N

N

In silico methods for genome rearrangement analysis:
from identification of common markers to ancestral
reconstruction.

Géraldine Jean

» To cite this version:

Géraldine Jean. In silico methods for genome rearrangement analysis: from identification of common
markers to ancestral reconstruction.. Other [cs.OH]. Université Sciences et Technologies - Bordeaux
I, 2008. English. NNT: . tel-00350900v1

HAL Id: tel-00350900
https://theses.hal.science/tel-00350900v1
Submitted on 7 Jan 2009 (v1), last revised 25 Jul 2009 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00350900v1
https://hal.archives-ouvertes.fr

N° d’ordre : 3704

THESE

PRESENTEE A

L’UNIVERSITE BORDEAUX I
ECOLE DOCTORALE DE MATHEMATIQUES ET D'INFORMATIQUE
Par Géraldine JEAN
POUR OBTENIR LE GRADE DE

DOCTEUR

SPECIALITE : INFORMATIQUE

In silico methods for genome rearrangement
analysis: from identification of common
markers to ancestral reconstruction

Soutenue le : 9 Décembre 2008

Aprés avis des rapporteurs :

Bernard MORET .. Professeur
Alain DENISE Professeur

Devant la commission d’examen composée de :

Michel AIGLE Professeur Examinateur
Alain DENISE Professeur Rapporteur
Serge DULUCQ ... Professeur Directeur
Guillaume FERTIN Professeur Examinateur
Guy MELANCON . Professeur Examinateur

Macha NIKOLSKI . Chargée de recherche Co-directrice

- 2008 -

Remerciements

iii

v

A mes grands-péres, Raymond et Michel,

vi

Résumé

Méthodes in silico pour I’étude des réarrangements génomiques : de
I’identification de marqueurs communs a la reconstruction ancestrale.

L’augmentation du nombre de génomes totalement séquencés rend de plus en plus efficace 1’étude
des mécanismes évolutifs a partir de la comparaison de génomes contemporains. L’un des prin-
cipaux problémes réside dans la reconstruction d’architectures de génomes ancestraux plausibles
afin d’apporter des hypothéses a la fois sur I'histoire des génomes existants et sur les mécan-
ismes de leur formation. Toutes les méthodes de reconstruction ancestrale ne convergent pas
nécessairement vers les mémes résultats mais sont toutes basées sur les trois mémes étapes :
Iidentification de marqueurs commun dans les génomes contemporains, la construction de cartes
comparatives des génomes, et la réconciliation de ces cartes en utilisant le critére de parcimonie
maximum.

La quantité importante des données a analyser nécessite ’automatisation des traitements et
résoudre ces problémes représente de formidables challenges computationnels. Affiner les modéles
et outils mathématiques existants par ’ajout de contraintes biologiques fortes rend les hypothéses
établies biologiquement plus réalistes.

Dans cette thése, nous proposons une nouvelle méthode permettant d’identifier des marqueurs
communs pour des espéces évolutivement distantes. Ensuite, nous appliquons sur les cartes com-
paratives reconstituées une nouvelle méthode pour la reconstruction d’architectures ancestrales
basée sur les adjacences entre les marqueurs calculés et les distances génomiques entre les génomes
contemporains. Enfin, aprés avoir corrigé l'algorithme existant permettant de déterminer une
séquence optimale de réarrangements qui se sont produits durant I’évolution des génomes exis-
tants depuis leur ancétre commun, nous proposons un nouvel outil appelé VIRAGE qui permet
la visualisation animée des scénarios de réarrangements entre les espéces.

Mots-clés: génome ancestral, génomique comparative, réarrangement, point de cassure, per-
mutation

vii

Abstract

In silico methods for genome rearrangement analysis: from identification of
common markers to ancestral reconstruction

The increase in the number of entirely sequenced genomes makes increasingly accurate the
study of the mechanisms of evolution through the comparison of contemporary genomes. One
of the main problems is to reconstruct plausible ancestral genome architecture, which furnishes
hypotheses about both the history of contemporary genomes and the general mechanisms of their
formation. While not all methods for the ancestral reconstruction necessarily converge towards
the same results, they are all based on the same three steps: identification of common markers in
contemporary genomes, construction of comparative maps for these genomes, and reconciliation
of these maps under a maximum parsimony criterion.

The quantity of data that must be analyzed requires the automation of processing and meet-
ing these needs induces great computational challenges. Through refinement of computational
models and methods, we can obtain more biologically relevant hypotheses by adding biological
constraints.

In this thesis, we propose a new method for the identification of common markers to construct
comparative maps for evolutionary distant genomes. Next, we apply a new method of ancestral
genome reconstruction based on adjacencies of synteny markers and genomic distances between
contemporary genomes. Finally, after correcting the existing algorithm for computing an optimal
sequence of rearrangements that occured during the evolution of modern genomes from their
common ancestor, we propose a new tool called VIRAGE that permits the animated visualization
of rearrangement scenarios between species.

Keywords: ancestral genome, comparative genomics, rearrangements, breakpoints, permuta-
tion

viii

Contents

List of Figures xiii
List of Tables Xv
Introduction 1
I Preliminaries 7

1 Modeling a genome and evolutionary mechanisms 9

1.1 Common markers: what is a syntenic block?

1.1.1 Genetic information is contained in the genome 10

1.1.2 Common markers between species 10

1.2 Mimicking evolutionary mechanisms by operations on permutations 11
1.2.1 The genome: a signed or unsigned permutation 11

1.2.2 Rearrangements: different possible operations 11

1.3 Mathematical measure of evolution 15
1.3.1 Rearrangement distance Lo 15
1.3.2 Parsimonious rearrangement scenario 16
1.3.3 Breakpoints 16
1.3.4 Multiple genome rearrangement problem 18

2 From common markers to evolution scenarios 19
2.1 Identification of genome synteny 19
2.1.1 Grimm-Syntenyo 20
212 T-AdHoRe. 22
2.1.3 Other methods 23
2.1.4 Fragile breakpoint model versus random breakpoint model 24

2.2 Evolutionary distances between two genomes 24
2.2.1 The reversal distance for unichromosomal genomes 25

X

Contents

2.2.2 Extension to multichromosomal genomes
2.2.3 Other distances
2.3 Parsimonious scenarioS i oo e e e e e
2.3.1 Computing a parsimonious scenario for unichromosomal genomes . . .

2.3.2 Computation of an optimal scenario for multichromosomal genomes

2.4 Global methods for ancestral reconstruction
2.4.1 Breakpoint-based method L.
2.4.2 Rearrangement-based method 0.
2.4.3 Other works based on parsimony
2.4.4 Lack of biological constraints

2.5 Piece-wise reconstruction Lo o Lo
2.5.1 Method from phylogenetic data,

2.5.2 Phylogeny vs evolution mechanisms

II SyDiG: uncovering Synteny in Distant Genomes

3 SyDiG algorithm

3.1 Pre-processing
3.2 Synteny graph
3.3 Extension of homologous boundaries, .
3.3.1 Extended segments Lo
3.3.2 Groups of homologous genes and boundaries
3.3.3 Adding and positioning of new boundaries
3.4 Reconstructing synteny blocks 0oL
3.4.1 Duplicationso
3.4.2 Concatenation

3.5 Complexity e

Applications

4.1 GRIMM-Synteny versus SyDiG algorithm
411 Yeastresults
4.1.2 Mammalresults Lo
4.1.3 Discussion

4.2 Application to yeast genomes Lo o

57

59
99
60
62
62
63
64
65
67
68
68

IIT From super-blocks to constrained median assemblies 77
5 Super-block construction 79
5.1 Preliminaries L. 80
5.2 Dependent adjacencies Lo 80
5.2.1 Pairwise adjacency relationships oL 81
5.2.2 Adjacencies and distanceso L 82
5.3 From adjacencies to final assemblies Lo 87
5.3.1 Groups of dependent adjacencies L. 87
5.3.2 Super-blocks and partial assemblieso 88
5.3.3 Fusions of super-blocks 91
6 Applications 93
6.1 A Median Genome for non-WGD yeasts 93
6.2 Comparison to MGR 95
6.2.1 Human, Cat, Mouse Instances 95
6.2.2 Simulated instances Lo 96
6.2.3 Instance with centromeres. L. 97
6.3 Discussion 97
6.3.1 Gene and Segmental Duplication 98
6.3.2 Towards Ancestor Construction in Yeasts 98
IV Optimal rearrangement scenarios 107
7 Computing a correct optimal scenario 109
7.1 Double classification of connected components 110
7.1.1 Intrinsic classification oL 110
7.1.2 Extrinsic classification 110
7.1.3 Particular structures and distance formula 112
7.2 Cases for which optimal capping algorithm fails 113
7.2.1 Difference in the number of chromosomes 113
7.2.2 A gpecific breakpoint graph structure L. 113
7.3 A correct algorithm for optimal capping 114

8 VIRAGE: an interactive tool for the visualization of rearrangement sce-
narios 119
8.1 Generator of the visualization document 119
8.1.1 Syntax of input files oL 119

x1

Contents

8.1.2 Genome graph and nearly genome graph 120

8.1.3 SVG document generationo 123

8.2 Rearrangement visualizer oL 123

8.2.1 Imterface 124

8.2.2 Sequencing module Lo 126

8.2.3 Animating moduleo oL 126
Conclusion 129
Bibliography 133

xil

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24

List of Figures

Duplication e e e e
Insertion and deletiono
Reversal
Translocation
Prefix-suffix translocation oL
Fission
Fusion
Transposition e e e e
A parsimonious scenarioo Lo
Breakpoints within unichromosomal and linear genomes
Breakpoints within multichromosomal and linear genomes
Breakpoints within unichromosomal and circular genomes

Vertices of a breakpoint graph oo 0oL
A breakpoint graph for unichromosomal genomes
A breakpoint graph with interleaving oriented and unoriented cycles
A breakpoint graph with 6 non-trivial cycles
An interleaving grapho
A breakpoint graph with 3 unoriented components
A capping and a concatenate [Tes02a]
Transformation of G(7,%) into G(IL,T") [Tes02a]
Counterexample of the separation notion
A breakpoint for multichromosomal genomes
Proper flipping
Construction of optimal concatenates [Tes02a]
Two parsimonious scenarios for multichromosomal genomes
Perfect triangle [BP02]o
Three multichromosomal genomes all at distance 1 from each other [BP02]
Phylogenetic tree [MZST06]
Predecessor graph of A [MZST06]
Predecessor graph of B [MZS106]
Predecessor graph of C [MZS106]
Predecessor graph of D [MZST06]
Predecessor graph of E [MZST06]
Predecessor graph of F [MZST06]
Predecessor graph of E after being adjusted by F [MZS106]
Successor graph of E [MZST06]

List of Figures

Xiv

2.25 Intersection of the predecessor and successor graphs of E [MZST06] 95
2.26 The resulting CARs [MZST06] 55
3.1 Multiplicons between five genomes 61
3.2 Synteny graph 62
3.3 Multiplicons between five genomes and new boundaries 66
3.4 Final synteny blockso Lo 67
4.1 Differences between anchors and homologous genes 73
4.2 Distribution of 120 longest common synteny blocks within Hemiascomycete yeasts 75
5.1 An adjacency grapho 81
5.2 IIand I' are identical up to two adjacencies 82
5.3 Two resulting adjacency graphs Lo Lo o 89
6.1 Signed permutations on 135 elements for contemporary non-WGD Hemiascomycete
yeasts ..o oL oL L 94
6.2 Reconstructions of genome-scale homology from common synteny blocks repre-
senting major conserved segments Lo 100
6.3 Sharing tree of super-blocks 101
6.4 Human, mouse, cat and their ancestral permutations recovered by MGR-MEDIAN
[BPO2] 102
6.5 Sets of super-blocks of human, cat and mouse permutations 103
6.6 Median genome for human, cat and mouse recovered by fusion of super-blocks . . 104
6.7 A simulated instance with active centromere position 105
7.1 Double classification of connected components 111
7.2 A breakpoint graph for two multichromosomal genomes 112
7.3 Counterexample (number of chromosomes) to Ozery-Flato and Shamir’s algorithm
[OFS03] e 113
7.4 Counterexample (structure of breakpoint graph) to Ozery-Flato and Shamir’s al-
gorithm [OFS03] 114
7.5 Possible configurations for pertinent parameters of the breakpoint graph 115
8.1 Input file of a scenario for VIRAGE 120
8.2 Genome graph obtained from the scenarios of table 8.2. 122
8.3 Nearly genome graph for scenarios of table 8.1. 123
8.4 Graphic interface fora 1l —1case. o 124
8.5 Graphic interface fora 1 —ncase., 125
8.6 Graphic interface foran —1case. L oL 125
8.7 Graphic representation of a genome. Lo 126
8.8 Control bar and graphical representation of a genome graph. 126
8.9 Animations of a reversal (left) and a translocation (right). 127
8.10 Animations of a fusion (left) and a fission (right). 128

1.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1
5.2
9.3

6.1

8.1
8.2

List of Tables

Rearrangements considered as mathematical operations on permutations. 15
Groups of homologous boundaries 64
Groups of homologous genes L 64
Final groups of homologous boundaries 66
2-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny 70
3-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny 71
4-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny 71
2-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG 71
3-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG 72
4-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG 72
Synteny blocks on mammals obtained by SyDiG algorithm 72
Adjacencies for genomes G1, Go, G3 and G4 sorted by frequency. 80
Worst case difference of the total number of breakpoints for 5 genomes 87
Groups of adjacencies 88
Pairwise rearrangement distances between non-WGD Hemiascomycete genomes . 95
4 scenarios from 4 distinct genomes to the common genome g17. 122
Inverted scenarios of table 8.1.. o L 122

XV

List of Tables

xvi

Introduction

Genetics is a field of biology that today aims in large part to explain the machinery and func-
tioning of species through the study of their genetic information. Understanding the function
and evolutionary processes that act on genomes enables scientists to provide scientific answers
and, ultimately, new medical or therapeutic solutions to diseases.

A useful way to understand the structure and evolutionary history of a genome is to compare
it to other ones. While comparative genomics is still a young field, it is currently undergoing a
considerable expansion due notably to the advent of large scale sequencing. The huge amount
of data available in sequenced genomes makes computational approaches essential so that the
analyzes can be automated and performed on a large scale.

In particular, in silico methods are applied to study evolutionary relationships among species.
A major problem consists in measuring evolution within a set of species of interest by determining
the sequence of evolutionary events that make one genome evolve from another.

Evolutionary events are traditionally characterized by mutations. Different levels of mutations
can be observed. The most commonly studied are called punctual mutations that modify the
nucleotidic composition of the genome. Study of this mechanism led to the definition of an edit
distance for genome sequences [Do090]. However, considering only gene-level mutations does
not provide sufficient clues for inferring evolutionary history between species. In fact, Palmer
and Herbon observed in 1988 [PHS88| that the major part of genes within Brassica olearacea and
Brassica campestri are identical up to 99% but their genomes differ in their size and gene order.

Large-scale mutations that involve changing the relative order of large segments of DNA, enable
whole genome comparison. These global mutations called genomic rearrangements constitute
another approach to study evolutionary events. This field was pioneered by works of Dobzhansky
and Sturtevant [DS38] in 1930’s. Since the beginning of the nineties, the interest in the study of
genomic rearrangements has increased considerably.

In this thesis, we study evolutionary events through genomic rearrangements based on a combi-
natorial and algorithmic comparison of genomes. Several challenges arise in the study of genomic
rearrangements. Those addressed in this thesis are presented below.

Rearrangement distances and parsimonious scenarios

While punctual mutations act on a single nucleotide base by insertion, deletion or substitution,
genomic rearrangements modify the order of large genome segments by reversals, transpositions
and translocations (among others). Understanding evolutionary mechanisms progresses through
the reconstruction of the most parsimonious sequences of rearrangements that lead to genome
formation: parsimonious scenarios.

Computational approaches model genomes by signed permutations where each element repre-
sents a block of syntenic genes (i.e. groups of genes whose relative order is conserved between

Introduction

several species). Based on the parsimony criterion, the problem consists in quantifying the
minimum number of operations applied to permutations, called rearrangement distance, and in
determining what these operations are by computing the corresponding scenarios. The sorting
signed permutations by reversals problem introduced by Sankoff [San92] was widely studied in
the literature and led to efficient algorithms for solving this problem in the unichromosomal and
multichromosomal cases (Hannenhalli and Pevzner theory [HP95b, HP95a|). However, compu-
tational model and associated methods do not totally agree with biological reality. In fact, such
a model does not take into the account a certain number of important biological facts, first,
by considering only a restrained set of operations and, second, by avoiding some constraints
for studied rearrangements like centromere positioning [RAS06]. Moreover, current methods can
provide a huge number of different scenarios that correspond to the same rearrangement distance
[Sie02]. So, which of these scenarios is the most biologically plausible? Refining existing models
by adding new biological constraints and solving these problems efficiently using tractable algo-
rithms is a way to tackle this question. Solving it requires one in turn to address considerable
computational challenges.

A related challenge lies in the visualization of plausible results in order to facilitate their
interpretation by expert biologists. Indeed, genome modeling in the form of signed permutations
makes the analysis and comparison of possible scenarios difficult.

Ancestral genome reconstruction

The central dogma of evolutionary biology postulates that contemporary genomes evolved from
a common ancestral genome. However, the large scale study of their evolutionary relationships
is frustrated by the unavailability of these ancestral organisms that, indeed, do not exist any-
more. Constructing plausible hypotheses about the structural characteristics of these ancestral
architectures is a computational task whose results may provide deep insight both into the past
histories of particular genomes and the general mechanisms of their formation. This task suffers
from the two same important difficulties as that the computation of distance and scenarios: how
can we guarantee that the solution is biologically plausible? how can we find these solutions in
an efficient manner?

Evolutionary inferences are based on the comparison and reconciliation of rearrangement events
within contemporary genomes. Computational reconciliation is most often formulated as the mul-
tiple genome rearrangement problem [SSK96, HCKP95]|: given a set of N contemporary genomes
and a distance d, find a tree T with the N genomes as leaf nodes and assign permutations (plau-
sible ancestral architectures) to internal nodes such that D(T') =,)er d(m,7) is minimized.
When N = 3 this is called the median genome problem. Methods were developed according to
different distances (breakpoint distance [SB97], reversal distance [Cap99, Cap03], rearrangement
distance [BP02]). Although efficient algorithms exist to compute distances, solving the multiple
genome rearrangement problem was proved to be NP-hard (see [Bry98, PS98] for the breakpoint
distance and [Cap99, Cap03] for the reversal distance) and requires heuristics even in the case
of 3 genomes.

In addition to the computational intractability of this problem, these in silico methods provide
one single global solution chosen among a multitude of equivalent ones [Eri07] that, furthermore,
do not necessarily correspond with those provided by in vitro methods [FCG™06, BTP06|. Know-
ing that the computed median genome (or the root genome in the rearrangement tree) represents
the basic building block for species tree reconstruction, this reinforces the claim that more bio-
logical knowledge is required in mathematical models [RAS06].

2

A more realistic approach is to consider what common structural features of ancestral genomes
might be found. Partial reconciliation of modern genomes identifies permutations as above but
does not necessarily provide a total order between segments. Existing algorithms (see [MZS*06])
for this kind of resolution rely strongly on phylogenetic data. However, nothing suggests that
recombinatory evolution coincides with mutational evolution.

Identification of common markers

Mathematical solutions for ancestral genome reconstruction are clearly sensitive to the sample
of considered genomes: as the number of fully sequenced genomes increases, sampling becomes
larger and ancestral reconstruction more and more accurate. However, another very important
step in methods for ancestral reconstruction or distance computation lies in the careful identifi-
cation of common markers used to define signed permutations. These markers represent regions
of the genomes that have not been broken, since conserved segments between two (or more)
related species indicate chromosomal homology inherited from their common ancestor. Finding
conserved segments across species makes it possible to solve a dual problem, that consists in
detecting breakpoints, which are the points between conserved segments along a genome where
rearrangements have occurred.

Several methods have been defined to respond to the need for finding common markers within
genomes. Among them only GRIMM-Synteny [PT03a, BPT04, BZB'05| was precisely defined
with the goal of rearrangement study. Unfortunately, all reports in the literature of these tech-
niques share a common feature of not systematically providing all the necessary details as for
the way that breakpoints are detected, and additionally often depend on several user-specified
parameters that affect obtained results. This indicates that breakpoint (or conserved segment)
detection is not a trivial problem. However, all existing methods come back to basic computa-
tional genomics: the study of punctual mutations by alignment of genome sequences, which is
made easier by the increase of complete sequencing of genomes.

Alignment algorithms are either global (introduced in [NW70, Sel74]) or local (see Smith and
Waterman [SW81]). It has been shown that global alignment of whole genomes is not appropriate
for solving breakpoint detection; as an example, for widely studied mammal genomes, comparison
of human and mouse led to the observation that less than the half of their genomes can be aligned
[WLTBT*02].

The insight behind current algorithms relies on the fact that conserved segments can be aligned.
This leads to “seed and extend” algorithms decomposed into three steps: anchoring, filtering and
extending. While the first step is solved similarly by the current methods, the two last ones
diverge. Moreover, the latter step is totally ignored in the case of GRIMM-Synteny, since its aim
is to study genome rearrangements.

Besides, in this case, conserved markers resulting from this method, called synteny blocks,
smooth over the noise due to micro-rearrangements for inferring possible mechanisms behind
rearrangements. Beyond determining which rearrangements took place, synteny blocks (and
reciprocally breakpoint detection) enable analysis of regions that were broken by rearrangements.
Such analysis can provide clues on the issue of rearrangement hotspots. This latter topic has
generated a quite lively debate on the differences between random breakage and non-random
breakage models of evolution [KBHT03, PT03a, PT03b, TMS04].

Moreover, all current methods were applied and perform well on the ‘low-hanging fruit’ of
highly similar (e.g. mammalian) genomes, but less well on highly divergent genomes with ex-
tensive map reshuffling. Thus, algorithms with the ability to handle species having a large

Introduction

evolutionary span are required.

What this thesis is about
This thesis is divided in four parts.

The first one is dedicated to a large overview of current computational methods for solving
genomic rearrangement challenges and questions that they raise.

In the first chapter, we introduce the mathematical model for the genome and the mechanisms
of evolution. We start by defining the notion of common marker, and more precisely synteny
blocks, that represent basic elements in the signed permutation model of genomes. Then, after a
brief biological presentation of rearrangements, we sum mathematical operations on permutations
that mimic their behaviour. Finally, genomic rearrangement challenges (rearrangement distance,
parsimonious scenarios, breakpoint and multiple genome rearrangement problem) are presented
according to their corresponding mathematical formulation under the permutation model.

Comparative genomics is a young and dynamic field whose rearrangement challenges are widely
documented in the literature. Chapter 2 contains a presentation of main current methods and a
discussion of their pertinence for each rearrangement challenge. Here we go quite deeply into the
presented techniques, by providing details of algorithms and of certain approaches that are either
the subject of our own work, or are of particular relevance for our results. For identification of
common markers, we present the GRIMM-Synteny approach [PT03a, BPT04, BZB*05], which
is the only one which has been explicitly developed in order to study rearrangement events.
We also describe in detail the ADHoRe [VSST02] method on which we base our work on iden-
tification of synteny for distant genomes presented in part II. Next follows a presentation of
rearrangement distance and corresponding parsimonious scenarios, focused on the computation
of distance based on reversals only and extended to multichromosomal genomes by taking into
the account translocations, fusions and fissions as well as reversals. Besides the fact that these
rearrangements are considered as the most frequent [BP02], efficient algorithms exist for this set
of operations (first suggested by Kececioglu and Sankoff [KS93|, then improved by Hannenhalli
and Pevzner’s theory [HP95a, HP95b] and thus represent adequate bases for solving ancestral re-
construction. For the latter challenge, we present the two main parsimony-based global methods
(breakpoint and rearrangement distance), as well as the partial reconstruction approach based
on phylogenetic considerations (Ma et al. [MZST06]).

Parts II, ITI, and IV are dedicated to our contributions in the domain. The developed approaches
were validated on real data from the Génolevures project [DST04], a large-scale comparative ge-
nomics project across the evolutionary range of the Hemiascomycetous yeast phylum coordinated
by the CNRS and operated by a Consortium of laboratories and research centers affiliated with
different institutions. Génolevures provides an ideal application domain, since certain clades of
species under study present enough synteny in order to identify common markers and therefore
to apply computational methods for ancestral analysis.

We propose in part IT an original approach for identifying common markers in evolutionary dis-
tant genomes. Chapter 3 presents this algorithm called SyDiG - recovering Synteny in Distant
Genomes - based on ADHoRe [VSS™02] results, while chapter 4 proposes a comparison with the

4

GRIMM-Synteny method and an application to the Hemiascomycetous yeasts.

In part III, a new piece-wise method for the reconstruction of ancestral architectures is pre-
sented. This method, detailed in chapter 5, is based on the study of both adjacencies between
common markers and rearrangement distances between modern genomes. Moreover, it makes
it possible to use biological constraints such as centromere position. Without any phylogenetic
considerations, this leads to the construction of super-blocks that represent common ancestral
features. After a comparison with existing global and partial methods of ancestral reconstruc-
tion, chapter 6 presents the resulting sets of super-blocks obtained for the signed permutations
of Hemiascomycetous yeasts computed in their turn by the SyDiG algorithm.

The last part addresses the problems of computing and visualizing optimal rearrangement sce-
narios between putative reconstructed ancestral genomes and contemporary ones. Chapter 7
proposes a single and coherent classification of the notions involved in existing algorithms for
computing a parsimonious scenario between two multichromosomal genomes. This classification
makes it possible to pinpoint the fact that current algorithms present errors. In the same chapter,
we introduce a correct algorithm with a proof of its correction. Finally, chapter 8 is dedicated to
the presentation of a new tool called VIRAGE that we have developed for the interactive visu-
alization of rearrangement mechanisms between genomes and which permits a more comfortable
rearrangement analysis by biologists.

Introduction

Part 1

Preliminaries

Chapter 1

Modeling a genome and evolutionary
mechanisms

The comparison of genomes is a fundamentally powerful way to understand their structure and
evolutionary history. Evolutionary events are traditionally characterized by mutations. Two
main scales of mutations are observed: punctual mutations and genomic rearrangements.

The comparison of genomes through punctual mutations consists in aligning nucleotidic se-
quences extracted from the entire genome sequences we aim to compare. The study of these
gene-level mutations leads to a local sequence-based comparison of species, that does not use
all of the available information. A higher level of mutations represents another way to study
genomes by comparing them globally. These global mutations called genomic rearrangements
modify the order and the content in terms of genes within the genomes on which they operate.

The number of entirely sequenced genomes becomes more and more important every year
and thus the amount of relevant data becomes so huge that automating processing has become
essential. Use of computational methods to study genome rearrangements requires one to define
a mathematical model of the genome in order to represent all of the information that it contains
relative to the content and the order of its genes. However, the content of genes themselves is
not to be modeled since in such a study we are interested in large-scale mutations.

In this chapter, we present the signed permutation model commonly used to study genome rear-
rangements. Permutations are constructed based on common elements between several genomes
that are supposed to be inherited from a common ancestor. In section 1.1, we define what are
these common markers and more precisely the notion of synteny blocks. In the next section,
we present the principal rearrangement operations that are encountered and the corresponding
mathematical operations on permutations. Genomic rearrangements are at the heart of several
challenges: recovering rearrangements that lead to the formation of a novel species, reconstruct-
ing gene architecture of ancestor that have vanished today. The last section of this chapter
formulates all of these goals in a mathematical way based on the permutation model.

1.1 Common markers: what is a syntenic block?

The comparison between species and more precisely the study of evolutionary mechanisms of
genomes proceeds through the definition of points of comparison, called common markers, sit-
uated on the genomic sequences of organisms. This is done by comparing the genomes of the
species under study.

Chapter 1. Modeling a genome and evolutionary mechanisms

1.1.1 Genetic information is contained in the genome

The whole genetic information of a species is encoded in its DNA (desozyribonucleic acid)
molecules and constitutes the genome.

The DNA has two complementary strands where each strand is composed of sequences of
nucleotides, or bases. The four bases found in DNA are adenine (abbreviated A), cytosine (C),
guanine (G) and thymine (T). It is the order, the nature and the number of nucleotides that
encode the genetic information. From the sequence of one strand of DNA, it is possible to
find its complementary sequence by replacing each base by its complement and reversing the
sequence. Adenine and thymine are complementary, as are guanine and cytosine. DNA strands
are oriented from 5’ to 3’ according to links 5'-3' between desoxyribose rings that join nucleotides.
The arrangement of DNA strands is called antiparallel: the direction of the nucleotides on one
strand is opposite to their direction on the other strand (the 5" extremity of one strand gets in
contact with the 3" extremity of the other strand and vice versa).

The genome is divided into one or several chromosome(s), each carrying a set of genes. A gene
is a region of a chromosome, which contains a coding sequence. The majority of coding sequences
are transcribed into mRNAs (messenger RiboNucleic Acids) which, in turn, are translated into
proteins. The remaining coding sequences are transcribed into RNAs; which are not translated
into proteins. For the sake of simplification, we will refer to protein coding sequences as genes.
We can define an orientation for each gene. In fact, a gene is present on the two DNA strands
(major and complementary) but the transcription process is performed from only one strand. In
the case where a gene is transcribed from the major 5-3’ strand of the DNA sequence, it is said
to be directly oriented. If the transcription process is done from the complementary 3'-5" strand,
the gene has the reverse orientation.

1.1.2 Common markers between species

The genome sequence of an organism is inherited from its parents, and in the context of this
work is considered to be the same for all members of the same species. The genome sequence
of a species is derived through evolution from the sequence of its ancestor species, and related
species will have inherited common sequence features from their last common ancestor. This
inheritance is as the core of the study of genome rearrangements.

From genes to synteny blocks

Whole genome sequencing makes possible the comparison of genomes by defining common mark-
ers. Highly similar DNA sequences are called homologs. If sequences correspond to genes, we
speak about homologous genes, where we distinguish orthologs, genes in different species that
evolved from a common ancestral gene by speciation, from paralogs, genes related by duplication
within a genome. These homology points define common markers between the genomes of differ-
ent species. Common markers can also be defined at a higher level of abstraction. Nadeau and
Taylor in [NT84] introduced the notion of conserved segments that are segments with preserved
gene orders without disruption by rearrangements in different species.

In order to mask multiple microrearrangements in a whole genome comparison, one can use
synteny blocks, which usually consist of short regions of similarity that may be interrupted by
dissimilar regions and gaps (definitions are given in [PT03al]). Intuitively, synteny blocks can
be converted into conserved segments by microrearrangements. A detailed discussion of synteny
blocks and their construction can be found in chapters 2 and 3.

10

1.2. Mimicking evolutionary mechanisms by operations on permutations

Sign of a common marker

Once common markers are defined between two or more species, a sign can be associated with
each of them to indicate relative changes in orientation. Signs of common markers in one genome
are determined relative to an arbitrarily chosen reference gemome.

Let II and I'" be two genomes, and II be the reference genome. For a common marker o of
(arbitrarily chosen) sign s in II, we have:

e if o is a gene, which has the same orientation in I' as in II, then ¢ has s as sign in I,
Otherwise, the sign of ¢ is —s in I’

e in the case of a conserved segment (synteny block, respectively), s in I depends on the order
and the signs of common elements in this segment (synteny block, respectively) compared
with those in IT (see section 2.1 for details function to the considered method).

It is sometimes not possible to give a sign to common markers. This can happen for example
when gene orientation is unknown or when information about order and orientation is insufficient
for making an unambiguous choice.

1.2 Mimicking evolutionary mechanisms by operations on per-
mutations

1.2.1 The genome: a signed or unsigned permutation

A genome is a set of chromosomes while a chromosome is a list of markers. These markers can
be genes or syntenic blocks. In this thesis we are not concerned by the comparison of the content
of markers, only by the gene order in the genome and on its chromosomes. Thus, in the chosen
model, a marker is represented by an identifier, signed or not (see section 1.1) and a chromosome
can be seen as a list of signed or unsigned identifiers, that is, a permutation.

Let IT = {#!,..., 7™} be a multichromosomal genome defined as a set of Ny chromosomes.
The " chromosome 7 = mi...mh,. is a sequence of n; markers. The order of m* is n;. Because
of the complementarity of the two DNA strands, any chromosome 7 can be represented in two
distinct ways: “from left to right” (i.e. 7 = mme...m,) or “from right to left” (i.e. —w =
—Tp... — my — 71). These two representations are equivalent. Thus, several equivalent forms
are possible for the same genome. For example, the genome {771,7r2,7r3} can be written as
{771, —712,773} or {—771,—772, —713}, etc.

Note 1 For an unichromosomal genome II = {n'}, the notation m represents either the entire
genome or the unique chromosome.

The structure of genomes varies between organisms. Genomes of prokaryotes as well as those
of organelles such as mitochondria or chloroplasts are characterized by an unique circular chro-
mosome. For eukaryotes, several linear chromosomes form the genome. Over time, chromosome
architecture evolves through rearrangement mechanisms. The different possible rearrangements
that can occur in different kinds of genomes are described in section 1.2.2.

1.2.2 Rearrangements: different possible operations

Genomic rearrangements modify the genome content or the gene order. Operations such as
duplications, insertions or deletions add or delete DNA fragments in the initial genome without

11

Chapter 1. Modeling a genome and evolutionary mechanisms

modifying the gene order. Reversals, translocations and transpositions are operations that modify
the gene order by moving DNA fragments into a chromosome or from one chromosome to another.
Combinations of these operations modify both gene content and gene order.

Presentation of possible operations

Duplication Duplication inserts chromosomal fragments of variable length. In general, the
new DNA fragment is inserted besides the repeated one.

XL N |

|

XL NN

Figure 1.1: Duplication of a gene on the chromosome X.

Insertion and deletion A new DNA fragment can appear on a chromosome during the evo-
lution of a species. This is called gene or segmental insertion. The symmetric event of DNA loss
is called gene or segmental deletion.

x L] x [N |

| |
x CNC I x

Figure 1.2: Insertion (left) and deletion (right) of a gene on the chromosome X.

Reversal Reversal is a modification of the DNA structure that consists in a 180° rotation of a
chromosomal segment most often without loss of genetic material. Thus, a reversal modifies the
orientation of involved genes.

X NN\~ ~ =N

|

X NN~ = =\

Figure 1.3: Reversal of a gene sequence on the chromosome X. The involved genes belong to the
white segment. Small arrows indicate gene orientation.

12

1.2. Mimicking evolutionary mechanisms by operations on permutations

Translocation Translocation is a mutation that only occurs in multichromosomal genomes,
since two chromosomes must be involved. Translocation is a exchange of genetic material be-
tween two chromosomes. Figure 1.4 presents a translocation where the sequences at the end of
two chromosomes are exchanged.

AEINNN\\\H

Figure 1.4: Translocation of the chromosomes X and Y.

In the work of certain authors (e.g. Hannenhalli [Han96]), other types of translocations are
considered in order to measure evolution between species. In these translocations, other chro-
mosomal segments than suffixes can be combined by a reversal. For example, Hannenhalli in
[Han96]| presents the prefix-suffix translocation with reversal: the prefix of a chromosome is ex-
changed with the suffix of an other one and the exchanged sequences are reversed. The figure
1.5 describes this mechanism.

X D | 4
Yy [<>

Figure 1.5: Prefix-suffix translocation of the chromosomes X and Y. The prefix of Y and the
suffix of X are exchanged: these sequences are reversed during the translocation.

Fission and fusion These rearrangements are particular cases of translocation. Fission is a
mechanism that separates a chromosome into two distinct chromosomes (see figure 1.6).

Fusion is the opposite mechanism that joins together two chromosomes into an unique one
(see figure 1.7).

Transposition Transposition is a mechanism that consists in moving a DNA sequence along
a chromosome. It may or may not involve a reversal as shown on figure 1.8.

13

Chapter 1. Modeling a genome and evolutionary mechanisms

Figure 1.6: Fission of chromosome X into two chromosomes Y and Z.

z | NN

Figure 1.7: Fusion of chromosomes X and Y into the chromosome Z.

X N> | V2

without reversal with reversal

XN B V7 x| <7

Figure 1.8: Transposition of the genes belonging to the grey segment on the chromosome X with
(right) or without (left) reversal.

Mathematical operations for rearrangements

Rearrangements that do not modify gene content (see section 1.2.2) can be modeled by mathe-
matical operations on permutations representing a genome (see section 1.2.1). Table 1.1 shows
mathematical operations corresponding to biological rearrangements applied to a multichromoso-
mal and signed genome I = {7!, ..., 7#¥1}. The application of a rearrangement ¢ to the genome
IT results in the genome II' = I1.¢.

14

1.3. Mathematical measure of evolution

Rearrangement Notation Resulting permutations
. ' = {x!, ..., 7oL 7 7l Vi) with
Reversal 0 (wl, k, l)
TR i i i i i i
T = T = T = T e = Ty — T T,
| i—1 _ir it1 j—1 jr g+l N
I ={n", .. o= a wt T I gt e}
Translocation t (", 7k, 1) with 77 = w’i...w,@flwf...w%j
and m/' = mf. . wh..wh
Translocation ' = {x!, .. ¢t ¢ gl pd=l gl i+l | N}
. treo (7', 7, K, 1) with 7/ = nf..7ml_| — @) .. — 7]
with reversal S
g i R J
and 7" = —m) ... — T Ty,

I g1 i—1 i it i—1 _j+1 N
I ={r",. . o=t o o md = ot e}

Fusion t(r',mi o +1,1) o
YR 7 S S B
with " = 7.7}, m... 70,
r_ g1 i—1 it _Nyp+1/ i+l N
I = {xt, ... ¢t~ gt ot el N
Fission t (7?’, 0k, 1) with 7 = nl..7t_,
Np+1r 1 7
and 7 = T}...T;,
I = {x!, .., ; b, ¥ il N
.. , ey , ey
Transposition r (7', k,1,m) ' o T
3 vy — '3 7 7 {2 7 - 2
with 770 = Ty o) T T T T T Ty
Transposition 4 ' = {x!, ..., 7= g gl . gh}
Trev (Wz,k,l7m)) .))) . ; o .
with reversal with 7" = 7l T T = W — T, T,

Table 1.1: Rearrangements considered as mathematical operations on permutations.

1.3 Mathematical measure of evolution

1.3.1 Rearrangement distance

Measuring the evolutionary distance between two species is one part of comparative genomics
analysis. This distance can be formulated in terms of genomic rearrangements. In our case,
for a given set of genomic rearrangements, the problem consists in quantifying the minimum
number of rearrangements that transform one genome into another. This measure relies on the
parsimony principle and defines a distance in the mathematical sense of the word. A distance
on a set F is a function d : £ x E — R verifying:

(i) d(z,x) =0forall x € E,
(i) d(z,y) >0 for all x,y € E with = # y,
(ii) d(x,y) =d(y,z) for all z,y € E,
(iv) d(z,y) < d(x,z) +d(z,y) for all x,y,z € E.

