϕ) + r2
1r2 cos(ϕ) + r1(1 + r2

2))
2

1 + r2
1r

2
2 + 2r2r1 cos(ϕ)

Phase = Arctan(
(r2 − r2

1r2) sin(ϕ)

r2 cos(ϕ) + r2
1r2 cos(ϕ) + r1(1 + r2

2)
)
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We can now compare these expressions of the phase and the transmission to our experi-
mental data. We choose r1=0.18 and r2=0.16. We express ϕ as a function of VGP :

ϕ =
VGP + 0.112

∆

where ∆=1/220.
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Figure 7.7 – (a)Black dots : transmission measured around the resonance. To obtain a symmetrical
function we have subtracted from the experimental transmission the theoretical transmission. Red solid
line : transmission obtained with the model of two counter propagating edge states coupled to a resonance
(b)Black dots : extra phase measured due to the resonance. Red solid line : phase obtained with the model
of two counter propagating edge states coupled to a resonance

We have represented, in black dots, in figure 7.7(a) the extra phase due to the re-
sonance and 7.7(b) the transmission around the resonance, obtained experimentally. We
have represented, in red solid line, in figure 7.7(a) the extra phase due to the resonance and
7.7(b) the transmission around the resonance, obtained with the theoretical model. The
excellent agreement with our data suggests that this model is appropriated to understand
the resonances of a QPC.

7.4 Decoherence and Phase averaging

We wish to stress that, as electrons entering the probe play no role in the interfe-
rence revealed by the Aharonov-Bohm oscillations of the transmitted current, conductance
measurements bring no information on the exact process at work within the probe. Do
electrons reach thermal equilibrium in the probe, being re-emitted at a chemical potential
that readjusts to ensure charge conservation ? Are they simply re-emitted with a random
phase ? As shot noise probes the uncertainty in electron occupation in the outgoing current,
noise measurement can help elucidating this point. In a a recent paper [49], Marquardt
and al. have calculated shot noise in an electronic Mach Zenhder connected to a dephasing
terminal, and have considered both elastic phase randomization and full energy relaxation,
which one expects in our experimental set-up. In this part, we describe noise measurements
with an opened gate probe first, then with a closed gate probe.
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7.4.1 Decoherence in the MZ : the voltage probe approach

At that point, the small ohmic contact shows results in perfect agreement with what
one can expect with a voltage probe (redistribution of the energies) or dephasing probe (the
energy is kept but there is a random phase). We shall see now that one can perform different
experiments to characterize the ohmic contact properties. We will start with voltage probe
experiments at different temperatures. This will allow to check if the disappearance of
interferences is due to a thermal smearing resulting from an effective increase of the lower
trajectory length or really to dephasing and/or energy redistribution in the ohmic contact.
Secondly, noise measurements will give insight into decoherence process in the MZI, in
particular regarding the question of inelastic relaxation at finite DC bias. To answer to the
first point, we have represented in figure (7.8)(a) the visibility as a function of temperature
for two values of the lateral gate TP =1 and 1/2. For TP =1 we find a linear dependence
of ln(ν) versus temperature as already studied in [70]. We have drawn in red solid line
the expected result given by the same T−1 exponential decrease, for a lateral gate TP

tuned to 0.5. The fact that (once renormalized by the visibility at 20mK) both curves
have exactly the same dependence shows that the connection to voltage probe does not
introduce thermal smearing of the AB oscillations.
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Figure 7.8 – (a) ln(ν) as a function of the temperature for different values of the transmission of
the lateral gate. The visibility in the case of a closed lateral gate(TP =1) is shown by the black stars.
In red dots the visibility obtained for TP =1/2. The red solid line is obtained with a simple Landeauer
Buttiker approach in the case of a perfect inner ohmic floating contact. (b) the black star and the red
circle show respectively the visibility/max.visibility for TP =1 and TP =1/2. As expected, one obtains
visibility/max.visibility=1 for TP =1 and ∼0.71 for TP =0.5.

Regarding the second point, the beginning of a preliminary answer is given in [37]. In
their letter, Ji et al. have measured shot noise as a function of T2 at 30µV DC voltage for
T1=1/2, under which the AB interference pattern was quenched. They found

S ∼ 1/4 − κ2T2(1 − T2)/2

with κ=0.9. 3

3. Doing this measurement, they were able to exclude complete decoherence to explain the nul visibility
at 30µV .
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In a a recent paper [49], Marquardt et al. have calculated shot noise in an electronic
Mach Zenhder connected to a dephasing terminal, and have treated the cases of dephasing
and inelastic relaxation. The general expression of the coherent transmission in an electronic
MZI connected to a dephasing terminal (see figure 7.9) is :

〈TMZI,1〉 = T1T2 + R1R2 + 2z(t⋆1r1)(t
⋆
2r2)cos(ϕ)

where z parametrizes decoherence of the system (z=1 the transport is fully coherent, z=0

G1

3

G2

Figure 7.9 – At beam splitters 1 and 2 the electrons are transmitted with amplitudes T1,2. The fictitious
ϕ reservoir serves as a dephasing terminal. The coherence parameter z denotes the amplitude for an electron
to be reflected at the beam-splitter connecting the left arm of the interferometer to the reservoir ϕ (thus
z = 1 for fully coherent transport).

the transport is fully decoherent, see also figure 7.9). We consider here the cases of pure
dephasing (averaging on the phase) and inelastic relaxation. Regarding pure dephasing,
the theoretical noise measured in auto-correlation on the contact 3 (in figure 7.9) :

S33 = 2eV
h

e2
(〈TMZI,1〉〈TMZI,2〉 − 2(1 − z2)RARBTATB) (7.3)

with 〈TMZI,2〉 = 1 − 〈TMZI,1〉. For the inelastic relaxation case, it does matter whether
relaxation is ascribed fully to one arm or to both arms. Marquardt et al. consider then two
reservoirs L, R with associated amplitudes zL, zR. As the current only depends on zRzL=z,
we write zL= zλ and zR= z1−λ, where the parameter λ quantifies the asymmetry (λ=1,0
for relaxation in the left/right arm and λ=1/2 for the symmetric case). The shot noise
becomes :

S33 = 2eV
h

e2
(〈TMZI,1〉〈TMZI,2〉 − 2R1R2T2(1 + (1 − 2T1)z

2 − R1(z
2(1−λ) + z2λ))) (7.4)

for RA<TA. In the fully asymmetric case (λ = 0, 1), Marquardt et al. recover the formula
7.3 obtained for pure dephasing.

