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ANALYSIS AND OPTIMIZATION OF DENSE GAS 

FLOWS: APPLICATION TO ORGANIC RANKINE 

CYCLES TURBINES 
by 

Pietro Marco Congedo 

(ABSTRACT) 
This thesis presents an accurate study about the fluid-dynamics of dense gases and their 
potential application as working fluids in Organic Rankine Cycles (ORCs). The ORCs are 
similar to a steam Rankine Cycle where an organic fluid is used instead of steam, which 
ensures better efficiency for low-temperature sources. Specific interest is developed into a 
particular class of dense gases, the Bethe-Zel’dovich-Thompson (BZT) fluids, which 
exhibit negative values of the Fundamental Derivative of Gasdynamics Γ in the vapor 
phase , for a range of temperatures and pressures of the order of magnitude of those of the 
liquid/vapor critical point, just above the upper coexistence curve. Transonic and 
supersonic flows in a region of negative Γ are characterized by nonclassical gasdynamic 
behaviors, such as the disintegration of compression shocks. Owing to this effect, the use 
of BZT gases as working fluids in ORCs is particularly attractive, since it may reduce 
losses due to wave drag and shock/boundary layer interactions. This advantage can be 
further improved by a proper design of the turbine blade.  
The present work is devoted to improve the understanding of the peculiar fluid-dynamic 
behavior of dense gases with respect perfect ones and to the research of suitable 
aerodynamic shapes. To this purpose, a dense-gas Navier-Stokes (NS) numerical solver is 
coupled with a multi-objective genetic algorithm. The Navier-Stokes solver employs 
equations of state of high accuracy within the thermodynamic region of interest and 
suitable thermophysical models for the fluid viscosity and thermal conductivity.  Different 
computations are performed for transonic flows over isolated airfoils and through turbine 
cascades to evaluate the influence of the upstream kinematic and thermodynamic 
conditions on the flow patterns and the system efficiency, and possible advantages deriving 
from the use of a non-conventional working fluid are pointed out. Then, high performance 
airfoils and turbine blade shapes for transonic flows of BZT fluids are constructed using 
the CFD solver coupled with a multi-objective genetic algorithm. Shape optimization 
allows to strongly increase flow critical Mach Number, delaying the appearance of shock 
waves, while ensuring high lift (for an airfoil) and efficiency. 
A careful analysis of the convergence behavior of Genetic Algorithms has also been 
undertaken by means of statistical tools. Genetic Algorithm exhibit a marked sensitivity to 
the shape of the response surface and to its numerical representation. Some strategies are 
proposed to systematically evaluate GAs convergence capabilities for a given problem and 
to enhance their convergence properties for dense gas optimization problems.  
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1. Introduction 
Organic Rankine cycles (ORCs) is a closed power cycle composed of four basic 

components. Heat is supplied to a heater where the compressed liquid is converted to a 

superheated vapor at constant pressure.  The vapor is then expanded through a turbine 

stage to produce a work output.  For an impulse turbine stage, the flow is expanded 

through a stator stage or through nozzles.  Vapor leaving the turbine then enters the 

condenser where heat is removed until the vapor is condensed into the liquid state.  

Saturated liquid is then delivered to a pump, which raises the pressure of the liquid and is 

then delivered back to the heater where the cycle then repeats. Then, ORCs are similar to 

the large steam Rankine cycle but the main difference is that ORCs utilize heavy working 

fluids, i.e., organic compounds, which result in superior efficiency over steam Rankine 

cycle engines for heat source temperatures below around 900 K.  ORCs typically require 

only a single-stage expander which consists of a single rotating component for the entire 

system in the turbine stage, making them much simpler than multi-stage expanders typical 

of the steam Rankine cycle. Typically, the working fluids are of retrograde type. Therefore 

it is not necessary a reheat which greatly simplifies the cycle structure. Moreover the risk 

of blade erosion is avoided due to the absence of moisture in the vapor nozzle. ORCs are 

an appealing option for remote, low power applications because of its mechanical 

simplicity.   Such simplicity also gives ORCs obvious advantages in manufacturing cost 

and reliability over other types of small engines that are more mechanically complex, e.g., 

typical two or four-stroke engine generators, multistage gas turbine engines, and 

reciprocating Stirling engines. Indeed, the main characteristics of an ORCs are a very high 

turbine efficiency, a long life, and minimum maintenance requirements. 

For the past several decades, thousands of ORCs have been developed and used for remote 

terrestrial applications with power outputs ranging from 1 to 1000 kW.  A few examples of 

remote applications that have used efficient, reliable, unattended ORCs power sources 

include communication stations, data gathering buoys, satellite communication power 

supplies, as well as irrigation pumps, air conditioners, and turbogenerators. The most 

recent developments in ORCs technology have focused on using the following three 

renewable energies as heat sources: solar, geothermal, waste heat.  
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To increase the ORCs efficiency, a possible approach is to use dense gases as working 

fluids. Dense gases are defined as single-phase vapors operating at temperatures and 

pressures of the order of magnitude of those of their thermodynamic critical point. At these 

conditions, real gas effects play a crucial role in the gasdynamic behavior of the fluid. The 

dynamic behavior of dense gases is governed by the fundamental derivative of 

gasdynamics: 

s

a
a

⎟
⎠

⎞
⎜
⎝

⎛
∂
∂

+=Γ
ρ

ρ1 , (Eq. 1)

with ρ the fluid density, a the sound speed, and s the entropy. It can be also rewritten as: 

⎟⎟
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where v=1/ρ is the fluid specific volume and p the pressure. Γ represents a measure of the 

rate of change of the sound speed, ( )( )2
1

2
svpva ∂∂−= . If Γ <1, from (Eq. 1) the following 

relations is derived: 

01 <⎟
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a
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. (Eq. 3)

Then the flow exhibits an uncommon sound speed variation in isentropic perturbations: a 

grows in isentropic expansions and drops in isentropic compressions, contrarily to what 

happens in “common” fluids. For heavy gases, composed by sufficiently complex 

molecules and characterized by high cv/R ratios (with cv the constant volume specific heat 

and R the gas constant), Γ is smaller than 1, or even than 0, for extended ranges of 

densities and pressures, and recovers its “perfect gas” value in the low density limit. The 

sign of Γ is univocally determined by the sign of the second derivative 
2

2
s

p
v

⎛ ⎞∂
⎜ ⎟∂⎝ ⎠

, i.e. the 

concavity of the isentrope-lines in the p—v plane. It is possible to show [8] that the entropy 

change across a weak shock can be written as: 
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v
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where ∆ represents a change in a given fluid property through the shock. As a result, in 

order to satisfy the second law of thermodynamics, a negative change in the specific 

volume, i.e. a compression, is required if Γ > 0, whereas a positive change, i.e. an 

expansion, is the only physically admissible solution when Γ < 0. Then, for these fluids, 

known as the Bethe-Zel’dovich-Thompson fluids [4], that exhibit a value of Γ < 0 in a 

range of thermodynamic conditions above the liquid/vapor coexistence curve, the well-

known compression shocks of the perfect gas theory violate the entropy inequality and are 

therefore inadmissible [4][8][15]. The thermodynamic region characterized by negative 

values of Γ is usually called the inversion zone, and the 0=Γ contour is said the transition 

line. BZT properties are generally encountered in fluids possessing large heat capacities 

and formed by complex, heavy molecules, such as some commercially available heat 

transfer fluids. An important property of BZT fluids is that the shock strength is reduced up 

to one order of magnitude from that predicted by equation (Eq. 4) for thermodynamic 

conditions where Γ≈0. Cramer and Kluwick [8] showed in fact that ( )O vΓ = ∆  for small 

volume changes in the vicinity of the transition line. Thus, shock waves having jump 

conditions in the thermodynamic region near the Γ=0 contour are expected to be much 

weaker than normal.  

Then, summarizing the different thermodynamic behaviors related to the dense gas flows, 

the following considerations can be underlined: 

1) for such conditions of pressure and density that Γ<1, and ( )O vΓ = ∆ , compression 

shocks are weaker than normal, and the sound speed and the density are related by the (Eq. 

3), that is in contrast with the PFG equation. 

2) for such conditions of pressure and density that Γ<0, the compression shocks are also 

completely forbidden (BZT fluids). 

 

The unusual properties of dense gases could find application in technology. One of the 

more obvious applications is the use of  dense gases in turbomachinery and in the ORCs. 

Because of the use of a few, highly loaded, expansion stages, ORC turbines typically work 

in the transonic/low supersonic regime and their major loss mechanism is related to the 

generation of shock waves and their interactions with the blade boundary layers. Therefore, 

on the one hand a detailed study of turbomachinery flows of dense gases is necessary to 
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correctly predict the system behavior; on the other hand, non-classical dense gas 

phenomena could be exploited to improve efficiency: namely, shock formation and 

subsequent losses could be ideally avoided, if the turbine expansion could happen entirely 

within or in the immediate neighborhood of the inversion zone. In fact properly operating 

the turbine in the very neighborhood of the curve, the flow field evolves almost entirely 

within the inversion zone, and is shock-free: as a result, except for viscous drag, the flow 

remains isentropic through the entire cascade. Unfortunately, the inversion zone has a quite 

limited extent: therefore, a reduction in the temperature jump between the heater and 

condenser stages is generally required in order to completely operate the turbine within the 

inversion zone. Now, it is well-known from thermodynamic theory that a too small 

temperature jump implies low thermal cycle efficiency. Moreover, a small temperature (i.e. 

enthalpy) jump also means low cycle power output. This important drawback has been the 

stumbling block to the development of real-world BZT Organic Rankine Cycles. In 

practice, BZT gas effects can find application in ORC turbomachinery only finding a 

reasonable trade-off between the above opposite requirements.  

Then, two ways are possible to reduce the losses in the ORC: the use of particular fluids 

for which the compression shock are forbidden or anyway very reduced; the optimization 

of the geometry in order to maximize the efficiency.   

In the present work, these two aspects are analyzed in deep. Dense gas flows over an 

isolated airfoil and over a turbine blade are analyzed in order to understand the effects of 

freestream conditions of pressure and temperature on the aerodynamic performances, and 

the role played by BZT effects. The second aspect is related to shape optimizations, 

performed to maximize some aerodynamic properties on the optimal geometries. The state 

of art for the dense gases numerical simulation will be presented in the next paragraph, 

followed by the brief description of the Chapters.  

1.1. State of Art 

In this paragraph the state of art on the numerical simulation of dense gas flow is 

described, including the contribution made by the author, and the brief description of all 

the results achieved. The most important among them will be presented widely in the 

Chapter 4. This section is divided in three paragraphs. The first two concern the fluid-
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dynamics of dense gas flow and the shape optimization for dense gas flow. In the 

following, the state of art concerning the study of GA-Hardness is presented.  

1.1.1. Fluid-Dynamic of Dense Gas Flow 

The possibility of having expansion shock for particular equation of state was first 

discussed by Bethe [1] and Zel’dovich [2] in two pioneer papers in 1942 and in 1946. But, 

it was Thompson [4], who first link the monotonic behavior of the Fundamental Derivative 

of Gasdynamics to the possibility to have expansion shocks. In this paper he discussed 

about the potential property of a fluid which could exhibit Γ<0, even if there was no 

evidence that such a fluid could exist. In [5] it was seen that particular complex fluids can 

present BZT properties based on published thermodynamic data. In [6] Thompson 

analyzed the formation and evolution of a rarefaction shock wave. Such shock satisfy 

stability conditions and have a positive small entropy jump. 

Cramer and Kluwick in [8] studied the one dimensional small amplitude waves in which 

the local value of the fundamental derivative changes sign. They showed in fact that 

( )O vΓ = ∆  for small volume changes in the vicinity of the transition line. Thus, shock 

waves having jump conditions in the thermodynamic region near the Γ=0 contour are 

expected to be much weaker than normal. Indeed, they introduced the second nonlinearity 

parameter 
s

⎟⎟
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⎞
⎜⎜
⎝

⎛
∂
Γ∂

=Λ
ρ

ρ . In [10] and [11], Cramer & Sen considered a gas described by the 

Van der Waals equation, in which the specific heat is taken to be large enough to generate 

an embedded region of negative non linearity close to the thermodynamic critical point. In 

[10] they showed how the shock formation process may differ from that predicted by the 

perfect gas theory for an isolate pulse and periodic wave trains. In [11] they presented the 

exact closed-form solution for finite amplitude sonic shocks. The solutions are provided 

for both single and double sonic shocks. Cramer [14] used the Martin-Hou equation 

(introduced by Martin and Hou in 1955 in [3]) to compute the fundamental derivative of 

Gasdynamics for seven commercially available fluorocarbons. Each fluid was found to 

have a region of negative nonlinearity large enough to include the critical isotherm. The 

inversion region foreseen by the Martin-Hou equation is reduced with respect to that one 

computed with the Van der Waals equation. Cramer in [15] showed that inadmissible 

discontinuities give rise to shock splitting over a finite range of pressure and temperatures 
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where the fundamental derivative is negative. In [16] Cramer & Best showed that the Mach 

number may increase, rather than decrease, with density or pressure if the specific heats of 

the fluid are sufficiently large. Conditions are also reported under which isentropic 

expansions through converging–diverging nozzles are not possible, regardless of the 

imposed exit pressure. In such cases, the nozzle must be replaced with one having multiple 

throats. Applications to external transonic flows are also briefly considered for the first 

time. Investigations of the viscous structure of one-dimensional non classical shocks have 

been presented for the first time in [17]. New results included the first computation of the 

structure of finite-amplitude expansion shocks and examples of shock waves in which the 

thickness increases, rather then decreases, with strength. Morren in his thesis [18] 

presented the transonic flow of dense gases for two dimensional, steady-state flow over a 

NACA0012 airfoil using the Euler equations and the van der Waals equation of state. The 

results indicated that dense gases with undisturbed thermodynamic states in the negative Γ 

region show a significant reduction in the extent of the transonic regime as compared to 

that predicted by the perfect gas theory. Cramer & Tarkenton in [19] examined the steady 

transonic flow of BZT fluids over two-dimensional thin wings and turbine blades by 

solving an extended transonic small disturbance equation derived for flows with 0≈Γ , 

1≈M  (with M the Mach number) and also characterized by small values of the second 

nonlinearity parameter 
s

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
Γ∂

=Λ
ρ

ρ  ([8]). The free-stream state is taken to be in the 

neighborhood of one of the zeros of Γ. They found a significant increase of the critical 

Mach number in flows of BZT fluids over profiles. Numerical solutions of the small 

disturbance equation completed by the Martin-Hou (MAH) gas model revealed substantial 

reductions in the strength of compression shocks. Emanuel [20] showed that the Martin-

Hou equation of state can be considered the reference thermodynamic model for dense 

gases. Cramer [21] presented a numerical investigation of laminar flows of dense gases 

over a flat plate. The results indicate a failure of classical scaling laws for compressible 

boundary layers (Chapman-Rubesin scaling), and a reduction of the boundary layer friction 

heating in complex gases with large heat capacities. Numerical solutions of the Euler 

equations for isenthalpic flows through turbine cascades by using the Martin-Hou gas 

model had been provided by Monaco [22] for incoming flow conditions characterized by 

small values of Γ. It was found that the natural dynamics of BZT fluids can result in 
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significant reduction in the adverse pressure gradients associated with the collision of 

compression waves with neighboring turbine blades. A numerical example of an entirely 

isentropic supersonic cascade is presented. Transonic flows of a dense gas around the 

leading edge of a thin airfoil with a parabolic nose had been studied by Rusak [23]. 

Asymptotic expansion of the velocity potential function were constructed in terms of the 

airfoil thickness ratio in an outer region around the airfoil and in an inner region near the 

nose. In [24] Brown & Argrow simulated shock tube flows with compressive wedges and 

circular areas. Non-classical phenomena, like expansion shocks and composite waves 

demonstrate significant differences from perfect gas flow fields over similar geometries. 

Wang & Rusak [26] provided numerical studies of transonic BZT flows past a NACA0012 

airfoil at zero angle of attack (non lifting case) using the numerical code of Morren [18], 

and provided a classification of possible flow patterns for oncoming flow conditions such 

that 0, ≈ΛΓ ∞∞ , guided by the asymptotic theory developed in [23]. Cramer & Park in 

[27] considered the reflection of oblique compression waves from a two-dimensional, 

steady, laminar obundary layer on a flat, adiabatic plate at free-stream pressure such that 

dense gas effects are non-negligible. Numerical results showed a suppression of shock 

induced separation in supersonic Bethe-Zel'dovich-Thompson flows past sharp 

compression corners. Results concerning flows through realistic impulse turbine cascades 

had been presented by Brown [28], who solved the Euler equations closed by the Martin-

Hou gas model. Operating under the proper thermodynamic conditions, a BZT working 

fluid can potentially weaken or eliminate shock waves. This would reduce losses due to 

both the wave drag from shocks as well as losses from boundary-layer separation due to 

shock reflections on the turbine blades. Results showed significant improvements in 

turbine efficiencies for BZT working fluids over conventional ORC working fluids. 

Kluwick in [31] discussed a new form of marginal boundary layer separation in laminar 

flows of dense gases using asymptotic methods: the non monotonous Mach-number 

variation with pressure leads to non conventional distribution of the shear stress and 

displacement body in boundary layers subjected to adverse pressure gradients, which 

contributes to delay separation. In [32] and [33] Fergason & Al., in preparation for a shock 

tube experiment,  presented a theory to demonstrate a single-phase vapor rarefaction shock 

wave in the incident flow of the shock tube. The analysis predicts just a small region of 

initial states that may be used to unequivocally demonstrate the existence of a single-phase 
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vapor rarefaction shock wave. In [34] Colonna & Silva presents the procedure for 

obtaining nonconventional thermodynamic properties needed by up to date computer flow 

solvers. Complex equation of state for pure fluids and mixtures are treated. Peng-Robinson 

thermodynamic model allows reproducing with good accuracy the experimental data. 