In order to provide results that are more biologically realistic, the operations are sometimes
weighted. The weight depends on either the type of the considered operation, or the length of

15

Chapter 1. Modeling a genome and evolutionary mechanisms

the implied genetic material. The distance (provided that the weight functions are mathematical
distances) is then the minimal sum of the costs taken among all the sequences of operations that
transform one genome into another.

1.3.2 Parsimonious rearrangement scenario

In the same way, it is important to determine evolutionary scenarios corresponding to a rear-
rangement distance d, that are called parsimonious scenarios. A parsimonious rearrangement
scenario between genomes II and T is a sequence of rearrangements (¢1, .., ¢,,) that transforms
genome II into I" such that d(II,T") = n.

Figure 1.9 gives an example of a parsimonious scenario for two unichromosomal genomes 7
and . The number of reversals in the scenario is equal to the reversal distance between them:
d(m,~y) = 4.

T= -9 8 46 +7 +2 +3 +4 +5 +1

9 8 7 6 42 43 +4 45 +1

9 8 7 6 5 4 -3 -2 4+l

9 8 7 6 5 4 3 2 1

Y= 41 +2 +3 +4 45 46 +7 +8 49

Figure 1.9: One parsimonious scenario between unichromosomal genomes 7 and ~y. The first line
represents the genome 7, the last, the genome v and all the lines except for the first are obtained
from the previous one by a reversal of the underlined segment.

Note that, although computations of the rearrangement distance and of a parsimonious sce-
nario are two closely related problems, they are often resolved independently in the relevant
literature (see section 2.2 of chapter 2).

1.3.3 Breakpoints

Chromosomal segments involved in rearrangements can be identified in permutations by the sets
of corresponding consecutive markers. These sets are delineated by breakpoints. This notion was
introduced by Nadeau and Taylor [NT84| in 1984, and we can distinguish the signed case (see
definition 3) from the unsigned one (see definition 2).

Definition 1 Two consecutive elements m; and w11 of a chromosome 7 are said to be adjacent
in a genome 11. Denote by m;.m; 1 an adjacency between m; and mw;y1.

Definition 2 For two unsigned genomes Il and T, if two elements m; and w11 are adjacent in
IT but neither m;.mix1 nor mi+1.7m; are present in I, then the pair m;.m;y1 forms a breakpoint in
II with respect to T'.

Definition 3 For two signed genomes Il and T, if two elements m; and w11 are adjacent in 11
but neither m;.miy1 nor —m;11. — m are present in ', then the pair w;.m;11 forms a breakpoint
wn I with respect to T'.

16

1.3. Mathematical measure of evolution

When genomes are linear, supplementary adjacencies have to be taken into the account: the
ones between the beginning of a chromosome and its first element and the ones between the
last element of a chromosome and its end. Figures 1.10, 1.11 and 1.12 present breakpoints in a
genome IT according to a genome I' for different natures of genomes (unichromosomal without
information about orientation (i.e. unsigned), multichromosomal, and circular, respectively).

Figure 1.10: Breakpoints in IT = {1 8 6 72 3 4 5 9} with respect to ' = {1 234567 8 9}
where II and I" are unichromosomal and linear genomes.

1_
= -9 —8.+6 +7.

2 _
w2 = gt2 +3.+4 +5.+1.

Figure 1.11: Breakpoints in I ={-9 —8 +6 +7, +2 +3 +4 +5 + 1} with respect to
F={+1+2+3, +4 +5 +6 +7 +8 +9} where II and I" are multichromosomal and linear
genomes.

-9
+1® -8
[] []
+5 +6
+4 o/
+3 +2

Figure 1.12: Breakpoints in II = {-9 —8 +6 +7 +2 +3 +4 +5 + 1} with respect to
F'={+1 +2 +3 +4 +5 +6 +7 +8 + 9} where IT and I' are unichromosomal and circular
genomes.

The notion of breakpoint leads to a first distance used to measure evolution between species:
the breakpoint distance. Let 1I and I' be two genomes of respectively N and Nt chromosomes.
The breakpoint distance b(I1,T") is equal to the number of breakpoints in IT (I", respectively) with
respect to I' (II, respectively). Indeed, the number of breakpoints in II is equal to the number
of those in T'.

In the case that N;p < Np, the number of breakpoints is b(ILT) = [{(m;, mi11)|mi.mit1 is a
breakpoint in IT}| + (Np — Np) or b(IL T') = [{(7i, Yi+1)|7i-Vi+1 is @ breakpoint in T'}|.

The computation of the rearrangement distance and of parsimonious scenarios are closely re-
lated to breakpoints, since the transformation of a permutation into another consists in removing
breakpoints in order to obtain the target permutation.

17

Chapter 1. Modeling a genome and evolutionary mechanisms

1.3.4 Multiple genome rearrangement problem

Measuring the evolutionary distance between contemporary species goes through the implicit
reconstruction of ancestral genomes: since the ancestral species no longer exist, we do not know
their true genomes. Evolutionary relationships between species, extinct or contemporary, are
expressed through a species tree.

Computational inference of species trees is most often formulated as the multiple genome
rearrangement problem [SSK96, HCKP95|: given a set of N contemporary genomes and a distance
d, find a tree T with the NV genomes as leaf nodes and assign permutations (plausible ancestral
architectures) to internal nodes such that

D(T) = Z{w,v}eT d(m,y) is minimized.

When N = 3 this is called the median genome problem. In the general case, this formulation
corresponds to the well-known Steiner tree mathematical problem [HRW92|, which was shown
to be NP-complete (see [Bry98, PS98] for the breakpoint distance and [Cap99, Cap03] for the
reversal distance).

Note that species trees reconstructed from this definition do not necessarily coincide with
phylogenetic trees, which are trees in which each node with descendants represents the most
recent common ancestor of the descendants, and the edge lengths correspond to time estimates.

18

Chapter 2

From common markers to evolution
scenarios

In chapter 1, we presented the mathematical model of signed permutations commonly used to
study genome rearrangements in computational approaches. In this thesis, we are interested in
three main rearrangement challenges that are strongly related and for which the mathematical
formulation is given in chapter 1.

- Identifying common markers between genomes: common markers are at the origin of the
construction of the permutation encoding a genome. Their identification requires careful
attention, since all of the rearrangement studies and hence all of the inferred biological
hypothesis are based on the obtained permutations.

- Computing evolutionary distances and parsimonious scenarios between two genomes: mea-
suring evolution between species implies the reconstruction of the sequence of rearrange-
ments that separates one genome from another. Finding the minimal number of rearrange-
ments leads to the computation of the rearrangement distance between two genomes.

- Recovering ancestral architectures: modern genomes evolved from a common ancestral
genome that no longer exists. Finding common structural features of ancestral genomes
makes possible understanding the past history and evolutionary mechanisms that lead to
contemporary genomes.

All of these rearrangement challenges represent computational tasks that are widely docu-
mented in literature. Since the beginning of this research field pioneered by Dobzhansky and
Sturtevant [DS38], two main problems are addressed: how can we find these solutions in an
efficient manner? how can we guarantee that the uncovered solution is biologically plausible?

Chapter 2 proposes the current state of existing computational methods for all of these chal-
lenges. We give a fully detailed presentation of certain approaches on which our work was more
precisely focused. We also discuss the pertinence of their solutions and provide a brief presenta-
tion of the debates that they have sparked.

2.1 Identification of genome synteny

Studying evolution mechanisms of genomes through the analysis of signed permutations and
their transformations makes sense only if these permutations faithfully describe biological infor-
mation contained in the genomes. Elements of these permutations represent common markers

19

Chapter 2. From common markers to evolution scenarios

between species that have to be carefully defined. These markers, in turn, represent conserved
segments that have not been broken, since between two (or more) related species, they indicate
chromosomal homology inherited from their common ancestor.

Many methods developed for this purpose are “seed and extend” algorithms decomposed in
three main steps. First, genome sequences are anchored by detecting strongly conserved regions
through local alignments. The two last steps are different according to the considered methods.
Second step consists in filtering the anchors: removing anchors obtained by chance and choosing
an exemplar of duplicated regions is done by clustering or chaining anchors. Finally, the obtained
conserved segments are aligned.

In what follows, we present in a more detailed way the GRIMM-Synteny method [PT03a,
BPT04, BZB'05] that is the only one explicitly defined in the aim of rearrangement study.
We also detail i-ADHoRe [VSST02, SVSP04, SJSV08] method on which we base our work on
identification of synteny for distant genomes presented in part II.

2.1.1 Grimm-Synteny

GRIMM-Synteny method [PT03a, BPT04, BZBT05] was developed in the aim of rearrangement
study. That is why, the latter step of traditional “seed and extend” algorithm is ignored. More-
over, the GRIMM-Synteny method does not compute conserved segments but syntenic blocks.
These blocks correspond to conserved segments up to microrearrangements.

Careful readers well remark that a very similar method to GRIMM-Synteny is evoked in [ST05]
and explained under the name ST-synteny in [PPT06]. This method need not be considered.
In fact, Sankoff in [San06] explains that it is not “an alternative way of constructing syntenic
blocks; the so-called ST-synteny was only a (bungled) attempt to mimic Pevzner and Tesler’s
method, based on our reading or misreading of their paper [PT03a]”.

Anchoring

The first step of the method detailed in [BPT04] consists in finding potential regions of ho-
mology, as the anchors, that represent the starting point of synteny blocks. It proceeds in two
successive processing steps: a filtering step of anchors called GRIMM-Anchor is applied after
their computation by local alignments.

Local alignments Anchors are found by preprocessing alignments. Initially, GRIMM-Synteny
uses gapped alignments given by PatternHunter [MTL02]. A more recent version of GRIMM-
Synteny [BZB105] identifies anchors based on BLASTZ algorithm [SKST04], which provides the
best results on non-coding regions. They also evoke in [BZB105] a large-scale detection based on
genes for treating more distant genomes. Next, anchors are restrained to a set of non-overlapping
and unique ones by applying GRIMM-Anchor.

GRIMM-Anchor This preprocessing is used to separate unique hits from repeats. The level
of an anchor indicates the number of genomic intervals it concerns, one per involved genome.
For two genomes, the method consists in building a graph where each vertex corresponds to
a maximally contiguous region of genomic intervals, called superinterval, and where an edge
between two superintervals is added if at least two regions of them share an alignment. Such
alignments are called supporting alignments. Only alignments of unique regions corresponding
to connected components consisting of only one edge are retained. They are transformed into
two-way anchors only if all corresponding supporting alignments have the same sign, otherwise

20

2.1. Identification of genome synteny

the connected component is also discarded. In this case, the coordinates of constructed two-way
anchors whose sign is the one of their supporting alignments, are defined by those of corresponding
superintervals.

The search for N-way anchors (N > 2) consists in keeping only the intersecting genomic
interval from two-way anchors of the considered genomes. For example, to provide three-way
anchors for genomes G, G and G, all triples of two-way anchors (G1, G, o), (G%,G3,0?) and
(G3,G3,0%), where G; represent coordinate superintervals and o = +1 or —1, are identified. A
three-way anchor is defined if signs are consistent (0l0%03 = 1) and intervals G} and G? (G} and
G3, G3 and G3 respectively) of genome G (G and G3 respectively) overlap. This three-way
anchor is represented by the interval G1 N G? with sign 1 in G, G} N G3 with sign o! in Gy and
G% N G3 with sign o2 in G3.

Clustering

Then, the computation of syntenic blocks consists in combining close anchors together without
consideration of order and orientation. This clustering step is based on the anchors whose level
is equal to the number of species under study.

The proximity between anchors is based on the Manhattan distance. Let {G;} be a set of
N genomes and g/ be a coordinate within G;. The Manhattan distance between two points
(91,95, -, g%) and (g3, 63, .., g3%) in the same chromosome tuple is S~ | [g? — g}|. If two points
are not defined on the same chromosome tuple, their Manhattan distance is defined as infinite.
Hence, the Manhattan distance between two NN-way anchors on the same chromosome tuple
is the Manhattan distance between their nearest endpoints (There are two terminals for each
anchor determining by the signs of the alignments).

In [PTO03a], two anchors are joined together if their Manhattan distance is inferior to a user-
specified threshold. In [BZBT05], this clustering step is done in a slightly different way. First, the
nearest endpoints of the two anchors are determined thanks to the Manhattan distance. Then,
GRIMM-Synteny combines or not these two anchors according to per species distances: if, in all
species, the distance | 922 - glll is less than the per-species threshold for G;, then the anchors are
joined together.

Finally, within the obtained set of anchor clusters, those considered as too small are discarded
following the hypothesis that short blocks may be caused by chance. In the original version of
GRIMM-Synteny [PT03a], a user-specified parameter allows one to keep only clusters whose span
is at least a minimum size in the reference species (i.e human). In [BZB105], authors propose to
fix a minimum size per species.

Ordering and signing

Ordering and signing anchor clusters are two important steps that require careful attention due
to consequences that involve during rearrangement analysis. However, details about them are
quite nebulous in the literature about GRIMM-Synteny.

Clusters are not supposed to overlap, but their span intervals may overlap within one of the
considered species. That is why, the authors in [PT03a] compute the center of mass of all anchors
forming a cluster and order clusters according to the coordinates of their centers of masses. This
leads to the numbering of clusters according to their order in a reference species. However, the
notion of center of mass is not clearly defined.

Concerning the assignation of cluster orientation, the method is detailed in [PT03c| and is
based on the notion of separable permutations. Let the permutation 7 = (1,..,m) be a cluster of

21

Chapter 2. From common markers to evolution scenarios

anchors in the reference species Gy and v = (71, .., Vm) be the signed permutation corresponding
to the same cluster in another species G3. Permutation «y is separable if (v1,..,7,) is a signed
permutation of (1,..r) for some r = 1,..,m — 1. Sign of 7 being 1, the sign of v denoted by o is
defined as follows:

e if m =1, 0 =4 such that v = (9),
e for m > 1, if v is separable, then o = 1,
e form > 1,if —y = (=, .., —71) is separable, then 0 = —1,

e otherwise, it is not possible to define clearly the sign of . Authors in [PT03c| choose o = 1
by default or discard this cluster.

In the case of more than 2 genomes, the signs of a cluster are all determined relative to the
one in reference species.

Strips of clusters

The last step defines synteny blocks by combining clusters into strips. A strip is a sequence of
consecutive signed clusters 71, .., m, in the reference species that either appear consecutively in
the same way or in the inverse —m,,.., —m in another genome. Strips are formed without any
consideration of distance between clusters.

2.1.2 I-AdHoRe

Generally, existing methods detect similar sequences either based on nucleotide comparison, or on
the gene level. In the latter case, the study of genes enables the detection of homology between
chromosomal regions that are highly divergent. I-AdHoRe (iterative Automatic Detection of
Homologous Regions) method [VSST02, SVSP04, SISV08] is based on this approach: the method
consists in identifying chromosomal regions showing a conservation of gene order and content.
Obtained results are called multiplicons, where the level indicates the number of homologous
segments it contains. [-AdHoRe first detects multiplicons of level two by AdHoRe (Automatic
Detection of Homologous Regions) routine. Next, by iterating the process, new genomic segments
are added to existing multiplicons in order to increase their level.

Input data

AdHoRe and i-AdHoRe methods require the data set of genes with their absolute or relative
position on a genomic sequence and their orientation. Homologous genes are determined using
BLASTP [AGM™90|, which compares amino acid sequences instead of traditional nucleotidic
ones.

Detection of multiplicons of level two

Gene Homology Matrix The AdHoRe method [VSST02] tries to determine chromosomal
regions said to be collinear, that is, regions sharing a significative conservation of gene order
and content. The AdHoRe algorithm first constructs a Gene Homology Matriz (GHMs) for each
pair of chromosomes. Within this matrix, lines and columns correspond to positions of genes
in chromosomes. A non-zero value is assigned to cells whose the line and the column form a
pair of homologous genes. A positive or negative sign is attributed to this kind of cells, whether

22

2.1. Identification of genome synteny

homologous genes have the same orientation or not. Non-zero cells represent the anchors, on
which is based the detection of collinear regions.

Anchor Clustering Collinear regions primarily correspond to a set of anchors that have the
same sign and that present a proximity within the matrix. This proximity is measured by a
special “distance function”, which gives priority to anchors close in the diagonal rather than in
the vertical or horizontal axes. This measure, called DPD (Diagonal Pseudo Distance), is not a
distance in the mathematical sense of the term, since the triangle inequality is not verified. For
two points (x1,y1) and (z2,y2) in the matrix, the DPD is:

d = 2max(|zg — 1/, [y2 — y1]) — min(|zz — 21, [y2 — 11)-

A user-specified parameter fixes the maximal pseudo-distance DPD between two anchors in the
same collinear regions and the determination of such regions is realized by successive iterations
of anchor clustering by gradually increasing values of DPD until a fixed threshold. Moreover,
before each iteration, a quality filter conserves only the most significative clusters in terms of the
number of anchors, of the quality of the diagonal and so on. Finally, certain clusters called base
clusters are merged into a larger one if their DPD is lower than the threshold. Final clusters are
called metaclusters, which are formed of one or several base clusters.

The clustering process is first distinctly realized on the set of positive anchors and on the set
of negative ones. A post-processing consists in combining both orientation classes by clustering
clusters from different orientation sets if possible. However, in this case, it is not clearly stated
in [VSST02] how orientation is chosen for the resulting multiplicons.

Detection of higher-level multiplicons

In order to detect multiplicons of higher level, i-AdHoRe algorithm is based on multiplicons of
level two for which it tries to add, in an iterative way, one or several genomic segment(s).

Segments that constitute existing multiplicons (of level two initially) are used to create profiles.
A profile is a multiplicon whose segments are aligned in a such way that homologous genes are
located at the same position. Then, these profiles are compared to gene lists (i.e chromosomes)
from input data in a way analogous to the AdHoRe algorithm [VSST02]: GHMs are constructed
where lines correspond to positions of genes in a chromosome while columns represent positions
of genes in a profile. If an additional segment is detected in the matrix, it is added to the existing
multiplicon and the corresponding profile is updated. The whole process is repeated in order to
find potential multiplicons of superior levels.

Note that, whatever its level, a multiplicon corresponds to a metacluster and hence is formed of
one or several base cluster(s). Moreover, extremities of genomic segments that define a multipli-
con are determined by the leftmost and rightmost coordinates of its anchors in the metacluster.

2.1.3 Other methods

Several methods have been defined to respond to the need for finding common markers within
genomes. Recently, in [LS08], Claire Lemaitre and Marie-France Sagot propose a survey on
the methods for detection of conserved segments. They focus their work on GRIMM-Synteny,
which was already presented in section 2.1.1, CHAINNET [KBH'03], MAUVE [DMBP04] and
an algorithm provided by Couronne and Patcher [CPB103| (denoted by CP). They claim that
these four methods are representative of the numerous methods that exist in the domain.

23

Chapter 2. From common markers to evolution scenarios

While GRIMM-Synteny was developed in order to study rearrangements, the others were
computed for other goals as alignments of conserved regions. Because alignments of whole
genome sequences are not appropriate for this purpose (see [WLTB02]), all are defined as “seed
and extend” algorithms decomposed in three steps: (1) anchoring, (2) filtering and (3) aligning.

The first step requires local alignments of genome sequences: anchors are defined from un-
gapped (CHAINNET) or gapped (GRIMM-Synteny and CP) local alignments using tools like
BLASTZ [SKST04] or PatternHunter [MTLO02], or exact matches (MAUVE). MAUVE can be
more stringent than other methods, since it was developed for bacterial organisms, that share a
much higher proportion of coding regions than mammals studied by the other approaches.

The second step is required to remove anchors obtained by chance and choose an exemplar of
duplicated regions. This is done by clustering close anchors by computing a distance between
them (GRIMM-Synteny, CP) or by chaining anchors according to anchor order and orientation
as well as their distance.

Except GRIMM-Synteny, which computes synteny blocks, all of the other methods proceed in
a third step in order to provide final alignments of the genomic sequences.

To conclude, all methods have in common that their description in the literature does not
always provide all the details concerning the way of detecting breakpoints and to often depend
on user-specified parameters that affect obtained results.

2.1.4 Fragile breakpoint model versus random breakpoint model

Finding conserved segments across species enables one to solve a dual problem, that consists
in detecting breakpoints, which are the regions between conserved segments along a genome
where rearrangements have occurred. Breakpoints are less conserved regions that were broken
by rearrangements and their analysis can give clues on the issue of hotspots of rearrangements.
A quite lively debate between random breakage and non-random breakage models of evolution
divides authors in two groups.

The proponents of the non-random distribution of breakpoints along a genome build their
theory on two main observations. The analysis of breakpoint sequences shows that they are
highly shufled due to numerous micro-rearrangements [KBH'03]. The concentration of micro-
rearrangements within these regions tends to say that they are more prone to rearrangements.
A higher level analysis proposed by Pevzner et al. [PT03a, PT03b| consists in studying genomic
rearrangements on signed permutations obtained from synteny blocks. They observed that some
regions between two markers are re-used suggesting that these regions correspond to hotspots.
The “re-use” issue is also a widely debated topic about hotspots [PPT06, San06, ST05].

Trinh et al. [TMS04] defend the thesis of the random model by analyzing in details the small
segments within breakpoints: they claim that the loss of similarity between conserved blocks are
due to alignment errors or artifacts.

2.2 Evolutionary distances between two genomes

Once common markers are defined, signed permutations can be constructed, and from this model,
we can provide a measure of the evolution between two species. In fact, permutations lead to
the computation of a mathematical distance that correspond to the minimal number of rear-
rangements that transform one genome into another. The distance computation is based on a
set of rearrangements. In the relevant literature, the considered rearrangements are not always
the same. In this section, we focus on the method based on reversals only and its extension to
the multichromosomal case by the addition of translocations, fusions and fissions.

24

2.2. Evolutionary distances between two genomes

2.2.1 The reversal distance for unichromosomal genomes

In 1995 Hannenhalli and Pevzner [HP95a] defined the exact reversal distance between two signed
permutations and provide the first polynomial-time algorithm to parsimoniously transform a
signed permutation into another using reversals. Their results presented below have been refor-
mulated by Setubal and Meidanis in [SM97]. The studied genomes are represented by one signed
permutation according to the previously described formalism. The rearrangement operations
considered are restricted to reversals only. Moreover, genomes are defined on the same set of
markers without duplications, insertions and deletions.

Figure 1.9 presents a parsimonious scenario transforming the permutation 7 into the permu-
tation . How can one be sure that the obtained scenario is in fact a parsimonious one? In
section 1.3.3, the notion of breakpoint was introduced. Computing a parsimonious scenario and
thus the rearrangement distance consists in finding the minimum number of rearrangements
which remove all of the breakpoints. Thus, the study of breakpoints provides a lower bound for
the reversal distance (see lemma 1). In fact, a reversal p can remove at most two breakpoints:

b(m,y) — b(m.p,y) < 2.

Lemma 1 Let m and 7y be two permutations and b(m,~) be the breakpoint distance between these
two permutations. Then, the reversal distance d(m,~) verifies: @ < d(m,7).

The approximation given by the lemma 1 is not very precise. The aim of many works has
been to refine this bound. Hannenhalli and Pevzner [HP95a| propose a theory based on a graph
introduced by Bafna and Pevzner in [BP93] which leads to an exact formula for the computation
of the reversal distance between two signed and unichromosomal genomes.

Breakpoint graph

To transform a signed permutation 7 into a signed permutation 7, both defined on the same
set of n elements, the breakpoint graph G(m,~) is built. G(m,~) is an edge-colored graph built
from unsigned representations of two signed permutations. A signed permutation 7 = my .. m,
over n elements is transformed into an unsigned representation u(w) in the following way. Each
positive element +x from 7 is replaced by two vertices labeled 2o — 1 and 22 while each negative
element —zx is replaced by two vertices labeled 2z and 2z — 1 (see figure 2.1). If permutations
represent linear genomes, vertices mg = 0 and 7o, 11 = 2n + 1 are added to take into account
adjacencies with the first and the last elements. Thus, the graph has 2n+ 2 vertices. Note that if
genomes are circular, unsigned permutations are defined over 2n elements. Edges of GG represent
adjacencies either in 7 (edges {mo;, m2i+1}, drawn with solid lines), or in v (edges {7V2:i,V2i+1},
drawn with dashed lines) for i = 0,..,n (see figure 2.2 for an example).

[] [] L] L
27‘(2‘—1 27‘(2‘ 27Ti 27Ti_1
+; —TT;

(a) m; is positive (b) m; is negative

Figure 2.1: Vertices of GG obtained from an element of the permutation .

A reversal applied to the permutation 7 can also be applied to the breakpoint graph. The
particularity of the breakpoint graph defined from two identical permutations is to have solid

25

Chapter 2. From common markers to evolution scenarios

C1
.—.//’/’ \\\\
=77 FREREN ~
=TT - ~ ~
=27 > S T RN Cy
/// e // \\\ />\, ?\\
s 3 ’ N N AV
7’ 7 7/ 7 N \ \\
/ / / \ A7 =~ \
/ / / AN N RN
/ / / ’ 7 \ S~ \
/ / / / 7\ _——= N} \
/ / / / 7 e So \ \
! ! I A=<, \ 7 \ N \
/ N / \ \ —_—~_ =~
,l o ! 7 A Vo \ _— [N \ - 7T TRTTON
Ly, N Iy /N (- v, N (Y N N I\ \
& d & 3 & o i & $ d & 3 ¢ d » P 3 & é & by
0 78 9 10 15 16 13 14 1 2 6 5 4 3 1112 17 18 1920 2221 23
0 -4 5 8 7 1 -3 -2 -6 9 +10 -11 +12

Figure 2.2: Breakpoint graph for the linear permutations 7 =+4 +5 +8 47 +1 -3 —2 +
6 +9 +10 —11landy=4+1 +2 +3 +4 +5 +6 +7 +8 +9 +10 + 11.

and dashed edges that link the same vertices. Thus, transforming the permutation 7 into the
permutation ~y consists in making the solid and dashed edges coincide (for example this is the
case for vertices 5 and 4 in the breakpoint graph of the figure 2.2). The number of cycles in the
breakpoint graph defined from two identical permutations with n signed elements is maximal:
this number is equal to n + 1. Hence, the transformation of 7 into = consists in increasing the
number of cycles in order to obtain the permutation . The number of cycles in the graph G(m,~)
is denoted by c(m, 7).

A reversal on the breakpoint graph is defined by two solid edges u and v: elements between
u and v are reversed. Only some reversals increase the number of cycles, depending on the
considered edges. A traversal (in arbitrary direction) of a cycle provides an orientation for the
solid edges. Based on the relative orientation of solid edges, we can define an orientation for all
pairs of solid edges in a cycle.

Definition 4 If two solid edges u and v belong to the same cycle of a breakpoint graph and have
the same orientation, they are said to be unoriented. Otherwise, they are oriented.

Based on definition 4, we distinguish two kinds of cycles according to the edge orientation:
oriented and unoriented cycles.

Definition 5 A cycle of a breakpoint graph is unoriented if all of its solid edges are pairwise
unoriented. Otherwise, the cycle is called to be oriented.

It is also possible to define an orientation for a dashed edge according to the positions of its
incident vertices.

Definition 6 A dashed edge {m;,7;} in G(m,~) is oriented if |j — i| is even, otherwise it is
unoriented.

The orientation of a cycle can then be redefined based on definition 6.

Definition 7 A cycle of a breakpoint graph is unoriented if all of its dashed edges are unoriented.
Otherwise, the cycle is said to be oriented.

For example in the breakpoint graph of figure 2.2, edges u = {20,22} and v = {21,23} are
oriented in the cycle C5. Thus, the cycle (s is also oriented. However, the cycle 'y is unoriented
because it has only two solid edges that are both unoriented (v = {16,13} and v = {12,17}).

26

2.2. Evolutionary distances between two genomes

Theorem 1 (Setubal and Meidanis [SM97]) Let p be a reversal defined on two solid edges
u and v of G(m,~) with ™ and «y two signed permutations. Then:

(i) if uw and v belong to two different cycles, c¢(m.p,v) = c(m,v) — 1,
(71) if u and v belong to the same cycle and are unoriented, c(w.p,v) = c(m,7),
(113) if u and v belong to the same cycle and are oriented, c(mw.p,~y) = c(m,vy) + 1.

The bound provided by breakpoints is refined thanks to theorem 1. In fact, for a given
parsimonious scenario pjps..px that transforms a signed permutation 7w of order n into a signed
permutation -, we have:

o(m.p1-pa..-pr,y) = c(v,7) =n+1

According to the theorem, we have:

o(mp1,7) —e(my) <1
c(m.p1.p2,7y) — c(mp1,7) <1

o(m.pr-p2...pr,Y) — c(T.p1.p2..pr-1,7) < 1
By adding all the terms, we obtain

d(m,v) > e(m.p1.p2...pk,7y) — c(m,y) and so d(m,y) > n+1—c(m,).

For many permutations, this approximation is very close to the parsimonious distance. Nev-
ertheless, for some cases, this approximation is not exact. If the breakpoint graph of 7 and ~
has only oriented cycles, there exists a scenario such that the number of cycles increases at each
step (see theorem 1, item (i)). Thus, the estimate n 4+ 1 — ¢(m,7) is an exact formula in this
case. It becomes false when there are one or several unoriented cycle(s), since reversals on this
type of cycle do not modify the number of cycles (see theorem 1, item (ii)). Actually, there is a
configuration of the breakpoint graph with unoriented cycles for which the formula is correct.

Definition 8 Two dashed edges {m;,7;} and {7y, m} in G(r,v) interleave when [i,j] and [k,]]
overlap, but no one of their intervals contains the other.

Definition 9 Two cycles Cy and Cy in G(7,~y) interleave when they have interleaving dashed
edges g1 € C1 and go € Cs.

G —— - N G —————
\4/ - 7 7S \:\ \\ / /// //»\\ \\\
;7) N TS \ / Vi \ \
/ [I A \ —— / s N \
I [;o\ ANIERY \ 7 N | | 7 AN Y \
s & s 4 it é by é PO iy
0 5 6 21 4 3 7 1 2 6 5 4 3 7
+0 +3 1 2 +4 +0 +1 -3 2 +4

Figure 2.3: Example of a breakpoint graph where the oriented cycle C; and the unoriented one
(5 interleave. Applying the reversal defined by {0,5} and {1,4} solid edges within C orients
cycle Cs.

If an unoriented cycle interleaves with an oriented one, then applying a reversal to two edges
from the oriented cycle increases the number of cycles but orients the unoriented cycle (for an

27

Chapter 2. From common markers to evolution scenarios

example, see figure 2.3). Thus, the estimation n + 1 — ¢(m,) for the reversal distance is still
exact for this configuration.

Interleaving graph

Unoriented cycles that do not interleave with oriented ones cannot be oriented by the resolution
of neighbour cycles. To solve the problem of this kind of unoriented cycles, Hannenhalli and
Pevzner introduced the interleaving graph.

Definition 10 An interleaving graph I(G) is a graph where each vertex represents a non-trivial
cycle (with more than 2 edges) of the breakpoint graph G = G(w,v). Two vertices are linked by
an edge if they are interleaving.

This graph can be decomposed into connected components.

Definition 11 The span of a connected component K of I(G) is [i,j] where m; and 7; are the
leftmost and rightmost vertices of any cycle of K in G.

Components are classified according to their orientation. For example, the breakpoint graph
in figure 2.4 has six non-trivial cycles. Cycles C3 et Cg are oriented while all the others are
unoriented. Figure 2.5 represents the interleaving graph obtained from the breakpoint graph of
that in figure 2.4. Three components belong to this graph: two oriented ones and one unoriented
formed by the two cycles C; et Cs.

Definition 12 A connected component K of the interleaving graph is oriented if at least one of
its vertices corresponds to an oriented cycle in the breakpoint graph. Otherwise, K s unoriented.

1
/”’ \\\
-~ ~
-7 S~
P ~
s T = ~
pa /f’ ‘\\ \\
e -7 T~o N
’ - ~ N
7 il AN N\
7 » N \\
4 7 N
7 g N N\
S G _G N N
/ [ae T~ BN AN AN
’
/ , g < N \ \ 05
/ s s J
/ / , , N\ N\ \// NS~
/ P YT T TS \ X \ N
/ / - I — > A ~ \ 77\
/oy -7 X ~ N \ N
/ s - - PSRN \ 7N \
!y ’ - 27 NS ~Cy N / — =\ Cq
/ Iy / 4 N ‘\ N \ \ / g N \ 8
’ ’ s AN N v A VN VT T TXT TN

! I / I -
1 / / \ [N N | AR \ vy /
. | lJ /ol Y IR FOY ! . | 3 .

Figure 2.4: Example of a breakpoint graph with six non-trivial cycles C through Cy.

Oriented components are resolved by applying reversals to two oriented edges that increase
the number of cycles. Sorting unoriented components is more complex. We have seen that a
reversal applied to two solid edges belonging to an unoriented cycle can make it oriented without
modifying the number of cycles in the breakpoint graph (theorem 1, item (ii)). In this case,
an unoriented component to which the unoriented cycle belongs becomes oriented. Thus, the
approximation of the reversal distance can be refined by taking into the account the number
of unoriented components. However, not all of the unoriented components require a reversal in
order to become oriented.

Hannenhalli and Pevzner [HP95a| give a classification for unoriented components based on the
notion of component separation defined below.

28

2.2. Evolutionary distances between two genomes

Cy

PN

C3

Figure 2.5: Interleaving graph I(G) of the breakpoint graph from figure 2.4. Oriented cycles are
encircled. I(G) has 2 oriented components K; = {Ca,C5,Cy}, Ko = {Cs} and one unoriented
K3 ={C1,C5}.

Definition 13 Let K1, K2 and K3 be 3 connected components of I(G) and let Sk, and Sk, be
the spans of Ko and Ks. K separates Ko from Kz if there exists a dashed edge {m;, 7;} in K;
such that Sk, C [i,j] and Sk, ¢ [i,7]].

Based on this definition, unoriented components are classified into non hurdles and hurdles.
We distinguish minimal hurdles from the greatest hurdle. In figure 2.6, components K; and Kjs
are two minimal hurdles separated by the non hurdle Ko.

Definition 14 A hurdle is an unoriented component which does not separate two other unori-
ented components. Otherwise, it is a non hurdle.

Definition 15 A hurdle is minimal if its span does not contain the span of any other hurdle.
The greatest hurdle is a hurdle whose the span contains the spans of all other hurdles.

K
- - T = -\‘\\
T =3
- -~ ~
- - NGNS
' // \\\
7 N
’ ,/ KQ \\\
s s NN
7 ,s5 e = - NN
/ / - P S NooN
/ 7 Pid - NN AR
4 / -, Pid SO NN
/ / e , K \\\ AN
/ / // ’ 3 NN \\
/ / /e TTS T T AT TS ~V T~
/ ;) 7,7 A \ 0N \ AR \
/ Iy //, AN \\ / \\ \ \\ / \\ \ \\
/ / / +- " / \ / \
J . o ! e ‘e O L . v b L e [3

Figure 2.6: Breakpoint graph composed of 3 components K;, Ko and Kj3. All of them are
unoriented and are formed by only one unoriented cycle.

A reversal applied to solid edges belonging to two different cycles decreases the number of
cycles (see theorem 1, item (iii)), but if the implied cycles are unoriented they are transformed
into an oriented cycle as well as are all unoriented components that separate them. Thus, non
hurdles can become oriented by applying reversals to hurdles which they separate. Let h(m,)
be the overall number of hurdles in the breakpoint graph of = and . The new approximation of
reversal distance is then given by the formula:

d(ﬂ'?’)/) >n+1- C(T(', 7) + h(ﬂ'a 7)

29

Chapter 2. From common markers to evolution scenarios

Nevertheless, “hard-to-sort” permutations exist where the resolution of all the hurdles cannot
remove all of the non hurdles. In this case, a supplementary reversal is needed. The configuration
of this kind of permutation is called a fortress and is based on the notion of protection.

Definition 16 A hurdle K, protects a non hurdle Ko if removing Ky transforms Ko into a
hurdle. A super hurdle is a hurdle that protects a non hurdle. Otherwise, it is a simple hurdle.

Components K7 and K3 are super hurdles belonging to the breakpoint graph of the figure 2.6.
If the number of super hurdles is odd and all of them are super hurdles, then it is not possible
to remove all of the non hurdles. A supplementary reversal is needed.

Definition 17 We call a fortress a breakpoint graph that has an odd number of hurdles that are
all super.

Let f(m,) be the function that returns 1 if the breakpoint graph is a fortress, and 0 otherwise.
Then, the reversal distance is given by theorem 2.

Theorem 2 (Hannenhalli and Pevzner [HP95a]) For two unichromosomal genomes m and
v, d(m,y) =n+1—=c(my) + hm,y) + f(7,7).

In [HP95a], Hannenhalli and Pevzner present a construction of the breakpoint graph and the
other structures for computing the reversal distance in O(n?) for permutations 7 and + of order
n. Thus, the reversal distance d() is also computed in O(n?). Later, Berman and Hannenhalli in
[BHI96] improved the algorithm for computing connected components of the interleaving graph
and proposed to solve the reversal distance in O(na(n)), where « is the inverse Ackerman
function. In [BMYO01], Bader et al. again improved the connected component computation and
gave a linear-time algorithm for reversal distance.

2.2.2 Extension to multichromosomal genomes

Hannenhalli and Pevzner [HP95b| extended their theory for reversal distance computation to
the multichromosomal case. They propose a polynomial algorithm that computes the minimum
number of rearrangements for transforming one multichromosomal genome into another, all of
them defined on the same set of markers without repetition. Rearrangements specific to multi-
chromosomal genomes are taken into the account as well as reversals: translocations, fusions and
fissions. However, both the formula for rearrangement distance and the algorithm for computing
a parsimonious scenario present errors. These were partially corrected by Tesler in [Tes02a].
Ozery-Flato and Shamir in their turn redefine some notions and suggest further corrections for
these problems [OFS03]. In what follows, we present using our notations the last results for the
rearrangement distance computation based on Hannenhalli and Pevzner’s theory and obtained
after Tesler, and Ozery-Flato and Shamir’s corrections.

Unichromosomal vision for a multichromosomal genome

Hannenhalli and Pevzner propose mimicking the behaviour of a multichromosomal genome
through the unichromosomal model. Two steps are needed to transform a multichromosomal
genome into an unichromosomal genome: capping and concatenate. Let Il and I' be two multi-
chromosomal genomes defined over the same set of N, gene markers.

