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Résumé

Les transporteurs routiers de grande envergure ont de plus en plus be-
soin d’outils leur permettant de gérer leurs tournées car ce qu’ils pouvaient
faire à la main avec peu de véhicules devient insurmontable avec une flotte
conséquente. Ces entreprises ont en général un certain nombre de requêtes à
satisfaire. Chacun de ces ordres de transport comprend un ramassage d’un
produit donné à un site de stockage ou de production, et sa livraison à
un autre site. Certains sites, appelés centres de transbordement, permettent
l’échange de produits entre véhicules, et peuvent ainsi raccourcir les tournées
des véhicules de façon significative, induisant pour l’entreprise des économies
non négligeables.

L’entreprise ILOG propose un logiciel, Transport PowerOps (TPO), four-
nissant à ces entreprises à la fois un moteur de calcul de tournées optimisées,
et une interface de visualisation de ces tournées, tout en prenant en compte
la notion de tranbordement. Le moteur est basé sur la programmation par
contraintes, et une heuristique de première solution est appelée avant une
amélioration par recherche locale. Cette approche est satisfaisante mais elle
ne considère pas le problème de façon assez globale, l’obligeant à prendre
certaines décisions qu’elle juge bonnes (car elles le sont localement) mais qui
peuvent s’avérer très douteuses au regard du problème général.

Le but est donc de faire collaborer avec cette méthode déjà implémentée
dans ILOG TPO, une approche plus globale permettant de guider certaines
décisions que la méthode actuelle a des difficultés à prendre. Dans cette thèse,
le choix a été fait de considérer des approches par programmation linéaire,
car un modèle mathématique possède une vue plus générale du problème que
la recherche locale utilisée par ILOG TPO.

Deux modèles ont été d’abord proposés pour résoudre les petites ins-
tances. Le premier est un programme en variables mixtes (Mixed Integer
Program ou MIP) dédié au Problème de Ramassage et Livraison (Pickup
and Delivery Problem ou PDP) avec de multiples extensions telles que le
transbordement. Le second est un modèle écrit sur les mêmes bases de va-
riables et de contraintes que le premier, mais pour un problème plus général,
prenant en compte notamment la séparation de produits. Il s’agit du Pro-
blème de Tournées de Véhicules avec Ramassage et Livraison avec les mêmes
extensions que précédemment. La principale difficulté à laquelle ces modèles
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doivent faire face est la linéarisation des contraintes disjonctives liées à une
condition sur une variable binaire. Nous avons choisi une linéarisation par
des coupes de type grand-M, et avons calculé ces constantes M de façon
à ce qu’elles ne soient pas excessivement élevées. De plus, les coûts sont
difficiles à modéliser car ce sont des coûts industriels et, en particulier, non
linéaires. A cet effet, de nouvelles variables et contraintes ont dû être ajoutées
aux formulations. Pour rendre ces modèles plus rapides à résoudre, plusieurs
améliorations ont été conçues, comme des heuristiques de réduction de la
taille du problème, un algorithme de plans coupants et des coupes dédiées
au problème. Grâce à ces améliorations, nous pouvons obtenir la solution op-
timale en un temps raisonnable pour la plupart des instances à moins de 12
ordres de transport. De plus, malgré les approximations nécessaires à la mo-
délisation du problème, les solutions obtenues sont proches de celles d’ILOG
TPO. Cependant, cette approche est valable uniquement sur les plus petites
instances, car dès que leur taille grandit, la résolution par un solveur du MIP
devient très longue malgré les améliorations proposées.

Sur les plus grandes instances, nous utilisons un autre modèle de type
MIP ainsi qu’une heuristique à deux phases utilisant le moteur de recherche
locale d’ILOG TPO. Ce troisième modèle est différent des autres car il
s’agit d’un programme linéaire en nombres entiers (alors que les autres sont
mixtes), et utilise les aspects de flot du réseau de transport. Il est simplifié
de façon à le rendre rapide à résoudre. En particulier, il lui manque tous
les aspects de temps du problème initial, comme les fenêtres de temps. Il se
base sur un modèle de flot sur les véhicules et un modèle de partitionnement
sur les chemins des ordres de transport, ces deux modèles étant liés par les
contraintes de capacité. Pour chaque ordre de transport, les chemins consi-
dérés sont des chemins de hubs ne pouvant pas contenir d’autres sites, en
partie de façon à réduire le nombre de chemins possibles pour chaque ordre
de transport, et ainsi réduire également la taille du modèle créé. Pour que les
véhicules aient la possibilité d’effectuer plusieurs arrêts sur leur route, nous
proposons une heuristique d’agrégation des sites. Cela a également l’avan-
tage de réduire davantage la taille du problème. Ce modèle étant résolu, nous
lançons une exécution d’ILOG TPO avec les chemins d’ordres de transport
figés, puis à partir de la solution finale de cette exécution, nous relançons
ILOG TPO sans ces indications sur les chemins des ordres. En effet, nous
n’avons aucune certitude qu’absolument toutes les indications sont bonnes,
car notre modèle est très simplifié et ne prend pas en compte notamment le
temps. La deuxième phase permet donc de corriger les petites imperfections
de la première phase, où les chemins des ordres étaient figés.

Les tests ont d’abord porté sur une comparaison entre le moteur de base
d’ILOG TPO et l’heuristique à deux phases. Cette heuristique à deux phases
donne des résultats prometteurs, car les solutions trouvés sont en moyennne
assez proches de celles trouvées par ILOG TPO seul, mais le temps de calcul
est diminué d’un facteur assez conséquent. Ensuite, pour valider la perti-



vii

nence des chemins donnés par le modèle MIP, nous avons comparé l’heuris-
tique avec la même heuristique où les indications sur les chemins des ordres
sont générées aléatoirement. En considérant la moyenne des résultats sur
20 exécutions d’indications aléatoires, nous constatons que le modèle MIP
donne une bien meilleure solution intermédiaire (entre les deux phases), et
une meilleure solution finale, et le temps de calcul est également plus bas.
Ceci prouve que notre approche est intéressante et que, moyennant de petites
modifications ou des paramétrages adaptés, elle pourrait être d’une grande
utilité si elle était intégrée à ILOG TPO. De plus, cette coopération entre
une approche par recherche locale (ILOG TPO) et une approche plus globale
(le MIP) est également intéressant d’un point de vue théorique.
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Introduction

Globalization and the developpement of means of communication are such
that goods travel more and more distance before arriving at their destina-
tion. This also holds for people, as the various means of transportation are
complementary and make any destination easily available. In particular, the
use of road infrastructure to transport goods is becoming more and more
important since it is flexible. Moreover, the routing costs are affordable
for most of the companies working in the area of transportation and logis-
tics. Many of these companies need tools to help them optimize commodity
flows, which is necessary to decrease costs. Indeed, in 2001 in France, the
rate of fuel and salaries and charges represented over 50% in the total cost of
freight transportation (source: Ministère des Transports, de l’Equipement,
du Tourisme et de la Mer). The recent repeated raises of the price of fuel
probably made this figure even higher. Hence, we have to incorporate all the
features of the problem to propose a good compromise, as a complete study
of the problem is useless because of its complexity.

Intermodal transportation (that won’t be tackled in this thesis), pooling
and the fact that the handling of goods usually requires special structures are
the main reasons why transshipment has been a growing activity for several
decades. Transshipment, or cross-docking, allows the exchange of commodi-
ties or passengers between vehicles at intermediate sites called hubs. This
is very important in today’s transportation services since it allows a bet-
ter organization and consolidation of loads which usually implies substential
money savings for transportation companies.

Besides costs, the environmental issues raised by the traffic increase, es-
pecially in road transportation, are now seriously taken into account and it
has become a global concern not to waste fossil fuels and to limit the spillage
of exhaust fumes. Nowadays, global warming is one of the scientists’ main
worries.

ILOG Transport PowerOps (ILOG TPO) is an optimization software
package that provides routing solutions for big companies that can own
hundreds of sites and vehicles. To obtain solutions which satisfy customer
companies, ILOG TPO uses both Operations Research and Constraint Pro-
gramming technologies. ILOG TPO first computes a simple first solution
thanks to a greedy algorithm, and improves it using local search methods.
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Transshipment is one of the hardest features to deal with, as the decisions on
whether to transship each shipment, and to which hub, are of an exponential
complexity.

The objective in this PhD in collaboration with ILOG is to use linear
programming tools to guide the decisions for the first solution heuristic and
the neighbourhood operators. Indeed, the mathematical model has more
insight and a more general point of view of the problem than local search.

In chapter 1, we introduce the real-world problem and explain the context
in which our study takes place. In addition to cross-docking, shipments may
be delivered to an alternate destination site called ZSH (zone-skipping hub)
instead of their regular destination site. Usually, each ZSH is shared by
several shipments and it is similar to a hub since it may gather several
shipments for them to be routed in the same vehicle. The main difference
is that the shipment doesn’t need to be routed through the last part of the
route (between the ZSH and the regular delivery site). On the other hand,
a zone-skipping cost for using a ZSH has to be added to the total routing
costs because the shipments are usually routed from the ZSH to their final
destinations by subcontractors. Other costs are vehicle-dependent. They are
complex and depend mainly on the first and last sites of the vehicle route.

In chapter 2, an overview and a classification of the works on the various
aspects of the routing problem with transshipment are presented. The prob-
lem we tackle has a large vehicle routing aspect, and is particularly close
to the Pickup and Delivery Problem (PDP), since several vehicles have to
perform a set of shipments, each of them having its own pickup and delivery
sites, and a quantity of products to be routed. Of course, we must consider
PDP extensions, such as time constraints and transshipment, to get a better
estimation of our problem. In this chapter, we also underline the similarities
with other well-known problems such as hub location problems and network
flows.

Chapter 3 describes two arc-based Mixed-Integer Programs (MIPs) that
are written to solve the problem on the smallest instances. The formulations
are dedicated to problems close to the PDP, and they have the same con-
straints core, especially time constraints and vehicle flow constraints. Both
models are based on a classical vehicle routing problem formulation using a
3-index binary variable stating whether a given vehicle goes through a given
arc. Time dimension is depicted by continuous variables, which introduces
disjunctive constraints that are linearly modeled with big-M constraints.
This makes the formulations difficult to solve on large-scale instances. To
overcome this, some improvements, such as a cutting-plane algorithm, are
proposed.

In chapter 4, a cooperation between another MIP and ILOG TPO is
proposed to improve the performance of ILOG TPO, particularly on large
instances. The aim is to provide ILOG TPO for a tool that gives shipment
path guidelines in order to let ILOG TPO focus on other decisions. We



3

introduce a simple model that gathers a network flow on vehicles and indi-
cators on shipment paths. No time aspect is modeled here since the focus is
on the network plan and not on scheduling. Then, we propose a two-phase
heuristic for the cooperation between the MIP and the regular ILOG TPO
local search engine. The shipment path guidelines given by the MIP can be
used in various ways, by constraining more or less the basic model of ILOG
TPO.

Finally, chapter 5 presents the results obtained by the cooperation scheme
described in chapter 4 and validates its efficiency on various instances. In
particular, the two-phase heuristic is compared with the ILOG TPO original
engine on both the computation times and the final solution values. Then,
the two-phase heuristic is also compared with the same heuristic whose guide-
lines are randomly generated, instead of being given by solving the MIP.
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Introduction

La mondialisation et le développement des moyens de communication
sont tels que les biens parcourent de plus en plus de distance avant d’arriver
à destination. C’est également le cas pour les personnes, puisque les différents
moyens de transport sont complémentaires et rendent n’importe quelle desti-
nation facilement atteignable. En particulier, l’utilisation des infrastructures
routières pour transporter des marchandises est de plus en plus importante
de par sa flexibilité. De plus, les coûts de transport sont abordables par
la plupart d’entreprises impliquées dans le monde de transport et de logis-
tique. Nombre d’entre elles ont besoin d’outils pour les aider à optimiser les
flux de produits, condition indispensable pour la réduction de leurs coûts
de fonctionnement. En effet, en 2001 en France, la part du carburant et des
salaires et charges représentaient plus de 50% du coût total de transport de
marchandises (source : Ministère des Transports, de l’Equipement, du Tou-
risme et de la Mer). Les hausses récentes et répétées du prix de l’essence ont
probablement rendu cette part d’autant plus grande. Il est donc primordial
d’intégrer toutes les caractéristiques de la problématique afin de proposer un
bon compromis, car une étude complète du problème est inenvisageable de
par sa complexité.

Le transport multimodal (non traité dans cette thèse), le groupement
des marchandises ainsi que le fait que la manipulation des biens ne se fait
pas sans des structures adéquates sont les principales raisons pour lesquelles
le transbordement est depuis plusieurs décennies une activité en expansion.
Le transbordement permet l’échange de produits ou de passagers entre les
véhicules sur des sites intermédaires appelés centres de transbordement (ou
hubs). C’est d’une importance capitale dans les services de transport actuels
car cela permet une meilleure organisation et une consolidation des charge-
ments, ce qui se traduit généralement par des économies substentielles que
réalisent les entreprises spécialisées dans le transport.

En plus des problèmes de coûts, les problèmes écologiques soulevés par
l’augmentation du trafic, et particulièrement de la circulation routière, sont
maintenant pris sérieusement en compte et c’est devenu un intérêt public
de ne pas gâcher les combustibles fossiles et de limiter les rejets de gaz
d’échappement. De nos jours, le réchauffement de la planète est une des
préoccupations principales des scientifiques.
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ILOG Transport PowerOps (ILOG TPO) est un logiciel d’optimisation
qui fournit des solutions applicables à des entreprises pouvant posséder jus-
qu’à des dizaines de milliers de sites et des milliers de véhicules. Pour obtenir
des solutions satisfaisantes pour ces clients, ILOG TPO utilise à la fois la
Recherche Opérationnelle et la programmation par contraintes (PPC). Ce lo-
giciel calcule d’abord une première solution simple au moyen d’un algorithme
glouton, puis l’améliore par des méthodes de recherche locale. Le transborde-
ment est une des caractéristiques les plus dures à traiter, car les décisions sur
le transbordement de chaque expédition (ou ordre de transport), ainsi que le
choix des hubs pour chaque expédition, est d’une complexité exponentielle.

L’objectif dans ce doctorat CIFRE en collaboration avec ILOG est d’in-
tégrer des outils de programmation linéaire pour guider les décisions des
heuristiques de première solution et des opérateurs de voisinage. En effet, le
modèle mathématique a plus de recul et une vue du problème plus générale
que la recherche locale.

Dans le chapitre 1, nous introduisons le problème industriel et expliquons
le contexte dans lequel notre étude prend place. En plus du transbordement,
les ordres de transport peuvent être livrés à un site auxiliaire appelé plate-
forme régionale (Zone-Skipping Hub ou ZSH) au lieu de leur site de livrai-
son attribué. Généralement, chaque ZSH est commune à plusieurs ordres
de transports et est similaire à un hub puisqu’elle peut regrouper plusieurs
ordres pour qu’ils soient pris par le même véhicule. La principale différence
est que l’on n’a pas besoin de déterminer la fin du chemin de l’ordre (entre
la ZSH et le site de livraison normal). En revanche, un coût supplémentaire
d’utilisation de ZSH doit être ajouté au coût total car les ordres sont en prin-
cipe amenés de la ZSH aux destinations finale par des sous-traitants. D’autres
coûts sont attribués à chaque véhicule. Ils sont complexes et dépendent prin-
cipalement des premier et dernier sites de la tournée du véhicule.

Dans le chapitre 2, nous présentons un aperçu et une classification des
travaux sur les différents aspects du problème de tournées avec transbor-
dement. Le problème abordé a un aspect tournées de véhicules important,
et en particulier, il est proche du Problème de Ramassage et Livraison (ou
PDP), car plusieurs véhicules doivent effectuer un certain nombre d’ordres de
transport qui ont chacun leur propres sites de ramassage et livraison, et une
quantité de produits qui doit être acheminée. Bien sûr, nous devons prendre
en compte des extensions du PDP, comme les contraintes de temps et le
transbordement, pour se rapprocher un peu plus de notre problème. Dans ce
chapitre, nous soulignons également les similitudes avec d’autres problèmes
connus comme les problèmes de localisation de hubs et les problèmes de flot.

Le chapitre 3 décrit deux modèles mixtes en nombres entiers (MIPs)
à base d’arcs écrits pour résoudre les plus petites instances. Les formula-
tions sont dédiés à des problèmes proches du PDP, et ils ont la même base
de contraintes, et plus particulièrement les contraintes de temps et celles
concernant le flot de véhicules. Les deux modèles s’appuient sur une formu-
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lation classique de problème de tournées de véhicules et utilisent une variable
binaire à 3 indices qui détermine si un véhicule donné utilise un arc donné.
La dimension de temps est représentée par des variables continues, ce qui in-
troduit des contraintes disjonctives qui sont linéarisées avec des contraintes
grand-M. Cela rend les formulations difficiles à résoudre sur les instances de
grande taille. Pour contourner ce problème, quelques améliorations, comme
un algorithme de plans coupants, sont proposées.

Dans le chapitre 4, une collaboration entre un autre MIP et ILOG TPO
est proposée pour améliorer les performances d’ILOG TPO, en particulier sur
les grosses instances. Le but est de fournir à ILOG TPO un outil qui donne
des indications sur les chemins des expéditions pour permettre à ILOG TPO
de se focaliser sur d’autres décisions. Nous introduisons un modèle simple
qui regroupe un flot sur les véhicules et des indicateurs sur les chemins des
ordres de transport. L’aspect de temps n’est pas modélisé car l’accent est mis
ici sur le réseau et non sur l’ordonnancement. Ensuite, nous proposons une
heuristique à deux phases pour cette collaboration entre le MIP et le moteur
de recherche locale d’ILOG TPO. Les indications sur les chemins des ordres
de transport donnés par le MIP peuvent être utilisées de diverses manières,
en contraignant plus ou moins le modèle de données d’ILOG TPO.

Enfin, le chapitre 5 présente les résultats obtenus par cette collaboration
et valide son efficacité sur différentes instances. En particulier, l’heuristique
à deux phases est comparée au moteur original d’ILOG TPO, et à la fois
le temps de calcul et la valeur de la solution finale sont testés. Ensuite,
l’heuristique à deux phases est comparée avec la même heuristique dont
les indications sont générées aléatoirement, au lieu d’être données par la
résolution du MIP.
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Chapter 1

A routing problem with

transshipment
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Résumé du chapitre

Le chapitre 1 décrit le problème auquel nous sommes confrontés dans le
cadre de cette thèse. De nombreux métiers sont impliqués dans le do-
maine de la chaîne d’approvisionnement. Nous nous intéressons à l’ache-
minement des marchandises et aux tournées des véhicules permettant
cet acheminement. Les entreprises qui ont besoin d’effectuer cette tâche
font souvent appel à des entreprises auxiliaires appelées prestataires lo-
gistiques de troisième partie (Third-Party Logistics provider ou 3PL). Ces
sous-traitants s’occupent de la gestion des entrepôts et du transport des
marchandises, et peuvent avoir des contrats avec de multiples entreprises
pour mutualiser les chargements. Chaque ordre de transport consiste en
un ramassage d’un bien à un site donné, et sa livraison à un autre site.
Pour mieux organiser le chargement de chaque véhicule en cours de tour-
née, le 3PL possède généralement des centres de transbordement (égale-
ment appelés hubs) dans lesquels le transbordement (échange de produits
entre différents véhicules) est autorisé. Cette possibilité revêt une impor-
tance capitale pour l’établissement de tournées optimisées, et de plus en
plus d’entreprises l’exploitent afin de minimiser leurs coûts de transport.
Les 3PL utilisent certains logiciels pour les aider à choisir de telles tour-
nées. ILOG TPO est un de ces logiciels et est constitué d’une interface
graphique conviviale et d’un moteur d’optimisation prenant en compte le
transbordement. ILOG TPO permet également aux ordres de transport
d’être ramassés ou livrés à des plateformes régionales (Zone-Skipping Hub
ou ZSH) qui facilitent, de façon similaire aux hubs, la mutualisation des
ordres dans les véhicules. La portion de trajet manquante n’a pas à être
effectuée mais, en contrepartie, un coût supplémentaire (appelé Zone-
Skipping Cost ou ZSC) doit être payé. Ce coût s’ajoute aux nombreux
coûts introduits par ILOG TPO pour chaque véhicule, qui dépendent
principalement des zones de départ et d’arrivée du véhicule.
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Supply Chain Management is the study and the optimization of costs in
the process of moving goods or services for a supplier to a customer. This
domain has acquired a growing interest since the middle of the nineteenth
century, and it is now carefully split into distinct areas, each of which having
its own features and being usually tackled independently. In particular,
goods transportation problems have a lot of practical applications. The last
decades have been marked by the rise of traffic in all means of transportation,
which unavoidably introduces undesirable outcomes. Safety must be ensured
whatever the circumstances, and this implies to pay attention to the vehicle
flow, especially when transporting people or hazardous material, even if these
activities will not be dealt with in this thesis. Moreover, environmental
issues arise with the growth of traffic, such as the lack of fossil fuels and all
the problems due to vehicle exhaust fumes, e.g. the greenhouse effect. As a
consequence, the need to find appropriate vehicle routes with respect to some
criterion is not necessarily a company’s own concern but may be a shared
interest. Our specific study, however, focuses on a particular company that
has to minimize complex routing costs to ship some goods from several origin
sites to several destination sites.

The kind of problems that we have to deal with in this context is de-
scribed in this chapter. The general framework is detailed in section 1.1. In
section 1.2, we describe transshipment, which is the fact that vehicles can
swap their loads with other vehicles at some sites called hubs where the re-
quired facilities are available. Indeed, machines or qualified workforce may
be necessary to unload and reload shipments from one vehicle to another,
and it may take some time. Transshipment can be used in the transporta-
tion of goods, but also as a intermodal transition for passengers, in public
transport. Several practical applications take transshipment into account,
amongst which the vehicle routing solver ILOG TPO. Section 1.3 is dedi-
cated to the enumeration of particular features that are integrated by ILOG
TPO, especially the complex costs that the companies using ILOG TPO
have to pay for their routing schedules. It also describes the possibility for
a shipment to be delivered at a regional warehouse instead of its regular
delivery site, which introduces shipment alternatives.

1.1 Industrial routing

1.1.1 Supply Chain Management

Supply Chain Management is one of the research areas that has the
most implications in today’s business. Supply Chain is the process by
which goods arrive at their destination (a customer, for example) after being
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produced, shipped possibly by several means of transportation and consol-
idated if needed. It involves a lot of partners, and each of them needs to
perform all the tasks they are supposed to, but minimizing their costs or
maximizing their profit. Supply chain is such a considerable area that sev-
eral service providers have to be included in the whole process, so that the
involved companies can take decisions easily. Supply chain management is
the study of an efficient planning of the activities and operations that arise
in the context of supply chain. Several softwares, such as ILOG Transport
PowerOps (routing aspect) and ILOG Plant PowerOps (scheduling aspect),
are part of the tools proposed to such companies to help them take decisions
for which the consequences can be tremendous.

There are lots of aspects that are of interest for large companies for which
any marginal gain of productivity may have a huge impact on their profit.
For example, a given commodity is produced in a factory from several raw
materials that may come from several suppliers. There may also be several
steps in the production of the good in the factory, and numerous machines
may be part of this process. The commodity has then to be routed to its
customer together with other goods that may have been produced in other
factories.

All of these aspects are dependent one another, but are usually tackled
separately in a multilevel way because of their complexity.

1.1.2 Logistic issues

In this thesis, only one of these aspects is focused on, which is how the
products can be routed between suppliers and customers, in a way that the
routing costs are minimized. The decisions that have to be taken inside
the factories or warehouses, such as the ones concerning the storage or the
production itself, won’t be taken into account here.

Several papers [Crainic, 1999, Crainic and Semet, 2005] can be read as
reference reviews on freight transportation.

In the routing point of view of logistics, only the flows of products in
some vehicles and between sites are considered. A supermarket may be
interested in moving periodically a cargo of wine from its department in
Bordeaux, where it is produced, to its department in Paris, where there is a
great demand. It may be the same for several other products.

This company may either own its vehicle fleet, or contract out the de-
cisions about the transportation of shipments to another company, called
a third-party logistics provider (3PL). The 3PL case has many advan-
tages, amongst which the fact that it allows the company to focus on its
basic activities and not in a domain for which it doesn’t have the skills or
time, which is choosing their vehicle routes. Furthermore, the 3PL usually
has several contracts with various companies, which allow them to consoli-
date all the requests they must perform and brightly organize their vehicle
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fleet in order to minimize their routing costs. The company usually makes
every vehicle available anywhere. Hence, the 3PL has no commitment to
make them start or end their routes in some site or another.

Warehouses

The 3PL owns several warehouses where the products can be picked-up or
delivered, and where the vehicles can park and stay for as long as it is
necessary. Usually, these actions are supposed to be performed within a
time window, because of some constraints on work and opening times of the
sites.

Vehicles

The vehicles of a carrier can be of diverse types. Some are preferably used
for short-haul missions. They are usually smaller vehicles, but on the other
end, the cost for getting them is much cheaper. Some others are used for
longer routes. These are called pooling vehicles, and make mostly back-
and-forth trips between big regional sites. However, all these vehicles can
often be grouped into fleets, because it is rare that the company owns vehicles
that are unique.

Shipments

A shipment is a transportation order that has to be performed by a com-
pany. Each product owned by this company has to be transported between
two sites during the supply-chain process. Some companies may allow a
shipment to be unperformed. This usually results in a penalty that has to
be paid, and the amount of this penalty depends on the importance of the
ignored shipment. This importance may depend on the shortage or excess
of the given product on the delivery site. The type of product (fresh food,
for example) may also make the penalty cost higher or lower, depending on
the emergency to deliver it on time. Sometimes, there are restrictions in a
vehicle cargo because of incompatibilities. It may be forbidden for a vehicle
to contain food and chemical products together, and some products, like
fresh food, may require a certain type of vehicle.

1.2 Transshipment

In a typical transportation company, there are several types of vehicles (as
mentioned in the previous section). Large vehicles may be very useful for
carrying big loads over long distances, but are far too expensive for short
tasks like tours between customers that are close one from another. Some
smaller (and cheaper) vehicles are required for this kind of tasks.
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Figure 1.1: Organizing shipments in a hub
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Then, two vehicles of different types must be able to swap or at least to
share their loads. This cannot be done at a customer site, because of the lack
of facilities needed to load and unload the vehicles. Furthermore, a customer
will not be pleased to see that his warehouse is used to move products that
don’t belong to him. There ought to be some sites that are specialized in
this handling of loads, and this is precisely the use of transshipment centers
(or hubs).

1.2.1 Transshipment centers

The sites where the exchange of products between vehicles (transshipment,
also known as cross-docking) is permitted have several names, amongst
which transshipment centers, transportation hubs and distribution
centers. A hub is the location where several vehicles have the ability to
exchange loads (see figure 1.1 for an example).

Road hubs look like big warehouses with large parking capacities for
trucks (see figure 1.2 taken from [Bartholdi and Hackman, 2008]).

Inside the hub, there are also many topics of interest for transportation
companies [Li et al., 2004, Bartholdi and Gue, 2002, Chang and Tsui, 1992].
The parking capacity is usually restrictive and the arrival and departure
times of each vehicle have to be planned carefully. The routing of commodi-
ties inside the hubs and from the incoming vehicle to the leaving vehicle,
as well as the storage issue are also deeply studied. In fact, there is seldom
a long time of storage in a hub (which may be very costly), otherwise the
site is preferably referred to as a warehouse. However, in this thesis, we will
only focus on the routing aspect around the hub. Note that in the following,
we will consider that the vehicles are trucks, as the ILOG TPO customers
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Figure 1.2: U-shaped hub in Portland, USA

are mainly road transportation companies. Moreover, we consider that no
storage is possible in any hub. This is a constraint given by ILOG TPO
customers due to the fact that the products that must be routed are mainly
fresh products.

1.2.2 Truckload

The transportation of small freight is called less than truckload (LTL).
Larger freight is usually handled by semi-trailers and is referred to as full
truckload (FTL). In FTL transportation, the vehicle is filled by the ship-
per in one pickup site, and the shipments are delivered to a unique delivery
site. On the other hand, in LTL transportation, the carrier collects freight
from various shippers. The advantage of using an LTL carrier is that the
transportation of one shipment may be charged only a fraction of the cost
of hiring an entire vehicle, whereas the drawback is that the shipment will
probably have to be unloaded and loaded several times at various hubs. In-
deed, the carrier may be interested in moving a shipment to another vehicle
if its costs are decreased by this operation, which is irrelevant for FTL car-
riers. If the shipper has many shipments to transport to the same area, it is
better for him to choose a FTL carrier, and at arrival at the area, change the
shipments to an LTL carrier. The vehicles would then have to reorganize
their loads in a hub in order to separate the shipments and drive each of
them to their destination. In the general case, a carrier usually uses LTL
freight before and after the hubs, but FTL freight between the hubs. That’s
the main reason why the carriers often own shuttles that are supposed to
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Figure 1.3: Use of pooling vehicles between transshipment centres
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1.2.3 Transshipment uses

There are plenty of real-life situations where transshipment is necessary.
Hubs are often used for multiple-pieced products that need to be consolidated
or deconsolidated. Indeed, in a hub, vehicles can reorganize their loads
but the products they are carrying can also be treated and assembled. For
example, several computer components may be transported to a hub, be
assembled into a computer, which should then be delivered. On the contrary,
some products may need to be disassembled before being delivered to their
final destination.

Most of the companies that have the opportunity to take advantage of
transshipment have several types of vehicles in order to handle efficiently
every part of a shipment route. Although a shipment may be picked up and
delivered by the same vehicle, it is often cheaper to assign it to a vehicle
for its pickup, another one for its delivery and possibly other vehicles in
its route, as it may be crossdocked successfully in different vehicles. In
a hub-and-spoke network, several shipments are routed through several
hubs, usually two. Between the hubs, pooling vehicles are supposed to carry
a lot of shipments, and are available only on this kind of trip (see figure 1.3).
They have a big capacity and are usually faster than other types of vehicles.
Pooling vehicles are used to carry a huge quantity of goods from a region to
another.

However, in the case there are few pickup sites and many delivery sites
around the hub, the hub-and-spoke becomes an inbound pooling situation,
such as the distribution of goods in a region after their production in a factory
located in another region. Conversely, outbound pooling takes place with
many pickup sites and few delivery sites. Pooling vehicles are also used for
inbound and outbound pooling.

In some cases, transshipment is used between several shippers in a col-
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laborative planning. A carrier can be shared by these shippers in order to
reduce the costs for each shipper, or even to improve service. For example, a
State may decide to make a vehicle fleet available to several shippers at low
cost in order to reduce the greenhouse gaz emissions.

1.3 ILOG Transport PowerOps

ILOG Transport PowerOps (ILOG TPO) is a software package for solv-
ing routing problems faced by transportation companies. To be as close to
the customers’ problems as possible, ILOG TPO has a very complete model.
In addition to the basic features of the routing problem and transshipment
described in the previous sections, the structure of ILOG TPO (especially
the cost structure) is quite complex and needs to be detailed in this section.
The ILOG TPO environment is explained in the ILOG TPO 3.1 documen-
tation [ILOG TPO, 2007].

The background for all the experiments carried out in this thesis is a road
transportation company, although ILOG TPO permits any kinds of means
of transportation in its modeling. Therefore, every later reference to vehicles
will stand for trucks, and travels will sometimes be used for drives.

1.3.1 Vehicles

First of all, vehicles are part of a heterogeneous fleet, usually separated
into several sub-fleets. Indeed, companies that need such tools as TPO to
optimize their routing process seldom have unique vehicles. TPO enables
the modeling of shuttles by allowing each vehicle to have its own departure
and arrival sites, as well as time windows for departure and arrival. Shuttles
are usually far cheaper or even free of charge, but on the other hand they
are limited in the number of stops in their route. Any shuttle has usually a
unique possible lane to travel on (a lane is a simple trip between two sites).
For a given lane, one shuttle is scheduled at each day and has a unique
possible departure time. On the other hand, the shuttles are the cheapest
vehicles of the complete fleet. Vehicles that are not considered as shuttles
may start or end their route at any time and anywhere. Note that shuttles
are not exactly pooling trucks since they are not bigger than other vehicles
and they travel on rather short distances (they link nearby warehouses owned
by the 3PL).

