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RESUME: 
 
La consommation de puissance des microprocesseurs embarqués ne cesse 

d’augmenter avec la multiplication des fonctions qu’ils doivent assurer Ainsi, les 

générations actuelles de microprocesseurs ont une forte consommation en 

courant sous une très faible tension (autour du volt) avec des transitoires 

contraignants.  

Cette thèse est consacrée à la design des systèmes d’alimentation rapprochées 

des cartes mères des PC où régulateurs de tension (VRMs) qui englobent fort 

courant et faible tension de sortie ainsi que haute fréquence de découpage. A cet 

effet, les architectures entrelacées ou multi-phase sont une bonne alternative 

pour atteindre ces niveaux énergétiques si rigoureux. 

Traditionnellement, ces types de systèmes d’alimentation sont contrôlés avec une 

commande analogique. Cependant, les nouvelles générations de microprocesseurs 

exigent des performances plus élevées en même temps qu’une régulation plus 

précise. Alors,  la commande classique analogique est de plus en plus remplacée 

par une commande numérique plus flexible et plus performante.   

Cette thèse s'intègre dans le cadre du projet régional LISPA où le LAAS et 

Freescale Semiconductor collaborent pour développer de nouveaux systèmes 

d’alimentations pour microprocesseurs de puissance.  
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ABSTRACT: 
 
The power consumption of embedded microprocessors has increased significantly 

due to the considerable number of new functions which they should manage. 

Thus, current generation of microprocessors needs considerable supply currents 

with very low voltages.  

The aim of this dissertation is to study these supply modules and their 

association to increase the current supply levels delivered to the charge. These 

power supply systems are oriented to embedded microprocessors like those can be 

found inside PC motherboards.. 

  Traditionally, this kind of power supplies owns analogue control. However, new 

microprocessor generation demands faster performances and more accurate and 

tight regulations. Thus, the present trend is to replace the classical analogue 

control by a digital control system more flexible and performing likewise.   

 Then, this dissertation takes part in the LISPA regional project where the LAAS 

and Freescale Semiconductor collaborate to develop new power supply systems 

for embedded power microprocessors.  
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1.  INTRODUCTION 

Embedded applications have emerged notably during the past few years. 

Actually, more and more people carry on nomad and traveler lifestyles being the 

cause of a considerable increase and development of portable and autonomous 

systems. As a consequence, energy sources, their corresponding storage devices 

and power management control systems should be improved substantially to 

obtain optimal and long-duration working modes. In view of that, new issues in 

the quest for a longer autonomy in embedded systems have appeared recently. 

Furthermore, embedded products own strict power supplies design 

requirements which are becoming more and more critical with the increasing 

complexity of the functionalities proposed by these new portable devices.  

As a matter of fact, some parameters like weight, size, robustness and cost 

should be taken into account to achieve efficient embedded systems. As a result, 

manufacturers need more compact, flexible, efficient and cheaper power supplies 

modules for their embedded applications.  

In this context, power management discipline is becoming more and more 

important for the design and manufacture of embedded systems in the 

automotive, consumer and other industrial markets. Hence, our principal 

objective along the three years of this dissertation has been the study of more 

compact power supplies dedicated to high-current and low-voltage loads. 

Therefore, our aim is to introduce optimized power supply architectures and their 

corresponding control systems dedicated to embedded microprocessors. In view of 

that, a meticulous design methodology of this kind of power supply modules and 

their control systems has been completed in order to assure adequate robustness 

and fast system responses as well as enhanced efficiencies for a wide range of 

loads. In particular, the core of this dissertation is the study of several digital 

control laws which can be used in new Voltage Regulators (VR) topologies 

working at high switching frequencies. 

Thereby and to evaluate recent advances in this sort of applications, a state-of-

the-art of main power conversion architectures used in embedded systems has 

been developed as well as their corresponding evolutions. In response to this later 

report, our interest is focused on Point-of-Load (PoL) and VR architectures since 
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they present innovative power supply features. Nevertheless, these new 

topologies demand important developments to respond to future power supply 

requirements imposed by microprocessor manufacturers. At present, digitally-

controlled multiphase power converters seems a suitable candidate for this sort of 

embedded power supplies. Indeed, they solve major problems of efficiency for 

high-current and high-frequency power supply requirements. On the other hand, 

digital control allows designers significant benefits due to their flexibility and 

their numerous possibilities of design as it is illustrated along this dissertation in 

different examples. 

As a result, to face these new challenges in the power management field, our 

work takes part in the LISPA (Laboratoire pour l’Intégration des Systèmes de 

Puissance Avancés) project where the LAAS-CNRS and Freescale Semiconductor 

are associated in this new French regional (Midi-Pyrenean) collaboration. In this 

context, new solutions for PoL and VR applications are developed in such a way 

that understand better the problems and limitations of this kind of power supply 

architectures oriented to embedded power microprocessors. 

Therefore, this dissertation has been divided in five main chapters. Thus, the 

second chapter introduces to the reader the work context of this dissertation and 

the state-of-the-art of Distributed Power Supply architectures. Then, different 

possibilities for digital controllers dedicated to manage power converters and 

their main design trade-offs are listed at the end of this chapter. Moreover, a 

short chronological evolution of digitally-controlled power converters is disclosed 

in this part.   

Next, a theoretical analysis of the power stage is developed in the third chapter. 

Here, some technological challenges are treated in order to optimize the efficiency 

and the robustness of a high-current, low-voltage and high-frequency multiphase 

interleaved DC/DC converter.  

The fourth chapter is focused on the theoretical study of the digital control laws 

dedicated to VRs. Thus, main control laws used in this field are modeled and 

adapted for this kind of applications. In addition, some guidelines are given for a 

correct design of a digitally-controlled DC/DC converter. Furthermore, these 

control laws have been illustrated in several examples in order to validate our 

digital control design methodology.  
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Our last chapter groups the studies disclosed in the previous sections. 

Therefore, some experimental prototypes developed during these three years are 

presented in this part. First practical design is based on a Single-Phase 

Synchronous Buck power converter controlled by a Digital Signal Controller. 

After, the digital controller has been replaced by a FPGA obtaining our second 

experimental prototype. The new digital controller allows us to beat the 

frequency constraints imposed by our previous experimental prototype. Finally, 

the Single-Phase power stage has been replaced by a multiphase architecture in 

our third experimental example to obtain an experimental validation of our 

systems at high currents. In this later prototype, a Current-Sharing control loop 

has been added in order to complete a full digitally-controlled multiphase DC/DC 

power converter. This last work will be presented in a near future and it is not 

included currently in this manuscript. 
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2.  DISTRIBUTED POWER SUPPLY ARCHITECTURES   

FOR EMBEDDED MICROPROCESSORS 

2.1 Introduction 
Nowadays, power supply requirements for embedded and autonomous 

applications are becoming more and more severe. On one hand, the apparition of 

new portable electronic devices like cell phones, GPS, PDAs or MP4 represents 

an important challenge in terms of power autonomy. Actually, they have 

instigated the quest for more efficient power supply systems in order to enlarge 

the duration of their batteries. On the other hand, embedded processing units 

require higher amounts of energy due to the increasing number of transistors in 

this sort of devices. Thus, international standards for embedded power supply 

applications demand robust and compact modules which must be able to 

accomplish strict requirements on the conversion, transmission and level 

adaptation of the electrical energy.  

As a result, our efforts have been focused on the study and design of power 

supply systems for embedded microprocessors. To illustrate and validate our 

purpose, the power supply system for a typical PC motherboard embedded 

microprocessor has been chosen as example since it owns very specific power 

supply requirements. However, an important part of our work is based on the 

theoretical development of digital control laws covering different power 

converters. Indeed, these control laws can be applied in a wide range of supply 

powers and working frequencies: from the watt (for portable applications) up to 

hundred of watts (telecommunication servers or automotive applications) 

considering frequencies over the MHz. To know exactly how a digitally-controlled 

power converter can be obtained, the specific parts involving this sort of systems 

have been investigated as wells as the different control techniques to manage 

properly these applications in order to find future optimal answers for current 

technological challenges. 

Therefore, the first part of this chapter introduces the work context of this 

dissertation with a brief state-of-the-art of Distributed Power Supply 

architectures. Furthermore, a short introduction of current digital controllers 
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   ~ AC/DC VR Modules 
(VRM)

oriented to this kind of applications as well as the chronological evolution of 

digitally-controlled power converters is disclosed along this section. 

2.2 Evolution of power supply architectures for 
embedded microprocessors 

2.2.1 Work principle of Distributed Power Supply 

architectures 

Power conversion chain for an embedded power supply system (from the 

electrical grid until the load) is composed by several blocks as it can be observed 

in the simplified schema of Fig. 2-1. The main objective is to complete the global 

power conversion obtaining minimal losses. In this case a high-efficiency AC/DC 

converter block is found in first place. Next, a dedicated DC/DC converter which 

adapts power levels according to the desired supply requirements of each load. 

 This later block, specially conceived to supply embedded microprocessors, is 

known as Voltage Regulator (VR). Hence, a VR is a high-efficiency power 

converter which can deliver the most advantageous power level depending on the 

conditions required by the load (in steady and also during transient states). 

Consequently, VRs allow a tight and fast regulation of their output variables.  

 

 
 

Fig. 2-1 Typical embedded microprocessors power supply chain 
 

VRs can be divided into two main groups named VRM (Modules) and VRD 

(Down). The main difference between VRMs and VRDs is those later are not 

integrated in the motherboard design. an example of a commercial motherboard 

including a built-in VRM for an Intel LGA775 [2.1] socket microprocessor  can be 

observed in Fig. 2-2.  
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Furthermore, new built-in transistors should work at higher switching 

frequencies to boost the microprocessor power calculation. However, the 

increasing trend of the number of transistors as long as the computers progress 

was predicted already by Gordon E. Moore in 1965. Thus, the Moore’s law (see 

Fig. 2-4) enunciates that the number of transistors per inch in a processor is 

duplicated each 2 years in order to reply their continuous progress [2.2] . As a 

result, the microprocessor power supply demands are constantly increasing.  

 
Fig. 2-4 Original Moore’s law (left), Gordon E. Moore (center), and current law (right)  

 

In particular, the evolution of present lithographical process requires supply 

voltages around 1V.  In consequence, the foremost trend is to reduce the supply 

voltage level delivered to the microprocessor to limit the electrical field inside the 

silicon chip. Actually, as long the lithographical process values are decreased, the 

voltage supply levels delivered to the IC should be reduced correspondingly. 

Anyway, this value will be decreased in the near future as it can be seen in Fig. 

2-5. However, this droop in the supply voltage levels is not costless. As a matter 

of fact, the evident consequence is that supply current levels must be increased in 

order to deliver to the load a constant supply power [2.3] .  
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Fig. 2-5 Microprocessors supply power trend 
 

Considering previous supply power requirements, current desktop computers 

require high efficiency, high power density, high reliability and fast transient 

responses In the past, a typical power supply system was constituted by a single 

module adapting AC levels into a large range of DC values (see Fig. 2-6 a).  

Fig. 2-6 Power Supply architectures for PC motherboard: a) centralized, b) distributed topology 
for telecom and server PCs, c) distributed topology to desktop and laptop PC 
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This single module was called ‘Silver Box’ due to its sheet-metal enclosure. It 

presented a high consumption due to the large supply power range which should 

deliver to the different loads of the embedded system. In essence, the efficiency of 

the conversion block was reduced significantly because of the inductive and 

resistive parasitic effects produced by the connections between the Silver Box and 

the microprocessor. Furthermore, the Silver Box was not able to deliver the most 

convenient supply levels for each load. This was due to its single AC/DC 

conversion structure which was neither flexible nor well-adapted for several load 

requirements.  

Thereby, classical centralized power supplies were replaced for more efficient 

Distributed Power Supply architectures (see Fig 2-6 b and c). Indeed, Distributed 

Power Supply topologies offer important advantages in terms of efficiency, power 

density and power matching. As a result, losses are appreciably reduced as well 

as thermal effects. Thus, these power supply structures are constituted by 

several conversion blocks. 

 As it can be observed in Fig. 2-6, two conversion principles can be choosen to 

assure appropriate power levels in the embedded microprocessors supply chain. 

Therefore, it can be selected either one schema or the other depending on our 

technical requirements. First chain presented in Fig. 2-6b is found often in 

networks and telecommunication applications where supply power is important.  

In these cases, AC signals (115VAC or 230VAC) are transformed initially into 

high DC levels by means of an independent bulk AC/DC converter. In spite of 

48V is the typical DC value, the telecom range works properly in the 36-75V 

range. Anyway, the European standards reduce the maximal value to 60V. After 

the AC/DC conversion, an isolated DC-DC step-down converter transforms the 

48V to lower DC levels (typically 12V). These intermediate DC levels are 

transmitted to a common bus. Typically, isolation is needed to protect the system 

from dangerous spikes and to prevent ground-loops as well. 

On the other hand, typical supplies for desktop or laptop computers are 

presented in the previous schema (see Fig. 2-6 c). In most of cases, the isolation 

stage is not necessary. Moreover, for embedded applications, the suppression of 

this protection implies a reduction of the weight and cost. After, a second non-

isolated DC/DC converter completes the voltage level adaptation to the desired 
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one by the common bus (12V typically) optimizing the global power matching,  

Concerning the AC/DC stage, it must assure PFC (Power Factor Correction) 

role associated to an isolation block (typically a transformer, see Fig. 2-7). Hence, 

the PFC circuit is used to decrease the harmonic content and to accomplish with 

some standard requirements (e.g. IEC1000-3-2 or EN 61000-2-3). 

Previous block is based classically on a Boost converter configuration with 

variable regulation depending on the converter conduction mode (CCM or DCM). 

Thus, the primary stage of the transformer is typically composed by a Forward or 

a Bridge (half or full) topology depending on the expected power requirements. In 

the secondary stage of the transformer, Schottky diodes or low-voltage MOSFETs 

switches (in a synchronous regulation) are found typically to complete the AC/DC 

transformation. 

Fig. 2-7 AC/DC Converter architecture.  
 

 Some AC/DC systems, which are normally destined to server computers in 

critical applications, incorporate parallel auxiliary systems to have redundant 

supply systems in case of failure. These systems are known like “ORing” and they 

are composed by either Schottky diodes or MOSFET [2.4] . An example of a 

commercial AC/DC system and its associated technical characteristics is 

illustrated in Fig. 2-8 [2.5] . 

 An isolated DC/DC converter is required in telecom and server applications, i.e. 

like in all applications connected to the electrical grid. 
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Fig. 2-8 Commercial AC/DC power supply ACE-815T  
 

This converter does not need a tight output regulation because load 

requirements are not critical. Forward, Push-Pull and Bridge topologies are the 

most common choices as it is represented in Fig. 2-9.  

 

 

 

 

 

 

 

 

 

 
 
 

Fig. 2-9. Isolated DC/DC converters:  a) Forward, b) Push-pull c) Full-bridge d) Half-bridge  
 

Following the supply chain, the intermediate common bus voltage carries the 

power levels until different non-isolated switched DC/DC converters known as 

Point-of-Load (PoL) and/or VR converters. PoL converters are placed as near as 

possible to their corresponding load completing more efficiently the power 

transmission and conversion. Moreover, PoLs are used to provide a low and tight 

regulated DC voltage to the load from the intermediate voltage bus or from the 

battery. Furthermore, PoLs reduce considerably distribution losses obtaining 

important benefits like enhanced power matching, high efficiencies and saving 

space and money as well. Moreover, for applications needing high-powers, PoLs 

Power Supply Type AC-DC with PFC 

Power Supply Standard AT 

AC Input Voltage 115, 230 V 

DC Output Voltage +5V +12V -12V 

DC Output Current 14A 4.2A 0.3A 

Output Power: 150 W 

Efficiency 65% 

Dimensions 150x81.5x40.5mm 

 

 

 

    a)      b) 

 

 

 

     

    c)      d) 
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also can be used in parallel structures offering high current levels without over-

sizing active and passive system devices. 

 Simultaneously, VRs are used to supply the built-in microprocessors of the 

motherboards following some industrial standards like ATX, FlexATX, 

microATX, AT, LPX, NLX, and WTX. Each one of these standards corresponds to 

different power supply requirements [2.6]  

By and large, the global efficiency and the power-matching of the system are 

improved for a wide range of loads thanks to VR and PoL converters. For that 

matter, these power converter architectures have been chosen to develop new 

digital control algorithms for our experimental implementations.   

2.2.2 Point-of-Load and Voltage Regulator 

architectures 

2.2.2.1  Introduction  

Two main conversion principles which give place to two complementary families 

of commercial products are found in PoL and VRs applications. First family is 

composed by LDO (Low DropOut) linear regulator and the second one consists of 

switching converters.  

 
Fig. 2-10 LDO regulators 

 

LDO regulators are used when input and output voltages are near similar. If 

this condition is not accomplished, their efficiency is punished drastically. LDO 

are exclusively step-down architectures implying that output voltages values are 

always lower than input ones. Their main advantages are their simple control 

(regulation can be achieved easily with a high accuracy) and their good harmonic 

generation, especially in high-frequency applications. Moreover, they deliver very 

low ripple values to the load. Nevertheless, these structures are less used 

 
Series LDO     Parallel LDO 
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nowadays as embedded power supplies due to its poor efficiency and its 

important size and weight. Two examples of LDO are represented in previous 

Fig. 2-10. 

To solve the efficiency problem inherent to LDO structures, switching 

converters have replaced progressively these linear converters during the past 

few years. Switching converters offers a higher efficiency despite of their more 

complicate control system. For PoL and VR applications, the Buck converter is 

the most widespread choice. The Buck converter offers several benefits like good 

efficiency, easy control and a good stability associated to its minimal-phase 

behavior. Therefore, the Buck converter represents the basic DC/DC power 

conversion block and it is described in detail in next sections. 

2.2.2.2  The classical Buck Converter 

Nowadays, the step-down Buck structure is the widest topology employed in 

PoL and VRM converters. However, some variations of the classical structure are 

found to improve the power efficiency. Basically, these variations are introduced 

in such a way to reduce losses in the active devices. The basic configuration 

involves one controlled-switch associated to a non-controlled one (freewheeling 

diode) as it can be seen in Fig. 2-11.  

    
Fig. 2-11 Classical Buck converter 

 

This configuration has considerable conduction losses due to the diode Forward 

voltage (Vd). As a matter of fact, DC/DC converters delivering low-output voltages 

to the load own high conversion rates and, therefore, they have small duty-cycles 

in steady-state. Consequently, the ON-state time of the freewheeling diode is 

augmented drastically increasing conduction losses and reducing the system 

efficiency correspondingly. As a result, the classical Buck converter is not 

recommended for embedded applications. 

    VL 
                                          
 Vd     
                                        Vout 
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        a)    

 

 

 

          

 

 

 

 

b) 

cycle of 0.2 and delivering 20A to the load is presented. In the classical case, a 

Schottky diode with a very low Forward voltage (compared to a classical PIN 

diode where Vd>1V) is choosen. For the synchronous case, a MOSFET with 

minimal conduction resistance has been selected. Thus, the losses reduction 

obtained using the synchronous configuration can be observed in this example.  

 
Table 2-1. Comparison of losses in the switch in the Buck converter  

2.2.2.4  The Multiphase Synchronous Buck converter 

Synchronous topologies are preferred in low-voltage, high-current VR designs 

due to their enhanced efficiency. Nevertheless, supply requirements of new 

generation of embedded microprocessors cannot be covered efficiently by single-

phase synchronous topologies. As a result, multiphase or parallel converters (see 

Fig. 2-13) were born to achieve these new power supply necessities.  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 2-13 Multiphase synchronous Buck converter working in interleaved mode: a) Inductor 
current per phase, b) duty-cycle per phase 

 Theoretical switch losses Numerical example 

Classical LDD IDVP )·1·( −=  0.38·(1 0.2)·20 6.08DP W= − =  

Synchronous 2·(1 )·SW ds LP R D I= −  
20.0026·(1 0.2)·20 0.83SWP W= − =  

Extract of 
datasheet 

specifications  

Schottky Diode, IRF42CTQ030PbF : Vd=0.38V at Id=20A, Tj = 125C 
MOSFET IRF6609: RdsON = 2.6mΩ at VGS = 4.5V, ID = 25A  [2.6]  
Buck Converter D=0.2 at Vin=5V, Vout=1V, Iout=20A   
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Then, multiphase converters allow us an important increase of the output 

current delivered to the load without an excessive over-sizing of the active and 

passive components of the power converter. 

Multiphase converters are composed by basic commutation cells or phases 

placed in parallel as it is shown in Fig. 2-13. Each phase is activated 

consecutively after the previous one in an interleaving mode, i.e. with a given 

time interval corresponding to the number of phases of the power converter. This 

interleaved operation mode reduces considerably output-voltage and input-

current ripples and, consequently, converter losses too. Hence, this time interval 

or phase-shift is defined by (2.1): 

360ºPhase shift (°) = 
number of phases

          (2.1)  

However, multiphase architectures still present some efficiency droops. This 

lack of efficiency can be minimized adding some changes to the architecture 

presented in this point.  

2.2.2.5 Modifications in the Multiphase architecture 

 Multiphase synchronous Buck topologies working in interleaving mode have 

become an interesting option for VRs thanks to their easy design. Nevertheless, 

this architecture may become inefficient for large conversion ratios owning very 

low duty-cycles are used (e.g. 12-to-1V). In fact, low duty-cycles induce large 

inductor current ripples and, therefore, higher switching constraints. These 

constraints are translated in important switching and conduction losses in the 

active devices. 

 
Fig. 2-14 Multiphase Buck converter with coupled-inductors  

 

Therefore, other structures based on the multiphase synchronous Buck try to 

improve the converter efficiency and to answer to the exigent work environments 
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of new VR applications. In general, most of variations in the multiphase 

architecture serve to enlarge the converter duty-cycle reducing converter losses.  

The simpler modification is presented in [2.7] [2.8] where classical inductors are 

replaced for coupled-inductors structures as it is illustrated in previous Fig. 2-14.  

However, this variation engages several drawbacks. Firstly, the increase of the 

number of turns limits the inductor current slew-rate. Moreover, the inevitable 

leakage inductance existing between both coupled windings causes voltage spikes 

that may damage active switches or instigate some additional losses. To reduce 

these spikes, a clamping circuit is added and additional filters are used to smooth 

inductor currents. In brief, this new architecture becomes quite complicated 

although some gain in the converter efficiency can be obtained.  

Another approach is introduced in [2.9] with the development of a two-stage 

conversion system as it can be observed in Fig. 2-15. In this work, a high-

efficiency, two-phased DC/DC converter makes an initial 12-to-5V conversion. 

Next, a second high-frequency and high-efficiency multiphase converter 

completes the conversion from 5-to-1V. In this design, the cost and complexity of 

the final system is increased widely due to the duplication of the elements of the 

system. Moreover, the second converter needs a very narrow regulation control 

system. However, the global efficiency is augmented significantly. 

 
Fig. 2-15 Two-stage Voltage Regulator 

 

In [2.10] a multiphase converter associated to an inductive clamping system is 

presented (see Fig. 2-16). In this work, authors improve the dynamical behavior 

of the converter during load transients using the “critical inductance” concept 

[2.11] . This theory calculates the maximal inductor value which gives the fastest 

transient response without compromising the efficiency. Thus, for inductor 

values larger than the critical one, efficiency and dynamical responses cannot be 

improved.  

 

   ~ AC/DC DC/DC 
48-to-12V

Two-phased 
Buck 12-to-5V 

DC/DC

   Intermediate Bus Voltage           2-stage multiphase Buck converter 

Four-phased 
Buck 5-to-1V 

DC/DC
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Therefore, the clamping system varies the inductance value per phase of the 

multiphase converter to be always under this critical value. In this context, 

authors force the output voltage to the desired working point. This point is 

calculated depending on the maximal output-voltage ripple and the maximal load 

current variation. Actually, this method is a variation of the Adaptive Voltage 

Positioning (AVP). However, the value of the inductances using this technique is 

extremely reduced. Hence, switching frequency should be very high to decrease 

inductance current ripple and to reduce conduction losses as well. Then, a trade-

off between conduction and switching losses is present.  

 
Fig. 2-16 Multiphase Buck converter with inductive clamping system 

 

To sum up, the high supply-current needed by the new generation of embedded 

microprocessors is obtained thanks to more complex structures with enhanced 

efficiencies although new more complicate and accurate control techniques are 

also necessary. In this context, a lot of technological troubles associated to their 

power structure, their robustness, their corresponding control technique and 

their accuracy still have not a clear solution.  

Therefore, our work methodology consists in a systematic elaboration of digital 

control laws and their corresponding validation in experimental prototypes. For 

this reason, the work elaborated during the past few years have required the 

simultaneous design of the parts concerning a full digitally-controlled multiphase 

synchronous power converter, i.e. the power stage, the digital controller and the 

interfaces between power and control boards.  

As a result, the multiphase synchronous Buck converter working in interleaved 

mode has been selected because its behavior is relatively well-known. Thus, our 

efforts have been focused on the development of performing control algorithms 
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adapted to a wide range of loads. For that matter, a state-of-the-art of the 

different parts involving PoL and VR converters is presented in the following 

section. Moreover, the pros and contras of present current manufactured 

solutions are disclosed as well as their associated digital control laws.  

2.3 State-of-the-art and Evolution of Digital 
Technologies applied in Embedded Power Supplies 

2.3.1 Introduction 

Systems owning Digital Control (SDC) offer important advantages versus 

Analogue-Controlled Systems (SAC). Actually, new commercial designs point 

towards full-digital architectures replacing current SAC.  

Indeed, SDC has lower (or comparable at least) power consumption than SAC 

thanks to the decreasing scaling in CMOS technologies. Moreover, the number of 

components in SDC is reduced drastically, then; injurious effects originated by 

external parameters like changes in the environment temperature, white noises, 

tolerances of the components or changes in the manufacturing procedures are 

reduced significantly. This later skill of SDC implies an important increase of the 

reliability of the system and, therefore, the Mean Time Before Failure (MTBF).  

In SDC, integration density is increasing constantly. Then, more functions can 

be included in the SDC allowing designers to implement less conservative digital 

control laws. After that, non-linear control techniques which are nowadays 

unfeasible using analogue controllers can be implemented.  

Concerning to multiphase systems, SDC permits a fine synchronization of their 

duty-cycles. This skill is very useful when the number of phases is high. 

In terms of design, HDL techniques allows designer lower design times and 

higher flexibility to changes in their final applications. Therefore, development 

costs and implementation times (less Time to Market) are reduced. This is 

particularly important when environmental conditions of the system are often 

changed. In this case, new hardware configurations are not necessary implying a 

reduction of the final surface and cost. As an example, the traditional passive 

components of the analogue calibration system can be eliminated and replaced 

for a digital re-programmable regulation. Thus, the re-programmability of SDC 
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by means of changes in the software code and their high adaptation to different 

applications make them very practical in industrial applications. 

Nevertheless, SDC hold several disadvantages and some technological frontiers 

still persists in these new digital controllers. Firstly, changes in the environment 

temperature may still cause mismatches in several devices of SDC like the clock 

system, the voltage reference or the ADC (Analogue-to-Digital converter). In 

second place, state-of-the-art digital controllers still do not own the performances 

enough to replaces analogue controllers. This later issue is especially important 

in very high-frequency applications due to time constraints. As a result, these 

time limitations are reflected in a drastic reduction of the bandwidth of the 

system because of inherent delays of the algorithm and the digital structure. 