We have measured the shot noise as a function of T2 at 58µV DC voltage when the
lateral gate was closed(opened) TP =1(TP =0). When the gate is closed with a 58 µV DC
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Figure 7.10 – (a) Mean value of the output current. Since the Mean value is equal to 0.55 when T2=1,
transmission of the first gate T1∼ 0.55 . (b)Shot Noise measurement(at filling factor 2) as a function of T2

when T1=1/2 and the lateral gate closed. A 58 µV DC voltage is applied for the shot noise measurement
(at this voltage, Aharonov-Bohm oscillations are quenched). The excess noise measured at 58 µV is shown
in black circles. We have represented in black line the shot noise predicted by Marquardt et al.[49], in the
case of zero visibility due to pure dephasing. In grey solid line is represented the inelastic relaxation case.
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Figure 7.11 – (a)Mean value of the output current. Since the Mean value is equal to 0.5 when T2=1,
transmission of the first gate T1∼ 0.5 . (b)Shot Noise measurement(at filling factor 2) as a function of TG2

when TG1=1/2 and the lateral gate opened. A 58 µV DC voltage is applied for the shot noise measurement.
The excess noise measured at 58 µV is shown in red circles. In red solid line, inelastic relaxation approach
considering that there is no inelastic relaxation in the upper path. The dark red solid line corresponds to
complete inelastic relaxation occurring in both path.

voltage, the visibility is null, thus z∼ 0. The formula of pure dephasing 7.3 becomes :

S33 = 2eV
h

e2
(〈TMZI,1〉〈TMZI,2〉 − 2R1R2T1T2) (7.5)

The study of the MZI’s transmission at 58 µV , show that the transmissions of the first
gate T1∼ 0.5. In figure 7.10 we have plotted in black circles the excess noise at 58µV
DC voltage. The black solid line corresponds to formula 7.5 and the grey solid line to
formula 7.4, in the symmetric case. The good agreement with the formula 7.5 confirms
the presence of dephasing in the electronic MZI but not pure relaxation. We reproduced a
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similar measurement, but for the lateral gate opened (TP =0). We are now in the case of an
inelastic relaxation in the down arm. In this case we must recover formula 7.5. In figure 7.11
we have plotted in red circles the excess noise at 58µV . The red solid line corresponds to
formula 7.5 and the dark red solid line to formula 7.4 in the symmetric case. Experimental
data are in good agreement with formula 7.5. The small discrepancy could be attributed
to a light energy relaxation occurring in the upper path, but in view of the dispersion
of the points, we can hardly conclude. This result brings valuable information about the
physics underlying the finite bias visibility of the MZI, which is still not yet understood.
We could focus on this light energy relaxation occurring in the upper path at 58µV . We
could ask whether this relaxation is due to inter edge states interaction or intra edge state
interaction. We do not have answer yet.

7.5 Conclusion

In this part, we have shown that a small floating ohmic contact can be used as a voltage
probe which will destroy quantum interferences. The coupling between the ohmic contact
and the MZI was controlled with a QPC. The decoherence in the MZI was tuned with
this QPC. This is here, the first quantitative experimental realization of the theoretically
widely used voltage probe. Then, we have shown that the voltage probe set up enables us to
follow both the transmission and phase evolution while opening the lateral gate. We have
thus studied a resonance located close to the QPC. A precise study of the phase evolution
near the resonance revealed phase shift that can be very well understood modelling it by
two counter propagating edge states coupled to a localized state. Finally, we have realized
noise measurements to probe the energy relaxation in the floating ohmic contact. We have
verified that an inelastic relaxation approach inside the ohmic contact was the good one.

This work opens new possibilities regarding the study of the voltage and dephasing
probe. The most promising one being the full counting statistic of it, as recently proposed
[32][33].
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One of the major advances in the understanding of the physics of quantum conductors has been the
scattering approach which considers the elastic scattering of in-going states towards out-going states
in a ballistic conductor. It has led to numerous predictions confirmed experimentally, including,
for example, the quantification of the conductance in a quantum point contact. Recently, it has
been used successfully to predict the behavior of the electronic Mach-Zehnder interferometer[1],
and the existence of two-electrons interferences that reveal the indistinghisibility of electrons[2]. A
limitation of this so-called Landauer-Büttiker theory is that it only treats elastic scattering. As a
consequence, it cannot be applied directly to the description of the consequences of decoherence
or energy relaxation in electronic transport. This limitation has been cunningly circumvented by
theoreticians by adding an additional reservoir the connection of which to the studied quantum
circuit mimics decoherence[3]. Here we show the first quantitative realization of a voltage probe
with a small ohmic contact by tuning the decoherence in a quantum interferometer.

PACS numbers: 85.35.Ds, 73.43.Fj

The effect of a voltage probe can be explained in
the following manier. Quasi-particles which have been
probed by this additional reservoir (the voltage probe)
when going through the quantum conductor, loose their
phase so that nothing differentiates them from the elec-
trons of the ohmic contact. This theoretical construc-
tion is intimately linked with which-path experiments,
in that when an electron is absorbed by the additional
reservoir, the ambiguity of the particle’s trajectory can in
principle be lifted, suppressing interference effects. En-
ergy relaxation, too, can be described within the same
framework by supposing that the electrons re-injected by
the voltage probe into the interferometer are at thermal
equilibrium. This approach has been used to predict the
two first moments of the Full Counting Statistics of the
charge transmitted through an electronic Mach-Zehnder
interferometer in the presence of decoherence or energy
relaxation [4, 5]. In practice, a reservoir in the physics
of quantum conductors is defined as some region of the
conductor which absorbs all incoming particles and emits
”new” particles with a Fermi statistics at the local elec-
trochimical potential. Indeed, in the case of a sample
larger than the electronic coherence length, one cannot
tell exactly where are the reservoirs. They are simply put
at the multiple extremities of the considered conductor
exhibiting quantum properties on a size scale determined
by the coherence length of excitations, or their energy
redistribution length. For a two-dimensional electrons
gas (2-DEG) in the Quantum Hall Regime, the chirality
of electrical transport, occurring along one-dimensional
chiral edge modes strongly suppresses electron-electron
interactions. This allowed the observation of Aharanov-

Bohm oscillations with unmatched visibilities, reaching
95% [2]. It makes it possible to specify the actual posi-
tion of the reservoirs: the various ohmic contacts which
connect the 2-DEG to the macrosopic world.

