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Abstract

This thesis treats the control of sound synthesis of bowed string instruments based on
physical modelling. The work followed two approaches: (a) a systematic exploration of
the influence of control parameters (bow force, bow velocity, and bow-bridge distance) on
the output of a physical model of the violin, and (b) measurements and analyses of the
bowing parameters in real violin playing in order to model and parameterize basic classes
of bowing patterns for synthesis control.

First a bowed-string model based on modal solutions of the string equation is described
and implemented for synthesis of violin sounds. The behaviour of the model is examined
through simulations focusing on playability, i.e. the control parameter space in which a
periodic Helmholtz motion is obtained, and the variations of the properties of the simulated
sound (sound level and spectral centroid) within this parameter space. The response of
the model corresponded well with theoretical predictions and empirical expectations based
on observations of real performances. The exploration of the model allowed to define
optimal parameter regions for the synthesis, and to map sound properties on the control
parameters.

A second part covers the development of a sensor for measuring the bow force in real
violin performance. The force sensor was later combined with an optical motion capture
system for measurement of complete sets of bowing parameters in violin performance.

In a last part, measurements of the control parameters for basic classes of bowing
patterns (sautillé, spiccato, martelé, tremolo) are analyzed in order to propose a realistic
control of the sound synthesis. The time evolution of the bowing parameters were modelled
by analytical functions, which allowed to describe and control simulated bowing patterns
by a limited set of control parameters. For sustained bowing patterns such as détaché,
control strategies for basic elements in playing (variations in dynamic level, bow changes)
were extracted from exemplary measurements, and simple rules deduced, which allowed
extrapolation of parameters to modified bow strokes with other durations and at different
dynamic levels.

Keywords: Bowed string, physical modelling, sound synthesis, performance control,
violin playing.
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Sammanfattning

Denna avhandling behandlar styrning av syntes av stråkinstrument med tillämpning-
ar inom fysikalisk modellering av musikinstrument. Problemet har angripits i två steg,
först genom en systematisk undersökning av inflytandet av styrparametrarna i violinspel
(stråkkraft, stråkhastighet, och avstånd stråke-stall) på utsignalen från en fysikalisk mo-
dell, följt av mätningar och analyser av stråkningsparametrarna i normalt violinspel med
syfte att modellera och parameterisera grundläggande klasser av stråkarter för styrning
av syntesen.

En modell av interaktionen mellan stråke-sträng har utvecklats baserad på modal syn-
tes och modellen har implementerats för syntes av violintoner. Modellen har utforskats
genom simuleringar inriktade dels på spelbarheten, dvs. gränserna för den parameterrymd
inom vilken en periodisk Helmholtz-rörelse erhålls, och dels på variationerna hos det synte-
tiserade ljudets egenskaper (ljudnivå och spektral centroid) inom detta parameterområde.
Modellens egenskaper motsvarade väl de teoretiska prediktionerna och förväntade resultat
från observationer av violinster. Utforskningen av modellen gjorde det möjligt att definiera
optimala parameterområden för styrning av syntesen, och även avbilda ljudens egenskaper
på styrparametrarna.

En sensor för mätning av stråkkraften utvecklades för att kunna genomföra mätningar
under normalt spel. Sensorn kombinerades senare med ett optiskt system för rörelseanalys
vilket gjorde det möjligt att mäta kompletta uppsättningar av stråkparametrar under
spel. Uppmätta styrparametrar för grundläggande klasser av stråkarter (sautillé, spiccato,

martelé, tremolo) analyserades för att ge tillgång till realistiska styrförlopp av syntesen.
Stråkningsparametrarna modellerades med analytiska funktioner, för att kunna beskriva
och styra simulerade stråkningsförlopp med ett begränsat antal modellparametrar. För
stråkarter med uthållna toner som détaché utvecklades styrstrategier för grundläggande
element i spelet, som ändringar i styrkegrad och stråkväxlingar, utifrån mätningar på
typfall. Enkla regler formulerades för att kunna extrapolera parametrarna till modifierade
stråk med andra durationer och styrkegrader.

Sökord: Struken sträng, fysikalisk modellering, ljudsyntes, musikutförande, violinspel.
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Résumé

Cette thèse porte sur le contrôle de la synthèse sonore par modélisation physique
des instruments à corde frottée. Il se base, d’une part, sur l’exploration systématique de
l’influence des paramètres de contrôle (pression d’archet, vitesse de l’archet et distance au
chevalet) sur le comportement du modèle, et d’autre part, sur la mesure et l’analyse du
contrôle effectif qu’exerce l’instrumentiste afin de modéliser et paramétriser des modes de
jeu typiques pour le contrôle de la synthèse.

Un modèle de corde frottée basé sur la résolution modale de l’équation de la corde
est d’abord présenté et implémenté pour la synthèse sonore du violon. Le comportement
du modèle physique est ensuite examiné en effectuant un grand nombre de simulations
et se concentre sur deux aspects : la “jouabilité", c’est-à-dire l’espace des paramètres de
contrôle dans lequel un mouvement de Helmholtz périodique est obtenu, et les variations
des propriétés du son synthétisé (niveau sonore et centroïde spectral) à l’intérieur de cet
espace de paramètres. Un très bon accord a été trouvé entre, d’une part, le résultat des si-
mulations et, d’autre part, les prédictions théoriques ou empiriques basées sur l’expérience
des instrumentistes. Cette exploration systématique a permis de définir des régions opti-
males pour le jeu dans l’espace des paramètres de contrôle et de décrire quantitativement
la correspondance entre les propriétés sonores pertinentes et les paramètres de contrôle.

La deuxième partie de ce travail concerne la mise au point d’un capteur pour mesurer
la force d’appui de l’archet sur la corde dans un contexte de jeu réel. Le capteur est ensuite
combiné avec un système optique de capture du mouvement afin de mesurer les paramètres
de jeu du violoniste.

La dernière partie présente l’analyse des mesures de ces paramètres de contrôle pour
des modes de jeu typiques (sautillé, spiccato, martelé, tremolo), afin de proposer un
contrôle réaliste de la synthèse sonore. L’évolution temporelle des paramètres de jeu est
modélisée par des fonctions analytiques, ce qui permet de décrire et de simuler différents
modes de jeu par un nombre limité de paramètres. Pour les modes de jeu soutenus tels que
le détaché, les mesures permettent de décrire des stratégies de contrôle pour des tâches
typiques (variation de niveau sonore, changement de direction d’archet), et des procé-
dures simples ont été déduites, permettant d’extrapoler les paramètres de contrôle afin de
changer le niveau sonore ou la durée des coups d’archet.

Mots-clés : Corde frottée, modélisation physique, synthèse sonore, contrôle gestuel,
violon
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Introduction

The violin and the other bowed string instruments offer a musical expressivity com-
parable to the singing voice. The key to the expression in performance is the bowing
gestures by which the sound properties are shaped continuously during a stroke.
The seemingly simple bow constituates a sensitive control device with unexpected
possibilities, by which the perceptual properties of the sound can be controlled
in detail. Physically, the sound of the bowed string instruments is produced by
drawing the bow across the string. As the bow moves, the string is forced to os-
cillate due to the bow-string interaction, which is governed by the frictional force
between the bow hair and string, and a dynamical triggering mechanism defined by
repeated reflections of the travelling waves on the string. The string vibrations are
transmitted via the bridge to the violin body, which in turn radiates the sound.

The violinist’s control of the bow-string interaction is described by three main
bowing parameters:

• Bow-bridge distance. The distance from the bridge to the position of the con-
tact point between the bow hair and the string (“contact point” or “sounding
point”). In normal playing the contact point is located between the bridge and
the termination of the fingerboard, so the variation in bow-bridge distance is
limited to one fifth of the string length.

• Bow force. The force with which the bow is pressed against the string (called
“bow pressure” by musicians). In playing, the bow is held at the frog (the
handle) in a pivoting grip between the thumb and the middle and ring fingers.
The bow force depends on the actions of the index and little fingers, pressing
on top of the bow stick on either side of the pivoting point. In this way the
bow is balanced and a suitable strength of the force couple can be applied.
Playing at the tip requires a very strong action of the index finger. A high
bow force at the tip of about 1 N requires about 10 N at the index finger.
In contrast, when playing with low bow force near the frog, the action of the
little finger is required to compensate for the contribution from gravity to the
bow force. Consequently, parts of the bow strokes requiring high bow force
are preferably played close to the frog, and parts with low force close to the
tip, if possible.

• Bow velocity. The velocity of the bow motion in the bowing direction.

1
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In addition, the tilting of the bow around the axis of the bow stick changes the
amount of bow hair in contact with the string and offers a subtle control of the bow
force. For example, the bow is usually tilted when approaching the frog in order to
avoid strong variations in bow force.

The training of the budding violinist has two main goals. First, it aims at de-
veloping a motoric skill to perform gestures with the arm and hand, which allows
a precise control of the bowing parameters. The violinist’s bowing gestures are
far from natural and require long-term practicing in order to obtain the necessary
suppleness of the arm, hand, and fingers. From the shoulder to the bowing posi-
tion, the physiological and mechanical system controlling the bowing parameters
measures between 70 and 130 cm, and is composed of six body parts which require
perfect coordination to perform a well-controlled bowing gesture. For instance,
drawing a straight line with the hand in the bowing direction over a distance of 65
cm (corresponding to the length of the bow) is not elementary, especially as the
bow should be kept parallel to the bridge during the entire gesture.

The second goal of the string player’s training is implicit and consists in ex-
ploring the bowing parameter space and building an intuitive mapping between the
bowing gestures and the resulting sound. In performance, such a well-established
mapping between bow control and sound is needed in order to continuously adapt
the bowing parameters to a combination which gives the intended tonal properties.
This is a difficult task as such, which is made even more demanding by the large
set of musical and technical constraints given by the score.

This work will not deal with the first of these goals, i.e. the acquisition of a
specific bowing technique and the correspondence between the gesture and bowing
parameters. Instead, we will focus on the relation between the bowing parameters
and the sound, and more precisely, on the control of the parameters for a specific
musical purpose. During the years of training, the violin student progressively
learns subtle differences in the control of the instrument. At the beginning, the focus
is on obtaining the right type of string vibration and making the violin “speak well”.
A too high bow force will make the violin’s voice creaky, and a too low will make the
violin whistling. The violinist-to-be successively discovers the “good” force range
which can be used in adequate combination with the other bowing parameters.
Once it works, she tries to increase the sound level by pressing harder, but the
sound becomes creaky once more. The exploration starts again. She makes different
tries, bows closer to the bridge because it sounds better, and maybe increases the
bow velocity. Her hearing is refined and subtle effects appear: softer tones are easy
to obtain when bowing above the fingerboard, very brilliant notes are possible to
produce close to the bridge. From now on, the entire sound palette of the violin
is open to her, and she can play with different sound levels from pianissimo to
fortissimo and use different sound nuances according to the musical context by
coordinating the bowing parameters adequately.

However, music is time, and the violin technique cannot be reduced to the
production of specific sounds. An essential part of the musical expression depends
on the timing of the notes, and variations in the sound during the notes. The
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global shape of a note is obtained through bowing gestures producing the desired
time evolution of the bowing parameters. The most usual way of bowing is to
draw the bow back and forth with the hair in continuous contact with the string.
The strokes are separated by very short stops at the changes in bowing direction
(“bow changes”). This basic bowing pattern is called détaché (“separated”). If the
strokes are heavily accentuated at the beginning and clearly separated, the bowing
pattern is termed martelé. The string can also be set in vibration by letting the
bow bounce on the string, like in sautillé and spiccato playing. Détaché, spiccato
and martelé constitute the core components of the violinist’s bowing vocabulary,
with infinite possible variations. They are very different in terms of the controlling
bowing gestures, and require years of dedicated practicing in order to be mastered
in performance.

The previous description has illustrated the fundamentals of the sound control
in violin playing. We will now touch upon problems related to sound synthesis for
imitating the sound of the violin. The most basic approach is a straightforward
reproduction from recordings of the sound, which is the principle of sampling-
based synthesis. Another method consists in modeling some of the perceptually
most important properties of the sound, like the spectrum. The information about
the frequencies of the partials, their amplitude, and their time evolution are used
to resynthesize a signal which shares many properties of the original sound.

Leaving aside the question of realism or naturalness, the problems related to
sound synthesis are of two types. First, a synthesis method should be able to re-
produce the main part of the expressive capabilities of the instrument, in particular
the usual sounds that can be produced. Secondly, the control of the synthezised
sounds becomes more and more central as the quality and complexity of the syn-
thesis methods increase. This evolution brings the problem of control parameters
to the foreground. A method for synthesizing sounds needs a small number of pa-
rameters by which the user can control the sound. The control parameters can be
more or less intuitive, or related to a given purpose. For example, spectral synthesis
is based on the description of low-level properties of the sound, which is adequate
from a perceptual point of view. Specific mappings to the bowing parameters have
to be found, however, if a control of the synthesis based on violinists’ gestures is
demanded [60].

From these two points of view, sound synthesis based on physical modelling
is a promising method. Provided that an adequate physical description of the
instrument can be formulated, the method offers the same sound possibilities as
the real instrument, and also the same control parameters which relate the action
of the player to the sound. In the case of a virtual violin, the control parameters
are the bow-bridge distance, the bow force, and the bow velocity, and some models
include a control of the bow tilt as well. However, the drawback of the method is
that the effects of the control parameters and their time evolution are not obvious
for non-violinists. Even when violinists “play” violin synthesis based on physical
modelling, the quantification of the bowing parameters is far from easy and repeated
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tries with changed parameter envelopes and ranges of values are required in order to
obtain an acceptable sound, exactly like when learning to play the real instrument.
The physical interface to the model is of particular importance in order to take
advantage of the motoric capability of a human player. A stick of about the same
length as a sweeping motion by the arm, combined with sensors for the motion,
suggests itself as an interesting control device with a large potential of musical
expression by gesture control.

Putting aside the question of the physical interface, three general problems in
the control of synthesis of musical instruments can be identified:

• The playability, i.e. the ranges and combination of parameters that can be
used in order to obtain an appropriate motion of the string.

• The mapping between the perceptual properties of the sound and the control
parameters. The question is, for example: “I have no experience of violin
playing and I want to produce a louder sound, or a more brilliant sound, or a
progressive increase in dynamics (crescendo). What do I have to do with my
control parameters?”

• The realism of the control and the production of typical bowing patterns, i.e.
the time evolution of the control parameters in typical performance situations
related to the technique of violin playing.

The starting point of this thesis lies in the last point. Whereas the modelling
of musical instruments and the implementation for sound synthesis purposes have
been widely investigated in the past, very few works have tackled the problem of
realistic control. In the eighties, Chafe [15] and Jaffe [42] worked on a score-and-
rule-based generation of control parameters. More recently, the possibility of real-
time implementations of the models has driven the question of control interfaces
[85], and since a few years different devices for measurement of gesture parameters
have been presented [68, 51, 92]. There is now a need for studies on how the control
of physical models based on realistic bowing parameters influences the realism of
the synthesis. In particular, examination of different bowing patterns could be used
to propose adequate control methods according to the musical intentions.

The work has been divided into three phases, reflected in the outline of the
thesis. First it was necessary to develop the basic tools to work with: (1) A phys-
ical model of the violin, and (2) devices for measurement of bowing parameters in
real violin performance. Concerning the development of the physical model, the
guideline was to implement a reliable model using modal formalism. For the mea-
surement of bowing parameters, the central point was to design a sensor enabling
measurements of bow force in real performance. In a second step, the physical
model and the measurements and observations on the bowing parameters had to
be brought together for sound synthesis, in order to propose adequate ways of
controlling the model.
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The dissertation is structured as follows:

• In Chapter 1, we will present basic observations on the motion of the bowed
string together with studies related to the modelling of the bow-string system
and different implementations for simulation purposes.

• In Chapter 2, the physical model that was developed and used during this
work will be presented in detail. We will describe the modal formulation on
which the model is based, the numerical implementation, and an empirical
procedure used to synthesize violin sound from the simulations. The influence
of computation parameters will be examined, and some possible developments
discussed.

• In Chapter 3, systematic simulations will be performed in order to observe the
behaviour of the model with a given set of control parameters. The playability
of the model during attacks and during the steady part of the simulations will
be compared with theoretical results. Further, an examination of the sound
properties (spectral centroid and sound level) within the playable parameter
space will be used to describe the mapping between perceptual properties of
the sound and the control parameters.

• Chapter 4 is dedicated to a description of the devices used for measuring
bowing parameters. The chapter consists of two submitted manuscripts re-
porting the design and implementation of a bow force sensor (Paper I), and
a complete setup combining an optical motion capture system with the force
sensor (Paper II). In an introductory part a background is given together with
some information on the use of the bow force sensor in the performance of
contempory music.

• In Chapter 5, gesture-based control of the model will be covered. For that
purpose, measurements of rather fast and dynamic bowing patterns, includ-
ing sautillé, martelé and tremolo, will be presented. We will show how these
bowing patterns can be modelled in order to produce the time evolution of the
bowing parameters from a limited set of intuitive high-level parameters. Mea-
surements will be fitted to the models, and used to extract typical parameter
sets, reflecting the musical intentions of the performance.

• Finally, in Chapter 6, we will observe measurements of sustained bowing
patterns such as détaché, in order to characterize the time evolution of the
bowing parameters, and extract some simple rules describing the player’s
control strategies for performing changes in dynamic level. The basic task of
changing the direction of the bow motion (“bow change”) is examined closely
by observations of performance habits, modelling, and evaluation of simulated
modifications.
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Before closing this introduction, a few remaining points should be discussed.
First, we have frequently used the word “violin” and will continue to do so in the
following. Very often this word can be replaced by “bowed string instruments” as
we will consider the violin as an exemplary case that can be easily extended to
other instruments of the same family.

Further, in this work we will often question the realism of synthesized sounds.
The reader will, however, not find any systematic and scientifically based evalua-
tions of the realism in the thesis. Formal listening tests were not possible to do
within the given time of this work. They were left for future studies to complete
the empirical evaluations reported here. When it will be written that “the resulting
sound is realistic”, it will be according to the judgement of the author, and some-
times also according to the judgement by other listeners. The author has played
the violin since more than 20 years, has a strong musical background and can be
considered as a subject with an experienced musical hearing, able to identify subtle
differences in violin sound. It is important to mention that the experience as a
string player involves a specific sensitivity for judging the realism, which seems to
be based mainly on some kind of intuitive recognition of the control gestures.

To conclude, the present work would not have been possible to perform without
my musical background. The following pages originate from the meeting between
a young advanced amateur violinist and a former little boy who always wanted
to check how his parent’s video recorder worked inside but never could put the
parts together. It was sometimes difficult to keep the violinist silent when the little
child was digressing to deeply into the technical and scientific aspects. As a result,
sometimes the violinist will speak to the reader, sometimes the little child will
speak, sometimes the potential user of a future advanced virtual violin will speak,
and sometimes they will speak all together. I hope the reader will forgive this
blending of genres, and appreciate the different views they give on the fascinating
topic of bowed string instruments.



Chapter 1

Mechanics of the bowed string and

simulation methods

This chapter presents some basic results of studies on bowed strings and the cou-
pling to the instrument. Since Pythagoras and other early works on vibrating
strings, the understanding of the dynamics of the bowed string has increased suc-
cessively due to pioneering works by Helmholtz, Rayleigh, and Raman, who gave
the basis of the modern view on the problem. By first introducing the basic knowl-
edge obtained in the historical works, and then adding the most important results
of contemporary studies, some landmarks will be given which allow a comparison
between simulations, idealized theory and experimental results.

After the presentation of these important landmarks, we will give an overview of
the phenomena that should be taken into account for obtaining a complete physical
description of the bowed string and violin. The bowed-string model that will be
used in the experiments and analyses in the following chapters uses only a limited
set of these ingredients. It is therefore important to show why it can be called a
“minimal” model, compared to all the elements that could be included in a more
extensive description of the bowed string and instrument.

Finally, different techniques for simulation of the motion of the bowed string
will be presented. Recent developments of computers and improved efficiency of
algorithms make it possible to run even rather sophisticated simulation models
in real time. These simulation methods form the basis of contemporary sound
synthesis based on physical modelling.

1.1 Kinematics of the bowed string

From a radical point of view, the description of the violin in physical terms can be
reduced to the study of the bowed string. Questions related to the the coupling
between the different elements of the violin (string, bridge, body), the radiation into
the air, and the classical issues related to tone quality and violin making, can all be

7
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regarded as auxiliary compared to the main characteristics of the instrument, which
is the excitation through friction by a bow drawn across the string. Whereas an
analytical description of the string vibration in the case of free oscillations has been
available since D’Alembert and Bernoulli (18th century), the motion of the bowed
string remained unknown until the second half of the 19th century and Helmholtz’s
pioneering work [40].

By observing the actual motion of the string, he concluded that the string mo-
tion consisted in a sharp corner travelling around a parabolic trajectory. From this
idealized motion he predicted the influence of the bow velocity and bow-bridge dis-
tance on the vibration amplitude of the string. By considering that real strings can-
not show a perfectly sharp corner, Cremer and Lazarus [19] introduced a smoothing
of the Helmholtz corner which enabled to describe the influence of the bow force
on the vibrations. It is interesting to notice that all these results were obtained
without any precise measurements on the string motion, but entirely based on kine-
matic considerations and very strong approximations in the dynamics of the bowed
string. Actually, before the access to computers, a detailed description of the vibra-
tions of the bowed string was almost impossible to approach. Raman [65] was the
first trying to deal with the problem at the very beginning of the 20th century. In
order to be able to solve the problem by hand, he had to simplify the problem by
considering a flexible string with purely resistive terminations, bowed at an integer
fraction of the string length. In addition to Helmholtz motion, he discovered a
great variety of possible periodical motions of the string.

The string equation

The dynamical behaviour of the string depends on the boundary conditions at
the terminations and a set of mechanical string properties including the tension,
mass and length. If the string is represented by a one-dimensional continuum in
the x direction, with tension T0 and linear density ρL, the equation describing the
displacement y(x, t) of the string can be written as (see for example [24])

ρL
∂2y(x, t)

∂t2
= T0

∂2y(x, t)

∂x2
(1.1)

This is a classical equation of wave propagation and D’Alembert (1717-1783)
gave a general solution consisting in the sum of two waves travelling in opposite
directions

y(x, t) = y+(x − ct) + y−(x + ct) with c =

√

T0

ρL
(1.2)

In this solution, y+ represents a wave propagating in the +x direction with a
velocity c while y− propagates in the -x direction. The finite length L can be taken
into account by considering the boundary conditions. The simplest conditions are
obtained by assuming that the displacement is zero at the bridge and the nut (fixed
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ends), giving a total reflection of the incoming waves with opposite polarity. The
state of the vibration is identical once the travelling waves have made a round trip
on the string, and the fundamental frequency of the oscillation is given by

f0 =
1

2L

√

T0

ρL

Another formulation of the solution has been given by Bernoulli, also considering
fixed terminations of the string. The solution can then be written as a superposition
of particular solutions with separate variables x and t

y(x, t) =
∞
∑

n=1

an sin
nπx

L
sin nωt ω =

π

L

√

T0

ρL
(1.3)

The string equation can be solved analytically for free oscillations produced by
struck and plucked excitations, but sustained excitations produced by drawing a
bow across the string are substantially more difficult to examine. As mentioned by
Helmholtz (1862):

“No complete mechanical theory can yet be given for the motion of
strings excited by the violin bow, because the mode in which the bow
affects the motion of the string is unknown” ([40], cited in [91]).

A better understanding of the bow-string interaction was necessary for approaching
an analytical description of sustained oscillations. It turned out, however, that even
with simple models such as the ones used by Raman (1918) [65], or later, Friedlander
(1953) [26], and Keller (1953) [44], a number of approximations were necessary for
obtaining a solution. Direct observations of the motion of the bowed string gave an
invaluable starting point for improving the dynamical description of the vibrations.

Helmholtz and the idealized motion of the bowed string

Using a vibration microscope, Helmholtz observed a surprisingly simple motion of
the string when played by a bow. At any position the displacement followed a
triangular pattern, and the velocity consequently alternated between two values
with opposite polarity. This motion is illustrated in Fig. 1.1, right.

When observing the motion at a given point x1, the oscillation is made up of two
successive phases whose total duration corresponds to the period of the vibration of
the free string T . During a time T+, the string moves in the same direction as the
bow, with velocity v+. Then, during the time T−, the string moves in the opposite
direction with velocity v−. The duration of the two phases depends on the position
x1 where the motion is observed. If the string is observed between the bridge and
the midpoint, T+ is greater than T− and vice versa on the other half toward the
nut. At the middle, the two phases have exactly the same duration.
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Figure 1.1: Illustration of the idealized Helmholtz motion. Left: At any time,
the string is composed of two straight segments connected at a sharp corner (the
“Helmholtz corner”). When bowing the string, the corner travels around a parabolic
trajectory, the capture and release of the string corresponding to the moment when
the corner passes under the bow. Right: The resulting string velocity (top) at any
point of the string shows an alternation between two phases with opposite sign,
giving a sawtooth pattern for the displacement (bottom).

At the bowing position x0, the interpretation of these two phases is straightfor-
ward, showing an alternation between two states of the bow-string interaction: slip
and stick. During the time T+, the string sticks to the bow hair and consequently
moves with the same velocity (v+ = vb), and during the time T−, the string slips
under the bow with a velocity whose sign is opposite to vb.

Using these observations and the basic model of the string described in the
previous section, it was possible for Helmholtz to quantify the motion. As a first
approximation, he used the general solution for the free oscillation (Bernoulli’s
solution, Eq. 1.3) and deduced the Fourier coefficients an for the triangular patterns
that he observed experimentally. This gave proportional relations between the time
intervals T+, T−, T , the length L, and the observation position x1

T+ =
2(L − x1)

c
, T− =

2x1

c
, T =

2L

c

The velocity at any point x1 along the string can be written as a function of
the bow velocity vb at the bowing position x0

v− = − (L − x1)

x0
vb, v+ =

x1

x0
vb

Finally, the maximum displacement of the string at a position x1 can be written
as
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ym(x1) =
vbT

2

(L − x1)x1

Lx0
(1.4)

The displacement envelope is seen to be composed of two parabolas passing
through zero at the string terminations. The corresponding overall motion of the
string is illustrated in Fig. 1.1, left. At any moment, the string configuration is
made up of two straight-line segments whose corner lies on the parabola, the so-
called Helmholtz motion (dotted line, Eq. 1.4). When the string is bowed, the
corner travels around the parabolic trajectory in one period. As the eye cannot
follow this quick motion of the string, the observer sees only the parabolic enve-
lope which gives the impression of a uniform vibration, as if the whole string was
vibrating back and forth.

The successive phases of the vibration can be followed in Fig. 1.1, left. At time
1, the string is still sticking to the bow and the displacement of the string between
the bridge and point 1 is increasing, whereas the displacement is decreasing on
the other part of the string. Between time 1 and 2, the corner travels along the
trajectory and when it passes under the bow, the string is released and begins to
slip in the opposite direction. Until time 3, when the string is slipping, the corner
reaches the bridge termination, is reflected, and begins to propagate toward the nut
with an opposite displacement. At time 3, the corner passes under the bow and
the string is captured again.

The described motion is an idealization of the observed vibrations. In particular,
the corner between the two string segments can only be sharp with an ideal, flexible
string. With real strings, it is rounded due to the stiffness of the string. However,
all cases of bowed string motion characterized by an alternation between one sliding
phase and one sticking phase during one nominal period of the string vibrations
will be referred to as Helmholtz motion, in contrast to other possible vibrations of
the string.

Theoretical inferences

Important results can be drawn from the simplified model described above. In the
bowed-string instruments, the sound is radiated from the body, which is excited
by the vibrations of the string transmitted via the bridge. The force acting on the
bridge Fbridge can be deduced from the spatial derivative of Bernoulli’s solution
(Eq. 1.3)

Fbridge(t) = T0
∂y(x, t)

∂x

)

x=0 =
√

T0ρL
vb

x0

∞
∑

n=1

2

nπ
sin nωt (1.5)

This expression corresponds to a perfect sawtooth function with linear ramps
and steps. The maximal value of the ramp is

Fmax =
√

T0ρL
vb

x0
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The amplitude of the vibration at the bridge, and hence the sound level, in-
creases with increasing bow velocity and with decreasing bow-bridge distance1.

Eq. 1.5 also gives an estimation of the spectrum of the sound. The amplitude
of the n-th harmonic is

Fn =
2

nπ

√

T0ρl
vb

xb

The spectral slope is −6 dB/octave, which approximately corresponds to the
measured spectrum of the force on the bridge. It will be seen in the next section
that the highest partials are actually lower when playing with a low bow force.
The -6 dB/octave slope corresponds to a limiting case corresponding to Helmholtz
motion with a sharp corner, towards which the spectrum tends when the bow force
increases. It should be noted that if the string is bowed at a nodal point, the
corresponding partials would not be present in the spectrum. Due to the finite
width of the bow complete cancellation does not occur, but the corresponding
partials are strongly suppressed.

Effect of bow force

The previous analysis of the bowed string is an approximation based on free oscil-
lations and on idealized representation of the observed motion of the string under
the bow. It does not take into account the effect of external forces such as the
frictional force applied by the bow. A complete description of the bowed string
behaviour must include this effect. As every string player knows, the string cannot
be bowed properly if the bow is not pressed hard enough against the string, and
when the force is too high, the resulting sound becomes scratchy. As described
above, playing closer to the bridge increases the amplitude of the driving force on
the bridge and the sound level. However, a decrease in bow-bridge distance needs to
be coordinated with an increase in the force with which the bow is pressed against
the string (the bow force), in order to maintain the Helmholtz motion.

Studies including forced oscillations of the string were first carried out by Raman
[65, 66]. He focused on the velocity waves travelling in opposite directions of the
string and studied the different solutions that could be obtained, using a simple
model with purely resistive terminations of the string. For the particular case of
Helmholtz motion, he showed that the vibrations could not occur below a given
value of bow force.

The bow force also influences the spectrum of the sound. The “brilliance”
of the sound increases with increasing bow force, as experienced by any string
player. However, with Helmholtz’s idealized model as well as in Raman’s analysis,
no change in the string vibrations occurs as the bow force is increased. In particular,

1From a violin making point of view, it can be seen that the amplitude increases with increasing
tension as well, which explains the transformations of the violin during the 19th century. For
obtaining a more powerful sound, the tension of the string has been increased, involving longer
strings and some modifications of the violin itself for supporting the increased load of the strings.
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Figure 1.2: Effect of smoothing of Helmholtz corner. (a) Idealized motion of the
corner described by Helmholtz. When the string passes under the bow, the sliding
phase begins and the string velocity suddenly drops from a positive to a negative
value. (b) A rounded corner produces a velocity ramp with constant rate if the
friction force is not taken into account (for instance with a low bow force). (c)
With the effect of friction force dF, the string is prevented from sliding until the
maximum static force is reached. Consequently, the sticking phase lasts longer and
the corner is sharpened. (After Cremer [19])

the bow force has no effect on the amplitudes of the string partials in Helmholtz
motion.

A simple empirical observation gives an illustration of the effect of the bow force.
When two objects are pressed against each other, the static friction between them
increases with the pressing force. A higher transverse force is required for breaking
the sticking contact between the objects and making them slide, which means that
the limiting static force (i.e. the minimal transverse force for the sliding to occur)
increases with the pressing force. Similarly, during sliding, the friction between the
two objects increases with the normal force: it is more difficult to make a heavy
object slide on a table than a light one. This gives a first indication of the effect of
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bow force on the bowed string. The sticking phase will tend to last longer as bow
force increases, and because the frictional force pulling the string in the bowing
direction increases, the slipping phase tends to be shorter.

Cremer approached the problem by considering a smoothing of the sharp corner
described by Helmholtz. If the corner is replaced by a rounded corner of finite
length and constant radius, the string velocity at the bowing point decreases linearly
instead of dropping suddenly (see Fig. 1.2a and b). Now, if the frictional force is
taken into account, the string is prevented from sliding immediately as the “corner”
passes under the bow (see Fig. 1.2c). The frictional force increases, preventing the
string from sliding until the maximum static sticking force is reached, and the
slipping phase starts. As a result of the build-up in frictional force, the rounded
corner is sharpened as it passes under the bow.

As the maximum static force increases with increasing bow force, the sticking
phase lasts longer, and the release of the string will be more abrupt. As a result the
corner will be be more and more sharpened when the player presses the bow harder
against the string. This effect provides an explanation to the increase in brilliance
of sound with increasing bow force. If losses at the terminations are assumed to
increase with frequency, the corner is rounded off during the reflections, which
compensates for the sharpening under the bow at capture and release. Cremer
analysed the conditions under which these effects balance each other.

1.2 Physical modelling of the bowed string

A physical description of the bowed string can be more or less detailed, depending
on the purpose and the desired precision. A complete and physically realistic de-
scription needs to include a number of features, which often are far from straightfor-
ward to model. The present section aims at giving an overview of such a complete
modelling. The different components and features of the mechanical system are
presented together with related studies and usual ways of modelling.

First, we will examine a realistic model of the string including damping and
stiffness. Then, we will shortly present the inclusion of external forces before dis-
cussing the modelling of the bow-string interaction. The modelling and effect of
string terminations will be examined together with the coupling between the string
and the body of the instrument. Finally, the torsional motion of the string will be
addressed.

Real strings: Stiffness and damping

The wave equation for the ideal string was given in Eq. 1.1. With the flexible
string, there is no limitation on the sharpness of the Helmholtz corner. However,
real strings have some resistance to bending (stiffness) which needs to be taken
into account in the method of rounded corners described by Cremer [19]. The main
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effect of stiffness is to introduce some wave dispersion in the wave propagation on
the string. Wave components with higher frequency propagate faster than lower
frequencies, resulting in a slight inharmonicity of the partials of the freely vibrating
string (“stretched spectrum”).

The resistance to bending can be modelled by including a stiffness term in the
string equation (see for example [24] or [84]). The string equation then becomes

ρL
∂2y(x, t)

∂t2
= T0

∂2y(x, t)

∂x2
− EI

∂4y(x, t)

∂x4
(1.6)

where E is Young’s modulus and I = πd4

64 the second moment of area for the
cross section of the string, d being the string diameter. Eq. 1.6 leads to inharmonic
frequencies of the string modes. If the string terminations are simply supported,
the frequencies are given by

fn = nf0

√

1 +
4π2EIρL

T 2
0

(nf0)2 with f0 =
1

2L

√

T0

ρL

Real strings also show some damping. As the waves propagate along the string,
energy is dissipated through several mechanisms, let alone the large losses at the
terminations. Valette [84] made an extensive review of these mechanisms, including
frictional losses due to the air, and internal damping due to viscoelasticity and
thermoelasticity. The way of incorporating the losses in the string equation is not
straightforward as they depend on frequency. A general formulation is

ρL
∂2y(x, t)

∂t2
= T0

∂2y(x, t)

∂x2
− EI

∂4y(x, t)

∂x4
+ R(ω, y, t) (1.7)

The term R(ω, y, t) can have different expressions, according to authors. For
example, Hiller and Ruiz [41] introduced two terms in order to take into account
heat dissipation and sound radiation as a function of frequency

R(ω, y, t) = −2b1
∂y

∂t
+ 2b3

∂3y

∂t3

In a slightly different way, Valette took the damping of each partial fn into
account by introducing quality factors Q(fn) in the general solutions of the string
equation (Eq. 1.3)

y(x, t) =
∞
∑

n=1

an sin
nπx

L
sin(2πfnt) exp(− πfn

Q(fn)
t)

Finally, we should mention the approach by Woodhouse, in which dispersion
due to bending stiffness and dissipation due to all types of damping are simulated
by “reflection functions” [87]. In this approach, the impulse response of the string
at the bowing point is composed of an initial spike followed by incoming waves
resulting from the reflections at the bridge and the nut. These reflection functions
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contain all the information about dissipation and dispersion, including the losses
at the string terminations (see Sect. 1.3).

Strictly speaking, the preceding description is only valid for strings made of a
plain wire like the E string of the violin. Most real strings have a more complicated
design. Wound strings are made of a core carrying the tension, around which mass
is added by wrapping a fine wire. The design of strings and the influence on the
string properties have been extensively discussed by Pickering [62][61]. However,
as the design of wound strings basically sets the same mechanical properties as
described above (linear density, damping, and bending stiffness), there is no real
need to refine the previous description for homogeneous strings.

Other possible refinements of the analysis of the string include a three-dimensional
description of the vibrations. In the previous descriptions, the string is assumed
to move in a plane parallel to the bow. This is a reasonable simplification, but
more elaborate descriptions of the vibration could take into account the motion
in both the transverse directions and the longitudinal direction. In particular, the
lengthening of the string during the vibration cycle includes variations in tension
and leads to a non-linear coupling of the equations describing the motion in the
three dimensions.

External forces

Until now, we have discussed string equations for free oscillations, i.e. with no
external forces acting on the string. For describing the dynamics of the bowed
string, we obviously need a way of incorporating the interaction with the bow. Two
ways of taking external forces into account can be considered.

First, we can introduce a term depending on external forces in the string equa-
tion. Because the equation has the spatial derivative of force as unit, it will be
necessary to consider the force distribution along the string (x-direction) F(x, t).
Then, the string equation for forced oscillation can be written as

ρL
∂2y(x, t)

∂t2
= T0

∂2y(x, t)

∂x2
− EI

∂4y(x, t)

∂x4
+ F(x, t) (1.8)

An alternative view can be taken by considering the string as consisting of
two parts y1(x, t) and y2(x, t) separated at the bowing position. Then, each part is
described by the string equation for free oscillations, and some additional boundary
conditions at the bowing position x0 have to be defined. It is reasonable to assume
a velocity continuity at x0

∂y1(x, t)

∂t

)

x0

=
∂y2(x, t)

∂t

)

x0

= v(t)

The additional velocity introduced by the external force F at x0 can be written
as
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δv =
F

2Zc

where the characteristic impedance Zc of the string is Zc =
√

T0ρL.

The adequate method for introducing external forces in the model mainly de-
pends on the method for simulating the motion of the string. As will be seen in
Sect. 1.3 methods using travelling waves use additional boundary conditions at the
bowing point, whereas it is easier to include external forces in the string equation
in a modal description.

Bow-string interaction

When the bow is drawn across the string, a complicated interaction takes place. The
bow-hair ribbon consists of more than 200 hairs (up to 400 for the double bass)
attached to the wooden stick of the bow. The hairs form a multi-layer ribbon,
which means that the number of hairs interacting with the string depends on the
bow force. Moreover, the player can vary the number of hairs in contact with the
string and modify the mechanical characteristics of the contact point by tilting the
bow more or less. Finally, the bow itself is a dynamical system that interacts with
the string. The coupling between the bow and the vibrating string can be felt
through vibrations in the bow stick [6]. The vibrations in the bow hair, both in the
transverse and longitudinal directions, may affect the interaction with the string.

The theoretical description of the frictional characteristics in the contact area
is of primary importance in understanding bow-string interaction. Several models
that explain the relation between the frictional force and the differential motion
of the two bodies in contact, and quantify the limiting static force before sliding
occurs, have been developed. General models and studies related to this topic are
reviewed by Serafin ([76], chapter 2). Concerning the violin, a precise modelling
would have to take into account the interaction of each bow hair in contact with
the string, the particular surface of the hair, and the role that the rosin plays in
the interaction. Such a precise modelling is not within reach, but fortunately less
detailed, but experimentally justified, ways of describing the interaction have been
found useful.

The basic way of modelling the interaction consists in neglecting the width of
the bow and considering a single point contact between the bow and the string.
The interaction of all hairs constituting the layer is replaced by an overall friction
characteristic giving the friction force F0 as a function of the bow force Fb and the
relative velocity ∆v between the string and the “bow”

F0 = µ(∆v)Fb (1.9)

Early measurements by Lazarus [48] gave the standard shape for the friction
curve µ(∆v). In his work, the static maximum friction coefficient µs = µ(0) was
found to be between 0.8 and 1.4 and the asymptotic value of the dynamical friction
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µd = µ(∞) was around 0.2. Various expressions have been given for describing this
curve

µ(∆v) = µd +
µs − µd

1 − ∆v
vc

(hyperbolic model) (1.10)

µ(∆v) = µd + (µs − µd)e
−C|∆v| (exponential model) (1.11)

Typical values used are µs = 0.8 and µd = 0.3. More recently, Smith and
Woodhouse [81] fitted experimental data with

µ(∆v) = 0.4e∆v/0.01 + 0.45e∆v/0.1 + 0.35 (double exponential model) (1.12)

In addition, they observed an hysteresis behaviour of the friction curve which led
them to consider modifications in the rosined interface between the string and the
bow caused by variations in temperature during the stick-slip cycle. More elaborate
models depending on relative velocity as well as temperature were developed and
used for more accurate simulations [89].

Leaving aside specific studies on the friction characteristics in the interaction,
improvements of the model could be made by including a finer description of the
mechanics of the bow-string contact. Because of the finite width of the bow hair,
effects could occur that are not taken into account in the single point contact model.
Early works by McIntyre et al [52], in which the width of the bow was modelled
with two single-point models separated by a short distance, showed that slipping
could occur at the edge of the bow facing the bridge while the string is still sticking
at the opposite edge, producing an irregular vibration in the part of the string
between the bow and the bridge. This differential slipping was later explored in
depth by Pitteroff [63] who proposed an efficient finite element model for simulating
the contact across the full width of the bow hair.

An important improvement in the description of the bow-string interaction con-
sists in adding compliance to the bow hairs. So far, the string has been assumed
to be bowed by an object with a known velocity (stiff bow). But a real bow has
inherent dynamical properties, including vibration modes of the stick and the elas-
ticity of the bow hair. In combination they give rise to prominent transverse and
longitudinal resonances in the bow, as seen by the string. The effective velocity of
the bow hair at the contact point may consequently differ slightly from the velocity
that the player imposes to the bow at the frog. In particular it may be modulated
periodically by the resonances of the bow. Pitteroff introduced the compliance
of the bow stick and the bow hair in his model, and showed how they affected
differential slipping when the bow has a finite width.

A basic way of simulating the dynamical properties of the bow is shown in Fig.
1.3. In this approach, the bow hair is represented by a small mass, connected to a
heavier mass (the stick) by springs and dampers, which define bow modes in the
bowing direction and normal to the string. Control parameters of bow force and
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velocity are applied at the heavy mass, and the actual values at the contact point
are derived from the model [1].

Figure 1.3: Basic model for simulating the dynamical properties of the bow (after
Adrien [1]). The bow hair is represented by a small mass m connected to a heavier
mass M representing the stick. The spring-damper systems connecting the two
masses in the bowing direction (transverse to the string) and the normal direction
(in the direction of the bow force) permit to simulate prominent vibration modes
of the bow. Control parameters such as bow velocity and bow force are applied on
the mass M, and corresponding variables at the bowing point are derived from the
dynamics of the system interacting with the string.

Effect of the string terminations

In the previous sections we have only considered simply supported string termina-
tions, or a purely resistive model in Raman’s case. In reality, the string terminations
have a strong influence on the vibration of the string. A striking illustration is the
long decay of a violin pizzicato played on an open string compared to the very
short pluck when the string is stopped by a finger. The finger apparently adds a
substantial resistive part to the termination.

The influence of the bridge termination and the vibration transmission to the
body of the instrument are of primary importance. Whereas for struck or plucked
instruments the transmission of the string vibrations through the bridge must be
determined by a trade-off between loudness and duration of the tone, the sustained
excitation for bowed string instruments allows a much higher transmission of the
strings vibrations to the body.

The resonances of the string given by Eq. 1.3 (f0 = 1
2L

√

T0

ρL
and fn = nf0)

were obtained by assuming rigid boundary conditions. However, the simplicity
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of this relation is compromised by the effect of the terminations. If a complex
admittance at the bridge Ybr is assumed, the (complex) angular frequencies of the
string resonances become [84]

Ωn = 2πnf0

[

1 +
2π2EIρL

T 2
0

(nf0)
2 +

T0

2πL
Im(Ybr)

1

nf0

](

1 − j
Q−1

n

2

)

(1.13)

The term Q−1
n represents all mechanisms contributing to the damping of the

vibrations, including the real part of the complex bridge admittance Re(Ybr),
which gives the energy transferred to the bridge. The equation also predicts a
frequency correction of the harmonic series, to which the imaginary part of the
bridge impedance Im(Ybr) contributes. When the imaginary part is positive, cor-
responding to a masslike impedance, the mode frequencies of the string are raised
slightly, and when it is negative (springlike impedance) they are lowered. Fig. 1.4
shows the amplitude and the phase of a typical complex admittance measured at
the bridge of a violin.
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Figure 1.4: Input admittance of a violin. The upper panel shows the magnitude in
dB re 1 m/s/N. Lower panel shows phase. (From Woodhouse [90])

Measurements of the mechanical admittance at the bridge can be used for com-
puting the reflection coefficients. Another approach is to model the bridge and body
as a lumped mechanical system. For instance, Cremer [19] used a spring-damper
system for simulating a simple frequency-dependent bridge termination (see Fig.
1.5a).
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The mechanical properties of the bridge itself are of specific interest because it
constitutes the link between the two fundamental elements of the violin, the string
and the body, which are separated by a large difference in mechanical impedance. In
Fig. 1.5b and c, two mechanical models of the bridge are shown for comparison. The
force Fbridge exerted by the string on the bridge is coupled to the violin admittance
Yv(ω) under the bridge through simple mechanical systems representing the bridge.
In Fig. 1.5b, a mass spring system similar to Fig. 1.5a is used, whereas in Fig. 1.5c,
a more complicated system acting on two points of the violin body is considered,
simulating the effect of the bridge feet. b r i d g e

v
b r i d g e

i j
Figure 1.5: Different models of the bridge and the body. (a) Cremer’s model for
simulating a simple frequency-dependent termination at the bridge. (b) A simple
mass-spring system is used to link the force acting on the bridge and the mechanical
admittance of the violin under the bridge Yv(ω). (c) A refined model of the bridge
acts on two points of the violin body, corresponding to the feet of the bridge. (After
Woodhouse [87, 90])

Torsional modes

Real strings have a finite diameter, and when the string is bowed, the friction force
acting on the surface of the string causes a twisting in the bowing direction (Fig.
1.6). The effective string velocity under the bow (at x = x0) is therefore composed
of the transverse velocity ẏ(x0, t) at the center line of the string and the velocity at
the surface due to torsional waves propagating on the string

ẏeff (x0, t) = ẏ(x0, t) + rφ̇(x0, t)

where r is the radius of the string.
The wave equation for the torsional angle φ(x, t) can be written as

∂2φ(x, t)

∂t2
= c2

φ

∂2φ(x, t)

∂x2
cφ =

√

G

ρ
(1.14)

where ρ is the density of the string. For a plain string, the shear modulus G
can be simply deduced from the Young’s modulus E and the Poisson’s ration ν
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Figure 1.6: Illustration of the torsion of the string generated at the bowing point.
The friction force acts at the surface of the string and causes a torsion φ in the
bowing direction which propagates along the string with a greater velocity than
transverse waves. The torsional modes contribute to the dissipation of energy in
the string and influences the dynamics at the bowing position.

G =
E

2(1 + ν)

The velocity of torsional waves is generally much higher than the velocity of
transverse waves. Another difference is that torsional waves are highly damped.
For this reason, they can be expected to have a small direct influence on the gener-
ated sound. However, the boundary conditions under the bow introduce a coupling
between transverse and torsional waves, which influences the interaction with the
bow and the shape of the friction characteristics. As torsional waves are highly
damped due to the internal deformation of the string, they may contribute signif-
icantly to the overall damping of the transverse waves. Moreover, torsional waves
have some effect on the sound by producing aperiodicities and jitter, as discussed
by Bavu et al [8]. It can be noted that the torsional waves play an important role
in the generation of oscillations with anomalous low frequencies (ALF), as shown
by Guettler [32].

Previous sections have presented the different elements of a complete descrip-
tion of the bowed-string motion, including the coupling to the violin. In short,
the elements included were string models with different levels of sophistication, a
description of the interaction with the bow, and different boundary conditions de-
scribing the coupling to the violin body. Possible refinements of the models were
presented in order to enhance the rustic character of the model that will be devel-
oped in Chapt. 2 and used in the following experiments of this work. Our model
will consist of a stiff string with damping, vibrating in one direction only, and with
simply supported boundary conditions at both ends. Torsion will not be taken into
account. The bow is assumed to act as a rigid body at one point of the string, with
a friction interaction described by the hyperbolic model.
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Many of the features that were mentioned before will consequently not be taken
into account. However, the simplicity of our bowed-string model is motivated by
two reasons. First, an efficient algorithm is required in order to simulate the motion
of the string in real time. Secondly, a main purpose of the present work is to exam-
ine how a realistic control of the model influences the realism of sound synthesis.
Consequently, a naturally sounding synthesis obtained by refinements of the model
is not a goal in itself in our work.

1.3 Techniques for simulating the bowed string motion

The last part of this introductory chapter is concerned with the solutions of the
equations describing the bowed-string system. Usual methods for simulating the
motion of the string can be divided in two main categories, depending on whether
they aim at a direct solution of the string equation or apply the method of propa-
gating waves. The differential equation describing the dynamics of the string can
be solved using numerical methods like finite difference schemes or more elaborated
mathematical tools like finite element analysis, but these methods are often con-
sidered as being expensive from a computational point of view. Other methods
like the MSW algorithm or waveguides (both described below) use the D’Alembert
solution of the flexible string equation for simulating waves propagating on the
string. The computational cost of such methods is much lower, but solutions must
be found for reproducing the effect of features not taken into account in the basic
string equation, such as stiffness and damping.

In the following sections some of these methods are briefly described together
with specific problems related to each of them.

Numerical solution of the string equation

Finite differences schemes

The basic way of solving the string equation numerically consists in rewriting the
differential equation using discrete integration schemes. By choosing an adequate
scheme, the displacement y(i, j) of a point x = i∆x at time t = j∆t can be
expressed as a function of displacements at various points on the string at previous
times. This method was first presented by Hiller and Ruiz [41] for sound synthesis
purposes. Eq. 1.6 can be written as
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ρL
1

∆t2

[

y(i, j + 1) − 2y(i, j) + y(i, j − 1)
]

=

T0
1

∆x2

[

y(i + 1, j) − 2y(i, j) + y(i − 1, j)
]

− EI
1

∆x4

[

y(i + 2, j) − 4y(i + 1, j) + 6y(i, j)

− 4y(i − 1, j) + y(i − 2, j)
]

which leads to (with ∆x = c∆t)

y(i, j + 1) = − 6ay(i, j) + (1 + 4a)[y(i + 1, j) + y(i − 1, j)]

− a[y(i + 2, j) + y(i − 2, j)] − y(i, j − 1) (1.15)

with

a =
EI

T0∆x2

With this scheme, the displacement of each point i∆x of the string at time
(j + 1)∆t is entirely deduced from the displacements at previous times j∆t and
(j − 1)∆t. Including damping will make the computation more complicated. For
instance, with the damping term added by Hiller and Ruiz [41]

R(x, t) = −2b1
∂y

∂t
+ 2b3

∂3y

∂t3
,

the derivation of y(i, j + 1) gives an expression depending on y(i, j + 2), which
makes it necessary to use a converging iterative algorithm. Alternatively, explicit
recursion can be obtained with other discretization schemes [17] or other damping
models. For example, Bensa [10] uses a term 2b2

∂3y
∂x2∂t in the string equation.

The effect of the string terminations can be taken into account by finding some
other recursion relations that will be coupled with the recursion relation of the string
displacement. If the terminations are rigid, we simply get y(0, j) = y(N, j) = 0
whatever the time j. Simple mechanical models of the bridge could also lead to
recursion. In [41], the losses at the end supports were simulated by considering
reflection coefficients abridge and anut at the two terminations. Then, the motion
of the string could be obtained by coupling Eq. 1.15 with the termination relations

y(0, j + 2) = (1 − abridge)y(1, j + 1) + abridgey(0, j)

y(N, j + 2) = (1 − anut)y(N − 1, j + 1) + anuty(N, j)
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Note that these expressions were obtained by considering uniformly propagating
waves on the string (g1(i + 1, j) = g1(i, j − 1)), which should be considered as an
approximation for the stiff string case.

Whereas this discretization method has been widely used for simulating plucked
and struck string instruments [9, 10, 17, 18, 12], applications for the synthesis of
bowed string instruments are rare. To our knowledge, only Hiller and Ruiz in their
seminal paper dealt with this problem. In their work, a very simplified model for
the friction was considered. During the sticking phase, the velocity of the string
was equal to the bow velocity, and during the sliding phase, friction was neglected
and the string was therefore free to oscillate until it was moving again in the same
direction as the bow. This very simple model was only used for constant bow force
and constant bow velocity.

Decomposition into orthonormal functions

In order to avoid a discretization in space of the string equation (Eq. 1.6), it can be
interesting to look for a decomposition of y(x, t) into orthonormal functions. The
general solution of the linear string equation for free oscillations can be written as

y(x, t) =
∞
∑

n=1

an(t)φn(x) where an(t) =

∫ L

0

y(x, t)φn(x)dx (1.16)

If the basis φn(x) is assumed to be orthonormal, the external forces can be
decomposed on the same basis

F (x, t) =
∞
∑

n=1

fn(t)φn(x) where fn(t) =

∫ L

0

F (x, t)φn(x)dx (1.17)

After multiplying the string equation by φn(x) and integrating in space we
obtain the modal equations

Mnän(t) + Rnȧn(t) + Knan(t) = fn(t) (1.18)

By using this analytical integration in space, it is therefore possible to simplify
the differential equation depending on time and space in order to get an infinite
number of equations depending only on time. A numerical method can then be
used for integrating the equations in time. For computational convenience, the set
of modal equations will be truncated to the N first modes.

This method has been applied to the bowed string by various authors with
rather small differences, mainly in the numerical scheme for the time integration
(see Antunes [2], Adrien [1], Doel [22] and Palumbi [59]). If the simplest case of
the flexible string with simple supports at both terminations is considered, the
orthonormal functions φn(x) can be written as
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φn(x) =

√

2

L
sin

nπ

L

and the modal equations are

ρLän(t) + T0

(nπ

L

)2

an(t) = fn(t) (1.19)

This method will be developed in the next chapter.

Travelling waves

As discussed before the general solution to the wave equation for the ideal string
(Eq. 1.1) is composed of two terms, representing waves travelling in opposite di-
rections (Eq. 1.2). The simulation of these travelling waves offers an interesting
alternative to the numerical solution of the wave equation presented above. This
approach is rather intuitive, simple to implement, and because the propagation can
be modeled using delay lines, the computational cost is very low.

In the case of bowed strings, two methods can be considered: the McIntyre-
Schumacher-Woodhouse algorithm [53] (MSW algorithm in the following) and the
waveguide method. The two methods focus on incoming and outgoing waves under
the bow. In both cases, outgoing waves are computed from incoming waves and
the action of the bow. However, the two methods differs in the computation of
the reflections from the terminations of the string (incoming waves). Effects of the
propagation on the string (damping, inharmonicity) are reproduced by reflection
functions in the MSW algorithm, whereas the waveguide method uses digital filters.

MSW algorithm

The principle of the MSW algorithm is developed in [53] and illustrated in [54] for
the specific case of the bowed string. The string is separated in two parts by the
bow. On the left part, the incoming wave qiL propagates towards the bow and the
outgoing wave qoL in the other direction (towards the corresponding termination of
the string). On the right part, the two corresponding travelling waves are denoted
qiR and qoR. With these notations, the velocity q under the bow is equal to the sum
of the incoming and outgoing waves on each part of the string and can be written
as

q = qiL + qoL = qiR + qoR (1.20)

Incoming waves are summed at the bowing point for obtaining their contribution
to the string velocity.

qh = qiR + qiL (1.21)
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This “historical” velocity represents the velocity that the string would have if
no force was applied at the bowing point. The contribution of the friction force F0

to the velocity can be computed from the characteristic impedance of the string.

1

2Zc
F0 = q − qh (1.22)

The force F0 and the velocity q must be determined from this expression together
with the friction characteristic depending on the bow velocity qb

F0 = F0(q − qb, Fb) (1.23)

Once the pair of values (F0, q) is known, the outgoing waves are computed using
Eq. 1.20 and Eq. 1.22

qoL = qiR +
1

2Zc
F0

qoR = qiL +
1

2Zc
F0

The critical point of this method lies in the description of the reflections at the
string terminations. Once the outgoing waves are computed, they propagate along
the string during a given time (which can give rise to some dispersion and dissipa-
tion), then they are reflected at the string terminations (where some of the wave can
be transmitted or absorbed), and finally they propagate again towards the bow. It
is therefore necessary to find a way of describing all the elements that characterize
the propagation and the reflection, in order to compute the corresponding incoming
waves. Reflections functions rL(t) and rR(t) are used, describing all the effects of
the propagation on the left and right sections of the string. Incoming waves can
therefore be computed as

qiL = rL ∗ qoL (1.24)

qiR = rR ∗ qoR (1.25)

where the asterisk denotes convolution. The influence of the reflection functions
is drastic and has been studied in [54, 87, 88], among others. In [53], improvements
of the previous model were also considered in order to take into account the tor-
sional modes of the string, the compliance of the bow, and a two-points bow model
for simulating the width of the bow. Pitteroff [63, 64] described in depth the con-
tact between the bow and string and proposed a complete model in which a finite
difference scheme was used for solving the system under the bow and the MSW
algorithm for the remainder of the string. The model used by Guettler [33] is also
based on this solution.
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Waveguides

The MSW algorithm can be considered as a forerunner to the waveguide technique,
which also uses the general solution of the string equation, composed of two propa-
gating waves in opposite directions, as a starting point. The solution to the friction
interaction is the same, as well as the principle of transforming the propagating
waves. The main difference lies in the formulation of the waveguides which is more
signal-processing oriented.