1.3.2 Shipments

A regular shipment is made up of two visits: a pickup visit and a delivery
visit. Both visits for each shipment have their own features, such as a time
window, a site and a duration. A visit type (pickup or delivery) is essential



18 Chap. 1: A routing problem with transshipment

Figure 1.4: Shipment paths and alternatives
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when considering the visit sequence in a vehicle, as there may be a cost
impact (see subsection 1.3.4).

ILOG TPO shipments are also made of two important notions : shipment
paths and shipment alternatives.

A shipment can be performed through several paths between hubs. Any
shipment can be delivered directly from the origin site to the destination
site, meaning that no transshipment will take place during its trip. Some
shipments (but not necessary all of them) may also be delivered via a hub
or an ordered set of hubs. Any sequence of such hubs is called a shipment
path and any shipment has a finite set of shipment paths it can go through
(as said before, this set contains at least the direct path). A shipment is
direct if it is shipped through its direct path (i.e. it is not transshipped).

Several sites, called zone-skipping hubs (or ZSH), may be used as
regional warehouses if it is too expensive for the vehicles to deliver a shipment
to its destination located in the same region. In a sense, the ZSH can be used
as a kind of hub, except that the final travel from the ZSH to the destination
isn’t supposed to be performed by any vehicle, but has an additional cost
for the carrier to perform the task. As a result, some shipments (once again,
not necessarily all of them) have the possibility to be delivered, either to
the destination, or to the nearby ZSH. This choice is called a shipment
alternative. Of course, all the combinations between shipment paths and
shipment alternatives are allowed. An order may be shipped directly (with
no intermediate hub) to the ZSH instead of the destination, and may be
transshipped at several hubs before getting delivered to its destination.

Figure 1.4 presents several possible shipment paths for a shipment from
its pickup site to its delivery site. Alternatives are depicted by the fact
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that some paths start at ZSH1 or end at ZSH2, and the broken arrows
corresponding to these paths won’t have to be covered by a vehicle. The
shipment we consider has two paths between hubs (direct or through hub 2),
but it has two shipment alternatives:

• pickup → ZSH2, with only one path between hubs (through hub 1),

• ZSH1→ ZSH2, with only one path between hubs (through hubs 1 and
2).

If we merge the notions of paths between hubs and shipment alternatives,
this shipment then has 4 distinct shipment paths.

Note that a shipment may go through a hub without being transshipped
at this hub (i.e. it stays in the same vehicle). For ILOG TPO, the hub is
not considered to be in its shipment path, as this hub is just a transit site in
this case. As a result, some shipments may be seen as direct although they
go through several hubs.

1.3.3 Additional features

ILOG TPO has many features that enables users to model their problems
precisely.

Due to the working schedules at each site, the drivers that arrive at a site
at a time when it is not possible to perform an action (e.g. absence of teams,
site closed for maintenance) have to wait for the site to be opened again. All
the time instants when the site can be visited are grouped into time windows.
Vehicles may also be allowed to pickup or deliver at a non-suitable time, but
the carrier company has then to pay a penalty corresponding to the drawback
brought by this action. This penalty has to be carefully taken into account
as one of the costs described below (subsection 1.3.4) when the vehicle routes
are chosen.

As logistics involve not only vehicles or sites, but also human resources,
some constraints on their working conditions are necessary for a legal working
environment. Drivers have to rest after some driving duration and after some
working time has passed. Drivers need to stop working for some time (to let
them sleep, eat or just rest) before getting back to their assigned tasks. This
non-working situation can be simultaneous with a waiting period before the
opening of a site, for example. This is referred to as breaks in the ILOG
TPO documentation.

ILOG TPO also has the possibility to model various kinds of incompati-
bilities. A visit may be incompatible with a vehicle, meaning that the driver
does not have the ability or the equipement available to pickup or deliver a
product, and neither has the site where the visit occurs. The vehicle may
even be unable to carry a given product, e.g. in refrigerated vehicles.

The so-called LIFO (Last In - First Out) constraints ensure that if a
shipment (let’s say B) is picked up after another (A), it will be delivered
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before, as it is supposed to be in front of A in the vehicle, making it difficult
to access A before B. The shipments are supposed to be piled up along the
route, and only the head of the pile can be accessed at any time.

ILOG TPO provides resource constraints restrictive for the vehicles at
some sites. There may be a limited number of docks where the vehicles can
load and unload the shipments, and there can’t be more vehicles inside a site
than the number of docks, at any time. If there are too many vehicles, the
last arrived vehicles have to wait outside the facility.

There are several dimensions on which the capacity constraints of each
vehicle can be applied. Usually, trucks are limited in weight and in volume:
their cargo can’t exceed a given weight or a given number of pallets.

Some vehicles have a limited number of stops. Such vehicles cannot visit
more sites than a given number. For example, shuttles are limited to one
stop, in order to enforce them to stay on their lane without visiting other
sites. Other vehicles are usually limited to 3 or 4 stops.

1.3.4 Costs

In ILOG TPO, the vehicles are bought or loaned based on a contract, which
means that some of the routing costs are not directly charged for the shipper,
such as petrol bought at stations. However, it is indirectly charged through
other costs included in the contract. The ILOG TPO costs consist of several
subcosts that contribute to the complexity of the formulation available in
the software.

Routing costs

The routing cost is the main subcost, and can be itself decomposed into
costs that have various origins. The routing costs in ILOG TPO are defined
on each vehicle and depend on the outgoing and incoming zones of this
vehicle. Such lane-based costs may be fixed costs to which other costs
are added in the case the vehicle travels more distance than a maximum
distance allowed between the two zones. The main routing cost is a lane-
based cost called direct transportation cost (or DTC). As a lane-based
cost, it depends on the starting and ending sites of the vehicle route, but also
on the maximum quantity transported along the route. As a consequence, if
possible, it is better to perform a sequence of pickups and deliveries so that
there are never too many shipments together in the vehicle, than to perform
a sequence of pickups followed by a sequence of deliveries. However, we will
notice in chapter 5 that in the usual customer instances, the pickups take
often place at the same site or at nearby sites, whereas the vehicles have
to travel long distances to deliver the shipments. Practically, this cost is
a growing piecewise-linear function of the maximal quantity carried by the
vehicle. Some examples are given on figure 1.5.
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Figure 1.5: Direct transportation costs (DTC)
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Figure 1.6: Additional distance costs (ADC)
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The DTC is coupled with a cost that prevents the vehicles from travel-
ling too much, as the DTC doesn’t depend on the total distance travelled.
This cost is an additional distance cost (or ADC). This is a lane-based
cost which also depends on the total distance travelled by the vehicle, but
once again it is not an obvious function, as this cost is zero under a certain
distance, and becomes linear from that point. Examples of ADC functions
for 6 different lanes in the same instance are given on figure 1.6.

A noticeable exception concerns shuttles, as they usually belong to the
3PL. They are only supposed to travel between two fixed and nearby sites,
and they have a very low cost due to their use. Consequently, if possible, it
is always preferable in terms of cost to use a shuttle than a standard vehicle
that can be available anywhere.
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Figure 1.7: Zone-skipping costs (ZSC)
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Hub costs

The use of transshipment in a hub is charged with a cost depending on the
hub required for this transshipment. In addition, there are facilities in the
hubs to load and unload vehicles quickly. These facilities are hard to position
when a vehicle arrives at a hub, and are distinct for loading and for unloading
material. As a result, some time and some cost of handling are charged to
any vehicle wishing to load some products after unloading some other ones,
and vice-versa.

Shipment-related costs

Of course, any unperformed shipment will be penalized by a significant cost,
usually such that it prevents the carrier from unperforming any shipment.
Attached with shipments, lateness and earliness penalties are also often used,
as a shipper may not be satisfied with a shipment arriving not on time at its
destination.

Finally, the cost of using a ZSH is called a zone-skipping cost (or
ZSC) by ILOG TPO. Indeed, the carrier is charged a cost for not performing
the whole shipment and for “skipping” the end (or the beginning) of the
route, after (or before) the ZSH. The zone-skipping cost depend on the total
quantity of products left in a given ZSH. It is a growing piecewise-linear
function, but from a certain level, it becomes linear. Figure 1.7 depicts 6
examples of such zone-skipping costs.
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Synthesis of the costs

To sum up, the total cost considered by the 3PL using ILOG TPO can be
written as follows:

Ctotal = Cpenalty + Chub + CDTC + CADC + CZSC

Conclusion

The transportation problem we face is part of the Supply Chain framework
and contains many features that are typical of the 3PL who want to optimize
their vehicle routes. Transshipment is a key component that allows the
goods to be transported into distinct vehicles along their trip, and it leaves
more chances for the decision taker to reduce the total distance travelled by
the vehicles. The multiple contract-based costs are charged on each vehicle
and depend mainly on the starting and ending sites of a vehicle route. In
particular, a shipment can be delivered through a regional platform but an
additional cost has to be paid for this shipment alternative.
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Chapter 2

Vehicle routing, location and

flow: description and methods
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Résumé du chapitre

Dans ce chapitre, nous décrivons les différents aspects du problème en les
rapprochant des travaux déjà effectués.
Une large section est consacrée au problème de tournées de véhicules, qui
est une forte composante du problème. Ce problème très étudié depuis un
demi-siècle a de nombreuses extensions, en particulier le problème de ra-
massage et livraison (Pickup and Delivery Problem ou PDP) qui est plus
proche de notre problème. Nous pouvons également nous intéresser aux
fenêtres de temps dans ces problèmes, ainsi qu’à des possibilités comme
le partage des chargements (Split Loads). Tous ces problèmes peuvent
être résolus de multiples façons. Les approches exactes basées sur les for-
mulations mathématiques et éventuellement sur le Branch&Bound sont
privilégiées pour les instances de taille raisonnable. Les très grandes ins-
tances sont généralement résolues avec des méthodes approchées, comme
la recherche locales ou les métaheuristiques. Ces méthodes approchées se
basent principalement sur des voisinages classiques des tournées de vé-
hicules, comprenant des modifications intra-tournées (à l’intérieur d’une
même tournée) et inter-tournées (entre deux tournées différentes). Les mé-
taheuristiques ont l’avantage, sur les grandes instances, d’atteindre une
solution raisonnable en un temps limité. De plus, elles permettent l’intro-
duction de multiples caractéristiques industrielles propres au problème.
Les deux autres aspects abordés sont les problèmes de flots et de localisa-
tion de hubs. Les problèmes de flots de coût minimum sont également des
problématiques classiques de la Recherche Opérationnelle. Il s’agit d’ache-
miner des produits dans un réseau dont les arcs possèdent un coût et éven-
tuellement des capacités, de façon à minimiser le coût total. Lorsqu’un
seul produit est considéré, il existe des algorithmes simples permettant
de résoudre efficacement ce problème. Dans notre cas, nous introduisons
plusieurs produits, ce qui complexifie le problème.
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Malgré cela, des méthodes de résolution efficaces ont été proposées pour
résoudre les problèmes de multiflot de grande taille, dont certaines uti-
lisent notamment des métaheuristiques. La localisation de hubs est un
problème où on se propose d’ouvrir des hubs de façon à pouvoir ache-
miner les produits de façon efficace sur le réseau. En général, à chaque
couple origine-destination sera associé deux hubs : l’un proche de l’ori-
gine, l’autre proche de la destination. Plusieurs formulations existent pour
ce problème. L’une en particulier est quadratique, et mieux adaptée aux
approches utilisant des métaheuristiques.

Although the complexity of the problem discussed in the previous chapter
makes it difficult to solve, it has some separate aspects for which there have
been a significant research interest for several decades. The routing problem
described in chapter 1 is in fact a conjunction of a Pickup and Delivery
Problem (section 2.1), a Network Flow on the commodities between the
hubs (section 2.2) and a Location Problem (section 2.3) to determine which
hub is likely to be useful, and for which shipment. These problems have been
widely studied, and we also give here some solving methods that are often
used.

2.1 Vehicle routing problems

The main feature of the problem that we tackled in the context of this PhD
is the routing aspect. Some commodities have to be picked up at some sites
and delivered at other sites by a set of vehicles, minimizing the total cost.

For over half a century, vehicle routing problems have been studied by re-
searchers [Dantzig and Ramser, 1959] because of the variety of real problems
they contribute to solve. Despite the wide variety of vehicle routing problems
and the effort of researchers [Savelsbergh, 1988] to classify such problems,
there is no clear classification of vehicle routing problems. That is why they
are usually referred to using their acronym. In subsection 2.1.1, we briefly
introduce the Vehicle Routing Problem (VRP), and in subsection 2.1.2, we
present the well-known Pickup and Delivery Problem, which is very close to
our problem. Subsection 2.1.3 is a review of its famous extensions, whereas
subsection 2.1.4 deals with some related routing problems. Finally, some
classical solving methods are outlined in subsection 2.1.5.

2.1.1 The Vehicle Routing Problem

The problem described in chapter 1 has a deep vehicle routing aspect, as
vehicle routes have to be found at a minimum cost in order to perform
requests of customers at several sites. Let’s call I the set of vertices (or
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sites), and the vehicle set is K. If the problem is defined with a depot (a
special site where all the vehicles start and end their route) usually referred
to as site 0, I∗ stands for I \ {0}. In the following, the word “site” will be
preferably used instead of “node” or “vertex” in a graph. The reason for this
is that the actions involving goods are performed in “sites”, and this chapter
is supposed to clarify the aspects in which the real-life problem of chapter 1
is close to literature theoretical problems.

The basic Vehicle Routing Problem (or VRP) is a generalization of
one of the most popular problems in Operations Research known as the
Traveling Salesman Problem (or TSP). In the TSP, a route visiting all
the vertices of an undirected graph (also called a hamiltonian cycle) has to be
found, minimizing the total distance traveled. The VRP generalizes the TSP
as several routes are allowed, and all the cycles must go through a common
site, the depot. Being a generalization of the TSP, which is an NP-hard
problem [Garey and Johnson, 1979], the VRP is NP-hard as well.

There are numerous simple VRP extensions that are given substantial
interest in research. In the Capacitated VRP (CVRP), a capacity constraint
prevents the vehicles traveling on the routes from serving too many sites. In
addition, there might be a non-unitary demand on each site corresponding
to the quantity of products that have to be delivered.

Another extension, the directed VRP, is such that the graph is directed.
It is often the case when for example the distances between the sites are
asymetric (if dij is the distance between sites i and j, ∃i, j ∈ I, dij 6= dji). In
many cases, the distances are also supposed to satisfy the triangle inequal-
ity (∀i, j, l ∈ I, dil + dlj ≥ dij). Note that if the triangle inequality holds,
the basic (uncapacitated) VRP has necessarily an optimal solution with only
one route, and hence this VRP can be solved as a TSP. The reason for this is
that two routes, let’s say (0i1 . . . in0) and (0j1 . . . jm0), can always be merged
into a single route (0i1 . . . inj1 . . . jm0) without increasing the total travelled
distance.

In the following, when referring to the VRP, we suppose that all the pre-
vious extensions (capacity constraints, directed graph, triangle inequality)
hold.

2.1.2 The Pickup and Delivery Problem

The problem consists of shipments to be picked up and delivered at some
places. This is the basic framework of a well-known problem in vehicle
routing : the Pickup and Delivery Problem (PDP). The PDP generalizes
the VRP described in the previous subsection. This makes the PDP an NP-
hard problem as well.

The VRP can be seen as a PDP in which the vehicles start at the depot
with all the pickups for their route, and each visit to a site of the route can
be associated with a delivery. On the other hand, in the PDP, the pickups
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Figure 2.1: Example a of PDP solution

Depot

a(→ b) : pickup at a (for b)

4(← 3)6(→ 8)

7(← 5)

3(→ 4)

5(→ 7)

2(← 1)

8(← 6)

b(← a) : delivery at b (from a)

1(→ 2)

take place on other sites than the depot. Hence, there are both pickup and
delivery sites. Figure 2.1 is an example of a PDP solution, where one of
the vehicles travels for a short route, picking up a product at site 1 before
delivering it at site 2.

A survey on the Pickup and Delivery Problem with various extensions
and particular cases can be found in [Savelsbergh and Sol, 1995].

Sites

The pickup and delivery sites are often represented as vertices in a directed
graph. The graph can also be undirected, in the symmetric case, which
means that for every couple of sites (i, j), the distances dij and dji are equal,
and the same holds for travel times.

Vehicles

Usually, a homogeneous fleet of vehicles is considered, and each vehicle has
a capacity that the total amount of shipments it is carying can’t exceed.
Every vehicle must start and end its route at the depot. Either a fixed
number of vehicles is available at the depot, or this number is unlimited but
it is included in the objective function as a criterion that has to be minimized.
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Shipments

A set of transportation requests (or shipments) has to be performed by the
vehicles. Each request consists of two steps:

• a pickup of a given quantity of products in one of the sites,

• a delivery of these products to a final site.

In the standard PDP statement, it is assumed that both the pickup and
the delivery of a request must be served by the same vehicle. This can be
referred to as a pairing constraint. The precedence constraint between the
pickup and the delivery visit induces that the graph of the PDP solution has
to be directed.

Objective

Depending on how the problem is solved, the optimization criterion may be of
various types. However, in the basic form of the PDP, the objective is usually
to minimize the number of vehicles used, or to minimize the total distance
travelled by the vehicles. The first one is usually included in a multicriterion
analysis [Czarnas et al., 2004, Ombuki et al., 2006, Dell’Amico et al., 1993],
but may be minimized alone, especially:

• on big instances as it is a simple comparison tool between various
heuristics,

• in problems of type Dial-A-Ride for the transportation of elderly or
handicapped people (or taxi companies), as the vehicles and the drivers
are the most expensive.

More abstract criteria might be considered, such as the visual attractive-
ness of the routing plan [Poot et al., 1999], for which one wants to minimize
the number of crossings within routes or between two routes, or the average
distance between two visits in a route.

2.1.3 Extensions

The PDP has some famous extensions that make it even more realistic and
useful. [Golden et al., 2002] describes some of the real-life applications that
require the PDP to be extended with numerous features. Some of these
extensions were described in subsection 1.3.3.

Time features

The basic PDP is formulated without any time aspect, even though a time
dimension is implicit with the precedences on the pickup and delivery vis-
its. However, the time dimension is often explicitly introduced to make the
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modeling more realistic [Desaulniers et al., 2002, Thangiah, 1995]. The time
dimension may be used to include some additional constraints to the mod-
eling, but also to add a time component in the objective function. Indeed,
it seems natural to try to minimize the total duration of the trips. Note
that the travel time between two sites is not necessarily proportional to the
distance between them, as the vehicle speed may depend on factors such as
the road type (freeway / township road) or on traffic.

One of the most famous features of these time aspects are the time
windows (TW). The PDP with Time Windows (PDPTW) is one of the
most studied of VRPs and PDPs [Dumas et al., 1991, Mitrović-Minić, 1998].
We present this with respect to the PDP, but it is exactly the same feature
in the VRP.

By definition, a time window is a time period in which an action has to
take place. The vehicles still have to visit the pickup site before the delivery
site for each shipment to carry on, but each visit must be performed within
the site time window. For example, a site may be opened between 2 and 4,
and any vehicle visiting this site can neither do it before 2, nor after 4.

In this problem, a cost is added to the objective if a request is allowed
to be performed out of the time window. In this case, the carrier has to pay
a penalty, and this has to be taken into account when minimizing the costs
[Jung and Haghani, 2000].

Another feature can be introduced as well, especially when the objective
is to minimize the total travel time: the service times at some sites. These
are useful to depict the time spent by vehicles on sites, which is mainly
the handling of products (pickups or deliveries). Every time a vehicle goes
through a site, this amount of time is added to the total route duration for
this vehicle. This route duration may be included in the cost function. It
may as well, in some papers, be bound to be less than a given value. This
models a constraint on the driver’s working duration. Usually, service times
are not modelled as they can be included in transit times between sites.

More complex time constraints are sometimes introduced in models that
try to be as realistic as possible. These constraints are often closely related
to legislation: the drivers may be forced to have a pause after 10 hours on the
road, or after 15 working hours [Xu et al., 2003]. These pauses are referred
to in ILOG TPO as breaks (see subsection 1.3.3).

The time dimension may be introduced as a multi-period system (e.g.
[Michel, 2006]). In this case, time is not considered as a continuous dimen-
sion, but is discretised into several periods. If the time period is a quarter
of an hour, a vehicle won’t travel during one hour, but will leave at period
p and arrive at period p + 4. The main advantage of this is to simplify
the modeling, and reduce the problem size. On the other hand, modeling a
problem this way is sometimes impossible, or leads to a significant lack of
precision.

Time sometimes allows each vehicle to have several distinct routes, as
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long as the time constraints aren’t violated.

Depots

Usually, the PDP is presented only with the 1-depot option: every ve-
hicle starts and ends its route at a special site called the depot. How-
ever, more depots can be considered [Dell’Amico et al., 1993, Irnich, 2000].
Each vehicle would then have to start and end its route at one of the
depots that are available. A usual example for this kind of problems is
the transportation of people, such as the Dial-A-Ride Problem (DARP)
[Cordeau and Laporte, 2003] and the Handicapped person Transporta-
tion Problems (HTP) [Toth and Vigo, 1997]. In these problems, it is bet-
ter for the carrier to have several depots, because the route duration is here
closely related with the customer satisfaction, and hence it is very impor-
tant not to have too long routes. As a result, the depots must be uniformly
distributed over the area, so that any request isn’t too long to perform.

In some other problems, it is assumed that there is no real structure to
park and store vehicles. In the PDP with no depot, each vehicle has its own
starting and ending locations (both are not necessarily the same site). In
some other cases, the vehicles have no predetermined starting and ending
location, which means that it is possible to let them start or end their route
anywhere. For example, when a shipper contracts a carrier out to pickup
and deliver its products, he won’t have to take the availability of the vehicle
into account, as the carrier may have several contracts with other shippers
that allow him to relocate appropriately the vehicle fleet. Therefore, every
vehicle of the fleet will be expected to be available anywhere, and may be
left anywhere as well.

Vehicle fleet

Some carriers have few vehicles, and their fleet is dedicated to a certain kind
of jobs (for example, LTL carriers). In this case, their needs are restraint
and it is sufficient for them to have a homogeneous vehicle fleet. But most
of the carriers (especially the biggest ones) have vehicles that are of various
types. This heterogeneous fleet makes the problem more complex, as some
vehicles may be used for a certain kind of task, and some others for other
tasks (see section 1.1). In addition, their costs are different and using a
vehicle instead of another can have a huge impact on the total routing cost.
However, this heterogeneity can often be seen as a “piecewise homogeneity”
because vehicles are unlikely to be all different one to another and can be
grouped into “subfleets”. The heterogeneity of the vehicle fleet is often stated
in real-life contexts [Al-Khayyal and Hwang, 2007].

Another aspect can be underlined about the vehicle fleet, which is its
size. The carrier may own a given number of vehicles, and all of them are
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Figure 2.2: Benefits of split loads
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supposed to be used. This is usually referred to as fixed size fleet. On the
other hand, this fleet size can be either fixed or infinite, but the number of
vehicles used may appear in some way in the objective function (in a fixed
cost per vehicle used, for example).

At last, some research is carried out on single (or single-vehicle) VRPs
or PDPs, which stands for the fact that the fleet is made of only one vehicle
[Van Der Bruggen et al., 1993]. Note that the basic single VRP is the well-
known TSP.

The PDP with Split loads

Most of the shippers do not wish their shipments to be split into several parts
and transported in various vehicles. However, it is in some cases tolerated,
because it may lead to a significant gain in costs. Indeed, figure 2.2 illustrates
an example where splitting loads decreases the total distance traveled by the
vehicle.

Without splitting, the vehicle, that has a capacity of 3, can only load one
shipment at a time. As a result, it has to go back and forth three times, for
a total distance of dist1 = 4D + 2M .

In the case splitting loads is allowed, the second shipment can be split
into 2 loads, and the vehicle makes only two tours. The total distance is
here dist2 = 2M + 2D + 2m, which is less than dist1 as soon as D > m.
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This remark can be generalized [Nowak et al., 2007].

Splitting loads also enables each site to be visited several times, which is
not permitted (and useless anyway) in the basic PDP where splitting loads
is not allowed.

Additional constraints

More and more research effort is placed on real life problems due to the
growing possibilities of calculation and the huge needs of big transportation
companies. The PDP has then to be adapted to meet the new requirements
in realism and completeness of the modeling. The basic PDP considers
routing the products ignoring what is happening inside the vehicles or inside
the sites. Both of the following features have a look at the load of a vehicle
and how it is organised.

In lots of PDPs, the products are restricted to certain kinds of vehicles,
as well as they may not be put together with other products. Indeed, a
frozen product is supposed to be transported in a vehicle that has freez-
ing compartments, and for obvious security reasons, two dangerous chemical
products may not be carried together in the same vehicle. These incompat-
ibility constraints are becoming a major real-life PDP feature and they
are introduced in numerous papers (e.g. [Poot et al., 1999]).

One can also be concerned about the way the products are placed inside
a vehicle. How can a pallet be delivered quickly if it is in the back of the
vehicle, and several other pallets have to be moved in order to handle this
one? A simple way to solve this problem is to introduce new constraints
usually called LIFO (Last In - First Out) constraints. Recall that these
constraints enforce the delivery of product p1 before product p2 if p1 was
picked up after p2. The example given on figure 2.1 isn’t admissible with
respect to this constraint, since the product coming from node 5 (5 → 7) is
pickup up and delivered before the product coming from node 6 (6 → 8).
However, there is no convention in naming this additional feature, as in some
papers it is called LIFO constraints [Carrabs et al., 2007], whereas in some
others it is referred to as nested precedence constraints [Xu et al., 2003]. It
may even be generalized to two-dimensionnal packing constraints inside each
vehicle [Iori et al., 2007], generalizing the capacity constraint as well.

2.1.4 Related routing problems

For a better modeling of our problem, we need to stress some problems
related to the PDP. Here, we will only focus on the ones that are of interest
for our research, but there may be others that are worth studying.
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The Vehicle Routing Problem with Pickups and Deliveries

As a reminder, in the VRP, the vehicles have to deliver the demand at
every site, supposing all the pickups are performed at the depot. This may
be called a “one-to-many” problem, as there is one pickup site, and many
delivery sites. In the Vehicle Routing Problem with Pickups and
Deliveries (VRPPD) however, the depot isn’t the only pickup site. There
may be several pickup sites and several delivery sites (which makes it a
“many-to-many” problem), generalizing the basic VRP. As a consequence,
this problem is NP-hard as well.

The Vehicle Routing Problem with Backhauls (VRPB) is an ex-
tension of the VRPPD in which the vehicles are supposed to be filled at the
depot at the beginning of each vehicle route. However, in the VRPB, there
are two separate aspects: “one-to-many” and “many-to-one”. A vehicle can’t
deliver a product if at least one pickup has been made, which ensures the
LIFO constraints aren’t violated. The vehicles then have to deliver their
whole load on the first sites of their routes (“one-to-many” aspect), before
they backhaul picking up the products to deliver back to the depot (“many-
to-one” aspect).

The Multicommodity Vehicle Routing Problem

The Multicommodity Vehicle Routing Problem with Pickups and Deliveries
(MVRPPD) generalizes both the PDP and the VRPPD. In the PDP, each
shipment has only one origin, and only one destination. In the VRPPD, only
one product is considered, and some sites have a demand for this product,
and some other ones have an offer. For the MVRPPD it is the same, but
there are several products. The aim is then to find vehicle routes such that
each demand is satisfied, minimizing either the number of vehicles used,
or the distance or travel time. Of course, it is only possible if, for each
product, the sum of the overall offers is greater than the sum of the demands.
See table 2.1 for a better understanding of the differences between some of
the vehicle routing problems. There is no need in introducing a simple
multicommodity vehicle routing problem (without pickups and deliveries),
as the quantities of products could be added in every site to make it a 1-
product problem. However, it would be justified with additional constraints,
such as compatibility.

Note that the MVRPPD has only few references in the literature (unlike
the VRPPD [Desaulniers et al., 2002, Nagy and Salhi, 2005]), in spite of the
multiple practical applications. However, this problem is very similar to a
problem introduced by [Savelsbergh and Sol, 1995], the General Pickup
and Delivery Problem (GPDP). What distinguishes the MVRPPD from
the GDPD is that in the MVRPPD, a product may be, in the same route,
picked up and delivered several times, in any order (provided the quantity of
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Table 2.1: Comparison of some vehicle routing problems

PDP VRP VRPPD MVRPPD

Number of products p 1 1 p
For each product :

Number of sites with offer 1 1 n1 n1

Number of sites with demand 1 n2 n2 n2

this product in the vehicle never falls below 0, of course). On the other hand,
in a GPDP route, all the deliveries for a given product must be performed
after all the pickups.

Vehicle routing with transshipment

In various papers on vehicle routing, transshipment is taken into account
in the problem modeling. This transshipment aspect is often coupled with
other realistic features, such as a heterogeneous vehicle fleet, time windows
or LIFO constraints. There are several ways the authors stress the fact that
two vehicles might swap part of their cargo in a hub.

[Mues and Pickl, 2005] tackle a Volkswagen truck dispatching and they
mainly focus on a 1-hub network on a Pickup-and-Delivery Problem. Two
papers [Armacost et al., 2002, Armacost et al., 2004] deal with an aircraft
package delivery service by UPS, on a 1-hub network as well, and where
all the pickups occur before visiting the hub, and all the deliveries after
the hub visit. It is the same basic framework for [Irnich, 2000] with only
one hub and a partition of the pickups and the deliveries before and after
the hub. For [Lapierre et al., 2004], with uncapacitated vehicles and several
hubs, the density of the packages (implying both weight and volume) imply
some complex costs and decisions about delivering directly or through a hub
are necessary.

All these references show that for the moment, there is no conventional
way of including transshipment into a Vehicle Routing Problem, and the way
the problem is modeled and tackled depends on the authors’ needs.

2.1.5 Solving the vehicle routing problems

It is well-known that the VRP is a NP-Hard problem, like many of the
famous routing problems (such as the PDP), as a generalization of the well-
known Traveling Salesman Problem (TSP). Such as every problem belonging
to NP , there is a great interest in finding the best approach which could
provide the best solution in reasonable time. Many researchers have worked
to find algorithms and methods for Vehicle Routing Problems, either for
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exact solutions or for approximate solutions. A wide review of methods for
the PDPTW is given by [Mitrović-Minić, 1998].

Formulations

As for many other problems, researchers frequently formulate a vehicle rout-
ing problem as a linear program or a mixed-integer program. It is a useful
way to expose the problem faced, and mathematical models are very often
the first step of a solving procedure.

Most of the routing problems have an exact linear modeling that is either
obvious, or easily computable.

The simplest and most natural modeling is based on a vehicle flow for
the basic Vehicle Routing Problem. It is called an arc-based model, as
the only variables for this model are xij , with (ij) any arc of the network.
They are integer and indicate if a vehicle travels through arc (i, j). Recall
that I is the set of all sites, and I∗ = I \ {O} includes all the sites, except
the depot. The set of arcs inside set S is denoted by α(S), whereas the arcs
from set S to I \ S (resp. from I \ S to S) belong to δ+(S) (resp. δ−(S)).
In addition, let α = α(I) be the set of all arcs in the network. Note that
the graph of sites is not necessarily complete. For any set of sites S, r(S)
denotes the minimum number of vehicles needed to serve S. If we call cij

the travel cost between sites i and j, the integer programming model can be
written as follows:

min
∑

(ij)∈α

cijxij (2.1.1)

subject to :

∀i ∈ I,
∑

(ji)∈α

xji =
∑

j∈I
(ij)∈α

xij (2.1.2)

∀i ∈ I∗,
∑

(ij)∈α

xij = 1 (2.1.3)

∑

(0j)∈δ−(I∗)

x0j ≤ |K| (2.1.4)

∀S ⊆ I∗, S 6= ∅,
∑

(ij)∈δ−(S)

xij ≥ r(S) (2.1.5)

∀(ij) ∈ α, xij ∈ {0, 1} (2.1.6)

Constraints (2.1.2) are flow constraints that ensure that there will be the
same number of vehicles arriving in and leaving site i. Constraints (2.1.3)
enforce each non-depot site i to be served by exactly one vehicle. On the
other hand, at most |K| vehicles are used and start their route at the depot,
which is imposed by constraint (2.1.4). Constraints (2.1.5) are useful to
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eliminate vehicle subtours (which are tours not containing the depot), as
well as to express the capacity restrictions. Recall that r(S) is the minimum
number of vehicles needed to serve set S. This number can be replaced by a
lower bound, which can be calculated in several ways.