We present here an experiment where a voltage probe
introduces a controlled energy redistribution in a two
path electronic interferometer. To this end, we have re-
alized an electronic Mach-Zehnder interferometer oper-
ating in the Quantum Hall Regime [1], one of the arms
of which is connected to a small floating ohmic contact
through a quantum point contact [5]. Our measurements
constitute the first quantitative demonstration of a volt-
age probe in a quantum conductor. Floating ohmic con-
tacts have already been used to enforce energy relaxation
of noisy currents [6, 7] but without presenting an ex-
perimental set-up permitting the exploration of their de-
phasing properties. More specifically, the Quantum Point
Contact (QPC), allows us to tune the transmission prob-
ability TP towards the voltage probe. As a result, the
visibility of the quantum interferences is reduced by a
factor

√
1 − TP , which represents the probability ampli-

tude for a particle not to be probed by the small floating
ohmic contact.

A SEM view of our MZI is represented in figure (1).
Starting from a high mobility two dimensional electron
gas in a GaAs/GaAlAs heterostructure with a sheet
density of nS = 2 × 1011 cm−2 and a mobility of
2.5×106 cm2/Vs, we patterned the geometry of the mesa,
thus the trajectory of the edge states, by e-beam lithog-
raphy. The length of arms (a) and (b) is designed to be
both equal to 5.7 µm yielding to an enclosed of 7.25 µm2.
In our MZI (see figure (1)), there are 5 QPCs, G1, G2,
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FIG. 1: The experimental setup : an electronic Mach-Zehnder
interferometer is designed by electron beam lithography on a
high mobility 2D electron gas in GaAs/GaAlAs heterostruc-
ture. One arm (b) can be connected to a small floating ohmic
contact which plays the role of a voltage probe. QPCs G1 and
G2 are the beam splitters which split and recombine the par-
ticle trajectories. QPC GP allows to control the transmission
probability TP toward the voltage probe. G’1 and G’2 are
additional QPCs which are either at pinch off in the which-
path experiment or, fully open to measure the transmission
through GP as a function of the gate voltage VGP . The top
view is a colored tilted STM view of the sample. The lines
represent the edge states.

G’1,G’2 and GP. G1 and G2 are the two beam splitters of
the MZI itself, with transmissions tuned to 1/2 to obtain
a maximum visibility of the interferences [8]. GP, which
is close to the trajectory (b), has two functions. In the
pinch-off regime, it is used to change the length of (b) in
order to reveal the interference pattern. GP also serves
to connect (b) to the bottom small ohmic contact (the
voltage probe). G’1 and G’2 are additional QPCs: we
first open them completely to measure a reference of the
transmission trough GP (TP ) as a function of its voltage
VGP . Once this reference done, we permanently close
them. The transmission probability through the MZI is
measured by a standard lock-in technique with an AC
excitation VAC= 1.2 µV smaller than kBT/e, ensuring
that the coherence length of the source is determined by
the experimental temperature. We worked at a filling
factor 2 with a magnetic field of 4.6 tesla and one of the
two edge states (the inner one, not represented on figure
1) is fully reflected by G1 and G2.

The interference pattern is revealed either by varying
the magnetic field or VGP . Hence, GP both connects the
trajectory (b) to the voltage probe and sweep the phase
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FIG. 2: Color plot of the differential transmission T as a func-
tion of the voltage probe gate voltage VGP and the magnetic
field. The color plot is set such that all the transmissions
lower than the mean transmission are in black. In practice
the visibility is measured by varying the magnetic field.

trough the MZI. In figure 2, a color plot of the differential
transmission as a function of the magnetic field and VGP

is displayed. As one can remark, the amplitude of the
oscillation decreases as VGP increases, hence when the
trajectories are more connected to the voltage probe.

This observed visibility decrease is straightforward to
understand. We call T1 and T2 the transmissions through
the beam splitters of the MZI and TP the transmission to
the voltage probe. The electron source injects an input
current I0 which has a probability IT /I0 = T = t∗t to
exit the MZI through the ohmic contact located on the
right side of figure 1. As we treat a quantum circuit, T
is not the sum of the transmission probability of the dif-
ferent trajectories R1R2 + T1T2 (path (a)+path(b)), but
the squared sum of the transmission probabilities ampli-
tudes. The transmission amplitude t through the MZI is
then the sum of three complex amplitudes corresponding
to path (a), path (b) and the others which go through
the small floating ohmic contact:

t = −r1e
iφar2 + t1rP eiφbt2 + t1TP

∑

j

rjeiφPj t2 (1)

φPj
being random phases accumulated in the voltage

probe, and ri and ti respectively stand for the reflec-
tion and transmission coefficient of electronic wavefunc-
tions by QPC i. This leads to a transmission probability
T = T1T2 + R1R2 +

√
T1R2R1T2RP cos[φa − φb], where

Ri = |ri|2, and Ti = |ti|2 = 1−Ri. The first term of this
expression corresponds to the classical term whereas the
second one, which reveals the wave nature of electrons,
oscillates with the phase difference between the two arms.
In the Quantum Hall Regime, this phase can be shown
to be equal to the Aharonov-Bohm phase corresponding
to the magnetic flux threaded through the area delimited
by the two interfering trajectories. It can thus be varied
either by changing the length of the arm (b) or by sweep-
ing the magnetic flux across the surface defined by the
interferometer [8]. The visibility of interferences defined
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FIG. 3: Normalized visibility V/V0 (V0 is inferred for TP = 0).
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√
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a function of VGP . b) V/V0 (black circles) as a function of the
measured RP . The solid line is the

√
RP law predicted by the

theory.

as V = (TMAX − TMIN )/(TMAX + TMIN ) is:

V = V0 ×
√

RP (2)

where TMAX and TMIN are the maximum and minimum
transmission respectively. This means that, as expected,
only the part of the wave function which does not go
through the small ohmic contact contributes to the in-
terferences. Equation 2 is thus a consequence of the con-
sequence of the floating contact not affecting the mean
current: all the charges that have been absorbed into it
are re-injected into the circuit, so that the sum of the
measured transmitted current IT and of the current ab-
sorbed by the upper small ohmic current IR is conserved.

