

Représentation structurelle d'images par transformées locales orientées et codage

Guillaume JEANNIC

Lossy image compression

- Reduce redundancy
- Suppress not significant visual information
- Provide services
 - scalability (resolution, quality)
 - error resiliency
 - region of interest
 - ...

Still image coding

Transform

- Change the image representation
- Quantization
 - Approximate the magnitude of the transformed coefficients
- Coding
 - Represent this information into binary codes

2D Discrete Separable Wavelet Transform (2D-DWT)

4

Limitations of the 2D-DWT

New representations (1/2)

Fixed representations taking into account more orientations

- Ridgelets: DWT applied on Radon projections [Candès 98]
- Curvelets: multiscale ridgelet transform [Candès Donoho 99]
- Contourlets: [Do Vetterli 05]

New representations (2/2)

Adaptive representations exploiting the regularity along a local orientation

- Representations adapting the image to the discrete separable wavelet transform [Le Guen 08]
- Representations adapting the wavelet transform to the image Bandelets [Le Pennec 02] [Peyré 05], Curved Wavelets [Wang et al 04], Directionlets [Velisavljević *et al* 06], [Chappelier 05] Adaptive Directional Lifting [Ding et al 07], Direction-Adaptive Discrete Wavelet Transform [Chang Girod 07], ...

Outline

- I. Adaptive oriented wavelet transforms
- II. Geometry estimation and coding
- III. Quantization of oriented wavelet coefficients

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Adaptive oriented wavelet transform

- I. Presentation of existing oriented lifting schemes
 - 8-connected-(p,q)-lifting
 - (p,q)-connected-(p,q)-lifting
 - **-** θ-lifting
- 2. Benchmark of oriented lifting schemes...
 - ... on synthetic images
 - ...on natural images

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

1D-DWT using lifting scheme

- Any wavelet transform can be implemented using lifting schemes instead of filter banks [Daubechies Sweldens 98]
 - + In-place transform
 - + Lower complexity

Prediction

Indate

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

ID lifting on images

- ID lifting scheme applied along the rows of an image
 - column-based lifting

row-based lifting

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Oriented lifting scheme

 The flexibility of lifting schemes is used to define oriented lifting schemes [Wang et al 06]

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

8-connected-(p,q)-lifting

[Jeannic et al 07] [Velisavljević et al 06]

- filtering orientation defined by a vector: (p,q)
- <u>8-connected</u> discrete lines defined by:

$$0 \le -q \cdot (x - x_0) + p \cdot (y - y_0) < \max(|p|, |q|)$$

• example:

$$(p,q) = (3,-2)$$

 $(x_0, y_0) = (5,5)$
 $25 \le 2x + 3y < 28$

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

(p,q)-connected-(p,q)-lifting

[Velisavljević et al 06] [Chang Girod 07]

- filtering orientation defined by a vector: (p,q)
- samples are <u>(p,q)-</u>
 <u>connected</u>
- example:

$$(p,q) = (3,-2)$$

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

θ-lifting [Jeannic et al 07] [Ding et al 07]

- filtering orientation
 defined by an angle: <u>θ</u>
- samples values are interpolated
- example:

 $\theta \approx 36,87^{\circ}$

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Filtering along the regularity orientation

• <u>Usually</u>, polyphase decomposition fixed for the whole image, then blockbased oriented filtering (filtering orientations set depends on polyphase decomposition)

<u>Our approach</u>: block based polyphase decomposition determined by filtering orientation

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

 $D + \lambda \cdot h$

Comparison criteria

- Rate-distortion approach implies quantization laws, coder, distortion metric
- Concentrate the information in the LF subband
- For normalization purpose, energy of the reconstructed HF subband

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Filtering orientations

 Farey series of order 3 used to define the set of (p,q) filtering orientations

➡ (1,0) (3,1) (2,1) (3,2) (1,1) (0°, 18.43°, 26.57°, 33.69°, 45°)

- Set of θ filtering orientations defined by quarter-pixel interpolation
 - ➡ 0°, 14.04°, 26.57°, 36.87°, 45°

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Benchmark of oriented lifting schemes

 Synthetic content (oriented from 0° to 45°) rectilinear

• Natural content

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Synthetic contents – rectilinear

- Ideally, the best filtering orientation is the closest to the orientation content
 - ex: it works with (p,q)-connected-(p,q)-lifting on

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Oriented lifting issues

• Samples from one side of the edge are predicted using samples from the other side of this edge

• θ-lifting introduces interpolation errors

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Conclusion on synthetic contents

- Only (p,q)-connected-(p,q)-lifting efficient on tested synthetic contents
- <u>however:</u>
 - edge smoothness
 - edge curvature
 => efficiency

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Natural contents

(p,q)-connected-(p,q)-lifting

spatial coherency => worse results and instability

$+ \theta$ -lifting

interpolation => noise reduction

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Results on natural images — Conclusion

• Brute force on 8x8 blocks, 15 images

θ-lifting more frequently efficient

• On average, θ-lifting more efficient and stable

Conclusion and prospects

Geometry estimation and coding (1/2)

- Brute force filtering orientation estimation
 - For mono-oriented region, orientation of the content close to the orientation minimizing the energy

➡ For **multi-oriented** region, no relation

- Need to estimate the primary structure orientation so that HFReg contains the less information about this structure
- For isotropic content, a DWT is applied
 - Uniform
 - Isotropic texture

Adaptive oriented wavelet transform

Geometry estimation and coding Quantization of oriented wavelet coefficients Conclusion and prospects