There are some well-known arc-based models for vehicle routing problems
with several additional features, such as the time aspects. In some of them
(particularly in problems including time windows), the time dimension is
depicted by a new index on variables, meaning that it is separated into short
periods. For example, a variable xijt may indicate if arc (ij) is taken by a
vehicle during time period t. One of the main problems of this modeling is
that either the time periods are short and numerous (and many variables
have to be introduced), or they are large and few, but it may be a too weak
relaxation of the basic problem.

Another way to model the time aspects is to introduce an index k for
vehicles (xijk would then indicate if arc (ij) is taken by vehicle k) and
new continuous variables depicting the date when an action is performed
[Desaulniers et al., 2002]. Tik may be the variable representing the time
when site i is served by vehicle k. Sometimes, boolean variables yik de-
pict the fact that a site i is served by vehicle k [Golden et al., 1977a]. This
kind of modeling is chosen especially when in addition, vehicles have to be
individualized (when considering a heterogeneous vehicle fleet, for example).

As such models generally contain lots of constraints (there may be several
ones for each arc and each vehicle), other models, based on a smaller number
of constraints but a greater number of variables, have been introduced by
[Balinski and Quandt, 1964] and are still often used. These models don’t
refer to arcs explicitely. Instead, some variables are indexed on vehicle paths
(if the vehicles have to start and end their route at a depot, the paths can
be called routes instead). For any vehicle k, if the set of possible paths is
denoted by P (k), then the routing cost for vehicle k driving through path
p ∈ P (k) is ckp. In addition, an indicator belong(i, k, p) states whether site
i belongs to path p for vehicle k. For any site i, demand(i) is the amount
of products that has to be picked-up (or delivered) at i. For any vehicle
k, cap(k) denotes its capacity. Boolean variable θkp will be equal to 1 if
vehicle k drives through path p. The model induced by these variables is
a set-partitioning formulation that usually has the following constraint
basis:

min
∑

k∈K

∑

p∈P (k)

ckpθkp (2.1.7)

subject to :
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∀i ∈ I∗,
∑

k∈K

∑

p∈P (k)

belong(i, k, p)θkp = 1 (2.1.8)

∀k ∈ K,
∑

p∈P (k)

θkp

∑

i∈I∗

belong(i, k, p) demand(i) ≤ cap(k) (2.1.9)

Constraints (2.1.8) ensure that every site is served by exactly one vehi-
cle. Note however that the capacity constraints (2.1.9) are usually removed
from this formulation as they are included instead in the subproblem in
column generation procedures. We could obtain a set-covering formu-
lation by replacing equality (2.1.8) by a ‘≥’ inequality. This formulation
has the same optimal solution as the set-partitioning formulation detailed
above [Bramel and Simchi-Levi, 2002]. The main advantage for the set-
partitioning modeling is that it can be easily strenghtened with various kinds
of constraints (e.g. time constraints) by just constraining the set of possible
paths for each vehicle.

Other kinds of models have been introduced, but there is not yet as many
references as the two presented above. [Baldacci et al., 2004] proposed a two-
commodity flow model based on the two-commodity flow model introduced
for the TSP by [Finke et al., 1984], where the commodities are the combined
load and the residual capacity in a vehicle.

Exact methods

Both the arc-based and the path-based models introduced previously are
hard to solve when they are applied to big instances (where |N | and |K| are
big). The path-based model is even far too large to be loaded in a solver,
because of the exponential number of variables (there are about |I|! variables
if the graph is complete).

As a consequence, researchers have been working on efficient methods
either to reduce their size, or to use them as a part of the optimization
process. A comprehensive survey of recent improvements in exact methods
for the VRP can be found in [Baldacci et al., 2007].

The Branch-and-Cut (B&C) technique, which is designed to solve such
models, is clearly detailed in [Mitchell, 2002] and we will present an overview
here. At the root node of the search tree, the linear programming re-
laxation (or LP relaxation) is solved to optimality. Then either all the
variables have integer values, in which case the optimal solution of the inte-
ger program (or IP) has been found, or branching is applied on a variable
x with a fractional value v. In both branches corresponding respectively to
x ≤ ⌊v⌋ and to x ≥ ⌈v⌉, the same process is applied until the optimal IP
solution is found. This is the basis of a Branch-and-Bound (B&B) pro-
cedure. However, the LP relaxation may contain far too many constraints
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to be solved efficiently. The arc-based models introduced above are in this
case, for instances of large size (hundreds of sites and vehicles). There may
also be a need to add valid inequalities to the formulation in order to provide
better lower bounds during the solving. The better these lower bounds, the
faster the optimal solution is obtained as more branches are pruned during
the search. In the case cuts are added to the model, several constraints are
dropped off the formulation, and added only when they become violated at
some point in the search tree. The separation procedure is a part of this
cutting-plane algorithm that decides which of the constraints in the pool are
violated and should be inserted in the next LP. If no other constraint can be
added or the optimal solution to the basic LP is found, then the B&B process
continues with the new lower bound given by the cutting-plane algorithm.

The cutting-plane process may also be inserted during the Branch-and-
Bound part of the algorithm and not only at the root of the search tree. In
addition, alternative branching strategies may be used.
[Clochard and Naddef, 1993] proposed to branch, not on a variable, but on
an inequality, which was then implemented for the VRP by [Augerat, 1995]
and [Augerat et al., 1995].

This Branch-and-Cut algorithm can be applied to any of the models pre-
sented above. As the arc-based model has an exponential number of subtour
constraints of type 2.1.5, they are usually relaxed and inserted in the pool of
valid inequalities in the cutting-plane algorithm. They may also contribute
to provide the formulation for more cuts [Baldacci et al., 2007]. Based on
previous works on the TSP, Naddef and Rinaldi also propose valid inequal-
ities for the VRP based on the arc formulation, the comb inequalities
[Naddef and Rinaldi, 2002].

On the other hand, the exponential number of variables prevents any
solver from loading the path-based model, even for instances of medium size.
To overcome this kind of issues, column generation is a well-known tech-
nique where only a small number of the numerous variables (or the columns)
are inserted in the IP at a time. At each iteration, the columns that have
a negative reduced cost are chosen via a subproblem that is, in most of the
cases, linked with the dual problem of a constraint subset of the main IP,
and is rather easy to solve (but stays NP-hard). The new variables are
then added in the formulation and the process goes on, until no column of
negative reduced cost have been found, meaning that the current solution is
optimal. The whole exact algorithm is referred to as Branch-and-Price in
many papers. An overview of a column generation method for the VRP is
given by [Chabrier, 2006]. The subproblem is an elementary shortest path
problem but the elementary-path constraint is often relaxed because of the
high complexity it induces for this problem. Note that the valid inequali-
ties for the set-partitioning formulation can be derived from those for the
two-index arc model, by using the following correspondance :
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∀(ij) ∈ α, xij =
∑

k∈K

∑

p∈P (k)
p∋(ij)

θkp

As told before, the fact that the definition of the vehicle paths can be
constrained by various additional features (e.g., time windows, route max-
imal length) makes the path-based model adapted to any problem having
many of such constraints [Choi and Tcha, 2007]. It can be applied to the
PDP [Sol and Savelsbergh, 1994] as well.

The last exact approach that will be shortly presented here is dynamic
programming. It is an algorithm for a problem that is decomposable
into overlapping subproblems, and where at each step the best decision
must be taken using the recursivity of the subproblems. Every dynamic
programming-based algorithm can be written as a search for a shortest path
in a graph [Martelli, 1976], which makes this problem a very good example to
solve with a dynamic program. Vehicle routing problems can also be solved
with dynamic programming, especially the PDP or its extensions for which
it is the first known exact algorithm [Psaraftis, 1980]. In the real-life appli-
cations, the dynamic programming approach is used mainly as a comparison
tool or a lower bound provider, as it is exponential in the computing time.

In [Xu et al., 2003], the dynamic programming approach is combined
with a column generation algorithm embedded in an approximate approach.
It is applied to the linear relaxation of the column generation problems, in
order to get lower bounds for the main problem. This dynamic programming
algorithm is based on the Dijkstra algorithm for the shortest path problem,
that will be described in section 2.2.

Approximation methods

Due to the fact that the PDP (and the main extensions) are NP-complete,
the exact methods are only effective for relatively small problems (not over
100 sites). For larger instances, they can be unefficient, as they would require
too much time to provide a good solutions. That’s why there is also a
tremendous research effort on approximation methods, for which it may be
difficult to have an idea of the quality of the solution obtained, but that
are much faster. The last example of the previous subsection shows that
approximate and exact methods can collaborate in order to get faster to a
good solution.

Heuristics

As the VRP and the PDP are tackled in many papers, plenty of methods
to solve them and their extensions have been introduced since the 1970s.
As the aim of this chapter is to present an overview, we will focus on the
most famous ones here. A wide range of heuristics for the VRP is given in
[Laporte and Semet, 2002].
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The classical heuristics are usually classified into two groups:

• constructive heuristics, that build the solution from scratch,

• improvement methods, that try to improve a feasible solution by ex-
changing parts of routes or sites with others.

The most famous constructive procedure is the savings algorithm
proposed by [Clarke and Wright, 1964] for the basic VRP. The idea is to
start from a solution with |I| − 1 minimal routes, each of them starting at
the depot and going directly to a site and back to the depot. Note that this
solution may not be feasible if the maximum number of vehicles allowed is
under |I| − 1. Then, iteratively, the current solution is greedily improved
by merging two routes, based on the notion of savings. If the first route
is (0...i−i0) and the second one (0jj+...0) then the resulting route will be
(0...i−ijj+...0). The choice of the two routes depend on the benefit induced
by the replacement of the routes by the merged one. Considering all the
couples of routes of the current solution, the couple that will be chosen for
the merging is the one with a maximum benefit. This benefit (the savings)
can be calculated simply, as it is only the benefit of replacing arcs (i0) and
(0j) by arc (ij). Therefore, the saving to be considered is sij = ci0+cOj−cij .
A list of non-decreasing savings is computed, and updated as soon as two
routes are merged. At each step, the routes that are chosen for the merging
are the ones corresponding to the first saving of the list. The Clarke and
Wright algorithm is simple and efficient, and it is still one of the favourite
heuristics for vehicle routing researchers. It has been improved, in particular
by adding a parameter λ in sij = ci0 + cOj − λcij , or by optimizing the way
of sorting the savings list.

Amongst the constructive heuristics, there is also a great interest in the
decomposition methods. These methods divide the problem into several
phases. For the basic VRP or PDP, “cluster first - route second” proce-
dure is a two phase-heuristic for which the requests are first grouped into
clusters each of which will be served by one vehicle exactly, and then the
routing is decided from these clusters. One of the simplest cluster first -
route second method is the sweep algorithm [Golden et al., 1977b], where
a ray is rotated around the depot. The sites are sequentially added to the
current cluster until it is full (i.e. exceeds the vehicle capacity or violates ad-
ditional constraints such as the maximal route length), in which case a new
cluster is started, and each vehicle route corresponding to a cluster is ob-
tained by solving a TSP on the cluster. Other methods are used to form the
clusters, amongst which the Generalized Assignment Problem (GAP)
[Fisher and Jaikumar, 1981] or a location heuristic to determine the cluster
seeds [Bramel and Simchi-Levi, 1995], in the case the number of vehicles is
fixed or can be computed in a preprocessing heuristic.
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“Route first - cluster second” algorithms, where a TSP tour is first formed
on the whole graph and is then decomposed into several tours (by solving a
shortest path problem), has also been treated but it seems that the results
are not as competitive as the previous methods.

In real-life routing problems, decomposition approaches are often chosen
because their main advantage is to simplify the problem by creating two or
more aspects that are supposed to be easier to solve. In routing problems
with transshipment, the papers seldom deal with the whole problem, but only
a part of the problem. [Doerner et al., 2000] tackle the Full Truckload (FTL)
transportation problem that arises between the hubs. They assume that in
a PDP with transshipment, the shipments are transshipped at an outbound
and an inbound hubs in their path between their pickup and their delivery.
The shipments resulting from the consolidation of the initial shipments at the
outbound hubs are then of FTL type and have to be routed to the inbound
hubs. FTL’s main consequence here is that at any time, there may be only
one shipment in a vehicle. [Grünert et al., 1999] decompose the problem of
a letter-mail delivery into on the one hand a Direct Flight Problem, which
assigns every origin-destination pair (or shipment) to a flight and that can
be modelled as a fixed-charge network flow problem with side constraints,
and on the other hand a Road Route Planning Problem similar to a Road
Network Design Problem.

In some papers, usually those dealing with realistic situations, a simpli-
fication of the problem is considered, mainly due to a particularity of the
instances that are supposed to be solved. Researchers often introduce only
one hub for transshipment, as most of transportation companies are reluc-
tant to open several hubs at a time. Moreover, it is sometimes supposed that
all the pickups take place before all the deliveries, with a visit to the hub
in between. [Armacost et al., 2002, Armacost et al., 2004] propose a simple
formulation for an aircraft network design with such features, as well as a
formulation based on extreme routes in order to get better bounds when
solving the linear relaxation. In [Irnich, 2000], a set-covering formulation is
introduced and the number of routes is reduced by computing a time window
for the hub, depending on the time window of each request.

At last, some simple construction heuristics are known to provide ac-
ceptable solutions very quickly, such as some sequencial insertions. In
such methods, only one route is generated at a time, and a new route is
started only when the previous one can’t be added any additional request.
For example, a greedy method called “nearest (customer) addition” adds to
the current route the nearest customer to one of the customers already in
the route. Such algorithms usually don’t provide high-quality solutions, un-
less they are coupled with improvement heuristics, as there may be no real
interest in spending a lot of time in finding a good first solution when the
improvement method is efficient enough.

Every improvement algorithm starts from a solution that it seeks to
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improve after a sequence of moves. Such an improvement algorithm is based
on local search, and choses at each move the best candidate of the neigh-
bourhood of the current solution. The neighbourhood of a solution is a
set of closely related solutions. For example, if a solution can be defined by
a sequence of bits, one of its neighbour could be obtained by inversing the
value of one of its bits. The solution would then have a neighbourhood of
size the length of the sequence of bits. In some algorithms, the whole neigh-
bourhood is explored and the best neighbour is chosen as the next solution,
whereas in others, the first neighbour improving the current solution is kept.
In any case, the search is stopped as soon as it has found a solution with no
improving neighbour. The search has then reached a local minimum.

The general definition of a neighbourhood has a considerable impact on
the performances of the algorithm. In every paper dealing with an improve-
ment algorithm, the chosen neighbourhood is described carefully, as it has to
be complete (any solution can be obtained from any other solution through
a sequence of moves), but not too large, which would require too much com-
puting time at each move. On the other hand, a too small neighbourhood
would make the point of view more local and the solution search would be
more likely to be quickly trapped into a local optimum.

In vehicle routing, the neighbourhoods are usually exchanges of sites or
arcs inter or intra-route. Almost all the intra-route neighbourhoods for
the VRP are particular cases of Lin’s λ-Opt for the TSP [Lin, 1965], where
λ edges (or arcs in the directed version) are removed from the solution and
the remaining parts of the route are reconnected in every possible way. As
this general neighbourhood may be too large for big values of λ (the number
of possible reconnections is exponential), λ is restricted to small values, up
to 3, or even 4 but with some conditions on the reconnections. The Or-Opt
neighbourhood has been introduced by [Or, 1976]. It consists of moving a
sequence of 3, of 2 and finally of 1 sites at another place in the route. More
sophisticated intra-route neighbourhoods exist, but the most used ones have
been described above, as they are simple to implement and give good results
in reasonable time.

The particular neighbourhoods for the VRP with respect to the TSP are
the inter-route neighbourhoods. Edges or arcs are removed from several
routes and reinserted in other routes. As for intra-route moves, there are
generic neighbourhoods of which a lot of the well-known inter-route neigh-
bourhoods are particular cases. [Thompson and Psaraftis, 1993] introduce
the b-cyclic k-transfer, where at most k requests are chosen and transferred
between b routes in a cyclic way, i.e. requests from route r1 are transferred
to route r2, those from route r2 to route r3, ..., those from route rb to route
r1. As well as Lin’s λ-Opt, these neighbourhoods are too large for big values
for k and b. Therefore, it is often assumed that b = 2, and various famous
particular cases are derived from this assumption [Van Breedam, 1994] (see
figure 2.3):
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Figure 2.3: Inter-route neighbourhoods
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• string exchange: strings from 2 distinct routes (possibly of different
lengths) are exchanged,

• string cross: 2 routes are crossed by exchanging the endpoint for one
of their edges,

• string relocation: one string is moved from one route to another,

• string mix: best move between string exchange and string relocation.

All these moves described above can be used for local improvement
heuristics. But recent methods have used such neighbourhoods as well :
metaheuristics.

Metaheuristics

As heuristics, some metaheuristics improve a solution through local
search. As a result, the notion of neighbourhoods described previously still
holds. The main feature differentiating metaheuristics from standard heuris-
tics is that the non-improving moves are allowed, and sometimes infeasible
solutions are part of the search process. Metaheuristics are designed so as
to prevent the search from being trapped in a local optimum. Most of the
metaheuristics have been inspired from a physical process or a natural rule.

The most simple metaheuristic is probably tabu search, and it is one
of the favourite one amongst VRP and PDP researchers, mostly due to it
flexibility and the possibility to customize it through several parameters.
Tabu search has the same basis as the local improvement heuristic described
above, but it allows a solution to be worse than the previous one. To avoid
looping the search on the same solutions, a tabu list is updated at each



46 Chap. 2: Vehicle routing, location and flow

move, and is consulted as soon as a solution is candidate for a move. This
list contains either the last solutions, or the last moves, which decreases the
chance of looping and allows a wider exploration of the search space. Any
solution forbidden by the tabu list will be considered as “tabu” and rejected.
The solution that is considered as tabu may be better than the best solution
found so far. In some cases, an aspiration criterion is introduced to allow
this solution to be used, even if it is tabu. [Kelly and Xu, 1999] solve a basic
VRP with a two-phase heuristic using a tabu search strategy. In the first
phase, a big number of routes are generated either with several settings of a
weighted savings heuristic followed by a 3-Opt improvement, or with a tabu
search heuristic using a complex neighbourhood where a solution may exceed
the capacity constraint, but is charged a penalty. In the second phase called
Integration, some routes are selected thanks to a tabu search method on a
set-partitioning formulation based on the routes generated in the first phase.

Simulated annealing imitates annealing in metallurgy, allowing the
quality of a material to be improved. A material is heated to allow its
atoms to move from their initial position, and slowly cooled back down to
make them find another position, possibly better than the previous one.
In simulated annealing, a solution is randomly chosen with a probabil-
ity depending on the difference between its objective value and the one
of the previous solution, and on the temperature, a parameter that de-
creases slowly during the search and such that the randomness is more im-
portant when the temperature is high (at the beginning of the algorithm).
[Tavakkoli-Moghaddam et al., 2007] solve a split service VRP with Simu-
lated annealing and 1-Opt and 2-Opt operators adapted to split loads. In
the modified 1-Opt neighbourhood, for example, a site that is served by one
vehicle is not relocated in another vehicle but it is served by one more vehicle,
splitting its service in the two vehicles.

A metaheuristic that simulates the development of a population through
selections, crossovers and mutations is called a genetic algorithm (or GA).
Unlike the previous ones, this metaheuristic does not improve a solution
through local search. In a GA, each solution consists of a set of several
decisions (or genes), called a chromosome, and each gene is involved in the
evolution of the population of solutions. The first population is made of ran-
domly generated solutions, and at each step of the algorithm, only the most
promising individuals are kept for evolution, depending on an evaluation
criterion called fitness. Then, crossover (or recombination) and mutation
operators have to be defined to allow the population to get to the following
generation. [Thangiah and Nygard, 1992] use a two-phase algorithm for the
Multicommodity Transshipment Problem. A GA is used for the first phase
to generate the trunk routes, i.e. between the hubs, and another GA cou-
pled with a clustering heuristic determines the feeder routes, i.e. “around”
the hubs. Whereas [Grünert et al., 1999] solve their Direct Flight Problem
using a hybrid Tabu Search and Branch and Bound strategy as the neigh-
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bourhood evaluation is based on a decision tree, their Road Network Design
Problem is solved with an evolutionary algorithm (i.e. a GA) that assigns a
departure time and a vehicle type to each route going through a hub. A set
S1 of such hub trips is recombinated with another S2 by considering subsets
of hub trips of both sets that have the same origin and the same destination,
and choosing randomly, for each such subset, the one corresponding to S1 or
to S2.

Ant colony algorithms exploit the ant collaboration system to gener-
ate a good solution. Initially, the ants wander randomly in the graph and af-
ter reaching their goal, they return back to their colony. Each ant lays down a
given quantity of pheromone while traveling, and tend to be attracted by the
pheromones dropped by other ants previously. The pheromone evaporates
gradually, meaning that the paths containing the most pheromone will be the
shortest paths. But like in most of the metaheuristics, a random parameter
is kept to prevent the ants from always traveling through the same path. In
their time-constrained FTL transportation problem, [Doerner et al., 2000]
use an ant colony algorithm embedding a dedicated construction heuristic,
and based on a set-partitioning model.

Social behaviours are also simulated through particular swarm algo-
rithms. As for ant colony optimization, the collaboration of plenty of indi-
viduals (or particles) tend to build a good solution. The collaboration here
is based on the motion of each individual, depending on its best position so
far, the current best position in its neighbourhood and the best position ever
for all the particles. Hence, a velocity vector is necessary to compute each
particle’s next position. An example of such an algorithm for the VRPTW
is given by [Zhu et al., 2006].

Other metaheuristics exist, but they have not yet yield to significant
results for the VRP and the PDP compared with other approaches.

It seems that metaheuristics are very powerful when they are applied to
real-life problems, as the customer instances coming from these problems
are usually of large size, and the metaheuristics provide a way to get to a
good solution in reasonable time. Usually, the problems are even so huge
that they are decomposed and each part of the decomposition is solved by
a metaheuristic. As shown in some of the examples above, it is usually the
case for PDP with many additional features, such as transshipment.

2.2 Network flow

If the vehicle routing aspect of the problem we face is neglected, the com-
modities have to be routed in a network flow between the hubs. Indeed,
the hubs allow the goods to be routed through a path that doesn’t depend
on the vehicle routes.

Network flow is one of the most famous problems in Operations Research
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Figure 2.4: Example of flow

2

8

4

13

1

2

1

1

4

2

Figure 2.5: Flow between a source and a sink
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and has been applied in a wide variety of domains (such as transportation)
[Ahuja et al., 1993]. There are various types of network flow problems, but
in this thesis, only the minimum cost flow problem is of interest. In a directed
graph with costs on arcs (and possibly capacities), a minimum cost flow has
to be found. Each site has a demand or an offer in the commodity. A flow
is a valuation on the arcs such that the total quantity of products entering
any vertice has to be equal to the total quantity leaving this vertice (see
figure 2.4). It is known in Physics as the Kirchhoff law. By definition, a flow
is a valuated cycle on the graph.

By extension, a flow may also be non-cyclic and defined between a source
site (with an offer) and a sink site (with a demand equal to the offer on the
source). It is equivalent to the cyclic case as it suffices to introduce an
additional arc between the sink and the source, on which the valuation is
constrained to be equal to the offer of the source and with a null cost. For
example, on figure 2.5, if 8 units of flow have to be transported between s
and t, then it can be changed into a cyclic flow by adding the dotted arc
with value 8. Note that to constrain an arc to have a given valuation v, the
usual way is to add capacity constraints and impose the lower bound to be
v as well as the upper bound.

In some flow problems, there are several sources and several sinks. To



2.2 Network flow 49

Figure 2.6: Flow between several sources and several sinks
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come back to a flow problem with a unique source and sink, let’s just add a
pseudo source S and a pseudo sink T , and arcs between S and each initial
source and between each initial sink and T , such that the flow on the arc
is equal to the offer (resp. demand) of the initial source (resp. sink), and
the cost is 0. Figure 2.6 is an example of such a correspondance, with new
source S having an offer of 8 and new sink T with a demand of the same
amount.

If we suppose that the number of vehicles is fixed on each arc, then we
adress a capacitated minimum cost flow problem. If the vehicles routes are
determined only in a postprocessing, then the problem is uncapacitated. If
several commodities have to be transported in the graph, then a multicom-
modity flow problem has to be tackled. Schrijver presents a theoretical
survey of the multicommodity flow in [Schrijver, 2003].

2.2.1 Formulations

Let cij denote the cost per flow unit on arc (ij), b(i) the offer or demand on
site i (b(i) > 0 in case it is an offer, b(i) < 0 if it is a demand). lij and uij

are the lower bound and upper bound of the flow on arc (ij). φij is the flow
variable indicating how much flow is going through arc (ij). A capacitated
minimum cost flow problem can be modelled as follows :

min
∑

(ij)∈α

cijφij (2.2.1)

Subject to :

∀i ∈ I,
∑

(ij)∈α

φij −
∑

(ji)∈α

φji = b(i) (2.2.2)

∀(ij) ∈ α, lij ≤ φij ≤ uij (2.2.3)

This is the node-arc formulation. (2.2.1) is the objective function
indicating that the total cost has to be minimized. Constraint (2.2.2) is the
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Kirchhoff law that enforce the flow conservation before and after a site and
constraint (2.2.3) is the capacity constraint

When dealing with multicommodity network flows, another index k has
to be introduced to depict the commodity. In the following, the set of com-
modities will be referred to as C. In the capacity constraints (2.2.3) as well
as in the objective (2.2.1), the references to φij become

∑

k φijk.
Another model, the arc-path formulation, uses all the possible elemen-

tary paths from a commodity source to a sink. Note that here, it is necessary
to assume the unicity of the source and the sink, for each commodity. Let
s(k) and t(k) be the source and the sink of commodity k, respectively. d(k)
is the total amount that has to be routed from s(k) to t(k). Moreover, the
lower bound on flow is supposed to be 0 here since otherwise, there could
be cycles in every optimal solution and the decomposition into elementary
paths would be impossible.

min
∑

k∈C

∑

(ij)∈α

cij

∑

p∈P (k)
p∋(ij)

θkp (2.2.4)

Subject to :

∀k ∈ C,
∑

p∈P (k)

θkp = d(k) (2.2.5)

∀(ij) ∈ α,
∑

k∈C

∑

p∈P (k)
p∋(ij)

θkp ≤ uij (2.2.6)

Side constraints and nonlinear costs are more and more introduced to
be able to tackle real-life problems such as telecommunication applications.
[Mahey and De Souza, 2007] use complex piecewise convex costs to model
the discounts obtained by expanding the capacity on arcs. On the other
hand, [Croxton et al., 2007] deal with nonconvex piecewise linear costs that
arise in many transportation or telecommunication problems. Time require-
ments on paths are handled in [Holmberg and Yuan, 2003] by using a column
generation approach.

2.2.2 Solving network flows

Basic network flow is a problem known for its very powerful dedicated al-
gorithms. One of the most famous is the Ford and Fulkerson algorithm
[Ford Jr. and Fulkerson, 1962]. It is based on a residual graph, in which the
direction of the arcs depend on the flow on the arc of the initial graph, where
the minimum-cost augmenting path has to be found and can be exploited to
improve the current solution. Note that as there can be negative-cost arcs in
the residual graph, the algorithm used to find a shortest path in the residual
graph is Bellman-Ford [Bellman, 1958].
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On the other hand, the multicommodity flow problem is known to be
NP-hard, even with few commodities. The exact solving methods for the
minimum cost multicommodity flow problem are mostly based on linear
programming or on the simplex algorithm. A wide review of such meth-
ods can be found in [Assad, 1978] and [Kennington, 1978]. More recently,
[Bonnans et al., 2000] experiment a column generation scheme on the arc-
path formulation and compares it with a standard interior point method.
[Larsson and Yuan, 2004] solve large scale multicommodity flow problems
with a Lagrangean relaxation coupled with a penalty approach.

Metaheuristics can also be chosen to solve problems either with a large
size or with a high complexity level such as nonlinear costs.

[De Souza et al., 2008] embed a cycle canceling procedure in a tabu search
framework for a multicommodity network flow problem with separable piece-
wise convex costs. In [Walkowiak, 2004], the author applies an ant colony
algorithm and studies the influence of the algorithm’s settings on the effi-
ciency of the algorithm. [Tu et al., 2005] model a water distribution problem
into a multicommodity flow over an undirected network. A genetic algorithm
provides directions for all arcs, and a population fitness is evaluated thanks
to a generalized reduced gradient procedure.

2.3 Location problems

In addition to the routing aspect, we have to determine the hubs that will
be necessary for transshipment. As every hub has a fixed opening cost, this
subproblem can obviously be related to a location problem.

Location is a wide area having many practical applications. The most
famous problem from this domain is the warehouse location problem, in
which some warehouses can be opened at predefined locations, but at a
certain cost, and each warehouse can supply a maximum number of stores,
and for each store to be served, there is an additional cost, usually depending
on the distance between the warehouse and the store.

In our case, we have to tackle a hub location problem. In this problem,
given an amount of flow that must be transported between some pairs of
nodes, a set of hubs must be opened to reduce the total transportation cost.
The goods travel in a hub-and-spoke network, meaning that they need to
go through an outbound hub next to their origin, and an inbound hub next
to their destination before being delivered. The hubs can often be chosen
amongst all the sites of the network. A comprehensive review of hub location
problems is given by [Alamur and Kara, 2008].

Note that the hub location problem only implies shipping goods. The
vehicle routes are not decided here.
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2.3.1 Formulations

O’Kelly first proposed a two-index quadratic formulation for the basic single
allocation hub location problem [O’Kelly, 1992]. In this hub location prob-
lem, each site is allocated to only one hub. I is the set of sites and H is
the set of potential hubs (H ⊆ I). Let dij be the amount of flow that has
to be transported from site i to site j and cij stand for the total cost per
unit of flow from site i to site j. cij is usually decomposed to take into
account each of the three parts of the path of the commodity going from i
to j (i→ k → l→ j):

cij = χcik + αckl + δclj

where k and l denote the outbound and inbound hub respectively. Note that
k and l are not ambiguous as i has only one associated hub, as well as j. χ,
α and δ are the coefficients for collection, transfer and distribution.

In this model, the decision variables are xik, stating whether site i is
allocated to hub k. Note that hub k is opened (at a cost fk) if and only if
xkk = 1 (hub k is allocated to itself).

min
∑

i∈I

∑

j∈I

dij

∑

k∈H

χcikxik +
∑

i∈I

∑

j∈I

dij

∑

l∈H

δcljxjl

+
∑

i∈I

∑

k∈H

xik

∑

j∈I

∑

l∈H

xjlαckldij +
∑

k∈H

xkkfk (2.3.1)

Subject to:

∀i ∈ I,
∑

k∈H

xik = 1 (2.3.2)

∀i ∈ I, k ∈ H, xkk ≥ xik (2.3.3)

∀i ∈ I, k ∈ H, xik ∈ {0, 1} (2.3.4)

Constraints (2.3.2) ensure that every site is covered by exactly one hub,
constraints (2.3.3) enforce a hub to be opened if a site is allocated to it, and
constraints (2.3.4) are the boolean constraints on variables xik. Note that,
in the case we know the number p of hubs to be opened, constraint (2.3.3)
can be replaced with the following constraint:

∀k ∈ H, (|I| − p + 1)xkk ≥
∑

i∈I

xik (2.3.5)

In this case (called p-hub median problem), we also have to include the
following constraint into the formulation:

∑

k∈H

xkk = p (2.3.6)
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A multiple allocation version of this problem exists, and in this case, a
site can be allocated to several hubs at the same time. [Campbell, 1994]
introduces a 4-index Mixed Integer Linear Programming model to solve this
problem. Here, the variables yiklj are continuous and positive and indicate
the quantity of flow travelling from i to j through hubs k and l. Boolean
variables xkk stating if hub k is opened are also needed. The MILP model
is then the following:

min
∑

i,j∈I

∑

k,l∈H

cikljyiklj +
∑

k∈H

fkxkk (2.3.7)

Subject to:

∀i, j ∈ I,
∑

k,l∈H

yiklj = dij (2.3.8)

∀i, j ∈ I,∀k ∈ H,
∑

l∈H

yiklj ≤Mijxkk (2.3.9)

∀i, j ∈ I,∀l ∈ H,
∑

k∈H

yiklj ≤Mijxll (2.3.10)

∀i, j ∈ I,∀k, l ∈ H, yiklj ≥ 0 (2.3.11)

∀i ∈ I, zi ∈ {0, 1} (2.3.12)

Constraints (2.3.8) ensure that all the flow will be tranfered from i to j.
Constraints (2.3.9) and (2.3.10) make sure that if a commodity goes through
a hub, this hub is necessarily opened, provided Mij ≥ dij . These constraints
are known to be big-M constraints, which are linear constraints replacing
non-linear ones by introducing a new (possibly big) constant M . This usually
results in a slowdown of the solving of the LP relaxation, especially for really
big values of M . In our case, Mij = dij is reasonably small.