Moreover, the accuracy of the control system will be fixed by the SDC 

resolution. In fact, SDC resolution is given by both of ADC and DPWM (Digital 

Pulse Width Modulator) devices. As a result, to obtain a high-resolution ADC and 

DPWM involves developing large, complex and expensive structures. 

Additionally, to work with high-resolution devices engage an increase of the clock 

frequency of the DPWM and the sampling frequency of the ADC correspondingly. 

As a consequence, their power consumption and their cost are augmented too. 

Table 2-2 summarizes the pros and contras of using SDC instead of SAC. 

  

 

 

 

 

 
Table 2-2 Comparison of Digital vs. Analogue controllers characterisitics 

 

Thus, our main aim is to replace the classical analogue control stage for a 

digital controller which satisfies the advantages exposed in previous paragraphs. 

Hence, a digitally-controlled DC/DC converter can be divided in different parts as 

it can be observed in Fig. 2-17.  

The first part corresponds to the power stage followed by the input or 

acquisition module. In this second stage, state-space variables of the converter 

are digitalized to be useful for the control stage. The third block is composed by 

Skill Digital Analogue 
Power consumption Lower Higher 
Robustness against tolerances Higher Lower 
Robustness against delays Lower Higher 
Flexibility Higher Lower 
Time-to-market Lower Higher 
Robustness against failures Higher Lower 
Communications with other devices Higher Lower 
Cost Higher Lower 
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As a general rule, the ADC resolution is defined by the maximal allowed step or 

variation of its input signal. For instance, to digitalize correctly the output 

voltage of a digitally-controlled power converter, the ADC quantization step 

(∆VqADC) must be lower than the desired maximal output voltage ripple (∆VoutMAX) 

but higher than the DPWM one as it is illustrated in (2.2) to (2-4): 

    outMAX qADC qPWMV V VΔ >Δ >Δ        (2.2)

_

max    var
    

            
    2   ADC

q ADC

fsADC
outMAX n

vimum voltage iation
V voltage quantification error

V
V

H
Δ =

Δ ≥
⋅��	�


���	��

     (2.3) 

ADC 2 n int log   fsADC

qADC v

V
V H

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟Δ ⋅⎝ ⎠⎝ ⎠

        (2.4) 

With: ∆VoutMAX = maximal variation allowed in the measured variable.  

  ∆VqADC = ADC voltage quantification level  

  ∆VDPWM = DPWM quantification level  

  VfsADC = ADC Full-Scale Voltage  

  nADC = ADC bits number  

  Hv= Sensor gain 

 By and large, ADC introduces an important delay which should be taken into 

account in the digital control law design. This delay time (td) is composed by the 

acquisition time (tzoh) and the conversion time (tconv) which varies depending on 

the ADC structure.  

_ ( )d ADC zoh convt t t t= +           (2.5) 

Others important factors in ADCs are the slew-rate and the noise immunity 

since the switching noise generated may weaken the digitalization process.  

2.3.2.1  ADC architectures 

ADC structures can be classified depending on which conversion characteristic 

it is desired to be optimized. Thus, the fastest structure is known as “Flash” or 

“Parallel” ADCs and it completes the analogue-to-digital conversion in only one 

single clock cycle. However, this small conversion time is obtained by means of 

complex structure employing a large surface and, consequently, a high cost. This 

architecture is based on simultaneous parallel comparisons by means of analogue 
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comparators. Consequently, the higher desired resolution, the higher number of 

analogue comparators needed (e.g. for n=10 bits, 2n-1=1023 comparators are 

needed). As a result, this topology becomes quite expensive for high-resolution 

ADCs. Additionally, it is quite sensitive to the switching noise. 

A simplified version of the previous ADC structure is called “Windowed ADC”. 

In fact, this is a reduced version of the previous one owning a lower resolution 

and a reduced numbers of digital levels. This architecture is based on a narrow 

regulation around the average value of the ADC analogue input signal. In VR 

converters, these ADCs take advantage of the narrow regulation around the 

voltage reference signal. Thus, digital levels which are far away of this voltage 

reference and which are not usually employed by the digital controller are 

eliminated. This topology presents a better trade-off between complexity and size 

than the previous one. However, the practical implementation of “Flash” or 

“Windowed” ADC is pretty difficult since very accurate analogue comparators 

and resistances are required to achieve reliable small quantization levels. In the 

Fig. 2-18, it could be observed how a 9-bin (less than 4 bits of resolution) 

Windowed-ADC (bottom trace) gives similar results than a classical 8 bits Flash-

ADC (top trace).  

 
Fig 2-18 Flash Windowed-ADC in a digital voltage-mode controlled Buck converter 

 

In previous structures, fast conversion times take priority over large 

resolutions. Nevertheless, other architectures are optimized to obtain higher 

resolutions. This is the case of “Integrator” ADCs where very large resolutions 

9-bin 
Windowed-ADC 
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are obtained despite of conversion times are also very large. Here, the conversion 

is made by means a double integrator and a pulse counter which defines the ADC 

resolution. However, these structures are not used in VR designs due to their 

important conversion times.  

 A trade-off between Flash and integrator ADC configuration is the “Successive 

Approximations Register” ADC (SAR). This structure is cheaper than the parallel 

architecture. In contrast, it needs n clock cycles to make a single analogue-to-

digital conversion with n bits of resolution. 

 Joining some parallel and SAR architectures, another topology called 

“Pipelined” ADC is found. This last one is employed frequently in commercial 

digital controllers. Now, the conversion is achieved in a lower time than SAR 

converters and with a fewer number of analogue comparators (for the same 

resolution) than parallel ADCs (e.g. for n=10 bits, number of stages=2 and a 5 

bits DAC, 25-1=62 comparators are needed). A summary of the most common 

commercial ADCs is illustrated in Table 2-3. Thus, for very high-frequency VRs, 

flash architectures are preferred due to their lower conversion times. In contrast, 

for medium and low-frequency applications, pipeline structures are preferred 

because they assure a good resolution and acceptable conversion times. 
 

 
Table 2-3 Commercial ADC summary 

 

The architectures explained in previous paragraphs are available in commercial 

ICs. To complete our state-of-the-art, some structures non-conventional and non-

commercial products based on a microelectronic full-custom design are presented. 

 Therefore, the first structure introduced is known as “Delay-line based” ADC. 

It provides a high resolution keeping a low consumption and a small size. 

Nevertheless, it presents some linearity problems if the delay line is not well 

ADC 
architecture 

Conversion time 
-  + 

Complex. 
-  + Resolution 

Flash  1· Tclk  n bits = 2n-1 comparators 

Pipeline  number of stages· 
Tclk  n bits =  number of stages ·  x bits DAC 

number of stages· 2x-1= comparators 
SAR  n · Tclk  n bits = bits number of DAC 

Integrator  (2n+1)· Tclk  n bits = bits number of pulse counter 
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calibrated. Thus, its working principle relies on a string of delay cells supplied 

from an analogue voltage composing the delay line. The conversion starts when a 

pulse is propagated through this line. Then, some cells are sampled and their 

logic values are stored in a register. Theoretically, this system furnishes zero 

error. In practical terms, the conversion process, the temperature or voltage 

reference variations origin differences in the time propagation through the delay 

line. Consequently, this inconvenient make it useless for multiphase systems. To 

solve it, a calibration circuit is added employing two matched delay-lines as it is 

shown in Fig. 2-19. One delay-line is supplied with the voltage that should be 

digitalized and the other identical delay-line is supplied from an exact reference 

voltage. Thanks to the calibration system, precision components are not required 

reducing the cost [2.11]  

 
Fig. 2-19  Delay line ADC: simple (left) and with calibration system (right)  

 

2.3.3 Digital Pulse Width Modulators 

In digitally-controlled power converters, DPWM performs the digital-to-

analogue conversion. Indeed, as in the ADC case, DPWM resolution is a key-point 

given that the set of duty-cycles and, therefore, the final output voltage of the 

converter depend on the refinement of this parameter.  

In [2.13] and [2.14]  a practical design guideline is presented for a correct 

calculation of the ADC and DPWM resolutions in digitally-controlled DC/DC 

converters. Thus, DPWM resolution must be high enough to avoid limit-cycle 

oscillations problem. In these works, authors define limit-cycles as low frequency 

(inferior than switching frequency) oscillations disturbing the steady-state output 

voltage in PWM-controlled converters. As a result, there are several rules to 

avoid limit-cycles oscillations in digitally-controlled power converters which can 
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be summarized in three main design points: 

1. To have a final system owning sufficient open-loop gain. 

2. To use a digital compensator filter with an integrator element (i.e. a pole 

must be placed in z=1). 

3. To have a DPWM resolution large enough.  

Fig. 2-20 exemplifies the effect of a lack of resolution in the DPWM where 

undesirable (and often unpredicted) variations of the output voltage are observed.  

This scope was captured using the “Fast Acquisition” or “Repetitive” mode of 

the oscilloscope and it can be observed how the converter duty-cycle varies 

unnecessarily for an assigned control order. Then, if DPWM resolution is small, 

limit-cycles are presented. As a consequence, the output voltage jumps between 

two digital steps. On the contrary, if resolution is high enough, then, limit-cycle 

oscillations are eliminated (see right side of Fig. 2-20). Therefore, the required 

DPWM resolution can be calculated as follows:  

PWM ADC 2 2
min min

n int n log int logout v out v

fsADC qADC

V H V H
V D V D

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ ⋅
= + =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ Δ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

   (2.6)

 With: Vout = Output Voltage  

  Dmin= Minimum duty-cycle  

   

 

 

 

 

 

 

 

 
 

Fig. 2-20  Influence of the DPWM resolution in the output voltage of a digitally-controlled power 
switching converter. 

 

In industrial applications, DPWM resolution can be also found like the smallest 

time required by the DPWM (i.e. defined by the minimal clock period) to vary its 

duty-cycle value one single step. This time is expressed using the maximal 

Low-resolution DPWM High-resolution DPWM  

                   PWM 
   

   
 
 

Vout 

   PWM 
   

   
 
 

Vout 

Limit-Cycle Oscillation 
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number of digital levels that the DPWM can generate for an assigned clock 

frequency (e.g. 60 steps with a time-step of 16ns for a 60MHz clock frequency and 

a 1MHz DPWM signal).  

Similarly than in the ADC case, the DPWM introduces a time delay which 

should be taken into account by the digital controller. This delay is proportional 

to the time used to generate the duty-cycle in each switching period and it is 

variable depending of the value of the duty-cycle for each switching period: 
( )DPWM swt t d T= ⋅            (2.7) 

With: Tsw = Switching period  

  d= duty-cycle 

2.3.3.1  DPWM topologies 

Commercial embedded DPWMs are based on “fast-clock counter” structures. 

This architecture owns the same working principle than the analogue PWM 

implementation. Thus, the DPWM input signal is uniformly sampled and later it 

is send to a Zero Order Hold circuit (ZOH). Finally, the PWM signal is generated 

comparing the ZOH output with a saw-tooth waveform.  This topology presents a 

good linearity and is quite simple. Nevertheless, its resolution is quite limited 

since it is associated to the clock frequency. Thus, the problem is that the LSB of 

the DPWM can only be varied when clock changes. As a result, to have a high 

resolution, a small clock period is required. In practical terms, the larger clock 

frequency, the larger power consumption. 

In the same way than in the ADC case, the second architecture proposed is 

known as “Tapped delay-line” or “Ring oscillator”. Now, the fast-counter is 

replaced by a delay-line working at the power converter switching frequency. 

This schema offers a good resolution with small power consumption thanks to its 

reduced clock frequency (same than switching frequency). On the other hand, the 

surface employed due to the multiplexer is quite large. Moreover, asymmetries in 

the delay-lines may cause important errors in multiphase systems. To solve it, 

multiple PWM signals can be generated by the addition of various multiplexers 

to a single delay-line. As a result, the problem of the asymmetry of the delay-

lines can be solved in spite of the surface needed to complete this function is 

increased drastically [2.14]  
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An acceptable compromise among resolution, consumption and surface is 

achieved with the “Hybrid delay-line/counter” topology. Here, a counter provides 

some bits resolution (Nc) and the remaining bits are achieved thanks to the 

tapped delay-line. Thus, this delay-line consists in a set of resettable flip-flops 

used as delay cells. Now, the clock frequency is proportional to the digital level 

numbers of the counter, (e.g. in an 8 bits DPWM with Nc=3 bits, fsw=1MHz, 

fclock=2Nc·fsw=8MHz). Otherwise, this technique presents the classical 

disadvantages of delay-lines previously exposed in [2.11]  

Another structure presented in [2.16] is called “Ring–Oscillator–Multiplexer.” 

This topology is similar to the previous one in terms of area and consumption but 

it is specially indicated for multiphase systems because of its n-channeled output. 

Thus, it is composed by a differential ring oscillator yielding a determined set of 

taps and a multiple output multiplexer selecting the appropriate signal from the 

ring for each output. At the same time, the multiplexer should control the timing 

for each phase. The PWM signal generation is started when a square wave is 

propagated along the ring. Then, when the rising edge reaches the first tap, the 

rising edge of the PWM signal for the first phase is generated. Otherwise, the 

falling edge of this PWM signal is generated when the rising edge of the 

propagating square wave reaches a specified tap in the ring. In short, multiplexer 

is used to specify the tap for first phase and the remaining PWM signals for the 

other phases are generated in a similar way.  

 
Fig. 2-21 DPWM topologies: a) Tapped delay-line, b) Hybrid delay-line/counter, c) Ring-Oscillator-
Multiplexer, d) Ring-based segmented 
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The last structure presented is quite similar to previous ones but yielding a 

lower surface. It is called “Ring-based segmented” DPWM. On the contrary, 

delay-lines still causes non-linearity problems [2.17]  These previous DPWM 

topologies are illustrated in previous Fig. 2-21. 

2.3.4 Digital Controllers 

Digital regulation applied to DC/DC converters is not a new concept. At the 

beginning of the 70’s, first re-programmable devices appeared. They represented 

a technological revolution since their functionality can be modified completely 

changing the software code. Nowadays, digital systems are usual in our lives and 

in commercial designs. 

Referring to our study case, some alternatives can be used to implement the 

digital controller like PICs, µcs, DSPs, PLDs, FPGA, ASICs or combinations of 

them as it is shown in the Fig. 2-22. Therefore, the list of digital controllers can 

be divided in three majors groups depending on their architecture and their 

functionality. First one is composed by independent logic gates, which means, ICs 

with fix functionality (AND, XOR…). Their low price and high flexibility in 

designs makes them sometimes useful. However, these systems are restricted to 

very easy linear control laws due to the significant complexity of the final design. 

In the second group, systems with re-programmable functionality are found. 

This group can be also separated into two sub-groups more. On one hand, 

systems owning fix-architecture (like PICs, µcs or DSPs) are placed and, on the 

other hand, devices holding programmable-architecture (PLDs, FPGA) are found. 

 
 

Fig. 2-22 Digital design possibilities  

Series 74xxSemi-Custom 

Digital Design Approaches

Standard Logic Gates Specific functionality circuit 
(ASIC) 

Programmable-functionality

Fix-architecture 
PIC - µp - DSP 

Programmable 
architecture 
FPGA - PLD

Full-Custom 
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The fix-architecture devices are programmed to accomplish a dedicated function 

by means of a software code. They are an easy, low-cost and fast way to 

implement digital control laws. Otherwise, their performances are quite limited 

since they usually execute sequentially their software instructions and/or 

functions. As a result, their use is restrained basically to low or medium-

frequency applications. One advantage of this sort of controllers is that they can 

incorporate built-in ADC and DPWM modules making lower the final system 

complexity. Another remarkable point is their capability to work with fix or 

floating-point architectures. Traditionally, to work with floating-point 

architectures allow users to obtain a higher resolution and accuracy in the 

calculations. On the other hand, this operation mode employs usually a large 

amount of time to execute each single instruction. Therefore, another trade-off 

between accuracy (resolution) and speed (frequency) is found again. Due to these 

later arguments, high-frequency applications are restricted to fix-point 

controllers in order to decrease the size and the execution time of the control 

algorithm. Thus, PICs and µcs have not still the performances enough for high-

resolution and high-frequency applications. As a result, high-frequency DSPs are 

used to achieve these high-frequency requirements. The use of these devices 

makes the system quite expensive and not useful for commercial applications. 

Moreover, main commercial high-frequency floating-point DSPs have not 

integrated ADCs and DPWMs in their evaluation board increasing the 

complexity and price of the final system.  

Alternatively, programmable-architecture devices offer greater possibilities to 

designers because of the parallel execution of the algorithm functions. Hence, an 

important reduction of the algorithm execution time is achieved. Indeed, these 

devices are formed by a huge number of logical gates which are programmed 

using HDL techniques to achieve specific functionalities. Obviously, some 

drawbacks are present like their important power consumption, price, 

complexity...  

As a result, these programmable-architectures introduce another trade-off 

among resolution, frequency, power consumption, price and complexity. As a 

matter of fact, the larger resolution required, the higher clock frequency, power 
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consumption and number of logic gates. It is worthy to note that to increase the 

number of logic gates is an additional cost to our final system.  

Finally, ASICs are classified in the third group. Here, the IC final functionality 

is tailored to specific customer requirements. ASICs are divided into Full or 

Semi-custom designs depending on if its design is completely made Ad-hoc or 

using some prefabricated modules (logic gates, DSPs, ADCs, ROMs…). By 

reasons of costs and complexity, ASICs are reserved exclusively to cases where a 

very large number of the same IC is demanded. Table 2-4 summarizes the 

characteristics of digital controllers. 

 
Table 2-4 Comparison of digital controllers 

2.4 Evolution of Digital DC-DC Converters  
Digital control in DC-DC converters is not a new idea. For the time being, they 

have progressed rapidly during the few last years and main manufacturers of 

embedded applications have invested in more reliable, cheaper, flexible and 

performing systems. This section lists the chronological evolution of digitally-

controlled DC/DC converters during last decade.  

Thus, first digital DC/DC converter appears in 1999. This was a synchronous 

multiphase Voltage-Mode Controlled (VMC) Buck with large passives 

components. As a consequence, it owned a low switching frequency (250kHz). 

This prototype was implemented using first commercial FPGAs [2.18] .  

In the year 2000, a low-frequency (50kHz) synchronous VMC Buck-Boost power 

converter was implemented using a DSP. This design could switch from full-load 

 Standard 
logic gates 

Programmable devices 
ASIC 

PIC µc DSP FPGA 
Integration 

density level Very low medium high high Very high Very high 

System 
complexity High low low medium high Very high 

Power 
consumption low low medium medium medium Very low 

High-frequency 
performances medium low medium high Very high Very high 

Unity cost Very low Very low low medium-
high high Very high 

Design cost Low low low medium high Very high 
Design 

flexibility High high high high Very high Very low 

Design time Low medium medium medium high Very high 
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operation mode (12A, using PWM techniques) to low-consumption mode (10-

150mA, using PFM) [2.19]  

 The following year (2001), a synchronous VMC Buck oriented to low-current 

applications was developed using a DSP too. In this case, the size of passives 

starts to decrease reaching higher switching frequencies (around 1MHz) [2.20]  

A synchronous 1MHz (4·250kHz) multiphase Buck converter appears in 2003. 

It was implemented in a 0.25μm CMOS process. Despite of its digital voltage 

regulation, current loop is made by means of estimation techniques [2.21]  

Several publications emerged in 2004. The most important work in the digital 

control field applied to power converters was presented by the University of 

Colorado. In this work, a high-frequency (1MHz) digital synchronous VMC Buck 

was implemented in a 0.5μm CMOS standard process and employing a very 

small surface (1mm2). Moreover, this design can work in parallel structures 

thanks to a communication bus [2.22]    

First apparition of AVP (Adaptive Voltage Positioning) concept linked to 

Current-Sharing techniques made possible that the boundary of 1MHZ was 

exceeded for first time in a mix of analogue and digital structures. It combined 

two 7 bits DACs and an analogue RC filter in the voltage-loop to assure stability. 

The control laws were implemented in a FPGA [2.23]  

The University of Berkeley developed in 2004 a synchronous VMC Buck in a 

0.25μm CMOS standard process (total surface of the converter of 4mm2) for 

portable applications. To make optimal its consumption, the converter can switch 

from PWM (normal mode) to PFM (standby mode) depending on the load 

demands [2.16]  

In 2005, the University of Colorado developed again a predictive control law 

using a FPGA. This work is especially interesting because it gives a good 

approach of digital CMC obtaining good results. This control law was called 

“One-Cycle Predictive Current” (OCPC) control law and it will be studied in 

detail during next chapters [2.24]  

Referring to commercial VRs applications, first digital controllers appear at the 

beginning of 2006. Up to this moment, all the preceding controllers have been 

analogue with some digital modules inside the IC. At the present time, some full 

digital controllers have been commercialised. As an example, Philips launched a 
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high-efficiency DC/DC converter with built-in active devices for cell-phones or 

PDAs. It can deliver 1A and to work at switching frequencies around 500kHz. 

Moreover, the digital control allows switching the working mode from PWM to 

PFM to save energy [2.25]  

By the way, Intersil has launched the series ISL659x of PWM digital controllers 

that can manage up to 6-phased interleaving converters with a switching 

frequency up to 1.5MHz per phase [2.4]  

Owing to integrated PoL converters, Power One has developed the ZY7120 

delivering up to 20A [2.26] . Other enterprises like Texas Instruments or Artesyn 

are just launching new digital DC/DC controllers for VR applications. These new 

commercial products show the constant evolution of this field where the power 

management requirements are increased year by year according to the severe 

laws of market. 

2.5 Conclusion 
Along this chapter, main working principles of Distributed Power Supply (DPS) 

architectures for embedded microprocessors have been presented. Thus, DPS 

topologies share the energy conversion and electrical level adaption in several 

blocks obtaining more efficient and flexible architectures. By the way, the last 

block before the final load to supply (e.g. microprocessor) is a special type of 

power converter called PoL (for low-power applications) or a VR (for high-current 

applications) converter. PoL and VR converters are placed as close as possible to 

its corresponding load reducing transfer losses and improving power matching.  

Hence, the PoL and VRs environment has been disclosed as well as the 

motivation to replace classical analogue control systems for those more efficient, 

flexible and cheaper digitally-controlled. In general terms, a digitally-controlled 

power converter is composed by four specific blocks: the power stage, an 

acquisition or input stage, a digital controller and an output module or DPWM 

which generates the duty-cycle signal for the power stage. These four blocks and 

their associated properties have been disclosed in detail along this chapter and 

some design guidelines have been given for a proper design and a correct 

calculation of the key parameters like the input and output resolution in order to 

avoid limit-cycle oscillations problem. Thus, the minimal number of bits of the 
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input and output modules have been calculated showing that the input module 

should have a quantization step always lower than the maximal variation of the 

signal that should be converted into the digital field. As a result, in digitally-

controlled power converters, the most critical variation of the analogue values is 

given by the output-voltage ripple. In our study case, this value is imposed to 1% 

of the output voltage. Thus, the ADC quantization step should lower than this 

value. At the same time, the DPWM quantization step should be always lower 

than the ADC one to avoid limit-cycle oscillations problem. 

Therefore, a state-of-the art about new high-frequency, high-current and low-

voltage supply modules have been completed in order to understand better the 

present commercial products in this field. Thus, our work has been decomposed 

in several chapters corresponding to our scientific contribution along these three 

years of dissertation taking into account that the technical specifications of our 

new embedded supply module has been imposed by Freescale.  

Thus, the analysis of the power stage analysis is presented in our third chapter 

where a theoretical study of the elements involving the power converter is carried 

out. In consequence, the conclusions obtained in this chapter have been used in 

next chapters to develop the power stages for our experimental prototypes.  

Additionally, the theoretical study of several control laws for VR applications is 

developed in the fourth chapter. This section establishes a design methodology 

for digitally-controlled power converters based on simulation models.  

Finally and in order to illustrate the conclusions obtained in the previous 

theoretical studies, some experimental implementations of digitally-controlled 

DC/DC converters are shown in the fifth chapter. Then, the design process for 

two experimental prototypes using different digital controllers is explained in 

this part  
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3.  SYNOPSIS OF MULTIPHASE CONVERTERS 

3.1 Introduction 
The multiphase synchronous Buck converter working in interleaving mode has 

been introduced in the previous chapter. This topology seems a good candidate 

for VR applications due to the advantages formerly explained. Thus, to face up 

the exigent power supply specifications imposed by main µp manufacturer, the 

different components involving the power stage of a multiphase architecture have 

been studied along this chapter. Indeed, the selection of passives and actives 

components of the power converter has been made carefully to obtain acceptable 

performances in our final system. As a consequence, the main design premises 

disclosed during this chapter are oriented to obtain an acceptable efficiency in a 

wide range of loads. Moreover, high switching-frequency constraints have been 

also taken into account in the choice of components. Other relevant parameters 

for the design of the multiphase converter are the power density, size, price and 

thermal management. First of all, a study to obtain the optimal number of cells 

in a multiphase converter oriented to high-current VR applications is presented.  

Furthermore, an accurate lossless technique to measure the inductor current in 

high-frequency power converters is disclosed in the last point of this chapter. 

This technique is particularly important because of the high current levels 

delivered by multiphase architectures where classical current sensors are an 

important source of losses in this kind of applications. 

3.2 Technical specifications for the multiphase power 
converter 

The technical specifications for the power converter have been chosen following 

the supply trends exposed in Fig. 2-5 and also the design guidelines exposed in 

[2.1] In this last reference, additional steady-state specifications (like maximal 

output-voltage ripple) and transient requirements (like inductor-current slew 

rate or maximal voltage deviation under load variations) are proposed.  Table 3-1 

lists the main technical specifications imposed by Freescale for our prototype. 
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Table 3-1 Technical specifications for multiphase DC/DC converters 

3.3 Selection of the number of phases  
The choice of the number of phases of the converter depends on its input/output 

ratio and the power supply levels desired by our final application. In the 

automotive field, three-phased architectures are preferred due to their fix power 

conversion ratio imposed for the input and output voltage. 

However, in VR applications, the number of phases is often variable and it 

varies according to the final application. In general, the higher current to 

provide, the higher number of phases implemented. The main reason is to 

distribute uniformly the total current delivered by the power converter among 

phases. This current distribution allows a reduction of the current flow per 

inductance and, therefore, a reduction of global conduction losses and failures 

due to thermal problems.  

Another characteristic of multiphase converters is their higher slew-rates and 

faster transient responses respect to those classical single-phased. This is 

explained thanks to the reduction of the inductor value per phase as it can be 

observed in (3-1). 

1

Total inductance value of the multiphase converter  = Inductance value per phase

   with n=number of phases

n

i=
∑   (3.1)  

Thus, desired transients specifications in the multiphase case can be obtained 

using reduced inductance values compared to the single-phase case. 

Nevertheless, inductor-current ripple per phase is kept constant even if the 

number of phases is augmented. 

A direct consequence of (3-1) is that the converter switching frequency is 

incremented proportionally with the number of phases as it is observed in (3.2). 

Therefore, multiphase converters work at an equivalent switching frequency of n-

times (compared with a single-phase converter working at the same frequency 

Specification Per phase Total 
Output Voltage (V) - 1 
Output Current (A) 30 120 
Switching Frecuency (MHz) 1 4 
Output Voltage Ripple (%@mV) - 1@10 
Slew rate  (A/μs) - 450 
Maximal Overshoot (mV@μs) - 50@25 
Maximal Settling time (μs) - 350 
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than one phase of the multiphase one). This is particularly interesting in our 

studied case since switching frequency of the multiphase converter can be 

increased without increasing switching losses in the active components of each 

phase. This skill of multiphase architectures is quite important because it allows 

reducing the values of the input and the output power converter filters, i.e. the 

global size of the embedded VR. 

