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RésuméMéthodes in sili
o pour l'étude des réarrangements génomiques : del'identi�
ation de marqueurs 
ommuns à la re
onstru
tion an
estrale.L'augmentation du nombre de génomes totalement séquen
és rend de plus en plus e�
a
e l'étudedes mé
anismes évolutifs à partir de la 
omparaison de génomes 
ontemporains. L'un des prin-
ipaux problèmes réside dans la re
onstru
tion d'ar
hite
tures de génomes an
estraux plausiblesa�n d'apporter des hypothèses à la fois sur l'histoire des génomes existants et sur les mé
an-ismes de leur formation. Toutes les méthodes de re
onstru
tion an
estrale ne 
onvergent pasné
essairement vers les mêmes résultats mais sont toutes basées sur les trois mêmes étapes :l'identi�
ation de marqueurs 
ommun dans les génomes 
ontemporains, la 
onstru
tion de 
artes
omparatives des génomes, et la ré
on
iliation de 
es 
artes en utilisant le 
ritère de par
imoniemaximum.La quantité importante des données à analyser né
essite l'automatisation des traitements etrésoudre 
es problèmes représente de formidables 
hallenges 
omputationnels. A�ner les modèleset outils mathématiques existants par l'ajout de 
ontraintes biologiques fortes rend les hypothèsesétablies biologiquement plus réalistes.Dans 
ette thèse, nous proposons une nouvelle méthode permettant d'identi�er des marqueurs
ommuns pour des espè
es évolutivement distantes. Ensuite, nous appliquons sur les 
artes 
om-paratives re
onstituées une nouvelle méthode pour la re
onstru
tion d'ar
hite
tures an
estralesbasée sur les adja
en
es entre les marqueurs 
al
ulés et les distan
es génomiques entre les génomes
ontemporains. En�n, après avoir 
orrigé l'algorithme existant permettant de déterminer uneséquen
e optimale de réarrangements qui se sont produits durant l'évolution des génomes exis-tants depuis leur an
être 
ommun, nous proposons un nouvel outil appelé VIRAGE qui permetla visualisation animée des s
énarios de réarrangements entre les espè
es.Mots-
lés: génome an
estral, génomique 
omparative, réarrangement, point de 
assure, per-mutation
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Abstra
tIn sili
o methods for genome rearrangement analysis: from identi�
ation of
ommon markers to an
estral re
onstru
tionThe in
rease in the number of entirely sequen
ed genomes makes in
reasingly a

urate thestudy of the me
hanisms of evolution through the 
omparison of 
ontemporary genomes. Oneof the main problems is to re
onstru
t plausible an
estral genome ar
hite
ture, whi
h furnisheshypotheses about both the history of 
ontemporary genomes and the general me
hanisms of theirformation. While not all methods for the an
estral re
onstru
tion ne
essarily 
onverge towardsthe same results, they are all based on the same three steps: identi�
ation of 
ommon markers in
ontemporary genomes, 
onstru
tion of 
omparative maps for these genomes, and re
on
iliationof these maps under a maximum parsimony 
riterion.The quantity of data that must be analyzed requires the automation of pro
essing and meet-ing these needs indu
es great 
omputational 
hallenges. Through re�nement of 
omputationalmodels and methods, we 
an obtain more biologi
ally relevant hypotheses by adding biologi
al
onstraints.In this thesis, we propose a new method for the identi�
ation of 
ommon markers to 
onstru
t
omparative maps for evolutionary distant genomes. Next, we apply a new method of an
estralgenome re
onstru
tion based on adja
en
ies of synteny markers and genomi
 distan
es between
ontemporary genomes. Finally, after 
orre
ting the existing algorithm for 
omputing an optimalsequen
e of rearrangements that o

ured during the evolution of modern genomes from their
ommon an
estor, we propose a new tool 
alled VIRAGE that permits the animated visualizationof rearrangement s
enarios between spe
ies.Keywords: an
estral genome, 
omparative genomi
s, rearrangements, breakpoints, permuta-tion
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Introdu
tionGeneti
s is a �eld of biology that today aims in large part to explain the ma
hinery and fun
-tioning of spe
ies through the study of their geneti
 information. Understanding the fun
tionand evolutionary pro
esses that a
t on genomes enables s
ientists to provide s
ienti�
 answersand, ultimately, new medi
al or therapeuti
 solutions to diseases.A useful way to understand the stru
ture and evolutionary history of a genome is to 
ompareit to other ones. While 
omparative genomi
s is still a young �eld, it is 
urrently undergoing a
onsiderable expansion due notably to the advent of large s
ale sequen
ing. The huge amountof data available in sequen
ed genomes makes 
omputational approa
hes essential so that theanalyzes 
an be automated and performed on a large s
ale.In parti
ular, in sili
o methods are applied to study evolutionary relationships among spe
ies.A major problem 
onsists in measuring evolution within a set of spe
ies of interest by determiningthe sequen
e of evolutionary events that make one genome evolve from another.Evolutionary events are traditionally 
hara
terized by mutations. Di�erent levels of mutations
an be observed. The most 
ommonly studied are 
alled pun
tual mutations that modify thenu
leotidi
 
omposition of the genome. Study of this me
hanism led to the de�nition of an editdistan
e for genome sequen
es [Doo90℄. However, 
onsidering only gene-level mutations doesnot provide su�
ient 
lues for inferring evolutionary history between spe
ies. In fa
t, Palmerand Herbon observed in 1988 [PH88℄ that the major part of genes within Brassi
a oleara
ea andBrassi
a 
ampestri are identi
al up to 99% but their genomes di�er in their size and gene order.Large-s
ale mutations that involve 
hanging the relative order of large segments of DNA, enablewhole genome 
omparison. These global mutations 
alled genomi
 rearrangements 
onstituteanother approa
h to study evolutionary events. This �eld was pioneered by works of Dobzhanskyand Sturtevant [DS38℄ in 1930's. Sin
e the beginning of the nineties, the interest in the study ofgenomi
 rearrangements has in
reased 
onsiderably.In this thesis, we study evolutionary events through genomi
 rearrangements based on a 
ombi-natorial and algorithmi
 
omparison of genomes. Several 
hallenges arise in the study of genomi
rearrangements. Those addressed in this thesis are presented below.Rearrangement distan
es and parsimonious s
enariosWhile pun
tual mutations a
t on a single nu
leotide base by insertion, deletion or substitution,genomi
 rearrangements modify the order of large genome segments by reversals, transpositionsand translo
ations (among others). Understanding evolutionary me
hanisms progresses throughthe re
onstru
tion of the most parsimonious sequen
es of rearrangements that lead to genomeformation: parsimonious s
enarios.Computational approa
hes model genomes by signed permutations where ea
h element repre-sents a blo
k of synteni
 genes (i.e. groups of genes whose relative order is 
onserved between1



Introdu
tionseveral spe
ies). Based on the parsimony 
riterion, the problem 
onsists in quantifying theminimum number of operations applied to permutations, 
alled rearrangement distan
e, and indetermining what these operations are by 
omputing the 
orresponding s
enarios. The sortingsigned permutations by reversals problem introdu
ed by Sanko� [San92℄ was widely studied inthe literature and led to e�
ient algorithms for solving this problem in the uni
hromosomal andmulti
hromosomal 
ases (Hannenhalli and Pevzner theory [HP95b, HP95a℄). However, 
ompu-tational model and asso
iated methods do not totally agree with biologi
al reality. In fa
t, su
ha model does not take into the a

ount a 
ertain number of important biologi
al fa
ts, �rst,by 
onsidering only a restrained set of operations and, se
ond, by avoiding some 
onstraintsfor studied rearrangements like 
entromere positioning [RAS06℄. Moreover, 
urrent methods 
anprovide a huge number of di�erent s
enarios that 
orrespond to the same rearrangement distan
e[Sie02℄. So, whi
h of these s
enarios is the most biologi
ally plausible? Re�ning existing modelsby adding new biologi
al 
onstraints and solving these problems e�
iently using tra
table algo-rithms is a way to ta
kle this question. Solving it requires one in turn to address 
onsiderable
omputational 
hallenges.A related 
hallenge lies in the visualization of plausible results in order to fa
ilitate theirinterpretation by expert biologists. Indeed, genome modeling in the form of signed permutationsmakes the analysis and 
omparison of possible s
enarios di�
ult.An
estral genome re
onstru
tionThe 
entral dogma of evolutionary biology postulates that 
ontemporary genomes evolved froma 
ommon an
estral genome. However, the large s
ale study of their evolutionary relationshipsis frustrated by the unavailability of these an
estral organisms that, indeed, do not exist any-more. Constru
ting plausible hypotheses about the stru
tural 
hara
teristi
s of these an
estralar
hite
tures is a 
omputational task whose results may provide deep insight both into the pasthistories of parti
ular genomes and the general me
hanisms of their formation. This task su�ersfrom the two same important di�
ulties as that the 
omputation of distan
e and s
enarios: how
an we guarantee that the solution is biologi
ally plausible? how 
an we �nd these solutions inan e�
ient manner?Evolutionary inferen
es are based on the 
omparison and re
on
iliation of rearrangement eventswithin 
ontemporary genomes. Computational re
on
iliation is most often formulated as themul-tiple genome rearrangement problem [SSK96, HCKP95℄: given a set of N 
ontemporary genomesand a distan
e d, �nd a tree T with the N genomes as leaf nodes and assign permutations (plau-sible an
estral ar
hite
tures) to internal nodes su
h that D(T ) =
∑

(π,γ)∈T d(π, γ) is minimized.When N = 3 this is 
alled the median genome problem. Methods were developed a

ording todi�erent distan
es (breakpoint distan
e [SB97℄, reversal distan
e [Cap99, Cap03℄, rearrangementdistan
e [BP02℄). Although e�
ient algorithms exist to 
ompute distan
es, solving the multiplegenome rearrangement problem was proved to be NP-hard (see [Bry98, PS98℄ for the breakpointdistan
e and [Cap99, Cap03℄ for the reversal distan
e) and requires heuristi
s even in the 
aseof 3 genomes.In addition to the 
omputational intra
tability of this problem, these in sili
o methods provideone single global solution 
hosen among a multitude of equivalent ones [Eri07℄ that, furthermore,do not ne
essarily 
orrespond with those provided by in vitro methods [FCG+06, BTP06℄. Know-ing that the 
omputed median genome (or the root genome in the rearrangement tree) representsthe basi
 building blo
k for spe
ies tree re
onstru
tion, this reinfor
es the 
laim that more bio-logi
al knowledge is required in mathemati
al models [RAS06℄.2



A more realisti
 approa
h is to 
onsider what 
ommon stru
tural features of an
estral genomesmight be found. Partial re
on
iliation of modern genomes identi�es permutations as above butdoes not ne
essarily provide a total order between segments. Existing algorithms (see [MZS+06℄)for this kind of resolution rely strongly on phylogeneti
 data. However, nothing suggests thatre
ombinatory evolution 
oin
ides with mutational evolution.Identi�
ation of 
ommon markersMathemati
al solutions for an
estral genome re
onstru
tion are 
learly sensitive to the sampleof 
onsidered genomes: as the number of fully sequen
ed genomes in
reases, sampling be
omeslarger and an
estral re
onstru
tion more and more a

urate. However, another very importantstep in methods for an
estral re
onstru
tion or distan
e 
omputation lies in the 
areful identi�-
ation of 
ommon markers used to de�ne signed permutations. These markers represent regionsof the genomes that have not been broken, sin
e 
onserved segments between two (or more)related spe
ies indi
ate 
hromosomal homology inherited from their 
ommon an
estor. Finding
onserved segments a
ross spe
ies makes it possible to solve a dual problem, that 
onsists indete
ting breakpoints, whi
h are the points between 
onserved segments along a genome whererearrangements have o

urred.Several methods have been de�ned to respond to the need for �nding 
ommon markers withingenomes. Among them only GRIMM-Synteny [PT03a, BPT04, BZB+05℄ was pre
isely de�nedwith the goal of rearrangement study. Unfortunately, all reports in the literature of these te
h-niques share a 
ommon feature of not systemati
ally providing all the ne
essary details as forthe way that breakpoints are dete
ted, and additionally often depend on several user-spe
i�edparameters that a�e
t obtained results. This indi
ates that breakpoint (or 
onserved segment)dete
tion is not a trivial problem. However, all existing methods 
ome ba
k to basi
 
omputa-tional genomi
s: the study of pun
tual mutations by alignment of genome sequen
es, whi
h ismade easier by the in
rease of 
omplete sequen
ing of genomes.Alignment algorithms are either global (introdu
ed in [NW70, Sel74℄) or lo
al (see Smith andWaterman [SW81℄). It has been shown that global alignment of whole genomes is not appropriatefor solving breakpoint dete
tion; as an example, for widely studied mammal genomes, 
omparisonof human and mouse led to the observation that less than the half of their genomes 
an be aligned[WLTB+02℄.The insight behind 
urrent algorithms relies on the fa
t that 
onserved segments 
an be aligned.This leads to �seed and extend� algorithms de
omposed into three steps: an
horing, �ltering andextending. While the �rst step is solved similarly by the 
urrent methods, the two last onesdiverge. Moreover, the latter step is totally ignored in the 
ase of GRIMM-Synteny, sin
e its aimis to study genome rearrangements.Besides, in this 
ase, 
onserved markers resulting from this method, 
alled synteny blo
ks,smooth over the noise due to mi
ro-rearrangements for inferring possible me
hanisms behindrearrangements. Beyond determining whi
h rearrangements took pla
e, synteny blo
ks (andre
ipro
ally breakpoint dete
tion) enable analysis of regions that were broken by rearrangements.Su
h analysis 
an provide 
lues on the issue of rearrangement hotspots. This latter topi
 hasgenerated a quite lively debate on the di�eren
es between random breakage and non-randombreakage models of evolution [KBH+03, PT03a, PT03b, TMS04℄.Moreover, all 
urrent methods were applied and perform well on the `low-hanging fruit' ofhighly similar (e.g. mammalian) genomes, but less well on highly divergent genomes with ex-tensive map reshu�ing. Thus, algorithms with the ability to handle spe
ies having a large3



Introdu
tionevolutionary span are required.What this thesis is aboutThis thesis is divided in four parts.The �rst one is dedi
ated to a large overview of 
urrent 
omputational methods for solvinggenomi
 rearrangement 
hallenges and questions that they raise.In the �rst 
hapter, we introdu
e the mathemati
al model for the genome and the me
hanismsof evolution. We start by de�ning the notion of 
ommon marker, and more pre
isely syntenyblo
ks, that represent basi
 elements in the signed permutation model of genomes. Then, after abrief biologi
al presentation of rearrangements, we sum mathemati
al operations on permutationsthat mimi
 their behaviour. Finally, genomi
 rearrangement 
hallenges (rearrangement distan
e,parsimonious s
enarios, breakpoint and multiple genome rearrangement problem) are presenteda

ording to their 
orresponding mathemati
al formulation under the permutation model.Comparative genomi
s is a young and dynami
 �eld whose rearrangement 
hallenges are widelydo
umented in the literature. Chapter 2 
ontains a presentation of main 
urrent methods and adis
ussion of their pertinen
e for ea
h rearrangement 
hallenge. Here we go quite deeply into thepresented te
hniques, by providing details of algorithms and of 
ertain approa
hes that are eitherthe subje
t of our own work, or are of parti
ular relevan
e for our results. For identi�
ation of
ommon markers, we present the GRIMM-Synteny approa
h [PT03a, BPT04, BZB+05℄, whi
his the only one whi
h has been expli
itly developed in order to study rearrangement events.We also des
ribe in detail the ADHoRe [VSS+02℄ method on whi
h we base our work on iden-ti�
ation of synteny for distant genomes presented in part II. Next follows a presentation ofrearrangement distan
e and 
orresponding parsimonious s
enarios, fo
used on the 
omputationof distan
e based on reversals only and extended to multi
hromosomal genomes by taking intothe a

ount translo
ations, fusions and �ssions as well as reversals. Besides the fa
t that theserearrangements are 
onsidered as the most frequent [BP02℄, e�
ient algorithms exist for this setof operations (�rst suggested by Ke
e
ioglu and Sanko� [KS93℄, then improved by Hannenhalliand Pevzner's theory [HP95a, HP95b℄ and thus represent adequate bases for solving an
estral re-
onstru
tion. For the latter 
hallenge, we present the two main parsimony-based global methods(breakpoint and rearrangement distan
e), as well as the partial re
onstru
tion approa
h basedon phylogeneti
 
onsiderations (Ma et al. [MZS+06℄).Parts II, III, and IV are dedi
ated to our 
ontributions in the domain. The developed approa
heswere validated on real data from the Génolevures proje
t [DS+04℄, a large-s
ale 
omparative ge-nomi
s proje
t a
ross the evolutionary range of the Hemias
omy
etous yeast phylum 
oordinatedby the CNRS and operated by a Consortium of laboratories and resear
h 
enters a�liated withdi�erent institutions. Génolevures provides an ideal appli
ation domain, sin
e 
ertain 
lades ofspe
ies under study present enough synteny in order to identify 
ommon markers and thereforeto apply 
omputational methods for an
estral analysis.We propose in part II an original approa
h for identifying 
ommon markers in evolutionary dis-tant genomes. Chapter 3 presents this algorithm 
alled SyDiG - re
overing Synteny in DistantGenomes - based on ADHoRe [VSS+02℄ results, while 
hapter 4 proposes a 
omparison with the4



GRIMM-Synteny method and an appli
ation to the Hemias
omy
etous yeasts.In part III, a new pie
e-wise method for the re
onstru
tion of an
estral ar
hite
tures is pre-sented. This method, detailed in 
hapter 5, is based on the study of both adja
en
ies between
ommon markers and rearrangement distan
es between modern genomes. Moreover, it makesit possible to use biologi
al 
onstraints su
h as 
entromere position. Without any phylogeneti

onsiderations, this leads to the 
onstru
tion of super-blo
ks that represent 
ommon an
estralfeatures. After a 
omparison with existing global and partial methods of an
estral re
onstru
-tion, 
hapter 6 presents the resulting sets of super-blo
ks obtained for the signed permutationsof Hemias
omy
etous yeasts 
omputed in their turn by the SyDiG algorithm.The last part addresses the problems of 
omputing and visualizing optimal rearrangement s
e-narios between putative re
onstru
ted an
estral genomes and 
ontemporary ones. Chapter 7proposes a single and 
oherent 
lassi�
ation of the notions involved in existing algorithms for
omputing a parsimonious s
enario between two multi
hromosomal genomes. This 
lassi�
ationmakes it possible to pinpoint the fa
t that 
urrent algorithms present errors. In the same 
hapter,we introdu
e a 
orre
t algorithm with a proof of its 
orre
tion. Finally, 
hapter 8 is dedi
ated tothe presentation of a new tool 
alled VIRAGE that we have developed for the intera
tive visu-alization of rearrangement me
hanisms between genomes and whi
h permits a more 
omfortablerearrangement analysis by biologists.
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Chapter 1Modeling a genome and evolutionaryme
hanismsThe 
omparison of genomes is a fundamentally powerful way to understand their stru
ture andevolutionary history. Evolutionary events are traditionally 
hara
terized by mutations. Twomain s
ales of mutations are observed: pun
tual mutations and genomi
 rearrangements.The 
omparison of genomes through pun
tual mutations 
onsists in aligning nu
leotidi
 se-quen
es extra
ted from the entire genome sequen
es we aim to 
ompare. The study of thesegene-level mutations leads to a lo
al sequen
e-based 
omparison of spe
ies, that does not useall of the available information. A higher level of mutations represents another way to studygenomes by 
omparing them globally. These global mutations 
alled genomi
 rearrangementsmodify the order and the 
ontent in terms of genes within the genomes on whi
h they operate.The number of entirely sequen
ed genomes be
omes more and more important every yearand thus the amount of relevant data be
omes so huge that automating pro
essing has be
omeessential. Use of 
omputational methods to study genome rearrangements requires one to de�nea mathemati
al model of the genome in order to represent all of the information that it 
ontainsrelative to the 
ontent and the order of its genes. However, the 
ontent of genes themselves isnot to be modeled sin
e in su
h a study we are interested in large-s
ale mutations.In this 
hapter, we present the signed permutation model 
ommonly used to study genome rear-rangements. Permutations are 
onstru
ted based on 
ommon elements between several genomesthat are supposed to be inherited from a 
ommon an
estor. In se
tion 1.1, we de�ne what arethese 
ommon markers and more pre
isely the notion of synteny blo
ks. In the next se
tion,we present the prin
ipal rearrangement operations that are en
ountered and the 
orrespondingmathemati
al operations on permutations. Genomi
 rearrangements are at the heart of several
hallenges: re
overing rearrangements that lead to the formation of a novel spe
ies, re
onstru
t-ing gene ar
hite
ture of an
estor that have vanished today. The last se
tion of this 
hapterformulates all of these goals in a mathemati
al way based on the permutation model.1.1 Common markers: what is a synteni
 blo
k?The 
omparison between spe
ies and more pre
isely the study of evolutionary me
hanisms ofgenomes pro
eeds through the de�nition of points of 
omparison, 
alled 
ommon markers, sit-uated on the genomi
 sequen
es of organisms. This is done by 
omparing the genomes of thespe
ies under study. 9



Chapter 1. Modeling a genome and evolutionary me
hanisms1.1.1 Geneti
 information is 
ontained in the genomeThe whole geneti
 information of a spe
ies is en
oded in its DNA (desoxyribonu
lei
 a
id)mole
ules and 
onstitutes the genome.The DNA has two 
omplementary strands where ea
h strand is 
omposed of sequen
es ofnu
leotides, or bases. The four bases found in DNA are adenine (abbreviated A), 
ytosine (C),guanine (G) and thymine (T). It is the order, the nature and the number of nu
leotides thaten
ode the geneti
 information. From the sequen
e of one strand of DNA, it is possible to�nd its 
omplementary sequen
e by repla
ing ea
h base by its 
omplement and reversing thesequen
e. Adenine and thymine are 
omplementary, as are guanine and 
ytosine. DNA strandsare oriented from 5′ to 3′ a

ording to links 5′-3′ between desoxyribose rings that join nu
leotides.The arrangement of DNA strands is 
alled antiparallel : the dire
tion of the nu
leotides on onestrand is opposite to their dire
tion on the other strand (the 5′ extremity of one strand gets in
onta
t with the 3′ extremity of the other strand and vi
e versa).The genome is divided into one or several 
hromosome(s), ea
h 
arrying a set of genes. A geneis a region of a 
hromosome, whi
h 
ontains a 
oding sequen
e. The majority of 
oding sequen
esare trans
ribed into mRNAs (messenger RiboNu
lei
 A
ids) whi
h, in turn, are translated intoproteins. The remaining 
oding sequen
es are trans
ribed into RNAs, whi
h are not translatedinto proteins. For the sake of simpli�
ation, we will refer to protein 
oding sequen
es as genes.We 
an de�ne an orientation for ea
h gene. In fa
t, a gene is present on the two DNA strands(major and 
omplementary) but the trans
ription pro
ess is performed from only one strand. Inthe 
ase where a gene is trans
ribed from the major 5′-3′ strand of the DNA sequen
e, it is saidto be dire
tly oriented. If the trans
ription pro
ess is done from the 
omplementary 3′-5′ strand,the gene has the reverse orientation.1.1.2 Common markers between spe
iesThe genome sequen
e of an organism is inherited from its parents, and in the 
ontext of thiswork is 
onsidered to be the same for all members of the same spe
ies. The genome sequen
eof a spe
ies is derived through evolution from the sequen
e of its an
estor spe
ies, and relatedspe
ies will have inherited 
ommon sequen
e features from their last 
ommon an
estor. Thisinheritan
e is as the 
ore of the study of genome rearrangements.From genes to synteny blo
ksWhole genome sequen
ing makes possible the 
omparison of genomes by de�ning 
ommon mark-ers. Highly similar DNA sequen
es are 
alled homologs. If sequen
es 
orrespond to genes, wespeak about homologous genes, where we distinguish orthologs, genes in di�erent spe
ies thatevolved from a 
ommon an
estral gene by spe
iation, from paralogs, genes related by dupli
ationwithin a genome. These homology points de�ne 
ommon markers between the genomes of di�er-ent spe
ies. Common markers 
an also be de�ned at a higher level of abstra
tion. Nadeau andTaylor in [NT84℄ introdu
ed the notion of 
onserved segments that are segments with preservedgene orders without disruption by rearrangements in di�erent spe
ies.In order to mask multiple mi
rorearrangements in a whole genome 
omparison, one 
an usesynteny blo
ks, whi
h usually 
onsist of short regions of similarity that may be interrupted bydissimilar regions and gaps (de�nitions are given in [PT03a℄). Intuitively, synteny blo
ks 
anbe 
onverted into 
onserved segments by mi
rorearrangements. A detailed dis
ussion of syntenyblo
ks and their 
onstru
tion 
an be found in 
hapters 2 and 3.10



1.2. Mimi
king evolutionary me
hanisms by operations on permutationsSign of a 
ommon markerOn
e 
ommon markers are de�ned between two or more spe
ies, a sign 
an be asso
iated withea
h of them to indi
ate relative 
hanges in orientation. Signs of 
ommon markers in one genomeare determined relative to an arbitrarily 
hosen referen
e genome.Let Π and Γ be two genomes, and Π be the referen
e genome. For a 
ommon marker σ of(arbitrarily 
hosen) sign s in Π, we have:
• if σ is a gene, whi
h has the same orientation in Γ as in Π, then σ has s as sign in Γ.Otherwise, the sign of σ is −s in Γ;
• in the 
ase of a 
onserved segment (synteny blo
k, respe
tively), s in Γ depends on the orderand the signs of 
ommon elements in this segment (synteny blo
k, respe
tively) 
omparedwith those in Π (see se
tion 2.1 for details fun
tion to the 
onsidered method).It is sometimes not possible to give a sign to 
ommon markers. This 
an happen for examplewhen gene orientation is unknown or when information about order and orientation is insu�
ientfor making an unambiguous 
hoi
e.1.2 Mimi
king evolutionary me
hanisms by operations on per-mutations1.2.1 The genome: a signed or unsigned permutationA genome is a set of 
hromosomes while a 
hromosome is a list of markers. These markers 
anbe genes or synteni
 blo
ks. In this thesis we are not 
on
erned by the 
omparison of the 
ontentof markers, only by the gene order in the genome and on its 
hromosomes. Thus, in the 
hosenmodel, a marker is represented by an identi�er, signed or not (see se
tion 1.1) and a 
hromosome
an be seen as a list of signed or unsigned identi�ers, that is, a permutation.Let Π = {π1, ..., πNΠ} be a multi
hromosomal genome de�ned as a set of NΠ 
hromosomes.The ith 
hromosome πi = πi

1...π
i
ni

is a sequen
e of ni markers. The order of πi is ni. Be
auseof the 
omplementarity of the two DNA strands, any 
hromosome π 
an be represented in twodistin
t ways: �from left to right� (i.e. π = π1π2...πn) or �from right to left� (i.e. −π =
−πn... − π2 − π1). These two representations are equivalent. Thus, several equivalent formsare possible for the same genome. For example, the genome {

π1, π2, π3
} 
an be written as

{
π1,−π2, π3

} or {
−π1,−π2,−π3

}, et
.Note 1 For an uni
hromosomal genome Π = {π1}, the notation π represents either the entiregenome or the unique 
hromosome.The stru
ture of genomes varies between organisms. Genomes of prokaryotes as well as thoseof organelles su
h as mito
hondria or 
hloroplasts are 
hara
terized by an unique 
ir
ular 
hro-mosome. For eukaryotes, several linear 
hromosomes form the genome. Over time, 
hromosomear
hite
ture evolves through rearrangement me
hanisms. The di�erent possible rearrangementsthat 
an o

ur in di�erent kinds of genomes are des
ribed in se
tion 1.2.2.1.2.2 Rearrangements: di�erent possible operationsGenomi
 rearrangements modify the genome 
ontent or the gene order. Operations su
h asdupli
ations, insertions or deletions add or delete DNA fragments in the initial genome without11



Chapter 1. Modeling a genome and evolutionary me
hanismsmodifying the gene order. Reversals, translo
ations and transpositions are operations that modifythe gene order by moving DNA fragments into a 
hromosome or from one 
hromosome to another.Combinations of these operations modify both gene 
ontent and gene order.Presentation of possible operationsDupli
ation Dupli
ation inserts 
hromosomal fragments of variable length. In general, thenew DNA fragment is inserted besides the repeated one.XXFigure 1.1: Dupli
ation of a gene on the 
hromosome X.Insertion and deletion A new DNA fragment 
an appear on a 
hromosome during the evo-lution of a spe
ies. This is 
alled gene or segmental insertion. The symmetri
 event of DNA lossis 
alled gene or segmental deletion.XX XXFigure 1.2: Insertion (left) and deletion (right) of a gene on the 
hromosome X.Reversal Reversal is a modi�
ation of the DNA stru
ture that 
onsists in a 180◦ rotation of a
hromosomal segment most often without loss of geneti
 material. Thus, a reversal modi�es theorientation of involved genes. XXFigure 1.3: Reversal of a gene sequen
e on the 
hromosome X. The involved genes belong to thewhite segment. Small arrows indi
ate gene orientation.12



1.2. Mimi
king evolutionary me
hanisms by operations on permutationsTranslo
ation Translo
ation is a mutation that only o

urs in multi
hromosomal genomes,sin
e two 
hromosomes must be involved. Translo
ation is a ex
hange of geneti
 material be-tween two 
hromosomes. Figure 1.4 presents a translo
ation where the sequen
es at the end oftwo 
hromosomes are ex
hanged. XYXYFigure 1.4: Translo
ation of the 
hromosomes X and Y.In the work of 
ertain authors (e.g. Hannenhalli [Han96℄), other types of translo
ations are
onsidered in order to measure evolution between spe
ies. In these translo
ations, other 
hro-mosomal segments than su�xes 
an be 
ombined by a reversal. For example, Hannenhalli in[Han96℄ presents the pre�x-su�x translo
ation with reversal: the pre�x of a 
hromosome is ex-
hanged with the su�x of an other one and the ex
hanged sequen
es are reversed. The �gure1.5 des
ribes this me
hanism. XYXYFigure 1.5: Pre�x-su�x translo
ation of the 
hromosomes X and Y. The pre�x of Y and thesu�x of X are ex
hanged: these sequen
es are reversed during the translo
ation.Fission and fusion These rearrangements are parti
ular 
ases of translo
ation. Fission is ame
hanism that separates a 
hromosome into two distin
t 
hromosomes (see �gure 1.6).Fusion is the opposite me
hanism that joins together two 
hromosomes into an unique one(see �gure 1.7).Transposition Transposition is a me
hanism that 
onsists in moving a DNA sequen
e alonga 
hromosome. It may or may not involve a reversal as shown on �gure 1.8. 13



Chapter 1. Modeling a genome and evolutionary me
hanismsX
ZYFigure 1.6: Fission of 
hromosome X into two 
hromosomes Y and Z.
ZY
X

Figure 1.7: Fusion of 
hromosomes X and Y into the 
hromosome Z.

X Xwithout reversal with reversalX
Figure 1.8: Transposition of the genes belonging to the grey segment on the 
hromosome X with(right) or without (left) reversal.
Mathemati
al operations for rearrangementsRearrangements that do not modify gene 
ontent (see se
tion 1.2.2) 
an be modeled by mathe-mati
al operations on permutations representing a genome (see se
tion 1.2.1). Table 1.1 showsmathemati
al operations 
orresponding to biologi
al rearrangements applied to a multi
hromoso-mal and signed genome Π = {π1, ..., πNΠ}. The appli
ation of a rearrangement φ to the genome
Π results in the genome Π′ = Π.φ.14



1.3. Mathemati
al measure of evolutionRearrangement Notation Resulting permutationsReversal ρ
(
πi, k, l
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πi′ = πi

1...π
i
k−1 − πi

l − πi
l−1...− πi
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nTranslo
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1...π

i
k−1π

i
l+1...π

i
m−1 − πi

l ...− πi
kπ

i
m...πi

nTable 1.1: Rearrangements 
onsidered as mathemati
al operations on permutations.1.3 Mathemati
al measure of evolution1.3.1 Rearrangement distan
eMeasuring the evolutionary distan
e between two spe
ies is one part of 
omparative genomi
sanalysis. This distan
e 
an be formulated in terms of genomi
 rearrangements. In our 
ase,for a given set of genomi
 rearrangements, the problem 
onsists in quantifying the minimumnumber of rearrangements that transform one genome into another. This measure relies on theparsimony prin
iple and de�nes a distan
e in the mathemati
al sense of the word. A distan
eon a set E is a fun
tion d : E × E → R verifying:(i) d (x, x) = 0 for all x ∈ E,(ii) d (x, y) > 0 for all x, y ∈ E with x 6= y,(iii) d (x, y) = d (y, x) for all x, y ∈ E,(iv) d (x, y) 6 d (x, z) + d (z, y) for all x, y, z ∈ E.In order to provide results that are more biologi
ally realisti
, the operations are sometimesweighted. The weight depends on either the type of the 
onsidered operation, or the length of15



Chapter 1. Modeling a genome and evolutionary me
hanismsthe implied geneti
 material. The distan
e (provided that the weight fun
tions are mathemati
aldistan
es) is then the minimal sum of the 
osts taken among all the sequen
es of operations thattransform one genome into another.1.3.2 Parsimonious rearrangement s
enarioIn the same way, it is important to determine evolutionary s
enarios 
orresponding to a rear-rangement distan
e d, that are 
alled parsimonious s
enarios. A parsimonious rearrangements
enario between genomes Π and Γ is a sequen
e of rearrangements (φ1, .., φn) that transformsgenome Π into Γ su
h that d(Π,Γ) = n.Figure 1.9 gives an example of a parsimonious s
enario for two uni
hromosomal genomes πand γ. The number of reversals in the s
enario is equal to the reversal distan
e between them:
d(π, γ) = 4.

γ = +1 +2 +3 +4 +5 +6 +7 +8 +9-9 -8 -7 -6 -5 -4 -3 -2 -1-9 -8 -7 -6 -5 -4 -3 -2 +1-9 -8 -7 -6 +2 +3 +4 +5 +1π = -9 -8 +6 +7 +2 +3 +4 +5 +1
Figure 1.9: One parsimonious s
enario between uni
hromosomal genomes π and γ. The �rst linerepresents the genome π, the last, the genome γ and all the lines ex
ept for the �rst are obtainedfrom the previous one by a reversal of the underlined segment.Note that, although 
omputations of the rearrangement distan
e and of a parsimonious s
e-nario are two 
losely related problems, they are often resolved independently in the relevantliterature (see se
tion 2.2 of 
hapter 2).1.3.3 BreakpointsChromosomal segments involved in rearrangements 
an be identi�ed in permutations by the setsof 
orresponding 
onse
utive markers. These sets are delineated by breakpoints. This notion wasintrodu
ed by Nadeau and Taylor [NT84℄ in 1984, and we 
an distinguish the signed 
ase (seede�nition 3) from the unsigned one (see de�nition 2).De�nition 1 Two 
onse
utive elements πi and πi+1 of a 
hromosome π are said to be adja
entin a genome Π. Denote by πi.πi+1 an adja
en
y between πi and πi+1.De�nition 2 For two unsigned genomes Π and Γ, if two elements πi and πi+1 are adja
ent in
Π but neither πi.πi+1 nor πi+1.πi are present in Γ, then the pair πi.πi+1 forms a breakpoint in
Π with respe
t to Γ.De�nition 3 For two signed genomes Π and Γ, if two elements πi and πi+1 are adja
ent in Πbut neither πi.πi+1 nor −πi+1. − πi are present in Γ, then the pair πi.πi+1 forms a breakpointin Π with respe
t to Γ.16



1.3. Mathemati
al measure of evolutionWhen genomes are linear, supplementary adja
en
ies have to be taken into the a

ount: theones between the beginning of a 
hromosome and its �rst element and the ones between thelast element of a 
hromosome and its end. Figures 1.10, 1.11 and 1.12 present breakpoints in agenome Π a

ording to a genome Γ for di�erent natures of genomes (uni
hromosomal withoutinformation about orientation (i.e. unsigned), multi
hromosomal, and 
ir
ular, respe
tively).1 8 6 7 2 3 4 5 9Figure 1.10: Breakpoints in Π = {1 8 6 7 2 3 4 5 9} with respe
t to Γ = {1 2 3 4 5 6 7 8 9}where Π and Γ are uni
hromosomal and linear genomes.
π1 = -9 -8 +6 +7
π2 = +2 +3 +4 +5 +1Figure 1.11: Breakpoints in Π = {−9 − 8 + 6 + 7, + 2 + 3 + 4 + 5 + 1} with respe
t to

Γ = {+1 + 2 + 3, + 4 + 5 + 6 + 7 + 8 + 9} where Π and Γ are multi
hromosomal and lineargenomes. -9 -8+6+7+2+3+4+5+1
Figure 1.12: Breakpoints in Π = {−9 − 8 + 6 + 7 + 2 + 3 + 4 + 5 + 1} with respe
t to
Γ = {+1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9} where Π and Γ are uni
hromosomal and 
ir
ulargenomes.The notion of breakpoint leads to a �rst distan
e used to measure evolution between spe
ies:the breakpoint distan
e. Let Π and Γ be two genomes of respe
tively NΠ and NΓ 
hromosomes.The breakpoint distan
e b(Π,Γ) is equal to the number of breakpoints in Π (Γ, respe
tively) withrespe
t to Γ (Π, respe
tively). Indeed, the number of breakpoints in Π is equal to the numberof those in Γ.In the 
ase that NΠ < NΓ, the number of breakpoints is b(Π,Γ) = |{(πi, πi+1)|πi.πi+1 is abreakpoint in Π}|+ (NΓ −NΠ) or b(Π,Γ) = |{(γi, γi+1)|γi.γi+1 is a breakpoint in Γ}|.The 
omputation of the rearrangement distan
e and of parsimonious s
enarios are 
losely re-lated to breakpoints, sin
e the transformation of a permutation into another 
onsists in removingbreakpoints in order to obtain the target permutation. 17



Chapter 1. Modeling a genome and evolutionary me
hanisms1.3.4 Multiple genome rearrangement problemMeasuring the evolutionary distan
e between 
ontemporary spe
ies goes through the impli
itre
onstru
tion of an
estral genomes: sin
e the an
estral spe
ies no longer exist, we do not knowtheir true genomes. Evolutionary relationships between spe
ies, extin
t or 
ontemporary, areexpressed through a spe
ies tree.Computational inferen
e of spe
ies trees is most often formulated as the multiple genomerearrangement problem [SSK96, HCKP95℄: given a set ofN 
ontemporary genomes and a distan
e
d, �nd a tree T with the N genomes as leaf nodes and assign permutations (plausible an
estralar
hite
tures) to internal nodes su
h that

D(T ) =
∑

{π,γ}∈T d(π, γ) is minimized.When N = 3 this is 
alled the median genome problem. In the general 
ase, this formulation
orresponds to the well-known Steiner tree mathemati
al problem [HRW92℄, whi
h was shownto be NP-
omplete (see [Bry98, PS98℄ for the breakpoint distan
e and [Cap99, Cap03℄ for thereversal distan
e).Note that spe
ies trees re
onstru
ted from this de�nition do not ne
essarily 
oin
ide withphylogeneti
 trees, whi
h are trees in whi
h ea
h node with des
endants represents the mostre
ent 
ommon an
estor of the des
endants, and the edge lengths 
orrespond to time estimates.