A capping of I and T consists in adding two ordinals called caps to the extremities of each
chromosome. Let C = {¢g,c1,..,cn} with n = 2max(Np, Nr) — 1 be the set of distinct caps

30

2.2. Evolutionary distances between two genomes

different from the NN, gene markers in II and I'. We denote by I = {#!,...,amax(NmNr)Y 5
capping of II where the i*" chromosome is #* = C2(i—1) ﬂiﬂﬁh ca@i-1)+1- If Np > N, the
Nr — Ny last chromosomes of II are empty chromosomes composed of 2 successive caps. From
C, we similarly define I with Nij — Np empty chromosomes if Ny > Np. A concatenate 7 of 11
is a signed permutation & obtained by concatenating chromosomes after choosing an orientation
and an order for each of them. At the end of these two steps, we obtain an unique permutation
in which each reversal can be read as a multichromosomal rearrangement. See for illustration
example 2.7.

Genomes: ImM={1234,5876} r={1234,5678}
Cappings: ﬁ:{91210,113412,13587614} f:{9123410,11567812,13 14}
Concatenates: 7=91210113412135876 14 ¥=91234101156781213 14

Figure 2.7: Example from [Tes02a] of a capping and a concatenate for two genomes II and T
Caps are indicated by bold characters.

Breakpoint graph

The breakpoint graph for multichromosomal genomes is built from permutations 7 and 4. The
distance value computed on G(7,¥) depends on the chosen capping and concatenate. Let G(IL,T")
be the graph obtained by removing all edges that involve concatenate and capping from G(7,%),
that is, all dashed edges incident to cap vertices and all solid edges between two cap vertices or
between a cap vertex and the first or the last element. Then we can distinguish three types of
vertices: (1) isolated vertices called tails, (2) cap vertices of degree 1 called II-caps, and (3) other
vertices of degree 1 called I'-tails. Figure 2.8 shows the transformation of a graph G(7,%) into
the graph G(IL,T).

Cycles and paths

As in the unichromosomal case, the graph G(II,I") can be decomposed into cycles but also
into paths. If a path starts and ends with II-caps (two I'-tails, or one IlI-cap and one I'-tail,
respectively) then it is a ITII-path (I'T'-path or IIT'-path, respectively). Orientation for cycles and
paths in the multichromosomal case is defined in a way analogous to cycle orientation for the
unichromosomal case.

Definition 18 A cycle or a path of a breakpoint graph is unoriented if all its dashed edges are
unoriented. Otherwise, the cycle is said to be oriented.

New notions specific to multichromosomal genomes are also defined for edges and for cycles
and paths of breakpoint graph: interchromosomality and intrachromosomality.

Definition 19 A dashed edge of a breakpoint graph is intrachromosomal if its vertices belong to
the same chromosome. It is said interchromosomal otherwise.

Definition 20 A cycle or path of a breakpoint graph is interchromosomal if one of its dashed
edges is interchromosomal. Otherwise, it is intrachromosomal.

31

Chapter 2. From common markers to evolution scenarios

(a) G(7,9)

/ / VAN \ / 1 \ ’ \om~~_ o~ w \
! ! / \ \ / | [A < (DN \
Pt AN A 7N | AN 7N [VAR i \ [IS
— —t
0 1718 12 34 192 2122 56 78 2324 2526 910 1516 1314 1112 2728 29
9 1 2 10 11 3 1 12 13 5 8 7 6 14
(b) G(IL,T)
/// \\\ /// \\\
. N . N
L SR T oA N
PN -7 < \
=75 ’ AN .7 N/ AN N
s ¥, AN / A ey N \
’ / N \ ’ o N \ \
/ / VAN \ / 1 \ ’ VT TS oT T \
// ’/ T T 1 \\ \ I/ T T \‘ / //\\ < \\ N \‘ T T
T T RN Y] N 1 \ \
. . 4 PR S O S S S S S . . .
18 12 34 19 2 56 78 23 26 910 1516 1314 1112 27
9 1 2 10 11 3 1 12 13 5 8 7 6 14
(c) GILT)
/// \\\ /// \\\
-~ /I \\ ~ /I //,——\\/ ’_\‘:\\
T TO T 7\ / nOT TO VT T THon | /ST ' T T
e o e b3 b2 0 o e—b b3 o2 s o e— o b+ e—+ b—b b——o o
18 12 34 19 2 56 78 23 26 910 1516 1314 1112 27

9 1 2 10 11 3 4 12 13 5 8 7 6 14

Figure 2.8: Example from |[Tes02a] of the transformation of G(7,7) into G(II,I") by removing
edges representing the chosen concatenate (from (a) to (b)) and capping (from (b) to (c)).
Genomes 7 and 4 are the same as those in figure 2.7. Specific vertices are denoted by T (Tails),
IT (TI-cap) and I' (I'-tails).

Interleaving graph

An FEdge interleaving defined for unichromosomal genomes (definition 8) is applied to dashed
edges of a breakpoint graph representing multichromosomal genomes and extended to cycles and
paths.

Definition 21 Two cycles or paths Cy and Cy in G(II,T") interleave when they have interleaving
edges g1 € C1 and go € Cs.

Then, for multichromosomal genomes, the interleaving graph I(G) is a graph where each vertex
represents a non-trivial path or cycle of the breakpoint graph G = G(II,T"). Two vertices are
linked by an edge if they are interleaving.

In the same way as in definition 12, we define orientation for each component of I(G) according
to the orientation of its vertices and we distinguish oriented components from unoriented ones.

Moreover, in the same way as for cycles and paths, a component K of I(G) is interchromosomal
if one of its vertices is interchromosomal, it is intrachromosomal otherwise. Let U(G) be the
set of unoriented components of I(G), ZU(G) the set of unoriented and intrachromosomal ones.
Within unoriented and intrachromosomal components, we distinguish real components from
unreal components. Denote by RU(G) the set of real components.

32

2.2. Evolutionary distances between two genomes

K’ K K"
//——\,\‘.:——\\ //——\,\‘.:——\\ //——\,\‘.:——\\
’ 77NN N ’ A2 NES N ’ L7 7NN N
/ /0 NN \ / o0 NN A\ / o0 NN A\

Figure 2.9: Counterexample of the separation notion given by the definition 23. Any element
k € K is such that K/, < k < K!'. . However, K does not separate K’ from K" as it should
according to [HP95al.

Definition 22 A connected component K of I(G) is real if K is intrachromosomal, unoriented,
and it has no Il-cap or I'-tail in its span.

The notion of component separation (see definition 13) is defined in the same way as in the
unichromosomal case partitions of U(G), ZU(G) and RU(G): hurdles and non hurdles for the
first, knots and non knots for the second, and real knots and non-real knots for the third.

Note that the definition that Hannenhalli and Pevzner give for the notion of separation in their
paper on the multichromosomal case [HP95b| (see definition 23) is different from the definition
13 previously given by the same authors [HP95a] and is incorrect (see counterexample 2.9). A
connected component K corresponds to the set of integers K = {i : i € C € K} representing
the set of positions of the permutation belonging to cycles or paths of K. For a set of integers
K define Ky = mingeg b and Kypax = maxgei k.

Definition 23 (Hannenhalli et Pevzner [HP95b]) A component K separates K' from K"
if there exists k € K such that K| .. <k < K"

ax min -

A hurdle is super if it protects (see definition 16) a non hurdle, otherwise it is simple. A hurdle
can be the greatest one if its span contains all the spans of the others hurdles, otherwise it is a
minimal hurdle. These notions are defined similarly for knots and real knots. The graph G is a
fortress (fortress of knots, or fortress of real knots, respectively) if it contains an odd number of
hurdles (knots, or real knots, respectively) that are all super.

Within the set of unreal components, Ozery-Flato and Shamir [OFS03] distinguish those called
semi-real knots, which are characterized by their potential of becoming real knots.

Definition 24 A semi-real knot is a component in ZU(G)\RU(G) that does not contain a I'T-
path in its span and that becomes a minimal real knot or the greatest simple real knot after closing
1ts 1T -paths.

The greatest semi-real knot is a semi-real knot that becomes the greatest simple real knot after
closing its IIT-paths. A semi-real knot is called a minimal semi-real knot if closing its III'-paths
makes it a minimal real knot. From the semi-real knot, Ozery-Flato and Shamir [OFS03] define
the notions of simple component and weak fortress of real knots.

Definition 25 A simple component is a component of I1(G) with at least one IIT'-path that is
not a semi-real knot.

Definition 26 A graph G is a weak fortress of real knots if (a) G has an odd number of real
knots, (b) there exists the greatest real knot in G, (c) all real knots are super except the greatest
one and (d) the number of semi-real knots in G is not zero.

33

Chapter 2. From common markers to evolution scenarios

Note that a weak fortress of real knots becomes a fortress of real knots by closing the IIT"-paths
in a semi-real knot. Example 1 gives the details of the components for the breakpoint graph of
figure 2.10.

B
/,/”::—.Z::E*
G(II,T) :
)
’
/ ’ ST T e m T T~ AR J—E—~\
’ e N ~ \\ \\
/ /C S N \D A~ \ /,/<\£
N ! by 7 ¢ W~ Y T / Y . PSRN
. i /7 < A\ v N \ - / , NN
T T T N 1y oy [Vo Vo [Vo omT T VoosTTN r T Vo nT T
. . —— 4 +——4 +— b — o o o—4 ——% o—b +—o o .
0 2728 21 3 4 78 1314 1112 910 1516 56 1718 2930 3132 1920 2122 2526 2324 3334 35
14 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

Figure 2.10: Breakpoint graph G(IL,T') for II = {-124 76 58 3 9,10 11 13 12} and I' =
{123456789 10 11 12 13}. Tails vertices are marked by T, II-caps by II and I'-tails by
I". Non-trivial cycles and paths are denoted by letters from A to F. The interleaving graph
I(G) corresponding to G(IL,I") is composed of 5 connected components: K; = {A}, Ko = {B},
Kg = {C,D}, K4 = {E} and K5 = {F}

Example 1 Figure 2.10 presents a breakpoint graph G(IL,T'). The component Ky of I(G) is
intrachromosomal oriented, U = {Ks, K3, Ky, K5}, TU = {K2, K3, K5} and RU = {K, K3}.
K3 is a super hurdle while Ky and Ks are simple hurdles, and K3 and Ky are super knots.
However, Ky and K3 are real knots (Ks is the greatest one), while K5 is a minimal semi-real
knot and K1 1s a simple component.

Rearrangement distance

Ozery-Flato and Shamir [OFS03] give an exact formula for distance between two multichromoso-
mal genomes II and I" as shown in theorem 3. Denote by G(II,T") the graph obtained by closing
all the IIT"-paths in simple components of G(II,T").

Theorem 3 (Ozery-Flato [OFS03])
d(ILT) = b(IL,T) — c(IL,T) + prr(IL,T) + r(IL,T) + [=LD=or QO ALD1

The parameters of the formula are the following:
- b(IL,T') is the number of solid edges in G(II,T") (b = Ny + max (N, Nr)),
- ¢(IL,T) is the number of cycles and paths,

prr(ILT) is the number of I'T-paths,

r(II,T') is the number of real knots,
- §/(I1,T) is the number of semi-real knots in G(IL, T'),
- gr'(IL,T) is equal to 1 if G has the greatest real knot and s’ > 0, and is 0 otherwise,

- fr'(I,T) is equal to 1 if either (i) G is a fortress of real knots and the greatest semi-real
knot does not exist in G, or (ii) G is a weak fortress of real knots.

By adapting the linear-time algorithm of Bader et al. for unichromosomal genomes [BMYO01],
Tesler in [Tes02a] computes the rearrangement distance in linear time.

34

2.3. Parsimonious scenarios

2.2.3 Other distances

The distance computation methods previously presented rely on reversals and translocations
including fissions and fusions, which are specific cases. Although these rearrangements are con-
sidered as the most frequent operations during species evolution, different sets of rearrangements
and the corresponding genomic distance and scenarios are also investigated in the literature.

Certain studies looked into translocations only. Kececioglu and Ravi [KR95] were the first
ones to propose a 2-approximation for computing distance by translocations. In 1996, Hannen-
halli [Han96| presents the first polynomial-time algorithm for the signed translocation distance,
subsequently corrected by Ozery-Flato and Shamir in [OFS06]. Recently, Li et al. [LQWZ04|
proposed a linear implementation for distance computing and Wang a quadratic algorithm to
find an optimal sequence of translocations.

Transforming a permutation by transpositions into another (see section 1.2.2) has also been
widely studied. However, the complexity of this problem is still open. Bafna and Pevzner [BP98|
gave a l.5-approximation algorithm to find the minimum number of transpositions to transform
one genome into another. Hartman et Shamir [HS03| proposed a simpler 1.5-approximation
algorithm for the same time complexity. Walter et al. [WSO™05| improved the time complexity
of the initial algorithm by giving a O(n3) implementation. To date, the best known algorithm
is a 1.375-approximation provided by Elias and Hartman in [EH05].

The complexity of the genomic distance problem is still unknown for certain sets of considered
rearrangements. In fact, there are efficient algorithms when only one rearrangement is taken into
the account, but combinatory problems become more difficult by the addition of new rearrange-
ment types. However, the theory of Hannenhalli and Pevzner [HP95b] presented in this section
leads to a linear algorithm [Tes02a] for computing distance in terms of reversals, translocations,
fusions and fissions.

2.3 Parsimonious scenarios

The rearrangement distance estimates the minimum number of rearrangements that separate
two genomes, while parsimonious scenarios consist in clearly defining which rearrangements oc-
curred during their evolution. These two problems are strongly related but they are often solved
independently. This section proposes an overview of the method based on the Hannenhalli and
Pevzner’s theory [HP95b] for recovering one rearrangement scenario.

2.3.1 Computing a parsimonious scenario for unichromosomal genomes

There are several algorithms for computing a parsimonious scenario between two unichromosomal
and signed genomes by reversals. Many of them are based on the Hannenhalli and Pevzner
model of the breakpoint graph (see section 2.2.1). From their theory, Hannenhalli and Pevzner
developed the first polynomial algorithm for this problem and proposed an O(n?*) implementation
where n is the permutation order. Other more efficient algorithms were developed thereafter:
Berman and Hannenhalli [BH96], Kaplan et al. [KST97] and Bader et al. [BMYO01] algorithms
require O(n?), while the one proposed by Bergeron in [Ber01] and [BS01| requires O(n3). More
recently, Tannier and Sagot in [TS04] solve this problem with a O(ny/nlogn)-time algorithm.
All of the quoted algorithms except the last one are based on safe reversals. A reversal is safe
if it decreases the reversal distance by one. There are two types of safe reversals: proper safe
reversals and hurdle-cutting safe reversals. The latter consist in solving the problem of unoriented
components and this is done in the same way by all the algorithms. Algorithms differ in the way

35

Chapter 2. From common markers to evolution scenarios

proper safe reversals in oriented components are found: although the methods are all based on
the interleaving graph or the overlap graph (easily obtained from the interleaving graph), the
notion of safe reversal is defined differently.

2.3.2 Computation of an optimal scenario for multichromosomal genomes

In order to make the problem easier, finding a parsimonious scenario between two multichro-
mosomal genomes in terms of reversals and translocations is reduced to the unichromosomal
case in a way analogous to the distance problem. For two multichromosomal genomes II and T,
computing optimal cappings 1I* and I'* and then optimal concatenates 7 and ~* are needed to
obtain unichromosomal permutations to which existing algorithms for the unichromosomal case
can be applied from the breakpoint graph G(7*,v*). Each reversal in the obtained scenario is
interpreted as a rearrangement, either a translocation or a reversal.

As was the case for distance resolution, the initial theory of Hannenhalli and Pevzner for
this problem [HP95b| was corrected first by Tesler [Tes02a], and then in turn Ozery-Flato and
Shamir [OFS03|. In what follows, we present in detail the last results [HP95b, Tes02a, OFS03|
for the two main steps that lead to the construction of G(7*,~*): optimal cappings and optimal
concatenates.

Optimal cappings

Optimal cappings II* and I'* formalize the problem of finding positions and signs for caps in the
genome I' such that d(IT*,T*) = d(II,T") (see lemma 4). This is done for any arbitrary capping
in II. In the breakpoint graph, it consists in adding 2Nt edges linking a II-cap to a I'-tail and
N1 — Nt edges between two Il-caps if Nyj > Np. Hannenhalli and Pevzner prove in [HP95b| a
set of technical lemmas required to build optimal cappings.

Lemma 2 ([HP95b]) For every III-path and I'T-path in G(II,T'), there exists either an inter-
chromosomal or an oriented dashed edge which joins these paths into a IIT"-path.

Lemma 3 ([HP95b]) For every two unoriented IIT'-paths, there exists either an interchromo-
somal or an oriented dashed edge which joins these paths into a III'-path.

Let IV be the set of the 2 max (N, Nr)! possible cappings for T

Lemma 4 ([HP95b]) d(IL,I') = min;_p, b(IL,I') — ¢(IL,T) + A(IL,T) + f(IL,).

Optimal cappings IT* and T'* verify: d(II,T') = b(IT*,T'*) — ¢(IT*,T'*) 4+ A(IT*,T*) + f(IT*,T*).
Ozery-Flato and Shamir give in [OFS03] an algorithm for construction of the sequence of dashed
edges leading to optimal capping I'* (see algorithm 1).

Despite corrections for optimal capping problem brought by Ozery-Flato and Shamir in [OFS03],
the algorithm they propose remains incorrect. In chapter 7, we show a counterexample for Ozery-
Flato and Shamir’s algorithm and we introduce a correct algorithm for optimal capping as well
as the proof of its correction.

Optimal concatenates

Hannenhalli and Pevzner in [HP95b] indicate that it is sometimes necessary to flip (i.e. reverse)
some chromosomes in order to obtain optimal final permutations. Tesler in [Tes02a] specifies that
at most one reversal of one or several entire chromosome(s) is required during the computation

36

2.3. Parsimonious scenarios

Algorithm 1 Optimal Capping
1: Construct the graph G = G(IL,T")
2: while there is a IIII-path in G do
3: Find an interchromosomal or an oriented edge joining this ITTI-path with a I'T-path (lemma
2) and add it to G
4: end while
5: while G has more than two semi real-knots do
6: Find an interchromosomal or an oriented edge joining III'-paths in any two semi real-knots
(lemma 3) and add it to G
7: end while
8: Close all III'-paths in simple components in G
9: if GG has two semi real-knots but it is not a fortress of real-knots then
10: Find an interchromosomal or an oriented edge joining III™-paths in these semi real-knots
(lemma 3) and add it to G
11: end if
12: Close any remaining I1I'-paths in G
13: Find a capping I' defined by the graph G(IL,T')

of an optimal scenario based on optimal permutations. However, Tesler shows that reversing
some chromosomes is not always sufficient to obtain optimal permutations. Some chromosomes
need to be reordered as well to avoid non-biological operations which just exchange two caps.
Then, optimal permutations verify the following theorem:

Theorem 4 (Tesler [Tes02a]) Let d(I1,T") denote the distance between two multichromosomal
genomes, I and I'. There is a constructive polynomial-time algorithm to produce two permuta-
tions ™ and v* whose reversal distance is dye,(7*,7*) = d or d + 1 such that optimal reversal
scenarios between these permutations directly mimic optimal rearrangement scenarios between
genomes Il and I'. When dyey = d + 1, one reversal step mimics flipping a block of consecutive
whole chromosomes, which does not count as an operation in a multichromosomal rearrangement
scenario; there are examples when such a step is required.

Tesler determines optimal concatenates 7* and +* based on two steps: proper flipping and
proper bonding of chromosomes [Tes02a].

Proper flipping Chromosome orientation can modify the nature of the interchromosomal
components of the corresponding breakpoint graph. An optimal orientation induces a breakpoint
graph without unoriented interchromosomal components: in this case, the breakpoint graph is
said to be properly flipped. For that, each chromosome has to be properly flipped as well.

Definition 27 ([HP95b]) A chromosome 7' of a genome 11 is properly flipped in G = G(#,7)
if every interchromosomal edge originating from it belongs to an oriented component of G.

Definition 28 (JHP95b]) The graph G(&,4) is properly flipped if all chromosomes are prop-
erly flipped.

Definitions 27 and 28 applied to graphs G = G(7,4) are extended to graphs G(fl, f) by Tesler
in [Tes02a] despite the absence of edges incident to tail vertices.

37

Chapter 2. From common markers to evolution scenarios

Tesler also extends lemma 5 to graphs G(ﬂ,f) and presents algorithm Proper Flip Left
(algorithm 2) which leads to a properly flipped graph. Example 2.11 presents an application of
the algorithm 2.

Lemma 5 ([HP95b]) If a chromosome © is not properly flipped in G = G(#,4), then it is
properly flipped in the graph G’ obtained by flipping that chromosome. Moreover, every properly
flipped chromosome in G remains properly flipped in G'.

Algorithm 2 Proper Flip Left(G)
1: Determine components of G
2: Classify components of G
3: Determine all distinct chromosomes 41,19, ..,7; that contain the leftmost vertex of one or
more interchromosomal unoriented components
4: Flip chromosomes 41,19, .., 1)

Proper bonding Proper bonding consists in reordering chromosomes in I and I in order that
the pairs of caps that separate two chromosomes are the same within both genomes, which conse-
quently avoids non-biological operations that simply exchange two caps during the construction
of a parsimonious scenario.

Definition 29 ([Tes02a]) A bond is a couple of caps (c1,c2) such that ¢y is the right signed
cap of the chromosome i and cy is the left signed cap of the chromosome i + 1.

The set of the bonds of a concatenate 7 is then the following

Ng—1 N N,
{(0?71-(1))’ (7T1111+1’7T(2])’] (ﬂ-mgc_ﬁrl’ﬂ-o C)’ (ﬂ-mgchl’n + 1)}

Bonds (0, 7}) and (ng\?cﬂ,n + 1) are called external bonds while the others are called internal
bonds.

Definition 30 ([Tes02a]) A bond (a,b) of the permutation ¥ is a proper bond when either
(a,b) or (=b,—a) is a bond in 7.

As it is shown by Tesler in [Tes02a], optimal concatenates 7 et * can be obtained from
optimal cappings so that following conditions are verified:

1) G(n*,~*) is properly flipped, and
2) Either

(i) all internal and external bonds in v* are proper relative to 7*; or

(ii) there is one improper internal bond and one improper external bond.

Methods developed by Tesler in [Tes02a| for building optimal concatenates 7* and ~* from
optimal cappings II* and I'* consist in concatenating at each step two chromosomes A and B
of IT* to create a novel bond between these two chromosomes. The concatenate A + B is thus
obtained by creating a bond (a,b) with a the right cap of A and b the left cap of B. We look

38

2.3. Parsimonious scenarios

Genomes : IT={1423586,79} I={123456,7809}
Cappings : IT={1014211,12358613,147915} ['={101211,123456 13,1478 9 15}

(b) Graph G(IT*,T*)

! ! \ \ YA \ AY
////"7/\ \ \\ //’/"7/\ \\ \\

- /. VAN _ _ \ [AN _ \ [N
N [N T T 77N (- [A s AN /N
o b3 e—4b —b — . o b—3 b—d —d b) . o b b —3 .
L10 1 4 2 o 3 5 8 6 13, M 7 9 15

chromosome 1 chromosome 2 chromosome 3

(c) Reversal of chromosome 2

s, KN N
// // ; ;& \ \\ \\
s AN N \ \
Py P TN \ \ \
PN AR AN \ \ \

- / VAN - - / I AN \ - ! ' -
N A A N T A A N T
o —3 —d —d — o ——d ——o —b +— — o —b b—4 +—3 .
10 1 4 2 o -6 -8 5 -3 A2 7 9 15

chromosome 1 chromosome 2 chromosome 3
(d) Reversal of chromosome 1
7//‘/' _____ “\\\\ \‘\\ /// LTI Teel \\\
o7 AN N AN
7 SO NN
‘7 V. /N N
s, NN \ \
i VAR \ \
o N \ \ \
/g 0N \ \ \
=~ PN ‘\ \ \ \
A N \ \ \
S N S A N N S R

R N N | N N N

L1 2 vl 1 0, 18 6 K 5 3 a2 7 9 15
chromosome 1 chromosome 2 chromosome 3

Figure 2.11: Application of the algorithm Proper Flip Left to genomes IT and I". (a) Entry
data. (b) Graph G(IT*,T'*) obtained from optimal cappings II* = IT and T'* = I'. There are
two interchromosomal and unoriented components: chromosomes 1 and 2 are those to flip. (c)
Proper flipping of chromosome 2. (d) Proper flipping of chromosome 1. Obtained graph is
properly flipped.

for the same bond in T'* with A’ + B’ obtained by concatenating two of these chromosomes A’
and B’. If a and b are located on two different chromosomes in I'*, IT* and I'* can have the
same bond: the concatenate A + B is said to be legal in this case. On the contrary, if ¢ and b
are on the same chromosome of I'*, creating the bond (a,b) in T'* is impossible: A + B is said
to be illegal. Of course, flipping chromosomes is allowed for creating proper bonds as long as
chromosomes are properly flipped (condition (1) of optimal concatenates).

Tesler proposes the algorithm form_ optimal_concatenate (algorithm 3) that builds optimal
concatenates. Steps (1), (2) and (17)-(21) are computed in O(n). In the worst case, steps (5)-
(12) have to be done (N¢ — 1) times, which induces a complexity in O((N¢ — 1)n). However, at

39

Chapter 2. From common markers to evolution scenarios

(a)

Genomes: II={-513,24} r={1,2345}
Cappings: I1={6 —5137,8249} ['={617,823459}

(b) Graph G(IL,T")

/// \\
, el N
/ T E = ~< \
/ //// ~ \\ \\
, P NN
I e N \ \
1 s 7 \ AN
' /0 \ \ \
| I’ / \ v
| S S S S B A
A A A S A N S SN U S S S
L6 5 1 3 T 2 4 0
chromosome 1 chromosome 2
* T
(c) Graph G(IT*,T)
/,/ /,/ \\\\\\\\
// // N N
7’ 7’ N N
S . NEERN
/ / PN \ \
/ / 7 ~. N \ \
/ / s 7 N N
/ / e N NN \
/ I - \ o \
i i P \ N \
I AN \ v \
- ! [AN -~ VA |
N N
L6 5 1 3 T 2 4 |
chromosome 1 chromosome 2

M =1,*={-7 —19,82345-6}

1 1 -~ -~
[S T BN A AN |

1]
Torl v v Nt T g T T
| 7 -3 -1 5 -6 | 8 2 4 9 |
ChrOHlOSOHlC 1 ChrOInOSOInC 2

(e) Graphs G(7*,~v*) of optimal concatenates

A S
[!
PSSO Y N N SR S SO R N SRS S G G4

7 -3 -1 5 -6 8 2 1

chromosome 1 chromosome 2 chromosome 1 chromosome 2

Concatenates: 7 ={-7 —3 —1 —5-6, 8249} Concatenates: 7 ={-7 =3 —1 —5-6, 8249}
v={7-19,6 -5 -4 -3 —2-8} y={T7—-19, 82345-6}

Figure 2.12: Example from [Tes02a| of the construction of optimal concatenates. (a) Entry data.
(b) Graph G(II,T') on which rearrangement distance is computed: d = 7—4+0+0+[29H0] = 3.
(c) Graph G(II*,T*) of optimal cappings. (d) Properly flipping of the graph G(II*,T*) by
reversing chromosome 1. (e) Graphs G(7*,~v*) of optimal concatenates. The bond (—6,8) is
illegal and reversing chromosome 1 is not possible. Optimal concatenate v* is building from two
chromosomes of I'*. Two concatenates for v* are possible: (1) There exists an oriented cycle
(dotted lines) between 4 Tail vertices. (2) There exists an unoriented cycle (dotted lines) between

4 Tail vertices but which overlap an oriented component.

40

2.3. Parsimonious scenarios

each iteration, only one cap among the 2(i — 1) caps of #',..,#"~! can form an illegal bond with
the cap of #%. So, the probability of doing steps (6) to (11) is 2(1—1_1) And hence the average

complexity is O((3 + 3 + .. + m)n) = O(nIn(N¢)).

Algorithm 3 form optimal concatenate(G, 7, %)

1: Initialize the list of pairs of caps on the chromosomes of I’
2: G = proper_flip_left(G)

3: 1 = Ng¢

4: while ¢ > 2 do

5. if the bond from #'~! to 7% + .. + #7¢ is illegal then

6: if 7> 2 then

7 ,ﬁ.i—Q, i1 — _ﬁ.i—l’ 2

8: else

9: ,ﬁ.i—l — _ﬁ.i—l

10: end if

11: G = Proper _Flip_Left(Q)

12: end if

13: Form the bond #'~1 + (7% + .. 4+ #Nc),

14: Update the list of bonds and block caps of I'* (if step 9 occurred this iteration, and this is

not possible, skip it).

15: t=1—1

16: end while

17: & =74+ 4N

18: if There are no improper bonds then

19: Form the concatenate v* starting with the same cap as 7* and with the same internal
bonds.

20: else

21: Concatenate the two blocks of I'* together so that v* and 7* start with the same cap.

22: end if

Optimal scenario

Unichromosomal methods for building parsimonious scenarios are easily adapted to the mul-
tichromosomal case by using optimal concatenates 7* and v* as permutations. For methods
that need the breakpoint graph, the graph G(7*,~*) obtained after optimal concatenates can
be directly used. In this case, each reversal is interpreted as a multichromosomal rearrangement
(reversal, translocation, fusion or fission). However, reversals delimited by caps are strongly
constrained. In fact, only reversals starting at a left cap and ending at a right cap are allowed
because they correspond to a reversal of a whole chromosome. All of the algorithms previously
presented in section 2.3.1 respect this constraint because the reversals to apply are determined
by dashed edges and their orientation in the breakpoint graph. Yet, during optimal capping and
optimal concatenate constructions, cycles including caps are either trivial (and do not require
a reversal) or interchromosomal and oriented. In the latter case, the edges chosen for reversal
connect two caps or two non-cap elements. For an example of a multichromosomal scenario, see
figure 2.13.

As in the case of the rearrangement distance, optimal cappings can be found by a linear-
time algorithm that relies on identification of connected components. Tesler [Tes02a] provides

41

Chapter 2. From common markers to evolution scenarios

a quadratic-time algorithm to compute optimal concatenates. Then, the time to compute a
rearrangement scenario is O(n?) using the Bader et al. quadratic-time algorithm [BMYO01] for
parsimonious scenario by reversals.

(a) 7*; Translocation

! 1
I ! / \ [(WY \
-~ / [! -~ - | [\

\ ! 1 ! | |
=R R W WS SR e
L T LL%,,,jl,,,,‘:’,,,,;ﬁ,;,\,,s ,,,,, 2 11 o |

chromosome 1 chromosome 2

(b)

O N - -
N oo [N i 1 NI \
PRy WS AN O GHD S G S g S S A S S S

- , :]
7 2 S0 SO L34 o

‘ ;
chromosome 1 chromosome 2 chromosome 1 chromosome 2

(c)

(1) Reversal ///
of chromosome’ 2 L .

chromosome 1 chromosome 2 chromosome 1 chromosome 2

(d) Translocation

TN] N AN [N A A AN
b b b b b b b b

I N 4 5 6
ChI'OIHOSOIHC 1 ChI"OHIOSOHlC 2
*
(e) v
//\\ /(\\ //\\ //\\ //\\ //\\ /(\\ //\\ //\\ //\\
b b b b b b b b b —
| 7 -2 -8 | \—9 1 3 4 5 —GJ
ChI'OIHOSOIHC 1 ChI"OHIOSOHlC 2

Figure 2.13: Two parsimonious scenarios from optimal concatenates obtained in the figure 2.12
(second solution). Each rearrangement is delineated by a rectangle on the permutation. (a)
Only one edge is oriented: it determines the translocation to apply. (b) and (c) The reversal of
elements 1, 3 and 4 and the reversal of the chromosome 2 are independent: the application order
is arbitrary. (d) and (e) A last translocation leads to ~*.

2.3.3 Why is giving only one optimal scenario misleading?

Sections 2.2 and 2.3 introduced the two linked problems of finding a genomic distance between
two genomes and a sequence of rearrangements that realizes this distance. If the first task

42

2.4. Global methods for ancestral reconstruction

is considered as a good approximation for the real evolutionary distance, the second one may
provide clues about evolutionary mechanisms that occurred during history of the two species.

In the case of the reversal distance (translocation and reversal distance by extension), algo-
rithms previously presented in 2.3.1 compute one parsimonious scenario. Nevertheless, a study
led by Siepel in [Sie02] - where he proposes an algorithm to find all safe reversals - shows that
there exists a huge number of parsimonious scenarios. For example, for two permutations of
order n = 100 and reversal distance d = 0.5n, hundreds of safe reversals are possible. Bergeron
et al. in [BCHSOO02| proposed the following theorem to evaluate the number of parsimonious
scenarios

Theorem 5 (Bergeron et al. [BCHSO0O02]) If 7 is a random permutation on n elements,
and if p a random oriented reversal of w, then the probability that p is unsafe is (’)(#)

The parsimony principle is thus not enough to provide a sequence of rearrangements that make
possible an evolutionary study that is also biologically realistic. In order to reduce the number of
parsimonious scenarios in a useful way, one should take into consideration additional biological
constraints. Several approaches have been developed to constrain the sorting of permutations.
One of these approaches consists in taking into the account the length of reversed segments:
Lefebvre et Al. [LEMTS03] proceed according to the principle that small reversals prevail, as
a large number of those can be observed in comparing genomes of related species [CNNT00].
Other publications determine parsimonious scenarios that conserve common structures between
the two studied genomes all along the sequence (see [Fig04| and [BBCP07]).

2.4 Global methods for ancestral reconstruction

The large scale study of molecular evolution through the comparison of contemporary genomes is
frustrated by the impossibility of knowing with certainty the architecture of the common ancestral
genomes. Constructing plausible hypothesis about the structural characteristics of these ancestral
architectures is a computational task whose results may provide deep insight both into the past
histories of particular genomes and the general mechanisms of their formation. This task has
two important difficulties: how can we guarantee that the solution is biologically plausible? how
can we find these solutions in an efficient manner?

Ancestral reconstruction methods require three basic steps: identification of common markers
in the contemporary genomes (see section 2.1), construction of comparative maps of the genomes
(using the permutation model, see section 1.2), and reconciliation of these maps using a criterion
of maximum parsimony to reconstruct ancestral maps. Computational reconciliation is most
often formulated as the multiple genome rearrangement problem [SSK96, HCKP95]: given a set
of N contemporary genomes and a distance d, find a tree T" with the IV genomes as leaf nodes
and assign permutations (plausible ancestral architectures) to internal nodes such that D(T') =
Z(w,fy)eT d(m,~) is minimized. When N = 3 this is called the median genome problem. Sankoff
and Blanchette [SB97| developed a method based on the breakpoint distance for unichromosomal
genomes, while Caprara used the reversal distance [Cap99, Cap03] to find an ancestral genome
for 3 permutations. As for Bourque and Pevzner, they provide algorithms to recover ancestral
multichromosomal genomes based on rearrangement distance [BP02]. In both cases the median
genome problem was proved to be NP-hard (see [Bry98, PS98| for the breakpoint distance and
[Cap99, Cap03] for the reversal distance).

All of these methods provide a global solution to the median genome problem, which is the
basic problem in the reconstruction of evolutionary trees. In what follows, we will present

43

Chapter 2. From common markers to evolution scenarios

the breakpoint-based and rearrangement-based methods respectively proposed by Sankoff and
Blanchette [SB97, SB98], and Bourque and Pevzner [BP02]. Finally, we will show that for
whichever distance on which the resolution of the median genome is based, the lack of biological
constraints in 4n silico methods leads to non representative medians and thus to problematic
reconstructed trees.

2.4.1 Breakpoint-based method

Sankoff and Blanchette [SB97]| propose to resolve the genome median problem based on break-
point analysis by reducing it to the Travelling Salesman Problem (TSP) (introduced in [BLW76]).
They give an algorithm for three unsigned unichromosomal genomes which is easily extensible to
the ancestral reconstruction for signed genomes and for more than three genomes. Finally, based
on the resolution of the genome median problem, several strategies are considered to reconstruct
the phylogenetic tree [BBS97, SB98|. Algorithms presented below are integrated in the software
BpAnalysis and reimplemented in GRAPPA [BMW™*, MWB™01] which propose faster running
times [MTWWO02].

Median genome problem

In what follows, we present the initial algorithm given in [SB97]| for the median problem in the
case of unichromosomal and unsigned genomes defined on the same set of markers G, then we
present its extension to unichromosomal and signed genomes.

Reduction to TSP for unsigned genomes To reduce the median genome problem to TSP,
genomes and their adjacencies are interpreted in terms of the graph theory. Genomes are repre-
sented by a complete weighted graph G. Vertices of G are elements of G. An edge {g, h} linking
two vertices g and h represents the adjacency between the elements of G corresponding to g and
h. Let u(gh) be the frequency of this adjacency in the 3 genomes, that is, the number of genomes
in which it appears (from 0 to 3). TSP consists in determining an Hamiltonian path of minimal
cost, the weight of an edge {g, h} being defined by w(gh) = 3 — u(gh). Thus, applying TSP to
(G,w) leads to an optimal genome A that minimizes the breakpoint number between A and the
considered genomes. Sankoff and Blanchette use a branch-and-bound algorithm for which they
define a lower bound.

Denote by P C E(G) the set of available edges. This set is disjoint from the fragment F C
E(G), that corresponds to the selected edges at a given instant in the construction of A. Let
score = Z{g,h}EF w(gh). Clearly, it is not necessary to go through branches of the search tree
that have a possible minimum score greater than the best score that has already been computed.

Definition 31 The availability of a vertex g € V(G), denoted by a(g), is equal to 2, 1 or 0
depending on whether g is incident to 0, 1 or more than one edge in F', respectively.

Let u(g) be the sum of the a(g) smallest weight(s) of edges in P incident to g. A path A of
weight W4 providing a solution to TSP, is constructed from the set of edges in F with some
edges from P. Let v(g) be the sum of weights of the a(g) edges from A in P incident to g.
Clearly, u(g) < v(g). Then,

Wa = score + Z w(gh),
{g,h}€E(A)NP

44

2.4. Global methods for ancestral reconstruction

1
Wa = score + 3 Z w(gh).
gl{g:h}eE(ANP

The weight of an edge in F(A) N P is doubly counted:

1
Wy = score + 3 Z v(g).
gl{g:p}eE(A)NP

Since u(g) < v(g), the lower bound is defined by:

LPy== > ulg).

g9l{g;h}eE(A)NP

L(P) is used as a lower bound in the branch-and-bound algorithm BBF' (algorithm 4) used
by algorithm 5 to compute a median genome. The search is recursive. The algorithm is greedy
until it finds the first solution whose the score represents an upper bound for the rest. If its cost
U = L(E(G)), then this solution is optimal. Other bounds exist but Sankoff and Blanchette
chose this one because it is easily adaptable to ancestral search for more than 3 genomes.