In this model, there is no constraint about the single allocation of a site
to a hub. However, if necessary, it is possible to introduce a new variable
xik, such as in the quadratic model, and a constraint of the type (2.3.2).

As in the previous model, the cost per unit of flow can be rewritten:
ciklj = χcik +αckl +δclj . Usually, χ = δ = 1 whereas α < 1, in order to facil-
itate consolidation and the use of inter-hub routes. Some researchers believe
that this cost modelling is not realistic enough and that the discount of us-
ing inter-hub routes should increase with the flow. The cost function should
then be concave increasing, rather than linear. [Racunica and Wynter, 2000]
introduce nonlinear discount functions on interhub routes and between hubs
and standard sites. They also use a new variable, called x̂iill, to allow the
possibility for a request to be transported directly from its origin to its des-
tination, without being transshipped in a hub.

Note that even if the number of hubs to open is fixed, the problem is NP-
hard, as the allocation part of the problem is already NP-hard [Kara, 1999].
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For the multiple allocation problem, [Campbell, 1994] also proposed a
model with boolean variables xiklj standing for the fraction of flow from i
to j that is routed via hubs k and l. In this formulation, the integrality
constraints on variables xiklj are not needed as the whole flow between i and
j can always be routed through the least-cost hub pair.

2.3.2 Solving hub location problems

In many cases, metaheuristic approaches are chosen to solve this problem.
The reason for this is that the size of the 4-index model is too big to solve
large instances, and the quadratic model is then chosen. One of the main
advantages of metaheuristics is that they usually don’t need the cost function
to be linear.

[Topcuoglu et al., 2005] use the quadratic formulation to solve the sin-
gle allocation hub location problem with a genetic algorithm. The initial
population is not generated at random, but the sites with a big amount of
traffic are selected as hubs with higher probability. [Cunha and Silva, 2007]
consider a variable discount factor α depending on the amount of freight be-
tween hubs, and they solve the problem using a genetic algorithm combined
with simulated annealing.

Some researchers still apply methods based on Branch-and-Bound to
solve such problems. [Cánovas et al., 2007] propose a dual-ascent technique
embedded in a Branch-and-Bound solving. On a capacitated version of the
problem (with capacities on hubs) and where direct connections are allowed,
[Aykin, 1994] presents a Branch-and-Bound algorithm with Lagrangean re-
laxation to reduce the computing time by providing lower bounds.

Conclusion

Many solving techniques have been proposed for each of the three well-known
problems introduced in this chapter. The use of the result and the size of the
instances on which the problem is raised decides whether to choose an exact
method or an approximate one. Nonetheless, these two kinds of methods
can be mixed in multilevel methods, especially for large instances for which
a decomposition approach is necessary.
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Chapter 3

The arc-based formulations
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Résumé du chapitre

Le problème décrit dans le chapitre 1 est complexe, et il n’est pas aisé
de le modéliser mathématiquement sans écarter une de ses caractéris-
tiques essentielles. Dans ce chapitre, nous proposons deux formulations
permettant de résoudre le problème de façon exacte, ainsi que quelques
améliorations permettant de rendre la résolution par Branch&Bound plus
performante.
La première est une formulation dédiée au problème traité : le problème
de ramassage et livraison avec transbordement et fenêtres de temps. En
revanche, la deuxième est consacrée au problème de tournées de véhicules
multi-produits avec ramassages et livraisons, et elle permet de traiter des
problèmes où le partage des chargements est autorisé. De plus, sa taille
est plus petite pour les grandes instances que celle de la première formu-
lation. Toutes deux ont une base commune de variables et de contraintes.
Elles utilisent des variables à trois indices classiques dans les problèmes
de tournées de véhicules où il est nécessaire d’individualiser les véhicules.
D’autres variables se retrouvent dans des études classiques, comme les
variables de temps, mais elles sont ici plus générales de façon à pouvoir
traiter le problème industriel avec toutes ses caractéristiques. Le prin-
cipal inconvénient de la linéarisation de ces modèles est la présence de
contraintes grand-M.
Pour améliorer les performances de la résolution des modèles, plusieurs
procédures sont proposées. Un prétraitement visant à réduire le nombre
de sites et le nombre de véhicules peut être utilisé. Un algorithme automa-
tique de relaxation et plans coupants permet de relâcher les contraintes
grand-M qui sont nombreuses et contribuent à la complexité de la formula-
tion. Pour renforcer la formulation, nous proposons également des coupes
dédiées au problème. Enfin, des priorités sont appliquées sur l’ordre de
branchement des variables intervenant dans le modèle.
Les résultats sur l’ensemble des 19 plus petites instances montrent que
la plupart d’entre-elles peuvent être résolues jusqu’à l’optimalité, et que
l’utilisation des améliorations introduites précédemment réduit le temps
de calcul.
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Considering the problem described in chapter 1, each of the formulations
enumerated in chapter 2 holds for a part of the problem. In this chapter,
we propose to gather all the aspects into a single model. Two formulations
are proposed, and both of them can solve problems that are close one to
another. Each of them has its own real-life features from the original problem
described in chapter 1, as some of them are too complicated to be linearized
simply. Note that in both formulations, no storage is possible in any hub,
meaning that the transshipment between vehicles must be done if all the
vehicles involved with the transshipment are present in the hub at the same
time. This is a constraint given by ILOG TPO customers, but it also makes
the formulation lighter.

The first mathematical model is described in section 3.1 and is a formu-
lation for the Pickup and Delivery Problem with Transshipment and is the
closest to the problem detailed in chapter 1. It contains many additional
real-life features, such as shipment alternatives. However, some of the real-
life constraints described in section 1.3, such as LIFO constraints or breaks,
are not taken into account here for a lighter modelling. Moreover, we will
only consider one capacity dimension, which is the number of pallets.

This formulation has been linearized so that it can be solved easily and
rather quickly, at least on small instances. The constraints are made of time
constraints, flow constraints and some PDP boolean constraints that link
the PDP boolean variables together.

Section 3.2 presents a formulation of the problem viewed as a Multicom-
modity Vehicle Routing Problem with Pickups and Deliveries and Transship-
ment (using the reduction proposed in subsection 3.2.1 as a preprocessing).
This formulation can be used on a problem were split loads are allowed, but
its main objective is to decrease the problem size, as the reduction proposed
in subsection 3.2.1 generates few products on instances with many shipments
that have the same pickup site. The main benefit of using this model in-
stead of the previous one is the possibility of splitting loads. One of its main
drawbacks is that the modelling is weaker: in particular, the time constraints
related to each shipment are removed from the formulation.

Some improvements are suggested in section 3.3 in order to cope with the
negative effects of the structure of the formulations, especially the presence
of big-M constraints used to linearize the models.

Then, section 3.4 gathers the results obtained on small instances provided
by an ILOG TPO customer.

Note that this chapter has been inspired from a paper written for the
ROADEF French-speaking conference [Fournier, 2007]. However, the for-
mulations have been modified and completed since the time this paper was
written.
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Table 3.1: Special features included in each formulation

Features \Models PDP MVRP Path-based

Vehicle breaks ✘ ✘ ✘

LIFO constraints ✘ ✘ ✘

Transshipment ✓ ✓ ✓

Shipment alternatives ✓ ✘ ✓

Time constraints ✓ ✓ ✘

Time constraints for visits ✓ ✘ ✘

Maximal number of stops ✓ ✓ ✘

Split loads ✘ ✓ ✘

Vehicle-product incompatibilities ✓ ✓ ✘

Product-product incompatibilities ✓ ✘ ✘

3.1 The PDP model

Like a lot of other problems, the PDP can be modeled as a Mixed-Integer
Program (or MIP). The fact that here there are many additional constraints
only enlarges the basic representation. As a base, a classical 3-index boolean
variable (indicating whether a vehicle travels between two sites or not) is
introduced. This is the basic framework for many mathematical arc-based
models in the literature, as discussed in the previous chapter. However, the
number of variables is sometimes reduced by removing the vehicle-dedicated
index, and considering the number of vehicles between two sites (see subsec-
tion 2.1.5). Here, we strive to model the problem as accurately as possible.
However, some features, such as vehicle breaks and LIFO constraints, are
not modelled here. Table 3.1 underlines which of the real-life features are
taken into account by each formulation presented in this thesis.

3.1.1 Modeling choices

As explained in subsection 1.3.2, some shipments can be either delivered to
their final destination or unloaded in a nearby Zone-Skipping Hub (ZSH) in
order to group the delivery of other shipments in the same area. For this
shipment alternative to be included in the formulation, we need to intro-
duce new shipment and visit objects. Then, there is a disjunction between
the “real” shipment from the pickup and the delivery site, and the pseudo-
shipment from the pickup site and the ZSH. The initial shipment set S is
replaced by a set of shipment S′, such that S ⊆ S′.

A generalization is possible with this kind of modeling, with over 1 alter-
nate shipment per shipment (supposing more than one ZSH is available for
a delivery, and possibly for the pickup as well). In the instances studied in
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Figure 3.1: Site duplication
Site jSite i

j+i+ j−i−

chapter 5, however, there can’t be over 1 alternate shipment.

3.1.2 Variables

The model contains boolean and continuous variables. To make the model
more efficient, the upper bounds on continuous variables must be minimized.

Writing conventions

A ’−’ superscript means that the variable is associated with the arrival of a
vehicle on a site, whereas a ’+’ superscript is linked to a vehicle departure.
This stands in a way for a duplication of the nodes in the initial graph. In-
deed, for each site i of the network, we will introduce i− and i+ as the arrival
and departure pseudo-sites (respectively) of site i (see figure 3.1). This has
been done mainly for time reasons, in the special case where a vehicle route
is closed (has the same departure site and arrival site). Indeed, in this case,
the arrival time in every site of the route is less than the departure time,
except for one site: the first and last site of the route. As any site is a
potential first and last site for a route, the distinction between the arrival
and departure of a site is necessary.

The ’±’ superscript is used to decrease the number of constraints. Each
constraint where this character appears can be decomposed into two con-
straints:

• the one where every occurence of ’±’ are replaced by ’+’,

• the other where every occurence of ’±’ are replaced by ’−’.

For example, x± = y± + z+ + w would be used for:
{

x+ = y+ + z+ + w
x− = y− + z+ + w

Let’s suppose a shipment s is made of two visits: the pickup visit p(s)
and the delivery one d(s). The site where visit v takes place is denoted by
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Table 3.2: Data in the mathematical models

Type Data Meaning

Time servTime(i) Fixed service time on site i
servTime(v) Service time for pickup or delivery visit v

travTime(i, j, k) Travel time for vehicle k between sites i and j
maxTravel(k) Max. travel time allowed for vehicle k

minTimeDep(k) Min. departure date allowed for vehicle k
maxTimeDep(k) Max. departure date allowed for vehicle k

[twLB(i), twUB(i)] Time window on site i
[twLB(v), twUB(v)] Time window for visit v

Load qty(s) Quantity of products in shipment s
qty(v) Quantity of products related to visit v
cap(k) Capacity of vehicle k

offer(i, p) Quantity of product p available at site i

Site extrem+(k) Departure site for vehicle k (if any)
extrem−(k) Arrival site for vehicle k (if any)

Integer maxSplit(i, p) Max. number of splits for product p on site i
maxNbStops(k) Max. number of stops for vehicle k

size(f) Number of vehicles in fleet f

i(v). Concerning subscripts, i and j are sites (including hubs), h a hub, k
and l vehicles, s a shipment and v a visit (shipment pickup or delivery).
They are always used in this order: (site, vehicle, shipment or visit).

Recall that a visit alternative A is a set of visits of the same type (pickup
or delivery) amongst which at least one visit has to be performed. The set
of all visit alternatives will be called A. Note that a shipment alternative
may be changed into a visit alternative on their delivery visits.

The last convention is that the continuous variables are referred to with
uppercase letters (such as T+

ik ), whereas the integer variables are written
with lowercase letters (such as xijk).

All the data parameter names are given in table 3.2.

Time variables

Every time variable is a real number (and bound to 0 if vehicle k doesn’t go
through site i), and are the following:

• the date T±
ik of arrival (or departure) of vehicle k at site i,

• the dates T+
k and T−

k of begin and end of use of vehicle k,
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• the date Tv of beginning of visit v,

• the waiting times W−
ik and W+

ik of vehicle k, at site i and leaving site
i, respectively.

All of these variables are supposed to be continuous and positive. Note
that the variables of type T±

ik generalize the well-known variables Ti that are
introduced in various papers such as [Desaulniers et al., 2002].

Their upper bounds can be computed from the data, especially the site
and visit time windows.

For any visit v, the date Tv will never be above twUB(v). Let iv be the
site where the visit takes place. Then Tv won’t be more than twUB(iv),
either. So its upper bound will be UB(Tv) = min(twUB(v), twUB(iv)).

Let k be a vehicle for which site i is the last route site. The dates T±
ik

have upper bounds of UB(T±
ik) = twUB(i). For any other case, that is either

vehicle k has no ending site for its route in the data, or i isn’t this ending
site, the upper bound can be slightly improved by introducing the visit time
windows. T±

ik is less than the time window upper bound of at least one visit
taking place in site i. The reason for this is that in any optimal solution,
vehicle k will perform at least one visit in any site i of its route (except maybe
the last one), as going to site i without doing anything can be improved by
skipping site i of vehicle k route (recall that the triangular inequality holds).
As a result, if we call v(i) a visit taking place in site i and V (i) the set of
all such visits, T±

ik will be less than maxv(i)∈V (i)(twUB(v(i))), and its upper
bound will be UB(T±

ik ) = min(twUB(i),maxv(i)∈V (i)(twUB(v(i))))

Eventually, as for any site i and any vehicle k, T±
ik ≤ T−

k , UB(T±
k ) =

maxi(min(twUB(i),maxv(i)∈V (i)(twUB(v(i))))).

Boolean flow variables

Variables y±ik stand for the arrival (or departure) of vehicle k at site i. Unlike
the usual models in the literature, this variable uses the duplication described
above. Variables xijk are usually used in VRP models (see subsection 2.1.5)
and are bound to 1 if arc (ij) (i 6= j) is used by vehicle k. Other variables
indicate:

• if site i is the ending point (resp. starting point) of the tour of vehicle
k: r−ik (resp. r+

ik),

• the use of vehicle k (resp. of hub h): uk (resp. zh). Note that zh

is similar to a variable xhh introduced in hub location problems (see
subsection 2.3.1).

This kind of modeling induces a limitation: a vehicle can’t go to the same
site several times, except if nodes are duplicated.
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Table 3.3: Variables of the arc-based MIPs

Model Type Variable Meaning

PDP&MVRP Time T±
ik Date of arrival/departure of vehicle k on site i

T±
k Date of begin/end of use of vehicle k

T±
v Date of beginning of visit v

W−
ik Waiting time of vehicle k at site i

W+
ik Waiting time of vehicle k leaving site i

Boolean y±ik Arrival/departure of vehicle k on site i
xijk Site i is just before site j on the route of vehicle k
r±ik Site i is the first/last site of the route of vehicle k
uk Vehicle k is used
zh Hub h is used

Load Qk Maximal quantity of products inside vehicle k during its route

PDP Boolean ciks Vehicle k loads shipment s on site i
diks Vehicle k unloads shipment s on site i
a±iks Vehicle k leaves/arrives in site i with shipment s
bvk Visit v is performed by vehicle k
bv Visit v is performed
fvw Visit v is performed before visit w, on the same site

MVRP Load L±
ikp Quantity of products p in vehicle k leaving/arriving at site i

L=
ikp Quantity of products p loaded by vehicle k in site i

Boolean qikp Vehicle k loads or unloads product p in site i
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Boolean PDP variables

Variables ciks (resp. diks) indicate if vehicle k loads (resp. unloads) shipment
s on site i, and a±iks if vehicle k has shipment s arriving (resp. leaving) site
i.

We also introduce variables that are linked with visits. Variables bv and
bvk indicate whether visit v is performed (resp. is performed by vehicle k).
Finally, variables fvw states that visit v is performed before visit w, if this
is relevant.

Every variable is supposed to be positive.
Table 3.3 is a complete summary of all variables introduced in this chap-

ter.

3.1.3 Constraints

About big-M constraints

Some of the constraints introduced in this section are basically non-linear
constraints, but can be modeled linearly.

Let’s suppose that a given inequality holds if some boolean variables are
equal to specific values. For example, if a vehicle k arrives in site i (y−ik = 1)
and leaves this site (y+

ik = 1), then its arrival date at site i will be lower than
its departure date from this site (T−

ik ≤ T+
ik).

For a generalization, let’s call CST the following constraint:

if (C) then S
with C a linear condition involving some boolean variables (xi), and S a
linear statement, involving some variables (not necessarily boolean) (yj),
that must be true if C holds.

This kind of constraints can be called a conditional constraint, because
statement S depends on the value of some boolean variables. Note that as
CST is equivalent to (not C or S), it is also a disjunctive constraint. We
assume that the set C of conditions on boolean variables (xi) can always be
written in the form: λ0 +

∑

λixi = 0 where ∀i, λi are constant and quantity
λ0+

∑

λixi is non-negative. Indeed, here is the simple corresponding between
boolean constraints and numerical constraints:

• (x is true) → (1− x = 0)

• (x is false) → (x = 0)

• (x1 and x2 are true) → (2− x1 − x2 = 0)

In the case where C is (x1 or x2 are true), the constraint CST can be simply
written as a conjunction of two constraints:

{

if (x1 is true) then S
if (x2 is true) then S
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Let’s now suppose the statement S is an equality, which is µ0+
∑

µjyj =
0, where µj are fixed coefficients. Once again, the constraint can be separated
into two constraints:

{

if (C) then µ0 +
∑

µjyj ≥ 0
if (C) then −µ0 +

∑

(−µj)yj ≥ 0

As a result, in the general case, the conditional constraint CST can be
written as follows:

if
(

λ0 +
∑

λixi = 0
)

then
(

µ0 +
∑

µjyj ≥ 0
)

where ∀i, xi and yi are variables, whereas λi and µj are fixed coefficients,
and quantity λ0 +

∑

λixi is non-negative.
There are several ways of modeling such a constraint linearly. One of the

simplest and most classical way is to introduce a big constant, usually called
big-M. This kind of constraints was first described by [Williams, 1978]. The
constraint CST will then be modeled as follows:

µ0 +
∑

µjyj + M ·
(

λ0 +
∑

λixi

)

≥ 0

Constant M must be chosen big enough to make the constraint true
whichever values for variables yi, in the case the condition on variables xi

doesn’t hold (that is: λ0 +
∑

λixi ≥ 1). However, if constant M is too
big, the optimization will require more processing time as the constraint will
have huge coefficients on some variables, which is known to be a drawback
on integer programs. Consequently, such a constant M must be calculated
carefully and minimized for a better modeling.

The big-M computations will be precised in the following subsections
each time it will be necessary.

Time constraints

The time dimension introduces a lot of constraints in the realistic model,
and especially conditional constraints, as several times a condition has to
hold in order to make the constraint valid.

For convenience matters, we introduce for each site i and vehicle k a
variable standing for the total service time of vehicle k on site i:

servT imeik = servTime(i) +
∑

v(i)∈V (i)

servTime(v(i)) · bv(i)k (3.1.1)

where v(i) is a visit taking place at site i, and V (i) is the set of all such
visits. servT imeik has to be handled as a variable because this time depends
on the visits performed at site i.

(∀i, j ∈ I,∀h ∈ H,∀k, l ∈ K,∀v, v′ ∈ V )
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• Vehicle k travels from i to j:

T−
jk = T+

ik + travTime(i, j, k) + W+
ik if xijk = 1 (3.1.2)

It has been modelled through the following linear constraints:

T+
ik + travTime(i, j, k) + W+

ik ≤ T−
jk + M

(3.1.2a)
time · (1− xijk)

T+
ik + travTime(i, j, k) + W+

ik ≥ T−
jk −M

(3.1.2b)
time · (1− xijk)

• Link between the arrival and the departure date of vehicle k at site i:

T−
ik + servT imeik + W−

ik = T+
ik if y−ik = 1 and r−ik = 0 (3.1.3)

The condition given here is equivalent to (y−ik = y+
ik = 1 and r−ik = r+

ik =
0), as inferred from boolean constraints (3.1.19) and (3.1.20) described
below. In other words, the left-hand part is true if vehicle k enters and
leaves site i, in this order. As previously, this conditional constraint is
modelled with linear big-M constraints:

T−
ik + servT imeik + W−

ik ≤ T+
ik + M

(3.1.3a)
time · (1− y−ik + r−ik)

T−
ik + servT imeik + W−

ik ≥ T+
ik −M

(3.1.3b)
time · (1− y−ik + r−ik)

We also have to consider the case where the route of vehicle k has i as
a departure site and/or arrival site, as in this case T+

ik and T−
ik can’t

be connected:

T−
ik + servT imeik + W−

ik = T−
k if r−ik = 1 (3.1.4)

T+
k + servT imeik + W−

ik = T+
ik if r+

ik = 1 (3.1.5)

It is the same kind of modelling here, with 2 big-M constraints per
conditional equality:

T−
ik + servT imeik + W−

ik ≤ T−
k + M

(3.1.4a)
time · (1− r−ik)

T−
ik + servT imeik + W−

ik ≥ T−
k −M

(3.1.4b)
time · (1− r−ik)

T+
k + servT imeik + W−

ik ≤ T+
ik + M

(3.1.5a)
time · (1− r+

ik)

T+
k + servT imeik + W−

ik ≥ T+
ik −M

(3.1.5b)
time · (1− r+

ik)

• Simultaneity of the presence of vehicles k and l in hub h in the case
they handle the same shipment s (no storage in the hub):

T−
hk + servT imehk ≤ T+

hl if dhks + chks = dhls + chls = 1 (3.1.6)

modelled with the constraint:

T−
hk + servT imehk ≤ T+

hl + M
(3.1.6)
time · (2− dhks − chks − dhls − chls)

Note that constraint 3.1.25 defined below ensures that dhks = chks = 1
is impossible (and the same holds for vehicle l).
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• Vehicle k route duration:

0 ≤ T−
k − T+

k ≤ maxTravel(k) (3.1.7)

• Vehicle k departure time:

minTimeDep(k) ≤ T+
k ≤ maxTimeDep(k) (3.1.8)

• Time window in site i:

twLB(i) · y±ik ≤ T±
ik ≤ twUB(i) · y±ik (3.1.9)

PDP Time constraints

In this subsection, only the time constraints involving PDP objects
(such as visits) are described.

• Time window for visit v:

twLB(v) ≤ Tv ≤ twUB(v) if bv = 1 (3.1.10)

This time, the linearization is simpler as multiplying both the right
hand side and the left hand side of the double inequality by variable
bv gives correct inequalities, even in the case where bv = 0:

twLB(v) · bv ≤ Tv ≤ twUB(v) · bv

• Link between two visits v and v′ on the same site (such that i(v) =
i(v′)):

Tv′ ≥ Tv + servTime(v) if fvv′ = 1 (3.1.11)

modelled with the constraint:

Tv′ + M
(3.1.11)
time · (1− fvv′) ≥ Tv + servTime(v)

• Link between the date when visit v is performed on vehicle k and the
date of arrival at site i(v):

Tv ≥ T−
i(v)k if bvk = 1 and (∃s ∈ S′, v = d(s) or r+

i(v)k = 0)

(3.1.12)
The condition here has to be further detailed. Of course, for this
constraint to hold, visit v has to be performed by vehicle k, hence the
bvk = 1 term. Then, the constraint only holds if visit v is performed
after vehicle k has arrived in i(v), which is garanteed if the route of
vehicle k doesn’t start in i(v), or if v is a delivery visit, as no delivery
can be performed at the first site of a route. Similarly, the link between
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the date visit v is performed and the date vehicle k departs from site
i is:

Tv + servTime(v) ≤ T+
i(v)k

if bvk = 1 and (∃s ∈ S′, v = p(s) or r−
i(v)k) (3.1.13)

In other words, in the case v is a pickup visit, both these constraints
can be modelled as follows:

Tv ≥ T−
i(v)k −M

(3.1.12)
time · (1− bvk + r+

i(v)k)

Tv + servTime(v) ≤ T+
i(v)k + M

(3.1.13)
time · (1− bvk)

whereas if v is a delivery visit, these constraints are:

Tv ≥ T−
i(v)k −M

(3.1.12)
time · (1− bvk)

Tv + servTime(v) ≤ T+
i(v)k + M

(3.1.13)
time · (1− bvk + r−

i(v)k = 0)

• Link between the date visit v is performed and the dates vehicle k
starts and ends its route:

T+
k ≤ Tv ≤ T−

k − servTime(v) if bvk = 1 (3.1.14)

modelled through the following constraints:

T+
k ≤ Tv + M

(3.1.14a)
time · (1− bvk)

Tv + servTime(v) ≤ T−
k + M

(3.1.14b)
time · (1− bvk)

Each Mtime computation is detailed in subsection 3.1.4.

Flow constraints

In this set of constraints, there are still conditional constraints, as given
values for some boolean variables may imply a valuation on other boolean
variables. However, such constraints containing only boolean variables are
easy to linearize, so in most of the cases, the final constraint is given with
few explanations.

(∀i ∈ I,∀h ∈ H,∀k ∈ K)

• Constraint on a tour extremity, except if extrem±(k) (the potential
extremity) isn’t given in the data:

r±ik = 0 if i 6= extrem±(k) (3.1.15)



68 Chap. 3: The arc-based formulations

• Link between variables y±ik and xijk. A vehicle k can only come to (or
leave) i by one way:

∑

j∈I

xjik = y−ik (3.1.16)

∑

j∈I

xijk = y+
ik (3.1.17)

These constraints generalize constraints of type (2.1.2) and (2.1.3) from
the classical VRP arc-based model described in subsection 2.1.5.

• If vehicle k leaves site i, then either it came to i, or i is the starting
site of its tour. Same kind of constraint if k comes to i:

y+
ik ≤ y−ik + r+

ik (3.1.18)

y−ik ≤ y+
ik + r−ik (3.1.19)

• If vehicle k comes to and leaves site i, it means that i is either both
the starting and the ending site of the tour, or none of them (k is just
passing through i):

y−ik = y+
ik = 1 =⇒ r+

ik = r−ik (3.1.20)

A way to linearize this constraint is to introduce a conjunction of two
constraints, where if the condition y−ik = y+

ik = 1 holds, the first one
will ensure r+

ik ≤ r−ik and the other one will state the reverse inequality.

r+
ik − r−ik + y−ik + y+

ik ≤ 2

r−ik − r+
ik + y−ik + y+

ik ≤ 2

• If vehicle k isn’t used, then it doesn’t come to (resp. doesn’t leave)
site i. Furthermore, if k doesn’t come to (resp. doesn’t leave) site i, i
can’t be the starting (resp. ending) site of its tour:

r±ik ≤ y±ik ≤ uk (3.1.21)

• If vehicle k comes to (leaves) hub h then h is used:

y±hk ≤ zh (3.1.22)

• To be used, vehicle k must have both a starting and an ending site for
its tour, but can’t have over one of each:

uk =
∑

j∈I

r±jk (3.1.23)

• Vehicle k is not allowed to stop more than maxNbStops(k) times, if
this number is given in the data:

∑

i∈I

y−ik ≤ maxNbStops(k) (3.1.24)
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PDP boolean constraints

(∀i, j ∈ I,∀h ∈ H,∀k ∈ K,∀s ∈ S′,∀A ∈ A)

• If vehicle k unloads shipment s on site i, it can neither load it nor have
it leaving i:

ciks + diks ≤ uk (3.1.25)

a+
iks + diks ≤ 1 (3.1.26)

• If vehicle k has shipment s leaving site i, then it must either have had
it coming to i or have loaded it on i (but not both). If i is the starting
site of k’s tour, then it is the second option:

a+
iks ≤ a−iks + ciks ≤ 1 (3.1.27)

a+
iks + r+

ik ≤ 1 + ciks (3.1.28)

• Vehicle k must go through site i if it loads or unloads shipment s on
this site:

a±iks ≤ y±ik (3.1.29)

• Vehicle k contains shipment s after loading, or before unloading it:

ciks ≤ a+
iks (3.1.30)

diks ≤ a−iks (3.1.31)

• If vehicle k travels from i to j, every shipment it carries arriving in j
were also in k leaving i:

xijk + a−jks − a+
iks ≤ 1 (3.1.32)

• Vehicles are forced to go to the delivery and the pickup sites if a ship-
ment is performed. Let s be a shipment, of pickup visit p(s) and
delivery visit d(s). In addition, let i(v) denote the site where visit v is
performed. If i(p(s)) is not a hub, then:

bp(s) =
∑

k∈K

ci(p(s))ks (3.1.33)

and in any other non-hub site i:

ciks = 0 (3.1.34)

The same kind of constraints holds for d(s) and i(d(s)): If i(d(s)) is
not a hub:

bd(s) =
∑

k∈K

di(d(s))ks (3.1.35)

and in any other non-hub site i:

diks = 0 (3.1.36)
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• Given the same notations, we can write the flow conservation in site
i(p(s)) or i(d(s)) if they are hubs:

∑

k∈K

di(p(s))ks + bp(s) =
∑

k∈K

ci(p(s))ks (3.1.37)

∑

k∈K

ci(d(s))ks + bd(s) =
∑

k∈K

di(d(s))ks (3.1.38)

For any regular hub h (that is not linked with shipment s in being its
pickup or its delivery site), we can simply write:

∑

k∈K

chks =
∑

k∈K

dhks (3.1.39)

• Capacity constraint:
∑

s∈S′

qty(s) · a±iks ≤ cap(k) · y±ik (3.1.40)

Note that the right-hand side term y±ik isn’t essential, as constraints
(3.1.29) already ensure that variables a±iks are set to zero if y±ik = 0.
However, this gives better results in the linear relaxation, as a fractional
value of y±ik restreints a little more this constraint.

• Incompatibility constraints:

a±iks + a±iks′ ≤ 1 if s and s′ incompatible (3.1.41)

a±iks = 0 if s and k incompatible (3.1.42)

• Exactly one of the alternate visits has to be performed:
∑

v∈A

bv = 1 (3.1.43)

If a visit v is not included in any alternative, or v 6∈ A,∀A ∈ A, it has
to be performed. This can be ensured by introducing a visit alternative
A ∈ A only containing visit v, and applying constraint (3.1.43) on this
alternative.

• Two visits performed on the same site i have to be ordered:

∀v, v′ ∈ V (i), bv + bv′ ≤ 1 + fvv′ + fv′v (3.1.44)

Note that this constraint doesn’t prevent the situation where fvv′ =
fv′v = 1. This is impossible due to both time constraints of type (3.1.11)
on visits v and v′, provided at least one of the visit service times is
greater than zero.
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• Link between a shipment and a vehicle:

bp(s) ≤ ci(p(s))ks (3.1.45)

bd(s) ≤ di(d(s))ks (3.1.46)

Recall that p(s) and d(s) are respectively the pickup and the delivery
visits for shipment s, and i(p(s)) is the site where visit p(s) takes place.
Note, in constraint (3.1.45) for example, that it can’t be an equality,
as a vehicle may load a shipment in another site than its pickup site
(in a hub, for instance).

• By definition, the link between variables bv and bvk is the following:

bv =
∑

k∈K

bvk (3.1.47)

• Both the pickup and delivery visits for shipment s are performed if one
of them is performed:

bp(s) = bd(s) (3.1.48)

Instead of inserting in the formulation a constraint where a variable
equals a constant (0 in general), we will remove the variable from the for-
mulation and replace it by its value in any other constraint in which it is
used.

3.1.4 Big-Ms computation

The value of each Mtime must be as small as possible but big enough to make
the constraint true for each value of the other variables, in the case the factor
it multiplies is non-zero.