In previous which path experiments using quan-
tum conductors, the dephasing occured by coupling
the electrons to a noisy electromagnetic environment
[6][9][10][11]. In our set-up, electrons re-emitted into the
interferometer cannot be distinguished from the other
electrons of the probe. They bear a phase, reflecting
their interactions with the various degrees of freedom of
the floating contact, uncorrelated with the phase of the
incidents electrons. Hence, they do not contribute to the
quantum interferences resulting in the Aharonov-Bohm
term of the transmitted current. To perform a quanti-
tative analysis of the voltage probe detection, we deter-
mined the transmission TP as a function of VGP . This is
achieved by measuring TP = dIP /dI0 with T1 = 1 and
T ′

2
= 1. The result is shown in the inset of figure 3. Then

we closed G’1 and G’2 such that IP = 0. The normalized
visibility as a function of RP = 1−TP is plotted in figure
(2b). This is our main result, which shows a decrease of
the visibility as the square root of the reflection proba-
bility, in perfect agreement with theory. It is noteworthy

that despite the small size of the ohmic contact (less than
1µ m2), it shows no sign of Coulomb Blockade that would
prevent electrons from entering it and protect quantum
interferences. This is because it is connected through a
metallic air bridge to a much bigger bonding pad which
strongly increases its capacitance and suppresses and re-
duces its charging energy to a negligible level.

The phase variation δφ of the interferences related
to the magnetic field variation δB and δVGP by φ =
2π(δB.S +dS/dVGP .δVGP )/φ0, where φ0 is the quantum
of flux h/e leads to tilted black regions given by δB.S ∝
dS/dVGP .δVGP in figure 2. On the resonance which ap-
pears in the measurement of RP for VGP ∼ −0.115 V,
the separation between the tilted region is no longer reg-
ular, indicating that crossing the resonance a additional
phase shift appears in the interferences [12]. A row de-
termination leads to a ∼ π shift at the resonance, al-
though our phase measurement is not precise enough to
determine the exact shape of the phase variation. The
absence of such phase shift in the first resonance near
VGP ∼ −0.145 V explains the small discrepancy with the√

RP law observed: when measuring RP , all the closed
trajectories at a distance lower than the coherence length
[13, 14] from GP possibly lead to resonances. Here, we
are in the case where the closed trajectory leading to the
resonance is outside the MZI when G’1 and G’2 are at
pinch off. Hence the value of the measured RP is not
the one we should take into account for the visibility de-
crease.

To summarize, we have shown that a small floating
ohmic contact can be used as a voltage probe that can
be used to destroy quantum interferences. To do so, we
have used a QPC to coherently control the amplitude
probability for an electron to be absorbed by the voltage
probe. Then, via interference measurements, we have
proved that electrons absorbed and re-emitted by the
probe acquire a random phase and don’t contribute to
the interference process. This work opens new possibil-
ities regarding the study of the voltage and dephasing
probe. The most promising one being the full counting
statistic of it, as recently proposed [15–17].

[1] Y. Ji et al., Nature 422, 415 (2003).
[2] I. Neder et al., Nature 448, 333 (2007).
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Chapitre 8

Conclusion

In this PhD thesis, we have shown that the MZI proved to be a test bed to understand
decoherence process in the quantum Hall regime. Studying the visibility of interferences as
function of the bias voltage and the temperature, we have noticed two different behaviors :
a lobe structure for the visibility as a function of the bias, and an exponential dependence
for the visibility as a function of the temperature. This PhD thesis has brought new insights
into these behaviors.

In the first part, I have described the electronic MZI and the experimental set up of
the experiment. I have compared the different ways to reveal interferences and have shown
that they were equivalent. Finally, I have shown that we have developed an original way
to extract the visibility of interferences on a noisy sample.

The second part is devoted to the dependence of the visibility as a function of the bias.
When two edge states are fed with the same bias, the visibility presents a monotonous
decay. We have explained this monotonous dependence considering the coupling between
edge states. When the inner edge state is reflected by the beam splitter G0 we have ob-
served single side lobe and multi side lobes at the beginning of the plateau (ν = 2). We
have shown that the single side lobe could be understood supposing a Gaussian phase
averaging. Moreover, diluting the impinging current increased the lobe width what may be
the sign of energy redistribution in the interfering edge state. We have then considered the
enhancement of the visibility for small bias voltages for certain values of G1. Taking into
account the coupling between edge states, we have clarified this behavior of the visibility.
There remains, nevertheless, a difference whether we consider two coupled edge states each
emitted by two different sources or if we consider two edge states emitted from the same
source : we do not have explanation for this result. Finally we have described another ex-
periment where the interfering edge state is composed of a two step distribution in energy :
the lobe structure is all the more affected than this two step distribution is spaced.

In a third part, we have determined for the first time the coherence length in the
quantum Hall regime at ν = 2. To do this, we have measured the decrease of the visibility
as a function of the temperature, and have found an exponential decrease. We have done
this measurement on three samples of different sizes scaling by a factor ∼

√
2. We have

definitively excluded any spurious effect like thermal smearing, to finally determine the
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coherence length lϕ at ν = 2. We have found lϕ to be equal to 20µm at 20mK. Moreover
we have shown a magnetic field dependence of this coherence length whose origin is treated
in the fourth part.