_ _

_

_

 f    = f n 

   with: f = Total switching frequency of the multiphase converter

            f = switching frequency of  a phase 

sw MP sw phase

sw MP

sw phase

⋅

   

(3.2) 

The number of phases is also an important criterion as regards EMI 

considerations. Actually, multiphase converters supply a more continuous input 

energy flux than single-phase ones. As a result, the harmonic content in the 

input current is reduced compared with the single-phase case as it is illustrated 

in [3.1] and [3.2]  Moreover, main harmonics are placed at the fundamental 

switching frequency and their respective multiples as it is illustrated in Fig. 3-1. 

Obviously, the value of these harmonics depends on the duty cycle and the 

number of phase how it is disclosed in [3.3]  

 

 
Fig. 3-1 Harmonic content of the input current in a Single-Phase Synchronous (top) and a 4-
phased Buck converter (bottom) 
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Thus, a specific study to find the optimal number of phases for a VR working as 

power supply for embedded power microprocessors has been completed in [3.3] . 

Along this study, interleaved multiphase converters are compared with a single-

phase example in order to establish a systematic comparison. The main 

discussion parameters were ripple values, EMI, losses, complexity (number of 

components and pins of a possible IC), costs and sizes. In short, architectures 

from 4 to 6-phased are the most indicated ones for this kind of power supplies 

with the current imposed power levels. A priori, to increase the number of phases 

is advantageous because better efficiencies and faster transient responses can be 

obtained. However, to increase the number of phases beyond six is not 

advantageous in terms of complexity, costs and performances. In spite of the 

study presented in [3.3] is not exhaustive, the systematic comparison presented 

in this work can be useful to discern the optimal number of phases in cases 

different than the presented one in this work. 

3.4 Selection of passive components 

3.4.1 Introduction 

Passive components involving input and output filters should attenuate the 

switching noise produced by active devices. Accordingly, frequency is a limiting 

factor in the selection of passives elements. Actually, present technologies of 

passive components are not well-adapted for high-frequency working modes. In 

fact, they lose their intrinsic characteristics when they are forced to work to high 

switching-frequency power converters as it is detailed in next points. Nowadays, 

the high-frequency performances of passive components are an important 

frontier to increase the switching frequency of power converters 

Traditionally, the value of passive components is chosen according to steady-

state ripple requirements (low-ripple hypothesis) associated with size, price and 

efficiency considerations. Indeed, switching-frequency of the multiphase 

converter is selected taking into account maximal permitted switching losses and 

the size of passive elements. In VRs applications, load transient-states cause 

important deviations in the converter output voltage. As a result, to minimize 

these voltage droops and to obtain fast transient responses are essential for a 

proper VR working. In consequence, low-ripple hypothesis is not enough for a 



Chapt
 
correct

the fol

conver

These

input-c

among

3.4.2

In ty

frequen

manuf

conduc

frequen

The D

losses 

2) is co

square

decomp

  

  

 

 

 

 

In th

comme

analyz

at high

 

indP

ter 3 

t calculati

llowing se

ter passiv

e calculati

current a

g phases is

 Ou

ypical indu

ncy is inc

facture the

ction losse

ncy workin

DCR is ke

only vary 

omposed b

e of the fr

posed as fo

 

 

 

he Fig. 3

ercial indu

er [3.7] . T

h frequenc

    core

dependan

P= ���

on of the 

ection give

ve element

ions are p

nd outpu

s uniform d

utput fi

uctors, co

reased. Th

e inductan

es are co

ng modes,

ept constan

according

by a series

requency. 

ollows:  

F

-3, the p

uctance us

Thus, it ca

cy becomes

  

    ACR

nt of frequency

P+�	��


value of p

es basic e

ts.  

particularl

ut-voltage

due to the

lter ind

re and co

hen, core 

nce, e.g. fe

mposed b

 by an add

nt for the 

g to RMS i

s (R2) and

 As a res

Fig 3-2  Comm

parasitic r

sed in VR

an be obse

s not negli

 

        
not dependan

P+ ���	

Conduction 

47 

passives in

equations 

ly interest

ripples i

 ripple can

ductor 

onduction 

losses (Pc

rrites own

by the DC

ditional te

whole ran

inductor cu

a parallel 

sult, losse

mercial indu

resistance 

Rs is mea

erved how 

igible.  

  

        DCR

nt of frequency

P	��


losses 

Sy

n PoLs an

to size co

ting since 

is achieve

ncellation 

losses ar

core) depen

n the lowe

CR (DC R

erm named

nge of freq

urrent. In

(R3) resis

es caused 

uctance mod

frequenc

asured usi

the value

                

ynopsis of m

nd VRs ap

orrectly m

an import

ed if curr

factor [3.4

e increme

nd on the 

est core los

Resistance

d ACR (AC

quencies a

n contrast, 

stors which

by the in

 

  

del 

cy behavio

ing a prec

 of the par

ultiphase co

pplications

multiphase

tant reduc

rent distr

4] [3.6]  

ented as l

material u

sses. By th

e) and, in

C Resistan

and its ass

ACR (see

h depends

nductance 

  

 

 

our of a 

cision imp

rasitic res

onverters 

s. Thus, 

e power 

ction of 

ribution 

long as 

used to 

he way, 

n high-

nce).  

sociated 

e Fig. 3-

s on the 

can be 

(3.3) 

 

 

typical 

pedance 

sistance 



Chapt
 

In VR

respon

efficien

respon

 

 

  

 
 

 

 

 

 
Fig 3-
 

Accor

since th

of phas

in mult

_out phasL

with: m

         D
         n 
         

         m

Δ

 

The f

design

curren

for a g

the exa

Inductanc

Parasitic
V

ter 3 

Rs applica

nses. Ther

ncy since 

nse will be 

-3  Frequenc

rdingly, m

heir effect

ses is augm

tiphase ar

(
_ ma

1

1

st

out
se

L

te

V
I
⋅ −

=
Δ
���	

min

_ max

m floor n

D minim
= number o
I max

m = maximal
L

⎛
= ⎜⎜

⎝
=

=

��

first term 

. Neverth

t ripple ca

given num

ample of th

ce Value 
 
 
 
 
 
 

c Resistance 
Value 

ations, indu

refore, a h

its induc

slower.  

cy character

multiphase

tive (total)

mented as

rchitecture

)min

ax sw

erm

D
n

f

⎛
⎜− ⋅
⎜⋅

⋅ ⎜
⎜
⎝

	��

��

min• D   

mal duty cyc
of phases
ximal induc

l integer not

k

⎞
⎟⎟
⎠����

of (3.4) is 

eless, (3.4

ancelation

ber of pha

he Fig 3-4

uctor valu

high indu

ctor-curren

rization of a 

e converte

) inductor 

s shown in

es can be c

min

min

2

mD
n

D

⎛ −⎜
⎝⋅

������

cle

ctor current 

t exceeding

based on 

4) owns a 

n among p

ases and a

4 for a 4-ph

48 

ue should p

uctance va

nt ripple 

commercial 

er are qui

value can

n (3.1). He

calculated

( )min

2

1

1

nd term

m D
n
D

+⎞ ⎛⋅ −⎟ ⎜
⎠ ⎝
⋅ −

��	����

ripple 

g k

 

the classi

second te

phases. Th

a specific 

hased conv

Sy

provide low

alue enha

is minim

inductance 

ite intere

n be decrea

ence, the in

d as follows

minD ⎞⎞
⎟ ⎟⎠ ⎟
⎟
⎟
⎠���


ical maxim

erm which

his ripple 

duty cycle

verter.  

ynopsis of m

w losses a

nces the 

mized. How

using an im

sting in V

ased as lon

nductance

s [3.8] : 

  

  

mal induct

h depends 

cancellati

e ratio as 

ultiphase co

and fast tra

power con

wever, tra

mpedance an

VRs appli

ng as the n

e value per

 

 

tor-current

on the in

ion factor 

it can be 

onverters 

ansient 

nverter 

ansient 

nalyzer  

ications 

number 

r phase 

(3.4) 

(3.5) 

t ripple 

nductor-

is zero 

seen in 



Chapter 3  Synopsis of multiphase converters 
 

49 

0

1

1

2

2

3

3

4

1 2 3 4 5 6 7 8 9 10

In
du

ct
or
‐c
ur
re
nt
 ri
pp

le
 (A

)

number of phases

0
0,05
0,1

0,15
0,2

0,25
0,3

0,35
0,4

0,45
0,5

1 2 3 4 5 6 7 8 9 10In
du

ct
an

ce
 v
al
ue

 p
er
 p
ha

se
 (µ

H
)

number of phases

The value of the output inductor should be calculated depending on our design 

specifications. If fast responses are needed, inductor-current ripple should be as 

low as possible; then, inductance value per phase should be decreased according 

to the number of phases keeping the inductor-current ripple constant. 

 
 

 
Fig. 3-4 Normalized ripple cancellation factor for a n-phased power converter depending on the 
duty cycle 

 

 On the other hand, the inductor-current ripple is reduced and the efficiency is 

improved keeping constant the inductor value per phase is spite of transient 

response is not improved in this case. This last effect can be observed in Fig. 3-5;  
 

Fig. 3-5 Inductance value per phase for a fix value of inductor-current ripple (left) and inductor-
current ripple per phase for a fix value of inductor (right). 

 

Maximal ripple cancellation factor duty cycles for a 4-phased converter 
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margin up to the resonance frequency and, also, acceptable values for the ESR. 

For VRs applications, ESR must be as small as possible to reduce capacitor 

conduction losses as well as the voltage-droop produced by load variations. In 

fact, this droop is basically imposed by the product of ESR and the load current.  

Moreover, the ESL (Equivalent Series Inductance) of the capacitor also imposes 

the first part of this voltage-droop. Thus, a small ESL is also required to obtain 

higher slew-rates (dIout/dt) and to manage properly load variations.  

Thus, the value of the output-filter decoupling capacitor should be based on the 

maximal output-voltage ripple consideration. As in the inductor case, the 

capacitor equation owns two terms. Hence, interleaved effects are present in the 

second term [3.9]  

( )
( )

2 min min
min

_ min
_ max _ min min
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  (3.6) 

In previous equation, the value of the output-filter capacitor depends on the 

number of phases as it can be observed in the second term of (3.6).  

Fig 3.7 represents the capacitor value for a given number of phases (right) and 

for different duty cycles (left). It can be noted that this value can be fixed if 

inductor value per phase is reduced according to the number of phases (blue 

trace). On the other hand, using the same inductor value per phase, the value of 

this capacitor (green trace) can be reduced.  

Fig. 3-7 Capacitor value per phase depending on: a) the duty cycle, b) the number of phases for a 
fix inductor value (green) and a phase depending value (blue).  

 

a)                               b) 
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This last characteristic allows decrease the final value of the output capacitor 

according to the number of phases and gives us an answer to solve frequency 

constraints in the selection of the capacitor technology. In consequence, a 

reduction of the final capacitor value involves a possible increase of the switching 

frequency of the power converter.  

 On the other hand, input-voltage ripple is reduced appreciably in multiphase 

converters thanks to their more constant input-energy flux. As a consequence, 

the input-capacitor value destined to smooth the input-voltage is reduced 

significantly compared to the single-phase case. The input-current value can be 

found with the following equation [3.5]  

( ) ( )
min

2 3 3
2min2 2

_ min min _max min min2
_

11 11
12

out sw
IN rms out

out phase

V D Tm m n m mI D D I m D m D
n n D L n n

⎛ ⎞⋅ − ⋅+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ − ⋅ + ⋅ ⋅ + ⋅ − + ⋅ −⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⋅⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠  
(3.7) 

And the minimal input-capacitor can be calculated as follows: 

_ _
_ m in

_ m in _ m in

0 .5 out phase IN rm s
in

in in

L I
C

V V
⋅ ⋅

=
Δ ⋅        

(3.8)
 

3.5 Selection of active components 

3.5.1 Introduction 

In the synchronous Buck topology, both switches are traditionally N-channeled 

MOS transistors since they offer lower conduction resistances and manufacture 

prices as well as faster response times.  

Active components are the biggest source of losses in DC/DC converters. That is 

why conduction time of both active devices and switching frequency limits should 

be considered in order to obtain an optimal commutation structure (MOS and 

their corresponding drivers) in terms of efficiency and rapidness. 

In practical terms, there are two key parameters in the losses calculation of 

these active switches. Both parameters define the quality of the MOS in this kind 

of power supply applications. These parameters are the gate charge (QG) and the 

drain-to-source (RdsON) or conduction resistance.  

The product of both parameters defines the Figure Of Merit (FOM) of an active 

switch as shown in (3.9). Then, the lowest losses contribution of the active 

switches is obtained using devices with the lowest FOM possible.  
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high to assure fast switching modes. Once VGS is higher than VGSth, the MOS 

input capacity (Ciss) is charged and the drain current (ID) grows linearly. As a 

result, Ciss should own low values to make easier faster commutations. When ID 

reaches the desired value, drain-to-source voltage (VDS) decreases almost linearly 

until it reaches zero value and, then, zero losses are obtained again. To sum up, 

switching losses process can be summarized as: 

( )2 02
in D

HSM sw
V IPsw t t f⋅⎛ ⎞= ⋅ − ⋅⎜ ⎟
⎝ ⎠   

(3.10) 

Previous time intervals are defined in Fig. 3-9. Then, first time interval is the 

rising gate-current period and the second time corresponds to the falling one. 

_
1 0

g tot
r

r

Q
t t t

I
− = =           (3.11) 

_
2 1

g tot
f

f

Q
t t t

I
− = =

            (3.12)         

Where: 

_ 2g tot gs gdQ Q Q= +
                            (3.13) 

 

_
dd GSth

r
d up g

V VI
R R

−
=

+                    (3.14) 

 _

GSth
f

d dw g

VI
R R

=
+                    (3.15) 

Qgs2, Qgd, Rg and Rdup_dw are typically provided by the MOS and driver 

manufacturers respectively. Vgsth can be also extracted from figures of VGS 

depending on QG. 

 

 

 

 

 

 

 

 

 
Fig 3-9  HSM Turn-on waveforms   
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Fig. 3-10 shows the influence of switching losses in a typical commutation cell 

(HSM, LSM, driver and inductor) with the values exposed in point 3.8.1. Despite 

of switching losses are dominating in HSM, other sort of losses like conduction 

(Pcond), gate (PG) and output capacitance (PCoss) losses should be considered. 

Hence, they are defined by: 
2

cond D dsONP I R D= ⋅ ⋅                   (3.16) 

G G sw ddP Q f V= ⋅ ⋅                          (3.17) 
2

2
oss in sw

Coss
C V fP ⋅ ⋅

=
                   

(3.18) 

  

 

 

 

 

 

 
 

Fig. 3-10 Switching losses contribution in a commutation cell 

              
 

LSM is also a source of losses which are reflected in the HSM contribution. 

These losses are produced by the current remaining in the LSM body-diode after 

the dead-time. Thus, some residual energy remains still on this diode when HSM 

is turned ON. Afterwards, HSM needs a supplementary current to remove this 

stored charge producing some extra losses. This undesired effect can be 

minimized using a Schottky diode specially adapted to low-voltage applications 

placed in parallel with the LSM. This diode should be fast enough to reduce the 

recovery time. Moreover, it should own a lower forward voltage than the one of 

the LSM to minimize these losses. It is important to note that this diode 

contributes to LSM and HSM losses as it is disclosed in next point. Thus, the 

addition of a fast Schottky diode can improve considerably the converter 

efficiency. The effect of this reverse recovery losses can be quantified as follows: 

Prr G dd swQ V f= ⋅ ⋅                     (3.19) 
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3.5.3 Synchronous switch selection 

In steady-state, LSM is on conduction the most part of the switching period. In 

consequence, to minimize its RdsON is essential since the foremost losses 

contribution is given by conduction ones. Thus, these losses are defined by: 
2 (1 )cond D dsONP I R D= ⋅ ⋅ −                                                                                    (3.20) 

In second instance, dead-time losses should be also considered. These losses are 

produced when both MOS are OFF and the LMS is going to start its conduction 

period. Thus, this dead-time delay is composed by two time intervals. First one is 

used by the driver to avoid both MOS simultaneous conduction. After this period, 

LSM gate is charged during a second interval.  These losses can be summarized 

as: 

deadtime deadtime sw F DP t f V I= ⋅ ⋅ ⋅    (3.21) 

Where VF is the diode-droop voltage and: 
 tdeadtime= tdeadtime(R)+ tdeadtime(F)        (3.22)
          

tdeadtime(R) and tdeadtime(F)  are  variable depending on the driver chosen and their 

estimate values are: 

tdeadtime(F)=tdelay+tTH                  (3.23)        
 tdeadtime(R)≈tdelay           (3.24)        
       

1gs
TH

dr

Q
t

I
=

   (3.25) 

( )/ 2)dd GSth
dr

G d

V V
I

R R
−

=
+

                                                              (3.26) 

3.6 Cooling system. 
In traditional VRs, thermal management was achieved by means of aluminum 

or cooper heat-sinks associated to fans. These cooling systems take a lot of place 

and power. An additional drawback is the required thermal conductive pad or gel 

in-between the heat-sink and the VR. As a result, this system becomes expensive 

and quite complex. In embedded applications, the CPU fan is used to cool the VR 

module. Hence, the VR only receives some residual airflow. For instance, a 

classical CPU fan delivers a 2m/s airflow approximately (400 LFM, Linear Feet 

per Minute). In numerous desktop applications, 0.75 – 1m/s airflows (150-200 
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LFM) is an accepted range for VRs cooling. Note that airflows greater than 1m/s 

may produce some acoustic noise. Modern VRs use low-electrical conductivity 

liquids as cooling system. This cooling method is based on the heat exchange 

among the cooling liquid, the different elements of the motherboard and the air. 

As a result, if the liquid system is well isolated, this cooling system becomes quite 

efficient in spite of it should be refilled with regular periodicity due to the liquid 

evaporation. 

In practical terms, the switching devices of the commutation cell (active 

elements and switch driver) of our power converter should be cooled to avoid 

thermal problems as it is shown in Fig. 3-11. In this thermal image, the hotspots 

(in red) of the commutation-cell corresponding to a multiphase converter and, 

therefore, the critical places that are needed to cool can be detected clearly. 

These hotspots depend on the steady-state duty cycle (D) and it can be observed 

how heat distribution changes considerably according to this last parameter. As a 

result, HSM (IRF3715) is affected mainly by switching losses and LSM (IRF6609) 

by conduction ones for low duty cycles. As long as the duty cycle is augmented, 

losses distribution is changed. In our study case, HSM is not featured to work 

with very high duty cycles since it is optimized for obtaining fast commutations 

due to its low QG. 

 

 

 

 

Fig 3-11  Thermal image of the driver and active devices of a typical multiphase converter 
commutation cell working at 10A/phase and 1MHz/phase 

 

In short, long ON-time HSM operation modes may cause important conduction 

losses due to Rds_ON is not normally minimized in this active device. In 

consequence, HSM is the main heat contribution for duty cycles higher than 0.5.  

                                                                                           LSM 
          D = 0.25      D = 0.5   D = 0.75 
 
 
 
 
 
 
 
 
 
 
                                                                                            

Driver 
 
HSM
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To sum up, a heat-sink and a fan are needed to cool these devices. Thus, the 

heat-sink should own a low ambient-to-junction thermal resistance (θja) for a 

better power dissipation. Moreover, the junction temperature (Tj) of the device to 

cool should be lower than a maximal value specified by the manufacturer. This Tj 

corresponds to: 

( )
ca

ja

j a dis jc cs saT T P
θ

θ

θ θ θ= + ⋅ + +��	�

���	��


         (3.27) 

With: Ta= ambient temperature (25° normally), Pdis= dissipated power by the 

device in W, θjc = junction-to-case thermal resistance in °C/W, θcs = case-to-sink 

thermal resistance in °C/W, θsa = sink-to- ambient thermal resistance in °C/W 

and θca = case-to-ambient thermal resistance in °C/W. 

The maximal thermal resistance, θca, which the IC package is able to resist, has 

been calculated in Table 3-2 where a practical example of heat dissipation in two 

typical packages used in active devices for VRs [2.6] is exposed. Once the 

maximal heat-sink θca is found, its required surface can be calculated. As a 

general rule, the lower θca, the larger heat-sink surface required. 

 
Table 3-2 Heatsink sizing design guidelines  

3.7  Current Sense 

3.7.1 Introduction 

Current tracking is an important topic in the control of DC/DC converters. As a 

matter of fact, the quality of a current-mode controlled converter depends 

strongly the accuracy of the current sensor and its adaptation stage. This issue is 

                   Package 
Calculations            

DirectFET  DPAK 
HSM IRF6612 

 
LSM IRF6609

 
HSM IRF3715 

 
LSM IRF3711 

 
Tj (max) 150°C 175°C 

Pdis (max) 3.03W 3.13W 2.94W 7.09W 

 1.4°C/W 3.3°C/W 

      (3.28)    

 (3.29)     

jcθ

ja
T

Pdis
θ Δ

= 41.2 /ja C Wθ < ° 39.9 /ja C Wθ < ° 51.0 /ja C Wθ < ° 21.1 /ja C Wθ < °

ca ja jcθ θ θ≤ − 39.8 /ca C Wθ < ° 38.5 /ja C Wθ < ° 47.7 /ca C Wθ < ° 17.8 /ca C Wθ < °
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particularly important in multiphase VRs applications where high switching 

frequencies and high output-current values are required. Therefore, an accurate 

inductor current sense is fundamental for a fine regulation of our converter. 

Classically, current sense was obtained thanks to a shunt resistor placed in 

series with the inductor. This method lets to obtain an accurate voltage image of 

the inductor current (although accuracy was linked to the shunt resistor 

tolerance and its non-inductive behaviour). However, this technique is not 

recommended for high-current VRs due to their significant conduction losses. For 

instance, considering a Buck converter providing 30A and a shunt resistor of 

2.5mΩ, losses can induce a 7.5% droop in their nominal efficiency.  

Sensorless techniques try to solve these losses problem. For example, in [3.10] 

[3.12] several techniques are proposed where authors replace the inductor-

current measurement by software current-observers. These techniques avoid 

problems associated to losses, frequency and differential measurements. 

Nevertheless, others problems associated to the choice of the converter and 

observer models are present since both models must be sufficiently accurate to 

get a reliable regulation.  

Another alternative are lossless techniques. They offer good accuracies without 

compromising the efficiency in modern VRs. First lossless technique was 

proposed in [3.13] In this work, authors achieve current-sense through the 

inductor DCR. In spite of it is a very easy concept, tolerances of the components 

and the influence of the frequency and the temperature in the DCR may cause 

considerable errors reducing significantly the accuracy. 

Another lossless technique is based on sensing the current circulating through 

the LSM in synchronous topologies [3.14] . This current is measured when the 

LSM is on conduction taking advantage of its RdsON. However, this technique was 

proved to be more complicated than previous ones due to the pulsating behaviour 

of the MOS. On one hand, the reduced accuracy due to the influence of the 

temperature in the RdsON is an additional drawback. On the other hand, the RdsON 

value is not exactly known since typical and maximal values are usually given in 

commercial datasheets. Finally, RdsON depends on the VGS applied and the VDS. In 

consequence, tolerances in these magnitudes may origin huge errors causing very 

poor accuracy.  
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Therefore, state-of-the-art PWM commercial controllers for VRs applications 

employ another lossless technique in order to achieve a trade-off between 

efficiency and accuracy. This sensing method is called “Inductor DCR current 

sense” [3.16] . The main advantage of this lossless technique is a better accuracy 

than previous methods as it is described in next points. 

3.7.2 The Inductor DCR current-sense technique 

3.7.2.1 Working principle  

This lossless technique can be seen like a current hardware observer placed in 

parallel to the inductor. This current observer is composed by a RC filter 

structure as shown in Fig. 3-12. Then, the main idea is to recover a differential 

voltage image around the filter capacitor which is directly proportional to the 

inductor current. Next figure shows the current sense chain placed in parallel to 

the output inductor of a Buck converter: 

 

 

 

 

 

 
 
 

Fig 3-12  Synchronous Buck converter with inductor DCR current sense circuit  
 

Hence, the transfer function of the current sensor is: 

1
( ) ( )

1L
cs cs

sL
DCRVc s DCR I s

s C R

⎛ ⎞+⎜ ⎟
= ⋅ ⋅ ⎜ ⎟+⎜ ⎟

⎝ ⎠
i i

       (3.30) 

To obtain a linear voltage image of the inductor current (see Fig, 3-9a), both 

time constants should be perfectly matched as follows:  
( )    if   

( )  cs cs
L

Vc s LDCR C R
I s DCR

= = ⋅         (3.31) 
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LPF (optional) 
 
 
Instrumentation 
Amplifier 



Chapter 3  Synopsis of multiphase converters 
 

61 

 

3.7.2.2  Effects of the temperature 

Temperature changes may affect the accuracy of the current sensor since the 

DCR value is modified at a rate of ±0.39%/°C (i.e. ±3900ppm/°C). This coefficient 

corresponds to the cooper temperature factor modifying the expression (3.31). 

Then, if temperature increases, DCR values will be also greater obtaining the 

case presented in Fig. 3-9b. This means that system works as a low-pass filter. As 

a result, only average inductor current values can be obtained but the inductor 

ripple is not gathered. Another consequence is that bandwidth of the filter is 

reduced obtaining slower systems and introducing and extra delay to the system. 

 On the contrary, if temperature decreases, system will work as a high-pass 

filter. This case involves worse consequences than the previous one because 

inductor-current average value may not be detected. In fact, AC ripple value is 

recovered only being useless to track the full inductor current. Moreover, high-

frequency current-peaks may perturb the system behavior. To solve this problem 

and to minimize the temperature effects, a compensation circuit using a PTC can 

be placed near the inductor balancing the ±0.39%/°C variation of the DCR 

obtaining cases a) or b) of Fig. 3-13 [3.16]  

 
Fig. 3-13 Magnitude Bode Plots of the current-sense circuit for different DCR values 

3.7.2.3  Experimental examples. 

Some experimental results obtained using the DCR Inductor current sense 

tecnique are illustrated in this point. First example is implemented in a single- 

phase synchronous Buck converter commercialized and optimized for portable 

applications powered from 1-cell Li-ion batteries giving a maximal output-current 

of 400mA. In this graphic, the real current measurement made by a current scope 

(green) and the voltage image obtained using the Inductor DCR technique (blue) 

     │T(jω)│                      │T(jω)│             │T(jω)│  
     
    DCR                          DCR                              DCR 

                                                                                      
     

            
                                                               

                                       
    ω              1/RcsCcs DCR/L           ω    DCR/L  1/RcsCcs        ω 

 a)               b)                 c)   
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and a shunt resistor (grey) for DCM and CCM modes (see Fig.3-14) are compared.  

 
 
 

Fig. 3-14 Low.current Inductor DCR current sense example  
 

Next example is conceived for PoL converters oriented to medium-current 

applications (up to 20A). Then, Fig. 3-15 shows its static behavior in the left side 

and the dynamical behavior of the current-sensor face a load variation of 10A in 

the right side. In this graphic, the output voltage (red) is obtained using a digital 

current-mode controlled as it will be explained in next chapters. Then, the real 

current measurement is shown in pink and the voltage image obtained using the 

Inductor DCR technique is illustrated in green. 