Here are the computed values:

• In (3.1.2), we want to have the inequalities:

T+
ik + travTime(i, j, k) + W+

ik ≤ T−
jk + M

(3.1.2a)
time

T+
ik + travTime(i, j, k) + W+

ik ≥ T−
jk −M

(3.1.2b)
time

always true if xijk = 0. T+
ik + W+

ik is at most the arrival date at any
other site than i and j (as xijk = 0). Consequently, T+

ik + W+
ik ≤

maxi′∈I\{i,j} twUB(i′). As T−
jk ≥ 0, we can choose:

M
(3.1.2a)
time = travTime(i, j, k) + max

i′∈I\{i,j}
twUB(i′)

The same kind of arguments imply the following possible equality:

M
(3.1.2b)
time = twUB(j) − travTime(i, j, k)
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• In (3.1.3), we want M
(3.1.3a)
time such as T−

ik + servT imeik + W−
ik ≤ T+

ik +

M
(2)
time as soon as r−ik = 0 or y−ik = 1. Here, T−

ik + servT imeik + W−
ik ≤

twUB(i) as it is a date when vehicle k is still at site i. Consequently,

M
(3.1.3a)
time = twUB(i)

As we must have M
(3.1.3b)
time ≥ T+

ik ,

M
(3.1.3b)
time = twUB(i)

seems to be a good choice as well. We use the same kind of justification
to compute all the other big-M constants:

M
(3.1.4a)
time = twUB(i)

M
(3.1.4b)
time = max

i′∈I\{i}
twUB(i′)

M
(3.1.5a)
time = twUB(i)

M
(3.1.5b)
time = twUB(i)

M
(3.1.6)
time = twUB(h)

M
(3.1.11)
time = twUB(v) + servTime(v)

M
(3.1.12)
time = twUB(i(v))

M
(3.1.13)
time = twUB(v) + servTime(v)

M
(3.1.14a)
time = max

i′∈I
twUB(i′)

M
(3.1.14b)
time = twUB(v) + servTime(v)

Of course, every Mtime could have been computed more accurately by
using more of the data. However, we think that it is useless to compli-
cate the calculations as the gain of reducing each Mtime a little would
have a negligeable impact on the performances of the MIP solving.

3.1.5 Objective

Our optimization criterion is to minimize the sum of all the routing costs:

min obj = Cfixed + CDTC + CADC + CZSC

We suppose here that no shipment can be unperformed, and every shipment
has to be performed within the time windows for its pickup and delivery
visits. Therefore, no penalty cost is considered, but the model is more con-
strained than the basic problem described in section 1.3. Our main concern is
to keep the global cost linear, in order to be able to solve the model as a MIP.
Each of the costs detailed in this subsection is described in subsection 1.3.4
and is modelled as follows:
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• Cfixed is the sum of the fixed costs of using a vehicle or a hub.

Cfixed =
∑

k∈K

Cvehicle(k) · uk +
∑

h∈H

Chub(h) · zh

Cvehicle and Chub are the unit costs of using a vehicle, and of using a
hub, respectively.

• CDTC is the direct transportation cost (DTC). Let CDTC
k be the

DTC for vehicle k, with CDTC =
∑

k∈K CDTC
k . It depends both on the

first and last sites of the vehicle route, and on the maximal quantity
transported during the trip. It is necessary to introduce a new (posi-
tive) variable Qk to keep track of the maximal quantity over the route
of vehicle k, and new constraints for each site i:

Qk ≥
∑

s∈S′

qty(s) · a±iks (3.1.49)

The |I| · |K| capacity constraints 3.1.40 can then be replaced by the
|K| following constraints:

Qk ≤ cap(k) (3.1.50)

Then, new constraints have to be introduced to express the cost:

CDTC
k ≥ Qk · CDTC(i, j) if r+

ik = r−jk = 1 (3.1.51)

Qk · CDTC(i, j) is a linear approximation of the DTC of vehicle k,
providing i and j are respectively the departure and the arrival site
for vehicle k (Qk being a variable and CDTC(i, j) a constant). As
shown on figure 3.2, the DTC can be under-approximated with a linear
function having a value of 0 at quantity 0 and the same value as the real
DTC at quantity cap(k) (usually 33 or 34 pallets). This value, divided
by cap(k), is the value we choose for CDTC(i, j). The main benefit
in an under-approximation of the cost is that the objective value of
the linear approximation will always be a valid lower bound for the
initial problem. As before, a M

(3.1.51)
time constant has to be introduced

to linearize this new constraint:

CDTC
k ≥ Qk · CDTC(i, j) −M

(3.1.51)
time · (2− r+

ik − r−jk)

M
(3.1.51)
time = cap(k) ·maxi′,j′∈I CDTC(i′, j′) seems to be a good choice.

Of course, it is possible to provide a more accurate approximation of
the DTC. The DTC function could be approximated by a continuous
and piecewise-linear function. It would however introduce far more
variables in the model and complexify the formulation, whereas the
model is anyway not an utterly exact representation of the problem. On
the other hand, the simple linear approximation as proposed combines
accuracy and simpleness.
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Figure 3.2: DTC linear approximation
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• CADC is the additional distance cost (ADC). Recall that the ADC
depends on the first and last sites of a vehicle route, but also on the
total distance travelled. If this distance is less than a given value, ADC
is null. Otherwise, it is linear, starting from 0 at this breakpoint (see
figure 1.6). As before, let’s decompose CADC into

∑

k∈K CADC
k . For

each vehicle k:
CADC

k =
∑

i,j∈I

CADC(i, j) ·Dijk

CADC(i, j) is the unit cost per kilometer travelled over the “free limit”
limit(i, j), with i as the starting site of the route, and j as the ending
site. Dijk is the distance travelled over the limit. Of course, Dijk = 0
if i or j are not the starting or ending sites or the route of vehicle k. It
is sufficient to impose the non-negativity constraint Dijk ≥ 0, as being
a cost, it will be set to 0 in any optimal solution, unless the left-hand
part of the following constraint holds:

Dijk ≥
∑

(i′j′)∈α

xi′j′k · distance(i′, j′)− limit(i, j) if r+
ik = r−jk = 1

(3.1.52)
With the usual linear transformation, it becomes:

Dijk+M
(3.1.52)
time ·(2−r+

ik−r−jk) ≥
∑

(i′j′)∈α

xi′j′k ·distance(i′, j′)−limit(i, j)

M
(3.1.52)
time has to be greater than the total distance travelled by vehicle

k. Let maxDistance(k) be the maximal distance vehicle k can travel.
It is given by maxTravel(k) (which is the maximal travel time indicated

in the data) and maxSpeed(k) = max(i′j′)∈α
distance(i′,j′)

travTime(i′,j′,k) :

maxDistance(k) = maxTravel(k) ·maxSpeed(k)
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We can choose M
(3.1.52)
time = maxDistance(k).

• CZSC is the zone-skipping cost on the use of Zone-Skipping Hubs
(ZSH). Recall that a shipment may be delivered directly, or to a nearby
ZSH which allows the vehicles to consolidate their loads, like in a hub.
On the other hand, an additional cost has to be paid for this possibility,
and this is the zone-skipping cost or ZSC. This cost depends on the
total quantity of products handled by the vehicle at the ZSH. As before,
we decide to linearize simply the ZSCs (see figure 1.7) by considering
that every additional load in the ZSH will increase proportionally the
total cost, and the linearization is the same under-estimation as for the
DTC. For any vehicle k and any site i used as a ZSH, the zone-skipping
cost can then be written as follows:

CZSC
ik = CZSC(i) ·

∑

v(i)∈V (i)

qty(v(i)) · bvk (3.1.53)

As there may be “regular” visits on a ZSH (i.e. visits not using the site
as a ZSH because the visit is a regular delivery), the sum of the v(i)
include only visits that use site i as a ZSH. CZSC(i) is the unit ZSC
for ZSH i, and it is approximated as explained above.

3.1.6 Size of the model

Number of variables

All the variables are listed in table 3.3. There are:

• 4|I| · |K|+ 2|K|+ |V | = O(|I| · |K|) time variables,

• |I|2 · |K|+ 4|I| · |K|+ |K|+ |H| = O(|I|2 · |K|) boolean flow variables,

• 4|I| · |K| · |S′| + |V | + |V | · |K| + |V |2 = O(|I| · |K| · |S′|) boolean
PDP variables (note that |V | = 2|S′|, as each shipment is made of two
visits).

Overall, the formulation contains O(|I| · |K| · (|I|+ |S′|)) variables, and this
number of variables is big even for small instances. Note that the number
of hubs |H| has no impact on the total number of variables and can be
neglected. Table 3.4 gives some examples of the number of variables for
several values of the size of the data.

old-415-1530-1312-1 is one of the biggest instances that is in the pool of
benchmarks solved in chapter 5. For this instance size, there are over 780
million variables in the formulation. Of course, in this case, the model is
not even loadable in a MIP solver. Therefore, just considering the number
of variables, this formulation can only be used on small instances. Even
old-44-84-89 is likely to be very difficult to solve, just regarding the number
of boolean variables.
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Table 3.4: Number of variables for some data values

Instance name hubUse Jeu_0600_6 Jeu_0700 Jeu_00133280

sites |I| = 4 |I| = 11 |I| = 35 |I| = 415
vehicles |K| = 2 |K| = 18 |K| = 52 |K| = 329

shipments |S′| = 4 |S′| = 13 |S′| = 89 |S′| = 1312

Time vars 44 874 7,562 549,422
Boolean flow vars 66 2988 71,032 57,208,494
Boolean PDP vars 216 11,466 689,038 724,286,976

Total 326 15,308 767,632 782,044,892

Number of constraints

Constraints of type (3.1.32) are the ones that contribute most to the com-
plexity of the model, as there are |I|2 · |K| · |S′| such constraints. There
are also about 20 constraints of complexity |I| · |K| and 10 constraints of
complexity |I| · |K| · |S′|. Overall, more than 76 billion constraints for old-
415-1530-1312-1 and over 7.7 million for old-44-84-89 make it impossible to
solve large instances, only considering the size of the model.

3.2 The MVRPPD model

Whereas the previous formulation deals with a lot of binary variables, this
model is a flow formulation over the products of a Multicommodity Vehicle
Routing Problem with Pickups and Deliveries (MVRPPD). We will show
in subsection 3.2.1 that any PDP can be written as a MVRPPD by using
a shipment-to-product transformation. Therefore, this model is adapted to
the PDP as well. Moreover, using a product flow over the network instead
of boolean variables permits split loads as described in subsection 2.1.3,
which can generate better solutions, as the problem has then fewer con-
straints. Nevertheless, other features, such as shipment alternatives (see
subsection 1.3.2) are more difficult to formulate and have been ignored here.
Time constraints are also less accurate, as no reference on the (un)loading
time of products is given any more. Recall that table 3.1 sums up the ability
of each formulation to model some of the real-life features of the problem.

This model has been written with the same basis as the previous one.
Hence, numerous variables and constraints are similar. As a result, only the
differences between both models are explained below.
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3.2.1 Reduction PDP-to-MVRPPD

First, the way a PDP can be reduced to a MVRPPD is described below.
This reduction was published at the ROADEF French-speaking conference
[Fournier, 2007], but has been completed for this thesis.

Recall that the PDP is a problem where several shipments have to be
routed from their pickup site to their delivery site. This problem has been
described in detail in subsection 2.1.2. In the MVRPPD, several products
have to be routed from their origin sites (where there are offers) to their
destination sites (where there are demands). The MVRPPD is part of sub-
section 2.1.4. The differences between both problems have been summed up
in table 2.1.

Simple reduction

To model a MVRPPD from a PDP, it is sufficient to associate a product
with each shipment of the PDP. This product must only be available at the
pickup site of the shipment, and have a demand only at the delivery site
of the shipment. This makes the number of products exactly equal to the
number of shipments in the initial problem.

Nonetheless, it is possible to introduce fewer products, which is useful to
reduce the size of the problem.

Product aggregation

After this correspondence between shipments and products, we can group
the products together, in such a way that there is no ambiguity on the origin
or destination of a product. To minimize the number of products we need
to reformulate the given PDP: a minimum number of arc subsets have to be
created, such that in each subset, all the arcs have the same origin or the
same destination.

An example of such a configuration is given on figure 3.3. On subfig-
ure 3.3(a), if the arcs depict the shipments that have to be performed, they
can be aggregated as follows:

• Product I: shipments (3;2) and (4;2)

• Product II: shipments (3;4) and (3;5)

• Product III: shipment (2;1)

Let’s suppose we want to minimize the number of products obtained with
the reduction PDP-to-MVRP. In the graph where the arcs are the shipments,
we have to look for a minimal partition into subsets of edges, such that in
each subset, all the arcs have either the same origin, or the same destination.
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Figure 3.3: Example of a shipment aggregation
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(b) Partition of the line graph into
cliques

Colouring a line graph

We introduce an undirected graph from the basic graph of shipments.
This graph is a particular line graph: its vertices are the arcs (the ship-
ments) of the initial directed graph, and there is an edge between two ver-
tices if and only if the corresponding arcs of the graph of shipments have
one of their extremities in common (same origin or destination). For ex-
ample, for subfigure 3.3(a), the corresponding undirected graph is given by
subfigure 3.3(b).

Recall that a complete graph (or clique) is such that there is an edge
between each couple of nodes. A clique of size n is usually referred to as
Kn. We can first show by induction that any clique of the line graph is such
that either all the shipments of the basic graph corresponding to the nodes
in the clique have a common origin or they all have a common destination.
In other words, the shipments corresponding to a clique in the line graph are
connected alltogether by the same node (the origin or the destination).

Let n be the size of the clique. The proof is the following:

• It is obviously true if n = 2 (there are only two arcs).

• We assume that the property is true for a given integer n ≥ 2. Let’s
consider a clique of size n+1 in the line graph. Let i be one of its nodes,



3.2 The MVRPPD model 79

and s the corresponding shipment. If we consider the remaining nodes
in the clique, they form a clique of size n, so all the corresponding ship-
ments are connected by their origin or by their destination (using the
induction assumption). If all the shipments have both the same origin
and the same destination, then obviously adding i to the clique makes
the property still true. In the other case, without loss of generality,
let’s suppose that the shipments of the clique of size n have a common
origin, and at least two of them do not share the same destination. Let
s1 and s2 be two shipments corresponding to these remaining nodes,
such that they have distinct destinations. s can’t have a common des-
tination with both s1 and s2, by transitivity. So at least one of s1 or s2

has the same origin as s. As a result, by transitivity, s has a common
origin with all the shipments corresponding to the clique, which makes
the property true for any clique of size n + 1.

• Hence, the property is true for any n ≥ 2.

Consequently, minimizing the number of product reduces to searching the
minimal partition of the line graph into cliques. This problem is famous and
it is usually tackled by considering the complementary problem. Recall that
for any undirected graph G, the complementary graph C(G) is defined
by the same set of nodes as in G but its edges are the ones that don’t exist
in G. In other words, for any couple of nodes in G, the edge between these
nodes either exists in G or in C(G), but not in both. Searching a minimal
partition of the line graph into cliques is then equivalent to searching a
minimal partition of the complementary graph of the line graph into stable
sets (recall that a set is stable if for any couple of nodes in this set, there is no
edge linking them). This last problem is the well-known graph colouring
problem, which is NP-complete [Karp, 2003], except for some particular
classes of graphs.

Minimal vertex cover in a bipartite graph

Let’s start again from the directed graph where each shipment is repre-
sented by an arc. As previously, we change this graph into an undirected
graph. This time, any arc of the basic graph is changed into an edge in the
undirected graph. A node i is duplicated into i− and i+ if there are incoming
and outgoing arcs from this node:

• node i− is the incoming node where all edges corresponding to the
basic incoming arcs are connected,

• node i+ is the outgoing node where all edges corresponding to the basic
outgoing arcs are connected,

• there is no edge between i− and i+.
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Figure 3.4: Associated bipartite graph
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If there are only incoming arcs (resp. only outgoing arcs), then we just
rename i to i− (resp. i+).

The undirected graph associated with the graph of subfigure 3.3(a) is
given in figure 3.4.

The undirected graph is obviously bipartite (with all the nodes of type
i− on the one side, and of type i+ on the other side), since all the edges of
the graph are of type i+j−, by definition.

The problem of minimizing the number of products then reduces to find-
ing a minimal vertex cover in this bipartite graph. The nodes marked
with I, II and III in figure 3.4 form a minimum vertex cover of this exam-
ple of undirected graph. To prove this property, we can show that given
the two graphs (the basic directed one and the associated undirected bipar-
tite graph), any solution of size M of the first problem can be written as a
solution of size M of the second problem, and vice-versa.

First, we consider a partition of size M of the directed graph into arc
subsets such that, in every subset, all the arcs either have the same origin or
the same destination. We build a set Z of nodes in the associated undirected
graph by keeping, for each subset of arcs of the basic graph, the node con-
nected to each arc of the subset. Hence, if an arc subset of the basic graph
is such that all its arcs have the same destination (resp. origin) i, then the
node of the associated undirected graph that we keep into Z will be i− (resp.
i+). If they have both the same origin i and the same destination j (it may
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occur for arc subsets containing only one arc, for example), then either i+

or j− is picked in Z, but not both. As exactly one node of Z is associated
with each arc subset of the basic graph, Z is obviously of size M . We just
have to show that Z is a vertex cover of the associated graph. Suppose that
there is an edge i+j− such that i+ /∈ Z and j− /∈ Z. Then, by construction
of Z, arc ij from the basic graph cannot be in any arc subset. Therefore it
is not a partition of the set of arcs, which is a contradiction with the first
assumption. Consequently, Z is a vertex cover of size M . If (I; II; III) is the
partition of the basic graph on subfigure 3.3(a), then an associated vertex
cover for the undirected graph could be given by (I; II; III) on figure 3.4.
Note that node 1− could have been picked instead of 2+ for III.

Reversly, we suppose a vertex cover of size M has been found in the
undirected graph. Every node in the vertex cover is connected to a set of
edges corresponding to arcs of the basic directed graph. For each node in the
vertex cover, we associate this arc subset. There may be arcs with several
possible subsets. Such an arc is included in any of these subsets, arbitrarily
chosen. As we build exactly one arc subset per node in the vertex cover, the
total number of arc subsets is M . Let ij be an arc of the directed graph. It is
associated with edge i+j− in the undirected graph. Either i+ or j− is in the
vertex cover. Without loss of generality, suppose it is i+. By construction of
the arc subset associated with i+, arc ij is necessarily in this arc subset, or
maybe another. As a result, the arc subsets are a partition of the set of arcs
in the directed graph. If (I; II; III) is the vertex cover of the undirected graph
on figure 3.4, then an associated arc partition for the basic graph could be
given by (I; II; III) on subfigure 3.3(a). Note that arc (3,2) could have been
included in subset II instead of I.

As the construction of the undirected graph from the basic directed graph
is polynomial, the minimization of arc subsets reduces to a minimal vertex
cover in the associated bipartite graph. Finding a minimal vertex cover in a
bipartite graph is known to be polynomial, as it can be reduced to finding a
maximal matching in the same bipartite graph (by the theorem of König).
As a consequence, our problem of minimization of the number of products
is polynomial.

What is more, it shows that the complementary graph of the line graph
defined above belongs to the particular classes of graphs for which the colour-
ing problem is polynomial. In fact, this line graph is restricted due to its
definition. For example, the line graph can not contain any complete bipar-
tite graph of type K1,3 (with no additional edge), where Kn,m is a bipartite
graph where all the nodes of the first side (of size n) of the bipartition are
connected by an edge to all the nodes of the second side (of size m). Then
K1,3 is defined by four nodes i, j1, j2 and j3, and by three edges (ij1),
(ij2) and (ij3). The shipment corresponding to i has the same origin or the
same destination as the one corresponding to j1, and to j2 and j3 as well.
Consequently, there is at least one edge between j1, j2 and j3 (for two of
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them at least, the corresponding shipments have the same origin or the same
destination).

Greedy algorithm

The minimization of the number of products must be almost instanta-
neous because it is only a small part of solving the PDP problem. Even if we
showed previously that the problem can be solved optimally in polyniomal
time, we chose to apply a simple greedy algorithm on the line graph to group
the products:

• Choose a vertex (for example in lexicographic order). It is associated
to product I.

• Choose the following vertex. If it is connected to the previous one,
let’s associate it with product I, otherwise, with the new product II.

• For a vertex i, if it is connected to every other vertex of product p,
let’s associate it with p. If such a product can’t be found then i is
associated with a new product p + 1.

To be able to group together two products, they have nevertheless to be
similar: they must have the same incompatibilities, and they must of course
be compatible.

Even if this fast algorithm is effective practically, the quality of the reduc-
tion may not be good for some particular instances. In fact, this algorithm
does not even have any performance ratio. If n(I) and n∗(I) are respectively
the number of products given by the greedy algorithm for an instance I and
the minimal number of products to be introduced for this instance, we can
prove that:

∀λ > 1,∃I instance such that n(I) > λ · n∗(I)

Figure 3.5 depicts an example of such an instance I (and a given order on
shipment arcs, depicted by the arc valuations). Note that the associated line
graph is made of two complete graphs of size 2⌈λ⌉ such that, in addition,
each node is connected with its counterpart in the other complete graph.

We must show that for this instance, n(I) > λ · n∗(I). Applying the
previous algorithm on this instance aggregates shipments 1 and 2, shipments
3 and 4, and so on until shipments 4⌈λ⌉ − 1 and 4⌈λ⌉. In other words, the
shipments are aggregated with respect to their destinations. The number
of products that are introduced is then n(I) = 2⌈λ⌉. But obviously, the
optimal solution is to aggregate the shipments with respect to their origin:
the “odd” shipments on the one side, and the “even” shipments on the other
side. Therefore, the minimal number of products to be introduced for this
instance is n∗(I) = 2.
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Figure 3.5: Instance for which the algorithm is far from optimality
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Fortunately, such instances are very particular cases. For example, note
that very few numberings on this instance provide such a bad result.

Both of the reductions presented here are a proof that the MVRPPD is
a generalization of the PDP, and therefore is NP-hard.

3.2.2 Variables

The MVRPPD model will now be described in detail. We have the same
conventions as before, but there is no shipment any more. In this section,
a product is referred to with the letter p, and the set of all products is P .
The superscript ‘=’ means “loaded at the site”. Any load variable with this
superscript is negative if and only if the products are unloaded.

The time variables and the VRP boolean variables (enumerated in sub-
section 3.1.2) are kept here, unlike the PDP boolean variables. Instead of
them, there are load variables L±

ikp, which stand for the quantity of product
p carried by a vehicle k arriving in and leaving a site i, and another boolean
variable qikp indicating if an action (loading or unloading) is performed by
vehicle k at site i. In addition, L=

ikp is the quantity of products p loaded
by vehicle k at site i. It is the only variable that can have negative values,
occuring when vehicle k unloads product p at site i.

3.2.3 Constraints

In the data, qty(s) is generalized to every site by introducing a quantity of
product offer(i, p) that is available on site i. This quantity is negative in case
of a demand. We introduce a value maxSplit(i, p) which is the maximum
number of times a product p can be picked up or delivered at any site i. To
use this formulation as a regular PDP solver, all these maxSplit(i, p) have
to be fixed in order to ensure that the MVRP solution will be writable as
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a PDP. In case the shipment-to-product reduction that was used was the
one of subsection 3.2.1 (only one product per shipment), it suffices to choose
maxSplit(i, p) = 1 ∀i ∈ I,∀p ∈ P ).

In the case of the subsection 3.2.1, let p a product made of n shipments.
By construction, either p has only one origin site, or one destination site.
Without loss of generality, let’s suppose that p has one origin site i′ and
n destination sites. Then maxSplit(i′, p) = n is sufficient to get a PDP
final solution. Note that it is not necessary to impose constraints on the
destination sites, as the maximum number of splits can’t be over 1 for any
destination site, otherwise we would have maxSplit(i′, p) > n.

General time constraints and VRP boolean constraints are also part of
the MVRP model. The only time constraint that has to be rewritten is
constraint (3.1.6), as it refers to a shipment. Instead, we simply refer to a
product p by introducing the following constraint:

T−
hk + servT imehk ≤ T+

hl if qhkp = qhlp = 1 (3.2.1)

modelled with the constraint:

T−
hk + servT imehk ≤ T+

hl + M
(3.1.6)
time · (2− qhkp − qhlp)

On the other hand, all the PDP-related constraints are replaced by the
following load constraints:

(∀i, j ∈ I,∀h ∈ H,∀k ∈ K,∀p ∈ P ),

• In the four following constraints, let’s suppose that i is not a hub:

|L=
ik′p| ≤ | offer(i, p)| (3.2.2)

qikp = 0 =⇒ L=
ik′p = 0 (3.2.3)

offer(i, p) · L=
ikp ≥ 0 (3.2.4)

qikp = 0 if offer(i, p) = 0 (3.2.5)

Constraints (3.2.2) and (3.2.3) can be merged into the following con-
straint:

−qikp · | offer(i, p)| ≤ L=
ik′p ≤ qikp · | offer(i, p)|

Constraint (3.2.4) states that offer(i, p) and L=
ikp must be of the same

sign, and constraint (3.2.5) that the vehicles cannot load or unload
products on non-hub sites where there is neither an offer, nor a demand.

• Link between the load of a vehicle departing from site i and its load
arriving at site i:

L+
ikp ≤

{

L=
ikp if r+

ik = 1

L=
ikp + L−

ikp else
(3.2.6)
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As L−
ikp ≥ 0, it can be modelled through the following constraints:

L+
ikp ≤ L=

ikp + L−
ikp

L+
ikp ≤ L=

ikp + Mload · (1−R+
ik)

• The vehicles can’t load more than the offer (at pickup sites), and they
have to unload at least the demand (at delivery sites) :

∑

k′∈K

L=
ik′p ≤ offer(i, p) if offer(i, p) 6= 0 (3.2.7)

• Product flow conservation in a hub h:
∑

k′∈K

L=
hk′p = 0 if offer(h, p) = 0 (3.2.8)

• Limitation on the number of split pickups or deliveries:
∑

k′∈K

qik′p ≤ maxSplit(i, p) (3.2.9)

• Continuity of the product flow between sites i and j:

L−
jkp ≤ L+

ikp if xijk = 1 (3.2.10)

In the MIP model, the constraint is written as follows:

L−
jkp ≤ L+

ikp + Mload · (1− xijk)

Note that if constraint 3.2.10 was an equality, its linearization would
require 2 constraints. But an inequality is sufficient, as in an optimal
solution, there would be no use in having strictly less products arriving
at j than leaving i.

• Capacity constraint at site i:
∑

p′∈P

L±
ikp′ ≤ cap(k) · y±ik (3.2.11)

• At last, the incompatibility constraints have to be written using product-
related variables:

qikp = 0 if p and k incompatible (3.2.12)

Note that unlike in the PDP model, there is no incompatibility between
products in this formulation, as it would be hard to model in a simple
way.
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3.2.4 Big-Ms computation

Here, the big-M value is easier to find as in subsection 3.1.4, because the
loads are limited by the vehicle capacity. Therefore, for each conditional
constraint where Mload is needed, it is sufficient to choose Mload = cap(k).

However, a slightly more precise constant could be chosen, especially if
there is little demand in this product over the network, using the following
inequality:

∀i ∈ I,∀k ∈ K,∀p ∈ P, L±
ikp ≤

∑

i′∈I

offer(i′,p)<0

| offer(i′, p)|

Consequently, a better value is:

Mload = min






cap(k),

∑

i′∈I

offer(i′,p)<0

| offer(i′, p)|







3.2.5 Objective

The cost function is the same as the one in part 3.1.5. For the calculation
of CDTC, this time the quantity Qk is given by (∀i ∈ I,∀k ∈ K):

Qk ≥
∑

p′∈P

L±
ikp′ (3.2.13)

As specified in the introduction, there are no alternative in this model, so
the CZSC component is null here.

3.2.6 Size of the model

The time and boolean flow variables are the same as for the PDP formu-
lation, so the number of variables of both kinds are the same as in subsec-
tion 3.1.6. There are no boolean PDP variables any more but the 4|I|.|K|.|P |
VRP load variables enumerated in subsection 3.2.2. Then, this model has
O(|I|.|K|.(|I| + |P |)) variables, which is similar to the total number of vari-
ables of the PDP formulation, even if, using the reduction based on a ship-
ment aggregation and given in subsection 3.2.1, we have |P | ≤ |S|.

The total number of constraints is closely related to the number of con-
traints of type (3.2.10). The model is of size O(|I|2.|K|.|P |), which again is
rather similar to the size of the PDP formulation.

Practically, it is interesting to see that in the instances given for the
example in table 3.4, most of the shipments can be grouped into sets in
which all the shipments’ pickup site is the same. Consequently, the shipment
aggregation described in subsection 3.2.1 is particularly efficient. In hubUse,
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2 products replace the 4 shipments. In old-23-80-13-1, 3 products can be
used (instead of the 13 shipments), and in old-44-84-89, 5 products (instead
of 89 shipments) allow the model not to be as huge as the PDP formulation.
However, the model is still big, with for example 115,000 variables and over
540,000 constraints for old-44-84-89.

3.3 Improvements

In the previous sections, the formulations seem to describe the problem accu-
rately, but their size prevents any solver from loading the biggest instances.
In this section, we provide some solutions to this problem, as well as some
solving tips, as solving big MIP instances is time-consuming.

3.3.1 Models merged

The MVRPPD model described in section 3.2 is very similar to the PDP
model of section 3.1, with a lot of variables and constraints in common.
Therefore, it is easy to make a big model out of these two models, by con-
sidering that both product flows and shipments have to be routed in the
network.

All the variables and constraints enumerated in sections 3.1 and 3.2 are
part of the merged model. The only constraint that links both basic models
is the capacity constraint. Constraints (3.1.40) of the PDP and (3.2.11) of
the MVRPPD are merged into a new capacity constraint:

∑

p′∈P

L±
ikp′ +

∑

s∈S′

qty(s) ∗ a±iks ≤ cap(k) ∗ y±ik (3.3.1)

This new capacity constraint models the fact that both the products and
the shipments are transported by the vehicles. Moreover, both basic models
have their own constraint ensuring the simultaneous presence of the vehicles
in a hub if they swap some products or shipments. Both of these constraints
(3.1.6) and (3.2.1) are in the merged model.

The main advantage of merging the models is that in the case of a PDP-
to-MVRP transformation as described in section 3.2.1, the transformation
is allowed to be partial. It might be interesting to change into products
only the shipments that have a common extremity with at least one other
shipment, so as to be able to use the shipment aggregation of subsection 3.2.1
and reduce the model size. For the other “isolated” shipments, there is then a
choice: either change them into products as well and use the MVRP model,
or keep them as shipments and use the mixed model. This choice can depend
on the performance of both models, which will be studied in section 3.4.

Furthermore, shipments that are likely to lose some of their properties
if they are transformed, such as the shipments concerned with alternatives
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at a ZSH, can be kept as shipments as well, instead of being changed into
products.

In the following, we call S′ the set of remaining shipments (after the
PDP-to-MVRP transformation) and P the set of products created by this
transformation.

3.3.2 Preprocessing

To reduce the size of the formulations, the most natural way is to ignore the
objects (sites, arcs, vehicles) that will not appear in any optimal solution.

Indeed, the instances we solve are customer instances. ILOG TPO cus-
tomers have a set of sites and vehicles that are used for several instances
with possibly various numbers of shipments. As a result, in any data file,
some sites or vehicles might be useless.

Reducing the number of sites

Let i be a site such that (with the same notations as previously):

• i is not a hub,

• ∀k ∈ K, i 6= extrem±(k),

• ∀s ∈ S′, i 6= i(p(s)) and i 6= i(d(s)),

• ∀p ∈ P, offer(i, p) = 0.

i can’t be included in an optimal solution, as no action can be performed at
i. In any solution containing i as one of the site of the route of a vehicle k,
as the triangular inequality holds, it is better for vehicle k to remove site i
from its route and take a shortcut. Then, any site i as described above can
be removed from the data without ignoring any optimal solution.

Reducing the number of vehicles

It is obvious that in many instances, the number of vehicles available for
the routing is far too high. In some of them, there may be 4 times as
many vehicles as shipments, although a shipment fills very rarely a vehicle’s
capacity by itself. This usually introduces many useless variables in the
model, as a lot of the vehicles are not used. Therefore, it is necessary to
have an automatic tool able to reduce the number of vehicles depending on
the number of shipments and their load size.

We propose an heuristic procedure based on the total quantity of goods
(including products and shipments) that have to be routed. In each vehicle
fleet (in which all vehicles are identical), only a subset is kept, such that
all the requests (shipments or product demands) could be performed by the
vehicles of the subset.
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Let:
Q =

∑

s∈S′

qty(s) +
∑

p∈P

∑

i∈I

offer(i,p)<0

| offer(i, p)|

be the total quantity of goods that have to be transported over the network,
and cap the capacity of any vehicle in the fleet. In each fleet, we choose
to keep only ⌈ Q

cap⌉ vehicles (where ⌈x⌉ is the lowest integer greater than or
equal to x).