18



Chapter 2From 
ommon markers to evolutions
enariosIn 
hapter 1, we presented the mathemati
al model of signed permutations 
ommonly used tostudy genome rearrangements in 
omputational approa
hes. In this thesis, we are interested inthree main rearrangement 
hallenges that are strongly related and for whi
h the mathemati
alformulation is given in 
hapter 1.- Identifying 
ommon markers between genomes: 
ommon markers are at the origin of the
onstru
tion of the permutation en
oding a genome. Their identi�
ation requires 
arefulattention, sin
e all of the rearrangement studies and hen
e all of the inferred biologi
alhypothesis are based on the obtained permutations.- Computing evolutionary distan
es and parsimonious s
enarios between two genomes: mea-suring evolution between spe
ies implies the re
onstru
tion of the sequen
e of rearrange-ments that separates one genome from another. Finding the minimal number of rearrange-ments leads to the 
omputation of the rearrangement distan
e between two genomes.- Re
overing an
estral ar
hite
tures: modern genomes evolved from a 
ommon an
estralgenome that no longer exists. Finding 
ommon stru
tural features of an
estral genomesmakes possible understanding the past history and evolutionary me
hanisms that lead to
ontemporary genomes.All of these rearrangement 
hallenges represent 
omputational tasks that are widely do
u-mented in literature. Sin
e the beginning of this resear
h �eld pioneered by Dobzhansky andSturtevant [DS38℄, two main problems are addressed: how 
an we �nd these solutions in ane�
ient manner? how 
an we guarantee that the un
overed solution is biologi
ally plausible?Chapter 2 proposes the 
urrent state of existing 
omputational methods for all of these 
hal-lenges. We give a fully detailed presentation of 
ertain approa
hes on whi
h our work was morepre
isely fo
used. We also dis
uss the pertinen
e of their solutions and provide a brief presenta-tion of the debates that they have sparked.2.1 Identi�
ation of genome syntenyStudying evolution me
hanisms of genomes through the analysis of signed permutations andtheir transformations makes sense only if these permutations faithfully des
ribe biologi
al infor-mation 
ontained in the genomes. Elements of these permutations represent 
ommon markers19



Chapter 2. From 
ommon markers to evolution s
enariosbetween spe
ies that have to be 
arefully de�ned. These markers, in turn, represent 
onservedsegments that have not been broken, sin
e between two (or more) related spe
ies, they indi
ate
hromosomal homology inherited from their 
ommon an
estor.Many methods developed for this purpose are �seed and extend� algorithms de
omposed inthree main steps. First, genome sequen
es are an
hored by dete
ting strongly 
onserved regionsthrough lo
al alignments. The two last steps are di�erent a

ording to the 
onsidered methods.Se
ond step 
onsists in �ltering the an
hors: removing an
hors obtained by 
han
e and 
hoosingan exemplar of dupli
ated regions is done by 
lustering or 
haining an
hors. Finally, the obtained
onserved segments are aligned.In what follows, we present in a more detailed way the GRIMM-Synteny method [PT03a,BPT04, BZB+05℄ that is the only one expli
itly de�ned in the aim of rearrangement study.We also detail i-ADHoRe [VSS+02, SVSP04, SJSV08℄ method on whi
h we base our work onidenti�
ation of synteny for distant genomes presented in part II.2.1.1 Grimm-SyntenyGRIMM-Synteny method [PT03a, BPT04, BZB+05℄ was developed in the aim of rearrangementstudy. That is why, the latter step of traditional �seed and extend� algorithm is ignored. More-over, the GRIMM-Synteny method does not 
ompute 
onserved segments but synteni
 blo
ks.These blo
ks 
orrespond to 
onserved segments up to mi
rorearrangements.Careful readers well remark that a very similar method to GRIMM-Synteny is evoked in [ST05℄and explained under the name ST-synteny in [PPT06℄. This method need not be 
onsidered.In fa
t, Sanko� in [San06℄ explains that it is not �an alternative way of 
onstru
ting synteni
blo
ks; the so-
alled ST-synteny was only a (bungled) attempt to mimi
 Pevzner and Tesler'smethod, based on our reading or misreading of their paper [PT03a℄�.An
horingThe �rst step of the method detailed in [BPT04℄ 
onsists in �nding potential regions of ho-mology, as the an
hors, that represent the starting point of synteny blo
ks. It pro
eeds in twosu

essive pro
essing steps: a �ltering step of an
hors 
alled GRIMM-An
hor is applied aftertheir 
omputation by lo
al alignments.Lo
al alignments An
hors are found by prepro
essing alignments. Initially, GRIMM-Syntenyuses gapped alignments given by PatternHunter [MTL02℄. A more re
ent version of GRIMM-Synteny [BZB+05℄ identi�es an
hors based on BLASTZ algorithm [SKS+04℄, whi
h provides thebest results on non-
oding regions. They also evoke in [BZB+05℄ a large-s
ale dete
tion based ongenes for treating more distant genomes. Next, an
hors are restrained to a set of non-overlappingand unique ones by applying GRIMM-An
hor.GRIMM-An
hor This prepro
essing is used to separate unique hits from repeats. The levelof an an
hor indi
ates the number of genomi
 intervals it 
on
erns, one per involved genome.For two genomes, the method 
onsists in building a graph where ea
h vertex 
orresponds toa maximally 
ontiguous region of genomi
 intervals, 
alled superinterval, and where an edgebetween two superintervals is added if at least two regions of them share an alignment. Su
halignments are 
alled supporting alignments. Only alignments of unique regions 
orrespondingto 
onne
ted 
omponents 
onsisting of only one edge are retained. They are transformed intotwo-way an
hors only if all 
orresponding supporting alignments have the same sign, otherwise20



2.1. Identi�
ation of genome syntenythe 
onne
ted 
omponent is also dis
arded. In this 
ase, the 
oordinates of 
onstru
ted two-wayan
hors whose sign is the one of their supporting alignments, are de�ned by those of 
orrespondingsuperintervals.The sear
h for N -way an
hors (N > 2) 
onsists in keeping only the interse
ting genomi
interval from two-way an
hors of the 
onsidered genomes. For example, to provide three-wayan
hors for genomes G1, G2 and G3, all triples of two-way an
hors (G1
1, G

1
2, σ

1), (G2
1, G

2
3, σ

2) and
(G3

2, G
3
3, σ

3), where Gi
j represent 
oordinate superintervals and σi = +1 or −1, are identi�ed. Athree-way an
hor is de�ned if signs are 
onsistent (σ1σ2σ3 = 1) and intervals G1

1 and G2
1 (G1

2 and
G3

2, G2
3 and G3

3 respe
tively) of genome G1 (G2 and G3 respe
tively) overlap. This three-wayan
hor is represented by the interval G1
1 ∩G2

1 with sign 1 in G1, G1
2 ∩G3

2 with sign σ1 in G2 and
G2

3 ∩G3
3 with sign σ2 in G3.ClusteringThen, the 
omputation of synteni
 blo
ks 
onsists in 
ombining 
lose an
hors together without
onsideration of order and orientation. This 
lustering step is based on the an
hors whose levelis equal to the number of spe
ies under study.The proximity between an
hors is based on the Manhattan distan
e. Let {Gi} be a set of

N genomes and gj
i be a 
oordinate within Gi. The Manhattan distan
e between two points

(g1
1 , g

1
2 , .., g1

N ) and (g2
1 , g

2
2 , .., g2

N ) in the same 
hromosome tuple is ∑N
i=1 |g2

i − g1
i |. If two pointsare not de�ned on the same 
hromosome tuple, their Manhattan distan
e is de�ned as in�nite.Hen
e, the Manhattan distan
e between two N -way an
hors on the same 
hromosome tupleis the Manhattan distan
e between their nearest endpoints (There are two terminals for ea
han
hor determining by the signs of the alignments).In [PT03a℄, two an
hors are joined together if their Manhattan distan
e is inferior to a user-spe
i�ed threshold. In [BZB+05℄, this 
lustering step is done in a slightly di�erent way. First, thenearest endpoints of the two an
hors are determined thanks to the Manhattan distan
e. Then,GRIMM-Synteny 
ombines or not these two an
hors a

ording to per spe
ies distan
es: if, in allspe
ies, the distan
e |g2

i − g1
i | is less than the per-spe
ies threshold for Gi, then the an
hors arejoined together.Finally, within the obtained set of an
hor 
lusters, those 
onsidered as too small are dis
ardedfollowing the hypothesis that short blo
ks may be 
aused by 
han
e. In the original version ofGRIMM-Synteny [PT03a℄, a user-spe
i�ed parameter allows one to keep only 
lusters whose spanis at least a minimum size in the referen
e spe
ies (i.e human). In [BZB+05℄, authors propose to�x a minimum size per spe
ies.Ordering and signingOrdering and signing an
hor 
lusters are two important steps that require 
areful attention dueto 
onsequen
es that involve during rearrangement analysis. However, details about them arequite nebulous in the literature about GRIMM-Synteny.Clusters are not supposed to overlap, but their span intervals may overlap within one of the
onsidered spe
ies. That is why, the authors in [PT03a℄ 
ompute the 
enter of mass of all an
horsforming a 
luster and order 
lusters a

ording to the 
oordinates of their 
enters of masses. Thisleads to the numbering of 
lusters a

ording to their order in a referen
e spe
ies. However, thenotion of 
enter of mass is not 
learly de�ned.Con
erning the assignation of 
luster orientation, the method is detailed in [PT03
℄ and isbased on the notion of separable permutations. Let the permutation π = (1, ..,m) be a 
luster of21



Chapter 2. From 
ommon markers to evolution s
enariosan
hors in the referen
e spe
ies G1 and γ = (γ1, .., γm) be the signed permutation 
orrespondingto the same 
luster in another spe
ies G2. Permutation γ is separable if (γ1, .., γr) is a signedpermutation of (1, ..r) for some r = 1, ..,m − 1. Sign of π being 1, the sign of γ denoted by σ isde�ned as follows:
• if m = 1, σ = δ su
h that γ = (δ),
• for m > 1, if γ is separable, then σ = 1,
• for m > 1, if −γ = (−γm, ..,−γ1) is separable, then σ = −1,
• otherwise, it is not possible to de�ne 
learly the sign of γ. Authors in [PT03
℄ 
hoose σ = 1by default or dis
ard this 
luster.In the 
ase of more than 2 genomes, the signs of a 
luster are all determined relative to theone in referen
e spe
ies.Strips of 
lustersThe last step de�nes synteny blo
ks by 
ombining 
lusters into strips. A strip is a sequen
e of
onse
utive signed 
lusters π1, .., πn in the referen
e spe
ies that either appear 
onse
utively inthe same way or in the inverse −πn, ..,−π1 in another genome. Strips are formed without any
onsideration of distan
e between 
lusters.2.1.2 I-AdHoReGenerally, existing methods dete
t similar sequen
es either based on nu
leotide 
omparison, or onthe gene level. In the latter 
ase, the study of genes enables the dete
tion of homology between
hromosomal regions that are highly divergent. I-AdHoRe (iterative Automati
 Dete
tion ofHomologous Regions) method [VSS+02, SVSP04, SJSV08℄ is based on this approa
h: the method
onsists in identifying 
hromosomal regions showing a 
onservation of gene order and 
ontent.Obtained results are 
alled multipli
ons, where the level indi
ates the number of homologoussegments it 
ontains. I-AdHoRe �rst dete
ts multipli
ons of level two by AdHoRe (Automati
Dete
tion of Homologous Regions) routine. Next, by iterating the pro
ess, new genomi
 segmentsare added to existing multipli
ons in order to in
rease their level.Input dataAdHoRe and i-AdHoRe methods require the data set of genes with their absolute or relativeposition on a genomi
 sequen
e and their orientation. Homologous genes are determined usingBLASTP [AGM+90℄, whi
h 
ompares amino a
id sequen
es instead of traditional nu
leotidi
ones.Dete
tion of multipli
ons of level twoGene Homology Matrix The AdHoRe method [VSS+02℄ tries to determine 
hromosomalregions said to be 
ollinear, that is, regions sharing a signi�
ative 
onservation of gene orderand 
ontent. The AdHoRe algorithm �rst 
onstru
ts a Gene Homology Matrix (GHMs) for ea
hpair of 
hromosomes. Within this matrix, lines and 
olumns 
orrespond to positions of genesin 
hromosomes. A non-zero value is assigned to 
ells whose the line and the 
olumn form apair of homologous genes. A positive or negative sign is attributed to this kind of 
ells, whether22



2.1. Identi�
ation of genome syntenyhomologous genes have the same orientation or not. Non-zero 
ells represent the an
hors, onwhi
h is based the dete
tion of 
ollinear regions.An
hor Clustering Collinear regions primarily 
orrespond to a set of an
hors that have thesame sign and that present a proximity within the matrix. This proximity is measured by aspe
ial �distan
e fun
tion�, whi
h gives priority to an
hors 
lose in the diagonal rather than inthe verti
al or horizontal axes. This measure, 
alled DPD (Diagonal Pseudo Distan
e), is not adistan
e in the mathemati
al sense of the term, sin
e the triangle inequality is not veri�ed. Fortwo points (x1, y1) and (x2, y2) in the matrix, the DPD is:
d = 2max(|x2 − x1|, |y2 − y1|)−min(|x2 − x1|, |y2 − y1|).A user-spe
i�ed parameter �xes the maximal pseudo-distan
e DPD between two an
hors in thesame 
ollinear regions and the determination of su
h regions is realized by su

essive iterationsof an
hor 
lustering by gradually in
reasing values of DPD until a �xed threshold. Moreover,before ea
h iteration, a quality �lter 
onserves only the most signi�
ative 
lusters in terms of thenumber of an
hors, of the quality of the diagonal and so on. Finally, 
ertain 
lusters 
alled base
lusters are merged into a larger one if their DPD is lower than the threshold. Final 
lusters are
alled meta
lusters, whi
h are formed of one or several base 
lusters.The 
lustering pro
ess is �rst distin
tly realized on the set of positive an
hors and on the setof negative ones. A post-pro
essing 
onsists in 
ombining both orientation 
lasses by 
lustering
lusters from di�erent orientation sets if possible. However, in this 
ase, it is not 
learly statedin [VSS+02℄ how orientation is 
hosen for the resulting multipli
ons.Dete
tion of higher-level multipli
onsIn order to dete
t multipli
ons of higher level, i-AdHoRe algorithm is based on multipli
ons oflevel two for whi
h it tries to add, in an iterative way, one or several genomi
 segment(s).Segments that 
onstitute existing multipli
ons (of level two initially) are used to 
reate pro�les.A pro�le is a multipli
on whose segments are aligned in a su
h way that homologous genes arelo
ated at the same position. Then, these pro�les are 
ompared to gene lists (i.e 
hromosomes)from input data in a way analogous to the AdHoRe algorithm [VSS+02℄: GHMs are 
onstru
tedwhere lines 
orrespond to positions of genes in a 
hromosome while 
olumns represent positionsof genes in a pro�le. If an additional segment is dete
ted in the matrix, it is added to the existingmultipli
on and the 
orresponding pro�le is updated. The whole pro
ess is repeated in order to�nd potential multipli
ons of superior levels.Note that, whatever its level, a multipli
on 
orresponds to a meta
luster and hen
e is formed ofone or several base 
luster(s). Moreover, extremities of genomi
 segments that de�ne a multipli-
on are determined by the leftmost and rightmost 
oordinates of its an
hors in the meta
luster.2.1.3 Other methodsSeveral methods have been de�ned to respond to the need for �nding 
ommon markers withingenomes. Re
ently, in [LS08℄, Claire Lemaitre and Marie-Fran
e Sagot propose a survey onthe methods for dete
tion of 
onserved segments. They fo
us their work on GRIMM-Synteny,whi
h was already presented in se
tion 2.1.1, CHAINNET [KBH+03℄, MAUVE [DMBP04℄ andan algorithm provided by Couronne and Pat
her [CPB+03℄ (denoted by CP). They 
laim thatthese four methods are representative of the numerous methods that exist in the domain. 23



Chapter 2. From 
ommon markers to evolution s
enariosWhile GRIMM-Synteny was developed in order to study rearrangements, the others were
omputed for other goals as alignments of 
onserved regions. Be
ause alignments of wholegenome sequen
es are not appropriate for this purpose (see [WLTB+02℄), all are de�ned as �seedand extend� algorithms de
omposed in three steps: (1) an
horing, (2) �ltering and (3) aligning.The �rst step requires lo
al alignments of genome sequen
es: an
hors are de�ned from un-gapped (CHAINNET) or gapped (GRIMM-Synteny and CP) lo
al alignments using tools likeBLASTZ [SKS+04℄ or PatternHunter [MTL02℄, or exa
t mat
hes (MAUVE). MAUVE 
an bemore stringent than other methods, sin
e it was developed for ba
terial organisms, that share amu
h higher proportion of 
oding regions than mammals studied by the other approa
hes.The se
ond step is required to remove an
hors obtained by 
han
e and 
hoose an exemplar ofdupli
ated regions. This is done by 
lustering 
lose an
hors by 
omputing a distan
e betweenthem (GRIMM-Synteny, CP) or by 
haining an
hors a

ording to an
hor order and orientationas well as their distan
e.Ex
ept GRIMM-Synteny, whi
h 
omputes synteny blo
ks, all of the other methods pro
eed ina third step in order to provide �nal alignments of the genomi
 sequen
es.To 
on
lude, all methods have in 
ommon that their des
ription in the literature does notalways provide all the details 
on
erning the way of dete
ting breakpoints and to often dependon user-spe
i�ed parameters that a�e
t obtained results.2.1.4 Fragile breakpoint model versus random breakpoint modelFinding 
onserved segments a
ross spe
ies enables one to solve a dual problem, that 
onsistsin dete
ting breakpoints, whi
h are the regions between 
onserved segments along a genomewhere rearrangements have o

urred. Breakpoints are less 
onserved regions that were brokenby rearrangements and their analysis 
an give 
lues on the issue of hotspots of rearrangements.A quite lively debate between random breakage and non-random breakage models of evolutiondivides authors in two groups.The proponents of the non-random distribution of breakpoints along a genome build theirtheory on two main observations. The analysis of breakpoint sequen
es shows that they arehighly shu�ed due to numerous mi
ro-rearrangements [KBH+03℄. The 
on
entration of mi
ro-rearrangements within these regions tends to say that they are more prone to rearrangements.A higher level analysis proposed by Pevzner et al. [PT03a, PT03b℄ 
onsists in studying genomi
rearrangements on signed permutations obtained from synteny blo
ks. They observed that someregions between two markers are re-used suggesting that these regions 
orrespond to hotspots.The �re-use� issue is also a widely debated topi
 about hotspots [PPT06, San06, ST05℄.Trinh et al. [TMS04℄ defend the thesis of the random model by analyzing in details the smallsegments within breakpoints: they 
laim that the loss of similarity between 
onserved blo
ks aredue to alignment errors or artifa
ts.2.2 Evolutionary distan
es between two genomesOn
e 
ommon markers are de�ned, signed permutations 
an be 
onstru
ted, and from this model,we 
an provide a measure of the evolution between two spe
ies. In fa
t, permutations lead tothe 
omputation of a mathemati
al distan
e that 
orrespond to the minimal number of rear-rangements that transform one genome into another. The distan
e 
omputation is based on aset of rearrangements. In the relevant literature, the 
onsidered rearrangements are not alwaysthe same. In this se
tion, we fo
us on the method based on reversals only and its extension tothe multi
hromosomal 
ase by the addition of translo
ations, fusions and �ssions.24



2.2. Evolutionary distan
es between two genomes2.2.1 The reversal distan
e for uni
hromosomal genomesIn 1995 Hannenhalli and Pevzner [HP95a℄ de�ned the exa
t reversal distan
e between two signedpermutations and provide the �rst polynomial-time algorithm to parsimoniously transform asigned permutation into another using reversals. Their results presented below have been refor-mulated by Setubal and Meidanis in [SM97℄. The studied genomes are represented by one signedpermutation a

ording to the previously des
ribed formalism. The rearrangement operations
onsidered are restri
ted to reversals only. Moreover, genomes are de�ned on the same set ofmarkers without dupli
ations, insertions and deletions.Figure 1.9 presents a parsimonious s
enario transforming the permutation π into the permu-tation γ. How 
an one be sure that the obtained s
enario is in fa
t a parsimonious one? Inse
tion 1.3.3, the notion of breakpoint was introdu
ed. Computing a parsimonious s
enario andthus the rearrangement distan
e 
onsists in �nding the minimum number of rearrangementswhi
h remove all of the breakpoints. Thus, the study of breakpoints provides a lower bound forthe reversal distan
e (see lemma 1). In fa
t, a reversal ρ 
an remove at most two breakpoints:
b(π, γ) − b(π.ρ, γ) ≤ 2.Lemma 1 Let π and γ be two permutations and b(π, γ) be the breakpoint distan
e between thesetwo permutations. Then, the reversal distan
e d(π, γ) veri�es: b(π,γ)

2 ≤ d(π, γ).The approximation given by the lemma 1 is not very pre
ise. The aim of many works hasbeen to re�ne this bound. Hannenhalli and Pevzner [HP95a℄ propose a theory based on a graphintrodu
ed by Bafna and Pevzner in [BP93℄ whi
h leads to an exa
t formula for the 
omputationof the reversal distan
e between two signed and uni
hromosomal genomes.Breakpoint graphTo transform a signed permutation π into a signed permutation γ, both de�ned on the sameset of n elements, the breakpoint graph G(π, γ) is built. G(π, γ) is an edge-
olored graph builtfrom unsigned representations of two signed permutations. A signed permutation π = π1 .. πnover n elements is transformed into an unsigned representation u(π) in the following way. Ea
hpositive element +x from π is repla
ed by two verti
es labeled 2x−1 and 2x while ea
h negativeelement −x is repla
ed by two verti
es labeled 2x and 2x − 1 (see �gure 2.1). If permutationsrepresent linear genomes, verti
es π0 = 0 and π2n+1 = 2n + 1 are added to take into a

ountadja
en
ies with the �rst and the last elements. Thus, the graph has 2n+2 verti
es. Note that ifgenomes are 
ir
ular, unsigned permutations are de�ned over 2n elements. Edges of G representadja
en
ies either in π (edges {π2i, π2i+1}, drawn with solid lines), or in γ (edges {γ2i, γ2i+1},drawn with dashed lines) for i = 0, .., n (see �gure 2.2 for an example).
(a) πi is positive2πi − 1 2πi

+πi (b) πi is negative2πi 2πi − 1−πiFigure 2.1: Verti
es of G obtained from an element of the permutation π.A reversal applied to the permutation π 
an also be applied to the breakpoint graph. Theparti
ularity of the breakpoint graph de�ned from two identi
al permutations is to have solid25



Chapter 2. From 
ommon markers to evolution s
enarios
0 7 8 9 10 15 16 13 14 1 2 6 5 4 3 11 12 17 18 19 20 22 21 23+0 +4 +5 +8 +7 +1 -3 -2 +6 +9 +10 -11 +12

C1

C2

Figure 2.2: Breakpoint graph for the linear permutations π = +4 + 5 + 8 + 7 + 1 − 3 − 2 +
6 + 9 + 10 − 11 and γ = +1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11.and dashed edges that link the same verti
es. Thus, transforming the permutation π into thepermutation γ 
onsists in making the solid and dashed edges 
oin
ide (for example this is the
ase for verti
es 5 and 4 in the breakpoint graph of the �gure 2.2). The number of 
y
les in thebreakpoint graph de�ned from two identi
al permutations with n signed elements is maximal:this number is equal to n + 1. Hen
e, the transformation of π into γ 
onsists in in
reasing thenumber of 
y
les in order to obtain the permutation γ. The number of 
y
les in the graph G(π, γ)is denoted by c(π, γ).A reversal on the breakpoint graph is de�ned by two solid edges u and v: elements between
u and v are reversed. Only some reversals in
rease the number of 
y
les, depending on the
onsidered edges. A traversal (in arbitrary dire
tion) of a 
y
le provides an orientation for thesolid edges. Based on the relative orientation of solid edges, we 
an de�ne an orientation for allpairs of solid edges in a 
y
le.De�nition 4 If two solid edges u and v belong to the same 
y
le of a breakpoint graph and havethe same orientation, they are said to be unoriented. Otherwise, they are oriented.Based on de�nition 4, we distinguish two kinds of 
y
les a

ording to the edge orientation:oriented and unoriented 
y
les.De�nition 5 A 
y
le of a breakpoint graph is unoriented if all of its solid edges are pairwiseunoriented. Otherwise, the 
y
le is 
alled to be oriented.It is also possible to de�ne an orientation for a dashed edge a

ording to the positions of itsin
ident verti
es.De�nition 6 A dashed edge {πi, πj} in G(π, γ) is oriented if |j − i| is even, otherwise it isunoriented.The orientation of a 
y
le 
an then be rede�ned based on de�nition 6.De�nition 7 A 
y
le of a breakpoint graph is unoriented if all of its dashed edges are unoriented.Otherwise, the 
y
le is said to be oriented.For example in the breakpoint graph of �gure 2.2, edges u = {20, 22} and v = {21, 23} areoriented in the 
y
le C2. Thus, the 
y
le C2 is also oriented. However, the 
y
le C1 is unorientedbe
ause it has only two solid edges that are both unoriented (u = {16, 13} and v = {12, 17}).26



2.2. Evolutionary distan
es between two genomesTheorem 1 (Setubal and Meidanis [SM97℄) Let ρ be a reversal de�ned on two solid edges
u and v of G(π, γ) with π and γ two signed permutations. Then:(i) if u and v belong to two di�erent 
y
les, c(π.ρ, γ) = c(π, γ) − 1,(ii) if u and v belong to the same 
y
le and are unoriented, c(π.ρ, γ) = c(π, γ),(iii) if u and v belong to the same 
y
le and are oriented, c(π.ρ, γ) = c(π, γ) + 1.The bound provided by breakpoints is re�ned thanks to theorem 1. In fa
t, for a givenparsimonious s
enario ρ1ρ2..ρk that transforms a signed permutation π of order n into a signedpermutation γ, we have:

c(π.ρ1.ρ2...ρk, γ) = c(γ, γ) = n + 1A

ording to the theorem, we have:
c(π.ρ1, γ)− c(π, γ) ≤ 1

c(π.ρ1.ρ2, γ)− c(π.ρ1, γ) ≤ 1...
c(π.ρ1.ρ2...ρk, γ)− c(π.ρ1.ρ2...ρk−1, γ) ≤ 1By adding all the terms, we obtain

d(π, γ) ≥ c(π.ρ1.ρ2...ρk, γ) − c(π, γ) and so d(π, γ) ≥ n + 1− c(π, γ).For many permutations, this approximation is very 
lose to the parsimonious distan
e. Nev-ertheless, for some 
ases, this approximation is not exa
t. If the breakpoint graph of π and γhas only oriented 
y
les, there exists a s
enario su
h that the number of 
y
les in
reases at ea
hstep (see theorem 1, item (i)). Thus, the estimate n + 1 − c(π, γ) is an exa
t formula in this
ase. It be
omes false when there are one or several unoriented 
y
le(s), sin
e reversals on thistype of 
y
le do not modify the number of 
y
les (see theorem 1, item (ii)). A
tually, there is a
on�guration of the breakpoint graph with unoriented 
y
les for whi
h the formula is 
orre
t.De�nition 8 Two dashed edges {πi, πj} and {πk, πl} in G(π, γ) interleave when [i, j] and [k, l]overlap, but no one of their intervals 
ontains the other.De�nition 9 Two 
y
les C1 and C2 in G(π, γ) interleave when they have interleaving dashededges g1 ∈ C1 and g2 ∈ C2.
C1 C20 5 6 2 1 4 3 7+0 +3 -1 -2 +4 0 1 2 6 5 4 3 7+0 +1 -3 -2 +4Figure 2.3: Example of a breakpoint graph where the oriented 
y
le C1 and the unoriented one

C2 interleave. Applying the reversal de�ned by {0, 5} and {1, 4} solid edges within C1 orients
y
le C2.If an unoriented 
y
le interleaves with an oriented one, then applying a reversal to two edgesfrom the oriented 
y
le in
reases the number of 
y
les but orients the unoriented 
y
le (for an27



Chapter 2. From 
ommon markers to evolution s
enariosexample, see �gure 2.3). Thus, the estimation n + 1 − c(π, γ) for the reversal distan
e is stillexa
t for this 
on�guration.Interleaving graphUnoriented 
y
les that do not interleave with oriented ones 
annot be oriented by the resolutionof neighbour 
y
les. To solve the problem of this kind of unoriented 
y
les, Hannenhalli andPevzner introdu
ed the interleaving graph.De�nition 10 An interleaving graph I(G) is a graph where ea
h vertex represents a non-trivial
y
le (with more than 2 edges) of the breakpoint graph G = G(π, γ). Two verti
es are linked byan edge if they are interleaving.This graph 
an be de
omposed into 
onne
ted 
omponents.De�nition 11 The span of a 
onne
ted 
omponent K of I(G) is [i, j] where πi and πj are theleftmost and rightmost verti
es of any 
y
le of K in G.Components are 
lassi�ed a

ording to their orientation. For example, the breakpoint graphin �gure 2.4 has six non-trivial 
y
les. Cy
les C3 et C6 are oriented while all the others areunoriented. Figure 2.5 represents the interleaving graph obtained from the breakpoint graph ofthat in �gure 2.4. Three 
omponents belong to this graph: two oriented ones and one unorientedformed by the two 
y
les C1 et C5.De�nition 12 A 
onne
ted 
omponent K of the interleaving graph is oriented if at least one ofits verti
es 
orresponds to an oriented 
y
le in the breakpoint graph. Otherwise, K is unoriented.
C1

C2 C3

C4

C5

C6Figure 2.4: Example of a breakpoint graph with six non-trivial 
y
les C1 through C6.Oriented 
omponents are resolved by applying reversals to two oriented edges that in
reasethe number of 
y
les. Sorting unoriented 
omponents is more 
omplex. We have seen that areversal applied to two solid edges belonging to an unoriented 
y
le 
an make it oriented withoutmodifying the number of 
y
les in the breakpoint graph (theorem 1, item (ii)). In this 
ase,an unoriented 
omponent to whi
h the unoriented 
y
le belongs be
omes oriented. Thus, theapproximation of the reversal distan
e 
an be re�ned by taking into the a

ount the numberof unoriented 
omponents. However, not all of the unoriented 
omponents require a reversal inorder to be
ome oriented.Hannenhalli and Pevzner [HP95a℄ give a 
lassi�
ation for unoriented 
omponents based on thenotion of 
omponent separation de�ned below.28



2.2. Evolutionary distan
es between two genomes
C3

C2

C4

C1

C5

C6

Figure 2.5: Interleaving graph I(G) of the breakpoint graph from �gure 2.4. Oriented 
y
les areen
ir
led. I(G) has 2 oriented 
omponents K1 = {C2, C3, C4}, K2 = {C6} and one unoriented
K3 = {C1, C5}.De�nition 13 Let K1, K2 and K3 be 3 
onne
ted 
omponents of I(G) and let SK2

and SK3
bethe spans of K2 and K3. K1 separates K2 from K3 if there exists a dashed edge {πi, πj} in K1su
h that SK2

⊂ [i, j] and SK3
6⊂ [i, j].Based on this de�nition, unoriented 
omponents are 
lassi�ed into non hurdles and hurdles.We distinguish minimal hurdles from the greatest hurdle. In �gure 2.6, 
omponents K1 and K3are two minimal hurdles separated by the non hurdle K2.De�nition 14 A hurdle is an unoriented 
omponent whi
h does not separate two other unori-ented 
omponents. Otherwise, it is a non hurdle.De�nition 15 A hurdle is minimal if its span does not 
ontain the span of any other hurdle.The greatest hurdle is a hurdle whose the span 
ontains the spans of all other hurdles.