 

 
Fig. 3-15 Medium.current Inductor DCR current sense example 

 
Last example is shown in Fig. 3-16 is obtained using an interleaved 4-phased 

converter with the specifications shown in Table 3.1. In this last scope, the real 

inductor currents are shown in the top side and in the bottom one, their 

IL 20mA/div, Idcr 50mV/div, Ishunt 20mV/div                   IL 100mA/div, Idcr 200mV/div, Ishunt 100mV/div 
  DCM       CCM 
                 500ns/div 

          Idcr 500mV/div, Vout 1V/div IL 1A/div,                   Idcr 500mV/div, Vout 1V/div IL 10A/div,                  
  Static mode    Dynamic mode with ΔIout=10A 
                 500ns/div 
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Finally, the power stage for this first power prototype is shown in Fig. 3-19 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3-19 Power stage for the first experimental single-phase prototype 

3.8.2  Second experimental prototype. 

Once more, the technical specifications are exposed in [5.1] and summarized in 

former Table 5-1 with the difference that now the maximal supply current 

delivered to the load is 36A. This increase of the power converter output current 

permits supplying whichever embedded laptop microprocessors exposed in [5.1] 

Thus, the values for the components of this second experimental prototype are 

summarized in Table 3-5 and illustrated in Fig. 3-20. 

 
Table 3-5  Values of the components for the power stage of the second prototype 

 

Finally, the experimental efficiency of this power stage is shown in Fig. 3-21 

where an improvement of the efficiency can be note compared with the previous 

power stage. 

 

Parameter Val. Parameter Val. Parameter Val. Parameter Val. 
MLCC Output 

Capacitor        
(Cout_MLCC) 

80μF 
(used) MLCC Output 

Capacitor ESR   
(ESRout_MLCC) 

0.8mΩ 
Bulk Output 

Capacitor      
(Cout_Pol) 

2400μF 
Bulk Output 

Capacitor  ESR   
(ESRout_Pol) 

6mΩ 38μF  
(3.6) 

MLCC Input 
Capacitor       
(Cin_MLCC) 

80μF 
MLCC Input 

Capacitor ESR      
(ESRin_MLCC) 

0.8mΩ 
Bulk Input 
Capacitor      

(Cin_Pol) 
990μF 

Bulk Input 
Capacitor ESR      

( ESRout_Pol ) 
5.3mΩ 

Output Induct. 
(Lout) 

300nH 
(used) Output 

Inductance Serial 
Resistance (DCR) 

0.6mΩ HSM & LSM IP2003A 
[3.22]  

458nH 
(3.4) 

Rcs 10kΩ (var.) Ccs 100nF Instrum. Amp.  
 

Burr-Brown INA103 [3.21]  
 

 
 
 
Vin 
 
 
       Vcc ±12V 
GND          
 
 
 
        PWM 
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Fig. 3-20 Power stage for the second experimental single-phase prototype 

 

 
Fig. 3-21 Experimental losses distribution in the power stage of the second prptotype of VR made 
in the LAAS (Vin=5V) 
 

3.8.3 Multiphase experimental prototype. 

Out last experimental prototype is based on a 4-phased power converter and it 

is shown in Fig. 3-22. The same technology than in the previous single-phase case 

has been used in order to complete this experimental prototype [3.22]  

 
Table 3-6  Values of the components for the power stage of the third prototype 
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Output current (A)

Power stage efficiency 

Parameter Val. Parameter Val. Parameter Val. Parameter Val. 

MLCC Output 
Capacitor        
(Cout_MLCC) 

8 μF 
(used) 

MLCC Output 
Capacitor ESR   
(ESRout_MLCC) 

1.2mΩ 
Bulk Output 

Capacitor      
(Cout_Pol) 

2400μF 
Bulk Output 

Capacitor  ESR   
(ESRout_Pol) 

6mΩ 6.9μF 
(3.6) 
10μF 
max. 

MLCC Input 
Capacitor       
(Cin_MLCC) 

80μF 
MLCC Input 

Capacitor ESR      
(ESRin_MLCC) 

0.8mΩ 
Bulk Input 
Capacitor      

(Cin_Pol) 
990μF 

Bulk Input 
Capacitor ESR      

( ESRout_Pol ) 
5.3mΩ 

Output Induct. 
(Lout) 

300nH 
(used) Output 

Inductance Serial 
Resistance (DCR) 

0.6mΩ HSM & LSM IP2003A 
[3.22]  

334nH 
(3.4) 

Rcs 10kΩ (var.) Ccs 100nF Instrum. Amp 
 

Burr-Brown INA103 [3.22]  
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Thus, the technical specifications have been established in [2.1] and 

summarized in Table 3-1. It is worthy to note that phases should be placed 

symmetrically to avoid different propagation times among them.  

Therefore, the values for this multiphase power stage are given in Table 3-4 

and they have been calculated using the equations previously disclosed.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3-22 Power stage for the multiphase experimental prototype 

3.9 Conclusion 
Voltage Regulators are not classical DC/DC power converter since they require 

explicit design specifications. Actually, the sizing of its main components cannot 

be made using classical methods, i.e. the low-ripple hypothesis is not enough to 

calculate correctly the output-filter passive devices.  

In response to these specific requirements, the theoretical calculation of the 

devices involving a high-frequency, high-current and low-voltage VR has been 

disclosed giving some examples of how to calculate the power stage for a single 

and a multiphase synchronous Buck power converter. The calculation of these 

elements has been made in order to accomplish the supply power specifications 

imposed by main manufacturers of embedded laptop and desktop µps. In relation 

to multiphase converters, ripple cancellation effect among phases plays an 

important role in the sizing of this type of architectures since this cancellation 

factor is maximal for a given number of phases and duty-cycle.   

Moreover, the main source of losses of these power stages has been estimated in 

order to obtain an accurate forecast of their efficiency. Along this point, critical 

4-phased power converter    current sensors
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parameters like the gate charge of HSM and the drain-to-source resistance of the 

LSM should be optimized to improve the power converter efficiency. 

On account of thermal management, the importance of dissipating the heat of 

active devices as well as the switch driver to enlarge the life of the converter has 

been discussed.  

In addition, the optimal number of phases for a typical multiphase VR 

application oriented to  supply embedded µps has been studied proving that 4, 5 

and 6-phased structures give us the best trade-off among efficiency, complexity, 

ripple values, harmonic content and cost.  

In keeping with the power converter inductor-current tracking, different ways 

to sense the inductor current have been disclosed. As a result, the lossless 

“Inductor DCR current-sense” technique has been studied in detail since it seems 

the most interesting candidate for VR applications. The feasibility of this 

technique with some high-frequency VRs examples has been illustrated in a wide 

margin of loads, i.e. since very-small load currents until those quite high. 

Furthermore, this technique has been verified in a real multiphase converter.  

Current tracking is a critical point in current-mode controlled converters since 

the knowledge of the inductor current is a crucial point to obtain an accurate 

regulation and also to obtain an equilibrated current distribution among phases.  

Thus, the next chapter is focused on the theoretical study of digital control laws 

for VR applications. These laws are applied in the experimental prototypes 

disclosed in chapter 5. 
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4.  ANALYSIS OF DIGITAL CONTROL LAWS FOR 

VOLTAGE REGULATORS  

4.1 Introduction 
Digital regulation in VRs is obtained classically using Voltage-Mode Control 

due to its easy implementation. In addition, Current-Sharing (CS) techniques are 

required to obtain a uniform current distribution among converter phases in 

multiphase architectures. Thus, our aim is to design several performing control 

laws for VR systems. For that matter, different control techniques used in this 

kind of applications have been studied. In return, a systematic design method 

based on simulation models has been developed. These theoretical and 

simulation models allow us to evaluate our algorithms before to be implemented 

in the final digital controller using the same work conditions than in the real 

case. As a result, these algorithms can be applied in single and multiphase 

structures with minor differences in their final implementation.  

As it has been commented previously, multiphase topologies need specific CS 

loops for a proper work. Therefore, a theoretical study of the most widespread 

techniques to achieve uniform power distribution is disclosed along this chapter. 

Nevertheless, before to model these digital control laws, the small-signal model 

of the desired power converter should be obtained. This step is necessary to 

design correctly the digital filter of the feedback loop. According to last 

conclusion, the continuous-time and discrete-time small-signal models of the 

power converter are formulated in next section.  

4.2 Small-Signal Analysis of the Power Converter.  

4.2.1 Introduction 

The open-loop small-signal behaviour of a PWM-controlled DC/DC converter 

can be described by a set of six transfer functions (see Table 4-1) which defines 

source, load and control disturbances effects as it is illustrated in Fig. 4-1.   

In general, these transfer functions are useful up to the Nyquist frequency (half 

of switching frequency).  



Chapter 4                                                                              Analysis of digital control laws for VRs 
 

72 

Gilio(s) 

Goi(s) 

^

inv

^

outi

^

o u tv

Gid(s) 

^
d

+

Zout(s) 

Gii(s) 

God(s) 

^

Li          - 
 + 
             
          +  

^

^

^  
^

   out
^

  
 -Z

in

ii id ilioL

oi od
out

out

v

G G Gi
dG Gv
i

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎜ ⎟⎛ ⎞⎜ ⎟ ⎜ ⎟= ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ ⎜ ⎟
⎜ ⎟
⎝ ⎠

There are several ways to find this set of transfer functions for PWM-controlled 

converters. First method is based on the application of the Kirchoff laws and the 

energy-conservation method where non-linear elements are replaced with their 

corresponding averaged models as shown in Fig. 4-2 [4.1] . The main drawback of 

this method is that averaged models are only approximated for some elements 

like switches, then; ripple effects are not taken into account.  

 

 

 

 
    

            (4.1) 
 

 
 

Fig. 4-1 Set of small signal transfer functions defining a power converter 
 

 
Table 4-1  Set of small signal transfer functions defining a power converter 

 

The second method to find the small-signal power converter model is based on 

the average time-invariant circuit calculation depending on the different 

conduction modes of the converter for a given duty-cycle ratio. Using this model, 

the state-space matrix and theirs corresponding linear and small-signal models 

can be formulated [4.2] . The calculations for the open-loop continuous-time 

small-signal model and their corresponding transfer functions are developed in 

the point 8.1.1 of the Appendix A [4.3] In next points, the formulation of the 

open-loop discrete-time small-signal of a synchronous Buck  converter is shown.  
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unstable 

 

 
 
 
 
 
 
 
  
 
Table 4-2  Delay effect in the stability margins of the digitally-controlled system  

 

4.2.3 Analogue-to-digital conversion. 

The open-loop small-signal power converter model is necessary for the design of 

the external voltage-loop compensation network. Two possibilities are available 

to find the corresponding discrete-time small-signal models.  

The first approach is based on the continuous-to-discrete time conversion of the 

ZOH, power converter and delay models as it is illustrated in Fig. 4-3. The main 

drawback of this approach is that only integer time-delays are accepted using 

this approach when numerical tools like Matlab are used.  

 

   

 

 
            (4.10)  

 
Fig. 4-3 Continuous-to-discrete time conversion of the control-to-output voltage small-signal 
transfer function 
 

The second approach relies on the direct calculation of the discrete-time small-

signal transfer function of the power converter using geometrical approximations 

of its continuous-time behaviour. This approach tries to correct some errors 

associated to the continuous-to-discrete time mapping in the power converter. 

The discrete-time small-signal model for the synchronous Buck converter is 

disclosed in the next point. 
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4.2.4 Discrete-time formulation 

Two basic approaches can be found to formulate the discrete-time model of a 

PWM-controlled power converter. First technique defines the sampled-time 

behaviour of the state-space variables during one switching period. This 

technique is grounded on the previous knowledge of the power converter and its 

target behaviour for next switching period [4.4] , [2.24]   

Second alternative is based on the direct formulation of the discrete-time state-

space matrix considering the power converter as a sampled-data system [4.5]  

[4.6] . Both approaches are detailed in next points. 

4.2.4.1  Discrete-time model based on the predictive 

behaviour of the continuous-time model 

Inductor current can be sampled in equally-time intervals which means  

constant sampling frequency. Thus, the inductor current at the end of the present 

switching period is considered like the predictive goal reference (see Fig. 4-4).   

 

 

 

 

 

 

 

 

 

 
 
 
 

Fig. 4-4 State-space variables evolution  
 

Observing previous figure, the inductor current can be described as follows: 
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 Considering low-ripple hypothesis, that means, input and output voltages are 

almost constant during several switching periods, the inductor current behavior 
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for next switching period can be written as follows 

 [ ] [ ] [ ] [ ]1 1in out
L L sw sw

out out

V V ni n i n d n T T
L L

+ = + ⋅ + ⋅ − ⋅                (4.12) 

Similarly than in the inductor current case, the output voltage can be obtained: 
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Next step is to find the discrete-time state-space matrix for the converter. Thus 

previous equations should be combined to find the discrete-time space-state 

system. The complete formulation can be found in point 8.1.2.1 of the Appendix A 

obtaining next results: 
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(4.15) 

4.2.4.2  Sampled-data formulation of the continuous-time 

model 

A discrete-time or sampled-data system can be expressed with the following 

equation system [4.5] . 
^ ^ ^

^ ^
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With: 
1 2 (1 )sw sw e swA D T A D T A T

sw

e e e
Tγ α

⋅ ⋅ ⋅ − ⋅ ⋅Φ = ⋅ =
= Φ ⋅ ⋅

 (4.17) 

Equations (4.16) and (4.17) summarize the discrete-time power converter 

model. Next, matrix exponentials of previous equation are replaced by their first 

order approximation as follows [4.6]  
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In this case, the delay term should be added to (4.17) in order to be taken into 

account in the duty-cycle generation. 
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Replacing (4.18) and (4.19) in (4.16) and considering the capacitor ESR like the 

dominant parasitic effect  , the control-to-output voltage 

and the control-to-inductor current transfer functions can be obtained as follows: 
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Evaluating previous equations, it is observed that last method diverges in the 

delay term compared to the analogue-to-discrete using the ZOH approach. Thus, 

delay in (4.21) only takes effect in the position of the zero of the control-to-output 

voltage transfer function keeping constant its denominator. Otherwise, in the 

ZOH method, delay is reflected in the denominator with the addition of several 

units delays (z terms) corresponding to an integer multiple of the switching-

period and remaining the numerator unalterable. 
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4.3 Modeling of Digital Control Laws for Voltage 
Regulators 

4.3.1 Introduction 

Digital regulation in VRs is classically obtained by means of linear output 

voltage feedback, i.e. Digital Voltage-Mode Control (DVMC). By the way, DVMC 

is an easy and low-complexity control technique which avoids current 

measurement. This is particularly interesting in high-frequency applications 

where current sense could be problematic. Nevertheless, a proper tracking and 

control of the converter inductor current is especially important in non-constant 

load current applications like VRs. Furthermore, multiphase architectures 

require CS loops to obtain their intrinsic characteristics. In consequence, 

inductor current data should be available.  

Digital Current-Mode Control (DCMC) repairs the previous lack of information 

giving several advantages over conventional DVMC. In point of fact, DCMC 

possess the same advantages that analogue CMC. Thus, the inductor-current is 

tightly controlled cycle-by-cycle allowing enhanced robustness face load 

variations and instant inductor over-current protection. Another advantage is 

that DCMC offers higher flexibility in the design of the output voltage feedback 

control loop due to the reduced model of the current-mode power converter. In 

fact, this model only contains a low-frequency pole instead of the two complex 

poles of DVMC power converters. Thus, the inner current-loop controls the 

inductor-current in such a way that system only has one low-frequency pole. This 

pole is defined by the output capacitor and load impedance. Moreover, DCMC 

designs own improved immunity to line disturbances since they are included in 

the small-signal model of the power converter. Thus, control-to-output voltage 

transfer function of DCMC is not depending on the input voltage as happened in 

the DVMC case.  

In short, DCMC or a CS loop at least is recommended for multiphase VRs. 

Therefore, DVMC, DCMC and CS techniques are studied along next sections. 

 

  



Chapter 4                                                                              Analysis of digital control laws for VRs 
 

79 

4.3.2 Digital Voltage-Mode Control  

4.3.2.1  Introduction 

In DVMC, the converter output voltage is sensed first and after transformed 

into the digital word. Modern VRs incorporates a communication interface with 

the microprocessor. This “dialogue” module is used by the power converter to 

know the desired supply voltage by the µp. Thus, this later delivers a digital word 

to the power converter known as VID (Voltage IDentification) containing the 

supply levels required. This digital reference word is compared with the digital 

output voltage to generate the digital voltage error signal. This VID varies 

between a minimal and maximal value depending on the power consumption of 

the µp. Next, a digital filter working as linear voltage-compensation network 

computes the digital error signal and the result is send to a DPWM where the 

duty-cycle signal controls the switches of the power converter.   

In previous points, the power converter small-signal model has been found. 

Now, these power converter small-signal models are used to define the digital 

control law small-signal models in next points. 

4.3.2.2  Small-signal model of Digital-Voltage Mode 

The small-signal model for DVMC is illustrated in Fig. 4-5. Using this model, 

the small-signal output-voltage of the power converter can be calculated as it is 

shown in (4.26). 

 
 

 

 
 
 
 
 
With: 
Gc: Digital compensation network   God: Control-to-output voltage transfer function 
HM: modulator gain     HADC: Output voltage sensor & linear ADC gain 
Zout: Output impedance transfer function       Goi: Input voltage-to-output voltage transfer function 
Vfs_DPWM: modulator Full-scale voltage  Vfs_ADC: ADC Full-scale voltage 
Ksense: output voltage sensor gain   GZOH: Zero Order Hold transfer function 
Vpeak : Peak-slope voltage of the analogue PWM 
 

Fig. 4-5 Small-signal model of Digital Voltage Mode Control 
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Hence: 
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Finally, the small-signal output voltage is calculated as follows: 

          

(4.26) 
  

 

 

 

 

Where Goi(z) and Zout(z) can be obtained in a similar way than (4.10). The model 

presented in Fig. 4-5 can be simplified as it is represented in Fig. 4-6 to obtain 

the open-loop and the closed-loop gains exposed in (4.27) and (4.28) respectively. 

In these transfer functions, God(z) can be whichever transfer function shown 

previously, i.e., (4.10), (4.14) or (4.21). 

 

 

 
 

 
 
 

Fig. 4-6 Discrete-time small-signal model of Digital Voltage Mode Control 
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4.3.2.3 Digital filter implementation 

The digital filter of the external voltage loop is the focal point of DVMC design. 

In general, it is based on a digital PI/PID structure. Thus, the main problem is to 

find a suitable tuning method. Classically, the compensation network for the 

external voltage regulation loop is calculated in the s-domain since designers are 

most used to continuous-time tuning techniques. After, this compensation 

network is mapped in the z-domain using some analogue-to-discrete time method 

technique. A guide to select the most suitable analogue-to-discrete time method 

in this case is found in [4.7] .  

Thus, there are several ways to tune correctly the compensation network. 

Hence, analytical techniques (IMC, lambda tuning) based on algebraic relations 

between the power converter and the required response specifications need a very 

accurate power converter model to find suitable filter coefficients [4.8] . 

 Another possibility is trial-and-error or experimental methods like Ziegler-

Nichols techniques. These methods are the easiest way to find the filter 

coefficients although they are not accurate in most of cases. Moreover, they 

require a former knowledge of the converter to determine the gain and the speed 

of the system.  

Another kind of tuning is based on frequency methods where the filter is 

designed using the open-loop Bode diagram of the power converter. These 

methods normally privilege the system robustness against disturbances to other 

design specifications.  

Other tuning possibilities are based on online (adaptive) or offline (optimal 

control) tunings in which previous tuning techniques are combined. For instance, 

LUT (Look-Up-Tables) can be used to store a set of filter coefficients which has 

been previously calculated using one of the cited techniques [4.9]  

In relation to the digital filter architecture, it influences directly in the 

converter behavior. Thus, some topologies privileges system robustness and 

others are preferred by their lower computational cost. The choice of the filter 

architecture should be made depending on the application, the architecture of the 

digital controller and the desired performances.  

Then, the first digital architecture is known as “parallel” or “position” 



Chapter 4                                                                              Analysis of digital control laws for VRs 
 

82 

algorithm. This configuration owns an integral part based on an accumulation of 

the past errors.  

[ ] · [ ] · [ ] ·( [ ] - [ - 1])

: [ ] [ -1] [ ]
p v i d v v

v

u n K e n K s n K e n e n

w ith s n s n e n

= + +

= +
              (4.29) 

With: 

;  ;  d sam
d p i p

sam i

T TK K K K
T T

= ⋅ = ⋅                                                                    (4.30) 

With Kp as the proportional gain, Ki as the integral gain, Kd as the derivative 

gain, Td as the derivative time, Ti as the integral time and Tsam as the sampling 

period.  Moreover, this architecture allows three variations depending on how the 

integral part is calculated. Its block diagram can be seen in Fig 4-7. 

 
 (4.31)                          

    

 
 

Fig. 4-7 PID position algorithm with backward Euler approximation for the integral term. 
 

Parallel algorithm owns a variation from its classical point known as “Setpoint 
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between 3 to 20. The block diagram of this architecture is represented in Fig. 4-8.  

 
Fig. 4-8 Setpoint Weighting PID algorithm with backward Euler approach for the integral term. 

 

This architecture is quite useful for digital controllers which are able to execute 

parallel process since the 3 branches can be processed at the same time.  

However, digital controllers like DSPs privileges architectures with lower 

computational than previous parallel structures. Thus, serial or incremental (also 

known velocity) algorithms, as the one shown in Fig. 4-9, are introduced. These 

digital filters present IIR structures and they own the advantage of less abrupt 

output variations. In contrast, these architectures are quite sensitive to 

coefficients variations. This fact may cause significant differences in the final 

system behavior affecting its stability. Thus, next figure shows the block diagram 

for an incremental PID algorithm owning a recurrence equation like: 
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 Fig. 4-9 PID incremental algorithm  
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Hence, simulations results are represented in Fig. 4-11 where similar results 

are obtained using both models despite of minor differences in the dynamic 

response are detected among them when a load variation is produced.  

With regards to the stability of the system, Fig. 4-12 illustrates how all the 

system roots are inside of the unity-radius circle obtaining a gain margin of 30º 

and a crossover frequency of 40 kHz. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 
Fig. 4-11 DVMC: Simulation results for a 5A load variation 
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Fig. 4-12 Pole & zero map (left) and frequency response of the loop gain. 

4.3.3 Digital Current-Mode Control.  

4.3.3.1  Introduction 

As happens in the analogue case, DCMC is achieved by means of a double 

feedback regulation of the inductor current and the output voltage 

correspondingly.  

Thus, in inner current loop, the error signal is obtained by means of the 

subtraction of the inductor current and a reference current imposed by the 

external voltage-regulation loop. This kind of regulation is known as Current-

Programmed Control (CPC) and can be classified as peak, average or valley 

current control depending on whether the maximum, average or the minimum 

point of the inductor current is compared with the reference.  

For example, valley-current control follows a reference (ic) placed at the 

minimal inductor current point. This later technique does not offer over-current 

protection and it is often replaced by the peak-current method where the 

reference is now imposed to be the maximal desired inductor current value. Peak-

current method presents an inherent pulse-by-pulse fast over-current protection 

making it very useful for VR applications. Additionally, average-current mode 

imposes its current reference to be the average value per period of the inductor 

current. This last technique is preferred sometimes in some specific applications 
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as PFC (Power Factor Correction) due to their low harmonic distortion. From a 

practical point of view, each CPC modulation should be used with their 

corresponding compensation ramp to avoid instabilities [4.12] .  

4.3.3.2   Continuous-time small-signal model. 

Numerous works had tried to model correctly CMC. Among them, Raymond 

Ridley formulated in the late 80’s an accurate small-signal model for previous 

CMC techniques.  

Thus, he defined a continuous-time small-signal model for some DC/DC 

converters which was useful up to half the switching frequency. In this model, 

the external voltage and the inner current feedback regulation loops were 

initially treated independently because of the instabilities of the current loop for 

duty-cycles higher than 0.5. After, a revision of this work solved this problem 

including the corresponding compensation slope in the model [4.13] .  

In the Ridley’s model represented in Fig 4-13, Kf and Kr are the feedforward 

gains representing the disturbances in the input and output voltages 

respectively. Hi, Hiv and Hv are the gains of the inductor current transducer, the 

control voltage modulator gain and the linear gain of the output voltage sensor. 

Moreover, Gc(s) represents the voltage compensation network and Gtd(s) 

symbolizes the total system delay. The PWM gain can be represented as: 
^

^

1 1=   
( )n e sw c n sw

c

dFm
S S T m S Ti

= =
+ ⋅ ⋅ ⋅

                (4.34) 

and: 

 =  1+  ec
n

Sm
S

           (4.35) 

Where Sn and Se are the sensed inductor current and the ON-time 

compensation ramp slope respectively. Finally, He is a gain block defining the 

effects of the sampling action in the current feedback loop [4.14]  

After this model, some revisions based on the Ridley’s model have appeared like 

the one published by D.Tan in 1993 where Average Current-Mode Control 

(ACMC) small-signal model is formulated [4.15] . This small-signal model was 

very similar to the Ridley’s one as it can see observed in Fig. 4-13.  
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Fig. 4-13 Ridley’s small-signal model for CMC 
 

The main difference between PCMC and ACMC is that in this last case a 

current amplifier is inserted into the current loop to find the average value of the 

inductor current. This current amplifier ( CA s pG G G= ⋅ ) is composed by an 

integrator and a lead-lag network where the zero is placed before the natural 

frequency of the power converter to assure the stability and to maximize the 

crossover frequency of the current loop. Moreover, the pole is placed beyond half 

of the switching frequency to eliminate high-frequency noise. 

 As well in the VMC case, the control-to-output voltage transfer function should 

be obtained (the complete calculation is shown in the point 8.2.1). Then, and 

differently than in the VMC case, the control-to-output voltage transfer function 

is defined as:  
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⋅ ⋅
+ ⋅ ⋅ ⋅ ⋅ − ⋅

             (4.37) 

Furthermore, the Ridley model allows us to calculate the loop gains for the 

inner current (Ti), external voltage (Tv) and global loop (Tol) respectively [4.16]  

   for PCMC
v m od c

i m sens id

ol v i

T F G G
T F H G
T T T

= ⋅ ⋅ ⎫
⎪= ⋅ ⋅ ⎬
⎪= + ⎭                

(4.38)  

4.3.3.2.1 Example of Continuous-time Peak Current-Mode 

Control 

An example of continuous-time PCMC is presented in this point. It has been 

developed taking the same converter values that in the point 4.3.2.4. The PI 

compensator for the external voltage loop has been calculated using the 

continuous-time control-to-output voltage transfer function exposed in (4.36)

assuring the stability of the system for the whole range of loads and following the 

design guidelines exposed in [4.17]  

As a general rule, the zero of the PI is placed close to the natural frequency of 

the power converter and the crossover frequency of the current loop is pushed as 

high as possible without exceeding half of the switching frequency. PSIM and 

Simulink (switched-mode) models are shown in Fig. 4-14 and the simulation 

results obtained with both models are presented in Fig. 4-15 and Fig 4-16 

respectively. 