Kluwick [36] investigated shock/boundary layer interaction in dense gases via the triple 

deck theory. Their results show that it is possible to reduce the size of the separation 

bubble or even to avoid the occurrence of flow separation by choosing an optimal 

operation thermodynamic state. In [37] Colonna & Rebay presents the  numerical methods 

and the models implemented in a computer code for simulating inviscid dense gas flows on 

unstructured grids. In [38] Guardone & Al. studied the accuracy of thermodynamic models 

in the computation of nonclassical gasdynamic phenomena. The Soave-Redlich-Kwong 

and the Peng-Robinson models are compared to the Martin-Hou equation. The three 

models are found to exhibit a comparable accuracy for an extended range of reduced 

volume, and for predicting the formation of supersonic nonclassical rarefaction wave. In 

[39] Cinnella & Congedo presented a numerical solver for inviscid flows governed by 

arbitrary equations of state. In particular, the stress is put on the choice of a suitable space 

discretisation scheme for dense gas problems. Two different schemes are considered: the 

first one, uses a third-order centred approximation with addition of scalar artificial 

viscosity; the second one, is a second-orderaccurate upwind scheme based on Roe’s flux 

difference splitting. Detailed cross-comparisons of the two schemes are provided for a 

variety of transonic flow problems past airfoils and turbine blades. In 2004, Cinnella & 

Congedo [40] have investigated the influence of BZT effects on the system performance of 

inviscid transonic lifting flows past a NACA0012 airfoil. Numerical simulations were 

performed by solving the Euler equations discretized by a third-order-accurate numerical 

scheme on very fine meshes. The gas response was modelled by the van der Waals 

equation of state for polytropic gases. In contrast with previous studies, the investigation 

was not restricted to flows with small free-stream Γ. On the contrary, the objective of the 

research was to explore the possibility of keeping part of the benefits deriving from BZT 

behavior while enlarging the operation range. At this end, a detailed parametric 

investigation of the airfoil aerodynamic performance was undertaken, with specific interest 

in configurations providing the best trade-off between high lift and low drag. The 

parametric study allowed to identify three flow regimes depending on the value of ∞Γ . For 
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small values of ∞Γ , in the subcritical regime, the lift-to-drag ratio tends to infinity (for 

inviscid flows) because the flow remains subsonic everywhere, thus avoiding the 

occurrence of wave drag. When ∞Γ  is in the range 2÷3 a significant growth in both lift and 

drag is observed: the increase in lift is produced by the formation of an expansion shock 

close to the leading edge, that strongly enhances the suction peak at the airfoil upper 

surface; the increase in drag is due to the occurrence of shocks on the airfoil surface. In this 

regime, the lift-to-drag ratio remains one order of magnitude greater than in the perfect gas 

case. Finally, when ∞Γ  reaches higher values, transonic BZT regime, the flow becomes 

qualitatively similar to that of a perfect gas with even poorer aerodynamic performances. 

In summary, results presented in Cinnella& Congedo [40] suggest that the choice of 

upstream conditions within or very close to the transition line is not only not mandatory in 

order to improve airfoil performance, as suggested in previous studies, but also not 

optimal. Specifically, optimal aerodynamic performance (i.e. the best trade-off between 

high lift and low drag) is obtained for, more precisely, 3≈Γ . This is of great importance, 

in light of the design of BZT Organic Rankine Cycles, since it suggests the possibility of 

enlarging the operation range of the expansion stage without loosing the benefits of dense 

gas effects. Results presented in Cinnella & Congedo [40] have been obtained using the 

van der Waals equation of state, also used in many former studies, as the simplest gas 

model accounting for BZT effects: it is computationally inexpensive, and allows capturing 

qualitative features of BZT fluid flows. On the other hand, this model is not very accurate 

for thermodynamic conditions close to saturation, i.e. the region of interest in the present 

study, and largely over-predicts the extent of the inversion zone [6]. Another limitation of 

the study reported in Cinnella & Congedo [40] is related to the fact that thermo-viscous 

effects are completely neglected, as also done in almost all previous studies. A numerical 

investigation of two-dimensional inviscid and viscous dense gas flows past an isolated 

airfoil is presented by Cinnella & Congedo [41]. For the inviscid case similar qualitative 

conclusions have been drawn as in [40] where the parametric study has been repeated 

using the more realistic Martin-Hou (MAH) equation of state (EOS). Beneficial effects 

deriving from the use of a dense working fluid are also observed when the airfoil viscous 

performance is considered. Namely, the nonclassical variation of the Mach number with 

density in conjunction with reduced friction heating contribute to reduce friction drag and 

to avoid boundary layer separation due to large adverse pressure gradients. In addition, 
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post-shock separations due to shock/boundary layer interaction are also greatly reduced, 

ensuring satisfactory lift and aerodynamic efficiency at flow conditions where the 

aerodynamic performance of perfect gas flows suffers from shock stall. The main results of 

[41] will be widely presented in Chapter 4. In 2005, Cinnella [44] presented an extension 

of classical Roe’s scheme to real gas flows. A simplification to Roe’s linearization 

procedure is proposed, which does not satisfy the U-property exactly, but significantly 

reduces complexity and computational costs. Guardone & Argrow [45] investigated the 

nonclassical gasdynamic behavior of different fluorinated substances using different 

thermodynamic models of increasing complexity. A strong dependence on the acentric 

factor of the substance is revealed, which makes the fluids made of nonpolar molecules 

with nearly spheroidal shape as the most favorable to exhibit nonclassical gasdynamic 

behavior. In [49] the van der Waals polytropic gas model is used to investigate the role of 

attractive and repulsive intermolecular forces and the influence of molecular complexity on 

the possible nonclassical gas dynamic behavior of vapors near the liquid-vapor saturation 

curve. Results of the exact solution to the problem of a finite pressure perturbation 

traveling in a still fluid are presented for the ideal gas, for the dense gas and for the 

nonclassical gas behavior. Colonna & Al. [50] presented the development of technical 

equations of state for any siloxanes, that present BZT properties and have some positive 

technological characteristics (because of their low toxicity, excellent thermal stability, 

limited flammability). Available measured properties are critically evaluated and selected 

for the optimization of the equation of state parameters. The improvement obtained with 

this equations are significant. In [51] Guardone presented a recently developed 

experimental technique to generate and visualize spherical compression waves in a BZT 

gas. Flow simulations were performed to evaluate the potential of using this experimental 

arrangement to investigate the formation and propagation of nonclassical waves. In [54] 

Colonna & Al. presented the evaluation of the influence of different equations of state 

(EoS) on the computed aerodynamic performance and the test case is a 2D nozzle blade of 

an existing ORC turbine operated with the siloxane MDM as working fluid. Cramer [56] 

presented Rayleigh flows of single-phase, nonreacting fluids when a BZT fluid is 

considered. Exact solutions for Van der Waals gases are provided and a complete theory of 

shocked and unshocked flows subjected to strict heating or strict cooling is developed. 
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The experiments related to BZT fluids have not been extensively funded by industries 

because of the uncertainty about a concrete exploitation of BZT fluids, and because of a 

difficulty to show clearly a concrete advantage with respect to other low power systems in 

a wide region of working conditions.  The first attempt to show experimental evidence of 

existence of non classical rarefaction shock waves in the vapor phase was made by Borisov 

[7][12]. A steep rarefaction wave in Freon-13 was observed to propagate with no distortion 

and it was claimed to be a non classical rarefaction shock. Their results has been 

challenged by many authors [10][33][35][12] and their measurements are likely to be 

influenced by critical point and two-phase phenomena. In 2003, a non classical shock-tube 

facility [35] has been constructed and tested at the University of Colorado at Boulder, but 

many technological problems, including the imperfect burst of the shock-tube diaphragm 

and the thermal decomposition of the working fluid, prevented the observation of a 

rarefaction shock wave in fluid PP10 (Pf - perhydrofluorene, C13F22). In [52] the 

preliminary design of a Ludwieg tube experiment for the verification of the existence of 

nonclassical rarefaction shock waves in dense vapors is critically analyzed by means of 

real gas numerical simulations of the experimental setup. 

1.1.2. Shape optimization for dense gas flows 

For what concerns the airfoil geometry optimization with dense gas flows, the first study 

on this topic has been achieved by Rusak [25][29], who consider the construction of low-

drag shapes for non-lifting inviscid flows of dense gases through the Transonic Small 

Disturbance Theory. In [23], similarity solutions of a nonlinear small-disturbance equation, 

describing a two-dimensional near-sonic potential flow of dense gases, are studied. The 

solutions are applied to the problem of a near-sonic small-disturbance flow of dense gases 

in the surrounding of two-dimensional, slender, semi-infinite bodies with xn generators, 

where 2/7<n<1 and x is the distance along the body axis. In the case when n=2/7, the body 

constitutes a surface over which the flow is sonic at every point and the pressure 

distribution is constant. The analysis indicates that such a shape is optimal for near-sonic 

flows of dense gases, in the sense it offers the minimal pressure drag. In [29], low-drag 

airfoils are constructed through a nonlinear small-disturbance theory.  The modified 

airfoils are characterized by arcs along which the flow is sonic, connected to a sharp tail. 

These airfoils exhibit a higher critical Mach number, i.e. Mach number for which the flow 

is nowhere supersonic, with respect to non-optimized shapes. Consequently, they yield 
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zero wave-drag over a larger range of incoming flow velocities. Specifically, the analytical 

study presented in [29] derives the geometry of an airfoil with a 12% thickness-to-chord 

ratio that shows lower wave drag than the NACA0012 airfoil at zero incidence for specific 

freestream thermodynamic conditions ( ∞Γ =0). [29] has the merit of facing for the first time 

optimization problems for dense gas flows past airfoils, even though an optimization 

procedure in the proper sense is not undertaken. In practice, such an approach is 

incomplete, as it does not take into account the effect of the optimization on the airfoil lift. 

Moreover, the small disturbance approximation does not model accurately the important 

flow variations at the airfoil leading and trailing edges, which have a crucial influence on 

the airfoil performance, especially for high-Γ incoming flow conditions. In [42], 

Congedo& Corre& Cinnella present first results on optimal airfoil geometries for transonic 

dense gas flows by making use of evolutionary optimization strategies, by taking in 

account just Euler effects. Two optimization problems are considered: the first one, as in 

Rusak and Wang’s work [29], aims at finding a minimal drag airfoil shape for a non-lifting 

flow in the BZT regime. This symmetric problem is relatively simple to treat since the flow 

symmetry reduces the computational expense, while a single objective function to 

minimize, namely the drag, implies lower optimization complexity. It is shown that, if the 

optimal airfoil shape derived in [29] does exhibit lower drag than a reference airfoil with 

the same thickness-to-chord ratio, viz. the NACA0012 airfoil, the approach presented 

allows to obtain even higher performances by combining an efficient Euler solver to a 

genetic algorithm. The second application deals with the optimization of a lifting airfoil. 

The following optimization strategy is adopted: find an airfoil shape that allows on the one 

hand allows to obtain high lift at BZT subcritical conditions, where the wave drag is in any 

way expected to be zero and, on the other hand, to minimize wave drag while maximizing 

lift for supercritical BZT flow conditions. These results will be widely presented in 

Chapter 4. Cinnella& Congedo presents in [46] dense-gas flow optimization problems 

considered in [42] by taking fully into account viscous effects. Optimal airfoil shapes for 

viscous transonic flows of dense gases have been generated by using a multi-objective 

genetic algorithm coupled with a dense gas flow solver. Computational costs related to the 

great number of evaluations of the objective function by means of the Navier-Stokes solver 

have been substantially reduced by using a properly calibrated artificial neural network to 

interpolate the response surface. When solved both for inviscid and viscous flow, the drag 
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minimization problem of a symmetric airfoil with fixed thickness-to-chord ratio yields 

indeed shock-free shapes for an extended range of the freestream Mach number; however, 

the optimal airfoils generated by neglecting viscous effects display a thick trailing edge 

that is bound to induce premature flow separation hence an increase in form drag when 

taking into account the viscous effects in the flow analysis. Moreover, they are also 

characterized by a thick leading edge, which produces a deep suction peak followed by an 

extended region characterized by strong adverse pressure gradient. As a consequence, at 

subcritical speeds these airfoils display a slightly higher drag coefficient than the baseline 

configuration. These difficulties are overcome by including viscous effects into the 

optimization process, which provides an airfoil shape whose performance is far superior to 

the baseline over the whole range of Mach numbers considered for the study. The multi-

point performance optimization for a lifting airfoil in subcritical and supercritical flow 

conditions has allowed determining an airfoil shape that provides an overall improvement 

of the lift coefficient while preserving the high lift-to-drag ratio typical from BZT flows. 

This results will be widely presented in Chapter 4. Finally, in [47], Congedo & Cinnella & 

Corre present a study about optimal blade shapes for BZT ORC turbines, providing high 

efficiency over a large range of operating conditions and working with high cascade 

pressure ratios. But, for the high cascade pressure ratio considered in this study, BZT 

effects play a minor role in efficiency improvement. The use of properly designed turbine 

cascades working with somewhat lower pressure ratios could allow higher efficiency 

improvements due to BZT effects, opening the door to the development of BZT turbines 

for Organic Rankine Cycles. The results in [47] are widely presented in Chapter 4.  

1.1.3. GA-Hardness of Dense gas Flow optimization problems 

In spite of the increasing success of GAs for aerodynamics applications, no systematic 

studies of their convergence properties for aerodynamic problems of interest exist. 

Specifically, information lacks about how the flow-physics of a given problem affects the 

objective function, and hence, GA convergence. An objective function is informally 

defined to be GA-hard when a GA cannot detect an optimum within a reasonable number 

of iterations. One of the major causes of GA-hardness is the strong coupling in the 

objective function among different components of the high-dimensional search space. This 

phenomenon is termed epistasis. Epistasis variance, introduced by Davidor [58] in 1991, is 

a measure for the GA-hardness of a function and has been used to predict the performances 
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of GA using binary encoding.  An extension of the epistasis concept to real encoding has 

been proposed by Rochet in [59], but it has not found application in practice. An 

alternative measure of GA-hardness well suited for real encoding, is fitness distance 

correlation (FDC), introduced by Jones in [60]. FDC is a statistical correlation between the 

fitness of strings encoding a given shape and the distance of these strings to the nearest 

global optimum. In spite of these attempts, developing a general theory that explains the 

behavior of a GA and that is able to predict how it will perform on different problems 

remains extremely difficult. In [61] Naudts introduced a measure, called the site-wise 

optimization measure, which suffers less from a number of problems encountered with the 

two known measures (epistasis variance and fitness distance correlation). The measure is 

based on an algorithmically defined property of the fitness landscape. This effort does not 

lead to a successful GA-hardness measure, however. A second possible cause of GA-

hardness is the fact that a GA sometimes has to traverse a large part of the search space 

before it can reach the optimum of a function. For this aspect in [62] and in [61] an 

approach based on the construction of so-called “long path” is proposed. One necessary 

component is the ability to create what it is called a controlled path: a fitness function 

which leads a GA through successive areas of the search space. 

 

For BZT-flow optimization problems, a marked sensitivity of GA convergence to the 

starting population and solution parameters such as flow Mach number and 

thermodynamic operating conditions has been observed [48][57]. In order to better 

understand this phenomenon, a systematic study of GA convergence for both perfect and 

dense gas flows at different operating conditions has been made by Cinnella&Congedo in 

[48] and in [57]. This study shows that the greatest convergence difficulties are 

encountered for optimization problems such that airfoil shapes close to the optimum 

generate flow-fields characterized by extremely weak shocks. This is particularly true for 

flows of BZT gases, whose peculiar property is to give rise to flow discontinuities much 

weaker than those characterizing perfect-gas flows. To reduce this difficulty to converge, a 

very efficient objective-function evaluation procedure based on Richardson extrapolation 

is proposed by Cinnella&Congedo in [57]. This procedure is explained in 3.3.2, and the 

main results will be presented in 4.5.  
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1.2. Overview of the following chapters 

In Chapter 2 the formulation for the Navier-Stokes Equations and the thermodynamic 

models, necessary to simulate dense gas effects, are presented. Then, the numerical solvers 

(on structured and unstructured grids) are briefly described. 

 

Chapter 3 describes the optimization techniques used in this work. Main features of 

Genetic Algorithms and Gradient Based Methods are presented. An innovative way to 

improve the convergence velocity will be introduced. 

 

Chapter 4 presents a detailed description of the most important results achieved. The 

results of a transonic flow past the classical airfoil NACA0012 will be presented. Then, a 

flow past a blade turbine is considered. Then, the results obtained for three numerical 

optimizations will be described. The first one is the shape optimization of an isolated 

airfoil in the inviscid case. The purpose is the minimization of the drag coefficient for a 

symmetric airfoil. Then a multi-objective optimization is considered in order to increase 

the lift-to-drag ratio in different operating conditions. The second result consists in the 

extension of previous findings to the viscous case. The third one is the shape optimization 

of a turbine blade. The maximization of the efficiency is pursued by fixing the pressure 

jump in the turbine. Finally, a numerical study concerning the genetic algorithm 

convergence for dense gas flow is presented. A new approach will be introduced in order 

to speed up the Genetic Algorithm convergence.  

 

Chapter 5 deals with the conclusions of this work. Finally suggestions for future work are 

proposed.   
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2. Governing equations and flow solvers 

2.1. The Euler and Navier-Stokes equations for single-

phase non reacting flows 

The integral conservation laws for mass, momentum, and energy may be written for a 

control volume fixed in space as follows (by neglecting the body force): 

( ) 0=⋅−+Ω ∫∫∫∫∫ Ω∂Ω
dSnffwd

dt
d

v
r

 (Eq. 5)

where ( )Evw ρρρ=  is the conservative variable vector, n  is the outer normal to Ωd , 

( )THvvvIpvf ρρρ +=  and ( )Tv qvf −⋅= ττ0  are respectively the inviscid and 

the viscous part of the flux density, I  is the unit tensor, v  is the velocity vector, E  is the 

specific total energy, H is the specific total enthalpy, ( )IVVV
T

∇−⎟
⎠
⎞⎜

⎝
⎛ ∇+∇= µµτ

3
22  is 

the viscous stress tensor, and Tkq ∇−=  the heat flux vector T being the absolute 

temperature. 

The viscosity µ can not be computed through the well-known Sutherland Law. For the 

computation of viscosity and of the thermal conductivity, the approach widely described in 

2.2.2 is used.  

 

This system of equation is completed by the thermal  and caloric equation of state 

(respectively of the form ( )Tpp ,ρ= , and ( )Tee ,ρ= ). There will be a detailed 

description of the equations of state in 2.2.1 

2.1.1. Rans Equations 

Since the full resolution of the NS equation requires the consideration of a big range of 

length and time scales, the compressible Reynolds-averaged Navier–Stokes equations 

RANS equation are used to limit the computer costs (For a detailed description of these 

equations see [63]). The investigation of turbulent dense gas flows past an airfoil is 

undertaken, based on the following working hypotheses: (a) flow conditions are supposed 
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to be sufficiently far from the thermodynamic critical point, so that dense gas effects such 

as dramatic variations of the fluid specific heat and compressibility can be neglected; in 

these conditions, density fluctuations will not be as huge as in near-critical conditions and 

subsequently the turbulence structure will not be affected significantly; (b) at least for 

equilibrium boundary layers, the mean flow behavior can be predicted adequately using 

RANS completed by an eddy viscosity turbulence model; similarly, the turbulent heat 

transfer can be modelled through a ”turbulent Fourier law”, as usual for PFG flows, where 

the turbulent thermal conductivity is computed in a classical way by introducing a 

turbulent Prandtl number, assumed to be roughly constant and O(1) throughout the flow. 