If c is the wave velocity on the string, D’Alembert’s solution can be sampled in
time with a period T and with an interval X in space such as X = cT . The discrete
positions and times are denoted xm = mX and tn = nT . Then, the displacement
can be expressed as

y(tn, xm) = y+(n − m) + y−(n + m) (1.26)

Note that the similar relations could be obtained in the same way for the string
velocity and other variables such as the string acceleration or slope.

Without losses during the propagation, we have y+(n−m) = y+((n−1)−(m−1))
and y−(n+m) = y−((n− 1)+ (m+1)), which means that the displacement at any
time tn and any position xm can be obtained from the values of the propagating
waves y+ and y− at the preceding sampling time for adjacent discrete positions.
In a more general way, the system can be represented with two rails representing
delay lines for the waves y+ and y− propagating in opposite directions (see Fig.
1.7). The displacement can be computed by adding the outputs from the two delay
lines at position m.

In Fig. 1.7, 1/z denotes a one-sample delay, and the value of the waves between
two positions in the delay line is multiplied with a loss factor g for simulating
dissipation during the propagation. At the terminations of the string, incoming
waves y− are converted into outgoing waves y+. For the simplest case with a
rigid string termination, y− is simply reflected with opposite sign in order to get
y+(n) + y−(n) = 0. For the bowed string, several effects need to be taken into
account in order to obtain a realistic simulation. For example, frequency-dependent
losses are introduced by inserting filters between adjacent positions in the delay line
instead of a plain multiplication with g.

The main challenge using waveguides consists in designing filters that reproduce
the desired features of the system. For instance, losses during the propagation can
simply be simulated using a gain factor ‖g‖ < 1 between two sampling positions.
Frequency-dependent losses can be implemented with zero-phase, finite impulse
response filters G(ω). Serafin [76] simulated the frequency-dependent velocity of
propagation by using three 4-th order allpass filters in cascade, and approximated
the reflection functions described in [87] with second order low-pass IIR filters. The
design of adequate filters has been described in depth by Smith [82].

In particular, Serafin [76] has developed a very complete model including tor-
sional waves, improved friction model and a refined model of the bow hair inspired
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Figure 1.7: Block diagram of a basic waveguide string model including internal
losses in the string and a rigid termination. The waves y−(n − m) (lower rail)
propagate from right to left and the waves y+(n + m), from left to right. The
boxes 1/z denote a one-sample delay and the triangles a multiplication with a loss
factor g. At the string termination, the incoming wave y− is simply reflected with
opposite sign such as y+(n) + y−(n) = 0 at any time nT . The displacement at
any point of the string can be obtained by summing the value of the two travelling
waves at this point.

by Pitteroff’s work [63]. A block diagram describing such a system is reproduced
in Fig. 1.8.

1.4 Conclusions

The purpose of this first chapter was to provide all the necessary information for
the reading of the following chapters. The fundamentals of the mechanics of the
bowed string and the coupling to the instrument have been presented, as well as an
overview of the problems related to the modelling and the numerical implementa-
tions. In the first section, basic derivations concerning the influence of the bowing
parameters on the vibration were reviewed, based on Helmholtz’s observations of
the motion of the bowed string. The amplitude of the string vibration was found to
be proportional to bow velocity and inversely proportional to bow-bridge distance.
The argument of corner rounding was presented in order to offer an explanation of
the effect of bow force on the spectral content of the vibration. In Chapter 3, these
theoretical inferences will be compared with simulations, and in Chapter 5 and
6, we will present observations on the use of the bowing parameters by violinists,
reflecting their control strategies for common bowing patterns in string playing
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Figure 1.8: Block diagram of a digital waveguide model of a bowed string including
torsional waves and allpass filters for stiffness simulation (after Serafin [76]).

In the following experiments and analyses, we will use a simple model of the
bowed string, consisting of a stiff string with damping, simply supported at both
terminations, and a bow modelled as a rigid body acting at a single point of the
string. String torsion is not taken into account.

In the second section, the influence of string stiffness and damping were re-
viewed, which are necessary elements in a more complete model. Important el-
ements of a complete violin model were presented, in particular related to the
properties of the bridge and the bow, together with an overview of studies related
to bowed-string instruments. Finally, different implementations of bowed string
models were presented. The model that will be described in the next chapter is
based on a modal solution of the string equation. However, we will often refer to
other methods, for example when discussing the pros and cons of our model, or
when comparing the computational cost of different methods.

Some fundamentals aspects of the bowed string were not included in this intro-
ductory chapter, but will be presented in the course of the following chapters. This
applies to the playability of the model, i.e. the possible combinations of bowing
parameters for obtaining Helmholtz motion. That will be the subject of Chapter 3
in which simulations will be observed in the light of the underlying theories.



Chapter 2

Modal formalism and numerical

implementation for sound synthesis

In this chapter, a model for synthesising violin-like sounds is described. The model
was developed and used throughout this work as a tool for testing bowing-gesture
models and other aspects of the violinist’s control of the sound. The first section
presents the background and the underlying ideas on which the model was built.
Section 2.2 describes the derivation of modal equations from the string differential
equation. The formalism described basically aims at converting the string equation,
depending on time and space, into a new set of equations depending only on time.
Section 2.3 details the numerical solution of these equations, and their implemen-
tation for simulating a string with a friction interaction at the bowing point and a
“finger” setting the pitch. The influence of the computation parameters (sampling
frequency and number of modes) is illustrated by simulations in section 2.4. Finally
we conclude by discussing some additional features that could be incorporated into
the model.

2.1 Introduction

This section aims at giving some keys for understanding our approach to the subject
and the ideas which drove the development of the model. We focused on a very
simple model from a physical point of view, consisting of a string with stiffness and
damping, vibrating in only one direction. This is rather far from the physically
most relevant and elaborate description of the system, but some justifications can
be found in the light of our objectives. We also chose a modal simulation for reasons
that will be explained thoroughly. Finally, we will discuss the compatibility between
the modal formalism and real-time implementation, and how computational cost
considerations have influenced the development of the model.

31



32 CHAPTER 2. MODAL SYNTHESIS

Realistic physical modelling versus realistic sound synthesis

The realism of a physical model is often judged based on the number and refinement
of the physical effects that are taken into account. Consequently, a large amount
of work has been devoted to include more and more phenomena in the description
of the motion of the bowed string, as described in the previous chapter (Sect. 1.2).
Important contributions are the effect of bow-hair width, and the coupling between
the vibrations in the bow and the string [63], the effect of torsional waves [8, 79],
and detailed friction characteristics [89].

In our case, we decided to develop a model that was as simple as possible.
Actually, it only consists of a string described by the classical string equation for
small amplitudes in one dimension. The variations in string tension are neglected,
the density is uniform, and the string is simply supported at both terminations.
Except for the influence on the damping of the partials, no interaction with the body
of the instrument is modelled. The bow is considered as a rigid body, controlled by
a velocity and a force normal to the string. The bow acts at a single point on the
string through a basic friction model.

Such a bias toward simplicity does not mean that all other elements mentioned
above are assumed to have no influence on the string vibrations. However, in this
work we were concerned with “realistic” sound synthesis of bowed string instruments
rather than realistic physical modelling or detailed studies of the mechanics of the
bowed string through simulations. The model will be tested in Chapter 3 in the light
of theoretical and experimental studies in order to judge the realism of the simulated
output, but it should be underlined that the model has never been intended to serve
as a scientific simulation tool. In this work, we are focusing on the influence of a
realistic control on the realism of the bowed string sounds. Such studies could be
performed also with the use of more complex models. However, by using a very
basic model we wanted to demonstrate that the realism of the sounds of the bowed
string is hidden just as much in the control of the model as in the model itself.

On the choice of modal synthesis

In the previous chapter, we saw that the physical equations describing the dynam-
ical behaviour of the bowed string can be simulated by different methods, includ-
ing the use of travelling waves, finite difference schemes, or modal formalism. The
choice of a specific technique is determined by several considerations, such as perfor-
mance criteria that need to be fulfilled, computation cost when real-time synthesis
is a goal, and the key characteristics of the system that is modelled. For instance,
waveguides work well for nearly harmonic systems, whereas modal formalism could
be preferred for more complex structures, especially for strong inharmonicity, as
pointed out by Serafin [76]. A review and evaluation of physical modelling tech-
niques can be found in [83]. For the particular case of bowed strings, the waveguide
method as developed by Serafin [76], or the MSW algorithm used by Woodhouse
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et al and Guettler [33], have shown to be the most efficient and accurate way of
simulating the vibration of the bowed string for synthesis purposes.

Then, why would we use modal formalism for simulating the bowed string when
other methods already have proved their efficiency for the case we are interested
in? Two reasons have contributed to this choice. One reason was the scientific en-
vironment in which this work was performed, the Acoustics of musical instruments
group at IRCAM. Through the works of Adrien [1] and Bensoam [11], a software
(Modalys) for sound synthesis based on modal representation of vibrating objects
was developed by the team, and many works since aimed at evaluating or incorpo-
rating new models in this framework. The idea was consequently to stay as close
as possible to the research direction of the group. However, we did not wish to use
Modalys directly in this work. Rather we preferred to develop a simpler simula-
tion tool in order to facilitate experiments with different implementations and later
development for real-time synthesis.

The second reason is related to the principles behind the different simulation
methods. In the finite difference method, a model describing the string is defined
and then solved by brute force of classical numerical schemes. It is consequently
a pure physical modelling method. Each effect that is observed must have a cor-
responding cause in order to be included in the string equation or the boundary
conditions, else it will not be reproduced. In contrast, waveguides simulate the
effects more than the physical causes. Waveguides make use of the ideal string
equation for deriving an exact solution, but the effect of stiffness and damping are
reproduced using signal processing tools, including filters and delay lines. Modal
synthesis is somewhere between the two: it allows a mathematically elegant way of
solving the wave equation in order to derive the modal model. At the same time,
some of the parameters can be freely set for obtaining a given effect. The choice
between the different methods is a matter of scientific purpose.

On the influence of the real-time horizon

Modal synthesis is often considered as a computationally expensive way of simulat-
ing the motion of the bowed string. A few years ago, a real-time implementation of
this method was certainly not within reach, but this limitation has been removed
today. Even if the simulation of an ideal string could seem somewhat laborious
with the modal formalism compared to the simplicity and elegance of waveguides,
we will see that for more elaborate models of the string, modal formalism offers
a straightforward and not so expensive way of solving the problem. For example,
including bending stiffness or damping does not increase the computation cost, and
spatial interpolations for accessing any point on the string are naturally included
in the model.

Nevertheless, the development of the model has been influenced by the relatively
high computation cost of the method. Computational considerations and the need
for real-time implementation had to be balanced against the complexity of the
model and numerical accuracy in the simulations.
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2.2 General principle

A modal model is a description of the vibrating properties of a mechanical system.
This description consists in a set of N natural frequencies ωn with corresponding
damping factors rn, and a set of shape vectors φn(x) describing the associated spa-
tial amplitude distributions of the modes of vibration (the displacements of points
moving at the same frequency). The modal properties of a vibrating object can be
deduced by analytical derivation (from a dynamical description) or by experimental
investigation.

Modal analysis finds applications in the study of complex vibrating structures
in the field of musical acoustics. But, as pointed out by Debut [20], this formulation
has hardly been used in the case of self-sustained oscillations. The starting point
of the development presented here is Adrien’s work dealing with the use of modal
decomposition for sound synthesis of bowed string instruments [1]. We will mainly
refer to his work for emphasising differences. Contributions to the development
have been made by Antunes et al [2].

In this section, we first derive the modal model from the equations describing
the flexible string and the stiff string. Then, the inclusion of damping in the model
is discussed, and we present some measurements for determining the values of the
damping coefficients. Finally, we express the modal components of the forces repre-
senting the stopping finger (or the nut) and the bow, for the simplest case in which
each of them acts at a single point on the string.

Derivation of the modal model

Ideal string

The string equation giving the displacement y along the string (axis x) for a simple
flexible string is

ρL
∂2y(x, t)

∂t2
− T0

∂2y(x, t)

∂x2
=

∑

i

Fi(x, t) (2.1)

where ρL denotes the linear density of the string and T0 the tension. The terms
Fi(x, t) represent the force densities acting on the string (i.e. forces distributed
along the string).

For free oscillations (Fi(x, t) = 0) the solutions are

y(x, t) = (A sin kx + B cos kx) exp(±jωt) with ρLω2 = T0k
2

The values of k are determined by the boundary conditions. With a simple
support at the two terminations of the string (y(x, t) = 0 at x = 0 and x = L), we
find an infinity of particular solutions

yn(x, t) = An sin knx exp(±jωnt)

with
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kn =
nπ

L
and ωn =

√

T0

ρL

nπ

L

The spatial components sin knx of the solutions are of particular interest because
they are orthogonal. By choosing an adequate normalization it is possible to get
an orthonormal base of functions (eigenvectors) φn(x) on which the solutions of the
string equation (Eq. 2.1) can be expressed. The normalization gives

φn(x) =

√

2

L
sin(nπ

x

L
) ⇒

∫ L

0

φn(x)φm(x)dx = δnm

and the displacements y(x, t) are written as

y(x, t) =
∞
∑

n=1

φn(x)an(t) ⇔ an(t) =

∫ L

0

φn(x)y(x, t)dx (2.2)

A force F (x, t) acting on the string can be expressed in the same base

F (x, t) =

∞
∑

n=1

φn(x)fn(t) ⇔ fn(t) =

∫ L

0

φn(x)F (x, t)dx (2.3)

Combining equations 2.2 and 2.3 with the string equation 2.1, the partial differential
equation including the two variables t and x is simplified into an infinity of ordinary
differential equations depending only on time. Each modal coefficient an(t) is the
solution of a modal equation

än(t) + ω2
0nan(t) =

1

ρL
fn(t) (2.4)

and the eigenvalues ωn associated with the eigenvectors φn(x) are given by

ωn = ω0n =

√

T0

ρL
(
nπ

L
)2

Stiff string

Following the same method, it is possible to include other features of the string.
For instance, the resistance to bending can be included by adding a shearing force
in the string equation, as seen in Chapt. 1.2

ρL
∂2y(x, t)

∂t2
− T0

∂2y(x, t)

∂x2
+ EI

∂4y(x, t)

∂x4
=

∑

i

Fi(x, t) (2.5)

where E is Young’s modulus„ and I = πd4

64 is the second moment of area for a
circular cross section of the string, with d being the diameter of the string.
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Solutions of Eq. 2.5 when Fi(x, t) = 0 are now

y(x, t) = (A sin kx + B cos kx + C sinh kx + D cosh kx) exp(±jωt)

with the following dispersion relation

ρLω2 = T0k
2 + EIk4

For simply supported boundary conditions at the string terminations y(x, t) = 0

and ∂2y(x,t)
∂x2 = 0 at x = 0 and x = L, the spatial components of the solution remain

the same as for the flexible string. The displacement and the force can be expressed
on the previous eigenvectors φn(x) and the same modal differential equations (Eq.
2.4) are obtained. Only the dispersion relation changes and the eigenvalues ωn are
now

ωn = ω0n =

√

T0

ρL
(
nπ

L
)2 +

EI

ρL
(
nπ

L
)4

From the derivations of the modal equations we can stress an important ad-
vantage of the modal formalism: The case of the flexible string and the stiff string
are formally very similar. In both cases, the solution is the same differential equa-
tion 2.4. Only the eigenvalues ωn differ, but they are parameters of the simulation
case, which will be computed only once at the beginning of the simulation. Conse-
quently, the addition of stiffness in the physical description of the string does not
increase the computational cost. This is in contrast to other simulation methods.
For instance, the waveguide technique requires the use of extra filters to simulate
string stiffness, and finite different schemes lead to additional terms in the recursion
relation. This point will be developed in Sect. 2.3.

Discussion: On simplicity and the string terminations

In the previous section, expressions for the modal vectors and their eigenvalues were
obtained. It must be emphasised that these expressions were obtained for simply
supported boundary conditions, chosen for their simplicity. This is a somewhat
arbitrary choice, not completely supported by the geometry and mechanical prop-
erties of the string terminations on the violin. For instance, they do not take the
transmission of the string vibrations to the instrument body through the bridge
into account, nor the damping induced by the finger on the fingerboard. Other
boundary conditions could have been considered. For instance, Adrien [1] assumed
that the string was clamped at both terminations (y(x, t) = 0 and ∂y(x,t)

∂x = 0 at
x = 0 and x = L) and obtained the following expressions for the modal vectors

n even: φn(x) =
cosh qnx

cosh qn
L
2

− cos knx

cos kn
L
2

n odd: φn(x) =
sinh qnx

sinh qn
L
2

− sin knx

sin kn
L
2
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in which the values of qn and kn for even n (left) and odd n (right) are deduced
from

tanh qn
L

2
= −kn

qn
tan kn

L

2
tanh qn

L

2
=

qn

kn
tan kn

L

2

with

qn =

√

k2
n + (

T0

EI
)2

The equations above must be solved numerically. Alternatively, by considering
that T0

EI is much larger than kn, they can be developed in order to find analytically
approximated values of kn, qn and ωn [84].

From the derivations above it is clear that the simplicity of the proposed for-
mulation depends on the somewhat arbitrary choice of boundary conditions. Other
solutions taking the mobility of the string at the bridge into account through a
mechanical admittance function could be considered (see Chapt. 1.2). In that case,
however, the functions φn(x) would not be an orthonormal base anymore for the
solutions of the string equation, and the solution will not be as simple as for the
simple supported case. The issue has been discussed by Kergomard et al [45] for
the particular case of two resistive terminations, but it is not our intention to enter
into this complicated problem.

Instead, our approach consisted in keeping the eigenvectors of the string as
simple as possible, and transferred all additional features to forces acting on the
string. This approach is illustrated in Fig. 2.1. Instead of computing the modal
properties of the string using some specific well-motivated boundary conditions, we
keep the simplest possible mathematical formulation by considering the “virtual”
terminations simply supported, and the bridge and finger are considered as forces
acting at their actual positions on the string.

It could be noted that this representation is not so far from a true description
of the real string. The string is actually not directly attached to the bridge or the
nut (or finger), but farther away, at the tailpiece and the tuning peg. The string is
consequently divided into three parts, two of them not directly participating in the
string vibration.

Including damping in the model

The solution to Eqs. 2.1 and 2.5 give undamped oscillations. Damping mechanisms
have been shortly described in the previous chapter (see Chapt. 1.2), and different
ways can be considered for including damping in the model. For instance, a real
impedance modelling purely resistive terminations of the string could be used, but,
as shown above, it would make the determination of the eigenvectors more com-
plicated. Alternatively, it would be possible to keep the undamped string equation
and use a damper for applying an external resistive force F1(t) = −Rẏ(x1, t) at one
point x1 very close to one of the string terminations.
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Figure 2.1: Alternative ways of taking the boundary conditions of the string into
account. (a) The mechanical properties of the bridge and the finger (or nut) are used
for computing the modal characteristics of the string, resulting in non-orthonormal
eigenvectors. (b) The string is “virtually” simply supported at both terminations,
the bridge and the finger being represented by forces acting at their actual positions
on the string.

In this section, we describe the inclusion of a mechanical resistance depending
on frequency in the string equation. Damping coefficients for the lowest modes are
determined from experimental data and discussed.

Including damping in the string equation

A damping force proportional to the string velocity can be included in the string
equation. Such a force is produced for example by the friction of the string in
the air and the damping coefficient will be denoted RL(ω) for stressing a potential
dependence on frequency. The string equation becomes

ρL
∂2y(x, t)

∂t2
+ RL(ω)

∂y(x, t)

∂t
− T0

∂2y(x, t)

∂x2
+ EI

∂4y(x, t)

∂x4
=

∑

i

Fi(x, t) (2.6)

With y(x, t) =
∑

φn(x)an(t), we obtain the modal equations

än(t) + 2rnȧn(t) + ω2
0nan(t) =

1

ρL
fn(t) (2.7)

where

rn =
RL(ω)

2ρL
and ω2

0n =
T0

ρL
k2

n +
EI

ρL
k4

n (2.8)

The dispersion relation is obtained with an(t) = ejΩt and fn(t) = 0 in Eq. 2.7

T0k
2
n(1 +

EI

T0
k2

n) = ρLΩ2(1 − j
RL(ω)

ρLΩ
) with kn =

nπ

L
(2.9)
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This expression can only be solved analytically if the terms depending on stiff-
ness and the mechanical resistance are assumed to be small compared to unity [84].
In this case, the frequencies are

Ωn ≈ kn

√

T0

ρL

(

1 +
EI

2T0
k2 + j

RL(ω)

2ρLω

)

(2.10)

The frequency ωn of the modes (real part of Eq. 2.10) does not depend on the
damping parameter RL(ω). Consequently, the determination of the modal damping
values rn is straightforward

rn =
RL(ωn)

2ρL
with ωn ≈ kn

√

T0

ρL

(

1 +
EI

2T0
k2

n

)

(2.11)

However, this way of introducing damping leads to approximate values of the
frequencies, and it could be more appropriate to work directly with the modal
damping values without considering the damping parameter RL(ω). In that case,
the damping rn of each mode can be arbitrary set and the complex frequencies of
the corresponding modes are deduced from Eq. 2.7

Ωn =
√

ω2
0n − r2

n + jrn ωn =
√

ω2
0n − r2

n (2.12)

The values of the modal damping coefficients rn are chosen in order to damp
different string modes more or less efficiently. They can be set empirically by
listening to the resulting sound, or according to measurements, or according to
a model describing the variation of the coefficients with frequency. For example,
Adrien [1] assumed a quadratic variation of the coefficients with mode number

rn = B1 + B2(n − 1)2 (2.13)

Estimation of damping coefficients from plucked string

The damping coefficients rn were estimated from the decay times of the partials
during the free decay of the string (violin steel D string). To obtain a pure pluck,
a loop of thin wire was passed around the string. This wire was used for pulling
the string until it broke and the resulting string velocity was recorded using a small
magnet placed under the string1.

The signal was first analysed with a high-resolution method [7] for extracting
the frequencies and powers of the partials during successive time windows of 128
samples. In Fig. 2.2, the decrease in amplitude is illustrated for several partials, up
to the 15th. As expected, the decay time decreases with increasing partial number,
indicating a more prominent damping for highest harmonics.

The solutions of the string equation 2.6 for free oscillations are

1These measurements were cordially furnished by Erwin Schoonderwaldt
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Figure 2.2: Illustration of the decay envelopes for some of the string partials when
a violin D string is plucked.

y(x, t) =
∞
∑

n=1

an(t)φn(x) with an(t) = An sin(ωnt − ϕn) exp(−rnt)

where the parameters An and ϕn are determined by initial conditions.
The time evolution of the power of each partial can consequently be fitted with

an exponential function e−t/2τn , the decay time τn = 1/rn being determined for
each partial using a linear fit (on a logarithmic scale) of the envelopes in Fig. 2.2.

Fig. 2.3 shows the resulting decay times τn computed for two different situations:
an open D string (without finger), and a stopped D string. For the stopped string,
all decay times were shortened compared to the open string, illustrating the added
damping effect of the finger on the string.

Discussion

In the experiment above, we determined decay times τn resulting from a combina-
tion of all damping mechanisms. In particular, losses due to the bridge mobility
and the stopping finger were included in the decay time, and taken into account
in the resulting damping parameter RL(ω). The effect of damping at the string
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Figure 2.3: Decay times τn for the string partials of a D string (open and stopped).
Each measurement was repeated two times for checking the reproducibility. The
added damping of the finger is clearly illustrated by the shortening of all decay
times when the string is stopped.

terminations is consequently incorporated in the string equation, as if it was due
to internal damping.

This leads to a small difference compared to the actual effect of the termination.
For instance, in the simplified case where the bridge acts as a simple resistance,
the amplitude of a wave propagating along the string should decrease each time
it is reflected at the bridge. When the effect of the bridge is included in the
damping coefficient, the wave amplitude decreases continuously as it propagates
along the string. However, if the waves are observed at a given point of the string,
no difference between the two cases can be observed, even if they formally are very
different.

External forces: Expression of the modal components and basic
examples

With the modal formulation described before, there is no difficulty in making ex-
ternal forces acting on string. The modal components of the forces are derived from
the projection of the linear forces F(x, t) on the modal vectors φn(x)

fn(t) =

∫ L

0

φn(x)F(x, t)dx

Under the assumption that each external force acts at a single point of the string,
it can be represented with a dirac function Fi(x, t) = Fi(t)δ(x− xi) and the modal
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components can be written as a sum involving the effective force and the modal
vectors

fn(t) =
∑

i

Fi(t)

∫ L

0

φn(x)δ(x − xi)dx =
∑

i

Fi(t)φn(xi)

The equations giving the modal components are consequently rewritten as

än(t) + 2rnȧn(t) + ω2
0nan(t) =

1

ρL

∑

i

Fi(t)φn(xi) (2.14)

The forces Fi(t) contained in Eq. 2.14 are not known in advance and result from
interactions with other more or less complex mechanical systems. Their instanta-
neous values are therefore determined from other dynamical equations coupled by
contact conditions. In the case of the bowed string, we are interested in modelling
the action of the finger and the bow. In this section, we will consequently restrict
the description to a few examples that will or could be useful for our purpose.

The simplest mechanical system that could act on the string is a damped mass-
spring system at a given position x1. This could for example be used to represent
a basic model of the bridge with only one resonance. In that case, F1(t) is given by
the combination of Eq. 2.14 and

F1(t) = −Mÿ1(t) − Rẏ1(t) − Ky1(t)

The two equations are linked by a contact condition at x1, stating that the dis-
placement y(x1, t) of the string at this position equals the displacement of the
mass-spring system

y(x1, t) = y1(t)

A more essential example for the bowed string is the frictional force F0 that
acts on the string at the bowing point in order to drive it. In that case, the force
must be determined from the string equation and a friction characteristics giving
the force as a function of the velocity difference between the bow and the string,
as seen in Chapt. 1.2. This interaction can be solved graphically as proposed by
Frielander [26] and Keller [44]. The combination force-velocity (F0, v = ẏ(x0)) of
the system is given by the intersection between the friction curve and a straight
line described by

F0 = 2Zc(v − vh) Zc =
√

T0ρL

For the modal formalism, we will see that the discretization in time leads to a
similar relation where the characteristic impedance of the string Zc is replaced by
a numerical impedance ZN .

Effect of the number of modes

The formalism described above leads to exact solutions as long as the number of
modes is infinite. However, for obvious practical reasons, the modal space must be
truncated to a finite number N . Some effects of such a truncation are discussed in
this section.
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Frequency response

The truncation reduces the number of resonances of the string to the number of
modes. A sinusoidal driving force located at x1 induces a frequency response χn(ω)
for each modal equation 2.14 according to

χn(ω) =
φn(x1)

ρL(ω2
0n + 2jrnω − ω2)

Each modal equation corresponds to an oscillator with a resonance frequency ωn =
√

ω2
0n − r2

n. The global response χ(ω, x) at a specific point x is obtained by sum-
ming the response associated with each mode

χ(ω, x) =
N

∑

n=1

φn(x)χn(ω) (2.15)

Fig. 2.4 illustrates the effect of the truncation on the frequency response computed
for N = 20 and N = 50. In the first case (N = 20), the absence of resonances
above the 20th is clearly visible. In addition, there is a gap at each multiple of
the fifth resonance. Because the driving force acts at a position x1/L = 0.2, the
contribution of eigenvectors φn(x) is zero when n is a multiple of L/x1 = 5. Note
that these gaps are slightly shifted for N = 50, due to the influence of the higher
resonances.

Spatial spreading

The finite number of modes also leads to a spatial spreading of the forces. F (x, t)
can be computed from the modal components fn(t) = φn(x1)F (t) with

F (x, t) = F (t)
N

∑

n=1

φn(x1)φn(x)

The sum on the right side in the equation approaches a dirac delta at x1 as N tends
to infinity, but for a finite number of modes it gives a finite pattern around x1 as
shown in Fig. 2.5.

Consequently, the truncation tends to distribute the force along the string. The
force does not act at a single point anymore, but shows a spatial width 2L/N and
some oscillations along the string.

The single point interaction is a practical but rather unrealistic mathematical
tool. From this point of view, the spatial extent of the force around a mean position
on the string could be regarded as a more realistic situation. However, the small
contributions along the string could have a drastic effect on the vibrations. If they
become too prominent, the interaction with the bow will immediately influence any
point on the string.
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Figure 2.4: Frequency response of a string for two different truncations, N = 20
(top) and N = 50 (bottom), computed with Eq. 2.15. The string is flexible, with
constant damping coefficients rn = 5 and a fundamental frequency of 200 Hz. The
driving force is applied at x1/L = 0.2 and the response is observed at the same
position x = x1. The number of resonances equals the number of modes used for the
computation. Because the string is driven at a node of the fifth mode (L/x1 = 5),
gaps can be observed at each multiple of the fifth resonance.
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For example, from Eq. 2.7, the impulse response for each modal component of
the displacement is

hn(t) =
φn(x1)

ρLωn
sin(ωnt) exp(−rnt)

The impulse response for the displacement at any point x of the string can then be
written as h(t, x) =

∑

φn(x)hn(t). An example of such a response is shown in Fig.
2.6, for a position x different from the interaction point x1 (x/L = 0.3 and x1/L =
0.13). The three figures corresponding to different truncations show a rather similar
shape of the response. The string is displaced as successive reflections of the initial
impulse arrive from the two string terminations and pass the observation point.
Initially, the impulses are propagated in both directions out from x1 towards the two
terminations, i.e. the bridge and the nut. The observation point x is first displaced
by the velocity impulse travelling toward the nut, obtaining a positive displacement.
A short time later the displacement is returned to zero by the reflected impulse
arriving from the bridge. The displacement becomes negative as the reflection from
the nut arrives. Observing the details, it can be noticed that the string begins to
vibrate before the arrival of the incoming wave, due to the spatial spreading of the
force. This precursory vibration becomes smaller and smaller as the number of
modes increases.

2.3 Numerical resolution and sound simulation

The vibration of the string as modelled in the previous section can be simulated
by solving the modal equations 2.14. In this section, we will first describe two
key points that have to be considered for the numerical solution: the integration
scheme permitting to obtain the new modal components at each time step, and
the algorithm for the interaction with external forces (frictional force and finger).
Then, more pragmatic procedures will be considered in order to compute a “sound”
from the force acting on the string termination representing the bridge. Finally,
the computation cost of the proposed resolution will be discussed and compared
with other methods.

Integration scheme

Different methods can be considered for simulating the time evolution of the modal
components given in Eq. 2.14. For instance, Adrien [1] and Antunes [2] used an
Euler scheme and a Verlet integration algorithm, respectively. Another approach
was proposed by Doel [22] who expressed the solutions by using a numerical con-
volution of the external force with impulse responses of the modal equations and
obtained a second order recursion equation for the new modal components.

The disadvantages of Euler schemes are well known. For example, they intro-
duce some numerical damping in the simulations, they can become unstable and
they are less accurate than other techniques such as Runge-Kutta methods. For
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Figure 2.6: Impulse response of the displacement at an observation position at
x = 0.3L, different from the interaction point at x1 = 0.13L. String with no
damping and no stiffness included; fundamental frequency f0 = 200 Hz. The
impulse responses are computed for different number of modes N = 20, 50, 100 in
order to highlight the influence of the mode truncation on the details of the string
vibrations.

the specific case we are interested in (a second order linear ordinary differential
equation), the analytical solution is obvious and can be used directly. The modal
displacements at time t1 = t0 + dt, with modal forces fn(t) and initial conditions
an(t0) and ȧn(t0), are

an(t1) = X1nan(t0) + X2nȧn(t0) +
1

ρL

∫ t1

t0

fn(t1 − t′)hn(t′)dt′ (2.16)

where hn(t) is the impulse response deduced from Eq. 2.14 as

hn(t) =
1

ωn
sin ωnt exp(−rnt)

and the coefficients X1n and X2n are

X1n = (cos θn +
rn

ωn
sin θn)Rn (2.17)

X2n =
1

ωn
sin θnRn (2.18)
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with θn = ωndt and Rn = exp(−rndt).
The time discretization is consequently included in the integration of the force

whose shape is not known in advance. The integral could be computed with a
numerical method over the time step dt between t0 and t1. However, in our case,
hn(t) has a sine shape that can be easily integrated and it seems more relevant
to approximate the function fn(t) by considering a simple form between each time
step. For instance, if fn(t) is simply supposed to have a constant value fn(t1)
during the interval [t0 t1], we obtain:

∫ t1

t0

fn(t′)hn(t1 − t′)dt′ =
1

ω2
0n

(1 − X1n)fn(t1)

Consequently, equation 2.16 becomes

an(t1) = X1nan(t0) + X2nȧn(t0) + X3nfn(t1) (2.19)

or

an(t1) = ah
n + X3nfn(t1)

with
X3n =

1

ρLω2
0n

(1 − X1n)

Alternatively, it is possible to consider a linear variation of the force between the
two time steps expressed by

fn(t) = fn(t0)(1 − t

dt
) + fn(t1)

t

dt

In that case, we would obtain
∫ t1

t0

fn(t′)hn(t1 − t′)dt′ =
1

ω2
0n

(

(1 + C)fn(t0) + (−Rn cos θn − C)fn(t1)
)

with

C =
1

ω2
0ndt

(2rn(Rn cos θn − 1) +
r2
n − ω2

n

ωn
Rn sin θn)

In this work, we considered a constant force during intervals between time steps.
This bias is based on the simplicity of the computations and expressions, and addi-
tionally, on the idea that the friction force should theoretically be discontinuous at
the transition between the two friction states (sticking and slipping), which would
not be reproduced with a linear variation of the force.

In order to solve the friction interaction, we are more interested in the string
velocity than in the displacement. The first derivative of the modal components
can be derived in a similar way and we obtain

ȧn(t1) = Y1nan(t0) + Y2nȧn(t0) + Y3nfn(t1) (2.20)
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or
ȧn(t1) = ȧh

n + Y3nfn(t1) (2.21)

with

Y1n = −(ωn +
r2
n

ωn
) sinωndt exp(−rndt) (2.22)

Y2n = (cos ωndt − rn

ωn
sin ωndt) exp(−rndt) (2.23)

Y3n = − 1

ω2
0nρL

Y1n (2.24)

In Eq. 2.21, ȧh
n represents the “historical” value of the modal component, i.e.

the exact value that would have been obtained if no force was applied on the string
(free oscillation).

The modal displacements and the modal velocities are both interesting for our
purpose because they will be used for solving the interaction with the “finger” and
the bow, respectively. Note that similar relations could be obtained for the modal
components of the acceleration which could be useful if we were considering the
action of a mass on the string.

Action of external forces

The model representing the bowed string is composed of a string with mathemati-
cally convenient properties, a friction interaction at the bowing point of the string,
and a “finger” permitting to set the pitch of the sound. In this section, we will
consider the two forces acting on the string. The first one (F1) represents the finger
and should prevent the string from vibrating at a specific position. The second one
(F0) models the frictional force of the bow on the string and excites the string.

In our specific case with fn(t) = φn(x0)F0(t) + φn(x1)F1(t), Eqs. 2.19 and 2.21
can be rewritten as

an(t1) = ah
n + α0nF0(t1) + α1nF1(t1) (2.25)

ȧn(t1) = ȧh
n + β0nF0(t1) + β1nF1(t1) (2.26)

with
αin = φn(xi)X3n βin = φn(xi)Y3n i = 0, 1

The general principle consists in using these discrete equations for the modal
components in order to deduce a linear expression giving the force Fi(t1) as a
function of the string displacement or velocity at a given position. It is then possible
to use these relations for solving the interaction with the other mechanical systems
(the finger and the bow). This will first be illustrated with a simple modelling of
the finger, then with the more sophisticated case of the bow-string interaction. At
the end of this section, some problems related to the derivation of the solution for
the friction force will be discussed.
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Determination of the “finger” force

The effect of the finger consists in shortening the vibrating part of the string in order
to change the fundamental frequency. This is achieved by forcing the transverse
displacement to zero at a given point x1 on the string. The force that prevents the
string from moving at x1 will be called F1 in the following and will be derived from
Eq. 2.25. The displacement at x1 can be expressed as

y(x1) = yh
1 + A01F0 + A11F1 with























yh
1 =

∑N
n=1 φn(x1)a

h
n

A01 =
∑N

n=1 φn(x1)α0n

A11 =
∑N

n=1 φn(x1)α1n

(2.27)

Assuming y(x1, t) = 0 in Eq. 2.27, F1 can be directly deduced from the values of
yh
1 and the force F0

F1 = − 1

A11
(yh

1 + A01F0) = C11y
h
1 + C12F0

An alternative way of forcing the string displacement to zero at the finger position
consists in modelling the finger with a very stiff spring. The force F1 is then
determined by the equation of the spring F1 = −Ky(x1) combined with Eq. 2.27

F1 = C11y
h
1 + C12F0 with







C11 = −K
1+KA11

C12 = A01C11

(2.28)

From this expression, it can be noticed that the determination of the friction force
F0 is necessary for computing the finger force F1. In spite of the different locations
of the two forces, there is a weak coupling due to the truncation of the number
of modes as discussed before, and to the time discretization. Consequently, forces
applied on the string have a non-negligible effect over the entire length of the string,
in particular at the positions of other interactions.

Fig. 2.7 illustrates the effect of the number of modes and the finger position
x1 on the coefficients A11 and A01. The string is bowed at a position x0 = 0.13L.
Whatever the finger position x1, the cross coefficient A01 tends to zero when the
number of modes is larger than 150. Under this value, A01 is more and more affected
when the finger gets closer to the bowing point (x1 = 0.16L and x1 = 0.14L). For
more usual positions such as x1 = 0.9L and x1 = 0.3L, the coefficient is almost equal
to zero and could be neglected. However, in order to not endanger the exactness of
the simulation, these coefficients will be kept in the solution.
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Figure 2.7: Effect of the number of modes on the cross coefficients A01 for a force
applied at x0 = 0.13L and dt = 1/44100 s. For comparison, the coefficient A11

appearing in Eq. 2.27 is shown as well. The contribution of the friction force at the
finger position increases when the finger gets closer to x0 and tends to disappear
with increasing number of modes.

Determination of the friction force

The string velocity at the bowing position ẏ(x0, t) is expressed as

ẏ(x0) = vh
0 + B00F0 + B01F1 with























vh
0 =

∑N
n=1 φn(x0)ȧ

h
n

B00 =
∑N

n=1 φn(x0)β0n

B01 =
∑N

n=1 φn(x0)β1n

(2.29)

Replacing F1 with Eq. 2.28, we obtain

F0 = C01(ẏ(x0) − vh
0 ) + C02y

h
1 with







C01 = 1/(B00 + B01C12)

C02 = −B01C11C01

(2.30)

Two different cases have to be considered for determining the friction force:
sticking and slipping of the string.

During the sticking state, the force F0 must be computed from a continuity
condition, normally equal velocity of the string and bow. Inserting ẏ(x0) = vb in
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Eq. 2.30, the computation of F0 is straightforward

F0 = C01(vb − vh
0 ) + C02y

h
1 (2.31)

The friction state changes when F0 is greater than the maximal friction force com-
puted as Fmax = µsFb where µs is the static friction coefficient in the friction
characteristic, and Fb the bow force. This is illustrated in Fig. 2.8d.

During the slipping state, the friction force F0 is determined by the intersection
between Eq. 2.30 and the friction characteristic depending on the relative velocity
between the bow and the string (∆v = ẏ(x0)− vb). Eq. 2.30 can be expressed as a
function of ∆v

F0 = C01(∆v + vb − vh
0 ) + C02y

h
1 (2.32)

To avoid long computations due to iterative algorithms, the hyperbolic expression
of the friction curve is used. This choice permits a direct determination of the
combination (∆v, F0) during the sliding part of the motion.

The friction characteristic is determined by three parameters (µs, µd and v0)
and is given by

F0 = µ(∆v)Fb with µ(∆v) = µd +
µs − µd

1 − ∆v
vc

(2.33)

with

vc =

{

v0 if vb > 0
−v0 if vb < 0

Fc =

{

Fb if vb > 0
−Fb if vb < 0

This characteristics is used with Eq. 2.32 in order to obtain a second order equation
where ∆v is unknown

c2∆v2 + c1∆v + c0 = 0 with



























c2 = −C01

vc

c1 = C01
vc−vb+vh

0

vc
+ µd

Fc

vc
− C02

yh
1

vc

c0 = C01(vb − vh
0 ) + C02y

h
1 − µsFc

(2.34)

The existence of ∆v (related to the value of the discriminant ∆ = c2
1 − 4c0c2) gives

one of the two following situations, and provides a first condition for determining
if the string is still sliding.

• if there is no solution (∆ < 0), the friction state has changed and the string
is now sticking to the bow (see Fig. 2.8b).
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Figure 2.8: Illustration of the situations that can occur when solving the friction
interaction. (a) The string keeps slipping. (b) No solution (∆ < 0), then the string
begins to stick. (c) The solution is outside the range in which the friction curve is
defined (∆v ∗ vb > 0). The string sticks. (d) The string sticks but the next force
value is above the maximal force and the string begins to slip.

• if at least one solution exists (∆ ≥ 0), ∆v is computed using the following
expression, corresponding to Fig. 2.8a

∆v =
−c1 +

√
∆

2c2

However, the sign of ∆v should be tested in order to determine if the solution is
acceptable or not. The friction curve is valid for ∆v < 0 when vb > 0, but Eq.
2.34 does not take this restriction into account, which can lead to unacceptable
solutions, like in Fig. 2.8c. Consequently, if ∆v ∗ vb < 0, the solution is acceptable
and the string is still sliding, and in the opposite case, the string is sticking and
∆v = 0, which gives a second condition for the string to keep sliding.
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The friction force is computed with the friction characteristics (Eq. 2.33) and an
equation describing the response of the string to the external force F0 (Eq. 2.32).
In the following sections, two aspects of this approach to the numerical solution
will be discussed. First, we underline the similarity between Eq. 2.32 and the
theoretical situation using the characteristic impedance of the string. Then, the
importance of the friction characteristic in the direct solution of the equations will
be discussed.

On the numerical impedance

Previously we have discussed the effect of truncation on the coefficients A01 and
A11 related to the displacement at the finger position. The same kind of discussion
could be applied to the coefficients B00 and B01 related to the velocity at the bowing
position. However, it will be more interesting to focus on the coefficient C01 which
gives the connection between the force and the velocity (Eq. 2.30).

This equation is indeed very similar to the equation used by Friedlander [26]
and Keller [44] for determining the combination force-velocity graphically from the
friction curve. The principle is exactly the same, but the characteristic impedance
of the string Zc =

√
ρLT0 has been replaced by a “numerical impedance” depending

on the number of modes and the time step dt. Neglecting the influence of the cross-
coefficients B02 and C02 in Eq. 2.30, we can write

F0 = 2ZN (ẏ(x0) − vh
0 ) with

1

2ZN
=

N
∑

n=1

φn(x0)Y3n

The dependency of this factor 1/2ZN versus the number of modes N is illustrated
in Fig. 2.9 for an ideal string. As a comparison, the numerical impedance that
would be obtained with an implicit Euler scheme is shown as well. It can be seen
that these coefficients tend toward the theoretical 1/2Zc as the number of modes
increases.

This is an important feature of the numerical scheme. From a theoretical point
of view, the velocity and the friction force at the bowing position should be dis-
continuous at the transitions between the sticking and slipping states. When the
number of modes is too low, the slope 2ZN of the line becomes steeper and the
discontinuity tends to disappear. In contrast, if the slope was too low, the disconti-
nuity would become larger and larger, much larger than the theoretical prediction.

On the friction model and the influence on computational complexity

The hyperbolic model offers a straightforward way of solving the interaction in an
implicit scheme, as seen above. An alternative proposed by Adrien [1] consists in
using a simplified version of the friction curve during slipping. In order to allow a
direct solution of the friction interaction, the curve was approximated by successive
straight lines with different slopes, depending on the relative velocity between the
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Figure 2.9: Effect of the number of modes on the numerical admittance YN = 1
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for the numerical scheme described in text (“analytical scheme”) and for an implicit
Euler scheme. The horizontal line represents the admittance deduced from the
characteristic impedance of the string.

string and the bow. The non-linearity of the curve was then transformed into
several different slipping states and some try-and-test procedures for determining
the current slipping state of the interaction.

Other analytical friction models than the hyperbolic model offer two alterna-
tives:

• Solving the interaction by looking for the intersection with the friction curve.
In that case, a recursive algorithm such as the Newton-Raphson method is
needed for approaching the solution. However, with such a solution method,
the computation cost will increase significantly and the real-time implemen-
tation could become problematic.

• Using an explicit scheme in which the forces acting on the string are computed
from the velocities and positions corresponding to the time step before. This
solution can be used with an exponential friction model as in [2], and seems
to give a non-significant error in the simulations. However, in that case,
the use of an explicit scheme seems to make the analysis of the sticking state
more problematic. Using the velocity at the previous time step for computing
the friction force does not lead to the same velocity of the bow and string.
Antunes [2] solved this problem by “attaching” the string to the bow with a
very stiff spring during the sticking part of the motion.
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Sound signal

In the previous sections, we focused on the numerical solution of the string equation.
Our point of departure was in string physics for deriving the wave equation of the
string and deriving the modal formulation, then numerical methods were applied
for solving the modal equations.

This procedure can be used to compute the modal components, and conse-
quently the displacement or the velocity at any point of the string, in order to
simulate the vibration of the string. In this section, we will be interested in more
pragmatic arguments that permit to transform the string vibrations into more or
less convincing sounds. It means that we will add some “ad hoc” features that are
not contained in the physical equations described before, but that contribute to the
realism of the sound.

Computing the bridge force

The output signal of the simulation can be the string displacement or velocity at
any position on the string, computed using Eq. 2.2. In a real violin, the string acts
on the bridge which transmits the vibrations to the body of the instrument, and it
will be relevant to base our output signal from the force on the bridge. The bridge
force is obtained from the modal components as

Fbridge(t) = T0
∂y(x, t)

∂x

)

x=0
− EI

∂3y(x, t)

∂x3

)

x=0

Consequently, with y(x, t) =
∑N

n=1 an(t)φn(x), we obtain

Fbridge(t) =

√

2

L

N
∑

n=1

an(t)
(

T0
nπ

L
+ EI

(nπ

L

)3
)

(2.35)

Obtaining an “acoustic” signal

The bridge force gives a signal that contains all the dynamical characteristics that
make it possible to recognize a vibration produced by a bowed-string instrument.
But this signal still does not show some of the spectral characteristics of a real violin
sound. Typically, the bridge signal sounds metallic and the result is very close to
the sound of a string mounted on rigid supports (monochord), or to a recording of
the string vibrations. It is therefore necessary to add the effect of the violin body
in order to obtain a more convincing sound.

The most straightforward way of including the effect of the violin body in the
model consists in filtering the bridge force with an impulse response of a violin.
With this approach, the violin body is considered as a filter responding to a given
source signal. The mechanical effects on the string vibration resulting from the
coupling between the string and the violin body are ignored. Apart from this
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Figure 2.10: Impulse response of a violin (top) and corresponding spectrum (bot-
tom) measured by striking the bridge with an impact hammer. The resulting
acoustical signal was recorded close to the player’s left ear.

restriction, the approach has shown satisfying results from a perceptual point of
view and for sound synthesis purposes [27, 47, 30].

The impulse responses were measured by striking the edge of the bridge with a
small impact hammer and recording the radiated sound pressure with a microphone.
The resulting response and spectrum are illustrated in Fig. 2.10. The response
depends on several parameters, including the position of the microphone relative to
the violin, and the acoustics of the room. For sound synthesis purposes, a powerful
way of simulating different situations can be obtained by filtering the bridge signal
with impulse responses corresponding to different violins, different positions around
the violin, and different acoustic environments.

Adding noise

The sounds of instruments generating sustained notes such as the violin are com-
posed of a harmonic part and a noise component. The noise component is illustrated
in Fig. 2.11. As pointed out by Chafe [16], the noise is crucial for the realism of the
sound. Basic examples are the sound of the bow as it is drawn across the string,
which is clearly audible close to the violin, or the turbulent noise from the tone
holes of wind instruments.

As seen in Fig. 2.11, the noise component shows a strong correlation with
the slipping part of the motion and appears as pulses at each stick/slip transition.
This instabilities have been attributed to the sliding of the string along the bow-hair
which has a certain roughness. Consequently, Chafe [16] proposed to incorporate a
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Figure 2.11: Illustration of the noise component during the steady part of a real
violin tone. Top: The string vibration at the bridge measured by a piezoelectric
sensor under the string. Bottom: After analysis of the signal, the noise component
can be computed by subtracting the harmonic part from the original signal, showing
noise pulses concentrated at the slipping phases.

stochastic component into the model during the slipping periods. For that purpose,
the friction characteristic can be perturbed by multiplying with a random number
given by

N(t) =

{

O + Gu(t) if u(t) > P
1 otherwise

where u is a uniform positive noise, O an offset term, G a scaling factor and P a
value setting the amount of samples that are perturbed.

Following Chafe (and a number of other authors), we incorporated noise during
the slipping periods by scaling the friction curve randomly. However, we used a
simpler model given by

N(t) = 1 − Anoiseu(t)

where u(t) is random noise with values between 0 and 1, and Anoise is a coefficient
controlled by the user for setting the amplitude of the noise. This approach ensures
that the perturbed friction curve is lower than the original curve in order to avoid
difficulties that could occur at the slip/stick transitions with values greater than 1.

The generation of noise using this procedure is illustrated in Fig. 2.12 which
shows strong similarities with the noise pulses observed in recorded signals (Fig.
2.11).
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Figure 2.12: Illustration of the noise component during the steady part of a sim-
ulated note using the noise model described in text. The simulated bridge force
including noise (top) has been analysed for extracting the noise component (bot-
tom). The noise track shows bursts of noise similar to the recorded signals in Fig.
2.11.

General description of the algorithm

The numerical implementation of the algorithm is summarized in Fig. 2.13. At the
beginning of the computation, all coefficients that will be used are initialized with
the different parameters (string parameters, computation parameters, etc). Then,
the procedure consists in:

• computing the “historical” variables vh
0 and yh

1 at the interaction points x0

and x1

• determining the velocity difference ∆v and the friction force F0 for the current
bowing state. During slipping, the tests for changing the state are performed
when computing ∆v. During sticking, the test is done at the end, once the
force is computed.

• computing the “finger” force F1 with F0, then the new modal components
with F0 and F1.

• computing the bridge signal and making the convolution with the impulse
response.

The control parameters x0 and x1 representing the bow and the finger position
can be changed in real time during the simulation but necessitate a reinitialisation
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Figure 2.13: Schematic representation of the complete algorithm for synthesising
violin sound.

of some coefficients. However, for efficiency some partial initialisations have been
implemented. The same applies to the string parameters. Some of them do not
require a complete initialisation of the coefficients, and changing their values gives
rise to smaller initialisations for computational economy. In contrast, the two other
control parameters (bow force and bow velocity) act only inside the loop and do
not require any update of the variables.

On the computation cost

For real-time implementation, it is important to have a rather low computation
cost. This cost can be estimated from the preceding description of the model. In
this section, we will first quantify the cost of the modal synthesis by emphasising the
expensive parts of the resolution, then we will estimate the cost of other algorithms,
for comparison.
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Estimation of the computation cost

To estimate the computation cost, we focus on the loop which performs the com-
putation of the next output sample, without the final convolution of the signal.
Considering a number of N modes, we can follow the schematic representation of
the algorithm (Fig. 2.13) and quantify the cost of each step:

• Computation of the historical values: The computation of the two following
expressions gives twice 3N multiplications and 2N additions

ah
n = X1nan(t0) + X2nȧn(t0) yh

1 =
∑

φn(x1)a
h
n

ȧh
n = Y1nan(t0) + Y2nȧn(t0) vh

0 =
∑

φn(x0)ȧ
h
n

• Computation of the forces: The cost depends on the friction state of the
string. For free oscillations, F0 = 0 and no extra operation is required. If the
string is sticking, ∆v = 0 is already known, and then we have to compute
F0 with Eq. 2.30, i.e. 3 operations. Finally, if the string is slipping, we also
have to compute the force (3 operations), but ∆v has to be determined before
through about 25 operations. Because the number of operations during this
procedure is generally less than the mode number N , and because it will
be about the same for all the algorithms compared (providing they all use
the same model of friction), we do not take this cost into account in the
estimation.

• Computation of the new modal components with Eqs. 2.25 and 2.26: Twice
N multiplications and N additions.

• Computation of the next sample for the signal (bridge force) with Eq. 2.35:
N multiplications and N additions.

The computation cost of the loop is consequently around 9N multiplications and
7N additions. It should be noticed that these values do not depend on the charac-
teristics of the string: the flexible string, the stiff string, and the damped string will
all give the same computation cost. The case of free oscillations can be reduced
to 3N multiplications and 2N additions, because the computation of the modal
components of the velocity ȧn is not required. The values above are summarized
in Table 2.1, and in the next section they will be compared with the performance
of other algorithms.

Computation cost of other algorithms

In this section, we discuss the computation cost of other simulation methods in-
cluding finite difference schemes and digital waveguides. The number of operations
during one loop is estimated without taking into account the determination of the
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external forces, as discussed above (the cost of this computation can be considered
to be about the same for all the methods).

The method using finite different schemes has been described in Chapt. 1 and
the following estimation will be based on the description by Hiller and Ruiz [41].
The string equation is solved numerically for a set of N points along the string whose
displacement is given by a recursion relation. For a flexible string, the recursion is

y(i, j + 1) = y(i + 1, j) + y(i − 1, j) − y(i, j − 1)

This relation requires 2 additions for each point during the loop, corresponding
to about 2N additions for the entire string.

For the stiff string, the recursion becomes

y(i, j + 1) = −6ay(i, j) + (1 + 4a)[y(i + 1, j) + y(i − 1, j)]

− a[y(i + 2, j) + y(i − 2, j)] − y(i, j − 1) ,

which requires 4 additions and 4 multiplications for each point, if the factors
before each variable y are computed in advance.

The case of the damped string depends on the model used for describing the
losses. By adding a term depending on ∂y/∂t, all variables are already contained
in the previous equation and no extra operation is needed, as only the coefficients
contained in the equation change. However, as this case introduces similar losses
at all frequencies, a more sophisticated model is required.

Following Hiller [41] and introducing frequency-dependent losses through the
term ∂3y/∂t3, the recursion becomes implicit (the value of the displacement at time
t+2 must be known in order to compute the value for time t+1). However, with a
small approximation, the scheme can be made explicit [17], and the recursion then
requires about 7N additions and 5N multiplications per sample (without taking
into account specific recursion relations in the vicinity of the terminations). The
computation costs for the finite difference scheme and for the modal synthesis are
then very similar.

For comparison, we give a rough estimation of the computation cost for a similar
model using the waveguide method. This estimation is based on the description of
Serafin’s model [76] and does not take possible optimizations of the algorithm into
account.

The propagation is simulated with four delay lines, two at each side of the bow-
ing position. If the cost of delay lines is neglected, the computation only requires 3
additions and 2 multiplications for the flexible string in order to determine qh, qoL

and qoR at the bowing position (see Chapt. 1.3 for the notations). In addition, it is
necessary to compute the output signal, which can be done with only one addition.
The computation cost is consequently much lower than for the two preceding meth-
ods. The method takes advantage of this computational efficiency, and reproduces



62 CHAPTER 2. MODAL SYNTHESIS

Modal Synthesis Finite Differences Waveguides
Free oscillation 3N / 2N 0 / 2N 2 / 4

Ideal string 9N / 7N 0 / 2N 2 / 4
Stiff string 9N / 7N 4N / 4N 27 / 24

With damping 9N / 7N 7N / 5N 37 / 32

Table 2.1: Estimation of the number of operations during one loop for different
simulation methods (number of additions/number of multiplications). The estima-
tion does not take into account the computation of the friction force and neglects
the cost of delay lines.

the propagation effects in real strings (stiffness, damping) by filtering the travelling
waves, which can increase the initial cost significantly.

The simulation of dispersion is obtained by using allpass filters in each delay
line. However, for computational efficiency, the filters are located at one termination
of the string, as in [76], where the reflection at the nut takes the dispersion into
account. Using three 4-th order allpass filter in cascade such as

H(z) =
a0 + a1z

−1 + a2z
−2 + a3z

−3 + a4z
−4

a4 + a3z−1 + a2z−2 + a1z−3 + a0z−4
,

the extra cost consists in 9 multiplications and 8 additions for each filter. Note
that this cost can be reduced as discussed by Bensa at al [10].