 
 
 
 
 
 
 
 
 
 

 
Fig. 4-14 Continuous-time Peak-Current Mode Control 
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Fig. 4-15 PSIM Simulation of continuous-time Peak-Current Mode 
 

 
 

Fig. 4-16 Simulink simulation of continuous-time Peak-Current Mode 
 

Afterwards, the stability of the system is calculated using the set of equations 

shown in (4.38) giving us a phase margin of 100º and a crossover frequency of 50 

kHz. Indeed, all the roots of the closed-loop system are in the left hand of the 

map. Bode diagrams for the three loops as well as the pole-zero map of the closed 

loop system are shown in Fig. 4-17. 
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Fig. 4-17 Bode diagram (left) and closed-loop pole-zero map (right) 

4.3.3.3  Discrete-time small-signal model 

Using the same method described in 4.2.4.1 and [2.24] , the discrete-time 

equivalent of  (4.36) can be found.  The complete formulation can be found in 

point 8.2.1.2. 

    1( )
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          (4.39)  

Fig. 4-18 establishes a comparison among the frequency responses of the 

continuous-time Ridley’s model exposed in (4.36), the discrete-time Ridley’s 

approach using a ZOH and the direct formulation of the discrete time control-to-

output-voltage transfer function found in (4.39). Thus, minor differences are 

found among models. However, the magnitude response of the model found in 

(4.39) is a little different of the continuous-time and continuous-time + ZOH 

approaches owning a maximal deviation of 3dB at the half of switching 

frequency. However, phase curves of both discrete-time models are quite different 

from the continuous-time model. Finally, the small-signal model for DCMC is 

illustrated in Fig. 4-19. 
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Fig. 4-18 Bode diagram of the control-to-output voltage transfer function in CMC. 
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Fig. 4-19 Small-signal model of DCMC 
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the whole digital system (as in the DVMC) are also worthy to be taken into 

account These three effects are exposed in the next point with some simulations 

obtained thanks our discrete-time PCMC (DPCMC) model using PSIM shown in 

Fig. 4-20. 

 

 

 

 

 

 

 

 
Fig. 4-20 PSIM simulation model of discrete-time PCMC  

4.3.3.3.1.2  Influence of the delay of the digital system. 

Reduced delays are quite important as it was disclosed in previous points. 

Delay is an intrinsic characteristic of digital systems and it should be considered 

in our design in order to have a stable system for the full range of loads. Thus, 

some conclusions can be extracted from Fig. 4-21 where a 5A load variation is 

simulated.   

 
Fig. 4-21 Discrete-time PCMC: Influence of the delay in the output voltage in a 5A load variation 
 

As it can be observed in Fig. 4-21, the delay introduced into the current loop is 

more critical than the voltage-loop one. This is to some extent usual since current 

represents the fast dynamics in the energy conversion process whereas the 
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voltage loop deals with the slow dynamics. For this reason, ADCs in this loop 

should introduce the minimal possible delay. . 

4.3.3.3.1.3  Influence of the sampling frequency in the current loop. 

In DVMC, the single feedback loop owns a slow dynamics. As a consequence, 

sampling frequency should not be necessarily too high for a proper working (the 

same value for sampling and switching frequency is usually advised although 

lower rates are permitted). As a matter of fact, this is not true for DCMC because 

inductor-current progress must be known to be compared with a current 

reference. 

Therefore, a high sampling-frequency for the current loop is required. As a 

general rule, the inductor current sampling-frequency should be ten times the 

switching-frequency. This issue with the sampling-frequency is illustrated in the 

Fig. 4-22 where a detail of the output voltage (when a 5A load variation is 

produced) is represented. 

 

 
Fig. 4-22 Discrete-time PCMC: Influence of the sampling frequency in the output voltage in a 5A 
load variation 
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Thus, it can be also observed in Fig. 4-23 a comparison of the duty-cycle 

generation for a low-sampling (1MHz) and acceptable sampling-frequency 

(10MHz) ratio in the current loop. Therefore, the first case reveals how the lack 

of samples in the sensed inductor-current ramp generates a pulse-skipping effect. 

That means that some command signals are not generated by the DPWM making 

that the equivalent switching frequency decreases (1/5 in this case) and 

weakening the final system behavior as shown in the Fig. 4.23.  

In practical terms, the system is only able to work at an effective switching 

frequency lower than the nominal one and fixed by this new ratio (e.g. the fifth 

part in this case or 200kHz). On the other hand, if sampling frequency is high 

enough, the duty-cycle can be generated without problems cycle-by-cycle at the 

nominal switching frequency (i.e. 1MHz in this case) avoiding undesired pulse-

skipping effect. 

 
 
Fig. 4-23 Discrete-time PCMC: Influence of the sampling frequency in the output voltage in a 5A 
load variation 

4.3.3.3.1.4  Influence of the discrete-time power converter model  

Thus, as in the DVMC case, several ways are available to find the discrete-time 

control-to-output voltage transfer function. A simulation example comparing the 

continuous-time case with the two discrete-time approaches found for DCMC is 

disclosed in this point. The first discrete-time approach is the one found in (4.36) 

associated to a ZOH (2nd method) and the second one (3rd method) is achieved 
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using (4.39).  Fig. 4-24 shows minor differences among both discrete-time models 

and the continuous-time one (1st method). As a result, discrete-time formulation 

presented in (4.39) gives final performances as satisfactory as the other ones.  

 
Fig. 4-24  Discrete-time PCMC: Influence of the power converter model in the output voltage in a 
5A load variation 

 

4.3.4 Adaptive-control based on Look-up Tables. 

Classical Adaptive control in VRs is not normally applied due to its important 

computational cost. Anyway, some works are found where the digital filter is 

tuned depending on some pre-stored values in Look-up Tables (LUT). As a 

consequence, the most efficient set of coefficients is theoretically obtained for 

different work points of the converter. An example of this kind of regulation is 

[2.22] where authors presented a DVMC converter based on LUTs. 

In relation to the idea of obtaining the most suitable tuning coefficients for the 

digital filter, classical DVMC can be modified to obtain an adaptive calculation of 

the duty-cycle of the converter depending on load variations. That means that the 

digital controller should recover the most performing duty-cycle for each load 

variation in order to achieve zero-voltage error in steady conditions.  

Once, the digital controller had calculated the required duty-cycle, this value is 

stored in a LUT block. After, the algorithm checks if an inductor-current 

variation has been produced. This indicates that a new load current has been 

detected and the system parameters have been changed. Then, a new duty-cycle 

calculation should be made to reach again the optimal performances.  
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Vout[n] & IL[n] acquisition 

ev[n] calculation:  
ev[n]=Vref[n]-Vout[n] 

new u[n] generation: 
u[n]= ux[n]+c*ΔIL[n] 

ΔIL[n] calculation: 
ΔIL[n]= IL[n]=IL[n-1]

ev[n]=0 ux[n] storage:  
ux[n]=f(IL[n]) 

IL[n]=IL[n-1] 
vc[n] calculation: 

vc[n]=vc[n-1]+K0*ev[n]+ 
K1*ev[n-1]+K2*ev[n-2] 

classical d[n] generation: 
u [n]=u[n-1]+a*vc[n] 

          yes 
 
 
 
 

                                                   yes 
 

Differently than in the classical DVMC case where duty-cycle command signal 

was generated from its last computed value, now, the duty-cycle calculation is 

obtained thanks to the nearest stocked duty-cycle value corresponding to the last 

load variation detected by the system.  

The algorithm of this control law is presented in Fig. 4-25 and more information 

can be also found in [4.18]  Some simulation and experimental results using this 

control law are given in chapter five. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4-25  Algorithm of adaptive duty-cycle control law 

4.3.5 Predictive Control 

In classical predictive control, the user obtains a theoretical cost function 

based on the differences between the real system and the desired one. Then, this 

cost function is minimized depending on specific design requirements.  

According to this cost function and the desired specifications defining the set-

point trajectory, the predictive controller defines the reference trajectories of the 

state-space converter variables to be followed by our system.  

The predictive nature of the digital controller allows calculating ahead of time 

the trajectories of the state-space variables of the converter from the initial time 
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until the prediction horizon or final point to attain the desired reference 

trajectory as it can be observed in Fig. 4-26.  

 
Fig. 4-26 Predictive control principle 

 

The direct approach of predictive digital control applied in DC/DC converters 

was formulated by the team of the University of Boulder, Colorado in several 

works [2.24] [4.19]  In these publications, the converter trajectories are well 

known and they are defined using the sampled-time behavior of the inductor 

current and the output voltage (see Fig. 4-4). 

This control law is known as One-Cycle Predictive Current-Mode (OCPC) 

control and, nowadays, it is the closest approach of continuous-time CPC where 

inductor current is programmed to follow a reference imposed by the external 

voltage regulation loop as in the analogue case [4.19] . Thus, the main idea is 

that inductor current should reach a peak, average or valley reference current in 

a determined number of cycles. Once the inductor current attains the reference, 

the current error becomes zero and the system attains the steady-state 

compensating any possible disturbance produced in the command signal.  

The main advantage of this control law is that sampling-frequency might not 

be as high as in the classical DCMC case to obtain a proper working due to our 

knowledge if the inductor current. This can be observed in Fig. 4-27 where a 

comparison between OCPC and DPCMC is established. In this comparison, both 

techniques have been simulated using a sampling frequency of 1 and 10MHz.  

 

d[n]·Tsw                  d[n+1]·Tsw            t
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Thus, Fig. 4-27 reveals how OCPC does not need an important sampling- 

frequency value for a correct working like in the DPCMC case.  

In OCPC, inductor current should be sampled in uniformly spaced intervals 

equal to the switching period and synchronized with the PWM signal for a correct 

working. Thus, peak-current mode technique can be obtained if the inductor-

current ADC is synchronized with the down edge of the PWM signal. 

Alternatively, valley current is obtained using the rising edge of the PWM. 

Otherwise, average current is achieved when ADCs takes the sample at either 

the instant 
[ ]
2 sw
d n T⋅

 or 
1 [ ][ ]

2 sw
d nd n T−

+ ⋅
.  

Fig. 4-27 Comparison of OCPP and DPCMC for different sampling frequencies. 
 

However, as in the DPCMC case, peak, average and valley current need their 

respective compensation slopes [2.12] . Therefore, the digital control laws for 

valley and peak-current predictive control are illustrated in next equations (the 

complete formulation is shown in points 8.2.2.1 and 8.2.2.2 respectively). The 

block diagrams for both digital control laws are shown in Fig. 4-28. 

[ 1] [ ] [ ] [ ]   (valley)
i
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c L

in sw e
k

Ld n d n i n i n
V T

⎛ ⎞
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⎜ ⎟⋅
⎝ ⎠
��	�


�	


            (4.41)    

( ) ( )[ 1] [ 1] [ ] 1 [ ]    (peak)
i

i

out out
L L

in out sw in outE
k

L Vd n i n i n d n
V V T V V

⎛ ⎞
⎜ ⎟+ = ⋅ + − + ⋅ −
⎜ ⎟− ⋅ −
⎝ ⎠
���	��
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   (4.42)  

DPCMC with sampling frequency 1MHz 
 
DPCMC with sampling frequency 10MHz 
 
OCPC with sampling frequency 1MHz 
 
OCPC with sampling frequency 10MHz 
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Fig. 4-28 Diagram block model of OCPC control law 

 

As it can be observed in (8.75), this control law depends on some converter 

parameters (inductance, switching period and input voltage) which should be 

known a priori. These parameters establish a static gain which determines the 

final variation to the duty-cycle command, i.e. the change in control effort signal 

[4.19] . Therefore, the predictive current module Gci(z) is shown in Fig. 4-29. 

 

      (4.43) 
 

Fig. 4-29 OCPC: One-cycle predictive control action in the duty-cycle generation 

4.3.5.1  One-Cycle Predictive Current-Mode Control example 

An example of OCPC control law is illustrated in this point using equations 

(4.41) and (4.42) for valley and peak current respectively. The design 

specifications of this example are the same that were used to develop our second 

experimental prototype (see point 5.3).  

Furthermore, the control-to-output voltage transfer function presented in (4.40) 

is used in this example. Referring the digital filter of the external voltage 

regulation loop, the “setpoint weighting” algorithm has been employed. Finally, 

the coefficients of this filter are obtained using the pole-zero matching method 

following the design guidelines imposed in [4.17] and obtaining: 
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Fig. 4-31 OCPC closed-loop pole-zero map 

 

In addition, the output command signal of the external voltage loop and the 

sensed inductor reference are compared in the bottom trace of Fig. 4-32 and Fig. 

4-33. The result of this comparison is the input signal of the predictive current 

module. Thus, the duty-cycle generation for the peak-current case is shown in 

Fig. 4-34. In short, this control law is equivalent to Digital Peak Current-Mode 

since the maximal inductor current value is fixed by the external voltage loop. 

 
 

Fig. 4-32 Simulation of valley OCPC for a 5A load step change. 

 
 

Fig. 4-33 Simulation of peak OCPC for a 5A load step change. 
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Fig. 4-34 OCPC: duty-cycle generation  

4.3.6 Feedforward regulation 

4.3.6.1  Introduction 

Feedforward compensation (FF) is employed usually to eliminate or to reduce 

the effects of source and load disturbances in the converter output voltage. Thus, 

it has been illustrated in previous points how the control-to-output voltage 

transfer function of the PWM-controlled Buck converter working in CCM 

conditions depends on the input voltage (for the VMC case) and on load changes.  

In general, FF compensation improves line and load regulation obtaining 

enhanced steady and dynamic performances. FF general block diagram is 

represented in Fig. 4-35 where two types of FF regulation for PWM-controlled 

converters are found: Input-Voltage Feedforward (IVFF) [4.1] and Output-

Current Feedforward (OCFF) [4.20]   

In IVFF, the PWM gain varies proportionally to the input voltage. Thus, the 

loop gain is constant for the whole range of input voltages becoming independent 

of this parameter. In practical terms, the duty-cycle varies inversely with the 

input voltage keeping constant the product D·Tsw·Vin and giving constant gain to 

the input-to-output voltage transfer function [4.21] . Thus, input noise is reduced 

considerably and line regulation is augmented noticeably.  

Otherwise, OCFF method is useful to improve the transients states of the 

converter, i.e. to get better dynamic responses face up load-current variations. 

This method is based on the minimization of the open-loop output impedance of 

the converter to reduce load disturbances effects [4.22] . 
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Fig. 4-35 Feedforward block diagram: IVFF (left), OCFF (right) 

4.3.6.2  Input Voltage Feedforward  

IVFF is applied mainly in VMC to improve the line regulation of the converter 

compensating input-voltage disturbances. In contrast, it is not normally applied 

in CMC because of the inherent rejection of CMC to input-voltage disturbances.  

Nevertheless, some designers apply this FF technique in CMC to improve the 

system stability [4.23] . Then, Fig. 4-35 allows finding the output voltage small-

signal value which depends on the input-voltage, source and reference 

disturbances: 
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design obtaining an enhanced line regulation and decreasing considerable the 

effects of input-voltage disturbances.  

 

 
Fig. 4-37 Open-loop gain Bode Diagram: without IVFF (top) and with it (bottom)  

 

 Fig. 4-38 Transient response for different input-voltages: 3V (red), 5V (blue), 12V (green) during 
a 5A load variation 
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4.3.6.3 Output Current FeedForward 

Load variations are quite usual in VRs and they modify considerably the 

converter behavior because they are not detected by the internal current loop.  

Thus, OCFF is applied in CMC to improve the transient response against load 

variations. In contrast, some works have verified that OCFF is not useful in VMC 

due to the resonant behavior of the output impedance [4.24]  

Similarly than in the IVFF case, the small-signal output voltage value for 

OCFF regulation is: 
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 (4.51) 

As in the previous case, the term depending on the output-current disturbance  

should be cancelled: 

_ff OCFF sense m od outK H F G Z⋅ ⋅ ⋅ −                         (4.52) 

_
out

ff OCFF
sens od m

ZK
H G F

=
⋅ ⋅

                             (4.53) 

In our case a Kff_OCFF values among 0.1 and 1 provides minimal output 

impedance owning a value equals to [4.24]   

out sens od mZ H G F= ⋅ ⋅                            (4.54) 

Next example illustrates the effects of the addition of OCFF in an Average-

DCMC converter. The digital implementation of this technique is shown in Fig. 4-

39 and results for a 20A load variation are exposed in Fig. 4-40. In this last 

figure, it can be stated how transient response is improved thanks to the addition 

of OCFF loop. 

 

 

 

 

 

 
 

Fig. 4-39 Digital OCFF loop 

 
Digital OCFF 
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Fig. 4-40 Digital Average-Current Mode Control + OCFF for a 20A load variation 

4.3.7 Current-Sharing 

4.3.7.1  Introduction 

An equilibrated power distribution among phases, i.e. Current-Sharing (CS), is 

required in multiphase interleaved converters to obtain the intrinsic advantages 

of this architecture.  

Furthermore, CS prevents inductor saturation and reduces thermal stress 

enlarging the life of the power converter. Theoretically, if symmetric layouts for 

each phase are used, almost identical propagation times and equivalent trace 

resistances may be obtained and, therefore, uniform current distribution among 

phases. In practical terms, commutation cells of a multiphase converter are not 

perfectly alike.  

There are two factors causing non-equilibrated current distribution in steady-

state. The first source of mismatching is the tolerances of the components 

involving each phase. For instance, trace inductors, drain-to-source MOS and 

inductance parasitic resistances are not exactly equal for each phase causing 

some differences in the impedance per phase. The second unbalance factor is 

caused by disturbances affecting the duty-cycles of each phase. These undesired 

disturbances may cause that each phase own different duty-cycles [4.25]  

As a result, several compensation techniques to balance correctly inductor 

currents are found in literature. These methods are classified into three major 

groups: “Voltage-Droop” (VD) methods, “Active Current-Sharing” (ACS) 

techniques and CPC modulations. In general, ACS is the most widespread CS 

schema.  
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Loadline Regulation 775_VR_CONFIG_ 04B

-0,18

-0,16

-0,14

-0,12

-0,1

-0,08

-0,06

-0,04

-0,02

0
0 20 40 60 80 100 120

Supply current (A)

D
ev

ia
tio

n 
fr

om
 V

ID
 (V

)

maximal

typical

minimal

4.3.7.2  Voltage-Droop Current Sharing 

VD methods are based on the variation of the phase impedance to compensate 

possible divergences among them. Thus, there are several ways to generate the 

required VD. The simplest method is to try to design the multiphase converter 

with equivalent impedances per phase. In practical terms, this is hard to achieve 

due to tolerances of the components. In consequence, this method is used only in 

non-tight regulated applications. Another variation consists on placing a serial 

resistor per phase to compensate their impedance mismatching. This second 

method contains a major drawback due to the power dissipation caused by this 

series resistor. In short, this technique is not applicable in high-current 

multiphase converters like VRs. 

Nowadays, VRs require variable output impedance according to “loadline” 

specifications as it is illustrated in Fig. 4-41. As a matter of fact, the higher 

output current required, the lower output voltage delivered to the load according 

to the following linear relation:  

loadline out out droopV V I R= − ⋅          (4.55) 

Then, the output impedance in VRs should be modified depending on load 

variations. As a general rule, loadline regulation is used for a double reason. The 

first goal is to deliver a constant supply power to the load modifying the output 

voltage according to load current changes. The second aim is to reduce transient 

voltage peaks when a load variation is produced [4.26]  

Anyway, this method cannot be independently used to achieve CS and it should 

be added to some kind of ACS method or CPC to achieve uniform current 

distribution among phases. 
 

 

 

 

 

 

 

 

 

 

Fig 4-41  Loadline Regulation for 775_VR_CONFIG socket. 
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4.3.7.3  Active Current-Sharing 

ACS varies slightly the duty-cycle of each phase to equilibrate their 

corresponding inductor currents. Previous studies have verified that ACS obtains 

enhanced current distribution and output voltage regulation compared with 

others CS techniques.  

ACS is normally achieved thanks to an additional loop associated to one or 

more principal regulation loops. This supplementary loop imposes almost 

identical inductor currents for all phases.  

ACS can be obtained using two different topologies [4.27] . First architecture is 

known “Democratic active Current Sharing” (DCS) scheme and the second one is 

based on a “Master–Slave” (MS) design. Thus, the major difference between both 

schemas is the weight (µ1-n) assigned to each phase. Some practical 

implementations of ACS and MS techniques and their simulation results can be 

found in the Appendix A. Both ACS working principles associated to VMC are 

shown in Fig. 4-42.  

 
Fig. 4-42 General schema of VMC for a n-phased parallel power converter associated to individual 
ACS loop for each phase. 

 

However, ACS can be achieved using two approaches. The first topology 

consists on to design individual CS loops for each phase, i.e. particular 

compensation networks for each phase. This configuration lets some redundancy 

in case of failure despite of a higher complexity. This topology is presented in Fig. 
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4-42 as a general schema of ACS for DCS and MS principles. This architecture is 

also shown in the left side of Fig. 4-43 for DCS associated to VMC and in the Fig. 

4-44 for DCS associated to CMC. These concepts are also functional for MS+VMC 

and MS+CMC respectively changing the weight of coefficients per phase as it is 

exposed in next points.  

On the other hand, ACS can be also used associated to a single compensation 

network as it is shown in the right side of the Fig. 4-43 (for DCS+VMC). Then, 

the output of the common compensation network is modified according to the 

current mismatch error ( )
Li i
e

 
for each phase in its corresponding CS loop. Thus, 

this slight modification of the command reference per phase origins different 

duty cycles in each phase achieving uniform current distribution among phase. 

On the whole, this approach simplifies considerably the complexity of the system. 

4.3.7.3.1  Democratic Current-Sharing 

DCS does not discern a “privileged” phase giving identical weights to each 

phase. Therefore, DCS imposes equal inductor currents among phases by means 

of a common inductor current reference (iLref). This reference is imposed to be the 

average inductor current circulating through the power converter.  

1

( ) ( )
n

Lref Li i
i

i s i s μ
=

= ⋅∑          (4.56) 

With:  

1

1
i

n

i
nμ

=

=   (4.57) 

Nevertheless, DCS should be associated with VMC and CMC to complete a full 

regulation system using individual or common compensation networks as it has 

been commented in previous point. Thus, DCS can be linked to VMC with 

individual CS loops as it is shown in the right side of the Fig. 4-43. Hence, each 

DCS loop works as follows. First of all, current mismatch error signals (
Li
e ) 

should be calculated for each phase as follows: 

1

( ) ( ) ( )
L ref i

n

i i L L
i

e s i s i s
=

= −
         

(4.58) 

After, this current error signal is introduced in some kind of compensator (this 

step is not always required) to create a mismatch command variable. 



Chapter 4                                                                              Analysis of digital control laws for VRs 
 

112 

1

( ) ( ) ( )
i Li

n

i cs i i
i

u s G s e s
=

= ⋅
         

(4.59) 

 
Fig. 4-43 Democratic Current Sharing using Voltage-Mode Control for an n-phased parallel power 
converter with individual (left) and common (right) compensator network 
 

This mismatch command variable is added to the general voltage reference of 

the external loop in order to take into account possible divergences in the 

inductor current in each phase. In this point, different common voltage references 

are introduced in each single compensation loop as follows:  
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Beyond this point, the voltage regulation of each phase becomes standard as it 

has been explained in point 4.3.2 with the difference that an individual voltage 
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regulation is completed for each phase. These individual compensation loops 

generate slight differences in the final duty-cycle of each phase to compensate the 

unbalanced currents. Hence: 

( )
1

( ) ( ) ( ) ' ( ) ( )
i ii

n

v c td ref i out
i

u s G s G s V s V s
=

= ⋅ ⋅ −
       

(4.61)
 

And: 

1

( ) ( )
i ii

n

v m
i

d s u s F
=

= ⋅
          

(4.62) 

In a different way, the working principle changes if a common voltage 

compensation network is used for all phases. In this approach, first steps are the 

same that those exposed in (4.56) to (4.59). Now, the mismatch command variable 

is added to the output of the common voltage compensation network ' ( )Viu s  to 

create different command signals for the PWM.  

( )
1

( ) ' ( ) ( )
ii i

n

v v i
i

u s u s u s
=

= +          (4.63) 

With 

1

' ( ) ( ) ( ) ( ( ) ( ))
i

n

v c td ref out
i

u s G s G s V s V s
=

= ⋅ ⋅ −
       

(4.64) 

Finally, these different command signals are introduced in the PWM to 

generate the duty-cycles per phase as it has been shown in (4.62). Both DCS 

schema associated to VMC are shown in Fig. 4-43. 

On the other hand, CMC can be also used individually or with a common 

voltage compensator as it is illustrated in Fig. 4-44 and Fig. 4-45 

correspondingly. The main difference is the addition of inner current loops and, 

therefore, inductor-current regulation. Thus, if individual CS loops are used, 

equations (4.56) to (4.60) can be also used to find new individual voltage 

references for external voltage loops. Now, the command signal required for the 

DPWM is: 

1
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i ii
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i

u s i s i s
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= −
         

(4.65)
 

With: 
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(4.66)
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(4.67) 

 
 

Fig. 4-44 DCS using CMC for a n-phased parallel with individual CS loops 
 

In contrast, if a common voltage compensator network is used to achieve 

individual DCS loops, the current reference for the inner voltage loop is: 
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And the command signal for the DPWM is: 

^ ^ ^
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(4.70) 
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Fig. 4-45 DCS using CMC for a n-phased parallel with common voltage compensator 

 

4.3.7.3.2 Master-Slave Current-Sharing 

 Some power converters do not require identical weight for each phase as 

happens in DCS. Thus, MS topology concedes different weights for each branch. 

 Then, the phase defined with the higher weight is the current reference or 

master phase for the global system. The weight of phases can be varied easily 

changing the gain loop per phase. Thus, the other phases try to attain the same 

current than the master phase. As happened in DCS, the voltage compensation 

network can be common or individual per phase.  

MS topology presents the drawback of a difficult dynamic analysis since each 

slave loop depends on other loops. Thus, if n is high, the complexity of the 

analysis is important [4.28]  

On the other hand, MS-CS should be associated to VMC or CMC and their 
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main difference is that its current reference is not the mathematical average 

current per phase.  

There are three main approaches to select the master phase. First method is 

based on a custom schema where the master phase is selected by the user. This 

schema is known as “dedicated” master control. The main problem of this 

topology is that a failure of the master phase disables the whole system.  

Second approach gives some redundancy to the system and it is called 

“automatic” master control. Here, the phase owning the highest current is 

defined to be the master one. Last variation is to rotate the “master” phase to 

augment the reliability of the system. Nevertheless, the complexity of the system 

is augmented considerably. This is known as “rotating master” [4.29] . The 

simulation schemas and their corresponding results are illustrated in point of the 

8.3 Appendix A. 

4.3.7.4  Current-Programmed Control in multiphase power 

converters 

CPC can be also implemented using multiphase architectures. Then, a voltage 

compensation network imposes the inductor current reference as in the single-

phase case. Therefore, the reference can be designed to be the peak, average or 

valley inductor current. Some simulations schemas can be found in the point 

8.3.7 of the Appendix A. 

4.4 Conclusion  
A theoretical analysis of some digital control laws for VRs systems has been 

presented along this chapter. The main idea was to expose the basis for a 

systematic design of the digital control laws for power converters. In our study 

case, the design procedure was completed with practical examples of the 

synchronous Buck converter. 