K1

K2

K3Figure 2.6: Breakpoint graph 
omposed of 3 
omponents K1, K2 and K3. All of them areunoriented and are formed by only one unoriented 
y
le.A reversal applied to solid edges belonging to two di�erent 
y
les de
reases the number of
y
les (see theorem 1, item (iii)), but if the implied 
y
les are unoriented they are transformedinto an oriented 
y
le as well as are all unoriented 
omponents that separate them. Thus, nonhurdles 
an be
ome oriented by applying reversals to hurdles whi
h they separate. Let h(π, γ)be the overall number of hurdles in the breakpoint graph of π and γ. The new approximation ofreversal distan
e is then given by the formula:
d(π, γ) ≥ n + 1− c(π, γ) + h(π, γ) 29



Chapter 2. From 
ommon markers to evolution s
enariosNevertheless, �hard-to-sort� permutations exist where the resolution of all the hurdles 
annotremove all of the non hurdles. In this 
ase, a supplementary reversal is needed. The 
on�gurationof this kind of permutation is 
alled a fortress and is based on the notion of prote
tion.De�nition 16 A hurdle K1 prote
ts a non hurdle K2 if removing K1 transforms K2 into ahurdle. A super hurdle is a hurdle that prote
ts a non hurdle. Otherwise, it is a simple hurdle.Components K1 and K3 are super hurdles belonging to the breakpoint graph of the �gure 2.6.If the number of super hurdles is odd and all of them are super hurdles, then it is not possibleto remove all of the non hurdles. A supplementary reversal is needed.De�nition 17 We 
all a fortress a breakpoint graph that has an odd number of hurdles that areall super.Let f(π, γ) be the fun
tion that returns 1 if the breakpoint graph is a fortress, and 0 otherwise.Then, the reversal distan
e is given by theorem 2.Theorem 2 (Hannenhalli and Pevzner [HP95a℄) For two uni
hromosomal genomes π and
γ, d(π, γ) = n + 1− c(π, γ) + h(π, γ) + f(π, γ).In [HP95a℄, Hannenhalli and Pevzner present a 
onstru
tion of the breakpoint graph and theother stru
tures for 
omputing the reversal distan
e in O(n2) for permutations π and γ of order
n. Thus, the reversal distan
e d(π) is also 
omputed in O(n2). Later, Berman and Hannenhalli in[BH96℄ improved the algorithm for 
omputing 
onne
ted 
omponents of the interleaving graphand proposed to solve the reversal distan
e in O(nα(n)), where α is the inverse A
kermanfun
tion. In [BMY01℄, Bader et al. again improved the 
onne
ted 
omponent 
omputation andgave a linear-time algorithm for reversal distan
e.2.2.2 Extension to multi
hromosomal genomesHannenhalli and Pevzner [HP95b℄ extended their theory for reversal distan
e 
omputation tothe multi
hromosomal 
ase. They propose a polynomial algorithm that 
omputes the minimumnumber of rearrangements for transforming one multi
hromosomal genome into another, all ofthem de�ned on the same set of markers without repetition. Rearrangements spe
i�
 to multi-
hromosomal genomes are taken into the a

ount as well as reversals: translo
ations, fusions and�ssions. However, both the formula for rearrangement distan
e and the algorithm for 
omputinga parsimonious s
enario present errors. These were partially 
orre
ted by Tesler in [Tes02a℄.Ozery-Flato and Shamir in their turn rede�ne some notions and suggest further 
orre
tions forthese problems [OFS03℄. In what follows, we present using our notations the last results for therearrangement distan
e 
omputation based on Hannenhalli and Pevzner's theory and obtainedafter Tesler, and Ozery-Flato and Shamir's 
orre
tions.Uni
hromosomal vision for a multi
hromosomal genomeHannenhalli and Pevzner propose mimi
king the behaviour of a multi
hromosomal genomethrough the uni
hromosomal model. Two steps are needed to transform a multi
hromosomalgenome into an uni
hromosomal genome: 
apping and 
on
atenate. Let Π and Γ be two multi-
hromosomal genomes de�ned over the same set of Ng gene markers.A 
apping of Π and Γ 
onsists in adding two ordinals 
alled 
aps to the extremities of ea
h
hromosome. Let C = {c0, c1, .., cn} with n = 2max(NΠ, NΓ) − 1 be the set of distin
t 
aps30



2.2. Evolutionary distan
es between two genomesdi�erent from the Ng gene markers in Π and Γ. We denote by Π̂ = {π̂1, ..., π̂max(NΠ,NΓ)} a
apping of Π where the ith 
hromosome is π̂i = c2(i−1) πi
1...π

i
ni

c2(i−1)+1. If NΓ > NΠ, the
NΓ − NΠ last 
hromosomes of Π̂ are empty 
hromosomes 
omposed of 2 su

essive 
aps. From
C, we similarly de�ne Γ̂ with NΠ −NΓ empty 
hromosomes if NΠ > NΓ. A 
on
atenate π̂ of Π̂is a signed permutation π̂ obtained by 
on
atenating 
hromosomes after 
hoosing an orientationand an order for ea
h of them. At the end of these two steps, we obtain an unique permutationin whi
h ea
h reversal 
an be read as a multi
hromosomal rearrangement. See for illustrationexample 2.7.Genomes: Π = {1 2, 3 4, 5 8 7 6} Γ = {1 2 3 4, 5 6 7 8}Cappings: Π̂ = {9 1 2 10,11 3 4 12,13 5 8 7 6 14} Γ̂ = {9 1 2 3 4 10,11 5 6 7 8 12,13 14}Con
atenates: π̂ = 9 1 2 10 11 3 4 12 13 5 8 7 6 14 γ̂ = 9 1 2 3 4 10 11 5 6 7 8 12 13 14Figure 2.7: Example from [Tes02a℄ of a 
apping and a 
on
atenate for two genomes Π and Γ.Caps are indi
ated by bold 
hara
ters.Breakpoint graphThe breakpoint graph for multi
hromosomal genomes is built from permutations π̂ and γ̂. Thedistan
e value 
omputed on G(π̂, γ̂) depends on the 
hosen 
apping and 
on
atenate. Let G(Π,Γ)be the graph obtained by removing all edges that involve 
on
atenate and 
apping from G(π̂, γ̂),that is, all dashed edges in
ident to 
ap verti
es and all solid edges between two 
ap verti
es orbetween a 
ap vertex and the �rst or the last element. Then we 
an distinguish three types ofverti
es: (1) isolated verti
es 
alled tails, (2) 
ap verti
es of degree 1 
alled Π-
aps, and (3) otherverti
es of degree 1 
alled Γ-tails. Figure 2.8 shows the transformation of a graph G(π̂, γ̂) intothe graph G(Π,Γ).Cy
les and pathsAs in the uni
hromosomal 
ase, the graph G(Π,Γ) 
an be de
omposed into 
y
les but alsointo paths. If a path starts and ends with Π-
aps (two Γ-tails, or one Π-
ap and one Γ-tail,respe
tively) then it is a ΠΠ-path (ΓΓ-path or ΠΓ-path, respe
tively). Orientation for 
y
les andpaths in the multi
hromosomal 
ase is de�ned in a way analogous to 
y
le orientation for theuni
hromosomal 
ase.De�nition 18 A 
y
le or a path of a breakpoint graph is unoriented if all its dashed edges areunoriented. Otherwise, the 
y
le is said to be oriented.New notions spe
i�
 to multi
hromosomal genomes are also de�ned for edges and for 
y
lesand paths of breakpoint graph: inter
hromosomality and intra
hromosomality.De�nition 19 A dashed edge of a breakpoint graph is intra
hromosomal if its verti
es belong tothe same 
hromosome. It is said inter
hromosomal otherwise.De�nition 20 A 
y
le or path of a breakpoint graph is inter
hromosomal if one of its dashededges is inter
hromosomal. Otherwise, it is intra
hromosomal. 31
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ommon markers to evolution s
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TΠ Γ Π Π ΠΓ ΓΠ Γ Π9 1 2 10 11 3 4 12 13 5 8 7 6 14Figure 2.8: Example from [Tes02a℄ of the transformation of G(π̂, γ̂) into G(Π,Γ) by removingedges representing the 
hosen 
on
atenate (from (a) to (b)) and 
apping (from (b) to (
)).Genomes π̂ and γ̂ are the same as those in �gure 2.7. Spe
i�
 verti
es are denoted by T (Tails),

Π (Π-
ap) and Γ (Γ-tails).Interleaving graphAn Edge interleaving de�ned for uni
hromosomal genomes (de�nition 8) is applied to dashededges of a breakpoint graph representing multi
hromosomal genomes and extended to 
y
les andpaths.De�nition 21 Two 
y
les or paths C1 and C2 in G(Π,Γ) interleave when they have interleavingedges g1 ∈ C1 and g2 ∈ C2.Then, for multi
hromosomal genomes, the interleaving graph I(G) is a graph where ea
h vertexrepresents a non-trivial path or 
y
le of the breakpoint graph G = G(Π,Γ). Two verti
es arelinked by an edge if they are interleaving.In the same way as in de�nition 12, we de�ne orientation for ea
h 
omponent of I(G) a

ordingto the orientation of its verti
es and we distinguish oriented 
omponents from unoriented ones.Moreover, in the same way as for 
y
les and paths, a 
omponent K of I(G) is inter
hromosomalif one of its verti
es is inter
hromosomal, it is intra
hromosomal otherwise. Let U(G) be theset of unoriented 
omponents of I(G), IU(G) the set of unoriented and intra
hromosomal ones.Within unoriented and intra
hromosomal 
omponents, we distinguish real 
omponents fromunreal 
omponents. Denote by RU(G) the set of real 
omponents.32



2.2. Evolutionary distan
es between two genomes
K ′ K K ′′

Figure 2.9: Counterexample of the separation notion given by the de�nition 23. Any element
k ∈ K is su
h that K ′

max < k < K ′′
min. However, K does not separate K ′ from K ′′ as it shoulda

ording to [HP95a℄.De�nition 22 A 
onne
ted 
omponent K of I(G) is real if K is intra
hromosomal, unoriented,and it has no Π-
ap or Γ-tail in its span.The notion of 
omponent separation (see de�nition 13) is de�ned in the same way as in theuni
hromosomal 
ase partitions of U(G), IU(G) and RU(G): hurdles and non hurdles for the�rst, knots and non knots for the se
ond, and real knots and non-real knots for the third.Note that the de�nition that Hannenhalli and Pevzner give for the notion of separation in theirpaper on the multi
hromosomal 
ase [HP95b℄ (see de�nition 23) is di�erent from the de�nition13 previously given by the same authors [HP95a℄ and is in
orre
t (see 
ounterexample 2.9). A
onne
ted 
omponent K 
orresponds to the set of integers K̄ = {i : i ∈ C ∈ K} representingthe set of positions of the permutation belonging to 
y
les or paths of K. For a set of integers

K de�ne Kmin = mink∈K k and Kmax = maxk∈K k.De�nition 23 (Hannenhalli et Pevzner [HP95b℄) A 
omponent K separates K ′ from K ′′if there exists k ∈ K su
h that K ′
max < k < K ′′

min.A hurdle is super if it prote
ts (see de�nition 16) a non hurdle, otherwise it is simple. A hurdle
an be the greatest one if its span 
ontains all the spans of the others hurdles, otherwise it is aminimal hurdle. These notions are de�ned similarly for knots and real knots. The graph G is afortress (fortress of knots, or fortress of real knots, respe
tively) if it 
ontains an odd number ofhurdles (knots, or real knots, respe
tively) that are all super.Within the set of unreal 
omponents, Ozery-Flato and Shamir [OFS03℄ distinguish those 
alledsemi-real knots, whi
h are 
hara
terized by their potential of be
oming real knots.De�nition 24 A semi-real knot is a 
omponent in IU(G)\RU(G) that does not 
ontain a ΓΓ-path in its span and that be
omes a minimal real knot or the greatest simple real knot after 
losingits ΠΓ-paths.The greatest semi-real knot is a semi-real knot that be
omes the greatest simple real knot after
losing its ΠΓ-paths. A semi-real knot is 
alled a minimal semi-real knot if 
losing its ΠΓ-pathsmakes it a minimal real knot. From the semi-real knot, Ozery-Flato and Shamir [OFS03℄ de�nethe notions of simple 
omponent and weak fortress of real knots.De�nition 25 A simple 
omponent is a 
omponent of I(G) with at least one ΠΓ-path that isnot a semi-real knot.De�nition 26 A graph G is a weak fortress of real knots if (a) G has an odd number of realknots, (b) there exists the greatest real knot in G, (
) all real knots are super ex
ept the greatestone and (d) the number of semi-real knots in G is not zero. 33



Chapter 2. From 
ommon markers to evolution s
enariosNote that a weak fortress of real knots be
omes a fortress of real knots by 
losing the ΠΓ-pathsin a semi-real knot. Example 1 gives the details of the 
omponents for the breakpoint graph of�gure 2.10.
A E

B
C D F

b b b b b b
T T T T T TΠ Π Π ΠΓ Γ0 27 28 2 1 3 4 7 8 13 14 11 12 9 10 15 16 5 6 17 18 29 30 31 32 19 20 21 22 25 26 23 24 33 34 3514 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

G(Π, Γ)

Figure 2.10: Breakpoint graph G(Π,Γ) for Π = {−1 2 4 7 6 5 8 3 9, 10 11 13 12} and Γ =
{1 2 3 4 5 6 7 8 9 10 11 12 13}. Tails verti
es are marked by T, Π-
aps by Π and Γ-tails by
Γ. Non-trivial 
y
les and paths are denoted by letters from A to F . The interleaving graph
I(G) 
orresponding to G(Π,Γ) is 
omposed of 5 
onne
ted 
omponents: K1 = {A}, K2 = {B},
K3 = {C,D}, K4 = {E} and K5 = {F}.Example 1 Figure 2.10 presents a breakpoint graph G(Π,Γ). The 
omponent K1 of I(G) isintra
hromosomal oriented, U = {K2,K3,K4, K5}, IU = {K2,K3,K5} and RU = {K2,K3}.
K3 is a super hurdle while K4 and K5 are simple hurdles, and K3 and K5 are super knots.However, K2 and K3 are real knots (K2 is the greatest one), while K5 is a minimal semi-realknot and K1 is a simple 
omponent.Rearrangement distan
eOzery-Flato and Shamir [OFS03℄ give an exa
t formula for distan
e between two multi
hromoso-mal genomes Π and Γ as shown in theorem 3. Denote by Ḡ(Π,Γ) the graph obtained by 
losingall the ΠΓ-paths in simple 
omponents of G(Π,Γ).Theorem 3 (Ozery-Flato [OFS03℄)
d(Π,Γ) = b(Π,Γ)− c(Π,Γ) + pΓΓ(Π,Γ) + r(Π,Γ) + ⌈s′(Π,Γ)−gr′(Π,Γ)+fr′(Π,Γ)

2 ⌉.The parameters of the formula are the following:- b(Π,Γ) is the number of solid edges in G(Π,Γ) (b = Ng + max(NΠ, NΓ)),- c(Π,Γ) is the number of 
y
les and paths,- pΓΓ(Π,Γ) is the number of ΓΓ-paths,- r(Π,Γ) is the number of real knots,- s′(Π,Γ) is the number of semi-real knots in G(Π,Γ),- gr′(Π,Γ) is equal to 1 if Ḡ has the greatest real knot and s′ > 0, and is 0 otherwise,- fr′(Π,Γ) is equal to 1 if either (i) Ḡ is a fortress of real knots and the greatest semi-realknot does not exist in Ḡ, or (ii) Ḡ is a weak fortress of real knots.By adapting the linear-time algorithm of Bader et al. for uni
hromosomal genomes [BMY01℄,Tesler in [Tes02a℄ 
omputes the rearrangement distan
e in linear time.34



2.3. Parsimonious s
enarios2.2.3 Other distan
esThe distan
e 
omputation methods previously presented rely on reversals and translo
ationsin
luding �ssions and fusions, whi
h are spe
i�
 
ases. Although these rearrangements are 
on-sidered as the most frequent operations during spe
ies evolution, di�erent sets of rearrangementsand the 
orresponding genomi
 distan
e and s
enarios are also investigated in the literature.Certain studies looked into translo
ations only. Ke
e
ioglu and Ravi [KR95℄ were the �rstones to propose a 2-approximation for 
omputing distan
e by translo
ations. In 1996, Hannen-halli [Han96℄ presents the �rst polynomial-time algorithm for the signed translo
ation distan
e,subsequently 
orre
ted by Ozery-Flato and Shamir in [OFS06℄. Re
ently, Li et al. [LQWZ04℄proposed a linear implementation for distan
e 
omputing and Wang a quadrati
 algorithm to�nd an optimal sequen
e of translo
ations.Transforming a permutation by transpositions into another (see se
tion 1.2.2) has also beenwidely studied. However, the 
omplexity of this problem is still open. Bafna and Pevzner [BP98℄gave a 1.5-approximation algorithm to �nd the minimum number of transpositions to transformone genome into another. Hartman et Shamir [HS03℄ proposed a simpler 1.5-approximationalgorithm for the same time 
omplexity. Walter et al. [WSO+05℄ improved the time 
omplexityof the initial algorithm by giving a O(n3) implementation. To date, the best known algorithmis a 1.375-approximation provided by Elias and Hartman in [EH05℄.The 
omplexity of the genomi
 distan
e problem is still unknown for 
ertain sets of 
onsideredrearrangements. In fa
t, there are e�
ient algorithms when only one rearrangement is taken intothe a

ount, but 
ombinatory problems be
ome more di�
ult by the addition of new rearrange-ment types. However, the theory of Hannenhalli and Pevzner [HP95b℄ presented in this se
tionleads to a linear algorithm [Tes02a℄ for 
omputing distan
e in terms of reversals, translo
ations,fusions and �ssions.2.3 Parsimonious s
enariosThe rearrangement distan
e estimates the minimum number of rearrangements that separatetwo genomes, while parsimonious s
enarios 
onsist in 
learly de�ning whi
h rearrangements o
-
urred during their evolution. These two problems are strongly related but they are often solvedindependently. This se
tion proposes an overview of the method based on the Hannenhalli andPevzner's theory [HP95b℄ for re
overing one rearrangement s
enario.2.3.1 Computing a parsimonious s
enario for uni
hromosomal genomesThere are several algorithms for 
omputing a parsimonious s
enario between two uni
hromosomaland signed genomes by reversals. Many of them are based on the Hannenhalli and Pevznermodel of the breakpoint graph (see se
tion 2.2.1). From their theory, Hannenhalli and Pevznerdeveloped the �rst polynomial algorithm for this problem and proposed an O(n4) implementationwhere n is the permutation order. Other more e�
ient algorithms were developed thereafter:Berman and Hannenhalli [BH96℄, Kaplan et al. [KST97℄ and Bader et al. [BMY01℄ algorithmsrequire O(n2), while the one proposed by Bergeron in [Ber01℄ and [BS01℄ requires O(n3). Morere
ently, Tannier and Sagot in [TS04℄ solve this problem with a O(n
√

n log n)-time algorithm.All of the quoted algorithms ex
ept the last one are based on safe reversals. A reversal is safeif it de
reases the reversal distan
e by one. There are two types of safe reversals: proper safereversals and hurdle-
utting safe reversals. The latter 
onsist in solving the problem of unoriented
omponents and this is done in the same way by all the algorithms. Algorithms di�er in the way35



Chapter 2. From 
ommon markers to evolution s
enariosproper safe reversals in oriented 
omponents are found: although the methods are all based onthe interleaving graph or the overlap graph (easily obtained from the interleaving graph), thenotion of safe reversal is de�ned di�erently.2.3.2 Computation of an optimal s
enario for multi
hromosomal genomesIn order to make the problem easier, �nding a parsimonious s
enario between two multi
hro-mosomal genomes in terms of reversals and translo
ations is redu
ed to the uni
hromosomal
ase in a way analogous to the distan
e problem. For two multi
hromosomal genomes Π and Γ,
omputing optimal 
appings Π∗ and Γ∗ and then optimal 
on
atenates π∗ and γ∗ are needed toobtain uni
hromosomal permutations to whi
h existing algorithms for the uni
hromosomal 
ase
an be applied from the breakpoint graph G(π∗, γ∗). Ea
h reversal in the obtained s
enario isinterpreted as a rearrangement, either a translo
ation or a reversal.As was the 
ase for distan
e resolution, the initial theory of Hannenhalli and Pevzner forthis problem [HP95b℄ was 
orre
ted �rst by Tesler [Tes02a℄, and then in turn Ozery-Flato andShamir [OFS03℄. In what follows, we present in detail the last results [HP95b, Tes02a, OFS03℄for the two main steps that lead to the 
onstru
tion of G(π∗, γ∗): optimal 
appings and optimal
on
atenates.Optimal 
appingsOptimal 
appings Π∗ and Γ∗ formalize the problem of �nding positions and signs for 
aps in thegenome Γ su
h that d(Π∗,Γ∗) = d(Π,Γ) (see lemma 4). This is done for any arbitrary 
appingin Π. In the breakpoint graph, it 
onsists in adding 2NΓ edges linking a Π-
ap to a Γ-tail and
NΠ −NΓ edges between two Π-
aps if NΠ > NΓ. Hannenhalli and Pevzner prove in [HP95b℄ aset of te
hni
al lemmas required to build optimal 
appings.Lemma 2 ([HP95b℄) For every ΠΠ-path and ΓΓ-path in G(Π,Γ), there exists either an inter-
hromosomal or an oriented dashed edge whi
h joins these paths into a ΠΓ-path.Lemma 3 ([HP95b℄) For every two unoriented ΠΓ-paths, there exists either an inter
hromo-somal or an oriented dashed edge whi
h joins these paths into a ΠΓ-path.Let Γ′ be the set of the 2max(NΠ, NΓ)! possible 
appings for Γ.Lemma 4 ([HP95b℄) d(Π,Γ) = minΓ̂∈Γ′ b(Π̂, Γ̂)− c(Π̂, Γ̂) + h(Π̂, Γ̂) + f(Π̂, Γ̂).Optimal 
appings Π∗ and Γ∗ verify: d(Π,Γ) = b(Π∗,Γ∗) − c(Π∗,Γ∗) + h(Π∗,Γ∗) + f(Π∗,Γ∗).Ozery-Flato and Shamir give in [OFS03℄ an algorithm for 
onstru
tion of the sequen
e of dashededges leading to optimal 
apping Γ∗ (see algorithm 1).Despite 
orre
tions for optimal 
apping problem brought by Ozery-Flato and Shamir in [OFS03℄,the algorithm they propose remains in
orre
t. In 
hapter 7, we show a 
ounterexample for Ozery-Flato and Shamir's algorithm and we introdu
e a 
orre
t algorithm for optimal 
apping as wellas the proof of its 
orre
tion.Optimal 
on
atenatesHannenhalli and Pevzner in [HP95b℄ indi
ate that it is sometimes ne
essary to �ip (i.e. reverse)some 
hromosomes in order to obtain optimal �nal permutations. Tesler in [Tes02a℄ spe
i�es thatat most one reversal of one or several entire 
hromosome(s) is required during the 
omputation36



2.3. Parsimonious s
enariosAlgorithm 1 Optimal_Capping1: Constru
t the graph G = G(Π,Γ)2: while there is a ΠΠ-path in G do3: Find an inter
hromosomal or an oriented edge joining this ΠΠ-path with a ΓΓ-path (lemma2) and add it to G4: end while5: while G has more than two semi real-knots do6: Find an inter
hromosomal or an oriented edge joining ΠΓ-paths in any two semi real-knots(lemma 3) and add it to G7: end while8: Close all ΠΓ-paths in simple 
omponents in G9: if G has two semi real-knots but it is not a fortress of real-knots then10: Find an inter
hromosomal or an oriented edge joining ΠΓ-paths in these semi real-knots(lemma 3) and add it to G11: end if12: Close any remaining ΠΓ-paths in G13: Find a 
apping Γ̂ de�ned by the graph G(Π̂, Γ̂)of an optimal s
enario based on optimal permutations. However, Tesler shows that reversingsome 
hromosomes is not always su�
ient to obtain optimal permutations. Some 
hromosomesneed to be reordered as well to avoid non-biologi
al operations whi
h just ex
hange two 
aps.Then, optimal permutations verify the following theorem:Theorem 4 (Tesler [Tes02a℄) Let d(Π,Γ) denote the distan
e between two multi
hromosomalgenomes, Π and Γ. There is a 
onstru
tive polynomial-time algorithm to produ
e two permuta-tions π∗ and γ∗ whose reversal distan
e is drev(π
∗, γ∗) = d or d + 1 su
h that optimal reversals
enarios between these permutations dire
tly mimi
 optimal rearrangement s
enarios betweengenomes Π and Γ. When drev = d + 1, one reversal step mimi
s �ipping a blo
k of 
onse
utivewhole 
hromosomes, whi
h does not 
ount as an operation in a multi
hromosomal rearrangements
enario; there are examples when su
h a step is required.Tesler determines optimal 
on
atenates π∗ and γ∗ based on two steps: proper �ipping andproper bonding of 
hromosomes [Tes02a℄.Proper �ipping Chromosome orientation 
an modify the nature of the inter
hromosomal
omponents of the 
orresponding breakpoint graph. An optimal orientation indu
es a breakpointgraph without unoriented inter
hromosomal 
omponents: in this 
ase, the breakpoint graph issaid to be properly �ipped. For that, ea
h 
hromosome has to be properly �ipped as well.De�nition 27 ([HP95b℄) A 
hromosome πi of a genome Π is properly �ipped in G = G(π̂, γ̂)if every inter
hromosomal edge originating from it belongs to an oriented 
omponent of G.De�nition 28 ([HP95b℄) The graph G(π̂, γ̂) is properly �ipped if all 
hromosomes are prop-erly �ipped.De�nitions 27 and 28 applied to graphs G = G(π̂, γ̂) are extended to graphs G(Π̂, Γ̂) by Teslerin [Tes02a℄ despite the absen
e of edges in
ident to tail verti
es. 37



Chapter 2. From 
ommon markers to evolution s
enariosTesler also extends lemma 5 to graphs G(Π̂, Γ̂) and presents algorithm Proper_Flip_Left(algorithm 2) whi
h leads to a properly �ipped graph. Example 2.11 presents an appli
ation ofthe algorithm 2.Lemma 5 ([HP95b℄) If a 
hromosome πi is not properly �ipped in G = G(π̂, γ̂), then it isproperly �ipped in the graph G′ obtained by �ipping that 
hromosome. Moreover, every properly�ipped 
hromosome in G remains properly �ipped in G′.Algorithm 2 Proper_Flip_Left(G)1: Determine 
omponents of G2: Classify 
omponents of G3: Determine all distin
t 
hromosomes i1, i2, .., ik that 
ontain the leftmost vertex of one ormore inter
hromosomal unoriented 
omponents4: Flip 
hromosomes i1, i2, .., ikProper bonding Proper bonding 
onsists in reordering 
hromosomes in Π̂ and Γ̂ in order thatthe pairs of 
aps that separate two 
hromosomes are the same within both genomes, whi
h 
onse-quently avoids non-biologi
al operations that simply ex
hange two 
aps during the 
onstru
tionof a parsimonious s
enario.De�nition 29 ([Tes02a℄) A bond is a 
ouple of 
aps (c1, c2) su
h that c1 is the right signed
ap of the 
hromosome i and c2 is the left signed 
ap of the 
hromosome i + 1.The set of the bonds of a 
on
atenate π̂ is then the following
{(0, π1

0), (π1
n1+1, π

2
0), .., (π

NC−1
nNC−1+1, π

NC

0 ), (πNC

nNC
+1, n + 1)}.Bonds (0, π1

0) and (πNC

nNC
+1, n + 1) are 
alled external bonds while the others are 
alled internalbonds.De�nition 30 ([Tes02a℄) A bond (a, b) of the permutation γ̂ is a proper bond when either

(a, b) or (−b,−a) is a bond in π̂.As it is shown by Tesler in [Tes02a℄, optimal 
on
atenates π∗ et γ∗ 
an be obtained fromoptimal 
appings so that following 
onditions are veri�ed:1) G(π∗, γ∗) is properly �ipped, and2) Either(i) all internal and external bonds in γ∗ are proper relative to π∗; or(ii) there is one improper internal bond and one improper external bond.Methods developed by Tesler in [Tes02a℄ for building optimal 
on
atenates π∗ and γ∗ fromoptimal 
appings Π∗ and Γ∗ 
onsist in 
on
atenating at ea
h step two 
hromosomes A and Bof Π∗ to 
reate a novel bond between these two 
hromosomes. The 
on
atenate A + B is thusobtained by 
reating a bond (a, b) with a the right 
ap of A and b the left 
ap of B. We look38



2.3. Parsimonious s
enarios(a) Genomes : Π = {1 4 2, 3 5 8 6, 7 9} Γ = {1 2, 3 4 5 6, 7 8 9}Cappings : Π̂ = {10 1 4 2 11,12 3 5 8 6 13,14 7 9 15} Γ̂ = {10 1 2 11,12 3 4 5 6 13,14 7 8 9 15}(b) Graph G(Π∗,Γ∗)

b b b b b b
T T T T T T10 1 4 2 11 12 3 5 8 6 13 14 7 9 15
hromosome 1 
hromosome 2 
hromosome 3(
) Reversal of 
hromosome 2
b b b b b b

T T T T T T10 1 4 2 11 -13 -6 -8 -5 -3 -12 14 7 9 15
hromosome 1 
hromosome 2 
hromosome 3(d) Reversal of 
hromosome 1
b b b b b b

T T T T T T-11 -2 -4 -1 -10 -13 -6 -8 -5 -3 -12 14 7 9 15
hromosome 1 
hromosome 2 
hromosome 3Figure 2.11: Appli
ation of the algorithm Proper_Flip_Left to genomes Π and Γ. (a) Entrydata. (b) Graph G(Π∗,Γ∗) obtained from optimal 
appings Π∗ = Π̂ and Γ∗ = Γ̂. There aretwo inter
hromosomal and unoriented 
omponents: 
hromosomes 1 and 2 are those to �ip. (
)Proper �ipping of 
hromosome 2. (d) Proper �ipping of 
hromosome 1. Obtained graph isproperly �ipped.for the same bond in Γ∗ with A′ + B′ obtained by 
on
atenating two of these 
hromosomes A′and B′. If a and b are lo
ated on two di�erent 
hromosomes in Γ∗, Π∗ and Γ∗ 
an have thesame bond: the 
on
atenate A + B is said to be legal in this 
ase. On the 
ontrary, if a and bare on the same 
hromosome of Γ∗, 
reating the bond (a, b) in Γ∗ is impossible: A + B is saidto be illegal. Of 
ourse, �ipping 
hromosomes is allowed for 
reating proper bonds as long as
hromosomes are properly �ipped (
ondition (1) of optimal 
on
atenates).Tesler proposes the algorithm form_optimal_
on
atenate (algorithm 3) that builds optimal
on
atenates. Steps (1), (2) and (17)-(21) are 
omputed in O(n). In the worst 
ase, steps (5)-(12) have to be done (NC − 1) times, whi
h indu
es a 
omplexity in O((NC − 1)n). However, at39



Chapter 2. From 
ommon markers to evolution s
enarios(a) Genomes: Π = {−5 1 3, 2 4} Γ = {1, 2 3 4 5}Cappings: Π̂ = {6 − 5 1 3 7,8 2 4 9} Γ̂ = {6 1 7,8 2 3 4 5 9}(b) Graph G(Π,Γ)

b b b bb b
T TT T T TΠ Π Π ΠΓ Γ Γ Γ6 -5 1 3 7 8 2 4 9
hromosome 1 
hromosome 2(
) Graph G(Π∗,Γ∗)

b b b bb b
T TT T T T6 -5 1 3 7 8 2 4 9
hromosome 1 
hromosome 2

Π
∗

= Π̂, Γ
∗

= {-7 − 1 9, 8 2 3 4 5 -6}(d) Graph G(Π∗,Γ∗) after properly �ipping
b b b bb b

T TT T T T7 -3 -1 5 -6 8 2 4 9
hromosome 1 
hromosome 2(e) Graphs G(π∗, γ∗) of optimal 
on
atenates
7 -3 -1 5 -6 8 2 4 9
hromosome 1 
hromosome 2

(1)

Con
atenates: π∗ = {-7 − 3 − 1 − 5 -6, 8 2 4 9}
γ∗ = {-7 − 1 9, 6 − 5 − 4 − 3 − 2 -8}

(2)

Con
atenates: π∗ = {-7 − 3 − 1 − 5 -6, 8 2 4 9}
γ∗ = {-7 − 1 9, 8 2 3 4 5 -6}

7 -3 -1 5 -6 8 2 4 9
hromosome 1 
hromosome 2Figure 2.12: Example from [Tes02a℄ of the 
onstru
tion of optimal 
on
atenates. (a) Entry data.(b) Graph G(Π,Γ) on whi
h rearrangement distan
e is 
omputed: d = 7−4+0+0+⌈0+0+0
2 ⌉ = 3.(
) Graph G(Π∗,Γ∗) of optimal 
appings. (d) Properly �ipping of the graph G(Π∗,Γ∗) byreversing 
hromosome 1. (e) Graphs G(π∗, γ∗) of optimal 
on
atenates. The bond (−6, 8) isillegal and reversing 
hromosome 1 is not possible. Optimal 
on
atenate γ∗ is building from two
hromosomes of Γ∗. Two 
on
atenates for γ∗ are possible: (1) There exists an oriented 
y
le(dotted lines) between 4 Tail verti
es. (2) There exists an unoriented 
y
le (dotted lines) between4 Tail verti
es but whi
h overlap an oriented 
omponent.40



2.3. Parsimonious s
enariosea
h iteration, only one 
ap among the 2(i− 1) 
aps of π̂1,..,π̂i−1 
an form an illegal bond withthe 
ap of π̂i. So, the probability of doing steps (6) to (11) is 1
2(i−1) . And hen
e the average
omplexity is O((1

2 + 1
4 + .. + 1

2(NC−1))n) = O(n ln(NC)).Algorithm 3 form_optimal_
on
atenate(G, π̂, γ̂)1: Initialize the list of pairs of 
aps on the 
hromosomes of Γ2: G = proper_flip_left(G)3: i = NC4: while i ≥ 2 do5: if the bond from π̂i−1 to π̂i + .. + π̂NC is illegal then6: if i > 2 then7: π̂i−2, π̂i−1 = −π̂i−1,−π̂i−28: else9: π̂i−1 = −π̂i−110: end if11: G = Proper_Flip_Left(G)12: end if13: Form the bond π̂i−1 + (π̂i + .. + π̂NC ).14: Update the list of bonds and blo
k 
aps of Γ∗ (if step 9 o

urred this iteration, and this isnot possible, skip it).15: i = i− 116: end while17: π̂ = π̂1 + .. + π̂NC18: if There are no improper bonds then19: Form the 
on
atenate γ∗ starting with the same 
ap as π∗ and with the same internalbonds.20: else21: Con
atenate the two blo
ks of Γ∗ together so that γ∗ and π∗ start with the same 
ap.22: end ifOptimal s
enarioUni
hromosomal methods for building parsimonious s
enarios are easily adapted to the mul-ti
hromosomal 
ase by using optimal 
on
atenates π∗ and γ∗ as permutations. For methodsthat need the breakpoint graph, the graph G(π∗, γ∗) obtained after optimal 
on
atenates 
anbe dire
tly used. In this 
ase, ea
h reversal is interpreted as a multi
hromosomal rearrangement(reversal, translo
ation, fusion or �ssion). However, reversals delimited by 
aps are strongly
onstrained. In fa
t, only reversals starting at a left 
ap and ending at a right 
ap are allowedbe
ause they 
orrespond to a reversal of a whole 
hromosome. All of the algorithms previouslypresented in se
tion 2.3.1 respe
t this 
onstraint be
ause the reversals to apply are determinedby dashed edges and their orientation in the breakpoint graph. Yet, during optimal 
apping andoptimal 
on
atenate 
onstru
tions, 
y
les in
luding 
aps are either trivial (and do not requirea reversal) or inter
hromosomal and oriented. In the latter 
ase, the edges 
hosen for reversal
onne
t two 
aps or two non-
ap elements. For an example of a multi
hromosomal s
enario, see�gure 2.13.As in the 
ase of the rearrangement distan
e, optimal 
appings 
an be found by a linear-time algorithm that relies on identi�
ation of 
onne
ted 
omponents. Tesler [Tes02a℄ provides41



Chapter 2. From 
ommon markers to evolution s
enariosa quadrati
-time algorithm to 
ompute optimal 
on
atenates. Then, the time to 
ompute arearrangement s
enario is O(n2) using the Bader et al. quadrati
-time algorithm [BMY01℄ forparsimonious s
enario by reversals.(a) π∗; Translo
ation
7 -3 -1 5 -6 8 2 4 9
hromosome 1 
hromosome 2(b)

7 -2 -8 6 -5 1 3 4 9
hromosome 1 
hromosome 2
(1) Reversal (2) Reversalof 
hromosome 2

7 -2 -8 6 -5 1 3 4 9
hromosome 1 
hromosome 2(
)
7 -2 -8 6 -5 -4 -3 -1 9
hromosome 1 
hromosome 2

(1) Reversalof 
hromosome 2 (2) Reversal
7 -2 -8 9 -4 -3 -1 5 -6
hromosome 1 
hromosome 2(d) Translo
ation

7 -2 -8 -9 1 3 4 5 -6
hromosome 1 
hromosome 2(e) γ∗

7 -2 -8 -9 1 3 4 5 -6
hromosome 1 
hromosome 2Figure 2.13: Two parsimonious s
enarios from optimal 
on
atenates obtained in the �gure 2.12(se
ond solution). Ea
h rearrangement is delineated by a re
tangle on the permutation. (a)Only one edge is oriented: it determines the translo
ation to apply. (b) and (
) The reversal ofelements 1, 3 and 4 and the reversal of the 
hromosome 2 are independent: the appli
ation orderis arbitrary. (d) and (e) A last translo
ation leads to γ∗.2.3.3 Why is giving only one optimal s
enario misleading?Se
tions 2.2 and 2.3 introdu
ed the two linked problems of �nding a genomi
 distan
e betweentwo genomes and a sequen
e of rearrangements that realizes this distan
e. If the �rst task42



2.4. Global methods for an
estral re
onstru
tionis 
onsidered as a good approximation for the real evolutionary distan
e, the se
ond one mayprovide 
lues about evolutionary me
hanisms that o

urred during history of the two spe
ies.In the 
ase of the reversal distan
e (translo
ation and reversal distan
e by extension), algo-rithms previously presented in 2.3.1 
ompute one parsimonious s
enario. Nevertheless, a studyled by Siepel in [Sie02℄ - where he proposes an algorithm to �nd all safe reversals - shows thatthere exists a huge number of parsimonious s
enarios. For example, for two permutations oforder n = 100 and reversal distan
e d = 0.5n, hundreds of safe reversals are possible. Bergeronet al. in [BCHSO02℄ proposed the following theorem to evaluate the number of parsimoniouss
enariosTheorem 5 (Bergeron et al. [BCHSO02℄) If π is a random permutation on n elements,and if ρ a random oriented reversal of π, then the probability that ρ is unsafe is O( 1
n2 ).The parsimony prin
iple is thus not enough to provide a sequen
e of rearrangements that makepossible an evolutionary study that is also biologi
ally realisti
. In order to redu
e the number ofparsimonious s
enarios in a useful way, one should take into 
onsideration additional biologi
al
onstraints. Several approa
hes have been developed to 
onstrain the sorting of permutations.One of these approa
hes 
onsists in taking into the a

ount the length of reversed segments:Lefebvre et Al. [LEMTS03℄ pro
eed a

ording to the prin
iple that small reversals prevail, asa large number of those 
an be observed in 
omparing genomes of related spe
ies [CNN+00℄.Other publi
ations determine parsimonious s
enarios that 
onserve 
ommon stru
tures betweenthe two studied genomes all along the sequen
e (see [Fig04℄ and [BBCP07℄).2.4 Global methods for an
estral re
onstru
tionThe large s
ale study of mole
ular evolution through the 
omparison of 
ontemporary genomes isfrustrated by the impossibility of knowing with 
ertainty the ar
hite
ture of the 
ommon an
estralgenomes. Constru
ting plausible hypothesis about the stru
tural 
hara
teristi
s of these an
estralar
hite
tures is a 
omputational task whose results may provide deep insight both into the pasthistories of parti
ular genomes and the general me
hanisms of their formation. This task hastwo important di�
ulties: how 
an we guarantee that the solution is biologi
ally plausible? how
an we �nd these solutions in an e�
ient manner?An
estral re
onstru
tion methods require three basi
 steps: identi�
ation of 
ommon markersin the 
ontemporary genomes (see se
tion 2.1), 
onstru
tion of 
omparative maps of the genomes(using the permutation model, see se
tion 1.2), and re
on
iliation of these maps using a 
riterionof maximum parsimony to re
onstru
t an
estral maps. Computational re
on
iliation is mostoften formulated as the multiple genome rearrangement problem [SSK96, HCKP95℄: given a setof N 
ontemporary genomes and a distan
e d, �nd a tree T with the N genomes as leaf nodesand assign permutations (plausible an
estral ar
hite
tures) to internal nodes su
h that D(T ) =

∑

(π,γ)∈T d(π, γ) is minimized. When N = 3 this is 
alled the median genome problem. Sanko�and Blan
hette [SB97℄ developed a method based on the breakpoint distan
e for uni
hromosomalgenomes, while Caprara used the reversal distan
e [Cap99, Cap03℄ to �nd an an
estral genomefor 3 permutations. As for Bourque and Pevzner, they provide algorithms to re
over an
estralmulti
hromosomal genomes based on rearrangement distan
e [BP02℄. In both 
ases the mediangenome problem was proved to be NP-hard (see [Bry98, PS98℄ for the breakpoint distan
e and[Cap99, Cap03℄ for the reversal distan
e).All of these methods provide a global solution to the median genome problem, whi
h is thebasi
 problem in the re
onstru
tion of evolutionary trees. In what follows, we will present43



Chapter 2. From 
ommon markers to evolution s
enariosthe breakpoint-based and rearrangement-based methods respe
tively proposed by Sanko� andBlan
hette [SB97, SB98℄, and Bourque and Pevzner [BP02℄. Finally, we will show that forwhi
hever distan
e on whi
h the resolution of the median genome is based, the la
k of biologi
al
onstraints in in sili
o methods leads to non representative medians and thus to problemati
re
onstru
ted trees.2.4.1 Breakpoint-based methodSanko� and Blan
hette [SB97℄ propose to resolve the genome median problem based on break-point analysis by redu
ing it to the Travelling Salesman Problem (TSP) (introdu
ed in [BLW76℄).They give an algorithm for three unsigned uni
hromosomal genomes whi
h is easily extensible tothe an
estral re
onstru
tion for signed genomes and for more than three genomes. Finally, basedon the resolution of the genome median problem, several strategies are 
onsidered to re
onstru
tthe phylogeneti
 tree [BBS97, SB98℄. Algorithms presented below are integrated in the softwareBpAnalysis and reimplemented in GRAPPA [BMW+, MWB+01℄ whi
h propose faster runningtimes [MTWW02℄.Median genome problemIn what follows, we present the initial algorithm given in [SB97℄ for the median problem in the
ase of uni
hromosomal and unsigned genomes de�ned on the same set of markers G, then wepresent its extension to uni
hromosomal and signed genomes.Redu
tion to TSP for unsigned genomes To redu
e the median genome problem to TSP,genomes and their adja
en
ies are interpreted in terms of the graph theory. Genomes are repre-sented by a 
omplete weighted graph G. Verti
es of G are elements of G. An edge {g, h} linkingtwo verti
es g and h represents the adja
en
y between the elements of G 
orresponding to g and
h. Let u(gh) be the frequen
y of this adja
en
y in the 3 genomes, that is, the number of genomesin whi
h it appears (from 0 to 3). TSP 
onsists in determining an Hamiltonian path of minimal
ost, the weight of an edge {g, h} being de�ned by w(gh) = 3 − u(gh). Thus, applying TSP to
(G,w) leads to an optimal genome A that minimizes the breakpoint number between A and the
onsidered genomes. Sanko� and Blan
hette use a bran
h-and-bound algorithm for whi
h theyde�ne a lower bound.Denote by P ⊆ E(G) the set of available edges. This set is disjoint from the fragment F ⊆
E(G), that 
orresponds to the sele
ted edges at a given instant in the 
onstru
tion of A. Let
score =

∑

{g,h}∈F w(gh). Clearly, it is not ne
essary to go through bran
hes of the sear
h treethat have a possible minimum s
ore greater than the best s
ore that has already been 
omputed.De�nition 31 The availability of a vertex g ∈ V (G), denoted by a(g), is equal to 2, 1 or 0depending on whether g is in
ident to 0, 1 or more than one edge in F , respe
tively.Let µ(g) be the sum of the a(g) smallest weight(s) of edges in P in
ident to g. A path A ofweight WA providing a solution to TSP, is 
onstru
ted from the set of edges in F with someedges from P . Let ν(g) be the sum of weights of the a(g) edges from A in P in
ident to g.Clearly, µ(g) ≤ ν(g). Then,
WA = score +

∑

{g,h}∈E(A)∩P

w(gh),44



2.4. Global methods for an
estral re
onstru
tion
WA = score +

1

2

∑

g|{g,h}∈E(A)∩P

w(gh).The weight of an edge in E(A) ∩ P is doubly 
ounted:
WA = score +

1

2

∑

g|{g,h}∈E(A)∩P

ν(g).Sin
e µ(g) ≤ ν(g), the lower bound is de�ned by:
L(P ) =

1

2

∑

g|{g,h}∈E(A)∩P

µ(g).