Hypothesis (a) is justified by the fact that the flows of interest for this study actually do not 

evolve in the immediate neighborhood of the critical point; and in fact, if inviscid analyses 

and computations show an uncommon variation of the fluid speed of sound (and hence 

compressibility) with pressure perturbations, nevertheless the magnitude of these variations 

is approximately of the order of those occurring in perfect gases. Moreover, peculiar dense 

gas phenomena related to flow heating or cooling are excluded from considerations, since 

the airfoil wall is supposed to be adiabatic. On the contrary, Hypothesis (b) should be 

considered with some caution. On the one hand, if Hypothesis (a) is verified, it seems quite 

reasonable to apply to compressible dense gas flows turbulence models initially developed 

for incompressible flows of perfect gases and currently extended in the common practice to 

compressible PFG flows; on the other hand, more or less strong pressure gradients and 

shock waves characterizing the outer inviscid flow are likely to affect the boundary layer, 

which can no longer be considered an ”equilibrium” one; this is also true for the reference 

PFG flows considered in the study, characterized by strong shock waves and 

shock/boundary layer interactions. Thus, aerodynamic performance predictions will 

necessarily be affected by deficiencies inherent with the chosen turbulence model. 

Nevertheless, since investigations are intended to provide trends of behavior more than 

accurate values of the computed aerodynamic coefficients, use of hypothesis (b) represents 

a means of obtaining preliminary information about realistic dense gas flows with a 

reasonable computational expense. Specifically, present results have been obtained using 

the simple algebraic model of (Baldwin & Lomax 1978), whose deficiencies in 

nonequilibrium boundary layer are well known (see for example [63], for a wider 

discussion): for example, flow features such as the location of shock waves and the length 
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of separation bubbles will not be predicted accurately. Nevertheless, it is expected that the 

model will roughly be able to predict the main trends and qualitative features of the flow 

field.  

2.2. Thermodynamic models 

2.2.1. Equations of state  

The perfect gas equation of state is not valid at temperatures and pressures of the order of 

magnitude of those of thermodynamic critical point. Then other more complex equations 

of state should be used.  

The van der Waals equation of state is the earliest attempt to correct the perfect gas law in 

order to take into account co-volume effects and attractive intermolecular forces. It only 

satisfies two thermodynamic constraints: the horizontal slope and inflection of the critical 

isotherm at the critical point. However, these are sufficient conditions that make the van 

der Waals equation capable to model BZT fluid behavior. It has the following general 

form: 

2VV
RTp vdW

vdW

α
β

−
−

=  (Eq. 6)

where αvdW, βvdW, are some coefficients obtained by imposing that 02

2

=
∂
∂

v
p  at the critical 

point. 

In the limit ∞→Rcv / , the isentropes and isotherms coincide. Therefore, a van der Waals 

gas with sufficiently high ∞→Rcv /  ratio is expected to exhibit reversed isentrope 

concavity above the upper saturation curve: hence it possesses BZT properties. It is 

possible to show that, taking the specific heat ratio γ  in the range 06.11 << γ , a region of 

negative values of the Fundamental Derivative appears. The van der Waals thermodynamic 

model is computationally inexpensive (because it’s possible to write an explicit relation 

between pressure and internal energy), and has been often utilized to provide a qualitative 

description of BZT fluid flows. On the other hand, this model is not very accurate for 

thermodynamic conditions close to saturation, i.e. the region of interest in the present 

study, and largely over-predicts the extent of the inversion zone [6]. The Amagat (p-v) 

diagrams reported in Figure 1a give an idea of the behavior of a van der Waals gas with  γ= 
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1.0125, representative of a generic heavy fluorocarbon. The van der Waals gas exhibits a 

very large inversion zone. Outside this zone, the fundamental derivative quickly increases, 

reaching values close to 3 already at a short distance from the transition line, and tends to 

the perfect gas value when the specific volume tends to infinity.  

A more accurate model is the the Martin-Hou equation of state [3], which provides a 

realistic description of the gas behavior and of the inversion zone size: 
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7)

where the coefficient Ai, Bi, Ci, are functions of the particular gas considered, Tc is the 

critical temperature, and b is the co-volume. Such equation, involving five virial terms and 

satisfying ten thermodynamic constraints, ensures high accuracy with a minimum amount 

of experimental information. A power law is used to model variations the low-density 

specific heat with temperature. It is not possible to explicitly relate the pressure with the 

internal energy, that requires often an iterative method to compute thermodynamic 

properties. In the Figure 1b, the Amagat (p-v) diagram of a real gas modelled through the 

Martin-Hou equation of state, namely, heavy fluorocarbon pf-perhydrouorene (commercial 

name PP10) is reported. On the contrary with respect to the vdW equation (see Figure 1a), 

the inversion zone for PP10 is much more reduced. Nevertheless, the increase of Γ outside 

the inversion zone for increasing pressure is much slower. For further details concerning 

the evaluation of the coefficients Ai, Bi, Ci see [43].  
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(a) 

(b) 

Figure 1: Amagat diagrams for a van der Waals BZT gas with γ=1.0125 (a) and for the heavy fluorocarbon 

PP10 modeled through the Martin-Hou equation of state (b). The shaded region represents the inversion 

zone. 
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2.2.2. Laws for viscosity and thermal conductivity 

Viscous effects in flows of dense gases have remained largely unexplored. One of the most 

important differences between dense gases and perfect gases is the downward curvature 

and nearly horizontal character of the isotherms in the neighborhood of the critical point 

and upper saturation curve in the p-v plane: the region of downward curvature of the 

isotherms is associated with the aforementioned reversed behavior of the sound speed in 

isentropic perturbations. In the same region, the specific heat at constant pressure, pc , can 

become quite large: this strongly influences the development of the thermal boundary layer 

and its coupling with the viscous boundary layer in high-speed flows. In the dense gas 

regime the dynamic viscosity µ and the thermal conductivity κ cannot be longer considered 

independent of the temperature and pressure, even in flows with relatively small 

temperature variations. On the other hand, the well-known Sutherland law, commonly used 

to represent viscosity variation with temperature, becomes invalid, as it is based on the 

hypothesis that the gas molecules act as non-interacting rigid spheres, and intermolecular 

forces are neglected. The complexity of the behavior of µ in the dense regime can be 

anticipated by recalling that the viscosity of liquids tends to decrease with increasing 

temperature, whereas that of gases tends to increase: the dense gas regime is a transition 

between these two qualitatively different behaviors. Similarly, the classical approximation 

of nearly constant Prandtl number ( constkc p ≈= /Pr µ ) cannot be used any more. As the 

thermal conductivity has roughly the same variation as viscosity with temperature and 

pressure, the behavior of Pr tends to be controlled by variations of cp. In regions where cp 

becomes large, strong variations of Pr can be observed, contrarily to what happens in 

perfect gases. Nevertheless, if the immediate vicinity of the thermodynamic critical point is 

excluded from considerations, the Prandtl number remains of order one, similar to perfect 

gases. In contrast, the Eckert number ( ( )0
2
0 / TcUEc p= , where U0 and T0 refer to a suitable 

reference state) decreases significantly. Small flow Eckert number implies reduced 

sensitivity of the boundary layer to friction heating that remains negligible even at 

moderately large supersonic Mach numbers. Moreover, for flows past adiabatic walls the 

temperature, and thus also the density, is almost constant across the boundary layer. 
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The fluid viscosity and thermal conductivity are evaluated using the method proposed in 

[9][13]. The viscosity (measured in µPoise) is related to the absolute temperature through 

the formula: 

v

wc

V
TMF

Ω
= 3/2

2/12/1

785.40µ  (Eq. 8)

where Mw is the molecular weight in g/mol and Vc is the critical volume in cm3/mol. The 

coefficient Fc is given by  

ξδω ++−= 4059035.02756.01 rcF  (Eq. 9)

where ω  is the acentric factor, rδ  is a dimensionless dipole moment, 

( ) 2/13.131
cc

r TV
δδ =  (Eq. 10)

with δ measured in Debyes, and ξ is a special correction for highly polar substances. The 

viscosity collision integral Ωv is provided by  

( )[ ] ( )[ ] ( )[ ]*** expexp FTEDTCTA B
v −+−+=Ω

−  (Eq. 11)

where ( )cTTT /2593.1* = , A=1.16145, C=0.52487, D=0.77320, E=2.16178 and 

F=2.43787 

The thermal conductivity κ is provided by: 

RCC
M

vv

w

/
75.3 Ψ

=
µ
κ

 (Eq. 12)

where Mw is the molecular weight in Kg/mol, cv is the constant volume specific heat in 

J/(mol K), R is the universal gas constant in J/(mol K), and the coefficient Ψ is: 

βαβ
βα

α
1

1
1 061.16366.0

26665.0061.128288.0215.0
1

+Ξ+
Ξ+−+

+=Ψ  (Eq. 13)

with  

( ) ;2/3/1 −= RCvα  ;3168.17109.07862.0 2ωωβ +−=  ( )2/5.100.2 cTT+=Ξ . 

2.3. Flow solvers 

2.3.1. Structured solver 

A CFD structured code (property of the Fluid Dynamic Lab of Department of Engineering 

for Innovation, University of Salento) has been modified to compute dense gases 
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(indicated in the following by SGS). The governing equations are discretized using a cell-

centered finite volume scheme for structured multi-block meshes of third-order accuracy, 

which allows computing flows governed by an arbitrary equation of state [39]. The scheme 

is constructed by correcting the dispersive error term of the second-order-accurate 

Jameson’s scheme [66]. The use of a scalar dissipation term simplifies the scheme 

implementation with highly complex equations of state and greatly reduces computational 

costs. In order to preserve the high accuracy of the scheme on non-Cartesian grids, the 

numerical fluxes are evaluated using weighted discretization formulas, which take into 

account the stretching and the skewness of the mesh: this ensures truly third-order 

accuracy on moderately deformed meshes and at least second-order accuracy on highly 

distorted meshes (see [67] for details). The equations are then integrated in time using a 

four-stage Runge-Kutta scheme [66]. Local time stepping, implicit residual smoothing and 

multigrid are used to efficiently drive the solution to the steady state. For external flows, 

non-reflecting boundary conditions based on a multidimensional method of characteristic 

are applied at the far-field boundaries; an adiabatic wall condition is imposed at solid 

boundaries. The accuracy properties of the numerical solver just described have been 

demonstrated in previous works [39][40], and will not be discussed further. The numerical 

method is extended to the Navier-Stokes Equations using a classical second-order 

discretization of the viscous term.  

2.3.2. Unstructured solver 

An unstructured CFD solver (developed in the Sinumef Lab at the Ensam in Paris) has 

been modified to simulate Dense Gases (see [43])(indicated in the following by UGS). 

This allows a cross validation concerning the numerical results by comparing the solution 

to those obtained with the structured code. This unstructured solver (UGS) is also based on 

a cell-centered finite-volume discretization of (Eq. 5) but formulated on a general 

unstructured grid dividing the spatial domain into a finite number of triangles or 

quadrangles; the time rate of change of the cell-averaged state vector w is balanced with 

the area-averaged (inviscid) fluxes across the cell faces. The fluxes are computed across 

each cell face using the HLL scheme [68]; second-order spatial accuracy is ensured thanks 

to a MUSCL-type reconstruction process on the conserved variables [69], where the 

gradient estimates required at each cell center are obtained through a least-square formula. 

Since the solver will be applied to the computation of flows containing discontinuities, the 
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reconstruction formula includes a limitation step based on the now standard approach 

proposed in [70] and revisited in [71] which ensures oscillation-free shock-capturing. Fast 

convergence to steady state is provided by making the scheme implicit following a 

procedure inspired from [72]: a simple first-order Rusanov-type implicit stage allows the 

use of large CFL numbers and is solved by an inexpensive point-relaxation technique. The 

numerical flux through the boundary edges is computed using an inflow / outflow 

characteristic-based condition to define the ghost-cell states at the far-field boundary and a 

mirror boundary condition to define the ghost-cell states at the wall. 

2.3.3. How a more complex equation of state affects a NS 
code 

Using a perfect gas equation of state is straightforward because of the direct relation 

between the pressure and the internal energy. The van der Waals equation is more 

complicated of the PGF equation of state, but it’s always possible to write a direct relation 

between pressure and internal energy (for details see [43]).  But, as seen in 2.2.1, VDW 

equation overestimate the inversion region, and it’s not accurate for describing the 

variation of Γ. Then the Martin-Hou equation has to be used, but in this case it’s not 

possible to derive an explicit relation between pressure and internal energy. Generally, an 

iterative method is necessary to compute thermodynamic properties (for example to 

compute the primitive variables by starting from the conservative variables). Newton-

Raphson Method is used because of its good accuracy and convergence velocity (For 

details in the implementation see [43]). Generally, if a different equation of state is used, 

it’s necessary to change all the formulations that adopt implicitly a PFG equation of state. 

Obviously it’s taken for granted that the computation of thermodynamic properties changes 

starting from different thermodynamic relations (typically sound of speed and internal 

energy). For a very detailed description of the main thermodynamic properties with the 

different equation of state see [43].  

For what concerns the solvers used in this work, the numerical schemes formulations used 

in SGS (2.3.1) and in UGS (2.3.2) are independent from the equation of state. A different 

formulation for the non-reflecting boundary conditions based on method of characteristic 

has been used (typically the computation of Riemann invariants changes, because it is 

usually written by considering a PFG equation of state). 
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3. Optimization tool 

3.1. Genetic Algorithms 

Genetic algorithms have been successfully applied for some time now to shape 

optimization in aeronautics [73][74][75][76]; in spite of their cost, they have proved their 

interest with respect to gradient-based methods because of their high flexibility (stemming 

from the fact they only require values of the objective function(s) to efficiently explore the 

parameters space in search of an optimum), and also because of their ability to find global 

optima of multi-modal problems. Moreover, so-called Pareto-type genetic algorithms are 

of particular interest for multi-objective optimization since they provide, after only a few 

generations, a set of non-dominated solutions. On the contrary, a conventional gradient-

based method needs several independent runs to achieve similar results [76][77].  The 

MOGA (Multi-objective Genetic Algorithm) is also well suited to the solution of multi-

objective problems, such as multi-point performance improvement for a lifting airfoil. The 

MOGA applied in this study is the Non-Dominated Sorting Algorithm (NGSA) proposed 

by Srinivas and Deb [78]. At a given generation number, all individuals in the population 

are ranked according to non-domination criteria that allow to take into account in a 

simultaneous way a set of objective functions. The set of individuals that dominate all the 

other members of the population without dominating each other is designated as front of 

rank 1; the set of dominant individuals in the population deprived from the members of 

rank 1 form the front of rank 2, and so forth until the whole population is classified into a 

series of dominance fronts. The individuals scattered along the front of rank 1 are assigned 

the same pseudo-fitness function, arbitrarily fixed to unity, since they are equally well-

adapted and therefore should be given the same potential of reproduction. However, in 

order to favor the population diversity along the front, the pseudo-fitness value is 

decreased for individuals located in crowded areas of the front: practically, the initial 

uniform value of the pseudo-fitness function is divided by a number strictly larger than 

unity for individuals with neighbors within a prescribed distance. Next, the smallest value 

of the modified pseudo-fitness function obtained for individuals belonging to the front of 

rank 1 is decreased from a small number ε and assigned to all members of the front of rank 

2; next this uniform value is then itself modified as previously explained in order to 
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promote the selection of isolated individuals along the front and thus to ensure a maximum 

of diversity. Once each individual has been given a pseudo-fitness value, it is selected for 

reproduction using a proportional selection operator; finally, the individuals retained in the 

mating pool are submitted to crossover and mutation in order to explore the research space 

and yield a front of rank 1 closer and closer to the global Pareto front of the problem. The 

main tuning parameters of the algorithm are the population size, the number of 

generations, the crossover and mutation probabilities pc, pm and the so-called sharing 

parameter σ used to take into account the relative isolation of an individual along a 

dominance front. Typical values for pc, pm are respectively 0.9 and 0.1; values of σ are 

retained following a formula given in [78] which takes into account the population size and 

the number of objectives.  Theoretically, the population size and the number of generations 

should be chosen according to the number of parameters and objectives of the optimization 

problem under study; in practice however, the population size and number of generations 

are fixed by the global amount of CPU time devoted to the computation : taking too small 

a population may rapidly lead to a local optimum and make useless the iteration process on 

the generation number; reversely, a large population will impose a limited number of 

generations which could not allow the population to evolve sufficiently towards the 

optimum. 

3.2. Gradient Based Methods 

For computing the BFGS algorithm, the multi-objective design environment 

(mode)FRONTIER software (produced by ESTECO s.r.l.) has been used. The classical 

Broyden-Fletcher-Goldfar-Shanno (BFGS) optimization algorithm is a variable metric 

method, i.e., a so-called quasi-Newton method. The function is locally approximated with 

a quadratic form, function of the gradient and of a suitable approximation of the Hessian. 

For a quadratic function the Newton Method gives the solution for a minimum. The 

Hessian matrix is not used, but instead an approximation of it is built up iteratively, 

making use of the information about the function and the gradient values in the successive 

iterated points: so the “quasi” in the name of the method. Once the Newton step is 

computed, the BFGS algorithm performs a linear search along that direction, starting from 

the full step, and then if the decrease in the objective function is not satisfactory, trying 

iteratively a shorter and shorter step until a satisfactory point is found. In this way, if the 
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current quadratic approximation is good, we can achieve fast convergence to the minimum; 

otherwise, if the approximation is bad, we are at least guaranteed that initially f decreases 

along the Newton direction. Further details can be found in [79]. 

3.3. Metamodels 

Metamodel is a low cost (and thus approximate) surrogate evaluation model, built using 

existing information, which can be used instead of the computationally expensive, exact 

evaluation tool. The cost of training a metamodel depends on its type and the training set 

size. Compared to the cost of an exact evaluation, that of training and using the metamodel 

is relatively low. Among the frequently used metamodels there are polynomial 

interpolation, artificial neural networks, gaussian processes, support vector machines. 

There are two ways of using the metamodels, the first called “off-line”, in which it is 

decoupled from the optimization loop, and the other called “on-line” in which the 

metamodels are trained during the optimization using updated information. In the 

following paragraphs the Artificial Neural Network, and a Method based on the 

Richardson Extrapolation will be described.  