According to this design method, the continuous-time and discrete small-signal 

models defining the behavior of the power converter should be found in first 

place. Concerning these small-signal models, several possibilities to find its 

discrete-time description have been studied.  

The second step was the study of the small-signal models of the digital control 
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laws. In response to this point, the discrete-time small-signal models of DVMC 

and DCMC control laws have been developed. In addition, the influence of the 

delay in the digital system has been disclosed. In short, this delay should be 

considered in the final design of the feedback regulation loop since an excessive 

delay weakens completely the system behavior.  

With regard to digital control laws, some design guidelines for a proper design 

have been given and validated with several examples showing the feasibility of 

such control laws. Moreover, most widespread digital filters used for the 

compensation network of the regulation loop have been presented.  

Thus, for our application, DVMC seems a good candidate whereas current 

sharing or a strict control of the inductor currents would be not required. In this 

case, some kind of DCMC should be used. Nevertheless, classical DCMC is 

difficult to implement due to technological problems, e.g. a high sampling-

frequency. Furthermore, it needs very fast ADCs in the current loop and powerful 

digital controllers in order to reduce the delay introduced by the analogue-to-

discrete conversion and the control law algorithm respectively. Later conclusions 

have been verified giving some simulation examples.  

Once the systematic design procedure has been established, several control 

techniques based on those previous have been formulated. These digital control 

methods try to improve the behavior of our system and to reduce the drawbacks 

of classical control laws. To illustrate our purpose, an example of adaptive control 

has been given where the most efficient duty-cycle depending on the load 

variation is calculated and stored in LUT to obtain faster dynamical responses. 

Another example disclosed was “One-cycle Predictive Current” control law. This 

later technique is revealing as an interesting possibility for this kind of 

applications. Actually, it owns the advantages of CMC converters and it is less 

exigent in terms of complexity (sampling frequency) than classical DCMC.   

Another point treated in this chapter is the improvement of DVMC and DCMC 

with the addition of FF techniques. Thus, it has been shown theoretically with 

some examples how these techniques associated to DVMC or DCMC improve the 

converter behavior and reduce the effects of input-voltage and load disturbances 

respectively.  
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As a final point, different ways to achieve uniform power distribution among 

commutation cells of an interleaved multiphase power converter by means of CS 

techniques have been presented giving the diagram blocks of these architectures 

as well as their main working principle equations.  

In short, a theoretical study of the converter and of its digital control laws has 

been completed along this chapter. The practical application of these conclusions 

in a real digitally-controlled power converter is illustrated in next chapter 
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5. SINGLE-PHASE EXPERIMENTAL PROTOTYPES 

5.1 Introduction  
The purpose of this chapter is to show the feasibility of a high-frequency 

digitally-controlled single-phase synchronous power converter. As a result, two 

different types of digital controllers have been employed in order to reach the 

desired technical specifications. 

In view to validate the systematic design procedure exposed along this 

dissertation, the calculation of the power stage for each one of our experimental 

prototypes has been completed in chapter. In the same way, several digital 

control laws for embedded VRs applications which are applied in the present 

chapter have been studied and presented in the chapter four. Thus, the 

conclusions obtained in these previous chapters are the starting point for our 

experimental prototypes.  

To illustrate our purpose, an example of a single-phase digitally-controlled 

power converter is presented along the following sections. This experimental 

prototype is designed for embedded applications requiring low and medium 

supply currents, i.e. embedded laptop µps like those presented in [5.1] . 

Before starting with the practical design, some simulation models validating 

the algorithms exposed in chapter four are presented. The implementation of 

these control laws is exposed in detail in order to obtain a full digitally-controlled 

single-phase synchronous power converter with high performances. Therefore, 

these design steps are developed in deep during next points.  

5.2 Single-Phase DC/DC converter using a fix-
architecture and variable-functionality digital 
controller 

5.2.1  Introduction 

To achieve our first experimental prototype, a digital controller owning fix 

architecture and variable functionality, i.e. a DSC (Digital Signal Controller) has 

been selected. This control stage gives to designers some advantages in the 
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Fig. 5-2 First Experimental prototype made in the LAAS: DSC-controlled single-phase 
synchronous Buck power converter  

5.2.2 The digital controller 

 The control stage is based on the 56F8367EVM evaluation board of Freescale 

Semiconductor. This module owns a 16 bits DSC with a clock frequency of 60MHz 

[5.2] Actually, designers can choose among different programming-modes using 

this DSC. Therefore, algorithms can be implemented using integer, fix-point, 

floating-point or “fractional” operations. This later mode is quite interesting 

because it possesses some mathematical operations which can be used with a 

similar accuracy than in the typical floating-point case but in a lower time than 

this last one. Then, using “fractional” mode, finite-word resolution errors can be 

reduced. Table 5-2 shows the execution times for a simple “add” instruction using 

this DSC.  

 

 
 
 

Table 5-2  Example of the execution time of a single instruction  

5.2.3  The Input Module 

The 56F8367EVM board owns several 12 bits built-in pipeline ADCs. This ADC 

topology presents an acceptable trade-off between resolution and time conversion 

(see point 2.3.2.1). Even so, several pulse clocks are needed to complete a single 

analogue-to-discrete conversion. In the case of the 56F8367EVM board, seven 

pulse clocks are required introducing a 1.7μs delay in the conversion chain.  

“Add” Instruction Mode 
Fix-point  Floating-point Fractional  

cycles 6 110 3 
time 100ns 1.83μs 50ns 
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Obviously, this large delay makes impossible a correct tracking of the 

instantaneous inductor current for values around 1MHz in our application. 

Therefore, it is added to our system an external acquisition board incorporating 

high-frequency ADCs (20MHz) to reduce the delay introduced by this module.  

This input module and its working principle is shown in Fig. 5-3. The main idea 

is to take into account the delay introduced for the pipeline architecture (5 pulse 

clocks in this case) and the propagation time of the inductor DCR current sensor 

previously measured.  

Then, inductor peak-current (shifted by a 15ns delay due to the ADC 

acquisition time) can be gathered. To assure a correct synchronization, the input 

module is based on a D latches schema. This circuit adds the delay introduced by 

the ADC and the current-sensor to the PWM down-pulse time to gather the 

inductor peak-current. Moreover, this acquisition card incorporates a tuning 

system to modify the gain of the acquisition system as well as the delay time for a 

more accurate research of the maximal inductor current value in different 

working points. An example of the inductor current acquisition obtained with our 

real prototype is exposed in Fig. 5-4. 
 
 

 

 
 
 
 
 
 

Fig. 5-3 Input module (left) and its working principle (right) 
 

As regards the required ADC resolution, the output voltage analogue-to-

discrete conversion is more critical in terms of quantization voltage levels. In our 

application, the main constraint is given by the small output-voltage ripple 

imposed in [5.1]  

Then, the minimal resolution needed is 8 bits according to equations shown in 

point 2.3.2. For reasons of simplicity, the same resolution has been selected for 
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the inductor current ADCs in spite of lower resolution ADCs can be used in this 

case. As a result, the minimal inductor current variation that can be detected is 

122mA as it is illustrated in Fig 5-4.  

 

 

 

 
 
 
 
 
 

Fig. 5-4 Inductor current ADC characterization. 
 

As it has commented in point 4.3.3.3.1.2, the delay introduced by this ADC 

should be as small as possible. Hence, there is a design trade-off between the 

accuracy of our current-mode control (minimal current variation detected) and 

the ADC rapidness (number of clock required or a conversion). Therefore, the 

number of bits can be reduced in order to decrease the delay introduced by this 

ADC. Thus, windowed flash ADCs can be used for applications where the 

detection of small changes of inductor current is not required. 

5.2.4  The Output Module 

The main goal of this output module is to generate the duty-cycle of both 

switches using the command signal delivered by the digital control. The work 

principle of the output module is based on the “Fast-clock-counter” method (see 

point 2.3.3.1). Fig 5-5 and 5-6 show its principle working and its real 

implementation respectively. 

 

 

 

 
 
 

Fig. 5-5 Output module working principle 
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As happened in the ADC case, the integrated PWMs of the 56F8367EVM are 

not well adapted for high-frequency applications. For instance, it only owns sixty 

digital steps for a switching frequency of 1MHz, i.e. a resolution lower than 6 

bits. Following (2-6), the required resolution is 11 bits for our application. 

However, this resolution implies a clock frequency of 4096MHz. Obviously, this 

value is not feasible in practical terms in these days. As a result, the generation 

of the PWM in this module is obtained by means of a 12bits DAC (digital-to-

analogue converter) and a comparator. Hence, the working principle is quite 

simple since the digital command signal delivered by the digital controller is 

transformed into an analogue value and compared with a saw-tooth signal in 

order to generate the duty cycle. 
 

 
 

 
 

 

 

 
 
 
 
 
 
 
 

 
Fig. 5-6 Example of Output module for high-frequency applications made in the LAAS 

5.2.5  Digital Control Laws Implementation 

5.2.5.1.1  Introduction 

Some of the digital control laws disclosed in chapter four have been 

implemented using this DSC in order to validate their feasibility in a real high-

frequency application.  

Therefore, the theoretical studies of these digital control laws completed in the 

previous chapter are the focal point for their implementation. Following our 

design method, Simulink/Matlab models validate the power converter and the 

digital control law model in high-frequency applications. These models have been 
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obtained using the S-Function toolbox of Matlab where the digital control law 

algorithm can be integrated directly in C code into our simulation model. Thanks 

to these functions, accurate simulations of the real system are obtained since fix-

point, delay and quantification errors are considered in the model. 

5.2.5.2  Digital Voltage Mode-Control 

DVMC has been explained in detail in point 4.3.2. Thus, the corresponding 

Simulink simulation model is illustrated in Fig. 5-7.  

 
Fig. 5-7 DVMC simulation model 

 

The first step is to identify and to calculate the delay introduced by our digital 

architecture. Then, this delay is summarized in Table 5-3 for this example. As it 

has been disclosed in previous chapters, the control-to-output voltage transfer 

function varies according to the input voltage and the load. The worst case in 

terms of stability is given by the maximal input voltage (12V) and the minimal 

load current (e.g. 2A).  

In response to the test guidelines proposed in [5.1] , 5.7A load-current steps are 

simulated to validate our dynamical tests (i.e. from 13.3 to 19A).  

Concerning the digital filter of the feedback loop, the incremental PID 

algorithm (see point 4.3.2.3) has been used. This topology has been selected 

because its algorithm introduces the lowest delay, i.e. it owns the lowest 

computational cost. After evaluating several approaches for the design of the 

digital filter exposed in [5.3] , the filter coefficients have been calculated by 

means of the pole-zero matching method. 

Thus, the poles and zeros have been assigned directly in the z-plane using the 

discrete-time control control-to-output voltage transfer function exposed in (4.10) 

with its associated delay. 
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Table 5-3  Delay calculation for DVMC  
 

This delay value is extracted from the Table 5.3 for DVMC and it has been 

made round to a multiple integer value of the switching frequency. Another 

possibility is to find the pole-zero assignment directly from the discrete-time 

models found in point 4.3.2.2 obtaining also suitable and very similar results to 

the previous case as it was proved in [5.3]  

By the way, the guidelines for the pole-zero location in both direct digital 

designs in z-plane are the same. Then, the filter coefficient are calculated to avoid 

steady-state error (pole in z=1) and to keep good stability margins in the whole 

range of frequencies. As a matter of fact, our design should assure a minimum 

phase margin of 45º for all frequencies above the crossover one. In this frequency, 

a gain margin higher of 6dB is required [5.3] , [5.4] Actually, the open-loop gain 

should be decreased up to the crossover frequency placing at pole at z=1 

(20dB/dec is recommended). This constant decrease of the open-loop gain allows 

obtaining better transient responses and good rejection to disturbances. Both 

filter zeros (fz1, fz2) should be placed near the resonant frequency (fo) of the power 

converter to achieve good stabilities margins and to enlarge the crossover 

frequency value maximizing the open-loop gain around this resonant frequency. 

Moreover, the second pole of the filter (fp1) should match the zero of the power 

converter (fesr, determined by the ESR output-filter capacitor) to keep a 20dB/dec 

roll-off in the open-loop gain. An additional high-frequency pole (fHF) can be 

added to improve the noise immunity at frequencies around the switching one 

(fsw) imposing a roll-off of -40dB/dec beyond the pole value. Finally, the filter gain 

(kc) should impose the open-loop unity-gain frequency at the desired value 

respecting the stability margins previously explained. In general terms, the 

td (maximal) (ns) 

Programming mode integer fractional 

PWM 457 457

algorithm 4450 2750

ADC 565 565

tsens 20 20

tprop 158 158

Total 5193 3493
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direct pole-filter assignment in the z-plane can be given by:   

       
(5.1) 

 

1 2

:
0.7  ;      0.9  ;        ;      0.3  0.7z o z o p esr sw HF sw

with
f f f f f f f f f= ⋅ = ⋅ = ⋅ ≤ ≤ ⋅     

(5.2)
 

Obtaining: 
(z-0.9922) (z-0.9542)6.5

(z-0.4125)
(

(z+0.5
)  

)
   

( 1)cG z
z ⋅−

⋅
⋅=

⋅
                                       (5.3) 

Fig. 5-8 shows the open-loop gain, discrete-time control-to-output voltage 

transfer function and filter Bode diagrams for this DVMC example. Observing 

this design, it is obvious that fast system responses will be not obtained due to 

the large delay introduced by the digital architecture.  

On the other hand, the closed-system pole-zero map is shown in Fig. 5-9 

validating the stability of the system since all the poles (and also the zeros) of the 

closed-loop system are inside the unity-radius circle. 

 
Fig. 5-8 Bode diagrams for DVMC 

 

. 
  Fig. 5-9 Closed-loop gain pole-zero map  

( ) ( )
( ) ( ) ( )

1 2( )      
1

z z
c c

p HF

z f z f
G z k

z z f z f
− ⋅ −

= ⋅
− ⋅ − ⋅ −
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Finally, a simulation result for our single-phase DVMC synchronous Buck 

converter is shown in Fig. 5-10. It can be noted that line regulation and load 

regulation are validated in this simulation  

 
Fig. 5-10 DVMC: Output voltage and output current for a 5.7A load variation 

 

Last figure shows clearly the influence of the input voltage in the system initial 

transient although its influence is lower than in following transient states 

produced by load variations.  

In consequence, IVFF is required to isolate the control-to-output voltage 

transfer function from the input voltage disturbances. On the other hand, it is 

hard to achieve the time responses imposed in Table 5-1. The reduced value of 

bulk capacitors gives place to higher voltage deviations under transients than 

those proposed in [5.1]  A lower bulk capacitor value has been used in order to 

compensate the significant influence of the delay introduced by the digital 

architecture. Therefore, this delay imposes a slow system as it is illustrated in 

Fig. 5-10 making difficult to reach the desired performances. Thus, open-gain 

loop may be augmented and this causes some instabilities.  

Then, the main problem lies in the low DSC clock frequency. Thus, the 

algorithm is the main source of delay as it is seen in Table 5-3. In addition, a 

simple PID digital filter has been chosen to reduce the algorithm delay instead of 

more complicate filter structures owning better performances. To sum up, the 

solution is to employ a digital controller working with higher clock frequency. 
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Next, some experimental results of DVMC obtained with our experimental 

prototype are presented in next figures. In Fig. 5-11, an example of the steady-

state behavior in their critical case (minimal current load and maximal input 

voltage is shown. Alternatively, the output voltage ripple is given in Fig. 5-12 and 

a 5.7A load step variation in Fig. 5-13. 

 
Fig. 5-11 DVMC: Steady-state for Iout=1.8A and Vin=12V 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 5-12 DVMC: Output-voltage ripple in steady-state for Iout=1.8A and Vin=12V 

 
Fig. 5-13 DVMC: 5.7A load variation, Vin=12V 
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Table 5-4 summarizes the simulation and experimental performances of our 

digitally-controlled power converter. Note the good matching between both 

results. 

 
Table 5-4  Comparison of simulation and experimental performances for DVMC 

5.2.5.2.1 Digital Voltage Mode Control based on Look-Up-

Tables 

This variation of DVMC is based on the control law exposed in point 4.3.4. 

Thus, the built RAM devices of the 56F8367EVM are used to store the most 

efficient set of duty-cycles depending on load variations. That means the digital 

controller recovers the most performing duty-cycle for each load variation in 

order to achieve zero-voltage error in steady conditions.  

A comparison of classical DVMC and this new implementation are shown in 

Fig. 5-14 (simulation) and Fig.5-15 (real implementation). In this example, a 5A 

load variation is illustrated using a simple PI digital filter to reduce at maximum 

the delay in both loops. Moreover, in this example, the value of the bulk 

capacitors has been reduced to 660uF in order to improve the response time of 

the power converter is spite of the higher deviation under load variations.   

 

 

 
 

 

 

 

 

 
Fig. 5-14 Simulink Comparison of classical DVMC and DVMC using LUT 

DVMC 

GM  PM Crossover frequency 

9.95dB 44.3º 17kHz 

Maximal deviation of the output voltage 
under a 5.7A load step; ΔVout (%) 

Settling time at 2% under a 
5.7A load step; tset (µs) 

simulation 15% 450 

practical 10% 450 
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DVMC 
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Vout (200mV/div) 
 
 
 
 
 
 
Iout (5A/div) 
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Fig. 5-15 Experimental Comparison of classical DVMC and DVMC using LUT 
 

Thus, it can be observed in the simulation model an important reduction of 

settling times in the initial transient using DVMC with LUT. However, the 

initial voltage overshoot are incremented too. In contrast, the transient response 

to load variations is not improved compared to classical DVMC.  

5.2.5.2.2 Digital Voltage Mode Control with Input Voltage 

Feedforward. 

The addition of IVFF associated to DVMC has been studied in point 4.3.6.2 

where it has been shown the influence of the input-voltage variations in the 

power converter transient response. Moreover, it has been proved by means of 

simulations how the effects of input-voltage disturbances in the converter output 

can be eliminated by means of the addition of an input-voltage feed-forward loop.  

Therefore, this new feature to our prototype has been added obtaining the 

experimental results shown in Fig. 5-16. 

Fig. 5-16 DVMC with IVFF for Vin=3, 5 and 12V 
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L max

v ref out

i max L

If I [n] < I  then     
   e [n]=v [n]-v [n]   DVMC

supervisory control of I [ ] else
   e [n]=i [n]-i [n]      DCMC
end if 

L n

⎧
⎪ →⎪⎪
⎨
⎪ →⎪
⎪⎩

5.2.5.2.3 Digital Voltage-Mode Control with over-current 

protection 

The classical DVMC law presented in the previous point owns a major 

drawback. In fact, inductor current is not tracked and, therefore, the power 

converter is not protected against over-currents.  

To solve this problem and to avoid failures in case of over-currents, a protection 

based on an inductor-current supervision has been added to the previous control 

law. This security module calculates the inductor-current and the output-voltage 

error signals at the beginning of each algorithm execution. Then, if the inductor 

current is higher than a given value or current reference, the system will work as 

a DCMC system in order to compensate this undesired current error. The main 

difference between this variation of DVMC and the classical DCMC law exposed 

in 4.3.3 is that the reference of this last one is not imposed by the external 

voltage feedback loop. Thus, this current reference is imposed by the user at the 

maximal allowed inductor-current delivered to the load. Otherwise, the system 

works as in the DVMC case.  

The working principle is illustrated in (5.4). Therefore, the voltage and current 

error signals are processed by two different digital filters depending on which 

error is calculated. 

  

 
       (5.4) 

 

 

An experimental result of the current-limitation effect is shown in Fig. 5-17 

using our adapted DVMC control law. In this example, an over-current protection 

is activated when the current tends to be higher than the reference level (15A in 

this case). Thus, the DCMC loop is used to prevent a failure of the system due to 

the increase of the output-current levels delivered to the load.  

Then, it can be observed how the current compensation is active when inductor-

current is higher than this imposed value. On the contrary, when inductor 

current is under this critical value, the voltage compensation network of the 

DVMC loop imposes again the desired voltage and current values which are 1V 
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and 10A in respectively in this example.  
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5-17 DVMC with a 15A current limitation 
 

This new feature added to classical DVMC allows protecting the system in case 

of over-currents. However, this control law owns a major drawback when it is 

implemented in this low clock-frequency DSC. Actually, the output-voltage droop 

produced when the supervisory control loop is working may own important 

values as happens in Fig. 5-17. This droop is produced by the lack of the output 

voltage regulation in this case and it can be solved adding to the inner current 

loop a cascade voltage regulation loop as in the classical DCMC (see point 4.3.3).  

However, it is shown in point 4.3.3.3 that the delay introduced by the algorithm 

should be reduced as much as possible to avoid problems in the analogue-to-

digital conversion of the inductor current. These performances are not achieved 

using this DSC, therefore; high-frequency classical DCMC is not possible using 

this digital controller. Therefore, OCPP incorporates a cascade voltage regulation 

loop which corrects previous problem. The practical implementation of OCPP 

using this DSC is presented in next point. 

5.2.5.3  One-Cycle Predictive Current-Mode Control 

OCPC is a good candidate for digitally-controlled power converters since it owns 

the benefits of DCMC without the necessity of a high sampling frequency for the 

inductor current as it has been explained in point 4.3.5.  

Then, OCPC allows an easy implementation of the cascade output-voltage and 

inductor-current regulation. 

This control law has been implemented in our DSC using the equations (4.41) 

and (4.42) of the chapter 4 for valley and peak current respectively cases. In this 

point, an example of valley current is illustrated. Therefore, the coefficients of the 

Vout  (200mV/div) 
 
 

Iout (5A/div) 
Current limitation active at 15A 

1V, 10A: normal operation mode  

500μs/div 
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digital filter for the external voltage regulation loop are obtained using the 

design guidelines imposed in [4.17] . Hence, the pole-zero matching method is 

used and the control-to-output-voltage presented in (4.40).  

( )      
( 1)

(z-0.9990) (z+0.04)14
(z-0.416) (z+0.19)cvG z

z
=

− ⋅
⋅

⋅
⋅

         (5.5) 

1( )      
( 1

0
)ci

zG z
z −

⋅=            (5.6) 

Fig. 5-18 shows the open-loop gain Bode diagrams and the system stability 

margins. Fig. 5-19 shows the pole-zero maps of the system. 

 

 

 

 

 

 

 
 
 
 
 
 

Fig. 5-18 Bode diagrams for OCPC 

Fig. 5-19 Pole-zero map for OCPC 
  

Hence, the simulation model for this control law is shown in Fig. 5-20 where the 

addition of the inductor-current regulation loop can be observed. 
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Fig. 5-20 OCPP simulation model 

Next figure shows the simulation results for OCPC when an 8A load step is 

produced in Fig. 5-21. As it can be noticed, results are quite interesting because 

maximal deviation under transients is reduced considerably keeping the same 

settling times.  

 

 

 

 

 

 

 
 
 
 
 

Fig. 5-21 OCPP: Output voltage and output current for a 8A load step  
 

Finally, some results obtained with our prototype are shown in Fig. 5-22 and 

they are compared with those obtained with our simulation model in Table 5-5. 

Fig. 5-22 OCPC: Steady-state for Iout=·3A 

duty cycle 
 
 
Vout 
 
 
IL 
 

Vin=12V     Vin=3V 

             
Iout 



Chapter 5                                                                              Single-Phase Experimental Prototypes 
 

138 

Fig. 5-23 OCPC: 6.6A load variation 
 

 
 Table 5-5   OCPC: Comparison of simulation and experimental results 

5.2.6 Synthesis 

The purpose of this part of the chapter was to show the feasibility of a high-

frequency power converter using a simple digital controller owning fix-

architecture and variable-functionality, e.g. a DSC. This controller owns some 

advantages in the way to implement the algorithm as an easy adaptation to 

changes by means of variations in its software code. Actually, an example of a 

digitally-controlled single-phase synchronous power converter designed for low 

and medium supply currents embedded applications has been presented along 

this part. These power requirements are oriented to supply embedded 

microprocessors of laptop computers. In particular, our supply specifications are 

focused on the Dual-Core Intel Xeon® processor.  

To begin with the practical design, some of the digital control laws disclosed in 

chapter 4 have been implemented using this DSC to validate the theoretical 

OCPC 

GM  PM Crossover frequency 

6.16dB 49.7° 19.5kHz 

Maximal deviation of the output 
voltage  ΔVout (%) 

Settling time at 2% 
tset (µs) 

simulation 5% 300 

practical 6% 300 

 
Vout 
 
 

 

 
 
IL 



Chapter 5                                                                              Single-Phase Experimental Prototypes 
 

139 

conclusions exposed along this previous chapter.  

As a result, our method to design digital control laws for high-frequency 

applications based on Simulink/Matlab models has been developed during this 

part. These simulation models have been obtained using the S-Functions of 

Matlab where the digital control law algorithm in C code can be integrated 

directly into the simulation model. Thanks to these modules, accurate 

simulations of the real system can be obtained since fix-point, delay and 

quantization errors are considered in the model. In consequence, the validation of 

our control laws in these models is a previous step before to be implanted in the 

experimental prototype. 

As concerns the control laws, some examples of DVMC and OCPC control are 

given in this section. Referring to DVMC, some variations of the classical control 

law in order to try to improve the performances achieved with the classical 

control law has been presented. For instance, a new feature which protects the 

system of undesired over-currents has been added to this classical law.  

However, DVMC owns a major drawback when it is implemented in this low 

clock-frequency DSC even if this new module is added. Actually, the output-

voltage droop produced when the supervisory control loop of this new feature is 

working may be important. This droop is produced by the lack of the output 

voltage regulation during this supervisory mode. This problem can be solved 

adding to the inner current loop a cascade voltage regulation loop as in the 

classical DCMC.  

Nevertheless, is has been shown in point 4.3.3.3 that the delay introduced by 

the algorithm should be reduced as much as possible to avoid problems in the 

analogue-to-digital conversion of the inductor current. These performances are 

not achieved using this DSC, then, high-frequency classical DCMC is not possible 

using this digital controller.  

According to last conclusion, OCPC digital control law has been implemented 

using the Freescale’s DSC. This technique incorporates a cascade voltage 

regulation loop which corrects previous problem. In short, OCPC is a good 

candidate for digitally-controlled power converters since it owns the benefits of 

DCMC without the necessity of a high sampling frequency for the inductor 

current loop as it has been explained in point 4.3.5.  
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Then, OCPC has been implemented in this DSC and it has been proved how 

this law improves the power converter behavior reducing the voltage deviation 

and the settling times under load variations.  

Nevertheless, these settling times are still important compared with classical 

analogue systems in spite of the specifications imposed in the introduction of this 

chapter are almost accomplished. Then, the unique solution is to replace the 

digital controller for another owning a higher clock-frequency, i.e. a FPGA.   

5.3 Single-Phase DC/DC converter using a variable-
architecture and variable-functionality digital 
controller 

5.3.1  Introduction 

FPGA are nowadays a powerful tool to develop full digitally-controlled 

applications due to its high-frequency clock. As a result, frequency constraints 

and delay problems found in our preceding prototype can be solved since the 

algorithm is processed now in a lower time than in the previous case.  

Actually, the total delay introduced by the digital architecture is a fraction of 

the power converter switching period. This is especially important since the duty 

cycle can be refreshed in real time rejecting disturbances in a much reduced time 

than in the previous case. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5-24 FPGA-controlled single-phase power converter  
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The general schema of this prototype is quite similar to the one shown in Fig. 5-

1 replacing the DSC and DPWM module by the new digital controller. Once more, 

the technical specifications are quite similar to those exposed in [5.1] . The reader 

can remind them in Table 5-1.  