The damping of the string is reproduced by designing lowpass filters. In [76],
second order low-pass IIR filters are estimated and used at the nut and the bridge
terminations. Filters such as

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2

add 5 multiplications and 4 additions, which must be multiplied by the number
of terminations.

The computation costs for the three methods in terms of additions and multi-
plications are summarized in Table 2.1. As expected, the number of operations for
the digital waveguide method is much lower than for the others. For comparison,
considering 50 modes or 50 points on the string, respectively, the modal synthesis
requires 800 operations per sample and the finite differences scheme 600, whereas
the waveguide method requires only around 70 operations. It is important to no-
tice that the computation cost remains constant in the case of modal synthesis,
whereas it increases significantly with the other methods. A more accurate com-
parison should be based on reproducibility of the vibration characteristics for a
given computation cost as done in [10].
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2.4 Illustration and influence of computation parameters

The previous sections have presented the theoretical base and the implementation
of the tool that we will use to simulate the vibration of the bowed string. The
simulated motion will in turn be used to synthesize the sound. The ingredients of
the model are expected to be sufficient to reproduce the vibrations of the string well,
but that remains to be shown. In this section we will consequently first check that
the simulated string motions are realistic, and that the vibrations match empirical
observations. Then we will illustrate the influence of the computation frequency and
the number of modes on the simulations. Typically for a real-time implementation
of the model, the computation frequency is set by the standard audio sampling
frequency (44.1 kHz) and a reasonable number of modes is considered (e.g. less
than 80). In the following simulations, a violin D string was used with fundamental
frequency f0 = 294 Hz, inharmonicity factor B = 2.10−4, decay time τ1 = 0.3 s for
the first mode and τn = 1/(3 + 3(n − 1)2) s for the others. The bowing position
was x0 = 0.12L, the bow speed 0.1 m/s and the bow force between 0.2 and 0.6 N.

We will first show an exemplary simulation in order to illustrate the time evo-
lution of the string motion. Then the influence of computation parameters will
be evaluated separately for the steady part of the vibration (corresponding to the
Helmholtz motion) and the attack. Finally, we discuss some ideas that can be
considered when choosing the value of computation parameters.

Example: Motion of the string

In the first chapter, we have described the basic motion of the bowed string observed
by Helmholtz [40]. The string does not vibrate uniformly in Helmholtz motion, and
the observed envelope of the string vibration is produced by a corner dividing the
string in two segments and travelling around a parabolic trajectory. It can therefore
be instructive to observe if our model produces this type of motion with appropriate
control parameters.

Fig. 2.14 shows the time evolution of the displacement along the string under
steady control parameters (constant bow force Fb = 0.6 N, bow velocity vb = 0.1
m/s and bow-bridge distance x0 = 0.12L) during two periods of a simulation.
The values of bowing parameters are typical of real violin playing. At the bowing
position, the displacement increases linearly during the sticking phase, and then
suddenly drops at string release. In the foreground, it can be seen that the shape
of the displacement along the string is composed of two straight lines linked with
a rounded corner. The corner travels along the string toward the nut, then toward
the bridge with opposite sign after reflection at the nut, forming the predicted
parabolic shape. The string release occurs as the corner passes over the bowing
position.

It is reassuring that the expected string motion is obtained qualitatively with
“default” choice of computation parameters. No reliable criteria could be found
beforehand in order to determine adequate parameter values and their choice is a
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Figure 2.14: Motion of a string bowed at x0 = 0.12L. The figure shows the time
evolution of the displacement vs. string position. The maximum of the displace-
ment (Helmholtz corner) travels along the string, forming a parabolic shape similar
to the motion observed by Helmholtz.

tricky issue. However, it can be assumed that, provided that the parameter values
stay within reasonable ranges, changes in the computation parameters give rise to
only small modifications in the vibrations. In the next sections, we will have a closer
look at the vibrations of the string and examine how the computation parameters
influence some details of the motion.

Influence of computation parameters on the steady motion

To illustrate the influence of the number of modes, simulations with constant bow
force Fb = 0.2 N and constant velocity vb = 0.1 m/s were performed with 10, 30,
60 and 150 modes. Usual values will be 30 or 60 modes, but, for comparison, a
very small number of modes (N = 10) as well as a large number (N = 150) were
tested. The results are presented in Fig. 2.15, showing the spectrum of the bridge
force (Fig. 2.15b), and typical velocity patterns during the slip phase (Fig. 2.15a).

Concerning the spectrum, we can observe a cut-off frequency corresponding to
the number of modes, as expected. For instance, with N = 10, the 10 first partials
are between 0 and -30 dB, whereas all the others are below -50 dB. For N = 30,
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Figure 2.15: Influence of the number of modes on the sustained part of the sim-
ulation. (a) Typical string velocities under the bow during slip for N = 10, 30,
60 or 150 modes. (b) Corresponding spectra of the force on the bridge. Dashed
vertical lines indicate the harmonic corresponding to the number of modes in the
simulations. The two first arrows indicate common peaks in the spectra and the
third a common gap.

the cut-off is less obvious, but we can compare with the spectrum obtained with 60
modes to conclude that the harmonics are smoothly disappearing above harmonic
30. Because the 60th harmonic is very close to 20 kHz (Nyquist frequency), no real
difference can be observed between N = 60 and N = 150.

Except for these differences in the spectrum above the partial corresponding to
the number of modes, it is interesting to notice how the envelopes of the spectra
are very similar for N = 30, 60 and 150. For instance, in all cases, we observe the
same small peaks around the 9th and 18-19th partials, and a similar gap at the
30th partial (indicated with arrows in Fig. 2.15b).

In Fig. 2.15a, the velocity shapes of the string during the slip are shown. The
slipping velocity patterns are very similar in amplitude and time (the shift at the
moment of capture is less than 0.1 ms) and do not show any particular tendency
depending on the number of modes. However, it can be observed that the release is
somehow rounded for N = 10. From our previous discussion about the numerical
impedance (Sect. 2.3), it is not a surprise. With a small number of modes, the
slope of the line intersecting with the friction characteristics is high, resulting in a



66 CHAPTER 2. MODAL SYNTHESIS

0  0.2 0.4

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.10

0   

0.1 

Time [ms]

S
tr

in
g 

ve
l. 

[m
/s

]

(a) Shape of sliding

 

 

88.2 kHz

220.5 kHz

441 kHz

44.1 kHz
−100

−50

0

A
m

pl
itu

de
 [d

B
]

(b) Spectrum

f
s
=44.1 kHz

−100

−50

0

A
m

pl
itu

de
 [d

B
]

f
s
=88.2 kHz

−100

−50

0

A
m

pl
itu

de
 [d

B
]

f
s
=220.5 kHz

0 5 10 15 20

−100

−50

0

Frequency [kHz]

A
m

pl
itu

de
 [d

B
]

f
s
=441 kHz

Figure 2.16: Influence of the computation frequency on the sustained part of the
simulation. (a) Typical string velocities under the bow during slip for fs=44.1,
88.2, 220.5 and 441 kHz. (b) Corresponding spectra of the force on the bridge.

smaller discontinuity when the string is released by the bow.

The computation frequency does not show a stronger influence than the number
of modes on the simulation results. In the following simulations, the bow force was
0.6 N, the velocity 0.1 m/s, the number of modes 30, and the frequency was set
successively to 44.1, 88.2, 220.5 and 441 kHz. As expected, no obvious differences
could be observed in the shape of the spectrum (Fig. 2.16b), which is mainly
dependent on the number of modes. The velocity during the slipping phase (Fig.
2.16a) also showed very similar patterns. As the computation frequency increases,
the velocity is more continuous and smooth because of the increasing number of
samples during the slipping phase, but without any significant change in the shape.
It can be noted again that the release is slightly rounded for fs = 44.1 kHz for the
same reason as before.

In conclusion, the number of modes seems to have a greater influence than the
computation frequency during the steady part of the vibration, especially on the
resulting sound, because it changes the envelope of the spectrum. In general, the
two computation parameters do not seem to have any drastic influence on the char-
acteristics of the vibration, at least not in the chosen ranges and for this exemplary
simulation. The differences were limited to small details, they did not change the
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type of string vibration, and even not the characteristics of the interaction at the
bowing point.

However, it should be noted that these simulations were performed for a stan-
dard set of string parameters and at a reasonable bowing position (x0 = 0.12L). It
is clear that when the bowing position is set to more extreme values, for example
very close to the bridge, we will observe a different influence of the computation
parameters. As the duration of the sliding phase decreases, the number of samples
during the phase decreases as well. A critical limit may be reached beyond which
the sliding cannot be described well with use of the friction characteristic. Such an
effect could yield very different behaviour of the string vibrations for rather small
changes in computation frequency.

Influence of parameters during attacks

During the sustained part of the sound, the computation parameters influence
mainly the spectral content of the sound, as shown above. In contrast, dynamic
parts of the simulations like the attacks may be significantly more influenced by
these parameters. The number of modes, and the computation frequency, change
the mechanical response of the model (for example, the impulse response, Sect.
2.2, or the numerical impedance, Sect. 2.3). Extra slips can be produced, which
changes the quality of the attack. The three following sets of simulations illustrate
the effect of changes in the computation parameters on the attack.

In the two first sets of simulations, we examine the effect of the computation
frequency and the number of modes on a “standard” situation. The string is bowed
at a rather large distance from the bridge (β = 0.12). The bow force is kept
constant during the attack (Fb = 0.3 N), and the velocity is linearly increased from
0 to 0.1 m/s in 0.08 s. The same violin D string was used (f0 = 293 Hz) and
the computation parameters were varied from one simulation to the other. Control
parameters were chosen to give a perfect attack (regular triggering of the slip phase
from the first period) with fs = 44.1 kHz and N = 30.

Fig. 2.17 illustrates the influence of the computation frequency on the simu-
lations. The string velocity under the bow is shown (Fig. 2.17a) as well as the
resulting force on the bridge (Fig. 2.17b). The initial computation frequency
(fs = 44.1 kHz) is multiplied by in turn 2, 5 and 10 (fs = 88.2, 220.5 and 441
kHz). No significant differences can be observed between the simulations. A reg-
ular Helmholtz motion is maintained in all four cases, and slip triggerings occur
at the same positions with the same amplitude. The details of the string velocity
during slip reveals the behaviour that was observed before: shapes are very simi-
lar but, because the number of modes is kept constant, the string velocity at the
transition between stick and slip becomes more and more rounded as the frequency
increases, due to an increasing numerical impedance.

The influence of the number of modes is illustrated in Fig. 2.18, in which
simulations obtained with N = 10, 30, 60 and 150 are shown. It is interesting to
notice that an extra slip occurs around time 0.04 s for all simulations except for N
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Figure 2.17: Attacks on a violin D string for different computation frequencies (from
top: fs = 44.1, 88.2, 220.5 and 441 kHz). The bow force is kept constant (Fb = 0.3
N) while the velocity is increased from 0 to 0.1 m/s in 0.08 s. The bow-bridge
distance β is set to 0.12. No significant changes are observed in (a) showing the
string velocity under the bow, or in (b) giving the force on the bridge.

= 30. However, the extra slip does not have a drastic influence on the string motion:
the regular triggering is maintained despite this “accident”. The string velocities
obtained with N ≥ 30 are very similar in amplitude and timing. For N = 10, the
simulation show some differences, but we cannot expect the string behaviour to be
well reproduced with such a small number of modes. Similarly, the driving forces
on the bridge are very similar, except for N = 10, for which high frequencies are
lacking.

In the previous sets of simulations, no strong qualitative differences could be
observed when the number of modes and the computation frequency were varied.
The overall motion of the string was the same, showing a periodic triggering of the
string velocity under the bow. However, in some situations, the oscillation of the
string can be strongly influenced by the computation parameters.

In the next set of simulations, a shorter bow-bridge distance was used (β = 0.06).
The bow force was kept constant (Fb = 0.3 N) and the velocity was increased from 0
to 0.1 m/s in 0.2 s. Two computation frequencies were used (fs = 44.1 kHz and 441
kHz) and for each frequency, the number of modes was first set to N = 30 and then
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Figure 2.18: Attacks on a violin D string for different numbers of modes (from top:
N = 10, 30, 60 and 150). The bow force is kept constant (Fb = 0.3 N) while the
velocity is increased from 0 to 0.1 m/s in 0.08 s. The bow-bridge distance β is set
to 0.12. (a) String velocity under the bow and (b) force on the bridge. An extra
slip appears around time 0.04 s but the overall motion of the string is unchanged.
Higher frequencies can be observed in the bridge force when the number of modes
increases, as expected.

to 300. The resulting simulations are shown in Fig. 2.19. The string vibrations are
seen to vary strongly depending on the computation frequency. With fs = 441 kHz,
a regular triggering is obtained during the entire duration of the attack, whereas
fs = 44.1 kHz produces a non-periodic oscillation. In contrast, the number of modes
seems to have a weaker influence on the simulations and no qualitative differences
can be observed for a given computation frequency.

Choice of the computation parameters

In the two previous sections, we have illustrated the influence of the computation
frequency and the number of modes on the string motion during the sustained
part of the simulation and during attacks. We have observed small variations in
the spectral content of the resulting sound, and in the motion of the string due
to the influence of the computation parameters on the mechanical properties of
the virtual string. In particular, the simulations obtained in Fig. 2.19 resulted in
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Figure 2.19: Attacks on a violin D string for different combinations of computation
parameters (from top: fs = 44.1 kHz with N = 30 and 300, then fs = 441 kHz with
N = 30 and 300). The bow-bridge distance is short (β = 0.06). The computation
frequency is seen to have a strong influence on the result. With fs = 441 kHz a
regular triggering is reached, which is not the case with fs = 44.1 kHz. The bow
force is kept constant (Fb = 0.3 N) while the velocity is increased from 0 to 0.1 m/s
in 0.2 s. (a) String velocity under the bow and (b) force on the bridge.

different string motions when the computation frequency was varied. Consequently,
the computation parameters have to be carefully chosen when an accurate solution
of the string equation is required, giving a detailed and realistic picture of the
bow-string interaction.

Some influences of the computation parameters have been discussed in the
course of this chapter. The number of peaks in the response of the string de-
pends on the number of modes, a spatial spreading of the external forces can be
observed, and the effective impedance of the string is changed with the computation
frequency and the number of modes. However, no satisfying criteria could be found
for setting these parameters, and here only some empirical considerations regarding
this choice can be given.

For real-time purposes, it seems reasonable to set the computation frequency
to the normal audio sampling frequency (fs = 44.1 kHz) and choose a moderate
number of modes, typically lower than 80. More precisely, if an harmonic signal is
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assumed with a fundamental frequency f0, the number of modes will be limited by
the Nyquist frequency and

N <
fs

2f0

In order to ensure that the maximal frequency component in the simulated
signal is below this limit, we usually set the computation frequency to half this
value. For example, with the D string used previously (f0 = 293 Hz), this criterion
leads to N = 37.

However, this criterion is only motivated by computational efficiency reasons,
and there is no correlation between the criterion and the mechanical properties of
the string that could set the optimal values of the computation parameters. For
example, simulating a high D on the E string (f0 = 1174 Hz) requires less than 18
modes with this criterion, which probably not is sufficient for reproducing the string
vibrations properly. In that case the duration of the slip phase, when the string
is bowed at a reasonable distance from the bridge (e.g. β = 0.1), is theoretically
around β/f0 = 0.085 ms, which would give only 3-4 computation steps during the
slip phase. It can therefore be useful to increase the computation frequency in order
to obtain a better description of the slip phase during the simulation.

This argument can also be used for explaining the results obtained in the pre-
vious sets of simulated attacks (Fig. 2.19). With β = 0.06, there are only 9 time
steps during the slipping phase for fs = 44.1 kHz and more than 98 time steps with
fs = 441 kHz. In the first case, the simulation of the bow-string interaction, in par-
ticular the transitions between sticking and slipping, is less precise. For example,
unwanted peaks in the friction force may be produced, which, when propagated
along the string, can endanger the regularity of the slip triggering. As a result, a
regular Helmholtz motion was obtained for fs = 441 kHz, whereas extra slips were
produced with fs = 44.1 kHz.

In contrast, no strong qualitative differences could be observed when the number
of modes was varied: the overall motion of the string was the same, showing a
periodic triggering of the string velocity under the bow (Fig. 2.18). This result can
be explained by inspecting the frequency response of the string, shown in Fig. 2.20,
top. The higher modes are more and more damped and no significant peak can be
found in the response above the 15th mode. Starting from 5000 Hz, the response is
lower than -60 dB, which could explain the differences between the simulations for
N = 10 and N ≥ 30. Note that the damping was very strong for the set of string
parameters used in the simulation. For comparison, the mechanical response of a
less damped string (rn = 0.3 + 0.2(n − 1)2) is shown in Fig. 2.20, bottom. In that
case, a much higher number of modes would be required in order to simulate the
motion of the string properly.

As mentioned before, no analytical criteria could be found for choosing the
computation frequency and the number of modes. In most of the simulations, the
default parameters defined before has been used (fs = 44.1 kHz and N = fs/4f0).
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Figure 2.20: Frequency response of a violin D string bowed at β = 0.12 for different
damping coefficients of the modes. The damping coefficient of mode n is determined
according to rn = B1 +B2(n−1)2. Top: Strongly damped system with B1 = 3 and
B2 = 3. The reference frequency response is obtained with N = 1000. With N =
10, the response is not well reproduced, whereas N = 30 gives only small deviations
from the reference. Bottom: Less damped system with B1 = 3 and B2 = 0.2. In
this case, more modes are required for the simulation. The response can be used
for choosing an adequate number of modes to take into account.

It must be kept in mind, however, that both pitch and bow-bridge distance have
an important influence on the exactness of the solution when the computation
frequency is kept unchanged.

To conclude, the preceding discussion of the number of modes provides an em-
pirical way of setting the computation parameters. The inspection of the frequency
response of the string can be used for choosing an adequate number of modes N,
and then the computation frequency can be determined from fs = 4f0N .

2.5 Concluding discussion

In this chapter, the model used for simulating the motion of the bowed string has
been described in detail. We have presented the principle, which is based on the
solution for each mode of the string equation, the numerical implementation, the
solution of the bow-string interaction, and some empirical features that were added
for improving the realism of the sound (noise generation during slip phases and
convolution of the driving force on the bridge with a violin impulse response). In
the last section, simulations were performed in order to compare the simulations
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with observed motions of the bowed string, and to illustrate the influence of the
computation parameters. Practical arguments for setting these parameters were
discussed, and empirical guidelines proposed.

The model presented is not claimed to be original. Modal formalism is the base
of bowed-string models developed by Adrien [1], Antunes [2] and Palumbi [59].
However, slight differences can be found between authors. For instance, Adrien
introduced a discretisation in space with which he obtained a matrix formulation of
the modal equations. However, this discretisation led to numerical inharmonicity of
the modes. Some other models do not take bending stiffness explicitly into account,
and just mention that there is no difficulty in including it in the formalism. Stronger
differences can be found in the numerical schemes used to solve the modal equations
and in the solution of the friction interaction. However, it should be noted that the
comparison is sometimes made difficult by the lack of detailed description of the
models in the literature.

In contrast, we tried to make the description of our model as complete and
detailed as possible, in order to allow a straightforward implementation by other
researchers. To our knowledge, the influence of computation parameters such as the
number of modes and the computation frequency has never been discussed before.
The numerical scheme that we used is also considered to be original within the field
of bowed-string models using modal formalism.

Some possible improvements of our modelling of the bowed string and violin
can be considered. As mentioned several times, the model presented in this work
is very simple and not very realistic from a mechanical point of view. Several
improvements could be foreseen and all of them would not require the same increase
in computational complexity. For instance, a coupling with the violin body could be
obtained by considering a resonant mechanical system at the position corresponding
to the bridge. The simplest of these systems would be a mass-spring-damper system
described in the first chapter (Sect. 1.2), but more elaborate models could be
incorporated and easily solved, for example by defining another modal structure
interacting with the string.

Similarly, the vibration of the string in several directions (normal to the bow,
longitudinal and torsional modes) could be considered. As a first approximation,
the system can be linearized in order to obtain independent string equations for
each direction. In that case, the vibrations are only coupled under the bow and at
the string terminations. Under the bow, the effective velocity is composed of the
transverse velocity and the torsion component, and a conversion between waves in
the two transverse directions could occur.

Changing the bow modelling or the friction interaction may be more difficult
under real-time constraints. Modelling the bow as a vibrating structure would be
rather straightforward and not too expensive. Other friction models in contrast,
would require iterative algorithms for solving the interaction, which would greatly
increase the computation cost. In the same way, a two-point bow model could be
considered for simulating the finite width of the bow. In that case, the solution of
two independent non-linear interactions is necessary, which again will require an
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iterative procedure. Further, due to the spatial spreading described in Sect. 2.2,
the number of modes would need to be carefully chosen in order to avoid mutual
interaction of the friction forces at the two bowing points.

A main purpose of our work with the bowed-string model was to separate the
properties of the model that are sufficient for obtaining an acceptable violin synthe-
sis, from the demands necessary for obtaining a realistic modelling of the mechanics
of the bowed string. It should be emphasized that our model has not been developed
to be a scientific simulation tool for detailed studies of the bowed string, and in
many cases it will not meet the demands of such a tool. However, in the light of our
objectives, it is considered to perform perfectly satisfactorily, allowing perceptually
convincing simulations of bowed-string sounds.



Chapter 3

Observations on the playability

and sound properties of the model

In this chapter, simulations are performed in order to examine some important
aspects related to the control of the bowed-string model. Like for a real instrument,
different combinations of input parameters representing the musician’s control will
give rise to different types and qualities of the string vibrations. For instance, the
sound can be more or less loud, “scratchy”, or “brilliant”.

In classical violin playing, the musician normally tries to obtain a stable tone,
corresponding to Helmholtz motion (see Chapt. 1). The establishment and dynam-
ical control of such a tone is a main objective in the player’s musical education. As
Helmholtz motion depends on the combination of the three main bowing parame-
ters (bow force, bow velocity and bow-bridge distance), a considerable experience
of the response of the bow-string interaction has to be gained in order to drive
the bow-string system reliably. For instance, comparing a beginner and an experi-
enced violinist, one is immediately struck by the skilled player’s ability to obtain
an acceptable tone, whatever the quality of the instrument.

Besides acquiring a purely motoric skill that enables the player to control the
bowing parameters by basic gestures, the musician develops an ability for generating
a proper Helmholtz motion by intuitively correcting the bowing gestures in the right
direction depending on the resulting sound. This ability also includes how to obtain
different and subtle properties of the tone quality according to the musical context
and the musical intentions. An evaluation of the playability of the described model
for sound synthesis has therefore to include two main tasks: (a) observing the actual
playability properties, i.e. the input parameter space in which Helmholtz motion
is produced, and (b) observing changes in sound properties that are significant for
the player and relevant from a musical point of view. In addition, we should check
that these control spaces are similar to those representing the playing of a real
instrument.

The expected benefit of such a study concerns the control of the model. If the

75
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observations correspond approximately to what is observed for the real instrument,
then it would be possible for an experienced player to quickly acquire a subtle
control of the model, provided that an adequate real-time control interface is used
(e.g. graphical tablet [78], bow controller [80, 93], or similar devices [77]).

However, another interesting application of such a synthesis tool consists in
offering the possibility of producing violin-like sounds for people who have little (or
no) experience in violin playing, and therefore no dedicated gesture skills. In that
case, a systematic exploration of the sound properties and the playability in the
control parameter space could offer a way of making the control easier by limiting
this space to produce classes of sounds (e.g. Helmholtz motion). Different classes of
sound could be produced by offering qualitative different alternatives in the control.
For that purpose, the consistency between observations and theoretical predictions
of the behaviour of the bowed string for a given combination of control parameters
would be of great interest. For example, it would spare us systematic explorations
of the model when string parameters are changed.

The observations of the performance of the model are organised as follows.
First some preliminary considerations about the motivations and the procedure are
described (Section 3.1). Then simulations are reported, addressing three aspects.
The first (Section 3.2) deals with the onset of the vibration and the conditions that
lead to a good attack of the note. In the second one (Section 3.3), the conditions
for maintaining Helmholtz motion will be examined. The last aspect, section 3.4,
deals with the tonal properties which are studied in order to describe the effect
of control parameters on the sustained vibration of the string (effect of bow force
on string spectrum, flattening effect). Finally (Section 3.5), some applications for
improving the control of the model are proposed.

3.1 Preliminary considerations

Point of departure

The introduction to this chapter has given the motivations to performing the sim-
ulations. In order to avoid confusion, it could be useful to clarify the purpose of
this chapter further, and especially what we don’t intend to do.

First of all, we have developed a tool for synthesizing violin-like sounds, nothing
more. Consequently, we don’t want to evaluate the model as a simulation tool
dedicated to studies of the mechanics of the bowed string. Such an attempt would
require more detailed simulations to check that the model behaves like it should
in physical terms. In addition, the analysis of the resulting string motion would
need to be done carefully, and compared with experimental results from studies of
the bowed string when driven under controlled conditions by a bowing machine.
Instead, we are interested in studying some high-level behaviours of the model,
such as the type of vibration, the fundamental frequency and spectral content, and
verify that the observations approximately fit with the experiences of players, and
what can be inferred from basic theoretical considerations.
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This approach is justified by some practical considerations. As explained in the
previous chapter, the model has intentionally been made as simple as possible, in
order to test the effect of realistic input parameters on the realism of the sound.
Consequently, we cannot expect a very good agreement with detailed experimental
results, which only could be explained by phenomena that are not taken into ac-
count in the model. Moreover, the choice of the computation parameters (sampling
frequency and number of modes) has been made empirically (based on real-time
synthesis considerations). An application for accurate simulation of the mechanics
of the bowed string would require either to choose the values of these parameters
in such a way that they would have no limitation on the realism of the simulation,
or to find physically-based criteria for choosing them.

Secondly, because we are interested in the control of a virtual instrument, the
simulations will be examined with the focus on the control parameters. Conse-
quently we will not explore the mechanical parameters of the bow-string system,
and we will not proceed to a systematic evaluation of their influence. Detailed
analyses of this aspect have been reported by Guettler [36] and Serafin [76].

This approach can be questioned because the string parameters do not only
determine the basic properties of the vibrations of the string, like fundamental
frequency or inharmonicity. By influencing the excitation conditions of the string,
these parameters also have a far from negligible impact on the control of the model.
A more complete study would require to explore this aspect as well, which, how-
ever, would require a huge number of simulations. We have adopted the following
strategy: A set of string parameters will be chosen so as to fit with properties of a
“realistic” string, and these parameters will be used in all simulations. Only if the
simulations do not give reasonable results, we will examine the influence of varying
relevant parameters.

Procedure

The synthesis model is governed by a set of parameters describing the string prop-
erties and the friction between the bow and the string. In addition, computation
parameters such as the number of modes and the computation time step may have
a drastic effect on the simulations. As mentioned before, it is obviously not possible
to explore the whole parameter space in order to obtain a detailed picture of the
behaviour of the model. A choice of a limited set of parameter combinations has
to be made in order to check the consistency of the simulations with empirical and
theoretical results.

The simulations presented hereafter result from the use of a violin G string with
parameters listed in Tab. 3.1. Computation parameters were determined by the
constraints set by real-time simulations with fs = 44100 Hz and a “reasonable”
number of modes (given by fs/4f0 = 56). The length of the string between the
nut and the bridge was set to 330 mm. Most of the remaining string parame-
ters come from measurements by Pickering ([61], G string, Pirastro Eudoxa). As
Young’s modulus was not directly given in Pickering’s data, the value was esti-
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Parameter Unity Remarks G string

Tension T0 N From Pickering 39.15
Length L m Measured 0.33

Diameter d mm From Pickering 0.8
Density ρL g/m From Pickering 2.34

Young’s modulus E Pa Deduced from Pickering 4 · 109

Damping B1 1/s Deduced from measurements 3.12
Damping B2 1/s Deduced from measurements 7

Sampling frequency fs Hz 44100
Number of modes N fs/4f0 56

Frequency f0 Hz f0 =
√

T0/ρL/2L 196
Impedance Zc kg/s Zc =

√
T0ρL 0.30

Inharmonicity factor B B = π3Ed4/64TL2
0 1.86 · 10−4

Quality factor Q0 Q0 = πf0τ0 197
Equivalent resistance R kg/s R = Zc coth(π/2Q0) 38

Table 3.1: String and computation parameters used for the simulations. The data
come from measurements by Pickering ([61], G string Eudoxa) or own measure-
ments. The five last rows indicate some physical characteristics of interest.

Order of harmonics 1 2 3 4 5 6 7 8

Freq. deviation (in cents) 0.2 0.6 1.4 2.6 4 5.8 7.9 10.2
Freq. deviation from [61] 1 4 3 4 6 11 14

Decay time (ms) 320 98 32 15 9 6 4 3
Quality factor 197 122 59 37 27 21 17 14

Table 3.2: Table illustrating some properties of the G string used for the simula-
tions. The two first rows show the agreement between the frequency deviation of
the partials given by Pickering [61] and the values obtained with E = 4 · 109 Pa for
Young’s modulus. The two last rows gives the decay time and the quality factor of
the modes in order to illustrate the damping.

mated from the partial frequencies for plucked notes. The value E = 4 · 109 Pa
gives frequency deviations for the 8 first harmonics that approximately correspond
to the measurements (see Tab. 3.2). The damping coefficients were set using data
measured on the D string in the previous chapter. B1 and B2 were chosen to give
a decay time of 0.3 s for the fundamental, and 0.01 s around the fifth harmonic
(rn = 1/τn = B1 + B2(n − 1)2). These values give Q factors that are a bit lower
than normally used, especially for the highest harmonics (see Tab. 3.2).
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3.2 Onset of the vibration: The attack

Before reaching the periodical oscillation that characterizes the normal bowed-string
motion, the string must be set in vibration. During the short time when the oscilla-
tions build up, other frequencies than the harmonics of the fundamental are excited,
resulting in an aperiodic and sometimes noisy part. The sound of transients is of
primary interest for the perceptual identity of the instrument [70], and their repro-
duction is therefore an important feature for the realism of the synthesized sounds.
Note that the onset of the vibration is naturally produced by the physical model
used and controlled by the time evolution of the input parameters, in contrast to
other synthesis methods like spectral models.

Depending on the combination of bowing parameters applied at the beginning
of a bow stroke, the transient can sound differently and have substantially different
durations. For instance, a too high initial bow pressure generally gives rise to a
“choked/creaky” sound, according to Guettler’s terminology [37], whereas a too low
pressure, which can be the case when the stroke is begun ”from the air”, will give
a “loose/slipping” attack. The different ways of attacking the note are an integral
part of the musical discourse, and in analogy with speech production the attacks are
often compared with consonants, the steady part of the motion being the “vowels”.

In this section, we are interested in describing the relation between the onset of
the vibration and the time evolution of the bowing parameters at the beginning of
the stroke. Two basic situations can be considered, corresponding to two contrasting
ways of exciting the string. In an attack from the string, the bow is pressed on the
string before beginning to move (initial velocity null), whereas in an attack from
the air, the bow lands on the string while already moving (initial bow force null).
We will focus on the attack from the string, because it is the most documented
situation and it will allow comparisons with theoretical results.

In a first section, we will present Guettler’s experimental and theoretical results,
then simulations of the initial transient will be shown and discussed under the light
of the theory.

Background: Experimental and theoretical results

A large number of studies have described the steady oscillation of the bowed string,
but very few have been concerned with the attack. Apart from a few remarks on the
question, Schelleng [71] only considered the problem of the “shape of the attack”,
i.e. the amount of energy that is necessary for making the steady oscillation grow.
In a way, he considered the attack as a quick crescendo, without focusing on the
conditions for setting the string in steady vibrations.

More recently, Guettler and Askenfelt [37] reported a pioneer work on the sub-
ject. They collected a database of different types of attacks produced by a bowing
machine, and a panel of string players were asked to judge the quality of the at-
tacks. The acceptance limits for the duration of the pre-Helmholtz transient was
found to be 50 ms for “choked” attacks and 90 ms for “loose” attacks. Waveforms
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Figure 3.1: Frictional force during the very first periods of the attack, illustrating
different situations for the onset of the vibration. Slip triggerings occur when the
frictional force reaches the limiting static force represented by a horizontal line.
Nominal periods are represented on the x-axis for comparison. (a) Perfect attack:
The intervals between slip triggerings are equal to the nominal period from the first
triggering. (b) After two triggerings occurring at the nominal periods, the regular
onset is perturbed by a force peak in between (corresponding to condition D, Eq.
3.4). (c) Premature triggering: A triggering occurs before the first nominal period
(condition A, Eq. 3.1). (d) Delayed triggering: The period between slip triggerings
is greater than the nominal period during the first periods (condition B, Eq. 3.2).

of the velocity under the bow showed that choked attacks correspond to prolonged
periods, whereas loose attacks correspond to additional slips during the nominal
period (“multiple slips”). By analysing attacks produced during real performances,
they showed that most of them fell within the acceptance limits.

The theoretical conditions for establishing the periodical motion were investi-
gated later by Guettler [34], for the specific case of attacks performed from the
string. From an analysis of the propagating velocity waves during the transient,
he deduced the conditions for the operative parameters, bow force Fb and bow
acceleration ab, which give a quick build-up of the oscillation.

Fig. 3.1 presents some simulations illustrating the limitations considered by
Guettler. Frictional forces during the attack are shown, together with the limiting
static force (horizontal line). When the frictional force reaches this limit, the string
begins to slip. In Fig. 3.1a, the slip triggering occurs at each nominal period T
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from the very beginning of the attack. This illustrates the situation that Guettler
referred to as a “perfect attack”. A perfect attack was found to depend on four
equations, describing two kinds of conditions: The two first ones (A and B) for
establishing the motion from the very first slip, and the two other ones (C and D)
for maintaining a periodic motion.

Fig. 3.1c illustrates the first condition for obtaining the “perfect attack”. The
first frictional force maximum after the first slip, at t = (1−β)T (point A, resulting
from the return of the velocity wave travelling towards the nut) must be less than
the maximum static force in order to avoid premature slipping of the string. If this
slip occurs (as in Fig. 3.1c), the interval between the two first slips is less than the
nominal period and the attack is not perfect. This condition is formalized by

ab < β(1 − β)Fb

[

(3 − 4β)µs − µd

− 2
√

(1 − 2β)(2(1 − β)µ2
s − µsµd

]

[(1 − 2β)TZc]
−1 (3.1)

where µs and µd are the static and dynamic friction coefficients, Zc the char-
acteristic impedance of the string, T the nominal period and β the bow-bridge
distance relative to the string length.

Secondly, after the period T (point B) a second slip must occur, i.e. the friction
force at that point must surpass the maximum static friction force. In Fig. 3.1d,
the static force is not reached after the nominal period T, resulting in delayed slip
triggering. The condition for this slip to occur is given by

ab > β(1 − β)Fb
3µs − µd − 2

√

2µ2
s − µsµd

TZc
(3.2)

These two equations give the conditions for getting a nominal period between
the two first slips. Consequently, they are also necessary conditions for getting
a “perfect attack”. But there is no warranty that the next intervals will have the
desired motion and some additional conditions are necessary for the right triggering
to be maintained. Guettler identified two critical points in the time evolution of
the frictional forces.

First, the reflection of the first slip pulse travelling between the bow and the nut
must not cancel the friction force maximum after a time T/β (point C in Guettler’s
article, not represented here). The resulting condition is

ab >β2(1 − β)Fb

[

(1 − 1.5β)(C + λ1/β)(µs − µd1) + βµs

−
√

(2β − 3β2)(C + λ1/β)(µ2
s − µsµd1) + β2µ2

s

]

[

2(1 − 1.5β)2TZc

]−1
(3.3)
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where λ is the reflection coefficient at the nut, µd1 and µd2 refer to the sliding
friction coefficients at the first slip and the last one1, and C = (µs−µd2)/(µs−µd1).

Finally, some of the friction force peaks observed at times ti = i(1−β)T (points
D) could become higher than the static friction force maximum, which would re-
sult in premature slip triggering between the nominal periods, illustrated in Fig.
3.1b. Guettler observed that the point at i ≈ 1/3β was particularly critical for
maintaining the periodical triggering.

ab ≤ 9β2(1 − β)Fb

[

(2 − 3β2)µs − (2 − 4β + 3β2)µd

−2
√

(2β − 3β2)
[

(2 − 2β)µ2
s − (2 − 4β + 3β2)µsµd

]

]

.
[

(8 − 44β + 104β2 − 132β3 + 90β4 − 27β5)TZc

]−1
(3.4)

In a bow force-acceleration parameter space, these limitations define a trian-
gular region in which the onset of the vibration is theoretically optimal. Simula-
tions for various values of β, Fb and ab were performed by Guettler and plotted in
force-acceleration diagrams, which showed very good agreement with the theoretical
predictions.

Simulations of initial transients: Procedure and results

Our model was tested in the light of these theoretical results. Simulations were
performed using the open G string defined before. During the attack, the force was
kept constant whereas the velocity was increasing with a constant acceleration ab.
Successive simulations were performed with the acceleration varying from 0.1 to
10 m/s2 (200 values), and the force from 0.1 to 2 N (40 values), representing 8000
simulations per bow-bridge distance β. Ten bow-bridge distances β were used, from
1/25.4 to 1/6 (11 mm to 55 mm from the bridge).

For each simulation, the ten first slip triggerings were computed. The regularity
of the slips was analyzed in order to determine the first triggering from which a
regular vibration with the nominal period occurred and which lasted until the end
of the simulation.

Results are shown in Fig. 3.2. The number of slips before regular triggering is
reached is shown on a grey color scale, from white (first slip) to black (more than 5
slips). Triangular regions giving an optimal onset of the vibration are recognizable
and seem to be in agreement with Guettler’s predictions: For a given force, the
maximum acceleration giving a “perfect attack” increases with bow-bridge distance,
and at the same time, the optimal region becomes wider. It can be noted that for
small bow-bridge distances (here, for β = 1/25.4 and β = 1/22), the region in
which the regular triggering occurs from the first slip is very narrow. Moreover, it

1As the relative velocity increases during the attack, µd may have decreased significantly since
the first slip.



3.2. ONSET OF THE VIBRATION: THE ATTACK 83

Figure 3.2: Simulated attacks with the bowed-string model. The figures show in
grey scale the number of slips occurring before a regular triggering is obtained at
the nominal period T , from 0 (white) to 5 and more (black). Simulations were
performed with bow forces varying from 0.1 to 2 N and accelerations between 0.1
and 10 m/s2 representing 8000 simulations per plot. Ten bow-bridge distances were
used, six of them being shown here.
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is interesting to note that beyond this region (for higher accelerations), no regular
triggering is observed at all, whereas for lower accelerations, the regular triggering
can be reached after several slips.

Discussion and comparison with theoretical results

In order to compare the results with Guettler’s equations (Eqs. 3.1, 3.2, 3.3 and 3.4),
simulations were done with a flexible string (Young’s modulus E = 0). Guettler
used only an ideal string for analysing the starting transient. The more elaborate
model including stiffness could lead to deviations that would not be very easy to
anticipate.

Fig. 3.3 shows the simulations obtained for three bow-bridge distances β (1/25.4,
1/15.7 and 1/11.4). On the right is shown the number of slips occurring before a
regular oscillation at the nominal period, lasting throughout the simulation, was
obtained (referred to as regular triggering). In addition, we looked for the first
interval between two successive slips occurring with the nominal period (referred
to as first triggering). This additional analysis does not tell whether the motion
is maintained or not, but permits making a comparison with the conditions for
obtaining a first interval equal to the nominal period (equations 3.1 and 3.2). In
all figures, the number of slips is represented on a grey scale, from white (first slip)
to black (fifth slip and higher).

The theoretical expressions are plotted with color lines in the figures. Eq. 3.1
and 3.2, describing the conditions for obtaining a nominal period between the two
first slips, are represented with red lines. Equations 3.3 and 3.4, describing condi-
tions for maintaining the regular triggering, are plotted with green lines. Because
of the slope of the hyperbolic friction, the coefficient µd at the instant of the re-
lease may vary slightly with bow force Fb. For this reason, the lines were obtained
by computing µd as the intersection between the line F0 = 2Zc(vb − vh) and the
characteristic friction for vh = −µsFb/2Zc, corresponding to the instant of string
release.

Looking at the left hand panel, Eqs. 3.1 and 3.2 seem to be in very good
agreement with the first triggerings at nominal period that were found. The red
lines fit rather well with the white triangular regions corresponding to a nominal
period appearing from the first slip (white sections). It could be noticed that these
regions seem slightly wider than predicted by the theoretical limits. This is probably
due to the analysis of the data: A tolerance of 5 % was used for determining if the
time between two slips was equal to the nominal period.

A comparison with the right-hand panel gives information about the maintain-
ing of the oscillation. For β = 1/25.4, it can be seen that no regular, lasting
triggering with the nominal period was obtained from the very first slip to the end
of simulation (right figure), whereas an initial triggering after the first nominal pe-
riod T was obtained (left figure). This indicates that some phenomenon breaks the
periodic triggering of the slips.
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Figure 3.3: Comparison between simulated attacks for a flexible string and theo-
retical relations A (Eq. 3.1), B (Eq. 3.2), C (Eq. 3.3) and D (Eq. 3.4) obtained by
Guettler. D2 (blue line) represents Eq. 3.5 with a fitted coefficient i = 1/11β. Left:
Number of slips occurring before a first interval with nominal period is obtained.
Right: Number of slips occurring before a regular triggering at nominal period is
obtained which lasts until the end of the simulation. The three bow-bridge distances
illustrate different situations concerning the maintaining of the regular triggering.
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The three bow-bridge distances illustrate different situations in this respect.
For β = 1/25.4, none of these potentially “perfect attacks” are maintained until
the end of the simulation. For β = 1/15.7, only the part corresponding to the
lowest accelerations are maintained, and for β = 1/11.4, almost all periodic attacks
are maintained. In Guettler’s analysis, such a truncation should occur, determined
by the limitation D: For a given force and a given acceleration to give rise to a
“perfect attack”, the acceleration must be higher than both B and C and lower
than both A and D. However, in our case, it can be seen that condition D does not
give the expected limitation. Otherwise there would be no perfect attack at all for
β = 1/15.7 (no intersection between the regions delimited by the green lines and
the region delimited by the red lines).

As pointed out by Guettler ([34], Annex A5), the determination of this relation
is to some degree empirical. The general limitation consists in saying that the force
maxima occurring at t = i(1 − β)T after the first release should be lower than the
static limiting force, this general condition being given by

ab ≤
Fbµs

TZc
β(1 − β)

[

(1 − β + 2i − 3βi +
µd

µs
(1 − β − 2i + βi)

−2

√

(1 − β − βi)
[

2i − 2βi +
µd

µs
(1 − β − 2i + βi)

]

]

.
[

(1 − β − βi)(1 − β − 2i + βi)2
]−1

(3.5)

The coefficient i depends on the bow-bridge distance β and the friction charac-
teristic through the ratio µd/µs. From observations on the frictional force during
the attacks and a comparison between the maximal acceptable acceleration at D
depending on i and the maximal acceleration at A, Guettler concluded that the
most restrictive limitation could be found at i = 1/3β, which gave equation 3.4. In
other words, the critical force maxima were found to be at i periods (1− β)T after
the first slip, with i varying from 2 to 8 for bow-bridge distance varying from 1/6
to 1/24. However, in our case, most of the premature slip triggerings corresponding
to this limitation were found to be at lower i (typically less than 2). In Fig. 3.3,
it can be seen that equation 3.5 gives a good agreement with the observed data for
i = 1/11β (blue line, denoted D2).

Concerning limitation C, it does not seem to play an important role in our
simulations as it always was outside the region determined by A and B. Note that
this was the case in Guettler’s simulations as well, except for the largest bow-bridge
distance.

In this section, we focused on the attacks in order to observe the parameter
space in which a regular vibration of the string is quickly obtained. In the simu-
lations, optimum regions can be identified, varying qualitatively as expected from
Guettler’s analysis. For example, the maximum possible acceleration for a given
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bow force increases with increasing bow-bridge distance. A more precise compari-
son showed a good agreement with Guettler’s theoretical inferences: The conditions
for obtaining a first triggering at the nominal period fit well with the corresponding
region in the simulations. The conditions for maintaining a regular triggering were
found to be slightly different but gave the expected qualitative behaviour. From
these observations, we should consequently be able to predict the quality of attacks
according to control parameters, or produce the right time evolution in order to
control the model.

During the attack, the relevant control parameters are the bow-bridge distance,
the bow force and the bow acceleration. An adequate choice of these parameters
will lead to the desired vibration state of the string, i.e. Helmholtz motion. In the
next section, we will perform simulations in order to observe the behaviour of the
model under steady control parameters. In particular, we will be interested in how
to maintain the Helmholtz motion for various bow-bridge distances, bow forces,
and bow velocities.

3.3 Maintaining Helmholtz motion: Schelleng diagrams

At the beginning of this chapter, we pointed out that a major element in a vio-
linist’s education consists in learning the adequate control strategies for obtaining
and maintaining a Helmholtz motion. For a given bow velocity and bow position,
pressing too hard on the string produces a raucous sound, which is of little musical
interest. At high bow forces, and certain combinations of bow-bridge distance and
velocity, periodical vibrations below the fundamental frequency can be obtained,
in which torsional waves play an important role in the triggering of the slips. Such
anomalous low frequencies (ALF) are not used in traditional classical music [32],
but they can be of interest in contemporary music [46]. In contrast, a very light
pressure on the string gives rise to a “surface sound” with higher string modes
excited. This type of string vibrations is characterized by the presence of more
than one slip during a nominal period, and is therefore referred to as multiple-slip
motion. This motion is difficult to control, as it requires a very light and constant
bow pressure, but it is sometimes used for musical purposes, like when the violinist
plays sul ponticello (“on the bridge”). It can be noted that multiple slips can be
obtained far from the bridge, but a small bow-bridge distance makes it easier.

In this section, the model will be used to simulate string vibrations under
“steady-state” conditions, using various sets of control parameters. By examining
the resulting oscillations, we will be able to identify the different types of motion,
define the regions in the control parameter space where the model can be used,
and make a comparison with theoretical predictions. First a background is given
reviewing the experimental studies describing the playable region and theoretical
values for minimum and the maximum bow force.
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Background: Experimental and theoretical studies

The requirement for a minimum bow pressure was first investigated by Raman [66].
He found experimentally that this limit was varying in proportion to bow velocity,
except for low velocities for which it was tending to a finite minimum. Further he
showed that the minimum force was varying inversely as the square of bow-bridge
distance for constant speed. He also observed that the minimum bow force was
related to the resonances of the violin body. Additional experiments by Kar et al.
[43] (cited by Schelleng [71] and Hiller [41]) corrected the variation with bow-bridge
distance, indicating that the minimum bow force was varying simply inversely with
bow-bridge distance.

These observations were confirmed by Schelleng [71] who gave a theoretical
expression for the minimum and maximum limits of bow force. He considered two
requirements for the Helmholtz motion to be maintained. First, the frictional force
should reach the static limiting force after a nominal period T, when the velocity
discontinuity created by the last slip arrives from the nut. If the limiting static
friction force (µsFb) is too high, the slip will not occur. This situation is illustrated
in Fig. 3.4, right. At the beginning, the oscillation looks like Helmholtz motion,
but as the limiting force is too high the period is lengthened, and then the vibration
develops into a rather chaotic behaviour. This condition imposes a maximum bow
force

Fmax =
2Zc

β(µs − µd)
vb (3.6)

Secondly, the frictional force should not reach the limiting static force between
the two slip triggerings determining the nominal period. In Fig. 3.4, left, the
frictional force grows between the two main slips and gives rise to an additional slip
triggering after about half the nominal period. After a few periods the vibration
would develop into the multiple-slip vibration described above. The minimum bow
force can be expressed as

Fmin =
Z2

c

2β2(µs − µd)R
vb (3.7)

assuming that the terminating impedance at the bridge is a pure mechanical
resistance R.

As can be seen, these equations give zero limit for a zero bow speed. Actually,
µd depends on the relative velocity between the bow and the string, and for small
bow speeds, these expressions can be corrected using a friction model. With the hy-
perbolic model described before, the difference between static and dynamic friction
coefficient can be expressed as µs − µd = vb

vb+βv0

(µs − µ′
d), with µ′

d the asymptotic
limit of the friction characteristic. Then, Schelleng’s requirements become

Z2
c

2R(µs − µ′
d)

vb + βv0

β2
< Fb <

2Zc

(µs − µ′
d)

vb + βv0

β
(3.8)
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Figure 3.4: Illustration of situations in which the Helmholtz motion is interrupted.
Left: An increase in frictional force during the interval between the two slips occur-
ring at the nominal period gives rise to an additional slip marked with the boxes
(multiple slip). Right: The frictional force after a nominal period is not high enough
for launching the slip triggering. The period is first lengthened, then the vibration
becomes raucous. Note the different time scales.

These conditions determine a region for maintaining Helmholtz motion in the
bow-bridge distance, bow force space for each bow velocity. This is illustrated in
Fig. 3.5, showing the original diagram presented by Schelleng [71].

After Raman’s and Kar’s experiments very few studies followed trying to de-
termine the maximum and minimum bow forces experimentally. Askenfelt gave
approximate estimations of the upper and lower force limits for a violin G string,
based on measurements of sustained notes performed by professional violinists [4].
Schumacher [75] reported some determinations of maximum bow force using a bow-
ing machine as well as simulations. Recently, Galluzzo [29] determined Schelleng
diagrams for a cello D string using a bowing machine. Schoonderwaldt [72] used a
bowing machine for systematically studying the influence of bowing parameters and
damping on the bow force limits for violin D and E strings. Concerning the use of
bowed-string models, Serafin [76] has studied playability in terms of Schelleng dia-
grams. The purpose was mainly to test different configurations of a physical model
(with and without torsional waves, or different friction models) and to observe how
they influence the playable control parameter space.
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Figure 3.5: Schelleng diagram, from [71]. The figure shows the maximum and the
minimum bow force limits for Helmholtz motion vs. bow-bridge distance, at a given
bow velocity. Usual descriptions of the tone color are indicated in different regions.

Procedure

Simulations with different bow forces, bow velocities and bow-bridge distances were
performed with the model in order to systematically explore the parameter regions
in which Helmholtz motion is obtained. The vibration of the string is very sensitive
to the time evolution of bowing parameters, and the same set of parameter values
can give different kinds of vibration depending on the way the target values are
approached. Multiple slips, for instance, can be maintained very long even for a
bow force greatly above Schelleng’s minimum force, if they are initiated during the
attack. This hysteresis rule was pointed out by McIntyre [55]. The initial part of the
bow stroke will consequently be of primary importance for the resulting vibration.

As seen in the previous section, we should be specifically careful in simulations
with small bow-bridge distances for which the acceleration limits during the attack
are particularly narrow. A procedure has to be defined, ensuring that the simu-
lations are performed under best possible conditions. This means that Helmholtz
motion should be reached very soon after the beginning of the bow stroke, and be
maintained as long as possible. The following procedure was adopted.

For each bow-bridge distance, the Guettler diagram was first computed with
simulations. A combination of bow force Fb1 and acceleration ab1 used during the
attack of a note must satisfy the following requirements: (a) Be located in the
region where the conditions for obtaining Helmholtz motion is optimal, and (b)
lead to a velocity vb1 for which the combination force-velocity fits in the theoretical
Schelleng triangle. More precisely, this last requirement is expressed as follows:
The velocity is supposed to be reached after a given time, for instance 10 nominal
periods, which can be expressed as vb1 = 10Tab1. This relation is used to plot the
lines Fmax(ab1) and Fmin(ab1) in the Guettler diagram, defining a region in which
(vb1 = 10Tab1, Fb1) is inside the theoretical Schelleng’s limits. A combination
force-acceleration is then determined graphically (see Fig. 3.6, left) by finding a
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Time [s]

Figure 3.6: Procedure for defining the profiles of bow velocity and bow force in the
simulations when computing the Schelleng diagrams. Left: The slope of the attack
is determined using simulated Guettler diagrams. The lines represent Schelleng
minimum and maximum bow forces for vb = 10Tab. A combination of bow force
and acceleration is selected that satisfy both the requirements of the Guettler dia-
gram and Schelleng’s limits for force and velocity at the end of the attack. Right:
Illustration of the profile of a bow stroke. Provided that the previous procedure is
followed, Helmholtz motion is obtained during the first interval Tattack. Then the
target velocity is approached during a coordinated variation in bow force (interval
Tspeed). Finally, the bow force is slowly changed to its target value. This procedure
ensures that Helmholtz motion is maintained during the bow stroke before reaching
the target bow force.

combination that is both in the simulated Guettler’s triangle and in the region
determined by the two lines.

The Helmholtz motion is maintained 0.5 s for this combination (Fb1, vb1), and
then the velocity is increased to the target value vtarget. In order to maintain the
Helmholtz motion during this transition phase, a coordinated change in bow force
is made to a value Fb2:

Fb2 =
Fb1

Fmax(vb1)
Fmax(vtarget)

After a new plateau at (Fb2, vtarget), the force is then slowly decreased to the
target value Ftarget. This procedure ensures that Helmholtz motion is quickly
reached and maintained until the force has reached the target value. An example
of a bow stroke profile is illustrated in Fig. 3.6, right.

Four bow velocities were studied: 5, 10, 20 and 50 cm/s. The same grids for
bow force and bow-bridge distance as in Schoonderwaldt’s study [72] were used,
defined by logarithmically equally spaced values (20 values for bow force between
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49 mN and 3 N, and 10 values for bow-bridge distance between 1/25.4 and 1/6).
These values are typical of the control parameters used in real violin playing.

A simple algorithm based on the analysis of the 20 last slip triggerings of the
simulations was used to determine the type of string vibrations. From the time
intervals between successive slips, the mean value and the spread were computed,
allowing to make a basic classification of the vibrations in: slip only (no stick period
during the interval considered), raucous (large spread), Helmholtz motion (small
spread around the nominal period T ), multiple slips (small spread around one or
two periods shorter than T, typically T/2) and ALF (small spread around one or
two periods larger than T, typically around nT ).

Results and discussion

The resulting diagrams are presented in Fig. 3.7, each plot representing one bow
velocity. For comparison, theoretical limits for minimum (Eq. 3.7) and maximum
bow force (Eq. 3.6) are included. As we were mainly interested in the determination
of the region in which the Helmholtz triggering occurs, other types of vibration that
occur outside this region were not analyzed in detail (missing values in the diagram).

The region in which the Helmholtz motion is maintained seems to be in very
good agreement with the theoretical values, especially with regard to the upper
force limit. Above this limit, several types of ALF vibrations can be observed.
The results should be compared with measurements by Schoonderwaldt [72], which
gave slightly different results: Above the maximum bow force limit, mostly raucous
vibrations were observed with some small regions of anomalous low frequencies.
One reason for this difference lies in the simple model that we used for the bowed
string. Some phenomena that were not taken into account, in particular torsion of
the string and finite width of the bow, could facilitate or prevent the development
of such vibrations. Another reason could be that the generation of ALF vibrations
necessitates a very fine and constant control of the input parameters, difficult to
maintain in real playing or with a bowing machine (Schoonderwaldt report fluctua-
tions of 20-30 mN in the bow force and 5 mm/s for the velocity). With simulations,
the parameters are strictly constant, which may facilitate a long-lasting establish-
ment of such vibrations.

Concerning the lower limit, the Helmholtz motion seems to be maintained rather
long under the theoretical force value. This may be explained by the simulation
procedure. During the first part of the simulation, the Helmholtz motion was estab-
lished in order to reach the target values (vb, Fb) at a stable Helmholtz condition.
In the last part of the simulated stroke when the parameters were kept constant,
the remaining Helmholtz vibration was gradually decaying in the cases when the
combination of force and velocity was not sufficient for maintaining the vibrations.
Sometimes, even with a steady part lasting more than 2 seconds, this was not
enough for making the remaining vibrations disappear entirely. However, in most
of the cases that were checked, the decay seemed to be very slow and the oscillation
could be considered to have reached a steady motion.
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Figure 3.7: Schelleng diagrams representing the different kinds of vibration obtained
for a given set of gesture parameters. The four figures represent four different bow
speeds (vb =5, 10, 20 and 50 cm/s). Bow-bridge distance is represented on the x-axis
and bow force on the y-axis (both with logarithm scales). The different vibrations
obtained are: Helmholtz motion (�), constant sliding (·), multiple slips (+), raucous
(x) and anomalous low frequencies (o). The lines represent the theoretical minimum
and maximum bow force according to Schelleng (Eq. 3.7 and 3.6).
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Figure 3.8: Illustration of the changes in the slip phase under the minimum theo-
retical bow force in Fig. 3.7 when the force is slowly decreased. Left: An additional
slip appears at about half the nominal period but the lengthening of the main slip
triggering prevents it to develop. Right: For very low bow forces, the lengthening
can increase until occupying the whole nominal period, giving a constant sliding.
These two phenomena prevent multiple slips to develop under the minimum bow
force, between the Helmholtz region and the region with constant sliding.

