MODÉLISATION MINPLUS ET COMMANDE DU TRAFIC DE VILLES RÉGULIÈRES

NADIR FARHI

INRIA - Paris - Rocquencourt

Université Paris 1 Panthéon - Sorbonne

- 1. Commande...
- 2. Systèmes...
- 3. Modélisation . . .
- 4. Réseaux...
- 5. Commande...

Université Paris 1 Panthéon - Sorbonne, 3 juin 2008.

Le plan

- Commande optimale et diagramme fondamental 1D,
- Systèmes additivement homogènes,
- Modélisation d'intersections de routes,
- Construction de grands réseaux réguliers,
- Commande optimale du *trafic bimodal*.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5	Commande

1. Commande optimale et diagramme fondamental du trafic 1D

FIGURE 1. Exemple d'un diagramme fondamental.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux

5. Commande...

1.1. Le modèle de trafic minplus (Rappel).

- L'algèbre minplus est le semi-anneau commutatif idempotent $\mathbb{R}_{\min} = (\mathbb{R} \cup \{+\infty\}, \oplus, \otimes) \stackrel{def}{=} (\mathbb{R} \cup \{+\infty\}, \min, +).$
- L'élément zéro (resp. unité) est $+\infty$ (resp. 0) noté ε (resp. e).
- On a la même structure sur les matrices $n \times n$.
- $(A \otimes B)_{ij} = \bigoplus_k (A_{ik} \otimes B_{kj}).$

1.	
2.	Systèmes
3.	Modélisation
4.	Réseaux
5	Commande

• Si le graphe associé A est fortement connexe, alors le système dynamique linéaire minplus :

$$x^{k+1} = A \otimes x^k$$

admet une unique valeur propre μ :

$$\mu \otimes x = A \otimes x$$

qui s'interprète comme le minimum des poids moyens des circuits du graphe :

$$u = \min_{c \in \mathcal{C}} \frac{|c|_w}{|c|_l}.$$

• De plus :

$$\exists T, K, \mu : \forall k \ge K : A^{k+T} = \mu^T \otimes A^k ,$$

$$\Rightarrow \quad \lim_{k \to \infty} x^k / k = \mu.$$

Commande... Systèmes... Modélisation...

- 4. Réseaux...
- 5. Commande...

Le modèle minplus linéaire du trafic sur une route

- A chaque instant (discret) les véhicules essaient de parcourir une distance égale à la vitesse désirée v, tout en respectant la distance de sécurité σ .
- $x_i^{k+1} = \min\{x_i^k + v, x_{i+1}^k \sigma\} = vx_i^k \oplus (e/\sigma)x_{i+1}^k$.
- Le taux moyen d'accroissement par unité de temps de ce système s'interprète comme la vitesse moyenne des véhicules sur la route.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

• La dynamique est linéaire en algèbre minplus:

 $x^{k+1} = A \otimes x^k,$

• Le graphe associé à A :

$$\bar{v} = \min\left\{v, \frac{m - n\sigma}{n}\right\}$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 7 / 55

La première approximation du diagramme fondamental

d = n/m,

$$f = \bar{v}d = \min\{vd, 1 - \sigma d\}.$$

FIGURE 2. 1: le modèle réel, 2: l'approximation.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 8 / 55

1.2. Le modèle commande optimale stochastique.

- $(X^k)_{k \in \mathbb{N}}$ une chaîne de Markov commandée, de matrices de transition M^u , $u \in \mathcal{U}$,
- $\mu = \min_{s \in S} \mathbb{E} \left\{ \lim_{T \to +\infty} \frac{1}{T} \sum_{k=0}^{T-1} c_{x^k}^{u^k} \right\},$
- l'équation de la programmation dynamique associée :

 $\mu + v_x = \min_{u \in \mathcal{U}} \{ [M^u v]_x + c_x^u \}.$

Cette EPD s'écrit aussi:

 $\mu \otimes v = D \otimes (Hv),$

• La programmation dynamique horizon fini en avant :

 $v^{k+1}_x = \min_{u \in \mathcal{U}} \{ [M^u v^k]_x + c^u_x \}, \qquad v^0 \text{ donné},$

vérifie :

$$\lim_{k \to \infty} v^k / k = \mu$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page <mark>9</mark> / 55			
••			••