Algorithm 4 BBF(P, F, A, score, best)

if |F| =|V(G)| and score < best then
Conserve A = F' as best current solution
best < score
end if
if |F| < |V(G)| then
if L(P) + score < best then
choose {g,h} € P to add to F
where a(g) > 0, a(h) > 0 and w(gh) as small as possible,
and F'U{{g,h}} is not a cycle of less than |V (G)| vertices.
BBF(P — {{g,h}}, FU{{g,h}}, A, score+ w(gh), best)
BBF(P — {{g,h}}, F, A, score, best)
end if
end if

Algorithm 5 genome median computation

Require: A completed and weighted graph (G, w)
Ensure: A solution A to TSP for (G, w)

V(A) < V(Q)

F—0

P — E(G)

score «+— 0

best «— oo

BBF(P,F,A,score,best)

Adaptation to the signed case When marker signs are known, they participate in the
determination of breakpoints (see section 1.3.3): for an adjacency g.h between two elements g

45

Chapter 2. From common markers to evolution scenarios

and h in a signed genome, there is no breakpoint if either g.h or —h. — g appears in the other
genome. In addition to the determination of the order of elements, reduction to TSP has also to
find the sign of each element. To do so, the graph model of genomes has to be slightly modified.

Two vertices of G are associated with each element g: g and —g. Thus, the set of vertices
of GisV ={91,92,,9n, =91, —92, .., —gn} for a set of G = {g1, g2, .., g} markers. The signed
element g is then represented by the edge {g, —g}. Consequently, for each edge {g,h} in E(G),
denote by u(gh) the number of genomes where —g and h are adjacent. Weights of edges are then
computed in the following way: w(gh) = 3 —u(gh) if g # —h; if g = —h, this edge is used to link
two vertices representing an unique element and has to be cover by the solution path. A value
—M has to be attributed to w(gh) such that M is sufficiently high in order to force the presence
of this edge in the obtained path.

Proposition 1 (Sankoff and Blanchette [SB97]) If s = s1,—s1, 52, —S2, .., Sn, —Sp iS5 G SO-
lution to TSP on the graph (G,w) then the genome median is given by S = $153...5,.

In the same way, it is possible to compute a lower bound L(G) such that u(g) = —M +m
with m the smallest weight of edges incident to g.

Generalization to more than 3 genomes The median problem can be applied for N > 3
genomes. In this case, it corresponds to a completely unresolved tree where there are N + 1
vertices with N leaves (contemporary genomes) and one vertex of degree N that is the median
genome. Based on the procedure BBF given before (algorithm 4), this is done by modifying
w(gh) which becomes N — u(gh).

Phylogenetic tree reconstruction

To solve the multiple rearrangement problem, Blanchette et al. [BBS97] and Sankoff and Blan-
chette [SB98| give a heuristic analogous to the iterative improvement method of Sankoff et al.
[SCL76] adapted for the genomics context in [SSK96, FNS96].

The latter is based on a fixed phylogenetic topology seen as an unrooted binary tree 1. The
N leaves of T correspond to considered genomes and the ancestral genomes that are sought are
represented by its NV — 2 internal nodes. This is a phylogenetic version of the Steiner problem
that consists in iteratively improving ancestral genomes by solving the median genome problem
for the 3-stars defined by an intermediate vertex and its immediate neighbours.

This strategy requires one to initialize internal permutations. In fact, the global optimality
of the obtained tree depends on this initialization step. That is why Sankoff and Blanchette
[SBI8| (see also [BBS97]) propose several initialization strategies. Assigning values to internal
nodes can be done arbitrarily by assigning random permutations. A more reasonable solution
assigns permutations by consensus from the three closest genomes in extremities. However, sim-
ulations realized by the authors to compare initialization strategies show that more complex
methods prove to be more efficient. These methods are based on the resolution of an initial TSP
where edge-weights are either the average of the corresponding edge-weights at the three im-
mediately neighbours, or computed by dynamic programming minimizing adjacency disruptions
and creations.

2.4.2 Rearrangement-based method

Section 2.4.1 presents Sankoff and Blanchette’s work on the median problem based on breakpoint
study. The breakpoint number between two genomes leads to a lower bound for the rearrange-

46

2.4. Global methods for ancestral reconstruction

ment distance between the two same genomes.

Although these two distance measures are closely related, it turns out that the study of re-
arrangements for reconstruction of phylogenetic trees is more representative from the biological
point of view than the one of breakpoints [SM01, MSTL02]. Bourque and Pevzner were in-
terested in this problem in the unichromosomal case as well as the multichromosomal one and
implemented a program for tree reconstruction called MGR [BP02] that relies on another tool
for distance computation, namely GRIMM [Tes02b]. To present Bourque and Pevzner’s method,
we first apply it to N = 3 genomes (the median genome problem) and then give extensions for
N > 3 genomes (the multiple genome rearrangement, problem).

Median genome problem

Unichromosomal genome method Let G, G2, G3 be three unichromosomal and signed
genomes defined over the same set of gene markers G. For this kind of genome, only one type
of rearrangement is taken into the account: reversals. Bourque and Pevzner’s method [BP02]
consists in applying successive reversals to G1, Go or G3. From the parsimony principle, reversals
to apply, called good reversals, are intuitively those which make contemporary genomes closer
to the searched ancestor. But which are these reversals since the median genome is unknown?
Bourque and Pevzner indicate and confirm by simulation that a reversal applied to a genome
which movers this genome closer to the other two can reasonably be considered as a good reversal.

Thus, the proposed algorithm applies good reversals to G1, G2 or GG3 in order to make them
converge towards an unique permutation: the ancestor.

Definition 32 Let G1, Go, G3 be the considered gemomes for the median problem. A good
reversal p applied to Gy is a reversal such that: d(Gy.p,G2) < d(G1,G2) and d(G1.p,G3) <
d(G1,Gs). Defined similarly for Gy and Gjs.

Denote by A(p) the global reduction of reversal distances A(p) = d(G1,G2) + d(G1,G3) —
(d(Gy.p,G2) + d(G1.p,G3)). A reversal decreases the distance between two genomes by at most
1, then a good reversal p verifies A(p) = 2. It is possible to enumerate all the possible good
reversals applicable to G1, G2 or GG3. However, there are two problems: if several good reversals
exist, which should one apply? If there is no good reversal, which reversal should be applied
then?

It is important to note that there are interactions between reversals. If two reversals have
disjoint spans then applying one has no consequence on the other. Nevertheless, if their spans
overlap, applying one reversal can modify the “quality” of another. Thus, the number of good
reversals in resulting permutations can vary as a function of the good reversal applied. Bourque
and Pevzner base their method on the hypothesis that good reversals applied in the correct
order affect the less likely good reversals that are available, and so they define the notion of best
reversal.

Definition 33 Let n, the number of good reversals after applying p. A best reversal p among
good reversals is such that n, is marimal.

When the number of good reversals is sufficient to converge towards an unique permutation, the
three genomes form a perfect triangle (see figure 2.14 for an example). In the contrary case, if all
of the good reversals are used up, a best reversal p with A(p) < 2 has to be found. Bourque and
Pevzner propose a search of depth k in the tree of possible reversals which minimizes the global
sum of reversal distances for each pair of genomes. Let pq, po, .., pr be a sequence of k reversals

47

Chapter 2. From common markers to evolution scenarios

applied to GG1, then they define A(pl,pg, ..,pk) = d(Gl,GQ) + d(Gl,Gg) — (d(Gl.pl..pk,Gg) +
d(G1.p1..pk, G3)) as the global reduction of reversal distances for this sequence of reversals.

Definition 34 Let p1, pa, .., pr be the sequence of reversals applied to G1 such that A(p1, p2, .., pr)
is mazimal. If there is no good reversal, the best reversal in Gy is the first reversal py of the
sequence such that A is mazimal. Defined similarly for Go and Gs.

Gi: 123456789 Genomes | G1 | G2 | G3
G 12 -34 -6 —-579 —8 G1 0 |4 |5
Gy: —12 -3 —-45679 —8 G2 4 |0 |3
A: 12 —345679 —8 Gs 5 |3 |0

reversal(—6 — 5)

reversal(3)
reversal(—9)
reversal(8 9)

reversal(—4)
reversal(—1)

Figure 2.14: Perfect triangle formed by genomes G, Gg et Gz from [BP02]. MGR gives an
optimal ancestor A for these genomes as well as optimal scenarios. The table indicates distances

for each couple of genomes: they are equal to those found in the constructed genomic tree going
through A.

The algorithm consists in applying a succession of best reversals first taken among good re-
versals.

Adaptation to the multichromosomal case In the case of multichromosomal genomes, the
number of considered operations is higher: translocations, fusions and fissions added to reversals
are the most frequent rearrangements in multichromosomal genomes.

Bourque and Pevzner generalize the algorithm given for unichromosomal genomes using the
rearrangement distance rather than the reversal distance. Notions of global reduction A(p) for a
reversal p, good, and best reversals are extended to multichromosomal case as global reduction
A(p) for a rearrangement p, good, and best rearrangements according to the rearrangement
distance.

However, the choice of the rearrangement to apply is more constrained in the multichromosomal
case. In fact, there exists a situation specific to multichromosomal genomes: for 3 multichro-
mosomal genomes, all possible couples of genomes can have a rearrangement distance equal to
1 (see example 2.15). Thus, reconstructed ancestor can be equally Gy, Gy or Gs. In order to
resolve this ambiguity, Bourque and Pevzner give priority to reversals and translocations against
fissions and fusions in the choice of good and best rearrangements, starting from the observation

48

2.4. Global methods for ancestral reconstruction

that the two first types of operations are the most frequent in studied species (i.e. mammalian
genomes).

Gi= {12345}
Gy= {12 -5 —4 —3}
Gs= {12,345}

Figure 2.15: Example from [BP02] of three multichromosomal genomes, G1, G and Gs, all at
distance 1 from each other. A reversal separates G; from (o, a fission separates GG; from G3 and
G2 from Gg.

Another biological constraint is presented in [BP02]. It is based on the following hypothesis:
a good rearrangement is a rearrangement that does not break a conserved adjacency.

Definition 35 A pair of elements g.h is a conserved adjacency if g.h or its opposite, —h. — g,
15 present in all genomes as consecutive elements.

In fact, according to the parsimony principle, it is less likely that nature breaks an adja-
cency to form it again later. However, the hypothesis such as it is formulated by Bourque and
Pevzner, does not seem to bring a new constraint in ancestral reconstruction. By construction, a
conserved adjacency between two genomes cannot be broken during the computation of a parsi-
monious scenario being reconstructed later. This runs counter to the parsimony criterion. Thus,
rearrangements that break an adjacency conserved in N genomes cannot exist in a parsimonious
scenario.

Multiple genome rearrangement problem

Resolving the multiple genome rearrangement problem is based on the same principle as for
three genomes. However, the notion of good rearrangement has to be redefined with respect to
N genomes. This is done by redefining the global reduction A(p) of rearrangement distances for
the rearrangement p applied to the genome Gj:

Alp) = d(Gi,G;) = > d(Gi.p,G;)
j# j#i

Definition 36 Let N be the number of considered genomes. A good rearrangement p applied to
G; is a rearrangement that decreases the rearrangement distance between G; and all the N — 1
other genomes by A(p) = N — 1.

Contrary to the median genome problem, we must determine the starting point for the tree
reconstruction. Two strategies are considered: the first considers all N genomes and progresses
bit-by-bit towards a common ancestor; the second starts from the median problem (for 3 genomes)
and, by successive additions of one genome, determines a phylogenetic tree.

The first method described is without constraint: good rearrangements are applied until 2
genomes converge towards an unique permutation. The operation is done again for N —2 genomes
and the reconstructed intermediate ancestor. This process is reiterated until the complete reso-
lution of the median problem for the three last genomes. This method is hardly applicable when

49

Chapter 2. From common markers to evolution scenarios

N is high and good rearrangements are quickly used up. That is why Bourque and Pevzner
propose the second method.

The second technique is constrained by rearrangement distances. In fact, the starting point
consists in solving the median problem with the 3 closest genomes in terms of rearrangements.
Then, supplementary genomes are successively added to the partially constructed tree T. Let
G, Ga, .., G; be the genomes already placed into the tree T'. In order to place the genome Gy
into the tree, one has first to determine which edge of the tree has to be divided to insert Gj,1,
and second to minimize rearrangement distances between leaves. The placement heuristic chosen
by Bourque and Pevzner to locate Gj1q is still based on rearrangement distances: the edge to
divide is the one for which its two extremities and the genome (Gj41 form a perfect triangle or
at least come to it as close as possible. Thus, for each edge {u,v} of T, the median genome A of
u, v and G4 is computed. Bourque and Pevzner define then the addition cost of a genome to
an edge.

Definition 37 The addition cost of a genome Gjy1 to an edge {u,v} is: C(u,v) = d(u, A) +
d(v, A) + d(Gi41,A) — d(u,v) where A is the median genome of u, v and Gi41.

The edge {u,v} to divide for inserting Gj41 is the one for which C(u,v) is minimal. By
construction, the inferred ancestor converges towards species that are close to each other.

2.4.3 Other works based on parsimony

The multiple genome rearrangement problem is widely treated in the literature. We have already
mentioned the method based on the reversal distance proposed by Caprara [Cap03| based on the
breakpoint graph model of Hannenhalli and Pevzner [HP95a|. Another approach was proposed by
Siepel and Moret [SM01] that permits the extension of GRAPPA software [BMW™] by replacing
the breakpoint median routine by a reversal one.

Other repertoires of operations were considered to solve the multiple rearrangement problem.
For example, Adam and Sankoff [AS08| developed an approach similar to that of Bourque and
Pevzner [BP02], but taking into account transpositions and block-interchanges which can be
seen as a generalization of transpositions (exchanged segments in block-interchange can not be
contiguous) as well as reversals and translocations. This set of operations is grouped in the DCJ
(Double-Cut-and-Join) model introduced by Yancopoulos et al. [YAF05].

All of these studies implicitly start from genomes with the same marker content where each
marker is present in exactly one copy. It is not rare that studied genomes have several copies
for a marker (e.g. marker families). Starting from a contemporary genome where each marker
appears twice, El-Mabrouk and Sankoff [EMS03]| propose to recover the ancestral duplicated
genome under the whole-genome duplication hypothesis by minimizing the number of reversals
and/or translocations based on Hannenhalli and Pevzner’s theory [HP95a, HP95b]. Zheng et
al. [ZZAS08| adapted this method to the genome halving problem by guiding the reconstruction
with one or several outgroup genome(s) that diverged before the genome duplication event.

As well as whole genome duplication event, duplications at a segmental level exist. The latter
case was studied by El-Mabrouk [EM02] who proposed an algorithm that computes an ancestral
genome without duplication from a genome having marker families of any size by minimizing
reversals and duplication transpositions. In the same paper [EMO02], this method is used in
order to extend the multiple genome rearrangement algorithm based on breakpoint analysis
[SB97, BBS97, SB98| by taking into account duplication events.

50

2.5. Piece-wise reconstruction

2.4.4 Lack of biological constraints
Medians are not unique

A considerable drawback to formulating the problem as the search for a single complete assem-
bly that minimizes the sum of genome distances, is that the set of mathematically equivalent
solutions is quite large and widespread. For example, in [BZBT05] more than 3000 solutions are
found for the human-murid ancestor, and indeed a statistical study of the variance between min-
imal solutions by [Eri07] suggests that reporting an unique median architecture is misleading,
particularly when medians are the basis of phylogenetic tree reconstruction. A more realistic
approach is to consider what common structural features of ancestral genomes might be found.
Partial reconciliation of comparative maps identifies permutations of markers as above but does
not necessarily provide a total order between segments (see section 2.5).

In silico versus cytogenetic methods

A wider debate exists between the proponents of the in silico approach through rearrangement-
based methods and the proponents of the cytogenetic approach. FExemplified by Froenicke et
al. [FCG106], the latter group argues essentially that under-sampling in the in silico approach
combined with the tendency of closely related genomes to attract the median, leads to non-
unique results that diverge from those found using cytogenetic methods. Bourque et al. in their
response [BTP06| argue that under-sampling will disappear with time and that the distinction
between strong and weak adjacencies (present or not in all explored reconstructions) identified
in the in silico method permits reliable comparison between the different approaches. Moreover,
in silico method overcome certain problems of cytogenetic reconstruction: small segments (< 1
Kb), interchromosomal and intrachromosomal rearrangements as well as marker orientation can
be studied.

Rocchi et al. in their perspective [RAS06] suggest that a combination of the two approaches
should lead to more realistic ancestral architectures, but furthermore that it is necessary to better
model biological considerations, especially centromere repositioning and segmental duplication.

2.5 Piece-wise reconstruction

In the previous section, we have seen that reporting an unique global median architecture is
misleading. A more realistic approach is to consider what common structural features of ancestral
genomes might be found. Partial reconciliation of comparative maps identifies permutations of
markers as above but does not necessarily provide a total order between segments.

In what follows, we present the method of Ma et al. [MZST06] for finding contiguous ancestral
regions (CARs) by assigning to each node of a given phylogenetic tree a set of adjacencies that
represent a consensus between those found in contemporary genomes, computed using a method
analogous to Fitch’s parsimony method [Fit71] and relying on knowledge of the phylogenetic
tree. However, we will show that consideration of phylogeny for the reconstruction of ancestral
architecture is not completely justified since no proof has been provided that recombinatory
evolution coincides with mutational evolution.

2.5.1 Method from phylogenetic data

Ma et al. [MZST06| propose a computational method to predict the order and orientation
of conserved segments in the ancestor through the detection of CARs (Contiguous Ancestral

o1

Chapter 2. From common markers to evolution scenarios

Regions), that represent consistent parts in the ancestor. Their method is based on adjacencies
in contemporary genomes, requires a phylogenetic tree and is quite similar to Fitch’s parsimony
method [Fit71], nucleotides being replaced by adjacencies as elements of phylogeny.

Predecessor and successor graphs

Let T}, be the considered phylogenetic tree where leaf nodes are contemporary genomes. A
modern genome is represented by permutations as it is described in section 1.2.1. Duplication
events are not take into the account. However, it is not explicitly specified whether contemporary
genomes share exactly the same set of markers.

Inferring CARs consists in finding an unique predecessor and successor for each element in the

ancestral genome. First, Ma et al. independently solve predecessor and successor searches by a
two-step method. In what follows, we present the predecessor search.
The first stage computes a set P, (i) of possible predecessors for an element i in the node u in a
bottom-up fashion. In the case where u is a leaf node, P,(7) is a singleton representing the unique
predecessor of ¢ in u. Otherwise, v has two child nodes, v and w, and P, (i) = P,(i) U P, (i) or
P,(i) = P,(i)NP,(i) depending on whether sets P, (i) and P, () are disjoint or not. This is done
for all nodes of T}, including outgroups until the common ancestor R of all species is reached.

The information on predecessors can be summed into a graph called Predecessor graph for
each node u. The predecessor graph for a node u of T}, is a directed graph where each marker is
represented by two vertices (positive and negative versions). Two special vertices (symbol 0 for
both) are added to represent the beginning and the end of a chromosome. An edge (a,b) of a
predecessor graph means that the element a belongs to the set P, (b).

The second step consists in refining, for ancestral nodes, predecessor graphs built during the
first stage by propagating Pr(i) down the tree. During the descent in the tree, designate by
A and D ancestor and its descendant along a branch. For each i of D, Pp(i) is refined in the
following way: Pp(i) = Pp(i)NPa(i) if Pp(i)NPa(i) # 0; otherwise, Pp(i) remains unchanged.
Similarly, sets of successors for each element ¢ of a node u of T}, S, (i) are inferred and lead to
successor graph construction. In a successor graph of a node u, an edge (a,b) means that the
element b belongs to the set Sy(a).

Graph reconciliation into CARs

Clearly, predecessor and successor graphs of a leaf node are identical while those for ancestral
nodes generally differ. However, they are not totally different and common parts can be extracted
from a new graph G obtained by the intersection of the predecessor and successor ones.

Ambiguities for some elements may still remain: an element i can (a) have several possible
predecessors in G, or (b) have several possible successors, or (c) participate in a cycle of G. In
order to choose an unique predecessor and successor for an element in G, G is transformed into
a weighted graph according to phylogenetic information. The weight w4(i,j) of an edge (i,)
of the graph G of a ancestral node A is 1 if neither ¢ nor j are in ambiguous case (a) or (b);
otherwise,

. LA, L) wgr(i,j)+L(A,R).wr (i,j
wa(i,j) = ()c?f(l,£§+£EA,R§ Lt

where £(A, R) (L(A, L), respectively) is the length of the branch linking an ancestral node A to
its right (left, respectively) child. Note that if L (R, respectively) is a leaf node, then wy,(i,5) = 1
if edge (i,7) belongs to its predecessor graph, and wp,(i,7) = 0 otherwise.

Based on this weighted graph for an ancestral node A, Ma et al. propose a greedy heuristic

52

2.5. Piece-wise reconstruction

approach to compute a set of paths that cover all the nodes in G, trying to maximize the total
edge weights in all of them. This is done by a constructive algorithm that tries to add edges
to paths representing CARs starting from the edges of greatest weight. An edge is retained
in resulting paths if its addition does not cause an ambiguous case (a) or (b). This process is
repeated until no more edges can be added. To solve the ambiguous case (c) in the resulting
graph, Ma et al. claim that if such a case appears then the weight of each edge in the formed
cycle is 1. Consequently, discarding any edge to break the cycle is sufficient. See example 2 for
a complete illustrated case.

— 08 A(1-2489e56-10-7-1112)

0.3

D

A0310p LO3 po23456e78-9101112)

I
:F/ 0.9

C(123e4-5679-810-1112)

0T 0(134-56e7-12811910)

Figure 2.16: The phylogeny of genomes A,B, C [MZS™06]. The target ancestor is E, and O is the
outgroup. The bullet symbol separates chromosomes. Branch lengths are above each branch.

Figure 2.18: Predecessor graph of B from [MZS*06].

Example 2 Figures 2.17 to 2.26 are those of the practical example given by Ma et al. in
[MZST06]. Given a phylogeny between genomes A, B and C (see figure 2.16), predecessor graphs
of A, B and C are directly constructed from the leaf genomes (see figures 2.17, 2.18 and 2.19).
Figures 2.20, 2.21 and 2.22 represent the predecessor graphs of internal nodes D, E and F ob-
tained after the bottom-up step. Predecessor graph of E (see 2.23) is adjusted by propagating the
predecessor graph of F. In the same way, the final successor graph of E is obtained (see 2.24).

93

Chapter 2. From common markers to evolution scenarios

Figure 2.22: Predecessor graph of F from [MZS*06].

Resulting CARs (see figure 2.26) are determined from intersection of predecessor and successor
graphs of E (figure 2.25) where ambiguities are solved based on phylogeny information.

CARs with duplications

The initial method of Ma et al. for inferring CARs does not incorporate duplication events.
Recently, in [MRR08], Ma et al. propose a heuristic algorithm called DUPCAR that is an
extension of CARs method by including duplications based on a set of gene trees in addition to
a phylogenetic tree and a set of contemporary genomes.

54

2.5. Piece-wise reconstruction

- —

_—

DD D@

A A e
C__C----------------¢ o= .- TTTTo__

S

- -

E————» O <—————

_—————>

__

Figure 2.26: The resulting CARs from [MZS*06].

2.5.2 Phylogeny vs evolution mechanisms

The method proposed by Ma et al. does not try to solve the multiple genome rearrangement
problem and clearly leans on phylogenetic data to predict an ancestral genome. Phylogeny rela-
tionships between species are inferred according to the rate of mutations in genomic sequences.
Another evolutionary measure between species consists in computing rearrangement or break-
point distances based on a mathematical model for genomes. While the former implies a temporal
notion, the latter does not provide information on the time-scales of the rearrangement events.
Although these two measures may converge towards similar results, it is not systematic. In-

95

Chapter 2. From common markers to evolution scenarios

deed, some authors propose to study the relationship between the phylogenetic distribution of
species and the disruption of syntenic blocks via chromosomal inversion events (see [BSRT08]
for application to Drosophila genomes).

However, in the case of the multiple genome rearrangement problem for which we present two
methods (see section 2.4.2 for rearrangement-based method and section 2.4.1 for breakpoint-
based one), the authors speak in terms of phylogenetic tree reconstruction. According to the
paragraph above, the use of this term is somewhat misleading since rearrangements represent a
different measure of evolution: thus we will prefer using the notion of rearrangement tree, that
can be by definition different from the phylogenetic tree for the same set of species.

o6

Part 11

SyDiG: uncovering Synteny in Distant
(Genomes

o7

Chapter 3

SyDiG algorithm

Comparative analysis of complete genomes has over the past ten years provided increased under-
standing of the processes and mechanisms of evolution, development, and gene regulation. One
area where significant insight has been obtained is genome rearrangements, where the mecha-
nisms of chromosomal dynamics have been explored through comparison of chromosomal maps
within and between species. A key prerequisite for such studies is the accurate identification
of genome synteny, since conserved gene order between two (or more) related species indicates
chromosomal homology inherited from their common ancestor.

In section 2.1, we presented several computational methods for the identification of genome
synteny. In particular, we focused our attention on GRIMM-Synteny [PT03a, BPT04, BZB*05],
which determines synteny blocks with the explicit aim of studying rearrangements. However,
all of these methods perform well on the ‘low-hanging fruit’ of highly similar (e.g. mammalian)
genomes, but less well on highly divergent genomes with extensive map reshuffling.

In this chapter we present a new algorithm, called SyDiG (Synteny in Distant Genomes) that
processes complete genome sequences in order to infer cross-species synteny, and algorithms with
the ability to handle species having a large evolutionary span. Our method computes synteny
blocks for N > 2 genomes. It is a three-step process. First, we perform a pre-processing step that
consists in determining homologous genes and, from those, in computing multiplicons of level
two using AdHoRe routine [VSST02]. Multiplicons constitute the starting point of our study
and all of the homology information contained in them is described in terms of graph theory
through the synteny graph. Second, based on this graph, we try to extend certain homologies by
transitivity. Finally, initial homology information and supplementary homologous elements are
used to reconstruct synteny blocks.

3.1 Pre-processing

The starting point for synteny identification is the definition of pairwise homology relationships
between genomes. We use the consensus clustering algorithm [NS07|, although raw clustering
methods can be used such as [EDO02].

Sequence similarity is generally detected either at the DNA level or by relying on genomic
maps. In the latter case, the study of gene order makes it possible to detect homology even for
highly divergent chromosomic regions. This is exactly the role of i-ADHoRe [SVSP04, SJSV08|,
a method, explained in section 2.1.2; for identifying segments of chromosomal homology (multi-
plicons) through the identification of gene order and content conservation.

Recall that a multiplicon is formed by one or several homologous genomic segments and its

29

Chapter 3. SyDiG algorithm

level indicates the number of segments it contains. In this study i-ADHoRe is solely used to
compute level two multiplicons that will be simply called multiplicons in the rest of the chapter.
Notice that i-ADHoRe determines the multiplicons based on gene order. Hence, the coordinate
system used is at gene level: each element of a genomic segment is mapped to a gene and each
chromosomic segment is delimited by two genes, one on each side.

Multiplicons obtained by i-ADHoRe correspond to homologies between two genomic segments
(belonging to the same genome or not). The goal now is to refine these homologies into synteny
blocks for the set of considered genomes {G1,..,Gn}. We do this by analyzing the composition
of each multiplicon and computing the synteny blocks using transitivity relations.

3.2 Synteny graph

The first step is to assemble all the information contained in the multiplicons into a graph. This
graph has to represent two types of information: first, homology between genomic segments;
second, possible overlaps between multiple segments of the same chromosome. Let {G1,..,Gn}
be the set of genomes for which we want to compute synteny blocks and M be the set of
multiplicons obtained by AdHoRe for these genomes.

For the needs of the method, we propose a more formal definition of the notion of multiplicon.
Let M = (I, 12, A) be a (level two) multiplicon where I; and Is denote the genomic segments
that it contains, and A is the set of anchors within it. We note a genomic segment I; as a sequence
of genes I; = (g};, .., g%) such that g}; and ¢! represent the gene boundaries of this segment. A
gene g;'- of a genomic segment I; is a pair (p;,c;) such that p; is its relative position on the
chromosome c¢;. If two genes g! € I; and g]2~ € I, form an anchor in M, then (g}, g]2> e A.

Figure 3.1 shows an example of multiplicons for N = 5 genomes. This same example will be
followed through the chapter.

The synteny graph G is defined from the set M of multiplicons for the N genomes under study.

Definition 38 A synteny graph G = (V, E) is a non-oriented edge-colored graph such that
-V= {g; | g;- € I; € M € M} is the set of all genes participating in a multiplicon,

- E is the edge set such that Ve = {g,’;,gzn} € E either g, and gfﬁ form an anchor in a
multiplicon of M (dashed edge), or g¢, and gl are consecutive on the same chromosome
(black edge).

In this graph, we can distinguish three types of vertices:

(1) boundary vertices correspond to gene boundaries of genomic segments participating in a
multiplicon,

(2) anchor vertices correspond to genes that form an anchor with some other gene and are not
boundaries of any genomic segments,

(3) interleaving vertices are the other vertices that are neither a boundary nor an element of
an anchor.

Note that boundary vertices always form an anchor, since AdHoRe computes multiplicons in
such a way that extremities of genomic segments that define them are determined by the leftmost
and rightmost coordinates of their anchors. Thus, a gene can be both a boundary of one or several

60

3.2. Synteny graph

Figure 3.1: Level 2 multiplicons for genomes {G1, .., G5 }. Each genome G; is shown on a separate
line with chromosomes denoted by ¢}, cb,.., ciu, (k the total number of chromosomes for G;). A
genomic segment (g;, g; 1y 92—17 g,zﬁ) on G; is represented by a bold line on the chromosome
and is explicitly delimited by its boundaries g§ and g,i. Dots along chromosomes represent
gene locations. A grey (dark, respectively) line materializes an anchor formed by genes (gene
boundaries, respectively) at its extremities.

61

Chapter 3. SyDiG algorithm

genomic segments taking part in multiplicons and a simple anchors in other segments. An anchor
vertex is a gene that forms an anchor strictly inside one or several multiplicons.

Figure 3.2 shows the synteny graph obtained for the 5 genomes and their multiplicons of figure
3.1.

1 1
91 97
14 % @ . < ——+
I I I I
I I I \\ I
| 2 | | 2 \ | 2
191 I 193 \ 197
& Y ry ® bt 4
A\ 4 Y ~ Y
I I I
I I I
3 3 I 3 3 | 3 '3 3
g7 g 194 g5 I g7 198 99
—eo—¢ ——A—G&————
\\ AN |/// \\ \ NN \\
N S -7 \ N AR AN
o4 Ny D NEERND) 4 N A4
AN PIERN 5 MNIiN 9 N7 ANCES
/ s -
’ e \///
5 / 5 // 5 -7 \\ 5
/
917 92,7 93/// \J5

Figure 3.2: Synteny graph obtained for the data shown on figure 3.1. Dashed edges represent ho-
mologies while black ones represent gene adjacency. Boundary vertices (anchor vertices, and gene
vertices, respectively) are represented by diamonds (white circles and full circles, respectively).

3.3 Extension of homologous boundaries

The synteny graph represents gene relationships within and between genomes: physical relation-
ships are modeled by black edges, which represent gene adjacencies, while dashed edges model
homology information contained in multiplicons. From synteny graph, we define two kinds of
dependency between elements.

3.3.1 Extended segments

Genomic segments taking part in multiplicons can be physically dependent, since some of them
overlap. It is from this kind of dependency that we can infer new homology relationships by
combining the information contained in multiplicons related by overlapping genomic segments.
Thus, we isolate the set of genes that are dependent only due to chromosomic overlaps. All of
these genes will belong to the same extended segment.

Definition 39 An extended segment for a given genome is a maximal genomic segment Ip,q, =

(9by -+, ge) defined from the set of genomic segments {11, .., I} belonging to the same chromosome
c such that

(1) gb = (po,,.,.,c) € I with 1 <i <k such that py, . = min({p; | g = (pi,c) € I;,1 <i < k}),

62

3.3. Extension of homologous boundaries

(1) ge = (DeponsC) € I; with 1 < i < k such that p, .. = max({p; | g = (pi,c) € [;;1 <i <

k1),

(11i) 2 consecutive genes on the extended segment belong to the same genomic segment: ¥g;, giy1 €
Iaz, 31 € {11, .., It} such that g; € I and g;11 € I,

() the extended segment satisfies the criterion of mazimality: VI & {11, .., Iy} et Vj € [1,k], I
and I; do not overlap.

The set of extended segments obtained for a given synteny graph G is computed from the
connected components of the subgraph of G induced by the black edges of G. In fact, the
resulting subgraph can be decomposed into chains that correspond to extended segments.

The synteny graph of figure 3.2 contains 9 extended segments, namely:

—S%:
—S%:

_511:

)

)

) and S§ = (g3, .., g3) belonging to G,

), S5 = (g1, -, 98) and S5 = (g7, .., g5) belonging to G4,
)

(

(:
- SP = (g}, .. 93

(3

(5

-8 = and S5 = (g3, .., g2) belonging to Gs.

3.3.2 Groups of homologous genes and boundaries

The goal of our algorithm is to determine synteny blocks for N genomes under study. We use
transitivity of the relation defined by the multiplicons in order to solve the missing homologies
between genomic segments. Thus, if I; is homologous to I» that is itself homologous to I3,
we consider that I; and I3 are also homologous. Not all homologies are that simple to solve.
For example, in figure 3.1, the genomic segment I3 = (gg, . g%) of genome G5 does not have
a homolog (direct or by transitivity) with any genomic segment of genome G;. However, I3 is
included in I? = (g2, .., g2) that itself is homologous with I} = (g1, .., g%) of Gy. This homology
makes it possible to deduce a new boundary in G that “cuts” I{ into two distinct intervals such
that one of them is homologous with I3.

Recovering homology relationships between genomic segments can then be reduced to looking
for specific genes that are boundaries, and reconstructing the corresponding genomic segments.
In order to do that we first partition genes forming at least an anchor in groups of homologous
genes and in parallel, by considering only the set of gene boundaries, groups of homologous
boundaries.

Definition 40 Groups of homologous genes are a partition of genes forming at least one anchor
such that a part of this partition is a set of genes that are either directly homologous, or that
share a gene with which they form an anchor.

Definition 41 Groups of homologous boundaries are a partition of gene boundaries such that
a part of this partition is a set of boundaries that are either directly homologous, or that share a
gene with which they form an anchor.

Groups of homologous genes (boundaries, respectively) obtained for a given synteny graph G
are computed from the connected components of the subgraph of G induced by the anchor and

63

Chapter 3. SyDiG algorithm

Groups of homologous boundaries

91,93

9. 6. g8

93,9197, 93,94, 62

93,95, 95,93, 93

93,98, 92, g7

93,95

Table 3.1: Groups of homologous boundaries obtained from the synteny graph of figure 3.2

Groups of homologous genes

9.7

93,93

95, G2

9%, 9%, g8

92,98, g8

g9t 97,93, 94, 62

93,94, 95,93, 93, 93

93, 98,92, g

98, 94

Table 3.2: Groups of homologous genes obtained from the synteny graph of figure 3.2

boundary vertices, and the dashed edges of G. The group of homologous boundaries is obtained
for a given synteny graph G, in an analogous way, from the the subgraph of GG induced by the
boundary vertices, and the dashed edges of G.

Starting from the synteny graph from figure 3.2, we obtain groups of homologous genes and
groups of homologous boundaries shown respectively in tables 3.2 and 3.1.

3.3.3 Adding and positioning of new boundaries

The next step is to check each boundary to see whether it creates new boundaries in other
genomes. Each extended segment is a genomic segment defined by a maximal set of overlapping
genomic segments. Hence, in each extended segment there exist boundaries of genomic segments
that are included into other ones. For example, boundary g3 of I3 is included in the interval I3
of the extended segment S7. However, genomic segment I{ homologous to I? does not contain
any boundary homologous to g3. This is precisely the situation where the need for adding new

64

3.4. Reconstructing synteny blocks

boundaries arises. In order to do this we search in the groups of homologous genes for a boundary
homologous to g3 in If (see table 3.2). In this case, we find the gene gi.

The algorithm add_boundaries implements this operation. Function eztended_segment re-
turns the extended segment to which a given genomic segment belongs. In the case of the
addition of a supplementary boundary, if the current boundary has no homologous gene in the
target genomic segment, then it is necessary to pick a gene in this segment as the homologous
one. This is done by the routine locate: the homologous gene is the one that is proportion-
ately located in the target segment at the same place than the current boundary in its genomic
segment.

Algorithm 6 add boundaries(S)
Require: Set of extended segments S
Ensure: Set of extended segments S with new boundaries
1: Let B be the set of boundaries for S
2: while B # () do
b= shift(B)
4: Let 7 be the set of genomic segments in which b is included
50 forall I €7 do
6 for all I’ such that IM = (I,I', A) € M do
7: if A b, € I’ such that by, and b are two homologous boundaries then
8
9

w

if 3 b, € I’ such that b, and b are two homologous genes then
S’ = extended _segment(I’,S)

10: Mark b, as boundary in S’

11: Add b, in B

12: Add b, in the group of boundaries homologous to b
13: else

14: S’ = extended _segment(I’,S)

15: locate(bpew, S")

16: Mark b,¢,, as boundary in S’

17: Add bye in B

18: Add byeq in the group of gene homologous to b

19: Add bjey in the group of boundaries homologous to b
20: end if

21: end if

22: end for

23: end for
24: end while
25: return S

For the example of figure 3.1, six new boundaries are added. All the new boundaries are shown
in figure 3.3. The resulting groups of homologous boundaries are shown in table 3.3.

3.4 Reconstructing synteny blocks

Once boundary homology is completely solved, we define the genomic segments and their homol-
ogy relations. In an extended segment, two boundaries form a genomic segment that is necessarily
homologous with at least one other genomic segment. In order to obtain genomic segments that
are disjoint for a given chromosome, it is sufficient to go through each extended segment in order,

65

Chapter 3. SyDiG algorithm

Final groups of homologous boundaries

9.7

9%, 92.98,b6 = gs

g3.9t.97, 93,98, 92, . ba = gk, by = g}

93,95, 95,93, 93, b1 = g3

93,94, 95, 9%,b3 = g, bs = g2

9. 94

Table 3.3: Groups of homologous boundaries obtained from groups of table 3.1 after
add_ boundaries routine.