Secondly, it can be observed that no multiple slips were found under the theo-
retical lower force limit. The fact that Helmholtz triggering was established early
during the stroke seems to facilitate a maintaining of the oscillation and a direct
transformation into a steady slipping state, without multiple slips occurring in be-
tween. This is very similar to the effect that was pointed out by Woodhouse [88] for
models with narrow reflection functions. Woodhouse’s analysis of minimum bow
force for such models predicted (also confirmed with simulations) that the mini-
mum bow force would be very small and could not be anticipated using Schelleng’s
analysis:

”If the bow force is slowly reduced once a stable Helmholtz motion is
established, the Helmholtz corner becomes more and more rounded, and
the slipping time occupies a larger and larger proportion of the entire
period length. Eventually, slipping occupies the entire period length.
(...) the motion may then decay slowly to a state of steady sliding
without oscillation.”

This is illustrated in Fig. 3.8. Actually, at some time in the simulation, an ad-
ditional small slip may appear (Fig. 3.8, left), but the lengthening of the main
slip period makes it disappear and the oscillation degenerates into some kind of
Helmholtz motion with a very long slipping period.

This effect seems to depend strongly on the damping of the first string mode. In
the previous simulations, damping parameters were set to B1 = 3.12 and B2 = 7,
resulting in a decay time τ = 320 ms for the first mode. If only the first mode is
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Figure 3.9: Schelleng diagrams obtained with the same string parameters as in Fig.
3.7, except for the damping coefficient of the first mode that is multiplied by two.
The changing of this factor introduces a multiple-slip region under the theoretical
minimum bow force.

changed by reducing its decay time to half the value (B1 = 6.4), the simulations
show a very different behaviour. In the lower part of Fig. 3.9 (under the lower
force limit), it can then be seen that multiple slips occur between the Helmholtz
region and the steady sliding state region. In that case, the theoretical minimum
bow force seems to be in better agreement with the simulations.

In conclusion, the bowed-string model has been used to simulate the string vi-
bration for various sets of steady-state control parameters. Different kinds of string
vibrations were obtained. Regular Helmholtz motion was found to constitute ho-
mogeneous and continuous regions in the control parameter space. These regions
corresponded well with the theoretical definitions given by the minimum and maxi-
mum bow force vs. bow-bridge distance for a given bow velocity. This is reassuring
concerning the behaviour of the model. In particular, we can expect a conformity
between the usable regions for control parameters of the model and realistic bowing
parameters used by players.

The control of the bowed string in real violin playing does not only consist in
finding the right combination of bowing parameters in order to obtain an acceptable
vibration of the string. The playable region offers a wide variety of sound colors
which the violinist utilizes according to musical purposes. The next step in the
exploration of the model will consequently deal with the description of the main
sound properties within the playable region of the control parameter space.
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3.4 Influence of gesture parameters on the sustained part

of the vibration

In this section, we will describe variations of some qualities of the sound during the
steady part of the vibration, i.e. in the Helmholtz region of the Schelleng diagram.
Three properties of the sound are of primary interest from the player’s point of
view, and can be controlled by combining the bowing parameters accordingly

• The sound level: The player must be able to generate different dynamic levels,
from a very soft (pianissimo) to a powerful loud level (fortissimo).

• The tone color, also referred to as brilliance: String players are able to produce
a variety of sound colors. For instance, they generally use a rather long bow-
bridge distance (sul tasto) for obtaining a soft and spectrally poor sound,
whereas they slow down the bow, press harder on the string and play closer
to the bridge for producing a brilliant and rich sound.

• The pitch: Close to the upper bow force limit, the vibration period will
increase (“pitch flattening”) due to a hysteresis effect in the bow-string in-
teraction. This is not exactly a means of expression, but the player has to
take it into account when playing with high bow forces. The pitch flatten-
ing effect provides an interesting point of comparison with other studies and
measurements.

The simulations obtained in the previous section for compiling the Schelleng dia-
grams were analyzed in order to describe them in terms of the three properties of
the sound. In the analyses, we will consider the bridge force as the output signal,
without taking into account the filtering effect of the violin body and the frequency
dependence of the radiation. The sound could have been computed as described in
Chapter 2, incorporating pulsed noise and simulation of the radiation by the body
of the instrument. However, the force on the bridge will be assumed to give a first
good approximation of the resulting sound properties.

Effect on dynamic level

In a first approximation, the level of the sound radiated by the violin is dependent
on the amplitude, or peak value, of the force exerted by the string on the bridge. In
Helmholtz’s and Raman’s theories, this force is simply proportional to the ampli-
tude of the string displacement, controlled by the bow velocity and the bow-bridge
distance (Fbridge ∝ vb/β), with a negligible effect of the bow force. According to
Schelleng [71]: “Bow force is important primarily as the catalytic agent that make
possible a correct reaction between bow speed and bow position”.

However, Cremer [19] notes that “the peak value does not determine the per-
ceived loudness”. He reports the following observation:
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“As already mentioned, the strength of the tone does not correspond
to the displacement of the string. A basic example is, for example, to
bow a cello string with low bow pressure and relatively high bowing
speed: it is easy in this way to achieve a displacement so great that
the string nearly hits the adjacent ones. The tone is dull and not very
loud. Now, if the bow is moved more slowly and with somewhat more
pressure, the tone becomes brighter, and somewhat louder, and so it
carries to greater distances. In this case, however, the displacement is
considerably smaller than before.”

Consequently, the influence of the spectral content of the vibration plays an impor-
tant rule in the perception of the sound level. Askenfelt [4] reported measurements
in which players seem to prefer changing bow force and bow position rather than
bow speed for increasing dynamic level. In a paradoxical way, players were found
to decrease the velocity for increasing the volume of the sound. As pointed out by
Guettler [35], “raising the bow velocity alone would decrease the relative content of
high partials, which to some extend would counteract the perception of increased
loudness.”

This effect can be confirmed by simulating the vibration of the string by only
increasing the bow velocity. Whereas the amplitude grows, the result does not
produce a real feeling of increased dynamic level. In contrast, when both bow
velocity and force are increased, a more realistic crescendo is perceived.

In the following, we will focus on the total energy of the string vibration, in-
cluding all harmonics, rather than the peak value of the vibration. The energy is
computed as

L =

√

√

√

√

1

N

N
∑

i=1

‖xi‖2 (3.9)

where xi are the samples of the force on the bridge Fbridge, and the vibration
level in dB is computed with

LdB = 20 log10(
√

2L) (3.10)

The resulting plots are shown in Fig. 3.10 for the four bow velocities. Comparing
the four figures, it can be observed that higher sound levels are obtained with higher
bow velocities. For example, the level difference between vb = 5 cm/s and vb = 50
cm/s is around 15 dB for the same bow-bridge distance and bow force. The bow
velocity thus allows a substantial increase in dynamic level. However, the bow force
is seen to have a profound effect as well. For a given bow-bridge distance, the level
increases with increasing bow force, the difference being around 10 dB between the
minimal and maximal bow force.

These results are consistent with the control of the sound level as experienced
by players. For a given bow position, the level can be slightly increased by pressing
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Figure 3.10: Effect of bowing parameters on the dynamic level for four bow veloci-
ties (vb =5, 10, 20, 50 cm/s). Simulations obtained when determining the Schelleng
diagrams (Section 3.3) were used for computing the energy of the resulting vibra-
tion as a function of bow-bridge distance and bow force. The plots demonstrate
the influence of bow force and bow-bridge distance on the energy of the string vi-
bration, and in turn the perceived level of the sound. Level scale runs from zero
(red) to -30 dB (blue).
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harder on the string, but the effect is more obvious when combined with bowing
closer to the bridge. Increasing the bow velocity makes the effect stronger, but
on the other hand, it requires a better ability of controlling the bowing gesture.
Pressing hard and bowing fast is not so easy to achieve, especially because it makes
the control of the bow-bridge distance more difficult. Moreover, bow velocity is
usually not a parameter which is free to control. The available length of the bow
hair and thus the velocity has always to be determined according to musical and
technical constraints such as the duration of the note.

The variations in the simulated levels can be compared with measured dynamic
levels of violin sounds. Meyer [57] reports the dynamic range of the violin to be
about 40 dB from pp to ff. Askenfelt found a variation of 37 dB for a G string
“between the softest and loudest possible playing” [4]. These results seem to be in
line with our simulations. Unfortunately, there are no systematic measurements of
violin sound levels versus bowing parameters available. This makes it difficult to
assess the realism of the obtained level differences in the simulations. However, we
can refer to Askenfelt’s measurements, who recorded the vibration of the top plate
for determining the level, for an approximate comparison. When violinists were
playing long notes at different dynamic levels, he reported variations in the bow
force from 0.5 to 2 N and in bow-bridge distance from 40 mm to 20 mm between
piano and forte levels. The bow velocity was kept rather constant (between 20 and
30 cm/s), and the variation of dynamic level was found to be 9 dB. By using these
values for interpolating the level in the simulations with a bow velocity of 20 cm/s,
the resulting level variation is 10 dB, which is surprisingly close to Askenfelt’s
measurement. Note that this result would probably have been better if we had
considered a bow velocity of 30 cm/s: By interpolating from the level at 50 cm/s,
the difference becomes 7.6 dB.

Effect on spectrum

Variations in the tone color were already mentioned by Schelleng [71] (see Fig.
3.5). In his famous diagram, he reported three regions associated with different
tone qualities when playing violin: sul tasto, normal and brilliant. These sound
qualities were indicated in relation to the bow-bridge distance and bow force, but
with no considerations on their respective influence.

Considering the vibration at the bridge as an idealized sawtooth waveform,
Schelleng and Cremer deduced a first approximation of the instrument spectrum:
the decrease in amplitude of successive harmonics n should be proportional to 1/n,
i.e. a slope of -6 dB per octave. This envelope can be considered as a good first
estimation, but as noted by Schelleng: “This statement has to be modified for
actual vibrations, which follow the rule for the lower several harmonics but deviate
in higher orders according to the bow position and bow force”.

Fig. 3.11 illustrates the spectrum obtained in simulations for different bow-
bridge distances, and with two bow forces (Fb = 143 and 1025 mN), both at a
constant bow velocity (vb = 20 cm/s). The amplitudes of the first 60 harmonics
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Figure 3.11: Spectrum of the force on the bridge obtained for simulations with a
bow velocity of 20 cm/s. Left: Low bow force (Fb = 143 mN) for different bow-
bridge distances β. Right: The same cases with a higher bow force (1025 mN).
The dashed line corresponds to theoretical spectrum slope of -6 dB/octave inferred
by Cremer and Schelleng. In the left figure, a limiting case with a very high bow
force (3 N) corresponding to the maximum force in the Schelleng diagram, has been
included in order to illustrate the idea that the theoretical spectrum corresponds
to a limiting case obtained at the upper force limit.

of the force on the bridge are plotted. It can be seen that the simulated spectra
follow the theoretical shape quite well for the first harmonics, up to the 7th for the
high bow force, and up to the 3rd for the low force. The highest components in
the spectra become weaker with decreasing bow force, meaning that the spectra
deviate more and more from the theoretical slope as the force is decreased. As a
comparison, a limiting case with a very high bow force (3 N) is included in Fig.
3.11, left, showing that the spectrum follows the predicted slope rather well up to
a high harmonic number. In the simulations, the theoretical shape of the spectrum
seems to correspond to a limiting case, occurring when the bow force is very close
to its maximum value given by Schelleng.

Recently, Guettler [36] proposed some more precise indications of the variation
of tone coloring in the Schelleng diagram. He concluded that the tone coloring is
dependent on the force relative to limit forces defined by Schelleng more than on ab-
solute force. Moreover, from considerations about the sharpening of the Helmholtz
corner under the bow [36] obtained from simulations and measurements [39], he
suggested that the amplitude of the highest harmonics does not depend on the
bow-bridge distance for a given bow force and bow velocity. This is approximately
observed in Fig. 3.11.

The brightness, or sharpness of the tone color, often referred to as “brilliance”,
is related to the relative strength of low and high frequencies and can be described
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Figure 3.12: Variation of brilliance in the Schelleng diagram. The figures show the
spectral centroid of simulations with varying bow-bridge distance and bow force for
four bow velocities (vb=5, 10, 20 and 50 cm/s). The spectral centroid (in Hz) was
computed from the force on the bridge. Frequency scale runs from 200 Hz (blue)
to 1500 Hz (red).

by the spectral centroid of the bridge force [31, 14]. The amplitude An and the
frequency fn of the 50 first harmonics were extracted from the spectrum of the
bridge force, and the spectral centroid was computed as

SC =

∑

Anfn
∑

An
(3.11)

The results are shown in Fig. 3.12. The centroids are represented in a color
log scale vs. absolute force and bow-bridge distance, for the four bow velocities. It
can be seen that for a given bow-bridge distance, the centroid increases with bow
force, as expected. For instance, at β = 1/13.8 and vb = 10 cm/s, the variation
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reaches about 700 Hz for a change of 1 N. Moreover, the centroid is found to
increase faster as high bow forces are reached. More precisely, the logarithm of
the centroid was found to increase linearly with the logarithm of the bow force.
For example, with vb = 20 cm/s and β = 1/14, the centroid varied according to
log(SC) ∝ 0.34 log(Fb).

A bit more surprisingly, the centroid was found to decrease with decreasing bow-
bridge distance for a given bow force. This could seem contradictory to Guettler’s
result [39] and to what is experienced by players. As described before, string players
tend to bow closer to the bridge for obtaining a more brilliant sound. However,
the players often compensate a bowing position closer to the bridge by pressing
harder on the string, which explains the increase in brilliance. The decrease due to
changes in bow-bridge distance seems to be related to the lowest string modes (see
Fig. 3.11), typically the 10 first modes. The effect is rather weak compared to the
effect of bow force.

In a next step, the spectral centroid was plotted in a similar diagram, but re-
placing the absolute force by the force relative to the minimal and maximal bow
force, as suggested by Guettler [36]. This can be achieved by dividing the bow
force with a reference force corresponding to the intersection between the theoret-
ical minimal and maximal forces (upper-left point of the Schelleng triangle). This
reference value is given by Fref = 8Rvb/(µs − µd). Diagrams with relative forces
are the same for the different bow velocities and can be used to compare the varia-
tion of the spectral centroid inside the Helmholtz region, independently of the bow
velocity.

Such a comparison is shown in Fig. 3.13. The same data as in Fig. 3.12 are
represented in the relative Schelleng diagram (β, Fb/Fref ∝ Fb/vb) defined above.
In this representation, the Helmholtz region (between the two black lines) is the
same for the four velocities, and the variations in the spectral centroid are very
similar for the four cases. Close to the maximal bow force, the spectral centroid
falls between 1200 and 1500 Hz, whereas close to the minimum bow force it decreases
to about 200 Hz.

Flattening effect

We conclude this section about the effect of bowing parameters on the string vibra-
tions by illustrating the variations of pitch between the maximum and minimum
bow force. The frequency of the bowed string is rather constant in the region
defined by these limits, which means that the player can use a large part of the
playable region without having to compensate for frequency variations. However,
when the bow is pressed strongly on the string, the vibration frequency tends to
decrease. This flattening effect appears in a region below the theoretical maximum
bow force and imposes a practical maximum force to the player.

The mechanism of this phenomenon has been explained by McIntyre and Wood-
house [54] by providing a solution to Frielander’s ambiguity. Frielander pointed out
that for some shapes of the friction characteristic the determination of the friction
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Figure 3.13: The same data as in Fig. 3.12 shown in a Schelleng diagram with
relative force scale, defined in the text. The representation of the spectral centroid
between the minimum and maximum bow force limits shows the same variations
independent of the bow velocity, suggesting that the spectroid varies with relative
bow force. Frequency scale runs from 200 Hz (blue) to 1500 Hz (red).
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force could give three solutions (one for ∆v = 0, corresponding to the sticking,
and two for intersections with the friction curve). In order to solve this ambiguity,
McIntyre formulated a hysteresis rule in the evolution of the sliding force. As long
as the string is sticking and the maximum static friction is not reached, it continues
to stick to the bow, and as long as the string is sliding, it continues to slide, until
no solution can be found anymore. As a consequence, the friction force does not
follow the same path at the beginning of the slip triggering and at the end. When
the force is increasing at the end of the triggering, the path is longer, resulting in
a lengthening of the period. The flattening effect has been investigated analyti-
cally, and by measurements and simulations by Schumacher [74][75], Faure [23] and
Boutillon [13].

In the simulations, the vibration frequency was computed and plotted in the
Schelleng diagram. The frequency variations (in cents, relative to the nominal fre-
quency of the free string f0 = 196 Hz) are shown in Fig. 3.14. The variation
is indicated in color scale, from -30 cents to +20 cents. In the main part of the
diagram the frequency is the same, around 20 cents above the nominal frequency.
Note that the frequency of the forced oscillations imposed by the bow differs from
the frequency of the free oscillations, as expected. However, the frequency sud-
denly drops as the bow force gets closer to the maximum bow force and reaches a
maximum flattening of around -20 cents (i.e. a variation of 40 cents relative to the
forced oscillation for low forces).

The effect sets in rather close to the upper bow force limit, the frequency being
approximately constant everywhere else. Note that the logarithmic scale used for
the bow force contributes to this impression. The region in which flattening occurs
is not as narrow as it seems in Fig. 3.14. In Fig. 3.15, the variations are shown vs.
bow force on a linear scale and the decrease in frequency is seen to be more uniform.
In Fig. 3.15a, the frequency variation is shown for one bow velocity (vb = 20 cm/s)
and several bow-bridge distances. The effect is weaker for small distances, which
seems to be in line with recent measurements by Schoonderwaldt. In Fig. 3.15b,
the variation is shown at β = 1/11.4 for the four bow velocities. It can be seen that
the greatest flattening is obtained with a small velocity (vb = 5 cm/s), and that
the slope of the variations decreases with increasing bow velocity.

In this section, we have explored the behaviour of the model under bowing
conditions aiming at establishing and maintaining Helmholtz motion. We also
studied properties of the sound that the player consciously controls by choosing the
appropriate set of bowing parameters during performance: the sound level and the
spectral content of the sound. These simulations were performed in order to verify
that the model gave a realistic synthesis, i.e. that the model behaved as expected
in the control parameter space.

Both the sound level and the spectral content were found to vary in line with
predictions and with the experiences of players. The sound level increased with
increasing bow velocity and decreasing bow-bridge distance as predicted, and the
effect was substantially emphasized when coordinated with an increase in bow force.
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Figure 3.14: Observation of the flattening effect in the Schelleng diagram. The
variation of the playing frequency (in cents) in shown in color scale vs. bow-bridge
distance and bow force. Pitch scale runs from 20 cents (red) to -30 cents (blue)
relative to nominal string frequency (197 Hz).
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Figure 3.15: Observation of the flattening effect vs. bow force, on linear scale. (a)
Frequency variation at a given bow velocity vb = 10 cm/s for different bow-bridge
distances. (b) Frequency variation at a given bow-bridge distance (β = 1/11.4) for
various bow velocities.

The spectral centroid increased with bow force. In all, the simulations showed a
satisfactory agreement with experimental observations and theoretical expectations.

3.5 Conclusions and applications

This chapter has tackled aspects of string playing that are pertinent from a control
point of view: the attack of the sound, the establishing of a stable Helmholtz mo-
tion, and the control of the sound properties during the sustained part of the note.
Simulations have been performed to examine the behaviour of the bowed-string
model in the control parameter space. Optimal regions have been deduced for
rapid development of regular slip triggering (with slowly varying bowing parame-
ters), and for maintaining an established periodic motion with constant parameters.
The behaviour of the model during attacks and steady-state parts of the tone was
found to be in good agreement with predictions by Guettler and Schelleng, verify-
ing a region of fast establishment of Helmholtz motion through close to “perfect”
attacks, as well as the famous Schelleng triangle for sustained Helmholtz motion.
The examination of the sound level and the spectral content and their dependence
on bow-bridge distance, bow velocity and bow force has enabled an accurate de-
scription of the sound properties which the player controls during performance and
their relation to the bowing parameters. Such an exploration is required for an un-
derstanding of the behaviour of the model under a given set of control parameters,
and useful for controlling the synthesized sound in a predictable manner.

All simulations were performed on a violin G string defined at the beginning of
the chapter. Some variations in the model behaviour can be expected for a string
with different mechanical properties. Actually, a systematic exploration of the kind
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described in this chapter should be performed for a variety of strings. However,
we have seen that the behaviour of the exemplary string followed theoretical ex-
pectations quite well. Some important features for the control of the model can be
deduced from these observations:

• Guettler’s relations give an idea of the region in which good attacks can be
obtained. With our simulations some of the conditions were found to be
slightly different, especially for short bow-bridge distances. However, the
relations A, B and C (Eqs. 3.1, 3.2 and 3.3) provide an useful information
about the combination acceleration-force that have to be used at a given
bow-bridge distance.

• The playable region for the sustained part of the note is well described by
Schelleng’s maximum and minimum bow force limits during the steady part
of the sound. The simulations were performed with a carefully designed time
evolution of the bowing parameters in order to establish a stable Helmholtz
motion quickly and maintain it as long as possible when approaching the
target value in force. The playable region may be smaller if the preceding
attack is not optimal.

• The variation of the spectral centroid was found to increase linearly on log-
arithmic scale with the bow force between the minimum and maximum bow
force. The sound level increased proportionally to the bow speed and inversely
to the bow-bridge distance. However, it is important to keep an adequate bow
force by not decreasing the level of the relative bow force when increasing the
dynamic level.

These rules can be used in order to obtain an initial description of the behaviour of
the bowed-string model, independently of the values of the string parameters. The
rules give precious information for the control of the model. We will conclude by
describing some possible applications of our observations.

The model can be controlled in real time with an adequate interface, as men-
tioned at the beginning of this chapter. However, some technical skills and knowl-
edge of the model behaviour are necessary to drive it properly. In a first approach,
a simple mapping on a realistic parameter space can be considered. For example,
the bow force and the bow velocity can be limited to a range from 0 to 2 N and 0 to
1 m/s, respectively. The control may still be problematic for inexperienced users,
and it could be simplified by restraining the parameter space to the playable region.
For example, based on the actual values of the velocity and bow-bridge distance,
the bow force could be mapped between the minimum and maximum bow force.
As a consequence, the novice would not need to focus on the technical problem of
obtaining a good tone, but could concentrate on the tone color and the sound level.

Other applications can be imagined. For example, the rules above could be
interesting when adapting the control parameters to different strings or to other
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instruments. Questions like the following could be answered: If a given time evolu-
tion of the sound properties is obtained with a certain set of bowing parameters on
a violin A string, which transformation is needed to obtain the same effect on a cello
C string? Or how should the parameter variations during the attack be changed in
order to obtain the same quality for the different bowed string instruments?

Finally, the results obtained provide helpful information in order to make the
relation between bowing parameters and sound properties clear. With physical
models, the user does not control the perceptually relevant aspects of the sound
directly. In real playing, the violinist is implementing musical intentions that are
communicated through the variations in sound such as level and brilliance, which in
turn are controlled through appropriate combinations of bowing parameters. The
choice of the bowing parameters is a matter of practicing and building an intuitive
mapping between the bowing gesture and the behaviour of the instrument. The
previous analysis gives access to this intuitive correspondence between the features
of the bowing gesture and the resulting characteristics of the sound. For example,
a given time evolution of the control parameters which defines the profile of the
bowing parameters during the bow stroke, could be changed with simple rules in
order to obtain similar bow strokes with different levels or brightness.



Chapter 4

Measuring bowing parameters in

violin performance

A principal aim of this work was to study the violinist’s control of the instrument
in normal playing, in order to formulate general rules and describe characteristic
features which could be used to obtain realistic control of violin synthesis. For
that purpose, the development of dedicated measurement devices for recording the
bowing parameters has been a key point of the work.

An inspiration to start this work was the Augmented Violin project developed
at IRCAM [25][67]. That device did, however, not register the bow force, and
bow velocity was reconstructed from measurements of the acceleration of the bow,
using an additional setup [73]. The development of a robust sensor for measuring
bow force without interfering with normal playing conditions was thus required. In
this chapter, two submitted manuscripts are reproduced, presenting the bow force
sensor that was developed during this work (Paper I), and the integration of the
force sensor with an optical motion capture system which enabled measurements
of complete sets of bowing parameters in violin performance (Paper II). The setup
allowed measurement of the three main bowing parameters (bow force, bow velocity
and bow-bridge distance), as well as bow tilt and bowing angles relative to the violin
(skewness and inclination). In addition, accelerometers placed on the bow provided
more detailed information for studying rapid bowing gestures, such as bow changes
and strong accents.

First an introduction is given explaining the interest in measuring the real con-
trol parameters in playing in the context of realistic violin synthesis (“virtual vi-
olin”). Following, an introduction to Paper I will describe the specific problems
associated with the development of a bow force sensor for musical performance
purposes. The introduction to Paper II describes the context in which the bow
force sensor and motion capture method were combined into a complete measure-
ment system for control parameters in violin playing.

109
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4.1 Introduction: On physical modelling and the control

In Chapter 2, a model allowing a simulation of the motion of the bowed string
was described in detail. The parameters setting the behaviour of the model can be
divided into three classes: model parameters (such as the string length and ten-
sion, and friction parameters), computation parameters (computation frequency
and number of modes), and control parameters (bow force, bow velocity, and bow-
bridge distance). In Chapter 3, simulations of a violin G string were described using
realistic string parameters. The behaviour of the model for largely different sets
of control parameters was explored in detail and compared with expected results
from theory. In particular, we focused on the onset of the string vibrations (at-
tacks, Guettler diagrams), on how an established Helmholtz motion was maintained
(“steady-state”, Schelleng diagrams). Variations in perceptually important char-
acteristics of the vibrations within the “playable region” (spectral centroid, sound
level and variation in pitch) were studied as well.

However, setting the right parameters describing the string and instrument is
not sufficient for obtaining a realistic sound synthesis. When the control parame-
ters are kept strictly constant, as was the case in the verification of the Schelleng
diagrams (Chapt. 3.3), the simulations sound artificial. In contrast, the simula-
tions of attacks were much more satisfying from a perceptual point of view, despite
the simplistic profile for the variation in the bow velocity used. The time evolu-
tion of the control parameters is consequently of primary importance and requires
adequate descriptions.

Regarding the evolution over time of the control parameters, two kinds of vari-
ations with in general different time constants can be identified. Smaller variations
on a short time scale are introduced by the human control of the bowing parameters
through the motions of the arm, hand and fingers. Consequently, when a player is
asked to perform a task with constant bowing parameters, unintended variations
on a low level in bow force, bow velocity and bow-bridge distance will always be
observed. These variations are perfectly natural ingredients in string playing, re-
flecting the characteristics of human motor control. Flaws in the playing technique
may exaggerate the variations to much higher levels. A constant bow velocity dur-
ing a full bow stroke will for example require a delicate coordination between the
motions of the elements of the arm and hand. A constant bow-bridge distance is
dependent on that the bow is drawn exactly in the longitudinal direction of the
bow, which is not easily achieved, in particularly not over a long bow stroke. The
bow force is difficult to keep perfectly constant because of the resonant properties
of the bow, which easily are excited and induce variations in force. Further, the
way the bow force is supplied gives rise to an interesting control problem in itself.
The player applies a torque at the end of the bow (the frog), which makes the bow
force against the string dependent on the distance between the contact point with
the string and the frog. Drawing a note with constant bow force therefore requires
a continuous adaptation of the torque to the bow position, and the constancy of the
bow force is to a large extent judged by the resulting sound quality. It is important
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Figure 4.1: Templates for the bowing parameters imitating various bow strokes.
Synthesized sound, bow force and bow velocity (top to bottom). The bow-bridge
distance was constant (β = 0.093). (a) Bow thrown on the string (gettato) imitated
by successive peaks in bow force. (b) Martelé. (c) Crescendo.

to stress that the human limitations in the control of the bowing parameters are
not “errors” or unwanted contributions. They represent natural variations of the
bowing parameters, which in turn contribute significantly to the perceptual quality
of “naturalness” of the sound.

Keeping the control parameters perfectly constant has little musical significance
as such. In contrast, keeping perceptual quantities like loudness, tone quality and
pitch approximately constant can often be motivated by musical purposes, but
may require continuous changes in the bowing parameters as the contact point
moves from frog to tip during a stroke. On a longer time scale, an evolution of
the control parameters is therefore demanded by musical purposes. Basic examples
are changes in dynamic level and sound color over a phrase, or the performance of
various accented or bouncing bow strokes such as martelé, staccato or spiccato.

Templates for the evolution of the control parameters can be obtained by simply
watching violin player’s behaviour, in order to imitate various bow strokes like in
Fig. 4.1. In Fig. 4.1a, the bow force is composed of successive peaks with decreasing
amplitude while the bow velocity is slowly decreasing after the attack, imitating
several rebounds as if the bow was thrown on the string (gettato). In Fig. 4.1b, the
bow force decreases continuously during the stroke, while the bow velocity exhibits
a peak followed by a decay to a small constant value. This produces a kind of
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martelé with a rather short and strong attack followed by a slow decay in sound
level. In contrast, Fig. 4.1c shows a crescendo cartooned by increasing the bow
force and velocity strongly during the stroke.

Control of a bowed-string model based on generalized templates obtained by
imitations, such as those illustrated in Fig. 4.1 has several limitations. Even
an experienced violin player may not have the necessary ability to quantify the
bowing gestures in terms of relevant control parameters. Direct measurements of
the effective control of the bowing parameters during actual performance provide
a much more promising direction for the control of a virtual violin. Based on
the performer’s experience of violin playing, and provided that the virtual violin
(physical model) and the real instrument behave quite similarly, it is possible to
obtain a great variety of exemplary evolutions for the control parameters and deduce
typical rules for the control strategies in playing.

4.2 Introduction to Paper I: The bow force sensor - from

the laboratory to the stage

Paper I:
M. Demoucron & R. Caussé: Measuring bow force in bowed string performance:

Theory and implementation of a bow force sensor
Submitted for publication in Acta Acustica, September 2008.

A basic part of this work concerned the development of a robust bow force
sensor that could be attached to any bow with minimal modifications. Based on
the principle described by Askenfelt [3, 4], sensors were placed on the bow for
measurement of the transverse forces at the terminations of the bow hair. The core
element of the sensor was a thin leaf spring of steel. The displacement of the spring
under loading of the deflected bow hair was measured by strain gauges.

A complete description of the sensor, its principle, design and calibration are
detailed in Paper I. The sensor has been used in the experiments reported in Chapt.
5 and 6 for measuring complete sets of bowing parameters in violin performances.

Some composers and musicians were interested in using the bow force sensor in a
musical context. The bow force signal can for example be used for controlling digital
processing of the violin sound, or for obtaining information about the performance
of the musician. Some design problems arise from the use of the device in live
musical performance. Whereas the comfort of the musician can be disregarded to
a certain extent in scientific experiments, it becomes of primary importance when
the player has to perform on stage and interpret a demanding score during a rather
long time. The following section provides some details concerning the development
of a bow force sensor suitable for musical purposes.

The device developed at the very beginning of this work is shown in Fig. 4.2.
Two sensors were used, one at each termination of the bow hair. The sensor at the
frog was clamped to the flat side of the ferrule, under the bow hair (Fig. 4.2b).
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(a) (b)

Figure 4.2: An early version of the device for measuring bow force using two sensors.
The two signals representing the transverse forces at the tip and at the frog due
to the deflection of the bow hair are used for computing the bow force and bow
position. (a) Sensor at the tip. The sensor is clamped between the bow hair and the
ivory plate at the tip. A thin metal fixation around the head prevents the sensor
from moving. (b) Sensor at the frog. The V shaped design of the ring permitted
to clamp the sensor to any bow.

The sensor at the tip was clamped between the bow hair and the ivory plate at the
tip (Fig. 4.2a). The sensors provided two complementary signals that were used
for measuring bow force and bow position. This version of the device was used in
some preliminary experiments with standard types of bow strokes such as détaché,
spiccato and martelé [21]. However, the sensor at the tip and the wires along the
bow stick added a considerable weight to the bow, which was not desirable under
real performance conditions.

In order to reduce the discomfort for the player, a device using only one sensor
at the frog was developed. Two versions of the system are shown in Fig. 4.3.
The player holds the bow just above the sensor and the added weight is therefore
almost negligible compared to the weight of the frog. However, as the sensor signal
depends on both bow force and bow position, an additional device measuring the
bow position is necessary in order to obtain accurate measurements. A solution
consisting in combining the sensor with a motion capture system will be presented
in Sect. 4.3. Here we will only describe some design considerations for making the
force sensor usable in musical performances.

The sensor shown in Fig. 4.3a is obviously more suitable than the two-sensor
device described above (Fig. 4.2). The additional weight is concentrated at the frog,
the weight of the clamping ring has been reduced, and the size of the electronic
board is minimized. However, also this version included some parts under the frog
which reduced the accessible length of the bow hair, and also could be a hindrance
in vigorous playing close to the frog.

The last version of the sensor (shown in Fig. 4.3b) was modified in order to
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(a) (b)

Figure 4.3: Two versions of the device with only one sensor attached to the frog.
(a) Sensor used for measuring the bow force in laboratory conditions. The ring
clamping the sensor covers the width of the ferrule. (b) Sensor developed for musical
performance. The width of the ring is reduced in order to move the sensor farther
away from the hair termination.

(a) (b)

Figure 4.4: Acquisition system used for the creation of StreicherKreis for string
quartet by composer Florence Baschet. The sensor is connected to an electronic
board containing three accelerometers and three gyroscopes. A small battery at-
tached to the forearm provides power supply, and data are sent via a wireless
transmission. (a) Device mounted on the player. (b) Overview of the device, show-
ing the bow force sensor (old version), accelerometers and the wristband containing
the battery.
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make the performance safer for both the instrument and the sensor. In order to
reduce the thickness of the sensor, the electronic board was placed behind the ring
(and not under the ring, as in Fig. 4.3a), and only one strain gauge was glued to
the strip. The length of the strip under the bow hair was minimized by moving
the ring farther from the ferrule. This was achieved by reducing the width of the
ring and clamping the strip partially on the gauge. In the last version, less than
3 mm of the bow hair was not usable. A protective material was glued over the
entire length of the sensor for minimizing the damages in case of accidental contact
between the sensor and the violin.

A complete set of these sensors has been developed on the occasion of composer
Florence Baschet’s creation StreicherKreis for augmented string quartet. The sen-
sors were connected to an electronic board containing three accelerometers and
three gyroscopes. The complete set of signals was sent to a computer via wire-
less transmission. Power supply was provided by a small battery attached to the
forearm of the players. The complete setup is shown in Fig. 4.4.

4.3 Introduction to Paper II

Paper II:
E. Schoonderwaldt & M. Demoucron: Extraction of bowing parameters from

violin performance combining motion capture and sensors.
Submitted for publication in J. of Acoustical Society of America, July 2008.

The bow force is one of the three main bowing parameters together with bow
velocity and bow-bridge distance. In order to obtain a complete description of a
player’s bowing, it is therefore necessary to have access to equipment which provides
data on the momentary position of the bow relative to the strings. With such a
device, the bow force can also be measured with only one sensor at the frog as
described above, and bow position data are used for correcting the force sensor
signal.

During this work, experiments using an optical motion capture system at Input
Devices and Music Interaction Laboratory (IDMIL), McGill University, Montreal
were performed. A complete setup including a thorough calibration and correction
of the force sensor signals was developed together with Erwin Schoonderwaldt dur-
ing a short stay in June 2007. Pilot experiments were performed during this visit
and numerous measurements were done by Schoonderwaldt during the autumn.

Paper II is the result of this collaboration. It describes the measurement setup
used during the sessions, consisting of the optical device (Vicon system), accelerom-
eters on the bow, and one bow force sensor. In particular, the paper details the
computation of the bowing parameters from motion capture data, and the calibra-
tion of the bow force sensor using optical-based measurements. In the paper, the
sections related to the calculation of bowing parameters based on motion capture
data are due to E. Schoonderwaldt. My own contribution concerns the measure-
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ment of bow force including the comparison between the sensor-based and the
optical-based method for force measurement (Sect. IV, Appendix B and C).

Most of the measurements presented in the following come from the pilot ex-
periment. During this session, more than 60 acquisitions lasting about one minute
were performed by a professional violinist. The acquisitions were divided into six
categories:

• Simple détaché with various durations (from whole notes to 1/32 notes), with
the whole bow and at different bow positions for the fast détaché.

• Sustained long notes at different dynamic levels (from pp to ff ) and crescendo-
diminuendo.

• Sixteenth notes at different dynamic levels and various bowing patterns (“nor-
mal”, accented, staccato, portato, controlled and natural sautillé)

• Transitions between notes and attacks. Martelé.

• Continuous and stepwise accelerando. Tremolo

• Musical examples

Not all categories were used for the analyses included in this thesis.
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MEASURING BOW FORCE 1

Measuring bow force in bowed string performance:

Theory and implementation of a bow force sensor

Abstract

A sensor has been developed which allows measurement of the force exerted by the bow on the string (bow

force) during violin performance. The bow force is deduced from measurement of the transversal force at the

termination of the bow hair at the frog. The principle is illustrated with an experiment that demonstrates how the

bending of the stick and variations in bow hair tension influence the measurements. The design of the sensor is

described and performance characteristics are discussed. A thorough calibration procedure is described and tested.

Finally, the use of the sensor is demonstrated through measurements in real playing situations.

I. INTRODUCTION

Bow force is one of the three main control parameters in bowed string playing, the two others being

bow velocity and bow-bridge distance. In particular, a rapid establishment of Helmholtz motion during the

attack is dependent on the coordination of bow force with acceleration and bow bridge distance [6][11].

Also, for the control of timbre, bow force is the main parameter, bow-bridge distance playing a secondary

role [7].

The interest for measuring control parameters in playing is encouraged by the advancements in the

study of musical instruments by physical modeling. One advantage of this approach is that the control

parameters of the model become the same as for the real instrument. On the other hand, measuring

the control parameters in normal playing without interfering with normal playing conditions presents a

challenge, in particular for wind instruments. The bowed stringed instruments are seemingly straight-

forward to approach as the string and bow are of reasonable size and the motions associated with bowing

are accessible for measurement. Application of motion capture techniques is an obvious approach for

measuring bow velocity and bow-bridge distance in playing, while bow force measurements will require

application of sensors to the bow or the violin.

The first reliable measurement of control parameters in violin playing during real performance were

made by Askenfelt [1], [2]. A bow was modified to measure bow position, bow velocity, bow-bridge

distance and bow force. Bow position refers to the position of the contact point between bow hair and

string relative to the frog or tip. The bow position was measured by a resistance wire running among the

hairs in the outer layer of the bundle of bow hair contacting the string. The string divided the wire in

two parts which were used in a branch of a Wheatstone bridge. Bow-bridge distance was measured in

a similar manner, using the parts of the string on each side of the bow (wire) in a second Wheatstone

bridge. Bow velocity was obtained from the bow position signal through differentiation. Bow force was

measured by gluing the bow hair to two metal strips at the frog and at the tip, respectively, and measuring

the deflection of the strips by strain gauges.

Later, Young used the bending of the bow stick to estimate the force on the string in playing. Two pairs

of strain gauges were glued to the stick in order to measure the bow force (normal to the string) as well
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as the lateral force component (in the string direction) [13]. Recently, the present author [4] proposed an

improvement of Askenfelt’s work by designing detachable sensors which could be attached to any bow,

and treating the sensor signals from the frog and tip independently. Later implementations of this idea

for real-time measurements have been presented by Guaus et al [5]. The following presentation gives a

description of the basic idea, theory, design, and calibration of a detachable bow force sensor.

II. INTRODUCTORY EXPERIMENT AND THEORETICAL CONSIDERATIONS

The basic idea of the force sensor was to determine bow force indirectly by measuring the resulting

transversal forces at the bow hair terminations. In this section, the principle is illustrated and the influence

of the mechanical behaviour of the bow is analysed. A simple model based on measurements is used

to quantify the contributions from the bending of the bow stick and changes in bow hair tension to the

observed behaviour.

A. General description of the bow

The bow consists of a bow hair ribbon fastened to the head of the bow stick at one end and to the frog

at the other end (see Fig. 1a). As the bow hair is brought up to tension by turning the frog screw, the hair

pulls the head back, and the initial camber of the stick is reduced. Keeping the frog fixed horizontally,

the tip is lowered until an initial displacement h0

t has been reached, at which the restoring force resulting

from the straightening of the stick counteracts the static hair tension (see Fig. 1b). The displacement of

the tip is measured relative to a horizontal reference line extending from the underside of the frog, as if

the frog was resting on a table (see Fig. 1).1

Screw
Frog

Ferrule Bow stick Bow hair
Head

h0

t

F 0

t

F 0

1

b)

a)

c)

d)

F ′
1
> F 0

1

F
h′

t

F ′
t

ht = h′
t − h0

t

Ft = F ′
t − F 0

t

F

F 0

t

Fig. 1: Description of the bow geometry and definition of forces and displacements: (a) Bow hair not

tightened, (b) bow hair tightened, (c) bow force F applied at the bow hair. F ′

1
represents the transversal

force acting at the frog, and −F ′

t
, the transversal force acting at the tip. The reaction of the bow-stick

resulting from the straightening is indicated by F ′

t .

1Superscript 0 will be used to denote the condition with the bow hair at playing tension and no bow force applied, and prime symbols to

indicate playing condition with bow force applied.
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When the bow is pressed against the string, the bow hair is deflected at the contact point, resulting in a

bow force F normal to the string. Associated transversal reaction forces act at the frog F1, and at the tip

Ft, respectively (see Fig. 1c). At the frog, the change in force is visible through the change in bow hair

angle relative to the reference line, and at the opposite end through changes in the displacement of the

tip h′

t
(see Fig. 1d). The deflection of the bow hair due to the applied bow force relaxes the transversal

force on the tip (F ′

t
< F 0

t
), because the slope of the bow hair at the tip will be directed more upwards.

As a result, the bow stick regains some of the initial camber. Simultaneously, the bow hair tension will

tend to increase.

In the following, T0 will be used to indicate the initial tension set by the player, and T the effective

tension that may vary when applying the bow force. Normalized bow position is denoted by γ, indicating

the ratio of the distance xb between the frog and the contact point with the string (bow position), and the

length of the bow hair Lb (0 < γ < 1). All variables will be expressed relative to the configuration in

which the bow hair is tightened and no bow force applied

F1 = F ′

1
− F 0

1
, Ft = F ′

t
− F 0

t
, ht = h′

t
− h0

t
(1)

B. Experiment

A test bench was designed for the initial experiments. With the bow hair tightened, the bow was rigidly

clamped upside-down at the frog, with the tip being free to move. A force transducer (HBM model U1A,

compliance 0.028 mm/N, frequency range 0 - ca 200 Hz) was used to measure the transversal force

component F1 of the hair close to the frog. This was done by letting the bow hair run on top of a small

wheel, mounted on the facing of the transducer (see Fig. 2). At the free end of the bow, a digital caliper

was used to measure the tip displacement ht. From repeated measurements the accuracy was estimated

to ±0.2 mm.

γ

TIP

FROG

Force transducer

Tip
displacement

Mass

F

F1

Fig. 2: View of the experiment for determining transversal forces at the bow hair terminations. The bow

is clamped upside-down at the frog. Bow forces were simulated by hanging masses on the bow hair. The

resulting transversal forces are measured by a force transducer close to the frog and by the displacement

of the tip.

Loads, simulating different bow forces F , were applied by hanging weights with known mass at six

positions distributed across the entire length of the bow hair. Three masses were used, 54, 100 and 154 g

(approximately 0.5, 1, and 1.5 N). The values were chosen to cover the typical bow force range in normal

playing, from 0.5 to 1.5 N [1]. Each measurement series was repeated three times.
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C. Results

1) Force at the tip: Tip displacements for the three loads are shown in Fig. 3a. Each load case includes

three curves corresponding to the repeated measurements. For a given load the tip displacement increases

with bow position γ, and for a given position, with increasing load.

0 0.5 1
0

2

4

6

8

10

12

14

16

18

T
ip

 d
is

p
la

c
e
m

e
n
t 

h
t [

m
m

]

Bow position γ

100 g

54 g

154 g

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Bow position γ

F
o
rc

e
 a

t 
th

e
 t

ip
 F

t/F

Fig. 3: (a) Measured tip displacement vs. normalized position for a load on the bow hair (54, 100 and

154 g), equivalent to applying bow forces of 0.5, 1, and 1.5 N at different bow positions γ. Each series
was repeated three times. (b) Calculated transversal force at the tip Ft normalized by bow force F from

equation 2 using Kb = 91 N/m.

The displacements are due to the transversal force acting at the tip when the bow hair is loaded. The

data in the figure indicate that the assembled, tightened, bow can be well described by a transverse stiffness

Kb. The force acting on the tip can then be calculated from the tip displacement

Ft = Kbht (2)

An estimation of the transverse stiffness Kb was obtained by taking the average of the three tip dis-

placements at the tip (γ = 1), giving a value of 91 N/m. The resulting force at the tip Ft for relative

bow positions was computed using this value and equation 2 (see Fig. 3b). The force values have been

normalized relative to the bow force F . As seen, the normalized force at the tip can be well approximated

by a linear increase from 0 to 1 as function of γ

Ft = γF (3)

2) Force at the frog: The force measurements from the transducer at the frog vs. normalized load

position are shown in Fig. 4. The data points of the three repeated measurements merge, indicating a high

reproducability in the experiment.

The force at the frog F1 is seen to increase with increasing load position (moving away from the frog),

which may seem surprising. Intuitively the expected behaviour would be that the force gets lower as the

tip is approached, due to the decreasing angle of the bow hair at the frog. With the mass placed at the

transducer (γ = 0), the measured force would correspond to the applied weight, and as the loading point

moves closer to the tip, the force at the frog would approach zero. The simplified case in which the bow
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Fig. 4: Transversal force at the frog F1 vs. position of a load on the bow hair (54, 100 and 154 g),

equivalent to applying bow forces of 0.5, 1, and 1.5 N at different bow positions γ. The forces measured
by the transducer close to the frog are indicated by data points. The dashed lines represent a simplified

bow model with a completely rigid stick. The full lines correspond to a realistic model (equation 11),

accounting for tip displacement and variations in bow hair tension. Data were fitted with T0 = 50.2 N
and αT = 8.1 N/N.

stick is completely rigid gives

F1 = (1 − γ)F (4)

The results obtained with such a rigid model are included in Fig. 4 (straight dashed lines). The mea-

surements are far from following this simple behaviour. In fact the measured force at the frog increases

substantially when the load is moved farther away, and surprisingly the force at the frog is greater with

the load at the tip than at the frog. In the following section two factors that explain this behaviour, tip

displacement and bow hair tension, are analyzed.

D. Analysis

In the following analysis, a simple model is used to represent the bow. The assembled bow when

tightened is supposed to act as a spring in the transverse direction, with stiffness Kb at the tip. The bow

hair ribbon is represented by a single string with tension T and length Lb. The displacement of the hair

at the bow position is denoted by h(γ). The transversal force at the frog can then be written as

F1 = T
h(γ)

γLb

(5)

1) Tip displacement: A study including the bending of the stick has been presented by Pitteroff [8],

aiming at a description of the transverse stiffness along the bow hair. He considered that the force acting

at the tip was γF , which is in line with our measurements (see Fig. 3).

Using this assumption, Pitteroff found the displacement of the hair at the bowing point γ to be composed

of two terms, the first one representing the deflection of bow hair under loading when the bow tip does

not move, and the second one taking the global displacement of bow hair due to the tip displacement ht
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(equation 2) into account

h(γ) =
γ(1 − γ)Lb

T
F +

γ2

Kb

F (6)

The force acting at the frog is obtained from equations 6 and 5

F1 =

[

1 − γ(1 −
T

KbLb

)

]

F (7)

The effect of stick bending reduces the slope of the dashed line in Fig. 4 representing the transversal

force at the frog, and the force does not reach zero at the tip, as was the case with the rigid model. The

reason is that when the contact point is moved towards the tip, the decrease in angle of the bow hair

at the frog is more than compensated by the bending of the bow, which lowers the position of the hair

termination at the tip.

The stick bending can dominate the displacement of the bow hair at the contact point and give an

increasing force at the frog when approaching the tip. From equation 7, this will be the case if the tension

is greater than KbLb

T ≥ KbLb ⇒
∂F1

∂γ
≥ 0 (8)

In our case with Kb = 91 N/m and Lb = 0.53 m this will occur when the bow hair tension exceeds

48 N. For comparison, Askenfelt [3] and Pitteroff [8] reported typical tensions to be around 60 N, with

an estimated practical lower limit of 45 N which was considered "very loose" but still playable. The

conditions for a considerable influence of the bending of the stick are thus at hand with the bow hair

taught to normal playing conditions.

The theoretical behaviour of the transversal force at the frog partly matches the observed data in Fig. 4,

explaining the observed increase in force with increasing γ. The model does not, however, succeed in

explaining the non-linear variation with γ. It is therefore necessary to examine the influence of the hair

tension T in equation 7, and how it can contribute to a complete explanation of the observed data.

2) Variation in bow hair tension: Accurate measurement of bow hair tension for the assembled bow

is not straight-forward to perform without instrumenting the bow. In studies of the bow, the tension is

generally described as "low", "normal" or "high". Askenfelt [3] reported a simple estimation of acceptable

bow hair tensions using a dynamometer. The player was first asked to tighten the bow with the screw,

the position of the frog on the bow stick was then measured, and, the screw being removed, the frog was

then pulled to the same position with a dynamometer allowing an estimation of the hair tension. More

accurate estimations can be made by clamping the bow rigidly at the frog and tip and measure the (small)

deflection of the bow hair when loaded at the middle by a suitable weight. By making the measuring

point electrically conductive by a small piece of cupper tape to indicate in-contact condition, an accuracy

of 0.05 mm can be reached in the measurements using a dial gauge.

In this study, we took advantage of the unused part of the bow hair between the frog and the force

transducer. A second force transducer (transducer 2) was placed in the middle of the unused part, pressing

slightly on the bow hair (see Fig. 5). Provided that the facing of transducer 1 is rigid, the signal from
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F2

F1

1
2

Fig. 5: Two force transducers were used to measure the variation in bow hair tension during loading of the

bow hair. Provided that the facing of transducer 1 is rigid, transducer 2 is sensitive to tension variations

only.

transducer 2 is sensitive only to variations δT in the static bow hair tension T0

F2 ∝ T0 + δT (9)

In the experiment, the support at transducer 1 approximated a rigid termination well with a nominal

displacement of the facing of 0.028 mm/N.

The setup was used to quantify variations in bow hair tension when loading the bow. It was not possible

to make an absolute calibration of the force variations with the assembled bow, but the ratio between the

variations and the static signal with no loading applied gave the relative tension variation. The results are

plotted versus bow position for the three loads (see Fig. 6, left).
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Fig. 6: Left: Variation in bow hair tension vs. normalized position γ of a load on the bow hair (54, 100
and 154 g). Right: The same variations in bow hair tension vs the calculated transversal force at the tip

Ft = γF .

The curves corresponding to the different loads are seen to be well separated and almost linear. The

variations in bow hair tension during playing are often assumed to be rather small, but in the present case

they reached 25% of the initial tension for the highest load (154 g) at the tip.
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In the following, it is assumed that the variations in hair tension are mainly related to the tip dis-

placement, neglecting the elongation of the hair under loading. An experiment, in which the stick was

prevented from moving at the tip, was made in order to confirm this assumption. The tension variation

was then less than 1% with 1 N load at the middle of the hair, but increased to around 10% when the

bow stick was released at the tip and free to bend. As a good approximation, the tension variation due to

the deflection of the bow hair under loading can be considered not significant compared to the variation

due to tip displacement. Tension variation can then be expressed as a function of the transversal force

at the tip Ft = γF . As seen in Fig. 6 (right), the variation in tension can be approximated by a linear

relation

T = T0 + αT γF (10)

where αT is a coefficient quantifying the combined effect of bow force and bow position.

With the use of Eq. 10, equation 7 becomes

F1 = γ2
αT

KbLb

F 2 + (1 − γ + γ
T0

KbLb

)F (11)

The ratio between αt and T0 was found to be 0.16% (Fig. 6, right). Using this value in equation 11

together with Kb = 91 N/m and Lb = 0.53 m, the measured force at the frog in Fig. 4 can be well fitted

with T0 = 50 N and αT = 8 N/N (see Fig. 4 full lines)

Equation 11 gives an analytical relation between the transversal force at the frog and the bow force.

This result will be used later to justify the way the force sensor will be calibrated and to interpret some

of the observed results.

III. DESIGN OF A BOW FORCE SENSOR

A sensor for measuring the bow force in normal playing was designed, based on the principle described

above by estimating the transversal force at the hair termination at the frog. The sensor was attached to

the frog where the added weight gave minimum influence on the playing properties of the bow. The sensor

was designed as a detachable unit, which could easily be moved to any bow without damaging the frog

or hair.

A. Description

The force sensor consisted of a thin leaf spring of steel to which two strain gauges were glued (see

Fig. 7). The steel strip was fixed to the flat side of the ferrrule by a clamping ring. The free end of the

strip made contact with the bow hair through a light cylindrical bearing piece of wood. The bending of

the strip generated a signal which after correction gave an accurate estimation of bow force. The strip

was mounted on the lower side of the hair (the side facing the string), and a static down-ward bending

was established as the hair was brought up to tension. When the bow was loaded in playing, the bending

was reduced.

The strain gauges were glued to the upper and lower side of the strip and connected in one branch of a

Wheatstone bridge (Vishay CEA series, 7 x 14 mm, 1000 ohm, gauge factor 2.1). Using this configuration,

the output voltage will be linearly related to the resistance variations, and temperature changes will be
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Fig. 7: Bow force sensor. A thin steel strip is clamped to the flat side of the ferrule. The strip bends as

the deflected bow hair presses at the free end via a wooden bearing piece. The bending is measured by

two strain gauges glued to the strip. A Wheatstone bridge and conditioning amplifier is integrated in the

sensor.

compensated for. The resulting voltage variations were amplified using an operational instrumentation

amplifier (gain 1000) integrated with the sensor. The electronics were connected to a battery and data

aquisition board via a thin cable. The sensor was light, total mass 3.8 g including electronics and the

clamping ring, which should be compared with the mass of the frog(17 g including screw). The mass

of the steel strip (0.6 g) and wooden bearing piece (0.02 g, diameter 2.5 mm) was low compared to the

bundle of bow hair (about 5 g).

The strain ε and the deflection of the free end δy of the steel strip when loaded by a transversal force

FL at the free end is given by the equations for a bar with rectangular cross section clamped at one end

ε =
6FLb

Y wt2
= 201FL [µm/m] δy =

4FLL3

Y wt3
= 0.14FL [mm] (12)

where w = 8.5mm, L = 20 mm, and t = 0.5 mm are the width, length and thickness of the strip,

b = 15 mm is the distance from the free end to the position where the strain is measured (center of the

strain gauge,b ≤ L), and Y = 210 GPa is Young’s modulus. The width of the strip is limited by the

width of the bow hair, while L, b and t are used to obtain a suitable sensitivity. For practical reasons in

playing, L should not be longer than about 3 cm. The diameter of the bearing piece (2.5 mm) was set by

sensitivity considerations (see Sect. 3.2.3).

The deflection of the steel strip in playing is small. For a typical bow force of 1 N at the middle of the

bow, the transversal force on the strip FL can be estimated from Fig. 4 to be of about the same value,

which deflects the free end around 0.1-0.2 mm. Even for very heavy loading with a bow force of about

1.5 N at the tip of the bow, the strip deflection will only be around 0.3 mm. (Actually, the sensor operates

in a reversed mode as mentioned, the deflection decreasing for increasing load.)

In order to check and calibrate the sensor, the bow was held as normal and pressed against a string-like

facing (T shaped piece, diameter 1 mm) on a calibrated load cell. A comparison of the signals is shown
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in Fig. 8. The responses are very similar with the exception of the smallest details, which have been

smoothed slightly in the sensor signal.

An upper frequency limit for the dynamic response of the sensor was estimated from the resonance

frequency, which was found experimentally to be around 400 Hz.This was considered fully acceptable for

the purpose of studying dynamical features of bow force related to the player’s control of the bow.Vigorous

spiccato playing on a completely rigid force transducer (BK8001, compliance 4 ·10−6 mm/N) showed that

the force signal did not include any significant components above 150-200 Hz (-40 dB). In real violin

playing the compliant string will lower this frequency further.
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Fig. 8: Illustration of the performance of the bow force sensor. The bow is repeatedly pressed against a

calibrated load cell (top). The signal from the force sensor (bottom) replicates the force signal except for

some minor high-frequency details.

B. Design considerations

1) Theoretical sensor sensitivity: The force that bends the strip is not identical to the transversal force

at the frog F1. The short distance x between the frog and the bearing piece (where the bending force

is applied), as well as the resulting deflection of the strip influence the estimation of F1 and have to be

taken into account.