1.2.1. Le modèle du trafic. $x_{i}^{k+1} = \min_{u \in \mathcal{U}} \{ x_{i}^{k} + \alpha_{u} + \beta_{u} (x_{i+1}^{k} - x_{i}^{k}) \}.$ $\underbrace{x_{i}}_{\text{faible densite}} \times x_{i}^{k+v} \times x_{i+1} \times x_{i$

• x_i^k est la fonction valeur de programmation dynamique.

$$M^{u} = \begin{bmatrix} 1 - \beta_{u} & \beta_{u} & 0 & \cdots & 0 \\ 0 & 1 - \beta_{u} & \beta_{u} & & 0 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \cdots & 1 - \beta_{u} & \beta_{u} \\ \beta_{u} & 0 & \cdots & 0 & 1 - \beta_{u} \end{bmatrix},$$

$$c^u = {}^t [\alpha_u, \ \alpha_u, \ \cdots, \ \alpha_u, \ \alpha_u + n\beta_u/d].$$

• Le modèle s'écrit :

$$x_i^{k+1} = \min_{u \in \mathcal{U}} \{ [M^u x^k]_i + c_i^u \}, \quad 1 \le i \le n ,$$

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

P	Page 10 / 55		
••			••

Résultat 1. Il existe une vitesse moyenne des véhicules :

$$\mu = \lim_{k \to +\infty} \frac{1}{k} x_i^k, \quad 1 \le i \le n \; ,$$

unique solution de:

$$\mu + x_i = \min_{u \in \mathcal{U}} \left\{ (M^u x)_i + c^u_i \right\}, \ 1 \le i \le n \ .$$

donnée par:

$$\mu = \min_{u \in \mathcal{U}} \{ \alpha_u + \frac{\beta_u}{d} \} \quad et \quad x \equiv {}^t [0 \quad 1/d \quad 2/d \quad \cdots \quad (n-1)/d].$$

et on obtient la deuxième approximation.

$$f = \mu d = \min_{u \in \mathcal{U}} \{ \alpha_u d + \beta_u \}.$$

1.	
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

1.3. Le modèle de jeux stochastiques.

$$x_{i}^{k+1} = \min_{u \in \mathcal{U}} \max_{w \in \mathcal{W}} \{ x_{i}^{k} + \alpha_{uw} + \beta_{uw} (x_{i+1}^{k} - x_{i}^{k}) \}.$$

De la même facon :

$$x_{i} \qquad x_{i+1} - \sigma \qquad x_{i+1}$$

$$f = \min_{u \in \mathcal{U}} \max_{w \in \mathcal{W}} \{ \alpha_{uw} d + \beta_{uw} \}.$$

FIGURE 3. La troisième approximation.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

2. Systèmes additivement homogènes

Un système $x^{k+1} = f(x^k)$ est dit additivement homogène de degré 1 qu'on abrège en disant homogène si f l'est, c-à-d si :

 $\forall x \in \mathbb{R}^n, \ \forall \lambda \in \mathbb{R}, \ f(\lambda + x) = \lambda + f(x) ,$ où $(\lambda + x)_i = \lambda + x_i, \ \forall i \in \{1, \cdots, n\}.$

Exemples:

- $x_i^{k+1} = \min_{u \in \mathcal{U}} \max_{v \in \mathcal{V}} \left([M^{uv}x + c^{uv}]_i \right), \quad \forall \ 1 \le i \le n ,$
- $x_i^{k+1} = \min_{u \in \mathcal{U}} ([M^u x^k + c^u]_i), \quad 1 \le i \le n$,
- $x^{k+1} = A \otimes x^k$,
- $x^{k+1} = Mx + c$,

1.	Commande
2.	Systèmes
З.	Modélisation
4.	Réseaux
<i>c</i>	Commenda

Page 13 / 55

Le problème de valeur propre d'un système homogène

- Soit $x^{k+1} = f(x^k)$ un système homogène.
- Le problème de valeur propre associé :

 $\lambda x = f(x).$

• Si $x_1 \neq \varepsilon$ sans perte de généralité, alors:

 $\begin{cases} \lambda &= f_1(x/x_1) \ , \\ x_2/x_1 &= (f_2/f_1)(x/x_1) \ , \\ \cdots &= \cdots \\ x_n/x_1 &= (f_n/f_1)(x/x_1) \ . \end{cases}$

- On note $y = (x_2/x_1, x_3/x_1, \dots, x_n/x_1),$
- Ca rebient au problème du point fixe: y = g(y), où: $g_{i-1}(y) = (f_i/f_1)(0, y).$

• On note $\chi(f) = \lim_{k \to \infty} x^k / k$.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

Page 14 / 55			
••			••

2.1. Le chaos dans les systèmes homogènes.

On considère le système dynamique homogène (notation minplus) :

$$\begin{cases} x_1^{k+1} = x_2^k , \\ x_2^{k+1} = (x_2^k)^3 / (x_1^k)^2 \oplus 2(x_1^k)^2 / x_2^k . \end{cases}$$

Le problème de valeur propre associé est :

$$\begin{cases} \lambda x_1 = x_2 \\ \lambda x_2 = x_2^2 / (x_1)^2 \oplus 2(x_1)^2 / x_2. \end{cases}$$

Le problème de point fixe correspondant :

 $y = y^2 \oplus 2/y^2,$

qui est en notation standard :

$$y = \min\{2y, \ 2-2y\}.$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

 Page 15 / 55

 ••

 ••

FIGURE 4. Simulation sur les entiers de $0 \ge 10^6$.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Le taux moyen d'accroissement se calcule :

$$\chi(f) = \int f_1(y) d\mu(y)$$

Dans l'exemple :

$$\begin{cases} x_1^{k+1} = x_2^k , \\ x_2^{k+1} = (x_2^k)^3 / (x_1^k)^2 \oplus 2(x_1^k)^2 / x_2^k \end{cases}$$

on obtient :

$$\chi(f)=\int_0^1 y dy=1/2$$
 .

Ce nombre est différent des valeurs propres qui sont 0 et 2/3.

Conclusion.

- Pour un système 1-homogène, en général: $\chi(f) \neq \lambda$,
- Pour un système 1-homogène monotone: $\chi(f) = \lambda$.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 17 / 55

2.2. Systèmes homogènes triangulaires périodiques.

Definition 1. Un système linéaire *périodique* (LP) est un système linéaire minplus temps variant qui s'écrit :

$$\begin{cases} x^{k+1} = A^k \otimes x^k \oplus B^k \otimes u^k, \\ y^{k+1} = C^k \otimes x^k \end{cases}$$

où $(A^k)_{k\in\mathbb{N}}, (B^k)_{k\in\mathbb{N}}$ et $(C^k)_{k\in\mathbb{N}}$ sont des suites périodiques de matrices minplus.

Definition 2. Un système est dit triangulaire 1-homogène (T1H), s'il s'écrit:

$$\begin{cases} v^{k+1} = D \otimes v^k, \\ x^{k+1} = A(v^k) \otimes x^k \oplus B(v^k) \otimes u^k, \\ y^{k+1} = C(v^k) \otimes x^k. \end{cases}$$

où A, B et C sont des applications 0-homogène et D est une matrice carrée minplus irréductible.

Commande... Systèmes... Modélisation... Réseaux... Commande...

Résultat 2. Tout système triangulaire 1-homogène (T1H) se comporte asymptotiquement comme un système linéaire périodique (LP).

Preuve.

$$\begin{cases} v^{k+1} = D \otimes v^k, \\ x^{k+1} = A(v^k) \otimes x^k \oplus B(v^k) \otimes u^k, \\ y^{k+1} = C(v^k) \otimes x^k. \end{cases}$$

La matrice D étant irréductible, on sait que :

 $\exists K,T\in\mathbb{N},\lambda\neq\varepsilon:\;\forall k\geq K,\;v^{k+T}=\lambda^T\otimes v^k\;,$

d'où: $\forall k \ge K$,

$$A(v^{k+T}) = A(v^k), \quad B(v^{k+T}) = B(v^k), \quad \text{et} \quad C(v^{k+T}) = C(v^k).$$

Donc le système est asymptotiquement linéaire périodique

Commande... Systèmes... Modélisation... Réseaux...