L(P ) is used as a lower bound in the bran
h-and-bound algorithm BBF (algorithm 4) usedby algorithm 5 to 
ompute a median genome. The sear
h is re
ursive. The algorithm is greedyuntil it �nds the �rst solution whose the s
ore represents an upper bound for the rest. If its 
ost
U = L(E(G)), then this solution is optimal. Other bounds exist but Sanko� and Blan
hette
hose this one be
ause it is easily adaptable to an
estral sear
h for more than 3 genomes.Algorithm 4 BBF(P,F,A, score, best)if |F | = |V (G)| and score < best thenConserve A = F as best 
urrent solution

best← scoreend ifif |F | < |V (G)| thenif L(P ) + score < best then
hoose {g, h} ∈ P to add to Fwhere a(g) > 0, a(h) > 0 and w(gh) as small as possible,and F ∪ {{g, h}} is not a 
y
le of less than |V (G)| verti
es.BBF(P − {{g, h}}, F ∪ {{g, h}}, A, score + w(gh), best)BBF(P − {{g, h}}, F , A, score, best)end ifend ifAlgorithm 5 genome median 
omputationRequire: A 
ompleted and weighted graph (G,w)Ensure: A solution A to TSP for (G,w)
V (A)← V (G)
F ← ∅
P ← E(G)
score← 0
best←∞BBF(P ,F ,A,score,best)Adaptation to the signed 
ase When marker signs are known, they parti
ipate in thedetermination of breakpoints (see se
tion 1.3.3): for an adja
en
y g.h between two elements g45



Chapter 2. From 
ommon markers to evolution s
enariosand h in a signed genome, there is no breakpoint if either g.h or −h. − g appears in the othergenome. In addition to the determination of the order of elements, redu
tion to TSP has also to�nd the sign of ea
h element. To do so, the graph model of genomes has to be slightly modi�ed.Two verti
es of G are asso
iated with ea
h element g: g and −g. Thus, the set of verti
esof G is V = {g1, g2, .., gn,−g1,−g2, ..,−gn} for a set of G = {g1, g2, .., gn} markers. The signedelement g is then represented by the edge {g,−g}. Consequently, for ea
h edge {g, h} in E(G),denote by u(gh) the number of genomes where −g and h are adja
ent. Weights of edges are then
omputed in the following way: w(gh) = 3−u(gh) if g 6= −h; if g = −h, this edge is used to linktwo verti
es representing an unique element and has to be 
over by the solution path. A value
−M has to be attributed to w(gh) su
h that M is su�
iently high in order to for
e the presen
eof this edge in the obtained path.Proposition 1 (Sanko� and Blan
hette [SB97℄) If s = s1,−s1, s2,−s2, .., sn,−sn is a so-lution to TSP on the graph (G,w) then the genome median is given by S = s1s2...sn.In the same way, it is possible to 
ompute a lower bound L(G) su
h that µ(g) = −M + mwith m the smallest weight of edges in
ident to g.Generalization to more than 3 genomes The median problem 
an be applied for N > 3genomes. In this 
ase, it 
orresponds to a 
ompletely unresolved tree where there are N + 1verti
es with N leaves (
ontemporary genomes) and one vertex of degree N that is the mediangenome. Based on the pro
edure BBF given before (algorithm 4), this is done by modifying
w(gh) whi
h be
omes N − u(gh).Phylogeneti
 tree re
onstru
tionTo solve the multiple rearrangement problem, Blan
hette et al. [BBS97℄ and Sanko� and Blan-
hette [SB98℄ give a heuristi
 analogous to the iterative improvement method of Sanko� et al.[SCL76℄ adapted for the genomi
s 
ontext in [SSK96, FNS96℄.The latter is based on a �xed phylogeneti
 topology seen as an unrooted binary tree T . The
N leaves of T 
orrespond to 
onsidered genomes and the an
estral genomes that are sought arerepresented by its N − 2 internal nodes. This is a phylogeneti
 version of the Steiner problemthat 
onsists in iteratively improving an
estral genomes by solving the median genome problemfor the 3-stars de�ned by an intermediate vertex and its immediate neighbours.This strategy requires one to initialize internal permutations. In fa
t, the global optimalityof the obtained tree depends on this initialization step. That is why Sanko� and Blan
hette[SB98℄ (see also [BBS97℄) propose several initialization strategies. Assigning values to internalnodes 
an be done arbitrarily by assigning random permutations. A more reasonable solutionassigns permutations by 
onsensus from the three 
losest genomes in extremities. However, sim-ulations realized by the authors to 
ompare initialization strategies show that more 
omplexmethods prove to be more e�
ient. These methods are based on the resolution of an initial TSPwhere edge-weights are either the average of the 
orresponding edge-weights at the three im-mediately neighbours, or 
omputed by dynami
 programming minimizing adja
en
y disruptionsand 
reations.2.4.2 Rearrangement-based methodSe
tion 2.4.1 presents Sanko� and Blan
hette's work on the median problem based on breakpointstudy. The breakpoint number between two genomes leads to a lower bound for the rearrange-46



2.4. Global methods for an
estral re
onstru
tionment distan
e between the two same genomes.Although these two distan
e measures are 
losely related, it turns out that the study of re-arrangements for re
onstru
tion of phylogeneti
 trees is more representative from the biologi
alpoint of view than the one of breakpoints [SM01, MSTL02℄. Bourque and Pevzner were in-terested in this problem in the uni
hromosomal 
ase as well as the multi
hromosomal one andimplemented a program for tree re
onstru
tion 
alled MGR [BP02℄ that relies on another toolfor distan
e 
omputation, namely GRIMM [Tes02b℄. To present Bourque and Pevzner's method,we �rst apply it to N = 3 genomes (the median genome problem) and then give extensions for
N > 3 genomes (the multiple genome rearrangement problem).Median genome problemUni
hromosomal genome method Let G1, G2, G3 be three uni
hromosomal and signedgenomes de�ned over the same set of gene markers G. For this kind of genome, only one typeof rearrangement is taken into the a

ount: reversals. Bourque and Pevzner's method [BP02℄
onsists in applying su

essive reversals to G1, G2 or G3. From the parsimony prin
iple, reversalsto apply, 
alled good reversals, are intuitively those whi
h make 
ontemporary genomes 
loserto the sear
hed an
estor. But whi
h are these reversals sin
e the median genome is unknown?Bourque and Pevzner indi
ate and 
on�rm by simulation that a reversal applied to a genomewhi
h movers this genome 
loser to the other two 
an reasonably be 
onsidered as a good reversal.Thus, the proposed algorithm applies good reversals to G1, G2 or G3 in order to make them
onverge towards an unique permutation: the an
estor.De�nition 32 Let G1, G2, G3 be the 
onsidered genomes for the median problem. A goodreversal ρ applied to G1 is a reversal su
h that: d(G1.ρ,G2) < d(G1, G2) and d(G1.ρ,G3) <
d(G1, G3). De�ned similarly for G2 and G3.Denote by ∆(ρ) the global redu
tion of reversal distan
es ∆(ρ) = d(G1, G2) + d(G1, G3) −
(d(G1.ρ,G2) + d(G1.ρ,G3)). A reversal de
reases the distan
e between two genomes by at most
1, then a good reversal ρ veri�es ∆(ρ) = 2. It is possible to enumerate all the possible goodreversals appli
able to G1, G2 or G3. However, there are two problems: if several good reversalsexist, whi
h should one apply? If there is no good reversal, whi
h reversal should be appliedthen?It is important to note that there are intera
tions between reversals. If two reversals havedisjoint spans then applying one has no 
onsequen
e on the other. Nevertheless, if their spansoverlap, applying one reversal 
an modify the �quality� of another. Thus, the number of goodreversals in resulting permutations 
an vary as a fun
tion of the good reversal applied. Bourqueand Pevzner base their method on the hypothesis that good reversals applied in the 
orre
torder a�e
t the less likely good reversals that are available, and so they de�ne the notion of bestreversal.De�nition 33 Let nρ the number of good reversals after applying ρ. A best reversal ρ amonggood reversals is su
h that nρ is maximal.When the number of good reversals is su�
ient to 
onverge towards an unique permutation, thethree genomes form a perfe
t triangle (see �gure 2.14 for an example). In the 
ontrary 
ase, if allof the good reversals are used up, a best reversal ρ with ∆(ρ) < 2 has to be found. Bourque andPevzner propose a sear
h of depth k in the tree of possible reversals whi
h minimizes the globalsum of reversal distan
es for ea
h pair of genomes. Let ρ1, ρ2, .., ρk be a sequen
e of k reversals47



Chapter 2. From 
ommon markers to evolution s
enariosapplied to G1, then they de�ne ∆(ρ1, ρ2, .., ρk) = d(G1, G2) + d(G1, G3) − (d(G1.ρ1..ρk, G2) +
d(G1.ρ1..ρk, G3)) as the global redu
tion of reversal distan
es for this sequen
e of reversals.De�nition 34 Let ρ1, ρ2, .., ρk be the sequen
e of reversals applied to G1 su
h that ∆(ρ1, ρ2, .., ρk)is maximal. If there is no good reversal, the best reversal in G1 is the �rst reversal ρ1 of thesequen
e su
h that ∆ is maximal. De�ned similarly for G2 and G3.

G1: 1 2 3 4 5 6 7 8 9
G2: 1 2 − 3 4 − 6 − 5 7 9 − 8
G3: −1 2 − 3 − 4 5 6 7 9 − 8
A: 1 2 − 3 4 5 6 7 9 − 8

Genomes G1 G2 G3

G1 0 4 5

G2 4 0 3

G3 5 3 0

G1 G3

G2

A

reversal(−6 − 5)
reversal(8 9)reversal(−9)reversal(3) reversal(−1)reversal(−4)

Figure 2.14: Perfe
t triangle formed by genomes G1, G2 et G3 from [BP02℄. MGR gives anoptimal an
estor A for these genomes as well as optimal s
enarios. The table indi
ates distan
esfor ea
h 
ouple of genomes: they are equal to those found in the 
onstru
ted genomi
 tree goingthrough A.The algorithm 
onsists in applying a su

ession of best reversals �rst taken among good re-versals.Adaptation to the multi
hromosomal 
ase In the 
ase of multi
hromosomal genomes, thenumber of 
onsidered operations is higher: translo
ations, fusions and �ssions added to reversalsare the most frequent rearrangements in multi
hromosomal genomes.Bourque and Pevzner generalize the algorithm given for uni
hromosomal genomes using therearrangement distan
e rather than the reversal distan
e. Notions of global redu
tion ∆(ρ) for areversal ρ, good, and best reversals are extended to multi
hromosomal 
ase as global redu
tion
∆(ρ) for a rearrangement ρ, good, and best rearrangements a

ording to the rearrangementdistan
e.However, the 
hoi
e of the rearrangement to apply is more 
onstrained in the multi
hromosomal
ase. In fa
t, there exists a situation spe
i�
 to multi
hromosomal genomes: for 3 multi
hro-mosomal genomes, all possible 
ouples of genomes 
an have a rearrangement distan
e equal to1 (see example 2.15). Thus, re
onstru
ted an
estor 
an be equally G1, G2 or G3. In order toresolve this ambiguity, Bourque and Pevzner give priority to reversals and translo
ations against�ssions and fusions in the 
hoi
e of good and best rearrangements, starting from the observation48



2.4. Global methods for an
estral re
onstru
tionthat the two �rst types of operations are the most frequent in studied spe
ies (i.e. mammaliangenomes).
G1 = {1 2 3 4 5}
G2 = {1 2 − 5 − 4 − 3}
G3 = {1 2, 3 4 5}Figure 2.15: Example from [BP02℄ of three multi
hromosomal genomes, G1, G2 and G3, all atdistan
e 1 from ea
h other. A reversal separates G1 from G2, a �ssion separates G1 from G3 and

G2 from G3.Another biologi
al 
onstraint is presented in [BP02℄. It is based on the following hypothesis:a good rearrangement is a rearrangement that does not break a 
onserved adja
en
y.De�nition 35 A pair of elements g.h is a 
onserved adja
en
y if g.h or its opposite, −h.− g,is present in all genomes as 
onse
utive elements.In fa
t, a

ording to the parsimony prin
iple, it is less likely that nature breaks an adja-
en
y to form it again later. However, the hypothesis su
h as it is formulated by Bourque andPevzner, does not seem to bring a new 
onstraint in an
estral re
onstru
tion. By 
onstru
tion, a
onserved adja
en
y between two genomes 
annot be broken during the 
omputation of a parsi-monious s
enario being re
onstru
ted later. This runs 
ounter to the parsimony 
riterion. Thus,rearrangements that break an adja
en
y 
onserved in N genomes 
annot exist in a parsimoniouss
enario.Multiple genome rearrangement problemResolving the multiple genome rearrangement problem is based on the same prin
iple as forthree genomes. However, the notion of good rearrangement has to be rede�ned with respe
t to
N genomes. This is done by rede�ning the global redu
tion ∆(ρ) of rearrangement distan
es forthe rearrangement ρ applied to the genome Gi:

∆(ρ) =
∑

j 6=i

d(Gi, Gj)−
∑

j 6=i

d(Gi.ρ,Gj)De�nition 36 Let N be the number of 
onsidered genomes. A good rearrangement ρ applied to
Gi is a rearrangement that de
reases the rearrangement distan
e between Gi and all the N − 1other genomes by ∆(ρ) = N − 1.Contrary to the median genome problem, we must determine the starting point for the treere
onstru
tion. Two strategies are 
onsidered: the �rst 
onsiders all N genomes and progressesbit-by-bit towards a 
ommon an
estor; the se
ond starts from the median problem (for 3 genomes)and, by su

essive additions of one genome, determines a phylogeneti
 tree.The �rst method des
ribed is without 
onstraint: good rearrangements are applied until 2genomes 
onverge towards an unique permutation. The operation is done again for N−2 genomesand the re
onstru
ted intermediate an
estor. This pro
ess is reiterated until the 
omplete reso-lution of the median problem for the three last genomes. This method is hardly appli
able when49
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N is high and good rearrangements are qui
kly used up. That is why Bourque and Pevznerpropose the se
ond method.The se
ond te
hnique is 
onstrained by rearrangement distan
es. In fa
t, the starting point
onsists in solving the median problem with the 3 
losest genomes in terms of rearrangements.Then, supplementary genomes are su

essively added to the partially 
onstru
ted tree T . Let
G1, G2, .., Gl be the genomes already pla
ed into the tree T . In order to pla
e the genome Gl+1into the tree, one has �rst to determine whi
h edge of the tree has to be divided to insert Gl+1,and se
ond to minimize rearrangement distan
es between leaves. The pla
ement heuristi
 
hosenby Bourque and Pevzner to lo
ate Gl+1 is still based on rearrangement distan
es: the edge todivide is the one for whi
h its two extremities and the genome Gl+1 form a perfe
t triangle orat least 
ome to it as 
lose as possible. Thus, for ea
h edge {u, v} of T , the median genome A of
u, v and Gl+1 is 
omputed. Bourque and Pevzner de�ne then the addition 
ost of a genome toan edge.De�nition 37 The addition 
ost of a genome Gl+1 to an edge {u, v} is: C(u, v) = d(u,A) +
d(v,A) + d(Gl+1, A)− d(u, v) where A is the median genome of u, v and Gl+1.The edge {u, v} to divide for inserting Gl+1 is the one for whi
h C(u, v) is minimal. By
onstru
tion, the inferred an
estor 
onverges towards spe
ies that are 
lose to ea
h other.2.4.3 Other works based on parsimonyThe multiple genome rearrangement problem is widely treated in the literature. We have alreadymentioned the method based on the reversal distan
e proposed by Caprara [Cap03℄ based on thebreakpoint graph model of Hannenhalli and Pevzner [HP95a℄. Another approa
h was proposed bySiepel and Moret [SM01℄ that permits the extension of GRAPPA software [BMW+℄ by repla
ingthe breakpoint median routine by a reversal one.Other repertoires of operations were 
onsidered to solve the multiple rearrangement problem.For example, Adam and Sanko� [AS08℄ developed an approa
h similar to that of Bourque andPevzner [BP02℄, but taking into a

ount transpositions and blo
k-inter
hanges whi
h 
an beseen as a generalization of transpositions (ex
hanged segments in blo
k-inter
hange 
an not be
ontiguous) as well as reversals and translo
ations. This set of operations is grouped in the DCJ(Double-Cut-and-Join) model introdu
ed by Yan
opoulos et al. [YAF05℄.All of these studies impli
itly start from genomes with the same marker 
ontent where ea
hmarker is present in exa
tly one 
opy. It is not rare that studied genomes have several 
opiesfor a marker (e.g. marker families). Starting from a 
ontemporary genome where ea
h markerappears twi
e, El-Mabrouk and Sanko� [EMS03℄ propose to re
over the an
estral dupli
atedgenome under the whole-genome dupli
ation hypothesis by minimizing the number of reversalsand/or translo
ations based on Hannenhalli and Pevzner's theory [HP95a, HP95b℄. Zheng etal. [ZZAS08℄ adapted this method to the genome halving problem by guiding the re
onstru
tionwith one or several outgroup genome(s) that diverged before the genome dupli
ation event.As well as whole genome dupli
ation event, dupli
ations at a segmental level exist. The latter
ase was studied by El-Mabrouk [EM02℄ who proposed an algorithm that 
omputes an an
estralgenome without dupli
ation from a genome having marker families of any size by minimizingreversals and dupli
ation transpositions. In the same paper [EM02℄, this method is used inorder to extend the multiple genome rearrangement algorithm based on breakpoint analysis[SB97, BBS97, SB98℄ by taking into a

ount dupli
ation events.50



2.5. Pie
e-wise re
onstru
tion2.4.4 La
k of biologi
al 
onstraintsMedians are not uniqueA 
onsiderable drawba
k to formulating the problem as the sear
h for a single 
omplete assem-bly that minimizes the sum of genome distan
es, is that the set of mathemati
ally equivalentsolutions is quite large and widespread. For example, in [BZB+05℄ more than 3000 solutions arefound for the human-murid an
estor, and indeed a statisti
al study of the varian
e between min-imal solutions by [Eri07℄ suggests that reporting an unique median ar
hite
ture is misleading,parti
ularly when medians are the basis of phylogeneti
 tree re
onstru
tion. A more realisti
approa
h is to 
onsider what 
ommon stru
tural features of an
estral genomes might be found.Partial re
on
iliation of 
omparative maps identi�es permutations of markers as above but doesnot ne
essarily provide a total order between segments (see se
tion 2.5).In sili
o versus 
ytogeneti
 methodsA wider debate exists between the proponents of the in sili
o approa
h through rearrangement-based methods and the proponents of the 
ytogeneti
 approa
h. Exempli�ed by Froeni
ke etal. [FCG+06℄, the latter group argues essentially that under-sampling in the in sili
o approa
h
ombined with the tenden
y of 
losely related genomes to attra
t the median, leads to non-unique results that diverge from those found using 
ytogeneti
 methods. Bourque et al. in theirresponse [BTP06℄ argue that under-sampling will disappear with time and that the distin
tionbetween strong and weak adja
en
ies (present or not in all explored re
onstru
tions) identi�edin the in sili
o method permits reliable 
omparison between the di�erent approa
hes. Moreover,in sili
o method over
ome 
ertain problems of 
ytogeneti
 re
onstru
tion: small segments (< 1Kb), inter
hromosomal and intra
hromosomal rearrangements as well as marker orientation 
anbe studied.Ro

hi et al. in their perspe
tive [RAS06℄ suggest that a 
ombination of the two approa
hesshould lead to more realisti
 an
estral ar
hite
tures, but furthermore that it is ne
essary to bettermodel biologi
al 
onsiderations, espe
ially 
entromere repositioning and segmental dupli
ation.2.5 Pie
e-wise re
onstru
tionIn the previous se
tion, we have seen that reporting an unique global median ar
hite
ture ismisleading. A more realisti
 approa
h is to 
onsider what 
ommon stru
tural features of an
estralgenomes might be found. Partial re
on
iliation of 
omparative maps identi�es permutations ofmarkers as above but does not ne
essarily provide a total order between segments.In what follows, we present the method of Ma et al. [MZS+06℄ for �nding 
ontiguous an
estralregions (CARs) by assigning to ea
h node of a given phylogeneti
 tree a set of adja
en
ies thatrepresent a 
onsensus between those found in 
ontemporary genomes, 
omputed using a methodanalogous to Fit
h's parsimony method [Fit71℄ and relying on knowledge of the phylogeneti
tree. However, we will show that 
onsideration of phylogeny for the re
onstru
tion of an
estralar
hite
ture is not 
ompletely justi�ed sin
e no proof has been provided that re
ombinatoryevolution 
oin
ides with mutational evolution.2.5.1 Method from phylogeneti
 dataMa et al. [MZS+06℄ propose a 
omputational method to predi
t the order and orientationof 
onserved segments in the an
estor through the dete
tion of CARs (Contiguous An
estral51



Chapter 2. From 
ommon markers to evolution s
enariosRegions), that represent 
onsistent parts in the an
estor. Their method is based on adja
en
iesin 
ontemporary genomes, requires a phylogeneti
 tree and is quite similar to Fit
h's parsimonymethod [Fit71℄, nu
leotides being repla
ed by adja
en
ies as elements of phylogeny.Prede
essor and su

essor graphsLet Tp be the 
onsidered phylogeneti
 tree where leaf nodes are 
ontemporary genomes. Amodern genome is represented by permutations as it is des
ribed in se
tion 1.2.1. Dupli
ationevents are not take into the a

ount. However, it is not expli
itly spe
i�ed whether 
ontemporarygenomes share exa
tly the same set of markers.Inferring CARs 
onsists in �nding an unique prede
essor and su

essor for ea
h element in thean
estral genome. First, Ma et al. independently solve prede
essor and su

essor sear
hes by atwo-step method. In what follows, we present the prede
essor sear
h.The �rst stage 
omputes a set Pu(i) of possible prede
essors for an element i in the node u in abottom-up fashion. In the 
ase where u is a leaf node, Pu(i) is a singleton representing the uniqueprede
essor of i in u. Otherwise, u has two 
hild nodes, v and w, and Pu(i) = Pv(i) ∪ Pw(i) or
Pu(i) = Pv(i)∩Pw(i) depending on whether sets Pv(i) and Pw(i) are disjoint or not. This is donefor all nodes of Tp in
luding outgroups until the 
ommon an
estor R of all spe
ies is rea
hed.The information on prede
essors 
an be summed into a graph 
alled Prede
essor graph forea
h node u. The prede
essor graph for a node u of Tp is a dire
ted graph where ea
h marker isrepresented by two verti
es (positive and negative versions). Two spe
ial verti
es (symbol 0 forboth) are added to represent the beginning and the end of a 
hromosome. An edge (a, b) of aprede
essor graph means that the element a belongs to the set Pu(b).The se
ond step 
onsists in re�ning, for an
estral nodes, prede
essor graphs built during the�rst stage by propagating PR(i) down the tree. During the des
ent in the tree, designate by
A and D an
estor and its des
endant along a bran
h. For ea
h i of D, PD(i) is re�ned in thefollowing way: PD(i) = PD(i)∩PA(i) if PD(i)∩PA(i) 6= ∅; otherwise, PD(i) remains un
hanged.Similarly, sets of su

essors for ea
h element i of a node u of Tp, Su(i) are inferred and lead tosu

essor graph 
onstru
tion. In a su

essor graph of a node u, an edge (a, b) means that theelement b belongs to the set Su(a).Graph re
on
iliation into CARsClearly, prede
essor and su

essor graphs of a leaf node are identi
al while those for an
estralnodes generally di�er. However, they are not totally di�erent and 
ommon parts 
an be extra
tedfrom a new graph G obtained by the interse
tion of the prede
essor and su

essor ones.Ambiguities for some elements may still remain: an element i 
an (a) have several possibleprede
essors in G, or (b) have several possible su

essors, or (
) parti
ipate in a 
y
le of G. Inorder to 
hoose an unique prede
essor and su

essor for an element in G, G is transformed intoa weighted graph a

ording to phylogeneti
 information. The weight wA(i, j) of an edge (i, j)of the graph G of a an
estral node A is 1 if neither i nor j are in ambiguous 
ase (a) or (b);otherwise,

wA(i, j) = L(A,L).wR(i,j)+L(A,R).wL(i,j)
L(A,L)+L(A,R)where L(A,R) (L(A,L), respe
tively) is the length of the bran
h linking an an
estral node A toits right (left, respe
tively) 
hild. Note that if L (R, respe
tively) is a leaf node, then wL(i, j) = 1if edge (i, j) belongs to its prede
essor graph, and wL(i, j) = 0 otherwise.Based on this weighted graph for an an
estral node A, Ma et al. propose a greedy heuristi
52



2.5. Pie
e-wise re
onstru
tionapproa
h to 
ompute a set of paths that 
over all the nodes in G, trying to maximize the totaledge weights in all of them. This is done by a 
onstru
tive algorithm that tries to add edgesto paths representing CARs starting from the edges of greatest weight. An edge is retainedin resulting paths if its addition does not 
ause an ambiguous 
ase (a) or (b). This pro
ess isrepeated until no more edges 
an be added. To solve the ambiguous 
ase (
) in the resultinggraph, Ma et al. 
laim that if su
h a 
ase appears then the weight of ea
h edge in the formed
y
le is 1. Consequently, dis
arding any edge to break the 
y
le is su�
ient. See example 2 fora 
omplete illustrated 
ase. A(1 -2 4 8 9 • 5 6 -10 -7 -11 12)B(1 2 3 4 5 6 • 7 8 -9 10 11 12)C(1 2 3 • 4 -5 6 • 7 9 -8 10 -11 12)O(1 3 4 -5 6 • 7 -12 8 11 9 10)F E D0.30.7
0.3 0.90.3

0.8

Figure 2.16: The phylogeny of genomes A,B, C [MZS+06℄. The target an
estor is E, and O is theoutgroup. The bullet symbol separates 
hromosomes. Bran
h lengths are above ea
h bran
h.
1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.17: Prede
essor graph of A from [MZS+06℄.
1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.18: Prede
essor graph of B from [MZS+06℄.Example 2 Figures 2.17 to 2.26 are those of the pra
ti
al example given by Ma et al. in[MZS+06℄. Given a phylogeny between genomes A, B and C (see �gure 2.16), prede
essor graphsof A, B and C are dire
tly 
onstru
ted from the leaf genomes (see �gures 2.17, 2.18 and 2.19).Figures 2.20, 2.21 and 2.22 represent the prede
essor graphs of internal nodes D, E and F ob-tained after the bottom-up step. Prede
essor graph of E (see 2.23) is adjusted by propagating theprede
essor graph of F. In the same way, the �nal su

essor graph of E is obtained (see 2.24).53
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1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.19: Prede
essor graph of C from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.20: Prede
essor graph of D from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.21: Prede
essor graph of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.22: Prede
essor graph of F from [MZS+06℄.Resulting CARs (see �gure 2.26) are determined from interse
tion of prede
essor and su

essorgraphs of E (�gure 2.25) where ambiguities are solved based on phylogeny information.CARs with dupli
ationsThe initial method of Ma et al. for inferring CARs does not in
orporate dupli
ation events.Re
ently, in [MRR+08℄, Ma et al. propose a heuristi
 algorithm 
alled DUPCAR that is anextension of CARs method by in
luding dupli
ations based on a set of gene trees in addition toa phylogeneti
 tree and a set of 
ontemporary genomes.54
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1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.23: Prede
essor graph of E after being adjusted by F from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.24: Su

essor graph of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.25: Interse
tion of the prede
essor and su

essor graphs of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 00.540.54
0.200.25

0.25 0.200.250.25 0.540.54
Figure 2.26: The resulting CARs from [MZS+06℄.2.5.2 Phylogeny vs evolution me
hanismsThe method proposed by Ma et al. does not try to solve the multiple genome rearrangementproblem and 
learly leans on phylogeneti
 data to predi
t an an
estral genome. Phylogeny rela-tionships between spe
ies are inferred a

ording to the rate of mutations in genomi
 sequen
es.Another evolutionary measure between spe
ies 
onsists in 
omputing rearrangement or break-point distan
es based on a mathemati
al model for genomes. While the former implies a temporalnotion, the latter does not provide information on the time-s
ales of the rearrangement events.Although these two measures may 
onverge towards similar results, it is not systemati
. In-55



Chapter 2. From 
ommon markers to evolution s
enariosdeed, some authors propose to study the relationship between the phylogeneti
 distribution ofspe
ies and the disruption of synteni
 blo
ks via 
hromosomal inversion events (see [BSR+08℄for appli
ation to Drosophila genomes).However, in the 
ase of the multiple genome rearrangement problem for whi
h we present twomethods (see se
tion 2.4.2 for rearrangement-based method and se
tion 2.4.1 for breakpoint-based one), the authors speak in terms of phylogeneti
 tree re
onstru
tion. A

ording to theparagraph above, the use of this term is somewhat misleading sin
e rearrangements represent adi�erent measure of evolution: thus we will prefer using the notion of rearrangement tree, that
an be by de�nition di�erent from the phylogeneti
 tree for the same set of spe
ies.
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Part IISyDiG: un
overing Synteny in DistantGenomes
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Chapter 3SyDiG algorithmComparative analysis of 
omplete genomes has over the past ten years provided in
reased under-standing of the pro
esses and me
hanisms of evolution, development, and gene regulation. Onearea where signi�
ant insight has been obtained is genome rearrangements, where the me
ha-nisms of 
hromosomal dynami
s have been explored through 
omparison of 
hromosomal mapswithin and between spe
ies. A key prerequisite for su
h studies is the a

urate identi�
ationof genome synteny, sin
e 
onserved gene order between two (or more) related spe
ies indi
ates
hromosomal homology inherited from their 
ommon an
estor.In se
tion 2.1, we presented several 
omputational methods for the identi�
ation of genomesynteny. In parti
ular, we fo
used our attention on GRIMM-Synteny [PT03a, BPT04, BZB+05℄,whi
h determines synteny blo
ks with the expli
it aim of studying rearrangements. However,all of these methods perform well on the `low-hanging fruit' of highly similar (e.g. mammalian)genomes, but less well on highly divergent genomes with extensive map reshu�ing.In this 
hapter we present a new algorithm, 
alled SyDiG (Synteny in Distant Genomes) thatpro
esses 
omplete genome sequen
es in order to infer 
ross-spe
ies synteny, and algorithms withthe ability to handle spe
ies having a large evolutionary span. Our method 
omputes syntenyblo
ks for N ≥ 2 genomes. It is a three-step pro
ess. First, we perform a pre-pro
essing step that
onsists in determining homologous genes and, from those, in 
omputing multipli
ons of leveltwo using AdHoRe routine [VSS+02℄. Multipli
ons 
onstitute the starting point of our studyand all of the homology information 
ontained in them is des
ribed in terms of graph theorythrough the synteny graph. Se
ond, based on this graph, we try to extend 
ertain homologies bytransitivity. Finally, initial homology information and supplementary homologous elements areused to re
onstru
t synteny blo
ks.3.1 Pre-pro
essingThe starting point for synteny identi�
ation is the de�nition of pairwise homology relationshipsbetween genomes. We use the 
onsensus 
lustering algorithm [NS07℄, although raw 
lusteringmethods 
an be used su
h as [EDO02℄.Sequen
e similarity is generally dete
ted either at the DNA level or by relying on genomi
maps. In the latter 
ase, the study of gene order makes it possible to dete
t homology even forhighly divergent 
hromosomi
 regions. This is exa
tly the role of i-ADHoRe [SVSP04, SJSV08℄,a method, explained in se
tion 2.1.2, for identifying segments of 
hromosomal homology (multi-pli
ons) through the identi�
ation of gene order and 
ontent 
onservation.Re
all that a multipli
on is formed by one or several homologous genomi
 segments and its59



Chapter 3. SyDiG algorithmlevel indi
ates the number of segments it 
ontains. In this study i-ADHoRe is solely used to
ompute level two multipli
ons that will be simply 
alled multipli
ons in the rest of the 
hapter.Noti
e that i-ADHoRe determines the multipli
ons based on gene order. Hen
e, the 
oordinatesystem used is at gene level: ea
h element of a genomi
 segment is mapped to a gene and ea
h
hromosomi
 segment is delimited by two genes, one on ea
h side.Multipli
ons obtained by i-ADHoRe 
orrespond to homologies between two genomi
 segments(belonging to the same genome or not). The goal now is to re�ne these homologies into syntenyblo
ks for the set of 
onsidered genomes {G1, .., GN}. We do this by analyzing the 
ompositionof ea
h multipli
on and 
omputing the synteny blo
ks using transitivity relations.3.2 Synteny graphThe �rst step is to assemble all the information 
ontained in the multipli
ons into a graph. Thisgraph has to represent two types of information: �rst, homology between genomi
 segments;se
ond, possible overlaps between multiple segments of the same 
hromosome. Let {G1, .., GN }be the set of genomes for whi
h we want to 
ompute synteny blo
ks and M be the set ofmultipli
ons obtained by AdHoRe for these genomes.For the needs of the method, we propose a more formal de�nition of the notion of multipli
on.Let M = 〈I1, I2, A〉 be a (level two) multipli
on where I1 and I2 denote the genomi
 segmentsthat it 
ontains, and A is the set of an
hors within it. We note a genomi
 segment Ii as a sequen
eof genes Ii = (gi
b, .., g

i
e) su
h that gi

b and gi
e represent the gene boundaries of this segment. Agene gi

j of a genomi
 segment Ii is a pair 〈pj , cj〉 su
h that pj is its relative position on the
hromosome cj . If two genes g1
i ∈ I1 and g2

j ∈ I2 form an an
hor in M , then 〈g1
i , g2

j 〉 ∈ A.Figure 3.1 shows an example of multipli
ons for N = 5 genomes. This same example will befollowed through the 
hapter.The synteny graph G is de�ned from the setM of multipli
ons for the N genomes under study.De�nition 38 A synteny graph G = (V,E) is a non-oriented edge-
olored graph su
h that- V = {gi
j | gi

j ∈ Ii ∈M ∈M} is the set of all genes parti
ipating in a multipli
on,- E is the edge set su
h that ∀e = {gi
n, gj

m} ∈ E either gi
n and gj

m form an an
hor in amultipli
on of M (dashed edge), or gi
n and gj

m are 
onse
utive on the same 
hromosome(bla
k edge).In this graph, we 
an distinguish three types of verti
es:(1) boundary verti
es 
orrespond to gene boundaries of genomi
 segments parti
ipating in amultipli
on,(2) an
hor verti
es 
orrespond to genes that form an an
hor with some other gene and are notboundaries of any genomi
 segments,(3) interleaving verti
es are the other verti
es that are neither a boundary nor an element ofan an
hor.Note that boundary verti
es always form an an
hor, sin
e AdHoRe 
omputes multipli
ons insu
h a way that extremities of genomi
 segments that de�ne them are determined by the leftmostand rightmost 
oordinates of their an
hors. Thus, a gene 
an be both a boundary of one or several60