Nevertheless, in this new prototype, the power stage has been replaced for 

another which is able to deliver a maximal supply current of 36A to the load 

[3.22] . This increase of the power converter output current permits to supply 

whichever embedded laptop microprocessors exposed in [5.1] . Thus, our second 

experimental prototype is shown in previous Fig. 5-24.  

5.3.2 The digital controller 

 The control stage is based on the Virtex-5 FF676 ProtoBoard which can 

incorporate different FPGA of the Xilinx’s LX series [5.5] . In our case, the 

XC5VLX50 FPGA [5.6] has been used. This device owns a very-high clock 

frequency permitting a drastic reduction of the several delays like those of the 

control law algorithm, DPWM generation and discrete-time signal acquisition.   

5.3.3 The Input Module 

The Virtex-5 FF676 ProtoBoard does not own built-in ADCs. In consequence, an 

external analogue-to-discrete conversion stage should be added to the digital 

controller. In this case, the same input module containing 8 bits ADCs has been 

used than in the point 5.2.3 employing the same working principle. 

5.3.4  The Output Module 

The duty-cycle for both switches can be generated directly from the digital 

controller using HDL techniques. Once more, the “Fast-clock-counter” method 

(see point 2.3.3.1) has been employed but with a reduced resolution due to 

frequency and consumption constraints. Thus, the output module owns a final 

resolution of 8 bits (or 3.9 ns in time domain terms) which is the minimal 

theoretical resolution available to avoid limit-cycle oscillations in our study case.  
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5.3.5  Digital Control Laws Implementation 

5.3.5.1  Introduction 

DVMC and OCPC control laws have been developed using this digital control in 

order to improve the system performances obtained with our previous 

experimental prototype. All over again, these control laws has been simulated 

using Simulink/Matlab models to validate them. After, they have been 

implemented these control laws using VHDL code in the FPGA. This systematic 

design procedure is disclosed in next points. 

5.3.5.2  Digital Voltage Mode-Control 

The simulation model diverges slightly from those used previously. Indeed, the 

algorithm is not integrated into the simulation model. Moreover, the digital filter 

is implemented using conventional Simulink blocks (see Fig. 5-25). In this case, 

the “Setpoint weighting” version (parallel algorithm) has been used [4.9] . This 

topology has been selected due to the FPGA skill to execute efficiently parallel 

operations and, therefore, to reduce drastically the delay introduced by the 

algorithm. This algorithm treats independently the three branches of the filter 

reducing the noise effects in the output. Nevertheless, an accurate 

synchronization among branches is required using this digital controller by 

means of a state-machine.  

 
Fig. 5-25 DVMC simulation model 

 

In keeping with the filter coefficients calculation, they are obtained in a similar 

way than in the previous experimental prototype, i.e. using the pole-zero 

matching technique. In this case, a conservative delay of 1µs has been considered 

in our design even if the total delay of the system is lower than this value. Using 
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(4.32) and (4.33) and giving b=1 and N=3, the filter coefficients are: 

( )
( )

( )

[ ] [ ] [ ] [ ]

:    P [n]= 0, 2080 [ ] [ ]

            I[n ]= [ 1] 0, 0010 [ ] [ ]

            D [n] 0, 8848 [ 1] 0, 5521 [ ] [ 1]

ref

ref

u n P n I n D n

w ith V n u n

I n V n u n

D n u n u n

= + +

⋅ −

− + ⋅ −

= ⋅ − − ⋅ − −

    (5.7) 

It is worthy to note, that these coefficient should be standardized following (5.8)  

and their quantization should be taken into account 
[ ]'[ ]   w ith :   '[ ]  quan tized  coefficien t value
[ ]

                                   [ ] quan tized  coefficien t value
                                  [ ] m axim al coefficien t value
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k n non
k n

= =

= −

=

   (5.8) 

Fig. 5-26 shows the open-loop gain, discrete-time control-to-output voltage 

transfer function and filter Bode diagrams for this DVMC example. Obviously, a 

faster system than in the previous case is obtained due to the important 

reduction of the delay. Moreover, the closed-loop pole-zero map is shown in Fig. 5-

27 validating the stability of the system since all the poles (and also the zeros) of 

the closed-loop system are inside the unity-radius circle.   

 
  

 

Fig. 5-26 DVMC: Bode diagrams  
 

Next, some simulation results of DVMC are presented in Fig. 5-28. Moreover, 

the corresponding experimental results are shown in Fig. 5-29 for a steady-state 

behavior with a 2A static load (keeping Vin=12V).  

In the Fig. 5-30, the output voltage ripple for this case is illustrated and a 5.8A 

load step change is represented in Fig. 5-31. It can be observed that performances 

have been improved respect to the previous case. 
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Fig. 5-27 DVMC: Closed-loop pole-zero map 
 

 

 

 

 

 

 

 

 

 
 
 

Fig. 5-28 DVMC: Output voltage and output current for a 5.7A load variation  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5-29 DVMC: : Steady-state for Iout=1.8A and Vin=12V 
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Fig. 5-30 DVMC: Output-voltage ripple in steady-state for Iout=1.5A and Vin=12V 

 

 
Fig. 5-31 DVMC: Output voltage and output current for a load step of 5.8A  

 

To sum up, the simulation and experimental performances are summarized in 

Table 5-6 where it can be stated the good matching between both results. 

 
Table 5-6  Comparison of simulation and experimental performances for DVMC 

DVMC 

GM  PM Crossover frequency 

6.97dB 47.9º 47.8kHz 

Maximal deviation of the output 
voltage  ΔVout (%) 

Settling time at 2% 
tset (µs) 

simulation 3% 250 

practical 7% 280 
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5.3.6 Conclusion 

The main motivation of this chapter was to show the feasibility of a single-

phase high-frequency digitally-controlled synchronous power converter for low 

and medium supply current loads. These power requirements are oriented to 

supply embedded microprocessors of laptop computers. Therefore, two examples 

for this kind of high-frequency VR applications has been developed.  

To illustrate our purpose, the power stage and the control laws disclosed in 

chapters three and four respectively has been implemented along this chapter. 

 Referring the digital control laws, a systematic design methodology based on 

simulation models has been employed to optimize the performances of our 

experimental prototype.   

The digital controller for the first experimental prototype is based on a DSC 

module, i.e. that its architecture cannot be modified. For this experimental 

prototype, Simulink/Matlab models have been used to validate the algorithms 

which are used later in the real prototype. These simulations models have been 

obtained using the S-Functions of Matlab where the digital control law algorithm 

in C code can be integrated directly into the simulation model. Thanks to these 

modules, accurate simulations of the real system can be obtained since fix-point, 

delay and quantization errors are considered in the model. In consequence, the 

validation of our control laws in these models is a previous step before to be 

implanted in the experimental prototype. 

As concerns the control laws, some examples of DVMC and OCPC control have 

been given. Referring to DVMC, some variations of the classical control law have 

been made in order to try to improve the performances achieved with this 

classical one. For instance, a new feature which protects the system of undesired 

over-currents has been added to this classical law. However, the low clock-

frequency of this digital controller causes inefficient operation modes of these 

new control laws. 

To solve this problem, OCPC digital control law has been implemented. This 

technique incorporates a cascade voltage regulation loop which corrects the lack 

of inductor-current regulation. OCPC is a good candidate for digitally-controlled 

power converters since it owns the benefits of DCMC without the necessity of a 

high sampling frequency for the inductor current. 
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Then, OCPC has been implemented efficiently in this DSC proving how this law 

improves the power converter behavior reducing the voltage deviation and the 

settling times under load variations.  

Nevertheless, these settling times are still important even if specifications 

imposed in the introduction of this chapter are accomplished. Then, the most 

appropriated solution is to replace the digital controller for another owning a 

higher clock-frequency, i.e. a FPGA.   

Therefore, our second experimental prototype is based on a FPGA digital 

controller. In this case, DVMC control law is implemented for the same VR 

application than in the previous case. The main difference between both power 

stages is that last one can supply whichever laptop embedded microprocessor 

since it can deliver up to 36A. 

Then, DVMC has been tested using a FPGA and it has been stated how the 

static and dynamic performances of the digitally-controlled converter have been 

improved considerably. Nevertheless, OCPC control law using this digital 

controller cannot be implemented for reasons of time.  

However, our second prototype proves that FPGAs is an appropriate candidate 

for digitally-controlled power converters, especially for those multiphased. In 

consequence, our future work will consist in to develop an experimental prototype 

of a multiphase high-frequency digitally-controlled synchronous power converter 

for high supply current loads oriented to desktop embedded microprocessors 

using a FPGA as digital controller. 
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6.  CONCLUSION, PERSPECTIVE  AND FUTURE WORK. 

To achieve efficient embedded power supply modules, several parameters like 

weight, size, robustness and cost should be taken into account. In the case of 

switching DC/DC converters, switching frequencies over the MHz should be 

considered to reduce their size additionally. 

 Therefore, our efforts have been focused on the study and design of digitally-

controlled power supply architectures covering a wide range of loads from the 

watt (portable applications) up to hundred of watts (telecommunication servers 

or automotive applications). As a result, a large variety of embedded supply 

modules for computer µps have been considered in our work research.   

Hence, the first part of this dissertation introduces “Distributed Power Supply 

architectures” which are replacing progressively classical centralized supply 

units due to their enhanced efficiency and robustness. These distributed 

topologies are based on several adaptation blocks to optimize the power 

conversion chain from the electrical grid up to the load. The last conversion 

blocks just before the loads and which must be placed as close as possible to them 

are known as PoL or VR depending on the kind of load to supply.  

Indeed, PoL and VR topologies minimize transfer losses and achieve optimal 

power matching between the converter and its corresponding load. Actually, the 

parts involving a digitally-controlled PoL and VR as well as their most suitable 

control techniques have been studied to find future answers for present 

technological challenges. 

In general terms, a digitally-controlled power converter is composed by four 

specific blocks: the power converter, an acquisition or input stage, a digital 

controller and an output module or DPWM.  

Thus, our theoretical analysis of the power stage and its experimental design is 

presented in chapter three. As concerns the power converter sizing, VRs are not 

classical DC/DC power converters since they own specific design requirements.  

Therefore, the theoretical calculation of the devices involving a high-frequency, 

high-current and low-voltage VR power converter has been presented. Moreover, 

some real examples of how to calculate the power stage for a single-phase and a 

multiphase synchronous Buck power converter have been given using the design 



Chapter 6                                                                           Conclusion 
 

152 

rules described along this dissertation.  

In this point, the optimal number of phases for our application have been 

studied proving that 4, 5 and 6-phased structures give us the best trade-off 

among efficiency, complexity, ripple values, harmonic content and cost. 

Furthermore, different ways to sense the inductor current are shown. As a 

result, the “Inductor DCR current-sense” technique has been studied in detail. It 

seems an interesting method for VR applications because it is a lossless 

technique in which an accurate voltage image of the inductor current can be 

obtained. Then, the feasibility of this technique has been validated with some 

example of high-frequency VRs for a wide range of loads including a real 

multiphase converter. This last concept is especially important since the 

knowledge of the inductor current is a crucial point for an accurate control of the 

converter and also to obtain an equilibrated current distribution among phases 

obtaining the intrinsic benefits of this architecture 

Concerning digital control laws presented in chapter four, their theoretical 

analysis for VRs applications is explained. Thus, a systematic design 

methodology based on simulation models is employed to optimize the final 

performances of our experimental prototypes. In fact, the continuous-time and 

discrete small-signal models defining the behavior of the Synchronous Buck 

converter is found in first place. As regards to these models, several possibilities 

for finding their discrete-time description are compared. The second step 

following our design method is to find the small-signal models for DVMC and 

DCMC control laws. 

An important point in the control law design is the influence of the delay in 

digital systems. In short, the importance to take this delay into consideration in 

the final design of the feedback regulation loop has been shown since an 

excessive delay weakens completely the system behavior.  

Thus, DVMC seems a good option for our application because it is quite simple 

to implement and reasonably robust to high delay values. On the other hand, 

classical DCMC is difficult to implement due to technological problems, i.e. a high 

sampling frequency is required. In consequence, it needs very fast ADCs and 

digital controllers in order to reduce the delay introduced by the analogue-to-

discrete conversion and the control law algorithm. In brief, DCMC is less robust 
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to high delay values than DVMC.  

 A promising candidate for digitally-controlled power converters is “One-cycle 

Predictive Current” control law since it owns the advantages of DCMC converters 

(inductor-current is tracked in this case) and it is less exigent in terms of 

complexity (lower sampling frequency is required) than classical DCMC. This 

technique incorporates a cascade voltage regulation loop which corrects the lack 

of inductor-current regulation of DVMC. Thus, this control law is recommended 

for future VR applications. OCPC has been implemented efficiently in our first 

experimental prototype showing its feasibility and how this law improves the 

power converter behavior reducing the voltage deviation and the settling times 

under load variations. 

Another point treated along this dissertation is the improvement of DVMC and 

OCPC techniques with the addition of FF techniques reducing the effects of 

input-voltage and load disturbances respectively.  

In order to illustrate and validate our purpose, the implementation of two 

experimental single-phase high-frequency digitally-controlled synchronous Buck 

power converters oriented to supply embedded microprocessors of laptop 

computers has been shown. Then, the first experimental prototype is based on a 

DSC module as digital controller associated to an external input and output 

module. These modules have been added to improve the input and output 

resolution of our digitally-controlled system and to avoid limit-cycle oscillations 

problems. For this experimental prototype, Simulink/Matlab models are used to 

validate the algorithms which will be used after in the real prototype. These 

simulations models have been obtained using the S-Functions of Matlab which 

allows introducing the digital control law algorithm in C code into the simulation 

model. Thanks to these models, accurate simulations of the real system are 

obtained since fix-point, delay and quantization errors are considered in the 

model. In consequence, the validation of our control laws in these models is a 

previous step before to be implanted in the experimental prototype. 

Nevertheless, this first experimental prototype cannot reach the technical 

specifications for VR applications in all the cases due to its low clock-frequency. 

Thus, the duty cycle cannot be refreshed cycle-by-cycle due to the large delay 

introduced by the control law algorithm. As a consequence, disturbances cannot 
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be efficiently rejected in real time. Then, the most efficient solution is to replace 

the digital controller for another owning a higher clock-frequency, i.e. a FPGA 

like in our second experimental prototype. Moreover, the power stage of this 

second prototype can supply whichever laptop embedded microprocessor since it 

can deliver to the load up to 36A. Thus, DVMC law has been implemented using 

the FPGA controller obtaining acceptable results since static and dynamic 

performances have been improved considerably respect to our previous 

experimental prototype. Nevertheless, OCPC control law has not be implemented 

using this digital controller for questions of time.  

Anyway, FPGAs seem an appropriate choice for digitally-controlled power 

converters, especially for those multiphased thanks to their high clock-frequency 

and their possibility to manage several operations in parallel.  

With regard to our future work perspectives, it is obvious than an important 

part of the work still has not been completed. The immediate work is to complete 

OCPC control law in our second prototype and to implement DVMC and OCPC 

associated to any CS loop in the multiphase one. These works are currently in 

progress and it is expected to obtain some results in the few next months. At the 

present moment, our results are not satisfactory.  

On the other hand, the possibilities in this power management field are huge. 

This dissertation serves as a starting point in order to achieve efficient embedded 

PoL and VR applications in the coming years. On one hand, the important 

evolution of digital controllers like FPGAs allows to designers a large margin of 

possibilities to design high-performance control systems. On the other hand, 

there are a lot of promising techniques which are very effective in analogue 

systems and which are not still developed in the digital field. Moreover, the 

flexibility of digital controllers still allows to push the limits of these control laws 

and to implement non-conservative control methods which are unfeasible in 

analogue-controlled systems. 

Relating to our experimental work, each block can be improved in the future. 

For example, the input acquisition board works with high-resolution pipelined 

ADCs. As it has been proved in Fig. 2-18, Windowed-Flash ADCs owning reduced 

resolution and, therefore; minimal delay can replace those pipelined without an 

important loss of accuracy in our feedback regulation. This change would allow 
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us to reduce considerably the delay introduced by ADCs, especially in the critical 

case of the inductor current loop. On the other hand, more efficient architectures 

are necessary for the DPWM. In fact, “fast-clock counter” topology only permits to 

obtain a reduced resolution as it has been explained along this dissertation. 

Then, high-resolution DPWM topologies can be implemented using HDL 

description techniques, i.e. a FPGA as shown in point 2.3.3.1.  

As concerns to the multiphase power converter, a more complete small-signal 

modelling is necessary in order to evaluate the interactions of one phase among 

others. Furthermore, in our small-signal analysis, the high-frequency effects of 

bulk and decoupling capacitors as well of the inductance has not been considered. 

Then, these classical passive element models should be replaced for those more 

complex including these frequency-dependant effects.  

On the other hand, the feasibility to obtain very high-frequency controls using 

FPGAs has been validated. Thus, the control for each phase could be generated 

independently without additional CS loops. Moreover, FPGAs allows us to use 

more complex digital filters in the feedback loops obtaining enhanced stability 

margins and more efficient transient responses against load variations.  

Concerning to PoL and VRs applications, digital control could improve 

considerably their efficiency if the control law of the power converter is changed 

according to load conditions. Thus, PFM is advised for low-consumption working 

mode and PWM is preferred otherwise. 

In short, we still have come a long way to go in this interesting power 

management field where the recent evolution of efficient digital controllers have 

changed the traditional design of these kind of embedded power supplies. Our 

work team hopes that this dissertation was useful for the reader and for their 

future designs. 
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8. APPENDIX A: SMALL-SIGNAL MODELS  

8.1 Power Converter 

8.1.1 Continuous-time 

In this point, the equations to discern the continuous-time small-signal model of 

the synchronous Buck power converter have been developed. A detailed 

formulation of this continuous-time model can be found in a previous work [4.3]  

and main steps have been summarized in this appendix. Thus, first step is to find 

the two working modes of the converter during on the switching period. These 

modes vary depending on both switch status as it can be seen in Fig. A-1.  

 

 

 

 

 

 
 

Fig. A- 1 Power converter topologies depending on switch status 
 

The first step is to find the state-space matrix (see Table A-1) in Continuous 

Conduction Mode (CCM) taking as state-variables the inductor current (il(t)) and 

the capacitor voltage (vc(t)). Parasitic effects are considered to find the real 

converter transfer functions. 

out

X(t) A·X(t) + B·Vin     with   X(t)    and    X(t)=
V (t) = C·X(t) + D·Vin 

dil
ildt

dvc vc
dt

•
•

⎛ ⎞
⎧ ⎫ ⎜ ⎟ ⎛ ⎞⎪ ⎪= = ⎜ ⎟⎨ ⎬ ⎜ ⎟

⎜ ⎟ ⎝ ⎠⎪ ⎪⎩ ⎭ ⎜ ⎟
⎝ ⎠

                      (8.1) 

Previous to find the open-loop small-signal model, the average-value converter 

model should be calculated. This model provides an approximated idea of the 

converter behavior during the whole switching period giving us a description of 

the average values of the state variables depending on the duty-cycle (d).  

To find this average model, (8.5) and (8.7) should be combined finding:  

 
( ) ( )
( ) ( )

1 1 2 2

1 1 2 2

· · · · (1 )

· · · · (1 )
in in

o u t in in

X p A X B V d A X B V d

V C X D V d C X D V d

•

= + ⋅ + + ⋅ −

= + ⋅ + + ⋅ −

     (8.2) 

                          iL                 vc                                                                                                       iL                 vc 
       SW1 ON                     SW2 ON 
       SW2 OFF                             Vout    SW1 OFF                Vout 

   0 ≤ t ≤ D·Tsw      D·Tsw  ≤ t  ≤ Tsw 

SW1 is in its ON-state      SW1 is in its OFF-state       
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Table A- 1 State-Space matrix for the Buck converter 

 

 

1· - ·( ) -     

·   

out lout ds out

out
out out

out

dilL Vin il R R V
dt

VdvcC il i il
dt R

⎧ = +⎪⎪
⎨
⎪ = − = −
⎪⎩

                                           (8.3)  

1
·1 · - · ·

1 1· · ·

·· ·

out cout out
lout ds

out out cout out cout

out

out out cout out cout

out cout out
out

out cout ou

R R Rdil Vin il R R vc
dt L R R R R

Rdvc il vc
dt C R R R R

R R RV il vc
R R R

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + −⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠

⎨
⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

= +
+ t coutR+

                 (8.4)

out
1

1 1

1

· -R1    1
( )

    B
-1   0                

( ) ( )

·C  =       

out cout
lout ds

out out cout out out cout
out

out

out out cout out out cout

out cout out

out cout ou

R RR R
L R R L R R LA

R
C R R C R R

R R R
R R R

⎛ ⎞⎛ ⎞−
+ + ⎡ ⎤⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎢ ⎥⎜ ⎟= = ⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟+ +⎝ ⎠

+ 1

  

0
                                D

0t coutR

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎛ ⎞ ⎡ ⎤⎪ ⎪=⎜ ⎟ ⎢ ⎥+⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

    (8.5) 

2· - ·( ) -     

·   

out lout ds out

out
out out

out

dilL il R R V
dt

VdvcC il i il
dt R

⎧ = +⎪⎪
⎨
⎪ = − = −
⎪⎩

                                                           (8.6) 

2
·1 · - · ·

1 1· · ·

·· ·

out cout out
lout ds

out out cout out cout

out

out out cout out cout

out cout out
out

out cout out

R R Rdil il R R vc
dt L R R R R

Rdvc il vc
dt C R R R R

R R RV il vc
R R R R

⎧ ⎛ ⎞⎛ ⎞ ⎛ ⎞
= + + −⎪ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠

⎨
⎛ ⎞⎛ ⎞ ⎛ ⎞⎪ = −⎜ ⎟⎜ ⎟ ⎜ ⎟⎪ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠⎩

= +
+ + cout

                   (8.7) 

out
2

2 2

2

· -R1    
0( )

    B
0-1                

( ) ( )

·C  =       

out cout
lout ds

out out cout out out cout

out

out out cout out out cout

out cout out

out cout out cout

R RR R
L R R L R R

A
R

C R R C R R

R R R
R R R R

⎛ ⎞⎛ ⎞−
+ +⎜ ⎟⎜ ⎟+ + ⎡ ⎤⎝ ⎠⎜ ⎟= = ⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟⎜ ⎟+ +⎝ ⎠

⎛
⎜ + +⎝

2

  

0
                                D

0

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎞ ⎡ ⎤⎪ ⎪=⎟ ⎢ ⎥⎪ ⎪⎣ ⎦⎠⎩ ⎭

    (8.8)

D·Tsw  ≤ t  ≤ Tsw 

0 ≤ t  ≤ D·Tsw   
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And, reformulating last equations, it can be obtained:     

  (8.9)

       

With coefficients:  

out

e e

e

· -R1    
( )

    B
-1   0               

( ) ( )

·C  =       

out cout
lout ds

out out cout out out cout
out

out

out out cout out out cout

out cout out

out cout out

R RR R d
L R R L R R LA

R
C R R C R R

R R R
R R R

⎛ ⎞⎛ ⎞−
+ + ⎡ ⎤⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎢ ⎥⎜ ⎟= = ⎢ ⎥⎜ ⎟

⎢ ⎥⎜ ⎟ ⎣ ⎦⎜ ⎟+ +⎝ ⎠

+ + e

0
                                       D

0coutR

⎧ ⎫
⎪ ⎪
⎪ ⎪
⎪ ⎪⎪ ⎪
⎨ ⎬
⎪ ⎪
⎪ ⎪⎛ ⎞ ⎡ ⎤⎪ ⎪=⎜ ⎟ ⎢ ⎥⎪ ⎪⎣ ⎦⎝ ⎠⎩ ⎭

           (8.10) 

 
 

Last system gives us the average representation of the Buck Converter. This 

model is reproduced using Simulink in the Fig. A-2. In this model, the steady 

value of state-space variables is shown. These steady-state values are 

represented by the average-state matrix, i.e. Ae0. 

( ) 1 0· ·      o
inX Ae Be V

−
= −          (8.11) 

With: 

( )
1

1 out 2 0

1

1 2 out cout

2
1

2

   
Re-1     

C · Re1 ;  Be    
Re Re         0

· Re ;  Re ;   Re R +R
( )

1 Re 1 · Re
Re

outo
out

out out

out cout out
lout ds

out cout out cout

out out o

D
L

LAe

C L
R R RR R
R R R R

L C L

ς

ς

−

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥= = ⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦⎢ ⎥

⎣ ⎦

= + + = =
+ +

⎛ ⎞
= + =⎜ ⎟

⎝ ⎠
· lout ds out

ut out out cout

R R R
C R R

⎛ ⎞+ +
⎜ ⎟+⎝ ⎠

   (8.12) 

And: 

1
1 ·Vg·DL

lout ds out

X I
R R R

= =
+ +

        (8.13) 

out
2

R ·Vg·Dc
lout ds out

X V
R R R

= =
+ +

        (8.14) 

 

 

1· 2· 1 2 2·

1· 2· 1·

1· 2· 2

1· 2·

· ·(1 ) ( )·
· ·(1 ) ·
· ·(1 )
· ·(1 ) 0

Ae A d A d Ae A A d A
Be B d B d Be B d
Ce C d C d Ce C
De D d D d De

= + − = − +⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪= + − =⎪ ⎪ ⎪ ⎪→⎨ ⎬ ⎨ ⎬= + − =⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪= + − =⎩ ⎭⎩ ⎭

· ·
· ·out

Xp Ae X BeVg
V Ce X DeVg

•

= +
= +

ds 2 1 2with : R = ( R )·  as the steady-state value of the drain-to-source resistanceds ds dsR R D+ −
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· ·out
out

lout ds out

R Vg DV
R R R

=
+ +

         (8.15)

 
Fig. A- 2 Buck Converter switched-model and output voltage (top), output current (middle) and 
inductor current (bottom)

  

The linear-model can be found replacing (8.16) in (8.9): 
^ ^

^ ^

( )  ;          ( ) ;

( )  ;   ( )  ;

in in

out

in

out out

x t X x v t V v

v t V v d t D d

= + = +

= + = +
                 (8.16) 

Obtaining: 

( ) [ ]

( )

 ^
· ^ ^ ^ ^ ^ ^

0 0 0 0
1 2 1 2 1

 ^ ^
· ^ ^ ^

0 0 0
1 2

· · ( ) · · · · ·
  

· · · ·

in in in in

out in

x Ae x Be V A A X B B V d Ae x Be V B V d

v Ce x De V C C X d Ce x

⎧
⎪ = + + − + − = + +⎡ ⎤⎪ ⎣ ⎦
⎨
⎪

= + + − =⎡ ⎤⎪ ⎣ ⎦⎩

       (8.17) 

And, finally: 
 ^  
· ^

 ^
·

 ^
· ^

out out out

·1  ·    
·( )

-1                         
·( ) C ·(R +R )

out cout out
lout ds

out out cout out out cout

out

out out cout

R R Rdil dilR R
L R R L R Rdt dtx

R
dvc dvcC R R
dt dt

⎛ ⎞
⎛ ⎞⎛ ⎞ −−⎜ ⎟

+ +⎜ ⎟⎜ ⎟⎜ ⎟ + +⎝ ⎠⎜ ⎟⎜ ⎟= = ⋅⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠⎜ ⎟

⎝ ⎠

  

^ ^in

 

D V

  0   0

in
out out

V dL L

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟+ ⋅ + ⋅
⎜ ⎟ ⎜ ⎟⎜ ⎟

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 (8.18) 

 

 
^

 ^
·

 
^

·             out cout out
out

out cout out cout

dil
R R R dtv
R R R R

dvc
dt

⎛ ⎞
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎜ ⎟= ⋅⎜ ⎟ ⎜ ⎟+ +⎝ ⎠
⎜ ⎟
⎜ ⎟
⎝ ⎠

               (8.19)  
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This procedure to find the open-loop small-signal transfer functions was 

developed in detail in a previous work obtaining next results [4.3] . 