Gy

Go

Gs

Gy

Figure 3.3: New gene boundaries {b1,..,bs} added for the example from figure 3.1. Boundaries
connected by edges represent homologous boundaries. The dashed edges show the homology
between the new boundaries and those originally present.

66

3.4. Reconstructing synteny blocks

where two successive boundaries delimit a genomic segment. Then, from boundary homology,
we deduce homologies between segments delimited by these boundaries. This implies finding the
two corresponding boundaries in another genome. If the boundaries are ordered in the same way
for the two segments, then the mutual interval orientation is positive; if not, then it is negative.
The result is the set of groups of homologous genomic segments.

Finally, in order to obtain synteny blocks for the N genomes under study, these groups are
filtered in order to keep only those that contain at least one segment per genome. Final synteny
blocks for the example of figure 3.1 are shown in figure 3.4.

Gy

Go

Figure 3.4: Final syntenic blocks for the example from figure 3.1. Genomic segment (g3, g3) is ex-
cluded in favour of (g3, g3) because the latter is larger. Genomic segments (g1, ..,g3), (7, ., 93),
(g2, .., 9%), (92,9%), (¢3,..,93), (g%, ..,g4) are also excluded, since they do not participate in syn-
teny blocks for all of the considered genomes (i.e there are no segments homologous to them in
certain genome(s)).

Moreover, additional filters make it possible to adapt obtained synteny blocks as common
markers used in the elaboration of signed permutations in order to study rearrangement events.

3.4.1 Duplications

Generally, the permutation model does not allow duplication events, so the SyDiG algorithm
proposes to keep only the longest segment in a synteny block where more than one segment
belongs to one genome. The intuition behind this filter parameter is that the longer the segment,
the smaller the probability that synteny was computed by chance. Nevertheless, other parameters
to choose between duplicate segments should be considered such as for example synteny block
neighbouring. This is the subject of future work.

67

Chapter 3. SyDiG algorithm

3.4.2 Concatenation

In the same permutation model, identifiers represent synteny blocks. Under the parsimony
criterion, two identifiers that are adjacent in all the considered genomes cannot be separated to
be joined again later. That is why, two modes are implemented in SyDiG algorithm. The first
one provides all the synteny blocks and permits one to study their respective genomic segments.
The second mode consists in concatenating synteny blocks that appear consecutively in all the
considered genomes. This leads to the construction of signed permutations with fewer identifiers,
but encoding exactly the same information as far as a study of rearrangements is concerned.

3.5 Complexity

The SyDiG algorithm determines synteny blocks by constructing synteny graph and performing
operations on this graph. Synteny graph construction is linear in the number of genes involved
in genomic segments participating in multiplicons. Moreover, computing extended segments in
the particular subgraph of the synteny graph induced by black edges can be computed in linear
time in terms of the number of vertices. Finding groups of homologous genes and groups of
homologous boundaries can be computed in both cases in linear time in terms of the number of
vertices and dashed edges. Boundaries addition is computed in O(n?) in the worst case, where
n denotes the number of vertices in the synteny graph. Finally, the reconstruction of synteny
blocks is realized by scanning the extended segments and the groups of homologous boundaries:
the complexity in time is thus O(n?). Thus, SyDiG algorithm can be computed in a simple way
in O(n?®) where n denotes the number of genes involved in genomic segments.

68

Chapter 4

Applications

Nadeau and Taylor [NT84] were the first to define conserved segments as segments having a
preserved gene order with no rearrangements between them. Synteny blocks are built of these
conserved segments, smoothing over the noise due to microrearrangements. These blocks consti-
tute gene markers that are the starting points for further analysis.

Synteny information has various applications for comparative genomics, such as computing
rearrangement distances [HP95a] or scenarios [Tes02b], inferring the least common ancestor and
rearrangement trees [BP02|. The implications of the analysis of genomic synteny can reach even
further, providing insights into the manner by which evolution proceeds. This latter topic has
generated a quite lively debate on the differences between random breakage and non-random
breakage models of evolution [PT03a, PT03b, TMS04].

Several methods have been defined to respond to the need for finding common markers within
genomes in order to study rearrangements. The main methods presented in section 2.1, GRIMM-
Synteny ([PT03a], [BPT04], [BZBT05]) and CHAINNET developed by Kent [KBH04] and used
by Ma [MZS*06]|, are applied to mammal data (human, mouse, rat and chicken for GRIMM-
Synteny and human, mouse, rat and dog for the other) and rely on nucleotide-level alignments
as obtained with tools such as BLASTZ (for example [SKST04]).

Comparative genomics analyses obviously rely on the quality of the primary computation of
genomic synteny. In this chapter, we revisit the most commonly used algorithm for synteny
computation, namely GRIMM-synteny [PT03a, BPT04, BZBT05] (see 2.1.1, page 20 for details
of the method). We argue that this algorithm, which works well for the mammalian genomes for
which it was developed, produces results whose quality dramatically decreases with the increase
of the evolutionary distance. We further identify the issue as a need for more careful homology
identification as a preliminary step.

In the first section, we compare Grimm-Synteny and SyDiG on mammal and yeast genome sets.
Then, we present a practical application to Hemiascomycetous yeasts that leads to rearrangement
analysis presented in chapter 6.

4.1 GRIMM-Synteny versus SyDiG algorithm

In order to realize this comparison, we re-implemented GRIMM-Synteny as the software is not
publicly available. Our reimplementation was validated using back-to-back comparison with
results available on the author’s webpage [Tes04].

The first challenge for comparing the behavior of these algorithms is the judicious choice of data
processing. Indeed, GRIMM-Synteny and SyDiG rely on different data. The former proceeds

69

Chapter 4. Applications

by direct sequence alignment at DNA level (cleaned up by RepeatMasker [SHG04]). The latter
relies on the existence of pre-computed protein families. While DNA alignments such as BLASTZ
are reasonable for closely related genomes such as mammals, only alignments at protein level
can recover distant similarities for species such as yeasts [Duj06]. The data presented below was
retrieved from public databases on the 17th of June 2008.

- Mammal genomes: we have considered human, mouse and rat genomes. For these genomes,
two sets of data have been retrieved from Ensembl (release 49) and Uniprot (UniRef50,
release 13.5, the 10th of june 2008) data.

- Yeast genomes (Ashbya gossypii (Ergo), Kluyveromyces lactis (Klla), Kluyveromyces ther-
motolerans (Klth), Zygosaccharomyces rouzii (Zyro), and Saccharomyces kluyveri (Sakl)):
data were provided by Génolevures and are available as of the 3rd of September 2008.

4.1.1 Yeast results

In order to apply Grimm-synteny to yeast data, we have computed 3 data sets from TBLASTX
alignments:

- unrefined alignments (206191 alignments),
- the longest alignments when several ones overlap (51085 alignments),
- the shortest alignments when several ones overlap (59028 alignments).

Anchors were computed by GRIMM-Anchor for the levels from 2 to 5. Results for levels 2 to 4
are shown for each data set in tables 4.1, 4.2 and 4.3. No 5-level anchors are found for unrefined
and longest sets and only one 5-way anchor is found for the shortest set. Based on these results,
we do not use GRIMM-Synteny routine to find synteny blocks, since the number of anchors is
too small.

SyDiG was used to compute synteny blocks for the same species. Numbers of synteny blocks
for respectively two, three and four organisms are shown in tables 4.4, 4.5 and 4.6. A total of
640 synteny blocks are defined for the set of the 5 genomes (without concatenation).

genomes unrefined | longest | shortest
Ergo-Klth 3659 3887 4629
Ergo-Sakl 3383 3615 4288
Ergo-Zyro 3578 3792 4353
Klla-Ergo 3159 3333 3856
Klla-Klth 3221 3407 3974
Klla-Sakl 3028 3202 3716
Klla-Zyro 2926 3107 3537
Sakl-Klth 3152 3376 3961
Zyro-Klth 3313 3567 4116
Zyro-Sakl 3249 3508 4044

Table 4.1: 2-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny

70

4.1. GRIMM-Synteny versus SyDiG algorithm

genomes unrefined | longest | shortest
Ergo-Sakl-Klth 174 184 440
Ergo-Zyro-Klth 214 202 441
Ergo-Zyro-Sakl 104 103 262
Klla-Ergo-Klth 320 181 353
Klla-Ergo-Sakl 348 211 387
Klla-Ergo-Zyro 314 162 345
Klla-Sakl-Klth 47 82 156
Klla-Zyro-Klth 112 87 170
Klla-Zyro-Sakl 98 124 296
Zyro-Sakl-Klth 89 187 247

Table 4.2: 3-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny

genomes unrefined | longest | shortest
Ergo-Zyro-Sakl-Klth 0 0 14
Klla-Ergo-Sakl-Klth 4 4 20
Klla-Ergo-Zyro-Klth 17 3 21
Klla-Ergo-Zyro-Sakl 11 1 24
Klla-Zyro-Sakl-Klth 1 3 12

Table 4.3: 4-level anchors on Hemiascomycete yeasts obtained by GRIMM-Synteny

genomes number
Ergo-Klth 278
Ergo-Sakl 248
Ergo-Zyro 338
Klla-Ergo 384
Klla-Klth 328
Klla-Sakl 303
Klla-Zyro 381
Sakl-Klth 93
Zyro-Klth 247
Zyro-Sakl 199

Table 4.4: 2-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG

4.1.2 Mammal results

Results for GRIMM-Synteny are available on the webpage "Human-mouse-rat alignments" (by
Glenn Tesler, the 16th of March 2004) [Tes04]. In order to run SyDiG on the mammalian genome
data, an approximation of protein families is required. We have considered two different sets:

- the Ensembl mcl clustering results (pairwise homology relationships and gene ordered lists)
[HAB107],

- the UniRef50 clusters (pairwise homology relationships and gene ordered lists) [Con08].

71

Chapter 4. Applications

genomes number
Ergo-Sakl-Klth 324
Ergo-Zyro-Klth 439
Ergo-Zyro-Sakl 405
Klla-Ergo-Klth 490
Klla-Ergo-Sakl 484
Klla-Ergo-Zyro 5H4
Klla-Sakl-Klth 386
Klla-Zyro-Klth 480
Klla-Zyro-Sakl 472
Zyro-Sakl-Klth 284

Table 4.5: 3-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG

genomes number
Ergo-Zyro-Sakl-Klth 465
Klla-Ergo-Sakl-Klth 042
Klla-Ergo-Zyro-Klth 619
Klla-Ergo-Zyro-Sakl 604
Klla-Zyro-Sakl-Klth 526

Table 4.6: 4-level synteny blocks on Hemiascomycete yeasts obtained by SyDiG

To run the AdHoRe [VSST02| routine on our data, we explored different sets of i-AdHoRe
parameters. To be concordant with results obtained in [BP02], we have chosen a gap size of 15,
a cluster gap size of 20 and 9 as minimum number of anchor points. The number of synteny
blocks obtained by the SyDiG algorithm is shown in table 4.7 for each set of data.

genomes Ensembl | UniRef50
Human-Mouse 144 380
Human-Rat 137 215
Mouse-Rat 147 244
Human-Mouse-Rat 230 465

Table 4.7: Synteny blocks on mammals obtained by SyDiG algorithm

4.1.3 Discussion

The number of synteny blocks obtained by the two studied methods concerning mammalian
genomes is quite similar. However, the number of anchors for yeast genomes obtained by
GRIMM-synteny is low comparing to the number of alignments and moreover the signal within
genomes is lost bit-by-bit when the number of considered genomes increases (no anchor for the
5 species for example).

The main issue comes down to the observation that homologous genes correspond neither to
DNA alignments, nor to anchors of level 2. Indeed, two anchors of level 2 cannot consist of the
same nucleotide sequences from the same genome. Quite to the contrary, one gene from one

72

4.2. Application to yeast genomes

Anchors of level 2

H SI3 Si4 SI5 SI6
uman
: 1] Al A ’ L]]
P \ NS
' 1 . A4 ' '
] v “ x] 1
] |I . PN] 1
: ' s SN : :
Mouse .
SI8 SI9 SI10 SI11
Homologous genes
gl g2 g3 g4 g5 g6
Human
1 : K4 ':' : ¥ [y y .] 1
. R : 3 K N : H
] ” A ' 1 . A4 ' 1
1 4 .] v A hod] 1
] ‘e ' ' v - ' 1
1 o e ' 1 A ! ' 1
Mouse V.l [N ' [* :l ‘\ []
i3 K4 L)
g7 g8 29 gl0 gll

Figure 4.1: Difference between anchors and homologous genes. We have gene homologies

between (g1, 97), (92, 97), (93, 98) (94, 99) (g5, 910); (g6, 911). However, (SIy,SI7) and (S1a, SI7)
can not correspond to any anchor since SI; is common to two couples. Other couples

(S13,S13),(S1y,SIy), (SI5,S10), (SIs, SI11) represent anchors.

genome G; can be homologous to 2 (or indeed many more) genes in another genome G; (see
figure 4.1).

Analysis of these results shows that for mammalian genomes SyDiG performs as well as Grimm-
Synteny. While two data sets (UniRef50 and Ensembl) generate slightly different results, they
are both comparable (for appropriately-chosen i-ADHoRe parameters) with the results published
in [BPT04].

On the other hand, when dealing with distant species such as yeasts, GRIMM-Synteny per-
forms quite poorly. The only way to coax out a signal was to perform quite strong alignment
pre-filtering of the TBLASTX results.

A particularly acute problem is that the GRIMM-Synteny procedure discards n-ary homolo-
gies. Not only do these paralogous families contain biologically pertinent information, they are
often the best candidates for conserved markers between genomes: in the yeasts, for example,
half of the genes conserved between species are members of paralogous families of up to 30 mem-
bers, and discarding these homologies can lead to drastic under-identification of chromosomal
homology.

4.2 Application to yeast genomes

We have applied the SyDiG algorithm in the context of the Génolevures project [DST04] for the
case of non-WGD Hemiascomycetous yeasts. The data consists in 5 completely sequenced yeasts
from the Saccharomycetacae clades: Kluyveromyces lactis (Klla), Saccharomyces kluyver: (Sakl),
Zygosaccharomyces rouzii (Zyro), Ashbya (Eremothecium) gossypii (Ergo) and Kluyveromyces
thermotolerans (Klth). These genomes have little genome redundancy and a relatively high (for

73

Chapter 4. Applications

yeasts) conservation of synteny.

From orthology and synteny relations identified using Génolevures protein families [NS07], the
SyDiG algorithm obtains 487 synteny blocks for these genomes (mean size 51 genes). These
syntenic blocks contain 8200 genes (mean size 14 genes) and cover roughly 60% of each genome.
Basing these permutations only on protein-coding genes is sufficient, since yeast genomes are
highly compact (protein-coding genes cover approximately 80% of the genome), and gene relics
are quite rare (approximately 4%) [Duj06]. By combining pairwise syntenies, each genome was
factored into a sequence of ordered syntenic blocks, from which a set of distinct blocks common
to all genomes was determined. An arbitrary reference genome was chosen, and all the blocks
forming this genome were numbered by unique sequential identifiers from 1 to n. By keeping
the longest blocks, permutations of 120 identifiers are constructed, that are representative of
the pairwise evolutionary distances for these genomes. We are able to place active and inactive
centromeres in each genome permutation by locating the flanking genes. Each of 9 centromeres
is encoded by two identifiers, resulting in 15 additional blocks. Thus, each genome is represented
as a signed permutation of 135 elements, in which chromosomal rearrangements (fusion, fission,
translocation, inversion) can be studied (see chapter 6 for an application).

Comparative genome maps are painted (see figure 4.2) with K. thermotolerans as reference.
Active centromeres are represented by red ovals, telomeres are represented by triangles. The
assigned letter indicates the agreement of this centromere across the five species. Markers are
well distributed on the chromosomes, so the choice of these markers is representative of the
architecture of the contemporary genomes. A high degree of synteny, and a limited number of
large-scale rearrangements, is observed between K. thermotolerans and S. Kluyveri; they share
many common adjacencies and their rearrangement distance is half of that seen between other
pairs of genomes. Note that K. lactis presents two syntenic breaks in centromere areas: the
centromere of Klla0OF is located between the flanking genes of centromeres h and b, and the
centromere of Klla0A is located between the flanking genes of centromeres h and e. Moreover,
S. kluyver: has an active centromere (the centromere 7), that was disabled in all the other studied
genomes.

74

4.2. Application to yeast genomes

o gl - a e
: s EEENE Hle B
. o O =
: e
i I@ 2!

8 riu 60|

[

E ‘ i |6 : r“ 7 7| gofres |t
==

Figure 4.2: Distribution of the 120 longest common synteny blocks representing major conserved
segments within Hemiascomycete yeasts. Each unique numbered synteny block is given a color
indicating its chromosome in the reference genome (KIth), and a diagonal bar indicating its
relative position on the chromosome. Other genomes are signed permutations of these colored
blocks; a change of slope in the diagonal bar indicates an inversion. Block widths are to scale and
the size of interleaving non-syntenic regions is shown by large grey lines. Red circles: centromeres;
gray triangles: telomeres.

75

Chapter 4. Applications

76

Part 111

From super-blocks to constrained
median assemblies

7

Chapter 5

Super-block construction

The study of evolutionary mechanisms is made more and more accurate by the increase in
the number of fully sequenced genomes. One of the main problems is to reconstruct plausible
ancestral genome architectures based on the comparison of contemporary genomes.

In chapter 2, we presented current methods that have largely focused on finding complete
architectures for ancestral genomes, and, due to the computational difficulty of the problem, stop
after a small number of equivalent minimal solutions have been found. Recent results suggest,
however, that the set of minimum complete architectures is very large and heterogeneous [Eri07].
In fact these solutions are collections of conserved blocks, freely rearranged.

In this chapter, we propose an approach for identifying common ancestral features for the
general, N-genome instance, that builds a bridge between breakpoint and rearrangement meth-
ods and additionally permits the use of biological constraints. The main contribution is the
computation of super-blocks, sequences of markers chosen in function of the frequency of the
corresponding adjacencies without any use of phylogeny. Here we follow the hypothesis that
adjacencies having support in two or more contemporary genomes constitute the semantic ba-
sis of an ancestral architecture [SB97]. Super-blocks can of course be joined to produce final
assemblies; algorithmically, it is an optimization problem in terms of rearrangement distance of
the sequence of fusions of super-blocks. The solution space of genome medians is thus reduced,
and only architectures respecting the adjacency semantics are returned. Although the mathe-
matical model does not allow the consideration of segmental duplication, centromere positions
are introduced and constrain the final assemblies by allowing only one active centromere in each
chromosome of the ancestral architecture.

We show that in theory our method allows for solutions that are either minimal or reasonably
close to the minimal in the mathematical model. Although the addition of biological constraints
can in principle lead to non-optimal mathematical solutions, practically this does not occur and
the key advantage of our method is that it decreases the number of mathematically equivalent
solutions by using biological constraints as a filter on the solution space.

This chapter is organized as follows. Section 5.1 gives the necessary preliminaries. In section
5.2, we introduce the notion of dependency for the adjacencies and show the relationship between
adjacencies and distances. Section 5.3 provides the methodology for reconstruction of super-
blocks from adjacencies, and the strategy for building final assemblies by an optimal sequence of
fusions. All this work is under revision in [JSN].

79

Chapter 5. Super-block construction

5.1 Preliminaries

Let IT = {r!,..,#™} and T' = {4, ..., 7"} be two multichromosomal genomes defined according
to the mathematical model presented in section 1.2. As a reminder, the number of breakpoints
b between two genomes is a distance such that for 2 multichromosomal genomes II and I" with
N1 < Nr, the number of breakpoints is b = [{(m;, mi41)|m;.741 is a breakpoint in IT1}|+(Np — Npp)
or b= [{(v4,Yi+1)|7i-vi+1 is a breakpoint in I'}|.

Let Gy, ...,Gny be N multichromosomal genomes defined over the same set of distinct gene
markers G. We denote by u(g.h) the frequency of the adjacency g.h in the N genomes, that
is, the number of genomes in which it appears. We denote by A the set of all adjacencies in
Gy, ..,GnN.

Following Hannenhalli and Pevzner [HP95a|, we will use the unsigned representation of a signed
genome in terms of breakpoint graph (see section 2.2.2 page 31 for more details). The notions
of adjacencies and breakpoints are transferred to the breakpoint graph quite naturally. As the
choice of added vertices at the extremities of each chromosome is arbitrary, we denote by 0 any
telomere without taking into the account its chromosome. Hence, for a chromosome 7w = 7y...7m,
we introduce two supplementary adjacencies denoted by 0.m; and 7,.0. In what follows, we
will systematically use greek letters to denote elements of a signed permutation and latin letters
to denote elements of a non-signed permutation: we will note by (g; hi).(g; h;) the adjacency
corresponding to 7;.7; except for adjacencies with telomeres that will be noted (0).(g1 h1) and
(gn hn).(0). For any adjacency a = m;.m; = (g; hi).(g; hj), its reversal —a is defined by —m;. —m;
in the signed permutation, and by (h; gj).(h; g;) in the non-signed permutation.

Example 3 Let us consider four genomes G1 = {1 2 3 4, 5 6}, Go = {1 2 34, -5, —6},
Gs3={2134,—65} and Gy = {3 142 —5, 6}. Their adjacencies can then be partitioned
according to frequency of occurrence in G; as shown in table 5.1.

frequency || adjacency
4 6.0
3 3.4, 0.5, 4.0
2 0.1, 1.2, 0.6, 5.0,2.3
1 5.6, 0.2, 2.1,1.3,4.2, 3.1, 1.4, 0.3, =5.6, 2. — 5

Table 5.1: Adjacencies for genomes G1, G2, G3 and G4 sorted by frequency.

5.2 Dependent adjacencies

The construction of super-blocks is based on the study of adjacencies. This study consists in
defining the frequency of adjacencies in the genomes and the adjacency relationships themselves.

The intuition behind our approach is that an adjacency of higher frequency should be preferen-
tially present in a median genome. Mathematically, we are looking for an ancestral architecture
that represents a compromise between the rearrangement distance and the number of breakpoints
under the parsimony criterion.

In what follows, the considered rearrangement distance is expressed in terms of reversals,
fusions, fissions and translocations and is computed according to Hannenhalli and Pevzner’s
theory [HP95a] (see section 2.2.2).

80

5.2. Dependent adjacencies

5.2.1 Pairwise adjacency relationships

Let A be a subset of the set of all adjacencies A for genomes Gy, ..., G. We build the adjacency
graph G = (V, E) for A in the following way. For any adjacency (g; hi).(g; hj), we create four
vertices (gi, hi,g; and hj) and three edges. Two of the edges represent elements of the original
permutation: e; = (g;, h;) and ex = (gj,h;j). One of the edges represents the adjacency itself:
€3 = (hi, gj)-

Two adjacencies are dependent if their elements are related, either by completing or by con-
tradicting each other. Let a and b be two adjacencies a = (g h%).(g4 h$) and b = (g h).(g4 hS),
and G = (V, E) the adjacency graph for {a,b}.

Definition 42 We say that a and b complement each other if either (i) vi,ve € V' such that
d(vi) = d(ve) =1 and Yv # v;,i € [1,2] we have v # 0 and d(v) = 2, or (ii) Fv € V such that
v =0 and Vv € V we have d(v) = 2. We say that a and b contradict each other if either (i)
Jv € V such that d(v) > 2, or (ii) Vv € V we have v # 0 and d(v) = 2.

For example, adjacencies (12).(34) and (65).(43) complement each other. Indeed, we can
form the sequence 1 2 34 5 6. On the contrary, (12).(34) and (65).(21) are in contradiction,
as are (12).(34) and (21).(34). As can be seen on figure 5.1, the two contradictions are slightly
different. Indeed, the latter involves the presence of a cycle (cycle contradiction), while the
former does not (vertez contradiction).

T~
N

- P - - e~

7 N 4 N 7 N / N \
—ié —4 —o é — —o é —
1 2 3 4 5 6 0 1 2 3 4 0 1 2
(a) (12).(34) and (65).(43) (b) (0).(12) and (1,2).(34) (¢) (0).(12) and (1,2).(0)
//"\\ -~
/ —— \ 7 PRGN
L -— e / Vi NN /4 AY
—y 5 6 — — —é o
1 2%<_ e 1 2 3 4 1 2 3 4
3 4

(d) (12).(34) and (65).(21) (e) (12).(34) and (34).(21) () (12).(34) and (21).(34)

Figure 5.1: Adjacency graphs showing (a), (b) and (c) two adjacencies that complement each
other, (d), (e) and (f) two adjacencies that contradict each other. Element edges are represented
by solid lines; adjacency edges are represented by dashed lines.

When adjacencies complement each other there is no problem to put them together in order
to form a coherent chromosome. However, when two adjacencies a and b are in contradiction, we
need to choose one or the other. The intuition given in the beginning of this section is to prefer
adjacencies with higher frequencies. However, it is possible to have a median genome in terms
of rearrangement distances with an adjacency of lower frequency that is in contradiction with
an adjacency of higher frequency as illustrated in the example 4. Notice that the adjacency 3.2
that is present in M; has frequency 2, while the adjacency 2.3 present in My is of frequency 1.
Because of a better global number of common adjacencies (11 breakpoints against 12 for Ms), M,
appears as the best median genome in terms of rearrangement distances and breakpoint number
but M> is also a good candidate for ancestral gene order in terms of rearrangement distances.

Example 4 Consider three genomes G; = {1234567}, Go ={13245,67} and Gs3 = {143256, 7}.
Their pairwise rearrangement distances are: d(G1,G2) = 3,d(G1,G3) = 5 and d(G2,G3) = 5.
Two optimal (median) solutions My and My are possible for these genomes: My = {1-2-345,67}

81

Chapter 5. Super-block construction

and My = {1-83-245, 67}. The rearrangement distances from My and Ms to G1,G2 and Gs
are shown below.

[G [G]Gs]
My 2] 1] 4
My || 1] 2 | 4

Notice that the adjacency 3.2 that is present in My has frequency 2, while the adjacency 2.3
present in My is of frequency 1.

5.2.2 Adjacencies and distances

Example 4 is in apparent contradiction with the intuition that the adjacencies of higher frequen-
cies should be preferred. In this section, we analyze in more detail in which cases it is appropriate
to follow this intuition.

Bounds for rearrangement distances

If two genomes II and T" are not equal, then d(II,T") is at least 1. If d(II,T") = 1, then there
are exactly two breakpoints in II (say a and ¢), and two in I (say b and d). See figure 5.2 for
illustration. We say then that IT and T are identical up to a,c (symmetrically b, d).

a c

LN RN
. ¢ .)) . (a) breakpoints in II
T Tk Tkt T T+l Tn

b d

N PN
. ¢) ¢) . (b) breakpoints in I’
T Tk T T TR T4 L T

Figure 5.2: IT and T are identical up to a, ¢ (or b, d). This implies (a) the existence of 2 breakpoints
a = m.7g+1 and ¢ = mpmeq in 11, and (b) of 2 breakpoints b = 7. — m; and d = —7g4q1.m41 in
I.

Lemma 6 Let 11,11, and Iy, be three genomes such that an adjacency a is present in genomes
11, and Ty, but not present in II,. Furthermore, let 11, and I be identical up to 2 adjacencies,
one of these adjacencies in I1, being a, and one in 11y, being b. Then, |d(11,,T,) — d(I1,, T'y)| < 1.

Proof: Let us denote the respective distances d(Il,,T';) = d, and d(II;,T',) = dp. We know that
I1, and II, are identical up to 2 adjacencies, hence d(11,,1II;) = 1.

Rearrangement scenarios between genomes in Il,, II; and I', are represented on the sketch here
below. Arrows represent scenarios and the value on them is the corresponding rearrangement
distance.

82

5.2. Dependent adjacencies

There exists a scenario between II, and I', wvia II, (see the above sketch). Thus d(I1,, T';)
d(ITy,Ty,) + 1. Similarly, there exists a scenario between II, and Iy wvia II,. Thus d(II, T

d(IT4, Ty) + 1. So |d(Ily, Ty) — d(IT, T)| < 1. O

This lemma can be generalized to N genomes G, each having either the adjacency a, or b, or
none. In theorem 6 we consider two genomes M, and M} identical up to two adjacencies, and we
bound the difference of the sum of rearrangement distances between G; and these two genomes.

Let A be the adjacency set of genomes G1, ..., Gy, and let C be the set of all pairs of contra-

dictory adjacencies from A.

Theorem 6 For any pair of adjacencies {a,b} € C and two genomes M, and My, identical up

to 2 adjacencies with a € M, and b € My, it holds that

‘ Ziv d(MmGi) - Ziv d(Mb,Gi) ‘S N.

Proof: Let G¢ (G% and G2, respectively) be the genomes having the adjacency a (b and none,
respectively) with |G¢| = N, (|G%| = Ny and |G| = N,, respectively). Since N = N, + N+ N,,

we have:

According to lemma 6 we have:

Ng Ng
> d(Mg, GE) = d(M,, G

Ny Ny
> d(My, GY) = d(M,, GY)

IN

N,, and

N,

In the case of genomes GY, there exists a scenario between G¢ and M, via My, as shown on the

sketch here below.

83

Chapter 5. Super-block construction

d(Gg’Mb)

So, d(G9,M,) < d(G9, M) + 1. Similarly, there exists a scenario between G¢ and M, via M,,
and so d(G¢, M) < d(G¢, M,) + 1.
As the distances are symmetric, we can apply the inequality:

d(Ma, G2) — d(My, G)| < 1¥i € [1.N,)

and thus
N N

D d(Ma, G9) = d(Mp, G9)| < N,

7 7

We conclude that
N N

Zd(Mm G;) — Z d(My,G;)| < N

7 7

O

Types of rearrangements

Theorem 6 provides a general theoretical bound. Let us consider that w(a) > u(b). The worst
case difference SN d(M,, G;) — SN d(My, G;) ~ N is in fact rarely met. Lemma 7 below and
its corollary analyze the problematic cases in terms of distances and breakpoints.

Sankoff and Trinh in [ST05] show that the rearrangement distance can be decomposed into
different types of rearrangements according to the number of deleted breakpoints. The rear-
rangement distance d between two genomes can be written as d = ds + di + dp, where ds, dy
and dg are the numbers of rearrangements that delete two, one and no breakpoints, respectively.
Moreover, this decomposition is unique. If b is the number of breakpoints between the two same
genomes, then b = 2dsy + d;. Let b, and b, (d, and dj) be the number of breakpoints (rearrange-
ment distances) between II, and I', and between II, and T',, respectively. We can decompose
distances and breakpoints for II, and II, with respect to I'y:

by =2d> +d. and d, =d*+d: +d°,
by =2d2 +d} and dy=d}+di +dY.

From these decompositions introduced by Sankoff and Trinh, we propose a more detailed analysis
of no-breakpoint rearrangements. In the rest of this section we show that the number of no-
breakpoint rearrangements dj) can be bounded in terms of dJ.

Lemma 7 Let 11,11, and Iy, be three genomes as in lemma 6. Then, d, = dg + dcll —{—dg +1 and
dd—2<d) <dd.

Proof: Let a and ¢ be the two breakpoints in II, with respect to II;. Two cases are possible:
1. T'; has the adjacency a but not ¢, then b, = b, + 1,

84

5.2. Dependent adjacencies

2. T', has the adjacencies a and ¢, then b, = b, + 2.

In the first case, we have b, = 2d2 +d. + 1 and 0 < |d, — dp| < 1 (lemma 6). The distance
equality dp = d2 + (d} + 1) + d)) follows. And so, d —2 < d < d.

In the second case, two sub-cases have to be considered:
(a) by =2(d2 + 1) +d., or
(b) by = 2d2 + d. + 2.

Parts of the breakpoint graphs G(II,,T',) and G(II,T';) are shown below for the case where
', has adjacencies a and c¢. In G(I;,T',), the rearrangement defined by the edges {7, —m;} and
{—7ks1, ™41} deletes two breakpoints.

‘a N / c N\)
hs ¢ ‘ — [breakpoint graph G(I1,,T°
T ... Tk Tk+l ... T Ti4+1 T p grap (a a)

//——/y\——\\
/ /7 N N

/ / \

s Ll break h G(I1,, T
hd ¢ ¢ —d 4 reakpoint gra;

T TR =T TTktl T4l . T p graph G(IIy, ')

We can easily see that only sub-case (a) is possible. So, we have dj = (d2 + 1) + d. + d?, and
sod)—2<d)<dl O

Corollary 1 Let I1,,11; and I, be three genomes as in lemma 6. Then:
1. ifdy =dg + 1, then dg =d°,
2. if dy = dg, then d) = df — 1,
8. if dy =dg — 1, then dj = dJ — 2.

Corollary 1 provides a range of possible situations under the hypothesis that u(a) > u(b).
Indeed, in the first case, the intuition of preferring a over b is valid. In the second case it still
remains valid since for the same distance, we delete breakpoints. But in the third case, this
intuition no longer holds.

In practice the third case is very infrequent, and Sankoff and Trinh even disregard it completely
in [ST05]. Indeed, unoriented components needing no-breakpoint rearrangements are uncommon
in breakpoint graphs. This situation for a pair of genomes implies that in order to obtain
SN A(M,,G) — SN d(My, Gi) =~ N, the difference SN d(M,, G%) — SN d(My, G¢) has to
be close to N,, where N, is the number of genomes having the adjacency a. According to
corollary 1, d(M,,G¢) = d(My,G¢) + 1 implies that do(My,G¢) = do(Mp, G¢) + 2. These
rearrangements being infrequent, it is unlikely to have d(M,,G¢) = d(M;, G¢) + 1 and hence
SN A(M,, Gy) = SN d(M,, Gy) ~ N.

Bounds for breakpoints

The result of theorem 6 can be transposed to breakpoints as shown in theorem 7. Let us denote
N, the number of genomes with adjacency a, N, the number of genomes with adjacency b and
N, the number of genomes with neither adjacencies a nor b.

85

Chapter 5. Super-block construction

Theorem 7 For any pair of adjacencies {a,b} € C such that u(a) > u(b) and two genomes M,
and My identical up to 2 adjacencies with a € M, and b € My, it holds that

N, — 2N, — N<Zbe, ZbMa,G)<2N — N + N,

Proof: Let G¢ (G? and G, respectively) be the genomes having adjacency a (b and none, respec-
tively) with N = N, + N, + N,. We have:

N N Nq
> b(My, Gi) =Y b(M,,Gy) = Zb My, G%) — Zb(m,Gg)Jr

% %

Nb Ny
Zb(Mb, GY) = > b(Ma, GY) +
Zb (My, G9) Zob(Ma,G;?)

We already know (see lemma 7) that

1 < b(My, GY) — b(Ma, GY)
—2 < b(My, G%) — b(M,, G?)

2 for all i € [1..N,], and

<
< —1forall i € [1..]NV].

We know that since M, and M, are identical up to a (or b), there are two more adjacencies ¢
and d that differ between these genomes (see figure 5.2). Consequently, any genome G¢ can have
either ¢, or d, or neither. Hence,

—1 < b(My,GY) — b(M,,G?) <1 for all 7 € [1..N,].

And so we have:
N, — 2N, — N<Zbe, ZbMa,G)<2N —N,+N, O

Theorem 7 provides a theoretical bound for the number of breakpomts Let us consider again
u(a) > u(b) > 1. In practice, the worst difference Z b(My, G;)— Z b(M,,G;) = Ny—2N,—N,
is not as bad as it seems.

For example, for 5 genomes the worst case N, — 2N, — N, is superior or equal to 0 for 3 of all
possible 5 cases. If an adjacency a is present in all 5 genomes, then clearly N, — 2N, — N, = 5.
Table 5.2 shows possible values for N,, Ny and N, in the 4 remaining cases.

Nevertheless, for two cases the value N,—2N,— N, is negative (but very close to 0). Fortunately,
the worst case (case 4, table 5.2) never occurs. Indeed, recall that we are considering genomes
M, and My, identical up to a,c (symmetrically b,d). In this 4th case, the genomes G¢ have
adjacency a but not ¢, the genomes Gg’ have the adjacencies b and d while the IV, genomes which
have neither a nor b, possess d. Hence, the frequency of adjacency d is 3, those of a and ¢ are
equal to 2, while b has frequency 1. Thus, we will have resolved the conflict between d and a or
¢ which is an already studied case (case 2, table 5.2).

86

5.8. From adjacencies to final assemblies

case # | Ny | Ny | N, | Ny — 2N, — N,
1 4 1 0 2
2 3 2 0 -1
3 3 1 1 0
4 2 1 2 -2

Table 5.2: Given 5 genomes and contradictory adjacencies a and b s.t. u(a) > u(b) > 1, 4
possible cases of presence of a or b in current genomes arise. Given are the possible values for
N,,Np and N, and the worst case difference of the total number of breakpoints.

5.3 From adjacencies to final assemblies

Section 5.2 implies that we can choose adjacencies with higher frequencies because they lead to
a reasonable compromise between the breakpoint and the rearrangement distance approaches.
Based on the adjacencies we propose to build super-block assemblies of median genomes.

The construction of super-blocks is done in two steps. First, we build a partition P of adja-
cencies where each part is composed of inter-dependent adjacencies. P is partially ordered by
adjacency frequency of the parts’ elements. Second, P is inspected in decreasing order of its
parts, and the super-block sets are constructed by favoring adjacencies with higher frequency.

Finally, to find adjacencies not yet resolved, the last part of our method looks for a sequence
of fusions of super-blocks that minimizes the rearrangement distances.

5.3.1 Groups of dependent adjacencies

We have seen previously that there exist different relationships between adjacencies. They can
complement each other and, in this case, we can assemble them together in order to form a coher-
ent chain of elements. When two adjacencies are in contradiction, then either there are different
possibilities to complement the same element (vertex contradiction), or these two adjacencies
have the same elements up to their order or to their orientation (cycle contradiction).

It is reasonable (see section 5.2) to prefer adjacencies with higher frequencies when there is a
conflict. That is why, if @ and b are two adjacencies in vertex contradiction, then we will have
a preference for a if u(a) > u(b), and need to consider both possibilities only if u(a) = u(b).
However, in the case of cycle contradiction, a and b are very similar because of the presence of
the two same elements and example 4 shows that a median genome can have either one or the
other. Hence, for a cycle contradiction, we relax the constraint and consider both adding a or
adding b even for different frequencies.

Let P(A) be a partition of A. We define Py(A) by the membership in the same elementary
cycle without 0 (that is a cycle containing 2 adjacencies). Parts of Py(.A) are either singletons
or sets of adjacencies where every pair is in cycle contradiction. For a given set of adjacencies A,
the highest frequency of its elements is denoted u(A) = maxgec 4 u(a) and is called set frequency.
We denote by G the adjacency graph containing all the adjacencies of A.