3.2. Synteny graph
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Figure 3.1: Level 2 multipli
ons for genomes {G1, .., G5}. Ea
h genome Gi is shown on a separateline with 
hromosomes denoted by ci
1, ci

2,.., ci
k (k the total number of 
hromosomes for Gi). Agenomi
 segment (gi

j , g
i
j+1, ..., g

i
k−1, g

i
k) on Gi is represented by a bold line on the 
hromosomeand is expli
itly delimited by its boundaries gi

j and gi
k. Dots along 
hromosomes representgene lo
ations. A grey (dark, respe
tively) line materializes an an
hor formed by genes (geneboundaries, respe
tively) at its extremities.
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Chapter 3. SyDiG algorithmgenomi
 segments taking part in multipli
ons and a simple an
hors in other segments. An an
horvertex is a gene that forms an an
hor stri
tly inside one or several multipli
ons.Figure 3.2 shows the synteny graph obtained for the 5 genomes and their multipli
ons of �gure3.1.
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Figure 3.2: Synteny graph obtained for the data shown on �gure 3.1. Dashed edges represent ho-mologies while bla
k ones represent gene adja
en
y. Boundary verti
es (an
hor verti
es, and geneverti
es, respe
tively) are represented by diamonds (white 
ir
les and full 
ir
les, respe
tively).3.3 Extension of homologous boundariesThe synteny graph represents gene relationships within and between genomes: physi
al relation-ships are modeled by bla
k edges, whi
h represent gene adja
en
ies, while dashed edges modelhomology information 
ontained in multipli
ons. From synteny graph, we de�ne two kinds ofdependen
y between elements.3.3.1 Extended segmentsGenomi
 segments taking part in multipli
ons 
an be physi
ally dependent, sin
e some of themoverlap. It is from this kind of dependen
y that we 
an infer new homology relationships by
ombining the information 
ontained in multipli
ons related by overlapping genomi
 segments.Thus, we isolate the set of genes that are dependent only due to 
hromosomi
 overlaps. All ofthese genes will belong to the same extended segment.De�nition 39 An extended segment for a given genome is a maximal genomi
 segment Imax =
(gb, .., ge) de�ned from the set of genomi
 segments {I1, .., Ik} belonging to the same 
hromosome
c su
h that(i) gb = 〈pbmin

, c〉 ∈ Ii with 1 ≤ i ≤ k su
h that pbmin
= min({pi | gi = 〈pi, c〉 ∈ Ii, 1 ≤ i ≤ k}),62



3.3. Extension of homologous boundaries(ii) ge = 〈pemax , c〉 ∈ Ii with 1 ≤ i ≤ k su
h that pemax = max({pi | gi = 〈pi, c〉 ∈ Ii, 1 ≤ i ≤
k}),(iii) 2 
onse
utive genes on the extended segment belong to the same genomi
 segment: ∀gi, gi+1 ∈
Imax, ∃I ∈ {I1, .., Ik} su
h that gi ∈ I and gi+1 ∈ I,(iv) the extended segment satis�es the 
riterion of maximality: ∀I 6∈ {I1, .., Ik} et ∀j ∈ [1, k], Iand Ij do not overlap.The set of extended segments obtained for a given synteny graph G is 
omputed from the
onne
ted 
omponents of the subgraph of G indu
ed by the bla
k edges of G. In fa
t, theresulting subgraph 
an be de
omposed into 
hains that 
orrespond to extended segments.The synteny graph of �gure 3.2 
ontains 9 extended segments, namely:- S1

1 = (g1
1 , .., g

1
7) belonging to G1,- S2

1 = (g2
1 , .., g

2
7) belonging to G2,- S3

1 = (g3
1 , .., g

3
3) and S3

2 = (g3
4 , .., g3

9) belonging to G3,- S4
1 = (g4

1 , .., g
4
3), S4

2 = (g4
4 , .., g

4
6) and S4

3 = (g4
7 , .., g4

9) belonging to G4,- S5
1 = (g5

1 , .., g
5
2) and S5

2 = (g5
3 , .., g5

5) belonging to G5.3.3.2 Groups of homologous genes and boundariesThe goal of our algorithm is to determine synteny blo
ks for N genomes under study. We usetransitivity of the relation de�ned by the multipli
ons in order to solve the missing homologiesbetween genomi
 segments. Thus, if I1 is homologous to I2 that is itself homologous to I3,we 
onsider that I1 and I3 are also homologous. Not all homologies are that simple to solve.For example, in �gure 3.1, the genomi
 segment I2
2 = (g2

3 , .., g2
7) of genome G2 does not havea homolog (dire
t or by transitivity) with any genomi
 segment of genome G1. However, I2

2 isin
luded in I2
1 = (g2

1 , .., g2
7) that itself is homologous with I1

1 = (g1
1 , .., g

1
7) of G1. This homologymakes it possible to dedu
e a new boundary in G1 that �
uts� I1

1 into two distin
t intervals su
hthat one of them is homologous with I2
2 .Re
overing homology relationships between genomi
 segments 
an then be redu
ed to lookingfor spe
i�
 genes that are boundaries, and re
onstru
ting the 
orresponding genomi
 segments.In order to do that we �rst partition genes forming at least an an
hor in groups of homologousgenes and in parallel, by 
onsidering only the set of gene boundaries, groups of homologousboundaries.De�nition 40 Groups of homologous genes are a partition of genes forming at least one an
horsu
h that a part of this partition is a set of genes that are either dire
tly homologous, or thatshare a gene with whi
h they form an an
hor.De�nition 41 Groups of homologous boundaries are a partition of gene boundaries su
h thata part of this partition is a set of boundaries that are either dire
tly homologous, or that share agene with whi
h they form an an
hor.Groups of homologous genes (boundaries, respe
tively) obtained for a given synteny graph Gare 
omputed from the 
onne
ted 
omponents of the subgraph of G indu
ed by the an
hor and63



Chapter 3. SyDiG algorithmGroups of homologous boundaries
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9Table 3.2: Groups of homologous genes obtained from the synteny graph of �gure 3.2boundary verti
es, and the dashed edges of G. The group of homologous boundaries is obtainedfor a given synteny graph G, in an analogous way, from the the subgraph of G indu
ed by theboundary verti
es, and the dashed edges of G.Starting from the synteny graph from �gure 3.2, we obtain groups of homologous genes andgroups of homologous boundaries shown respe
tively in tables 3.2 and 3.1.3.3.3 Adding and positioning of new boundariesThe next step is to 
he
k ea
h boundary to see whether it 
reates new boundaries in othergenomes. Ea
h extended segment is a genomi
 segment de�ned by a maximal set of overlappinggenomi
 segments. Hen
e, in ea
h extended segment there exist boundaries of genomi
 segmentsthat are in
luded into other ones. For example, boundary g2

3 of I2
2 is in
luded in the interval I2

1of the extended segment S2
1 . However, genomi
 segment I1

1 homologous to I2
1 does not 
ontainany boundary homologous to g2

2 . This is pre
isely the situation where the need for adding new64



3.4. Re
onstru
ting synteny blo
ksboundaries arises. In order to do this we sear
h in the groups of homologous genes for a boundaryhomologous to g2
3 in I1

1 (see table 3.2). In this 
ase, we �nd the gene g1
3 .The algorithm add_boundaries implements this operation. Fun
tion extended_segment re-turns the extended segment to whi
h a given genomi
 segment belongs. In the 
ase of theaddition of a supplementary boundary, if the 
urrent boundary has no homologous gene in thetarget genomi
 segment, then it is ne
essary to pi
k a gene in this segment as the homologousone. This is done by the routine lo
ate: the homologous gene is the one that is proportion-ately lo
ated in the target segment at the same pla
e than the 
urrent boundary in its genomi
segment.Algorithm 6 add_boundaries(S)Require: Set of extended segments SEnsure: Set of extended segments S with new boundaries1: Let B be the set of boundaries for S2: while B 6= ∅ do3: b = shift(B)4: Let I be the set of genomi
 segments in whi
h b is in
luded5: for all I ∈ I do6: for all I ′ su
h that ∃M = 〈I, I ′, A〉 ∈ M do7: if 6 ∃ bh ∈ I ′ su
h that bh and b are two homologous boundaries then8: if ∃ ba ∈ I ′ su
h that ba and b are two homologous genes then9: S′ = extended_segment(I ′,S)10: Mark ba as boundary in S′11: Add ba in B12: Add ba in the group of boundaries homologous to b13: else14: S′ = extended_segment(I ′,S)15: locate(bnew, S′)16: Mark bnew as boundary in S′17: Add bnew in B18: Add bnew in the group of gene homologous to b19: Add bnew in the group of boundaries homologous to b20: end if21: end if22: end for23: end for24: end while25: return SFor the example of �gure 3.1, six new boundaries are added. All the new boundaries are shownin �gure 3.3. The resulting groups of homologous boundaries are shown in table 3.3.3.4 Re
onstru
ting synteny blo
ksOn
e boundary homology is 
ompletely solved, we de�ne the genomi
 segments and their homol-ogy relations. In an extended segment, two boundaries form a genomi
 segment that is ne
essarilyhomologous with at least one other genomi
 segment. In order to obtain genomi
 segments thatare disjoint for a given 
hromosome, it is su�
ient to go through ea
h extended segment in order,65
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Final groups of homologous boundaries
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Figure 3.3: New gene boundaries {b1, .., b6} added for the example from �gure 3.1. Boundaries
onne
ted by edges represent homologous boundaries. The dashed edges show the homologybetween the new boundaries and those originally present.
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3.4. Re
onstru
ting synteny blo
kswhere two su

essive boundaries delimit a genomi
 segment. Then, from boundary homology,we dedu
e homologies between segments delimited by these boundaries. This implies �nding thetwo 
orresponding boundaries in another genome. If the boundaries are ordered in the same wayfor the two segments, then the mutual interval orientation is positive; if not, then it is negative.The result is the set of groups of homologous genomi
 segments.Finally, in order to obtain synteny blo
ks for the N genomes under study, these groups are�ltered in order to keep only those that 
ontain at least one segment per genome. Final syntenyblo
ks for the example of �gure 3.1 are shown in �gure 3.4.
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Figure 3.4: Final synteni
 blo
ks for the example from �gure 3.1. Genomi
 segment (g3
3 , g

3
4) is ex-
luded in favour of (g3

1 , g
3
2) be
ause the latter is larger. Genomi
 segments (g1

1 , .., g1
3), (g2

1 , .., g
2
3),

(g1
5 , .., g

1
7), (g2

6 , g
2
7), (g3

7 , .., g3
9), (g4

7 , .., g4
9) are also ex
luded, sin
e they do not parti
ipate in syn-teny blo
ks for all of the 
onsidered genomes (i.e there are no segments homologous to them in
ertain genome(s)).Moreover, additional �lters make it possible to adapt obtained synteny blo
ks as 
ommonmarkers used in the elaboration of signed permutations in order to study rearrangement events.3.4.1 Dupli
ationsGenerally, the permutation model does not allow dupli
ation events, so the SyDiG algorithmproposes to keep only the longest segment in a synteny blo
k where more than one segmentbelongs to one genome. The intuition behind this �lter parameter is that the longer the segment,the smaller the probability that synteny was 
omputed by 
han
e. Nevertheless, other parametersto 
hoose between dupli
ate segments should be 
onsidered su
h as for example synteny blo
kneighbouring. This is the subje
t of future work. 67



Chapter 3. SyDiG algorithm3.4.2 Con
atenationIn the same permutation model, identi�ers represent synteny blo
ks. Under the parsimony
riterion, two identi�ers that are adja
ent in all the 
onsidered genomes 
annot be separated tobe joined again later. That is why, two modes are implemented in SyDiG algorithm. The �rstone provides all the synteny blo
ks and permits one to study their respe
tive genomi
 segments.The se
ond mode 
onsists in 
on
atenating synteny blo
ks that appear 
onse
utively in all the
onsidered genomes. This leads to the 
onstru
tion of signed permutations with fewer identi�ers,but en
oding exa
tly the same information as far as a study of rearrangements is 
on
erned.3.5 ComplexityThe SyDiG algorithm determines synteny blo
ks by 
onstru
ting synteny graph and performingoperations on this graph. Synteny graph 
onstru
tion is linear in the number of genes involvedin genomi
 segments parti
ipating in multipli
ons. Moreover, 
omputing extended segments inthe parti
ular subgraph of the synteny graph indu
ed by bla
k edges 
an be 
omputed in lineartime in terms of the number of verti
es. Finding groups of homologous genes and groups ofhomologous boundaries 
an be 
omputed in both 
ases in linear time in terms of the number ofverti
es and dashed edges. Boundaries addition is 
omputed in O(n3) in the worst 
ase, where
n denotes the number of verti
es in the synteny graph. Finally, the re
onstru
tion of syntenyblo
ks is realized by s
anning the extended segments and the groups of homologous boundaries:the 
omplexity in time is thus O(n2). Thus, SyDiG algorithm 
an be 
omputed in a simple wayin O(n3) where n denotes the number of genes involved in genomi
 segments.
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Chapter 4Appli
ationsNadeau and Taylor [NT84℄ were the �rst to de�ne 
onserved segments as segments having apreserved gene order with no rearrangements between them. Synteny blo
ks are built of these
onserved segments, smoothing over the noise due to mi
rorearrangements. These blo
ks 
onsti-tute gene markers that are the starting points for further analysis.Synteny information has various appli
ations for 
omparative genomi
s, su
h as 
omputingrearrangement distan
es [HP95a℄ or s
enarios [Tes02b℄, inferring the least 
ommon an
estor andrearrangement trees [BP02℄. The impli
ations of the analysis of genomi
 synteny 
an rea
h evenfurther, providing insights into the manner by whi
h evolution pro
eeds. This latter topi
 hasgenerated a quite lively debate on the di�eren
es between random breakage and non-randombreakage models of evolution [PT03a, PT03b, TMS04℄.Several methods have been de�ned to respond to the need for �nding 
ommon markers withingenomes in order to study rearrangements. The main methods presented in se
tion 2.1, GRIMM-Synteny ([PT03a℄, [BPT04℄, [BZB+05℄) and CHAINNET developed by Kent [KBH+04℄ and usedby Ma [MZS+06℄, are applied to mammal data (human, mouse, rat and 
hi
ken for GRIMM-Synteny and human, mouse, rat and dog for the other) and rely on nu
leotide-level alignmentsas obtained with tools su
h as BLASTZ (for example [SKS+04℄).Comparative genomi
s analyses obviously rely on the quality of the primary 
omputation ofgenomi
 synteny. In this 
hapter, we revisit the most 
ommonly used algorithm for synteny
omputation, namely GRIMM-synteny [PT03a, BPT04, BZB+05℄ (see 2.1.1, page 20 for detailsof the method). We argue that this algorithm, whi
h works well for the mammalian genomes forwhi
h it was developed, produ
es results whose quality dramati
ally de
reases with the in
reaseof the evolutionary distan
e. We further identify the issue as a need for more 
areful homologyidenti�
ation as a preliminary step.In the �rst se
tion, we 
ompare Grimm-Synteny and SyDiG on mammal and yeast genome sets.Then, we present a pra
ti
al appli
ation to Hemias
omy
etous yeasts that leads to rearrangementanalysis presented in 
hapter 6.4.1 GRIMM-Synteny versus SyDiG algorithmIn order to realize this 
omparison, we re-implemented GRIMM-Synteny as the software is notpubli
ly available. Our reimplementation was validated using ba
k-to-ba
k 
omparison withresults available on the author's webpage [Tes04℄.The �rst 
hallenge for 
omparing the behavior of these algorithms is the judi
ious 
hoi
e of datapro
essing. Indeed, GRIMM-Synteny and SyDiG rely on di�erent data. The former pro
eeds69



Chapter 4. Appli
ationsby dire
t sequen
e alignment at DNA level (
leaned up by RepeatMasker [SHG04℄). The latterrelies on the existen
e of pre-
omputed protein families. While DNA alignments su
h as BLASTZare reasonable for 
losely related genomes su
h as mammals, only alignments at protein level
an re
over distant similarities for spe
ies su
h as yeasts [Duj06℄. The data presented below wasretrieved from publi
 databases on the 17th of June 2008.- Mammal genomes: we have 
onsidered human, mouse and rat genomes. For these genomes,two sets of data have been retrieved from Ensembl (release 49) and Uniprot (UniRef50,release 13.5, the 10th of june 2008) data.- Yeast genomes (Ashbya gossypii (Ergo), Kluyveromy
es la
tis (Klla), Kluyveromy
es ther-motolerans (Klth), Zygosa

haromy
es rouxii (Zyro), and Sa

haromy
es kluyveri (Sakl)):data were provided by Génolevures and are available as of the 3rd of September 2008.4.1.1 Yeast resultsIn order to apply Grimm-synteny to yeast data, we have 
omputed 3 data sets from TBLASTXalignments:- unre�ned alignments (206191 alignments),- the longest alignments when several ones overlap (51085 alignments),- the shortest alignments when several ones overlap (59028 alignments).An
hors were 
omputed by GRIMM-An
hor for the levels from 2 to 5. Results for levels 2 to 4are shown for ea
h data set in tables 4.1, 4.2 and 4.3. No 5-level an
hors are found for unre�nedand longest sets and only one 5-way an
hor is found for the shortest set. Based on these results,we do not use GRIMM-Synteny routine to �nd synteny blo
ks, sin
e the number of an
hors istoo small.SyDiG was used to 
ompute synteny blo
ks for the same spe
ies. Numbers of synteny blo
ksfor respe
tively two, three and four organisms are shown in tables 4.4, 4.5 and 4.6. A total of640 synteny blo
ks are de�ned for the set of the 5 genomes (without 
on
atenation).genomes unre�ned longest shortestErgo-Klth 3659 3887 4629Ergo-Sakl 3383 3615 4288Ergo-Zyro 3578 3792 4353Klla-Ergo 3159 3333 3856Klla-Klth 3221 3407 3974Klla-Sakl 3028 3202 3716Klla-Zyro 2926 3107 3537Sakl-Klth 3152 3376 3961Zyro-Klth 3313 3567 4116Zyro-Sakl 3249 3508 4044Table 4.1: 2-level an
hors on Hemias
omy
ete yeasts obtained by GRIMM-Synteny70



4.1. GRIMM-Synteny versus SyDiG algorithmgenomes unre�ned longest shortestErgo-Sakl-Klth 174 184 440Ergo-Zyro-Klth 214 202 441Ergo-Zyro-Sakl 104 103 262Klla-Ergo-Klth 320 181 353Klla-Ergo-Sakl 348 211 387Klla-Ergo-Zyro 314 162 345Klla-Sakl-Klth 47 82 156Klla-Zyro-Klth 112 87 170Klla-Zyro-Sakl 98 124 296Zyro-Sakl-Klth 89 187 247Table 4.2: 3-level an
hors on Hemias
omy
ete yeasts obtained by GRIMM-Syntenygenomes unre�ned longest shortestErgo-Zyro-Sakl-Klth 0 0 14Klla-Ergo-Sakl-Klth 4 4 20Klla-Ergo-Zyro-Klth 17 3 21Klla-Ergo-Zyro-Sakl 11 1 24Klla-Zyro-Sakl-Klth 1 3 12Table 4.3: 4-level an
hors on Hemias
omy
ete yeasts obtained by GRIMM-Syntenygenomes numberErgo-Klth 278Ergo-Sakl 248Ergo-Zyro 338Klla-Ergo 384Klla-Klth 328Klla-Sakl 303Klla-Zyro 381Sakl-Klth 93Zyro-Klth 247Zyro-Sakl 199Table 4.4: 2-level synteny blo
ks on Hemias
omy
ete yeasts obtained by SyDiG4.1.2 Mammal resultsResults for GRIMM-Synteny are available on the webpage "Human-mouse-rat alignments" (byGlenn Tesler, the 16th of Mar
h 2004) [Tes04℄. In order to run SyDiG on the mammalian genomedata, an approximation of protein families is required. We have 
onsidered two di�erent sets:- the Ensembl m
l 
lustering results (pairwise homology relationships and gene ordered lists)[HAB+07℄,- the UniRef50 
lusters (pairwise homology relationships and gene ordered lists) [Con08℄.71



Chapter 4. Appli
ations genomes numberErgo-Sakl-Klth 324Ergo-Zyro-Klth 439Ergo-Zyro-Sakl 405Klla-Ergo-Klth 490Klla-Ergo-Sakl 484Klla-Ergo-Zyro 554Klla-Sakl-Klth 386Klla-Zyro-Klth 480Klla-Zyro-Sakl 472Zyro-Sakl-Klth 284Table 4.5: 3-level synteny blo
ks on Hemias
omy
ete yeasts obtained by SyDiGgenomes numberErgo-Zyro-Sakl-Klth 465Klla-Ergo-Sakl-Klth 542Klla-Ergo-Zyro-Klth 619Klla-Ergo-Zyro-Sakl 604Klla-Zyro-Sakl-Klth 526Table 4.6: 4-level synteny blo
ks on Hemias
omy
ete yeasts obtained by SyDiGTo run the AdHoRe [VSS+02℄ routine on our data, we explored di�erent sets of i-AdHoReparameters. To be 
on
ordant with results obtained in [BP02℄, we have 
hosen a gap size of 15,a 
luster gap size of 20 and 9 as minimum number of an
hor points. The number of syntenyblo
ks obtained by the SyDiG algorithm is shown in table 4.7 for ea
h set of data.genomes Ensembl UniRef50Human-Mouse 144 380Human-Rat 137 215Mouse-Rat 147 244Human-Mouse-Rat 230 465Table 4.7: Synteny blo
ks on mammals obtained by SyDiG algorithm4.1.3 Dis
ussionThe number of synteny blo
ks obtained by the two studied methods 
on
erning mammaliangenomes is quite similar. However, the number of an
hors for yeast genomes obtained byGRIMM-synteny is low 
omparing to the number of alignments and moreover the signal withingenomes is lost bit-by-bit when the number of 
onsidered genomes in
reases (no an
hor for the5 spe
ies for example).The main issue 
omes down to the observation that homologous genes 
orrespond neither toDNA alignments, nor to an
hors of level 2. Indeed, two an
hors of level 2 
annot 
onsist of thesame nu
leotide sequen
es from the same genome. Quite to the 
ontrary, one gene from one72



4.2. Appli
ation to yeast genomes

Figure 4.1: Di�eren
e between an
hors and homologous genes. We have gene homologiesbetween (g1, g7), (g2, g7), (g3, g8), (g4, g9), (g5, g10), (g6, g11). However, (SI1, SI7) and (SI2, SI7)
an not 
orrespond to any an
hor sin
e SI7 is 
ommon to two 
ouples. Other 
ouples
(SI3, SI8), (SI4, SI9), (SI5, SI10), (SI6, SI11) represent an
hors.genome Gi 
an be homologous to 2 (or indeed many more) genes in another genome Gj (see�gure 4.1).Analysis of these results shows that for mammalian genomes SyDiG performs as well as Grimm-Synteny. While two data sets (UniRef50 and Ensembl) generate slightly di�erent results, theyare both 
omparable (for appropriately-
hosen i-ADHoRe parameters) with the results publishedin [BPT04℄.On the other hand, when dealing with distant spe
ies su
h as yeasts, GRIMM-Synteny per-forms quite poorly. The only way to 
oax out a signal was to perform quite strong alignmentpre-�ltering of the TBLASTX results.A parti
ularly a
ute problem is that the GRIMM-Synteny pro
edure dis
ards n-ary homolo-gies. Not only do these paralogous families 
ontain biologi
ally pertinent information, they areoften the best 
andidates for 
onserved markers between genomes: in the yeasts, for example,half of the genes 
onserved between spe
ies are members of paralogous families of up to 30 mem-bers, and dis
arding these homologies 
an lead to drasti
 under-identi�
ation of 
hromosomalhomology.4.2 Appli
ation to yeast genomesWe have applied the SyDiG algorithm in the 
ontext of the Génolevures proje
t [DS+04℄ for the
ase of non-WGD Hemias
omy
etous yeasts. The data 
onsists in 5 
ompletely sequen
ed yeastsfrom the Sa

haromy
eta
ae 
lades: Kluyveromy
es la
tis (Klla), Sa

haromy
es kluyveri (Sakl),Zygosa

haromy
es rouxii (Zyro), Ashbya (Eremothe
ium) gossypii (Ergo) and Kluyveromy
esthermotolerans (Klth). These genomes have little genome redundan
y and a relatively high (for73



Chapter 4. Appli
ationsyeasts) 
onservation of synteny.From orthology and synteny relations identi�ed using Génolevures protein families [NS07℄, theSyDiG algorithm obtains 487 synteny blo
ks for these genomes (mean size 51 genes). Thesesynteni
 blo
ks 
ontain 8�200 genes (mean size 14 genes) and 
over roughly 60% of ea
h genome.Basing these permutations only on protein-
oding genes is su�
ient, sin
e yeast genomes arehighly 
ompa
t (protein-
oding genes 
over approximately 80% of the genome), and gene reli
sare quite rare (approximately 4%) [Duj06℄. By 
ombining pairwise syntenies, ea
h genome wasfa
tored into a sequen
e of ordered synteni
 blo
ks, from whi
h a set of distin
t blo
ks 
ommonto all genomes was determined. An arbitrary referen
e genome was 
hosen, and all the blo
ksforming this genome were numbered by unique sequential identi�ers from 1 to n. By keepingthe longest blo
ks, permutations of 120 identi�ers are 
onstru
ted, that are representative ofthe pairwise evolutionary distan
es for these genomes. We are able to pla
e a
tive and ina
tive
entromeres in ea
h genome permutation by lo
ating the �anking genes. Ea
h of 9 
entromeresis en
oded by two identi�ers, resulting in 15 additional blo
ks. Thus, ea
h genome is representedas a signed permutation of 135 elements, in whi
h 
hromosomal rearrangements (fusion, �ssion,translo
ation, inversion) 
an be studied (see 
hapter 6 for an appli
ation).Comparative genome maps are painted (see �gure 4.2) with K. thermotolerans as referen
e.A
tive 
entromeres are represented by red ovals, telomeres are represented by triangles. Theassigned letter indi
ates the agreement of this 
entromere a
ross the �ve spe
ies. Markers arewell distributed on the 
hromosomes, so the 
hoi
e of these markers is representative of thear
hite
ture of the 
ontemporary genomes. A high degree of synteny, and a limited number oflarge-s
ale rearrangements, is observed between K. thermotolerans and S. Kluyveri ; they sharemany 
ommon adja
en
ies and their rearrangement distan
e is half of that seen between otherpairs of genomes. Note that K. la
tis presents two synteni
 breaks in 
entromere areas: the
entromere of Klla0F is lo
ated between the �anking genes of 
entromeres h and b, and the
entromere of Klla0A is lo
ated between the �anking genes of 
entromeres h and e. Moreover,S. kluyveri has an a
tive 
entromere (the 
entromere i), that was disabled in all the other studiedgenomes.
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Figure 4.2: Distribution of the 120 longest 
ommon synteny blo
ks representing major 
onservedsegments within Hemias
omy
ete yeasts. Ea
h unique numbered synteny blo
k is given a 
olorindi
ating its 
hromosome in the referen
e genome (Klth), and a diagonal bar indi
ating itsrelative position on the 
hromosome. Other genomes are signed permutations of these 
oloredblo
ks; a 
hange of slope in the diagonal bar indi
ates an inversion. Blo
k widths are to s
ale andthe size of interleaving non-synteni
 regions is shown by large grey lines. Red 
ir
les: 
entromeres;gray triangles: telomeres.
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Chapter 5Super-blo
k 
onstru
tionThe study of evolutionary me
hanisms is made more and more a

urate by the in
rease inthe number of fully sequen
ed genomes. One of the main problems is to re
onstru
t plausiblean
estral genome ar
hite
tures based on the 
omparison of 
ontemporary genomes.In 
hapter 2, we presented 
urrent methods that have largely fo
used on �nding 
ompletear
hite
tures for an
estral genomes, and, due to the 
omputational di�
ulty of the problem, stopafter a small number of equivalent minimal solutions have been found. Re
ent results suggest,however, that the set of minimum 
omplete ar
hite
tures is very large and heterogeneous [Eri07℄.In fa
t these solutions are 
olle
tions of 
onserved blo
ks, freely rearranged.In this 
hapter, we propose an approa
h for identifying 
ommon an
estral features for thegeneral, N -genome instan
e, that builds a bridge between breakpoint and rearrangement meth-ods and additionally permits the use of biologi
al 
onstraints. The main 
ontribution is the
omputation of super-blo
ks, sequen
es of markers 
hosen in fun
tion of the frequen
y of the
orresponding adja
en
ies without any use of phylogeny. Here we follow the hypothesis thatadja
en
ies having support in two or more 
ontemporary genomes 
onstitute the semanti
 ba-sis of an an
estral ar
hite
ture [SB97℄. Super-blo
ks 
an of 
ourse be joined to produ
e �nalassemblies; algorithmi
ally, it is an optimization problem in terms of rearrangement distan
e ofthe sequen
e of fusions of super-blo
ks. The solution spa
e of genome medians is thus redu
ed,and only ar
hite
tures respe
ting the adja
en
y semanti
s are returned. Although the mathe-mati
al model does not allow the 
onsideration of segmental dupli
ation, 
entromere positionsare introdu
ed and 
onstrain the �nal assemblies by allowing only one a
tive 
entromere in ea
h
hromosome of the an
estral ar
hite
ture.We show that in theory our method allows for solutions that are either minimal or reasonably
lose to the minimal in the mathemati
al model. Although the addition of biologi
al 
onstraints
an in prin
iple lead to non-optimal mathemati
al solutions, pra
ti
ally this does not o

ur andthe key advantage of our method is that it de
reases the number of mathemati
ally equivalentsolutions by using biologi
al 
onstraints as a �lter on the solution spa
e.This 
hapter is organized as follows. Se
tion 5.1 gives the ne
essary preliminaries. In se
tion5.2, we introdu
e the notion of dependen
y for the adja
en
ies and show the relationship betweenadja
en
ies and distan
es. Se
tion 5.3 provides the methodology for re
onstru
tion of super-blo
ks from adja
en
ies, and the strategy for building �nal assemblies by an optimal sequen
e offusions. All this work is under revision in [JSN℄.
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Chapter 5. Super-blo
k 
onstru
tion5.1 PreliminariesLet Π = {π1, .., πNΠ} and Γ = {γ1, ..., γNΓ} be two multi
hromosomal genomes de�ned a

ordingto the mathemati
al model presented in se
tion 1.2. As a reminder, the number of breakpoints
b between two genomes is a distan
e su
h that for 2 multi
hromosomal genomes Π and Γ with
NΠ < NΓ, the number of breakpoints is b = |{(πi, πi+1)|πi.πi+1 is a breakpoint in Π}|+(NΓ−NΠ)or b = |{(γi, γi+1)|γi.γi+1 is a breakpoint in Γ}|.Let G1, ..., GN be N multi
hromosomal genomes de�ned over the same set of distin
t genemarkers G. We denote by u(g.h) the frequen
y of the adja
en
y g.h in the N genomes, thatis, the number of genomes in whi
h it appears. We denote by A the set of all adja
en
ies in
G1, .., GN .Following Hannenhalli and Pevzner [HP95a℄, we will use the unsigned representation of a signedgenome in terms of breakpoint graph (see se
tion 2.2.2 page 31 for more details). The notionsof adja
en
ies and breakpoints are transferred to the breakpoint graph quite naturally. As the
hoi
e of added verti
es at the extremities of ea
h 
hromosome is arbitrary, we denote by 0 anytelomere without taking into the a

ount its 
hromosome. Hen
e, for a 
hromosome π = π1...πnwe introdu
e two supplementary adja
en
ies denoted by 0.π1 and πn.0. In what follows, wewill systemati
ally use greek letters to denote elements of a signed permutation and latin lettersto denote elements of a non-signed permutation: we will note by (gi hi).(gj hj) the adja
en
y
orresponding to πi.πj ex
ept for adja
en
ies with telomeres that will be noted (0).(g1 h1) and
(gn hn).(0). For any adja
en
y a = πi.πj = (gi hi).(gj hj), its reversal −a is de�ned by −πj.− πiin the signed permutation, and by (hj gj).(hi gi) in the non-signed permutation.Example 3 Let us 
onsider four genomes G1 = {1 2 3 4, 5 6}, G2 = {1 2 34, −5, −6},
G3 = {2 1 3 4, −6 5} and G4 = {3 1 4 2 − 5, 6}. Their adja
en
ies 
an then be partitioneda

ording to frequen
y of o

urren
e in Gi as shown in table 5.1.frequen
y adja
en
y

4 6.0

3 3.4, 0.5, 4.0

2 0.1, 1.2, 0.6, 5.0,2.3
1 5.6, 0.2, 2.1, 1.3, 4.2, 3.1, 1.4, 0.3, −5.6, 2.− 5Table 5.1: Adja
en
ies for genomes G1, G2, G3 and G4 sorted by frequen
y.5.2 Dependent adja
en
iesThe 
onstru
tion of super-blo
ks is based on the study of adja
en
ies. This study 
onsists inde�ning the frequen
y of adja
en
ies in the genomes and the adja
en
y relationships themselves.The intuition behind our approa
h is that an adja
en
y of higher frequen
y should be preferen-tially present in a median genome. Mathemati
ally, we are looking for an an
estral ar
hite
turethat represents a 
ompromise between the rearrangement distan
e and the number of breakpointsunder the parsimony 
riterion.In what follows, the 
onsidered rearrangement distan
e is expressed in terms of reversals,fusions, �ssions and translo
ations and is 
omputed a

ording to Hannenhalli and Pevzner'stheory [HP95a℄ (see se
tion 2.2.2).80



5.2. Dependent adja
en
ies5.2.1 Pairwise adja
en
y relationshipsLet A be a subset of the set of all adja
en
ies A for genomes G1, ..., GN . We build the adja
en
ygraph G = (V,E) for A in the following way. For any adja
en
y (gi hi).(gj hj), we 
reate fourverti
es (gi, hi, gj and hj) and three edges. Two of the edges represent elements of the originalpermutation: e1 = (gi, hi) and e2 = (gj , hj). One of the edges represents the adja
en
y itself:
e3 = (hi, gj).Two adja
en
ies are dependent if their elements are related, either by 
ompleting or by 
on-tradi
ting ea
h other. Let a and b be two adja
en
ies a = (ga

1 ha
1).(g

a
2 ha

2) and b = (gb
1 hb

1).(g
b
2 hb

2),and G = (V,E) the adja
en
y graph for {a, b}.De�nition 42 We say that a and b 
omplement ea
h other if either (i) ∃ v1, v2 ∈ V su
h that
d(v1) = d(v2) = 1 and ∀v 6= vi, i ∈ [1, 2] we have v 6= 0 and d(v) = 2, or (ii) ∃v ∈ V su
h that
v = 0 and ∀v ∈ V we have d(v) = 2. We say that a and b 
ontradi
t ea
h other if either (i)
∃ v ∈ V su
h that d(v) > 2, or (ii) ∀v ∈ V we have v 6= 0 and d(v) = 2.For example, adja
en
ies (1 2).(3 4) and (6 5).(4 3) 
omplement ea
h other. Indeed, we 
anform the sequen
e 1 2 3 4 5 6. On the 
ontrary, (1 2).(3 4) and (6 5).(2 1) are in 
ontradi
tion,as are (1 2).(3 4) and (2 1).(3 4). As 
an be seen on �gure 5.1, the two 
ontradi
tions are slightlydi�erent. Indeed, the latter involves the presen
e of a 
y
le (
y
le 
ontradi
tion), while theformer does not (vertex 
ontradi
tion).(a) (1 2).(3 4) and (6 5).(4 3)

1 2 3 4 5 6 (b) (0).(1 2) and (1, 2).(3 4)

0 1 2 3 4 (
) (0).(1 2) and (1, 2).(0)

0 1 2

(d) (1 2).(3 4) and (6 5).(2 1)

1 2
3 4

5 6 (e) (1 2).(3 4) and (3 4).(2 1)

1 2 3 4 (f) (1 2).(3 4) and (2 1).(3 4)

1 2 3 4Figure 5.1: Adja
en
y graphs showing (a), (b) and (
) two adja
en
ies that 
omplement ea
hother, (d), (e) and (f) two adja
en
ies that 
ontradi
t ea
h other. Element edges are representedby solid lines; adja
en
y edges are represented by dashed lines.When adja
en
ies 
omplement ea
h other there is no problem to put them together in orderto form a 
oherent 
hromosome. However, when two adja
en
ies a and b are in 
ontradi
tion, weneed to 
hoose one or the other. The intuition given in the beginning of this se
tion is to preferadja
en
ies with higher frequen
ies. However, it is possible to have a median genome in termsof rearrangement distan
es with an adja
en
y of lower frequen
y that is in 
ontradi
tion withan adja
en
y of higher frequen
y as illustrated in the example 4. Noti
e that the adja
en
y 3.2that is present in M1 has frequen
y 2, while the adja
en
y 2.3 present in M2 is of frequen
y 1.Be
ause of a better global number of 
ommon adja
en
ies (11 breakpoints against 12 for M2), M1appears as the best median genome in terms of rearrangement distan
es and breakpoint numberbut M2 is also a good 
andidate for an
estral gene order in terms of rearrangement distan
es.Example 4 Consider three genomes G1 = {1 2 3 4 5 6 7}, G2 = {1 3 2 4 5, 6 7} and G3 = {1 4 3 2 5 6, 7}.Their pairwise rearrangement distan
es are: d(G1, G2) = 3, d(G1, G3) = 5 and d(G2, G3) = 5.Two optimal (median) solutions M1 and M2 are possible for these genomes: M1 = {1 -2 -3 4 5, 6 7}81



Chapter 5. Super-blo
k 
onstru
tionand M2 = {1 -3 -2 4 5, 6 7}. The rearrangement distan
es from M1 and M2 to G1, G2 and G3are shown below.
G1 G2 G3