The fourth part deals with the origin of the coherence length. We have then considered
the environment of the interfering edge state, and more precisely have focused on the
adjacent edge state coupled to the interfering one. We have shown, and that is one of the
main result of my PhD thesis, that the finite coherence length results from this coupling
with the inner edge state. In particular the inner edge state generates thermal noise, and
these fluctuations induce decoherence. To demonstrate this, we have characterized this
coupling on the whole plateau at ν = 2, have extracted the bandwidth mimicing a noisy
environment with a partitioned inner edge state and have confirmed that the Gaussian
approximation applied. We have finally shown that both the origin of the coherence length
and its magnetic field dependence were related to the coupling with the inner edge state.

In a last part, we have shown that a small floating ohmic contact can be used as a voltage
probe which will destroy quantum interferences. To do so, we have used a QPC to control
the amplitude probability for an electron to be absorbed by the voltage probe. Then, via
interference measurements, we have proved that electrons absorbed and re-emitted by the
probe acquire a random phase and don’t contribute to the interference process. We have
shown that the MZI configuration enables us to follow the phase shift in one of the arm of
the interferometer. More precisely, we have followed the phase shift induced by a localized
state close to the QPC and have modelled it by scattering matrix. We have realized noise
measurements to probe process of dephasing in the MZI at high bias, and have compared
them to the case when one arm of the interferometer is connected to the floating ohmic
contact. We have verified that an inelastic approach inside the ohmic contact was the good
one. This work opens new possibilities regarding the study of the voltage and dephasing
probe.

The goal of this thesis was the observation of the Bell’s inequalities violation in a
mesoscopic conductor. Considering our visibility at finite bias, we did not have the noise
sensitivity to observe neither the two-particle Aharonov Bohm effect nor the Bell’s inequa-
lities violation. The observation of the Bell’s inequalities would require a higher visibility
at finite bias. However, we have now a good understanding of the different process of de-
coherence at ν = 2 : this study has revealed the important role of the inner edge state.
Regarding the noise sensitivity, we have begun to develop cryogenic low noise amplifiers
that would reach the necessary noise sensitivity to observe first the two Aharonov Bohm
effect and in the future the Bell’s inequalities violation. We have encountered many tech-
nical problems during this development. An important step in the development of this
experiment will be to improve these cryogenic low noise amplifiers.



Chapitre 9

Résumé/Abstract

9.1 Résumé

Ce travail est consacré à l’étude des processus de décohérence dans le régime Hall
quantique entier. Ce régime est obtenu en appliquant un fort champ magnétique perpen-
diculaire à un système bidimensionnel d’électrons crée à l’interface entre GaAs et AlGaAs.
Le transport électronique se fait alors par un ou plusieurs canaux unidimensionnels chi-
raux le long du bord de l’échantillon. Ces faisceaux d’électrons sont ensuite contrôlés par
des lames séparatrices mésoscopiques, les contacts ponctuels quantiques. Un réglage fin
de ces contacts ponctuels quantiques permet d’obtenir des interférences de la conductance.
Les oscillations sont alors obtenues en balayant le champ magnétique ou en modifiant l’aire
définie par les deux bras de l’interféromètre appelé interféromètre de Mach Zehnder (MZI).
L’étude de la visibilité de ces oscillations en fonction de la tension drain source et de la
température, nous permet de sonder la cohérence du système. L’essentiel de ces résultats
a été obtenus à facteur de remplissage 2 pour lequel deux canaux de bord sont présents.

Dans un premier temps, nous avons étudié la visibilité en fonction de la tension drain
source lorsque le canal interne est réfléchi et avons observé une structure en lobe. Nous
avons montré qu’en présence d’un seul lobe, une moyenne gaussienne de la phase ajouté au
fait que l’on mesure la conductance différentielle permettait de comprendre cette structure
en lobe. Lorsque le canal interne est transmis la dépendance de la visibilité en fonction du
bias devient monotone : on explique très bien ce résultat en tenant compte du couplage entre
canal externe et canal interne. Dans un deuxième temps nous avons étudié la dépendance
en température de la visibilité sur des MZI de différentes tailles, avons extrait pour la
première fois une mesure de la longueur de cohérence de phase en régime Hall quantique
à ν = 2 égale à 20µm à 20mK et avons montré que lϕ ∼ 1/T . Nous nous sommes ensuite
intéressés à l’origine de cette longueur finie de cohérence de phase. Nous avons montré que
les fluctuations thermiques du canal interne combinées au couplage entre canal interne et
externe étaient la source de décohérence. Enfin dans une troisième expérience, nous avons
obtenu la première réalisation expérimentale quantitative d’un objet largement utilisé en
théorie : la ”sonde en tension”. Nous avons contrôlé le couplage de l’interféromètre vers
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le contact de sonde grâce à une grille de sonde. Nous avons suivi la variation de la phase
générée par un état localisé à proximité de cette grille. Enfin, des mesures de bruit nous
ont permis de confirmer la relaxation en énergie dans un contact ohmique flottant. Toutes
ces experiences s’incrivent dans un contexte plus général : de l’utilisation des états de bord
de l’effet Hall quantique pour des expériences d’information quantique.

9.2 Abstract

This work is devoted to the study of decoherence process in the integer quantum Hall
regime. This regime is reached by applying a strong magnetic field perpendicular to a
bidimensional electron gas created at the interface between GaAs and AlGaAs. Current
is then carried by one dimensional chiral edge channel. These electronic beams are then
controlled with mesoscopic beam splitters, the quantum point contacts (QPC). A precise
tuning of these QPC enable us to obtain interferences of the conductance. Then, oscillations
are revealed sweeping the magnetic field or modifying the area defined by the two arms of
the interferometer called Mach Zehnder interferometer (MZI). The study of the oscillations
visibility as a function of the bias and the temperature enable us to probe the coherence of
the system. Most of our results have been obtained at filling factor ν = 2, with two edge
states.