We define the merging of parts L : P(A) — P(A) as follows.

Definition 43 L(P(A)) is a partition of A such that for any p € U(P(A))
e dp; € P(A) s.t. p=p; or

e I pi,p2 € P(A) s.t. p=p1Ups and moreover 3 a € p; and 3 b € py s.t. u(a) = u(b) =

Chapter 5. Super-block construction

u(p1) = u(p2) and either a and b are dependent or a and b participate in a cycle ¢ € G
without vertex v =0 s.t. Yv € ¢ we have u(v) > u(a).

Starting from Py(.A), the merging of parts LI defines a sequence of partitions P;(.A) where Vi >
0,P;(A) = U(P;—1(.A)). Obviously, there exists an n for which U reaches its fixed point denoted
by L"(P(A)), that is P,(A) = U(P,(A)).

Definition 44 A group g is a part of U"(P(A)).

Example 5 The adjacencies of the example 3 are partitioned into groups as shown in table 5.5.

grp. freq. | adjacencies

NN DN W] W
@)
Ut
w

Table 5.3: Partition of adjacencies from example 3 into groups. The adjacencies are noted with
their frequency in parenthesis, and the groups are sorted by decreasing group frequency. Only
groups with u(g) > 1 are represented.

5.3.2 Super-blocks and partial assemblies

Definition 45 A super-block is a set S of n > 1 adjacencies such that Ya,b € S, a does not
contradict b, and there exists an order over S such that Vi € [1,n), a; complements a;+1, and

ai,a, are either independent or a; = a, = 0. A partial assembly P = {Si} is a set of super-
blocks such that Vk,l with k # 1 if S, N S; # 0 = SN S; = {0}.

Lemma 8 The adjacency graph G = (V,E) of a partial assembly P is a graph such that (1)
Yo eV, d(v) <2, except for v=0, and (2) any cycle in G contains 0.

Proof: By construction from definition 45. [J

Super-blocks, and thus partial assemblies, are formed by going through the groups of adjacencies
in decreasing order of their frequencies. For a given partial assembly P = {Si} and a current
group ¢, any adjacency b € g is removed from it if there exists an adjacency a € S € P in
contradiction with b. This operation is called clean and produces a g. C g, g. = clean(g,P).
However, when inspecting the current group g. we do not have any means to prefer some of its
adjacencies over the others.

The addition of all the adjacencies of g. = clean(g,P) to P is not always possible. It is
clear why this is the case for any a, b of g. in mutual contradiction. Nevertheless, the addition
of several adjacencies of g. that do not contradict each other can reveal contradictions. This
situation arises since the assembly of non-contradicting adjacencies of g. can form a cycle or
since dependencies between adjacencies belonging to groups of different frequency can exist (see
figure 5.3).

88

5.8. From adjacencies to final assemblies

Figure 5.3: Two different adjacency graphs result from adding g. = {2.3,4.1} to P =
{{1.2},{3.4}} depending on which adjacency between 2.3 and 4.1 is added. Adding both 2.3 and
4.1 creates a forbidden cycle.

The trivial way to exhaustively enumerate all the possibilities when adding g to P, is to
consider all possible orders over g., which is for a |g.| = n equal to n!. A less naive approach
brings it down to a complexity of O(2"/?) by considering maximal independent sets.

Definition 46 A maximal independent set of g. is a set of adjacencies p such that (i) Va,b € pu,
a and b do not contradict each other and (ii) Ya € g.\p, 3¢ € w such that a and c are in
contradiction.

Let M be the set of all maximal independent sets for g..

Lemma 9 For any mazimal independent set u € M, its adjacency graph G = (V, E) verifies
YoeV,v#0, dv) <2.

Proof: Suppose there exists a vertex v € V such that v # 0 and d(v) > 3. Let Y the neighbours
of v in G with |Y| = d(v). Then, there exists an unique vertex y € Y such that (v y) is an
element of the original permutations. Therefore, there exist at least two vertices y; and y» € Y
such that {v,y;} and {v,y2} correspond to real adjacencies. So, these two adjacencies sharing
v are in contradiction. This contradicts the fact that these two adjacencies belong to the same
maximal independent set of g.. Then, Vv € V', d(v) < 2, except for v = 0. O
Thus, we have to consider all maximal independent subsets of g.. The problem is known to be
NP-complete [GJ79] and of complexity O(2"/3), where n is the number of elements in g, [TT76].
Let Gp be the adjacency graph for P and let G, be the adjacency graph for a maximal
independent set p of M. Let Gg be a graph obtained by removing the vertex 0 and all of its
incident edges from G),. Then, the connected components of G?L can be either chains where all
vertices have the degree equal to 2, except the two extremities which have the degree 1, or cycles
where all vertices have the degree 2. Simply adding all the vertices and edges of G, to Gp may
result in conflicts (see lemma 10). Let Gy be the adjacency graph Gy = {Vp UV, Ep UE,}.

Lemma 10 The adjacency graph Gy is a graph such that Vv € V, v # 0, d(v) < 2.

Proof: Suppose there exists a vertex v € V such that v # 0 and d(v) > 3. Let Y the neighbours
of v in G with |Y| = d(v). Then, there exists an unique vertex y € Y such that (v y) is an
element of the original permutations. Therefore, there exist at least two vertices y; and yo € YV
such that {v,y1} and {v,y2} correspond to real adjacencies that contradict each other and:

1. {v,y1} and {v,y2} € Gp or,

89

Chapter 5. Super-block construction

2. {v,y1} and {v,y2} € G, or,
3. {v,;11} € G, and {v,y2} € Gp or,

4. {v,y1} € Gp and {v, 32} € G,.

Cases 1 and 2 are in contradiction with lemmas 8 and 9. For case 3 (case 4, respectively), the
adjacency represented by the edge {v,y1} ({v,y2} respectively) was removed by clean from g to
obtain g.. So it is not possible to have these two cases. [
Forbidden cycles can appear in G\. It is clear that G, can have cycles without 0. But cycles
can also appear by closing chains of Gp by one or several chain(s) of Gg. In order to obtain an
adjacency graph of a partial assembly from G, we have to disconnect all existing cycles without
0 by deleting some adjacency from p in each cycle (see lemma 11).

Let C' = {c1,ca,..,cm} be a set of all cycles without 0 in G.

Lemma 11 If C' # 0, then Vi,j s.t. i # j, ¢; and c; are disjoint, and each cycle ¢ € C' has one
or several adjacencies from .

Proof: Let c;,c; € C. Suppose that they are not disjoint. Then, there exists a vertex v such that
v € ¢; and v € ¢j. Thus, d(v) > 3, which contradicts lemma 10.

Let ¢ € C such that for all adjacencies a of ¢, we have a & u. Then, ¢ € Gp, which contradicts
lemma 8. [J
Let {G<} be the set of all graphs resulting from adding g. to P for all possible orders < over g..
Let p; be the set of adjacencies from a maximal independent set p that participate in a cycle
c; € C. We denote by S, = p1 X pg X ... X py, the Cartesian product of the sets of adjacencies
from a maximal independent set p participating in cycles {c1,..,¢p} C C.

Lemma 12 The following equality holds:

{cxy=UUJ Uleu\{ap

HEM des,

where @ is composed of {a;} and |G| =m, and Gy \ {a;} denotes the graph G without the edges
{ai}-

Proof: Let us denote the right side of the equation by {Ga¢}. The inclusion {Gap} C {G<} is
obvious. Let us suppose 3G € {Gq} such that G ¢ {G<}. This means that for some particular
w and @ we have (Gy)\{a1,az,..,an} ¢ {G<}. Which contradicts the fact that p is maximal. [

Let us denote the operation of adding a group g to P by @. This operation produces all possible
partial assemblies {P;} = P @ g and can be realized by the algorithm add _group (algorithm 7).
The complexity of this algorithm is bounded by the research of maximal independent sets over

Ye-

Lemma 13 Let P be a partial assembly and let g' and g* be two groups of same frequency
u(gl) = u(g?). Then, @ is associative: (P ©g')© g*> = (P @ g*) @ g'.

Proof: Suppose @ to be not associative. Then, there exists an adjacency a in g' and b in g2 such
that a and b imply a contradiction in the constructed partial assembly P @ g' ® g?. Then, either:

90

5.8. From adjacencies to final assemblies

Algorithm 7 add_group(g, P)

Require: a group g, a partial assembly P
Ensure: P is a set of partial assemblies
1: let Gp be the adjacency graph for P
2: let P=0 and g. = clean(g, P)
3: let M be the set of all maximal independent sets over g.
4: for all p € M do
: let G be the adjacency graph for

5

6: let T be the set of all connected components of G?L
7: let Ghew = {V'p UV, EpU Eu}
8.
9

let C =0
while GO, has a cycle ¢ do
10: let V' = 0 be the set of adjacencies from p participating in ¢
11: for all ¢t € T do
12: if tNc# 0 then
13: let V =V Uadjacencies(t)
14: let Grew = {Vnew\{t[0]}, Enew}
15: end if
16: end for
17: let C =CU{V}

18: end while

19: let G={VpUV,,Ep UE,}
20: let G, ={G}

21: for all c € C do

22: G=0

23: for all a € c do

24: for all G, € G, do

25: G = GU{{Vi, B\ a}}}
26: end for

27: end for

28: G,=6G

29: end for

30: let P =PU partial_ assemblies(G)
31: end for

32: return P

1. a and b form a vertex contradiction or,
2. a and b form a cycle contradiction or,
3. a and b participate in a cycle without 0.

In case 1, if u(a) = wu(b) then a and b should be in the same group (see definition 44). If
u(a) # u(b) then u(g') # u(g?), which contradicts the hypothesis. In case 2, if a and b form a
cycle contradiction then a and b should be in the same group (see definition 44), which contradicts
the hypothesis. In case 3, all the vertices in the cycle have a frequency greater than u(g') =
u(g?). Therefore, according to the definition 44, a and b should be in the same group. So, @ is
associative. [

Based on lemmas 12 and 13, and algorithm 7, the construction of all partial assemblies for
genomes G, ..., Gy proceeds as shown in algorithm 8. Notice that we do not consider groups
where u(g) = 1 since these adjacencies do not have any additional support in any other genome.

5.3.3 Fusions of super-blocks

Algorithm 8 builds all partial assemblies by resolving conflicts between adjacencies up to group
frequency 2. Groups of frequency 1 are excluded since there is no evidence if they are present
by chance or not.

91

Chapter 5. Super-block construction

Algorithm 8 partial assemblies(Gy,...,Gn)

Require: (1, ..., Gy genomes over the same set of gene markers
Ensure: P is a set of partial assemblies

1: let A be the set of all adjacencies for G1,...,Gn

2: let G = {g} be the set of all groups for A

3: let n = mazgu(g)

4: let P = {0}

5: for all g; s.t. n >4 > 2 do
6: let P/ =
7.
8
9

for all P € P do
Pp=P®g;
: P =P UPp
10: end for
11: P=P
12: end for
13: return P

Definition 47 A fusion of super-blocks S1 = (a1,...,a,) and Sy = (by,...,by,) is a super-block
S such that the order of definition 45 is either S = (a1, ...,apn, b1,....,by), or S = (a1, ..., an,
—bmy ooy —b1), 01 S = (b1, ..ey b, a1, ., by), 01 S = (b1, .oy by —ap, ..., —ayq)

5.

This definition implies that a super-block S such that a; = 0.m; and a,, = 7;.0 cannot par-
ticipate in a fusion. Indeed, such a super-block already forms a chromosome from telomere to
telomere.

Let {P} be the set of all partial assemblies up to group frequency 2 for genomes G, ...,Gy
and P € {P} a partial assembly. The number of super-blocks in P can be relatively high. This
is due to the fact that some elements cannot be inter-connected because of the low frequency
(equal to 1) of corresponding adjacencies. Such elements are located at the extremities of the
super-blocks. We connect them in order to form chromosomes by fusions of super-blocks without
worsening the distance and breakpoint bounds (see theorem 8).

Theorem 8 For any P € {P} of Gi,...,GN such that P = {Sy}, there exists a genome M such
that for any chromosome w of M either 3 S € P such that m = Sk, or 3{Si} C P such that =
is formed by a series of fusions w = S1...S,. Moreover,

>0 d(M,Gi) = S0V d(P,Gi) <0 and 327 (M, Gy) = 327 b(P, G;) < 0.
Proof: By construction [J
To find an optimal sequence of fusions, we classify them by their effect on the global rearrange-
ment distance (the sum of rearrangement distances between median genome and Gy ...Gy). A
greedy randomized algorithm is used to find ancestral candidates obtained after a limited num-

ber of fusions. By the parsimony criterion, solutions that minimize the global rearrangement
distance are conserved.

92

Chapter 6

Applications

In this chapter, we propose application examples for our method for super-block construction pre-
sented in chapter 5. In section 6.1, we apply our method to a set of non- WGD' Hemiascomycete
genomes in the Kluyveromyces and related clades provided by the Génolevures Consortium, with
divergence similar to that of chordates [Duj06]. For this phylogenetic branch, our method shows
a high convergence in the structure of different versions of super-blocks (16 in all), reinforcing the
intuition that super-blocks encode the semantics of the ancestral genome. We can thus perform
a reconstruction, despite extensive map reshuffling. In section 6.2, we show the pertinence of
our method on theoretical test cases and comparisons to existing methods. Finally, section 6.3
provides a wider discussion about the super-block method. All this work is under revision in
[JSN].

6.1 A Median Genome for non-WGD yeasts

We have applied our method to analyze ancestral architectures for the Génolevures project
[DST04] in the case of non-WGD Hemiascomycete yeasts. The data consists in 5 completely se-
quenced yeasts from the Saccharomycetacae clades: Kluyveromyces lactis, Saccharomyces kluyveri,
Zygosaccharomyces rouzii, Ashbya (Eremothecium,) gossypii and Kluyveromyces thermotolerans?.
These genomes have little genome redundancy and a relatively high (for yeasts) conservation of
synteny.

Signed permutations representing each genome were computed using the SyDiG algorithm (see
part II, page 59), using pairwise syntenic blocks obtained by the i-ADHoRE method [SVSP04]
from orthology and synteny relations identified using Génolevures protein families [NS07]. These
syntenic blocks contain 8200 genes (mean size 14 genes) and cover roughly 60% of each genome.
Basing these permutations only on protein-coding genes is sufficient, since yeast genomes are
highly compact (protein-coding genes cover approximately 80% of the genome), and gene relics
are quite rare (approximately 4%) [Duj06]. By combining pairwise syntenies, each genome was
factored into a sequence of ordered syntenic blocks, from which a set of distinct blocks common
to all genomes was determined. An arbitrary reference genome was chosen, and all the blocks
forming this genome were numbered by unique sequential identifiers from 1 to n.

The permutations computed by this in silico chromosomal painting contained 487 blocks (mean

"Whole-Genome Duplication, an unique polyploidization event proposed in the ancestral Saccharomyces lin-
eage; non-WGD yeasts from the other branches of the phylogenetic tree are not affected by this catastrophic
event.

2 Abbreviations: Klla, K. lactis; Sakl, S. kluyveri; Zyro, Z. rouzii; Ergo, A. gossypii; Klth, K. thermotolerans.

93

Chapter 6. Applications

size 51 genes); keeping the longest blocks brought the permutations to 120 identifiers® (mean size,
94 genes). We were able to place active and inactive centromeres in each genome permutation
by locating the flanking genes (personal communication from Jacky de Montigny). Each of 9
contemporary centromeres was encoded by two successive identifiers, resulting in 15 additional
blocks. Thus, each genome was represented as a signed permutation of 135 elements (see fig-
ure 6.1) , in which chromosomal rearrangements (fusion, fission, translocation, inversion) were
studied. The pairwise rearrangement distances between these genomes are shown in table 6.1.

Klth:

la{}a23456788%

9 10b {} b1l 12 13 14 1516 17 18 19 20 21 $

22 23 24 25 26 27 28 29 30 31 32 33c {} ¢34 3536 §

37 38 39 40 41 42d {} d43 44 45 46 47 48 49 50 51 52 53 54 55 561 i57 58 59 60 61 $

62 63 64 65 66 67 68e {} €69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 §

84 85 86 87 88 89 90 91 92 93 94f {} 95 96 97 98 99 100 101 $

102 103 104 105 106 107 108 109 110 111 112 113 114g {} g115 116 117 118 §

119 120 121 122 123 124 125 126 127 128 129 130 131h {} h132 133 134 135 §

Ergo:

b1l -52 -51 -89 131h {} h132 96 -8 -65 103 -129 -128 §

-20 -19 -18 -17 61 40 -43d {} d-42 -41 45 46 92 100 -78 -29 118 §

116 117 9 31 32 33c {} ¢34 35 36 b-10 49 50 13 86 -38 §

93 83 91 -81 -48 23 -63 5 6 94f {} 95 -75 -74 119 120 12 -22 -104 99 135 -88 -37 §

-T7 -76 85 62 -134 -133 -115g {} g-114 -113 58 59 60 80 82 -98 -26 -105 53 54 106 $

47 87 -7 121 122 123 124 125 126 127 67 68e {} €69 -16 -15 39 130 97 71 -30 -25 102 -24 66 70 4 55 56i i57 -84 §
-28 -27 -73 -108 -90 -44 -3 -2a {} a-1 109 110 111 72 79 64 -112 21 14 -107 101 §

Klla:

-103 -116 -86 85 -99 131h {} 68e €69 -67 21 133 -15 §

104 105 123 61 -60 117 -55 93 91 -74 -96 -81 40 -43d {} d-42 -41 -24 §

84 88 -82-112-129 31 102 -54 -53 -6 -8 -52 -51 30 -46 89 92 122 -119 -111 -70 {}$

-36 -35 -34c ¢-33 -32 -59 124 118 49 16 17 b-10 -83 -100 -73 121 -95f {} f-94 -65 -64 -63 -108 -90 19 20 $§
-57i i-56 -101 -97 -58 27 -45 107 -66 26 -80 la {} a2 -87 23 9 -115g g-114 -44 -125 13 -29 -28 98 -134 75 76 77 78 79 §
48 37 -106 120 -7 126 -135 38 -128 127 -50 b1l {} h-132 72 39 25 71 -110 -109 -18 -113 62 -130 47 14 -4 22 -123 -5 §
Sakl:

-8 -7 121 122 123 124 125 126 127 128 129 112 42d {} d43 44 $

-118 -4 -3 -2a {} a-1 -117 -116 80 81 -91 -93 -92 -38 -37 12 §

84 85 86 87 88 -82 30 113 114g {} gl15 101 §

-83 26 39 130 -132h {} h-131 133 134 -25 -24 45 46 §

-36 -35 -34c¢ {} ¢-33 -32 -31 -41 -40 -71 135 -107 -106 47 14 15 16 17 18 19 20 §

-96 -95f {} £-94 -65 -64 -63 5 6 -120 -119 13 -29 -28 -27 100 §

-99 -98 -97 102 103 104 105 62 89 10b {} b1l -9 -23 59 60 -61 -22 §

-21 -58 -57i {} i-56 -55 -54 -53 -52 -51 -50 -49 -48 -79 -78 -77 -76 -75 -74 -73 -72 90 108 109 110 111 66 67 68e €69 70 $
Zyro:

-83 106 107 -115g {} g-114 82 -54 62 -135 -71 72 -79 99 -117 -116 77 $

41 42d d43 44 13 -29 -28 -27 -88 -113 -30 -57i i-56 -55 -61 47 10b {} b1l -111 58 59 60 23 §

110 101 -90 129 -7 31 32 -34c {} ¢-33 35 6 17 18 19 -65 -89 -127 81 -91 -93 -92 -84 §

-100 86 87 -76 -37 38 109 -21 -8 94f {} 95 -97 102 103 104 105 -112 96 -64 -63 5 §

22 -12 128 -134 -133 -132h {} h-131 -130 45 46 -123 -122 -121 §

-36 -118 -4 -3 -2a {} a-1 -25 -120 49 50 51 73 74 75 53 -98 48 -119 52 -108 78 20 $

-24 40 -16 -15 -14 -125 -124 66 67 -69e {} e-68 70 9 80 -26 -39 -85 -126 $

Figure 6.1: Signed permutations on 135 elements for contemporary non-WGD Hemiascomycete
yeasts (Zyro, Ergo, Klla, Kith and Sakl). Klith is taken as reference for the numbering. The
character $ represent the end of a chromosome. The positions of the active centromeres are

located by two embraces. A letter indicates the agreement of the flanking genes of a centromere
across the five species.

Comparative genome maps were painted (see figure 6.2) with K. thermotolerans as reference.
Active centromeres are represented by red ovals, telomeres are represented by triangles. The
assigned letter indicates the agreement of this centromere across the five species. Markers are
well distributed on the chromosomes, so the choice of these markers is representative of the
architecture of the contemporary genomes. A high degree of synteny, and a limited number of
large-scale rearrangements, is observed between K. thermotolerans and S. Kluyveri; they share
many common adjacencies and their rearrangement distance is half of that seen between other
pairs of genomes. Note that K. lactis presents two syntenic breaks in centromere areas: the

3The number of retained markers does not allow one to obtain an ancestral permutation candidate by using
the public version of MGR.

94

6.2. Comparison to MGR

Zyro | Klth | Sakl | Klla | Ergo
Zyro 0 84 79| 115 | 101
Klth 0 45 | 105 88
Sakl 0 98 85
Klla 0] 109
Ergo 0

Table 6.1: Pairwise rearrangement distances between non-WGD Hemiascomycete genomes as
calculated from common synteny blocks representing 135 major conserved segments. For abbre-
viations, see footnote on page 93.

centromere of KllaOF is located between the flanking genes of centromeres h and b, and the
centromere of Klla0A is located between the flanking genes of centromeres h and e. Moreover,
S. kluyveri has an active centromere (the centromere 7), that was disabled in all the other studied
genomes.

We computed 16 sets of super-blocks, each containing either 34 or 35 super-blocks. These
super-block sets are highly similar. Indeed, 29 super-blocks are common among all of the sets,
and there are only 4 conflicts (see figure 6.3). A given partial assembly of super-blocks P rep-
resents a potential structure of an ancestral architecture. Finally, it is possible to construct a
final assembly from these super-blocks by successive fusions. Two sets of assemblies were com-
puted: with and without the constraint on centromere position. For both of these cases 90 final
assembly candidates were generated. In the first case the global sum of distances) (M, G;)
varies between 281 and 285 (283,4 on average); in the second case it varies between 281 and 283
(282,2 on average). The latter represents biologically plausible architectures whose rearrange-
ment distances are close to minimal. The whole set of solutions shows a high convergence in
terms of rearrangement distances, reinforcing the intuition that the computation of ancestral
architectures by super-blocks assembly results in a reduced neighborhood in the search space.
Further filtering of the results was done by a plausibility metric p based on the chromosomal
structure of the candidate solution (distributions of chromosome sizes and of centromere loca-
tions on the chromosome). Figure 6.2 shows the candidate for ancestral architecture which has
the best compromise between a maximal value for p and minimal value for) (M, G;) = 284.

6.2 Comparison to MGR

We compare our super-block algorithm to the software MGR-MEDIAN [BP02] developed to
reconstruct ancestral gene orders according to rearrangement distance. MGR is not publicly
available software, so we could only make comparisons to publicly available results, or to results
that can be computed using the MGR demonstration web site*. This web site handles small
instances; although it is not formally stated on the MGR webpage, it seems that this public
version is limited to genomes of at most 30 markers.

6.2.1 Human, Cat, Mouse Instances

MGR constructs median genomes for the three-genome case only; if more are provided it com-
putes the rearrangement tree. For this reason, we used the only available multi-chromosomal

*http://nbcr.sdsc.edu/GRIMM/mgr . cgi

95

Chapter 6. Applications

data from the MGR webpage: that of human, cat and mouse (ancestral permutation available
on-line). This dataset has 114 markers [BP02|. For this dataset, we obtain two versions P; and
Py of 32 super-blocks that differ only in one super-block. The ancestral permutation obtained
by MGR contains all of the super-blocks of one of the two sets P, (see figures 6.4 and 6.5).

6.2.2 Simulated instances

In order to estimate the conservation of super-blocks, we generate simulated instances, where the
distances between genomes are bounded. An arbitrary ancestral genome is generated from which
a specified number of random rearrangements are applied to give three genomes. We specify the
number of genes (n) and chromosomes (N), and the number of rearrangements done during the
simulation (r); this parameter is an upper bound on the optimal median genome score. We
generated 300 instances with parameters n = 30, N between 1 and 5, and » = 50. For all of
these instances, we computed the sets of super-blocks, the median genome obtained by the public
version of MGR, and the possible assemblies into median genomes.

The number of sets of super-blocks varies between 1 and 4, and the number of nontrivial super-
blocks in a set varies between 2 and 10. This small number of partial assemblies and nontrivial
super-blocks is due to the small number of identifiers with only 3 genomes. MGR does not
provide an ancestral permutation for 60 of the 300 instances. For the 240 remaining instances,
the median genome proposed by MGR conserves the totality of the super-blocks except for one
instance (figure 6.6). For this instance, we find one partial assembly decomposed into 7 nontrivial
super-blocks. The median solution A MGR recovered by MGR has a global rearrangement
distance of 41 and contains 6 of the 7 super-blocks. The super-block 23 24 25 is missing in
A _MGR although it has support in two of the three genomes of the instance (G and Gj).
Nevertheless, it is possible to obtain better solutions in terms of super-block conservation, that
present moreover a better global rearrangement score. Super-block assemblies return 10 different
solutions that are equivalent in terms of global rearrangement distance and better than the one
found by MGR (39 against 41). Moreover, all of these solutions contain the 7 super-blocks of
the partial assembly.

The super-block fusion procedure generates medians that are competitive from the rearrange-
ment distance point of view. Moreover, our method provides candidates that have better break-
point characteristics than those obtained by MGR. Example 4 page 81 shows 3 genomes Gj,
G5 and (3. For this dataset, we obtain two partial assemblies of super-blocks that lead to two
optimal solutions M7 and M3 in terms of rearrangement distance. However, they have a different
global number of breakpoints: 11 breakpoints for M; against 12 for My (see example 6). Under
a parsimonious criterion, M; appears as the best ancestral candidate for G1, Go and G3. MGR
gives Ms as ancestral gene order for this dataset. For the human, mouse and cat genomes, the
fusion procedure provides the same result in terms of rearrangements, and a better compromise
in terms of breakpoints (see figure 6.5).

Example 6 We consider the three genomes from example 4. Super-blocks algorithm leads to two
partial assemblies Py = {1,32,45,67} and P, = {1,23,45,67}. From those two, two optimal
(median) solutions My and My are possible: My = {1-2-345,67} and My = {1-3-245,67}.
The rearrangement distances (d) and the number of breakpoints (b) from My and Ms to G1, G2
and G3 are shown below.

96

6.3. Discussion

=
w
—
\V]
i~
(@)

6.2.3 Instance with centromeres

When contemporary centromere positions are known, they can be used to constrain ancestor
reconstructions: biologically plausible results must have one and only one centromere per re-
constructed chromosome. These constraints are not taken into account in the MGR algorithm,
which can consequently return mathematically optimal, but biologically absurd, results.

In the same way that it was explained in the last subsection, we generated one instance of 3
genomes with 30 markers. On these genomes, we placed active and inactive centromeres: each
centromere is located between two identifiers. We computed super-block sets and assemblies
for this instance, and compared our results with those returned by MGR (figure 6.7). For this
instance, we obtain one partial assembly with 8 super-blocks. The solution recovered by MGR
has a global rearrangement distance of 35 and contains all the super-blocks. Nevertheless, this
solution is not viable due to the fact that the second chromosome of this median has no active
centromere.

Viable solutions that respect this biological constraint may be non minimal in terms of rear-
rangement distance, so respecting this biological constraint can require exploration of solutions
that are mathematically suboptimal. For this example, we find 10 solutions that respect super-
blocks and where global rearrangement score varies between 34 and 36. All minimal solutions
are absurd as they do not respect the centromere constraint, but we do find 3 viable solutions
with a global distance equal to 35 (figure 6.7).

6.3 Discussion

Computing the median for a given set of genomes is informative when the sample set of genomes is
carefully chosen and the interpretation of the common features that are so identified is performed
with caution. As with any statistical study, if the sample is too small or not representative of
the population under study, then the median may be biased. It is not the object of this work
to provide guidance into sampling strategies for genome comparisons, but to provide robust
mathematical tools for performing the comparisons. Practical studies ([Eri07], [GNSO08], for
example) concur that the set of plausible medians is quite large and that it is misleading to
present just one as “the” ancestral architecture of a set of genomes (see section 2.4.4 page 51 for
more details).

The focus of this work is on the identification of common structural features that are likely
to be inherited from ancestral genomes. These super-blocks can be seen as complex traits in
the sense of Dollo parsimony, whose conservation and possible loss from a common ancestor
is more likely than independent gain in separate lineages. They are identified without use of
a hypothesized phylogeny, and indeed nothing suggests that recombinatory evolution coincides
with mutational evolution (see section 2.5.2 page 55).

This use of phylogeny is an important feature of the work of [MZST06] (see section 2.5.1 page
51 for the method of Ma et al.). Super-blocks share certain aspects of the motivation behind
CARs: that is, assembling only adjacencies having sufficient support in contemporary genomes.

The sharing tree of super-blocks (such as seen in figure 6.3) encodes all the possibilities of

97

Chapter 6. Applications

ancestral genome architectures by including in the super-blocks the adjacencies common to at
least 2 genomes, and leaving the super-block extremities as the only places where no semantically
sound assembly is possible. This final assembly is then just a question of optimization under
some metric, and in this work we use the Hannenhalli-Pevzner rearrangement distance.

The super-blocks themselves implement a compromise between the rearrangement and break-
point distances, and thus, thanks to the latter, encode the ancestral semantics, while leaving
room for optimization thanks to the former.

In practice, our method realizes two successive search-space reductions. First, the super-blocks
themselves diminish the number of unresolved adjacencies (left for the optimization step). Sec-
ond, we rely on the biological constraints for further search-space reduction, as well as solution
filtering. In particular, in our application to the non-WGD yeasts we use the centromere posi-
tions, yielding biologically plausible solutions only.

6.3.1 Gene and Segmental Duplication

Accounting for gene and segmental duplication is an important challenge, that we do not address
in this work. In [MRLT07] Martin et al. use the interleaving patterns of gene orders to study
rearrangements before and after the hypothesized whole genome duplication (WGD) event in
the Saccharomyces lineage [WS97|. Interestingly, they claim that a series of partial genome
duplications leads to more parsimonious rearrangement scenarios that does a single whole genome
duplication in apparent contradiction of the widely accepted hypothesis [KBL04, DS*04]. In
their study they combined rearrangement events with duplication and deletion events; during
a preprocessing step their method renumbers duplicated elements in gene orders to produce a
permutation compatible with the Hannenhalli-Pevzner rearrangement algorithms that they use.
For computational reasons, only a single chromosome of A. gossypii is studied in detail. For
this example our results agree; indeed, the segments in their figure 5 (and supplemental file S1
provided by reviewer 2) are found in our adjacent markers 52 and 51 (Figure 6.2), conserved in
our median and all genomes we consider except Z. rouxii. Our study is otherwise quite different.
Since we deliberately only consider species outside of the WGD lineage, we are not concerned
with the large-scale duplications and deletions that mask the underlying rearrangement events.
Our method works efficiently on complete genomes, and is not reliant on the Hannenhalli-Pevzner
method, but rather proposes a partial reconciliation between it and the breakpoint method. Our
super-blocks method does not take duplications into account, since it is not obvious how to weigh
duplicated adjacencies when counting their frequency. This is a direction for future work.

6.3.2 Towards Ancestor Construction in Yeasts

Comparative genomics in the hemiascomycete yeasts has proven extremely informative about
the basic mechanisms of eukaryotic molecular evolution, both using genetic tools and computer
analysis. These species represent a homogeneous phylogenetic group with small and compact
genomes, but nonetheless a large diversity at the physiological and ecological levels, and an
evolutionary range comparable to the Chordate phylum [DST04, Duj06]. They provide a kind
of ‘evolutionary playground’ in which various genome-modifying mechanisms have been tested
over and over. Building a mathematical description of this rich history will provide important
insight.

In this work we have used our super-block method to construct a plausible ancestral architec-
ture for a phylogenetically circumscribed group of non-WGD yeasts, using ordered markers de-
rived from all-against-all search for conserved syntenic segments. Surprisingly, highly similar sets

98

6.3. Discussion

of super-blocks are constructed from these markers, reinforcing the idea that the ancestral seman-
tics can be recovered using adjacencies observed in contemporary genomes. Final assemblies of
these super-blocks were constructed by an optimization procedure using the Hannenhalli-Pevzner
rearrangement distance as a metric. A strength of our method is that such final assemblies can
be made to respect biological constraints on chromosome architecture, in this work centromere
position.

Since our method can efficiently handle hundreds of markers in dozens of genomes simultane-
ously, these results open the way to a more in-depth study of the rearrangement history of the
yeasts. This will require technical advances, for detecting synteny in the presence of segmen-
tal duplication, for masking the effects of highly mobile elements, and for improved respect of
biological constraints.

99

Chapter 6. Applications

Figure 6.2: Reconstructions of genome-scale homology from common synteny blocks representing
major conserved segments. Med is the proposed ancestral architecture with) d(Med, G;) = 284.
Fach unique numbered synteny block is given a color indicating its chromosome in the reference
genome (KIth), and a diagonal bar indicating its relative position on the chromosome. Other
genomes are signed permutations of these colored blocks; a change of slope in the diagonal bar
indicates an inversion. Block widths are to scale and the size of interleaving non-syntenic regions
is shown by large grey lines. Red circles: centromeres; gray triangles: telomeres.

6.3. Discussion

Bl

L g 53| 54| 55| 56 ERaCs 55|53 53| 54| 55| 56 51|58 59 a0 ﬁl
W 5|55 | =8| 57| 28] 53| 60| 61 53 54| 55| 56 S7]58| 52{.60| 61
=l

Figure 6.3: Sharing tree of super-blocks from the 16 sets of super-blocks obtained from non-
WGD Hemiascomycete yeasts genomes. The root contains the super-blocks shared among all
the 16 sets. Each path from the root to a leaf represents a set of super-blocks. The number
inside the leaf nodes indicates the sum of the distance between this set of super-blocks and the
contemporary genomes. Colors and marker numbers were chosen using Klth as a reference. The
diagonal line in each box indicates the relative position and orientation of the marker on the
reference genome.

101

Chapter 6. Applications

HUMAN:

CAT:

MOUSE:

Figure 6.4: Human, mouse and cat permutations as well as the ancestral

12345678,
1516 17 18 19 20,
25 26 27 28 29 30 31 32 33,
36 37,

44 45 46 47 48,
57 58 59 60 61 62
69 70,

80 81,

84 85 86 87,

89 90,

91,

-22 -21 23 24,

86 87 -85 -84,

-26 -25 27 28 29 30 31 -33 -32,
44 45 -58

123-10-9 11 12 13 14,
-50 -49 53 54 -52 -51 55 56,
-89 80 81,

71,

-76 78 79,

34 35,

16,

110 111 112 113 114

34 35,
32,

-65,

33 38 39 40,

36 37,

15 16,

103 104 105 -93 -92,
26 -25 -24,

-47 -46,

80 81,

-31 -30 -29 -28 -27,

-8 -7 -6,
80 81,

82 83,

49 50,

14 -13

-37 -36,

35 -34,

32 33 -31

21 22 88 89,

86

416 -15 17 18 19 20,
110 111 112 113 114

910 11 12 13 14,
21 22 23 24,

34 35,

38 39 40 41 42 43,

49 50 51 52 53 54 55 56,

63 64 65 66 67 68,

7172 73 74 75 76 77 78 79,

82 83,

88,

92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109,
110 111 112 113 114

-70 -69,
-37 -36,

106 107 -109 -108,

-57 -60 -59 61 62 63 64 65 66 67 68 90 91,

-88 -20 -19 -18 -17 15,

46 47 48,

-38 39 40 41 42 43,

75 T4 73 72 =77

-83 -82,

-7-68-5 -4,

92 93 94 95 96 97 98 99 100 101 102 103 104 105

111213 14 -8 -7 -6,
44 45 -43 -42 -41 -10 -9 -54 -53 84 85 -87 -86,
-20-19 -5 -4 -3 -2 -1,

57 58 59 60 61 62,

82 83 -52 -51 48 49 50,

-56 -55 -70 -69 -18 -17

-89 -88 -68 -67,

23 71 -75 -74 -73 =72 76 77 78 79,

21 22 90 91 63 64 -66

97 -96 98 99 100 106 107 -109 -108 -95 -94 101 102
110 111 112 113 114

7175 =74 =73 =72 76 77 78 79,
270 -69 -5 4 -3 -2 -1,

-12 -11 -52 -51 55 56,

44 45 -43 -42 -41 -40 -39 -38,

92 93 94 95 96 97 98 99 100 101 102 103

-30 -29 -28 -27 25 26,

87 -85 -84 53 54 9 10,

-48 -47 -46,

104 105 106 107 -109 -108,

-91 -90 -68 -67 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57,
24 23,

recovered by MGR-MEDIAN [BP02].

102

permutations

6.3. Discussion

Super-blocks common to all the partial assemblies

-8-7-6

-71

72737475

76 77 78 79

80 81

82 83

-50 -49

-70 -69
-5-4-3-2-1

-14 -13 -12 -11

51 52

55 56

46 47 48

-45 -44

36 37

34 35

-33 -32

-31 -30 -29 -28 -27
25 26

-22 -21

88

-89

90 91

57 58 59 60 61 62 63 64 65 66 67 68
84 85 -87 -86

53 54

-10 -9

-16 -15 17 18 19 20
23 24

108 109 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97 -96 -95 -94 -93 -92
-114 -113 -112 -111 -110

Super-block specific to P Super-block specific to P-

-43 -42 -41 -40 -39 38 -43 -42 -41 -40 -39 -38

Figure 6.5: 2 sets of super-blocks obtained from the public dataset of Human, Cat and Mouse
gene order (see figure 6.4).