It is an heuristic in the sense that this elimination procedure may cut off
some (possibly good) solutions from the search space but practically, it is
very unlikely that with this elimination, good solutions are removed. If we
further reduce the number of vehicles in each fleet, however, we may get a
smaller formulation but worse solutions when solving it.

In some small instances, there are many fleets although a few of them
are likely to ship the transportation requests. For example, any shuttle that
travels between two non-hub sites for which there is no demand and no offer
is ignored in the formulation, as no action can be performed by this shuttle.
Formally, let a site i be such that:

• i is not a hub,

• ∀p ∈ P, offer(i, p) = 0,

• ∀v ∈ V, i 6= i(v).

Any shuttle k having i as its departure site (i = extrem+(k)) or its arrival
site (i = extrem−(k)) will be removed from the formulation. In addition,
site i can be removed as well. In any solution containing i as one of the site
of the route of a vehicle k, as the triangular inequality holds, it is better
for vehicle k to remove site i from its route and take a shortcut. Then, any
site i as described above can be removed from the data without moving any
optimal solution apart.

3.3.3 Cutting-plane algorithm

In subsections 3.1.6 and 3.2.6, we noticed that a lot of constraints are part
of the model even for middle-size instances. To overcome this issue, we
can apply a well-known technique, called cutting-plane algorithm. It is
clearly described in Naddef and Rinaldi’s paper [Naddef and Rinaldi, 2002].

The main idea is to relax many of the constraints, possibly the ones that
make the formulation difficult to solve, or the ones that are less likely to be
violated in any solution. These removed constraints are nevertheless kept
in a pool, which is consulted whenever a solution is found. If any of the
constraints in the pool is violated by the current solution, it is added to the
model, which is solved again.
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In a MIP Branch-and-Bound solving, the cutting-plane algorithm made
be applied several times on the linear relaxation, as discussed in subsec-
tion 2.1.5. In our case, we choose to relax all the big-M constraints, namely
constraints of type:

• (3.1.2), (3.1.3), (3.1.4), (3.1.5) and (3.1.6) of time constraints (subsec-
tion 3.1.3),

• (3.1.12), (3.1.13) and (3.1.14) of PDP time constraints (subsection
3.1.3),

• (3.2.6) and (3.2.10) of MVRP load constraints (subsection 3.2.3).

This choice can be explained by the complexity of such big-M constraints
in a MIP model, due to the loose link between the boolean and the con-
tinuous variables. Moreover, they are numerous, especially in the MVRP
model: O(|I|2.|K|) in the PDP model, and O(|I|2.|K|.|P |) in the MVRP
model. Relaxing big-M constraints results in a decrease of the problem size
for instance old-44-84-89 of 2.22% for a pure PDP model, and of over 92%
for a pure MVRP model.

This method improves considerably the performances of the MIP solver,
here ILOG CPLEX 11. Note that to detect a violated constraint amongst
the pool, we need a separation algorithm which excludes the current solution
from the polyedra by finding a constraint to add in the formulation. As the
API already exists, we chose to let ILOG CPLEX automatically decide which
constraint to add, and we do not interfere in the solving process.

3.3.4 Dedicated cuts

On the other hand, we propose some dedicated cuts in order to strengthen
the formulation, especially when some of the time constraints are relaxed.

Subtour elimination cuts

Indeed, only the time constraints ensure that the solution does not contain
any subtour. The route of a vehicle k is closed if and only if its departure site
is the same as its arrival site. Indeed, along the route, the time continuity
constraints (3.1.2) and (3.1.3) hold, except at the last site i of the route,
where there is no link between T−

ik and T+
ik . This allows the last site to be

the first site as well. The subtours are forbidden by the fact that only one
route last site is allowed for each vehicle (boolean constraints (3.1.23)), and
by the growing values of T−

ik and T+
ik , for all i in the route. Without some

time constraints (especially (3.1.2) and (3.1.3)), no constraint can ensure
that the subtours are forbidden.

Nonetheless, we propose some cuts that remove some subtours from the
formulation. First, we can easily remove the subtours of length 2 by noticing
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Figure 3.6: Subtour and set Z

Z

r+
ik = 1

r−jk = 1

that if a vehicle goes back and forth between two sites, one of the two sites
is necessarily the arrival site. Mathematically:

∀(ij) ∈ α,∀k ∈ K,xijk + xjik ≤ 1 + r−ik + r−jk (3.3.2)

Note that if xijk = xjik = 1, from the previous constraint we get r−ik = 1 or
r−jk = 1. Let’s say, without loss of generality, that r−ik = 1.

From xijk = 1 and xjik = 1 we can also conclude respectively that y+
ik =

1 (using constraint (3.1.17)) and that y−ik = 1 (using constraint (3.1.16)).
Therefore, from constraint (3.1.20), we get r+

ik = 1. Consequently, i is also
the departure site of the route of vehicle k.

This cut can be generalized (for n ≥ 2): ∀i1, i2, · · · , in ∈ I,

n−1
∑

p=1

(xipip+1k) + xini1k ≤ n− 1 +

n
∑

p=1

r−ipk (3.3.3)

Note that these constraints can’t be easily generalized into classical sub-
tour elimination constraints (such as constraints (2.1.5)) because of variables
r±ik. Moreover, there are many of these as the n sites can be chosen arbitrar-
ily. As a result, we should either use only a small part of these constraints
(for example only the particular case (3.3.2)), or include them in the pool of
cutting-planes in the technique described above (subsection 3.3.3).

We can also notice that, for any vehicle k, a subtour is the smallest set Z
such that some internal variables xijk are non-zero, although no flow is going
out of Z and the departure and arrival sites of the route of k are outside Z
(see figure 3.6).

Let’s denote:

• δ+(Z) = {(ij) ∈ α|i ∈ Z and j 6∈ Z}

• δ−(Z) = {(ij) ∈ α|i 6∈ Z and j ∈ Z}
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• α(Z) = {(ij) ∈ α|i ∈ Z and j ∈ Z}

To separate the subtours from a solution, we could therefore use the following
constraint as a cut:

∀i ∈ Z, r±ik = 0
∀(ij) ∈ δ+(Z), xijk = 0

}

=⇒ ∀(ij) ∈ α(Z), xijk = 0 (3.3.4)

Nevertheless, it is not easy to linearize this constraints, as many variables
are involved. It is possible for example to introduce a new big-M constraint:

∑

(ij)∈α(Z)

xijk ≤M ·





∑

(ij)∈δ+(Z)

xijk +
∑

i∈Z

(r+
ik + r−ik)





As
∑

(ij)∈α(Z) xijk can be at most |Z| in the case of a tour over all the
sites in Z, we choose M = |Z|. Be aware that such cuts are more general
than cuts (3.3.2) presented above, as here there is no indication on which
one of the arcs in Z are travelled by the vehicle. Of course, it is useless to
use both (3.3.2) and (3.3.4) as cutting planes.

Vehicle cuts

The following constraints are not included in the formulation although they
are part of the problem description. The reason for this is that, considering
the cost function, they are not necessary as they are upper bounds on ex-
pressions of variables that have to be minimized. In other words, they can’t
be violated in any optimal solution. What’s more, removing them decreases
the model size.

In the basic formulation, a vehicle may go through a site without perform-
ing an action. However, this produces bad-looking solutions if the solving
engine is stopped before the optimal solution. To overcome this issue, we
can use the following constraints as cuts:

∀i ∈ I,∀k ∈ K, y±ik = 1 =⇒ (r±ik = 1

or (∃s ∈ S, ciks = 1 or diks = 1)

or ∃p ∈ P, qikp = 1) (3.3.5)

It has been modelled linearly as follows:

y±ik ≤ r±ik +
∑

s∈S

(ciks + diks) +
∑

p∈P

qikp
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Breaking symmetry

To reduce even more the polyedra, we can add some symmetry-breaking
constraints. In this problem, the vehicles are individualized, but in fact they
are clones that have the same features, in each fleet. For each fleet of vehicles,
we then impose an arbitrary order (e.g. lexicographical) for them to be used.
Let K(f) be the set of all vehicles in fleet f . By a constraint, we enforce
vehicle k1 to be used before vehicle k2, if they are in the same fleet f :

∀f ∈ F,∀k1, k2 ∈ K(f), uk2 ≤ uk1 (3.3.6)

The main advantage of these simple constraints is that there are only one per
vehicle at most, and they don’t dramatically increase the size of the model.

3.3.5 Branching priorities

In a regular Branch-and-Bound scheme (see subsection 2.1.5), the variables
on which the branching operates are chosen depending on their value and
its closeness to an integer value. However, some of the variables don’t give
valuable global information to the solver when they are fixed. For instance,
fixing a variable like xijk is a very local action and has a limited impact on
other variables. On the other hand, setting uk = 0 (meaning that vehicle k
won’t be used) has a lot of implications on other variables. All the variables
indexed on vehicle k are then set to 0. The search tree after branching on
variable uk is then supposed to be smaller than after branching on xijk.
The strategy derived from this assertion is to branch first on such “global”
variables in order to fix some other variables.

In our case, global variables are easy to determine, as they are variables
with few indexes, or that can be written as a sum of other variables. We
chose to introduce three levels of priorities over the boolean variables:

• Level 1: uk, zh, bv,

• Level 2: y±ik,

• Level 3: all other boolean variables.

Note that we can also relax the integrity constraint of any boolean variable
that can be written as the sum of other boolean variables. Variables uk, bv

and y±ik (by respectively constraints (3.1.21), (3.1.47) and (3.1.16)-(3.1.17))
meet this condition. This would imply that no branching has to be made
on such variables, as they would be considered by the optimization engine
as a continuous variable. This leaves us with a choice: either maintaining
the integrity constraints inside the model and branching on these variables
first in order to quickly fix other variables values, or relaxing the integrity
constraints and branching on fewer variables in the search tree.
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3.4 Results

In this section, we enumerate the solution values and computation time on
the smallest ILOG TPO instances for various sets of parameters. We also
try to validate the quality of the model by comparing its solution with the
one found with local search by ILOG TPO. The instances have up to 12
shipments to be routed, the number of shipments being the third number in
the instance name. For each of the 19 instances, the PDP MIP model is first
runned for a basic parameter configuration and this run is used as a reference
to the other runs. This basic setting is the solving of the basic MIP model,
with all the basic constraints (including big-M constraints) and without any
cutting plane or cut. Each other run corresponds to a modified setting, and it
is compared to the reference run by calculating the ratio between its solution
value and the final solution value of the basic run (the same stands for the
computation time). Note that the time limit is set to 3 hours, so the final
solution is not necessarily optimal. We use the MIP solver of ILOG CPLEX
11.0 on an AMD Opteron 2.4 GHz.

Tables 3.5 and 3.6 gather the results for the 19 instances. The first row
stands for the settings that are applied to the MIP solving:

• “Lazy”: instead of being inserted in the model at the beginning (as
in the basic run), big-M constraints are relaxed and used as cutting
planes, as described in subsection 3.3.3. ILOG CPLEX “lazy con-
straints” allow us to have such cutting planes during the Branch-and-
Bound solving.

• “Lazy+Cuts”: as before, big-M constraints are cutting planes. In ad-
dition, the cuts detailed in subsection 3.3.4 are inserted in the model.

• “IloIfThen”: the conditional constraints are not written in the model
as big-M constraints. An ILOG CPLEX constraint of type IloIfThen
is used instead.

• In table 3.6: the same instance is changed into a MVRPPD model
using the PDP-to-MVRPPD reduction described in subsection 3.2.1
and solved as a MVRPPD model (see section 3.2). Note that since
the shipment alternatives are not taken into account in the MVRPPD
formulation, we suppose that for each alternative, every shipment has
to be performed (instead of only one of them in the standard PDP). As
a result, the solution cost for MVRPPD is supposed to be bigger than
the basic one, as the problem is more constrained. However, this is
not necessarily the case, as the zone-skipping costs are not modelled in
the MVRPPD formulation. Moreover, some other constraints, such as
the visit time windows, are relaxed in the MVRPPD. Consequently, we
decided to compare the solving time between the PDP and the MVRP
formulation, unlike the solution value.
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Table 3.5: Solution ratios for various settings on the arc-based formulation

Setting Lazy Lazy+Cuts IloIfThen
Dimension value time value time value time

old-19-18-12-1 1 1055.1804 1 440.5677 1 1.7323

old-19-18-12-2 1 662.5282 1 134.108 1 0.8384

old-20-46-12-1 1 0.7626 1 0.8808 1.3048 1.0389

old-20-46-12-3 0.9556 1 0.9264 1 1.0698 1

old-20-46-12-4 0.9919 1 0.9878 0.8464 1.1529 1

old-20-46-12-5 1.1258 1 0.9878 1 1.567 1

old-20-46-12-6 1.0811 1 0.9108 0.5393 1.0012 1

old-20-32-12 1.0811 1 0.9108 0.5393 1.0012 1

old-19-42-8-1 1 1 1 1 1 5.2941

old-19-42-8-2 1 1.8832 1 2.773 1 5.133

old-19-36-4-1 1 1.3557 1 0.3454 1 6.7234

old-19-36-4-2 1 1.5755 1 0.3275 1 3.7615

old-19-36-4-3 1 0.6704 1 0.2376 1 6.4602

old-18-8-4-1 1 1.1276 1 1.2058 1 2.5802

old-19-8-4 1 0.4737 1 0.6579 1 2

old-18-8-4-2 1 0.9395 1 0.7803 1 1.8631

new-29-52-8 1 3.3308 1.1472 8.8628 1 3.5224

old-21-51-6 1 7.7895 1 1.6053 1 2.1842

First, we must point out that when the ratio on the solution values is
exactly 1, it means that the solutions of both runs are optimal (but the proof
of optimality is not necessarily reached in one of them), whereas a ratio of
exactly 1 in the computing time means that both runs have reached the time
limit of 3 hours and consequently we have a proof of optimality for neither of
the solutions (the gap between the solution value and the lower bound is still
strictly positive). Reversly, when the ratio on computing time is not exactly
1, then at least one of the runs has not reached the time limit and therefore
has found the optimal solution. Note also that the results on instances old-
20-46-12-1 and old-20-46-12-2 are exactly the same. It is because this is
quite the same instance, but the only differences involve features that are
not taken into account in the model. Therefore, both of them are formulated
the same way. The same holds for instances old-20-46-12-6 and old-20-32-12.

We can notice that besides a few instances (especially the first two ones),
the computing time to the optimal solution is lower than the basic run in
the “Lazy” case and even lower in the “Lazy+Cuts” case. This shows that
the improvements described in section 3.3 lead to good results and that they
must be applied to get the optimal solution faster. In the special cases of



96 Chap. 3: The arc-based formulations

Table 3.6: Solving time ratios between the MVRP and PDP models

Instance Time ratio

old-19-18-12-1 2081.8374

old-19-18-12-2 1033.9642

old-20-46-12-1 1.0389

old-20-46-12-3 1

old-20-46-12-4 1

old-20-46-12-5 1

old-20-46-12-6 1

old-20-32-12 1

old-19-42-8-1 3538.4696

old-19-42-8-2 30.4566

old-19-36-4-1 157.8744

old-19-36-4-2 102.4815

old-19-36-4-3 118.603

old-18-8-4-1 1.4609

old-19-8-4 9.2368

old-18-8-4-2 1.1178

new-29-52-8 24.7093

old-21-51-6 2.4737
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the first two instances, the basic MIP is solved in a few seconds whereas
the modified solving takes several minutes. These instances are particular in
the sense that every shipment is of type full truckload (FTL), as the vehicle
capacity is too small for the vehicles to carry over one shipment at a time. As
a result, the only decisions to be taken are related to the matching of vehicles
to shipments and departure and arrival times. In fact, they are even very
easy to solve by hand. When big-M constraints are not part of the model, the
ILOG CPLEX presolve is less efficient and it cannot reduce the polyedron as
much as when all the constraints are in the formulation. Furthermore, the
cuts at the beginning of the ILOG CPLEX Branch-and-Bound are far more
efficient in the basic case, as the problem is more constrained. In the other
case, the cutting planes (that contain a great quantity of time constraints)
are usually violated and are added to the formulation very often, which slows
the solving down.

Another clear statement that we can get from the table is that the ILOG
CPLEX IloIfThen method isn’t as efficient as our big-M constraints. In
almost all the cases, either the solution found by IloIfThen is worse than the
basic one, or the same solution is found in more time. This shows that our
constants M were carefully chosen and that they are not too big. This is also
an example which shows that a clever customized heuristic is often better
than automatical tools that are “blind” of the problem data, in some way.

At last, the MVRPPD formulation is usually solved in more time than the
basic version. This is because there are not enough shipments to get a real
advantage in the shipment aggregation described in subsection 3.2.1. Both
models are approximately of the same size but the MVRPPD formulation
contains far more big-M constraints. On the other hand, the MVRPPD
model is able to provide a solution for largest instances, where the PDP
formulation is too big to get to its first solution in reasonable time.

Let’s now compare one of the solutions found by the MIP with the solu-
tion found by ILOG TPO on the same instance old-20-46-12-1. On figure 3.7,
both the vehicle routes for the MIP optimal solution and for the ILOG TPO
final solution are depicted. On subfigure 3.7(a), the arcs are indexed by the
total quantity transported by the vehicle corresponding to the arc.

At the first glance, we can see that the vehicle routes of both solvers are
similar. The regular delivery sites 18 and 19 are chosen instead of ZSHs 10
or 8, probably because the zone-skipping costs are too high. Another reason
may be that anyway, two vehicles are required to deliver the shipments in
that area (the quantities carried by the vehicles are 33 and 32), and both of
them are almost filled, so they don’t need to gather their loads and deliver
to the ZSH. There is one difference, however. In the ILOG TPO solution,
a shuttle travels between site 2 and hub 3, whereas the MIP model doesn’t
need any. Indeed, the costs on shuttles are not the same as on the other
vehicles. The fact that a shuttle has lower costs than a regular vehicle is
not modelled in the MIP formulation because the shuttle costs are complex.
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Figure 3.7: Vehicle routes for solutions of instance old-20-46-12-1

(a) PDP MIP model (b) ILOG TPO

Hence, in the MIP model, shuttles have the same costs as other vehicles,
which can explain the only difference in the vehicle routes. The main issue is
that the computing time for the MIP model on this instance (with the big-M
constraints as cutting planes and the cuts included in the model) is about 2
hours and a half whereas ILOG TPO’s computation time on this instance is
2 minutes. However, on smaller instances such as old-19-8-4, the MIP takes
less than half a second when ILOG TPO get its final solution after over 3
seconds.

Conclusion

Two models were proposed for the routing problem described in chapter 1.
They are adapted to solve small instances to optimality, and can be a great
help for ILOG TPO on these instances, especially if the extensions such
as the cutting-plane algorithm are used. In particular, the optimality of
solutions given by ILOG TPO can be proven by solving one of these models.
Bigger instances could be solved as well by separating the set of shipments
into several subsets, so that the problem size becomes small enough, and
solve the MIP model on each of the subsets of shipments.
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Résumé du chapitre

Pour résoudre les instances de grande taille, il s’agit de faire coopérer
le moteur de résolution d’ILOG TPO avec un algorithme permettant de
déterminer, pour chaque ordre de transport, dans quelle suite de hubs
il serait judicieux de le transborder. Ce genre de décisions est difficile
à prendre pour ILOG TPO car le nombre de tels chemins de hubs est
exponentielle pour chaque ordre de transport. De plus, il s’agit de déci-
sions plutôt globales, alors que le moteur d’ILOG TPO est basé sur des
techniques de recherche locale.
Pour fournir de telles indications à ILOG TPO, nous proposons un nou-
veau modèle mathématique à base de chemins, cette fois très simplifié
par rapport au problème initial. Cette formulation n’est basée que sur la
structure du réseau et néglige certains aspects comme les considérations
temporelles (fenêtres de temps, etc.). Elle représente les véhicules comme
un flot, et un certain nombre de variables booléennes de chemin sont asso-
ciées à chaque ordre de transport. Ce sont ces variables qui sont utilisées
pour déterminer les chemins de hubs prometteurs pour chaque ordre de
transport.
Nous proposons trois façons de communiquer ces indications à ILOG
TPO. Il s’agit de contraindre de façon plus ou moins importante le modèle
d’ILOG TPO et le forcer, lors de la résolution, à utiliser les chemins de
hubs indiqués par le modèle mathématique. Ceci est intégré dans une heu-
ristique à deux phases. D’abord le modèle d’ILOG TPO contraint par ces
indications est résolu avec les méthodes de résolution d’ILOG TPO. Les
indications sur les chemins des ordres de transport sont ensuite relâchées,
et le modèle d’ILOG TPO est résolu une nouvelle fois, avec comme pre-
mière solution la solution finale de la phase précédente. Cette phase sert
à corriger les imperfections sur les chemins des ordres qui découlent du
caractère approché de la formulation mathématique à base de chemins.
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ILOG TPO hardly manages to decide whether each shipment should be
transshipped at a hub or if it should be delivered directly. Section 4.1 de-
scribes some of the ILOG TPO standard solving strategies. They are based
on local search, and some of their decisions may be questionable globally, as
local search improves a solution step by step without considering the whole
problem. The smallest instances can be solved by the models defined in the
previous chapter, as they are a close representation of the routing problem
and they can reach optimality in reasonable time. However, their large size
doesn’t allow the solving of the largest instances of ILOG TPO benchmarks,
that can have up to 1500 shipments. The idea is then, for these instances, to
help the ILOG TPO solving by guiding some decisions, such as the ones con-
cerning the shipment paths, with a global MIP model that keeps the network
structure, but that is simpler and smaller than the previous formulations.
Section 4.2 describes a model based on a network representation of the ve-
hicles and where the decision variables involving shipments are the possible
paths through which each shipment can be routed. At last, in section 4.3,
the cooperation between the ILOG TPO solving engine and the MIP model
is exposed. The MIP model is solved as a preprocessing and the MIP optimal
solution provides guidelines for shipment paths. These guidelines are then
given to ILOG TPO before the solving.

4.1 ILOG TPO solving methods

ILOG TPO tackles very complex problems as described in section 1.3. Some
of the customer instances it has to solve are large (hundreds of shipments),
and can’t be solved to optimality, or at least, there can’t be a systematic
proof that a final solution is optimal. The best solving strategies for this
kind of problems is local search with no doubt, as it may include several
problem features, and yet finds a good solution in reasonable time. Anyway,
the customers using ILOG TPO would not expect an optimal solution, but
at least a better solution than their own handmade plan and that they can’t
improve easily by themselves.

This justifies the use of local search (LS) in the ILOG TPO solving
engine. The core of the strategies used by ILOG TPO is described by De
Backer et al. [De Backer et al., 2000]. In fact, it mixes Local Search and con-
straint programming (CP). CP is a well-known solving technique where
every variable has a domain that is reduced during the search thanks to con-
straints triggering. Propagation is called as soon as the domain of a variable
x is reduced, and every other variable linked with x by a constraint can have
its domain modified as well by applying this constraint on the new domain
of x.

The optimization model used by ILOG TPO is based on visits rather
than sites. Almost all the basic decisions and local search moves imply one
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or more visits. In particular, the integer variable Ri indicates the visit that
is performed just after visit i on the same vehicle. This enables the use of
several constraints, mostly conditional, to model load accumulation or time
precedences. To model side constraints such as incompatibilities, a vehicle
tag τi, standing for the vehicle that serves visit i, is also needed.

Any solution has two representations:

• the active one that is used for the local search of the next solution,

• the passive one, on which the checking procedure that validates the
feasibility of the solution, with respect to all the constraints, is carried
out.

As checking all the constaints might be time-consuming, some methods are
proposed to avoid the complete checking, such as a reduction of the domain
of cumulative variables (time or load), or restricting the checking to modified
routes only.

The local search mainly uses five of the neighbourhoods described in sub-
section 2.1.5: 2-Opt, Or-Opt, Relocate, Exchange and Cross. In addition,
some complex neighbourhoods are implemented to take into account the
advanced features of the problem such as transshipment or shipment alter-
natives. In particular, a neighbourhood switches the transshipment status of
a shipment (direct or indirect), whereas another one unperforms shipment s
and performs an alternate shipment s′ instead.

All these LS operators can be used in a pure LS method, or in a more
sophisticated one based on a metaheuristic in order to be able to escape
from local minima. In particular, a basic tabu search (TS) is available. This
TS defines two tabu lists (one for arcs added and another for arcs removed)
that are inspected at each move, and if the move contains more than a given
threshold (that depends on the kind of move) of added and removed arcs
already in the tabu list, it is rejected. It is also possible to apply another
metaheuristic: guided local search (GLS). GLS is a local search procedure
that adds a penalty factor in the objective function as soon as it reaches a
local optimum. This penalty factor depends on search experience and is kept
until the end of the optimization. The main advantage of GLS compared
with TS is that it is easy to implement and a few tests suffice to determine
if this metaheuristic is appropriate for a problem. On the other hand, TS
has many parameters to be customized and a slight modification in one of
them may result in a deep change in the performances of the algorithm. In
other words, the parameter customization of a TS algorithm is almost an
optimization problem in itself!

Practically, the instances we face are usually solved using first-improve-
ment moves, for which the first improving neighbour of the current solution
is kept for the next local search step. The main advantage of this choice
is to avoid searching over all the neighbourhood at each move, even if each
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Figure 4.1: Example of ILOG TPO local search trace

improvement is then expected to be lower than a best-improvement move
(for which the best neighbour is kept).

Figure 4.1 depicts a typical search process by ILOG TPO on a rea-
sonnable size instance. The current solution value is displayed depending
on computing time. As we can see, the search is a sequence of descents and
when a local minimum is reached, ILOG TPO has a diversification strat-
egy by a modification of the costs based on the previous search experience.
This diversification leads to a new solution with a high cost, and a new local
search descent begins from this point.

This algorithm is used in our tests (see next chapter), especially on small
and middle-size instances, since for large instances, the first local search
descent isn’t usually finished at the end of the time limit of 3 hours.

4.2 The path-based model

Before describing the path-based formulation, let us define precisely some
important notions.

Recall that in an ILOG TPO point of view, a shipment path is a
(possibly empty) sequence of hubs in which a given shipment is transshipped.
Here, a shipment path is made of the hubs the shipment goes through in its
path, without any knowledge whether it is transshipped or not. A shipment
path also contains information on the pickup and delivery sites, in the case
the shipment has alternate shipments (i.e. in simple terms, several possible
pickup and delivery sites). In addition, let a complete shipment path
be an extension of shipment paths on all sites: a shipment path is a path
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between hubs whereas a complete shipment path may include any kind of
sites. A complete shipment path is then the sequence of sites, from the
pickup site to the delivery site, through which the shipment goes before
being delivered. For example, if a shipment goes through sites 1,5,2,4,7,8,3
in this order, where 1 is its pickup site, 3 is its delivery site and 2 and 8 are
hubs, then its complete shipment path is (1, 5, 2, 4, 7, 8, 3) and its shipment
path is (1, 2, 8, 3), regardless of the vehicle(s) in which it travels. Note that
both paths can be seen as sequences of sites, as well as sequences of arcs,
providing the graph of sites is complete.

4.2.1 Motivation

ILOG TPO optimization engine is based on Local Search (LS) and has hardly
a global view of the problem. Hence, the decisions are locally improving but
might be questionable from a global point of view. Using LS, the current so-
lution might not have a sequence of neighbour solutions to get to a very good
solution, or if it has one, the sequence may contain very bad solutions that
would never be chosen by the optimization engine, whichever the heuristic
or metaheuristic is. Furthermore, the sequence might be very long, which
would be a serious drawback in terms of computing time. Therefore, we need
to take good decisions from a global point of view at the very start of the
solving process, so that these decisions impact both the quality of the final
solution found and the computing time to find it. For example, we may pro-
vide the solver with a bad first solution in terms of cost, but with a structure
such that few moves are required to get to a good solution. The aim of this
is to obtain a better final solution, or at least a similar final solution in less
time.

Transshipment is one of the features that cause questionable decisions.
As a cross-dock action involves several vehicles, it is not easy to introduce
a simple neighbourhood that is likely to improve the solution by taking
advantage of transshipment. For instance, for a shipment s, let a move
be the modification between “s direct” (meaning not transshipped) and “s
through hub h”. If, at that time, there is no other shipment transshipped at
hub h, this move will result in a raise of the costs, as there is no benefit from
transshipment if less than two shipments are involved. Therefore, any such
move will be rejected in a pure LS strategy, whereas it could be an improving
move to modify the status of two direct shipments instead of only one.

The basic ILOG TPO first solution is built with a greedy procedure that
uses local search, and may take wrong transshipment decisions, which can
be the source of the suboptimality of the final solution. A solution to the
issue presented above is to find some way to provide every shipment with
paths between hubs that are expected to be of a good quality. Of course,
such a procedure has to be efficient in a short time, as it is only a small part
of the solving. The shipment paths given by this tool could then be frozen
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and the optimization would only be focused on other decisions, and removing
some of the defined neighbourhoods (those corresponding to shipment paths)
obviously accelerates the local search.

A simple way to get the right paths between hubs is to model the problem
with variables indexed on shipment paths. This formulation, unlike the arc-
based formulation proposed in chapter 3, has to be concise but it has to
model the problem as closely as possible, keeping in mind that the only
decision that has to come out of the solving of this model is the choice of
the shipment path for each shipment.

We chose to neglect the time aspects, for several reasons. First, it seems
that to take a decision on the shipment paths, only the network structure
is necessary, and time requirements such as time windows wouldn’t modify
the benefit of using a given shipment path, except in some particular cases.
Then, time is convenient to ignore as the vehicles no longer need to be
individualized as in the models presented previously. By this way, we can
model the vehicles as a flow that only specifies the capacity on each arc
travelled by shipments. Recall that table 3.1 lists some of the real-life features
of the problem and makes clear whether each of the three formulations can
model them.

Path-based models are often provided for vehicle routing problems, espe-
cially when the vehicle fleet is heterogeneous (see subsection 2.1.5 for more
details). But most of the time, vehicle paths (or tours) are introduced. In
our case, the vehicles are modelled as a flow, and the paths aspect is on the
shipments.

4.2.2 Variables

The variables can be separated into two groups.
The vehicle flow variables are the variables that indicate how many

vehicles of each fleet travel in the network. nijf depicts the number of
vehicles of fleet f that travel from site i to site j, whereas n+

if (resp. n−
if ) is

the number of vehicles of fleet f for which the route starts (resp. ends) at
site i.

Let Q(s) be the set of all complete shipment paths for shipment s. The
complete shipment path variables are denoted by θsp, where shipment
s travels through complete path p ∈ Q(s) if and only if θsp = 1. Recall that
S is the set of shipments, whereas S′ also contains the alternate shipments,
for instance to model the possiblity for a shipment to be delivered via a
ZSH. For example, a shipment s ∈ S, that can be delivered to a nearby ZSH
instead of being shipped directly to its destination, is associated with two
shipments in S′: itself and a shipment s′ for which the delivery visit takes
place at the ZSH. In this section however, we consider only the shipments
s ∈ S, and the shipment alternatives are modelled as additional paths for
a shipment s (these paths may have distinct origins and destinations, of
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Figure 4.2: Alternative modelled as additional shipment paths

hub

for shipment s (one hub and
one inbound ZSH)

ZSH

i(p(s))

i(d(s))

All possible shipment paths

course). Figure 4.2 depicts a basic example with 4 sites where a shipment
s has a shipment alternative, and both of the alternate shipments have two
shipment paths (direct or through the hub). This results in 4 possible ship-
ment paths for shipment s. Recall that i(p(s)) and i(d(s)) are its pickup
and delivery sites, respectively. However, for the time being, the shipment
paths that are considered in Q(s) are complete shipment paths containing
any kind of sites. For any shipment, there may be a lot of such complete
shipment paths.