M1 2 1 4

M2 1 2 4Noti
e that the adja
en
y 3.2 that is present in M1 has frequen
y 2, while the adja
en
y 2.3present in M2 is of frequen
y 1.5.2.2 Adja
en
ies and distan
esExample 4 is in apparent 
ontradi
tion with the intuition that the adja
en
ies of higher frequen-
ies should be preferred. In this se
tion, we analyze in more detail in whi
h 
ases it is appropriateto follow this intuition.Bounds for rearrangement distan
esIf two genomes Π and Γ are not equal, then d(Π,Γ) is at least 1. If d(Π,Γ) = 1, then thereare exa
tly two breakpoints in Π (say a and c), and two in Γ (say b and d). See �gure 5.2 forillustration. We say then that Π and Γ are identi
al up to a, c (symmetri
ally b, d).
(a) breakpoints in Π

π1 ... πk πk+1 ... πl πl+1 ... πn

a c

(b) breakpoints in Γ
π1 ... πk −πl ...−πk+1 πl+1 ... πn

b dFigure 5.2: Π and Γ are identi
al up to a, c (or b, d). This implies (a) the existen
e of 2 breakpoints
a = πk.πk+1 and c = πl.πl+1 in Π, and (b) of 2 breakpoints b = πk.− πl and d = −πk+1.πl+1 in
Γ.
Lemma 6 Let Πa,Πb and Γa be three genomes su
h that an adja
en
y a is present in genomes
Πa and Γa, but not present in Πb. Furthermore, let Πa and Πb be identi
al up to 2 adja
en
ies,one of these adja
en
ies in Πa being a, and one in Πb being b. Then, |d(Πa,Γa)− d(Πb,Γa)| ≤ 1.Proof: Let us denote the respe
tive distan
es d(Πa,Γa) = da and d(Πb,Γa) = db. We know that
Πa and Πb are identi
al up to 2 adja
en
ies, hen
e d(Πa,Πb) = 1.Rearrangement s
enarios between genomes in Πa, Πb and Γa are represented on the sket
h herebelow. Arrows represent s
enarios and the value on them is the 
orresponding rearrangementdistan
e.82



5.2. Dependent adja
en
ies
Πa

Πb

Γa

da

db

1 1There exists a s
enario between Πa and Γa via Πb (see the above sket
h). Thus d(Πa,Γa) ≤
d(Πb,Γa) + 1. Similarly, there exists a s
enario between Πb and Γa via Πa. Thus d(Πb,Γa) ≤
d(Πa,Γa) + 1. So |d(Πa,Γa)− d(Πb,Γa)| ≤ 1. �This lemma 
an be generalized to N genomes Gi, ea
h having either the adja
en
y a, or b, ornone. In theorem 6 we 
onsider two genomes Ma and Mb identi
al up to two adja
en
ies, and webound the di�eren
e of the sum of rearrangement distan
es between Gi and these two genomes.Let A be the adja
en
y set of genomes G1, ..., GN , and let C be the set of all pairs of 
ontra-di
tory adja
en
ies from A.Theorem 6 For any pair of adja
en
ies {a, b} ∈ C and two genomes Ma and Mb identi
al upto 2 adja
en
ies with a ∈Ma and b ∈Mb, it holds that

∑N
i d(Ma, Gi)−

∑N
i d(Mb, Gi) ≤ N.Proof: Let Ga

i (Gb
i and Go

i , respe
tively) be the genomes having the adja
en
y a (b and none,respe
tively) with |Ga
i | = Na (|Gb

i | = Nb and |Go
i | = No, respe
tively). Sin
e N = Na + Nb + No,we have:

N∑

i

d(Ma, Gi)−
N∑

i

d(Mb, Gi) =

Na∑

i

d(Ma, G
a
i )−

Na∑

i

d(Mb, G
a
i ) +

Nb∑

i

d(Ma, G
b
i )−

Nb∑

i

d(Mb, G
b
i ) +

No∑

i

d(Ma, G
o
i )−

No∑

i

d(Mb, G
o
i ).A

ording to lemma 6 we have:

∣
∣
∣
∣
∣

Na∑

i

d(Ma, G
a
i )−

Na∑

i

d(Mb, G
a
i )

∣
∣
∣
∣
∣
≤ Na, and

∣
∣
∣
∣
∣

Nb∑

i

d(Mb, G
b
i )−

Nb∑

i

d(Ma, G
b
i )

∣
∣
∣
∣
∣
≤ Nb.In the 
ase of genomes Go

i , there exists a s
enario between Go
i and Ma via Mb, as shown on thesket
h here below. 83



Chapter 5. Super-blo
k 
onstru
tion
Ma

Mb

Go
i

d(Go
i ,Ma)

d(Go
i ,Mb)

1 1So, d(Go
i ,Ma) ≤ d(Go

i ,Mb) + 1. Similarly, there exists a s
enario between Go
i and Mb via Ma,and so d(Go

i ,Mb) ≤ d(Go
i ,Ma) + 1.As the distan
es are symmetri
, we 
an apply the inequality:
|d(Ma, G

o
i )− d(Mb, G

o
i )| ≤ 1 ∀i ∈ [1..No]and thus ∣

∣
∣
∣
∣

N∑

i

d(Ma, G
o
i )−

N∑

i

d(Mb, G
o
i )

∣
∣
∣
∣
∣
≤ NoWe 
on
lude that ∣

∣
∣
∣
∣

N∑

i

d(Ma, Gi)−
N∑

i

d(Mb, Gi)

∣
∣
∣
∣
∣
≤ N

�Types of rearrangementsTheorem 6 provides a general theoreti
al bound. Let us 
onsider that u(a) > u(b). The worst
ase di�eren
e ∑N
i d(Ma, Gi) −

∑N
i d(Mb, Gi) ≈ N is in fa
t rarely met. Lemma 7 below andits 
orollary analyze the problemati
 
ases in terms of distan
es and breakpoints.Sanko� and Trinh in [ST05℄ show that the rearrangement distan
e 
an be de
omposed intodi�erent types of rearrangements a

ording to the number of deleted breakpoints. The rear-rangement distan
e d between two genomes 
an be written as d = d2 + d1 + d0, where d2, d1and d0 are the numbers of rearrangements that delete two, one and no breakpoints, respe
tively.Moreover, this de
omposition is unique. If b is the number of breakpoints between the two samegenomes, then b = 2d2 + d1. Let ba and bb (da and db) be the number of breakpoints (rearrange-ment distan
es) between Πa and Γa and between Πb and Γa, respe
tively. We 
an de
omposedistan
es and breakpoints for Πa and Πb with respe
t to Γa:

ba = 2d2
a + d1

a and da = d2
a + d1

a + d0
a,

bb = 2d2
b + d1

b and db = d2
b + d1

b + d0
b .From these de
ompositions introdu
ed by Sanko� and Trinh, we propose a more detailed analysisof no-breakpoint rearrangements. In the rest of this se
tion we show that the number of no-breakpoint rearrangements d0

b 
an be bounded in terms of d0
a.Lemma 7 Let Πa,Πb and Γa be three genomes as in lemma 6. Then, db = d2

a + d1
a + d0

b + 1 and
d0

a − 2 ≤ d0
b ≤ d0

a.Proof: Let a and c be the two breakpoints in Πa with respe
t to Πb. Two 
ases are possible:1. Γa has the adja
en
y a but not c, then bb = ba + 1,84



5.2. Dependent adja
en
ies2. Γa has the adja
en
ies a and c, then bb = ba + 2.In the �rst 
ase, we have bb = 2d2
a + d1

a + 1 and 0 ≤ |da − db| ≤ 1 (lemma 6). The distan
eequality db = d2
a + (d1

a + 1) + d0
b follows. And so, d0

a − 2 ≤ d0
b ≤ d0

a.In the se
ond 
ase, two sub-
ases have to be 
onsidered:(a) bb = 2(d2
a + 1) + d1

a, or(b) bb = 2d2
a + d1

a + 2.Parts of the breakpoint graphs G(Πa,Γa) and G(Πb,Γa) are shown below for the 
ase where
Γa has adja
en
ies a and c. In G(Πb,Γa), the rearrangement de�ned by the edges {πk,−πl} and
{−πk+1, πl+1} deletes two breakpoints. breakpoint graph G(Πa,Γa)π1 ... πk πk+1 ... πl πl+1 ... πn

a c

breakpoint graph G(Πb,Γa)π1 ... πk −πl ...−πk+1 πl+1 ... πn

b dWe 
an easily see that only sub-
ase (a) is possible. So, we have db = (d2
a + 1) + d1

a + d0
b , andso d0

a − 2 ≤ d0
b ≤ d0

a. �Corollary 1 Let Πa,Πb and Γa be three genomes as in lemma 6. Then:1. if db = da + 1, then d0
b = d0

a,2. if db = da, then d0
b = d0

a − 1,3. if db = da − 1, then d0
b = d0

a − 2.Corollary 1 provides a range of possible situations under the hypothesis that u(a) > u(b).Indeed, in the �rst 
ase, the intuition of preferring a over b is valid. In the se
ond 
ase it stillremains valid sin
e for the same distan
e, we delete breakpoints. But in the third 
ase, thisintuition no longer holds.In pra
ti
e the third 
ase is very infrequent, and Sanko� and Trinh even disregard it 
ompletelyin [ST05℄. Indeed, unoriented 
omponents needing no-breakpoint rearrangements are un
ommonin breakpoint graphs. This situation for a pair of genomes implies that in order to obtain
∑N

i d(Ma, Gi) −
∑N

i d(Mb, Gi) ≈ N , the di�eren
e ∑Na

i d(Ma, G
a
i ) −

∑Na

i d(Mb, G
a
i ) has tobe 
lose to Na, where Na is the number of genomes having the adja
en
y a. A

ording to
orollary 1, d(Ma, G

a
i ) = d(Mb, G

a
i ) + 1 implies that d0(Ma, G

a
i ) = d0(Mb, G

a
i ) + 2. Theserearrangements being infrequent, it is unlikely to have d(Ma, G

a
i ) = d(Mb, G

a
i ) + 1 and hen
e

∑N
i d(Ma, Gi)−

∑N
i d(Mb, Gi) ≈ N .Bounds for breakpointsThe result of theorem 6 
an be transposed to breakpoints as shown in theorem 7. Let us denote

Na the number of genomes with adja
en
y a, Nb the number of genomes with adja
en
y b and
No the number of genomes with neither adja
en
ies a nor b. 85



Chapter 5. Super-blo
k 
onstru
tionTheorem 7 For any pair of adja
en
ies {a, b} ∈ C su
h that u(a) > u(b) and two genomes Maand Mb identi
al up to 2 adja
en
ies with a ∈Ma and b ∈Mb, it holds that
Na − 2Nb −No ≤

N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) ≤ 2Na −Nb + No.Proof: Let Ga
i (Gb

i and Go
i , respe
tively) be the genomes having adja
en
y a (b and none, respe
-tively) with N = Na + Nb + No. We have:

N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) =
Na∑

i

b(Mb, G
a
i )−

Na∑

i

b(Ma, G
a
i ) +

Nb∑

i

b(Mb, G
b
i )−

Nb∑

i

b(Ma, G
b
i ) +

No∑

i

b(Mb, G
o
i )−

No∑

i

b(Ma, G
o
i )We already know (see lemma 7) that

1 ≤ b(Mb, G
a
i )− b(Ma, G

a
i ) ≤ 2 for all i ∈ [1..Na], and

−2 ≤ b(Mb, G
b
i )− b(Ma, G

b
i ) ≤ −1 for all i ∈ [1..Nb].We know that sin
e Ma and Mb are identi
al up to a (or b), there are two more adja
en
ies cand d that di�er between these genomes (see �gure 5.2). Consequently, any genome Go

i 
an haveeither c, or d, or neither. Hen
e,
−1 ≤ b(Mb, G

o
i )− b(Ma, G

o
i ) ≤ 1 for all i ∈ [1..No].And so we have:

Na − 2Nb −No ≤
N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) ≤ 2Na −Nb + No �Theorem 7 provides a theoreti
al bound for the number of breakpoints. Let us 
onsider again
u(a) > u(b) ≥ 1. In pra
ti
e, the worst di�eren
e ∑N

i b(Mb, Gi)−
∑N

i b(Ma, Gi) ≈ Na−2Nb−Nois not as bad as it seems.For example, for 5 genomes the worst 
ase Na − 2Nb −No is superior or equal to 0 for 3 of allpossible 5 
ases. If an adja
en
y a is present in all 5 genomes, then 
learly Na − 2Nb −No = 5.Table 5.2 shows possible values for Na, Nb and No in the 4 remaining 
ases.Nevertheless, for two 
ases the value Na−2Nb−No is negative (but very 
lose to 0). Fortunately,the worst 
ase (
ase 4, table 5.2) never o

urs. Indeed, re
all that we are 
onsidering genomes
Ma and Mb, identi
al up to a, c (symmetri
ally b, d). In this 4th 
ase, the genomes Ga

i haveadja
en
y a but not c, the genomes Gb
i have the adja
en
ies b and d while the No genomes whi
hhave neither a nor b, possess d. Hen
e, the frequen
y of adja
en
y d is 3, those of a and c areequal to 2, while b has frequen
y 1. Thus, we will have resolved the 
on�i
t between d and a or

c whi
h is an already studied 
ase (
ase 2, table 5.2).86
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en
ies to �nal assemblies
ase # Na Nb No Na − 2Nb −No1 4 1 0 22 3 2 0 -13 3 1 1 04 2 1 2 -2Table 5.2: Given 5 genomes and 
ontradi
tory adja
en
ies a and b s.t. u(a) > u(b) ≥ 1, 4possible 
ases of presen
e of a or b in 
urrent genomes arise. Given are the possible values for
Na,Nb and No, and the worst 
ase di�eren
e of the total number of breakpoints.5.3 From adja
en
ies to �nal assembliesSe
tion 5.2 implies that we 
an 
hoose adja
en
ies with higher frequen
ies be
ause they lead toa reasonable 
ompromise between the breakpoint and the rearrangement distan
e approa
hes.Based on the adja
en
ies we propose to build super-blo
k assemblies of median genomes.The 
onstru
tion of super-blo
ks is done in two steps. First, we build a partition P of adja-
en
ies where ea
h part is 
omposed of inter-dependent adja
en
ies. P is partially ordered byadja
en
y frequen
y of the parts' elements. Se
ond, P is inspe
ted in de
reasing order of itsparts, and the super-blo
k sets are 
onstru
ted by favoring adja
en
ies with higher frequen
y.Finally, to �nd adja
en
ies not yet resolved, the last part of our method looks for a sequen
eof fusions of super-blo
ks that minimizes the rearrangement distan
es.5.3.1 Groups of dependent adja
en
iesWe have seen previously that there exist di�erent relationships between adja
en
ies. They 
an
omplement ea
h other and, in this 
ase, we 
an assemble them together in order to form a 
oher-ent 
hain of elements. When two adja
en
ies are in 
ontradi
tion, then either there are di�erentpossibilities to 
omplement the same element (vertex 
ontradi
tion), or these two adja
en
ieshave the same elements up to their order or to their orientation (
y
le 
ontradi
tion).It is reasonable (see se
tion 5.2) to prefer adja
en
ies with higher frequen
ies when there is a
on�i
t. That is why, if a and b are two adja
en
ies in vertex 
ontradi
tion, then we will havea preferen
e for a if u(a) > u(b), and need to 
onsider both possibilities only if u(a) = u(b).However, in the 
ase of 
y
le 
ontradi
tion, a and b are very similar be
ause of the presen
e ofthe two same elements and example 4 shows that a median genome 
an have either one or theother. Hen
e, for a 
y
le 
ontradi
tion, we relax the 
onstraint and 
onsider both adding a oradding b even for di�erent frequen
ies.Let P(A) be a partition of A. We de�ne P0(A) by the membership in the same elementary
y
le without 0 (that is a 
y
le 
ontaining 2 adja
en
ies). Parts of P0(A) are either singletonsor sets of adja
en
ies where every pair is in 
y
le 
ontradi
tion. For a given set of adja
en
ies A,the highest frequen
y of its elements is denoted u(A) = maxa∈A u(a) and is 
alled set frequen
y.We denote by G the adja
en
y graph 
ontaining all the adja
en
ies of A.We de�ne the merging of parts ⊔ : P(A)→ P(A) as follows.De�nition 43 ⊔(P(A)) is a partition of A su
h that for any p ∈ ⊔(P(A))

• ∃ p1 ∈ P(A) s.t. p = p1 or
• ∃ p1, p2 ∈ P(A) s.t. p = p1 ∪ p2 and moreover ∃ a ∈ p1 and ∃ b ∈ p2 s.t. u(a) = u(b) =87
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onstru
tion
u(p1) = u(p2) and either a and b are dependent or a and b parti
ipate in a 
y
le c ∈ Gwithout vertex v = 0 s.t. ∀v ∈ c we have u(v) ≥ u(a).Starting from P0(A), the merging of parts ⊔ de�nes a sequen
e of partitions Pi(A) where ∀i >

0,Pi(A) = ⊔(Pi−1(A)). Obviously, there exists an n for whi
h ⊔ rea
hes its �xed point denotedby ⊔n(P(A)), that is Pn(A) = ⊔(Pn(A)).De�nition 44 A group g is a part of ⊔n(P(A)).Example 5 The adja
en
ies of the example 3 are partitioned into groups as shown in table 5.3.grp. freq. adja
en
ies
4 6.0(4)

3 3.4(3), 4.0(3)

3 0.5(3)

2 0.1(2), 1.2(2), 2.1(1), 2.3(2)

2 0.6(2)

2 5.0(2)Table 5.3: Partition of adja
en
ies from example 3 into groups. The adja
en
ies are noted withtheir frequen
y in parenthesis, and the groups are sorted by de
reasing group frequen
y. Onlygroups with u(g) > 1 are represented.5.3.2 Super-blo
ks and partial assembliesDe�nition 45 A super-blo
k is a set S of n ≥ 1 adja
en
ies su
h that ∀a, b ∈ S, a does not
ontradi
t b, and there exists an order over S su
h that ∀i ∈ [1, n), ai 
omplements ai+1, and
a1, an are either independent or a1 = an = 0. A partial assembly P = {Sk} is a set of super-blo
ks su
h that ∀k, l with k 6= l if Sk ∩ Sl 6= ∅ ⇒ Sk ∩ Sl = {0}.Lemma 8 The adja
en
y graph G = (V,E) of a partial assembly P is a graph su
h that (1)
∀v ∈ V , d(v) ≤ 2, ex
ept for v = 0, and (2) any 
y
le in G 
ontains 0.Proof: By 
onstru
tion from de�nition 45. �Super-blo
ks, and thus partial assemblies, are formed by going through the groups of adja
en
iesin de
reasing order of their frequen
ies. For a given partial assembly P = {Sk} and a 
urrentgroup g, any adja
en
y b ∈ g is removed from it if there exists an adja
en
y a ∈ Sk ∈ P in
ontradi
tion with b. This operation is 
alled 
lean and produ
es a gc ⊆ g, gc = 
lean(g,P).However, when inspe
ting the 
urrent group gc we do not have any means to prefer some of itsadja
en
ies over the others.The addition of all the adja
en
ies of gc = 
lean(g,P) to P is not always possible. It is
lear why this is the 
ase for any a, b of gc in mutual 
ontradi
tion. Nevertheless, the additionof several adja
en
ies of gc that do not 
ontradi
t ea
h other 
an reveal 
ontradi
tions. Thissituation arises sin
e the assembly of non-
ontradi
ting adja
en
ies of gc 
an form a 
y
le orsin
e dependen
ies between adja
en
ies belonging to groups of di�erent frequen
y 
an exist (see�gure 5.3).88
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1 2 3 4 5 6 7 8

P
︸ ︷︷ ︸

2.3 4.1

1 2 3 4 5 6 7 8
P1

1 2 3 4 5 6 7 8
P2Figure 5.3: Two di�erent adja
en
y graphs result from adding gc = {2.3, 4.1} to P =

{{1.2}, {3.4}} depending on whi
h adja
en
y between 2.3 and 4.1 is added. Adding both 2.3 and
4.1 
reates a forbidden 
y
le.The trivial way to exhaustively enumerate all the possibilities when adding g to P, is to
onsider all possible orders over gc, whi
h is for a |gc| = n equal to n!. A less naive approa
hbrings it down to a 
omplexity of O(2n/3) by 
onsidering maximal independent sets.De�nition 46 A maximal independent set of gc is a set of adja
en
ies µ su
h that (i) ∀a, b ∈ µ,
a and b do not 
ontradi
t ea
h other and (ii) ∀a ∈ gc\µ, ∃c ∈ µ su
h that a and c are in
ontradi
tion.LetM be the set of all maximal independent sets for gc.Lemma 9 For any maximal independent set µ ∈ M, its adja
en
y graph G = (V,E) veri�es
∀v ∈ V , v 6= 0, d(v) ≤ 2.Proof: Suppose there exists a vertex v ∈ V su
h that v 6= 0 and d(v) ≥ 3. Let Y the neighboursof v in G with |Y | = d(v). Then, there exists an unique vertex y ∈ Y su
h that (v y) is anelement of the original permutations. Therefore, there exist at least two verti
es y1 and y2 ∈ Ysu
h that {v, y1} and {v, y2} 
orrespond to real adja
en
ies. So, these two adja
en
ies sharing
v are in 
ontradi
tion. This 
ontradi
ts the fa
t that these two adja
en
ies belong to the samemaximal independent set of gc. Then, ∀v ∈ V , d(v) ≤ 2, ex
ept for v = 0. �Thus, we have to 
onsider all maximal independent subsets of gc. The problem is known to beNP-
omplete [GJ79℄ and of 
omplexity O(2n/3), where n is the number of elements in gc [TT76℄.Let GP be the adja
en
y graph for P and let Gµ be the adja
en
y graph for a maximalindependent set µ of M. Let G0

µ be a graph obtained by removing the vertex 0 and all of itsin
ident edges from Gµ. Then, the 
onne
ted 
omponents of G0
µ 
an be either 
hains where allverti
es have the degree equal to 2, ex
ept the two extremities whi
h have the degree 1, or 
y
leswhere all verti
es have the degree 2. Simply adding all the verti
es and edges of Gµ to GP mayresult in 
on�i
ts (see lemma 10). Let G∪ be the adja
en
y graph G∪ = {VP ∪ Vµ, EP ∪Eµ}.Lemma 10 The adja
en
y graph G∪ is a graph su
h that ∀v ∈ V , v 6= 0, d(v) ≤ 2.Proof: Suppose there exists a vertex v ∈ V su
h that v 6= 0 and d(v) ≥ 3. Let Y the neighboursof v in G with |Y | = d(v). Then, there exists an unique vertex y ∈ Y su
h that (v y) is anelement of the original permutations. Therefore, there exist at least two verti
es y1 and y2 ∈ Ysu
h that {v, y1} and {v, y2} 
orrespond to real adja
en
ies that 
ontradi
t ea
h other and:1. {v, y1} and {v, y2} ∈ GP or, 89
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k 
onstru
tion2. {v, y1} and {v, y2} ∈ Gµ or,3. {v, y1} ∈ Gµ and {v, y2} ∈ GP or,4. {v, y1} ∈ GP and {v, y2} ∈ Gµ.Cases 1 and 2 are in 
ontradi
tion with lemmas 8 and 9. For 
ase 3 (
ase 4, respe
tively), theadja
en
y represented by the edge {v, y1} ({v, y2} respe
tively) was removed by 
lean from g toobtain gc. So it is not possible to have these two 
ases. �Forbidden 
y
les 
an appear in G∪. It is 
lear that Gµ 
an have 
y
les without 0. But 
y
les
an also appear by 
losing 
hains of GP by one or several 
hain(s) of G0
µ. In order to obtain anadja
en
y graph of a partial assembly from G∪, we have to dis
onne
t all existing 
y
les without0 by deleting some adja
en
y from µ in ea
h 
y
le (see lemma 11).Let C = {c1, c2, .., cm} be a set of all 
y
les without 0 in G∪.Lemma 11 If C 6= 0, then ∀i, j s.t. i 6= j, ci and cj are disjoint, and ea
h 
y
le c ∈ C has oneor several adja
en
ies from µ.Proof: Let ci, cj ∈ C. Suppose that they are not disjoint. Then, there exists a vertex v su
h that

v ∈ ci and v ∈ cj . Thus, d(v) ≥ 3, whi
h 
ontradi
ts lemma 10.Let c ∈ C su
h that for all adja
en
ies a of c, we have a 6∈ µ. Then, c ∈ GP , whi
h 
ontradi
tslemma 8. �Let {G≺} be the set of all graphs resulting from adding gc to P for all possible orders ≺ over gc.Let µj be the set of adja
en
ies from a maximal independent set µ that parti
ipate in a 
y
le
cj ∈ C. We denote by Sµ = µ1 × µ2 × ... × µm the Cartesian produ
t of the sets of adja
en
iesfrom a maximal independent set µ parti
ipating in 
y
les {c1, .., cm} ⊂ C.Lemma 12 The following equality holds:

{G≺} =
⋃

µ∈M

⋃

~a∈Sµ

{G∪ \ {ai}}where ~a is 
omposed of {ai} and |~a| = m, and G∪ \ {ai} denotes the graph G∪ without the edges
{ai}.Proof: Let us denote the right side of the equation by {GM}. The in
lusion {GM} ⊆ {G≺} isobvious. Let us suppose ∃G ∈ {GM} su
h that G /∈ {G≺}. This means that for some parti
ular
µ and ~a we have 〈G∪〉\{a1, a2, .., am} /∈ {G≺}. Whi
h 
ontradi
ts the fa
t that µ is maximal. �Let us denote the operation of adding a group g to P by ⊕. This operation produ
es all possiblepartial assemblies {Pi} = P ⊕ g and 
an be realized by the algorithm add_group (algorithm 7).The 
omplexity of this algorithm is bounded by the resear
h of maximal independent sets over
gc.Lemma 13 Let P be a partial assembly and let g1 and g2 be two groups of same frequen
y
u(g1) = u(g2). Then, ⊕ is asso
iative: (P ⊕ g1)⊕ g2 = (P ⊕ g2)⊕ g1.Proof: Suppose ⊕ to be not asso
iative. Then, there exists an adja
en
y a in g1 and b in g2 su
hthat a and b imply a 
ontradi
tion in the 
onstru
ted partial assembly P⊕g1⊕g2. Then, either:90



5.3. From adja
en
ies to �nal assembliesAlgorithm 7 add_group(g,P)Require: a group g, a partial assembly PEnsure: P is a set of partial assemblies1: let GP be the adja
en
y graph for P2: let P = ∅ and gc = 
lean(g,P)3: let M be the set of all maximal independent sets over gc4: for all µ ∈ M do5: let Gµ be the adja
en
y graph for µ6: let T be the set of all 
onne
ted 
omponents of G0
µ7: let Gnew = {VP ∪ Vµ, EP ∪ Eµ}8: let C = ∅9: while G0

new has a 
y
le c do10: let V = ∅ be the set of adja
en
ies from µ parti
ipating in c11: for all t ∈ T do12: if t ∩ c 6= ∅ then13: let V = V ∪ adjacencies(t)14: let Gnew = {Vnew\{t[0]}, Enew}15: end if16: end for17: let C = C ∪ {V }18: end while19: let G = {VP ∪ Vµ, EP ∪ Eµ}20: let Gµ = {G}21: for all c ∈ C do22: G = ∅23: for all a ∈ c do24: for all Gµ ∈ Gµ do25: G = G ∪ {{Vµ, Eµ\{a}}}26: end for27: end for28: Gµ = G29: end for30: let P = P ∪ partial_assemblies(Gµ)31: end for32: return P1. a and b form a vertex 
ontradi
tion or,2. a and b form a 
y
le 
ontradi
tion or,3. a and b parti
ipate in a 
y
le without 0.In 
ase 1, if u(a) = u(b) then a and b should be in the same group (see de�nition 44). If
u(a) 6= u(b) then u(g1) 6= u(g2), whi
h 
ontradi
ts the hypothesis. In 
ase 2, if a and b form a
y
le 
ontradi
tion then a and b should be in the same group (see de�nition 44), whi
h 
ontradi
tsthe hypothesis. In 
ase 3, all the verti
es in the 
y
le have a frequen
y greater than u(g1) =
u(g2). Therefore, a

ording to the de�nition 44, a and b should be in the same group. So, ⊕ isasso
iative. �Based on lemmas 12 and 13, and algorithm 7, the 
onstru
tion of all partial assemblies forgenomes G1, ..., GN pro
eeds as shown in algorithm 8. Noti
e that we do not 
onsider groupswhere u(g) = 1 sin
e these adja
en
ies do not have any additional support in any other genome.5.3.3 Fusions of super-blo
ksAlgorithm 8 builds all partial assemblies by resolving 
on�i
ts between adja
en
ies up to groupfrequen
y 2. Groups of frequen
y 1 are ex
luded sin
e there is no eviden
e if they are presentby 
han
e or not. 91
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k 
onstru
tionAlgorithm 8 partial_assemblies(G1 , ..., GN )Require: G1, ...,GN genomes over the same set of gene markersEnsure: P is a set of partial assemblies1: let A be the set of all adja
en
ies for G1, ...,GN2: let G = {g} be the set of all groups for A3: let n = maxGu(g)4: let P = {∅}5: for all gi s.t. n ≥ i ≥ 2 do6: let P′ = ∅7: for all P ∈ P do8: PP = P ⊕ gi9: P′ = P′ ∪ PP10: end for11: P = P′12: end for13: return PDe�nition 47 A fusion of super-blo
ks S1 = (a1, ..., an) and S2 = (b1, ..., bm) is a super-blo
k
S su
h that the order of de�nition 45 is either S = (a1, ..., an, b1, ..., bm), or S = (a1, ..., an,
−bm, ...,−b1), or S = (b1, ..., bm, a1, ..., bn), or S = (b1, ..., bm, −an, ...,−a1).This de�nition implies that a super-blo
k S su
h that a1 = 0.πi and an = πj .0 
annot par-ti
ipate in a fusion. Indeed, su
h a super-blo
k already forms a 
hromosome from telomere totelomere.Let {P} be the set of all partial assemblies up to group frequen
y 2 for genomes G1, ..., GNand P ∈ {P} a partial assembly. The number of super-blo
ks in P 
an be relatively high. Thisis due to the fa
t that some elements 
annot be inter-
onne
ted be
ause of the low frequen
y(equal to 1) of 
orresponding adja
en
ies. Su
h elements are lo
ated at the extremities of thesuper-blo
ks. We 
onne
t them in order to form 
hromosomes by fusions of super-blo
ks withoutworsening the distan
e and breakpoint bounds (see theorem 8).Theorem 8 For any P ∈ {P} of G1, ..., GN su
h that P = {Sk}, there exists a genome M su
hthat for any 
hromosome π of M either ∃Sk ∈ P su
h that π = Sk, or ∃ {Sk} ⊆ P su
h that πis formed by a series of fusions π = S1...Sk. Moreover,

∑N
i d(M,Gi)−

∑N
i d(P,Gi) ≤ 0 and ∑N

i b(M,Gi)−
∑N

i b(P,Gi) ≤ 0.Proof: By 
onstru
tion �To �nd an optimal sequen
e of fusions, we 
lassify them by their e�e
t on the global rearrange-ment distan
e (the sum of rearrangement distan
es between median genome and G1 . . . GN ). Agreedy randomized algorithm is used to �nd an
estral 
andidates obtained after a limited num-ber of fusions. By the parsimony 
riterion, solutions that minimize the global rearrangementdistan
e are 
onserved.
92



Chapter 6Appli
ationsIn this 
hapter, we propose appli
ation examples for our method for super-blo
k 
onstru
tion pre-sented in 
hapter 5. In se
tion 6.1, we apply our method to a set of non-WGD1 Hemias
omy
etegenomes in the Kluyveromy
es and related 
lades provided by the Génolevures Consortium, withdivergen
e similar to that of 
hordates [Duj06℄. For this phylogeneti
 bran
h, our method showsa high 
onvergen
e in the stru
ture of di�erent versions of super-blo
ks (16 in all), reinfor
ing theintuition that super-blo
ks en
ode the semanti
s of the an
estral genome. We 
an thus performa re
onstru
tion, despite extensive map reshu�ing. In se
tion 6.2, we show the pertinen
e ofour method on theoreti
al test 
ases and 
omparisons to existing methods. Finally, se
tion 6.3provides a wider dis
ussion about the super-blo
k method. All this work is under revision in[JSN℄.6.1 A Median Genome for non-WGD yeastsWe have applied our method to analyze an
estral ar
hite
tures for the Génolevures proje
t[DS+04℄ in the 
ase of non-WGD Hemias
omy
ete yeasts. The data 
onsists in 5 
ompletely se-quen
ed yeasts from the Sa

haromy
eta
ae 
lades: Kluyveromy
es la
tis, Sa

haromy
es kluyveri,Zygosa

haromy
es rouxii, Ashbya (Eremothe
ium) gossypii and Kluyveromy
es thermotolerans2.These genomes have little genome redundan
y and a relatively high (for yeasts) 
onservation ofsynteny.Signed permutations representing ea
h genome were 
omputed using the SyDiG algorithm (seepart II, page 59), using pairwise synteni
 blo
ks obtained by the i-ADHoRE method [SVSP04℄from orthology and synteny relations identi�ed using Génolevures protein families [NS07℄. Thesesynteni
 blo
ks 
ontain 8�200 genes (mean size 14 genes) and 
over roughly 60% of ea
h genome.Basing these permutations only on protein-
oding genes is su�
ient, sin
e yeast genomes arehighly 
ompa
t (protein-
oding genes 
over approximately 80% of the genome), and gene reli
sare quite rare (approximately 4%) [Duj06℄. By 
ombining pairwise syntenies, ea
h genome wasfa
tored into a sequen
e of ordered synteni
 blo
ks, from whi
h a set of distin
t blo
ks 
ommonto all genomes was determined. An arbitrary referen
e genome was 
hosen, and all the blo
ksforming this genome were numbered by unique sequential identi�ers from 1 to n.The permutations 
omputed by this in sili
o 
hromosomal painting 
ontained 487 blo
ks (mean1Whole-Genome Dupli
ation, an unique polyploidization event proposed in the an
estral Sa

haromy
es lin-eage; non-WGD yeasts from the other bran
hes of the phylogeneti
 tree are not a�e
ted by this 
atastrophi
event.2Abbreviations: Klla, K. la
tis; Sakl, S. kluyveri ; Zyro, Z. rouxii ; Ergo, A. gossypii ; Klth, K. thermotolerans.93
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ationssize 51 genes); keeping the longest blo
ks brought the permutations to 120 identi�ers3 (mean size,94 genes). We were able to pla
e a
tive and ina
tive 
entromeres in ea
h genome permutationby lo
ating the �anking genes (personal 
ommuni
ation from Ja
ky de Montigny). Ea
h of 9
ontemporary 
entromeres was en
oded by two su

essive identi�ers, resulting in 15 additionalblo
ks. Thus, ea
h genome was represented as a signed permutation of 135 elements (see �g-ure 6.1) , in whi
h 
hromosomal rearrangements (fusion, �ssion, translo
ation, inversion) werestudied. The pairwise rearrangement distan
es between these genomes are shown in table 6.1.Klth:1a {} a2 3 4 5 6 7 8 $9 10b {} b11 12 13 14 15 16 17 18 19 20 21 $22 23 24 25 26 27 28 29 30 31 32 33
 {} 
34 35 36 $37 38 39 40 41 42d {} d43 44 45 46 47 48 49 50 51 52 53 54 55 56i i57 58 59 60 61 $62 63 64 65 66 67 68e {} e69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 $84 85 86 87 88 89 90 91 92 93 94f {} f95 96 97 98 99 100 101 $102 103 104 105 106 107 108 109 110 111 112 113 114g {} g115 116 117 118 $119 120 121 122 123 124 125 126 127 128 129 130 131h {} h132 133 134 135 $Ergo:b11 -52 -51 -89 131h {} h132 96 -8 -65 103 -129 -128 $-20 -19 -18 -17 61 40 -43d {} d-42 -41 45 46 92 100 -78 -29 118 $116 117 9 31 32 33
 {} 
34 35 36 b-10 49 50 13 86 -38 $93 83 91 -81 -48 23 -63 5 6 94f {} f95 -75 -74 119 120 12 -22 -104 99 135 -88 -37 $-77 -76 85 62 -134 -133 -115g {} g-114 -113 58 59 60 80 82 -98 -26 -105 53 54 106 $47 87 -7 121 122 123 124 125 126 127 67 68e {} e69 -16 -15 39 130 97 71 -30 -25 102 -24 66 70 4 55 56i i57 -84 $-28 -27 -73 -108 -90 -44 -3 -2a {} a-1 109 110 111 72 79 64 -112 21 14 -107 101 $Klla:-103 -116 -86 85 -99 131h {} 68e e69 -67 21 133 -15 $104 105 123 61 -60 117 -55 93 91 -74 -96 -81 40 -43d {} d-42 -41 -24 $84 88 -82 -112 -129 31 102 -54 -53 -6 -8 -52 -51 30 -46 89 92 122 -119 -111 -70 {}$-36 -35 -34
 