103

Chapter 6. Applications

(a) Gi: 2716 1,
-8 30 14 15 -26 -21,
20 -22-2517 18 -24 3-5-46 9 -29-28 -19.23 -2 7 10 11 12 13

Ga: 29 -20 16 -8 -7 15 -12 18,
19 13 14 9 -4 -21 30 28 -25 -24 -23 2 22,
-1-11-10356 17 26 27

G3: 9 10 19 -27 -26 -25 -24 -23 -16 -15,
-4-3-2-13-12 56 20,
14 18 -11 -28 -30 -29 -22 -21 -17,
-1-8-7

(b) F: -27-26, 10 11, 23 24 25, -6 -5, -8 -7, -13 -12, -28 -30

(c) A MGR: 10112347823 24-18 -17 25 22 -20 -6 -5 12 13,
91516 1,
227 226 -21 30 28 29 -14 -19

(d) A_SB: 293028 -8-7,
21 26 27 -19 23 24 25 22 -20,
-18 -17 -6 -5 12 13 23 4 -11 -10 -9,
1415 16 1

Figure 6.6: Results for (a) the simulated instance G, G2 and Gs: (b) Super-block set F', (c)
median genome A MGR provided by the public version of MGR and (d) one of the 10 median
solutions recovered by fusions of super-blocks.

104

6.3. Discussion

(a) Gi: 1 {c} 10 3 -30 -23 -19 22 14 15 27 28 -13 -12 -11 25 9,
26 {c} 8,
20 21 -24 5 6 -2 7 -29 -18 {c} -17 -4 -16

Ga: 751112 13 14 23 24 -18 {c} -17 -6,
1 {c} 10,
26 {c} 8 27 -3 21 22 -16 -4 28 -30 -29 15 19,
20 -2 -9 {c} -25

Ga: -24 28 -18 {c} -17 -13 4 -29 -16 -11 -7 23 -19 14 15 25 9,
26 {c} 8 27 12 -3 -30 5 6,
-22-21-20 1 {c} 10 2

(b) F: 259, -22 -21 -20, 11 12 13, 17 18, -27 -26 -8, -15 -14, -6 -5, -10 -1

(c) A MGR: -9 {c}-25 17 {c} 18 -28 -27 -8 {c} -26,
20 2122 -16 7 11 12 13 -15 -14 19 23 24 -30 5 6,
29 -4 -3 -2 -10 {c} -1

(d) A_SB: 1{c}102-7-23-19,
-9 {c} -25 -15 -14 -22 -21 -20,
34-29 -18 {c} -17 -6 -5 24,
26 {c} 8 27 28 -30 16 -13 -12 -11

Figure 6.7: (a) A simulated instance G, Gy and G with active centromere positions indicated by
the letter ¢ between embraces. (b) For this instance, a set of super-blocks F' is obtained. (c¢) The
median genome A M GR provided by the public version of MGR presents a chromosome without
active centromere.(d) A SB is a sub-optimal median solution in terms of global rearrangement
score which is plausible for centromere constraint.

105

Chapter 6. Applications

106

Part IV

Optimal rearrangement scenarios

107

Chapter 7

Computing a correct optimal scenario

Analysis of genome rearrangements provides a measure for the evolutionary distance between
species. Two closely related problems are considered in the study of genome rearrangements. The
first problem is to find, by parsimony criteria and for a defined set of rearrangement operations,
the exact number of such operations needed to rewrite one genome into another. The second
problem is to compute a most parsimonious rearrangement scenario. Solving the latter would
enable the understanding of evolutionary mechanisms.

In the considered model (see section 1.2), two genomes defined on the same set of gene markers
without duplications, are represented by signed permutations. Thus, the analysis of genomes
leads to a combinatorial problem of transforming one signed permutation into another. The
theory proposed by Hannenhalli and Pevzner [HP95a, SM97| for unichromosomal genomes based
on reversals only is presented in detail in chapter 2 (see section 2.2.1). Their main results consist
in an exact formula for reversal distance, and the first polynomial time algorithm for computing
a parsimonious reversal-based scenario between two signed permutations.

This theory was further adapted by the same authors to the multichromosomal case and is
presented in the same chapter, section 2.2.2. For multichromosomal genomes, a larger set of
rearrangement operations is considered: translocations, fusions and fissions as well as reversals.
In [HP95b], Hannenhalli and Pevzner devise a method that mimics all multichromosomal rear-
rangements by reversals operating on an unique permutation. This is achieved by a conversion to
the unichromosomal model, which requires an optimal capping to cleverly delineate chromosomes
of a given genome, as well as an optimal concatenate in order to assemble them into a single
permutation. The computed parsimonious scenario relies on the structure of this permutation.

However, both the formula for rearrangement distance and the algorithm for computing a
parsimonious sequence of operations given by Hannenhalli and Pevzner [HP95b] present errors.
Tesler in [Tes02a] partially corrected the rearrangement distance formula. In the same paper,
the algorithm that leads to optimal concatenates was completed by a proper bonding step (for
more details, readers are invited to refer section 2.3.2). Ozery-Flato and Shamir in turn redefined
some notions and suggest further corrections essentially for the rearrangement distance formula
[OFS03]. Nevertheless, the algorithm that is supposed to construct an optimal capping, fails.

Various definitions and their relationships presenting incoherences between papers by different
authors, we first propose a single and coherent classification of interleaving graph components
based on relevant literature in section 7.1. This classification permits a better understanding
of what is wrong in the existing algorithm for determining optimal capping. In section 7.2, we
present cases for which Ozery-Flato and Shamir’s algorithm fails and provide a counterexample
for each case. Finally, we introduce in section 7.3, a correct algorithm for optimal capping with

109

Chapter 7. Computing a correct optimal scenario

a proof of its correction. This whole work was published in [JNO7].

7.1 Double classification of connected components

Let IT and I" be two multichromosomal genomes with respectively N and Np chromosomes de-
fined over the same set of gene markers IV;. Two steps are needed to encode a multichromosomal
genome as an unique permutation: capping and concatenate. Mand I represent a capping of I1
and I' and we denote by & and 4 concatenates for II and T

The notions of adjacencies and breakpoints are transferred to the breakpoint graph defined in
[HP95a]. Denote by G(ILT) (G(II,T'), G(#,4) respectively) the breakpoint graph constructed
from permutations II and T’ (ﬂ and I', and # and 4 respectively).

The distance value is computed based on the breakpoint graph G(II,T'), free of any capping
and concatenate, in which we can distinguish three types of vertices: isolated vertices called tails,
cap vertices of degree 1 called II-caps, and other vertices of degree 1 called I'-tails. The graph
G(IL,T") can be decomposed into cycles and paths that are characterized by their extremities
(IIII-path, T'T-path and TIT-path).

Construction of the interleaving graph I(G) (see section 2.2.2 page 32 for more details) is
defined from non-trivial paths or cycles (with more than 2 edges) of the breakpoint graph
G = G(II,T) and based on the notion of edge interleaving. We propose a coherent and un-
ambiguous classification for the connected components of an interleaving graph that is the result
of a synthesis of previously cited references. In fact, the components can be classified in two
different and complementary ways, as shown in figure 7.1.

7.1.1 Intrinsic classification

We call intrinsic classification the way to discriminate between components based on the prop-
erties of their edges. It is represented by the vertical hierarchy of filled nodes in figure 7.1. A
dashed edge (representing an adjacency in I') {7;,7;} in G(II,T') is oriented if |j — i| is even,
otherwise it is unoriented. The same edge is intrachromosomal if the vertices ; and 7; belong
to the same chromosome, and interchromosomal otherwise. A connected component K of I(QG)
is oriented (interchromosomal, respectively) if any cycle or path belonging to K has at least one
oriented (interchromosomal, respectively) dashed edge, otherwise K is unoriented (intrachromo-
somal, respectively). Let U(G) be the set of unoriented components of I(G), ZU(G) the set of
unoriented and intrachromosomal ones.

We have seen that the difficulty to compute the rearrangement distance comes from unoriented
and intrachromosomal components (see the unichromosomal case, section 2.2.1 page 28). The
intrinsic classification is then refined for this set of components: we distinguish real components
from unreal components within unoriented and intrachromosomal components. As a reminder,
a connected component K of I(G) is real if K belongs to ZU(G) and if it has no II-cap or I'-tail
in its span. Let RU(G) be the set of real components.

Example 7 gives the intrinsic classifications for the breakpoint graph of the figure 7.2.

7.1.2 Extrinsic classification

We call extrinsic classification the way to describe a component by its relationship with surround-
ing components. It is represented horizontally by dashed lines in figure 7.1. This classification
concerns the sets of unoriented components U(G), ZU(G) and RU(G) that require a more de-
tailed study in order to determine the rearrangement distance as well as the algorithms that lead

110

7.1. Double classification of connected components
_-| The greatest
Connected components \/
/ N
/ "N Minimal
/
Hurdles
7
ot R4 AN A The greatest
N .
Oriented norente AN -7
U(G) N Super ¢’
N N
Non hurdl N
on hurdles 4 Minimal
- The greatest
Simple : g
/ N =.
/ N Minimal Z.
/ o
Knots %
7 wm
. X The greatest Ee.:n
Interch | Intrachromosomal “ N\ .7 8
ot
nterchromosoma TU(G) . Super =
N N =}
Non Knots "\ Minimal
_-| The greatest
Simple :
/ N N
/ N Minimal
/
/ Real knots
el // N _-| The greatest
N\ \ 7
Unreal RUG) \\\ Super
| | Non real knots “J Minimal

Intrinsic classification

Figure 7.1: Double classification of connected components. The children nodes form a partition
of the component set represented by their parent node. Intrinsic classification is read from top
to bottom while extrinsic classification is read from left to right.

to parsimonious scenario computation.

The first partition for these sets relies on the notion of component separation (see definition
13 page 29). U(G) is partitioned into non hurdles and hurdles, where a hurdle is a component
of U(G) that does not separate two other components in the same set. The notion of separation
defines in the same way the partitions of ZU(G) and RU(G): knots and non knots for the former,
and real knots and non-real knots for the latter.

The second level of the extrinsic classification is based on protection notion (see definition 16
page 30). Within the hurdle set, we distinguish the super hurdles from the simple ones. A hurdle
is super if it protects a non hurdle, otherwise it is simple. These notions are defined similarly for
knots and real knots.

While protection notion characterizes hurdle (knots, real knots respectively) relationships with
non hurdles (non knots, non real knots, respectively), the last level of classification is based on the
relationships between hurdles themselves. A hurdle can be the greatest one if its span contains
all the spans of the others hurdles, otherwise it is a minimal hurdle. These notions are defined
similarly for knots and real knots.

111

Chapter 7. Computing a correct optimal scenario

Example 7 gives the extrinsic classifications for the breakpoint graph of the figure 7.2.

\ / ’ N
v/oomT o otmo oy oo/ /TN T T
— 4 — 4

LY
] 1
0 27 28 21 3 4 78 13 14 1112 9 10 1516 5 6 17 18 29 30 3132 19 20 2122 25 26 23 24 3334 35
14 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

Figure 7.2: Breakpoint graph G(ILT) for I = {-124 76 58 3 9,10 11 13 12} and " =
{123456789 10 11 12 13}. Tails vertices are marked by T, II-caps by II and I'-tails by
I". Non trivial cycles and paths are denoted by letters from A to F. The interleaving graph
I(G) corresponding to G(IL,I") is composed of 5 connected components: K; = {A}, Ko = {B},
K3 ={C,D}, Ky ={FE} and K5 = {F}.

Example 7 Figure 7.2 presents a breakpoint graph G(IL,T). The intrinsic classification is as
follows: Ky is intrachromosomal oriented, U = {Ko, K3, Ky, K5}, ZU = {Ks, K3, K5} and
RU = {Ks,Ks3}. The extrinsic classification is: Ks is a super hurdle while K4 and K; are
simple hurdles, and K3 and K5 are super knots. However, Ko and K3 are real knots (K3 is the
greatest one), while Ky is a minimal semi-real knot and Ky is a simple component.

7.1.3 Particular structures and distance formula

Based on this classification, particular structures of the breakpoint graph are defined. Counting
specific components (defined both by the nature of their edges and their relationships with other
components) is required in order to compute the rearrangement distance. Within the set of
unreal components we can distinguish those called semi-real knots that are characterized by
their potential of becoming real knots (see definition 24 page 33). A simple component is defined
as a component with at least one II'-path and which is not a semi-real knot.

From all these considerations, global specific structures for the breakpoint graph are defined.
The breakpoint graph G is a fortress (fortress of knots, or fortress of real knots, respectively) if
it contains an odd number of hurdles (knots, or real knots, respectively) that are all super. We
say that a graph G is a weak fortress of real knots if (a) G has an odd number of real knots, (b)
there exists the greatest real knot in G, (c) all real knots are super except the greatest one and
(d) the number of semi-real knots in G is strictly greater than 0. Note that a weak fortress of
real knots becomes a fortress of real knots by closing the III’-paths in a semi-real knot.

Denote by G(II,T) the graph obtained by closing all the IIT'-paths in simple components of
G(IL,T). Ozery-Flato and Shamir [OFS03] give an exact formula for the distance between two
multichromosomal genomes II and I' (see theorem 3 page 34): d(ILT') = b—c+ prr + 7 +
(%1 where b is the number of solid edges in G(IL,T") (b = Ny + max (N, Nr)), ¢ is the
number of cycles and paths, prr is the number of I'T'-paths, r is the number of real knots, s’ is
the number of semi-real knots in G(I,T'), gr’ is equal to 1 if G has the greatest real-knot and
s’ > 0, and is 0 otherwise, fr’ is equal to 1 if either (i) G is a fortress of real knots and the
greatest semi-real knot does not exist in G, or (ii) G is a weak fortress of real knots.

Computing the distance between two multichromosomal genomes is independent of capping
and concatenation. However, computing a parsimonious scenario consists in finding a sequence of

112

7.2. Cases for which optimal capping algorithm fails

reversals mimicking multichromosomal rearrangements that satisfy the minimal distance. Thus,
optimal capping and optimal concatenate are required to find a parsimonious scenario. Neverthe-
less, in spite of corrections brought by Tesler [Tes02a| and by Ozery-Flato and Shamir [OFS03|,
the algorithm for computing optimal capping remains incorrect.

7.2 Cases for which optimal capping algorithm fails

Optimal capping II* and I'* is finding positions and signs for caps in the genome I' such that
d(IT*,T*) = d(IL,T") (see lemma 4 page 36). This is done for any arbitrary capping in II. In the
breakpoint graph, it consists in adding 2/Nr edges linking a II-cap to a I'-tail and N — Nt edges
between two Il-caps if Nyp > Nr.

The algorithm for construction of an optimal capping that takes into the account the last
corrections for rearrangement distance is provided by Ozery-Flato and Shamir [OFS03| (see
algorithm 1 page 37). However, this algorithm is incorrect. There are two cases for which their
algorithm fails. In what follows, we describe each of these cases and provide a counterexample.

7.2.1 Difference in the number of chromosomes

Since the distance function is symmetric, we have d(II,I") = d(T',II) and so Ozery-Flato and
Shamir [OFS03] consider only the case where Np < N without lost of generality. However, the
proposed algorithm fails if Np < Npp. The number of II-caps is equal to 2 max(Ny, Ny) and the
one of I'-tails is 2Np. Clearly, the number of Il-caps is strictly greater that the number of I'-tails
if Nr < Nq1. Thus, prip > prr- Steps 2 and 3 of algorithm 1 consist in joining a IIII-path with a
I'T-path to the point of IIlI-path exhaustion according to lemma 2 page 36. Consequently, the
number of I'I-paths is not sufficient to close all the IIII-paths when Nyt < Npi. See figure 7.3
and example 8 for a counterexample.

————

7 SN
, N
)/ D2 N b3
/ //—-\\\\ //—-\\
/ b N ,/ \ -
TTIﬁ rr.,aourTToyYr o O0TTIOY 77 OITT
© © 69 oo 69 o o b Lo &9 o 6 b b9 b9 o o
0 7 1 -3 8 9 2 4 10 11 5 -6 12 13

Figure 7.3: Counterexample to Ozery-Flato and Shamir’s algorithm [OFS03] for building an
optimal capping. Breakpoint graph G(II,I") with II = {-1 —3, —24, 5 —6} and " =
{123, 456}

Example 8 The breakpoint graph G = G(IL,T') in figure 7.3 has two IIl-paths ps and ps, and
one I'T'-paths p1. A first occurrence of steps 2 and 3 of Ozery-Flato and Shamir’s algorithm joins
po or p3 with p1. An other one has to join the remaining IIII-path with a I'T-path but there is
no I'T"-path left anymore.

7.2.2 A specific breakpoint graph structure

Another case for which the algorithm fails can be described as follows: (i) s’ is even and s' > 2,
(ii) G is a fortress of real knots and (iii) G has the greatest semi-real knot. If G is a fortress of real

113

Chapter 7. Computing a correct optimal scenario

knots and there exists the greatest semi-real knot then fr’ = 0. Moreover, the greatest semi-real
knot and the greatest real knot can not exist simultaneously, so gr’ = 0. Hence, the genomic
distance isd =b—c+prr +7 + (%] =b—c+prr+r+ %, since s’ is even. The step 5 of the
optimal capping algorithm in [OFS03] joins any two semi-real knots. Suppose that the greatest
semi-real knot is joined by an interchromosomal or oriented edge to another semi-real knot. The
obtained graph is still a fortress of real knots, but the greatest semi-real knot does not exist
anymore, so fr’ = 1. Thus, we get d = b— (c—)+ppp+r+[g _2)“1 b—c+14prr+r+%.
See figure 7.4 and example 9 for a counterexample.

Figure 7.4: Counterexample to the Ozery-Flato and Shamir’s algorithm [OFS03]
for building an optimal capping. Breakpoint graph G(II,I") with II =
{24657381012 1113914 16 18 17 19 15 20 1 21, 23 22 24, 26 25 27, 29 28 30} and
={123456789101112 1314 1516 17 18 19 20 21, 22 23 24, 25 26 27, 28 29 30}. The
connected components K5, K¢ and K7 are super real knots that protect respectively Ko, K3
and K4. G has the greatest semi-real knot K7 and three minimal semi-real knots Kg, Kg and
KlO-

Example 9 The breakpoint graph G = G(IL,T') in figure 7.4 is a fortress of real knots with
fr' =0. The distance is d(IL,T) = 34 — 14 4+ 0+ 3 + [2=0+2] = 25. Step 5 of Ozery-Flato and
Shamir’s algorithm allows joining the greatest semi-real knot K1 to Kg by an interchromosomal
edge (dashed line), which results in a new graph G'. G' is still a fortress of real knots, but fr' = 1.
So d=34—13+4 0+ 3+ [20L] = 26, which does not respect the minimal distance.

7.3 A correct algorithm for optimal capping

In what follows we propose a new algorithm for optimal capping (algorithm 9) and the proof of
its correction (theorem 9). The proof is based on two technical lemmas from [HP95b]| (lemmas
2 and 3 page 36) and possible configurations for pertinent parameters of the breakpoint graph
presented by figure 7.5.

Theorem 9 (Jean and Nikolski [JNO7]) Let d = d(II,T") be the distance between two multi-
chromosomal genomes I1 and T". Algorithm 9 constructs an optimal capping T for any arbitrary
capping 11, such that d(I1,T') = d.

Proof: Let M be the total number of edges needed to close all the paths. If Ny > Np, then
M = 2Nt + Npp — Nr, otherwise M = 2Nr. Building a capping I" involves adding M edges e; to
G(II,T'). This process defines a new graph G; for the ith addition of an edge. It results after M

114

7.8. A correct algorithm for optimal capping

Algorithm 9 Correct Optimal Capping
1: Construct the graph G = G(IL,T")
: while there is a I'T'-path in G do
Find an interchromosomal or oriented edge joining this I'T-path with a IIII-path (lemma
2) and add it to G
end while
Close all remaining IIlI-paths in G
Close all III'-paths in simple components in G
if s’ is even and s’ > 2 and G is a fortress of real knots then
if G has the greatest semi-real knot then
Close all III'-paths in the greatest semi-real knot
10: else
11: Close all III'-paths in any one semi-real knot
12: end if
13: end if
14: while G has more than one semi-real knot do
15: Find an interchromosomal or oriented edge joining IIT™-paths in any two semi-real knot
(lemma 3) and add it to G
16: end while
17: Close all remaining III-paths in G
18: Find a capping I" defined by the graph G(IL,T')

B

s'=2 s" even> 2 s" odd

VRN RN RN

w N

= = = = = = = = = = = =

@ o @ o @ o @ o @ o @ (=]

< < = < < <

g = g = g & g & g & g &
[m S I B A e = = S W B = = [=S T S (I ST S [N = S N W ot w3
o0 08 03 03 |l o2 09 O3 o3 || o8 o3 o3 03 || o3 o3 o o2 | o= o oo oo | o3 o3 o3 o3 |
= s = = T T = = = = —~ =, = = = = = = = = = =
~ R R R oR R R o R R R o R KR & KB o R & K& o R K & O
1 23 456 7 8 91011 1213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Figure 7.5: Possible configurations for pertinent parameters of the breakpoint graph G: the
parity and value of ', the presence of the greatest semi-real knot (gsrk), the parity and value of
r and the presence of the greatest real knot (grk). Configurations are numbered from 1 to 30.

additions in G(II,T): G(ILT) = Go 2 G1... ¥ Gy = G(II1,T)). We denote by d; the distance
computed on the graph G;, and we index by ¢ all the distance formula parameters.

For each parameter p we denote by A, the difference of its values for successive graphs p; —p;—_1.
Then A = d; —d;_1. In what follows, we prove that for each added edge A = 0 and consequently
dyr —do = 0.

The first while loop (lines 2-4 in algorithm 9 results in A = 0. Indeed, if G;_; has a I'T-path
then there also exists a [1II-path. Connecting a I'I’-path with a IIII-path via an interchromosomal

115

Chapter 7. Computing a correct optimal scenario

or an oriented edge results in A,.. = —1, A, = —1, and hence in A = 0. The graph structure
modifications in lines 5 and 6 do not affect any parameter value, and thus we still have A = 0.

Starting from line 5, what remains is to close III'-paths in semi-real knots. The proof for this
part of the algorithm is based on a case analysis. The last part of distance formula, [%],
depends on the parity and value of s’. Moreover, semi-real knots can become real knots and then
modify the values of gr’ and fr’. That is why, we have also to consider the parity and value of r.
The greatest semi-real knot (the semi-real knot, respectively) does not have the same behavior
as the minimal ones: we have to take into the account the presence or absence of these particular
components. All the possible graph configurations are shown in figure 7.5. We show that for all
of them A = 0. Notice that configurations 1, 3, 11, 13, 21 and 23 in figure 7.5 are impossible
since the greatest semi-real knot and the greatest real knot can not exist simultaneously.

The then part of the if statement (lines 7 through 13 in algorithm 9) concerns three possible
cases:

1. the greatest semi-real knot exists (configurations 4 and 14),

2. the greatest semi-real knot does not exist, but the greatest real knot exist (configurations
8 and 18),

3. the greatest semi-real knot and the the greatest real knot do not exist (configurations 9
and 19).

For these 6 configurations we have A, = A
Ay, vary between the three cases.

=0 and Ay = —1. The values of Ag, A, and

prr

1. We are in the then part at line 9, fr,_; = 0 and fr, = 0 since the number of real-knots
becomes even. So Ay =0, A, =1 and Ay = 1.

2. We are and the else part at line 11, fr,_; =1 and fr/_; = 1. Closing all the III'-paths in
a minimal semi-real knot does not modify the number of real knots: the greatest real knot
becomes an unreal component. Thus, A, =0, Ags = —1 and Ay =0

3. We have gr;_; = gr; = 0. Therefore A, =1, Ags =0 and Ay, = —1 since the number of
real knots becomes even.

Thus in all the possible cases before line 14 we have A = 0.
The second while loop (line 14 through 16) is entered in three cases:

1. s;_; =2 (configurations from 2 to 10 except 3),
2. s,_; > 2is even (configurations from 12 to 20 except 13),
3. si_; is odd (configurations from 22 to 30 except 23).

In all of these configurations A, = —1, A
Ay, depend on the configuration.

= A, =0 and Ay = —2. The values Ay and

prr

1. For all configurations, except 6 and 8, we have. Ay = Ay = 0. For configurations 6 and
8, Ay = —1. For configuration 6, fr;_, = fr; = 0. For configuration 8, G;_; can be a
weak fortress of real knots, and so fr;_; =1 or 0 but fr; = 0 since s; = 0. Thus, Ay, is
either 0 or -1.

116

7.8. A correct algorithm for optimal capping

2. In all configurations A, = 0. For all configurations except 18, Af,» = 0 since fr,_; =
fri = 0. For 18, if G;_; is a weak fortress of real knots then Gj is one too, and fr,_, =
fr; =1, otherwise fr;_, = fr; =0, and so A =0.

3. Two cases are possible: (a) one of the two semi-real knots is the greatest semi-real knot or
(b) the two semi-real knots are minimal. For (a) gr;_, = gr; = 0 and fr,_, =0, but fr} is
either 1 or 0 depending on whether G;_; is a fortress of real knots. For (b) Ay = Agy = 0.

Applying the distance formula from theorem 3, we obtain A = 0 in all cases.
If at this point (line 17) there still remains a semi-real knot and one of the following conditions
holds

1. either G;_1 has the greatest real knot (configurations 26 and 28),
2. or Gj_1 has the greatest semi-real knot (configurations 22, 24 and 25),

3. or Gj_1 has neither one nor the other (configurations 27, 29 and 30),

then we have to close the IIT" paths.
For all these cases, we have A, = A,
depend on the particular configuration.

=0 and Ay = —1. The values of A,, Ay and Ay

1. A, = 0and Ay = —1 since s, = 0. As for the value of fr’, consider that G;_; can be
either a weak fortress of real knots, or a fortress of real knots, or none. In all of these cases
the value of fr’ does not change.

2. Ar =1, Agyr = 0, and A,y = 0 since the greatest semi-real knot becomes the greatest
simple real knot.

3. A, =1and Ay = 0. As for the value of fr’, fr!_, is either 1 or 0 depending on whether
Gi_1 is a fortress of real knots or not, and fr; = 0.

Applying the distance formula from theorem 3, we obtain A = 0 in all cases.
€1

We see then, that in all possible cases, graph modifications G(II,T') = Gy — Gj... MGy =
G(II,T') by our algorithm are neutral with respect to the distance formula. [J

117

Chapter 7. Computing a correct optimal scenario

118

Chapter 8

VIRAGE: an interactive tool for the
visualization of rearrangement scenarios

Efficient algorithms exist to compute rearrangement scenarios between two genomes. In par-
ticular, chapters 2 and 7 present algorithms based on the Hannenhalli and Pevzner theory for
the computation of a rearrangement scenario between two signed multichromosomal genomes in
terms of reversals, translocations, fusions and fissions. The first implementation that made it pos-
sible to analyze rearrangements in multichromosomal genomes was realized in GRIMM [Tes02b].
However, the resulting rearrangement scenario is visualized as a static, and possibly quite long,
sequence of permutations. Genome modeling in the form of signed permutations makes the anal-
ysis and comparison of scenarios difficult. Hence, a challenge lies in the visualization of plausible
results in order to facilitate their interpretation by expert biologists.

We developed a new tool called VIRAGE for VIsualization of ReArrangement within GEnomes,
which permits the interactive and animated visualization of several rearrangement scenarios. Re-
arrangements taken into the account are reversals, translocations, fusions and fissions. VIRAGE
is divided in two main parts: the generator of the visualization document and the visualizer of
rearrangement scenarios.

In this chapter, we first present the generator of the visualization document. This generator is
strongly based on the genome graph, a common structure to all of the scenarios. The obtained
document contains information relative to scenarios under study and also includes modules re-
quired for the visualizer of rearrangements. A second section is dedicated to the visualizer, which
is built of two main parts: the sequencing module that manages the course of scenarios according
to users’ instructions and the animating module that enables the animation of rearrangements.

8.1 Generator of the visualization document

The generator of the visualization document is the static part of VIRAGE, which consists in
producing an SVG (Scalable Vector Graphics [SVGO01]|) document from a set of scenarios provided
as parameters. The code of the generator is written in Python.

8.1.1 Syntax of input files

VIRAGE requires as many input files as there are different scenarios to visualize. The chosen
syntax for a scenario is similar to the one of GRIMM results [Tes02b].
A scenario is a sequence of genomes where two consecutive genomes differ by one transforma-

119

Chapter 8. VIRAGE: an interactive tool for the visualization of rearrangement scenarios

tion among reversals, translocations, fusions and fissions. In a scenario file, each line corresponds
to a step in the scenario, i.e to one genome.

A multichromosomal genome is represented by a signed permutation where elements are sep-
arated by space character and delimiters '$’ are inserted after chromosomes. If centromere
positions are known, it is possible to add this information in the scenario file by indicating each
centromere by a letter framed by two braces. See figure 8.1 for an example.

1234 {a} 90 $ 5 6 {b} 91

12-4-3{a} 9 $ 56 {b} 91
-1 2 -4 -3 {a} 90 $ 5 6 {b} 91
-1 2 -4 -3 {a} 90 $ -5 6 {b} 91
-124 -3 {a} 9 $ -5 6 {b} 91
-1 243 {a} 90 $ -5 6 {b} 91

Figure 8.1: Example of a scenario file between two multichromosomal genomes. The first line
represents the source genome, the last, the target genome and all the lines except for the first are
intermediate genomes obtained from the previous one by a reversal in this example. Genomes
have two chromosomes delimited by the character ’$’ and two centromeres located by letters a
and b between braces.

We consider three different configurations for the set of input files:
- 1 —1 case: all of the input files start and end by the two same genomes;
- 1 —n case: all of the first lines of input files correspond to the same genome;
- n — 1 case: all of the last lines of input files correspond to the same genome.

A syntactic analysis of scenario files is realized in order to verify that files are well formed.

8.1.2 Genome graph and nearly genome graph

VIRAGE was developed to ease the visualization of one or several rearrangement scenarios
between species. In the case of multiple scenarios, we group the different scenarios together
into a common data structure: the gemome graph. This graph is the basis for the rest of the
implementation. Moreover, this structure is quite useful for the end users. In fact, it makes
it possible to quickly visualize the mutual organization of scenarios and, during the animated
phase, to understand the current step in the scenarios’ progress.

Vertex hierarchy

A scenario is a sequence of genomes that represent intermediate states during evolution. Hence,
we can associate to each genome its index within a scenario, and genomes are ordered according
to their indices. The notion of order between genomes must be conserved in the genome graph.
That is why the genome graph is a directed graph where vertices represent genomes while each
edge represents a transformation between two consecutive genomes in a scenario. However,
it is possible that intermediate genomes are identical within several scenarios. The genome
graph takes into account these common points between the scenarios by modeling the equivalent
genomes by an unique vertex. Nevertheless, in order to facilitate the reading of graphs by users,
the depth position of a vertex in the genome graph must be equal to the index of corresponding

120

8.1. Generator of the visualization document

genomes in the scenarios. However, according to the case under study, equivalent genomes may
have different indices:

- the 1—1 case is the case where if the provided scenarios are parsimonious then intermediate
genomes that are identical have necessarily the same index in their corresponding scenarios.
Otherwise, identical genomes may have different indices,

- the 1—n case concerns evolution from a common ancestral genome towards n of its descen-
dants. The n scenarios under study may have different lengths. Hence, identical genomes
can occur at different indices in the scenarios,

- the n — 1 case is the mirror of the 1 — n case. It is treated in the same manner that the
1 —n case.

Considering these different cases, one genome present in two scenarios is represented by only
one vertex in the genome graph if it appears at the same index in two scenarios. Let S = {s} be
the set of the scenarios to visualize and s = (g1, g2, ..., gm) & scenario of S where g; is the source
genome, ¢, is the target genome and the others are intermediate ones.

Definition 48 A genome graph is a directed acyclic graph G = (V, E) such that:
-V =A{(g,i) | 3 9; € s €S such that g = g;},

- E={((91,7),(92,1 4+ 1)) | 3 g9; and gi11 € s € S such that g1 = g; and g2 = gi+1}-

The genome graph is constructed by scanning through all of the scenarios. At the k' step of
the algorithm, genomes at index k are compared in order to create corresponding vertices.

In the n — 1 case, scenarios are preprocessed: all of them are inverted in order to simulate this
case by an equivalent 1 — n case. Next, the direction of all the edges of the obtained genome
graph is inverted. The final graph is a directed acyclic graph but no longer a genome graph,
since indices considered to construct the initial graph are those of scenarios from the common
genome to its n descendants. This graph is called a nearly genome graph. See example 10 for
the construction of a nearly genome graph.

Example 10 Let us consider 4 scenarios from 4 distinct genomes to a common one. Table 8.1
shows these scenarios and table 8.2 presents the same scenarios but inverted. gs is present at
different indices in scenarios 1 and 2 while its index is the same in the inverted scenarios. Thus,
genome gs 1s represented by an unique vertex in the genome graph of figure 8.2 and the nearly
genome graph presented in figure 8.3. On the other hand, genome gg, which has the same index
in initial scenarios but not in their inverse is represented by two distinct vertices in the (nearly)
genome graph.

Edge labeling

Once the (nearly) genome graph is obtained, we can associate a rearrangement to each edge.
The supported rearrangements are reversals, translocations, fusions and fissions. All of the other
transformations are defined as unknown rearrangements. Algorithm 10 specifies the kind of
rearrangement that transforms genome g; into genome g; 1.

Next, specific information for each rearrangement is defined:

121

Chapter 8. VIRAGE: an interactive tool for the visualization of rearrangement scenarios

122

index | scenario 1 | scenario 2 | scenario 3 | scenario 4
1 9 92 g3 94
2 g7 g5 g6 g6
3 g5 99 g1 g10
4 gs g1 g1
5 g1

Table 8.1: 4 scenarios from 4 distinct genomes to the common genome g1 .

index | scenario 1 | scenario 2 | scenario 3 | scenario 4
1 gi1 gi1 gi1 gi1
2 gs 99 96 g10
3 g5 g5 93 96
4 g7 g2 g4
5 g1
Table 8.2: Inverted scenarios of table 8.1.
(glla 1)
(987 2) (997 2) (967 2) (9107 2)
(957 3) (937 3) (967 3)
(97,4) (92,4) (94,4)
(gla 5)

Figure 8.2: Genome graph obtained from the scenarios of table 8.2.
reversal: the sequence of markers within a chromosome of g; that are reversed within the
same chromosome in g;41,

translocation: two sequence extremities in two distinct chromosomes of g; that are reversed
and exchanged between the two same chromosomes in g;y1,

fusion: two extremity markers of two distinct chromosomes of g; that are consecutive in
an unique chromosome in g;41,

fission: two consecutive markers within a chromosome of g; that are extremities of two

8.2. Rearrangement visualizer

(91,5) (92,4) (93,3) (94,4)
(gl 4) (96, 2) (gl 3)
(95,3) (gll ,2)
(gsm, 2)
\

Figure 8.3: Nearly genome graph for scenarios of table 8.1.

distinct genomes in g;41,

- unknown rearrangement: no specific information is required, since this kind of transforma-
tion is not animated.

The search of rearrangements is realized through a semantic analysis of genomes in order to
verify that a given transformation between two genomes is interpretable by only one rearrange-
ment. Otherwise, the transformation will be considered as an unknown rearrangement.

8.1.3 SVG document generation

After the syntactic analysis of scenarios and the construction of the (nearly) genome graph labeled
by rearrangements, all of this information is registered in graphic form in an SVG document.
In particular, a graphic version of the (nearly) genome graph and the genomes is generated in
the document. The document also registers spatial positions of genomes as well as all the steps
of transformations. Finally, sequencing and animating modules (explained in sections 8.2.2 and
8.2.3) are included in the document.

8.2 Rearrangement visualizer
The visualizer is the dynamic part of VIRAGE, which enables users to observe rearrangements as
animations thanks to a browser. It is divided in two modules: the sequencing and the animating

modules. The associated code is written in javascript.

123

Chapter 8. VIRAGE: an interactive tool for the visualization of rearrangement scenarios

Algorithm 10 Type of a rearrangement that transforms g; into g;11

1: if g; and g;11 have the same number of chromosomes then
2: if g; and g;41 differ from one chromosome then

3: it is a reversal

4: else

5: if g; and g;4; differ from two chromosomes then
6: it is a translocation

7 else

8: it is an unknown rearrangement

9: end if
10: end if
11: else

12: if g; has one chromosome more than in g;y; then
13: it is a fusion

14: else

15: if g; has one chromosome less than in g;;; then
16: it is a fission

17: else

18: it is an unknown rearrangement

19: end if
20: end if
21: end if

8.2.1 Interface
Description

The graphic interface includes a global control bar, the (nearly) genome graph and a space for
the representation of genomes. This space is divided in three parts: start and target genomes
are respectively represented at the left hand side and at the right hand side while middle space
is reserved for animated genomes. Figures 8.4, 8.5 and 8.6 show the three possible configurations
(cases 1 — 1, 1 —n and n-n) of the graphic interface.

[a0 Tw]

EIEEEE]
EIEIE

EREEEEE
EEEEEEE
ENEEE
ENEEE

Figure 8.4: Graphic interface for a 1 — 1 case.

124

8.2. Rearrangement visualizer

[«[amw >]w]

® O & ¢ o o o
o o o o

o o o o

Figure 8.5: Graphic interface for a 1 — n case.

(e W)

® & & o]

® @& & o o o

e & & o
I EEEAE A E] T EEEAEEE] 1 = | EOEEEIEE]
| I | | | [s |Co === s [| =]=)=
e |[e 07 [e][z 5 [e 7][e][=6 | |7 e e][=@
=] EEEE T
= [z = =] EIEEEIEIE] == IEIEIE]
(R
2 |[=1][=][=
6 =5 [e][][
25 |[30] % |[= El | ENE
= 1 =10] 1 z = 5 2 [| |
15 [R 10
B FEEEI
i [[E O EEE] I | I | | [
o[EET
| EIEEIEIE OO IEIEIEIEIE]
e |57 [05] | | NS S
= |[22 % = |[= | [= = ==
21 |[22 =0 |[= 27
Cnonos

Figure 8.6: Graphic interface for a n — 1 case.

Genome representation

A genome is visualized as a set of lines that correspond to distinct chromosomes. Each genome
marker is represented by a box colored according to its chromosome in the first starting genome.
The box contains the number and the sign of the marker. If centromere positions are known,
they are indicated by an ellipse shape, which contains the corresponding letter inside. Figure 8.7
shows an example of a starting genome without a centromere.

125

Chapter 8. VIRAGE: an interactive tool for the visualization of rearrangement scenarios

| N | N) I N || | |
L= ls 7 |[#= |56 |[so] =]fw |[" |
L= f[s f[=2]]=2][|

I | N | N) I | N | N | T

[22 |[43][3 |[12][25]
(6][86 (s |[52 [[=0 [[&0 f[&7 [[== [2 || -7 || 12 || = [][2= |

Figure 8.7: Graphic representation of a genome.