5. Commande...

Résultat 3. Tout système linéaire périodique dont les matrices A^k, B^k et C^k ont un même support est réalisable par un système triangulaire 1-homogène.

Preuve (l'idée par un exemple).

FIGURE 5. Réalisation d'un graphe d'événements temps-variant périodique.

1. Commande...

Systemes...

- 3. Modélisation . . .
- 4. Réseaux . . .
- 5. Commande...

Généralisation :

• système homogène à coût périodique:

 $x_i^{k+1} = f_i^k(x^k) = \min_{u \in \mathcal{U}} [M^u x^k + c^{ku}]_i,$

• système homogène triangulaire :

$$\begin{cases} v_i^{k+1} = h_i(v^k) = \min_{u \in \mathcal{U}}([D^u v^k + d^u]_i), \\ x_i^{k+1} = f_i(v^k, x^k) = \min_{w \in \mathcal{W}}([A^u x^k + B^u v^k + c^u]_i). \end{cases}$$

 $- D^u$ sont stochastiques et irréductibles,

- A^u sont sous-stochastiques et $[A^u \ B^u]\mathbf{1} = \mathbf{1}$.

Résultat 4. Tout système convexe triangulaire est asymptotiquement convexe à coût périodique, et inversement.

Commande... Systèmes... Modélisation... Réseaux... Commande...

3. MODÉLISATION D'INTERSECTIONS

3.1. Une route circulaire (Modéle en réseaux de Pétri).

 x_i^k : le nombre cumulé de passages de véhicules par la section i jusquà l'instant k.

1.	Commande
2.	Systèmes
З.	Modélisation
4.	Réseaux
5.	Commande

3.2. Une route circulaire avec un retardateur.

FIGURE 6. Une route circulaire avec un retardateur $f(d) = \min\{d, 1 - d, 1/3\}.$

FIGURE 7. Le diagramme fondamental.

1.	Commande
2.	Systèmes
З.	Modélisation
4.	Réseaux
5.	Commande

3.3. Une itersection de deux routes.

FIGURE 8. Une intersection de deux routes.

- Commande...
 Systèmes...
- 3. Modélisation . . .
- 4. Réseaux...
- 5. Commande...

FIGURE 9. Résolution du conflit.

- Dynamique incomplète: $x_4^n + x_3^n = a + x_1^{n-1} + x_2^{n-1}$.
- Politique de routage: $x_4^n = x_3^n = \frac{a + x_1^{n-1} + x_2^{n-1}}{2}$.

• Règle de priorité:
$$\begin{cases} x_3^n = a + x_1^{n-1} + x_2^{n-1} - x_4^{n-1} \\ x_4^n = a + x_1^{n-1} + x_2^{n-1} - x_3^n. \end{cases}$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 25 / 55

3.4. Intersection sans possibilité de tourner.

• $x_i^{k+1} = a_{i-1}x_{i-1}^k \oplus \bar{a}_i x_{i+1}^k, \quad \forall i \neq n, n+m,$

•
$$x_n^{k+1} = \bar{a}_n x_1^k x_{n+1}^k / x_{n+m}^k \oplus a_{n-1} x_{n-1}^k$$

• $x_{n+m}^{k+1} = \bar{a}_{n+m} x_1^k x_{n+1}^k / x_n^{k+1} \oplus a_{n+m-1} x_{n+m-1}^k$,

La dernière équation s'écrit en algèbre ordinaire comme suit:

$$x_{n+m}^{k+1} = \min\left\{a_{n+m} + x_1^k + x_{n+1}^k - x_n^{k+1}, \ \bar{a}_{n+m-1} + x_{n+m-1}^k\right\}$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Le système d'équations obtenu est *implicite* mais triangulaire, donc sa trajectoire est définie d'une facon unique.

 $x^{k+1} = D \otimes (Hx^k),$

• La *densité d* des véhicules est:

$$d = \frac{1}{n+m-1} \sum_{i=1}^{n+m} a_i,$$

Résultat 5.

• si χ_i existe alors: $\chi_j = \chi_i, \forall j$,

•
$$x^0 = 0 \quad \Rightarrow \quad x^k \le x^{k+1}, \quad \forall k \ge 0.$$

1. Commande...

2. Systèmes...

- 4. Réseaux...
- 5. Commande...