3.3.1. Artificial Neural Network 

GAs require evaluations of the fitness function for each individual in a generation, and this 

during several generations, until an optimal individual is selected: this is the major cause of 

their high computational cost. However, this drawback can be overcome if the fitness 

function is related to the design variables through an analytical expression. In order to 

reduce computational costs for viscous dense-gas flow optimization problems, the flow 

solver (actually viscous computations have been just done with SGS) and GA are coupled 

with an artificial neural network (ANN). ANN are non-linear statistical data-modeling 

tools, based on a biologic analogy.  They can be used to model complex relationships 

between inputs and outputs or to find patterns in data. A very important feature of these 

networks is their adaptive nature, i.e. their capability of “learning”. This feature makes 

such computational models very appealing in application domains where one has little or 

incomplete understanding of the problem to be solved but where training data is readily 

available. ANN involve a network of simple processing elements (nodes or artificial 

neurons) which can exhibit complex global behavior, determined by the connections 

between the processing elements and element parameters.  According to the choice of the 
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node functions and to their architecture, several ANN can be constructed. In the present 

work, a neural network based on radial basis functions is adopted [80]. The network is 

formed by an input layer, and intermediate layer, and an output layer. Values of the design 

variables are introduced in the input layer, whereas a single value, i.e. the fitness of the 

individual, is obtained as a linear combination of the intermediate layer values and returned 

as the network output. The weights of the linear combination are determined through a 

training procedure, and the number of neurons involved is taken equal to the number m of 

individuals of the training set. The approximation function associated to the jth neuron of 

the intermediate layer is of the form: 
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Where x is the input design variable vector, jj xxE −= , is the distance of the individual 

represented by x from the jth individual of the training set, and r is an attenuation 

coefficient. The fitness of x is then computed through the linear relation: 
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=

=
m

j
jj xhxf

1
ω  (Eq. 15)

The weights ωj are determined by requiring that the approximation function f satisfies the 

interpolation conditions: 

( ) mkxfy kk ,...,1=∀=  (Eq. 16)

where the {yk } represent the (known) values of the fitness fuctions associated to 

individuals of the training set. With this requirement, the training problem reduces to the 

solution of a linear system of m equations in m unknowns ωj.   

3.3.2. Richardson Extrapolation 

In order to evaluate the difficulty for a Genetic Algorithm to converge, the fitness distance 

correlation method of [81] is considered. Let us consider a fitness function f: 

ℜ∈→ℜ⊆∈ )(: sfSsf n  (Eq. 17)

 (with S the search space and s an ordered N-ple of input variables defining a given 

individual) characterized, without loss of generality, by a unique global optimum s*. The 

fitness distance correlation (FDC) of  f  with respect to the fitness information in a discrete 

sample of the search space SP ⊂  is defined as:  
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with ∑
∈
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d *),(1 ss  the mean fitness and the mean distance of 

the sample individuals from the global optimum, respectively. The following distance 

definition is used: 
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with si the i-th input variable of the N-ple and ∆i its range of variation. If a maximization 

(respectively, minimization) problem is considered, the FDC returns a value of -1 for a 

fitness function of the form 

( ),*),(,resp.*),( 2121 ssss dCCfdCCf +=−=  (Eq. 20)

with 0,, 221 >ℜ∈ CCC . FDC measures the deviation of a fitness function from the class 

of strictly concave (resp., strictly convex) functions of the form of ((Eq. 20)): if the FDC 

of a given fitness function is close to -1 (resp., +1), this one can be easily optimized by a 

GA, whereas if FDC≈0 (no correlation with function (Eq. 20)), the function is GA-hard.  

 

The use of a more accurate scheme and of finer meshes allows reducing the GA-Hardness 

of an optimization problem. Unfortunately, the use of very fine meshes considerably 

increases computational costs. In order to alleviate this problem, a simple and effective 

method based on Richardson extrapolation is proposed (see [57]).  

 

Let us note f2h and fh two estimates of the fitness function f, respectively computed on a 

“coarse” mesh 2h and on a finer mesh h. The approximation error in the two cases is: 

( ) ...2.;.. 22 TOHhCffSOTChff p
hexacth

p
hexacth +=−=+=−= εε  (Eq. 21)

where p is the scheme’s convergence order, and C its error constant. Neglecting Higher 

Order Terms and combining the two equations above the following estimate of the exact 

solution is obtained: 
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(Eq. 22)

. 

This value represents a better estimate of the fitness function than the previous ones. We 

decide to use this extrapolated value as an approximation of the fitness of a given 

individual in the GA. Precisely, the algorithm is as follows: 

1) For each individual, a coarse and a fine mesh are generated, the coarser mesh being 

obtained from the finer one by halving the number of points in each direction; 

2) a coarse-grid estimate of the fitness function is computed; 

3) the coarse grid solution is used to initialize a fine-grid computation; a fine-grid 

estimate of the fitness function is obtained; 

4) the values obtained at steps (2) and (3) are used to compute a more accurate 

estimate of the fitness function via formula (10); 

5) this value is compared with fitness values obtained for the other individuals in the 

population in order to perform standard operations of selection, crossover and 

elitism in the GA. 
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4. Results 
This Chapter is constituted by five sections. The first two are devoted to a better 

understanding of dense gas flows fluid-dynamics. Dense gas flows past an isolated airfoil 

and transonic dense gas flows through a turbine cascade are considered. The section third 

and fourth concern the results obtained by means of shape optimization related to an 

isolated airfoil and a turbine blade. In the last section the analysis of the GA-Hardness for 

dense gas flow optimization problems is presented.  

4.1. Dense gas flow past an airfoil 

A flow over a NACA0012 is considered. The working fluid in the following computations 

is PP10. The objective is to explore the influence of dense-gas effects on the airfoil 

aerodynamic performance, also in comparison with reference results for a perfect gas 

(PFG) flowing at the same free-stream conditions. Always a flow at M∞ = 0.85, α = 1° is 

considered. The accurate MAH equation of state is used as state law.  

4.1.1. Choice of the operating conditions 

For a dense gas, the parameters governing the flow are, in addition to the free-stream Mach 

number and angle of attack, the free stream thermodynamic conditions, i.e. the 

thermodynamic operation point. Just high subsonic freestream conditions are considered 

here. (A detailed study also about sonic, and low-supersonic freestream conditions over a 

NACA0012 airfoil are presented in [41]). For BZT inviscid steady flows, the flow 

adiabatic in the p−v plane is roughly superposed to the isentrope corresponding to free-

stream conditions. In the p−v diagram, the locus of possible thermodynamic states of a 

flow field is then approximately superposed with the arch of the isentrope included 

between the minimum and maximum pressures in the flow. If the locus crosses the 

inversion zone, the flow field exhibits a region of BZT effects. The operation points chosen 

for the present study are picked on five different isentropes of the p−v plane. Figure 2 

shows the five isentropes, the operation points, the inversion zone, and the dense gas 

region (Γ < 1) for PP10. Moving right to left along an isentrope the free-stream 

fundamental derivative Γ∞, initially positive, decreases, changes its sign where the 

isentrope crosses the inversion zone, reaches a minimum, then increases again (see Figure 
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3). For high-pressure operation points, Γ∞ is greater than one. Isentropes S1 to S3 cross the 

inversion zone. 

Isentrope S4 is approximately tangent to the transition line and represents a limiting case. 

Finally, isentrope S5 lies completely outside the inversion zone, but crosses the extended 

thermodynamic region where Γ < 1. For flows with free-stream entropy S5, BZT effects 

cannot appear, but significant DG effects related to reverse sound speed behavior are 

expected. 

 
Figure 2: Location of the operation points in the p − v diagram. 
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Figure 3: Fundamental derivative versus pressure along selected isentropes. 

 

4.1.2. Inviscid Flow behavior 

Inviscid flow computations are performed using three C-grids, formed by 136×20, 272×40 

and 544×80 cells, respectively. The outer boundary is about 20 chords away from the 

airfoil and the mean height of the first cell closest to the wall is about 5 × 10−2 chords on 

the medium grid. For most of the computations presented in the following, grid 

convergence for the wall pressure and Mach number has been obtained on the medium 

grid. 

The reference solution for a perfect diatomic gas (specific heat ratio γ = 1.4) flowing at M∞ 

= 0.85, α = 1° is first considered (see for details [39]). The flow is characterized by two 

shocks at about 85% of the chord at the suction side, and 63% at the pressure side. The lift 

coefficient, drag coefficient, and lift-to-drag ratio computed with the present numerical 

method on the finest grid are: 

CL = 0.373;  CD = 5.74 × 10−2;  CL/CD = 6.51. 

Then, flows of the dense gas PP10 past the same airfoil are computed. Results obtained for 

lift, drag, and lift-to-drag ratio for different choices of the free-stream fundamental 

derivative and free-stream entropy are summarized in Figure 4. For the lowest values of 
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Γ∞, the drag is almost equal to zero (order 10-4), then increases monotonically. The lift 

coefficient initially grows, reaches a maximum, and then drops dramatically. The lift-to-

drag ratio is very poor for high Γ∞ flows, but tends to infinity as the free-stream value of 

the fundamental derivative approaches unity. The best aerodynamic performance, offering 

a satisfactory trade-off between high lift and low drag is obtained for Γ∞ approximately in 

the range 1÷1.3: in such conditions, the flow displays higher lift and significantly reduced 

wave drag compared to PFG results. Note that the curves exhibit quite sudden changes in 

slope, which are related to corresponding changes in the flow patterns. In order to explain 

the computed behavior of the aerodynamic performance, a detailed analysis of the flow 

fields obtained for each operating condition is undertaken, which allows identifying three 

typical flow regimes, described in the following. For flows characterized by relatively low 

free-stream pressures and small values of the free- stream fundamental derivative (Γ∞ less 

than about 1), the computed lift-to-drag ratio is extremely high, due to the very low values 

taken by the drag coefficient, although the lift coefficient is lower than in the perfect gas 

case. Inspection of the Mach number field shows that such flows remain entirely subsonic. 

Since the free-stream is uniform and steady and no viscous effects are taken into account, 

the flow should also be isentropic, with drag coefficient exactly equal to zero. In practice, 

small entropy gradients are generated close to the wall, because of numerical errors 

introduced by the numerical scheme and boundary conditions, which lead to small nonzero 

values, O(10−4), for the computed drag. As a consequence, the computed lift-to-drag ratio 

is not unbounded, but O(103). A typical pressure contour plot for this flow case is 

displayed in Figure 5 along with Γ = 0 contours. Typical distributions of the Mach number, 

pressure coefficient, fundamental derivative, and sound speed at the wall are presented in 

Figure 6. When a fluid particle from the free-stream approaches the airfoil along the wall 

streamline, it undergoes a compression and the local fundamental derivative grows, 

reaching a maximum at the stagnation point where Γmax ≈ 1.5÷2. Then, Γ suddenly drops 

when the flow begins to expand accelerating over the top of the airfoil. Both pressure 

coefficient and Γ variations in the neighborhood of the stagnation point are very large, 

O(1). If Γ∞ is sufficiently small, roughly Γ∞ < 1, the local fundamental derivative becomes 

smaller than 1, or even negative, less than 0.01 chords downstream the leading edge: 

consequently, the speed of sound grows sharply enough to counterbalance the increase of 

velocity and the flow remains subsonic. The smaller Γ, the steeper is sound speed growth. 
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As high values of the sound speed are associated to low values of the compressibility 

parameter, flows with low Γ∞ conserve a behavior closer to the incompressible one. In 

summary, for ”sufficiently low” Γ∞ (< 1): 

(a) the flow past the airfoil is subsonic; 

(b) the drag coefficient vanishes; 

(c) lift is lower than in the perfect gas case, because of the reduced flow compressibility; 

(d) lift tends to increase with Γ∞. 

 

When Γ∞ is approximately in the range 1÷1.5 the flow patterns change dramatically. In this 

range, a significant growth in both lift and drag is observed with respect to the previous 

case (see Figure 4 a). Nevertheless, the lift-to-drag ratio is still about one order of 

magnitude greater than in the perfect gas case due, on the one hand, to high values 

obtained for the lift and, on the other, to very low wave drag. In this regime, the flow 

becomes supercritical. For operation points lying on S1 to S4, the flow-field displays 

significant BZT effects, which are responsible for the high aerodynamic performance. On 

the other hand, no BZT effects appear for operating conditions S5: however, since the 

fundamental derivatives takes very small albeit positive values, the overall flow behavior 

does not differ very much from the other two cases: the flow patterns are similar to those 

obtained at operating conditions S1-S4 at slightly higher pressures. A typical view of the 

pressure contours for this flow regime is presented in Figure 7, whereas Figure 8 shows the 

wall distributions of the Mach number, pressure coefficient, fundamental derivative, and 

sound speed. For this kind of flows, characterized by higher free-stream Γ, the reversed 

behavior of the sound speed associated to flow regions with Γ < 1 is delayed, and the flow 

expands to supersonic conditions downstream the leading edge. Along the upper surface, if 

the free-stream values of Γ and of the entropy are sufficiently low, Γ may become negative 

just downstream the stagnation point, where the pressure is still steeply falling, so that an 

expansion shock is generated. Downstream of this shock, the pressure coefficient drops to 

values much lower than in the perfect gas case. The expansion shock is followed firstly by 

a continuous expansion and then by a gradual compression, which terminates in a 

compression shock as soon as the flow exits the inversion zone. Increasing Γ∞ and/or the 

free-stream entropy, the change of sign of the fundamental derivative is delayed, or never 

happens (this is the case of conditions S5), and no expansion shock appears, the flow being 
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always recompressed through a classical shock at the rear part of the upper surface. Along 

the lower surface, only a weak compression shock forms. Both expansion and compression 

shocks have jump conditions in the vicinity of the transition line: the entropy jump across 

such shocks (normalized with the free-stream entropy) is O(10−5), whereas it is O(10−2) for 

perfect gas flow. Accordingly, the wave drag is approximately one order of magnitude 

lower with respect to the PFG value. In summary, flows in the second regime (called 

hereafter the low pressure transonic BZT regime) are supercritical and characterized by 

high lift and very low wave drag, due to the fact that shock waves occurring in the vicinity 

of the transition line are much weaker than usual. For operation points characterized by 

sufficiently low values of Γ∞ and s∞, the aerodynamic performance is even further 

improved by the formation of an expansion shock close to the leading edge, which strongly 

enhances the suction peak, and consequently the lift, at the airfoil upper surface. This 

mechanism is similar to that observed in [40] for BZT flows of a van der Waals gas. 

 

When Γ∞ and/or s∞ are even higher, the flow becomes qualitatively similar to that of a 

perfect gas. The flow accelerates from the stagnation point to supersonic velocities and 

then recompresses at the rear part of the airfoil by means of compression shocks. As the 

free-stream fundamental derivative is increased, the region of flow characterized by Γ < 0 

becomes smaller and finally disappears. At the same time, the lift coefficient decreases, 

and the drag increases, due to the stronger entropy gradients generated across the shocks. 

This progressively reduces the airfoil aerodynamic performance, which finally becomes 

very poor. Figure 9 shows typical pressure contours for this kind of flow. Figure 10 

illustrate the wall Mach number, pressure coefficient, fundamental derivative and sound 

speed at operating conditions p∞/pc = 1.17, ρ∞/ρc = 1.11 on isentrope S4 (Γ∞ = 1.91). At 

these extreme conditions, the fundamental derivative remains positive everywhere, and no 

BZT effects appear. 
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(a) 

(b) 
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(c) 
Figure 4: Aerodynamic coefficients versus free-stream fundamental derivative for flow at 

M∞ = 0.85, α = 1° past a NACA0012. 

 

 
Figure 5: Pressure coefficient contours and Γ = 0 contours for operating conditions 

p∞/pc = 0.986, ρ∞/ρc = 0.658, Γ∞ = 0.017 (BZT subcritical regime). 
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Figure 6: Wall distributions of the Mach number, pressure coefficient, fundamental derivative 

and sound speed for operating conditions p∞/pc = 0.986, ρ∞/ρc = 0.658, Γ∞ = 0.017 (BZT 

subcritical regime). 
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Figure 7: Pressure coefficient contours and Γ = 0 contours for operating conditions 

p∞/pc = 1.03, ρ∞/ρc = 0.877, Γ∞ = 1.33 (low-pressure transonic BZT regime). 
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Figure 8: Wall distributions of the Mach number, pressure coefficient, fundamental derivative 

and sound speed for operating conditions p∞/pc = 1.03, ρ∞/ρc = 0.877, Γ∞ = 1.33 (low-pressure 

transonic BZT regime). 
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Figure 9: Pressure coefficient contours and Γ = 0 contours for operating conditions 

p∞/pc = 1.17, ρ∞/ρc = 1.11, Γ∞ = 1.91 (high-pressure transonic BZT regime). 
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Figure 10: Wall distributions of the Mach number, pressure coefficient, fundamental derivative 

and sound speed for operating conditions p∞/pc = 1.17, ρ∞/ρc = 1.11, Γ∞ = 1.91 (high-pressure 

transonic BZT regime). 