Control bar

The control bar is used to progress through scenarios. Various functionalities are available: step
by step or continuous reading, forward or backward; stopping; and directly going to start or end
genome(s). A graphic representation of the (nearly) genome graph is presented below the control
bar. The direction of edges are represented by the spatial position of their vertices: the graph is
read from left to right. The current displayed states of scenarios are indicated by vertices framed
in red circles. This graph is given as an informative guide and cannot be modified. An example
is presented figure 8.8.

KaooeE

Figure 8.8: Control bar and graphical representation of a genome graph.

8.2.2 Sequencing module

The sequencing module is a set of javascript functions that assures the running of scenarios
according to users’ instructions. In particular, this module permits:

- to update the genome graph display,
- to launch the animations,

- to control the dependency relationships between steps of scenarios: a transformation that
leads to a vertex can be realized only if all of its predecessor vertices are already reached.

8.2.3 Animating module

This module generates animations appropriate for each kind of rearrangements. The principle is
the same for all of the rearrangements: affected chromosomes are “extracted” from their initial
position and aligned according to exchanged markers if necessary. Finally, after the modification,

126

8.2. Rearrangement visualizer

chromosomes are replaced to their initial position. Figures 8.9 and 8.10 show animations for each
kind of rearrangements.

|| |

B | | |
RGO

CIEEIEIEIEIEIE]

IS | o | | |

E =]
(R [| | | | | |
3 0 |[7 2 |[73 |[7@]
I IEIEIEIEIEIE] -m. e e 7 e][|[=
COEIEEEIET = =z |[= [z |[= T
= | EIEIE]
[
=] | | | | | | |
T eI e
| I | I i | K
CEIEIEEIEIEIE] ‘§ o]]
EO I | |
[
6 7 8 5 4 El | B |
-14 -13 -12 -1 -10 L
S| I | i | K

5 - - E 24
I | e | = IEI) %
7 20 —

EEEIE 3
BN |
[B | I | | | I |
e |
-22 -21 -3 24
COCEOCEIEE I IETD e EIEEIEEE]
E | | | | | | [
0 o e e I T
14 -13 -12 11 -10 ;
= | S S o [
W@

O EIE I E I EIE] 180
EIET

| |

=]

1 2 3 1 0 | I | | |
5 [e 7][][

= |z =] 2 |2]E=E]EE]
M@ M@

Figure 8.9: Animations of a reversal (left) and a translocation (right).

127

Chapter 8. VIRAGE: an interactive tool for the visualization of rearrangement scenarios

T

@

=1

STl

Figure 8.10: Animations of a fusion (left) and a fission (right).

128

Conclusion

The subject of this thesis is in the general research domain of comparative genomics. More par-
ticularly, we were interested in the study of evolutionary events through genomic rearrangements
based on a combinatorial and algorithmic comparison of genomes. We developed original com-
putational methods, that advance the state of the art by, on one hand, overcoming limitations
of existing approaches and, on the other hand, by providing a complete and adapted framework
for a rearrangement study in distant genomes.

Theoretical contributions

Analyzing and understanding evolutionary events is a long and complex process. It first starts
with the identification of common markers between species, second requires the formulation of
hypothesis about ancestral genomes and third uncovers rearrangement scenarios. In this thesis,
we have contributed to these three questions in a computational way.

In an applicative framework, we were interested in distant genomes, for which existing methods
for identification of common markers do not perform well. In fact, a certain number of com-
putational methods already exist for identifying common markers, that can be either conserved
segments or synteny blocks. However, these methods, which are efficient for some genomes, do
not preserve sufficient signal for others so that a rearrangement study can be done. Thus, we were
led to develop a new method called SyDiG -Synteny in Distant Genomes- , which can be equally
applied to both close and distant genomes. Based on pairwise chromosomal homologies (i.e
multiplicons) provided by AdHoRe [VSS*02], SyDiG algorithm conserves all of the information
contained within the multiplicons in a graph and, from it, infers new homology relationships by
transitivity. Contrary to other approaches such as GRIMM-Synteny [PT03a, BPT04, BZB*05],
SyDiG algorithm does not filter input data but solves potential conflicts at the very end.

We also introduced the notion of super-blocks for identifying common ancestral features for
the general N-genome instance (N > 3). We started from the observation that, given the very
large number of equivalent solutions, providing one global architecture is misleading. That is why,
based on adjacency and rearrangement analysis under the signed permutation model of genomes,
we developed a new method that builds the sharing tree of super-blocks representing all the
possible sets of super-blocks. Each set of super-blocks is a set of reliable ancestral chromosomal
fragments whose extremities are unsolved adjacencies due to the lack of information. This
approach makes it possible to constitute the basics of the putative ancestral architecture and, by
combining super-blocks of a same set, to provide a global solution to the problem without any
phylogenetic consideration.

This thesis started by the detailed study of Hannenhalli and Pevzner theory [HP95a, HP95b]
and all the peripheral works on the computations of the rearrangement distance and parsimonious
scenarios. This study led us to propose a clear view of the main notions by providing a single and

129

Conclusion

coherent classification of interleaving graph components. This classification highlighted errors in
the algorithm for optimal capping proposed by Ozery-Flato and Shamir [OFS03], that it itself
part of the recovery of a parsimonious scenario in terms of reversals, translocations, fusions and
fissions. We thus pinpointed cases for which their algorithm fails and provided a new algorithm
for this step with a proof of its correction.

We were confronted with the fact that analyzing scenarios by reading successive permutations
is a quite laborious task. This kind of output data does not possess a high case of use for biol-
ogist experts. We thus developed a new tool called VIRAGE -VIsualization of ReArrangements
within GEnomes- that permits the interactive exploration of one or several scenario(s) between
two species or between one common ancestor and its descendants thanks to the genome graph.
Visually, each rearrangement mechanism among reversals, translocations, fusions and fissions is
clearly shown by isolating chromosomes on which it occurs and by dynamically applying it to
them.

Applicative contributions

Throughout this thesis, we were involved in Génolevures project [SDIT06|, a large-scale com-
parative genomics project studying species in the Hemiascomycetous yeast phylum. Génolevures
provided an ideal application domain, since the clade of species under study presented enough
synteny in order to identify common markers and therefore to apply computational methods for
ancestral analysis.

At the beginning of our work, we first attempted to use existing methods, in particular, for
the detection of common markers. However, current methods either revealed themselves to be
not suitable to this type of genomes, or were not available. Therefore, we had to go back to basis
and reconsider certain theoretical foundations. We thus have developed a complete framework
for genome rearrangement analysis starting with SyDiG for the identification of common mark-
ers, through the construction of super-blocks, up to the visualization of obtained scenarios by
VIRAGE.

All of the developed approaches were validated on a set of five completely sequenced yeasts from
the Saccharomycetacae clades: Kluyveromyces lactis, Saccharomyces kluyveri, Zygosaccharomyces
rouzii, Ashbya (Eremothecium) gossypii and Kluyveromyces thermotolerans.

Perspectives and future work

From the theoretical point of view, organisms represent very complex machineries that compu-
tational models do not totally manage yet to simulate. It is hence still required to refine existing
models by adding new biological constraints in order to provide more biologically realistic results.
SyDiG algorithm developed in this thesis computes synteny blocks that contain exactly one seg-
ment per genome by avoiding groups of homologous segments non-representative of all genomes
and by keeping only the longest segment in the case where more than one segment belongs to the
same genome. These filters are applied in order to obtain common markers that can easily be
translated in the usual model for genomes to perform current rearrangement methods. In fact,
two limitations are implicitly considered in a large part of the literature on rearrangements:

- duplication events are not taken into the account: each gene marker is present exactly once
in each genome;

- genomes have exactly the same gene content: insertions and deletions of genes are avoided.

130

In the same way, super-block construction leans on this standard genome model, that does
not take into account duplication, insertion and deletion events. Nevertheless, this model is not
appropriate for most genomes. In fact, while small genomes such as viruses or organelles may
be simulated by this model, divergent species notably those under study present different copies
of the same gene. Thus, it would be interesting to consider duplication events on one hand, and
to allow genomes with different gene contents on the other hand.

Some of current methods for ancestral reconstruction or distance computation have been al-
ready extended for taking into the account these biological considerations. Sankoff [San99] intro-
duced the ezemplar distance between two genomes based on the hypothesis that their common
ancestor has only one copy per family. Thus, the idea of the method consists in getting back
the best ancestral position of each gene by removing all but one member of each marker in each
genome, its exemplar, so as to minimize some rearrangement distance (breakpoint or reversal)
between the two reduced genomes. Another approach proposed by El-Mabrouk [EM02| consists
in finding, for one genome with multigene families, its ancestral genome without duplicates such
that the distance between them in terms of duplication transpositions and reversals is minimized.
These two approaches were used to recover ancestral nodes of a species tree [EM00a, EM02] and
we can imagine applying a similar approach during super-block construction.

El-Mabrouk and Sankoff were also interested in comparing genomes with different gene con-
tents. The former in [EMO00b| extended the Hannenhalli and Pevzner theory [HP95a| by includ-
ing insertions and deletions of gene blocks in the computation of rearrangement distance. As
for Sankoff and colleagues [SB97|, they adapted the TSP resolution of the median problem for
genomes for which sets of genes differ in very few genes. Our super-block construction builds a
bridge between breakpoint and rearrangement distances and methods proposed by El-Mabrouk
and Sankoff may provide a strong basis in order to extend our algorithms.

Finally, we propose an approach for identifying common ancestral features for the general,
N-genome instance, through the computation of super-blocks. This computation is a particular
instance of species tree reconstruction by considering a N-star as the target tree. The continua-
tion of our work is to solve, for a set of modern genomes, the whole reconstruction of the species
tree by recovering the root and internal nodes. Two approaches can be considered.

(1) Without phylogenetic consideration: computational inference of species trees can be done
through the resolution of the well-studied multiple genome rearrangement problem [SSK96,
HCKP95] by optimizing Steiner points [HRW92];

(2) With phylogenetic consideration: the root node of the species tree is initialized to super-
blocks of the N-genome instance resolution. Then given a phylogenetic tree, super-block
inference of internal nodes is solved by combining information from leaves that correspond
to modern genomes and root node. The bias potentially induced by allowing phylogenetic
considerations in species tree reconstruction is reduced by the fact that root node is initially
computed without this kind of information.

Biological applications of this work can be extended to other clades. In fact, although the
SyDiG and super-blocks algorithms were developed in the context of the Génolevures project,
these methods are general enough to be applied to other species. From the applicative point
of view, it is important to apply these methods to various types of genomes. For example, it
would be pertinent to test the scalability of our methods on the Drosophila twelve [SLKT07].
Moreover, the sequences of five species phylogenetically close to the yeast Candida glabrata will
be soon available in the Génolevures project. Other than the scientific interest in the validation
of our methods on other species, a complete rearrangement study for these organisms would be

131

Conclusion

of medical interest, since Candida glabrata is a human pathogen, that is at the origin of diseases
such as Candidemia when it infects the bloodstream.

132

Bibliography

[AGM*90]

[ASO8]

[BBCPO7|

[BBS97]

[BCHSO02]

[Ber01]

[BHI6]

[BLWT6]

[BMW]

[BMY01]

[BP93]

[BPYS]|

[BP02]

S.F. Altschul, W. Gish, W. Miller, EEW. Myers, and D.J. Lipman. Basic local
alignment search tool. J Mol Biol, 215(3):403-410, October 1990.

Z. Adam and D. Sankoff. The ABCs of MGR with DCJ. Ewolutionary Bioinfor-
matics, 4:69-74, 2008.

S. Berard, A. Bergeron, C. Chauve, and C. Paul. Perfect Sorting by Reversals Is
Not Always Difficult. IEEE/ACM Trans. Comput. Biol. Bioinformatics, 4(1):4-16,
2007.

M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint phylogenies. In Genome
Informatics, pages 25-34. Univ. Academy Press, 1997.

A. Bergeron, C. Chauve, T. Hartman, and K. Saint-Onge. On the properties of
sequences of reversals that sort a signed permutation. JOBIM, pages 99-108, 2002.

A. Bergeron. A Very Elementary Presentation of the Hannenhalli-Pevzner Theory.
Lecture Notes in Computer Science, 2089:106-117, 2001.

P. Berman and S. Hannenhalli. Fast Sorting by Reversal. In D. S. Hirschberg and
E. W. Myers, editors, Proceedings of the7th Annual Symposium on Combinatorial
Pattern Matching, pages 168-185, Laguna Beach, CA, 1996. Springer-Verlag, Berlin.

N.L. Biggs, E.K. LLoyd, and R.J. Wilson. Graph Theory 1736-1936. Clarendon
Press, 1976.

D.A. Bader, B.M.E. Moret, T. Warnow, S.K. Wyman, and M. Yan. GRAPPA
(Genome Rearrangements Analysis under Parsimony and other Phylogenetic Algo-
rithms). www.cs.unm.edu/ moret/GRAPPA/.

D. A. Bader, B. M.E. Moret, and M. Yan. A Linear-Time Algorithm for Comput-
ing Inversion Distance between Signed Permutations with an Experimental Study.
Journal of Comp. Biol., 8(5):483-491, 2001.

V. Bafna and P. Pevzner. Genome Rearrangements and Sorting by Reversals. 34th
IEEE Symp. on foundations of Computer Science, pages 148-157, 1993.

V. Bafna and P. Pevzner. Sorting by Transpositions. SIAM J. Discret. Math.,
11(2):224-240, 1998.

G. Bourque and P. Pevzner. Genome-Scale Evolution: Reconstructing Gene Orders
in the Ancestral Species. Genome Research, 12:26-36, 2002.

133

Bibliography

[BPTO4]

[Bry98|

[BSO1]

[BSR*08]

[BTPO6]

[BZB*05]

[Cap99]

[Cap03]

[CNNF00]

[Con08]

[CPB+03)

[DMBP04]

[Do090]

[DS38]

134

G. Bourque, P. Pevzner, and G. Tesler. Reconstructing the genomic architecture
of ancestral mammals: Lessons from human, mouse and rat genomes. Genome

Research, 2004.

D. Bryant. The complexity of the breakpoint median problem. Technical Report
CRM2579, Centre de Recherches Mathematiques, Universite de Montreal, 1998.

A. Bergeron and F. Strasbourg. Experiments in Computing Sequences of Reversals.
In WABI ’01: Proceedings of the First International Workshop on Algorithms in
Bioinformatics, pages 164-174, London, UK, 2001. Springer-Verlag.

A. Bhutkar, S'W.W. Schaeffer, S.M.M. Russo, M. Xu, T.F.F. Smith, and
W.M.M. Gelbart. Chromosomal rearrangement inferred from comparisons of twelve
Drosophila genomes. Genetics, July 2008.

G. Bourque, G. Tesler, and P. Pevzner. The convergence of cytogenetics and
rearrangement-based models for ancestral genome reconstruction. Genome Re-
search, 16(3):311-313, 2006.

G. Bourque, E.M. Zdobnov, P. Bork, P. Pevzner, and G. Tesler. Comparative
architectures of mammalian and chicken genomes reveal highly variable rates of

genomic rearrangements across different lineages. Genome Research, 15(1):98-110,
2005.

A. Caprara. Formulations and Complexity of Multiple Sorting by Reversals. In
S. Istrail, P. Pevzner, and M. Waterman, editors, In Proc. of RECOMBY9, pages
84-93, Lyon, 1999. acmp.

A. Caprara. The Reversal Median Problem. INFORMS Journal on Computing,
15(1):93-113, 2003.

Seoighe C., Federspiel N.J.T., Hansen N., Bivolarovic V., Surzycki R., Tamse R.,
Komp C., Huizar L., Davis R.W., Scherer S., Tait E., Shaw D.J., Harris D., Mur-
phy L., Oliver K., Taylor K., Rajandream M.A., Barrell B.G., and Wolfe K.H.
Prevalence of small inversions in yeast gene order evolution. In Proc Natl Acad Sci,
volume 97, pages 14433-14437, 2000.

The UniProt Consortium. The Universal Protein Resource (UniProt). Nucleic Acids
Research Database Issue, 2008.

O. Couronne, A. Poliakov, N. Bray, T. Ishkhanov, D. Ryaboy, E. Rubin, L. Pachter,
and I. Dubchak. Strategies and tools for whole-genome alignments. Genome Res.,
13(1):73-80, 2003.

A.C.E. Darling, B. Mau, F.R. Blattner, and N.T Perna. Mauve: Multiple alignment
of conserved genomic sequence with rearrangements. Genome Res., 14(7):1394—
1403, 2004.

R.F. Doolittle. Molecular evolution: computer analysis of protein and nucleic acid
sequences. Meth Enzymol, 183, 1990.

T. Dobzhansky and A. H. Sturtevant. Inversions in the chromosomes of drosophila
pseudoobscura. Genetics, 23(1):28-64, 1938.

[DS+04]

[Dujo6]

[EDO02]

[EHO5]

[EMO00al

[EMOOD)

[EMO02]

[EMS03]

[Eri07]

[FCG+06]

[Fig04]

[Fit71]

[FNS96]

[GJ79]

[GNS0S]

B. Dujon, D. Sherman, et al. Genome evolution in yeasts. Nature, 430(6995):35—44,
2004.

B. Dujon. Yeasts illustrate the molecular mechanisms of eukaryotic genome evolu-
tion. Trends in Genetics, 22:375-387, 2006.

A.J. Enright, S. Van Dongen, and C.A. Ouzounis. An efficient algorithm for large-
scale detection of protein families. Nucleic Acids Res., 30:1575-1584, 2002.

I. Elias and T. Hartman. A 1.375-Approximation Algorithm for Sorting by Transpo-
sitions. In Proc. of the 5th International Workshop on Algorithms in Bioinformat-
ics (WABI'05), volume 3692 of Lecture Notes in Computer Science, pages 204-214.
Springer-Verlag, October 2005.

N. El-Mabrouk. Duplication, rearrangement and reconciliation. Computational
Biology Series, 1:537-550, 2000.

N. El-Mabrouk. Sorting signed permutations by reversals and insertions/deletions
of contiguous segments. J. Discrete Algorithms, 1(1):105-122, 2000.

N. El-Mabrouk. Reconstructing an ancestral genome using minimum segments
duplications and reversals. J. Comput. Syst. Sci., 65(3):442-464, 2002.

N. El-Mabrouk and D. Sankoff. The construction of doubled genomes. SIAM J.
Comput., 32(3):754-792, 2003.

N. Eriksen. Reversal and transposition medians. Theoretical Computer Science,
374(1-3):111-126, 2007.

L. Froenicke, M.G. Caldés, A. Graphodatsky, S. Miiller, L.A. Lyons, T.J. Robinson,
M. Volleth, F. Yang, and J. Wienberg. Are molecular cytogenetics and bioinfor-
matics suggesting diverging models of ancestral mammalian genomes? Genome
Research, 16(3):306-310, 2006.

M. Figeac. Etude de l'ordre des génes : clusters de génes et algorithmique des
réarrangements. Thése en informatique, Université des Sciences et Technologies de
Lille, 2004.

W.M. Fitch. Toward defining the course of evolution: Minimum change for a spec-
ified tree topology. Syst Zool, 20:406-416, 1971.

V. Ferretti, J.H. Nadeau, and D. Sankoff. Original synteny. In CPM ’96: Proceedings
of the Tth Annual Symposium on Combinatorial Pattern Matching, pages 159-167,
London, UK, 1996. Springer-Verlag.

M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory of
NP-Completeness. W.H. Freeman & Co, 1979.

A. Goéffon, M. Nikolski, and D. Sherman. An Efficient Probabilistic Population-
Based Descent for the Median Genome Problem. In Proceedings of GECCO 2008,
pages 315-321, 2008.

135

Bibliography

[HAB+07]

[Han96]

[HCKP95)

[HP95a]

[HP95D)

[HRW92]

[HS03]

[TNO7]

[JSN]

[KBH*03]

[KBH*04]

[KBLO4]

[KR95|

[KS93]

136

T.J.P. Hubbard, B.L. Aken, K. Beal, B. Ballester, M. Caccamo, Y. Chen, L. Clarke,
G. Coates, F. Cunningham, T. Cutts, et al. Ensembl 2007. Nucleic Acids Res., 35,
Database issue:D610-D617, 2007.

S. Hannenhalli. Polynomial-time algorithm for computing translocation distance
between genomes. Discrete Applied Mathematics 71(1-3), pages 137-151, 1996.

S. Hannenhalli, C. Chappey, E. Koonin, and P. Pevzner. Genome sequence compar-
ison and scenarios for gene rearrangements: a test case. Genomics, 30(2):299-311,
1995.

S. Hannenhalli and P. Pevzner. Transforming cabbage into turnip (polynomial
algorithm for sorting signed permutations by reversals). Proceedings of twenty-
Seventh Annual ACM Symposium on Theory of Computing, pages 178-189, 1995.

S. Hannenhalli and P. Pevzner. Transforming men into mice (polynomial algo-
rithm for genomic distance problem). In FOCS ’95: Proceedings of the 36th Annual
Symposium on Foundations of Computer Science, pages 581-592, 1995.

F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. Annals of
Discrete Mathematics, 53, 1992.

T. Hartman and R. Shamir. A Simpler 1.5-Approximation Algorithm for Sorting
by Transpositions. In CPM, pages 156-169, 2003.

G. Jean and M. Nikolski. Genome rearrangements: a correct algorithm for optimal
capping. Inf. Process. Lett., 104(1):14-20, 2007.

G. Jean, D. Sherman, and M. Nikolski. Super-blocks or mining the semantics of
ancestral genome architectures. JCB. submitted.

W. J. Kent, R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler. Evolution’s caul-
dron: duplication, deletion, and rearrangement in the mouse and human genomes.
Proc Natl Acad Sci U S A, 100(20):11484-11489, September 2003.

W.J. Kent, R. Baertsch, A. Hinrichs, W. Miller, and D. Haussler. Evolution’s caul-
dron: Duplication, deletion and rearrangement in the mouse and human genomes.
Proc. Nat. Acad. Sci., 100(20):11484-9, 2004.

M. Kellis, B.W. Birren, and E.S. Lander. Proof and evolutionary analysis of ancient
genome duplication in the yeast Saccharomyces cerevisiae. Nature, 428:617-624,
2004.

J. Kececioglu and R. Ravi. Of Mice and Men: Algorithms for Evolutionary Dis-
tances Between Genomes with Translocation. In SODA: ACM-SIAM Symposium
on Discrete Algorithms (A Conference on Theoretical and Experimental Analysis of
Discrete Algorithms), 1995.

J.D. Kececioglu and D. Sankoff. Exact and Approximation Algorithms for the
Inversion Distance Between Two Chromosomes. In CPM, pages 87-105, 1993.

[KST97]

[LEMTS03]

[LQWZ04]

[LSO8]

[MRL*07]

[MRR*08]

[MSTLO2]

[MTL02]

[MTWW02|

[MWB01]

[MZS+06]

[NS07]

[NT84]

H. Kaplan, R. Shamir, and R.E. Tarjan. Faster and Simpler Algorithm for Sorting
Signed Permutations by Reversals. In SODA: ACM-SIAM Symposium on Discrete
Algorithms (A Conference on Theoretical and Ezxperimental Analysis of Discrete

Algorithms), 1997.

J.F. Lefebvre, N. El-Mabrouk, E. Tillier, and D. Sankoff. Detection and validation
of single gene inversions. In ISMB (Supplement of Bioinformatics), pages 190-196,
2003.

G. Li, X. Qi, X. Wang, and B. Zhu. A Linear-Time Algorithm for Computing
Translocation Distance between Signed Genomes. In CPM, pages 323-332, 2004.

C. Lemaitre and M.-F. Sagot. A small trip in the untranquil world of genomes.
Theor. Comput. Sci., 395(2-3):171-192, 2008.

N. Martin, E. Ruedi, R. LeDuc, F.-J. Sun, and G. Caetano-Anollés. Gene-
interleaving patterns of synteny in the saccharomyces cerevisiae genome: are they
proof of an ancient genome duplication event? Biology Direct, 2(1):23, 2007.

J. Ma, A. Ratan, B.J.J. Raney, B.B.B. Suh, L. Zhang, W. Miller, and D. Haussler.
DUPCAR: Reconstructing Contiguous Ancestral Regions with Duplications. Jour-
nal of computational biology : a journal of computational molecular cell biology,
September 2008.

B.M.E. Moret, A.C. Siepel, J. Tang, and T. Liu. Inversion medians outperform
breakpoint medians in phylogeny reconstruction from gene-order data. In WABI ’02:
Proceedings of the Second International Workshop on Algorithms in Bioinformatics,
pages 521-536. Springer-Verlag, 2002.

B. Ma, J. Tromp, and M. Li. Patternhunter: Faster and more sensitive homology
search. Bioinformatics, 18(3):440-5, 2002.

B.M.E. Moret, J. Tang, I.. Wang, and Y. Warnow. Steps toward accurate recon-
structions of phylogenies from gene-order data. J. Comput. Syst. Sci, 65:508-525,
2002.

B.M.E. Moret, S. Wyman, D.A. Bader, T. Warnow, and M. Yan. A new imple-
mentation and detailed study of breakpoint analysis. In Proc. 6th Pacific Symp. on
Biocomputing (PSB 2001), pages 583-594. World Scientific Pub., 2001.

J. Ma, L. Zhang, B. Suh, B. Raney, R. Burhans, W.J. Kent, and M. Blanchette.
Reconstructing Contiguous Regions of an Ancestral Genome. Genome Research,
16(12):1557-1565, December 2006.

M. Nikolski and D. Sherman. Family relationships: should consensus reign? -
consensus clustering for protein families. Bioinformatics, 23(2):71-76, 2007.

J.H. Nadeau and B.A. Taylor. Lengths of Chromosomal Segments Conserved since
Divergence of Man and Mouse. Proceedings of the National Academy of Sciences of
the United States of America, Vol. 81, No. 8, [Part 1: Biological Sciences], pages
814-818, 1984.

137

Bibliography

[NW70]

[OF03]

[OFS03]

[OFS06]

[PHSS]

[PPT06]

[PS98]

[PT03a)]

[PTO3D]

[PT03c|

[RAS06]

[San92]

[San99)

[San06]

[SB97|

[SBYS]

138

S.B. Needleman and C.D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443-453,
March 1970.

M. Ozery-Flato. A Correction to the Theory of Sorting Genomes by Reversals and
Translocations. Master’s thesis, Tel-Aviv university, June 2003.

M. Ozery-Flato and R. Shamir. Two Notes On Genome Rearrangement. J. Bioin-
formatics Comput. Biol., 1(1):71-94, 2003.

M. Ozery-Flato and R. Shamir. Sorting by Translocations Via Reversals Theory.
In Comparative Genomics, pages 87-98, 2006.

J.D. Palmer and L.A. Herbon. Plant mitochondrial DNA evolves rapidly in struc-
ture, but slowly in sequence. Journal of Molecular Evolution, 28:87-97, 1988.

Q. Peng, P. Pevzner, and G. Tesler. The fragile breakage versus random breakage
models of chromosome evolution. PLoS Comp. Bio., 2006.

I. Pe’er and R. Shamir. The median problems for breakpoints are NP-complete.
Electronic Colloguium on Computational Complezity (ECCC), 5(071), 1998.

P. Pevzner and G. Tesler. Genome rearrangements in mammalian evolution: Lessons
from human and mouse genomes. Genome Research, 2003.

P. Pevzner and G. Tesler. Human and mouse genomic sequences reveal extensive
breakpoint reuse in mammalian evolution. PNAS, 100(13):7672-7677, June 2003.

P. Pevzner and G. Tesler. Transforming men into mice: the Nadeau-Taylor chro-
mosomal breakage model revisited. In RECOMB, pages 247-256, 2003.

M. Rocchi, N. Archidiacono, and R. Stanyon. Ancestral genomes reconstruction :
An integrated, multi-disciplinary approach is needed. Genome Research, In Press,
2006.

D. Sankoff. Edit Distance for Genome Comparison Based on Non-Local Operations.
In Proc. Third Ann. Symp. Combinatorial Pattern Matching (CPM’92), pages 121
135, 1992.

D. Sankoff. Genome rearrangement with gene families. Bioinformatics, 15(11):909—
917, 1999.

D. Sankoff. The signal in the genomes. PLoS Comp. Biol., 2(4):€25, 2006.

D. Sankoff and M. Blanchette. The Median Problem for Breakpoints in Compar-
ative Genomics. In COCOON ’97: Proceedings of the Third Annual International
Conference on Computing and Combinatorics, pages 251-264, London, UK, 1997.
Springer-Verlag.

D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint
phylogeny. Journal of Computational Biology, 5(3):555-560, 1998.

[SCL6]

[SDI*06]

[Sel74]

[SHG04]

[Sie02]

[SISVO8]

[SKS+04]

[SLK*07]

[SM97]

[SMO1]

[SSK96]

[STO5]

ISVGOL]

D. Sankoff, R.J. Cedergren, and G. Lapalme. Frequency of insertion-deletion,
transversion, and transition in the evolution of 5s ribosomal RNA. J. Mol. Evol.,
7:133-149, 1976.

D. Sherman, P. Durrens, F. Iragne, E. Beyne, M. Nikolski, and J.-L. Souciet.
Génolevures complete genomes provide data and tools for comparative genomics of
hemiascomycetous yeasts. Nucleic Acids Research, 34:D432-D435, January 2006.

P.H. Sellers. An Algorithm for the Distance Between Two Finite Sequences. J.
Comb. Theory, Ser. A, 16(2):253-258, 1974.

A.F.A. Smit, R. Hubley, and P. Green. RepeatMasker open-3.0. http://www.
repeatmasker.org, 1996-2004.

A. Siepel. An algorithm to find all sorting reversals. RECOMB’02, pages 281-290,
2002.

C. Simillion, K. Janssens, L. Sterck, and Y. Van de Peer. i-ADHoRe 2.0: An im-
proved tool to detect degenerated genomic homology using genomic profiles. Bioin-
formatics, 24:127-8, 2008.

S. Schwartz, W.J. Kent, A. Smit, Z. Zhang, R. Baertsch, R.C. Hardison, D. Haus-
sler, and W. Miller W. Human-mouse alignments with BLASTZ. Genome Res.,
14(4), 2004.

A. Stark, M.F. Lin, P. Kheradpour, J.S. Pedersen, L. Parts, J.W. Carlson, M.A.
Crosby, M.D. Rasmussen, S. Roy, A.N. Deoras, J.G. Ruby, J. Brennecke, Har-
vard FlyBase curators, Berkeley Drosophila Genome Project, E. Hodges, A.S. Hin-
richs, A. Caspi, B. Paten, S.-W. Park, M.V. Han, M.L.. Maeder, B.J. Polansky,
B.E. Robson, S. Aerts, J. van Helden, B. Hassan, D.G. Gilbert, D.A. Eastman,
M. Rice, M. Weir, M.W. Hahn, Y. Park, C.N. Dewey, L. Pachter, W.J. Kent,
D. Haussler, E.C. Lai, D.P. Bartel, G.J. Hannon, T.C. Kaufman, M.B. Eisen, A.G.
Clark, D. Smith, S.E. Celniker, W.M. Gelbart, and M. Kellis. Discovery of func-
tional elements in 12 Drosophila genomes using evolutionary signatures. Nature,
450(7167):219-232, 2007.

J.S. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.
PWS Publishing, 1997.

A.C. Siepel and B.M.E. Moret. Finding an optimal inversion median: experimental
results. In In Proc. 1st Workshop on Algs. in Bioinformatics WABI 2001, pages
189-203. Springer-Verlag, 2001.

D. Sankoff, G. Sundaram, and J. D. Kececioglu. Steiner points in the space of
genome rearrangements. International Journal of Foundations of Computer Science,
7(1):1-9, 1996.

D. Sankoff and P. Trinh. Chromosomal breakpoint reuse in genome sequence rear-
rangement. J Comput Biol, 12(6):812-821, 2005.

Scalable Vector Graphics (SVG) 1.0 Specification, September 2001. http://www.
w3.org/TR/2001/REC-SVG-20010904/.

139

Bibliography

[SVSP04]

[SW8I]

[Tes02a]

[Tes02b]

[Tes04]

[TMS04]

[TS04]

[TT76]

[VSS+02]

[Wil93]
[WLTB*02]

140

C. Simillion, K. Vandepoele, Y. Saeys, and Y.V.D. Peer. Building genomic profiles
for uncovering segmental homology in the twilight zone. Genome Res., 14(6):1095—
106, 2004.

T.F. Smith and M.S. Waterman. Identification of common molecular subsequences.
J Mol Biol, 147(1):195-197, March 1981.

G. Tesler. Efficient algorithms for multichromosomal genome rearrangements. J.
Comput. Syst. Sci., 65(3):587-609, 2002.

G. Tesler. GRIMM: genome rearrangements web server. Bioinformatics, 18(3):492—
493, 2002.

G. Tesler. Human-mouse-rat alignments. http://nbcr.sdsc.edu/GRIMM/HMR_
Aug2003/, 2004.

P. Trinh, A. Mclysaght, and D. Sankoff. Genomic features in the breakpoint regions
between syntenic blocks. Bioinformatics, 20(1):318-325, 2004.

E. Tannier and M.-F. Sagot. Sorting by reversals in subquadratic time. In Proceed-
mgs of CPM, pages 1-13, 2004.

R. Tarjan and A. Trojanowski. Finding a maximum independent set. Technical
Report CS-TR-76-550, Stanford University, USA, 1976.

K. Vandepoele, Y. Saeys, C. Simillion, J. Raes, and Y. Van de Peer. The Automatic
Detection of Homologous Regions (ADHoRe) and Its Application to Microcolinear-
ity Between Arabidopsis and Rice. Genome Research, 12(11):1792-1801, 2002.

D. G. Wilkinson. In Situ Hybridization: A Practical Approach. TRL Press, 1993.

R. H. Waterston, K. Lindblad-Toh, E. Birney, J. Rogers, J. F. Abril, P. Agar-
wal, R. Agarwala, R. Ainscough, M. Alexandersson, P. An, S. E. Antonarakis,
J. Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, B. Birren,
T. Bloom, P. Bork, M. Botcherby, N. Bray, M. R. Brent, D. G. Brown, S. D.
Brown, C. Bult, J. Burton, J. Butler, R. D. Campbell, P. Carninci, S. Caw-
ley, F. Chiaromonte, A. T. Chinwalla, D. M. Church, M. Clamp, C. Clee, F. S.
Collins, L. L. Cook, R. R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen,
T. Cutts, M. Daly, R. David, J. Davies, K. D. Delehaunty, J. Deri, E. T. Dermitza-
kis, C. Dewey, N. J. Dickens, M. Diekhans, S. Dodge, I. Dubchak, D. M. Dunn, S. R.
Eddy, L. Elnitski, R. D. Emes, P. Eswara, E. Eyras, A. Felsenfeld, G. A. Fewell,
P. Flicek, K. Foley, W. N. Frankel, L. A. Fulton, R. S. Fulton, T. S. Furey, D. Gage,
R. A. Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. Gratham, T. A.
Graves, E. D. Green, S. Gregory, R. Guigd, M. Guyer, R. C. Hardison, D. Haussler,
Y. Hayashizaki, L. W. Hillier, A. Hinrichs, W. Hlavina, T. Holzer, F. Hsu, A. Hua,
T. Hubbard, A. Hunt, I. Jackson, D. B. Jaffe, L. S. Johnson, M. Jones, T. A.
Jones, A. Joy, M. Kamal, E. K. Karlsson, D. Karolchik, A. Kasprzyk, J. Kawali,
E. Keibler, C. Kells, W. J. Kent, A. Kirby, D. L. Kolbe, I. Korf, R. S. Kucherlapati,
E. J. Kulbokas, D. Kulp, T. Landers, J. P. Leger, S. Leonard, I. Letunic, R. Levine,
J. Li, M. Li, C. Lloyd, S. Lucas, B. Ma, D. R. Maglott, E. R. Mardis, L. Matthews,
E. Mauceli, J. H. Mayer, M. McCarthy, W. R. McCombie, S. McLaren, K. McLay,

[WS97]

[WSO*05]

[WZLMO5]

[YAFO05]

ZZAS08]

J. D. McPherson, J. Meldrim, B. Meredith, J. P. Mesirov, W. Miller, T. L. Miner,
E. Mongin, K. T. Montgomery, M. Morgan, R. Mott, J. C. Mullikin, D. M. Muzny,
W. E. Nash, J. O. Nelson, M. N. Nhan, R. Nicol, Z. Ning, C. Nusbaum, M. J.
O’Connor, Y. Okazaki, K. Oliver, E. Overton-Larty, L. Pachter, G. Parra, K. H.
Pepin, J. Peterson, P. Pevzner, R. Plumb, C. S. Pohl, A. Poliakov, T. C. Ponce,
C. P. Ponting, S. Potter, M. Quail, A. Reymond, B. A. Roe, K. M. Roskin, E. M.
Rubin, A. G. Rust, R. Santos, V. Sapojnikov, B. Schultz, J. Schultz, M. S. Schwartz,
S. Schwartz, C. Scott, S. Seaman, S. Searle, T. Sharpe, A. Sheridan, R. Shownkeen,
S. Sims, J. B. Singer, G. Slater, A. Smit, D. R. Smith, B. Spencer, A. Stabenau,
N. Stange-Thomann, C. Sugnet, M. Suyama, G. Tesler, J. Thompson, D. Torrents,
E. Trevaskis, J. Tromp, C. Ucla, A. Ureta-Vidal, J. P. Vinson, A. C. Von Nieder-
hausern, C. M. Wade, M. Wall, R. J. Weber, R. B. Weiss, M. C. Wendl, A. P. West,
K. Wetterstrand, R. Wheeler, S. Whelan, J. Wierzbowski, D. Willey, S. Williams,
R. K. Wilson, E. Winter, K. C. Worley, D. Wyman, S. Yang, S. P. Yang, E. M.
Zdobnov, M. C. Zody, and E. S. Lander. Initial sequencing and comparative analysis
of the mouse genome. Nature, 420(6915):520-562, December 2002.

K. Wolfe and D. Shields. Molecular evidence for an ancient duplication of the entire
yeast genome. Nature, 387(6634):708-713, 1997.

M.T. Walter, C. Sobrinho, T.G. Oliveira, S. Soares, G. Oliveira, E.S. Martins, and
M. Fonseca. Improving the algorithm of Bafna and Pevzner for the problem of

sorting by transpositions : a practical approach. Journal of Discrete Algorithms,
3(2-4):342-361, 2005.

L. Wang, D. Zhu, X. Liu, and S. Ma. An O(N2) algorithm for signed translocation
problem. In APBC, pages 349-358, 2005.

S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic per-

mutations by translocation, inversion and block interchange. Bioinformatics,
21(16):3340-3346, 2005.

C. Zheng, Q. Zhu, Z. Adam, and D. Sankoff. Guided genome halving: hardness,
heuristics and the history of the Hemiascomycetes. Bioinformatics, 24:96-104, 2008.

141