Le problème de valeur propre:

- $\lambda x_i = a_{i-1}x_{i-1} \oplus \overline{a}_i x_{i+1}, \qquad i \neq n, n+m,$
- $\lambda x_n = \bar{a}_n x_1 x_{n+1} / (\lambda x_{n+m}) \oplus a_{n-1} x_{n-1},$
- $\lambda x_{n+m} = \bar{a}_{n+m} x_1 x_{n+1} / x_n \oplus a_{n+m-1} x_{n+m-1}$.

Résultat 6. Si λ existe et si $\lambda > 0$ alors le système dessus se ramène à un système linéaire minplus. Si de plus n > m alors λ est donnée par:

$$\lambda = \min\left\{\frac{n+m-1}{n+m} \ d, \ \frac{1}{4}, \ \frac{n}{n-m+2} - \frac{n+m-1}{n-m+2} \ d\right\}.$$

Quand n > m >> 0:

$$\lambda = \min\left\{d, \ \frac{1}{4}, \ \frac{1}{1-r} - \frac{1+r}{1-r} \ d\right\},\$$

 $o\dot{u} r = m/n < 1.$

- Commande...
 Systèmes...
 Modélisation...
 Réseaux...
- 5. Commande...

Compte tenu de l'hypothèse $\lambda > 0$:

$$\lambda^{+} = \max\left\{0, \min\left\{d, \frac{1}{4}, \frac{1}{1-r} - \frac{1+r}{1-r}\,d\right\}\right\}.$$

FIGURE 10. Dépendance de λ^+ avec r.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

3.4.1. Résultats numériques.

FIGURE 11. n = 50, m = 10 donc r = 1/5.

FIGURE 12. n = 54, m = 6 donc r = 1/9.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

3.5. Intersection avec possibilité de tourner. x_{n+m}^{x}

FIGURE 13. intersection avec possibilité de tourner.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 31 / 55			
~			••

- Le problème de valeur propre se ramène à une équation de la programmation dynamique d'un problème de contrôle optimal stochastique.
- Sous les mêmes hypothèses que précédemment, on arrive à résoudre l'EDP :

$$\lambda^{+} = \max\left\{0, \min\left\{d, \frac{1}{4}, \frac{1}{1-r} - \frac{1+r}{1-r}\,d\right\}\right\},\$$

• Dans les deux cas (avec ou sans possibilité de tourner), Les valeurs propres sont les même.

- Commande...
 Systèmes...
 Modélisation...
 Réseaux...
- 5. Commande...

3.6. Résultats numériques.

FIGURE 14. n = 50, m = 10 donc r = 1/5.

FIGURE 15. n = 54, m = 6 donc r = 1/9.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

Page 33 / 55

La phase libre. $0 \le d \le 1/4$. les véhicules circulent sans gêne. L'intersection n'a donc aucun effet, et le système se comporte comme une seule route circulaire. On a alors :

> prioritaire temps : 0 temps : 52

FIGURE 16. La phase libre. n = 40, m = 20.

f = d.

Systèmes . . . 2.

Commande . . .

1.

5. Commande...

La phase de saturation. $1/4 \le d \le (3+r)/(4(1+r))$.

- l'intersection est à sa vitesse maximale, la priorité s'applique,
- il y a plus de véhicules sur la route non prioritaire que sur l'autre,
- la densité sur la route prioritaire reste fixe durant cette phase,
- Tous les véhicules supplémentaires, par rapport à la densité globale de 1/4 s'accumulent sur la route non prioritaire.

FIGURE 17. La phase de saturation. n = 40, m = 20.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

La phase de récession. $(3+r)/(4(1+r)) \le d \le 1/(1+r)$.

- le flot global est entre 1/4 et 0,
- un phénomène de pompage de véhicules de la route prioritaire vers la route non prioritaire est observé.

FIGURE 18. la phase de récession. n = 40, m = 20.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

La phase de blocage. $1/(1+r) \le d \le 1$.