Geometry estimation and coding (2/2)

- 2 methods to estimate the orientation of the primary structure of a region, and to classify the region:
 - Explicit edge extraction and chain coding
 - Implicit geometry estimation and quadtree coding

Explicit geometry estimation and coding

- Local extrema of the gradient extraction => **pixels chains**
 - Estimation of edge elements orientations
 - Quadtree segmentation based on edgels orientations quantization
 - Filtering orientation quadtree
 - Structural classification quadtree
- <u>Coding</u>: **chain** coding or **quadtree** coding
- <u>lssue</u>: texture detection

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Chain coding

- <u>State of the art</u>: differential Freeman codes using adaptive arithmetic coding
- <u>Contribution</u>: add **multiresolution** context to only local spatial context
- Chain pixel position predicted using previous chain pixels and/or gradient orientation at the previous resolution
- On average on 10 test images, 3% bitrate decrease up to 8% with only gradient information

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Implicit geometry estimation

- Block based segmentation based on a cost function optimization
- Measure of the local gradient orientation θ_I
- Gaussian model of measure uncertainty

$$\mathcal{N}\left(\theta_{I} + \frac{\pi}{2}, \frac{\sigma}{\|\nabla I(x, y)\|}\right)$$

• Average of relevant contribution (gradient norm thresholding)

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Implicit geometry estimation

• Not enough relevant contributions

Uniform region

• Variance below threshold

➡ Isotropic textured region

- # of local maxima
 - Mono-oriented or multioriented region
 - global maximum => filtering orientation

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Quadtree coding

- For both methods, 2 quadtrees to encode:
 - Filtering orientation quadtree
 - Structural classification quadtree
- Arithmetic contextual quadtree coding using causal neigbourhood
- For 8x8 blocks, edge coding cost on average 3 times lower than edge coding cost

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Conclusion

- 2 methods to estimate the primary structure orientation and structural classification of a region
- <u>Contributions:</u>
 - chain coding using multiresolution context
 - orientations detection and estimation using a gaussian model of the local gradient measure uncertainty
- However quadtree coding costs are lower than chain coding costs

Quantization of oriented wavelet coefficients

- Use the a priori of our representation to adapt the quantization of the oriented wavelet coefficients
 - Structural classification
 - Different quantization strategies for each class taking into account the spatial frequency content
 - For anisotropic regions, oriented filtering

Exploit the difference between HFReg and HFOrtho

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Quantization strategy

- Uniform:
 - CH, CV, CD => finer quantization

- Isotropic textured:
 - CH, CV, CD => coarser quantization

- Mono-oriented:
 - HFReg+HFRes => coarser quantization
 - HFOrtho => coarser quantization
- Multi-oriented:
 - HFReg+HFRes => coarser quantization
 - HFOrtho => coarser quantization

Experimentations

- Setup
 - 5 levels transform, oriented wavelet on the 3 first ones (9/7)
 - 3 levels x 4 structural classes => 12 quantization step weights
 - SPIHT
- Automatic optimization requires efficient distortion metric
- Experimentations with only slightly annoying distortions
- Quantization steps tuning
 - I. Increase quantization steps without introducing Quality visible distortion
 - 2. Decrease quantization steps in uniform region

Bitrate

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Objective quality results

	entropy		bitrate		PSNR		SSIM		C4	
	DWT	DOWT	DWT	DOWT	DWT	DOWT	DWT	DOWT	DWT	DOWT
baboon	0,506	0,456	0,524 a	± 0,528	25,32	25,91	0,758	0,780	0,842	0,852
barbara	0,594	0,547	0,538 a	z 0,533	31,94	31,59	0,906	0,899	0,884	0,875
boats	0,498	0,45 I	0,482 ≈	≈ 0,486	35,59	34,69	0,935	0,926	0,902	0,906
farm	0,505	0,457	0,516≈	z 0,520	31,82	30,97	0,849	0,821	0,899	0,890
monarch	0,289	0,246	0,277 a	± 0,275	30,82	30,84	0,920	0,919	0,880	0,881
train	0,873	0,840	0,887 ≈	± 0,881	25,47	26,99	0,828	0,865	0,893	0,893

Adaptive oriented wavelet transform Geometry estimation and coding Quantization of oriented wavelet coefficients

Conclusion and prospects

Improvements and new distortions

- + edges or textures oriented along 45° or 135°
- + uniform regions
- + denoising along oriented structures

- staircase noise along edges
- structure loss because of classification
- oriented blurring

- Quantization laws adaptation using a priori from the structural classification
- Limitation: experimental approach at a very good quality range because at the time of the work, no very precise objective quality metric was available
- Quality improvements:
 - oriented transform => 45° and 135°
 - structural classification => on uniform region via bitrate re-allocation
- Apparition of new distortions
- SPIHT coder not adapted to 2D-DOWT

Global Conclusion

- <u>Transform</u>: θ-lifting scheme chosen among three lifting schemes
- <u>Geometry estimation</u>: implicit cost function maximization
- <u>Geometry coding</u>: contextual quadtree coding outperforms chain coding
- <u>Quantization strategy</u>: improves the true visual quality

Future works

- Segmentation optimization with variable block size
- Classification decision criteria taking into account the coding costs
- Design of quantization laws through psycho-physics tests
- Vector quantization to take into account the oriented structure of the wavelet coefficients
- Analytic formulation of distortion for optimizing bitrate/ perceptual distortion
- Integrate other features in the representation (visual saliency)

Thanks for your attention