4.1.3. Viscous flow behavior 

As in previous inviscid flow computations, the working fluid is PP10, flowing at M∞=0.85, 

α = 1° and Re = 9 × 106. RANS equations are used (see 2.1.1). A parametric study is 

performed for a series of operation points lying on isentrope S4 (see Figure 2). Solutions 

are computed using C-grids of 256 × 64 and 256 × 128 cells, respectively, with mean y+ ≈ 

5 on the coarser grid, and y+ ≈ 1 on the finer one. In both cases the outer boundary is 

located about 20 chords away from the airfoil. The reference solution for a diatomic 

perfect gas flowing at the same conditions is represented in Figure 11 (a). The flow is 

characterized by strong shock waves at both airfoil surfaces, which interact with the 

turbulent boundary layer. At the upper surface, an extended post-shock separation bubble 
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appears. The aerodynamic coefficients are CD = 5.28e−2 and CL = −0.012, the negative sign 

being due to significant upstream displacement of the upper shock due to flow separation 

(shock stall). Also note that the drag coefficient is very close (actually, slightly lower) than 

the value given in 4.1.2 for an inviscid computation. In practice, reduced strength of shock 

waves due to their interactions with the boundary layer leads to lower wave drag with 

respect to the inviscid case, and this counterbalances the effect of viscous drag. Wall 

distributions of the pressure coefficient for viscous and inviscid flow are displayed in 

Figure 11 (b). The computed values of the aerodynamic coefficients for PP10 at various 

operating conditions are reported in Figure 12. If the free-stream state is taken close 

enough to the inversion zone, the flow remains subsonic: no shock waves are formed and 

flow separation is suppressed. In this regime (subcritical BZT regime), the drag coefficient 

drops from its PFG value as wave drag disappears, whereas the lift coefficient is 

considerably higher. For operation points at higher free-stream Γ, in the regime previously 

christened as ”low-pressure transonic BZT”, a supersonic region forms. This enhances lift, 

whereas wave drag remains quite low with respect to the perfect gas case. Two 

mechanisms contribute to this effect: the first one is of inviscid nature, and is related to the 

fact that shock waves have jump conditions in the neighbourhood of the transition line, and 

are therefore less dissipative than normal; on the other hand, such weak shock waves do 

not cause flow separation, so that pressure drag is further reduced. Further increasing the 

free-stream pressure (high-pressure transonic BZT regime) leads to increase the strength of 

shock waves: thus, wave drag grows and the flow finally separates because of 

shock/boundary layer interactions. As a consequence, both the lift coefficient and the lift-

to-drag ratio drop. Figure 11 (c,e,g) shows typical pressure coefficient contours and flow 

streamlines in the three regimes; wall distributions of the pressure coefficient for inviscid 

and viscous flow are shown in Figure 11 (d,f,h). Figure 13 compares skin friction 

distributions for a perfect gas and for PP10 at different operating conditions. Note that the 

extended separated regions characterizing the perfect gas flow at both airfoil surfaces are 

absent in dense gas flows insofar as the operating conditions are chosen sufficiently close 

to the inversion zone. In the subcritical case, for flows at high Reynolds number, the 

pressure distribution remains essentially similar to the inviscid one, with just only some 

smoothing of the suction peaks at both surfaces downstream the leading edge. The lift 

coefficient is slightly below the inviscid value, whereas the lift-to-drag ratio now takes of 
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course finite, although high values. In the low-pressure transonic BZT regime the 

differences become more significant. Namely, the suction peak at the airfoil upper surface 

is dramatically smoothed out because of viscous effects, and the location of the upper 

shock wave moves upstream because of interactions with the boundary layer: nevertheless, 

the flow remains attached. Also note that in this regime the skin friction (see Figure 13) 

significantly grows with chordwise distance up to x/c ≈ 0.25, due to the very strong 

favorable pressure gradient acting on the boundary layer. Finally, in the third regime strong 

shock/boundary layer interactions lead to flow separation at both airfoil surfaces: 

nonetheless, separation is delayed and separated regions are smaller than in perfect gas 

flow. In summary, the preceding results suggest that DG effects mainly affect the inviscid 

flow behavior, whereas the viscous behavior is influenced indirectly according to the 

distributions of the external pressure and Mach number characterizing flows at different 

operating conditions. Concerning system efficiency, the use of dense gases working at 

proper operating conditions has a definitely beneficial effect on system efficiency, not only 

because of significant reductions in wave drag, but also because losses due to 

shock/boundary layer interaction are completely suppressed or strongly attenuated. 
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Figure 11: Turbulent flow over the NACA0012 airfoil, M∞ = 0.85, α = 1°, Re = 9 × 106. Pressure coefficient 

contours and streamlines (left) and wall pressure coefficient (right) for a perfect gas flow (a,b) and for PP10 

at operating conditions p∞/pc = 1.01, ρ∞/ρc = 0.676 (c,d), p∞/pc = 1.08, ρ∞/ρc = 0.850 (e,f), p∞/pc = 1.17, ρ∞/ρc 

= 1.11 (g,h). 
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Figure 12: Aerodynamic coefficients versus free-stream fundamental derivative for turbulent 

flows at M∞ = 0.85, α = 1° and Re = 9× 106 past a NACA0012. 
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Figure 13: Skin friction for a perfect gas flow and dense gas flows at different operating 

conditions. 
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4.2. Transonic dense gas flow through turbine cascade 

One of the major loss mechanisms in transonic and supersonic turbomachinery is related to 

the generation of shock waves. The use of a BZT fluid could avoid shock formation and, 

ideally, allow isentropic turbine expansion. However, simply utilizing a BZT working fluid 

is not sufficient to maximize the reduction in losses: it is also necessary to operate the 

turbine cascade at a pressure and temperature near the inversion zone. The inversion zone 

has a quite limited extent. Therefore, a reduction in the temperature jump between the 

heater and condenser stages is generally needed in order to operate the turbine cascade in 

the BZT regime. However, if the temperature jump is taken too small, the overall cycle 

efficiency and global power output tend to decrease. Then it’s necessary to find a trade-off 

between these two different needs. For this reason a parametric investigation of transonic 

BZT flows through linear transonic turbine cascades is computed. The von-Karman 

Institute LS-59 rotor blade cascade (VKI LS-59) is considered. Geometry and experimental 

data (for air flow) are available in [83]. The cascade has inlet angle equal 30°, and pressure 

ratio 1.82. The corresponding exit Mach number (for air) is about 1. All computations, 

concerning both perfect and real gas flows, have been performed at fixed inlet angle and 

pressure ratio. The computations are performed using C-grids of increasing density, 

composed by 86x8, 192x16 and 384x32 cells. The computed convergence order of the 

numerical solver, based on cascade efficiency, is in the range 2.2–2.5 for all the computed 

cases; grid convergence index (GCI) on the medium grid is less than 1%. Firstly, perfect 

diatomic gas flows have been computed. The perfect gas flow is characterized by a weak 

shock at mid-chord and a trailing edge shock (see Figure 14a). The computed efficiencies 

(real-to-ideal static enthalpy drop, η) is about 93.8%. Water vapor flows, with reduced inlet 

thermodynamic conditions p1/pc = 0.9, ρ1/ρc = 0.6, Γ1 = 1.26, are characterized by lower 

efficiency: η equals 87.7% for LS-59. Efficiency losses are related to the formation of 

strong shocks (upstream Mach number about 1.8) close to the trailing edge (Figure 14b). 

Then, computations are performed using the BZT fluorocarbon PP10 (pf-

perhydrofluorene) as the working fluid. Several computations, corresponding to different 

thermodynamic inlet conditions are carried out. Figure 15 represents cascade efficiencies 

for different values of the inlet Fundamental Derivative. This one is changed at constant 

inlet entropy, and three different entropy values are considered. The first value corresponds 

to an isentropic line crossing the inversion zone, the second to a line almost tangent to the 
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transition line, and the last one to a line outside the inversion zone, but within the Γ = 1 

contour. The efficiency tends initially to increase with Γ1, reaching an optimum. This 

roughly corresponds to the lower mean Γ value at the blade wall. In such conditions, 

average Γ is less than 1 at the wall, and the sound speed increases with dropping pressure. 

This limits the growth of the Mach number during the flow expansion and reduces shock 

strength. For higher values of Γ1, expansion shock waves appear for the two lower entropy 

values, and efficiency decreases. This does not happens for the higher entropy value, the 

flow evolving entirely outside the inversion zone. On the other hand, for such conditions, 

the average Fundamental Derivative at the wall is below 1, which contributes to weaken or 

even remove shock waves. Γ quickly drops outside the inversion zone during the flow 

expansion, and it is necessary to start from higher inlet Γ values in order to have Γ in the 

right range close to the shock region. Figure 14c present pressure contours for PP10 

corresponding to maximum cascade efficiency. Mach number, pressure, and Γ distributions 

at the wall for the three working fluids are depicted respectively in Figure 16, Figure 17 

and Figure 18.  

 
Figure 14: Isobares for a perfect gas (a), steam (b), and PP10 (c).V KI LS-59 cascade. 
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Figure 15: Cascade efficiency versus inlet Fundamental Derivative.Le ft: SC11 cascade; 

right: VKI LS-59 cascade. 

 

 
Figure 16: Mach distributions at the wall. VKI LS-59 cascade. 
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Figure 17: Pressure distributions at the wall. VKI LS-59 cascade. 

 

 
Figure 18: Γ distributions at the wall. VKI LS-59 cascade. 
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4.3. Shape Optimization of an isolated Airfoil 

4.3.1. Inviscid Case 

4.3.1.1.   Drag Minimization for a symmetric airfoil 

The problem is to find the minimal value of the drag coefficient ( )ΣDC where Σ denotes an 

airfoil symmetric shape. In the present case, this shape is constrained to satisfy the 

following conditions: i) the coordinates of the leading edge and trailing edge normalized 

by the airfoil chord are respectively (0, 0) and (1, 0), ii) the thickness-to-chord ratio is 

12%. The upper airfoil surface is represented by a Bezier curve which is determined in the 

present study by the coordinates of 8 Bezier points: the fixed leading edge 0P  and trailing 

edge 7P , 5 control points ( )kkk yxP ,6,2= , regularly spaced along the chord, with the kx  

coordinates varying in distinct sub-intervals of ]0,1[ and a control point ( )11 ,0 yP , which 

ensures the upper surface of the profile is tangent to the y-axis at leading edge. A fixed 

12% thickness-to-chord ratio is obtained by ad-hoc normalization of the airfoil maximum 

thickness. The family of airfoil shapes considered in the present study is therefore entirely 

described by 11 parameters, which vary continuously between prescribed limiting values; 

the shape representation is such that it allows recovering the NACA0012 airfoil as well as 

the low-drag airfoil proposed in [25]. 

The minimization of ( )ΣDC  is first performed for three different values of the freestream 

Mach number, successively taken equal to 98.0,95.0,94.0=∞M . In each case, the flow 

over a population of evolving (half)-airfoil shapes is computed using the UGS on the grid 

made of 6400 quadrilateral cells with a grid size of c3105 −× at the wall, where c denotes 

the airfoil chord, 120 points along the airfoil surface and an outer boundary about 10 

chords away from the airfoil. VDW equation of state is used with 02.1=γ  and the 

freestream thermodynamic conditions normalized by their critical values are taken equal to 

0696.1/ =∞ cpp , 73502.0/ =∞ cρρ  in order to allow a comparison with the results 

obtained in [25]. For each run, the GA-driven population appears to have reached a 

stabilized optimal (minimal) value of the drag coefficient after the prescribed number of 

generations, as can be deduced from Figure 19: since the maximum and mean value of the 

drag coefficient in the final population of airfoil shapes are almost the same in each case, 
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this means the algorithm has converged to a population of almost identical geometries. The 

optimized airfoil shape for each freestream Mach number is plotted in Figure 20 along with 

the NACA0012 airfoil, the low-drag airfoil and the sonic arc taken from [25]. It is 

noteworthy to observe the optimal shape for 94.0=∞M  (indicated in the following as 

OA094) turns out to be almost superimposed with Rusak and Wang’s low-drag airfoil; 

consequently, this latter shape will be retained in the following analysis as the one 

producing minimal drag at 94.0=∞M . Reducing the drag for higher values of the free-

stream Mach number leads to airfoil shapes that are getting closer to the limiting case of 

the sonic arc, as far as allowed by the airfoil shape representation retained in this study. 

Since, ideally, a consistent drag reduction is expected for the whole range of  freestream 

Mach numbers, the wave drag produced by these modified shapes, which are optimized for 

a specific value of ∞M , are next checked for different values of ∞M , taken in the interval 

[ ]995.0,9.0 ; this a posteriori analysis is performed using both the SGS and the UGS for 

cross-validation purpose. The computed evolutions of the drag coefficient with increasing 

values of the freestream Mach number are plotted in Figure 21: the optimal shape at 

95.0=∞M  (OA095) allows to obtain lower drag levels than the OA094 airfoil for the 

whole range of freestream Mach number, both shapes being far superior to the original 

NACA0012 airfoil; on the contrary, the optimal shape at 98.0=∞M  (OA098) displays a 

very poor performance for lower values of the freestream Mach number. All of the drag 

curves fall within the envelope corresponding to the sonic arc performance. The MOGA 

strategy offers the possibility of looking for an airfoil that would simultaneously minimize 

the drag coefficient at 95.0=∞M  and 98.0=∞M . Such an airfoil should hopefully 

provide a good drag performance over a larger range of free-stream Mach numbers. To 

obtain such an airfoil, a bi-objective optimization run is computed, using the same GA 

parameters as in the previous mono-objective runs; among the set of optimal shapes 

provided by the MOGA, a typical trade-off solution has been retained (OAB), which is 

plotted in Figure 20.  The associated drag evolution is also displayed in Figure 21: the 

OAB airfoil turns to yield lower drag levels than the previous single operation point optima 

for the whole range of freestream Mach number, because its geometry is actually closer to 

that of the sonic arc. The wall pressure and Mach number distributions at 95.0=∞M and 

98.0=∞M  are plotted in Figure 22 for the various geometries under study. At 
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95.0=∞M , all of the airfoils except the sonic arc are beyond their respective critical Mach 

number; in fact, the NACA0012, Rusak-Wang and OA098 airfoils are also beyond the 

drag divergence Mach number, whereas the OA095 and OAB airfoils still yield isentropic 

flows. Note the OA098 airfoil displays a shock in the leading edge region down to 

90.0=∞M . At 98.0=∞M , all of the airfoils, including the sonic arc, are subjected to the 

transonic drag rise: the OA095 and OAB wall distributions are similar to the ones 

associated with the sonic arc up to 70% of chord, where the shapes of the three airfoils start 

to strongly differ (see Figure 20). 

 

A similar optimization process has been carried out for a flow of perfect gas with 4.1=γ  

as well as a dense gas flow with 0696.1/ =∞ cpp , 73502.0/ =∞ cρρ  modeled using the 

more realistic MAH equation of state. While the VDW equation of state was retained up to 

now in order to allow a comparison with the results obtained in [25], the analysis 

performed with MAH and PFG indicates the improvement in terms of drag reduction that 

can be expected (for inviscid flows) when switching from air to PP10 with airfoil shapes 

optimized according to the nature of the fluid. Various optimization strategies were applied 

to the PFG case: single-point drag minimization for different free-stream Mach numbers in 

the transonic drag rise region, simultaneous minimization of drag for two values of ∞M  

above the drag divergence Mach number of the baseline NACA0012 airfoil. The overall 

best performance, for the shape representation described at the start of this section, is 

plotted in Figure 23 : the optimal airfoil, denoted OA083, is specifically targeted to achieve 

minimal (zero) drag at 83.0=∞M  so that it suffers from a slight increase in wave drag at 

82.0=∞M  due to the appearance of a weak shockwave. For the MAH case, the best 

performance was obtained with an airfoil (OAB) designed to minimize drag at 

925.0=∞M  and 95.0=∞M . As shown in Figure 23, the optimal airfoil increases the drag 

divergence number from 91.0=∞M  for the NACA0012 airfoil up to almost 93.0=∞M . 

Figure 24 displays the strong discontinuities produced by  the baseline NACA0012 airfoil 

in the drag divergence region associated with each gas model (PFG, VDW and MAH) and 

presents the pressure contours of the corresponding shock-free airfoils (just before the drag 

divergence Mach number is attained). 

 



 

 

 

72

As shown in the above, the optimization procedure leads to minimal drag airfoils with 

increasingly better performance when their shape tends to become closer to the sonic arc, 

the better is the airfoil performance. Unfortunately, the sonic arc shape is not optimal if the 

flow of a viscous fluid is considered, because of its blunt trailing edge that can lead to flow 

separation. For this reason, Rusak’s low-drag airfoil [25] is essentially obtained by 

modifying the trailing edge of the optimal sonic arc shape, replaced by a sharp tail similar 

to that of the NACA0012 airfoil. In order to check the viscous performance of the optimal 

shapes derived from the present MOGA optimization procedure, a numerical investigation 

of viscous turbulent flows past such optimal airfoils is undertaken. In particular viscous 

flows past the OA095 and OAB airfoils, which have been found to provide the best 

inviscid performance in the previous study of Rusak’s optimization problem, are computed 

and compared with results obtained for the reference NACA0012 and Rusak-Wang airfoils 

in the same conditions. The computations are performed using half-O grids of 100x64 

cells, with a mean first cell height of about 6x105, representing a reasonable tradeoff 

between accuracy and computational cost. The gas thermodynamic response is modeled 

using MAH equation of state. The thermodynamic freestream conditions are taken equal to 

985.0/ =∞ cpp , 622.0/ =∞ cρρ , the Mach number is varied in the interval [0.85, 0.99] 

and the flow Reynolds number based on free-stream conditions and the airfoil chord is 107. 

The flow past the NACA0012 and Rusak-Wang airfoils is attached for freestream values of 

the Mach number less than about 0.97. In both cases, at 98.0=∞M  the flow becomes 

separated close to the trailing edge; the flow at 99.0=∞M  is massively separated. 

Conversely, the flow field around the OAB airfoil already exhibits a recirculation region 

close to the trailing edge for the lowest values of ∞M . In fact, this airfoil shape is the 

closest to the sonic arc, which greatly enhances its inviscid performance, but represents a 

serious drawback for viscous flows. An intermediate behavior is found for OA095 since 

the flow becomes separated at about 95.0=∞M  for that shape. Figure 25 shows the flow 

fields (Mach number contours and streamlines) for the four airfoils, at 96.0=∞M : flow 

past OAB is characterized by significant separation at the trailing edge, whereas flow past 

OA095 is just slightly separated and flows past the NACA0012 and Rusak-Wang airfoils 

are completely attached. Figure 26 shows the drag coefficient versus the Mach number for 

the four airfoils analyzed. For the lowest values of ∞M , the thicker trailing edges of 
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OA095 and OAB lead to poorer performances in comparison with the more slender 

NACA0012 and Rusak-Wang airfoils. On the other hand, for higher values of ∞M , the 

flow becomes supercritical and wave drag appears: in these conditions, the adapted design 

of the OA095 and OAB airfoils becomes advantageous, and both airfoils represent a true 

improvement over the two reference shapes. Globally, the best overall performance over 

the explored range of Mach numbers is offered by the OA095 airfoil.  

 

Figure 19: Evolution of the maximal and mean value of the drag coefficient for the computed population as 

function of the number of generations.  Mono-objective (single operation point) optimization runs for 

different values of the freestream Mach number. 
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Figure 20: Geometry of optimized airfoils,  sonic arc, Rusak low-drag airfoil and NACA0012 airfoil. 

 
(a) 
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(b) 

Figure 21: Pressure drag verus free-stream Mach number for different airfoil shapes. Results obtained using 

UGS (a) and SGS (b). 

 
(a) 
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(b) 

Figure 22: Wall pressure (a) and Mach number (b) distributions for optimized airfoils, sonic arc, Rusak 

airfoil and NACA0012 airfoil at M=0.95. SGS results. 

 
(a) 
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(b) 

Figure 23: (a) optimal geometries for the drag minimization problem solved in the case of a PFG flow and a 

DG flow with VDW or MAH EOS. (b) Associated pressure drag as a function of the freestream Mach 

number. 

 

 
(a) Perfect gas flow. 83.0=∞M . 
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(b) Dense gas flow, VDW equation of state. 95.0=∞M . 

 
(c) Dense gas flow, MAH equation of state. 925.0=∞M . 