- Dès que le nombre total de véhicules dépasse la taille de la route non prioritaire, un blocage apparaît,
- La route non prioritaire se remplit et à un certain moment, le véhicule se trouvant dans l'intersection va vouloir entrer dans cette route et bloquera ainsi l'intersection donc tout le système,
- Le flot durant cette phase est nul f = 0.

FIGURE 19. La phase de blocage. n = 40, m = 20.

Commande... Systèmes... Modélisation... Réseaux...

5. Commande...

3.7. Le diagramme fondamental sur chaque route.

FIGURE 20. 1: libre, 2: saturation, 3: récession, 4: blocage.

FIGURE 21. 1: libre, 2: saturation, 3: récession, 4: blocage.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

Le cas général (y compris $n \leq m$).

Quand $n \leq m$ la phase de récession disparaît.

Page 39 / 55

3.8. Intersection aménagée.

FIGURE 23. Le cas d'une intersection large.

1.	Commande		
2.	Systèmes		
З.	Modélisation		
4.	Réseaux		
5.	Commande		

3.9. Contrôle d'intersections.

FIGURE 24. Contrôle d'une intersection par un feu de signalisation.

1.	Commande
2.	Systèmes

- 3. Modélisation . . .
- 4. Réseaux...
- 5. Commande...

3.10. Comparaison de politiques de gestion d'intersections.

FIGURE 25. 1. priorité, 2. boucle ouverte, 3. boucle fermée.

- 1. Commande...
- 2. Systèmes...
 - Modélisation . . .
- 4. Réseaux...
- 5. Commande...

4. Réseaux réguliers de trafic routier

FIGURE 26. Deux routes circulaires avec deux intersections.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

FIGURE 27. Dépendance du diagramme du *rap*port entre la somme des tailles des routes prioritaires et la somme des tailles des routes non prioritaires.

FIGURE 28. La phase de bloquage.

1.	Commande		
2.	Systèmes		
3.	Modélisation		
4.	Réseaux		
5.	Commande		

4.1. Construction de grands réseaux.

On écrit la dynamique d'un réseau de Pétri non autonome:

$$\begin{bmatrix} P^{k+1} \\ Q^{k+1} \\ Y^{k+1} \\ Z^{k+1} \end{bmatrix} = \begin{bmatrix} 0 & A & 0 & B \\ C & \varepsilon & D & \varepsilon \\ 0 & E & 0 & 0 \\ F & \varepsilon & \varepsilon & \varepsilon \end{bmatrix} \boxtimes \begin{bmatrix} P^{k+1} \\ Q^k \\ U^{k+1} \\ V^k \end{bmatrix} \stackrel{def}{=} \begin{bmatrix} AQ^k + BV^k \\ C \otimes P^{k+1} \oplus D \otimes U^{k+1} \\ EQ^k \\ F \otimes P^{k+1} \end{bmatrix}$$

- U_i^k nombre de jetons dans la place entrée i jusqu'à k,
- V_j^k nombre brûlages de la transition entrée j jusqu'à k,
- P_i^k nombre de jetons dans la place état *i* jusqu'à k,
- Q_j^k nombre de brûlages de la transition état j jusqu'à k,
- Y_i^k nombre de jetons dans la place sortie *i* jusqu'à *k*,
- Q_j^k nombre de brûlages de la transition sortie j jusqu'à k,

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

- Un réseau de Pétri est donné par (A, B, C, D, E, F),
- On définit des compositions de réseaux de Pétri: **Exemple.** La mise en boucle fermée du système S(A, B, C, D, E, F) donne S[⊞] solution en (Y, Z) de: (Y, Z) = S((U, V) ⊞ (Y, Z)) = S(U ⊕ Y, V + Z). Le système S[⊞] est donné par les matrices :

$$\begin{split} A^{\boxplus} &= \begin{bmatrix} A & B \\ E & 0 \end{bmatrix}, \ B^{\boxplus} = \begin{bmatrix} B \\ 0 \end{bmatrix}, \ C^{\boxplus} = \begin{bmatrix} C & D \\ F & \varepsilon \end{bmatrix}, \ D^{\boxplus} = \begin{bmatrix} D \\ \varepsilon \end{bmatrix}, \\ E^{\boxplus} &= \begin{bmatrix} E & 0 \end{bmatrix}, \ F^{\boxplus} = \begin{bmatrix} F & \varepsilon \end{bmatrix}. \end{split}$$