In the following, the sensor is supposed to act on the bow hair as a simple spring K at a distance x

from the frog and the bow hair is modelled as a single string with tension T . The rest position of the

spring y0 is set by the diameter of the bearing piece. Using this simple model described in Fig. 9, the

corrected force FL acting at the free end of the strip can be computed as

FL =
1

T + Kx
[−KxF1 + TKy0] (13)

and, from Eq. 12, the deformation measured by the strain gauges can be expressed as

ε =
3bt

2L3

[

−xF1 + Ty0

T + Kx

]

K =
Y wt3

4L3
(14)
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b)

a)

c)

y0

y x

LK

Fig. 9: (a) Schematic view of the sensor. The steel strip experiences maximum deflection when the bow

is unloaded. As bow force is increased the strip straightens. (b) Model used to derive the sensitivity. The

strip is modeled as a spring (stiffness K, rest position y0) acting on the bow hair at a distance x from the

frog. The bow hair is modelled as a single string with tension T . (c) Alternative design for minimizing
y0 with the strip mounted at the opposite of the bow hair.

It follows from Eq. 13 that the strain of the steel strip when placed under the bow hair is smaller than

for the fixed-free condition, given by 3bt

2KL3 F1. Second, the strain is strongly non-linear as a function of

L. For the free strip, the strain increases linearly with strip length (equation 12 with b ∝ L), but the

behaviour of the sensor strip under the bow hair is more complex.

In Eq. 14, the main design parameters L, b, t, x and K are constants. The tension T is, however, set

by the player and varies when a bow force is applied (up to 25 % of the static tension, according to Sect.

2). The transverse sensitivity ∂ε/∂F1 of the sensor is given by

∂ε

∂F1

=
3bt

2L3

[

−
x

T + Kx
+

F1x

(T + Kx)2

∂T

∂F1

+
Ky0x

(T + Kx)2

∂T

∂F1

]

(15)

Equation 15 gives the keys to the choice of design parameters for the sensor in order to reach maximal

sensitivity and avoid strong non-linearity.

Focusing on the first term, the linearity of the response can be improved by increasing the stiffness

K which reduces the dependence on tension variations. If the actual tension is written T = T0 + δT

with T0 the static tension set by the player, and if the maximal tension variation is δTmax, a criterion for

minimizing the influence of δT is given by

δTmax

T0

' 1 +
Kx

T0

(16)

A sufficiently high stiffness can consequently make the deformation practically independent of variations

in bow hair tension and give the desired linear dependence of the transversal force at the frog. The influence

of the static tension T0 can be neglected provided that K ( T0/x, i.e. K ( 2500 N/m with x = 20 mm

and T0 = 50 N. In the current design of the sensor K is about 7000 N/m, and a maximal increase of the

tension of 25 % as observed in Fig. 6 would lower the sensitivity with about 6 %. Increasing the stiffness

further reduces the strain and a compromise has to be found between linearity and sensitivity.
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The second and the third term in Eq. 15 are directly dependent on the variations in bow hair tension.

If the stiffness is high enough, the second term can be neglected. In the third term, the diameter of the

bearing piece will influence the response through y0. In order to reduce the non-linearity due to tension

variations, it is desirable to make y0 as small as possible, but that will reduce the maximum force that

can be measured in the current configuration (strip mounted under the bow). An alternative design with

the sensor mounted on the opposite side of the bow hair would minimize the influence of the third term

(see Fig. 9, bottom).However, this configuration makes it necessary to fix the strip inside the frog, which

is more radical operation when attaching the sensor to the ferrule.

2) Strip length: For the fixed-free strip, the strain ε increases with the strip length. In contrast, the

sensitivity of the sensor, given in Eq. 15, shows a different behaviour and, under some conditions,

increasing strip length can surprisingly reduce the sensitivity.

If tension variations are neglected in Eq. 15, the maximal sensitivity at b = L is written as

S =
∂εmax

∂F1

=
3t

2L2

x

T0 + Kx
(17)

Fig. 10 illustrates the sensitivity given in Eq. 17 for a strip length L varying from 0 to 5 cm and x = L

(full straight line). For comparison, the sensitivity of the fixed-free strip is shown (dashed line), varying

linearly with the plate length. Between 0 and 2 cm, the sensitivity of the sensor increases somewhat slower

than the sensitivity of the fixed-free strip. Then it reaches a maximum value and slowly decreases from

3 to 5 cm. In this region, the sensitivity is consequently reduced with increasing strip length.
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Fig. 10: Variation of the sensor sensitivity with strip length L (full line, x = L). Other parameters are Y=
2.1 MPa (steel), w=5 mm, t= 0.4 mm and T0=50 N. For comparison, the sensitivity of the fixed-free strip

is shown (dashed line), as well as alternative sensor designs with x < L (dashdot lines, marked x = 2,
x = 5 and x = 10 mm).

The fixation of the strip can be moved back on the ferrule in order to decrease the distance x between

the outer edge of the sensor and the frog, while keeping the same strip length and the same stiffness (see

Fig. 9b). The idea of such a modification was to improve the playability (by decreasing the unused part of
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the bow hair) without modifying the mechanical response of the sensor. However, it can be seen in Fig.

10 that the sensitivity is significantly reduced. For example, with L = 20 mm, the sensitivity decreases

from A (x = 20 mm) to B (x = 10 mm). Surprisingly, the response is even lower than the response of a

strip with length 10 mm (point C).

3) Bearing piece: As shown above the diameter of the cylindrical bearing piece should be as small as

possible in order to minimize the non-linearity, but on the other hand it must at least touch the bow hair

at the highest applied bow force. The diameter and position (2.5 mm at x =20 mm from the ferrule) was

empirically determined by observing the displacement of bow hair for a realistic maximal bowing force

near the frog.
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Fig. 11: Effect of gluing the bearing piece to the strip. Left: Bearing piece wedged between the steel strip

and the bow hair. Right: Bearing piece glued to the strip, resulting in hysteresis.

In order be sure that the bearing piece stayed in place even in vigorous playing, it was glued to the strip

in the initial experiments. However, this step of precaution introduced a hysteresis (see Fig. 11, right),

resulting in higher sensor output when the bow force was decreasing compared to when it was increasing.

This effect could be related to a torque at the end of the strip. With the bearing piece glued, the contact

with the strip is relatively strong. When the bow is pressed down, the hair stretches slightly, exerting a

longitudinal force on the bearing piece in the direction towards the tip. The resulting couple on the strip

counteracts the deformation due to the transversal force. When the bow force is reduced, the longitudinal

force acts towards the frog, again counteracting the deformation change due to change in transversal force.

When the bearing piece was held in position only by wedging between the strip and the bow hair, the

hysteresis disappeared (see Fig. 11, left).

IV. CALIBRATION

The sensor output reflects the transversal force exerted by the bow hair at the frog, which in turn depends

on the bow force and bow position. The calibration procedure aimed at determining the coefficients that

relate the sensor signal to the actual bow force. As the sensitivity was slightly dependent on the support

of the bow, the calibration procedure was designed to be as close as possible to real playing conditions.
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This would also allow fast repeated calibrations during measuring sessions in order to take changes in

hair tension into account.

A. Calibration procedure

The calibration was performed by pressing the bow against a load cell. The subject (violinist) was

asked to hold the bow as in normal playing and apply equal bow force at successive bow positions, from

the frog to the tip. The force signal from the load cell FLC which gave a calibrated reference of the bow

force, was recorded together with sensor signal sF. A typical calibration session is illustrated in Fig. 12.
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Fig. 12: Calibration procedure. The bow is pressed against a calibrated load cell at 10 bow positions.

At each position the bow force is varied periodically five times. Bow positon (bottom), bow force as

measured by the load cell (middle), and force sensor signal (top).

In this example, ten successive bow positions were used, from the frog (xb=35 mm) to the tip (xb=610

mm). At each position, the bow force was varied periodically five times between about 1-2 N, each cycle

lasting 1 s approximately. The variation range in bow force was approximately the same for the ten

positions, but the signal from the force sensor decreased when approaching the tip due to the position of

the sensor.

B. Calibration coefficients

The signals were segmented in order to get calibration data for each bow position xb. Calibration curves

were obtained by fitting a second order polynomial to the data

sF = b2(xb)F
2

LC
+ b1(xb)FLC (18)

Fig. 13 shows an example with three calibration curves for a violin bow, corresponding to bow positions

at the frog, middle and tip.

Fig. 14 shows the fitted calibration coefficients b1 and b2 plotted as function of bow position for three

repeated calibrations. The calibration procedure is seen to give good reproducibility. The figures suggest

that b1 can be well approximated by a linear fit, whereas b2 requires quadratic interpolation.
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Fig. 13: Calibration curves for a violin bow corresponding to bow positions near the frog, middle and tip.

Fitted second-order polynomials are shown with solid lines.
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The correspondence with the analytical expressions derived in Sect. 3 is good. From equation 11, with

γ = xb/Lb, it could be predicted that b2 and b1 should show the observed dependence on bow position

b2(xb) ∝ x2

b

αT

KbL
3

b

(19)

b1(xb) ∝ 1 −
xb

Lb

(1 −
T0

KbLb

) (20)
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C. Bow force reconstruction

During measurements, bow force is calculated from the sensor signal and bow position. Using equation

18, the actual bow force F can be reconstructed as

F =
−b1(xb) +

√

b1(xb)2 + 4b2(xb)sF

2b2(xb)
(21)

Of the two possible solutions to Eq. 15 this was chosen because it has the necessary properties for the

reconstruction: When b1 is positive (which is always the case), F will be zero when sF = 0. Moreover,

whatever the sign of b2, this function is increasing when sF increases.
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Fig. 15: Test of the reconstructed bow force during a full down-bow from frog to tip. The bow was moved

with constant velocity on a wheel mounted on the load cell. Bow position was interpolated linearly between

the beginning and end of stroke. Top: Comparison between load cell output and raw sensor signal. The

sensor signal has been normalized using b1 and b2 at the frog. Middle: Comparison between the load cell

signal and reconstructed bow force. Bottom: Difference between the reconstructed bow force and load

cell output.

In order to check the reconstruction using interpolated calibration coefficients b2(xb) and b1(xb), the

bow was ’played’ on a wheel mounted on the calibrated load cell, using full bow strokes with constant

velocity (see Fig. 15). The load cell signal and the reconstructed bow force are seen to almost coincide,

the difference being only ±0.05 N centered around zero. This value can be considered as a typical error

in the bow force estimation under standard conditions (slow variations of the bow force between 0.5 and

2 N).

D. Factors influencing the calibration

The output of the bow force sensor is sensitive to several conditions, and it is not straight-forward to

estimate the effect and compensate for the effect of all of them. In this section, three factors are discussed,

including the mechanical action of the bow, hair tension, and tilting of the bow, and their influence on

the calibration coefficients illustrated.
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1) Influence of the mechanical action of the bow: More than 20 bows were tested with the sensor,

from violin bows to double bass bows. Most of them showed the characteristics shown in Fig. 13: The

calibration curves for different bow positions lie rather close together, and the curve for the tip steepens

rapidly for higher bow forces. Further, the output from the sensor is typically higher for bow positions at

the tip than at the middle of the bow. Some bows, however, showed a different behaviour as illustrated

in Fig. 16 where the bow in Fig. 13 is compared with a bow which behaves quite differently. Here the

calibration curves are widely separated, and the response close to the tip is weak for bow forces below 1

N. For some very stiff bows, like double bass bows, this behaviour is easily understandable, as the bow

can be represented by the rigid model described in Sect. 2. For violin bows, however, the comparison

between calibration curves and measurements of the transversal stiffness of the bow did not show a specific

relationship. In these cases, the weak response below 1 N seems to be related to some more elaborated

property of the bow.
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Fig. 16: Calibration curves for two violin bows with different mechanical action. Left: Bow 1,

corresponding to Figs. 13 and 14. Right: Bow 2, with a stiffer stick of carbon fibre which gives widely

separated calibration curves with a much lower sensitivity at the tip than at the frog.The curves have been

normalized using the sensor output for 1 N force at 5 cm from the frog as reference.

The calibration procedure will take such differences in mechanical action between bows into account,

but the accuracy in the reconstruction of low bow forces will be reduced. For example, at bow forces

between 0.5 and 1 N, a measurement error in the sensor output of 1% would give an error of about 3% in

the reconstructed bow force for bow 1, but as high as 15% for bow 2. At 1.5 N the errors have reduced

to 1.8 % for bow 2 and 0.7 % for bow 1. In short, some bows will be more suitable for precise bow force

measurements with this design of the sensor than others because of their mechanical properties.

2) Influence of bow hair tension: The tension of bow hair set by the player influences the transversal

force at the frog (see Section 2) and the response of the sensor (see Section 3). The combined effect of

changes in hair tension was quantified in a calibration with three largely deviating tensions; very low,

normal, and very high, the two extreme values not being suitable for playing. The results are shown in

Fig. 17.
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Fig. 17: Influence of the bow hair tension on the calibration coefficients for three values; low, normal,

high. The high and low tensions were not suitable for playing.

The results for bow positions at the frog follow the expected behaviour. Close to the frog the stick does

not bend and tension can be supposed to be constant during loading (T = T0). Equations 11 and 14, with

γ → 0, predict that b1 will be inversely proportional to T0, which is in line with the observations.

An interpretation of the results close the tip would require knowledge about the mechanical behaviour

of the particular bow. Here it is sufficient to note that the values of calibration coefficient b1 for different

tensions merge when approaching the tip.

The observed changes in b2 and b1 are seen to be rather limited, even for extreme values of tension.

Typical differences in preferred tensions between players are much smaller and will be handled accurately

by the calibration procedure. However, repeated calibrations during a measurement session are desirable

in order to take natural changes in hair tension during playing into account.

3) Influence of bow tilt: String players tilt the bow in playing in order to reduce the effective width

of the bow hair in contact with the string. Typically the bow is tilted much in soft playing, and more so

when playing near the frog than at the tip. While the mechanical characteristics (stiffness) of the bow as

well as changes in tension are taken into account by the calibration as discussed above, bow tilt is an

external parameter which not easily can be handled in the measurements.

The tilting influences the bow force measurement in two ways. First, the sensor measures the force

applied in the direction perpendicular to the steel strip, whereas the bow force by definition is applied

perpendicular to the string. This results in an underestimation of the bow force, related to the tilt angle.

For instance, an angle of 20◦ would give 6 % lower transversal force acting on the sensor (proportional

to cos θtilt), compared to the case with the bow hair flat on the string.

Secondly, the bending of the strip, and thus the response of the sensor, will be affected when the

transversal force from the hair is not evenly applied across the bearing piece. In addition to bending the

strip will twist. The profile of the transversal deflection of the bow hair as it crosses the bearing piece is

not easily predicted. However, as the ribbon of bow hair is composed of several layers, a force which is

applied mainly at one edge of the ribbon will be distributed approximately linearly across the width of



MEASURING BOW FORCE 19

the bearing piece (see discussion in [8][9])

The uncertainties in the estimation of bow force due to tilting were found to be limited. Calibrations

performed when tilting the bow at various degrees showed that the influence was noticeable only for bow

positions close to the sensor. The deviation between the calibration curves with and without tilting the

bow could then reach more than 30 %. From the second calibration point at about 8 cm from the frog

and further towards the tip the deviation was found to be less than 10 %. In order to measure bow force

correctly also in tilting, a possible solution would be to split the strip along the centerline and apply

two sets of strain gauges, one on each side. In this way the amount of tilting could be estimated and a

correction for the influence on bow force taken into account.

V. APPLICATIONS IN PLAYING

The use of the bow force sensor is illustrated in two applications. In the first example, one sensor was

placed at the frog as described above, and motion capture technique [10][12] was used to measure bow

position in order to reconstruct the bow force. Alternative methods for measuring bow position include a

simple solution using a resistive wire placed among the bow hairs and connected in a Wheatstone bridge

[1], [2], and more complex systems based on a capacitive principle with an antenna placed behind the

bridge of the violin and a resistive strip along the bow stick [13]. In the second application example,

two sensors are used, one at the frog and one at the tip. In this configuration, the difference between the

sensor signals could be used to calculate bow position and no extra measurement devices were needed.

In the experiments two violinists were asked to play two types of bow strokes; sustained, separated

notes (detaché) in which the bow force was supposed to be held rather constant, and long strokes with

strong accents at the beginning of each note, which would require large variation in bow force.

A. One bow force sensor and motion capture

Examples using one bow force sensor and motion capture are given in Fig. 18, showing audio signal,

bow force, bow position and bow velocity, for a G4 note played without vibrato on the D string. In

Fig. 18a showing detaché , it is apparent from the audio signal that each note was played with a slight

crescendo. This was accomplished by an increase in bow velocity from about 30 to 60 cm/s during each

stroke. The reconstructed bow force was approximately constant at about 600 mN, except local increases

prior to the bow changes at the frog. The raw force sensor signal, which decreased as expected when

approaching the tip, illustrates the magnitude of the compensation for bow position in the reconstruction

of bow force.

The compensation is more promounced in Fig 18b showing the bow strokes with accents: In up-

bows (negative velocity), the raw sensor signal is almost flat, whereas the reconstructed bow force shows

the same large variation as in down-bows. The accented initial part of each note is obtained through a

coordination of high bow velocity reaching about 80 cm/s and high bow force, up to 2 N. The sustained

softer parts are played with a comfortable bow velocity around 20 cm/s, requiring about 0.5 N bow force.

B. Two bow force sensors

An alternative system was developed in order to allow bow force measurements without an additional

device for measuring bow position. The solution was based on a second force sensor at the tip. This
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Fig. 18: Measurements using one bow force sensor and motion capture showing audio signal, reconstructed

bow force, bow position and bow velocity (top to bottom). The raw sensor signal is included in the bow

force panel (gray curve) in order to illustrate the effect of bow position on the reconstruction. Bow velocity

was derived from the bow position signal. The player performed (a) sustained, separated notes (detaché),

and (b) long strokes with inital accents on each note.

configuration was originally used by Askenfelt [1], [2], but he used the two sensors (four strain gauges)

together in a full Wheatstone bridge for bow force. The sensitivities of the frog and tip branches were

adjusted to obtain a constant signal for a given bow force at all positions along the bow hair.

In the current application the two sensors were used independently to obtain the transversal force at

the frog and tip, respectively. When a certain bow force is applied somewhere along the bow, the outputs

from the sensors will be dependent on the actual bow position. The difference between the signals can be

used to estimate the bow position. By simultaneous calibration of bow force and bow position it is thus

possible to obtain both parameters from the output of the two force sensors.

The second sensor was clamped between the bow hair and the ivory plate at the tip. A thin metal

fixation around the head prevented the sensor from moving.

1) Calibration: A coordinated calibration of bow force and bow position was performed by pressing

the bow hair against the load cell at different bow positions as described in Sect. 4. Signals obtained from

the sensor at the frog (Fc1) and at the tip (Fc2) were used to compile a calibration grid from which bow

force and bow position could be interpolated (see Fig. 19, left). The grid gives the bow force and bow

position for equally spaced values of Fc1 and Fc2. An analytical expression as for the case with one force
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sensor (see Eq. 21) was not considered due to the complex relation between the rotation of the head and

the output of the sensor at the tip.
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Fig. 19: Coordinated calibration surfaces for (a) bow force and (b) bow position using one sensor at the

frog Fc1 and one at the tip Fc2.

As seen in Fig. 19a, the force calibration surface is delimitated by two edges originating from the

origo of Fc1 and Fc2, the right-going corresponding to a bow position at the frog and the left-going to a

position near the tip. Near the frog, the variations in Fc1 are large as the bow force is varied, whereas

the tip sensor provides a signal Fc2 with very small variations. However, near the tip, Fc2 variations are

much stronger, and Fc1 still has appreciable variations. This is in agreement with the observations in the

previous sections, showing that the frog signal response does not tend to zero when bowing near the tip.

A similar calibration grid was computed for bow position, giving bow position as a function of Fc1 and

Fc2 (see Fig. 19b).

Recordings of the two sensor signals were used to determine bow force and bow position from two-

dimensional interpolations on the calibration surfaces. It should be noted that as the slope of the bow

position surface was very steep near the origin, bow position determination can be supposed to work

better for high bow forces than for lower.

2) Measurements: As before, a violinist was asked to play sustained bow strokes with and without

accents. The examples were played on the open G string, and the bridge force signal was recorded by a

transducer on the bridge. Bow position was computed from the sensor signals and calibration grid. The

resulting bow position signal was rather noisy, and a Savitzky-Golay filter (polynomial order 2, frame

size 61) was used for smoothing before calculating the bow velocity.

The results are shown in Fig. 20. It is satisfying to notice the good agreement in bow position and

velocity with the corresponding curves in Fig 18, obtained by motion capture. The bow position curves

are almost triangular for the detaché notes, whereas the accentuated examples show asymmetrical patterns

due to the high velocity during the attack of the note. The bow velocity curves show very convincing

similarities, including the peak velocities around 80 cm/s. Further, the velocity peaks are well correlated
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Fig. 20: Measurements using two force sensors, one at the frog and one at the tip, showing bridge force,

output from the two force sensors (frog, black line; tip, grey line), interpolated bow force, bow position

and bow velocity. Bow velocity was derived from the bow position signal. The player performed (a)

sustained, separated strokes (detache’) , and (b) long strokes with initial accents on each note.

with the bow force peaks. In both cases, each maximum in bow force occurs just before the corresponding

velocity maximum, the shift being between 0 and 100 ms (cf. Figs. 18 and 20).

In the detaché example (see Fig. 20a), the bow velocity was lower than in the previous example (see

Fig. 18a), about 30 cm/s and with a short period of acceleration before the bow changes at the tip. The

bow force was almost constant as in Fig 18 but higher, above 1 N. The two raw sensors signals are

shown separately for comparison. The signal variations are seen to be in opposite phase; the tip signal

increases and the frog signal decreases in down-bows (positive velocity), and inversely in up-bows. After

the reconstruction, the interpolated bow force signal is rather flat, with a mean value around 1.2 N.

In the accentuated example (see Fig. 20b), both bow velocity and bow force are of similar magnitude

as in Fig. 18b. As the bow force was varied, the two sensor signals followed each other close in phase. It

could be noted that the tip signal is much stronger when the attack is played close to the tip in up-bows

(negative velocities), whereas the signal from the frog sensor has almost the same amplitude in accents

played at the tip as at the frog. Again, this is related to the fact that the response of the frog sensor does

not go down to zero when playing near the tip.

The comparisons between the examples measured with the motion capture (Fig. 18) and two force

sensors (Fig. 20) suggest that the configuration with two force sensors offers a satisfying alternative for
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measuring bow position as well as bow force. In many cases there is thus no need for dedicated extra

equipment for position measurement.

SUMMARY AND CONCLUSIONS

The principle and implementation of a sensor that can be used to measure the bow force during

violinists’ performances are presented. The sensor is based on measurement of the transversal forces

at the bow hair terminations when the bow is pressed against the string. The principle was tested in

laboratory experiments, in order to verify the influence of bow position and hair tension on the forces

at the terminations. Somewhat unexpected, it was found that the transversal force at the frog termination

could increase when the loading point on the bow hair was moved closer to the tip. By measurements

of variations in bow hair tension and the displacement of the tip due to stick bending, a simple model

describing the mechanical behaviour of the bow could be developed, which predicted the measured force

at the frog well.

The design of the sensor was described in detail. The sensor is light (total mass < 4 g) and easily

detachable, causing no damage to the bow. It consists of a thin leaf spring of steel that is fixed at the

ferrule and contacts the bow hair through a light bearing piece. The steel strip is deformed due to the

hair deflection, and the deformation is measured using strain gauges glued on both sides of the strip.

A procedure for calibrating the sensor under conditions resembling normal playing was described. The

player presses the bow against a calibrated force transducer at successive positions along the bow, and

varies the bow force periodically. Two calibration coefficients were derived that are used to reconstruct

the bow force from the sensor signal and the bow position. The reconstructed bow force was found to be

accurate. The typical error in bow force estimation under standard conditions (slow variations between

0.5 and 2 N) was about 0.05 N. The influence of the mechanical properties of the bow, hair tension, and

tilting were illustrated and quantified.

Measurements of bow force in normal violin playing were illustrated for two applications of the sensor.

The first used only one sensor at the frog and requires another device for measuring the bow position in

order to reconstruct the bow force. In the second application two sensors were used, one at the frog and

one at the tip, in order to measure both bow force and bow position. The bow force sensor was found to

perform satisfactorily in both applications, giving realistic measurements.

In summary, the described bow force sensor is a robust and accurate device for simple measurements

of bow force in string playing using the player’s own bow, and without interfering with normal playing

conditions.
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Extraction of bowing parameters from violin performance combining

motion capture and sensors
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A method is described for measurement of a complete set of bowing parameters in violin performance.
Optical motion capture was combined with sensors for accurate measurement of the main bowing
parameters (bow position, bow velocity, bow acceleration, bow-bridge distance and bow force) as
well as secondary control parameters (bow angles: skewness, inclination and tilt). In addition, other
performance features (moments of on/off in bow-string contact, string played, and bowing direction)
were extracted. Detailed descriptions of the calculations of the bowing parameters, features and
calibrations are given. The described system is capable of measuring all bowing parameters without
disturbing the player, allowing for detailed studies of musically relevant aspects of bow control and
coordination of bowing parameters in bowed-string instrument performance.

PACS numbers: 43.75.De, 43.75.Yy

I. INTRODUCTION

The interaction between the performer and the instru-
ment is a fascinating subject of study. Technological de-
velopments have led to ways of capturing this interaction,
shedding more light on sound control and musical per-
formance aspects in general. An important example is
the computer-controlled grand piano, such as Yamaha’s
Disklavier, which offers built-in technology for capturing
key played, hammer timing and key velocity, the main
parameters for studying piano performance.1

In most other instruments the sound production pro-
cess is controlled by many more parameters and there-
fore more difficult to quantify. The sound is often gen-
erated via direct contact between the player and the in-
strument, e.g. the lip-mouthpiece interaction in wind
instruments or finger-string contact in plucked string in-
struments. This type of interaction can be considered
endogenous and is typically difficult to model or quan-
tify. In many instruments sound production is controlled
by movements. This type of interaction is exogenous,
and therefore easier to observe. A typical example is the
bowed string instruments, and as an extreme case the
Theremin.

In violin playing, sound generation originates from the
bow-string contact. The sound is controlled mainly via
three basic bowing parameters: bow velocity, bow-bridge
distance and bow force. The control exerted by the player
is transferred to the instrument via the bow, making the
control parameters relatively easy accessible for measure-
ment. The interfacing function of the bow might partly
explain the relatively large number of studies on bow-
ing in comparison with other types of player-instrument

a)Electronic address: schoondw@kth.se

interaction.2–8

The first detailed study of bowing gestures was per-
formed in the 1930s by Hodgson,9 who measured the
spatial trajectories of the bow and the player’s bow arm
using cyclegraphs (a photographic record of the track
covered by a moving object). The first complete setup
for measuring the main bowing parameters bow position,
velocity, force and bow-bridge distance was developed
by Askenfelt and used to study typical bowing patterns
in violin playing.7,8 Since then, several sensor-based sys-
tems have been developed for quantitative measurement
of bowing gestures,10–13 both suitable for analysis of bow-
ing gestures14,15 and control of live performance.16

Other studies of violin performance have been per-
formed using 3D motion capture techniques. The gen-
erally high spatio-temporal resolution makes these tech-
niques suitable for analysis of timing and coordination
in instrument performance.17,18 Studies of kinematics
and kinetics related to development of vocational in-
juries in musicians are also important applications.19–21

More recently, a 6 degrees-of-freedom electromagnetic-
field-based motion tracker has been used for measuring
bowing parameters in violin playing.22

The major goal of the current study was to provide a
complete and accurate method for measurement of bow-
ing parameters in violin performance. The method was
based on motion capture techniques, augmented with
sensors for bow force and acceleration. An important re-
quirement was that a regular bow and instrument could
be used, allowing for a normal playing situation. In ad-
dition to measurement of the three main bowing param-
eters (bow velocity, bow-bridge distance and bow force),
the angles of the bow relative to the violin (tilt, inclina-
tion and skewness) were included. The bow angles could
be considered as secondary control parameters operating
on two levels. The angles are used for controlling details
of the note played, like the effective width of the bow

Extraction of bowing parameters 1



hair, and which string is being played. On a higher level
they play an important role in the pre-planning of the up-
coming bowing gestures, like bow changes and changes in
dynamic level.23

After a short description of the experimental setup in
Sect. II, the measurement of position and orientation of
the violin and the bow will be discussed in Sect. III.
Kinematic models for straightforward and accurate cal-
culation of spatially defined bowing parameters, includ-
ing bow-bridge distance and bow velocity, are described.
Further, it will be shown how the violin model can be
extended for the determination of other features, such as
bowing direction and string played.

Optical motion capture was combined with sensors on
the bow for measurement of bow force and acceleration.
In Sect. IV it will be explained how motion capture and
sensor data can be used in a complementary way for sen-
sor calibration and reconstruction of bowing parameters.
Special attention will be given to the measurement of bow
force. An idea brought forward by Maestre et al.,22 sug-
gesting that bow force could be measured from motion
capture data only will be further explored and compared
with sensor-based measurement of bow force.

II. EXPERIMENTAL SETUP

A. Motion capture and audio

A Vicon 460 system with six M2 cameras (max. res.
1280×1024 pixels) was used for optical motion capture.24

The cameras were positioned around the subject at dis-
tances of about 3-4 m.25 The frame rate was 250 Hz.

Middle-sized reflective spherical markers (10 mm diam-
eter, mass < 1 g) were attached to the bow and the violin
using a special adhesive goop (Schertler Audio) leaving
no traces on the varnish. Markers were positioned so that
the sound would not be influenced (e.g. markers on the
bridge were avoided). Extra markers used during cali-
brations were small half-spheres (diameter about 5 mm),
which could be positioned accurately on the violin and
bow (estimated positioning error about 0.5 mm).26 De-
tails of the marker configurations will be discussed in
Sect. III.A.

Audio was recorded as analog data in synchrony with
the motion capture data, using an acquisition card con-
nected to the Vicon processing unit (sample frequency
40 kHz).

B. Bow force and acceleration

Sensors were mounted on the bow for accurate mea-
surement of bow force and acceleration. A 3-axis ac-
celerometer (STMicroelectronics LIS3L02AS4) with a
linear measurement range of ±60 m/s2 and frequency
range down to DC was used for measuring bow acceler-
ation in the longitudinal and vertical direction (x̂b and
ẑb in Fig. 3). The wide measurement range was needed
for reliable acquisition of bowing acceleration. In a pi-
lot study bow accelerations up to about 60 m/s2 were

FIG. 1. Bow force sensor mounted at the frog. A metal leaf
spring with strain gauges on both sides measures the deflec-
tion of bow hair at the frog. The electronic board under the
frog integrates a Wheatstone bridge and an instrumentation
amplifier.

observed in forte semi-quaver passages.
Bow force was measured using a custom-made sensor

which registered the deflection of the bow hair at the
frog.27,28 The sensor consisted of a leaf spring with strain
gauges on both sides. The sensor was mounted rigidly to
the frog and connected to the bow hair via a cylindrical
bearing piece (see Fig. 1). Details about the calibration
are given in App. B. To prevent possible damage to the
violin due to the pieces under the frog, the violin was
equipped with a plastic C bout protector.

The bow force sensor was calibrated using a minia-
ture load cell with a capacity of about 25 N (Transducer
Techniques MDB-5). The load cell in turn was calibrated
using a set of standard weights (mass 10-200 g).

The sensor signals were recorded at a sample rate of
10 kHz using a National Instruments acquisition card (NI
PCI-4472B).

C. Synchronization of motion capture and sensor data

Motion capture and sensor data were synchronized by
providing a pulse with a push button at the beginning
and the end of each trial. The synchronization signal
was recorded on both data acquisition devices, allowing
for accurate a posteriori synchronization.

D. Playing comfort

The total mass added to the bow was estimated to
about 10 g (force sensor 5 g, accelerometer 3 g, markers
2 g), mostly concentrated at the frog, where it influenced
playing properties like moment of inertia relative to the
hand of the player the least (the weight of the frog is
about 17 g). The wires from the sensors were taped to
the the player’s arm to keep them out of the way. After
a short period of familiarization all participating players
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(about ten) confirmed that they felt comfortable in play-
ing. One player commented on the stiffness of the wires,
which he could notice during spiccato playing.

III. MOTION CAPTURE OF BOWING GESTURES

A. Kinematic models and marker configurations

The Vicon iQ software used for processing the motion
capture data facilitates the use of kinematic models. A
kinematic model typically consists of segments intercon-
nected with joints with a certain number of degrees-of-
freedom (DOF). The segments are typically associated
with one or more markers, making up the marker con-
figuration of the kinematic model. The simplest type of
kinematic model, consisting of one free segment, can be
used to model a rigid body, and more complex models
can be built with segments interconnected with different
types of joints (e.g., a human skeleton model).

In the software templates can be used for general
classes of objects. A particular object model can be ob-
tained via calibration. A kinematic fit procedure is then
used to obtain positions and orientations (6 DOF) of the
segments of the model, based on measured marker posi-
tions.

The local reference systems of the kinematic models
of the violin and the bow were chosen to make the cal-
culation of bowing parameters and feature extraction
straightforward and easy to interpret. For this reason
the models included important landmarks used in the
calibrations to define the origin and the axes of the lo-
cal reference systems. On the violin the landmarks were
the string terminations at the bridge and nut, and on
the bow the hair terminations at the frog and tip. As
markers at these positions would either be in the way of
the player or problematic to track due to frequent occlu-
sions, a reduced marker configuration was used during
the measurements. The positions of the landmarks were
reconstructed by fitting the models to the measured po-
sitions of the present markers.

Four main criteria were taken into account in the de-
sign of the models and marker configurations: (1) at least
three non-collinear markers are needed for measurement
of position and orientation (6 DOF) of a rigid body; (2) a
wide spread between marker positions and addition of re-
dundant markers improve the accuracy of the kinematic
fit in the presence of noise;29 (3) optimal visibility of the
markers under normal playing conditions; and (4) the
markers should not impede normal playing.

The marker configuration and kinematic model used
for the violin is shown in Fig. 2. The violin is modeled
as a rigid body (one segment). Five markers are used for
tracking the position and orientation of the violin. Two
extra calibration markers are located at the middle of the
bridge (BridgeMid) and at the nut NutMid between the
D and the A string. In the kinematic model the origin
corresponds to BridgeMid, and the y-axis corresponds to
the line between BridgeMid and NutMid (virtual string).
The x and z-axis are defined by an additional constraint
that the markers at the upper C bouts (RBDist and LB-

FIG. 2. Marker configuration for the violin, and the cor-
responding kinematic model as implemented in the Vicon
software. The five markers used for tracking the position
and orientation of the violin are labeled Scroll, RBDist, LB-
Dist, LBProx, and TailPiece. The two calibration markers
BridgeMid and NutMid, indicating the positions of the bridge
and the nut between the D and the A string, are only present
during calibration. The violin is modeled as one segment
(rigid body), where the origin, indicated by the cube, coin-
cides with BridgeMid. The orientation of the local reference
frame is indicated by the basis vectors (x̂v, ŷv, ẑv).

Dist) share the same z-coordinate in the local reference
system.

For the bow, a rigid body approximation is not appro-
priate as the stick can bend considerably under normal
playing conditions.30,31 Depending on tilt bending can
take place in two directions. Torsion of the stick can be
neglected, as the mechanical lever (height of the tip) is
much smaller than that for bending (length of the stick).

The bow was modeled as compound of two (rigid) seg-
ments, the frog (root segment) and the stick, connected
with a two degrees-of-freedom joint (Fig. 3). The joint
coincided with the origin of the root segment (marker
Frog at the ferrule), securing a fixed distance between
the frog and tip (length of the bow hair). The frog seg-
ment included the lower, thick part of the stick from the
frog screw (Screw) to some centimeters in front of the
wrapping (Stick). In order to avoid a collinear configu-
ration and to achieve a better spread between markers,
two markers were placed on short antennas mounted on
the stick. This configuration allowed for a complete mea-
surement of the orientation of the bow, including bow tilt
(rotation around the x-axis). The orientation of the stick
segment relative to the frog segment was determined by a
single marker (Tip). Two extra calibration markers were
located on the bow hair ribbon close to the frog (Frog)
and the tip (TipHair). The calibration marker Frog de-
fines the origin of the model, and the line between Frog

and TipHair defines the x-axis. The y and z-axis are
established via the constraint that both Stick and Screw

must lie in the x-z plane (y = 0) in the local reference
system.
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FIG. 3. Marker configuration for the bow, and the corre-
sponding kinematic model. The frog segment, indicated by
the cube, is considered as a rigid body and is connected to
four markers: Stick, AntennaProx, AntennaDist and Screw.
The 2 DOF joint, used for modeling bending of the stick co-
incides with the origin of the frog segment (defined by Frog
marker). The orientation of the stick segment relative to the
frog is determined by the Tip marker. The two calibration
markers Frog (frog segment) and TipHair (stick segment) in-
dicate the positions of the hair terminations at the frog and
tip. The orientation of the bow is indicated by the basis vec-
tors (x̂b, ŷb, ẑb).

B. Position and orientation of the bow and the violin

The position and orientation of the violin and the bow
were determined by fitting the kinematic models to the
measured 3D marker positions using the kinematic fit fa-
cilities in the Vicon iQ software, and exported for further
processing in Matlab.32 The orientations (Euler angles)
were converted to rotation matrices.33 The rows of these
rotation matrices correspond to the basis vectors of the
local reference systems expressed in world coordinates.34

These basis vectors were extensively used in the calcula-
tions of the bowing parameters, as will be shown in the
following.

C. Calculation of bowing parameters

Having defined the local reference systems of the bow
and the violin, the bowing parameters can be calculated
based on these 6 DOF representations, instead of the 3D
positions of individual markers. In Fig. 4 the geometric
relations used for the calculation of bowing parameters is
shown. The bow-string contact point P is defined as the
intersection between the line corresponding to the (vir-
tual) string (direction ŷv) and the bowing plane BPP’

(see App. A.1 for calculations). The point P’ is the pro-
jection of P on the bow.

Bow-bridge distance is calculated as
−−→
V P , projected on

the string direction, where V is the origin of the violin
(marker BridgeMid at the top of the bridge, see Fig. 2)35

ybb = (P − V ) · ŷv . (1)

FIG. 4. Geometric relations for calculation of bow-string con-
tact point, bow position (xB), bow-bridge distance (ybb) and
bow-string distance (zbs). The points indicated are the local
origins of violin V (marker BridgeMid in Fig. 2) and bow B
(marker Frog in Fig. 3), the contact point on the string (P)
and its projection on the bow (P’ ). Unit vector p̂ is perpen-
dicular to both the bow and the string. Also basis vectors of
the local reference systems of the violin (subscript v) and the
bow (subscript b) are indicated.

The bow-string distance (the distance of the bow
above/below the string) is defined as

zbs = (B − V ) · p̂ , (2)

where B is the origin of the bow (marker Frog at the
ferrule, see Fig. 3) and p̂ the unit vector perpendicular
to both the bow and the string.

Bow position (the distance between the contact point
and the frog) is defined as

xB = (B − V ) · x̂b , (3)

which corresponds to the distance between P’ and B. It
should be noted that the calculated distances above can
become negative, as they are projections on non-static
axes.

Regarding the basis vectors of the bow the kinematic
model used offers the choice between the frog and the
stick segment. Typically, the basis vectors of the stick are
preferred for the calculation of the bowing parameters,
because they correspond better to the line of the bow-hair
ribbon when the stick is bent, and they can be measured
more accurately (see Sect. III.G). However, in some cases
it might be worthwhile to include the bending of the stick
in the evaluation, e.g., for estimation of bow force. In
such cases the basis vectors of the frog segment are more
appropriate (see Sect. IV.C).

Bow velocity is defined as the velocity of the bow rel-
ative to the violin projected on the x-axis of the bow

vB =
d (B − V )

dt
· x̂b . (4)

Even if bow velocity can only be considered meaningful
as a bowing parameter when the bow is in contact with
the string, the above definition of bow velocity is more
general and allows for studying anticipatory movements
of the bow in the air, like in bouncing bowing techniques
such as spiccato.
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FIG. 5. Two examples of bow velocity signals before and
after filtering using a second-order Butterworth filter (cut-
off freq. 18 Hz). Top: Slow bowing (crescendo-decrescendo);
bottom: Fast bowing (excerpt of N. Paganini, Caprice No. 5).

For the numerical differentiation a central difference al-
gorithm was used. The velocity signal can become rather
noisy due to amplification-by-differentiation of the noise
present in the measured positions. The quality of the ve-
locity signals can be improved by low-pass filtering with-
out loosing essential details. It was found that a second-
order Butterworth filter with a cut-off frequency of 18 Hz
(applied back-and-forth to avoid phase shift) effectively
filtered the noise, while preserving the shape of the ve-
locity profile in fast bowing (see Fig. 5).

It could be noted that Eq. (4) is theoretically similar
to vB = dxB/dt, but it was found that the velocity signal
was less noisy when differentiation was performed before
taking the dot product. The explanation is that amplifi-
cation of the noise introduced by x̂b due to differentiation
is avoided in this way.

D. Calculation of bow angles

The three angles of the bow relative to the violin, skew-

ness (ϕ), inclination (ϑ) and tilt (ψ), were defined in a
way which reflect basic concepts in bowing, as shown in
Fig. 6.36

Skewness is defined as the deviation of the bowing di-
rection from orthogonality to the string. Considering an-
gling the frog away from the player as the positive direc-
tion, it can be calculated as

ϕ =
π

2
− arccos (ŷv · x̂b) . (5)

Inclination is the angle associated with playing differ-
ent strings. Assuming the convention that inclination
increases from the lower to the higher-pitched strings it
can be expressed as

ϑ = arccos (ẑv · x̂b) −
π

2
. (6)

Tilting is used to change the contact properties of the
bow hair with the string by controlling the effective width

FIG. 6. Bow angles skewness (ϕ), inclination (ϑ) and tilt (ψ).
The arrows indicate the positive direction according to the
definitions.

of the bow hair in contact with the string, and introduc-
ing a bow-force gradient across the width of the bow-
hair ribbon. Here, tilt is defined as the angle between a
plane parallel with the length axis of the bow (x̂b) and
the string (ŷv), and a line with direction ŷb. For con-
venience, the tilt direction used in classical playing with
the stick turned towards the fingerboard is taken as the
positive direction. Tilt is zero when the hair is flat on
the string. The expression for tilt then becomes

ψ = arccos

(

x̂b × ŷv

|x̂b × ŷv|
· ŷb

)

−
π

2
. (7)

E. Extending the instrument model

The geometrical model of the violin as described above
features only one virtual string between the BridgeMid

and NutMid markers. For a more complete definition
of the violin model including four strings an additional
calibration is needed. The string-crossing angles specific
of an instrument can be obtained from a so-called tun-

ing trial, in which the three double-string combinations
(G-D, D-A and A-E) are played slowly using the whole
bow (see Fig. 7). The string-crossing angles can then
be calculated by taking the average inclination for each
combination of strings. The standard deviations provide
angular intervals, which can be useful for further fea-
ture extraction (see Sect. III.F). When double strings
are played softly (pp) the inclination of the bow is rather
constrained in order to make both strings speak prop-
erly. However, the measured standard deviation will to
a certain extent depend on the skill of the player.

An important drawback of the one-string model is that
the bow-string distance as calculated by Eq. (2) devi-
ates from the actual value depending on which string is
played. The dependence of the bow-string distance on
bow inclination can be determined via slow, whole bow
arpeggios across all four strings (Fig. 8). It was found
that the relation was well described by a second-order
polynomial. The coefficients obtained by a least-square
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FIG. 7. Tuning trial used for the estimation of string-crossing
angles (mean and st. dev.). The three double-string combi-
nations (G-D, D-A, A-E) are played slowly down bow and
up bow, using the whole length of the bow. The calculated
mean values and 99% confidence bounds of the string-crossing
angles are indicated by the horizontal lines.

fit can be used for improving the estimation of bow-string
distance, as demonstrated in Fig. 8 (c).

Also the other actual distances (bow position and bow-
bridge distance) can deviate from those calculated using
the one-string model, and correction should be applied
when an exact estimate is required. Regarding bow-
bridge distance, a non-zero skewness of the bow results
in a deviation of the calculated contact point along the
string depending on which string is played. For example,
at a skewness angle of ten degrees the deviation of bow-
bridge distance amounts to about 2.5 mm for the outer
strings. As skewness angles of this order can be observed
in certain playing situations (see, e.g., Ref.23) compen-
sation might be needed, using knowledge of which string
is played (see Sect. III.F).

Given the specific string-crossing angles, the positions
of the four strings relative to the local reference system
of the violin can be determined when the distances be-
tween the adjacent strings are known (see App. A.2).
For most violins the separation between the strings at
the bridge is about 11 mm. The calculated (or mea-
sured) string positions may be used as alternative origins
for the calculation of bowing parameters, removing the
need for additional corrections. However, a serious draw-
back of the use of multiple origins in the calculations is
the presence of discrete jumps at the moments of string
crossings, causing artifacts in, e.g., calculated bow veloc-
ity. Furthermore, the choice of the origin is dependent
on the, sometimes uncertain, decision of which string is
played. In the following the one-string model is therefore
preferred, applying corrections afterward when necessary.

F. Feature extraction

With the use of the calculated bowing parameters and
the bow-instrument model, extraction of performance
features such as bowing direction, string contact and
string played becomes straightforward.
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FIG. 8. Open-string arpeggios (played down bow, up bow
and reversed) used for the estimation of bow-string distance
correction parameters. (a) Inclination of the bow versus time.
The inclination ranges corresponding to the four strings are
indicated by their pitches. (b) Bow-string distance as calcu-
lated by Eq. (2) versus bow inclination and fitted parabola; (c)
estimated bow-string distance (corrected and uncorrected).
The dashed line indicates a possible threshold for the deter-
mination of bow-string contact.

Bowing direction (up bow, down bow) is simply de-
termined by the sign of the bow velocity (down bow for
positive and up bow for negative velocity). For detec-
tion of zero bow velocity a threshold is needed (about
1-1.5 cm/s with the current setup), taking the noise fluc-
tuations into account. Further, it might be desirable to
set the bowing direction to zero when the bow is not
in contact with the string, as bowing direction has no
meaning in that case.

To determine if the bow is in contact with the string a
threshold criterion is applied to the corrected bow-string
distance. A threshold in the range of 3-5 mm above the
string gave satisfactory results in most cases (dashed hor-
izontal line in Fig. 8 (c)). Additional criteria with regard
to the relative position and orientation of the bow and
the violin could be added to avoid possible misdetections.

The string played is determined by bow inclination
(Eq. (6)). Also in this case a threshold method is used
based on the specific string-crossing angles of the instru-
ment. Detection of double-string playing is tricky, as
this involves angular regions of finite width around the
string-crossing angles. The width of the transition region
is a trade-off between sharpness in the detection of string
crossings and robust identification of double-string pas-
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FIG. 9. Effect of a median filter with a window of 100 ms
(indicated by W) on the detection of change in bowing di-
rection. Top: Bow-velocity signal (unfiltered and low-pass
filtered with a Butterworth filter, cut-off 18 Hz); bottom: De-
tected bowing direction (up/down) applied directly to unfil-
tered bow velocity signal (gray stems) and after median fil-
tering (black stems).

sages. A useful way to define the width is based on the
measured standard deviation of the string-crossing angles
in the tuning trial. Preliminary tests indicated that at
least a 99% confidence interval (obtained by multiplying
the standard deviation by a factor 2.58) was needed for
satisfactory identification of double stops.

A complicating factor in the detection of double string
playing is that stopping of the string can significantly in-
fluence the actual string-crossing angle due to lowering of
the string. The discrepancies are largest when one of the
strings is open and the other stopped. This effect is not
accounted for in the current model. Compensation would
require knowledge of the distance between the string and
the fingerboard and the fingering used by the player.

As all the above threshold methods are applied to more
or less noisy signals there will be noise present in the de-
tection results. This noise can be reduced by applying
a running median filter with a time window in the or-
der of the shortest expected note duration. The effect of
such a filter is demonstrated in Fig. 9. It can be seen
that small misdetections due to noise are effectively fil-
tered out, while the moment when the bowing direction
is reversed is preserved.

G. Accuracy assessment

1. Noise

Noise estimations were made from the slow four-string
arpeggio (see Fig. 8). The RMS noise of each coordinate
were calculated after filtering the slowly varying signals
using a high-pass filter (Butterworth, order 4, cut-off
8 Hz). The noise distributions of the coordinates and
angles were well described by a Gaussian distribution.

The RMS noise, averaged across markers and coordi-
nates, are displayed in Tab. I. The RMS noise was well

TABLE I. Average noise RMS of the measured markers and
the local origins and orientations of the fitted kinematic mod-
els. For the orientation of the frog segment the values for roll
(rotation about the length axis) and the other Euler angles
(yaw and pitch) are specified separately.

Average noise RMS

Model/segment Markers Local origin Orientation

[mm] [mm] [deg]

Bow/frog 0.47 0.38 0.64/0.25

Bow/stick 0.32 n/a 0.05

Violin 0.34 0.21 0.10

below 0.5 mm, corresponding to peak-to-peak values of
less than 3 mm. The RMS noise associated with the frog
segment was somewhat larger, mainly due to the Screw

marker, which was detected by less cameras as it was
shadowed by the players hand. As expected, the noise
in the positions of the origins of the fitted models was
somewhat less. The RMS noise in the orientation (Eu-
ler angles37) of the violin was 0.1 degrees. For the frog
segment of the bow distinction was made between roll
(rotation about the length axis of the bow, roughly cor-
responding to tilt) and the other Euler angles yaw and
pitch (roughly corresponding to skewness and inclination,
respectively). The first is more noisy due to the marker
configuration for the bow: as the mounted antennas are
short compared to the length of the frog segment (dis-
tance between Stick and Screw) the rotation about the
length axis is more sensitive to noise in marker positions.
For the stick segment only the noise in yaw and pitch was
considered, as the roll is constraint to the orientation of
the frog segment. The noise in the angles of the stick
segment was much lower compared to the frog segment,
the reason being that they are based on data from the
entire length of the bow. Due to the lower noise content
the orientation of the stick segment is preferred to the
frog segment for the calculation of bowing parameters.

Table II indicates how the noise in position and orienta-
tion is propagated to the calculated bowing parameters.
As tilt is associated with roll (rotation about the length
axis of the bow) it is more noisy than the other bow an-
gles. The noise RMS of the relative distance measures
remained below 0.5 mm. For clarity the peak-to-peak
noise is also displayed, which can be obtained by multi-
plying the RMS value by a factor 6.18 (99.9% interval of
the noise distribution).

In order to assess a possible influence of bow velocity
on the accuracy of marker positions, the distance between
the Stick and the Screw markers on the bow was analyzed
in a highly dynamic trial with bow velocities of more
than 2 m/s and accelerations of 60 m/s2 (a semi-quaver
passage in Preludio of the third Partita for solo violin,
J.S. Bach). No systematic relation was found between
marker distance and bow speed. The total (unfiltered)
noise RMS of distance was 0.77 mm (cf. 0.94 mm for
the distance between the same markers in the arpeggio
trial used in Tab. I). These results indicate that marker
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TABLE II. Average noise RMS and peak-to-peak values of
the bow angles tilt, inclination and skewness and distances
between the bow and the violin.

Bowing parameter RMS peak-to-peak

Tilt [deg] 0.64 4.0

Inclination [deg] 0.17 1.0

Skewness [deg] 0.08 0.5

Bow pos. [mm] 0.36 2.2

Bow-bridge dist. [mm] 0.46 2.8

Bow-string dist. [mm] 0.31 1.9

TABLE III. Fit results with 95% confidence bounds of bow-
bridge distance tests. The linear fit model was y = b1x+ b0,
with x the set bow-bridge distance and y the measured bow-
bridge distance.

Bow pos. b1 b0 [mm] R2

Middle 1.0 (0.97, 1.03) −0.3 (−1.3, 0.7) 0.9994

Tip 1.0 (0.95, 1.02) 0.3 (−0.8, 1.3) 0.9994

positions could be accurately measured even for extreme
bow velocities and accelerations.

2. Bow-bridge distance

As there is some degree of uncertainty in the placement
of the calibration markers on the violin and bow, there
might be a systematic error in the measured bow-bridge
distance. To investigate the magnitude of the systematic
errors, static trials were performed using a test bench
equipped with a ruler. The dimensions and marker con-
figuration of the test bench were similar to those of the
violin.

Static trials were performed for six bow-bridge dis-
tances (0-5 cm in steps of 1 cm) and two bow positions
(middle and tip). Bow-bridge distance was set with re-
spect to the middle of the bow hair ribbon, correspond-
ing to the placement of the calibration markers. The fit
results of measured bow-bridge distance versus set bow-
bridge distance are displayed in Tab. III. Only minor,
non-significant offsets were found, indicating that the sys-
tematic error could be neglected, provided that the cal-
ibration markers are carefully positioned. The (human)
error in positioning the latter was estimated to be about
0.5 mm.

Another error in measured bow-bridge distance during
playing arises from bow tilt. When the bow is tilted, the
center line of the part of the bow-hair ribbon which is
in actual contact with the string, will deviate from the
bow-hair line in the model. The deviation is dependent
on tilt angle and bow force. In an extreme case with a
tilt angle of 45 degrees and a very low bow force (one hair
in contact with the string) the deviation can reach about
3.5 mm. However, under normal playing conditions the
deviation will be smaller than 1 mm in most cases.

All the errors discussed above are small compared to
the width of the bow hair ribbon (8-10 mm), which forms
a fundamental uncertainty in the determination of bow-
bridge distance.

IV. MEASUREMENT OF ACCELERATION AND BOW
FORCE

Sensors were attached to the bow for measuring bow
acceleration and bow force. The data obtained via mo-
tion capture and sensors could be considered complemen-
tary. For example, the signal-to-noise ratio of the second
derivative of position data is usually rather poor and re-
quires a fair amount of smoothing. The accelerometer
signal contains much finer details, and is therefore pre-
ferred in studies of transients, e.g. during changes of
bowing direction (bow changes). One the other hand,
the advantage of motion capture systems to measure po-
sition and orientation of objects accurately can be used
in calibrating the accelerometer and other sensors. In
addition, this gives a possibility to correct the sensor sig-
nals for influence of external conditions like gravity and
bow tilt. In this section it will be explained how the com-
bination of motion capture and sensors was exploited to
obtain reliable, quantitative data from the sensors.

A. Acceleration

1. Calibration and correction

Besides measuring the actual bow acceleration, the ac-
celerometer was sensitive to the inclination of the bow
due to the influence of gravity. As the inclination θ
(in world coordinates) is measured by the motion cap-
ture system this information can be used to (1) calibrate
the accelerometer, and (2) remove the gravity compo-
nent (a0(θ) ≈ −9.81 sinθ m/s2) from the acceleration
signal. The calibration was performed by rotating the
bow slowly, varying the inclination of the two accelerom-
eter axes (x̂b and ẑb). The calibration coefficients (gain k
and offset s0) needed to convert the accelerometer signal
s to acceleration was found by fitting

s =
a0(θ)

k
+ s0 .

The calibrated bow acceleration a including the correc-
tion for inclination is then calculated as

a = k(s− s0) − a0(θ) .

2. Illustration and comparison with motion capture acceleration

The correction of the bow acceleration signal is illus-
trated in Fig. 10, showing sustained loud notes played on
the four strings. The bow inclination (bottom) starts at
a high value for the E string and approaches zero (hori-
zontal) for the G string. The correction for inclination in
the accelerometer data (middle) is about 7 m/s2 for the
E string and almost zero for the G string.

Extraction of bowing parameters 8
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FIG. 10. Illustration of the correction of bow acceleration
for inclination. Long sustained notes are played on the four
strings (E A D G). The accelerometer is sensitive to bow incli-
nation θ due to the influence of gravity, a0(θ) = −9.81 sin θ.
The inclination measured with the motion capture system
was used for correcting the acceleration. Top: Acceleration
computed from the bow velocity obtained by motion capture;
middle: Calibrated accelerometer signal without correction
(gray) and with correction for inclination (black); bottom:
Bow inclination (in world coordinates).

For comparison, the bow acceleration as computed
from the bow velocity measured with the motion cap-
ture system (low-pass filtered, cut-off 18 Hz) is included
(top). The loss in details is evident. In particular, the
accelerometer signal provides more details at the peaks
corresponding to the bow changes. The bow change actu-
ally gives rise to double acceleration peaks which merge
in the smoothed acceleration signal provided by motion
capture. The loss in detail is due to the combined effect
of several factors, including a lower sampling frequency
(250 Hz), the spatial resolution of the optical system, and
the smoothing filter. The benefit of combining the mo-
tion capture system with an accelerometer is particularly
obvious in cases like this, offering a higher time resolution
of rapid changes.

3. Computing bow velocity from acceleration

Calculation of bow velocity from acceleration over a
longer time span is typically problematic due to the pres-
ence of drift in the integrated signal. The correction for
inclination described above improves the situation some-
what, but drift cannot be completely compensated for.
A possible solution, proposed by Schoonderwaldt et al.38

is to apply piece-wise integration of the acceleration sig-
nal between breakpoints where the bow velocity is known
to be zero (bow changes) and remove the linear trends
(drift) between the break points to obtain a continuous
signal.