Figure 24: Pressure contours around the baseline NACA0012 airfoil and optimal airfoils for perfect and 

dense gas flows with freestream conditions leading to an equivalent amount of wave drag for the baseline 

airfoil. 
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   A) 

    B) 

    C) 

    D)
Figure 25: Mach number contours and streamlines for turbulent flows past four airfoils (right); left: close-up 

of the streamlines at the trailing edge (grid aspect ratio not preserved). A) OAB; B) OA095; C) NACA0012; 

D) Rusak-Wang. 710,96.0 ≅=∞ ReM . 
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Figure 26: Viscous performance of minimal-drag airfoils stemming from inviscid optimization. 

 

4.3.1.2.   Performance Optimization for a Lifting Airfoil 

The shape representation retained for the complete airfoil derives from that adopted in the 

study of a half profile.  The upper part of the airfoil is represented as described in the 

previous subsection; the lower part is described in a similar way using a Bezier curve 

based on 8 control points, including the fixed leading and trailing edges, as well as a point 

on the negative part of the y-axis in order to ensure the airfoil leading edge is tangent to the 

y-axis. Once the whole airfoil is generated, the thickness distribution is normalized to yield 

a 12% thickness-to-chord ratio.  

The computation of the dense gas flow at 85.0=∞M  and °= 1α  is considered. The dense 

gas is modeled using MAH equation of state with coefficients corresponding to PP10. The 

UGS is used to simulated. Two operation points of interest are selected : the freestream 

thermodynamic conditions ( 008.1/ =∞ cpp , 676.0/ =∞ cρρ , 168.0=Γ∞ ) denoted OP#1, 

yield significant BZT effects,  whereas the choice ( 079.1/ =∞ cpp , 882.0/ =∞ cρρ , 

312.1=Γ∞ ), denoted OP#2, leads to higher values of the fundamental derivative 

throughout the flow, and thus to much reduced BZT effects. By considering a flow past a 



 

 

 

81

NACA0012 airfoil the dense gas flow for OP#1 remains subcritical with a computed lift 

coefficient 2265.0=LC  for the SGS and a drag coefficient very close to zero. For OP#2, 

the dense gas flow becomes supercritical with 4467.0=LC , 0510.0=DC . Note the 

perfect gas flow is such that 373.0=LC , 0574.0=DC ; thus, though the dense gas allows 

to achieve extremely high lift-to-drag ratio in the subcritical OP#1 conditions, the 

corresponding lift level remains below that of the perfect gas flow whereas the dense gas 

aerodynamic performance in the supercritical OP#2 conditions tends to come close to that 

of the perfect gas. The possibility to simultaneously achieve higher lift values for operating 

conditions where BZT effects are important and to improve the lift-to-drag ratio when 

these effects become less significant is considered. Then, the lift coefficient in the OP#1 

conditions, ( )1#;OPCL Σ , and the lift-to-drag ratio in the OP#2 conditions, 

( )2#;/ OPCC DL Σ , are simultaneously maximized by applying the MOGA with a 

population of 36 individuals during 24 generations. A partial view of the computed 

individuals is shown in Figure 27 along with the set of non-dominated solutions eventually 

obtained: it clearly illustrates that the initial NACA0012 airfoil aerodynamic performances 

in dense gas flow have been substantially improved through the optimization process. In 

particular, almost all of the Pareto-optimal individuals have now a lift coefficient at OP#1 

and a lift-to-drag ratio at OP#2 greater than the lift coefficient and the lift-to-drag ratio 

generated by the NACA0012 airfoil for a perfect gas flow. In order to draw a fair 

comparison with perfect gas flow, a shape optimization is also performed for the perfect 

gas (γ=1.4) flow at 85.0=∞M  and °= 1α  of incidence over an airfoil of 12% thickness-

to-chord ratio with a geometry based on the Bezier curves previously described; with 

unique thermodynamic conditions for this PFG flow, the problem is expressed as the 

simultaneous maximization of the lift and minimization of the drag. The optimal solutions 

obtained are plotted in Figure 27 in the lift / lift-to-drag plane: they remain well below the 

optimal solutions associated with the DG flow. Figure 28 displays one of the optimal 

solution selected along the final Pareto front: this particular shape, hereafter denoted OAB 

to recall it results from a bi-objective optimization process, has been retained because, 

among the set of non-dominated solutions, it displays the thickness distribution in the 

trailing edge region that is the most likely to preserve good aerodynamic performances in 

the viscous case. The wall pressure and Mach number distributions computed on the 
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NACA0012 airfoil and OAB for subcritical (OP#1) and supercritical (OP#2) conditions are 

plotted in Figure 29 and in Figure 30. For subcritical conditions, both airfoils display zero 

drag but OAB yields a much higher lift coefficient ( 794.0=LC ) than the NACA0012 

airfoil ( 226.0=LC ) thanks to a much stronger expansion of the flow around the upper 

leading edge. For supercritical conditions, the OAB yields more than twice the drag of the 

NACA0012 airfoil ( 116.0=DC  versus 051.0=DC ) but also generates almost three times 

the lift of the NACA0012 airfoil ( 3.1=LC  versus 45.0=LC ) so that its lift-to-drag ratio 

of 11.2 is indeed better than the value of 8.8 obtained with the NACA0012 airfoil, as 

expected from the optimization process. An overview of the optimized airfoil performance 

is provided in Figure 31 where the lift coefficient and the lift-to-drag ratio are plotted for 

dense gas flow around both the baseline NACA002 airfoil and the optimized airfoil for 

different free-stream thermodynamic conditions covering the subcritical as well as the low- 

and high-pressure transonic BZT flow regimes: as expected from the two-point 

optimization the modified airfoil systematically ensures a level of lift for dense gas flow in 

subcritical regime at least equivalent to the highest level achievable with a PFG flow while 

preserving a high lift-to-drag ratio in the subcritical and low-pressure supercritical regime. 

The airfoil viscous performance has also been checked for this lifting case, as already seen 

in the previous subsection. The viscous computations have been performed on an O-grid of 

200x64 cells, with a mean first cell height in the direction normal to the wall equal to about 

6x10-5 c, and on a finer grid of 200x128 cells, with a mean first cell height equal 5x10-6 c. 

The outer boundary is located about 12 chords away from the airfoil. The freestream 

conditions are successively taken equal to OP#1 and OP#2. The corresponding fine-grid 

values of the lift and drag coefficients, and of the lift-to-drag ratio are reported in Table 1. 

For comparison, viscous solutions for dense gas flows past the NACA0012 airfoils at the 

same thermodynamic conditions are also presented. The optimized airfoil conserves a 

superior aerodynamic performance over the NACA0012 even when viscous effects are 

relevant. It should be noticed however that the viscous performance of both dense and 

perfect gas flows significantly differs from inviscid results. At flow conditions OP#1, the 

flow-field is entirely subsonic, and boundary layer is attached, both for the NACA0012 

and for the OAB airfoil. However, because of the high total pressure of the incoming 

stream, the flow strongly accelerates downstream of the stagnation point, and a deep 

suction peak appears at the upper surface downstream of the leading edge. In fact, the 
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strong suction exerted on the upper surface is the main reason of the dramatic improvement 

of the lift over the perfect gas for an inviscid flow. The other side of the coin is that, when 

viscous effects are taken into account, the very strong adverse pressure gradient 

downstream of the suction peak leads to a significant growth of the boundary layer and to 

enhanced friction in the leading edge region. Consequently, the peak itself is noticeably 

smoothed out, and the airfoil lift drops below the inviscid value.  Figure 32 shows the wall 

pressure coefficient and skin friction distribution for this case. For flow conditions OP#2, 

the relevant differences with respect to inviscid flow are due to strong shock/boundary 

layer interactions, leading to post-shock separation and reattachment, both in the flow over 

the NACA0012, and over OAB, with subsequent blow up of the subsonic part of the 

boundary layer (see wall pressure and skin friction distributions on Figure 33).  

Paradoxically, in this case the shock/boundary layer interaction leads to a reduction both in 

lift and drag coefficients with respect to inviscid flow, due to considerably decreased 

strength of shock waves. For completeness, the PFG viscous aerodynamic performance of 

the NACA0012 is also included in Table 1: in the PFG case, the lift coefficient is negative, 

because of massive post-shock separation at the upper surface, caused by severe 

shock/boundary layer interaction. 
 

Case CD CL CL/CD 

Optimized airfoil, condition OP#1 1.416x10-2 0.6077 42.92 

Optimized airfoil, condition OP#2 6.648x10-2 0.9693 14.58 

NACA0012, condition OP#1 1.275x10-2 0.1833 14.38 

NACA0012, condition OP#2 3.448x10-2 0.2529 7.335 

NACA0012, perfect gas flow 5.456x10-2 -4.086x10-2 -0.7489 

Table 1: Aerodynamic performance of viscous flows over the NACA0012 airfoil and an optimized airfoil 

stemming from the MOGA strategy. 
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Figure 27: Lifting airfoil 2-point performance optimization. Overview of the computed solutions during the 

genetic evolution process. 

 

 

Figure 28: Lifting airfoil 2-point performance optimization. Typical optimal shape. 
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(a) 

(b) 

Figure 29: Lifting airfoil 2-point performance optimization. Wall distributions (a) (b) at OP#1 for the 

NACA0012 airfoil and an optimal airfoil for DG flow. 
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(a) 

(b) 

Figure 30: Lifting airfoil 2-point performance optimization. Wall distributions (a) (b) at OP#2 for the 

NACA0012 airfoil and an optimal airfoil for DG flow. 
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(a) 

(b) 

Figure 31: Evolution of aerodynamic performances (a) (b) at M∞=0.85 and α =1° for a dense gas flow 

around the NACA0012 airfoil and a DG-optimized airfoil at different free-stream thermodynamic conditions. 

 

∞ 
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(a) 

(b) 

Figure 32: Lifting airfoil 2-point performance optimization. Wall distributions (a) of the pressure and skin 

friction (b) coefficients for viscous flow at OP#1 past the NACA0012 airfoil and an optimal airfoil for DG 

flow. 
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(a) 

(b) 

Figure 33: Lifting airfoil 2-point performance optimization. Wall distributions (a) of the pressure and skin 

friction (b) coefficients for viscous flow at OP#2 past the NACA0012 airfoil and an optimal airfoil for DG 

flow. 
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4.3.2. Viscous Case 

In the cases  widely described in 4.3.1.1 and 4.3.1.2 the optimizer was linked to an Euler 

solver and after the optimized airfoils were analyzed to check their viscous performances. 

It seems really interesting to couple the optimizer to a NS code, because it’s important to 

understand if it is necessary a viscous optimization to generate a profile with good viscous 

performances, or it suffers just to make a faster optimization neglecting viscous effects, 

followed by an evaluation of viscous effects on the optimized airfoil. Obviously there is a 

huge difference in the computational cost (order of seven times more expensive for the 

viscous case). In order to reduce computational costs for viscous dense-gas flow 

optimization problems, the flow solver (actually viscous computations have been just done 

with SGS) and GA are coupled with an artificial neural network (ANN). The procedure 

used to couple the ANN with the flow-solver and the optimizer is the following: 

• The fitness function is computed “exactly” by means of the Navier-Stokes solver 

for all individuals of the first two generations. 

• These individuals form an initial training set for the ANN.  

• Starting from the third generation, just only 30% of the individuals are computed 

“exactly”.  

• At each generation, new exactly computed individuals are added to the training set, 

and the ANN is re-trained, in order to improve ANN accuracy while approaching 

the solution optimum. Because of the growing size of the linear system associated 

to the training problem, the ANN is not trained using all individuals in the data set. 

Instead, the ANN is trained “locally” by extracting from the global data set, a small 

number of individuals close to the one to be evaluated. This means that, for each 

new individual, a new local ANN is constructed. Based on numerical tests, a subset 

of 6 individuals was found to provide reasonable accuracy. 

In any case, the best individuals retained for elitism are always computed exactly. 

4.3.2.1.Drag Minimization for a Symmetric Airfoil 

The problem is to find the minimal value of the drag coefficient ( )ΣDC  where Σ denotes 

an airfoil symmetric shape. It’s the same problem considered in 4.3.1.1. But in this case, 

NS equations are used also for the evaluation of each profile. The same parameterization 
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described in 4.3.1.1 is used, then the family of airfoil shapes is entirely described by 11 

parameters. 

The minimization of ( )ΣDC  is performed for the following flow conditions: 96.0=∞M , 

reduced freestream pressure and density equal to 0.985 and 0.622, respectively 

( 02.0≈Γ∞ ). At the considered free-stream conditions, the flow Reynolds number is about 

107. The calculation is performed using a half C-grid of 100x50 cells, selected after a 

proper mesh study (not reported for brevity) as the best compromise between accuracy and 

computational cost; the population contains 36 individuals, which are let to evolve during 

24 generations. This is enough to reach a stabilized optimum, as shown by Figure 34: when 

iterating on the generation number, the minimal and the mean value of the fitness function 

in the population converge to the same asymptotic value, which indicates that the 

population tends to converge to a set of almost identical (optimal) individuals. The optimal 

geometry stemming from the optimization run is represented in Figure 35, along with the 

original NACA0012 profile. The computed drag coefficient for the optimal individual 

equals 1.010×10-2. The value obtained for the flow past the NACA0012 airfoil at the same 

free-stream conditions is 1.544×10-2. Perfect gas flow past the NACA0012 and the optimal 

airfoil obtained yields a drag coefficient equal to 6.320×10-2. Provided that the main 

reduction in drag is related to the working fluid properties (the drag for PP10 flow past the 

baseline airfoil is about 5 times lower than for perfect gas flow past the same shape), the 

subsequent optimization run allows further reducing the drag of about 53%. In order to 

evaluate how important is taking into account viscous effects during the optimization 

process, an optimization run at the above operating conditions was also performed by 

neglecting fluid viscosity. The resulting optimal airfoil shape is also reported in Figure 35. 

Note that this airfoil is thicker than the optimal shape provided by the viscous optimization 

run. The performance of this individual is then a posteriori checked for a viscous turbulent 

flow at the previously specified conditions: the resulting drag coefficient is found equal to 

1.388×10-2, i.e. about 37% higher than the drag exerted on the “viscous” optimal 

individual. Figure 36 displays the iso-lines of the Mach number and a close-up of the flow 

streamlines close to the trailing edge for perfect gas flow past the NACA0012, dense-gas 

flows past the same airfoil, and dense-gas flow past optimal airfoil shapes obtained by 

either including or neglecting viscous effects. The maximum Mach number in the flow 

lowers progressively when passing from perfect gas flow to PP10 flow and from the latter 
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to PP10 flow past the optimal airfoils. As a consequence, the strength of the shock waves 

becomes lower and lower, and the flow field past the optimal airfoils is essentially shock-

free. Nevertheless, while the airfoil obtained neglecting viscous effects, characterized by a 

thick nose, still displays a supersonic bubble in the leading edge region that terminates in a 

weak shock, the thin-nosed airfoil issued from the “viscous” optimization furthers a more 

gradual expansion, and the flow reaches just slightly supersonic conditions at about 

midchord. This is confirmed by inspection of Figure 37, showing wall distributions of the 

pressure coefficients for the four cases.  It is interesting to inspect the streamline 

distributions for the four configurations (Figure 36). Both perfect and dense flows past the 

NACA0012 remain attached (Figure 36 A, B); the airfoil issued from the inviscid dense 

gas flow optimization, because of its thick trailing edge, allows reducing losses due to 

shock waves, but displays an extended separation bubble: this inconvenience is avoided by 

taking into account viscous effects during the optimization process, which leads to an 

airfoil ensuring at the same time low wave drag and attached flow in the trailing edge 

region. Actually, as shown in Figure 36 C, a very small separation bubble appears, but it 

has a negligible influence on the overall drag coefficient.  

Since, ideally, a consistent drag reduction is expected for the whole range of freestream 

Mach numbers, the wave drag produced by these modified shapes, which are optimized for 

a specific value of ∞M , are next checked for different values of ∞M , taken in the interval 

[0.85, 0.99]. The computed evolution of the drag coefficient with increasing values of the 

freestream Mach number is plotted in Figure 38: the present optimal shape at 96.0=∞M  

is far superior to the original NACA0012 airfoil, since its drag coefficient is lower for the 

whole range of Mach numbers and the transonic drag rise is delayed. Conversely, the 

airfoil issued from inviscid optimization is decidedly better than the NACA0012 for the 

highest values of the Mach number, but its drag is somewhat higher at lower velocities. 
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Figure 34: Evolution of the maximal and mean value of the drag coefficient for the computed population as a 

function of the number of generations. 

 

 
Figure 35: Geometry of minimal drag airfoils obtained by including or neglecting, respectively, viscous 

effects, and NACA0012 airfoil. 
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   A) 

 
  B) 

   C) 

 
   D) 

Figure 36: Mach number contours and streamlines for turbulent flows past four airfoils (right); left: close-up 

of the streamlines at the trailing edge (grid aspect ratio not preserved). A) NACA0012 perfect gas; B) 

NACA0012 dense gas; C) Shape optimized for viscous dense-gas flow; D) Shape optimized for inviscid 

dense-gas flow; M∞=0.96, Re≈107.  



 

 

 

95

 
Figure 37: Wall distribution of the pressure coefficient for three cases plotted in Figure 36 

 
Figure 38: Drag coefficient as a function of the freestream Mach number for dense-gas viscous flow at 

operating conditions p∞/pc=0.985, ρ∞/ρ c=0.622. The figure compares the performance of an airfoil shape 

optimized for viscous dense gas flow, for an airfoil shape optimized for inviscid dense gas flow, and for the 

NACA0012 airfoil. 
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4.3.2.2.Performance optimization for a Lifting Airfoil 

The second optimization problem is the design of optimal lifting airfoils. This problem is 

the same described in 4.3.1.2 for inviscid computations. The shape representation retained 

for the complete airfoil derives from that adopted in the study of a half profile, and it’s the 

same already introduced in 4.3.1.2. RANS equations are used.  

The flow conditions retained for the study are M∞=0.85, incidence angle 1°, Reynolds 

number (based on free-stream conditions and the airfoil chord) 9x106. The same 

optimization strategy already described in 4.3.1.2 is adopted: to simultaneously optimize 

the lift coefficient ( )1#;OPCL Σ  for an operating condition OP1 such that flow past the 

baseline NACA0012 configuration is subcritical and consequently characterized by no 

wave drag but relatively poor lift, and the lift-to-drag ratio ( )2#;/ OPCC DL Σ , for an 

operating condition OP2 such that the flow past the baseline airfoil is supercritical, and 

offers quite high lift, but poor aerodynamic efficiency. Precisely, conditions OP1 and OP2 

correspond exactly to those introduced in 4.3.1.2 for the inviscid case. The two objectives 

are simultaneously maximized by applying the MOGA with a population of 36 individuals 

during 24 generations. A partial view of the computed individuals is shown in Figure 39 

along with the set of non-dominated solutions eventually obtained: it clearly illustrates that 

the initial NACA0012 airfoil aerodynamic performances in dense gas flow have been 

substantially improved through the optimization process. Specifically, there are four 

individuals of the Pareto front that possess higher lift at condition OP1 and higher lift-to-

drag ratio at condition OP2 than the NACA0012. 