In a first part, we have studied the visibility in function of the bias when the inner edge
state is reflected and have observed a lobe structure. We have shown that for a single side
lobe, a Gaussian phase averaging combined with the fact that we measure the differential
conductance can explain this lobe structure. When the inner edge state is transmitted, the
visibility decreases monotonously in function of the bias : we have shown that it resulted
from coupling between the inner and outer edge state. In a second part, we have studied
temperature dependence of the visibility of different sizes MZI, and have extracted for the
first time a measurement of the coherence length in the quantum Hall regime at ν = 2 equal
to 20µm at 20 mK and have shown that lϕ ∼ 1/T . We were interested then in the origin
of this finite coherence length. We have shown that thermal fluctuations of the inner edge
state combined with the coupling between the inner and outer edge state were the source
of decoherence. In a last experiment, we have achieved the first experimental realization
of the theoretically widely used voltage probe. We have controlled the coupling between
the interferometer and the voltage probe via a gate probe. We have followed the phase
shift generated by a localized sate close to the probe gate. Then, noise measurements have
enable us to confirm that energy relaxation occurred in a floating ohmic contact. All these
experiments proceed from a more general study : the use of the edge states in the quantum
Hall regime for quantum information experiments.



Annexe A

The Landauer Buttiker formalism

In this part we are going to calculate first the conductance in a 1D and ballistic system,
between two reservoirs with a chemical potential difference equal to eV . If we now intro-
duce an impurity between the two reservoirs, the Landauer Buttiker formalism provides
a powerful tool to model it : the scattering matrix. We will see that each electron has a
certain probability to be reflected and transmitted through. In the case of a multimode
system, the scattering matrix is composed of several inputs and outputs with different
transmission and reflection coefficients for each mode. We will see that in a 2D system the
number of transmitted modes depends on the width of the conductor.

A.1 Quantum of conductance

Figure A.1 – Ideal 1D wire : electrons from the left(right) reservoir are emitted at the chemical potential
µL(µR) with µL=µR+eV.

We consider a simple mesoscopic system : two reservoirs that inject electrons in a 1D
system (cf. figure A.2). The left (right) reservoir is set to the chemical potential µL (µR)
with µL=µR+eV. The injected wave function can be written : ϕk=

1√
L
eikx. The associated

energy is ε
k
= ~k2

n

2m
where kn=2πn

L
and L the length of the wire. To calculate the current
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from the left to the right, we also need to know the density of states D(ε). The number of
available states for such a system is given by (no spin) :

Nstates =
∆k

2π/L
=

∂k

∂ε

∆E

2π/L

so :

D(ε) =
Nstates

∆E × L
=

1

2π ∂ε
∂k

=
1

2πυ(k)

where υ(k) is the electronic velocity. We are interested in the injected current from the
left to the right in an energy interval dε of the left reservoir :

dI =
eυ(k)

L
D(ε)LdεfL(ε) =

e

h
dεfL(ε)

where fL(ε) is the Fermi-Dirac distribution of electrons in the left reservoir. We apply
the same reasoning for the right reservoir. In the energy interval dε, the total current is
given by :

dI =
e

h
(fL(ε) − fR(ε))dε

so :

I =
e

h

∫
(fL(ε) − fR(ε))dε

For T≪TF (Fermi temperature), one obtains the very simple result :

I =
e2

h
V

the conductance is then given by :

G =
e2

h
(A.1)

This result is fundamental. First it introduces a universal quantity e2/h : the quantum
of conductance. This quantity has the remarkable property to not depend on the studied
system : no matter if the mobility or the density of the 2D system is different, the quantum
of conductance is constant. Now it is used to determine the fine structure constant with
precision that is comparable to the precision one gets from atomic physics [53]. It is also
used as a practical and fundamental way to define the Ohm in metrology [61]. Moreover this
result shows that even in the ideal case (no impurities), a wire has an intrinsic resistance.
We now add an impurity in the wire : how does it modify formula A.1 ?

A.1.1 Landauer formula for a monomode conductor

We now consider an impurity in the wire. This impurity is going to reflect a part of
the injected wave and reflected another one. We can model it by a scattering matrix S. We
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Figure A.2 – Schematic representation of a mesoscopic conductor, linked to reservoirs L and R. We note
â amplitude of entering waves, and b̂ exiting waves. The action of the mesoscopic conductor is modelled
by a scattering matrix S that relates waves functions â to wave functions b̂.

introduce â(b̂) the operators annihilation of an electron and â+(b̂+ the operators creation
of an electron.

The average current 1 emitted from the left reservoir is given by [21][87] :

〈ÎL〉 =
e

h

∫
dε(〈âL(ε)+âL(ε)〉 − 〈b̂+

L(ε)b̂L(ε)〉)

We can interpret the term 〈âL(ε)+âL(ε)〉 as the injected current and 〈b̂+
L(ε)b̂L(ε)〉) as

the reflected one. If we replace the average values of operators by their effective values, we
get for the average current :

IL =
e

h

∫
dε(fL(ε) − (|SL,L(ε)|2fL(ε) + |SL,R(ε)|2fR(ε))

where Si,j are the components of the matrix S and fL,R the Fermi Dirac distribution
with

fL,R =
1

1 + eβ(ε−µL,R)

We distinguish in this expression three terms : fL(ε),|SL,L(ε)|2fL(ε) and |SL,R(ε)|2fR(ε).
fL(ε) corresponds to the current injected by the left reservoir into the system, |SL,L(ε)|2fL(ε)
is the current emitted from the left reservoir reflected by the impurities, and |SL,R(ε)|2fR(ε)
is the current from the right reservoir transmitted to the left reservoir.

Utilizing unitary properties of the matrix S 2, we can simplify the previous expression :

IL =
e

h

∫
dε|SR,L(ε)|2(fL(ε) − fR(ε)) (A.2)

We set |SR,L(ε)|2 = T (ε) (the transmission coefficient). Since µL = µR + eV , the
conductance is equal to :

1. Experimentally, we measure the average current.
2. Due to the conservation of the information and of the energy during the scattering process.
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G =
I

V
=

e2

h

∫
dεT (ε)(−∂f

∂ε
)

For a temperature T≪TF , we obtain the fundamental relation (Landauer formula) :

G =
e2

h
T (εF )

with εF the Fermi energy. When the conductor is perfect T (εF )=1 we find back the
precedent formula A.1. This formula is the basis to understand electronic transport in
mesosocpic physics. We will see that it can be easily generalized for a multimode systems.
This formula is universal, and is applied in various systems : nanowires [17], atomic contacts
[75], graphene [63] or carbon nanotubes [24].