-33 -32 -59 124 118 49 16 17 b-10 -83 -100 -73 121 -95f {} f -94 -65 -64 -63 -108 -90 19 20 $-57i i-56 -101 -97 -58 27 -45 107 -66 26 -80 1a {} a2 -87 23 9 -115g g-114 -44 -125 13 -29 -28 98 -134 75 76 77 78 79 $48 37 -106 120 -7 126 -135 38 -128 127 -50 b11 {} h-132 72 39 25 71 -110 -109 -18 -113 62 -130 47 14 -4 22 -12 3 -5 $Sakl:-8 -7 121 122 123 124 125 126 127 128 129 112 42d {} d43 44 $-118 -4 -3 -2a {} a-1 -117 -116 80 81 -91 -93 -92 -38 -37 12 $84 85 86 87 88 -82 30 113 114g {} g115 101 $-83 26 39 130 -132h {} h-131 133 134 -25 -24 45 46 $-36 -35 -34
 {} 
-33 -32 -31 -41 -40 -71 135 -107 -106 47 14 15 16 17 18 19 20 $-96 -95f {} f-94 -65 -64 -63 5 6 -120 -119 13 -29 -28 -27 100 $-99 -98 -97 102 103 104 105 62 89 10b {} b11 -9 -23 59 60 -61 -22 $-21 -58 -57i {} i-56 -55 -54 -53 -52 -51 -50 -49 -48 -79 -78 -77 -76 -75 -74 -73 -72 90 108 109 110 111 66 67 68e e69 70 $Zyro:-83 106 107 -115g {} g-114 82 -54 62 -135 -71 72 -79 99 -117 -116 77 $41 42d d43 44 13 -29 -28 -27 -88 -113 -30 -57i i-56 -55 -61 47 10b {} b11 -111 58 59 60 23 $110 101 -90 129 -7 31 32 -34
 {} 
-33 35 6 17 18 19 -65 -89 -127 81 -91 -93 -92 -84 $-100 86 87 -76 -37 38 109 -21 -8 94f {} f95 -97 102 103 104 105 -112 96 -64 -63 5 $22 -12 128 -134 -133 -132h {} h-131 -130 45 46 -123 -122 -121 $-36 -118 -4 -3 -2a {} a-1 -25 -120 49 50 51 73 74 75 53 -98 48 -119 52 -108 78 20 $-24 40 -16 -15 -14 -125 -124 66 67 -69e {} e-68 70 9 80 -26 -39 -85 -126 $Figure 6.1: Signed permutations on 135 elements for 
ontemporary non-WGD Hemias
omy
eteyeasts (Zyro, Ergo, Klla, Klth and Sakl). Klth is taken as referen
e for the numbering. The
hara
ter $ represent the end of a 
hromosome. The positions of the a
tive 
entromeres arelo
ated by two embra
es. A letter indi
ates the agreement of the �anking genes of a 
entromerea
ross the �ve spe
ies.Comparative genome maps were painted (see �gure 6.2) with K. thermotolerans as referen
e.A
tive 
entromeres are represented by red ovals, telomeres are represented by triangles. Theassigned letter indi
ates the agreement of this 
entromere a
ross the �ve spe
ies. Markers arewell distributed on the 
hromosomes, so the 
hoi
e of these markers is representative of thear
hite
ture of the 
ontemporary genomes. A high degree of synteny, and a limited number oflarge-s
ale rearrangements, is observed between K. thermotolerans and S. Kluyveri ; they sharemany 
ommon adja
en
ies and their rearrangement distan
e is half of that seen between otherpairs of genomes. Note that K. la
tis presents two synteni
 breaks in 
entromere areas: the3The number of retained markers does not allow one to obtain an an
estral permutation 
andidate by usingthe publi
 version of MGR.94



6.2. Comparison to MGRZyro Klth Sakl Klla ErgoZyro 0 84 79 115 101Klth 0 45 105 88Sakl 0 98 85Klla 0 109Ergo 0Table 6.1: Pairwise rearrangement distan
es between non-WGD Hemias
omy
ete genomes as
al
ulated from 
ommon synteny blo
ks representing 135 major 
onserved segments. For abbre-viations, see footnote on page 93.
entromere of Klla0F is lo
ated between the �anking genes of 
entromeres h and b, and the
entromere of Klla0A is lo
ated between the �anking genes of 
entromeres h and e. Moreover,S. kluyveri has an a
tive 
entromere (the 
entromere i), that was disabled in all the other studiedgenomes.We 
omputed 16 sets of super-blo
ks, ea
h 
ontaining either 34 or 35 super-blo
ks. Thesesuper-blo
k sets are highly similar. Indeed, 29 super-blo
ks are 
ommon among all of the sets,and there are only 4 
on�i
ts (see �gure 6.3). A given partial assembly of super-blo
ks P rep-resents a potential stru
ture of an an
estral ar
hite
ture. Finally, it is possible to 
onstru
t a�nal assembly from these super-blo
ks by su

essive fusions. Two sets of assemblies were 
om-puted: with and without the 
onstraint on 
entromere position. For both of these 
ases 90 �nalassembly 
andidates were generated. In the �rst 
ase the global sum of distan
es ∑
(M,Gi)varies between 281 and 285 (283,4 on average); in the se
ond 
ase it varies between 281 and 283(282,2 on average). The latter represents biologi
ally plausible ar
hite
tures whose rearrange-ment distan
es are 
lose to minimal. The whole set of solutions shows a high 
onvergen
e interms of rearrangement distan
es, reinfor
ing the intuition that the 
omputation of an
estralar
hite
tures by super-blo
ks assembly results in a redu
ed neighborhood in the sear
h spa
e.Further �ltering of the results was done by a plausibility metri
 p based on the 
hromosomalstru
ture of the 
andidate solution (distributions of 
hromosome sizes and of 
entromere lo
a-tions on the 
hromosome). Figure 6.2 shows the 
andidate for an
estral ar
hite
ture whi
h hasthe best 
ompromise between a maximal value for p and minimal value for ∑

(M,Gi) = 284.6.2 Comparison to MGRWe 
ompare our super-blo
k algorithm to the software MGR-MEDIAN [BP02℄ developed tore
onstru
t an
estral gene orders a

ording to rearrangement distan
e. MGR is not publi
lyavailable software, so we 
ould only make 
omparisons to publi
ly available results, or to resultsthat 
an be 
omputed using the MGR demonstration web site4. This web site handles smallinstan
es; although it is not formally stated on the MGR webpage, it seems that this publi
version is limited to genomes of at most 30 markers.6.2.1 Human, Cat, Mouse Instan
esMGR 
onstru
ts median genomes for the three-genome 
ase only; if more are provided it 
om-putes the rearrangement tree. For this reason, we used the only available multi-
hromosomal4http://nb
r.sds
.edu/GRIMM/mgr.
gi 95



Chapter 6. Appli
ationsdata from the MGR webpage: that of human, 
at and mouse (an
estral permutation availableon-line). This dataset has 114 markers [BP02℄. For this dataset, we obtain two versions P1 and
P2 of 32 super-blo
ks that di�er only in one super-blo
k. The an
estral permutation obtainedby MGR 
ontains all of the super-blo
ks of one of the two sets P2 (see �gures 6.4 and 6.5).6.2.2 Simulated instan
esIn order to estimate the 
onservation of super-blo
ks, we generate simulated instan
es, where thedistan
es between genomes are bounded. An arbitrary an
estral genome is generated from whi
ha spe
i�ed number of random rearrangements are applied to give three genomes. We spe
ify thenumber of genes (n) and 
hromosomes (N), and the number of rearrangements done during thesimulation (r); this parameter is an upper bound on the optimal median genome s
ore. Wegenerated 300 instan
es with parameters n = 30, N between 1 and 5, and r = 50. For all ofthese instan
es, we 
omputed the sets of super-blo
ks, the median genome obtained by the publi
version of MGR, and the possible assemblies into median genomes.The number of sets of super-blo
ks varies between 1 and 4, and the number of nontrivial super-blo
ks in a set varies between 2 and 10. This small number of partial assemblies and nontrivialsuper-blo
ks is due to the small number of identi�ers with only 3 genomes. MGR does notprovide an an
estral permutation for 60 of the 300 instan
es. For the 240 remaining instan
es,the median genome proposed by MGR 
onserves the totality of the super-blo
ks ex
ept for oneinstan
e (�gure 6.6). For this instan
e, we �nd one partial assembly de
omposed into 7 nontrivialsuper-blo
ks. The median solution A_MGR re
overed by MGR has a global rearrangementdistan
e of 41 and 
ontains 6 of the 7 super-blo
ks. The super-blo
k 23 24 25 is missing in
A_MGR although it has support in two of the three genomes of the instan
e (G2 and G3).Nevertheless, it is possible to obtain better solutions in terms of super-blo
k 
onservation, thatpresent moreover a better global rearrangement s
ore. Super-blo
k assemblies return 10 di�erentsolutions that are equivalent in terms of global rearrangement distan
e and better than the onefound by MGR (39 against 41). Moreover, all of these solutions 
ontain the 7 super-blo
ks ofthe partial assembly.The super-blo
k fusion pro
edure generates medians that are 
ompetitive from the rearrange-ment distan
e point of view. Moreover, our method provides 
andidates that have better break-point 
hara
teristi
s than those obtained by MGR. Example 4 page 81 shows 3 genomes G1,
G2 and G3. For this dataset, we obtain two partial assemblies of super-blo
ks that lead to twooptimal solutions M1 and M2 in terms of rearrangement distan
e. However, they have a di�erentglobal number of breakpoints: 11 breakpoints for M1 against 12 for M2 (see example 6). Undera parsimonious 
riterion, M1 appears as the best an
estral 
andidate for G1, G2 and G3. MGRgives M2 as an
estral gene order for this dataset. For the human, mouse and 
at genomes, thefusion pro
edure provides the same result in terms of rearrangements, and a better 
ompromisein terms of breakpoints (see �gure 6.5).Example 6 We 
onsider the three genomes from example 4. Super-blo
ks algorithm leads to twopartial assemblies P1 = {1, 3 2, 4 5, 6 7} and P2 = {1, 2 3, 4 5, 6 7}. From those two, two optimal(median) solutions M1 and M2 are possible: M1 = {1 -2 -3 4 5, 6 7} and M2 = {1 -3 -2 4 5, 6 7}.The rearrangement distan
es (d) and the number of breakpoints (b) from M1 and M2 to G1, G2and G3 are shown below.96



6.3. Dis
ussion
G1 G2 G3d b d b d b

M1 2 3 1 2 4 6

M2 1 2 2 3 4 76.2.3 Instan
e with 
entromeresWhen 
ontemporary 
entromere positions are known, they 
an be used to 
onstrain an
estorre
onstru
tions: biologi
ally plausible results must have one and only one 
entromere per re-
onstru
ted 
hromosome. These 
onstraints are not taken into a

ount in the MGR algorithm,whi
h 
an 
onsequently return mathemati
ally optimal, but biologi
ally absurd, results.In the same way that it was explained in the last subse
tion, we generated one instan
e of 3genomes with 30 markers. On these genomes, we pla
ed a
tive and ina
tive 
entromeres: ea
h
entromere is lo
ated between two identi�ers. We 
omputed super-blo
k sets and assembliesfor this instan
e, and 
ompared our results with those returned by MGR (�gure 6.7). For thisinstan
e, we obtain one partial assembly with 8 super-blo
ks. The solution re
overed by MGRhas a global rearrangement distan
e of 35 and 
ontains all the super-blo
ks. Nevertheless, thissolution is not viable due to the fa
t that the se
ond 
hromosome of this median has no a
tive
entromere.Viable solutions that respe
t this biologi
al 
onstraint may be non minimal in terms of rear-rangement distan
e, so respe
ting this biologi
al 
onstraint 
an require exploration of solutionsthat are mathemati
ally suboptimal. For this example, we �nd 10 solutions that respe
t super-blo
ks and where global rearrangement s
ore varies between 34 and 36. All minimal solutionsare absurd as they do not respe
t the 
entromere 
onstraint, but we do �nd 3 viable solutionswith a global distan
e equal to 35 (�gure 6.7).6.3 Dis
ussionComputing the median for a given set of genomes is informative when the sample set of genomes is
arefully 
hosen and the interpretation of the 
ommon features that are so identi�ed is performedwith 
aution. As with any statisti
al study, if the sample is too small or not representative ofthe population under study, then the median may be biased. It is not the obje
t of this workto provide guidan
e into sampling strategies for genome 
omparisons, but to provide robustmathemati
al tools for performing the 
omparisons. Pra
ti
al studies ([Eri07℄, [GNS08℄, forexample) 
on
ur that the set of plausible medians is quite large and that it is misleading topresent just one as �the� an
estral ar
hite
ture of a set of genomes (see se
tion 2.4.4 page 51 formore details).The fo
us of this work is on the identi�
ation of 
ommon stru
tural features that are likelyto be inherited from an
estral genomes. These super-blo
ks 
an be seen as 
omplex traits inthe sense of Dollo parsimony, whose 
onservation and possible loss from a 
ommon an
estoris more likely than independent gain in separate lineages. They are identi�ed without use ofa hypothesized phylogeny, and indeed nothing suggests that re
ombinatory evolution 
oin
ideswith mutational evolution (see se
tion 2.5.2 page 55).This use of phylogeny is an important feature of the work of [MZS+06℄ (see se
tion 2.5.1 page51 for the method of Ma et al.). Super-blo
ks share 
ertain aspe
ts of the motivation behindCARs: that is, assembling only adja
en
ies having su�
ient support in 
ontemporary genomes.The sharing tree of super-blo
ks (su
h as seen in �gure 6.3) en
odes all the possibilities of97



Chapter 6. Appli
ationsan
estral genome ar
hite
tures by in
luding in the super-blo
ks the adja
en
ies 
ommon to atleast 2 genomes, and leaving the super-blo
k extremities as the only pla
es where no semanti
allysound assembly is possible. This �nal assembly is then just a question of optimization undersome metri
, and in this work we use the Hannenhalli-Pevzner rearrangement distan
e.The super-blo
ks themselves implement a 
ompromise between the rearrangement and break-point distan
es, and thus, thanks to the latter, en
ode the an
estral semanti
s, while leavingroom for optimization thanks to the former.In pra
ti
e, our method realizes two su

essive sear
h-spa
e redu
tions. First, the super-blo
ksthemselves diminish the number of unresolved adja
en
ies (left for the optimization step). Se
-ond, we rely on the biologi
al 
onstraints for further sear
h-spa
e redu
tion, as well as solution�ltering. In parti
ular, in our appli
ation to the non-WGD yeasts we use the 
entromere posi-tions, yielding biologi
ally plausible solutions only.6.3.1 Gene and Segmental Dupli
ationA

ounting for gene and segmental dupli
ation is an important 
hallenge, that we do not addressin this work. In [MRL+07℄ Martin et al. use the interleaving patterns of gene orders to studyrearrangements before and after the hypothesized whole genome dupli
ation (WGD) event inthe Sa

haromy
es lineage [WS97℄. Interestingly, they 
laim that a series of partial genomedupli
ations leads to more parsimonious rearrangement s
enarios that does a single whole genomedupli
ation in apparent 
ontradi
tion of the widely a

epted hypothesis [KBL04, DS+04℄. Intheir study they 
ombined rearrangement events with dupli
ation and deletion events; duringa prepro
essing step their method renumbers dupli
ated elements in gene orders to produ
e apermutation 
ompatible with the Hannenhalli-Pevzner rearrangement algorithms that they use.For 
omputational reasons, only a single 
hromosome of A. gossypii is studied in detail. Forthis example our results agree; indeed, the segments in their �gure 5 (and supplemental �le S1provided by reviewer 2) are found in our adja
ent markers 52 and 51 (Figure 6.2), 
onserved inour median and all genomes we 
onsider ex
ept Z. rouxii. Our study is otherwise quite di�erent.Sin
e we deliberately only 
onsider spe
ies outside of the WGD lineage, we are not 
on
ernedwith the large-s
ale dupli
ations and deletions that mask the underlying rearrangement events.Our method works e�
iently on 
omplete genomes, and is not reliant on the Hannenhalli-Pevznermethod, but rather proposes a partial re
on
iliation between it and the breakpoint method. Oursuper-blo
ks method does not take dupli
ations into a

ount, sin
e it is not obvious how to weighdupli
ated adja
en
ies when 
ounting their frequen
y. This is a dire
tion for future work.6.3.2 Towards An
estor Constru
tion in YeastsComparative genomi
s in the hemias
omy
ete yeasts has proven extremely informative aboutthe basi
 me
hanisms of eukaryoti
 mole
ular evolution, both using geneti
 tools and 
omputeranalysis. These spe
ies represent a homogeneous phylogeneti
 group with small and 
ompa
tgenomes, but nonetheless a large diversity at the physiologi
al and e
ologi
al levels, and anevolutionary range 
omparable to the Chordate phylum [DS+04, Duj06℄. They provide a kindof `evolutionary playground' in whi
h various genome-modifying me
hanisms have been testedover and over. Building a mathemati
al des
ription of this ri
h history will provide importantinsight.In this work we have used our super-blo
k method to 
onstru
t a plausible an
estral ar
hite
-ture for a phylogeneti
ally 
ir
ums
ribed group of non-WGD yeasts, using ordered markers de-rived from all-against-all sear
h for 
onserved synteni
 segments. Surprisingly, highly similar sets98



6.3. Dis
ussionof super-blo
ks are 
onstru
ted from these markers, reinfor
ing the idea that the an
estral seman-ti
s 
an be re
overed using adja
en
ies observed in 
ontemporary genomes. Final assemblies ofthese super-blo
ks were 
onstru
ted by an optimization pro
edure using the Hannenhalli-Pevznerrearrangement distan
e as a metri
. A strength of our method is that su
h �nal assemblies 
anbe made to respe
t biologi
al 
onstraints on 
hromosome ar
hite
ture, in this work 
entromereposition.Sin
e our method 
an e�
iently handle hundreds of markers in dozens of genomes simultane-ously, these results open the way to a more in-depth study of the rearrangement history of theyeasts. This will require te
hni
al advan
es, for dete
ting synteny in the presen
e of segmen-tal dupli
ation, for masking the e�e
ts of highly mobile elements, and for improved respe
t ofbiologi
al 
onstraints.
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Figure 6.2: Re
onstru
tions of genome-s
ale homology from 
ommon synteny blo
ks representingmajor 
onserved segments. Med is the proposed an
estral ar
hite
ture with ∑
d(Med,Gi) = 284.Ea
h unique numbered synteny blo
k is given a 
olor indi
ating its 
hromosome in the referen
egenome (Klth), and a diagonal bar indi
ating its relative position on the 
hromosome. Othergenomes are signed permutations of these 
olored blo
ks; a 
hange of slope in the diagonal barindi
ates an inversion. Blo
k widths are to s
ale and the size of interleaving non-synteni
 regionsis shown by large grey lines. Red 
ir
les: 
entromeres; gray triangles: telomeres.100
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ussion

Figure 6.3: Sharing tree of super-blo
ks from the 16 sets of super-blo
ks obtained from non-WGD Hemias
omy
ete yeasts genomes. The root 
ontains the super-blo
ks shared among allthe 16 sets. Ea
h path from the root to a leaf represents a set of super-blo
ks. The numberinside the leaf nodes indi
ates the sum of the distan
e between this set of super-blo
ks and the
ontemporary genomes. Colors and marker numbers were 
hosen using Klth as a referen
e. Thediagonal line in ea
h box indi
ates the relative position and orientation of the marker on thereferen
e genome.
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HUMAN: 1 2 3 4 5 6 7 8, 9 10 11 12 13 14,15 16 17 18 19 20, 21 22 23 24,25 26 27 28 29 30 31 32 33, 34 35,36 37, 38 39 40 41 42 43,44 45 46 47 48, 49 50 51 52 53 54 55 56,57 58 59 60 61 62 63 64 65 66 67 68,69 70, 71 72 73 74 75 76 77 78 79,80 81, 82 83,84 85 86 87, 88,89 90, 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109,91, 110 111 112 113 114CAT: -22 -21 23 24, -70 -69,86 87 -85 -84, -37 -36,-26 -25 27 28 29 30 31 -33 -32, 106 107 -109 -108,44 45 -58 -57 -60 -59 61 62 63 64 65 66 67 68 90 91,1 2 3 -10 -9 11 12 13 14, -88 -20 -19 -18 -17 15,-50 -49 53 54 -52 -51 55 56, 46 47 48,-89 80 81, -38 39 40 41 42 43,-71, -75 -74 -73 -72 -77-76 78 79, -83 -82,34 35, -7 -6 8 -5 -4,16, 92 93 94 95 96 97 98 99 100 101 102 103 104 105110 111 112 113 114MOUSE: 34 35, 11 12 13 14 -8 -7 -6,32, 44 45 -43 -42 -41 -10 -9 -54 -53 84 85 -87 -86,-65, -20 -19 -5 -4 -3 -2 -1,33 38 39 40, 57 58 59 60 61 62,36 37, 82 83 -52 -51 48 49 50,15 16, -56 -55 -70 -69 -18 -17103 104 105 -93 -92, -89 -88 -68 -67,-26 -25 -24, 23 71 -75 -74 -73 -72 76 77 78 79,-47 -46, 21 22 90 91 63 64 -6680 81, -97 -96 98 99 100 106 107 -109 -108 -95 -94 101 102-31 -30 -29 -28 -27, 110 111 112 113 114A: -8 -7 -6, 71 -75 -74 -73 -72 76 77 78 79,80 81, -70 -69 -5 -4 -3 -2 -1,82 83, -12 -11 -52 -51 55 56,49 50, 44 45 -43 -42 -41 -40 -39 -38,-14 -13 92 93 94 95 96 97 98 99 100 101 102 103-37 -36, -30 -29 -28 -27 25 26,-35 -34, 87 -85 -84 53 54 9 10,32 33 -31 -48 -47 -46,21 22 88 89, 104 105 106 107 -109 -108,86 -91 -90 -68 -67 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57,-16 -15 17 18 19 20, -24 -23,110 111 112 113 114Figure 6.4: Human, mouse and 
at permutations as well as the an
estral permutations (A)re
overed by MGR-MEDIAN [BP02℄.
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ussion
Super-blo
ks 
ommon to all the partial assemblies-8 -7 -6-7172 73 74 7576 77 78 7980 8182 83-50 -49-70 -69-5 -4 -3 -2 -1-14 -13 -12 -1151 5255 5646 47 48-45 -4436 3734 35-33 -32-31 -30 -29 -28 -2725 26-22 -2188-8990 9157 58 59 60 61 62 63 64 65 66 67 6884 85 -87 -8653 54-10 -9-16 -15 17 18 19 2023 24108 109 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97 -96 -95 -94 -93 -92-114 -113 -112 -111 -110Super-blo
k spe
i�
 to P1 Super-blo
k spe
i�
 to P2-43 -42 -41 -40 -39 38 -43 -42 -41 -40 -39 -38Figure 6.5: 2 sets of super-blo
ks obtained from the publi
 dataset of Human, Cat and Mousegene order (see �gure 6.4).
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(a) G1: -27 16 1,-8 30 14 15 -26 -21,20 -22 -25 17 18 -24 3 -5 -4 6 9 -29 -28 -19 23 -2 7 10 11 12 13
G2: 29 -20 16 -8 -7 15 -12 18,19 13 14 9 -4 -21 30 28 -25 -24 -23 2 22,-1 -11 -10 3 5 6 17 26 27
G3: 9 10 19 -27 -26 -25 -24 -23 -16 -15,-4 -3 -2 -13 -12 5 6 20,14 18 -11 -28 -30 -29 -22 -21 -17,-1 -8 -7(b) F: -27 -26, 10 11, 23 24 25, -6 -5, -8 -7, -13 -12, -28 -30(
) A_MGR: 10 11 2 3 4 7 8 23 24 -18 -17 25 22 -20 -6 -5 12 13,9 15 16 1,-27 -26 -21 30 28 29 -14 -19(d) A_SB: 29 30 28 -8 -7,21 26 27 -19 23 24 25 22 -20,-18 -17 -6 -5 12 13 2 3 4 -11 -10 -9,14 15 16 1Figure 6.6: Results for (a) the simulated instan
e G1, G2 and G3: (b) Super-blo
k set F , (
)median genome A_MGR provided by the publi
 version of MGR and (d) one of the 10 mediansolutions re
overed by fusions of super-blo
ks.
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ussion

(a) G1: 1 {c} 10 3 -30 -23 -19 22 14 15 27 28 -13 -12 -11 25 9,26 {c} 8,20 21 -24 5 6 -2 7 -29 -18 {c} -17 -4 -16
G2: -7 5 11 12 13 14 23 24 -18 {c} -17 -6,1 {c} 10,26 {c} 8 27 -3 21 22 -16 -4 28 -30 -29 15 19,20 -2 -9 {c} -25
G3: -24 28 -18 {c} -17 -13 4 -29 -16 -11 -7 23 -19 14 15 25 9,26 {c} 8 27 12 -3 -30 5 6,-22 -21 -20 1 {c} 10 2(b) F : 25 9, -22 -21 -20, 11 12 13, 17 18, -27 -26 -8, -15 -14, -6 -5, -10 -1(
) A_MGR: -9 {c} -25 17 {c} 18 -28 -27 -8 {c} -26,20 21 22 -16 7 11 12 13 -15 -14 19 23 24 -30 5 6,29 -4 -3 -2 -10 {c} -1(d) A_SB: 1 {c} 10 2 -7 -23 -19,-9 {c} -25 -15 -14 -22 -21 -20,3 4 -29 -18 {c} -17 -6 -5 24,26 {c} 8 27 28 -30 16 -13 -12 -11Figure 6.7: (a) A simulated instan
e G1, G2 and G3 with a
tive 
entromere positions indi
ated bythe letter 
 between embra
es. (b) For this instan
e, a set of super-blo
ks F is obtained. (
) Themedian genome A_MGR provided by the publi
 version of MGR presents a 
hromosome withouta
tive 
entromere.(d) A_SB is a sub-optimal median solution in terms of global rearrangements
ore whi
h is plausible for 
entromere 
onstraint.
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Chapter 7Computing a 
orre
t optimal s
enarioAnalysis of genome rearrangements provides a measure for the evolutionary distan
e betweenspe
ies. Two 
losely related problems are 
onsidered in the study of genome rearrangements. The�rst problem is to �nd, by parsimony 
riteria and for a de�ned set of rearrangement operations,the exa
t number of su
h operations needed to rewrite one genome into another. The se
ondproblem is to 
ompute a most parsimonious rearrangement s
enario. Solving the latter wouldenable the understanding of evolutionary me
hanisms.In the 
onsidered model (see se
tion 1.2), two genomes de�ned on the same set of gene markerswithout dupli
ations, are represented by signed permutations. Thus, the analysis of genomesleads to a 
ombinatorial problem of transforming one signed permutation into another. Thetheory proposed by Hannenhalli and Pevzner [HP95a, SM97℄ for uni
hromosomal genomes basedon reversals only is presented in detail in 
hapter 2 (see se
tion 2.2.1). Their main results 
onsistin an exa
t formula for reversal distan
e, and the �rst polynomial time algorithm for 
omputinga parsimonious reversal-based s
enario between two signed permutations.This theory was further adapted by the same authors to the multi
hromosomal 
ase and ispresented in the same 
hapter, se
tion 2.2.2. For multi
hromosomal genomes, a larger set ofrearrangement operations is 
onsidered: translo
ations, fusions and �ssions as well as reversals.In [HP95b℄, Hannenhalli and Pevzner devise a method that mimi
s all multi
hromosomal rear-rangements by reversals operating on an unique permutation. This is a
hieved by a 
onversion tothe uni
hromosomal model, whi
h requires an optimal 
apping to 
leverly delineate 
hromosomesof a given genome, as well as an optimal 
on
atenate in order to assemble them into a singlepermutation. The 
omputed parsimonious s
enario relies on the stru
ture of this permutation.However, both the formula for rearrangement distan
e and the algorithm for 
omputing aparsimonious sequen
e of operations given by Hannenhalli and Pevzner [HP95b℄ present errors.Tesler in [Tes02a℄ partially 
orre
ted the rearrangement distan
e formula. In the same paper,the algorithm that leads to optimal 
on
atenates was 
ompleted by a proper bonding step (formore details, readers are invited to refer se
tion 2.3.2). Ozery-Flato and Shamir in turn rede�nedsome notions and suggest further 
orre
tions essentially for the rearrangement distan
e formula[OFS03℄. Nevertheless, the algorithm that is supposed to 
onstru
t an optimal 
apping, fails.Various de�nitions and their relationships presenting in
oheren
es between papers by di�erentauthors, we �rst propose a single and 
oherent 
lassi�
ation of interleaving graph 
omponentsbased on relevant literature in se
tion 7.1. This 
lassi�
ation permits a better understandingof what is wrong in the existing algorithm for determining optimal 
apping. In se
tion 7.2, wepresent 
ases for whi
h Ozery-Flato and Shamir's algorithm fails and provide a 
ounterexamplefor ea
h 
ase. Finally, we introdu
e in se
tion 7.3, a 
orre
t algorithm for optimal 
apping with109



Chapter 7. Computing a 
orre
t optimal s
enarioa proof of its 
orre
tion. This whole work was published in [JN07℄.7.1 Double 
lassi�
ation of 
onne
ted 
omponentsLet Π and Γ be two multi
hromosomal genomes with respe
tively NΠ and NΓ 
hromosomes de-�ned over the same set of gene markers Ng. Two steps are needed to en
ode a multi
hromosomalgenome as an unique permutation: 
apping and 
on
atenate. Π̂ and Γ̂ represent a 
apping of Πand Γ and we denote by π̂ and γ̂ 
on
atenates for Π̂ and Γ̂.The notions of adja
en
ies and breakpoints are transferred to the breakpoint graph de�ned in[HP95a℄. Denote by G(Π,Γ) (G(Π̂, Γ̂), G(π̂, γ̂) respe
tively) the breakpoint graph 
onstru
tedfrom permutations Π and Γ (Π̂ and Γ̂, and π̂ and γ̂ respe
tively).The distan
e value is 
omputed based on the breakpoint graph G(Π,Γ), free of any 
appingand 
on
atenate, in whi
h we 
an distinguish three types of verti
es: isolated verti
es 
alled tails,
ap verti
es of degree 1 
alled Π-
aps, and other verti
es of degree 1 
alled Γ-tails. The graph
G(Π,Γ) 
an be de
omposed into 
y
les and paths that are 
hara
terized by their extremities(ΠΠ-path, ΓΓ-path and ΠΓ-path).Constru
tion of the interleaving graph I(G) (see se
tion 2.2.2 page 32 for more details) isde�ned from non-trivial paths or 
y
les (with more than 2 edges) of the breakpoint graph
G = G(Π,Γ) and based on the notion of edge interleaving. We propose a 
oherent and un-ambiguous 
lassi�
ation for the 
onne
ted 
omponents of an interleaving graph that is the resultof a synthesis of previously 
ited referen
es. In fa
t, the 
omponents 
an be 
lassi�ed in twodi�erent and 
omplementary ways, as shown in �gure 7.1.7.1.1 Intrinsi
 
lassi�
ationWe 
all intrinsi
 
lassi�
ation the way to dis
riminate between 
omponents based on the prop-erties of their edges. It is represented by the verti
al hierar
hy of �lled nodes in �gure 7.1. Adashed edge (representing an adja
en
y in Γ) {π̂i, π̂j} in G(Π,Γ) is oriented if |j − i| is even,otherwise it is unoriented. The same edge is intra
hromosomal if the verti
es π̂i and π̂j belongto the same 
hromosome, and inter
hromosomal otherwise. A 
onne
ted 
omponent K of I(G)is oriented (inter
hromosomal, respe
tively) if any 
y
le or path belonging to K has at least oneoriented (inter
hromosomal, respe
tively) dashed edge, otherwise K is unoriented (intra
hromo-somal, respe
tively). Let U(G) be the set of unoriented 
omponents of I(G), IU(G) the set ofunoriented and intra
hromosomal ones.We have seen that the di�
ulty to 
ompute the rearrangement distan
e 
omes from unorientedand intra
hromosomal 
omponents (see the uni
hromosomal 
ase, se
tion 2.2.1 page 28). Theintrinsi
 
lassi�
ation is then re�ned for this set of 
omponents: we distinguish real 
omponentsfrom unreal 
omponents within unoriented and intra
hromosomal 
omponents. As a reminder,a 
onne
ted 
omponent K of I(G) is real if K belongs to IU(G) and if it has no Π-
ap or Γ-tailin its span. Let RU(G) be the set of real 
omponents.Example 7 gives the intrinsi
 
lassi�
ations for the breakpoint graph of the �gure 7.2.7.1.2 Extrinsi
 
lassi�
ationWe 
all extrinsi
 
lassi�
ation the way to des
ribe a 
omponent by its relationship with surround-ing 
omponents. It is represented horizontally by dashed lines in �gure 7.1. This 
lassi�
ation
on
erns the sets of unoriented 
omponents U(G), IU(G) and RU(G) that require a more de-tailed study in order to determine the rearrangement distan
e as well as the algorithms that lead110



7.1. Double 
lassi�
ation of 
onne
ted 
omponents
Conne
ted 
omponents

Oriented Unoriented
U(G)

Inter
hromosomal Intra
hromosomal
IU(G)

Unreal Real
RU(G)Intrinsi
 
lassi�
ation

HurdlesNon hurdles
Simple
Super

MinimalThe greatest
MinimalThe greatest

KnotsNon Knots
Simple
Super

MinimalThe greatest
MinimalThe greatest

Real knotsNon real knots
Simple
Super

MinimalThe greatest
MinimalThe greatest

Extrinsi

lassi�
ation

Figure 7.1: Double 
lassi�
ation of 
onne
ted 
omponents. The 
hildren nodes form a partitionof the 
omponent set represented by their parent node. Intrinsi
 
lassi�
ation is read from topto bottom while extrinsi
 
lassi�
ation is read from left to right.to parsimonious s
enario 
omputation.The �rst partition for these sets relies on the notion of 
omponent separation (see de�nition13 page 29). U(G) is partitioned into non hurdles and hurdles, where a hurdle is a 
omponentof U(G) that does not separate two other 
omponents in the same set. The notion of separationde�nes in the same way the partitions of IU(G) and RU(G): knots and non knots for the former,and real knots and non-real knots for the latter.The se
ond level of the extrinsi
 
lassi�
ation is based on prote
tion notion (see de�nition 16page 30). Within the hurdle set, we distinguish the super hurdles from the simple ones. A hurdleis super if it prote
ts a non hurdle, otherwise it is simple. These notions are de�ned similarly forknots and real knots.While prote
tion notion 
hara
terizes hurdle (knots, real knots respe
tively) relationships withnon hurdles (non knots, non real knots, respe
tively), the last level of 
lassi�
ation is based on therelationships between hurdles themselves. A hurdle 
an be the greatest one if its span 
ontainsall the spans of the others hurdles, otherwise it is a minimal hurdle. These notions are de�nedsimilarly for knots and real knots. 111



Chapter 7. Computing a 
orre
t optimal s
enarioExample 7 gives the extrinsi
 
lassi�
ations for the breakpoint graph of the �gure 7.2.
A E

B
C D F

b b b b b b
T T T T T TΠ Π Π ΠΓ Γ0 27 28 2 1 3 4 7 8 13 14 11 12 9 10 15 16 5 6 17 18 29 30 31 32 19 20 21 22 25 26 23 24 33 34 3514 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

G(Π, Γ)

Figure 7.2: Breakpoint graph G(Π,Γ) for Π = {−1 2 4 7 6 5 8 3 9, 10 11 13 12} and Γ =
{1 2 3 4 5 6 7 8 9 10 11 12 13}. Tails verti
es are marked by T, Π-
aps by Π and Γ-tails by
Γ. Non trivial 
y
les and paths are denoted by letters from A to F . The interleaving graph
I(G) 
orresponding to G(Π,Γ) is 
omposed of 5 
onne
ted 
omponents: K1 = {A}, K2 = {B},
K3 = {C,D}, K4 = {E} and K5 = {F}.Example 7 Figure 7.2 presents a breakpoint graph G(Π,Γ). The intrinsi
 
lassi�
ation is asfollows: K1 is intra
hromosomal oriented, U = {K2,K3,K4, K5}, IU = {K2,K3,K5} and
RU = {K2,K3}. The extrinsi
 
lassi�
ation is: K3 is a super hurdle while K4 and K5 aresimple hurdles, and K3 and K5 are super knots. However, K2 and K3 are real knots (K2 is thegreatest one), while K5 is a minimal semi-real knot and K1 is a simple 
omponent.7.1.3 Parti
ular stru
tures and distan
e formulaBased on this 
lassi�
ation, parti
ular stru
tures of the breakpoint graph are de�ned. Countingspe
i�
 
omponents (de�ned both by the nature of their edges and their relationships with other
omponents) is required in order to 
ompute the rearrangement distan
e. Within the set ofunreal 
omponents we 
an distinguish those 
alled semi-real knots that are 
hara
terized bytheir potential of be
oming real knots (see de�nition 24 page 33). A simple 
omponent is de�nedas a 
omponent with at least one ΠΓ-path and whi
h is not a semi-real knot.From all these 
onsiderations, global spe
i�
 stru
tures for the breakpoint graph are de�ned.The breakpoint graph G is a fortress (fortress of knots, or fortress of real knots, respe
tively) ifit 
ontains an odd number of hurdles (knots, or real knots, respe
tively) that are all super. Wesay that a graph G is a weak fortress of real knots if (a) G has an odd number of real knots, (b)there exists the greatest real knot in G, (
) all real knots are super ex
ept the greatest one and(d) the number of semi-real knots in G is stri
tly greater than 0. Note that a weak fortress ofreal knots be
omes a fortress of real knots by 
losing the ΠΓ-paths in a semi-real knot.Denote by Ḡ(Π,Γ) the graph obtained by 
losing all the ΠΓ-paths in simple 
omponents of
G(Π,Γ). Ozery-Flato and Shamir [OFS03℄ give an exa
t formula for the distan
e between twomulti
hromosomal genomes Π and Γ (see theorem 3 page 34): d(Π,Γ) = b − c + pΓΓ + r +

⌈s′−gr′+fr′

2 ⌉ where b is the number of solid edges in G(Π,Γ) (b = Ng + max(NΠ, NΓ)), c is thenumber of 
y
les and paths, pΓΓ is the number of ΓΓ-paths, r is the number of real knots, s′ isthe number of semi-real knots in G(Π,Γ), gr′ is equal to 1 if Ḡ has the greatest real-knot and
s′ > 0, and is 0 otherwise, fr′ is equal to 1 if either (i) Ḡ is a fortress of real knots and thegreatest semi-real knot does not exist in Ḡ, or (ii) Ḡ is a weak fortress of real knots.Computing the distan
e between two multi
hromosomal genomes is independent of 
appingand 
on
atenation. However, 
omputing a parsimonious s
enario 
onsists in �nding a sequen
e of112