The quality of the computed velocity signal is primarily
dependent on the density of breakpoints and the smooth-
ness of the acceleration signal. The method is rather

25 30 35
−30

−15

0  

15 

30 

Time [s]

B
ow

 v
el

. [
cm

/s
]

34.5 35 35.5 36 36.5 37 37.5
−30

−15

0  

15 

30 

Time [s]

B
ow

 v
el

. [
cm

/s
]

FIG. 11. Computed bow velocity signals obtained by piece-
wise integration of bow acceleration between bow changes for
sequences of whole notes (top) and semi-quavers (bottom).
The gray curves show bow velocity obtained by motion cap-
ture.

sensitive to small time deviations of the detected break-
points, especially for quick bow changes characterized by
peak-like accelerations. Further, movements of the violin
might cause discrepancies as the accelerometer measures
the acceleration of the bow relative to the world coordi-
nate system, not to the instrument. For these reasons
the computation of velocity is generally more reliable in
faster passages, as illustrated in Fig. 11.

B. Bow force

1. Calibration procedure

The bow force sensor registers the deflection of the
bow hair at the frog. The deflection is dependent on bow
force as well as bow position. Typically, the deflection
decreases when the contact point approaches the tip at a
constant bow force. This effect needs to be compensated
for in the calibration.

The calibration of the bow force sensor was performed
using a calibrated load cell mounted on a small wooden
board, which was held by the player in a violin-like man-
ner (see Fig. 12). The player was asked to hold the bow
as normal with the hair flat on the load cell (no tilt), and
perpendicular to the measuring direction of the cell. The
player pressed the bow against the load cell at ten equally
spaced positions from the frog to the tip, modulating the
force at each position.

The position and orientation of the bow and the cali-
bration board was tracked with the motion capture sys-
tem, allowing for calculation of bow position and angles
in a similar way as for the violin. The bow position was
used for the calculation of the calibration coefficients.
The measured bow angles were used to check if the cali-
bration was performed correctly, as these might influence
the quality of the calibration (see Sect. IV.B.2). For a
detailed description of the calibration of the bow force
sensor and computation of bow force, see App. B. As
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FIG. 12. Load cell mounted on wooden board used for bow
force calibration. Bow position is obtained by motion capture.
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FIG. 13. Illustration of bow force calibration and correction
for bow position. Long notes were played using the whole
length of the bow. Top: Uncalibrated force sensor signal;
middle: Calibrated bow force; bottom: Bow position obtained
by motion capture.

the calibration coefficients will slightly change over time
due to changes in bow hair tension, the calibration pro-
cedure needs to be repeated at regular intervals during
longer sessions.

An example of a calibrated bow force signal is shown in
Fig. 13 for long notes played using the whole bow, with a
rather constant bow force. It can be clearly seen that the
uncalibrated force sensor signal (upper panel) decreases
when approaching the tip. This is effectively compen-
sated for in the calibrated bow force (middle panel).
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FIG. 14. The bow pressure sensor is sensitive to the bow tilt.
For determining this influence, the bow was pressed against a
load cell at ten positions along the bow, and tilted at different
angles. The resulting ratio between the measured force (after
calibration) and the actual bow force according to the load cell
is plotted versus bow position and tilt angle. The interpolated
surface can be used to compensate for the influence of tilt.

2. Influence of bow tilt

In many situations players tilt the bow for obtaining a
lighter contact of the hair on the string, especially close to
the frog. As a result the amount of bow hair in contact
with the string is decreased, giving the player a finer
control of bow force due to the increased compliance of
the bow.

The force measured by the sensor is influenced by the
bow tilt in two ways. First, the transversal force exerted
by the bow on the string is no longer normal to the bow
force sensor. Second, there will be a force gradient across
the width of the bow hair ribbon, resulting in a non-
uniform deformation of the leaf spring of the sensor. As
a result, the measured bow force will deviate from the
actual bow force.

For assessing the influence of bow tilt a test was per-
formed, pressing the bow on the load cell with an approx-
imately constant force and slowly tilting the bow back
and forth (about ±30 degrees). The bow force was com-
puted using the calibration coefficients obtained from a
normal force calibration.

In Fig. 14, the ratio between the measured bow force
and the actual bow force measured by the load cell is
plotted versus bow tilt at ten equally spaced positions
along the bow. As could be expected, the discrepancy
was largest close to the frog, where bow force measured
by the sensor was underestimated by about 40% at a tilt
angle of 30 degrees. Towards the tip, the effect of the tilt
diminished giving a deviation of about 20% at the mid-
dle and 5% at the tip. The deviation was not entirely
symmetric with respect to tilt direction; the deviation
tended to be slightly less for negative angles (stick lean-
ing towards the bridge) than for positive angles. This
asymmetry can be due to variations in the tension of in-
dividual bow hairs, and the placement of the sensor or
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the bearing piece between the sensor and the bow hair.
As the effect of tilting on measured bow force showed

a regular behavior, it can be compensated for. This is
illustrated in Fig. 15 for two positions close to the frog
and the tip, respectively. The correction factor was ob-
tained by interpolation of the force ratio data (surface in
Fig. 14).

C. Reconstruction of bow force from motion capture data

1. Principle

The data collected in this study was used to evalu-
ate the possibility to reconstruct bow force from motion
capture data as suggested by Maestre et al.22

When the bow is pressed against the string the reaction
force FB causes two visible effects: (1) deflection of the
bow hair, (2) bending of the stick. Deflection of the hair
results in a distance dstick between the actual bow-string
contact point and the straight line between the frog and
the tip (x-axis of the stick segment), given by

dstick =
γ(1 − γ)L

T
FB , (8)

where γ is the normalized bow position (γ = xB/L), L
the length of the bow hair, and T the effective tension of
the bow-hair ribbon.

Bending of the stick can be measured as the angle be-
tween the x-axes of the stick and the frog segment in
the kinematic model of the bow (see Sect. III.A). The
amount of bending depends on the transversal stiffness
Kb of the bow stick. The combined effect of the hair
deflection and stick bending results in a distance dfrog

between the actual bow-string contact point and the x-
axis of the frog segment

dfrog =

(

γ(1 − γ)L

T
+
γ2

Kb

)

FB . (9)

In addition, the string is deflected under influence of
bow force. The bow-string distance zbs calculated by
Eq. (2), with x̂b the x-direction of the frog segment will
include contributions from all three effects, which means
that motion capture data could in principle be used to
calculate bow force. This possibility will be further ex-
plored in the following.

A detailed description of the calibration and recon-
struction of bow force using the string-distance method
is provided in App. C.1. The influence of string deflection
on the reconstructed bow force is explained in App. C.2.

2. Force reconstruction and comparison with the bow force
sensor

For illustration of the reconstruction of bow force from
motion capture data and comparison with the results ob-
tained by the bow force sensor an experiment was con-
ducted. A small wheel was mounted on the facing of the
load cell. Short bow strokes were played on the wheel,

using about 10 cm of the bow near the frog and at the
tip, respectively. The load cell gave a calibrated reference
signal, which was compared with the reconstructed bow
force using bow-string distance data, and the output of
the bow force sensor after calibration (see Fig. 16). As
the reconstructed force signal was rather noisy, a low-
pass, zero-phase filter with a cut-off frequency of 5 Hz
was applied.

As seen, the bow force sensor provided a good descrip-
tion of the actual bow force. The sensor signal followed
the load cell signal well, including a high degree of detail.
The bow force reconstructed from motion capture data
was rather noisy and did not reproduce the same amount
of details. At best, it gave a reasonable overview of the
bow force, following the slow, global variations, which
may be sufficient for certain purposes, e.g. in some types
of synthesis control.

V. DISCUSSION

A. Example

An illustration of the capability of the described sys-
tem is given in Fig. 17 showing a complete set of bowing
parameters in a solo violin performance. The combined
panels provide a complete overview of the relevant as-
pects of bowing, including bow distribution (bow posi-
tion), the use of the main bowing parameters (bow ve-
locity, bow-bridge distance, bow force and bow accelera-
tion) and secondary control parameters (bow angles tilt
and skewness). The bottom panel combines the extracted
features ‘string played’ and ‘bowing direction,’ showing
the choices of the player and providing a rudimentary
link to the score. Analyses of an extended collection of
violin and viola performances using the described system
will be reported elsewhere.

B. Calculation of bowing parameters using kinematic models

In the described method the calculation of bowing pa-
rameters is based on fitted kinematic models of the violin
and bow (position and orientation of segments), rather
than on individual marker positions. This approach gives
two important advantages. First, the calculated bowing
parameters become less sensitive to noise and gaps in the
marker trajectories. Second, the use of kinematic mod-
els allows for a general geometric definition of bowing
parameters and bow angles, as described in Sect. III.

The current work relied on kinematic fit facilities im-
plemented in Vicon software (Vicon iQ), but the de-
scribed methods can be generalized to other motion cap-
ture systems, both optical (active and passive) and elec-
tromagnetic field tracking (e.g., Polhemus39). For mo-
tion capture systems measuring 3D positions of markers
alternative kinematic fit methods could be used, e.g., the
least-square method described by Veldpaus et al.29

The kinematic models and calculations described in
this study are specific to the violin and the viola. For
measurement of cello and double bass bowing the same
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FIG. 17. Example of a full set of bowing parameters versus time measured with the described system. The musical fragment
consisted of the first 1 1/2 bars of the Allemande of the 2nd Partita for solo violin by J. S. Bach. The bowing parameters
shown, from top to bottom, are: bow position, bow velocity, bow-bridge distance, bow force, bow acceleration, the bow angles tilt
and skewness, and the combined features string played (vertical position) and bowing direction (vertical offset, positive for up
bow and negative for down bow).

principles can be applied, but some adaptations are nec-
essary due to the reversed orientation of the bow relative
to the instrument.

C. Combination with sensors

The complementary nature of motion capture tech-
niques and the use of sensors attached to the bow offers
several advantages. First, it provides practical and ac-
curate calibration procedures for both acceleration and
bow force. Second, it allows for correction of the influence
of bow inclination on acceleration (gravity component in

accelerometer signal), as well as for the influence of tilt
on bow force.

In Sect. IV.A a procedure was discussed for computa-
tion of bow velocity from acceleration. The advantage is
that the integrated velocity profiles offer more detail and
a higher temporal resolution compared to those obtained
from motion capture data, mainly due to the smoothing
required to obtain acceptable noise levels. However, the
reliability of the computed velocity signal is somewhat
limited, and normally bow velocity obtained from mo-
tion capture data is preferred. Using the accelerometer
signal for estimating bow velocity may, however, form an
interesting alternative in combination with less expensive
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motion tracking techniques based on normal video.38

D. Measurement of bow force

Bow force could be accurately measured with the force
sensor over the whole length of the bow. The bow force
tended to be underestimated when the bow was tilted,
especially close to the frog. However, it was shown that
this effect could be compensated for, given the amount
of tilt measured with the motion capture system.

An alternative method for bow force reconstruction en-
tirely based on motion capture data proposed by Maestre
et al.22 was explored and compared with sensor-based
measurement of bow force. The proposed method gave
reasonable force reconstructions in the upper half of the
bow where the bending of the stick under influence of bow
force is considerable. In the lower half the reconstruction
became less reliable, mainly because the change in bow-
string distance due to bending of the bow is much smaller
and harder to estimate reliably. Further complications
are due to the deflection of the string under influence of
bow force and stopping of the string. These deviations
are, however, small and close to the spatial resolution of
the motion capture system, and therefore hard to take
into account.

The two methods for determination of bow force could
to a certain extent be considered as complementary: the
sensitivity of the sensor is highest in the lower part of
the bow, as opposed to the motion-capture-based force,
which is most reliable in the upper part. In some cases,
depending on the properties of the bow or incorrect place-
ment of the bow force sensor, problems might be experi-
enced with the determination of bow force from the sen-
sor when approaching the tip. In such cases the motion-
capture-based bow force could be used to replace the
sensor-based bow force in the upper part of the bow.

E. Applications

The described methods for determination of bowing
parameters allow for detailed measurement of bowing
gestures and in-depth analysis of players’ control and co-
ordination of bowing parameters, set in relation to the
produced sound. In addition, motion capture can be ex-
tended to include body movements of the player, allow-
ing study of biomechanical aspects of playing, anticipa-
tory movements and the influence of posture. This type
of studies will deepen our understanding of bowed-string
instrument performance, not only from a scientific point
of view but also from the player’s perspective. Especially
in combination with effective visualizations, motion cap-
ture and other measurement techniques have interesting
potential for pedagogical use.9,40–43 Another promising
application is gesture-based sound synthesis, where this
type of measurements will be helpful in the development
of parametric control models.44–46

VI. CONCLUSIONS

In this study motion capture techniques have been ap-
plied to build a complete system for measurement of bow-
ing parameters in violin playing. Kinematic models for
the violin and bow have been developed which can be
used to calculate the main bowing parameters, bow posi-
tion, bow velocity, and bow-bridge distance. In addition,
the angles of the bow relative to the violin, inclination,
skewness and tilt, which do not control the sound gen-
eration directly, but reflect the pre-planning and coordi-
nation of parameters in bowing gestures are measured.47

Bow force is measured with a custom-designed sensor,
integrated with the frog, allowing for accurate measure-
ment of bow force in combination with motion capture
data. Bow acceleration is measured in two directions
with an accelerometer mounted on the frog, allowing for
detailed study of transients during bow changes or at-
tacks.

In addition, the system allows automatic extraction
and visualization of three basic performance features;
bowing direction, moments of on/off in bow-string con-
tact, and determination of which string is played. These
features are necessary for musically relevant analyses of
bowing parameter data. Such analyses will give an un-
derstanding of how a certain bowing gesture is composed
from basic elements of motion, and allow comparison of
bow control strategies between players.

An interesting approach for estimation of bow force
from motion capture data describing the bending of the
bow stick is explored, and compared with measurements
by use of the bow force sensor.

The described system is capable of measuring all bow-
ing parameters in violin performance without disturbing
the player. The system is robust, and accuracy and sig-
nal quality are high. In combination with the extracted
features, the system allows for detailed studies of mu-
sically relevant aspects of bow control and coordination
of bowing parameters in bowed-string instrument perfor-
mance.
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APPENDIX A: GEOMETRIC CALCULATIONS

1. Calculation of contact point

The contact point P in Fig. 4 was determined as fol-
lows.

The unit vector perpendicular to both the bow and the
string, was calculated as

p̂ =
x̂b × ŷv

|x̂b × ŷv|
.

The normal vector of the bowing plane was then calcu-
lated as

n̂b = x̂b × p̂ .

Subsequently, the intersection P between the virtual
string
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= λŷv + V

and the bowing plane

n̂b ·
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= 0

can be found by solving λ:

λP = −
n̂b · (V −B)

n̂b · ŷv

.

The contact point P on the string is then given by

P = λP ŷv + V . (A1)

2. Calculation of string positions

Given the string-crossing angles, obtained from the
tuning trial and the measured inter-string distances, the
positions of the four strings on the bridge can be cal-
culated in local coordinates (Fig. A1). The inter-string
distance ds is usually the same for all adjacent strings on
an instrument, typically about 11 mm for violins.

In the local reference system of the violin the bridge is
located in the x-z plane (y = 0). The rotation matrix for
a rotation about the y-axis by an angle ϑ is

R(ϑ) =







cosϑ 0 − sinϑ

0 1 0

sinϑ 0 cosϑ
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FIG. A1. Calculated positions on the bridge of the four strings
in the local reference system of the violin, based on string-
crossing angles (dashed lines) and inter-string distance ds.

For the two inner strings II and III (A and D on the
violin) the positions are calculated as

pII = RT (ϑ2) ·







ds/2

0

zbs







and

pIII = RT (ϑ2) ·







−ds/2

0

zbs






,

where ϑ2 the string-crossing angle between string II and
III and zbs the bow-string distance offset associated with
ϑ2 (see Sect. III.E). The positions of the outer strings I
and IV (E and G on the violin) are then calculated as

pI = pII +RT (ϑ1) ·







ds

0

0







and

pIV = pIII +RT (ϑ3) ·







−ds

0

0






,

where ϑ1 and ϑ3 the string-crossing angles of string com-
binations I-II and III-IV , respectively.

APPENDIX B: CALIBRATION OF BOW FORCE SENSOR

The coefficients needed for the calibration of bow
force are obtained from a force calibration trial (see
Sect. IV.B.1) in two steps. In the first step, a second
order polynomial is fitted to the curves representing the
sensor response sf (in V) versus the transversal force Ft

(in N) measured by the load cell for each of the ten bow
positions xi (see Fig. B1 (a)):

sf = b2(xi)F
2

t + b1(xi)Ft . (B1)
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From theoretical considerations regarding the mechan-
ics of the bow,28 a quadratic and a linear dependence on
bow position is expected for b2 and b1, respectively. In
the second step, curves are fitted to the coefficients found
for the discrete positions xi, yielding functional expres-
sions for b2 and b1 (solid lines in Fig. B1 (b) and (c)).
Using the bow position xB obtained via motion capture,
the bow force can then be calculated as

FB(x) =
−b1(x) +

√

b1(x)2 + 4b2(x)sf

2b2(x)
. (B2)

APPENDIX C: BOW FORCE RECONSTRUCTION FROM
MOTION CAPTURE DATA

1. Calibration

A calibration is needed to relate bow-string distance
(i.e., the distance between the virtual contact point and
the line in the x-direction of the frog) to bow force at any
bow position. The calibration can be performed using
the same calibration trial as for the calibration of the
force sensor (see Sect. IV.B.1). The distance between
the contact point and the frog line can be calculated in
a similar way as for the violin. As the load cell is rather
stiff the distance between the contact point and the frog
line is determined entirely by the deflection of the bow
hair and the bending of the stick.

Similar as in App. B the calibration consists of two
steps. In the first step a straight line is fitted to bow-
string distance as function of force Ft measured by the
load cell for each of the ten bow positions (see Fig. C1
(a))

d = b1Ft + b0 , (C1)

This corresponds to Eq. (9), which predicts a linear de-
pendence of d on bow force at fixed bow position. Using
Eq. (9), b1 can be expressed as function of (normalized)
bow position γ (γ = xB/L; L is the length of the bow
hair) as

b1(γ) =
γL

T
+ γ2

(

1

Kb

−
L

T

)

, (C2)

which means that b1 is well described by a second-order
polynomial (see Fig. C1 (b)). It should be noted that
according to Eq. (C2) b1 becomes zero at the frog, in-
dicating that the measurement of bow force using this
method becomes problematic close to the frog.

The constant b0 represents an offset of the measured
bow-string distance, which can be attributed to an offset
angle between the x-axes of the frog and the stick seg-
ments in the kinematic model of the bow (such an angu-
lar offset might originate from changed bow hair tension
since the calibration of the kinematic model of the bow).
The offset b0 is linearly dependent on bow position (see
Fig. C1 (c)). Even for small angles, in this case 0.3 de-
grees, the offset can have a significant influence on the

reconstructed bow force, and should therefore be taken
into account in the calibration.

Given the calibration coefficients the bow force can be
calculated as

FB =
d− b0(γ)

b1(γ)
, (C3)

ignoring the deflection of the string (see App. C.2 for a
discussion of the influence of string deflection).

When the bow is not in contact with the string the
calculated bow force becomes negative, which is unphys-
ical. In this case the bow force should be set to zero (i.e.,
FB = 0 for d− b0(γ) > 0).

2. Influence of string deflection in reconstruction of bow force

The string is deflected due to the bow force. Be-
cause of the lowering of the string there will be a dis-
crepancy δ(FB) between the calculated contact point P

(see App. A.1 and Fig. 4) and the actual bow-string con-
tact point. Consequently, the reconstructed bow force
obtained by Eq. (C3) will be overestimated, and a cor-
rection term should be added to the bow-string distance

d = dfrog + δ(FB) .

In combination with Eq. (C1) this can be written as

d− b0 = b1FB + δ(FB) .

The correction for string deflection δ(FB) is not trivial
to determine for a real string as it depends on β as well
as the stiffness of the string. For a flexible string, an
expression similar to Eq. (8) can be used to describe the
string deflection, yielding

d− b0 = b1FB +
β(1 − β)Ls

Ts

FB = b′
1
FB , (C4)

with Ts the string tension and Ls the string length. The
corrected coefficient b′

1
will be close to b1 for small β

values and increase with increasing bow-bridge distance.
The correction will be larger for strings with low tension.

To estimate the influence of string deflection, test mea-
surements were performed, similar to the force calibra-
tion procedure described earlier, but replacing the cali-
bration device with a violin. The calibration procedure
was performed on each of the four strings and at three
bow-bridge distances (10, 30, 50 mm). The reference
force was obtained from the bow force sensor, and the
calibration coefficient b′

1
was calculated as described in

App. C.1.
Figure C2 shows the influence of string deflection on

the gain factor 1/b′
1

(for conversion from mm to N) for
the G and the E string at three bow-bridge distances.
The relative influence was largest close to the frog and
tended to disappear when approaching the tip. This can
be explained as follows. The absolute deviation caused

Extraction of bowing parameters 16



−1 0 1 2 3 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Load cell [N]

S
en

so
r 

[V
]

Frog

Tip

(a)

0  10 20 30 40 50 60

0

0.05

0.1

C
oe

f. 
b 2 [V

/N
2 ]

(b)

0  10 20 30 40 50 60
0.1

0.2

0.3

0.4

0.5

C
oe

f. 
b 1 [V

/N
]

Bow position [cm]

(c)

FIG. B1. The sensor is calibrated by pressing the bow hair on a load cell at ten equally spaced positions of the bow from the
frog to the tip, and modulating the force periodically. (a) Resulting sensor signal sf plotted versus reference force Ft measured
by the load cell for different bow positions. (b) Quadratic and (c) linear coefficients obtained from second order polynomial
fits for each bow position. The dependence of the coefficients on bow position can in its turn be described by second order
polynomials (solid lines), yielding functional expressions for b2 and b1, used for calculation of bow force in Eq. B2.

0 1 2 3 4 5
−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Load cell [N]

B
ow

 s
tr

in
g 

di
st

. [
m

m
]

Frog

Tip
(a)

0  10 20 30 40 50 60
−15

−10

−5

0
C

oe
f. 

b 1 [m
m

/N
]

(b)

0  10 20 30 40 50 60
−3

−2

−1

0

1

C
oe

f. 
b 0 [m

m
]

Bow position [cm]

(c)

FIG. C1. The motion capture data on the bow-string distance can be used for determining the bow force. (a) Bow-string
distance versus bow force measured by the load cell for different bow positions. (b) Linear and (c) constant coefficients
obtained from linear fits for each bow position. The dependence of the coefficients on bow position can be described by a
second order polynomial, yielding functional expressions for b1 and b0, used for calculation of bow force in Eq. C3.

by string deflection is only dependent on bow force. How-
ever, the relative influence becomes larger for small values
of bow position (close to the frog) where the compliance
of the bow is small. At the frog the effect on the re-
constructed force can therefore be considerable. When
using the calibration coefficients obtained from calibra-
tion with the load cell the reconstructed force at the frog
will be overestimated. As an example, in this test the
overestimation was about a factor two on the G string
at a bow position of 5 cm and a bow-bridge distance of
53 mm.

An increase of b′
1

with bow-bridge distance predicted

by Eq. (C4) can also be observed. This results in flatter
gain curves for larger bow-bridge distances. Furthermore,
the curves are closer to each other for the E string than
for the G string, indicating that string deflection is larger
for the G string. This is in agreement with expectations
based on the properties of the string: the tension of the
lowest strings is generally lower than for the high strings
(around 40 N for the G string versus 75 N for the E string,
according to Pickering48).

Even though the effect of string deflection could be ob-
served in the motion capture data, the effect was rather
small and overshadowed by noise. It is therefore diffi-
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cult to take these effects into account in a calibration.
In general, it can be concluded that the motion-capture
method for reconstruction of bow force is less reliable in
the lower half of the bow.
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Chapter 5

Description, modelling and

parametrization of some typical

bowing patterns

In the two first parts of this thesis (Chapt. 2, 3 and 4), we have developed tools in
order to (a) simulate the motion of the bowed string and synthesise violin sounds,
and (b) measure the effective bowing parameters used by the player in real perfor-
mance. Together, these tools are sufficient to obtain a realistic and gesture-based
control of the sound synthesis. The measured bowing parameters can be used di-
rectly to control the bowed-string model with adequate mechanical parameters.
However, this approach only allows a reproduction of what has been played, which
is of limited interest from an user’s point of view. A musically motivated challenge
consists in creating new control patterns inspired by measurements of violinists’
bowing patterns. That would allow a more intuitive control of the notes, obtained
through, for example, high-level parameters which automatically generate the time
evolution of the control parameters, or by modifying the measurements according
to specific musical intentions. This goal can only be achieved by analysing mea-
surements on professional violinists, extracting typical characteristics of the bowing
patterns, and formulating rules describing the players’ bowing.

In the two following chapters, measurements of the bowing parameters in real
violin performance will be presented and described. We will focus on the time evolu-
tion of the bow force and the bow velocity in some of the standard bowing patterns,
including martelé, sautillé, and détaché. These descriptions will aim at extracting
the characteristics of the control parameters, in order to propose adequate models
of a wide variety of bowing patterns.

In this chapter, we will first clarify the purpose and discuss the procedure that
will be used (Sect. 5.1). Then, we will examine three bowing patterns corresponding
to three separate classes of bow strokes. Sect. 5.2 will focus on the class of bouncing
bowing patterns for which the sautillé provides a representative illustration. In Sect.
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5.3, we will examine an accented bowing type called short martelé (whose modelling
can be applied to a certain extent in the description of staccato). Finally, in Sect.
5.4, quickly repeated bowing patterns such as tremolo and fast détaché will be
described. The terminology used in the descriptions and classifications of bowing
patterns is taken from the classical reference by Galamian1 [28].

5.1 Introduction

On the two classes of bow strokes

The present chapter will treat three types of short bow strokes with rapidly varying
control parameters, martelé, sautillé and tremolo. The next chapter will focus on
sustained notes and difficulties associated with this class of bow strokes, such as
bow changes. The reason for this division could seem somewhat arbitrary, but it is
justified by considering the way the control is executed.

The basic way of playing the violin consists in drawing the bow steadily across
the string. Each bow stroke can be used to produce only one note, like in the dé-
taché, or several notes, like in legato playing. This basic way of playing constitutes
a first class of bow strokes that is characterized by a continuous string vibration,
during which the player mainly concentrates on maintaining a Helmholtz motion
at the required dynamic level and with the desired tone color. The control of the
string vibration derives from a (more or less conscious) playing strategy, taking
into account musical, mechanical and human control constraints. For instance, the
finite length of the bow and the duration of the note will determine the evolution
of the bow velocity during the stroke. This way of playing is characterized by the
immediate feedback that the player receives from the instrument. This feedback
makes a continuous control of the performance possible.

A second class of bowing patterns consists of short or quick bow strokes such
as martelé, spiccato, sautillé, and tremolo. The practicing of these bowing patterns
aims at 1) refining the combination of bowing parameters in order to get the target
sound, 2) being able to use different gestures according to the musical context, and
3) acquiring the technical skills and “feeling” that enable the player to produce
almost identical bowing gestures.

These bow strokes are short (and quick, in the case of the tremolo), and it can
be assumed that the performance is mainly based on reproduction of well-practiced
motor behaviour more than on conscious control in real time. Once the gesture has
been initiated, it is often too late for adapting the control to the resulting sound.
At best, the gesture will be adapted for the next bow stroke. To some extent, these
bow strokes could be considered as ballistic movements [49].

Because a proper performance of these bow strokes requires extensive practicing
under a long period of time, they exhibit characteristic and reproducible bowing pa-

1Ivan Alexander Galamian (1903-1981) was the head of the violin department at the Juilliard
School of Music, New York, from 1946 to 1981 and is the most influential violin teacher of the
20th century.
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rameter patterns. This fact makes them particularly well suited for characterisation
and modelling of the control parameters. The separation between the two classes of
strokes will also reflect the different levels of difficulty of the task. Whereas strokes
with large dynamic variations in the bowing parameters like sautillé could be rela-
tively easily modelled, it will be more difficult to extract some characteristics of a
continuously controlled gesture such as in détaché.

This characterization does not imply that there is no specific control gesture
involved when playing sustained notes like détaché. The previous discussion about
long-term practicing in order to impress a particular motoric skill applies to some
key points in the control of sustained notes as well, for example the change of bowing
direction (“bow change”). Making the transition between two notes in détaché
playing as smooth as possible by a proper control of the bow change requires the
same kind of well-established, and in some cases unconscious, control as in short,
rapid strokes like sautillé. These aspects will be described in the next chapter when
studying sustained notes.

Modelling bow strokes

Measurements combining motion capture technique with sensors on the bow (de-
scribed in Chapt. 4) give the time evolution of the bowing parameters needed for
describing the performance: bow force, bow velocity and bow-bridge distance. The
measurements could be used directly as control parameters of the model and syn-
thesize different types of bow strokes. However, when possible, it is more rewarding
to model the time evolution of the bowing parameters in order to get a parametric
description of the bow strokes. The aim of such a modelling is to summarize a
given class of bowing patterns in a few parameter profiles that are relevant from
the player’s point of view.

Then, the first task consists in finding an appropriate way of formalising the
time evolution of the control parameters. In the following we will mainly use some
simple mathematical functions, sometimes by dividing the bow stroke into different
parts, each of them being represented by one function. By grouping measurements
of “identical” bow strokes together, characteristic features can be observed which
can be used to define the control pattern. This step aims at determining what is
important to reproduce in the bowing patterns, what should be left aside, and above
all, what we would like to control, and how. The bowing patterns will sometimes
exhibit some features that are not really essential to our perception of the stroke.
For instance, measurements may show some differences when a specific bowing
pattern is played at different positions on the bow (e.g. at the frog or at the tip).
However, if a player or an expert listener is not able to discriminate between the
same bowing pattern played at different bow positions, the observed differences will
not be considered essential. In such cases a compromise in the description of the
stroke will be made.

Another important point refers to the complexity of the models and their extra-
polation capacities. The simpler a model is, the less we will be able to manipulate
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it. On the other hand, a sophisticated model could be difficult to use, but may offer
the possibility of going beyond the simple reproduction of a given bow stroke by
extrapolating new strokes and introducing variations. For instance, some strokes
could be perceptually well reproduced by using a simple sine curve for a certain
bowing parameter. As such a model is controlled by only two parameters (amplitude
and duration of the stroke), it is very convenient to use. But we often prefer a
model with two successive parts of sine curves, allowing an independent setting
of two durations, the first one corresponding to the “attack” of the note, and the
second one to the “release”, for instance. Here again, a compromise has to be found
between an acceptable reproduction of the strokes, the extrapolation capacity, and
an acceptable usability.

The last point concerns the parametrization of the model. Once an appropriate
model has been found, the parameters are determined for a given set of “stan-
dard” situations by fitting real data to the model. The three standard conditions
were normally three dynamic levels, pianissimo (pp), mezzo forte (mf ) and fortis-
simo (ff ), in order to obtain some “presets” of the models. The models and their
parametrization were validated by comparing three synthesized versions of a given
bow stroke sequence. The first version used the real acquisition data for controlling
the simulation. The second version was controlled by a sequence of fitted bowing
pattern models, and the last one was created from the preset values of the model,
adjusted within the variation range of the model parameters. In all cases presented
hereafter, no differences could be heard between the three simulations.

On the influence of the player and the instrument

The measurements presented in the following were made with the combination of
motion capture methods and sensors on the bow described in the previous chapter.
Most measurements were made with one professional violinist, playing the note G4
= 392 Hz on the D string. The results obviously give a somewhat narrow overview
of the bowing technique in violin playing. A more extensive study should include
the entire range of the violin, from the G string to the E string, different fingerings
(playing the same note near the nut or closer to the bridge on a lower string), dif-
ferent dynamic levels, and different bow positions, among other things. Further, it
would have been interesting to compare the bowing techniques of different subjects.
However, the purpose of our work, modelling and parametrization of different types
of bowing patterns, could be attained with only one player and one note, let alone
that the differences in bowing between strings and the diversity in bowing technique
among professionals was not reflected in the results.

Concerning the influence of the player, a certain variability from one player to
another one could be expected. There are certainly different ways of performing
a specific musical idea by modifications of the bowing pattern, as well as there
are different interpretations of a given bow stroke, and different techniques for
controlling the stroke. The models presented in the following should therefore only
be considered as prototypes of bowing patterns, and we cannot claim them to be
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general and representative of all players. However, especially for short bow strokes,
we can assume that the differences between players are rather small and mainly
concern the control gesture itself and not the resulting evolution of the bowing
parameters. For instance, Galamian [28] pointed out that each player should try
to find the most convenient way of playing rapid staccato. However, whatever the
technique used for achieving this bowing pattern, a well-performed staccato will
sound like a staccato, and no drastic differences in the bowing parameters should
be expected. It is then important to distinguish between, on one hand, the bowing
parameters, which are the objective values of the parameters we are interested
in for describing the control of the sound (bow force, bow velocity and bow-bridge
distance as functions of time), and on the other hand the gesture (the hand and arm
movements) used for obtaining the observed evolution of the bowing parameters.

The differences between players will be more critical in the next chapter, deal-
ing with sustained notes. Different bowing techniques are clearly identifiable for
these bowing patterns, mainly concerning the balance between bow force and bow
velocity, and the attack of the notes.

Finally, concerning the influence of the string and note played, it seems reason-
able to assume that there is no drastic influence, at least over the range of a given
instrument. Obviously, similar bowing patterns will not be played exactly the same
way on a violin and on a cello. For example, the attack requires more time on lower
strings, and a higher bow force is needed for maintaining the Helmholtz motion.
However, it seems reasonable to assume that the bow velocity profile associated
with a certain bowing pattern remains approximately the same across the pitch
range of the violin, and that the player adapts the bowing gesture to the string
mainly by correcting the ranges of bow force and bow-bridge distance.

In the following, we will cover three types of bow strokes, sautillé, short martelé
and tremolo. In each case, measurements of the bowing parameters will first be
presented and described, focusing on bow velocity and bow force, which can be
assumed to be the most dynamic parameters during short bowing patterns. Then,
models will be formulated in order to imitate the time evolution of the bowing
parameters. The models are described by a few parameters whose typical values
will be determined for exemplary situations.

5.2 Bouncing bow strokes

Bouncing bow strokes are started from the hair and finish off the string. The
string is excited during a rather short contact time, set by the rebound of the bow.
Because the bow leaves the string, the string is then free to vibrate with a decaying
oscillation. This principle of driving the string is shared by several bowing patterns
that differ essentially in the technique that is used for controlling the rebound,
according to Galamian [28].
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In short, the rebound of the bow is used in two main bowing patterns:

• In spiccato, “the bow is thrown down on the string for every single note and
(at least for the longer strokes) lifted up again.”

• The sautillé uses the natural rebound of the bow for performing several notes
with the same impulse, and the bow comes off the string because of the
elasticity of the bow.

As seen in the previous description, the two bowing patterns differ in the control
of the rebound. In spiccato playing, the bow is actively thrown down and then
lifted, assisted by the mass-compliance system of the bow stick and hair which
tends to release the bow from the string. In contrast, sautillé is produced by some
less active control of the bow. The player relies on the resonant behaviour of the
bow for controlling the “take-off” from the string. For that reason, playing sautillé
requires a good knowledge of the dynamics of the bow in order to perform notes at
the intended rate and duration.

Two consequences should be highlighted. First, different spiccato can be ob-
tained by controlling the duration of the contact, whereas in sautillé, the force
evolution of the contact is essentially set by the bow position and the player has
little direct control. This essential difference will later be used for simulating the
two kinds of strokes. Secondly, the spiccato cannot be as quick as the sautillé,
because it necessitates an active control of the fingers on the bow stick for every
note.

Finally, some other bouncing bow strokes could be mentioned here. For example,
the ricochet and flying spiccato are obtained by performing several rebounds during
the same bow stroke, i.e. several rebounds during down-bow or up-bow. Because
these bow strokes are very close to the two main bouncing bowing patterns above
(they differ only in the control of bow velocity), they will be considered as variations
of spiccato and sautillé. Once a good description of these main patterns will be
obtained, there should be no difficulty in considering several rebounds performed
in the same stroke.

All variations of bouncing bowing patterns share the same feature, which is
the rebound of the bow from the string. The time evolution of the bow force
during the rebound can therefore be considered as the most prominent feature for
the perception of the rebound. Consequently, we will first describe and model the
evolution of the force during string contact. Then a specific case will be studied with
the examination of the sautillé. For this case study, a description and modelling of
the bow velocity will first be required, before typical values of the model parameters
will be determined. Finally, we will discuss the effect of the model parameters and
how they can be empirically changed in order to go beyond the simple imitation
and produce various bow strokes.
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Bow force patterns during the contact: Characterization and
modelling

In the modelling of bouncing bow strokes, the main task is to find a general model
for reproducing the time evolution of the force during the rebounds. Fig. 5.1 shows
two examples of bow force patterns during sautillé performed at different tempi
(90 and 150 bpm) at the same dynamic level (mf ). Roughly, the force exhibits a
bell-like shape characterized by the maximal force that is reached (0.74 and 1.4 N)
and the contact time between the bow and string (around 70 ms in both cases).
When increasing the bouncing frequency (Fig.5.1, right), some additional ripples
appear due to the excitation of two modes of the bow, as pointed out by Askenfelt
[5].

In a first approach it seems reasonable not to take the ripples into account as
there is presently no clear evidence of their influence on the perceived sound. For
this reason we will focus on the reproduction of the global bell-like force profile
only.
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Figure 5.1: Bow force patterns measured by the bow force sensor during the rebound
of the bow in bouncing bowing patterns. The figures show patterns during sautillé
performed at two tempi: 90 bpm (left) and 150 bpm (right), corresponding to a
note rate of 6 and 10 Hz, respectively. At 10 Hz, the pattern exhibits some ripples
around 120 Hz, due to excitation of some modes of the bow stick.

A parabola could be used to fit the upper part of the force profile well, but
the broader lower part would not be accurately described. When tried, the result-
ing sound was somehow more percussive than the original. Moreover, the rather
steep slope of the force at the beginning may give troubles during the attack. A
shifted cosine model as used by Guettler [38] seemed to be more adequate, but the
force pattern showed an asymmetry around the maximal value that could not be
reproduced: the increasing part of the force profile was slightly shorter than the
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decreasing part. The difference was very small, but it could, however, be interest-
ing to include the possibility of changing this parameter. For example, a percussive
attack of the bow followed by a longer sustain could be simulated.

The model finally used is described in Fig. 5.2, left. Two successive cosine
functions are used, before and after the force maximum. Each function is defined
by three parameters (frequencies f1 and f2, amplitudes A1 and A2, offset O1 and
O2).

F (t) =

{

A1(cos(2πf1(t − Tmax)) + O1) for − arccos(−O1)
2πf1

< t − Tmax < 0

A2(cos(2πf2(t − Tmax)) + O2) for 0 < t − Tmax < arccos(−O2)
2πf2

(5.1)
These parameters are not easy to deal with. For example, the duration of each part
of the force profile (and hence the total duration of the contact) depends both on
the frequency and the offset of the cosines. Similarly, the maximum force that is
reached during the rebound depends on a combination of amplitudes and offsets.

Instead, it would be preferable to use some more “intuitive” and relevant pa-
rameters such as the force maximum during the stroke Fmax, the duration T , the
asymmetry of the shape A (defined as the ratio between the increasing time of the
profile and the total duration), and the slope at the beginning and the end (a1 and
a2). As the correspondence between these two sets of parameters is not straightfor-
ward and cannot be obtained analytically, we define some main parameters (Fmax,
T and A), directly adjustable by the user, keeping the offset as a small correction
of the shape. This gives a more practical correspondence between the “relevant”
parameters and the cosine parameters

{

A1 = Fmax

1+O1

f1 = 1
2πAT arccos(−O1)

A2 = Fmax

1+O2

f2 = 1
2π(1−A)T arccos(−O2)

(5.2)

The slopes are then considered as secondary parameters and can be computed
(but not adjusted) as

{

a1 = 2πf1A1sin(2πf1AT )

a2 = −2πf2A2sin(2πf2(1 − A)T )
(5.3)

Fig. 5.2, right, shows the application of the model on a succession of rebounds.
No difference can be seen between the real measurements and the fitted data, and
we can conclude that the model succeeds very well in imitating the time evolution
of the bow force during string contact. This example shows a sautillé, which is the
special case on which we will focus in the following. The model parameters that
were used will be described later, when dealing with the parametrization of the
models, but before that, a description of the bow velocity in sautillé is required.
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Figure 5.2: Left: Double cosine model used for fitting the bow force during the
rebound in sautillé. Right: Example of fitting of the model to measurements. No
difference can be seen between measured and fitted data.

The sautillé: Modelling bow velocity

In sautillé playing, the bow bounces on the string while performing a short to-and-
fro movement. As mentioned before, the bow bounces only once per bow stroke
producing one note, and the rebound is due to the mass and compliance of the
bow. A good synchronisation in the bow control is necessary for obtaining the
right timing between the horizontal motion of the bow and the rebounds. Guettler
[38] showed that a crisp sautillé requires the rebound to first damp the sounding
note before starting the next. Strokes were found to be “perfect” when the phase
between bow velocity and force was around 53°.

The phase conditions can be observed in Fig. 5.3, showing the bow force,
bow velocity and bow-bridge distance for two series of sautillé played at the same
dynamic level, but in two tempi. When the bow and the string are in contact, the
velocity is plotted in full lines, the dotted lines indicating the motion of the bow
off the string. At a moderate tempo (90 bpm, Fig. 5.3, left), the rebounds start
after the change in bowing direction and before reaching the velocity maximum. In
contrast, for a rapid performance (150 bpm, Fig. 5.3, right), the bow lands on the
string just before the bow direction changes and stays in contact with the string
during a long part of the note.

The simplest representation of the to-and-fro motion of the bow in sautillé
consists in using a half period of a sine curve per bow stroke for the bow velocity.
Fig. 5.4, left, shows such a model, with real data in grey and a fitted sine in black.
The duration Tbs of the stroke is determined by the positions where the velocity
crosses zero. The amplitude of the sine must be fitted to data.

In Fig. 5.4, right, the velocity was first segmented into successive bow strokes
by determining the positions of the zero crossings in velocity. Then, a non-linear
regression algorithm was used to determine the parameters (amplitude Vmax and
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Figure 5.3: Illustration of the bowing parameters measured during sautillé, for two
tempos: 90 bpm (left) and 150 bpm (right). From top: Bow force, bow velocity
and bow-bridge distance. The bow velocity is displayed in solid line when the bow
and the string are in contact. It can be noticed that the synchronisation between
the rebounds and the velocity changes with the bow stroke frequency.

frequency 1/2Tbs) for each sine function. From the comparison between measure-
ments and simulated velocity patterns observed in Fig. 5.4, right, we can conclude
that this simple model is sufficient for representing the bow velocity in sautillé.
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Figure 5.4: Left: Simple sine model used for fitting the bow velocity in sautillé.
Right: Example of fitting the model to measurements.
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The sautillé: Fitting model parameters to measurements

The parameters permitting to fit the bow velocity and the bow force patterns were
determined for three dynamic levels (p, mf, f ) and two tempos (90 and 150 bpm).
Each series of sautillé was composed of 32 strokes at 90 bpm and 64 strokes at
150 bpm. For the velocity, the measurements were first segmented into successive
bow strokes at the zero crossings in velocity, then the sine model was fitted to
the pattern for each bow stroke. Results for the velocity amplitude are presented
in Fig. 5.5, left. As expected, the amplitude of the velocity is found to increase
with increasing dynamic level, from 8 cm/s for piano to 78 cm/s for forte, both at
90 bpm. When the bow stroke frequency was higher (150 bpm), the increase in
amplitude was less significant, which could be due to the difficulty in controlling
the bow for such rapid movements.
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Figure 5.5: Fitting of the velocity model to the measurements during sautillé play-
ing. In each figure, three dynamic levels (p, mf, f ) are presented for a moderate and
a rapid tempo (90 and 150 bpm). Left: Amplitude of the sine function representing
the bow velocity. Right: Phase defined as the time (in percent of the half sine
duration) between the beginning of the sine and the beginning of the rebound.

The time between the beginning of the stroke and the beginning of the rebound
is used to compute the phase, defined as the ratio between this time and the total
duration of the stroke Tbs. In Fig. 5.5 (right), the phase is shown for the six
conditions. As previously observed, the phase becomes negative for rapid sautillé,
which means that the bow lands on the string before the change of bow for the
next stroke takes place.

If the phase α is computed with the position of the force maximum as reference,
following [38] (see Fig. 5.6), it is interesting to notice that all measurements are
found between the two extreme cases presented by Guettler (α = 0° and α = 107°).
More precisely, the main part of the phases lies between 40° and 80°, independently
of the tempo. The phases are distributed around the optimal value reported by
Guettler (53°).
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Figure 5.6: Position of the force maximum during sautillé strokes. These phases are
in line with Guettler’s observation that the optimal phase for the force maximum
should be around 53°. All measurements lie between the two extreme cases reported
by Guettler (α = 0° and α = 107°).

Bow force patterns during the rebounds are fitted by forcing the model to pass
through the maximal force in order to obtain a continuity in the two cosine functions
at this point. The resulting parameters are presented in Fig. 5.7. The force
maximum is found to increase with increasing dynamic level. It is interesting to
compare the resulting trends with the velocity amplitude presented above (see Fig.
5.5, left). At 150 bpm it was found that the increase in velocity amplitude was not
as clear as for the slower tempo. In contrast, we can notice that the increase in
force is very clear for rapid sautillé. The values range from around 0.5 N in piano
to more than 3 N in forte. An explanation could be that rapid motions of the bow
constrain the gesture of the player in such a way that he cannot control the velocity
as freely as when the motion is slower. In order to compensate for this constraint
and obtain different dynamic levels, the player is obliged to use bow force and/or
bow-bridge distance as main control parameters. This explanation is supported by
the observed bow-bridge distances. The mean value of the bow-bridge distance (not
shown in the figures) varied with the dynamic level. At 90 bpm, the mean values
were 58, 40 and 29 mm for p, mf and f, and at 150 bpm, they were 53, 30 and 30
mm.

The other parameters give an indication of the value to be used for each con-
dition, but no obvious trends can be deduced. However, the two tempi should be
kept separated. At 150 bpm, the three dynamic levels do not lead to visible dif-
ferences in contact time, asymmetry, and offset. In all three cases, the fits give
about the same values: around 80 ms for the contact time, a bit less than 50 % for
the asymmetry, and not far from 1 for the offset. The relative constancy of these
values can probably be explained by the difficulty in performing such fast bowing
patterns. The player is more concentrated on obtaining the right timing between
the motion of the bow and the rebounds than on an optimal attack of each stroke.
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Figure 5.7: Parameters obtained when fitting the force model to measurements in
sautillé. In each figure, three dynamic levels (p, mf, f ) are presented for a moderate
(90 bpm, left half of panels) and a rapid tempo (150 bpm, right part of panels).
Each statistical representation shows the result of a fit to a sequence of 32 successive
bow strokes at 90 bpm and 64 strokes at 150 bpm: (a) Force maximum, (b) contact
time, (c) asymmetry of the force pattern, and (d) offset of the cosine model.

This difficulty in achieving the right timing can be heard in the performance. Many
rebounds gave rise to noisy attacks.

At 90 bpm, some differences appear in the contact time and the asymmetry
between dynamic levels, which may indicate a more precise control of the rebound
by the player. For example, the variations in asymmetry could be interpreted as
an attempt of controlling the rebound. At piano level, the player may truncate
the landing of the bow in order to avoid a too high bow force, which leads to
asymmetries above 50 %. In contrast, in forte playing an additional action of the
finger may be necessary, resulting in longer contact time after the force maximum
than before and hence to an asymmetry below 45 %.

The parametrization of gesture models leads to typical values for different mu-
sical situations. Some of the parameters are very intuitive, such as the maximal
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Figure 5.8: Sound synthesis of a series of sautillé notes with increasing dynamic
level (p - mf - f ). The bowed-string model is controlled with a gesture model
describing the bow force during string contact and the bow velocity. Parameters
are determined from previous fitting of the model to measurements at the three
dynamic levels.

bow force, the amplitude of the velocity and the contact time, and can be easily
interpreted in terms of the desired sound level. Other parameters (the asymme-
try and the offset) do not really have a gestural significance. They are difficult to
interpret and can be considered as indirectly controlled parameters. However, de-
termination of their values was necessary for feeding the velocity and force models
with complete sets of data, and for obtaining typical values in order to control the
bowed string model.

As an illustration, Fig. 5.8 shows sound synthesis of sautillé performed at 90
bpm at the three dynamic levels. The simulation is performed using the sautillé
model described above with adequate values of the parameters. The force maxi-
mum, contact time, and velocity amplitude were permitted to vary slightly around
their mean values, which can be observed in particular in the force maximum.

However, a simple imitation of the measurements is not the main purpose of the
modelling. If that was the case, a straightforward use of measurements to control
the bowed-string model would be sufficient. The modelling offers the possibility
of playing around with the model parameters, and of going beyond the simple
imitation in order to create new strokes. We will close this section by discussing
the effect of some of the model parameters, and how they can be changed in order
to obtain a variety of different bow strokes.
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Extending the model

The gesture model is described by a few parameters that can be changed in order
to obtain different time evolutions of the bowing parameters. The force maximum
and the velocity amplitude are the basic parameters for obtaining different dynamic
levels, as seen in the measurements above. Variation of the phase between the
rebound and the velocity profile produces different qualities of the sautillé.

The contact time between the bow and the string may be used in order to repro-
duce rebounds at different positions on the bow, because the bouncing frequency
increases with increasing bow position. Sautillé is usually played around the mid-
dle of the bow. Close to the tip, very short rebounds can be obtained, but are
very difficult to control. In contrast, in the lower part of the bow (near the frog),
the weight prevents the bow from bouncing, and rebounds can hardly be obtained
without an active control of the arm.

It is interesting to examine the perceptual effect of the bow force pattern when
the contact time is changed. In Fig. 5.7, measurements gave a mean value around
80 ms, with variations from 60 ms to 100 ms. Running the model with very short
contact times, around and below 20 ms, the string is hardly driven by friction and
the resulting sound is an impact very similar to the striking of the bow stick on the
string (col legno playing). When the contact time was increased above the mean
value, the rebound sounded less and less “natural”, as if the bow was thrown down
and lifted up quickly through the action of the arm. For example, with Fmax = 0.74
N and Vmax = 39 cm/s, the rebound seemed to be controlled above 140 ms and
stopped to sound like a rebound above 200 ms.

The observation that above a given contact time, the generated sound gave
the impression that the bow was “thrown down and lifted up again” reminds us
of Galamian’s description of the spiccato. The sautillé model can consequently be
extrapolated in order to produce spiccato bowing parameters. The contact time
and the maximal force can be set to obtain more or less broad spiccato, as described
by Galamian. The asymmetry can be used as well to change the balance between
the landing and lifting of the bow, producing vowel-like or consonant attacks of the
sound, with different durations of the sustained vibration.

Finally, we could foresee that the imitation of other bouncing bowing patterns
such as ricochet or flying spiccato presents no specific difficulties. In these two
cases, several rebounds are produced during a single bow stroke. The only change
required is to modify the velocity profile.

This section aimed at providing a model describing the time evolution of the
bow force during the rebound of the bow from the string. Two successive cosine
functions were used to allow an accurate reproduction of the force pattern and give
the possibility of controlling the intuitive natural features of the contact. Based on
measurements during real performance, sautillé playing was examined in detail, in
order to obtain model parameters that could be used to produce different dynamic
levels. Finally, the effects of modifying the contact times were explored, which
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indicated a possibility to extend the model to produce variations of bouncing bow
strokes such as spiccato, ricochet and flying spiccato.

Leaving the bouncing bowing patterns, we will now examine short bow strokes
performed with an initial pressure of the bow on the string.

5.3 Fast martelé

The fast martelé (or short martelé, simple martelé, in contrast to the sustained
martelé) is one of the three fundamental types of bow strokes together with détaché
and spiccato, according to Menuhin [56]. It is a fast, accented bow stroke that
requires a good control of the bow for obtaining precise variations of the bow force
and keeping the bow parallel to the bridge despite the rapid motion. Galamian
emphases the fact that a mastery of this bow stroke is beneficial in general for the
bowing technique.

The presentation will follow the same procedure as in the previous section.
First, models will be proposed and discussed for the evolution of bow velocity and
bow force during the stroke. Then, model parameters will be determined by fitting
them to measurements at different dynamic levels. Finally, we will discuss the
extrapolation of the modelling to similar bowing patterns such as solid and flying
staccato.

Description of the bowing pattern

A qualitative description provides some keys to the time evolution of bowing pa-
rameters, especially about the bow force:

“The martelé is decidedly a percussive stroke with consonant type of
sharp accent at the beginning of each note and always a rest between
strokes. The accent in this stroke requires preparation in the form
of a preliminary pressure: the bow has to “pinch” the string before
starting to move. This pinching is a pressure stronger than the stroke
itself will require, and it has to last just long enough to produce the
necessary accentuation at the beginning of the tone. The pressure is
then immediately lessened to the degree required. If this preparatory
pressure is released too soon, there will not be any accent; if it is released
too late, there will be a scratch.” (Galamian [28])

This description is illustrated in Fig. 5.9, which shows measurements of bow
force and bow velocity during the performance of three fast martelé strokes. During
the stroke, the bow force is rapidly decreased from about 1.5 N to less than 0.5 N.
During the intermediate periods of rest, the force is increased to the high initial
value in preparation of the next stroke.
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Figure 5.9: Illustration of fast martelé. Top: Bow force. The periods when the
bow is at rest are shown shaded. Bottom: Bow velocity. The direction of the bow
strokes was down-up-down.

In addition to controlling the timing of the drop in bow force at the beginning of
the stroke, the player must take care at the termination of the note, as the duration
is short:

“When most of the pressure is not released at the termination of the
stroke, the quality of the martelé suffers. (...) The scratchy sound pro-
duced by too much pressure at the instant of stopping or by application
of pressure too early before the next stroke should always be avoided.”
(Galamian [28])

The fast martelé consequently requires an accurate control of the bowing parame-
ters, and the previous description allows to identify the key features of the stroke:
As it is a short stroke, the bow velocity will be composed of an acceleration im-
mediately followed by a deceleration, with no sustained part on the vibration. The
bow force will be characterized by an almost immediate and constant decrease. The
two following sections will provide a quantitative description of these features.

Modelling bow velocity

Fig. 5.10 (left) shows the bow velocity of a series of fast martelé strokes (down
bows) performed at forte level during one recording session. It highlights the high
reproducibility of this class of bow strokes. During the first part of the stroke, the
bow accelerates constantly until a velocity of about 1.1 m/s is reached. Then, the
bow immediately slows down (no constant velocity) until it stops. It can be noticed
that the decreasing part of the velocity pattern is less similar between successive



182 CHAPTER 5. TYPICAL BOWING PATTERNS

bow strokes than the accelerating part. The total duration of the bow stroke varies
between 300 ms and 350 ms.
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Figure 5.10: Model used for fitting the bow velocity patterns of fast martelé. Left:
Successive strokes performed during the same recording session are isolated and
plotted together. The velocity shows an approximate bell-shape profile, with a
high reproducibility. Right: The cos-cos model described for the sautillé is used for
reproducing the time evolution of the velocity.

As these patterns are rather similar to the bow force evolution that was observed
during rebounds of the bow, the same model will be used (cos-cos model). If Tmax

denotes the time position of the velocity maximum, T1 the increasing velocity period
of the pattern and T2 the decreasing velocity period, the velocity is expressed as

V (t) =

{

A1(cos(2πf1(t − Tmax)) + O1) −T1 < t − Tmax < 0

A2(cos(2πf2(t − Tmax)) + O2) 0 < t − Tmax < T2

(5.4)

where

T1 =
arccos(−O1)

2πf1
and T2 =

arccos(−O2)

2πf2
(5.5)

Following the modelling of the bow force during rebound, we will prefer to
control some more intuitive parameters such as the velocity maximum Vmax, the
duration of the bow stroke T , and the asymmetry of the profile T1/T . The ampli-
tudes and the frequencies of the cosine functions are then deduced from

{

A1 = Vmax

1+O1

f1 = 1
2πAT arccos(−O1)

A2 = Vmax

1+O2

f2 = 1
2π(1−A)T arccos(−O2)

(5.6)

The resulting pattern and the parametrization are illustrated in Fig. 5.10, right.
In addition we could be interested in using the acceleration at the beginning and end
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of the stroke as parameters instead of the offsets O1 and O2. These accelerations
can be expressed as

{

a1 = 2πf1A1sin(2πf1T1)

a2 = −2πf2A2sin(2πf2T2)
(5.7)

By setting suitable values for O1 and O2 it is therefore possible to choose val-
ues for a1 and a2 in the intervals [0 1.59Vmax/AT ] and [−1.59Vmax/(1 − A)T 0],
respectively.
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Figure 5.11: Fit of the bow motion for fast martelé using the cos-cos model. Left:
Bow velocity computed from motion capture data and comparison with fitted data.
Right: Bow acceleration measured by the sensors on the bow and comparison with
the derivative of the velocity model in the left panel. Measured data are shown in
grey lines. Fitted data using a non-linear regression algorithm for determining the
parameters are shown in black lines. In this example, mean parameter values were
Vmax = 0.7 m/s, T = 330 ms, A = 0.45, a1 = 6.4 m/s2 and a2 = 2 m/s2.