A.1.2 2D systems

In the last part we have only considered a monomode system. Here, we treat the multi-
mode case. The size of the scattering matrix now depends on the input and output number
of modes.

Figure A.3 – Schematic reprensation of a 2D reservoir. We note WL (WR) the left(right) reservoir
width.

In the multimode case, the formula A.2 can be generalized :

IL =
e

h

∫
dε(fL(ε) − fR(ε))Tr(SL,RS+

L,R)

where the trace is done on the different modes of the system, what can be also written :

IL =
e

h

∫
dε

M(ε)∑

m=1

{fL(ε) + (

M(ε)∑

m′

|SLL,mm′|2fL(ε) +

N(ε)∑

m′

|SLR,mm′ |2fR(ε))}

We distinguish in this expression three terms : fL(ε) corresponds to electrons in the

mode m injected by the left reservoir in the system.
∑M(ε)

m′ |SLL,mm′|2fL(ε) represents elec-
trons in the mode m′ from the left reservoir reflected into the mode m by the impurities,
and

∑N(ε)
m′ |SLR,mm′ |2fR(ε) represents electrons in the mode m′ from the right reservoir
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transmitted to the left reservoir into the mode m. We suppose that N(ε)=M(ε) 3 , what
simplify the general expression of the conductance :

G =
e2

h

N(ε)∑

n=1

Tn(ε)

where :

N(ε) = Int(
WL

λF /2
)

with WL the left reservoir width, Tn(ε) the transmittance of each mode and λF the Fermi
length. In optics this approach would describe a wave guide : when λF /2 > W the trans-
mitted wave is evanescent. When λF /2 = W a first mode can be transmitted. To transmit
a second mode, one has to increase the waveguide’s width until λF = W . In mesoscopic
physics, the Quantum Point Contact(QPC) can vary the width WL of the conductor and
thus the number of transmitted modes.

3. In the electronic MZ, the relation N(ε)=M(ε) is always verified.



Annexe B

Admittance matrix

IT
1

2

3

Q1

Q2

Figure B.1 – Schematic representation of the charge injectivity : we have to consider three sources.
We are interested in the charge Q1(Q2) of the inner(outer) edge state

In this part we propose the calculation of the admittance matrix G12(ω)=dI1,ω/dV2,ω.
We concentrate on the limit ~ω ≪ kT ≪ EF . First we consider the charge density injected
into the upper arm of the MZI due to a modulation of the voltage at contacts 1, 2 and 3
(the contact 3 being the inner ohmic contact connected to the mass, see also figure B.1).
The charge distribution in the sample can be expressed through the Fermi-field

Ψ̂(r, t) =
∑

α=1,2

∫
dE√
hνα,E

e−ιEt/~ψα(r, E)âα(E)

which annihilates an electron at point r and time t. Here ψα(r, E) is a scattering state
describing carriers with energy E incident from contact α. The charge density in the ring
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at point r and time t is ρ̂(r, t) = eΨ̂†(r, t)Ψ̂(r, t). Fourier transforming with regard to time
and quantum averaging we get ρ(r, t) = 〈ρ̂(r, t)〉, where

ρ(r, t) =
∑

α,β

∫
dE

√
να,Eνβ,E+~ω

× ψ∗
α(r, E)ψβ(r, E + ~ω)〈âα(E)â†

β(E + ~ω)〉

The average charge may be split into an equilibrium part ρ(0)(r, ω) and a contribution due
to the external voltage δρα(r, ω) :

ρ(r, ω) = ρ(0)(r, ω) + δρα(r, ω).

When calculating the quantum average of the charge density operator the effect of the
external voltage is taken into account through the modified distribution function for charge
carriers coming in from reservoir α. The distribution for contact α to linear order in the
applied voltage is :

〈âα(E)â†
β(E + ~ω)〉 = δ(~ω)fα(E) +

e

h
Vα,ωF (E, ω),

where Vα,ω is the Fourier component to frequency ω of the voltage Vα(t) and F (E,ω) is
defined through :

F (E, ω) =
fα(E) − fα(E + ~ω)

~ω

When T0=1 and T1=1/2, the scattering states ψα(r, E) in the arms of the interferometer

for a constant internal potential are of the form ψ1(r, E) = ψ3(r, E) = χ(r⊥)√
2

exp(ιkEx +

ιΦup,1(x)) and ψ2(r, E) = χ(r⊥)exp(ιkEx + ιΦup,2(x)) where Φup(x) is the magnetic phase
acquired going through upper arm to point x and χ(r⊥) is the transverse part of the
function. We then obtain for the fluctuating part of the charge

δρ1(x, ω) =
e2

2

∫
dE

√
ν1,Eν1,E+~ω

× eιωx/νEV1,ωF (E, ω)

δρ2(x, ω) = e2

∫
dE

√
ν2,Eν2,E+~ω

× eιωx/νEV2,ωF (E,ω)

δρ3(x, ω) =
e2

2

∫
dE

√
ν3,Eν3,E+~ω

× eιωx/νEV3,ωF (E, ω)

To find the total charge Qe
up,α(ω) into upper arm of the MZI we integrate over the lenght

of the arm Qe
up,α(ω) =

∫ Lup

0
dxδρα(x, ω). Performing the integration we get :

Qe
up,1(ω) =

e2

2h

∫
dEF (E, ω)(

ι

ω
)(1 − eιωτ )V1,ω

Qe
up,2(ω) =

e2

h

∫
dEF (E, ω)(

ι

ω
)(1 − eιωτ )V2,ω
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Qe
up,3(ω) =

e2

2h

∫
dEF (E, ω)(

ι

ω
)(1 − eιωτ )V3,ω

In the limit ~ω/kT ≪ 1 we have
∫

dEF (E, ω) ∼ 1. We can rewrite the charge as Qe
up,α(ω) =

e2νupα(ω)Vα,ω where we have introduced the injectivity νupα(ω), defined as

νup1(ω) =
ι

ω

1

2h
(1 − eιωτ )