Note that the Pareto front resulting from an inviscid optimization run, also represented in 

Figure 39, is well above the Pareto front for the viscous run. This of course due to the fact 

that, for the inviscid computation, there is no viscous drag exerted on the airfoils, and that 

wave drag is extremely small due to BZT effects, which results in extremely high lift-to-

drag ratios. The point representative of perfect gas flow past the NACA0012, characterized 

by slightly negative lift, is also reported for completeness. In order to draw a fair 

comparison with perfect gas flow, a shape optimization is also performed for the perfect 

gas (γ=1.4) flow at M∞=0.85 and 1° of incidence over an airfoil of 12% thickness-to-chord 

ratio with a geometry based on the Bezier curves previously described; with unique 

thermodynamic conditions for this PFG flow, the problem is expressed as maximization of 

the lift-to-drag ratio. The optimal solution obtained is plotted in Figure 39 in the lift / lift-
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to-drag plane: it remains well below the optimal solutions associated with the DG flow: the 

optimized airfoil displays good aerodynamic efficiency, but its lift coefficient is 

considerably lower with respect to optimal individuals for dense gas flow. 

In order to select a single individual among the eight ones composing the Pareto front, the 

aerodynamic performance of the airfoil is also studied at two off-design conditions. The 

objective is to select an airfoil shape ensuring good aerodynamic performance over the 

largest range of operating conditions. Results are reported in Table 2 for the 8 airfoils, the 

baseline NACA0012 airfoil, and an airfoil shape belonging to the inviscid Pareto front, 

which has been retained because, among the set of non-dominated solutions, it displays the 

thickness distribution in the trailing edge region that is the most likely to preserve good 

aerodynamic performances in the viscous case. The thermodynamic conditions retained for 

the study are OP1, OP2 and two test points TEST1 ( 005.1/ =∞ cpp , 794.0/ =∞ cρρ ) and 

TEST2 ( 17.1/ =∞ cpp , 11.1/ =∞ cρρ ), the first one corresponding to an intermediate 

state between OP1 and OP2, and the second one being characterized by operating pressure 

and density much higher than the design ones. Several considerations are in order:  at the 

lowest pressures and densities, all airfoils of the Pareto front offer a much higher lift 

coefficient than the baseline airfoil, whereas their drag coefficient remains approximately 

the same (it is actually slightly higher): this results in values of the lift-to-drag ratio that are 

more than twice with respect to the NACA0012. At OP2 conditions, all airfoils display 

much higher lift than the NACA0012, whereas the lift-to-drag ratio is roughly similar. 

Finally, at TEST2 conditions just a few airfoils conserve a superior performance, whereas 

the others are similar or even worst than the NACA0012. Based on these considerations, 

the airfoil indicated as Airfoil 4 in Table 2, which is the one offering the best overall 

performance at all operating conditions, is retained for further investigations. The last line 

of Table 2 illustrates the viscous aerodynamic performance of an airfoil shape optimized 

for inviscid dense gas flow (referred-to as Airfoil*). At conditions OP2 and TEST2, where 

the flow is dominated by shock waves, its performance is in line with airfoils derived from 

the viscous optimization run. At conditions OP1 and TEST1 one, its performance is still 

much better than the NACA0012, but it is well below the other airfoils, mainly because of 

its lower lift coefficient. It would be possible to extract from the inviscid Pareto front 

airfoils ensuring a much higher lift, but their viscous performance at high-pressure 

conditions is quite poor because of their thick trailing edges. Figure 40 compares the 
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geometry of this airfoil to Airfoil 4 and to the NACA0012. As for the previous non-lifting 

case, the airfoil optimized for viscous flow displays thinner leading and trailing edges with 

respect to the one optimized for inviscid flow, and a slightly thicker trailing edge when 

compared to the NACA0012.  

The iso-Mach lines and wall pressure distributions computed on the NACA0012 airfoil, 

Airfoil 4, and Airfoil* for subcritical (OP1) and supercritical (OP2) conditions are plotted 

in Figure 41 and Figure 42.  The flow over Airfoil* and, to a smaller extent, over Airfoil 4, 

separates at the upper surface, downstream of the compression shock at conditions OP2. 

Such shock is stronger with respect to that forming at NACA0012’s upper surface, and 

closer to the trailing edge. This produces higher lift, but also higher drag, both related to 

shocks and to post-shock separation; nevertheless for Airfoil 4, which is specifically 

shaped for viscous flow, the lift-to-drag ratio remains slightly above that of the 

NACA0012 (about + 3%), whereas for Airfoil*, which displays a quite extended separated 

region at the upper surface, this ratio is 12% lower than for the baseline geometry. Then, 

it’s possible to say that the additional cost related to evaluations of the fitness function via 

a Navier-Stokes solver is completely justified by performance improvements offered by 

the optimized airfoils. 

 
OP1  

( p∞/pc=1.01, ρ∞/ρc=0.676)
TEST1 

(p∞/pc=1.05, ρ∞/ρc=0.794)

OP2 

(p∞/pc=1.08, ρ∞/ρc=0.882) 

TEST2 

(p∞/pc=1.17, ρ∞/ρc=1.11)

 CL CD CL/CD CL CD CL/CD CL CD CL/CD CL CD CL/CD 

Airfoil 1 0.675 0.0167 40.4 0.763 0.0174 44.0 0.346 0.0621 5.58 0.056 0.0897 0.63 

Airfoil 2 0.618 0.0160 38.6 0.699 0.0179 39.1 0.499 0.0650 7.67 0.128 0.0990 1.29 

Airfoil 3 0.722 0.0169 42.8 0.819 0.0195 42.1 0.326 0.0615 5.29 0.155 0.0981 1.58 

Airfoil 4 0.658 0.0159 41.3 0.750 0.0174 43.2 0.549 0.0722 7.60 0.165 0.0999 1.65 

Airfoil 5 0.538 0.0161 33.4 0.604 0.0183 33.1 0.496 0.0626 7.92 -0.016 0.1120 -0.14 

Airfoil 7 0.725 0.0167 43.3 0.819 0.0196 41.9 0.287 0.0616 4.67 0.138 0.0980 1.41 

Airfoil 8 0.663 0.0162 41.0 0.757 0.0179 42.4 0.475 0.0681 6.98 0.057 0.0952 0.60 

Airfoil 9 0.585 0.0156 37.5 0.668 0.0175 38.2 0.485 0.0615 7.89 0.022 0.1041 0.22 

Airfoil* 

(inviscid run) 
0.537 0.0157 34.2 0.608 0.0171 35.5 0.442 0.0688 6.43 0.017 0.0899 0.18 

NACA0012 

(DG flow) 
0.183 0.0128 14.4 0.213 0.0142 15.0 0.253 0.0345 7.34 0.076 0.0983 0.77 

Table 2: Parametric study of the aerodynamic performance of several airfoil shapes. 
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Figure 39: Lifting airfoil 2-point performance optimization. Overview of the computed solutions during the 

genetic evolution process. 

 
Figure 40: Optimal airfoil shapes and baseline shape for the lifting flow problem. 
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(A) 

 

 
(B) 

 

 
(C) 

 

Figure 41: Mach number contours and flow streamlines for Airfoil 4 (A), Airfoil* (B) and the NACA0012 

airfoil (C). M∞=0.85, �=1°, Re=9×106. Left: condition OP1; right: condition OP2. 
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(A)

(B) 
Figure 42: Wall distributions of the pressure coefficient Cp for Airfoil 4, Airfoil*, and NACA0012. 

M∞=0.85, α=1°, Re=9×106.  A) Condition OP1; B) condition OP2. 

4.4. Efficiency Maximization for a turbine cascade 

The MOGA optimizer, coupled with the flow solver and a structured mesh generator is 

applied to shape optimization of turbine cascades. Blade shape is parameterized using 

Bezier polynomials, starting from the baseline profile VKI LS-59. Sixteen control points 

are imposed to parameterize the profile. Globally the optimization problem depends on 

twenty-five variables. Geometric constraints are imposed on the maximum blade thickness 

and on trailing edge thickness (normalized with the blade chord) that may vary within 

±10% of the corresponding non-dimensional thickness for the baseline geometry. The 

turbine cascade is operated with an inlet flow angle of 30° and a pressure ratio of 1.82 
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corresponding, for a perfect diatomic gas, to sonic isentropic exit conditions. For dense gas 

flows, inlet thermodynamic conditions, i.e. the thermodynamic operation point, should be 

also specified. All the computations presented in the following are performed on C-grids 

composed by 192 × 16 cells, with average non-dimensional height of the closest cells to 

the wall approximately equal to 5 × 10−3. This mesh refinement provides a reasonable 

tradeoff between accuracy and computational cost. Since the objective function chosen for 

optimization runs is cascade efficiency (defined as real-to-ideal static enthalpy drop), 

preliminary computations have been performed, for the baseline configuration, to 

investigate the sensitivity of this parameter to mesh refinement. Results computed on finer 

grids composed by 382 × 32 (first cell height 10−3) at several flow conditions show that the 

magnitude of cascade efficiency tend to increase of about 2 ÷ 3% when refining the grid, 

but trends of behavior (e.g. efficiency dependency on inlet conditions) are well conserved. 

Firstly, a single-objective shape optimization for a diatomic perfect gas (PFG) has been 

performed in order to maximize turbine efficiency. The initial population of the genetic 

algorithm is selected after a preliminary DOE over 100 individuals. After about 20 

generations the mean and maximum value of the objective function in the population reach 

approximately the same value, indicating that the GA has converged to a population of 

almost identical (optimal) individuals. The solution for the baseline blade is characterized 

by an oblique shock at about 70% the chord and a second shock attached to the trailing 

edge (Figure 45 a); computed efficiency is 93.2%. Figure 45 b shows the solution after 

shape optimization: the oblique shock is almost suppressed, the trailing edge shock is 

weaker with respect to the reference case and efficiency grows to 96.2%. Figure 45 c and 

Figure 45 d display Mach number and pressure (normalized by inlet stagnation conditions) 

distributions at the wall. For the optimal configuration the maximum Mach number at the 

wall and, consequently, shock strength, is noticeably reduced compared to the baseline 

configuration; consequently, wave drag lowers and cascade efficiency improves. The 

optimal individual (Figure 43) has a thicker leading edge, thinner trailing edge, and greater 

camber than the baseline configuration. Then, computations are performed with the BZT 

fluorocarbon PP10 as the working fluid. Three optimization runs are undertaken. In the 

first and second run, a single objective function is maximized, i.e. cascade efficiency at 

fixed operating conditions pinl/pc = 1.00, ρinl/ρc = 0.752, Γinl = 0.416 (optimization point 

OPT1) and pinl/pc = 1.10, ρinl/ρc = 1.09, Γinl = 1.91 (optimization point OPT2), respectively. 
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Subscript c indicates critical point values. Both operation points lay on an isentrope 

crossing the inversion zone, respectively at lower and higher pressure than peak efficiency 

conditions. In the third run, both objectives (i.e. efficiencies at OPT1 and at OPT2) are 

simultaneously maximized. Here again, a DOE is preliminarily run in order to properly 

initialize the population of the GA. Figure 44 shows optimal individuals for operating 

conditions OPT1 and OPT2 and an individual selected on the Pareto front resulting from 

the two-point optimization. The baseline profile is also represented. For each 

configuration, a parametric study of cascade efficiency at off-design conditions has been 

performed. In addition to operation points OPT1 and OPT2, two test points corresponding 

to operating conditions pinl/pc = 1.02, ρinl/ρc = 0.813, Γinl = 0.886 (TEST1) and pinl/pc = 

1.05, ρinl/ρc = 0.944, Γinl = 1.62 (TEST2) are considered. Results are summarized in Table 

3. Note that optimal individuals provide an improvement of 1 ÷ 2% only over the baseline 

at optimization conditions. However, improvements up to 7% are obtained at conditions 

TEST1 and TEST2, which lay close to peak efficiency conditions for the baseline cascade. 

The best overall results are obtained for the individual derived from the two-point 

optimization (”Pareto 1”). Note that its shape is quite similar to that of the optimal 

individual for perfect gas flow. Figure 46 a and Figure 46 b show iso-Mach lines for the 

baseline configuration and for individual ”Pareto 1” at operating condition TEST2. Figure 

46 c and Figure 46 d show the Mach number and Γ distributions at the wall for the best 

individuals from single-objective optimizations, the ”Pareto 1” individual and the baseline 

blade. Here again the mechanism leading to efficiency improvement is a reduction in the 

maximum Mach number of the flow and hence of shock strength: major gains come from a 

significant weakening of the trailing edge shock for the optimized configuration. This is 

related to lower values of Γ at the rear part of the suction side, causing slower growth of 

the Mach number when the flow re-expands downstream of the first shock. 

 
Table 3: Efficiencies (%) for optimal blade shapes at several operating conditions. 
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Figure 43: optimal shape for perfect gas flow 

 
Figure 44: optimal shape for dense gas flow 
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(a) (b) 

(c) (d) 
Figure 45: PFG flow, isoMach lines: a) baseline; b) optimized. c,d) Wall distributions. 

(

a) 
(b) 
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(c) (d) 

Figure 46: DG flow, isoMach lines: a) baseline; b) optimized. c,d) Wall distributions. 

4.5. GA-Hardness of Drag minimization problem 

A reference single-objective optimization problem, namely, wave drag minimization for a 

non-lifting inviscid transonic flow past a symmetric airfoil, is considered. This study show 

a difficulty to converge toward a global optimum.  

Several optimization runs are performed for a perfect diatomic gas (specific heat ratio γ 

=1.4) and for a polytropic BZT van der Waals gas with γ=1.02 flowing past an airfoil at 

different free-stream conditions. If not specified otherwise, numerical results are obtained 

using the Jameson’s scheme [66] on a half-C grid composed by 100×30 cells; the outer 

boundary is located about 10 chords away from the airfoil, and the mean height of the 

closest cell to the wall is about 5×10-3. Sensitivity of GA convergence to different choices 

of the starting population, computational grid, and discretization scheme is carefully 

analyzed. 

4.5.1.  Drag Minimization for a Symmetric Airfoil 

An inviscid perfect gas (PFG) flow at M∞=0.83, α=0°, with M∞ the free-stream Mach 

number and α the angle of attack, is considered first. The chosen value of the Mach 

number is slightly above the transonic drag rise condition for an airfoil of 12% thickness 

(about 0.8). As it is well-known, transonic drag rise is related to the occurrence of 

supersonic flow regions around the airfoil, with subsequent appearance of shock waves and 

associated losses, i.e. wave drag. As a consequence, for flow Mach numbers above a 
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critical value (the critical Mach number, Mc), the total drag coefficient increases abruptly. 

Nevertheless, if M∞ is just slightly above Mc, shock waves appearing in the flow field 

remain relatively weak, since the maximum Mach number in the flow is relatively close to 

one. For a population of airfoils of given relative thickness, shock waves will be more or 

less strong according to the particular shape of an individual; individuals closest to the 

global optimum, i.e. with the lowest drag coefficient, are expected to produce particularly 

weak shocks or, eventually, a completely shock-free flow. In the latter case, CD exactly 

equals zero for all airfoil shapes such that Mmax≤1, where Mmax is the maximum Mach 

number in the flow-field, and a continuous subset of global optima exists. Of course, this is 

due to limitations of the adopted flow model, which excludes viscous effects from 

considerations. For this reason, it was chosen to optimize the airfoil shape for flow 

conditions somewhat above the critical ones, in order to get supercritical flow for all 

individuals in the search space and, consequently, to be able to select a unique global 

optimum. In practice, because of numerical errors introduced by the numerical scheme and 

boundary conditions, CD is not exactly zero even for completely subsonic flow-fields, but 

takes instead small positive values. In order to distinguish between subcritical and 

supercritical airfoils, a numerical check on the flow maximum Mach number is introduced, 

and CD is forced to be zero if Mmax≤1. For supercritical flows characterized by strong shock 

waves, contribution of numerical errors to the total drag is generally negligible.  Problems 

can arise for flow-fields characterized by very weak shock waves, i.e. for individuals close 

to the global optimum. For these individuals, numerical drag can represent a considerable 

amount of the total drag if the numerical evaluation of the fitness function is not 

sufficiently accurate; conversely, the more accurate is the numerical scheme and the finer 

the computational grid, the smaller the numerical error on CD. 