Measurements were used to determine adequate parameter values. A more
complete illustration of this determination will be given later. For the moment, an
example will be given in order to illustrate the agreement between modelling and
measurements. In Fig. 5.11, left, a non-linear regression algorithm has been used to
fit the velocity model to data measured during performance using motion capture.
The figure shows a good correspondence between measured data and the cos-cos
model. However, the quality of the velocity measurement can be questioned on two
points. First, the velocity deduced from the motion capture system was a bit noisy
due to the time differentiation of the bow position signal. Secondly, the sampling
frequency (250 Hz) may be too low for describing the details of such a short bow
stroke well (for 300 ms, there is less than 100 points for each stroke). The bow
velocity from the motion capture measurements was checked against more precise
data from accelerometers on the bow. Fig. 5.11, right, shows the acceleration signal
together with the time derivative of the fitted velocity patterns in Fig. 5.11, left.
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We can still observe a good correspondence between the data and the fitted model.
In the details we observe two small differences: During down-bows, the second
sine corresponding to the deceleration of the bow seems a bit truncated at the
peak compared to the model, and during up-bows, the deceleration does not follow
the acceleration part directly, and a very short part with constant acceleration
around zero can be observed. As these observations relate to different bowing
directions, involving different gestures, they are probably related to some habits
of the player, more than to a conscious control. Further, it is questionable if such
small fluctuations influence the vibration of the string to such an extent that they
are perceived in the sound. Simulations using real and fitted data did not sound
particularly different.

Modelling bow force
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Figure 5.12: Modelling of the decrease in bow force during fast martelé strokes.
Left: Bow force of successive strokes from the same acquisition are isolated and
plotted together. Right: A short constant part followed by a simple sine is used for
simulating the bow force decrease (dark line). A second sine with higher frequency
is used to reproduce the damped oscillations of the bow due to the sudden relaxation
of the bow force at the beginning of the stroke.

When the bow begins to move in fast martelé, the bow force must be “immedi-
ately lessened to the degree required” according to Galamian, which is illustrated
in Fig. 5.12, left. The time evolutions of bow force of successive strokes are plotted
together, showing a similar overall pattern for the force decrease. Roughly, the force
decreases from more than 1.5 to about 0.3 N in 0.2 s (from 0.05 to 0.25 s). Some
more or less pronounced oscillations around a frequency of 13 Hz can be observed
as well.

The observed decrease in force can be modelled by a sinusoidal decrease. To
enable a control of the time during which the string is “pinched”, we add a constant
part at the beginning. The bow force profile will then be given by
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Fg(t) =

{

Fpinch t ≤ Tpinch
Fpinch−Fmin

2 (1 + cos 2πf1(t − Tpinch)) + Fmin Tpinch < t < T
(5.8)

The force profile and definition of the parameters are show in Fig. 5.12, right.
Fpinch represents the bow force at the beginning of the stroke (i.e. the “pinching” of
the string), Fmin the minimum force at the end of the stroke, and f1 the frequency
of the cosine controlling the decrease (the time between the maximum and the
minimum of the force is 1/2f1).

This modelling provides a good description of the overall shape of the bow force.
In a second step, it would be desirable to take the observed ripples at a frequency
around 13 Hz into account. These ripples are probably due to the response of
the bow when the finger force on the stick is suddenly decreased at the start of
the motion. The control of these oscillations may differ substantially between an
expert player and a less advanced2. Fig. 5.13 shows bow force patterns in fast
martelé performed by an advanced but non-professional player. It is surprising to
observe the magnitude of the oscillations compared to Fig. 5.12 (left) showing a
professional player producing much smoother force patterns.
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Figure 5.13: Illustration of the bow force during fast martelé strokes performed by
an advanced but non-professional violinist. The force shows very strong oscillations
due to lack of control of the vibrations of the bow during the decrease in force.

In order to be able to model different performance skills, the ripple component
needs to be included. The ripples were modelled with a second damped sinusoid
(relaxation time τ) with a higher frequency fosc. The bow force is then given by

2Note that the properties of the bow may obviousy also facilitate the performance of the
stroke.
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F (t) =











Fpinch t ≤ Tpinch

Fg(t) + δFosc[cos(2πfosc(t − Tpinch) + φ)

− cos φ] exp− t−Tpinch

τ Tpinch < t < T

(5.9)

The amplitude of the force ripples is controlled with δFosc and the relaxation
time τ . The phase φ is used as an additional parameter allowing the production of
different types of ripples. For example, for reproducing the ripples observed in Fig.
5.12, left, the phase must be zero. On the other hand, the ripples observed in Fig.
5.13 are better reproduced with φ = −π/2, leading to a more abrupt decrease in
force at the beginning and oscillations greater than the initial force Fpinch.

In the two last sections, we have presented models describing the time evolution
of the bow force and the bow velocity during short martelé strokes. As for the
bouncing strokes, we tried to model them with “intuitive” parameters that are
easily understandable by the user, such as the velocity maximum, the duration of
the stroke, and the “pinching” force at the beginning of the stroke. In the next
sections, we will first determine the values of the model parameters for typical
cases including different dynamic levels, and then we will discuss the extension of
the models for producing related bowing patterns.

Fitting model parameters with measurements

A complete parametrization of the martelé model would require extensive studies
including numerous playing situations. For example, the fast martelé can be played
using different lengths of the bow and at different bow positions.

In the recording sessions reported here, the player was asked to perform martelé
strokes at different dynamic levels (mf -p-f ). Consequently, the player was free to
set the parameters of his gestures at his convenience. For example, he was not
asked to play martelé strokes using half of the bow length at all three dynamic
levels. Naturally, the violinist played the louder dynamic levels with longer bow
strokes, and soft levels were played farther from the frog in order to control the bow
force easier. We will first examine the model parameters for bow velocity, then for
the bow force.

Model parameters for bow velocity

The cos-cos velocity model described before was fitted to measurements of sequences
of 16 bow strokes at each dynamic level using a non-linear regression algorithm. Fig.
5.14 shows the value of the five model parameters: velocity maximum, duration of
the stroke, asymmetry of the velocity profile, and acceleration at the beginning and
end of the stroke. The figures illustrate typical values of the parameters for the
three dynamic levels.
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From a sound synthesis point of view these values are sufficient, and can be used
to control the simulation by producing realistic velocity patterns of the fast martelé
at the different dynamic levels. However, some comments can be made concerning
the parameter values and their trends versus dynamic level. Empirically, we expect
the velocity maximum to be the main parameter varying with the level. The other
parameters can be expected to be kept rather constant, or show no systematic
variation. For example, the duration of the stroke should not interfere with the
dynamic level, as they are two independent musical elements. The musician should
be able to play a very short martelé as well as broader versions at all dynamic
levels.
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Figure 5.14: Parameters obtained when fitting the cos-cos model to the velocity
data in fast martelé strokes. Figures show the parameters obtained from fits of a
sequence of 16 bow strokes at each dynamic (p, mf, f ): (a) velocity maximum, (b)
duration of the stroke, (c) asymmetry of the velocity profile, and (d) accelerations
at the attack and when stopping the bow.

As expected, the velocity maximum increased with increasing dynamic level,
ranging between about 0.5 m/s (piano) and 1.2 m/s (forte) with rather small spread
around the mean values (less than 0.1 m/s). The duration of the bow stroke (see
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Fig. 5.14b), was a bit shorter at piano level compared to the other levels (250 ms
and 330 ms). It should be noted that this result does not simply reflect the task
of successively playing an example at three dynamic levels. During the acquisition
the violinist first played mf, then p, and then f, and not p-mf -f, which could have
explained a progressive lengthening of the bow strokes. Instead, the lower bow
velocity in piano playing allowed for shorter strokes. The martelé is normally played
as short as possible, and it is more difficult to stop the bow properly after having
reached a high velocity. This could be an explanation to the observed differences
in bow stroke duration.

The asymmetry of the velocity profiles (defined as the ratio between the increas-
ing time of the velocity and the total duration of the stroke) was rather constant
with mean values between 0.40 and 0.45 (see Fig. 5.14c). This means that the
first part with increasing velocity was generally shorter than the second part. Note
that decreasing this parameter would give a shorter and more “percussive” attack.
When the bow stroke duration is increased at the same time in order to get a con-
stant time for the velocity increase, the stroke can be made a bit broader with a
longer velocity decrease while keeping the same attack.

In Fig. 5.14d, left, we can observe a strong correlation between the initial
acceleration and the dynamic level, and consequently, also with the maximum bow
velocity. The acceleration varies between 5 m/s2 at piano and 12 m/s2 at forte
level, qualitatively in the same way as the maximum velocity (Fig. 5.14c). As a
confirmation, the ratio between the acceleration and the velocity shows the same
values independent of the dynamic level. The mean value was around 10 at all three
levels, with similar spreads from 2 to 16. As the duration of the velocity increase
remained approximately the same in the three cases (between 100 ms and 150 ms),
this is to be expected.

Model parameters for bow force

The bow force patterns in fast martelé were more difficult to model than the pre-
vious cases for several reasons. First, the bow force during martelé shows a larger
variety of patterns. The models proposed before can only give an approximate
imitation of these patterns, allowing a reproduction of the main features (decaying
trend, oscillations with different amplitudes). Further, the model developed is con-
trolled by a greater number of parameters than, for instance, the velocity pattern
(7 compared to 3), which makes the convergence of the iterative algorithm more
problematic.

An attempt of fitting the data to the model defined by Eqs. 5.8 and 5.9 is
shown in Fig. 5.15. To obtain a convergence of the algorithm, the fit procedure
had to be divided into two steps. First, each force pattern is fitted with the cosine
model Fg(t) describing the force decrease (Eq. 5.8). This first fit is shown in Fig.
5.15, top. Then the difference between the data and Fg(t) is fitted to a damped
oscillation F (t) − Fg(t), where F(t) is defined in Eq. 5.9. This method gives an
easier convergence of the algorithm and a better fit to the data. However, the
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Figure 5.15: Fit of the bow force model to measured data in fast martelé. The
fitting is divided into two steps. Top: The parameters of the simple cosine decrease
Fg(t) are fitted to the data. This gives a first approximation of the force patterns.
Bottom: The difference between the data and Fg(t) is then fitted to the damped
oscillations in Eq. 5.9, giving a better description of the measurements.

resulting force profile does not describe the data in a completely satisfying way, as
shown in Fig. 5.15, bottom.

Instead of using the approximative parameters obtained from such a fit, some
characteristic features describing the data from a more general point of view would
be preferable. The parameters of Fg(t) seem to provide a good description of the
decrease, and may show less variability between players. The “correction” given by
the damped oscillations F (t)−Fg(t) on the other hand, depends on the player and
his bowing ability, as shown in Fig. 5.12 and Fig. 5.13. Besides adding sometimes
strong oscillations to the decrease, the second term (damped oscillations) has a very
small influence on the resulting sound.

Consequently, for our purpose, a simple description may be sufficient, based on
the force maximum and its position at the beginning of the stroke (duration of the
“pinching”), the force minimum, and the time between the maximum and minimum
force (decrease time). These features describe the controlled part of the pattern
and can be used to set the parameters of Fg(t). The martelé parameters are shown
in Fig. 5.16 for the three dynamic levels. The initial force represented by the force
maximum increased with increasing dynamic level, as expected. The mean value
varied from about 0.8 N for piano to 2.7 N for forte. The minimum bow force is
always very low (less than 0.5 N), but a similar increase with dynamic level can be
observed.
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It is interesting to notice that the time during which the string is “pinched” also
increased with dynamic level. For piano, the mean value was zero, which means
that the bow force immediately decreases, or that the force is already decreasing,
when the bow starts to move. For mezzo-forte and forte, the force maximum
occurred after the beginning of the bow stroke, which means that the player keeps
the pressure on the string for a very short time (less than 0.1 s) while the bow is
already moving. The duration of the decrease was approximatively the same for
the three dynamic levels, which is remarkable because the amplitude of the force
variation is very different for the three cases (from 0.8 to 2.4 N).
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Figure 5.16: Parameters obtained by a two-step fit of bow force to measured data in
fast martelé. Left: Maximum and minimum bow force giving a rough description of
the force decrease. The maximum is located near the beginning of the stroke, while
the minimum is normally reached some time before the end. Right: Parameters for
the timing of the stroke. Tpinch is the time between the attack of the stroke and
the maximum bow force, 1/2f1 represents the decrease time (the time between the
maximum and minimum bow force).

In this section, the gesture parameters defined before have been used to de-
scribe measured bow force and velocity patterns of fast martelé strokes played at
three dynamic levels. From this fit, adequate ranges for the values of the model
parameters were obtained, which can be used to control our bowed-string model
for a variety of fast martelé strokes. In the following section, we will see how we
can move away from these standard cases in order to produce related bow strokes.

Extending the model

As in the case of bouncing bowing patterns, the fast martelé model can be used to
imitate other bow strokes which share the principal characteristics, i.e. short bow
strokes beginning from the string. This includes the solid staccato, consisting of
successive quick martelé strokes performed in the same bowing direction, as well



5.3. FAST MARTELÉ 191

as bowing patterns where the bow leaves the string at the end of the stroke (flying
staccato and collé). This section illustrates these bowing patterns and describe how
the velocity and force models can be used to imitate their characteristic features.

Solid staccato

Galamian [28] describes the solid staccato as a

“succession of short, clearly separated, and consonant-articulated strokes
in one bow, performed while the hair of the bow remains in permanent
contact with the string. It is practiced most of the time as a series of
small, successive martelé strokes that follow one another in the same
direction of the bow, either up or down. The bow is set firmly for each
stroke, and the pressure is released after the accent has sounded on each
note.”

This is illustrated in Fig. 5.17, showing the time evolution of the bow velocity,
the bow acceleration and the bow force during a succession of short strokes played
staccato. All notes are performed in the same bowing direction (the bow velocity
is always positive), and each time the bow moves, the bow force decreases, showing
a time evolution similar to the fast martelé.
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Figure 5.17: Example of solid staccato. Successive, very short martelé strokes are
performed in the same bow stroke. Top: Bow velocity. Middle: Bow acceleration.
Bottom: Bow force. Note that the decrease in bow force is less than for the martelé
strokes shown in Fig. 5.15 (from 1 to 0.6 N, approximately).
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The imitation of such a time evolution presents no difficulty. It would only
consist in repeating the gesture model for fast martelé with slightly modified model
parameters.

Flying staccato

The flying staccato is very similar to the solid staccato, and consequently also to
the short martelé. The only difference lies in the ending of the stroke. The flying
staccato “is performed with the same motion as the solid staccato, except that the
pressure is lightened and the bow is permitted and encouraged to leave the string
after each note” (Galamian [28]). This bowing pattern is illustrated in Fig. 5.18,
showing an excerpt of a musical example by Kreisler using flying staccato (indicated
by rectangles). Note that in this example, the flying staccato tends to develop into
something close to the flying spiccato. In the second sequence, the three first notes
are started from the string while the three last notes seem to bounce on the string
like in spiccato.
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Figure 5.18: Musical example showing the use of the flying staccato. Top: Bow
velocity. Middle: Bow acceleration. Bottom: Bow force. Within the rectangles,
several successive short strokes are performed in the same bowing direction. The
bow force is maximum at the beginning of the each short stroke and decreases to
zero at the end of the strokes.

In order to simulate the flying staccato, the model for the martelé stroke is used,
with a force decreasing below zero in order to imitate the release of the bow from
the string. However, the bow force must become positive again and damp the free
oscillation of the string before the start of the next stroke, else it would sound like
a simple spiccato.
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Note that a variation of this stroke can be found in the collé, which is a bowing
pattern starting from the air, but very similar to the martelé: “The bow is placed
on the strings from the air and at the moment of the contact the string is lightly
but sharply pinched. Simultaneously with the pinch, the note is attacked, and after
the instantaneous sounding of the note the bow is immediately slightly lifted off the
string in preparation for the next stroke. The pinch is very similar to the martelé
attack except for the fact that the time of preparation is reduced to a minimum”
(Galamian [28]).

The differences between the bowing patterns described in this section are very
subtle and often the difference is made explicit by the musical context. For exam-
ple, comparing single prototypes of short martelé and solid staccato, no significant
differences in the time evolution of bowing parameters can be observed. However,
the solid staccato has a character which makes it fit in a sequence of similar notes,
whereas the martelé has an individual character and stands out in a sequence of
notes. In the same way, the difference between individual strokes of flying stac-
cato and collé lies more in the preparatory gesture than in actual differences in the
bowing parameters during the stroke.

5.4 Tremolo and fast détaché

Finally, we will briefly examine some rapid bowing patterns such as tremolo and
fast détaché. They both consist of very rapid bow strokes with the bow on the
string from the beginning. In tremolo, the stroke is normally performed as quickly
as possible, whereas the fast détaché is performed at a given tempo. In both cases,
the main control parameter is the bow velocity. The range of the bow force can be
controlled by the player, but the rapid motion does not allow him to control the
force variations in detail, and it can be supposed that these variations are mainly
induced by the motion of the bow. The player’s role consists in applying an overall
force control through the bow grip in order to control the natural response of the
bow, a kind of passive control.

In this section, we will first illustrate the tremolo and fast detaché. Following,
we will make some observations on the time evolution of the bow force at different
bowing positions (close to the frog, the middle and the tip), and propose a simple
modelling of the bowing parameters. Finally, we will discuss the accentuation of
one stroke in a series of bow strokes.

Examples of tremolo and fast detaché

Fig. 5.19 shows two examples of tremolo (Fig. 5.19a) and fast détaché (Fig. 5.19b).
The frequency of the strokes was 8.5 Hz for détaché and 12.8 Hz for tremolo, both
played at the tip at mezzo forte level.

As expected, the bow velocity exhibits an almost sinusoidal pattern describing
the fast to and fro motion of the bow. In both cases, the amplitude of the velocity
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Figure 5.19: Examples of (a) tremolo and (b) fast détaché performed by the same
player at about the same bow position (tip) and dynamic level (mf ). From top:
Bow velocity, bow force and bow-bridge distance. Bow changes are indicated with
dashed lines. The fast détaché was played as 32th notes at about 64 bpm (8.5 Hz)
and the frequency of tremolo was 12.8 Hz.

was around 0.3 m/s. In the fast detaché (Fig. 5.19b) the bow force shows some
interesting patterns with alternating levels around 0.5 N. It can be seen that the
lower level (around 0.4 N) corresponds to down-bows and the higher (0.6 N) to
up-bows. It seems reasonable to assume that the player does not control this
pattern consciously. Because of the asymmetry between down-bows and up-bows
we can assume that the changes in bow force are induced by the bowing gesture
for obtaining a quick motion of the bow. For example, the alternating motion of
the arm when playing the strokes at the tip may induce a force on the forefinger
pressing on the bow stick which varies with the direction of the bow. Such an effect
could explain the resulting step-wise pattern.

This particular pattern could also be observed in tremolo (see Fig. 5.19a). In
that case, the successive steps in force are less clear, probably due to the increase
in frequency that makes the gesture less precise. It can be seen that the bow force
curve is rather flat, but slightly higher during up-bows. Small peaks can be observed
at the bow changes, positive for changes up-bow to down-bow and vice versa.

Another observation can be made, concerning the evolution of the pattern. The
measurement in Fig. 5.19a shows the beginning of a long sequence of tremolo.
The bowing pattern is rather stable between 3.5 and 5.5 s at the end of the series.
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However, at the beginning, it can be seen that the bow force pattern evolves and
takes some time to become stable, probably reflecting a transitory phase in the
response of the bow and an initial adjustment phase during which the player tries
out a suitable combination of bow force and bow-bridge distance for producing the
tremolo at the requested rate and dynamic level.

As mentioned above, it is unrealistic that the player exerts an active control of
the bow force during these rapid bow strokes, with the forefinger pressing on the
stick for each note. The variations in bow force are induced by the bow motion
rather than being actively controlled, which explains why the changes occur at bow
changes. In short, the action of the index finger on the bow stick consists mainly in
(a) setting a global value of the bow force (here, around 0.5 N), and (b) damping
the oscillations of the bow in order to keep the contact with the string.

Observations on bow force

The previous examples of tremolo and fast detaché played at the tip have shown
very specific patterns for bow force. The patterns showed stepwise changes in force
with higher values during up-bows. This is, however, not a general feature of rapid
bow motions. Actually, a variety of force patterns can be found, depending on bow
position, dynamic level and, probably, also on players.

In Fig. 5.20, the dependence of bow force on bow position is illustrated. The
same fast détaché is in turn performed at the middle, tip, and frog. The resulting
bow force shows three different, but regular, patterns. At the frog (Fig. 5.20c), the
force oscillates with a high amplitude (from 0.4 to 1.2 N with a mean value around
0.8 N). The pattern is almost sine-shaped with the lowest force just after the bow
change, and the highest force almost coinciding with the maximum in bow velocity.
The smooth variations of the force could be explained as follows. At the frog, the
player cannot let the full weight of the bow rest on the string, because the resulting
force would be too high. When playing at this bow position, he needs to balance
the gravity component with the bow grip, which gives poor control possibilities for
damping the oscillations of the bow with the index finger. The bow has a first
mode of vibration (“bouncing mode”) around 15 Hz when supported close to the
frog. If some periodical excitations occur in rapid bowing, the resulting bow force
will remind of forced oscillations.

As the bow position is shifted towards the middle and tip, the oscillations in
bow force tend to disappear. At the middle of the bow (Fig. 5.20a), the bow force
is lower and less smooth, showing discontinuities and ripples at the bow changes.
In contrast to what was observed at the frog, local force maxima are now found at
the bow changes, or just after. During each stroke, the bow force decreases with a
damped oscillation.

Finally, at the tip (Fig. 5.20b, described in the previous section), the force
variations resemble a switching between two states, on which an influence of the
oscillating bow velocity seems to be superposed.
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Figure 5.20: Bow velocity and bow force during fast détaché performed at different
bow positions: (a) Middle of bow, (b) tip, and (c) frog. Bow changes are indicated
with dashed lines. The time evolution of the bow force during the strokes is greatly
dependent on bow position, resulting in very different patterns.

It should be noticed that despite this great variety in force patterns during the
strokes, no significant differences could be heard in the resulting sound. Even for
an advanced player, it would be very difficult to guess if a given sound example was
played at the frog, tip or middle of the bow.

Fig. 5.21 illustrates the influence of dynamic level on the bow force patterns.
A tremolo at the tip is played mf, ff, and then pp. It can be noticed that the force
maxima are located at the beginning of the down-bows for pp and mf . In contrast,
during the tremolo performed ff, the situation is inverted and the force maxima are
found at the beginning of the up-bows.

Modelling bowing patterns

The basic modelling of the tremolo and fast detaché is straightforward. It seems
reasonable to model the bow velocity with a sine function whose amplitude will
increase with increasing dynamic level. A first approach for the force would be a
constant (or slowly varying) bow force corresponding to the mean value of the mea-
sured patterns. However, as the details of the bow force patterns vary rather much
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Figure 5.21: Bow velocity and bow force during tremolo performed at the tip at
different dynamic levels: (a) mf, (b) ff and (c) pp. Bow changes are indicated with
dashed lines.

with dynamic level and the bow position, and probably also among players, such a
simplification may be too crude and possibly lead to very monotone simulations.

Instead of modelling each case in detail it is more interesting to find a way of
offering an intuitive control of the action on the bow in rapid strokes. The measured
bow force in Fig. 5.20c, showing a fast détaché performed at the frog, gives an idea
for a solution. The bow force has a very clear sine shape and, as mentioned, it seems
reasonable to consider the bow as a filter between the player’s action (through the
fingers) and the bow force at the contact point with the string.

The mechanical system composed of the bow stick and bow hair can be repre-
sented by a single oscillator with a fundamental frequency fbow, a damping coeffi-
cient rbow, and a mass mbow. The “finger” acts on the mass mbow and the resulting
bow force Fb is given by

Fb = −Ky with ÿ +
rbow

mbow
ẏ + ω2

bowy =
1

mbow
Ffinger (5.10)

The mechanical properties representing the bow vary with the bow position.
For example, the effective mass of the bow mbow decreases from the frog to the tip,
and the spring constant of the deflected bow hair has its lowest value at the middle.
Considering the bow stick as a rigid body supporting a single bow hair with tension
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Tbow, ωbow vary as

ωbow =

√

Tbow

mbow(α)

1

α(1 − α)Lbow

where Lbow is the length of the bow hair, and α the relative bow position xb/Lbow

from the frog. A more accurate relation taking into account the pivoting of the bow
around an axis at the frog and the moment of inertia has been given by Askenfelt
[5].

The damping coefficient rbow can be assumed to include the damping action
of the player’s fingers. Instead of considering a component aiming at controlling
the mechanical reaction of the bow in the force Ffinger, the action of the finger is
divided into two parts: Ffinger represents the only active control applied by the
player and rbow represents the damping of the bow as well as the damping controlled
by the player.

Consequently, the problem of the bow force modelling is transformed into the
problem of determining an empirical control of the fingers on the bow, which pro-
vides a more intuitive way of controlling the stroke. As discussed before, it seems
reasonable to assume a strong correlation between the “active” control of the fingers
and the motion of the bow. Under this assumption, we can draw two conclusions.
First, the control force Ffinger should be nearly periodic at the frequency of the
bow velocity (i.e. it is correlated with the to-and-fro motion of the bow). Secondly,
Ffinger should be different for different bowing positions because the holding of
the bow, and even the bowing gesture, are obviously not the same when playing at
the frog or at the tip. For instance, at the frog, the weight of the bow is entirely
supported by the hand and the motion is obtained by a combined movement of the
wrist and the forearm. In contrast, at the tip the bow can rest on the string and an
additional pressure applied by the index finger on the bow stick is required. The
action of the wrist is almost negligible compared to the movement of the forearm.
The different patterns observed in Fig. 5.20 could therefore be due to the changes
in the action of the finger with bowing position, combined with corresponding vari-
ations of the dynamic response of the bow. Both effects can be described by the
parameters of the simple oscillator.

Precise measurements would be required in order to determine the action of
the player’s fingers on the bow stick and validate these assumptions. However,
empirical considerations will be sufficient for our purpose. In Fig. 5.22 a simulation
including impulses by the player’s finger on the bow just after each bow change is
shown. During one period of the tremolo, the “finger force” consequently shows
two successive steps, the highest at the beginning of the stroke. Some variations in
the mean value of each step are included. The bow force is shown together with the
corresponding Ffinger. In Fig. 5.22a, the mean value of the initial force impulse
is 1.2 N and the following lower step is around 0.8 N. The frequency fbow is set to
13 Hz, the mass mbow is 10 g, and the damping coefficient is set to a rather high
value rbow = 20. The resulting bow force exhibits a time evolution very similar to
the fast détaché at the frog (Fig. 5.20c). The simulated sound, when controlled
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Figure 5.22: Simulations of tremolo using a slightly varying sine shape for the
bow velocity and the controlled oscillator for the bow force. Synthesized sound
(top), bow force with the original “finger force” in grey (middle), and bow velocity
(bottom). The bow-bridge distance was kept constant at β = 0.11. (a) Normal
tremolo obtained by considering a step-wise control of the “bow” with a force
impulse after each bow change. (b) Badly controlled tremolo with a too strong
difference between the two steps in force and a lower damping coefficient of the
bow, producing bouncing of the bow on the string.

with this combination of input parameters, is very convincing, and includes natural
irregularities that would not have been obtained with a constant bow force.

The main interest of the proposed model lies in the intuitive correspondence
between the model parameters and the empirical experience of violin playing. As an
illustration, an uncontrolled (or badly controlled) tremolo was simulated. Starting
from the previous example, the approach is rather straightforward. If the player
gives a too strong impulse after each bow change, and if the mechanical response of
the bow is not well damped, the bow will tend to leave the string and an unwanted
bouncing will be obtained. In Fig. 5.22b, the initial impulse is kept unchanged, but
the following step is very low (around 0.3 N). Further, the damping coefficient rbow

was decreased to 5. The resulting bow force reaches zero during each stroke and
shows some patterns similar to the force patterns during rebounds (Chapt. 5.2).
It is interesting to notice that the resulting synthesis is a .... sautillé. Note that
this transition from a fast détaché or a tremolo to a sautillé is an usual exercise
practiced by violin players.
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Observations on accented notes

We will close this section dealing with fast détaché by describing how quick dynamic
changes such as accentuations are performed by players and can be produced with
the bowed-string model. The previous measurements were concerned with rapid
bow strokes played without dynamic variations from one stroke to another. How-
ever, the player can highlight some notes using accents. For instance, in a group of
sixteenth notes, the first note is often accentuated in order to mark the beat. In a
similar way, accents are sometimes placed on appropriate notes in order to make a
specific rhythm appear in an otherwise monotonous succession of fast notes.

The performance of accents is illustrated in three examples at different dynamic
levels. The level is controlled by all three bowing parameters, but fast changes
in level cannot easily be achieved through variations in bow-bridge distance. Bow
velocity and bow force can be expected to be the main parameters controlling
accented strokes. This is illustrated in Fig. 5.23. Fast détaché was played at the
middle, tip and frog as in Fig. 5.20, with accentuations on every eighth note.

The bow velocity is still kept sine-shaped but the amplitude was increased on
each accented note. Whereas the maximum velocity was always between 0.3 and
0.4 m/s during unaccented, “normal” strokes, it reached more than 0.5 m/s in
the accented notes. The variations in bow force were even more obvious. On
each accented note, a peak in bow force was clearly visible. When played at the
middle of the bow, these peaks reached 1.5 N compared to an average value around
0.5 N during non-accented strokes. Moreover, the force maxima coincided with
the velocity maxima, which indicates a fundamental difference compared to other
dynamical bow strokes such as fast martelé. In the martelé, the maximum force was
concentrated to the very beginning of the stroke to obtain an initial “consonant”.
In the case of accentuations, the variations in bow force and velocity are strongly
correlated in order to obtain strong variations in sound level, and no particular
articulation or noise between the strokes. In that sense, the accentuation in fast
détaché is very close to a sforzando as described by Askenfelt [4].

It should also be noticed that the local variations in bow force are not exactly
concentrated to the accents, they affect at least the stroke before and the stroke
after. This is particularly obvious when comparing the fast détaché at the tip in
Fig. 5.20b and the accented version in Fig. 5.23b. In the normal case, the steps
in bow force are always flat, slightly varying around a mean value, whereas in the
accentuated case, the last stroke before the accentuation shows a strong increase
at the very end of the note, and a decrease during the two following notes. The
same behaviour in force could also be observed at the middle of the bow (Fig.
5.23a), and at the frog (Fig. 5.23c). In all three cases, the patterns observed in
fast détaché without accents (Fig. 5.20) are still recognizable (for instance, at the
tip, it is interesting to observe the same discontinuities at the bow changes), but
the time evolution seems to follow a rather broad envelope including the adjacent
notes.

This last observation leads to a straightforward way of simulating accentuations,
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Figure 5.23: Measurements of bow velocity (top) and bow force (bottom) during
tremolo performed at the same bow positions as in Fig. 5.20. The first note in
each group of eight is accented showing local variations in bow velocity and bow
force. The notes are played at (a) the middle, (b) tip, and (c) frog. Bow changes
are indicated with dashed lines.

illustrated in Fig. 5.24. The original bow force is simply added to a sine-shaped
envelope, whose maximum is located at the middle of the stroke (grey line in Fig.
5.24, right). The resulting bow force pattern is very similar to the time evolution
of the force observed in Fig. 5.23b. The bow velocity should be modified as well
during the accented note. In Fig. 5.25, the described modification of bow force
is applied around the accented note, and the velocity of the accented stroke is
multiplied by 1.8.

This section has dealt with rapid repetitive bowing patterns played with the
bow in permanent contact with the string such as tremolo and fast détaché. Mea-
surements have been presented and analyzed, illustrating different performance
conditions (sound level and bow position). As expected, the bow velocity exhibited
a regular sine-shaped pattern describing the to-and-fro motion of the bow. Inter-
estingly, the bow force was found to have different time evolutions depending on
the bow position and the dynamic level, but nearly periodical patterns could be
observed in all cases. It was assumed that the details in the bow force cannot be
controlled by the player for each note, which led to a modelling including three
components: (1) the dynamic properties of the bow, represented by a simple os-
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Figure 5.24: Accentuation applied to measurements by adding a sine-shaped enve-
lope to the bow force. Left: Original bow force during fast détaché played at the
tip. Right: The same data when modified by adding the envelope (in grey).

cillator with frequency fbow, (2) the “active control” exerted by the player on the
bow, and (3) a control of the bouncing resonances of the bow, represented by a
damping coefficient in the oscillator model. This empirical modelling provides the
means for producing different time evolution of the bow force, giving realistic simu-
lations of the rapid bow strokes in tremolo and fast detaché. In the last section, the
performance of accentuations of one note in a rapid sequence was analyzed, and a
simple rule for producing accented notes, based on a local modification of the bow
force and the bow velocity patterns, was presented.

5.5 Conclusion

We have examined a number of important bowing patterns in this chapter, dealing
with the bouncing bow strokes sautillé and spiccato, followed by fast martelé, and
fast détaché, which are played with the bow in continuous contact with the string.
These bowing patterns provide representative illustrations of the violin technique.
After including the sustained bowing patterns like détaché, which will be tackled
in the next chapter, every standard bowing pattern can be reduced to one of these
classes, with very small deviations. For instance, the modelling proposed for the
sautillé can be used to produce adequate control parameters representing bouncing
bow strokes such as spiccato and ricochet. The short martelé shows no principal
control differences compared to a solid staccato, and appropriate model parameters
can give a flying staccato as well.

For each of the classes described above, we have presented representative bow-
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Figure 5.25: Modification of a fast détaché in order to obtain an accentuation on
one of the notes. From top: Bow velocity, bow force and the resulting bridge
force. Left: Original data from measurements (without accents). Right: Simulated
accentuation obtained by adding a sine-shaped envelop to the bow force (amplitude
0.55 N) and multiplying the bow velocity by 1.8.

ing parameters, measured during real performance. From analyses of the mea-
surements, we have empirically deduced simple models that reproduce the time
evolution of the bowing parameters well. Following, model parameters have been
deduced for typical performance situations by fitting the measurements to the mod-
els. We have also discussed the extrapolation of the models in order to obtain other
bowing patterns.

With the adequate parametrization, the gesture models produce very satisfy-
ing sound synthesis, when used to control the bowed-string model. Special care
was taken to obtain an intuitive parametrization of the models. We wanted the
model parameters to be relevant and as understandable as possible from a string
player’s point of view. For instance, bow force patterns during the rebounds were
parametrized by the contact time between the string and bow, and the maximal
force. For tremolo, bow force was deduced from the finger action by the player
on the bow, which is much easier to describe qualitatively than the contact force
between the string and the bow. In the design of the models, choices were made in
order to permit extrapolation to related types of bow strokes by simply modifying
relevant parameters.

The three classes of bowing patterns described in this chapter show subtle dif-
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ferences in the control of the bow force which requires different types of modelling.
For bouncing bow strokes, the force is essentially dependent on the dynamic prop-
erties of the bow, and the player has only limited control. The player can choose
the relevant bouncing position on the bow in order to obtain the desired bouncing
frequency, or he can give an impulse to throw the bow down on the string and lift
it up again, as discussed in Sect. 5.2. However, under these conditions, he has
no control on the specific force pattern obtained during the short moment of the
rebound and consequently, on the effective contact with the string. Concerning the
martelé, the specific shape of the bow force results from an active and constant
control of the bow during the stroke, combined with the dynamic response of the
bow. The action of the player consists in making the desired overall decrease of the
force and in mastering the damping of the oscillations of the bow. The model was
consequently composed of an active part describing the global shape of the force,
combined with damped oscillations describing unwanted, more or less controlled
vibrations. Finally, the tremolo illustrated another sort of uncontrolled patterns.
In that case, the motion of the bow is very quick and the player cannot control the
bow-string contact in detail. The force control aims at keeping an average level
of the bow force, and the characteristic patterns observed in Sect. 5.4 are mainly
due to an interaction between the arm movement and the holding of the bow. This
interaction influences the action of the fingers on the bow, which works in com-
bination with the bow resonances to modulate the bow force. For that case, we
preferred a pseudo-mechanical modelling to describe the bow-string interaction.

We should underline that this mechanical modelling of the bow could have been
used in all three cases. Actually, at the end of Sect. 5.4, we have seen that an
adequate control of the “finger force” could produce a sautillé with the same force
model as for the tremolo. In a similar way, the time evolution of the bow force
during martelé strokes could have been produced by considering a specific shape of
the “finger force”, such as a constant force followed by a sudden decrease. However,
for each bowing pattern, we have chosen the modelling method that seemed most
natural and easy to work with. For example, the parameters of the tremolo model
are not easy to set in order to obtain the sautillé. Obtaining another contact time,
for example, is not straightforward when changing the tremolo parameters. In
contrast, with the modelling of the bouncing bowing patterns, such changes of the
sautillé are straightforward.

The models described in this chapter can be considered as basic bricks of a
musical discourse. The model parameters for each bow stroke provide a faithful
description of isolated strokes, and could be used to analyse a musical performance.
So far, they are the only patterns that the bowed-string model has learnt to perform,
as if it was practicing scales. The choice of the parameters to be used for each note
during a musical performance, i.e. the time evolution of the model parameters, will
create the relation between individual strokes and the musical context, making the
music appear.



Chapter 6

Observations on sustained bowing

patterns

This last chapter presents measurements and observations on sustained bowing
patterns, in particular détaché. This large class of bow strokes presents a spe-
cific difficulty for our purpose of controlling the bowed-string model with simple
high-level parameters. Whereas the time evolution of bowing parameters during
short bow strokes can be efficiently modelled as seen in the previous chapter, the
same approach applied to sustained bowing patterns would lead to very stereotypic
and non-expressive performances. The continuous control of the sound allows con-
tinuous variations in expressivity and musical intention, and consequently almost
infinite possible variations of the control parameters. Any type of control which
not interact in real time with the model will consequently restrict the expressive
capabilities.

The difficulties in controlling sustained notes have resulted in that the purpose of
this chapter will be more modest. The chapter aims at providing a global description
of the use of bowing parameters in sustained bowing patterns and some features
that are typical of basic musical tasks, such as scales and repeated notes.

As a first approximation, a détaché can be viewed as a bow stroke with con-
stant, or slowly varying, bowing parameters. Such a basic control leads to very
artificial sounds that hardly can be recognized as violin tones. In contrast, when
real measurements are used for controlling the bowed-string model, it sounds like
a violin. From this simple observation, we can conclude that the characteristics of
the details of the bowing gesture are of primary concern in the identification of the
stroke and for the judgement of the realism of the sound. This view applies even if
all low-level variations in the bowing parameters cannot be attributed to conscious
actions by the player, but originate from the mechanical properties of the bow and
string in combination with some unstableness in the player’s bow control.

All bowing gestures are dependent on the limitations of the human motor control
in the interaction with the instrument. For instance, in order to keep a constant
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bow force the player has to progressively vary the pressure of the fingers on the
bow stick as the bow moves, which produces inevitable, small variations in the bow
force. A first step in the modelling of sustained bow strokes should consequently
provide a description of such features.

In the first section we will present measurements of the bowing parameters in
basic détaché strokes. In the following sections, these measurements will be used
as a database of realistic input parameters for controlling the bowed-string model.
The reference strokes in the database can be modified, or interpolated, in order to
adapt the bowing parameters to various conditions, such as a different durations
or dynamic levels. The change of bowing direction (“bow change”) constitutes a
playing gesture of particular importance, and requires a separate study, presented
in the last section.

Two kinds of applications of the results can be expected. Combined with studies
of performance expressivity and rule-based performance systems, they could pro-
vide some keys for the development of automatic generation of control parameters
for violin synthesis, based on the score information. However, this would require a
more complete study than the basic observations that are reported here. In par-
ticular, it should include analysis of bowing parameters and high-level descriptors
such as the dynamics and tonal quality in a chosen set of musical examples. An
application closer to our field of research could be foreseen where the current results
could be used for incorporating violin-like control features in a system for continu-
ous control of the bowed-string model. For example, the two basic control systems
mentioned before (midi wind controller and graphical tablet) allow real-time, con-
tinuous control of the three main bowing parameters. However, a bowing gesture
like a bow change will be difficult to imitate in detail and the interfaces will not
be able to reproduce important features of the gesture. Consequently, when an
event is recognized as a bow change by the control interface, it could be interesting
to include some informed small variations in the bowing parameters on top of the
modelled gesture for a bow change. In this way a more realistic control of the bow
change is obtained, including low-level variations in the bowing parameters which
change from time to time, at the same time as the global characteristics of the
control gesture are preserved.

6.1 Playing détaché

Drawing the bow in a continuous stroke across the string is the most basic way
of playing bowed string instruments. The player will face a variety of situations
during the performance where such strokes need to be mastered. Depending on
the musical context, sustained notes of different duration should be combined or
interleaved with accented notes and bouncing bowing patterns. For instance, one
of the most arduous challenges consists in alterning fast and slow bow strokes while
keeping the same sound quality. Consequently, a basic training of advanced players
consists in playing scales with increasing bow velocities at the same dynamic level,
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which is achieved by increasing the tempo while using the same length of the bow
(the whole bow, or one third, for instance).

In most cases, a large variety of bowing patterns are possible for performing
the notes and musical intentions given in the score. The choice is dependent on
the level of the player’s bowing technique, among other things. In this section we
will focus on some standard situations of particular importance. First, we present
measurements of a technical exercise consisting in playing détaché strokes with
the whole bow and increasing bow velocity. Following, the problem of obtaining
different dynamic levels will be analyzed, and, finally, we will discuss the use of
measured bowing parameters for controlling synthesis of sustained notes with the
bowed-string model.

Playing with different bow velocities

In a first experiment, a violinist was asked to play simple détaché strokes with the
whole bow (from the frog to the tip) for different note durations (whole notes, half
notes, quarter notes and eighth notes). There was no special instruction about
the dynamic level or the bow force. The violinist should feel comfortable when
playing, and was consequently let free to perform them in the most appropriate
way according to his own preferences. The resulting acquisitions permit us to have
a closer look on standard détaché strokes at different bow velocities.

The bowing parameters (bow velocity, bow position, bow force and bow-bridge
distance) are presented together with the recorded sound in Fig. 6.1 and Fig. 6.2
for the different durations. Note that, in Fig. 6.1a, the bow is used very close to the
tip where the bow force sensor is not very sensitive. The strong variations observed
at the tip could consequently be an artefact of the measurement method.

Overall description of the bowing parameters

Because the player uses about the same length of the bow in the four cases, the
mean value of the bow velocity increases with decreasing note duration. For the
whole notes, the bow moves rather slowly (about 12 cm/s), while much higher bow
velocities are reached for eighth notes (mean value 65 cm/s, highest values around
100 cm/s). For intermediate durations, the bow velocity is around 22 cm/s (half
notes) and 54 cm/s (quarter notes). The bow force increased much less, from 0.4
N for whole notes to 0.8 N for eighth notes, with intermediate values of 0.5 N
(half notes) and 0.6 N (quarter notes). Concerning bow-bridge distance, no clear
tendency could be observed. The mean values were between 25 and 40 mm, with
a very slight increase from whole notes to quarter notes. It is interesting to notice
that the bow-bridge distance tends to increase at the bow changes, which produce
local peaks in bow-bridge distance (amplitude between 6 and 10 mm). This feature
is especially prominent for whole notes and half notes (Fig. 6.1), whereas for eighth
notes, the bow-bridge distance is much more stable (Fig. 6.2b).
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As mentioned before, no special instruction was given concerning the dynamic
level, and consequently a variation in the amplitude of the sound with duration
could be observed. The amplitude was low for the whole notes and increased sig-
nificantly for quarter notes and eighth notes, following the increase in bow velocity.
The resulting variation of the sound level reached 11 dB. These measurements have
a special interest for our purpose. They can be considered as the most natural way
of performing detaché strokes at a given bow velocity, giving a reference for the
sound level and typical variations of the bowing parameters. Starting from these
data, it should be possible to extrapolate the bowing parameters and obtain other
levels and sound qualities.

On the bow force

In Fig. 6.1 and Fig. 6.2, rather strong variations in the bow force around their mean
values can be observed. The bow force is far from being constant and, in particular,
an overall increase during each down-up bow cycle could be noted, sometimes with
a small gap at bow changes near the tip (see for instance Fig. 6.1b or Fig. 6.2a).
The bow force increases during up-bows when the bow position approaches the
frog, and drops suddenly before starting the next stroke.

Oscillations with a rather large amplitude (peak to peak value around 0.3 N) can
be observed when bowing near the frog, and especially just after the bow change.
Note that these oscillations increase with the bow velocity. They are very small
for whole notes (Fig. 6.1a) and clearly visible for eighth notes (Fig. 6.2b). The
oscillations are most probably due to the resonances of the bow, which are more
easily excited when the motion is faster, and the acceleration higher at the bow
changes. The bow resonances are damped by the player’s grip of the bow, with the
index finger resting on the stick. In this case the durations of the notes are so long
that the player has time to adjust the damping for each note, but a less efficient
control of the damping is expected when the motion is faster. The observed force
oscillations can be viewed as footprints of the bow, which adds a ripple to the slowly
varying control component of the bow force set by the player.

Consequently, a constant or slowly varying approximation of the bow force in
the modelling of detaché strokes seems a little too coarse. The force exhibits some
characteristic variations that are clearly identifiable and should be reproduced to
imitate typical features of the bow force control.

On the bow velocity

The major change in bow velocity with decreasing note duration has been mentioned
above: the mean value increased with decreasing duration, as expected from the
“constant-length-of-bow” instruction. However, the bow velocity was not constant
during each stroke but accelerated gradually, which is especially visible for quarter
notes and eighth notes (Fig. 6.2). This acceleration is slightly larger during down-
bows. For quarter notes (Fig. 6.2a) the mean value of the maximal velocity during
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(b) Half notes
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Figure 6.1: Recorded sound and measured bowing parameters (from top: bow
velocity, bow position, bow force and bow-bridge distance) for detaché strokes: (a)
whole notes, and (b) half notes played with the whole bow.
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(b) Eighth notes
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Figure 6.2: Recorded sound and measured bowing parameters (from top: bow
velocity, bow position, bow force and bow-bridge distance) for detaché strokes: (a)
quarter notes and (b) eighth notes played with the whole bow.
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Figure 6.3: Illustration of the similarity between velocity patterns for notes with
different durations. Velocity patterns are stretched in order to get the target du-
ration and then multiplied by a factor corresponding to the ratio between the two
mean velocities. (a) Quarter note modified to get a half note. (b) Eighth note
modified to get a quarter note. Measurements of the target duration are shown
in grey and the modified patterns in black. The two curves are very similar and
the interpolation possibility will be used later for creating bow strokes with any
duration from the reference patterns.

each stroke was 77 cm/s for down-bows and 68 cm/s for up-bows. The maximal
values were reached at 84 % of the stroke duration for down-bows and at 72 % for
up-bows. Consequently, the patterns during up-bows are generally more rounded
than the patterns during down-bows.

The bow velocity patterns share another property that can be seen in the mea-
surements. The acceleration of the bow during the sustained part of the stroke
increases with the mean value of the velocity. For half notes, the variation in ve-
locity during the strokes is about 15 cm/s for a mean value of 22 cm/s, whereas for
eighth notes, the variation is about 40-50 cm/s around a mean value of 65 cm/s.
This observation will make the interpolation of velocities between notes with dif-
ferent durations easier. For instance, the velocity pattern of eighth notes can be
stretched to the duration of a quarter note, and then modified in amplitude in order
to get the desired mean value (by multiplying it with a factor 54/65 in this case).
The obtained velocity patterns are very similar to the patterns of measured quarter
notes, as seen in Fig. 6.3b. Consequently, this property will be very useful when
interpolating between notes for the synthesis.
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Playing various dynamic levels

In Chapt. 3.4, we have illustrated the influence of bowing parameters on the vibra-
tion level. The bowed-string model was controlled with constant parameters, and
the vibration was analyzed and plotted in Schelleng diagrams. These results show
how much the dynamic level can be changed, but many combinations of bowing
parameters can produce the same sound level, and a multitude of paths in the pa-
rameter space could be imagined in order to change the dynamics. The next step
consequently requires a description of what the player really does when changing
the dynamic level. The following experiments will illustrate some possible strate-
gies. We will first examine how different dynamic levels for similar bow strokes
are obtained, then the case of continuous changes in level during crescendo and
diminuendo will be analyzed.

Détaché at different dynamic levels

Whole notes (duration 4 s) were played detaché at three dynamic levels (pp, mf and
ff ) with the whole bow (see Figs. 6.4 and 6.5). The bow velocity was very similar
in all cases, around 13 cm/s, and the different dynamic levels were obtained almost
entirely by varying the bow-bridge distance. Changes in dynamic level are usually
obtained by changing the bow velocity as well. But changes in velocity are often
limited by musical constraints such as the necessity to “save bow” for long notes,
and the difficulty in playing with very high bow velocities, or too low. In earlier
measurements [4] in which the player was free to vary all three bowing parameters,
no marked change in bow velocity with dynamic level was observed. In the present
experiment, it was consequently decided to force the player to use the same bow
velocity in order to focus on the variation of the two other bowing parameters.

On average, the sound level increased by 6.1 dB from mf (Fig. 6.4b) to ff (Fig.
6.4a) and decreased by 6.9 dB from mf to pp (Fig. 6.5). In order to study the
corresponding variation of bowing parameters, the bow-bridge distance and the
bow force were averaged across the duration of the measurements (5 s to 25 s in
Fig. 6.4 and Fig. 6.5). The average bow-bridge distance was reduced from 52 mm
for pp to 25 and 19 mm for mf and ff (β = 0.16, 0.07 and 0.04). Simultaneously,
the average bow force was increased from 0.17 to 0.47 and 1.15 N. Perceptually, an
increase in bow force is an efficient tool for raising the dynamic level, as the relative
proportion of strong higher partials is increased. This effect, reflected in the value
of the spectral centroid, contributes significantly to the impression of “brilliance”
which is characteristic of loud dynamic levels in all musical instruments. Besides
this effect, an increase in bow force is required for maintaining stable Helmholtz
motion as the bow velocity is increased and the bow-bridge distance decreased for
increasing the dynamic level. This requirement will be discussed below.

As the three acquisitions were performed with approximately the same bow ve-
locity (13 cm/s on average), it can be interesting to visualize the measurements
in a corresponding Schelleng diagram. In Chapt. 3, the string vibrations were
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(b) mezzo forte (mf)
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Figure 6.4: Measurement of bowing parameters for whole notes played with the
whole bow at different dynamic levels. From top: sound, bow velocity, bow force
and bow-bridge distance. (a) fortissimo. (b) mezzo-forte.
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(c) pianissimo (pp)
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Figure 6.5: Measurement of bowing parameters for whole notes played with the
whole bow at different dynamic levels (continued). Pianissimo

simulated for various bow-bridge distances and bow forces, and the vibration level
was computed and plotted in Schelleng diagrams. For comparison, Fig. 6.6 shows
the current measurements at the three dynamic levels plotted on top of a Schel-
leng diagram representing simulated vibration levels for a bow velocity of 10 cm/s,
approximately corresponding to the velocity during measurements.

Three separated regions, used to perform the three dynamic levels, are clearly
identified. Their average positions seem to lie on a straight line, indicating a linear
variation of the force with bow position on a logarithmic scale. In Fig. 6.6, the
best fit for a line passing through the three regions is given by1

log Fb = −1.34 log β − 4.215 (6.1)

or

Fb = 0.0148β−1.34 (6.2)

The corresponding regression line is included in Fig. 6.6. The slope of the
fitted line on a logarithmic scale is -1.34, which should be compared with the slopes
of the maximum and minimum bow force, which according to Schelleng are -1

1In the following log means the natural logarithm.
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Figure 6.6: Visualization of the combinations of bow-bridge distance and bow force
measured for detaché strokes played at three dynamic levels (pp, mf and ff ) in a
Schelleng diagram. The diagram shows the vibration level in simulations (in color)
as a function of bow-bridge distance and bow force for a bow velocity (10 cm/s),
which is close to the average velocity in the measurements (13 cm/s). The regions
defined by the different dynamics lie on a straight line with a slope of -1.23 (black
line). If the line is forced to go through the origin of Schelleng diagam the slope is
-1.29 (red dashed line).

and -2, respectively. With Eq. 6.1 we can obtain intermediate dynamic levels by
interpolating between the measured levels.

The interpolation depends on the bow velocity, and it would be interesting to
find an empirical way of changing the dynamic level for any value of bow velocity.
The most straightforward solution consists in expressing the bow force relative to
the reference force described in Chapt. 3, given by the force at the intersection
between the minimal force and the maximal force (Fref = 8Rvb/(µs − µd)). By
observing that the interpolation line found above goes very close to this reference
value (log Fref = 4.76 and Eq. 6.1 gives log Fb = 4.54 for βref = Z/4R), we can
find a similar interpolation line passing through the reference force

log Fb = −1.39 log β − 4.35 (6.3)

The slope is now -1.39 and the corresponding line (shown in Fig. 6.6) is very
close to the originally fitted line. Note that, if only the bow-bridge distance was
changed while keeping the bow force constant, the variations could endanger the
Helmholtz motion. For instance, the average value of the bow force for pp is very
close to the minimum bow force corresponding to the bow-bridge distance used for
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Figure 6.7: Relative sound level of the measured detaché strokes plotted as function
of the bow-bridge distance. The reference level (0 dB) is the average level at
mf . The regions corresponding to the three dynamics (pp, mf and ff ) lie on a
straight line (full black line). Vibration levels interpolated in Schelleng diagrams
obtained with simulations (see Chapt. 3) show a very good aggrement with the
measurements. Line with circles: Interpolation in the Schelleng diagram for 10
cm/s. Line with squares: Interpolation for 20 cm/s.

ff. In a similar way, the bow force used for ff is above the maximal bow force for
the bow-bridge distance used in pp. The interpolations obtained with Eq. 6.3 will
always be in the middle range of the Schelleng diagram, and this result will be used
later for safely changing the sound level of a given bowing pattern.

The relation between the sound level and the bowing parameters is still lacking
in the preceding description. Fig. 6.7 shows the variation of the sound level as
function of the bow-bridge distance (in log scale). Again, the three regions corre-
sponding to the three dynamic levels are separated and located on a straight line.
The fitted line through the three regions, shown in Fig. 6.7, gives the approximate
change in the sound level Ldb with bow-bridge distance β

Ldb ∝ −8.5 log β (6.4)

It is surprising to observe how close the level variations obtained with simu-
lations are to the measured variations. For instance, if the average bow-bridge
distance and the average bow force for the three measured dynamic levels are used
to interpolate levels in simulated Schelleng diagrams for a velocity of 10 cm/s, the
resulting variations compared to mf are +7.1 dB for ff and -7.7 dB for pp. These
values are plotted in Fig. 6.7 for the corresponding bow-bridge distances (line with
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circles). The deviation compared to the fitted line (black) is very small but the
average bow velocity is somewhat higher than 10 cm/s, which could explain the
deviation. As a comparison, if the same interpolation is done for the corresponding
diagram at 20 cm/s, the level differences are now +6.1 for ff and -6.9 for pp, (line
with squares in Fig. 6.7) which is even closer to the measured levels.

Crescendo and diminuendo

In the previous experiment, we focused on the variation of the bow position and the
bow force for changing the dynamic level of sustained notes, and the bow velocity
was assumed to be constant. However, during notes with continuous variations in
dynamics (crescendo or diminuendo), players usually change the bow velocity dur-
ing the duration of the stroke in combination with changes in bow-bridge distance
in order to attain a wider range in dynamic level. This adds a third parameter to
the strategies for obtaining a desired sound level, and the examination of level vari-
ations with bowing parameters in real performance becomes less straightforward.

In this experiment the player performed two versions of repeated crescendo-
diminuendo. In the two cases, the crescendo was played down-bow and the following
diminuendo, up-bow. In a first version, the duration of the notes was rather long
(around 5 s), and in a second version, shorter notes were used (around 3 s). Due to
the necessity of saving bow for long bow strokes, the variations in bow velocity were
significantly lower in the first version than in the second. This difference allowed an
analysis of two ways of changing the sound level, with and without predominating
variations in bow velocity. The first version will be denoted “without velocity” in
the following, and the second version “with velocity”.

Bowing parameters measured during the experiments are shown in Fig. 6.8. As
expected, the experiment “without velocity” (Fig. 6.8a) shows small variations in
the bow velocity, compared to the experiment with shorter notes (Fig. 6.8b). In
the first case, the velocity varies from 10 cm/s at the beginning of the crescendo
to 20 cm/s at the end, whereas in the second case, the velocity varies from 10 to
50 cm/s. It can also be seen that the dynamic span is slightly lower in the first
case (27 dB compared to 31 dB), mainly because the maximal level is higher in the
experiment with higher velocities. In Fig. 6.8a, the sound level hardly reaches -20
dB, while in Fig. 6.8b, the level goes higher, with a maximum around -15 dB.