In the following, the size of a fleet f is the number of vehicles available
in f and is referred to by size(f). Any data notation that has been used
previously for vehicles (such as cap(k)) can be kept for fleets (i.e. cap(f))
because in each fleet, all the vehicles are identical.
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4.2.3 Constraints

The variables described above are subject to the following constraints:

∀i ∈ I,∀f ∈ F,
∑

j∈I

nijf −
∑

j∈I

njif = n+
if − n−

if (4.2.1)

∀i ∈ I,∀f ∈ F, n±
if = 0 if i 6= extrem±(f) (4.2.2)

∀f ∈ F,
∑

i∈I

n+
if ≤ size(f) (4.2.3)

∀s,∈ S,
∑

p∈Q(s)

θsp = 1 (4.2.4)

∀(ij) ∈ A,
∑

s∈S






qty(s)

∑

p∈Q(s)
p∋(ij)

θsp






≤
∑

f∈F

cap(f)nijf (4.2.5)

∀i, j ∈ I,∀f ∈ F, nijf , n+
if , n−

if ∈ N (4.2.6)

∀s ∈ S,∀p ∈ Q(s), θsp ∈ {0, 1} (4.2.7)

Constraint (4.2.1) is the flow conservation constraint on each site i and
for each vehicle fleet f . This constraint generalizes the Kirchhoff constraint
(2.2.2) of the classical network flow formulation described in subsection 2.2.1.
Constraint (4.2.2) only holds if the sites extrem±(f) are given in the data,
and ensures that no vehicle will start or end its route at a wrong site. Con-
straint (4.2.3) ensures that in each fleet, the number of vehicle used doesn’t
exceed the number of vehicles available. Constraint (4.2.4) enforces each
shipment to be transported through exactly one shipment path, and it is
similar to constraint (2.1.8) that belongs to the path-based formulation of
the VRP described in subsection 2.1.5. Here however, we consider ship-
ment paths, and not vehicle paths. Finally, constraint (4.2.5) is the capacity
constraint, as well as constraint (2.1.9) from the same VRP path-based for-
mulation.

4.2.4 Objective

The objective is, as described in the previous models (subsection 3.1.5) to
minimize costs that can be composed into 4 terms: the fixed cost, the zone-
skipping cost (ZSC), the direct transportation cost (DTC) and the additional
distance cost (ADC).

min obj = Cfixed + CDTC + CADC + CZSC

The modelling of costs, especially the DTC and the ADC, is complex in
this formulation, because they should depend on the first and last sites of
the vehicle routes, although no real vehicle route is visible here. Of course,
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we could determine each of the vehicle routes a posteriori, but here the
point is to have access to them during the search, which is impossible unless
many other variables and constraints are introduced, but this is inconceivable
as it would break the flow structure for the vehicles. Moreover, there is
obviously no way of getting the maximal quantity over a route (denoted
by Qk in subsection 3.1.5), needed for the DTC. Therefore, the idea is to
approximate the costs as well as possible, but above all so that a solution
that dominates another in terms of the “real” costs will also be better when
comparing the model costs. We give here a rough approximation of these
costs, as a lot of problem features have already been approximated or even
removed (time for example). Moreover, a more sophisticated approximation
would not necessarily have a significant impact on the final solution.

• The fixed cost is simply:

Cfixed =
∑

f∈F

(

Cvehicle(f)
∑

i∈I

n+
if

)

• Recall that a zone-skipping cost is a cost that has to be paid for using
a special site called ZSH instead of a regular pickup or delivery site.
It depends on the total quantity of products that go through a given
ZSH. If we decide to linearize it as for the previous models, the zone-
skipping cost is also rather easy to write in this model, as shipment
alternatives are merged with the notion of shipment paths here:

CZSC =
∑

s∈S



qty(s)
∑

p∈Q(s)

θsp CZSC(p)





CZSC(p) is the ZSH unit cost for path p. In fact, it depends only on
the departure and arrival sites (let’s say i+(p) and i−(p)) of path p.
Recall that there may be a ZSH alternative on the delivery visit, but
also on the pickup visit. As a result, we have the following correspon-
dance: CZSC(p) = CZSC(i+(p))+CZSC(i−(p)), where CZSC(i) has been
introduced for any site i in subsection 3.1.5. If neither of these sites is
a ZSH, then CZSC(p) = 0.

• The ADC is the additional distance cost and it is only dependent on
vehicle routes (and especially on their first and last sites), that however
are not explicit in this model.

CADC =
∑

(ij)∈A



CADC(i, j) · distanceADC(i, j) ·
∑

f∈F

nijf




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where distanceADC(i, j) = max{distance(i, j)− limit(i, j), 0} is the ad-
ditional distance travelled between sites i and j. Recall that limit(i, j)
is the distance threshold below which the cost is zero and above which
it raises linearly. Here, we handle the routes arc by arc, using the
fact that as they are limited in their number of stops, the vehicle
routes are made of few arcs. This approximation is good for shuttles
in particular, as they are bound to a single lane. Note that this seg-
mentation of the cost over each arc of the route was inspired from the
cost function (2.3.1) of the hub location quadratic model decribed in
subsection 2.3.1.

• The DTC is the direct transportation cost and should depend on the
maximal quantity transported over a vehicle route. As it is impossible
to get such information from any variable combination, an approxima-
tion has to be considered here as well. First, we noticed that in most of
the instances, the vehicle routes don’t really mix pickups and deliver-
ies. Usually, a set of pickups is performed at the beginning of the route,
and the shipments are delivered without any other pickup in between.
However, there may be a transshipment with the vehicle swapping one
or more shipments at a hub. In our approximation, we simplify the
calculation by considering once again the route arc by arc. Assuming
that the vehicles have a limited number of stops, we associate each arc
of a shipment path to a vehicle. As a result, the approximate DTC
only depends on shipment paths:

CDTC =
∑

s∈S



qty(s) ·
∑

p∈Q(s)

CDTC(p) · θsp





where CDTC(p) =
∑

(ij)∈α(p) CDTC(i, j) is the unit DTC for shipment
path p. In other words, the DTC is computed from all the shipments
that go through an arc, as if the vehicle routes where limited to one
single arc.

Let’s consider the route defined by the visit sequence P1P2D2P3D3D1

(P are for pickups and D for deliveries), where all the shipments are
unitary in terms of quantity. The real DTC for such a route depends
on the maximal quantity over the route, which is 2, and on the first
and last sites, that are the sites where respectively visits P1 and D1 are
performed. On the other hand, the approximate DTC is the sum over
the path of the real DTC corresponding to a quantity of 1 between the
sites of P1 and D2, 2 between the sites of P2 and D2, 1 between the sites
of D2 and P3, etc. Therefore, for this kind of route configuration, the
approximate DTC is likely to be rough. However, as discussed above,
most of the vehicle routes are of the type P1 · · ·PnDn · · ·D1, with all
the pickups at the same site or at least at nearby sites, and the same
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property holds for deliveries. In this case, the approximation becomes
close as the linearization comes from the fact that all the shipments
go approximately from the same site to the same site. In the case a
shipment is cross-docked, we know that over its path, the vehicle is not
the same before the hub and after the hub. Consequently, separating
the DTC in all the arcs of shipment paths seems appropriate.

4.2.5 Size of the model

Let |P | be the maximal size of a set of complete paths for any shipment.
The number of variables in the model is |I|2.|F |+ 2|I|.|F |+ |S|.|P |, whereas
there are |I|2.|F |+ |I|.|F |+ |S| constraints. Obviously, the number of paths
for each shipment is determinative of the size of the formulation.

Let’s suppose that the length of a complete path is the number of inter-
mediate sites between the pickup (i(p(s))) and the delivery sites (i(d(s))).
Only the direct path between i(p(s)) and i(d(s)) has a length of 0, and |I|−2
paths have only one intermediate site (we assume that the shipment paths
contain any site at most once). In the general case, the paths of length
n ≤ |I|−2 are arrangements of n sites in set I \{i(p(s)), i(d(s))}. The whole
set of paths has a factorial size, and if we don’t remove some of the paths,
our model is unsolvable for even very small instances.

4.2.6 Observations and precisions

Recall that this simplified formulation is only designed to provide ILOG TPO
with a promising path between hubs for each shipment. As discussed in the
previous subsection, the model is too large if we consider all the complete
paths for every shipment. However, it is possible to easily eliminate some
paths that we know would be useless in the formulation.

First, the path length can be upper bounded regarding the limit on the
number of stops for each vehicle. A shipment path that does not contain any
hub has necessarily a length below this limit. The shipment paths can also
be restricted by constraints, especially the ones that are not modelled in this
formulation (time, for instance). Two sites i1 and i2 such that twLB(i1) >
twUB(i2) can’t be in the same shipment path unless i2 is before i1.

But despite these limitations, the number of paths is still very large, es-
sentially when the shipment is transshipped several times to another vehicle.
Furthermore, another problem arises with complete shipment paths. In the
formulation, no constraint prevents a shipment from being swapped between
two vehicles at any site, even non-hub. Figure 4.3 is a typical example where
one of the two shipments s1 with path (i′ii1) or s2 with path (i′ii2) neces-
sarily has to be swapped between two vehicles in i. Note that the vehicle
flow conservation constraint at site i is not violated as soon as one of the
two vehicles departing from i (i→ i1 or i→ i2) is arriving from another site
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Figure 4.3: Example of vehicle change for a shipment
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Figure 4.4: Generalization of vehicle change for a shipment
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(say njif = 1) or starting its route in i (n+
if = 1).

This example raises the issue that nothing in the model prevents a non-
hub site from having shipments swapped from a vehicle to another, and
adding such a general constraint would be too costly. A generalization of
the previous example case is given on figure 4.4: given a set of shipments
travelling through arc i′i and then through k distinct arcs, this case occurs
whenever the total number of vehicles that carry these shipments on arc i′i
is strictly less than k (in particular, if ni′if = k − 1).

We have the same kind of configuration by reversing the arcs in figure 4.4.
A simple way to overcome this issue is to consider only the hubs as

possible intermediate sites in shipment paths: all the shipment paths would
then be paths between hubs. Let P (s) be the set of all possible shipment
paths (between hubs) for shipment s. The formulation we consider here can
simply be obtained from the previous one by replacing every occurence of
set Q(s) in subsections 4.2.3 and 4.2.4 by P (s).

In this model, any site i as described in the previous figures would be a
hub, and vehicles swapping shipments in i would not be a problem any more.
Furthermore, allowing only hubs to be intermediate sites in shipment paths
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dramatically decreases the number of possible paths for every shipment, and
hence the size of the problem.

On the other hand, this simplification removes some solutions from the
solution set. With this hub restriction, the vehicle routes are also limited.
For example, a vehicle can’t go to a site i to pickup a shipment, and then to
another non-hub site j to pickup another shipment, otherwise the first ship-
ment would have a non-hub site in its path. This reduces dramatically the
possiblities of grouping shipments together in a vehicle. However, we chose
to use this restriction because of its simplicity and we provide a workaround
for the grouping issue.

4.2.7 Site aggregation

To overcome the impossibility of grouping several shipments into the same
vehicle, we propose as a preprocessing to group similar sites in the same area
in order to be able to pickup or deliver shipments that come from or must go
to the same region. Advanced techniques could be used for this matter (such
as k-nearest neighbour) but recall that this model is already approximated
and there is no need to propose exact or complex improvement algorithms.
The sites are then grouped with a greedy heuristic. This also allows us to
reduce the number of sites and hence the size of the formulation.

We can notice that in most of the instances, there are sets of sites (usually
two sites) that are located at the same place, modelling the fact that two
warehouses are close and each of them has specific features (e.g. allocated
vehicles). In our formulation, we don’t need to keep these sites distinct, as
soon as some site-specific data, such as time windows, match. Therefore,
such sites located at the same place are merged.

But it is also possible to heuristically aggregate sites that are located
roughly in the same area. The idea is to allow shipments that have to be
picked up or delivered in the same region to be routed in the same vehicle(s).

Our heuristic is greedy and rather simple. The sites are scanned in a
lexicographic order. A set of “master sites” M is maintained during the
algorithm. If the current site is near one of the master sites and has the
same hub status (hub or non-hub), it is aggregated with this master site.
Otherwise, it is added to the set of master sites M , and the same procedure
carries on until all sites have been processed. The closeness of two sites
can be decided simply by comparing the distance between these sites with a
constant parameter (called the aggregation distance). If this parameter is
too small, few sites are aggregated. On the other hand, if it is too high, some
shipments may have their pickup and delivery sites aggregated together, and
these shipments then have to be removed from the formulation. Therefore,
we have to find a good compromise and the aggregation distance must take
into account the network structure.

Before the site aggregation described above, we apply the preprocessing
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described in subsection 3.3.2 in order to reduce the number of sites and
vehicles.

4.3 Cooperation and integration

In the previous section, we detailed the model that computes the shipment
paths that are likely to be of a good quality, regarding the network structure.
Each such shipment path for any shipment s is the path p ∈ P (s) such that
θsp = 1 in the optimal solution. This section will deal with the way ILOG
TPO can integrate such guidelines and how they may be helpful for the
solving.

4.3.1 Freezing shipment paths

We give shipment paths guidelines to shipments during the solving in ILOG
TPO by freezing these shipment paths at the beginning of the local search
(LS). The shipments are then forced to travel through the shipment path for
which they are provided (if any), and the ILOG TPO local search then just
has to focus on other routing decisions, such as the assignment of shipments
to vehicles or the scheduling. Freezing decisions on paths has two main
advantages:

• ILOG TPO no longer needs to take such decisions for which the engine
is not efficient enough in general,

• it reduces the neighbourhood size for any solution during the LS, which
usually leads to a significant gain in computation time.

As discussed in the previous section, the notion of shipment alternative
(possibility to deliver a shipment through a ZSH) is modelled by additional
shipment paths that have the ZSH as a final destination (see figure 4.2).
Then, when the path-based formulation provides us with a path p, it gives
implicitely the alternate shipment as well. This allows us to use the shipment
path guidelines in three different ways:

• Freeze the path between hubs only for the alternate shipment. During
the search, if this alternate shipment is chosen, it will be forced to be
routed via the path p. Nevertheless, if another alternate shipment is
performed, no constraint is imposed on its shipment path. For example,
on figure 4.2, it results in removing one of the 4 shipment paths.

• Freeze the path between hubs for all the shipments of the alternative.
Given the assumption that all the shipments of an alternative have
the same possible shipment paths (recall that a shipment path is just
a possibly empty sequence of hubs), we freeze the path over all the
alternatives and not only on the alternate shipment that is performed
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in the MIP solution. For example, if the alternate shipment is direct in
the MIP solution, then all the shipments of its alternative will be forced
to be shipped directly in any ILOG TPO solution. This decision of
applying the same shipment path to all the shipments in an alternative
can be justified by the fact that the ZSH are located in the same region
as their regular delivery sites (as well as the pickup sites), and a good
shipment path for one of the alternate shipments is likely to be good
also for all the other alternate shipments. On figure 4.2, it results in
removing two of the 4 shipment paths (either both the direct paths, or
both the indirect ones).

• Freeze the path between hubs and the alternate shipment. It is the
most constraining way of taking advantage of the shipment paths given
by the path-based model. Indeed, we keep only one possibility over all
the shipment alternatives and the possible paths between hubs for a
given shipment, and there is no choice any more about the transship-
ment decisions on this shipment. On figure 4.2, 3 shipment paths out
of 4 are forbidden.

The three possibilities have their own interest. The last one can be
chosen if we are sure of the quality of the shipment path guidelines. Freezing
both the shipment path and the alternate shipment results in a drop in the
computing time thanks to the neighbourhood reduction. Nonetheless, there
is a risk that this constrains too much the shipments and that no solution can
be found (because of time constraints, for example), or only bad solutions.
The second point is suitable in the case the shipment paths are sure but
the choice of the alternate shipments is delicate, for example when the path-
based model gives similar costs for every alternate shipments. The first point
is the “security” possibility, because the local search can always choose the
alternate shipment for which no shipment path has been fixed. However,
the processing time is not supposed to be reduced a lot, because this doesn’t
considerably constrain the ILOG TPO model.

4.3.2 Two-phase algorithm

As the path-based model is an approximated formulation of the problem
faced by ILOG TPO, we can’t be sure that with the MIP guidelines, we
don’t remove good solutions from the solution polyedra. At the end of a
ILOG TPO run using the guidelines, we can therefore keep searching by
relaxing the shipment paths constraints that were added at the beginning.
This two-phase procedure can be easily tested as an ILOG TPO external
user:

• first run with the guidelines on shipment paths leading to an interme-
diate solution S,
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• second “classical” run (without the guidelines), with S as a first solu-
tion.

At the end, we find good solutions in reasonable time, as the first phase
is more constrained than a regular ILOG TPO run, and the second phase
starts from a good first solution, which is time-saving in local search.

4.3.3 Industrial integration and testing

This work being part of an industrial PhD, we need to detail the way all
this work was integrated in the complete software ILOG TPO. ILOG TPO
is made of two components: a Graphical User Interface (GUI) coded in Java
and a solving engine coded in C++. Of course, in the context of this PhD,
there is only a connection with the engine part. However, the GUI is very
useful for testing matters as the entire solution information is available and
small changes for the current solution are enabled thanks to interactions by
hand.

ILOG TPO engine has a data model to store data read from a file. This
ILOG TPO data model D1 is scanned and copied into a simplified MIP data
model. Then, the MIP model is solved and the shipment paths are extracted
from the solution. A new ILOG TPO data model D2 is created from the
same file as before, and the shipment paths guidelines are given to this data
model. D2 is solved, and its final solution is given as a first solution for the
solving of D1.

In fact, the MIP guidelines are only plugged to ILOG TPO at its inputs
and outputs, and is not fully integrated yet. For example, the MIP model
has its own data model, which is a simplified version of the ILOG TPO data
model. The reason for this is that it allows the guidelines to be easily applied
to any other software, and the MIP model doesn’t need to be modified when
ILOG TPO is updated to a new version. In spite of the external state of
the guidelines, it would be easy to fully integrate them into an upcoming
customer version of ILOG TPO.

Conclusion

In this chapter, we proposed several algorithms based on the shipment paths
guidelines, in order to help ILOG TPO take global decisions a priori. This
is included in a two-phase algorithm, with the first phase being a solving of
ILOG TPO with these guidelines, and the second phase is just a local search
improvement from the last solution of the first phase, on the initial model
(the guidelines are relaxed). This is supposed to provide better solutions, or
at least comparable solutions in less time, than ILOG TPO alone.

This cooperation between Constraint Programming (CP) and a MIP for-
mulation is also interesting for ILOG, as it allows the perspective of including
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another ILOG product into ILOG TPO. For the time being, CP is solved in
ILOG TPO using ILOG Dispatcher (software to solve vehicle routing prob-
lems), which is derived from ILOG Solver (CP-based solver). With the MIP
guidelines, ILOG TPO is likely to integrate ILOG CPLEX in addition in
its releases. ILOG TPO is then representative of the efficiency of ILOG
softwares in Operations Research.
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Résumé du chapitre

L’approche décrite dans le chapitre précédent est testée dans ce chapitre.
D’abord, les instances traitées sont décrites. Sauf exception, il s’agit d’ins-
tances industrielles qu’ILOG TPO a été amené à résoudre dans les der-
nières années. Elles sont réparties en quatre groupes, selon leur taille.
Pour les premiers tests, nous choisissons de comparer une exécution de
l’heuristique à deux phases décrite au chapitre précédent avec une exécu-
tion classique d’ILOG TPO. Les critères de comparaison sont à la fois la
valeur de la solution finale et le temps de calcul. Nous montrons ainsi que
le principal gain de performance de l’utilisation de l’heuristique à deux
phases se trouve dans l’amélioration du temps de calcul. En effet, les solu-
tions trouvées par cette heuristique sont légèrement moins bonnes, mais le
temps de calcul est nettement meilleur, surtout lorsque le modèle d’ILOG
TPO de la première phase est le plus contraint. Notons que l’améliora-
tion du temps de calcul est plus importante pour les instances de taille
moyenne, mais l’écart entre la valeur des solutions trouvées par ILOG
TPO et par l’heuristique à deux phases est aussi légèrement plus grand.
Dans un deuxième temps, nous comparons cette heuristique à deux phases
où ILOG TPO est guidé par la formulation à base de chemins, avec une
moyenne géométrique de 20 exécutions de la même heuristique où, cette
fois, les indications sont générées aléatoirement. Ces tests ont pour fonc-
tion de valider la qualité des indications données par le modèle mathé-
matique. Nous comparons ici également la solution intermédiaire obtenue
entre les deux phases. Nous montrons ainsi que l’heuristique est mieux gui-
dée par la formulation mathématique que par des indications aléatoires.
En effet, à la fois la solution finale et le temps de calcul sont meilleurs,
ce qui prouve que le modèle à base de chemins donne des indications
correctes à ILOG TPO.
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The algorithms based on shipment paths guidelines and described in the
previous chapter need to be carefully tested. The MIP model defined in sec-
tion 4.2 is a simplified formulation compared with the core problem. It is only
a static representation of the network, without any reference to time aspects
or additional constraints such as the maximal vehicle route length. Then,
the question is to know if the guidelines given by the MIP are consistent
and robust. For that, we propose two testing ways to validate our approach.
After a brief description in section 5.1 of the benchmark instances at our
disposal and the conventions used in this chapter, we start in section 5.2
by applying the algorithms on small instances for a better understanding.
We then compare in section 5.3 the final solution found by TPO with the
guidelines each of the algorithms described in the previous chapter with the
final solution found by TPO without the guidelines. Both the solving time
and the solution values are compared, through ratios calculated for each in-
stance. At last, we seek in section 5.4 to determine if the MIP guidelines
are better than randomly generated guidelines by applying the algorithms
on several random guidelines for some instances.

5.1 Instances description

The tests that we will present in this section are performed on customer
instances that were given by a ILOG TPO third-party logistics provider
(3PL), and for matters of confidentiality, their names have been modified.

5.1.1 Generalities

We decided to divide the instances into two categories, depending on the
date when they were added to the ILOG TPO benchmark set.

• The oldest instances are called “old-n1-n2-n3-id”, where n1 = |I| is the
number of sites, n2 = |K| is the number of vehicles and n3 = |S′| is
the number of shipments and alternate shipments. id is a one-digit
numerical ID in the case several instances have exactly the same size.
Note that n1, n2 and n3 are calculated before any preprocessing such
as the ones described in subsections 3.3.2 and 4.2.7.

• The most recent instances are called “new-n1-n2-n3-id”, with the same
conventions as before. These are the instances on which a great work
was lately done to improve the ILO TPO engine and they are usually
handmade instances from the 3PL in order to point out a problem in
the solution of the current version of ILOG TPO. As such, despite their
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relatively small size, they are rather hard to solve, as they often have
special features.

Instances of exactly the same size (same n1, n2 and n3) have usually been
made from the same core instance, but with slightly different features (more
constrained time windows, forbidden shipment paths, etc.): the 3PL isn’t
satisfied when the most constrained version of the benchmark leads to a
better solution than the unconstrained one. As a result, solutions of the
same size are likely to lead to the same solution, or at least close solutions.

5.1.2 Classification

We chose to classify the set of 119 instances in 4 categories, depending on
their number of shipments. Indeed, the number of shipments is the best
indicator of the size of the problem, as the number of sites and vehicles can
be heuristically estimated from the set of shipments.

• Class “4-12”: 19 instances with 12 shipments or less. These instances
were used for the arc-based models tests (section 3.4).

• Class “13-43”: 41 instances with between 13 and 43 shipments. They
are rather small instances, and 23 of the 25 “new” instances are included
in this class.

• Class “44-85”: 33 instances with between 44 and 85 shipments.

• Class “86-1497”: 26 instances with 86 shipments or more. Solving these
instances reaches the time limit of 3 hours, and for the biggest ones,
no local minimum is reached within the allotted time.

5.1.3 Specificities

The 119 instances that we solve in this chapter are customer instances, and
as told before, they contain real-life features that make them hard to solve.
In the biggest ones, up to 750 shipments have to be routed in a network
with possibilities to go through hubs and to be delivered to a ZSH. In other
words, |S| can be up to 750, even if there may be 1497 shipments or alternate
shipments in |S′| (recall that S′ gathers all the shipments in S and the
alternate shipments going through the ZSHs). Numerous constraints stand:
maximal duration of any trip, driver breaks, incompatibilities. For more
information about these features, see chapter 1.

However, some of the instances are instances modified by the 3PL for
testing issues. Sometimes, if instance I is modified into a more constrained
instance I ′, the 3PL wants the solution found by ILOG TPO for I to be
better than the one for I ′. In other cases, they want the routing plan found
on a subset of shipments to be used for the global instance.
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Of course, all the instances for which there is no decision to take on
shipment paths were removed from the set of benchmarks. In each of the
119 instances, at least one shipment has the possibility to be transshipped
in one of the hubs. In fact, the only choice stands on the shipping mode:
either direct (no transshipment) or indirect (via a hub). Indeed, in any
of the test instances, only one indirect shipment path is proposed for any
shipment: only one hub is opened in the whole network. Note also that the
hub is always located near the pickup sites and there is no instance with an
inbound hub, which classifies the network as outbound pooling.

Recall that in addition of transshipment, every shipment can also have
several possible couples pickup and delivery sites referred to as alternatives.
In the set of instances, every shipment has at most two alternatives: its
regular pickup and delivery sites on the one hand, and for some of them the
possibility to be delivered at a ZSH on the other hand. This network can
therefore be considered as hub-and-spoke, as the ZSH stands for the inbound
hub.

5.2 Small particular cases

In this section, we will illustrate on a couple of examples how the algorithm
described in the previous chapter helps ILOG TPO to find better solutions.

The first instance we tackle in this section is a simple handmade in-
stance, designed to show that the MIP model guidelines are useful for ILOG
TPO. The instance only contains 5 sites (amongst which 1 hub) denoted
by a numerical ID from 0 to 4, 2 vehicles (they can start and end their
route anywhere, and have an infinite capacity) and 4 shipments (2 “crossing”
shipments (1 → 2) and (0 → 3), and 2 “straight” shipments (1 → 3) and
(0→ 2)). There is no shipment alternative, and every shipment may either
be delivered directly to its destination or through the hub. Subfigure 5.1(a)
is a representation of the network. The arrows depict the shipments, and
the central blue octagonal site (named 4) is the hub. Considering the total
distance travelled as the cost function and ignoring any additionnal con-
straint such as time windows or vehicle capacity, it is quite easy to see that
an optimal solution is to transship two of the shipments at the hub. On
subfigure 5.1(b) depicting an optimal solution, we can see that both vehicles
(denoted by their numerical ID on arcs, and by their colour) meet at the
hub in order to swap one shipment each (the crossing shipments). Another
optimal solution can be obtained by swapping the second part of the route
for both vehicles.

A simple proof of optimality is that similar routes are already optimal
only considering these crossing shipments. In this case, a vehicle could travel
directly from 1 to 2 with shipment (1→ 2) and another one from 0 to 3 with
shipment (0 → 3), without stopping at the hub. The reason why the plan
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Figure 5.1: Shipments and optimal solution for a small instance

(a) Shipments (b) Optimal solution

is optimal in this case can be obtained by enumerating all plausible routes.
In particular, a single vehicle route defined by (1 → 0 → 2 → 3), which
costs 3a (let’s say the side length of the square is a), whereas the cost of the
solution given above is 2a

√
2, which is better. Note that in the case with 4

shipments, the cost of the solution given in subfigure 5.1(b) is 2a
√

2 as well
because there is no additional cost for the vehicles to swap shipments at the
hub.

The fact the both vehicles go through the hub doesn’t mean that the
shipment path of every shipment contains hub 4, in ILOG TPO sense. For
instance, shipment (1 → 3) is in vehicle 1 going through hub 4. Neverthe-
less, it stays in the same vehicle after the hub, and therefore there is no
transshipment for it. ILOG TPO considers that this shipment is delivered
directly from 1 to 3, even if there is a hub in its vehicle route. In the case
ILOG TPO has to build up a solution with each of the 4 shipments enforced
to be transshipped at hub 4, any vehicle unloads both shipments it was car-
rying arriving at hub 4, and then loads back one of them and one that was
previously in the other vehicle. Here it is not a real issue as there is no cost
for loading and unloading shipments, but in the real-life instances described
in section 5.1, it may result in an increase in the total cost. This is a hard
thing to determine for the path-based model of the previous chapter, even
a posteriori, as the vehicles are not individualized. Fortunately, the solution
with too many shipments considered as transshipped at a hub can be im-
proved by simple local search moves in the second phase of the algorithm
described in subsection 4.3.2, by just unperforming the “dummy” unloading
and loading visits.

This simple instance was tested using ILOG TPO 3.1.3 version. Not
designed to tackle so small problems, ILOG TPO returns a solution with
two vehicle routes (0 → 1 → 2) and (1 → 0 → 3) with both vehicles
picking up 2 shipments that have the same delivery site, which of course is
not optimal. The cost of this solution is 2a(1 +

√
2). On the other hand,

when it is guided by the MIP model (which enforces the 4 shipments to be
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shipped through hub 4), ILOG TPO finally finds the right solution with the
vehicles swapping one of their shipments at hub 4. For this instance, the
path-based model improves ILOG TPO solution by a multiplying factor of

2
√

2
2+2

√
2

= 2−
√

2 ≈ 0.5858.

However, the most recent ILOG TPO version 3.1.4 manages to find the
optimal solution, even without the MIP guidelines. Nonetheless, the MIP
guidelines allows the search to reduce the computation time. Alone, ILOG
TPO 3.1.4 needs about 17.7 seconds to get to the optimal solution, whereas
using the two-phase algorithm described in subsection 4.3.2, it just needs
about 6.3 seconds.

As shown with the previous handmade instance, the MIP guidelines can
be very helpful to ILOG TPO, either to find a better solution, or to find a
similar solution faster.

5.3 Direct comparison

In this section, we compare simply the results of an execution of ILOG TPO
as it is without the MIP guidelines (that we will call “TPOalone” in the
following) with ILOG TPO launched on a model guided by the shipment
paths given by the MIP model (“TPOMIP”). For each class of instances, we
will present the geometric mean of the ratio ZTPOMIP

ZTPOalone
over all instances of

each class introduced in section 5.1. ZTPOalone (resp. ZTPOMIP) is the final
solution value of a run of ILOG TPO without (resp. with) the guidelines.
It means that if the ratio is over 1, the final TPOMIP solution value is
greater than the one of TPOalone, and the solution found by TPOMIP
is then worse than the one found by TPOalone. We will also present the
geometric mean over all instances of the running time ratio between both
runs. Both geometric means are calculated for each of the 3 possible uses of
the guidelines presented in subsection 4.3.1. The running time for TPOMIP
doesn’t take into account the time for solving the MIP model: the optimal
solution is found at once for almost all instances (using ILOG CPLEX 11.0 on
an AMD Opteron 2.4 GHz), and for the biggest ones, a gap of 0.5% between
the current solution value and the best lower bound is reached within a few
seconds. Anyway, the optimality is not so essential in this case, as the MIP
solving only provides ILOG TPO for shipment path guidelines.

The following results were obtained using ILOG TPO 3.1.4 which is the
current version.

Table 5.1 shows the results obtained when only one shipment path is
frozen. Columns “#Worse” and “#Better” enumerate the number of in-
stances for which the result is at least 0.1 percent worse or better for TPOMIP
than for TPOalone. We can first notice that globally, TPOMIP does not
lead to better solutions, but the difference is only of 1.25 percent in average,
whereas it reduces the computing time of 35 percent.
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Table 5.1: Solution ratios between TPOMIP and TPOalone with one ship-
ment path frozen

Class Dimension Geom. mean Min Max #Worse #Better

Value 1.0050 1 1.0774 2 0
4-12

Time 0.7224 0.4545 1.8213 6 13

Value 1.0206 0.9477 1.2392 18 4
13-43

Time 0.6771 0.2716 1.2907 9 32

Value 1.0113 0.9895 1.0671 26 5
44-85

Time 0.5443 0.2589 1.0159 1 32

Value 1.0035 0.9820 1.0299 9 6
86-1497

Time 0.8126 0.3098 1.9218 4 11

Value 1.0125 0.9477 1.2392 55 15
Global

Time 0.6584 0.2589 1.9218 20 88

The computing time may be high for TPOMIP on the largest instances
of class 86-1497, as the time limit may be reached in both phases. Thus, at
worst, the ratio between the time spent in TPOMIP and the time spent in
TPOalone is almost 2. On the other hand, the geometric mean of the ratio
ZTPOMIP
ZTPOalone

is the better for this class than for any other class, and is close to 1.
Moreover, the maximal ratio doesn’t exceed 1.03. The problem is that even
when a lot of time is spent in TPOMIP, the final solution is not necessarily
good. Instance old-188-660-517 reaches the maximal value ratio (almost
1.03) of all 86-1497 instances, although it has a high time ratio (1.9137). In
fact, the first phase finds a good solution that is only improved by less than
3 percent in the second phase. This is mainly due to the low improvement
at each local search step, because of the first improvement algorithm in
ILOG TPO. However, for instance old-42-84-111-1, a good local minimum is
found after less than one hour at the first phase, which improves the solution
found by the TPOalone execution even before the second phase, and it is
three times faster. This is a good example where the cooperation between
ILOG TPO and the MIP guidelines produces a very good solution. We can
see on figure 5.2 that the vehicle flow given by the solving of the path-based
model is quite similar to the one of the final solution found with TPOMIP.
On subfigure 5.2(a), the arcs are valuated by the number of vehicles and
they are of different colors for distinct fleets, whereas on subfigure 5.2(b),
each vehicle has its own route and its own color. A site i is colored in black
if no vehicle starts or ends at i, and is gradually green (resp. red) if more
vehicles start (resp. end) there, and the yellow octagonal site (3) is a hub.
For example, four vehicles of the fleet colored in black end their route in site
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Figure 5.2: Comparison of the vehicles flows for instance old-42-84-111-1

(a) MIP flow (b) ILOG TPO flow

11. Note that there are fewer sites in the MIP flow, as the preprocessing
described in section 4.2.7 aggregated some sites together. The aggregation
distance was set to 80 kilometers, when the maximal distance is usually
between 500 and 800 kilometers.