Firstly, two optimization runs are performed using different randomly-generated starting 

populations. For each run, the GA-driven population appears to have reached a stabilized 

optimal (minimal) value of the drag coefficient after the prescribed number of generations: 

the maximum and mean value of the drag coefficient in the final population of airfoil 

shapes are almost the same in each case, which hopefully indicates that the algorithm has 

converged to a population of almost identical geometries. Nonetheless, optimal airfoils 

obtained in the two runs display considerable geometric differences, precisely, about 8%, 

based on the distance measure ((Eq. 19). Since both optimization runs provide stabilized 
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solutions, this implies that the GA evolves during a given number of generations, and 

finally stagnates, generating random individuals in the neighborhood of the optimum 

without never reaching it. The two optimal solutions obtained in the two runs are 

represented in Figure 47(a) along with the classical NACA0012 airfoil shape, which is 

taken as a reference. The corresponding Mach number distributions at the wall are 

displayed in Figure 47(b). The drag coefficients obtained in the two cases are equal to 

7.02×10-3 and 6.94×10-3 (it equals 1.64×10-2 for the reference NACA0012 airfoil). In order 

to evaluate the fitness distance correlation of the present minimization problem, an 

estimation of the solution global optimum is required. This is obtained by refining the GA 

solution by means of a gradient-based method (see 3.2). The subset of designs used to 

compute the FDC is the global GA population generated during 30 generation for both 

optimization runs (about 1800 individuals, some repeated). The resulting FDC value, equal 

to about 0.7, is relatively far from the ideal value FDC=1: as a consequence, the problem 

can be considered to be GA-hard. GA convergence difficulties can be related to the fact 

that very weak shocks characterize the best individuals, which provide an almost shock-

free flow. Because of numerical errors, a numerical “viscous” drag adds to the small 

physically relevant wave drag. For sufficiently similar individuals, it is reasonable to 

believe that this numerical drag, related to the chosen grid density and numerical scheme, 

is essentially independent from the particular airfoil shape, contrarily to wave drag that is 

more sensitive to shape changes. In the neighborhood of the global optimum, the effect of 

numerical drag is to “smooth out” the fitness function minimum, i.e. to reduce fitness 

function concavity. In these conditions, a GA will continue to generate randomly 

individuals characterized by more or less the same small drag coefficient without being 

able to detect the optimal one. In order to check the influence of numerical errors on GA 

convergence, optimization runs are repeated using a finer grid of 150×50 cells, mean 

height of the closest cell to the wall 10-3 chords. Grid refinement reduces numerical errors 

and provides sharper shock waves. Optimal shapes obtained using the finest grid are much 

closer each other (1.9% differences) and to the optimal value determined by refining the 

solution with the gradient-based method. The FDC for this case is 0.852, a closer value to 

1. This result supports the conclusion that, for transonic flows of perfect gas characterized 

by weak shock waves, numerical viscosity behaves as a low-pass filter that levels a variety 

of low-drag profiles close to the optimum to the same degree of fitness. 
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Next, a dense gas flow optimization is considered. The working fluid is supposed to be a 

BZT politropic van der Waals with a specific heat ratio equal to 1.02. When dense gas 

flows are considered, the free-stream Mach number and the angle of attack are no longer 

sufficient to completely determine the flow field, but information about free-stream 

thermodynamic conditions has to be added: for all computations presented in the 

following, the operating pressure and density, normalized with their critical-point values, 

are taken equal to ,0696.1/ =∞ cpp  735.0/ =∞ cρρ . With this choice, the free-stream 

value of the fundamental derivative is 0=Γ∞ . Viscous effects are neglected. Previous 

studies on BZT flows past airfoils (see [40]) show that, on the one hand, the peculiar 

behavior of the sound speed in BZT flows considerably delays the transonic drag rise with 

respect to a perfect gas flow over an airfoil of the same thickness; for the BZT gas and 

operating conditions considered in this study, the critical Mach number is found to be 

around 0.94 for an airfoil of 12% thickness. On the other hand, even when the flow finally 

becomes supercritical, shock waves characterizing the flow-field for M∞>Mc are not only 

weak, as previously observed about PFG flows, but they also generate losses (entropy 

gradients) up to one order of magnitude weaker than those generated in a PFG for a shock 

wave of the same intensity if their jump conditions are located in the vicinity of 0=Γ∞ .  

Firstly, BZT flow at M∞=0.95 is considered, i.e. slightly above critical conditions. In order 

to get a more detailed knowledge of the search space, a design of experiment (DOE) is 

performed over a sample of 600 individuals. The DOE analysis uses a Sobol sequence 

technique, which ensures a uniform covering of the search space. The results are 

summarized by means of a frequency histogram (see Figure 48). Individuals are collected 

into 20 classes according to their fitness (drag coefficient). A considerable number of 

individuals, corresponding to 3% of the whole population, belong to the lowest drag-

coefficient class. These are quite different in shape, i.e. a large variety of shapes providing 

good values of the fitness function exists. The best 36 individuals detected by the DOE are 

used to initialize the GA, whose population is allowed to evolve during 30 generations. 

The GA population appears to have reached a stabilized optimal value of the drag 

coefficient after the prescribed number of generations.  In order to investigate the 

sensitivity of the GA to the starting population, four optimizations runs are performed with 

different randomly generated starting populations. All optimization runs converge within 
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the prescribed limit of 30 generation; nevertheless, quite different optimal shapes are 

generated (differences up to 22.6%). The resulting profiles are shown in Figure 49. The 

corresponding values of the fitness function are 0.00117, 0.00109, 0.00121, 0.00112, 

respectively. Evaluation of the FDC for this case returns a value of 0.534, much lower than 

that obtained for the previous perfect-gas problem. The high sensitivity of the GA to the 

starting population can be related to the fact that, due to the peculiar BZT fluid properties, 

shock waves are extremely weak for a large range of airfoil shapes in the neighborhood of 

the optimum: for all of these shapes, numerical drag represents a large part of the total one 

and tends to “hide” differences of the fitness function for airfoil shapes close to the 

optimum. The effect of numerical errors on the computed solution and, subsequently, on 

GA convergence properties, are investigated through a systematic analysis of the influence 

of different computational grids and discretization schemes on the results. On the finer grid 

of 150×50 cells, optimal shapes much closer to each other (3.1% difference) are obtained 

for different choices of the starting population. The computed fitness of the global 

optimum is now CD=4.94×10-4, which is about 40% lower than the value computed on the 

coarser grid! That is, a considerable amount of the computed drag is due to numerical 

viscosity. Reduction of numerical errors results in an improvement of the FDC, which 

grows to 0.654. To further check how the flow physics (shock strength) affects GA 

convergence, the free-stream Mach number is increased to 0.98: very similar optimal 

shapes are obtained for any choice of the starting population (about 1.5% maximum 

difference), even when the second-order scheme and the coarsest mesh are used to evaluate 

the fitness. In this case however, the flow field is characterized by a strong shock close to 

the trailing edge and numerical dissipation is negligible (for at least second-order accurate 

numerical schemes) with respect to wave drag. Accordingly, the computed FDC for this 

case is much closer to one, FDC=0.926 
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Figure 47: (a) Optimal geometries for the drag minimization problem for an inviscid perfect gas flow with 

M∞=0.83 obtained using different initial populations; (b) corresponding wall distributions of the Mach 

number. 

 

 
Figure 48: Frequency histogram for DOE data 
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Figure 49: Optimal geometries resulting from four optimization runs with different starting populations 

4.5.2.  Cures to GA-Hardness 

A standard way to improve GA convergence, already explored in several papers in the 

literature consists in constructing hybrid algorithms combining the GA with a local search 

gradient-based algorithm. The most used hybridization technique is the following: the GA 

is preliminarily run in order to roughly localize basins containing global optima; then, the 

solution is refined by applying a quick local search method that, using information about 

the solution gradient, quickly converges to the nearest optimum.  

Similarly, the coarse-grid solutions provided by the GA is used to initialize a gradient-

based method (see 3.2). The fitness-function gradient is approximated by central 

differences; after about 30 iterations, the solution converges toward a new individual 

characterized by a better value of the fitness function than both “optimal” individuals 

detected with the preceding GA runs. The computed drag coefficient is 1.64×10-2 for the 

NACA0012 and 5.00×10-3 for the optimized airfoil; this value also improve the results 

previously obtained by the GA. 

The optimal solution for the inviscid dense gas flow at M=0.95 previously discusses in 

4.5.1 is also locally refined by means of the BFGS algorithm. After convergence, an 

optimal airfoil shape is found , displaying a drag coefficient CD=9.75×10-4. This value is 



 

 

 

113

about 20.3% lower than the computed value for a flow at the same conditions past the 

reference airfoil NACA0012 (CD= 1.22×10-3), due to a considerable reduction of shock-

wave strength for the flow past the optimal shape with respect to the reference flow past 

the NACA0012. It also significantly improves previous results returned by the GA (about 

1.1×10-3 in average). The overall CPU time for hybrid optimization runs required about 

1300 fitness function evaluations, 800 required by the GA and 500 by the BFGS. This is 

due to the relatively high number of design variables used to parameterize the airfoil shape. 

 

In the above, it was shown that for flows characterized by very low wave drag (typically 

for dense gas flows, but also for perfect gas flows at Mach numbers slightly above the 

critical one) the solution of the drag minimization problem is very slow and sensitive to 

numerical parameters used in the flow solver, such as numerical dissipation introduced by 

the scheme and the computational mesh used to evaluate the fitness function. It was also 

shown that the use of a more accurate scheme and of finer meshes allows reducing GA-

hardness of a given problem. Unfortunately, the use of very fine meshes considerably 

increases computational costs. In order to alleviate this problem, a simple and effective 

method has been proposed in 3.3.2. The above strategy is now applied to one of the more 

difficult test cases of the previous section. Precisely, we consider again the drag 

minimization problem for a BZT van der Waals gas flow over a symmetric airfoil, with 

freestream conditions M∞=0.95, α=0°, ,0696.1/ =∞ cpp  735.0/ =∞ cρρ . Firstly, a 

reference solution is computed by using a very fine mesh composed by 200×64 cells. CPU 

time required for a single fitness evaluation on this grid is about 40 minutes on a Pentium 

V processor. The whole optimization process requires about 800 fitness evaluations. Then, 

the same optimization run is performed by applying the multigrid strategy described above: 

for each individual, the fitness function is first computed using a coarse grid of 50×16 

cells, then using a finer grid of 100×32 cells, finally a third value is extrapolated via 

Richardson’s formula. The total CPU time required to obtain the final estimate of the 

fitness function is about 5 minutes! This noticeable reduction in computational time is due, 

on the one hand to the lower number of operation required to compute solutions on the 

coarser grids and, on the other hand to higher convergence rates of the flow solver. An 

important role is also plaid by initialization of the medium grid computation with the 

coarse grid solution. Let us recall that the computed FDC parameter of the GA for this 
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problem was 0.536 using a grid composed by 100×30 cellules (close to the present medium 

mesh). For the optimization run using the finer grid FDC grows to 0.676. For the multigrid 

optimization run, FDC is even better and equals 0.691. These results demonstrate once 

more the strong link between the fitness function evaluation accuracy and the convergence 

rate of the GA. Figure 50 shows geometries of optimal individuals obtained, respectively, 

by using the finest grid and the multigrid strategy to evaluate the fitness function. The two 

geometries are very close to each other, almost within plotting accuracy. The 

corresponding values of the drag coefficient are also very similar: CD=7.32×10-4 for the 

multigrid optimal individual (a posteriori evaluated on the finest mesh) and CD=7.64×10-4 

for the fine grid one. Figure 51 shows iso-Mach lines, and wall pressure and Mach number 

distributions for the two solutions: once again, they are almost superposed. In summary, 

the proposed multigrid strategy allows improving GA convergence, and avoids a posteriori 

solution refinement via a gradient-based method. Moreover, computational cost for a 

single fitness evaluation just slightly increases with respect to a single medium grid 

evaluation. The resulting solution is very close to that obtained by computing the fitness 

function on a very fine mesh for all individuals; nevertheless, CPU time required by a 

single fitness evaluation using the multigrid strategy is about 1/8 with respect to a fine grid 

evaluation. Since a whole optimization run requires about 800 evaluations, the gain in total 

CPU time is dramatic. 
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Figure 50: BZT van der Waals gas flow over a symmetric nonlifting airfoil. Optimal geometries obtained 

using a fine-grid estimate or a multigrid (Richardson extrapolation) estimate of the fitness function 

(a) (b) (c) 
Figure 51: BZT van der Waals gas flow over a symmetric nonlifting airfoil. (a) Pressure coefficient isolines 

past optimal individuals (∆Cp=0.1); (b) wall Mach number; (c) Wall pressure coefficient 
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5. Conclusions 
This work is devoted to the understanding of transonic flows of dense gases of the Bethe-

Zel’dovich-Thompson (BZT) type, and to their possible exploitation as working fluids in 

Organic Rankine Cycles. All the studies previously made concerned basically the analysis 

of the flow in the BZT region, i.e. the thermodynamic region above the upper saturation 

curve where the fluid exhibits negative values of the Fundamental Derivative, i.e. the 

inversion zone. This operating region is particularly attractive because of the exotic gas 

dynamic behaviors which appear in the transonic and supersonic regime, namely, the 

disintegration of compression shock waves. Unfortunately, the design of ORCs operating 

the fluid expansion entirely within the inversion zone is made unpractical by its very 

limited extent in terms of pressure and temperature ranges. Results presented in this work 

demonstrate that it is possible to enlarge the cycle operating region also outside the 

inversion zone while conserving part of the advantages related to the use of BZT working 

fluids. This is done through a detailed study over a fixed airfoil by changing the freestream 

conditions of pressure, temperature and Mach number. At the same time, shape 

optimizations are conducted to show the best performances that it’s possible to obtain with 

an airfoil, properly optimized for dense gas flows. 

 

Inviscid and viscous turbulent flows of a dense gas over an airfoil at transonic speeds have 

been considered. Analyses of the variation of aerodynamic coefficients with free-stream 

thermodynamic conditions allow identifying three flow regimes in the range of 

thermodynamic conditions swept in present calculations, representative of the operating 

range of an Organic Rankine Cycle turbine. While the drag always increases with free-

stream pressure and fundamental derivative Γ, the lift coefficient displays an optimum in 

the second regime, referred-to as low-pressure transonic BZT regime in the present study, 

and then drops dramatically. The lift-to-drag ratio is very poor for high Γ∞ flows, but tends 

to infinity as the free-stream value of the Γ approaches unity from the high-pressure side of 

the inversion zone. The best compromise solution between high lift and low drag is 

obtained in the middle regime (the low-pressure BZT regime), for Γ∞ approximately in the 

range 1 ÷ 1.3: in these conditions, higher lift and significantly reduced wave drag 
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compared to perfect gas results is observed. Beneficial effects deriving from the use of a 

dense working fluid are also observed when the aerodynamic performance of viscous 

turbulent airfoil flows at large Reynolds number and transonic speeds is considered. The 

nonclassical variation of the Mach number with density favourably affects the boundary 

layer development, contributes to reducing friction drag and to avoiding boundary layer 

separation due to large adverse pressure gradients. Specifically, post-shock separations due 

to shock/boundary layer interaction are suppressed or greatly reduced, which ensures 

satisfactory lift and aerodynamic efficiency at flow conditions where the aerodynamic 

performance of perfect gas flows suffers from shock stall. 

 

A shape optimization has been performed for inviscid transonic flows of dense gases over 

airfoils. Optimal airfoil shapes have been generated by using a multi-objective genetic 

algorithm coupled with an dense gas flow solver. Though computationally intensive, 

genetic algorithms are well adapted to the solution of multi-point optimization problems 

that arise naturally in dense-gas aerodynamics and allow generating airfoil shapes that 

ensure good performance over a large range of operating conditions. When solved for 

inviscid flow, the drag minimization problem of a symmetric airfoil with fixed thickness-

to-chord ratio yields indeed shock-free shapes for an extended range of freestream Mach 

number; however, the optimal airfoils display a thick trailing edge that is bound to induce 

premature flow separation hence an increase in form drag when taking into account the 

viscous effects in the flow analysis. This point was actually checked by a posteriori 

numerical experiments using an available version of the SGS solver extended to the 

Reynolds-Averaged Navier-Stokes equations for dense gas flows. The multi-point 

performance optimization for a lifting airfoil in subcritical and supercritical flow 

conditions has allowed determining an airfoil shape that provides an overall improvement 

of the lift coefficient while preserving the high lift-to-drag ratio typical from BZT flows. 

However, in the case of inviscid flow optimization, it was again necessary to select an 

optimum shape within the optimal Pareto set that might ensure good performances also for 

viscous flows, thanks to a not-too-thick trailing edge, less prone to boundary layer 

separation.  
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Then, the previous shape optimization has been reconsidered for viscous transonic flows of 

dense gases over airfoils. Moreover, computational costs related to the great number of 

evaluations of the objective function by means of the Navier-Stokes solver have been 

substantially reduced by using a properly calibrated artificial neural network to interpolate 

the response surface. When solved for viscous flow, the drag minimization problem of a 

symmetric airfoil with fixed thickness-to-chord ratio yields indeed shock-free shapes for an 

extended range of the freestream Mach number. However, the problems generated by 

considering the viscous performances of airfoils produced by inviscid computations are 

completely overcome by including viscous effects into the optimization process, which 

provides an airfoil shape whose performance is far superior to the baseline over the whole 

range of Mach numbers considered for the study. The multi-point performance 

optimization for a lifting airfoil in subcritical and supercritical flow conditions has allowed 

determining an airfoil shape that provides an overall improvement of the lift coefficient 

while preserving the high lift-to-drag ratio typical from BZT flows. Once more, the results 

show the importance of taking fully into account viscous effects during the optimization 

process in order obtain good performance over a large operation range. The overcost 

related to evaluations of the fitness function via a Navier-Stokes solver is completely 

justified by performance improvements offered by the optimized airfoils, and could be 

further alleviated by means of parallel computing. Moreover, significant improvement may 

be expected from the use of hybrid optimization algorithms, combining the flexibility of 

genetic strategies with the accuracy and efficiency of gradient-based methods. 

 

Thirdly, shape optimization for flows of perfect and dense gases in turbine cascades has 

been achieved by means of a multi-objective genetic algorithm. For perfect gas flows, 

shape optimization allows efficiency improvements of about 3% over the baseline 

configuration. For dense gas flows, proper optimization starting from the same baseline 

geometry leads to efficiency gains up to 7%. Multipoint optimization allows improving 

performance over a large range of thermodynamic operating conditions. For the high 

cascade pressure ratio considered in this study, BZT effects play a minor role in efficiency 

improvement. The use of properly designed turbine cascades working with somewhat 

lower pressure ratios could allow higher efficiency improvements due to BZT effects, 

opening the door to the development of BZT turbines for Organic Rankine Cycles. 
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Finally, a detailed analysis of GA convergence for shape optimization problems in perfect 

and real gas flows has been considered. Specifically, a set of drag minimization problems 

for a symmetric non-lifting airfoil are considered. A statistical tool, namely, the fitness 

distance correlation (FDC) parameter, has been introduced: FDC measures how difficult is 

for a GA to converge toward the global optimum for a given problem. Numerical results 

show that problems characterized by low values of the FDC tend to stagnate in the vicinity 

of the global optimum without never reaching it, and are therefore quite sensitive to the 

starting population used to initialize the GA, and to numerical parameters such as the 

computational grid and numerical scheme used to solve the flow governing equations. 

Analysis of the flow physics shows that the greatest convergence difficulties (and the 

lowest FDC parameter) are encountered for optimization problems such that airfoil shapes 

close to the optimum generate flow-fields characterized by extremely weak shocks. For 

this kind of flows, numerical viscosity acts as a low-pass filter that levels many different 

airfoil shapes to almost the same degree of fitness, slowing down or preventing at all GA 

convergence toward the optimum. This is particularly true for flows of BZT gases, whose 

peculiar property is to give rise to flow discontinuities much weaker than those 

characterizing perfect-gas flows. In order to improve GA convergence and to reduce its 

sensitivity to the starting population it is recommended to use high-accurate numerical 

schemes and fine meshes (as much as  allowed by CPU time available to complete an 

optimization run), in order to minimize numerical errors on the fitness function. A very 

efficient objective-function evaluation procedure based on Richardson extrapolation is 

proposed, allowing to drastically reduce GA-hardness with a very moderate increase in 

computational cost of optimization runs. 

Suggestion for futures study 
The future study could concern the extension of this work to the 3D case. Then, first a 

detailed analysis of a 3D dense gas flow over an isolated airfoil and a turbine blade would 

be necessary. A  3D optimization of a turbine blade could produce the first 3D blade, 

conceived for an ORC, by taking into full account dense gas effects.  
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