In both cases, the bow-bridge distance was decreased with increasing velocity,
and the bow force was increased at the same time. In “without velocity”, the
bow was slightly closer to the bridge (14 mm) at the maximal level than in “with
velocity” (18 mm). In contrast, the variations in bow force were clearly smaller in
Fig. 6.8a than in Fig. 6.8b. In the second case “with velocity”, the force reached
more than 2 N and sometimes 2.5 N, whereas in the first case “without velocity” it
hardly reached 1.8 N.

Because of the variations in bow velocity, it is not possible to examine the rela-
tive variations of the bow-bridge distance and bow force in Schelleng diagrams, as
in the previous section. However, we can use the relative force (Fb/Fref (vb)) plot-
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Figure 6.8: Sound and measured bowing parameters for two versions of crescendo
- diminuendo played down-bow - up-bow. From top: Sound, sound level, bow
velocity, bow force and bow-bridge distance. (a) Dynamic variations for notes with
long duration (5 s), showing very small variations in bow velocity. (b) Dynamic
variations for shorter notes (3 s) showing larger variations in bow velocity.
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Figure 6.9: Overall variation of bowing parameters during the crescendo - dimin-
uendo in a relative Schelleng diagram, allowing a representation of bow force and
bow-bridge distance in the same diagram for any bow velocity (see text). Minimum
and maximum force limits are represented with straight lines. The trajectory of
the measurements are plotted with dots for the version with long notes (“without
velocity”) and with stars for the short notes (“with velocity”). The full black line
is the fit for sustained sounds at different dynamics (see previous Section), and the
dashed line is a better fit with a slightly different slope (-1.32 instead of -1.39).

ted in the relative Schelleng diagram defined in Chapt. 3. In this representation,
the maximum and the minimum bow force do not depend on bow velocity, and the
trajectories can be made independant of the bow velocity2. This is illustrated in
Fig. 6.9, in which the minimum and maximum bow force limits are represented
with straight lines, and the bowing parameters (relative bow force and bow posi-
tion) measured during crescendo and diminuendo are plotted. This representation
allows a check of that the bowing parameters remain in the Helmholtz region, at
a safe distance from both the minimum and maximum bow force. Moreover, it is
interesting to notice that, in this representation, the bow force and the bow-bridge
distance follow the same path, which would not be the case in a normal Schelleng
diagram. A deviation between the two would be observed if the bow-bridge distance
decreased due to the increase in bow velocity.

This result should be compared with the variations that were obtained for sus-
tained notes at different dynamic levels in the previous section. In that case, we
found a straight line passing through the three regions (ff, mf and pp) and the force

2Note that the bow-bridge distance also could be normalized with βref in order to obtain a
diagram whose limits do not depend on the string properties. In the following, only the force is
normalized as we focus on only one note.
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Figure 6.10: Representation of the variations of the sound level versus vb/β during
the crescendo - diminuendo for the two experiments (“with velocity”, stars, and
“without velocity”, dots). A good fit is obtained with L ∝ 7.7 log(vb/β) (black
line). The theoretical variation L ∝ 8.7 log(vb/β) is shown in dashed line.

reference (log(Fb/Fref ) = −1.39 log(β/βref )). This interpolation is shown in Fig.
6.9, black line. We can notice that this interpolation is in good agreement with the
bowing parameters measured during the crescendo and diminuendo, even if a better
fit could be found (dashed black line). Sustained notes and crescendo - diminuendo
are rather different tasks, but this agreement seems to reflect a consistency in the
player’s choice of bowing parameters at different dynamic levels. The Schelleng
limits suggest a “natural” way to follow in the determination of the bow-bridge
distance when a given variation in dynamic level is required within a given span of
bow velocity.

The previous description provides a way of determining the bow force from the
bow-bridge distance and the bow velocity. A next step would consist in describing
the variation of the sound level as function of the bowing parameters. The main
parameters which set the dynamic level are the bow velocity and bow-bridge dis-
tance, the evolution of the vibration level being theoretically proportional to vb/β,
as described in Chapt. 3. Consequently, the most straightforward way of analysing
the measurements consists in plotting the sound level against this ratio. This is
illustrated in Fig. 6.10 which shows the data measured during the two experiments.
In the first case, the predominating variable in the ratio is the bow-bridge distance,
whereas in the second case, both the velocity and the bow-bridge distance partici-
pate to the variation of vb/β. As seen in Fig. 6.10, the variation of the level with
this ratio is rather linear, defining a diagonal region with a width of about 5 dB.
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In simulations, a contribution of about 1.8 dB per log force unit was found, which,
combined with the overall range of the force (2 log units) is in agreement with the
observed variation range. A good fit of the variation is obtained with a line whose
slope is 7.6 dB per log unit.

This result can be compared with the theoretical variation of the vibration level
in the Helmholtz description (i.e. no influence of the bow force). With L ∝ vb/β,
we obtain LdB ∝ 20 log(vb/β)/ log 10 = 8.7 log(vb/β). The theoretical slope is then
greater than the observed one, but the deviation is not very strong on the range we
are interested in, compared to the dispersion of the data (see dashed line in Fig.
6.10).

The previous observations suggest a practical way of visualizing the effect of
bowing parameters on the sound level, as well as the trajectory of the stroke in
the parameter space. The ratio vb/β is the most relevant variable describing the
variation in the sound level. The bow force gives a small contribution, but is mainly
used for staying in the Helmholtz region of Schelleng diagrams. Consequently,
we can build a “level diagram” depending on the ratio vb/β and the bow force
Fb, in which the variation in level is continuous, whatever the bow velocity. In
the background of Fig. 6.11a and Fig. 6.12a, the variation in level obtained in
simulations at the same four bow velocities vb as in Chapt. 3 (5, 10, 20 and 50
cm/s) are plotted versus the variable vb/β instead of the bow-bridge distance β.
The vibration level is shown in colors, and can be seen to vary continuously except
at the borders of the playable region. In this representation, the minimum bow
force changes with the parameter set in the simulations (one set per velocity), in
contrast to the line describing the maximal bow force which is the same for the four
sets. This is due to the dependency of Fmin on vb/β2 whereas Fmax varies as vb/β.

The crescendo - diminuendo measurements can be plotted on top of these di-
agrams and compared with the level variations obtained in the simulations. The
crescendo - diminuendo performed “with velocity” is shown in Fig. 6.11b, and
superimposed on the simulated level diagram in Fig. 6.11a. In order to allow a
comparison of the two spans in level variations, the level of the measurements is
shifted using the average levels of the simulation and measurement at a mean force
of 0.5 N.

The figures show a remarkable overall agreement between the variations in level
in the simulations and measurements. The color code for the levels is seen to
correspond within an error of about 5 dB compared to a total variation of 30 dB.
This is a somewhat surprising fact when considering all possible sources of errors and
approximations (including measurement errors in bowing parameters and levels),
the crude calculation of the sound level, and the simplicity of the bowed-string
model used for the simulations. It is satisfying to see (Fig. 6.12) that also the
version with long notes in the crescendo - diminuendo (“without velocity”) gives a
similar agreement between simulations and measurements.

Previously we have observed a consistency in the trajectories of the measured
bowing parameters in the variable space (β,Fb/Fref (vb)) of a normalized Schel-
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leng diagram. In the level diagram, however, the corresponding trajectories are
expressed as log Fb ∝ log(vb/β1.39), and the consistency between the trajectories
whatever the value of the bow velocity is lost, which explains the deviations between
the trajectories in Fig. 6.11 and Fig. 6.12.

Application: Modifications of measurements for controlling the
model

The modelling of sustained bowing patterns and the description of the time evo-
lution of the bowing parameters with a limited number of parameters is not as
straightforward as for the bouncing, dynamic bow strokes in the previous chap-
ter. As illustrated by the measurements on sustained notes above, there is a large
variation in the bowing parameters during a stroke, which is not straightforward
to imitate. However, our measurements provide a significant quantity of examples
describing the time evolution of bowing parameters in various playing situations.
A more realistic control of the model could therefore be obtained by using mea-
surements from this “database” directly as input parameters.

Despite a significant amount of collected exemplary bowing patterns, the mea-
surements do not cover all playing possibilities. For instance, intermediate dura-
tions are required, as well as intermediate dynamic levels. In order to increase the
synthesis capabilities of the model, measurements can be modified according to
simple rules that are deduced from the previous observations. In this section, we
will illustrate such possible modifications of the dynamic level and the durations.

Modifying dynamic levels

The prototypes of sustained notes provided by the measurements are performed
at a given dynamic level. A transformation to other levels based on empirical
observations requires a systematic approach, but the pitfalls are numerous.

The empirical effect of bowing parameters on the sound level is well known. For
instance, we can think of increasing the bow velocity or decreasing the bow-bridge
distance for playing louder. However, empirical modifications quickly become a
tedious work when trying to find the right profile of a given bowing parameter
for producing a desired variation in sound level, and at the same time, trying
to make corrections of the other parameters for maintaining a stable Helmholtz
motion, or keeping the same sound quality. For instance, increasing the bow velocity
alone decreases the spectral centroid and does not lead to a convincing increase in
loudness.

This section aims at proposing a systematic procedure for changing the level
of a sustained note. We must consider two constraints in order to perform the
change. First, a given change in sound level is wanted, possibly varying in time for
performing dynamical variations such as crescendo. Secondly, we must consider a
constraint on the bowing gesture. Typically, variations in bow velocity are limited
by the length of bow available and the duration of the note. If the time evolution
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Figure 6.11: Visualization of the crescendo - diminuendo measurements for short
notes in the variable space of a level diagram. The sound level (in color) is plotted
as a function of the ratio vb/β and the bow force Fb. (a) The simulations of vibra-
tion levels in Schelleng diagrams at four bow velocities (Chapt. 3) are combined in
a level diagram (background). Data from the crescendo “with velocity” are super-
imposed for checking the agreement between simulations and measurements. (b)
Visualization of the crescendo - diminuendo measurements without the background.
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Figure 6.12: Visualization of the crescendo - diminuendo measurements for long
notes in the variable space of a level diagram. The sound level (in color) is plot-
ted as a function of the ratio vb/β and the bow force Fb. (a) The simulations of
vibration levels in Schelleng diagrams at four bow velocities (Chapt. 3) are com-
bined in a level diagram (background). Data from the crescendo “without velocity”
are superimposed for checking the agreement between simulations and measure-
ments. (b) Visualization of the crescendo - diminuendo measurements without the
background.
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of the three bowing parameters can be deduced from these two constraints alone,
the complexity of the problem will have been significantly reduced. The previous
observations on how the variations in dynamic level are achieved in real performance
provide the keys to the following procedure.

In a first step, the variation of bow-bridge distance has to be found, according
to the change in level and the velocity profile. For that purpose, the theoretical
evolution of the vibration level with bow velocity and bow-bridge distance can be
efficiently used, as seen in the previous section. If we consider a change ∆S in the
level, starting from the original values of the bow velocity v0

b and the bow-bridge
distance β0 provided by the measurements, we can write

∆S = α(log
vb

β
− log

v0
b

β0
) (6.5)

where vb and β are the new values of the bow velocity and the bow-bridge
distance which give a change ∆S in level compared to the initial values v0

b and
β0. The coefficient α was determined previously from real performances and is
theoretically 8.7. Consequently, the new value of the bow-bridge distance can be
deduced from

β =
vb

v0
b

e−∆S/αβ0 (6.6)

In a second step, we must determine the bow force in order to stay in the
Helmholtz region of the Schelleng diagram. This could theoretically be done in
a number of different ways. However, we have seen before that the player tends
to follow a straight line in the relative Schelleng diagram, in the direction of the
corner of the Helmholtz region. For simplicity, and with a good approximation,
we assume that the line goes exactly through this origin. This has the advantage
of ensuring that we will stay in the Helmholtz region, provided that the initial
parameter combination (β0,F 0

b /F 0
ref ) lies between the minimum and the maximum

bow force. The slope of this line is given by

γ =
log(F 0

b /F 0
ref )

log(β0/βref )
(6.7)

Finally, the new value of the bow force is determined by

Fb =

(

β

βref

)γ

Fref (vb) (6.8)

The procedure is illustrated in the following example, with two successive half
notes from the measurements described at the beginning of this section. A linear
variation from 0 to +6 dB in level is desired during the second note in order to
produce a crescendo. For simplicity, we consider no variation in the bow velocity, so
the level variation will result from a variation in bow-bridge distance only, combined
with an adaptation of the bow force.
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Figure 6.13: Modification of measured bowing parameters for obtaining a crescendo
on the second note in two detaché strokes by variation of the sound level (see text).
The original data are shown in grey and the modifications in black. From top:
Sound of the modified simulation, sound levels, bow velocity, bow force and bow-
bridge distance. A linear increase of the difference in dynamic level between the
original modified simulations was the target, without changing the bow velocity.
As a result, the bow-bridge distance was decreased compared to original data, and
the bow force increased significantly. The change in sound level is in agreement
with the expected variation, shown by the dashed line.

The input parameters and the resulting simulation are shown in Fig. 6.13.
First, the new bow-bridge distance is computed with Eq. 6.6. In this case, vb =
v0

b (no modification of the bow velocity), and the relation simply becomes β =
exp(−∆S/α)β0, with ∆S = 6t/Tstroke (linear variation of the level up to 6 dB
during the duration Tstroke of the note). In this example, α was set to its theoretical
value (α = 8.7 dB/ log unit of vb/β). As seen in Fig. 6.13 the modified bow-bridge
distance deviates more and more from the original values with increasing time.
While the original bow-bridge distance always is more than 25 mm, the modified
distance decreases to 15 mm. The maximal deviation between original and modified
bow-bridge distance is as large as 20 mm.

The bow force is computed by combining Eq. 6.8 and Eq. 6.7 in order to
obtain an acceptable trajectory in the relative Schelleng diagram. In Fig. 6.14
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Figure 6.14: Relative Schelleng diagram showing the original data (in grey) and
the modified values (in black) for obtaining the changes in sound level in Fig. 6.13.
The procedure described in text permits to calculate the required variation of the
bowing parameters. While the original data for the detaché notes are confined to
a limited region, the modified parameters describing a crescendo follow a straight
trajectory in direction of the corner of the Helmholtz region, as observed in real
measurements.

the trajectory of the modified parameter combination (β,Fb/Fref ) is illustrated
together with the original parameter data. As expected, the modification follows a
linear trend towards the corner of the Helmholtz region. The resulting bow force
is shown in Fig. 6.13 and is significantly enhanced, with an increasing deviation
compared to the original data up to 1 N.

The levels of the simulated sounds are compared in Fig. 6.13. The difference
between the modified simulation and the original increases with time. It is satisfying
to observe that the level of the modified simulation shows a very good agreement
with the expected level variation (shown with dashed line in the figure). Note
that, because of a significant incertainty in the value of α for the model, such an
agreement could not be taken for granted.

Modification of the duration of bow strokes

At the beginning of this chapter, it has been shown that détaché strokes with dif-
ferent durations have a very similar time evolution when they are normalized to the
same duration and amplitude. This observation provides a simple rule for obtain-
ing various durations from a limited set of bowing prototypes. The principle of the
modifications consists in modifying only the duration of the sustained part of the
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stroke by stretching or compression, while keeping the transitory part unchanged
in order to keep an acceptable quality of the bow change.

A database containing isolated détaché strokes from the measurements was built,
with basic descriptors such as the duration or the dynamic level. Each prototype
was segmented into three intervals corresponding to the attack of the note (i.e. the
second part of the bow change), the sustained part, and the first part of the bow
change (i.e. the segment where the velocity decreases to zero, without the attack
of the next note). When a note with a certain duration is required, the bowing
patterns with the closest durations are inspected. A prototype is chosen and the
sustained part stretched or compressed in order to obtain the desired duration.
Then, the velocity and force ranges are scaled by interpolating between the two
sets of prototypes with the closest durations. Finally, the new sustained part is
appended to the scaled attack and end for completing the stroke.

This procedure provides a possibility of building any rythmic sequence from
a limited number of examples as illustrated in Fig. 6.15. Velocity profiles with
realistic shapes are obtained and the variations in bow force during the stroke are
reproduced. Note that the oscillations of the force at the frog will have a different
frequency, but if the database contains examples sufficiently close in duration (like
for example the measurements presented in Fig. 6.1 and Fig. 6.2), the frequency of
the oscillations will not be multiplied by more than 1.5 and less than 0.75, which
can be considered acceptable.

The continuity of the bowing parameters between successive notes must be paid
particular attention. The velocity shapes will be adequately connected because
each pattern begins at zero velocity (attack from the string) and finishes with a
zero velocity (change of bowing direction). Discontinuities or unrealistic bow ac-
celeration patterns can be neglected in a first step. The continuity of the bow force
patterns is more problematic because each stroke begins and finishes with a differ-
ent force value. If the resulting force discontinuities at the junction between the
notes are not too strong, they can be kept as they are in a first approximation. In
the next part of this chapter (Sect. 6.2), we will make some observations on bow
changes, which could provide some rules for solving the problem of force discon-
tinuity. For instance, a rapid sinus-shaped transition in force at the bow change
could be considered in order to connect the notes.

The present section has dealt with the sustained part of détaché bowing pat-
terns. We have made some observations on the time evolution of the bowing param-
eters, and on the player’s control strategy for changing the dynamic level. Further,
we have deduced some simple rules in order to control the bowed-string model to
obtain notes with different dynamic levels, variation in sound level during the note,
and with different durations from prototypes. The transition between notes causes
a specific problem because the proposed modifications do not take the behaviour of
the string when the bowing direction is changed into account. In some cases, the
regular Helmholtz motion may be threatened by the parameter changes, and some
“playing” skills are required in order to make proper bow changes.
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Figure 6.15: Modification of measured bowing parameters for obtaining various
durations of the bowing patterns. A database of exemplary bowing patterns repre-
senting standard durations is used for interpolating new durations of the strokes.
The sustained part of the bowing parameters is stretched or compressed in order
to obtain the desired duration, and the bow force and velocity are scaled to the ap-
propriate ranges. For the bow force at the change, a rapid sinus-shaped transition
(in black) is used to bridge the discontinuity (in grey).

6.2 Bow direction changes

Players of bowed instruments commonly separate notes by changing the direction
of the bow motion (“bow changes”) and the separation can be made more or less
pronounced (detaché - portato - martellato). Acceptable bow changes require ac-
curate control and coordination of a set of bowing parameters, in particular bow
speed, bow force and bow-bridge distance. Long practice is required before optimal
control is achieved.

This section aims at giving some detailed descriptions of the bowing gesture
during bow changes. We will first introduce the problem by illustrating different
types of bow changes and the arm motion during the change. Then, measurements
will be presented and analysed in order to extract some characteristics of the time
evolution of the bowing parameters. Finally, using the data for controlling the
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synthesis algorithm, we will discuss how modifications of the parameters influence
the bow-string interaction and resulting string vibrations during bow changes.

Introduction

Illustration of bow changes

Bow changes can be performed in various ways according to the musical context
and the desired separation between the notes. For instance, during a long legato
phrase, long notes requiring more than a full bow stroke are played by making
the bow changes as inaudible as possible in order to not interrupt the sound. In
contrast, the articulation (separation) between notes is of primary importance in
music from the baroque period and accentuation can be used for highlighting some
notes, or giving a very powerful sound.

Fig. 6.16 illustrates different performances of a bow change. In Fig. 6.16a some
basic bow changes during simple détaché are shown. Basically, the example consists
in playing separate notes with no particular expression and without trying to make
the bow changes as smooth as possible. The bowing parameters patterns are very
similar to the shapes observed in Sect. 6.1. The bow velocity increases slightly
during the sustained part, and the bow changes are very short, giving rather sharp
triangular patterns for bow position. As noticed before, the bow-bridge distance is
slightly increased at the change, showing peaks, which could make a good attack
after the change easier. However, it could also be an artefact of the gesture, and
we can have doubts about the intentional aspect of this feature3. Finally, the bow
force shows very strong peaks (around 1 N) during bow changes at the frog (from
up-bow to down-bow) while its mean value during the main part of the stroke is
around 0.5 N.

In Fig. 6.16b articulated détaché is shown. The slope of the velocity during the
change is lower, giving rounded corners of the triangular patterns for bow position.
As a consequence, the bow force must be strongly decreased at the change for
avoiding scratchy sounds, resulting in deep gaps in bow force.

Finally, accentuated détaché is illustrated in Fig. 6.16c. The bow is strongly
accelerated at the beginning of each note (more than 10 m/s2 and a maximal
velocity around 0.7 m/s) and the bow velocity decreases during the remaining part
of the stroke, gradually reaching very low values close to zero. The bow force follows
a similar pattern with a sudden increase at the change, up to about 1.8 N. Note
that these patterns corresponds to a variety of very strong and exaggerated accents.

In the following part of this section, we will focus only on “natural” bow changes
during détaché, i.e. a simple transition between two opposite directions of the bow
motion.

3These peaks could be produced by some changes in the trajectory of the bow. If the bow is
not parallel to the bridge at the change, which is often the case when playing near the tip, such
peaks in bow-bridge distance should be observed.
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Figure 6.16: Illustration of different types of bow changes. (a) Simple détaché with
no particular expression. (b) Articulated détaché in which the notes are clearly
separated. (c) Accented détaché with a strong dynamic variation at the beginning
of each note (accents). From top: sound, bow velocity, bow position, bow force,
acceleration in the bowing direction, and bow-bridge distance.



232 CHAPTER 6. OBSERVATIONS ON SUSTAINED BOWING PATTERNS

200 300 400 500
−400

−300

−200

−100

0

100

x direction [mm]

y 
di

re
ct

io
n 

[m
m

]

(a) Up bow to down bow

Elbow

Wrist

Hand

Bow

300 350 400 450 500 550
−400

−300

−200

−100

0

100

x direction [mm]

y 
di

re
ct

io
n 

[m
m

]

(b) Down bow to up bow

Elbow

Wrist
Hand

Bow

Figure 6.17: Trajectory of the different parts of the arm during the bow change
(elbow, wrist, hand and bow). (a) Bow change from up-bow to down-bow. (b) Bow
change from down-bow to up-bow.

Arm motion

In his reference work on violin teaching [28], Galamian pointed out that “drawing
a straight line with the arm is not natural”. All the elements of the arm, from
the shoulder to the fingers, have to be well synchronized in order to obtain the
intended motion and trajectory of the bow. In particular, during bow changes
several techniques can be used depending on the role of the fingers and the wrist,
or the rounding of the trajectory [86]. The motion of the arm may influence the
shape of the bow velocity during the change and it is therefore necessary to examine
it more closely.

In Fig. 6.17, the trajectory of the arm is shown for changes from up-bow to
down-bow (Fig. 6.17a) and for down-bow to up-bow (Fig. 6.17b). The data were
obtained using the motion capture system described in Chapt. 4 with additional
markers at several positions of the arm, shown in the figure (elbow, wrist and hand).
The string direction is along the y-axis and the bow is consequently moved in the
x-direction.

Two observations can be made concerning the bow change gestures. First we
can notice that the motion of the arm is not symmetrical, i.e. the relative trajectory
of the arm elements is not the same after and before the bow change. In particular,
the motion of the elbow is much shorter after the change, which results in a more
pronounced action of the forearm. For instance, when changing from down-bow to
up-bow (Fig. 6.17b), the elbow and wrist angles are sharper after the change. This
observation suggests that the acceleration of the bow after the change in bowing
direction is mainly led by the forearm and the hand. Secondly, it can be noted
that the trajectory is rounded at the change, which often is the case for avoiding a
complete stop of the bow and getting a smoother movement.
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Observations on bow changes

General description

A comparison between different players allows us to observe shared features of
the changes. In Fig. 6.18, the bowing parameters measured during détaché for
two players are presented. Differences can be observed, such as a shorter bow-
bridge distance for player 2 (Fig. 6.18b), and a slightly different velocity shape or
small ripples at the change from down-bow to up-bow for player 1 (Fig. 6.18a).
However, the similarities of their gestures are clearly visible as well and dominate
the comparison.

First, we can note that a peak in bow force at the frog is present in both
cases. Apart from this peak, an overall decrease in bow force at the changes can
be observed. For both players, the bow force is lower at the beginning of the notes.
This feature is clearer for player 2 (Fig. 6.18b): the force suddenly decreases just
before the change and progressively regains its mean value after the change.

Secondly, for both players the bow acceleration patterns during the change
consist of two successive peaks. A zoom on two of these peaks is shown in Fig. 6.19.
In both cases, a large peak is followed by a smaller one4. This discontinuity in the
acceleration shape is somehow surprising because a well-performed bow change is
generally claimed to be achieved with a very smooth motion.

A first explanation of the pattern could come from the bow-string interaction
during the bow change. The friction between the string and the bow hair could
shortly act against the change and produce the discontinuity. However, the double
peak pattern is observed even when a bow change is made by playing on a smooth,
unrosined support. The interpretation that the double peak is an artefact of the
bow-string interaction consequently must be discarded. Instead the phenomenon
seems to be a characteristic of the player’s gesture.

An interpretation of the two peaks from that approach will be illustrated in the
next section. However, a first indication can be found by comparing Fig. 6.18 with
the accentuated détaché shown before (Fig. 6.16c). In the case of simple détaché,
the final velocity of the previous stroke is higher than the initial velocity of the next
stroke, and the second acceleration peak is smaller than the first one. In contrast,
for accentuated détaché strokes (Fig. 6.16c), the final velocity before the change
is very small and the bow must be strongly accelerated for reaching the maximal
velocity during the initial accent. The acceleration patterns is still composed of
two peaks, but the second one is much higher than the first. Consequently, it can
be concluded that the two peaks correspond to the two phases of the motion: the
deceleration of the bow before the change and the following acceleration after the
change.

4Note that it could also be seen as a global sine shape, corresponding to the pendulum motion
expected during the change (according to Galamian [28]), with a gap during the bow change.
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Figure 6.18: Examples of bowing parameters during détaché for two players illus-
trating differences and similarities during bow changes. From top: Bow velocity,
bow position, bow force, acceleration in the bowing direction, and bow-bridge dis-
tance. A comparison between the two players shows shared features of the bow
changes: An overall decrease in bow force and a characteristic pattern in the accel-
eration, composed of two successive peaks.
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Figure 6.19: Illustration of the similarity between acceleration patterns in the bow-
ing direction during bow changes for two players.

Synchronization between bowing parameters

The interpretation of the measurements during bow changes is not straightforward
when looking at the time evolution of the bowing parameters. For instance, we
have seen that the bow acceleration is composed of two peaks, but we still don’t
have a full explanation of this feature. Similarly, a lowering of the bow force at the
change was observed.

The time evolution does not give an appropriate representation of the change. In
particular, as the change in direction is not immediate, the time when the velocity
crosses zero gives rather poor information about the moment of the bow change.
The bow can stay almost immovable during a few milliseconds before and/or after
the change, which is not accurately visible in the time representation. Such a
short time of rest could drastically change the observation and interpretation of the
bowing parameters. Moreover, it can be considered that the player does not think
in terms of time when performing the change, but in terms of movement. This
means that the chronology of actions during the change (like reducing bow force
and then pressing again) is not fixed on an absolute time line.

This suggests a representation based on the motion of the bow rather than time.
In Fig. 6.20, corresponding to a change at the frog (from up-bow to down-bow),
the bowing parameters are first plotted versus time (Fig. 6.20a), then as a function
of bow position (Fig. 6.20b), providing an interesting comparison. The evolution
of the bowing parameters before the bow change (defined as the zero crossing in
velocity) is plotted in grey, and the evolution after the change in black. In Fig.
6.20a, we can see that the change takes place during the decrease in bow force,
around the middle. However, the representation versus bow position (Fig. 6.20b)
leads to another conclusion. The decrease in bow force is vertical, which means that
the bow does not move during the drop in force. The bow is then pressed down again
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Figure 6.20: Illustration of the synchronization between bowing parameters for a
bow change performed at the frog (up-bow to down-bow). From top: Acceleration
in the bowing direction, bow force, and bow-bridge distance. (a) Time evolution
of the bowing parameters. (b) Evolution of the parameters versus bow position,
highlightening the two successive phases of the change (deceleration followed by
acceleration). The parameters before and after the change are plotted in grey and
black, respectively.

as the bow starts to move (increasing bow position), exactly at the beginning of the
next stroke. We can therefore obtain a more accurate idea of the synchronization
of the bowing parameters during the change with this representation.

The interpretation of the acceleration pattern observed before is straightforward
when looking at the representation using bow position (Fig. 6.20b). The two
successive peaks are clearly related to the initial deceleration of the bow before
the change, and to the following acceleration at the beginning of the next stroke,
respectively. The sudden decrease between the two peaks is vertical when plotted
versus bow position, and corresponds exactly to the moment when the bow is at
complete rest.

Concerning the bow-bridge distance, no specific variation is expected during the
bow change. In Fig. 6.20, it can be seen that the bow-bridge distance is almost
constant. However, at bow changes at the tip (down-bow to up-bow) as shown
in Fig. 6.21, the distance is increased and then decreased noticeably around the
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Figure 6.21: Illustration of the synchronization between bowing parameters for a
bow change performed at the tip (down-bow to up-bow). From top: Acceleration
in the bowing direction, bow force, and bow-bridge distance. (a) Time evolution
of the bowing parameters. (b) Evolution of the parameters versus bow position,
highlightening the two successive phases of the change (deceleration followed by
acceleration). The parameters before and after the change are plotted in grey and
black, respectively.

change, resulting in the small peaks that were observed before. The maximum
bow-bridge distance coincide with the change in bowing direction, which is more
pronounced in the representation using bow position. In Fig. 6.21, a small ripple in
bow force can also be observed during the bow change. It is surprising to observe
the perfect synchronisation with the moment when the bow is at rest, and with
the gap in bow acceleration. The ability of the player in obtaining such a quick
variation in force, lasting only around 15 ms, could be questioned, but no satisfying
alternative interpretation has been found. Interestingly, these ripples during bow
changes from down-bow to up-bow were only observed with one player (of about
ten subjects) and could therefore be an artefact of this player’s bowing technique.

Properties of the acceleration patterns

Bow changes are a technical gesture requiring years of training in order to obtain an
acceptable quality, i.e. an optimal connection between two notes without scratching
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Figure 6.22: Illustration of the high reproducibility of the acceleration patterns at
bow changes. When plotted together the acceleration patterns of repeated bow
changes during the same acquisition exhibit a high reproducibility in time and
amplitude. (a) Acceleration during the acquisition. (b) Bow changes from up-bow
to down-bow. (c) Bow changes from down-bow to up-bow.

noises. The bow motions for similar bow changes performed by an experienced
player could therefore be expected to show strong similarities. In order to examine
these similarities, it is more rewarding to focus on the bow acceleration, which
provides a more accurate description of the details of the bow motion than the
velocity.

We have seen that the acceleration pattern at the bow change is composed of
two successive peaks, corresponding to two phases of the motion. It is interesting
to notice the constancy of this pattern and the high reproducibility. In Fig. 6.22,
a long acquisition of repeated détaché strokes was performed in order to obtain a
long series of successive bow changes for the same class of strokes. Acceleration
patterns were isolated and plotted together, showing a very good reproducibility in
time and amplitude for the two cases of changes (down-bow to up-bow, Fig. 6.22c,
and up-bow to down-bow, Fig. 6.22b).

In Fig. 6.22b, showing all bow changes plotted together, the values of the first
peak fall between 12 and 15 m/s2, and between 7.7 and 10 m/s2 for the second
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Figure 6.23: Similarity between acceleration patterns at bow changes during dé-
taché performed with different bow velocities (left panels; from top: vb= 0.15, 0.3
and 0.6 m/s). The global shape of the acceleration during the bow change remains
the same for increasing bow velocity (right panel), and the total duration of the
pattern is the same, lasting about 150 ms.

peak, the dip in the gap in between variying from 4.2 to 6.4 m/s2. The timing of
the patterns is very precise and on a short time scale. The duration from the first
peak to the minimum in the gap, and the duration from the minimum to the second
peak, are both very short, lasting 15 and 13 ms, respectively, with a small variation
of ±1 ms. It is difficult to determine the exact beginning and end of the changes,
but, if we consider the time when the absolute value of the acceleration begins to
increase significantly without decreasing before the maximum, the durations of the
two phases of motion are between 60 and 120 ms for the deceleration, and between
30 and 50 ms for the acceleration.

The measurements above were performed for fast détaché strokes with an aver-
age bow velocity around 50 cm/s during the sustained part. The transitions could
change drastically for other velocities. For example, it would be easier, and proba-
bly faster, to change the bow direction with a lower bow velocity both before and
after the bow change. However, observation of acceleration patterns for such cases
shows an unexpected behaviour: the total time of the transition seems to remain
the same, independent of the initial and final bow velocities.
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This is illustrated in Fig. 6.23, which shows exemplary acceleration patterns for
three bow velocities (vb=60, 30 and 15 cm/s). The shapes of the acceleration are
very similar in the three cases, including the double peaks and the gap in between.
As mentioned before, it is difficult to determine the beginning and the end of the
transitions accurately, but nevertheless, no significant differences in the timing of
the patterns can be observed. For all three cases, the strong variations in the
acceleration are concentrated to a time interval lasting around 150 ms. Because of
this time constancy, the amplitude of the variations increases with increasing bow
velocity.

Representation of measurements in Guettler diagrams

The performance of bow changes requires not only a good synchronization between
the variation of bowing parameters, but it must also respect some proportions
between them. For instance, the amplitude of the decrease in bow force is dependent
on the velocity variation after the change. If the bow has to be strongly accelerated
at the beginning of the next stroke, a higher bow force is required for avoiding a
whistling attack of the note. We can consequently expect a coordinated relation
between the values of the bowing parameters at the bow change.

If the vibration of the string is sufficiently damped during the deceleration, the
following acceleration can be seen as a simple attack in which case, according to
Guettler, the acceleration and the bow force are the relevant parameters. However,
in real playing, these parameters vary continuously, which is a rather different
situation compared to Guettler’s analysis based on constant parameters during the
attack. Further, Guettler diagrams are dependent on bow-bridge distance and, in
playing, this distance also varies slightly from one bow change to the next during
one acquisition. The variations are naturally larger between different classes of
détaché. As a consequence, measurements including different bow-bridge distances
cannot be compared by plotting them in the same diagram. A solution was reached
by plotting all bow changes in the same acceleration - bow force diagram à la
Guettler, and indicating the bow-bridge distance with different colors, in order to
allow a visualization of all relevant parameters.

The problem of the non-constancy of parameters during the change was handled
by considering their values at the very beginning of the stroke. As seen above, the
beginning of the next stroke after the change corresponds to the minimum in the
gap in acceleration. In the following, we will consequently consider the values of
the bow acceleration, the bow-bridge distance and the bow force at this time.

In order to describe the overall range in bow acceleration, the measurements
presented in Sect. 6.1 were analysed. Increasing bow velocities during the stroke
resulted in increasing accelerations at the change. The measurements include accel-
eration values between 0 and 12 m/s2, and even up to 40 m/s2 for sixteenth notes
played with the whole bow.

The results are shown in Fig. 6.24. Letting aside the extreme case of sixteenth
notes played with the whole bow, all bow forces are found between 0.2 and 1.1 N,
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Figure 6.24: Initial acceleration and bow force at bow changes in detaché strokes
plotted in a Guettler diagram. The data are obtained from the measurements
described in Sect. 6.1 (détaché performed with the whole bow and decreasing
durations). The data points represent whole notes (+), half notes (�), quarter
notes (o), eighth notes (∇), sixteenth notes with the whole bow (♦), and with one
third of the bow (*). The relative bow-bridge distance β is shown in color (range
0.05 - 0.2)

and the range of acceleration goes from 0.3 to 12 m/s2. The data are clustered along
a line with slope 0.06 N/(m/s2), and form a well-defined region for the performance
of bow changes. No clear tendency with bow-bridge distance can be observed. The
data seems to be rather well mixed whatever the bow-bridge distance. However,
a trend in acceleration can be discerned: Whole notes with low accelerations at
the change are played closer to the bridge than, for example, sixteenth notes with
higher acceleration.

Some observations related to the performance of bow changes have been made
in this section. We have observed a decrease in bow force around the actual mo-
ment of the change in bowing direction, and a synchronization between the bowing
parameters at the change. The synchronization was made visible by introducing a
representation of the bowing parameters versus bow position instead of time. Fo-
cusing on the acceleration patterns, a detailed examination of the bow motion was
made possible. The acceleration patterns, which were composed of two successive
peaks corresponding to the deceleration and acceleration at the bow change, showed
a very high reproducibility in a large set of examples. Interestingly, the duration
of the changes was found to be very similar for different types of détaché.
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Simulations and modifications of bow changes

In this section, measurements are used for controlling the bowed-string model and
simulating bow changes. Bowing parameters at the bow change are modified and
the influence of these modifications on the vibration of the string are examined.
From the previous observations of the parameters, we can extract two interesting
features to modify. First, we will examine the significance of the reduction in bow
force for the performance of the change. Secondly, the duration of the bow changes
will be modified in order to observe the influence on the resulting string motion
and the perception of the change.

Modification of bow force

Fig. 6.25a shows a simulation of an exemplary bow change extracted from a suc-
cession of détaché strokes. The bow velocity and force were used with a constant
bow-bridge distance (β = 0.12) to control the model. A simulated bow change is
obtained, showing a very good transition between the two notes. The periodic trig-
gering of the slip phases is maintained until the very end of the first note and builds
up quickly during the attack of the following note, except for three additional slips
around time 1.05 s. The duration of the bow change, from the last slip triggering
of the first note to the first triggering of the second note, is around 28 ms.

In order to evaluate the quality of bow changes, three features can be examined:
the duration of the bow change (between the last and first slip triggering before
and after the change, respectively), the existence of prolonged periods, and the
time before a periodic triggering of the second note is reached after the change.
Prolonged periods will produce scratchy, “choked” sounds, whereas the existence
of additional slips after the change will characterize a “loose” attack with multiple
slips. In both cases the perceptual prominence depends on the duration before
nominal periodic triggering is reached [37]. The duration of the “silent” phase of
the change without slips reflects the separation between notes and the swiftness of
the change. Modifications will be examinated under the light of these three criteria.

In a first modification, the force reduction was exaggerated and the minimal
value in the gap was reduced to 0.1 N instead of 0.6 N. The bowing parameters
and the resulting simulation are shown in Fig. 6.25b. The quality of the transition
seemed to be improved: the additional slips after the change have disappeared and
the duration of the bow change (from last-slip to first-slip) was significantly reduced
to 16 ms. Consequently, the player could probably obtain a better bow direction
change by lowering the force more at the change. However, we can question the
ability of the player in performing such a quick and precise variation of the force.
We can also note the importance of a rapid increase in bow force after the change.
If such a low bow force (0.1 N) was kept constant during the attack, a Helmholtz
motion would not be obtained for the second note.

When the bow force is kept constant (Fig. 6.25c), we can see a single prolonged
period before the change (an isolated slip triggering) and some aperiodic vibrations
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Figure 6.25: Modification of the bow force during bow changes. Bow changes
are simulated with similar bowing parameters as in measurements, except for the
bow force which is modified in order to examine the influence of a force reduction
during the bow change. From top: Bow force, bow velocity, string velocity under
the bow, and period time between successive slip triggerings. (a) Original bowing
parameters including a slight reduction in the bow force during the bow change.
(b) Exaggerated reduction in bow force. (c) No reduction in bow force. (d) The
reduction is replaced by an increase in bow force.
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during the attack of the second note. The same features can be seen when the bow
is pressed harder on the string during the change instead of reducing the bow force
(Fig. 6.25d). These effects are very short, lasting less than 40 ms, and may not be
important perceptually. However, we must remember that in both cases, the bow
force is returned to a reasonable value shortly after the modification. Consequently,
when the string velocity and the duration of the bow change are compared with
the bow force shape, it can be seen that the string vibration is drastically changed
during the entire modified interval, and that a periodic vibration is not reached
until the end of the modification when the bow force is returned to its original
value.

In conclusion, the simulated modifications of bow force allowed a striking illus-
tration of several effects of the observed force reduction during the bow change.
Before the change, the force reduction helps the string to remain in Helmholtz mo-
tion, avoiding prolonged periods due to a too low bow velocity compared to the bow
force. By decreasing the maximum static friction force, it also allows the vibration
to begin quicker after the change and consequently, it reduces the transition time
between the two directions of the string vibration. However, in order to avoid a
“loose” multiple-slip attack, the bow force must be quickly increased again after
the bow change.

A last point should be underlined concerning the reduction in bow force. By
decreasing the friction force between the bow and the string, it may reduce the
force that acts against the bow motion and therefore help the player in performing
the action.

Stretching / compressing the bow changes

A rather constant transition time for the bow change has been observed before,
whatever the bow velocity during the sustained part of the notes. In order to study
the effect of different durations of the bow change, the time evolution of the bowing
parameters was stretched and compressed by simulations. Such a modification not
only changes the duration of the bow change, but also the bow acceleration and
the variation in bow force. These changes may have a drastic effect on maintaining
the Helmholtz motion to the very end of the first note, and quickly establish a pe-
riodic motion during the attack of the second note, as seen in the previous section.
For instance, when the bow change is stretched to twice the initial duration, the
acceleration is divided by two, and it will not be a surprise if the quality of the
transition is influenced, in this case by the appearance of prolonged periods. How-
ever, in the two simulations presented hereafter, it will be seen that the alteration
of this quality remains reasonable.

The same exemplary bow-change pattern as in the previous section was modified
(see Fig. 6.25a). The limits of the modified interval was determined by the peaks in
the bow force before and after the change, which correspond well to the beginning
and end of the acceleration pattern. In Fig. 6.26a, the interval is compressed to half
the initial duration, and in Fig. 6.26b, it is stretched to twice the initial duration.
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Figure 6.26: Modification of the duration of the transition between the two notes.
The time evolution of the bowing parameters is stretched or compressed for ob-
taining various durations of the change indicated by the double arrow. (a) The
transition is compressed to half its initial duration (showed in Fig. 6.25a). (b) The
transition is stretched to twice its initial duration.

The compression reduces the time interval between the end and the beginning
of the two strokes from 28 to 12 ms without adding extra slips or prolonged periods,
as seen in Fig. 6.26a. Moreover, the amplitude of the string velocity during the
decrease and the attack around the bow change were significantly increased com-
pared to Fig. 6.25a, as expected from the higher deceleration/acceleration during
the bow change. This produces a very clear and swift transition between the two
notes, and the bow change can be described as “perfect”. However, such a quick
transition is not very realistic in performance and does not sound natural. Note
that the increase of the acceleration during the attack of the second note could give
rise to additional slips and alter the quality of the attack. When the duration of
the bow change was shortened to 1/5 of the original value, additional slips were
produced. The aperiodic part of the attack lasted more than 80 ms. Such poor
attacks can be avoided by reducing the lowering of the force accordingly.

When the duration of the bow change is stretched by a factor two, some irreg-
ular slips before and after the change can be seen in Fig. 6.26b, due to a lower
acceleration with unchanged bow force, but the quality of the transition was still
acceptable. The main difference of the change is the slow decrease and attack of
the two notes, resulting from the lower deceleration and the following acceleration.
This produces a short diminuendo followed by a short crescendo and the separation
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between the notes is clearer than during a normal bow change.
The simulations with modified durations of the transition showed that the

bow change can be compressed or stretched to a certain extent without chang-
ing the string motion drastically, i.e. by still maintaining a periodical triggering of
Helmholtz motion. However, even when the periodic triggering is preserved, the
modified bow changes can sound unnatural if they are too quick or too slow. Con-
sequently, when modifying bow changes for synthesis with the bowed-string model,
it is important to mimic the basic timing features of a real bow-change gesture.

6.3 Conclusions

With this chapter, we have completed our overview of the different bowing patterns
used in violin playing. It has treated sustained, continuously controlled bow strokes
such as détaché and the specific difficulties related to this class of bow strokes for
a gesture-inspired control with the bowed-string model. The performance of such
bowing patterns is dependent on a large set of parameters including the player’s
gestural habits and constraints, the mastering of the bow, the musical context, and
the feedback of the sound of the violin. The global shape of the bowing parameters
showed typical variations, probably related to performance habits, when playing
technical exercises, which could be modelled by parameterized profiles as in the
previous chapter on dynamic bow strokes. However, the parameters of such models
for sustained notes would not be easy to deal with, and in particular, the small,
partly uncontrolled, variations observed during the sustained strokes would not be
reproduced, whereas they are important features for the realism of the control.
A contour characterization of the bowing parameters could be used, as proposed
by Maestre [50]. Another approach using performance constraints optimization
[58, 69] seems very promising, but could not be studied within the present work.
Instead, as a temporary step, we decided to use our measurements on sustained
notes as a database of typical bowing patterns in detaché. This approach requires a
performance-based description (duration, dynamic level, etc) and some simple rules,
based on real performance strategies, for modifying the original bowing parameters.
By using such a systematic procedure, it is possible to build musical phrases of notes
with different durations and dynamics, compiled from modified reference strokes in
the database.

In this chapter, we have presented and commented measurements with several
performance constraints related to the length of bow used for the stroke, the du-
ration of the notes, and the dynamics. In particular, the bow velocity patterns for
different durations have shown strong similarities when normalized to the same du-
ration and the same amplitude. This observation led to an elementary procedure in
order to produce various bow stroke durations from a limited set of exemplary bow
strokes, based on stretching/compression and amplitude rescaling of the sustained
part, but with unchanged transitions. In order to examine strategies for chang-
ing dynamic level, we introduced the relative Schelleng diagram, which allows a
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representation of the playable Helmholtz region in one diagram whatever the bow
velocity. The relative Schelleng diagram was supplemented by a level diagram rep-
resenting the sound level as function of the bow force and the ratio between the
bow velocity and bow-bridge distance. Simulations obtained for different velocities
in Chapt. 3 showed continuous level variations in this diagram, except for values
close to the minimum bow force, and the agreement between measured level vari-
ations and simulated level was found to be very good. From the observation of
the player’s performance strategy in these diagrams, it was possible to develop a
systematic procedure for modification of the dynamics of exemplary measurements.
The procedure determined the variations in bow-bridge distance and bow force from
a desired change in sound level under given velocity constraints.

Finally, in the last section, we studied the performance of bow changes between
long sustained notes. Empirically expected variations of the bowing parameters
were observed and quantified using the measurements. A representation showing
the patterns of bowing parameters as function of bow position instead of time was
introduced, in order to allow a more intuitive visualisation of the bow changes.
Using this representation, two successive phases (deceleration and acceleration)
of the bow change were clearly observed, and the synchronization between the
bowing parameters during the changes determined. A close examination of the
bow acceleration patterns showed strong similarities for various gesture constraints
and, in particular, a constant time around 150 ms for the execution of the change in
bowing direction, independently of the bow velocities before and after the transition.
Finally, modifications of the bowing parameters during the bow changes (force
reduction and timing) were simulated in order to examine their influence on the
string motion just before and after the bow change.

In conclusion, the measurements, analyses and models contained in this chapter
have given a firm base for an adequate control of the synthesis of sustained bow
strokes like détaché with our bowed-string model.





Conclusions

In the introduction to this work, we identified three problem areas related to the
control of sound synthesis based on physical modelling: playability, relation between
the control parameters and the sound properties, and the time evolution of the
control parameters in order to obtain a realistic control of violin synthesis, or in
other wording “How to play the virtual violin?” The present work aimed at a
close examination of (a) the behaviour of the model for different sets of control
parameters, and (b) the control of the bowing parameters in real violin playing,
with the purpose of proposing some well-founded solutions for the control of virtual
bowed-string instruments, based on sound knowledge about the characteristics and
constraints in real music performance.

The initial steps were concerned with the development of the necessary research
tools, including

• a physical model of the bowed string based on modal formalism, eventually
working for real-time implementations.

• a setup for measurement of bowing parameters in real performance. For
that purpose, an original design of a sensor for bow force was developed and
combined with an optical motion capture system.

The playability of the model and the relation between the control parameters
and the sound properties were first investigated by performing a large set of simula-
tions with varying bow forces, bow-bridge distances and bow velocities. The playa-
bility, i.e. the control parameter space in which Helmholtz motion is obtained, was
found to be in good agreement with theoretical expectations. Concerning the sus-
tained parts of the notes, the simulations showed a regular slip triggering between
the theoretical maximum and minimum bow force limits at given bow velocities
and bow-bridge distances. During attacks, optimal regions for obtaining regular
triggerings could be identified in the bow acceleration - bow force space at a given
bow-bridge distance. Also in this case the theoretical limits were in good agreement
with the simulations, but one of the limits had to be slightly adapted for fitting the
playable region well.

The fact that a splendid agreement could be found between simulations and
theoretical results was a good sign, as our purpose was to improve the control of the
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physical model using “natural” parameters in playing. In particular, the playable
regions could be described by analytical relations depending on the mechanical
properties of the system, without necessitating a systematic evaluation through
numerous simulations. By representing the measurements in a relative Schelleng
diagram, it was also possible to illustrate trajectories of bowing parameters in
the playable region. It was shown in Chapter 6, that exemplary sustained notes
were played in the region defined by the two theoretical force limits, far above the
minimum bow force and well below the maximum force.

The same approach with systematic simulations was also used to examine the
relation between the vibration properties and the control parameters inside the
playable region. In particular, we examined the variations of the vibration level and
the spectral centroid, which reflect two main characteristics of the sound in music
performance: the dynamic level and the brilliance. A description in analytical
terms of the relations between these characteristics of the sound and the bowing
parameters was not found, but a visualization in Schelleng diagrams allowed making
some general observations.

The spectral centroid was found to depend mainly on the location of the bowing
parameters in the relative Schelleng diagram. On a logarithmic scale, the spectral
centroid varied linearly from minimum to maximum bow force. In this representa-
tion, the influence of bow velocity was negligible. In addition, it could be observed
that the maximum value of the spectral centroid, which was obtained close to the
maximum bow force limit, increased with decreasing bow-bridge distance. Interest-
ingly, with constant bow force and bow velocity, the spectral centroid was slightly
decreasing with decreasing bow-bridge distance, which is in contradiction to player’s
usual assumptions.

The vibration level showed the expected variation in the parameter space: the
level increased with decreasing bow-bridge distance, and higher levels were reached
by increasing the bow velocity. An influence of the bow force could be observed as
well. In a diagram of bow force versus the ratio between bow velocity and bow-
bridge distance, the simulations showed a continuity in the level variations at the
four bow velocities that were considered (from 5 to 50 cm/s).

The simulations gave valuable insights into the behaviour of the model by ex-
amining two of the problems listed above (playability and relation between sound
properties and control parameters). The third problem area related to a realistic
time evolution of the control parameters for violin synthesis. That task required
examination of the actual bowing parameters used by violinists during the per-
formance. For that purpose, a large number of measurements were analyzed in
order to find the most appropriate way of controlling the model. This led us to
separate our analysis into two classes of bow strokes according to the principle of
bow control. The first class was composed of typical bowing patterns with rather
short, dynamic or bouncing bow strokes (sautillé, fast martelé, tremolo), which
to a large extent rely on the dynamic properties of the bow. The reproducibility
between strokes was high, due to the predictable mechanical response of the bow,
well-defined gesture habits, and long practicing.
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The second class of bow strokes was composed of sustained bowing patterns such
as détaché and legato, during which the player continuously controls the bowing
parameters, according to musical intentions. These strokes were more difficult to
model due to a more active control and feedback by the player during the notes.

For the first class of bow strokes, we deduced simple models describing the time
evolution of the bowing parameters during the stroke by analytical functions. These
models were controlled by a limited set of parameters that were made as intuitive
as possible. The model parameters were fitted to measurements for typical cases of
playing conditions (different dynamic levels and tempi).

For the second class of bow strokes with sustained strokes, we preferred to base
the control of the bowed-string model on real measurements. The reason was that
the characteristic small fluctuations in the bowing parameters could not be easily
modelled. In that case, simple rules had to be defined in order to offer a possibility
of extrapolating new bow strokes from the exemplary strokes. From observations on
bow velocity profiles for notes with different durations, a straightforward procedure
was deduced for obtaining strokes with different durations. The method consisted in
a stretching/compressing and rescaling of the sustained part of the stroke, keeping
the transitions unchanged.

An examination of the playing strategies for obtaining different dynamic levels
led to a procedure that enabled a systematic deduction of the bow force and the
bow-bridge distance when changing the sound level. From a desired level variation
and some constraints on the velocity variation (for example a linear variation in
velocity with the level), the procedure determines a “correct” combination of bowing
parameters in order to follow a realistic path in the Schelleng space, ensuring that
the bow force stays within the playable range. The problem of bow changes between
long sustained notes was also tackled, in order to observe some key features of the
detailed variations in the bowing parameters during the changes, and their influence
on the resulting string motion.

Throughout this work, we have described possible applications as they appeared.
The bowed-string model can be controlled in real time, using an appropriate in-
terface, or off line, by defining envelopes of the control parameters, for example
by a score-based generation. For these two main applications, the examination of
bowing parameters actually used in real performance provides improved solutions.

For score-based synthesis, the implementation is immediate: Notes are described
by key characteristics such as the bowing pattern, the duration, and the dynamic
level, which permits to select the adequate bow-stroke model and set the right
parameters. In the case of real-time control, the bow-stroke models can be used for
creating realistic bowing patterns from a simple interface. An obvious example is
violin synthesis controlled with a midi keyboard, which is certainly not suitable for
the control of instruments producing sustained sounds. In that case, mappings can
be defined between midi messages (e.g. key velocity) and parameters for the bowing
pattern models. In contrast, midi wind controllers provide a better interface for
controlling the sustained part of the sound, but the interface is not adequate for
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gestures requiring a specific motoric skill such as bow changes. Features observed in
Chapter 6 can be used to implement bow-change models based on realistic gestures
and triggered by interface events. Other interfaces can be adequate but limited
in the measurements of bowing parameters. For example, the Augmented Violin
developed at Ircam only provides information about the acceleration of the bow and
the bow force. By using gesture recognition combined with an adequate mapping
between the performance measurements and bowing pattern models, it could be
possible to obtain a satisfying hybrid control of the synthesis.

In short, the best interface for a realistic control of the bowed-string model would
be the violin itself. However, this interface necessitates gesture skills developed
through long periods of practicing. An implementation of realistic and expert-
controlled features in the model will have two main purposes: (a) to improve the
control exerted by a non-expert user, and (b) to improve the realism of the control
through an inadequate interface.

In this thesis, we have explored one way of approaching the problem of the
control of sound synthesis by physical modelling. This approach was based on the
assumption that the behaviour of the physical model is similar to the behaviour of
the real instrument, i.e. that the model parameters are realistic. Under this as-
sumption, the examination of bowing parameters used in real performance provides
some insights into a realistic control of the model. However, the present work has
some limitations, which offer alternative perspectives on future work on control of
models for bowed string instruments in particular, and on the control of virtual
instruments in general.

First, we have based our analyses on only one player. We gave a justification in
Chapter 5 under the light of our objectives: the main idea was to find prototypes for
controlling the model and, at least in a first step, we were not interested in studying
differences or similarities between players. A comparison between players could be
used to assess the properties of the control parameters that were deduced in this
work, or supplement them by offering alternative control strategies. However, it is
not sure that such a comparison would show major differences between players on
the time scale we were interested in, i.e. the bow stroke. More interesting results
could be expected to show up on a larger time scale including sequences of notes
that builds a musical phrase. A considerable improvement regarding the usability
of models for sound synthesis would lie in a “style-based” control on phrase level,
i.e. a mapping between control models like those described in this work, and the
time evolution of the notes and typical musical intentions.

A deficiency of the present work lies in the lack of perceptual validation through
systematic and objective listening tests with professional violinists. Besides assess-
ing the correctness and musical significance of the models and rules deduced in this
work such validations could be used to tune the models, by setting values of thresh-
olds for the model parameters and acceptance limits. Further, verbal descriptions
of the sounds obtained with a given set of model parameters could help in building
musically-based presets for the control of the synthesis.

Finally, other ways could be considered in order to control the model and supple-
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ment the previous examination. For instance, gesture optimization is a promising
way of automatically generating control parameters with a given set of gesture con-
straints. Systematic real-time analyses of the simulated vibration could also be
interesting for optimizing the control, and introducing feedback in the interaction
between a “virtual player” and the virtual instrument. For example, by defining
rules describing the action of the player at a certain moment depending on the
musical purposes (target) and the actual string motion (sounding result), it should
be possible to implement a realistic feedback depending on the actual state of the
simulation, instead of the invariant patterns proposed in the present work.

A “virtual player” should include a lot of features that were not within reach in
the present work, in order to perform in a musically meaningful manner. Such fea-
tures could include biomechanical constraints from the modelling of the arm, which
could be used to deduce the time evolution of bowing parameters for different play-
ers with, for example, various gesture capabilities or different temperaments. An
automatic exploration of the virtual model could also be considered, reproducing
the practicing phase of the player. In this way, the “right” regions in the control pa-
rameter spaces could be found depending on the playing skills of the virtual player.
Suitable parameter envelopes for a given sound target could also be proposed. Such
an approach would be particularly interesting in order to control models not mim-
icking real musical instruments, for which no references can be found in the real
world.

With these perspectives I close the thesis. I hope that the work has given a
better understanding of the problems and possibilities in the control of physical
models of musical instruments, even though not all aspects have been possible to
take into account. It is left to future work to fully explore this fascinating area of
music performance.
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