• Input voltage-to-inductor current transfer function: 

[ ]^ ^

^

( ) = ^ 2

0

(1 ) ( )
( ) ( ( )) ( )

L out cout out
ii s

out out cout out out out ds cout out L cout out out cout out L ds
io d

s C R R DIG
s L C R R s L C R R R R R R R R R R RVin

= =

+ ⋅ ⋅ + ⋅
=

⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ + + ⋅ + + +
 (8.20) 

 

• Input voltage-to-output voltage transfer function:                                                       

[ ]^ ^

^

( ) = ^ 2

0

(1 )
( ) ( ( )) ( )

out cout out out
oi s

out out cout out out out ds cout out L cout out out cout out L ds
in io d

s R C R DVG
s L C R R s L C R R R R R R R R R R RV

= =

+ ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ + + ⋅ + + +
   (8.21) 

• Control-to-inductor current transfer function: 

 
[ ]^ ^

^

( ) = ^ 2

0

(1 ) ( )
( ) ( ( )) ( )

L out cout out in
id s

out out cout out out out ds cout out L cout out out cout out L ds
io Vin

s C R R VIG
s L C R R s L C R R R R R R R R R R Rd

= =

+ ⋅ ⋅ + ⋅
=

⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ + + ⋅ + + +
(8.22) 

 

• Control-to-output voltage transfer function: 

[ ]^ ^

^

( ) = ^ 2

0

(1 )
( ) ( ( )) ( )

out cout out out in
od s

out out cout out out out ds cout out L cout out out cout out L ds
io Vin

s R C R VVG
s L C R R s L C R R R R R R R R R R Rd

= =

+ ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ + + ⋅ + + ⋅ + + +
 (8.23) 

• Open-loop output impedance transfer function: 

^ ^

^
2

( ) = ^ 2

0

( )
( ) ( ( ( ))

out out out out cout out out out cout lout out lout
out s

out out out cout out out cout lout out lout cout out
out d Vin

s R L C R s R L C R R R RVZ
s L C R R s L C R R R R R RI

= =

⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅
=

⋅ ⋅ ⋅ + + ⋅ + ⋅ ⋅ + ⋅ + +
   (8.24)  

8.1.2 Discrete-time 

8.1.2.1 First approach. Discrete-time behaviour 

In this first approach, the parasitic elements are not considered and the low-

ripple approach is used where input and output voltages are almost constant 

during this switching period 

Hence, inductor current should be sampled in equally-time intervals, which 

means, constant sampling frequency. For an easy formulation, inductor current 

for present switching period is considered as the goal which should be reached at 

the end of the current switching period as shown in Fig. A-3.  

Thus, the continuous-time behavior of the inductor current is defined by: 

1 2( ) (0) (1 )  L L sw swi t i m d T m d T= + ⋅ ⋅ + ⋅ − ⋅                (8.25) 
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Fig. A- 3 State-space variables evolution in discrete-time 

 

The discrete-time behavior of the converter state-space variables is: 

[ ] [ ] [ ] [ ]1 21 (1 )L L sw swi n i n m d n T m d n T= − + ⋅ ⋅ + ⋅ − ⋅              (8.26) 

[ ] [ ] ( ) [ ]1 2 21L L sw swi n i n m m d n T m T= − + − ⋅ ⋅ + ⋅                (8.27) 

Where m1 and m2 are the inductor current slopes for the ON-time and OFF-time 

periods respectively: 

1 2;  in out out

out out

V V Vm m
L L
− −

= =                                                                                     (8.28) 

[ ] [ ] [ ]1 in out
L L sw sw

out out

V Vi n i n d n T T
L L

= − + ⋅ ⋅ − ⋅                                     (8.29)  

In order to formulate correctly state-space matrix, last equation should be put 

forward in spite of this approach only is valid if low ripple hypothesis is 

considered; i.e. input and output voltages are almost constant  

[ ] [ ] [ ] [ ]1 1in out
L L sw sw

out out

V V ni n i n d n T T
L L

+ = + ⋅ + ⋅ − ⋅                 (8.30) 

Similarly than in the inductor case, the output voltage evolves as: 

[ ][ 1] [ ] [ 1]sw out
out out L

out out

T V nV n V n i n
C R

⎛ ⎞
+ = + ⋅ + −⎜ ⎟

⎝ ⎠
               (8.31) 

Next step is to find the discrete-time state-space matrix for the converter. Thus, 

inserting (8.30) in (8.31). 
[ ] [ ][ 1] [ ] [ ] [ 1]sw in ou t ou t

ou t ou t L sw sw
ou t ou t ou t ou t

T V V n V nV n V n i n T d n T
C L L R

⎛ ⎞
+ = + ⋅ + ⋅ ⋅ + − ⋅ −⎜ ⎟

⎝ ⎠
           (8.32) 

  
 
 
              
   
                                         d[n]·Tsw                                        d[n+1]·Tsw 

                             
          m1    m2   m1 

              

             
        
         
         iL[n-1]              ipeak[n]                                     iL[n]                     ipeak[n+1] 
 
 
 
         vout[n-1]                         vout[n] 
 
            t    
                            Ton[n]                               Ton[n+1] 
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Hence:                                    

2 21[ 1] [ ] 1 [ 1] [ ]
1

sw sw sw
out out in

sw out out out out out

out out

T T TV n V n V d n i nT C L C L C
C R

⎛ ⎞
⎜ ⎟ ⎛ ⎞
⎜ ⎟+ = ⋅ ⋅ − + ⋅ ⋅ + + ⋅⎜ ⎟⋅ ⋅⎜ ⎟ ⎝ ⎠+⎜ ⎟⋅⎝ ⎠

  (8.33) 

Now, the discrete-time state-space matrix can be formulated and Z-Transform 

should be applied to obtain the discrete-time model.  

2

                 1                                   
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[ 1] [1 1  1-

1 1
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−⎛ ⎞
⎜ ⎟
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+⎛ ⎞ ⎜ ⎟⎛ ⎞ ⎛ ⎞= ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ ⎛ ⎞⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ ⋅⎜ ⎟⎜ ⎟⋅⎜ ⎟ ⎜ ⎟ ⎝ ⎠+ +⎜ ⎟ ⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠⎝ ⎠
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1

in sw
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V T
L

d n
V T

T L C
C R

⎛ ⎞
+⎜ ⎟

⎝ ⎠

⋅⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⋅ +⎜ ⎟⎜ ⎟ ⋅⎜ ⎟⎜ ⎟ ⋅
⎜ ⎟⋅⎜ ⎟+⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

       (8.34) 
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2

2
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( )

              

( )
1

1

L

outw
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in sw
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in sw
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I z
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D z z
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⎜ ⎟
⎜ ⎟

⎛ ⎞⎜ ⎟
⋅ +⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟⎜ ⎟⋅⎝ ⎠

⎜ ⎟
⎝ ⎠
⋅⎛ ⎞

⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⋅ ⋅⎜ ⎟⎜ ⎟ ⋅⎜ ⎟⎜ ⎟ ⋅
⎜ ⎟⋅⎜ ⎟+⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

       (8.35) 

Like in the continuous-time case, the discrete-time transfer function defining 

the converter behavior is defined by: 

( ) 1( )
( ) · · · ( )

( )
L

out

I z
G z z I A B D z z

V z
−⎛ ⎞

= = − ⋅⎜ ⎟
⎝ ⎠

               (8.36)   
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⋅⎜ ⎟+⎜ ⎟⋅⎝ ⎠=
⎛ ⎞⎛ ⎞ ⎛⋅ − ⋅ −

− ⋅ + ⋅ + ⋅⎜ ⎟⎜ ⎟ ⎜⋅ + ⋅ +⎝ ⎠ ⎝⎝ ⎠ ( )
2

( )
sw out

out out out sw

D z z
T R

L R C T

⋅ ⋅
⎞ ⋅
+⎟ ⋅ ⋅ +⎠

     (8.37) 

Hence: 

( )

2
2

2 2 2
2

1

1
( ) ( )

1

sw in

swout out

out out
od

out out out sw out out out sw sw out

out out out sw out out out sw out out out sw

T V zTL C
R CG z D z

R L C T R L C T T Rz z
L R C T L R C T L R C T

⋅
⋅ ⋅

⋅ +
⋅

= ⋅
⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅

− ⋅ + ⋅ + ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ + ⋅ ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠  

(8.38) 

( )
2 2 2

2

1

1
( ) ( )

1

sw in

sw out

out out
id

out out out sw out out out sw sw out

out out out sw out out out sw out out out sw

T Vz zT L
R C

G z D z
R L C T R L C T T Rz z
L R C T L R C T L R C T

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟− ⋅ ⋅
⎜ ⎟+⎜ ⎟⋅⎝ ⎠= ⋅

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅
− ⋅ + ⋅ + ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ + ⋅ ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠

(8.39) 

Previous results become quite complicated if parasitic effects are taken into 

account. Now, the ON and OFF-slopes of the inductor current vary as follows: 

1 2
[ ] [ ] [ ] [ ] [ ] [ ][ ] ;    [ ]   in out L L out L L

out out

V V n i n R n V n i n R nm n m n
L L

− − ⋅ − − ⋅
= =                           (8.40) 

With: ( )1 2 2[ ] [ ]L ds ds dsR n DCR R R d n R= + − ⋅ +              (8.41) 

Repeating last process, the new equations defining the new converter behavior 

are found. Now, the output capacitor voltage is taken as second state-space 

variable. 

[ ] [ ] [ ] [ ]1
1 [ 1] [ ] 1Lin out sw

L L sw c sw L
out out cout out out

R nV R Ti n i n T d n v n T i n
L R R L L

+
+ = + ⋅ ⋅ + − ⋅ ⋅ − ⋅ ⋅ +

+  (8.42) 

[ ]

[ ] [ ] [ ] [ ]

[ 1] [ ] [ 1] [ ]-

1 11 1 [ ]- 1

sw in out sw
c c L sw c

out out out cout out

Lout cout sw cout
L sw L c L

out cout out out out cout out cout

T V R Tv n v n i n T d n v n
C L R R L

R nR R T Ri n T i n v n i n
R R L L R R R R

⎛
+ = + ⋅ + ⋅ ⋅ + − ⋅ ⋅⎜ +⎝

⎞+⋅
⋅ ⋅ + − ⋅ ⋅ + − ⋅ ⋅ + ⎟+ + + ⎠

 (8.43)   
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8.1.2.2  Second approach. Sampled-data formulation of the 

continuous-time model 

Hence, a discrete-time or sampled-data system can be expressed with the 

following system of equation. This later is based on their corresponding 

continuous-time set of state-space matrix as it is shown in (8.9). 
^ ^ ^

^ ^

[ 1] [ ] [ ]

[ ] [ ]

n n n

n C n

x x d
y x

γ+ = Φ⋅ +

= ⋅

⋅
                                                                                   (8.44) 

In the specific case of the Buck converter and using their average 

representation shown in (8.9), it can be deduced the values of the discrete-time 

state-space matrix as follows: 
1 2 2(1 )  sw sw e sw swA D T A D T A T A Te e e e⋅ ⋅ ⋅ − ⋅ ⋅ ⋅Φ = ⋅ = =                                  (8.45) 

( ) ( )1 2 1 2 1[ ]
  0

in

outin

V
LA A x n B B V Bα

⎛ ⎞
⎜ ⎟= − ⋅ + − ⋅ = = ⎜ ⎟⎜ ⎟
⎝ ⎠

                                                      (8.46) 

2

   0

sw

in
A T

outsw sw

V
LT e Tγ α ⋅

⎛ ⎞
⎜ ⎟= Φ⋅ ⋅ = ⋅ ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                           (8.47) 

Equations (8.44) to (8.47) summarize the discrete-time Buck converter model. 

Next, matrix exponentials of previous equation are replaced by their first order 

approximation as follows [4.6]  

2
2

  1             
  

   1

sw

sw

outA T
sw

sw sw

out out out

T
L

e I A T
T T
C R C

⋅

−⎛ ⎞
⎜ ⎟
⎜ ⎟Φ = ≈ + ⋅ =
⎜ ⎟

−⎜ ⎟⋅⎝ ⎠

             (8.48) 

Now, delay can be added in (8.47) to be taken into account.  Delay is only added 

to this block because of the delay effects is considered only in the duty-cycle 

generation. 

( )2

  

   0

sw d

in sw
in

A T t out
out sw

in sw

out out

V T
V

L
Le T

m V T
L C

γ ⋅ −

⋅⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟= ⋅ ⋅ =⎜ ⎟ ⎜ ⎟⋅ ⋅⎜ ⎟ ⎜ ⎟⎝ ⎠ ⋅⎝ ⎠

                                                                (8.49) 

With: 

sw dm T t= −                                                                (8.50) 
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Replacing (8.48) and (8.49) in (8.44) and considering capacitor ESR like the 

dominant parasitic effect ( );cout out L outR R R R� � , it can be obtained: 

 

( )

^ ^      ^

^ ^

  1             
[ 1] [ ] [ ]

   1

[ ]   1 [ ]

sw in sw

out out

sw sw in sw

out out out out out

cout

T V T
L L

n n n
T T m V T
C R C L C

n R n

x x d

y x

γΦ

− ⋅⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟+ = ⋅ +
⎜ ⎟ ⎜ ⎟⋅ ⋅

−⎜ ⎟ ⎜ ⎟⋅ ⋅⎝ ⎠ ⎝ ⎠

= ⋅

⋅

����	���
 ���	��


    

(8.51) 

Like in the previous procedure, the Z-Transform should be applied to obtain the 

discrete-time model using the sampled-time equivalent of  (8.36).  

( ) 1( )
( ) · · · ( )

( )
L

c

I z
X z z I d z

V z
γ−⎛ ⎞

= = −Φ⎜ ⎟
⎝ ⎠

        (8.52) 

( )( )
2

2

1 -

         z 1            
( ) ( )

2 1

in sw sw sw

out out out out out

in sw
sw

out out

sw sw sw

out out out out out out

V T T m Tz
L R C L C

V T T m
L C

X z D z
T T Tz z

R C R C L C

⎛ ⎞⎛ ⎞⋅ ⋅
⋅ − +⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠⎜ ⎟

⎜ ⎟⋅
⋅ + ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

                                  (8.53) 

Thus, the control-to-inductor current transfer function and the control-to-

capacitor voltage are: 

2
2

1 -
( ) ( )

2 1

in sw sw sw

out out out out out
L

sw sw sw

out out out out out out

V T T m Tz
L R C L C

I z D z
T T Tz z

R C R C L C

⎛ ⎞⋅ ⋅
⋅ − +⎜ ⎟⋅ ⋅⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠             

(8.54) 

( )( )
2

2

         z 1            
( ) ( )

2 1

in sw
sw

out out
c

sw sw sw

out out out out out out

V T T m
L CV z D z
T T Tz z

R C R C L C

⋅
⋅ + ⋅ −

⋅
= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠            

(8.55) 

Finally, the control-to-output voltage transfer function is found as follows: 

( )
( )( )

2
2

1 -

         z 1            
( )   1 ( )

2 1

in sw sw sw

out out out out out

in sw
sw

out out
cout

sw sw sw

out out out out out out

V T T m Tz
L R C L C

V T T m
L C

Y z R D z
T T Tz z

R C R C L C

⎛ ⎞⎛ ⎞⋅ ⋅
⋅ − +⎜ ⎟⎜ ⎟⋅ ⋅⎝ ⎠⎜ ⎟

⎜ ⎟⋅
⋅ + ⋅ −⎜ ⎟⎜ ⎟⋅⎝ ⎠= ⋅ ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

                     (8.56) 
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( )( )
2

2

1 - z 1
( ) ( )

2 1

cout in sw sw sw in sw
sw

out out out out out out out
out

sw sw sw

out out out out out out

R V T T m T V Tz T m
L C R C L C L

V z D z
T T Tz z

R C R C L C

⎛ ⎞⋅ ⋅ ⋅ ⋅
⋅ − + + ⋅ + ⋅ −⎜ ⎟⋅ ⋅ ⋅⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠   

(8.57)  

( )
2

2

z 1
( ) ( )

2 1

in sw sw out cout out out out cout out out out cout sw out cout
sw

out out out out
out

sw sw sw

out out out out out out

V T T L R R C L R z R C L R T R R m T m
L C R L

V z Dz
T T Tz z
R C R C L C

⎛ ⎞⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅
⋅ + + ⋅ −⎜ ⎟⋅ ⋅⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

(8.58) 

( )
2

2

z 1
( ) ( )

2 1

in sw sw cout sw cout
cout out out cout sw

out out out out
out

sw sw sw

out out out out out out

V T T R T R mR C z C R T m
L C R L

V z Dz
T T Tz z
R C R C L C

⎛ ⎞⋅ ⋅ ⋅ ⋅
⋅ − ⋅ + ⋅ ⋅ − + + ⋅ −⎜ ⎟⋅ ⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

 (8.59) 

( )
2

2

( ) ( )
2 1

in sw sw cout sw cout
out cout cout out sw

out out out out
out

sw sw sw

out out out out out out

V T T R T R mz m C R R C T m
L C R L

V z Dz
T T Tz z
R C R C L C

⎛ ⎞⋅ ⋅ ⋅ ⋅
⋅ ⋅ + ⋅ + − ⋅ +− + −⎜ ⎟⋅ ⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

   (8.60) 

 
( )

2
2

1
( ) ( )

2 1

in sw sw cout out cout cout
out cout

out out out cout out sw out sw
out

sw sw sw

out out out out out out

V T T R C R R m mm C R z
L C m C R R T L T

V z Dz
T T Tz z
R C R C L C

⎛ ⎞⎛ ⎞⋅ ⋅ ⋅
⋅ + ⋅ ⋅ + ⋅ − − − +⎜ ⎟⎜ ⎟⋅ + ⋅ ⎝ ⎠⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠

 (8.61) 

In the final step, it should be considered that: 

 1d sw d

sw sw sw

t T tm
T T T

−
− = = −          (8.62) 

( )
2

2

( ) ( )
2 1

in sw sw cout out cout cout d
out cout

out out out cout out sw out sw
out

sw sw sw

out out out out out out

V T T R C R R m tm C R z
L C m C R R T L T

V z D z
T T Tz z

R C R C L C

⎛ ⎞⎛ ⎞⋅ ⋅ ⋅
⋅ + ⋅ ⋅ + ⋅ − − +⎜ ⎟⎜ ⎟⋅ + ⋅ ⎝ ⎠⎝ ⎠= ⋅

⎛ ⎞
+ ⋅ − + − +⎜ ⎟⋅ ⋅ ⋅⎝ ⎠     

(8.63) 
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8.2 Current Mode Control 

8.2.1 Power Converter Small-signal Analisys 

8.2.1.1 Continuous-time 

Table A-2 shows the values for several power converters using the Ridley 

Model. 

 

 

 

 

 

 

 

 

 

 

 
 

Table A- 2. Value of the blocks in the Ridley model.  
 

Thus, the duty-cycle signal for the power stage according to the Ridley’s model 

and neglecting source and load disturbances is defined by: 
^ ^ ^ ^ ^

1( ) ( ) ( ) ( ) ( ) ( )m c e L f in r outd s F i s H H s i s K v s K v s⎛ ⎞= ⋅ − ⋅ ⋅ + ⋅ + ⋅⎜ ⎟
⎝ ⎠

 (8.64) 

It is known that : 

^ ^

^
^ ^ ^

( )   ^

0

( )( ) ( ) ( )
( )

L
L id s

io Vin

i si s d s G d s
d s

⋅

= =

= ⋅ = ⋅         (8.65) 

^ ^

^
^ ^ ^

( )^

0

( )( ) ( ) ( )
( )

out
out od s

io Vin

v sv s d s G d s
d s

= =

= ⋅ = ⋅        (8.66) 

Introducing (9.66) and (9.67) in (9.65) and operating, it can be found: 

( )

^

^

( ) ( )
1 ( ) ( ) ( )( )

out m od

m sens e id r od
c

v s F G s
F H H s G s K G si s

⋅
=

+ ⋅ ⋅ ⋅ − ⋅
     (8.67) 

 
Power Converter 

Buck Boost Buck-Boost 
Kf -D·Ki·[1-D/2] -Ki/2 -D·Ki·[1-D/2] 
Kr Ki/2 [(1-D)2·Ki]/2 [(1-D)2·Ki]/2 

G2 1 (for constant-frequency operation mode) 

He(s) 

1+(s/ωn·Qz)+(s2/ω2n·Qz)  
(quadratic approximation valid up to half fsw ) 

s·Ts/(es·Ts-1)  
(exact sample-data to the whole range of  fsw) 

Qz -2/π 
Ki Ri·Ts/L 
ωn π/Ts 
mc 1+(Se/Sn) 

Fh(s) 1/[1+(s/ωn·Q)+(s2/ωn2)] 

Q 1/[π·(mc·(1-D)-0.5)] 
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8.2.1.2  Discrete-time 

Following these guidelines, the inductor current reference (ic[n]) is the final 

goal to achieve: 

[ 1] [ ]

       
( ) ( )       

L c

L c

i n i n

Z
z I z I z

+ =

↓
⋅ =

                                                                                              (8.68) 

And : 

( )
2 2 2

2

1

1
( ) ( )

1

sw in

sw out

out out
c

out out out sw out out out sw sw out

out out out sw out out out sw out out out sw

T Vz zT L
R C

I z z D z
R L C T R L C T T Rz z
L R C T L R C T L R C T

⎛ ⎞
⎜ ⎟ ⋅⎜ ⎟− ⋅ ⋅
⎜ ⎟+⎜ ⎟⋅⎝ ⎠= ⋅ ⋅

⎛ ⎞⎛ ⎞ ⎛ ⎞⋅ − ⋅ − ⋅
− ⋅ + ⋅ + ⋅ +⎜ ⎟⎜ ⎟ ⎜ ⎟⋅ + ⋅ + ⋅ ⋅ +⎝ ⎠ ⎝ ⎠⎝ ⎠       

(8.69) 

Then, the discrete-time control-to-output voltage can be calculated for DCMC as 

follows: 
( )( )

( )
out

oc
c

V D zG z
I z
⋅

=           (8.70)

 

Using (9-38) and (9-39) in (9-70), it can be obtained:  

 1( )

11
1

sw
oc

out

sw

swout out

out out

TG z
C

T z
TR C

R C

= ⋅
⎛ ⎞
⎜ ⎟⎛ ⎞ ⎜ ⎟+ ⋅ −⎜ ⎟⋅ ⎜ ⎟⎝ ⎠ +⎜ ⎟⋅⎝ ⎠

     

(8.71) 

8.2.2 Digital Control Laws 

8.2.2.1  One-Cycle Valley-Current Predictive Control 

As regards the Fig. A-3, the sampled-time inductor current along the switching 

period is formulated in (8.26): 

 ( )1 2 2[ ] [ 1] [ ]L L sw swi n i n d n T m m m T= − + ⋅ ⋅ − + ⋅                (8.72) 

Operating (8.30), the duty-cycle for next switching period is calculated as 

follows: 

( )[ ] [ 1]· [ 1][ 1] [ 1] [ ]
[ ] [ ]

out L L out
L L

in in sw

V n i n R n Ld n i n i n
V n V n T

+ + +
+ = + ⋅ + −

⋅
             (8.73) 
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For an easy practical implementation, parasitic effects are neglected and Vout[n] 

and Vin[n] are considered constant for several switching periods obtaining: 

( )[ 1] [ 1] [ ]out out
L L

in in sw

V Ld n i n i n
V V T

+ = + ⋅ + −
⋅

                         (8.74) 

Taking the inductor current for next switching period as the goal reference (i.e. 

the current reference imposed by the external voltage loop) and considering the 

output-input voltage ratio as the duty-cycle (this is only true for the Buck 

converter topology), one-cycle valley-inductor predictive current is formulated as 

follows: 

 [ 1] [ ] [ ] [ ]
i

i

ou t
c L

in sw e
k

Ld n d n i n i n
V T

⎛ ⎞
⎜ ⎟+ = + ⋅ −
⎜ ⎟⋅
⎝ ⎠
��	�


�	


                                         (8.75)    

8.2.2.2  One-Cycle Peak-Current Predictive Control 

In this case, the inductor current reference is calculated in a similar way than 

in the previous one: 

( )2 1[ 1] [ ] 1 [ ] [ 1]L L sw swi n i n m T d n m d n T+ = + ⋅ ⋅ − + ⋅ + ⋅      (8.76) 

It can be obtained introducing (8.28) in (8.76): 

( )[ 1] [ ] 1 [ ] [ 1]out in out
L L sw sw

out out

V V Vi n i n T d n d n T
L L

−
+ = − ⋅ ⋅ − + ⋅ + ⋅

     
(8.77) 

Hence, the duty-cycle for next switching period is: 

( ) ( )[ 1] [ 1] [ ] 1 [ ]
i

i

out out
L L

in out sw in outE
k

L Vd n i n i n d n
V V T V V

⎛ ⎞
⎜ ⎟+ = ⋅ + − + ⋅ −
⎜ ⎟− ⋅ −
⎝ ⎠
���	��


���	��

    

(8.78) 
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8.3 Continuous-time Current-Sharing schemas. 
This simulation models allows us to compare several CS techniques used in VRs 

and which have been simulated in a 4-phased interleaved DC/DC converter 

owning the values exposed in the point 3.8.3 and which is shown in Fig. A-4. 

 
Fig. A- 4 4-phased DC/DC converter with VMC  

 

 
 

Fig. A- 5  Output voltage (left) and inductor currents (right) 
  

 

Fig. A-5 illustrates like small variations in the phase impedance causes severe 

∆Vdroop=33.6mV  

for Iout=14.5A 

 

Example of loadline regulation 
 

Inductor current mismatch without 
CS 

Phase 3 

Phase 4 

Loadline gain 

Phase 1 

Phase 2 
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mismatches in the inductor currents, thus, CS regulation loop is required.  

8.3.1 DCS+VMC 

 
Fig. A- 6  4-phased DC/DC converter with Democratic Current Sharing and Voltage-Mode Control 

8.3.2 DCS+CMC  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A- 7 4-phased DC/DC converter with Democratic Current Sharing and Peak-Current-Mode 
Control 
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8.3.6 Automatic MS-CS+CMC  

 

 

 

 

 

 

 

 

 
Fig. A- 11 4-phased DC/DC converter with Automatic Master-Slave Current Sharing and 
Current-Mode Control 
 
8.3.7 Interleaved Peak-Current-Mode CS  

 

 

 

 

 

 

 

 

 

 

 
 

Fig. A- 12 4-phased DC/DC converter with Interleaved Peak-Current-Mode Control 
 

 

 

 

 

  Phase 1                                     Phase 2                      Phase 3             Phase 4
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8.3.8  Results for the 4-phased DC/DC converter 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. A- 13  Simulations of a 4-phased DC/DC converter with some Current-Sharing techniques  
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