νup2(ω) =
ι

ω

1

h
(1 − eιωτ )

νup3(ω) =
ι

ω

1

2h
(1 − eιωτ )

In the dephasing type experiments V1(ω)=V3(ω)=0, while V2(ω) is varying. One finally
obtains :

Qe
up,1(ω) = Qe

up,3(ω) = 0

Qe
up,2(ω) = e2νup2(ω)V2(ω)

Now if interactions are taken into account, the excess injected charge will induce a
shift in the effective internal potential, which in turn gives rise to a screening charge. This
screening charge is proportional to the internal potential euup(ω) and to the total charge
density available for screening νup(ω). Thus Qs

up,1(ω) = −e2uup,1(ω)(νup1(ω)+ νup3(ω)) and
Qs

up,2(ω) = −e2uup,2(ω)νup2(ω). One finally obtains for the total charge in region 1 et 2 :

Qtot
up,1(ω) =

ι

ω

e2

h
(1 − eιωτ )(−U1(ω))

Qtot
up,2(ω) =

ι

ω

e2

h
(1 − eιωτ )(V2(ω) − U2(ω))

Moreover Qtot
up,1(ω) and Qtot

up,2(ω) are related to the potential difference via the relation :

Qtot
up,1(ω) = −Qtot

up,2(ω) = C(U1(ω) − U2(ω))

which gives three relations for Qtot
up,2(ω) :

Qtot
up,2(ω) = C(U2(ω) − U1(ω))

Qtot
up,2(ω) =

ι

ω

e2

h
(1 − eιωτ )(V2(ω) − U2(ω))

Qtot
up,2(ω) =

ι

ω

e2

h
(1 − eιωτ )U1(ω)

From these relations we can extract Qtot
up,2(ω) in function of V2(ω).

Qtot
up,2(ω) = −V2(ω)

C ι
ω

e2

h
(1 − eιωτ )

2C + ι
ω

e2

h
(1 − eιωτ )
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The current in the arm 1 is given by I1,ω = ιωQtot
up,2(ω). We finally obtain :

G12 =
dI1(ω)

dV2(ω)
=

GQ(1 − eιωτ )

2 + ιGQ(1 − eιωτ )/(ωC)

with GQ = e2/h.



Annexe C

Expression of U1 in function of V2

C.1 Notations

V2 U1U2Z Z

ZC

C0C0

V2 U1U2Z Z1

ZC

C0

V2 U2Z Z2

a)

b)

c)

Figure C.1 – (a) Schematic representation of the self dephasing process via the introduction of tow
capacitance for each edge state. (b) Simplification of the previous representation by the introduction of
the impedance Z1. (c) Simplification of the previous representation by the introduction of the impedance
Z2

As represented in figure C.1(a,b,c) we are going to introduce the two impedances Z1

and Z2 given by :

Z1 =
Z0Z

Z0 + Z
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with Z0=
iω
C0

.

Z2 =
Z0(ZC + Z1)

Z0 + ZC + Z1

We can now express U2 and U1 in function of these impedances :

U1 =
Z1U2

Z1 + ZC

U2 =
Z2V2

Z2 + Z

Thus :

U1 =
Z1

Z1 + ZC

Z2V2

Z2 + Z

We want to express the previous expression in function of Z,ZC and Z0.

U1 =
Z0Z1V2

(Z0 + ZC + Z1)(Z2 + Z)

U1 =
Z0Z1V2

(Z0(ZC + Z1) + Z(Z0 + ZC + Z1)

U1 =
V2

2 + ZC

Z
+ 1

Z0

(2ZC + 2Z + ZCZ
Z0

)

C.2 Low frequency limit

We introduce the parameters α = C0/C and γ = C/CQ = C/(GQτ). We start from the
expression of U1 in function of V2 :

U1 =
V2

2 + ZC

Z
+ 1

Z0

(2ZC + 2Z + ZCZ
Z0

)

In the limit of low frequency we have :

ZC

Z
=

GQτ

C
= γ−1

ZC

Z0

=
C0

C
= α

Z

Z0

=
C0

GQτ
= αγ

So U1 becomes :

U1 =
V2

2 + γ−1 + α(2 + 2γ + αγ)
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C.3 Expression of < δϕ2 > /2

We introduce R(ω) given by :

R(ω) = 2 +
ZC

Z
+

1

Z0

(2ZC + 2Z +
ZCV

Z0

)

We are interested in | R(ω) |2 :

| R(ω) |2=| 2 +
i

Cω
GQ(1 − eıωτ ) +

2C0

C
+

2C0ω

jGQ(1 − eıωτ )
+

2C2
0ω

jCGQ(1 − eıωτ )

| R(ω) |2=| 2(1 +
2C0

C
) +

2GQeiωτ/2

Cω
sin(ωτ/2) +

e−iωτ/2

sin(ωτ/2)
(
ωC0

GQ

+
ωC2

0

2CGQ

) |2

We introduce :

A = 2(1 +
2C0

C
)

B =
2GQ

ωC

C =
ωC0

GQ

(1 +
C0

2C
)

Thus | R(ω) |2 becomes :

| R(ω) |2=| A + B
eiωτ/2

sin(ωτ/2)
+ C

e−iωτ/2

sin(ωτ/2)
|2

or :

| R(ω) |2= A2 +B2sin2(ωτ/2)+ABsin(ωτ)+2ACcotg(ωτ/2)+
C2

sin2(ωτ/2)
+2BCcos(ωτ)

The new expression of Vϕ is :

V −1
ϕ =

4e

~

∫ ∞

0

dω
sin2(ωτ/2)

| R(ω) |2 ω2

We set x = ωτ/2 and obtain :

V −1
ϕ =

2eτ

~

∫ ∞

0

dxf(x)

with :

f(x) =
γ2sin2(x)

4γ2x2(1 + α)2 + 2γxsin(2x)(1 + α) + sin2(x) + 8(1 + α)(1 + α/2)αγ3x3cotg(x)

+4α2γ4x4(1 + α/2)2 1
sin2(x)

+ 4αγ2x2cos(2x)(1 + α/2)
(C.1)
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