In the class 4-12 containing the smallest instances, the time differences
between TPOalone and TPOMIP are not really significant, as for these in-
stances the solving only lasts a few seconds. Nevertheless, TPOMIP is still
faster than TPOalone, with similar values for the final solution cost. 44-85
is the class where the best results are obtained, with computing times that
are almost twice faster in average for TPOMIP than for TPOalone.

In table 5.2, we compare the solution values and the computation times
between TPOalone and TPOMIP with the shipment path frozen for every
shipment in the alternative. Globally, the results are slightly less good than
the ones in table 5.1. For the smallest instances however, the solution value
is better for TPOMIP than for TPOalone, in average. Note that out of the
10 instances that have a lower cost for TPOMIP than for TPOalone, 7 are
already better after the first phase. The best time results are still obtained
by class 44-85, but the values are less good than before (only one improved
instance, whereas 31 of them have a higher cost).

At last, table 5.3 provides the results when both the shipment path and
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Table 5.2: Solution ratios between TPOMIP and TPOalone with one ship-
ment path frozen for each alternate shipment

Class Dimension Geom. mean Min Max #Worse #Better

Value 0.9949 0.9109 1.0774 1 2
4-12

Time 0.8885 0.4938 2.8936 7 12

Value 1.0249 0.9792 1.1308 19 3
13-43

Time 0.7614 0.2890 1.7643 15 26

Value 1.0206 0.9901 1.0872 31 1
44-85

Time 0.5738 0.2914 0.8472 0 33

Value 1.0141 0.9746 1.1007 11 4
86-1497

Time 0.9077 0.5900 1.9222 6 10

Value 1.0168 0.9109 1.1308 62 10
Global

Time 0.7367 0.2890 2.8936 28 81

the alternate shipment are frozen. The first thing to notice is that the
computing time is clearly better in this case than in both other methods.
Nonetheless, TPOalone has a solution value 3 percent better in average than
TPOMIP. This is due to the fact that the model used in the first phase is
more constrained than the core model, so it is solved faster (there are fewer
neighbourhoods), but some good solutions may be removed from the solution
set, as the MIP model is an approximation. In fact, the cooperation between
the MIP model and ILOG TPO is not as good here as in the previous cases.
On the other hand, the processing time is tremendously reduced.

ILOG TPO has been lately improved so that the new instances get good
results in terms of solution values, regardless of the computation time. This
improvement of the ILOG TPO engine was performed on the basic local
search heuristics, and ignores elaborate procedures such as the two-phase
heuristic described in the previous chapter. This explains the large gap
that can be observed between TPOalone and TPOMIP, especially on new
instances. In particular, the geometric mean of the solution values in class
13-43 is 1.0593, mainly due to the fact that almost all the new instances are
part of this class. The geometric mean obtained for old instances of class
13-43 is only 1.0361 whereas the new instances of class 13-43 reach a mean
of 1.0778. This shows that the cooperation between the ILOG TPO engine
and the MIP guidelines has a large potential for improvement.

The over-constrained first phase model has another drawback. The first
solution heuristic doesn’t find any solution for 18 of the 119 instances, not
because there is no solution at all, but because the first solution greedy algo-
rithm is not designed for models that are constrained like this one. This issue
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Table 5.3: Solution ratios between TPOMIP and TPOalone freezing both
the shipment path and the alternate shipment

Class Dimension Geom. mean Min Max #Worse #Better

Value 0.9998 0.9252 1.0774 1 1
4-12

Time 0.5451 0.2693 2.5191 5 14

Value 1.0593 0.9792 1.3078 32 1
13-43

Time 0.4032 0.1426 2.0339 4 37

Value 1.0297 0.9918 1.0810 28 3
44-85

Time 0.2021 0.0795 1.5494 1 32

Value 1.0219 0.9746 1.1149 13 2
86-1497

Time 0.7697 0.2497 1.9647 9 8

Value 1.0336 0.9252 1.3078 74 7
Global

Time 0.3815 0.0795 2.5191 19 91

was overcome by setting a high penalty cost to the other alternate shipments
than the one that must be performed. However, with this workaround the
computation time benefits of constraining the model are lost, and for these
instances, the ratio between the running times of TPOMIP and TPOalone
is much higher than for any other instance. By the way, the maximum time
ratio for each instance class is reached for one of these 18 instances.

5.4 Random guidelines

Comparing the results of TPOMIP with TPOalone is not enough: even if
TPOMIP provides a better solution than TPOalone, nothing proves that it
is thanks to the guidelines given by the MIP model. These guidelines may be
of a bad quality, and the ILOG TPO Local Search engine may be powerful
enough to fix this up. The efficiency of the cooperation between the MIP
model and ILOG TPO can then be further tested by considering random
guidelines and applying the same two-phase procedure as the one described
for TPOMIP in subsection 4.3.2. This algorithm using random guidelines can
be called TPOrandom. On each instance, we can then compare the results
given by TPOMIP with the average on an empirical study of TPOrandom. In
TPOrandom, shipment paths and alternate shipments are chosen depending
on a uniform distribution.

The problem is that all the instances could not be tested a sufficient
number of times to get valid results, especially on instances of type 86-1497.
As a consequence, a subset of 62 instances were tested, with 20 TPOrandom
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Table 5.4: Solution ratios between TPOMIP and TPOrandom

Class Dimension Geom. mean Min Max #Worse #Better

Interm 0.9364 0.8222 1.1134 4 11
4-12 Final 0.9912 0.9414 1.0912 2 6

Time 0.7567 0.5222 1.0784 2 13

Interm 0.7848 0.0071 1.0864 2 36
13-43 Final 0.9860 0.8549 1.1917 11 24

Time 0.9036 0.4671 1.6637 12 25

Interm 0.9361 0.9196 0.9682 0 8
44-85 Final 0.9937 0.9866 0.9997 0 7

Time 0.7832 0.6267 1.0016 1 7

Interm 0.9344 0.9344 0.9344 0 1
86-1497 Final 1.0174 1.0174 1.0174 1 0

Time 0.9911 0.9911 0.9911 0 1

Interm 0.8403 0.0071 1.1134 6 56
Global Final 0.9887 0.8549 1.1917 14 37

Time 0.8511 0.4671 1.6637 15 46

runs for each:

• 15 instances from class 4-12,

• 38 instances from class 13-43,

• 8 instances from class 44-85,

• 1 instance from class 86-1497.

The results are given in table 5.4. In these tests, we used the first method
described in subsection 4.3.1, i.e. we freeze only the shipment path for one
alternate shipment. This time, the calculations are made from the ratio

ZTPOMIP
ZTPOrandom

of each instance. In fact, ZTPOrandom is the arithmetic mean over
all random runs of the solution value found by TPOrandom. As such, it
is not a “real” solution value, it is the approximate value that is expected
to be obtained when launching a single random run. However, in most of
the cases, the standard deviation is rather high, showing that random runs
are not robust at all. In table 5.4, the first line of each instance class (“In-
term”) stands for the ratio obtained comparing each intermediate solution
of TPOMIP and TPOrandom, i.e. the one obtained after freezing the ship-
ment paths and that is used as a first solution in the second phase of the
algorithm. “Final” denotes the ratio for the final solution and “Time” the
time ratio.
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The last three lines show that the quality of the solution found by
TPOMIP is better than for TPOrandom, but also that the computing time
is lower. In fact, the intermediate solution has usually a far lower cost for
TPOMIP than for TPOrandom: only 6 instances are better for TPOrandom
in average. For these 6 instances, the TPOMIP final solution isn’t bet-
ter either, which shows that when the TPOMIP intermediate solution isn’t
good, its final solution isn’t likely to have a low cost either. This shows that
TPOMIP finds good quality intermediate solutions thanks to the shipment
path guidelines, and that it contributes to reaching good final solutions. The
time benefit of using TPOMIP instead of TPOrandom can also be explained
by the quality of the intermediate solution, as the second phase is likely to
last longer with a worse intermediate solution (more moves have to be made
to reach a local minimum).

However, some intermediate solutions may be good without leading to
an outstanding final solution. The instance from class 86-1497 (namely old-
188-660-517) is in this case: after 3 hours spent in the second phase of the
algorithm, the intermediate solution is only improved by 2.6%, whereas this
rate is over 10.5% in average for TPOrandom. The cost of the TPOMIP
intermediate solution is even lower than any of the 20 TPOrandom interme-
diate solutions. As for any other big instance, no local minimum is reached
within the allotted time, and here every local search move in the second phase
of TPOMIP only improves the solution by a small step. Note that old-188-
660-517 is also the instance of class 86-1497 for which the maximal solution
value ratio is reached in the comparison with TPOalone (see table 5.1).

All tested instances of class 44-85 have better intermediate and final
solution values for TPOMIP than for TPOrandom, and the computing time
is better of over 20% in average. In class 13-43, the minimum ratio on the
intermediate solution values is very low. This is because for instance old-
23-2-20, the random guidelines sometimes provide an intermediate solution
with a very high cost, as one of the shipments is unperformed, which adds a
great penalty to the total cost.

In order to get an idea of the performances of the algorithm on any kind of
instances, we test it on an instance (called HubsData) that is used by ILOG
TPO for customer demonstrations. The main particularity of this instance
compared with the instances previously introduced is that it allows several
hubs to be used for transshipment. There is both an outbound hub and an
inbound hub, meaning that most of the shipments can be cross-docked twice
during their trip.

On figure 5.3, we can compare the search descent of ILOG TPO with-
out any guideline (TPOalone) with the ones of the guided ILOG TPO,
either with the MIP guidelines (TPO+MIP) or with random guidelines
(TPO+random). In the MIP guidelines, we also tried to enforce in the
MIP solving that the paths should go through at most one hub (TPO+MIP
1 hub). Note that unlike what was presented on figure 4.1 there is only
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Figure 5.3: Example of local search process on instance HubsData

one local search descent, as the local minimum isn’t reached by any of the
runs. At last, the vertical line stands for the time when the first phase of
the algorithm is stopped and the second phase starts (except for TPOalone,
for which there is no second phase). As the time limit is set 10800 seconds
(or 3 hours), we chose to stop the first phase after 5400 seconds.

ILOG TPO manages to find good solutions at the beginning of the search,
but it doesn’t improve a lot after some additional time. The advantage of
the two-phase heuristic is that there are usually at least two drops of the
solution value (one for each phase), as we can see on figure 5.3. Other drops
can be justified by the fact that an effective neighbourhood is reached. As
TPOalone is less constrained than any other runs, it has the best start and
reaches a cost of 80000 quite quickly. We can also notice that the random run
has the highest cost at almost any time, which shows that ILOG TPO doesn’t
manage to repair the potentially bad guidelines that it has to conform during
the first phase. What is surprising is that the guidelines that come from the
most constrained MIP (where shipment paths with two hubs are forbidden)
lead to the best results with a final solution at a cost below 69000.
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Conclusion

The last version of ILOG TPO globally gives better solutions with its core
engine than when it is guided by the MIP model. However, with the guide-
lines, the solutions are very close to the ones found without the guidelines,
and for some instances, they may even be better. The main point is that
the computation time is reduced a lot when using the guidelines because
they constrain the model and the final solution is reached faster, despite the
two phases of the heuristic. Using any of the freezing algorithms described
in section 4.3.1 corresponds to constraining the model more or less. The
results show that when the model is more constrained, the solution value is
not better but the computation time is far lower.

On the other hand, the MIP guidelines are better than the random guide-
lines both in terms of solution value and computation time. ILOG TPO
guided randomly usually finds a worse intermediate solution between the
two phases, which enforces the second phase to spend more time in the local
search process until the local minimum. This shows that at least, the ship-
ment paths guidelines given by the MIP model are likely to give some help
to ILOG TPO.

The comparison of the solutions of the two-phase heuristic with the so-
lutions found by ILOG TPO alone does not necessarily show that the MIP
guidelines are bad. Anyway, this is contradicted by the comparison with the
random guidelines. This is just a warning that the cooperation between the
MIP model and ILOG TPO may not be the best we can expect. Moreover,
there are lots of parameters, on the MIP side as well as ILOG TPO side,
that may be more suitable to this cooperation. Overall, the time gain and
the comparison with random guidelines show that the results on the MIP
shipment paths guidelines are encouraging.
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Conclusions and future work

Transportation companies are concerned to find low cost routing plans, es-
pecially when they have to serve many sites. As a slight change in a vehicle
route may increase (or decrease) dramatically the total cost, they often call
upon Operations Research tools. ILOG TPO is one of them, and is designed
to deal with hard real-life problems whose main feature is transshipment.

In the context of this PhD, the aim was to provide ILOG TPO with a
tool to improve its performance because the software doesn’t necessarily take
the good cross-docking decisions. For the smallest instances, we proposed
two complex Mixed-Integer Programming models in order to be as close to
the real-life problem as possible. These MIP models are based on a classi-
cal formulation for which some variables are indexed on arcs and vehicles.
Even for small instances, the arc-based models have a lot of variables and
constraints. Therefore, a few improvements were proposed to either reduce
the size of the initial problem, or to help the solving, such as a cutting-plane
technique. The results show that the smallest instances are solved to op-
timality in reasonnable computation time, and the final MIP solutions are
similar to the ones found by ILOG TPO.

On larger instances, we decided to provide ILOG TPO with another MIP
model that is able to find which paths between hubs are promising, for each
shipment. This model is based on paths through which shipments can be
routed, and on a vehicle flow aspect. Since we consider in our model that
only hubs may be included in shipment paths, we have to apply some prepro-
cessing procedures such as a site aggregation, in order to allow the vehicles
to perform some sequences of pickups or deliveries in distinct sites. All the
costs are approximated as in the previous models, but this one is simplified
a lot and doesn’t take into account time aspects, among others. As a result,
the computing time is tremendously low even for large instances. The ship-
ment paths found by this path-based model can be frozen in three possible
ways for an ILOG TPO solving, and a two-phase procedure is applied using
the ILOG TPO solving engine. With this procedure, we can notice that, in
average, the solutions found on the set of ILOG TPO customer benchmarks
are just slightly worse than the ones found by ILOG TPO without the MIP
shipment paths guidelines. On the other hand, the computation time is im-
proved by a great factor. Moreover, the intermediate solution found between
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the two phases is usually rather good already. Tests were also launched on
comparison with randomly generated guidelines. The intermediate solution
and the time computation are clearly worse for the random guidelines than
for the MIP guidelines, and the final solution is also worse, to a lesser ex-
tent. This validates the whole guiding procedure as well as the quality of
the shipment paths provided by the MIP model.

This cooperation between the local search methods used by ILOG TPO
and the mathematical programming model is one of the main theoretical
benefits of this PhD. The MIP model, with its global view of the network
structure, can help ILOG TPO take decisions linked with vehicle routes or
the way shipments are routed. An integration of the MIP model is considered
for after the PhD as some of the ILOG TPO customers are not satisfied with
the high computing time on some instances, that could be reduced by using
smartly the path-based model.

Despite all the benefits that we have already got from this work, the PhD
leaves us with many perspectives of improvements.

The arc-based formulation still has some flaws in the modelling. Even if
this situation is rare in practice, vehicles should be able to go several times
through the same site. We could also introduce an inventory management
aspect by allowing vehicles to arrive at a hub at distinct dates for the same
transshipment. One vehicle could for example come before others and leave
at the hub some shipments that would be taken later by other vehicles. The
problem we had with the MVRPPD model while testing both arc-based for-
mulations could be resolved by allowing alternatives to be modelled. Then,
new boolean variables and constraints would have to be added to the for-
mulation, but then the MVRPPD model could be used as well as the PDP
model to solve the ILOG TPO customer instances to optimality, or at least
the smallest ones. Furthermore, there has to be some tests on the quality of
suboptimal solutions. There may be a great time saving in stopping Branch-
and-Bound when the gap between the lower bound and the current best
solution value is lower than a given limit, say 1 or 2 percent. The solutions
obtained at this point would have to be compared to optimal solutions to
determine if this premature stop is acceptable.

The cutting-plane heuristic could also be improved. We designated the
big-M constraints as the cutting planes, but there might be a smarter deci-
sion. In particular, constraints that are hard for the formulation and that are
not often violated are very good cutting-plane candidates. More tests could
be performed in order to see if a subset of big-M constraints, or even other
constraints, would be a better choice. Moreover, the cutting-plane procedure
is an automatic method from ILOG CPLEX, whereas a customized heuristic
with our own separation procedure would probably be more suitable.

In spite of the good results of big-M constraints compared with the ILOG
CPLEX IloIfThen method, some other disjunction-linearizing procedures
could be tested. Several works from Balas, Glover or Jeroslaw, that are
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summerized in [Sherali and Shetty, 1980], could be used for this matter.
The solutions obtained by the MIP formulations could be compared with

the ones found by ILOG TPO , especially in terms of costs. Despite the fact
that the MIP costs are not exactly similar to the industrial costs, the real
cost of an optimal MIP solution could be computed (or estimated) after the
solving in order to determine whether this MIP solution is better than the
one given by ILOG TPO.

Concerning the path-based model and the two-phase cooperation heuris-
tic, the main remaining work is to better customize the settings of both sides
(MIP model, ILOG TPO), but also of the cooperation itself, in order to get
the best results. For this, a complete testing process has to be organized,
launched and carefully examined. For example, we must seek which kinds
of decisions are reconsidered by ILOG TPO between the intermediate and
the final solutions. Moreover, we have to determine why, for some instances,
intermediate and final solutions are not as good as expected, and which of
the MIP guidelines or the ILOG TPO local search engine are responsible for
this. For that matter, the ILOG TPO Graphical User Interface helped us
improve the formulation, and particularly the zone-skipping costs. By the
way, there are still some modelling improvements to look into, since as it is
now, the formulation is very fast to solve, even on large instances. Better
costs, incompatibilities, vehicles maximum number of stops could be intro-
duced. These improvements are not easy to implement because of the fact
that the vehicles are not individualized in the path-based model. Moreover,
the guidelines have to be generated from the MIP solution in a better way,
using for example the fact that a shipment inside a given vehicle while arriv-
ing at a hub, and that stays in the same vehicle after the hub, is not supposed
to have been transshipped at the hub. As vehicles are not individualized, we
could generalize this for vehicle fleets (especially if there is only one vehicle
arriving at the hub and leaving the hub) and see if the generated shipment
paths give better results. Besides, ILOG CPLEX 11.0 allows the user to get
several solutions at the end of the search. It could be interesting to compare
some good solutions and to keep for the guidelines only the shipment paths
that they all share.

Instead of only focusing on paths between hubs and allowing several
vehicle stops by aggregating sites, we could consider all shipment paths,
but introduce more constraints to prevent a non-hub intermediate site from
being considered as a hub in the vehicle flow. However, such constraints
would be complex, even for small path lengths, and could jeopardize the
efficiency of the formulation. On the other hand, restrictions on shipment
paths could come from constraints such as time window consistency or the
maximal number of vehicle stops.

Another major perspective is also to think of a better cooperation be-
tween the path-based MIP model and the ILOG TPO local search engine.
We chose to keep from the MIP solution only the shipment paths (and the
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shipment alternatives), since such decisions are hard to take alone for ILOG
TPO. But there may be other benefits from the solution given by the math-
ematical formulation. In particular, we saw that the vehicle routes obtained
with the MIP model are very similar to the ones of the ILOG TPO final so-
lution. Then, the MIP routes could be used to help ILOG TPO find its first
solution, or even during the local search. We could also consider a back-and-
forth communication between the MIP model and ILOG TPO local search,
in particular to get a better approximation of the costs in the MIP. A MIP
solution could be exported (when possible) in a ILOG TPO format in order
to get its real cost. The cost could then be updated in the Integer Program,
which could be solved again. All these cooperation ideas are interesting, but
rather hard to implement, as some work has to be performed in the basic
ILOG TPO engine as well. Anyway, the ILOG TPO local search engine has
to be readapted to the cooperation with the MIP model, as in some cases,
the best guidelines don’t necessarily drive ILOG TPO to the best solution
(with the same shipment paths as in these guidelines).

At last, some work can be done on data given by the 3PL. In the instances
we received from them, there is always only one available hub, although there
are usually four potential hubs. This may be a preprocessing from their side
that eliminates all the hubs that aren’t likely to be used in a good solution.
But our tools are adapted to networks with several hubs, and they might
be interested in a suggestion not to ignore any hub and let our tools decide
which one(s) would be the best to open.
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Les entreprises de transport ont intérêt à trouver des plans de tournées à
faible coût, en particulier lorsqu’ils doivent servir beaucoup de sites. Comme
la moindre modification dans la tournée d’un véhicule peut augmenter (ou
diminuer) considérablement le coût total, elles font souvent appel aux ou-
tils de Recherche Opérationnelle. ILOG TPO est l’un d’eux, et est adapté
aux problèmes industriels difficiles dont la principale caractéristique est le
transbordement.

Dans le contexte de cette thèse, nous voulons fournir à ILOG TPO un
outil pour améliorer ses performances car le logiciel ne prend pas nécessaire-
ment les bonnes décisions de transbordement. Pour les plus petites instances,
nous avons proposé deux programmes mixtes en nombres entiers (MIP) pour
se rapprocher le plus possible de la problématique industrielle. Ces modèles
MIP sont basés sur une formulation classique où des variables sont indexées
sur les arcs et les véhicules. Même pour de petites instances, les modèles
à base d’arcs ont beaucoup de variables et de contraintes. Par conséquent,
quelques améliorations ont été proposées pour soit réduire la taille du pro-
blème initial, soit pour aider la résolution, comme par exemple une technique
de plans coupants. Les résultats montrent que les plus petites instances sont
résolues à l’optimalité en un temps raisonnable, et les solutions finales du
MIP sont similaires à celles trouvées par ILOG TPO.

Sur de plus larges instances, nous avons décidé de fournir à ILOG TPO un
autre modèle MIP qui peut déterminer quels chemins de hubs sont promet-
teurs, pour chaque ordre de transport. Ce modèle s’appuie sur les chemins
par lesquels les ordres peuvent être acheminés, et sur un aspect flot de véhi-
cules. Puisque nous supposons dans notre modèle que seuls les hubs peuvent
être inclus dans les chemins des ordres de transport, nous devons appliquer
des procedures de pré-traitement comme une aggrégation des sites, de fa-
çon à permettre aux véhicules d’accomplir des suites de ramassages ou de
livraisons sur des sites distincts. Tous les coûts sont approchés comme dans
les modèles précédents, mais celui-ci est très simplifié et ne prend pas en
compte les aspects de temps, entre autres. En conséquence, le temps de cal-
cul est extrèmement bas même pour de grandes instances. Les chemins des
ordres trouvés par ce modèle à base de chemins peuvent être figés de trois
différentes manières dans une résolution d’ILOG TPO, et une heuristique
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à deux phases est utilisée avec le moteur de résolution d’ILOG TPO. Avec
cette procédure, nous remarquons qu’en moyenne, les solutions trouvées sur
l’ensemble des jeux de tests industriels d’ILOG TPO sont juste légèrement
moins bonnes que celles trouvées par ILOG TPO sans les indications du
MIP sur les chemins des ordres de transport. Par contre, le temps de calcul
est amélioré d’un facteur considérable. De plus, les solutions intermédiaires
trouvées entre les deux phases est souvent déjà bonne. Des tests ont été
également lancées pour une comparaison avec des indications générées aléa-
toirement. La solution intermédiaire et le temps de calcul sont clairement
moins bons pour les indications aléatoires que pour les indications du MIP,
et la solution finale est aussi moins bonne, dans une moindre mesure. Cela
valide la procédure complète de coopération ainsi que la qualité des chemins
des ordres de transports fournies par le MIP.

Cette collaboration entre les méthodes de recherche local d’ILOG TPO
et le modèle mathématique est un des principaux intérêts théoriques de cette
thèse. Le modèle MIP, avec sa vue globale de la structure du réseau, peut
aider ILOG TPO à prendre des décisions liées aux tournées des véhicules
ou aux moyens par lesquels les ordres de transport sont acheminés. Une
intégration du modèle MIP est envisagée pour après la thèse car quelques
uns des clients d’ILOG TPO ne sont pas pleinement satisfaits des temps
de calcul importants sur certaines instances, qui pourraient être réduits en
utilisant le modèle à base de chemins de façon ingénieuse.

Malgré tous les bienfaits que nous pouvons déjà tirer de ce travail, la
thèse nous laisse beaucoup de perspectives d’amélioration.

La formulation à base d’arcs a encore quelques défauts dans la modé-
lisation. Même si cette situation arrive rarement en pratique, les véhicules
devraient être capables de passer plusieurs fois par le même site. Nous pour-
rions également introduire un aspect gestion de stocks en permettant aux
véhicules d’arriver à un hub à des dates distinctes pour un même transbor-
dement. Un véhicule peut par exemple arriver avant les autres et laisser au
centre de transbordement des ordres de transport qui peuvent être chargés
par d’autres véhicules plus tard. Le problème que nous avons eu avec le mo-
dèle MVRPPD en comparant les deux formulations à base d’arcs pourrait
être résolu en modélisant les alternatives d’ordres de transport. Alors de
nouvelles variables et contraintes apparaîtraient dans la formulation, mais
le modèle MVRPPD pourrait être utilisé comme le modèle PDP pour ré-
soudre des instances industrielles d’ILOG TPO à l’optimalité, ou au moins
les plus petites d’entre elles. De plus, la qualité des solutions légèrement
sous-optimales doit être testée. Il est probable qu’il y ait un gain de temps
coonsidérable en arrêtant le Branch-and-Bound quand l’écart entre la borne
inférieure et la valeur de la meilleure solution courante est inférieure à une
certaine limite, disons 1 ou 2 pour cent. Les solutions obtenues à ce moment-
là devraient être comparées aux solutions optimales pour déterminer si cet
arrêt prématuré est acceptable.
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L’heuristique de plans coupants pourrait également être améliorée. Nous
avons choisi les contraintes grand-M comme plans coupants, mais il peut y
avoir une décision plus judicieuse. En particulier, les contraintes qui sont
dures pour la formulation et qui ne sont pas violées très souvent sont de
très bonnes candidates. Des tests peuvent être approfondis pour vérifier si
un sous-ensemble de contraintes grand-M, ou même d’autres constraintes,
serait un meilleur choix. De plus, notre procédure de plans coupants est une
méthode automatique d’ILOG CPLEX, alors qu’une heuristique dédiée avec
notre propre procédure de séparation serait probablement mieux adaptée.

En dépit des bons résultats des contraintes grand-M par rapport à la
méthode IloIfThen d’ILOG CPLEX, d’autres procédures de linéarisation de
disjonctions pourraient être testées. De nombreux travaux de Balas, Glover
ou Jeroslaw, qui sont résumés dans [Sherali and Shetty, 1980], pourraient
être utilisés dans cette optique.

A propos du modèle à base de chemins et de l’heuristique de coopération
à deux phases, le principal travail restant est de mieux paramétrer les deux
côtés (modèle MIP et ILOG TPO), mais aussi la coopération elle-même,
pour avoir les meilleurs résultats. Pour cela, un processus de test complet
doit être organisé, lancé et examiné attentivement. Par exemple, nous de-
vons chercher quels types de décisions sont remises en cause par ILOG TPO
entre les solutions intermédiaire et finale. De plus, nous devons détermi-
ner pourquoi, pour certaines instances, les solutions intermédiaires et finales
ne sont pas aussi bonnes que prévu, et qui entre des indications du MIP
et la recherche locale d’ILOG TPO en est responsable. Pour cela, l’inter-
face graphique d’ILOG TPO nous a aidé à améliorer la formulation, et plus
particulièrement les coûts de ZSH (plate-forme régionale). D’ailleurs, il y a
toujours des améliorations de modélisation à examiner, d’autant que dans on
état actuel, la formulation est très rapide à résoudre, même sur les grosses
instances. Nous pourrions introduire de meilleurs coûts, les incompatibilités,
le nombre d’arrêts maximum pour les véhicules. Ces améliorations ne sont
guère faciles à implémenter à cause du fait que les véhicules ne sont pas indi-
vidualisés dans le modèle à base de chemins. De plus, les indications doivent
être mieux générées depuis la solution du MIP, en utilisant par exemple le
fait qu’un ordre de transport se trouvant dans un véhicule quand celui-ci
arrive à un hub, et qui y reste en quittant le hub, n’est pas supposé avoir été
transbordé à ce hub. Comme les véhicules ne sont pas individualisés, nous
pourrions généraliser cela aux flottes de véhicules (en particulier s’il n’y a
qu’un véhicule arrivant au hub et quittant le hub) et voir si les chemins géné-
rés donnent de meilleurs résultats. D’autre part, ILOG CPLEX 11.0 permet
à l’utilisateur d’obtenir plusieurs solutions à la fin de la recherche. Il pourrait
être intéressant de comparer quelques bonnes solutions et de garder comme
indications seulement les chemins des ordres de transport communs à toutes
ces solutions.

Au lieu de ne se focaliser que sur les chemins de hubs et d’autoriser plu-
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sieurs arrêts pour les véhicules en agrégeant les sites, nous pourrions prendre
en compte tous les chemins des ordres de transport, mais introduire plus de
contraintes pour empêcher tout site intermédiaire non-hub d’être considéré
comme un hub dans le flot de véhicules. Cependant, de telles contraintes se-
raient complexes, même pour de petites longueurs de chemins, et pourraient
porter préjudice à l’efficacité de la formulation. En revanche, des restric-
tions sur les chemins des ordres de transport pourraient venir de contraintes
comme la cohérence des fenêtres de temps ou le nombre d’arrêts maximal
pour les véhicules.

Une autre perspective essentielle est également de penser à une meilleure
coopération entre le modèle MIP à base de chemins et le moteur de re-
cherche locale d’ILOG TPO. Nous avons choisi de ne garder de la solution
du MIP que les chemins des ordres de transport (et les alternatives d’ordres
de transport) étant donné que de telles décisions ont du mal à être prises
par ILOG TPO. Mais on pourrait tirer d’autres avantages de la solution
donnée par la formulation mathématique. En particulier, nous avons vu que
les tournées de véhicules obtenues avec le modèle MIP étaient très similaires
à celles de la solution finale d’ILOG TPO. Alors, les tournées du MIP pour-
raient être utilisées pour aider ILOG TPO à trouver sa première solution,
ou même pendant la recherche locale. Nous pouvons aussi imaginer un aller-
retour d’informations entre le modèle MIP et la recherche locale d’ILOG
TPO, pour en particulier avoir une meilleure approximation des coûts dans
le MIP. Une solution du MIP pourrait également être exportée (quand ceci
est possible) dans un format ILOG TPO pour obtenir son coût réel. Toutes
ces idées de collaboration sont intéressantes mais plutôt dures à implémen-
ter, car une partie du travail doit se porter sur le moteur de base d’ILOG
TPO également. De toute façon, le moteur de recherche locale doit certaine-
ment être réadapté à la coopération avec le MIP puisque dans certains cas,
les meilleures indications ne conduisent pas nécessairement ILOG TPO à
trouver la meilleure solution (avec les mêmes chemins d’ordres de transport
que dans les indications).

Enfin, nous pouvons travailler sur les données du 3PL. Dans les instances
que nous avons reçues de leur part, il existe toujours un seul hub disponible,
bien qu’il y ait généralement quatre potentiels hubs. Cela peut être un pré-
traitement de leur côté qui élimine tous les hubs qui ne sont aps susceptibles
d’être utilisés dans une bonne solution. Mais nos outils sont adaptés aux
réseaux avec plusieurs hubs, et les 3PL seraient peut-être intéressés qu’on
leur suggère de ne pas ignorer de hub et de laisser nos outils décider desquels
il serait judicieux d’ouvrir.
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