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5	Commando

Page 46 / 55

• Une route non circulaire de taille n est obtenue en concaténant, n sections \mathcal{T} de la route. La route est définie par récurrence comme suit :

$${}^{1}\mathcal{T} = \mathcal{T}, \quad {}^{n}\mathcal{T}_{Z\bar{Z}}^{V\bar{V}}(a,c) = {}^{n-1}\mathcal{T}_{2\bar{Z}}^{1\bar{V}}(a,\bar{b})\mathcal{T}_{Z1}^{V2}(b,c).$$

• Une route circulaire de taille *n* est alors obtenue en applicant l'opérateur de la boucle fermée sur une route non circulaire de même taille. Elle est donnée par:

 ${}^{n}\mathcal{T} = {}^{n}\mathcal{T}_{21}^{12}(a,\bar{a}) \stackrel{\boxplus}{=}.$

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

Page 47 / 55

FIGURE 29. Une ville régulière (sur un tore).

FIGURE 30. La phase de blocage.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

FIGURE 31. Diagramme fondamental d'une ville régulière.

- (1) Priorité à droite,
- (2) Feux en boucle ouverte, durée de vert partagée,
- (3) Feedback local sur l'état du trafic,
- (4) Feedback global sur l'état du traffic.

!.	Commande
2.	Systèmes
3.	Modélisation
1.	Réseaux
-	Commando

1

5. Commande optimale du trafic bimodal (modèle macroscopique)

Le but est le contrôle optimal du trafic des deux modes en donnant la priorité aux véhicules de transport en commun.

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

• la dynamique des véhicules particuliers:

• la dynamique des véhicules de transport en commun :

1.	Commande
2.	Systèmes
3.	Modélisation
4.	Réseaux
5.	Commande

Page 51 / 55			
••			••

- x_i^k : le nombre de véhicules particuliers sur la route i à l'instant k.
- y_i^k: le nombre de véhicules de transport en commun sur la route i à l'instant k.
- $\bar{x}_i^k(y)$: le nombre *nominal* (idéal) calculée comme solution d'un équilibre de Wardrop sur le réseau.

On résout le problème linéaire quadratique (LQ) suivant:

 $\min_{u} \quad \sum_{k=0}^{T-1} \{ (x^k - \bar{x}^k(y))' Q(x^k - \bar{x}^k(y)) + (u^k - \bar{u}^k)' R(u^k - \bar{u}^k) \} ,$

 $x^{k+1} = x^k + Bu^k + e^k ,$

- Commande...
 Systèmes...
- 3. Modélisation . . .
- 4. Réseaux . . .
- 5. Commande...

Le calcul de la trjectoire nominale $\bar{x}_i^k(y)$.

(1) On résout un problème d'affectation de flot basé sur l'équilibre de Wardrop :

$$\begin{cases} f_r(t_r - t_{pq}^*) = 0, \ t_r - t_{pq}^* \ge 0, \ t_{pq}^*, t_r, f_r \ge 0, \\ \\ \sum_{r \in R_{pq}} f_r = d_{pq}, \ \forall r \in R_{pq}, \ \forall p, q \in \mathcal{D}. \end{cases}$$

- d_{pq} : la demande de l'origine p vers la destination q,
- f_r : le flot sur un chemin r,
- t_r : le temps de parcours sur un chemin r,
- t_{pq}^* : le temps du plus court chemin de parcours.

Commande...
 Systèmes...
 Modélisation...
 Réseaux...
 Commande...

(1) On modifie cette solution (trajectoire) pour *tenir compte* des véhicules de transport en commun.

•
$$\bar{u}^k = f^S$$
,

•
$$\widetilde{x}_a^k = f_a t_a,$$

•
$$\bar{x}^k(y) = \frac{\beta}{1+\sum_h y_h^k} \tilde{x}^k$$
, $1 \ge \beta \ge 0$.

- 1. Commande...
- 2. Systèmes...
- 3. Modélisation . . .
- 4. Réseaux
- 5. Commande...

- en bleu: le nombre de véhicules particuliers,
- en rouge: le nombre de véhicules de transport en commun.