7.2. Cases for whi
h optimal 
apping algorithm failsreversals mimi
king multi
hromosomal rearrangements that satisfy the minimal distan
e. Thus,optimal 
apping and optimal 
on
atenate are required to �nd a parsimonious s
enario. Neverthe-less, in spite of 
orre
tions brought by Tesler [Tes02a℄ and by Ozery-Flato and Shamir [OFS03℄,the algorithm for 
omputing optimal 
apping remains in
orre
t.7.2 Cases for whi
h optimal 
apping algorithm failsOptimal 
apping Π∗ and Γ∗ is �nding positions and signs for 
aps in the genome Γ su
h that
d(Π∗,Γ∗) = d(Π,Γ) (see lemma 4 page 36). This is done for any arbitrary 
apping in Π. In thebreakpoint graph, it 
onsists in adding 2NΓ edges linking a Π-
ap to a Γ-tail and NΠ−NΓ edgesbetween two Π-
aps if NΠ > NΓ.The algorithm for 
onstru
tion of an optimal 
apping that takes into the a

ount the last
orre
tions for rearrangement distan
e is provided by Ozery-Flato and Shamir [OFS03℄ (seealgorithm 1 page 37). However, this algorithm is in
orre
t. There are two 
ases for whi
h theiralgorithm fails. In what follows, we des
ribe ea
h of these 
ases and provide a 
ounterexample.7.2.1 Di�eren
e in the number of 
hromosomesSin
e the distan
e fun
tion is symmetri
, we have d(Π,Γ) = d(Γ,Π) and so Ozery-Flato andShamir [OFS03℄ 
onsider only the 
ase where NΓ ≤ NΠ without lost of generality. However, theproposed algorithm fails if NΓ < NΠ. The number of Π-
aps is equal to 2max(NΠ, NΓ) and theone of Γ-tails is 2NΓ. Clearly, the number of Π-
aps is stri
tly greater that the number of Γ-tailsif NΓ < NΠ. Thus, pΠΠ > pΓΓ. Steps 2 and 3 of algorithm 1 
onsist in joining a ΠΠ-path with a
ΓΓ-path to the point of ΠΠ-path exhaustion a

ording to lemma 2 page 36. Consequently, thenumber of ΓΓ-paths is not su�
ient to 
lose all the ΠΠ-paths when NΓ < NΠ. See �gure 7.3and example 8 for a 
ounterexample.
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b
TΠ Π Π Π Π ΠΓ Γ Γ Γ

p1

p2 p30 7 -1 -3 8 9 -2 4 10 11 5 -6 12 13Figure 7.3: Counterexample to Ozery-Flato and Shamir's algorithm [OFS03℄ for building anoptimal 
apping. Breakpoint graph G(Π,Γ) with Π = {−1 − 3, − 2 4, 5 − 6} and Γ =
{1 2 3, 4 5 6}.Example 8 The breakpoint graph G = G(Π,Γ) in �gure 7.3 has two ΠΠ-paths p2 and p3, andone ΓΓ-paths p1. A �rst o

urren
e of steps 2 and 3 of Ozery-Flato and Shamir's algorithm joins
p2 or p3 with p1. An other one has to join the remaining ΠΠ-path with a ΓΓ-path but there isno ΓΓ-path left anymore.7.2.2 A spe
i�
 breakpoint graph stru
tureAnother 
ase for whi
h the algorithm fails 
an be des
ribed as follows: (i) s′ is even and s′ > 2,(ii) G is a fortress of real knots and (iii) G has the greatest semi-real knot. If G is a fortress of real113



Chapter 7. Computing a 
orre
t optimal s
enarioknots and there exists the greatest semi-real knot then fr′ = 0. Moreover, the greatest semi-realknot and the greatest real knot 
an not exist simultaneously, so gr′ = 0. Hen
e, the genomi
distan
e is d = b− c + pΓΓ + r + ⌈s′2 ⌉ = b− c + pΓΓ + r + s′

2 sin
e s′ is even. The step 5 of theoptimal 
apping algorithm in [OFS03℄ joins any two semi-real knots. Suppose that the greatestsemi-real knot is joined by an inter
hromosomal or oriented edge to another semi-real knot. Theobtained graph is still a fortress of real knots, but the greatest semi-real knot does not existanymore, so fr′ = 1. Thus, we get d = b− (c−1)+pΓΓ +r+ ⌈ (s′−2)+1
2 ⌉ = b− c+1+pΓΓ +r+ s′

2 .See �gure 7.4 and example 9 for a 
ounterexample.
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Γ Π0 31 2 4 6 5 7 3 8 10 12 11 13 9 14 16 18 17 19 15 20 1 21 32 33 23 22 24 34 35 26 25 27 36 37 29 28 30 38 39Figure 7.4: Counterexample to the Ozery-Flato and Shamir's algorithm [OFS03℄for building an optimal 
apping. Breakpoint graph G(Π,Γ) with Π =
{2 4 6 5 7 3 8 10 12 11 13 9 14 16 18 17 19 15 20 1 21, 23 22 24, 26 25 27, 29 28 30} and
Γ = {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21, 22 23 24, 25 26 27, 28 29 30}. The
onne
ted 
omponents K5, K6 and K7 are super real knots that prote
t respe
tively K2, K3and K4. G has the greatest semi-real knot K1 and three minimal semi-real knots K8, K9 and
K10.Example 9 The breakpoint graph G = G(Π,Γ) in �gure 7.4 is a fortress of real knots with
fr′ = 0. The distan
e is d(Π,Γ) = 34 − 14 + 0 + 3 + ⌈4−0+0

2 ⌉ = 25. Step 5 of Ozery-Flato andShamir's algorithm allows joining the greatest semi-real knot K1 to K8 by an inter
hromosomaledge (dashed line), whi
h results in a new graph G′. G′ is still a fortress of real knots, but fr′ = 1.So d = 34− 13 + 0 + 3 + ⌈2−0+1
2 ⌉ = 26, whi
h does not respe
t the minimal distan
e.7.3 A 
orre
t algorithm for optimal 
appingIn what follows we propose a new algorithm for optimal 
apping (algorithm 9) and the proof ofits 
orre
tion (theorem 9). The proof is based on two te
hni
al lemmas from [HP95b℄ (lemmas2 and 3 page 36) and possible 
on�gurations for pertinent parameters of the breakpoint graphpresented by �gure 7.5.Theorem 9 (Jean and Nikolski [JN07℄) Let d = d(Π,Γ) be the distan
e between two multi-
hromosomal genomes Π and Γ. Algorithm 9 
onstru
ts an optimal 
apping Γ̂ for any arbitrary
apping Π̂, su
h that d(Π̂, Γ̂) = d.Proof: Let M be the total number of edges needed to 
lose all the paths. If NΠ > NΓ, then

M = 2NΓ + NΠ−NΓ, otherwise M = 2NΓ. Building a 
apping Γ̂ involves adding M edges ei to
G(Π,Γ). This pro
ess de�nes a new graph Gi for the ith addition of an edge. It results after M114



7.3. A 
orre
t algorithm for optimal 
appingAlgorithm 9 Corre
t_Optimal_Capping1: Constru
t the graph G = G(Π,Γ)2: while there is a ΓΓ-path in G do3: Find an inter
hromosomal or oriented edge joining this ΓΓ-path with a ΠΠ-path (lemma2) and add it to G4: end while5: Close all remaining ΠΠ-paths in G6: Close all ΠΓ-paths in simple 
omponents in G7: if s′ is even and s′ ≥ 2 and G is a fortress of real knots then8: if G has the greatest semi-real knot then9: Close all ΠΓ-paths in the greatest semi-real knot10: else11: Close all ΠΓ-paths in any one semi-real knot12: end if13: end if14: while G has more than one semi-real knot do15: Find an inter
hromosomal or oriented edge joining ΠΓ-paths in any two semi-real knot(lemma 3) and add it to G16: end while17: Close all remaining ΠΓ-paths in G18: Find a 
apping Γ̂ de�ned by the graph G(Π̂, Γ̂)
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∃grk26 ∄grk27
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∃grk28 ∄grk29 r
=

030Figure 7.5: Possible 
on�gurations for pertinent parameters of the breakpoint graph G: theparity and value of s′, the presen
e of the greatest semi-real knot (gsrk), the parity and value of
r and the presen
e of the greatest real knot (grk). Con�gurations are numbered from 1 to 30.additions in G(Π̂, Γ̂): G(Π,Γ) = G0

e1→ G1...
eM→ GM = G(Π̂, Γ̂). We denote by di the distan
e
omputed on the graph Gi, and we index by i all the distan
e formula parameters.For ea
h parameter p we denote by ∆p the di�eren
e of its values for su

essive graphs pi−pi−1.Then ∆ = di−di−1. In what follows, we prove that for ea
h added edge ∆ = 0 and 
onsequently

dM − d0 = 0.The �rst while loop (lines 2-4 in algorithm 9 results in ∆ = 0. Indeed, if Gi−1 has a ΓΓ-paththen there also exists a ΠΠ-path. Conne
ting a ΓΓ-path with a ΠΠ-path via an inter
hromosomal115



Chapter 7. Computing a 
orre
t optimal s
enarioor an oriented edge results in ∆pΓΓ
= −1, ∆c = −1, and hen
e in ∆ = 0. The graph stru
turemodi�
ations in lines 5 and 6 do not a�e
t any parameter value, and thus we still have ∆ = 0.Starting from line 5, what remains is to 
lose ΠΓ-paths in semi-real knots. The proof for thispart of the algorithm is based on a 
ase analysis. The last part of distan
e formula, ⌈s′−gr′+fr′

2 ⌉,depends on the parity and value of s′. Moreover, semi-real knots 
an be
ome real knots and thenmodify the values of gr′ and fr′. That is why, we have also to 
onsider the parity and value of r.The greatest semi-real knot (the semi-real knot, respe
tively) does not have the same behavioras the minimal ones: we have to take into the a

ount the presen
e or absen
e of these parti
ular
omponents. All the possible graph 
on�gurations are shown in �gure 7.5. We show that for allof them ∆ = 0. Noti
e that 
on�gurations 1, 3, 11, 13, 21 and 23 in �gure 7.5 are impossiblesin
e the greatest semi-real knot and the greatest real knot 
an not exist simultaneously.The then part of the if statement (lines 7 through 13 in algorithm 9) 
on
erns three possible
ases:1. the greatest semi-real knot exists (
on�gurations 4 and 14),2. the greatest semi-real knot does not exist, but the greatest real knot exist (
on�gurations8 and 18),3. the greatest semi-real knot and the the greatest real knot do not exist (
on�gurations 9and 19).For these 6 
on�gurations we have ∆c = ∆pΓΓ
= 0 and ∆s′ = −1. The values of ∆fr′ , ∆r and

∆gr′ vary between the three 
ases.1. We are in the then part at line 9, fr′i−1 = 0 and fr′i = 0 sin
e the number of real-knotsbe
omes even. So ∆fr′ = 0, ∆r = 1 and ∆gr′ = 1.2. We are and the else part at line 11, fr′i−1 = 1 and fr′i−1 = 1. Closing all the ΠΓ-paths ina minimal semi-real knot does not modify the number of real knots: the greatest real knotbe
omes an unreal 
omponent. Thus, ∆r = 0, ∆gr′ = −1 and ∆fr′ = 03. We have gr′i−1 = gr′i = 0. Therefore ∆r = 1, ∆gr′ = 0 and ∆fr′ = −1 sin
e the number ofreal knots be
omes even.Thus in all the possible 
ases before line 14 we have ∆ = 0.The se
ond while loop (line 14 through 16) is entered in three 
ases:1. s′i−1 = 2 (
on�gurations from 2 to 10 ex
ept 3),2. s′i−1 > 2 is even (
on�gurations from 12 to 20 ex
ept 13),3. s′i−1 is odd (
on�gurations from 22 to 30 ex
ept 23).In all of these 
on�gurations ∆c = −1, ∆pΓΓ
= ∆r = 0 and ∆s′ = −2. The values ∆gr′ and

∆fr′ depend on the 
on�guration.1. For all 
on�gurations, ex
ept 6 and 8, we have. ∆gr′ = ∆fr′ = 0. For 
on�gurations 6 and8, ∆gr′ = −1. For 
on�guration 6, fr′i−1 = fr′i = 0. For 
on�guration 8, Gi−1 
an be aweak fortress of real knots, and so fr′i−1 = 1 or 0 but fr′i = 0 sin
e s′i = 0. Thus, ∆fr′ iseither 0 or -1.116



7.3. A 
orre
t algorithm for optimal 
apping2. In all 
on�gurations ∆gr′ = 0. For all 
on�gurations ex
ept 18, ∆fr′ = 0 sin
e fr′i−1 =
fr′i = 0. For 18, if Gi−1 is a weak fortress of real knots then Gi is one too, and fr′i−1 =
fr′i = 1, otherwise fr′i−1 = fr′i = 0, and so ∆fr′ = 0.3. Two 
ases are possible: (a) one of the two semi-real knots is the greatest semi-real knot or(b) the two semi-real knots are minimal. For (a) gr′i−1 = gr′i = 0 and fr′i−1 = 0, but fr′i iseither 1 or 0 depending on whether Gi−1 is a fortress of real knots. For (b) ∆gr′ = ∆fr′ = 0.Applying the distan
e formula from theorem 3, we obtain ∆ = 0 in all 
ases.If at this point (line 17) there still remains a semi-real knot and one of the following 
onditionsholds1. either Gi−1 has the greatest real knot (
on�gurations 26 and 28),2. or Gi−1 has the greatest semi-real knot (
on�gurations 22, 24 and 25),3. or Gi−1 has neither one nor the other (
on�gurations 27, 29 and 30),then we have to 
lose the ΠΓ paths.For all these 
ases, we have ∆c = ∆pΓΓ

= 0 and ∆s′ = −1. The values of ∆r, ∆gr′ and ∆fr′depend on the parti
ular 
on�guration.1. ∆r = 0 and ∆gr′ = −1 sin
e s′i = 0. As for the value of fr′, 
onsider that Gi−1 
an beeither a weak fortress of real knots, or a fortress of real knots, or none. In all of these 
asesthe value of fr′ does not 
hange.2. ∆r = 1, ∆gr′ = 0, and ∆fr′ = 0 sin
e the greatest semi-real knot be
omes the greatestsimple real knot.3. ∆r = 1 and ∆gr′ = 0. As for the value of fr′, fr′i−1 is either 1 or 0 depending on whether
Gi−1 is a fortress of real knots or not, and fr′i = 0.Applying the distan
e formula from theorem 3, we obtain ∆ = 0 in all 
ases.We see then, that in all possible 
ases, graph modi�
ations G(Π,Γ) = G0

e1→ G1...
eM→ GM =

G(Π̂, Γ̂) by our algorithm are neutral with respe
t to the distan
e formula. �
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Chapter 8VIRAGE: an intera
tive tool for thevisualization of rearrangement s
enariosE�
ient algorithms exist to 
ompute rearrangement s
enarios between two genomes. In par-ti
ular, 
hapters 2 and 7 present algorithms based on the Hannenhalli and Pevzner theory forthe 
omputation of a rearrangement s
enario between two signed multi
hromosomal genomes interms of reversals, translo
ations, fusions and �ssions. The �rst implementation that made it pos-sible to analyze rearrangements in multi
hromosomal genomes was realized in GRIMM [Tes02b℄.However, the resulting rearrangement s
enario is visualized as a stati
, and possibly quite long,sequen
e of permutations. Genome modeling in the form of signed permutations makes the anal-ysis and 
omparison of s
enarios di�
ult. Hen
e, a 
hallenge lies in the visualization of plausibleresults in order to fa
ilitate their interpretation by expert biologists.We developed a new tool 
alled VIRAGE for VIsualization of ReArrangement within GEnomes,whi
h permits the intera
tive and animated visualization of several rearrangement s
enarios. Re-arrangements taken into the a

ount are reversals, translo
ations, fusions and �ssions. VIRAGEis divided in two main parts: the generator of the visualization do
ument and the visualizer ofrearrangement s
enarios.In this 
hapter, we �rst present the generator of the visualization do
ument. This generator isstrongly based on the genome graph, a 
ommon stru
ture to all of the s
enarios. The obtaineddo
ument 
ontains information relative to s
enarios under study and also in
ludes modules re-quired for the visualizer of rearrangements. A se
ond se
tion is dedi
ated to the visualizer, whi
his built of two main parts: the sequen
ing module that manages the 
ourse of s
enarios a

ordingto users' instru
tions and the animating module that enables the animation of rearrangements.8.1 Generator of the visualization do
umentThe generator of the visualization do
ument is the stati
 part of VIRAGE, whi
h 
onsists inprodu
ing an SVG (S
alable Ve
tor Graphi
s [SVG01℄) do
ument from a set of s
enarios providedas parameters. The 
ode of the generator is written in Python.8.1.1 Syntax of input �lesVIRAGE requires as many input �les as there are di�erent s
enarios to visualize. The 
hosensyntax for a s
enario is similar to the one of GRIMM results [Tes02b℄.A s
enario is a sequen
e of genomes where two 
onse
utive genomes di�er by one transforma-119



Chapter 8. VIRAGE: an intera
tive tool for the visualization of rearrangement s
enariostion among reversals, translo
ations, fusions and �ssions. In a s
enario �le, ea
h line 
orrespondsto a step in the s
enario, i.e to one genome.A multi
hromosomal genome is represented by a signed permutation where elements are sep-arated by spa
e 
hara
ter and delimiters '$' are inserted after 
hromosomes. If 
entromerepositions are known, it is possible to add this information in the s
enario �le by indi
ating ea
h
entromere by a letter framed by two bra
es. See �gure 8.1 for an example.1 2 3 4 {a} 90 $ 5 6 {b} 911 2 -4 -3 {a} 90 $ 5 6 {b} 91-1 2 -4 -3 {a} 90 $ 5 6 {b} 91-1 2 -4 -3 {a} 90 $ -5 6 {b} 91-1 2 4 -3 {a} 90 $ -5 6 {b} 91-1 2 4 3 {a} 90 $ -5 6 {b} 91Figure 8.1: Example of a s
enario �le between two multi
hromosomal genomes. The �rst linerepresents the sour
e genome, the last, the target genome and all the lines ex
ept for the �rst areintermediate genomes obtained from the previous one by a reversal in this example. Genomeshave two 
hromosomes delimited by the 
hara
ter '$' and two 
entromeres lo
ated by letters aand b between bra
es.We 
onsider three di�erent 
on�gurations for the set of input �les:- 1− 1 
ase: all of the input �les start and end by the two same genomes;- 1− n 
ase: all of the �rst lines of input �les 
orrespond to the same genome;- n− 1 
ase: all of the last lines of input �les 
orrespond to the same genome.A synta
ti
 analysis of s
enario �les is realized in order to verify that �les are well formed.8.1.2 Genome graph and nearly genome graphVIRAGE was developed to ease the visualization of one or several rearrangement s
enariosbetween spe
ies. In the 
ase of multiple s
enarios, we group the di�erent s
enarios togetherinto a 
ommon data stru
ture: the genome graph. This graph is the basis for the rest of theimplementation. Moreover, this stru
ture is quite useful for the end users. In fa
t, it makesit possible to qui
kly visualize the mutual organization of s
enarios and, during the animatedphase, to understand the 
urrent step in the s
enarios' progress.Vertex hierar
hyA s
enario is a sequen
e of genomes that represent intermediate states during evolution. Hen
e,we 
an asso
iate to ea
h genome its index within a s
enario, and genomes are ordered a

ordingto their indi
es. The notion of order between genomes must be 
onserved in the genome graph.That is why the genome graph is a dire
ted graph where verti
es represent genomes while ea
hedge represents a transformation between two 
onse
utive genomes in a s
enario. However,it is possible that intermediate genomes are identi
al within several s
enarios. The genomegraph takes into a

ount these 
ommon points between the s
enarios by modeling the equivalentgenomes by an unique vertex. Nevertheless, in order to fa
ilitate the reading of graphs by users,the depth position of a vertex in the genome graph must be equal to the index of 
orresponding120



8.1. Generator of the visualization do
umentgenomes in the s
enarios. However, a

ording to the 
ase under study, equivalent genomes mayhave di�erent indi
es:- the 1−1 
ase is the 
ase where if the provided s
enarios are parsimonious then intermediategenomes that are identi
al have ne
essarily the same index in their 
orresponding s
enarios.Otherwise, identi
al genomes may have di�erent indi
es,- the 1−n 
ase 
on
erns evolution from a 
ommon an
estral genome towards n of its des
en-dants. The n s
enarios under study may have di�erent lengths. Hen
e, identi
al genomes
an o

ur at di�erent indi
es in the s
enarios,- the n − 1 
ase is the mirror of the 1 − n 
ase. It is treated in the same manner that the
1− n 
ase.Considering these di�erent 
ases, one genome present in two s
enarios is represented by onlyone vertex in the genome graph if it appears at the same index in two s
enarios. Let S = {s} bethe set of the s
enarios to visualize and s = (g1, g2, ..., gm) a s
enario of S where g1 is the sour
egenome, gm is the target genome and the others are intermediate ones.De�nition 48 A genome graph is a dire
ted a
y
li
 graph G = (V,E) su
h that:- V = {(g, i) | ∃ gi ∈ s ∈ S such that g = gi},- E = {((g1, i), (g2, i + 1)) | ∃ gi and gi+1 ∈ s ∈ S such that g1 = gi and g2 = gi+1}.The genome graph is 
onstru
ted by s
anning through all of the s
enarios. At the kth step ofthe algorithm, genomes at index k are 
ompared in order to 
reate 
orresponding verti
es.In the n− 1 
ase, s
enarios are prepro
essed: all of them are inverted in order to simulate this
ase by an equivalent 1 − n 
ase. Next, the dire
tion of all the edges of the obtained genomegraph is inverted. The �nal graph is a dire
ted a
y
li
 graph but no longer a genome graph,sin
e indi
es 
onsidered to 
onstru
t the initial graph are those of s
enarios from the 
ommongenome to its n des
endants. This graph is 
alled a nearly genome graph. See example 10 forthe 
onstru
tion of a nearly genome graph.Example 10 Let us 
onsider 4 s
enarios from 4 distin
t genomes to a 
ommon one. Table 8.1shows these s
enarios and table 8.2 presents the same s
enarios but inverted. g5 is present atdi�erent indi
es in s
enarios 1 and 2 while its index is the same in the inverted s
enarios. Thus,genome g5 is represented by an unique vertex in the genome graph of �gure 8.2 and the nearlygenome graph presented in �gure 8.3. On the other hand, genome g6, whi
h has the same indexin initial s
enarios but not in their inverse is represented by two distin
t verti
es in the (nearly)genome graph.Edge labelingOn
e the (nearly) genome graph is obtained, we 
an asso
iate a rearrangement to ea
h edge.The supported rearrangements are reversals, translo
ations, fusions and �ssions. All of the othertransformations are de�ned as unknown rearrangements. Algorithm 10 spe
i�es the kind ofrearrangement that transforms genome gi into genome gi+1.Next, spe
i�
 information for ea
h rearrangement is de�ned: 121



Chapter 8. VIRAGE: an intera
tive tool for the visualization of rearrangement s
enariosindex s
enario 1 s
enario 2 s
enario 3 s
enario 41 g1 g2 g3 g42 g7 g5 g6 g63 g5 g9 g11 g104 g8 g11 g115 g11Table 8.1: 4 s
enarios from 4 distin
t genomes to the 
ommon genome g11.index s
enario 1 s
enario 2 s
enario 3 s
enario 41 g11 g11 g11 g112 g8 g9 g6 g103 g5 g5 g3 g64 g7 g2 g45 g1Table 8.2: Inverted s
enarios of table 8.1.

(g1, 5)

(g7, 4)

(g5, 3)

(g8, 2)

(g11, 1)

(g2, 4)

(g9, 2)

(g3, 3)

(g6, 2) (g10, 2)

(g6, 3)

(g4, 4)

Figure 8.2: Genome graph obtained from the s
enarios of table 8.2.- reversal: the sequen
e of markers within a 
hromosome of gi that are reversed within thesame 
hromosome in gi+1,- translo
ation: two sequen
e extremities in two distin
t 
hromosomes of gi that are reversedand ex
hanged between the two same 
hromosomes in gi+1,- fusion: two extremity markers of two distin
t 
hromosomes of gi that are 
onse
utive inan unique 
hromosome in gi+1,- �ssion: two 
onse
utive markers within a 
hromosome of gi that are extremities of two122



8.2. Rearrangement visualizer
(g1, 5)

(g7, 4)

(g5, 3)

(g8, 2)

(g11, 1)

(g2, 4)

(g9, 2)

(g3, 3)

(g6, 2)

(g10, 2)

(g6, 3)

(g4, 4)

Figure 8.3: Nearly genome graph for s
enarios of table 8.1.distin
t genomes in gi+1,- unknown rearrangement: no spe
i�
 information is required, sin
e this kind of transforma-tion is not animated.The sear
h of rearrangements is realized through a semanti
 analysis of genomes in order toverify that a given transformation between two genomes is interpretable by only one rearrange-ment. Otherwise, the transformation will be 
onsidered as an unknown rearrangement.8.1.3 SVG do
ument generationAfter the synta
ti
 analysis of s
enarios and the 
onstru
tion of the (nearly) genome graph labeledby rearrangements, all of this information is registered in graphi
 form in an SVG do
ument.In parti
ular, a graphi
 version of the (nearly) genome graph and the genomes is generated inthe do
ument. The do
ument also registers spatial positions of genomes as well as all the stepsof transformations. Finally, sequen
ing and animating modules (explained in se
tions 8.2.2 and8.2.3) are in
luded in the do
ument.8.2 Rearrangement visualizerThe visualizer is the dynami
 part of VIRAGE, whi
h enables users to observe rearrangements asanimations thanks to a browser. It is divided in two modules: the sequen
ing and the animatingmodules. The asso
iated 
ode is written in javas
ript. 123



Chapter 8. VIRAGE: an intera
tive tool for the visualization of rearrangement s
enariosAlgorithm 10 Type of a rearrangement that transforms gi into gi+11: if gi and gi+1 have the same number of 
hromosomes then2: if gi and gi+1 di�er from one 
hromosome then3: it is a reversal4: else5: if gi and gi+1 di�er from two 
hromosomes then6: it is a translo
ation7: else8: it is an unknown rearrangement9: end if10: end if11: else12: if gi has one 
hromosome more than in gi+1 then13: it is a fusion14: else15: if gi has one 
hromosome less than in gi+1 then16: it is a �ssion17: else18: it is an unknown rearrangement19: end if20: end if21: end if8.2.1 Interfa
eDes
riptionThe graphi
 interfa
e in
ludes a global 
ontrol bar, the (nearly) genome graph and a spa
e forthe representation of genomes. This spa
e is divided in three parts: start and target genomesare respe
tively represented at the left hand side and at the right hand side while middle spa
eis reserved for animated genomes. Figures 8.4, 8.5 and 8.6 show the three possible 
on�gurations(
ases 1− 1, 1− n and n-n) of the graphi
 interfa
e.

Figure 8.4: Graphi
 interfa
e for a 1− 1 
ase.124



8.2. Rearrangement visualizer

Figure 8.5: Graphi
 interfa
e for a 1− n 
ase.

Figure 8.6: Graphi
 interfa
e for a n− 1 
ase.Genome representationA genome is visualized as a set of lines that 
orrespond to distin
t 
hromosomes. Ea
h genomemarker is represented by a box 
olored a

ording to its 
hromosome in the �rst starting genome.The box 
ontains the number and the sign of the marker. If 
entromere positions are known,they are indi
ated by an ellipse shape, whi
h 
ontains the 
orresponding letter inside. Figure 8.7shows an example of a starting genome without a 
entromere. 125



Chapter 8. VIRAGE: an intera
tive tool for the visualization of rearrangement s
enarios
Figure 8.7: Graphi
 representation of a genome.Control barThe 
ontrol bar is used to progress through s
enarios. Various fun
tionalities are available: stepby step or 
ontinuous reading, forward or ba
kward; stopping; and dire
tly going to start or endgenome(s). A graphi
 representation of the (nearly) genome graph is presented below the 
ontrolbar. The dire
tion of edges are represented by the spatial position of their verti
es: the graph isread from left to right. The 
urrent displayed states of s
enarios are indi
ated by verti
es framedin red 
ir
les. This graph is given as an informative guide and 
annot be modi�ed. An exampleis presented �gure 8.8.

Figure 8.8: Control bar and graphi
al representation of a genome graph.8.2.2 Sequen
ing moduleThe sequen
ing module is a set of javas
ript fun
tions that assures the running of s
enariosa

ording to users' instru
tions. In parti
ular, this module permits:- to update the genome graph display,- to laun
h the animations,- to 
ontrol the dependen
y relationships between steps of s
enarios: a transformation thatleads to a vertex 
an be realized only if all of its prede
essor verti
es are already rea
hed.8.2.3 Animating moduleThis module generates animations appropriate for ea
h kind of rearrangements. The prin
iple isthe same for all of the rearrangements: a�e
ted 
hromosomes are �extra
ted� from their initialposition and aligned a

ording to ex
hanged markers if ne
essary. Finally, after the modi�
ation,126



8.2. Rearrangement visualizer
hromosomes are repla
ed to their initial position. Figures 8.9 and 8.10 show animations for ea
hkind of rearrangements.

Figure 8.9: Animations of a reversal (left) and a translo
ation (right).
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Chapter 8. VIRAGE: an intera
tive tool for the visualization of rearrangement s
enarios

Figure 8.10: Animations of a fusion (left) and a �ssion (right).
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Con
lusionThe subje
t of this thesis is in the general resear
h domain of 
omparative genomi
s. More par-ti
ularly, we were interested in the study of evolutionary events through genomi
 rearrangementsbased on a 
ombinatorial and algorithmi
 
omparison of genomes. We developed original 
om-putational methods, that advan
e the state of the art by, on one hand, over
oming limitationsof existing approa
hes and, on the other hand, by providing a 
omplete and adapted frameworkfor a rearrangement study in distant genomes.Theoreti
al 
ontributionsAnalyzing and understanding evolutionary events is a long and 
omplex pro
ess. It �rst startswith the identi�
ation of 
ommon markers between spe
ies, se
ond requires the formulation ofhypothesis about an
estral genomes and third un
overs rearrangement s
enarios. In this thesis,we have 
ontributed to these three questions in a 
omputational way.In an appli
ative framework, we were interested in distant genomes, for whi
h existing methodsfor identi�
ation of 
ommon markers do not perform well. In fa
t, a 
ertain number of 
om-putational methods already exist for identifying 
ommon markers, that 
an be either 
onservedsegments or synteny blo
ks. However, these methods, whi
h are e�
ient for some genomes, donot preserve su�
ient signal for others so that a rearrangement study 
an be done. Thus, we wereled to develop a new method 
alled SyDiG -Synteny in Distant Genomes- , whi
h 
an be equallyapplied to both 
lose and distant genomes. Based on pairwise 
hromosomal homologies (i.emultipli
ons) provided by AdHoRe [VSS+02℄, SyDiG algorithm 
onserves all of the information
ontained within the multipli
ons in a graph and, from it, infers new homology relationships bytransitivity. Contrary to other approa
hes su
h as GRIMM-Synteny [PT03a, BPT04, BZB+05℄,SyDiG algorithm does not �lter input data but solves potential 
on�i
ts at the very end.We also introdu
ed the notion of super-blo
ks for identifying 
ommon an
estral features forthe general N -genome instan
e (N ≥ 3). We started from the observation that, given the verylarge number of equivalent solutions, providing one global ar
hite
ture is misleading. That is why,based on adja
en
y and rearrangement analysis under the signed permutation model of genomes,we developed a new method that builds the sharing tree of super-blo
ks representing all thepossible sets of super-blo
ks. Ea
h set of super-blo
ks is a set of reliable an
estral 
hromosomalfragments whose extremities are unsolved adja
en
ies due to the la
k of information. Thisapproa
h makes it possible to 
onstitute the basi
s of the putative an
estral ar
hite
ture and, by
ombining super-blo
ks of a same set, to provide a global solution to the problem without anyphylogeneti
 
onsideration.This thesis started by the detailed study of Hannenhalli and Pevzner theory [HP95a, HP95b℄and all the peripheral works on the 
omputations of the rearrangement distan
e and parsimoniouss
enarios. This study led us to propose a 
lear view of the main notions by providing a single and129



Con
lusion
oherent 
lassi�
ation of interleaving graph 
omponents. This 
lassi�
ation highlighted errors inthe algorithm for optimal 
apping proposed by Ozery-Flato and Shamir [OFS03℄, that it itselfpart of the re
overy of a parsimonious s
enario in terms of reversals, translo
ations, fusions and�ssions. We thus pinpointed 
ases for whi
h their algorithm fails and provided a new algorithmfor this step with a proof of its 
orre
tion.We were 
onfronted with the fa
t that analyzing s
enarios by reading su

essive permutationsis a quite laborious task. This kind of output data does not possess a high 
ase of use for biol-ogist experts. We thus developed a new tool 
alled VIRAGE -VIsualization of ReArrangementswithin GEnomes- that permits the intera
tive exploration of one or several s
enario(s) betweentwo spe
ies or between one 
ommon an
estor and its des
endants thanks to the genome graph.Visually, ea
h rearrangement me
hanism among reversals, translo
ations, fusions and �ssions is
learly shown by isolating 
hromosomes on whi
h it o

urs and by dynami
ally applying it tothem.Appli
ative 
ontributionsThroughout this thesis, we were involved in Génolevures proje
t [SDI+06℄, a large-s
ale 
om-parative genomi
s proje
t studying spe
ies in the Hemias
omy
etous yeast phylum. Génolevuresprovided an ideal appli
ation domain, sin
e the 
lade of spe
ies under study presented enoughsynteny in order to identify 
ommon markers and therefore to apply 
omputational methods foran
estral analysis.At the beginning of our work, we �rst attempted to use existing methods, in parti
ular, forthe dete
tion of 
ommon markers. However, 
urrent methods either revealed themselves to benot suitable to this type of genomes, or were not available. Therefore, we had to go ba
k to basisand re
onsider 
ertain theoreti
al foundations. We thus have developed a 
omplete frameworkfor genome rearrangement analysis starting with SyDiG for the identi�
ation of 
ommon mark-ers, through the 
onstru
tion of super-blo
ks, up to the visualization of obtained s
enarios byVIRAGE.All of the developed approa
hes were validated on a set of �ve 
ompletely sequen
ed yeasts fromthe Sa

haromy
eta
ae 
lades: Kluyveromy
es la
tis, Sa

haromy
es kluyveri, Zygosa

haromy
esrouxii, Ashbya (Eremothe
ium) gossypii and Kluyveromy
es thermotolerans.Perspe
tives and future workFrom the theoreti
al point of view, organisms represent very 
omplex ma
hineries that 
ompu-tational models do not totally manage yet to simulate. It is hen
e still required to re�ne existingmodels by adding new biologi
al 
onstraints in order to provide more biologi
ally realisti
 results.SyDiG algorithm developed in this thesis 
omputes synteny blo
ks that 
ontain exa
tly one seg-ment per genome by avoiding groups of homologous segments non-representative of all genomesand by keeping only the longest segment in the 
ase where more than one segment belongs to thesame genome. These �lters are applied in order to obtain 
ommon markers that 
an easily betranslated in the usual model for genomes to perform 
urrent rearrangement methods. In fa
t,two limitations are impli
itly 
onsidered in a large part of the literature on rearrangements:- dupli
ation events are not taken into the a

ount: ea
h gene marker is present exa
tly on
ein ea
h genome;- genomes have exa
tly the same gene 
ontent: insertions and deletions of genes are avoided.130



In the same way, super-blo
k 
onstru
tion leans on this standard genome model, that doesnot take into a

ount dupli
ation, insertion and deletion events. Nevertheless, this model is notappropriate for most genomes. In fa
t, while small genomes su
h as viruses or organelles maybe simulated by this model, divergent spe
ies notably those under study present di�erent 
opiesof the same gene. Thus, it would be interesting to 
onsider dupli
ation events on one hand, andto allow genomes with di�erent gene 
ontents on the other hand.Some of 
urrent methods for an
estral re
onstru
tion or distan
e 
omputation have been al-ready extended for taking into the a

ount these biologi
al 
onsiderations. Sanko� [San99℄ intro-du
ed the exemplar distan
e between two genomes based on the hypothesis that their 
ommonan
estor has only one 
opy per family. Thus, the idea of the method 
onsists in getting ba
kthe best an
estral position of ea
h gene by removing all but one member of ea
h marker in ea
hgenome, its exemplar, so as to minimize some rearrangement distan
e (breakpoint or reversal)between the two redu
ed genomes. Another approa
h proposed by El-Mabrouk [EM02℄ 
onsistsin �nding, for one genome with multigene families, its an
estral genome without dupli
ates su
hthat the distan
e between them in terms of dupli
ation transpositions and reversals is minimized.These two approa
hes were used to re
over an
estral nodes of a spe
ies tree [EM00a, EM02℄ andwe 
an imagine applying a similar approa
h during super-blo
k 
onstru
tion.El-Mabrouk and Sanko� were also interested in 
omparing genomes with di�erent gene 
on-tents. The former in [EM00b℄ extended the Hannenhalli and Pevzner theory [HP95a℄ by in
lud-ing insertions and deletions of gene blo
ks in the 
omputation of rearrangement distan
e. Asfor Sanko� and 
olleagues [SB97℄, they adapted the TSP resolution of the median problem forgenomes for whi
h sets of genes di�er in very few genes. Our super-blo
k 
onstru
tion builds abridge between breakpoint and rearrangement distan
es and methods proposed by El-Mabroukand Sanko� may provide a strong basis in order to extend our algorithms.Finally, we propose an approa
h for identifying 
ommon an
estral features for the general,
N -genome instan
e, through the 
omputation of super-blo
ks. This 
omputation is a parti
ularinstan
e of spe
ies tree re
onstru
tion by 
onsidering a N -star as the target tree. The 
ontinua-tion of our work is to solve, for a set of modern genomes, the whole re
onstru
tion of the spe
iestree by re
overing the root and internal nodes. Two approa
hes 
an be 
onsidered.(1) Without phylogeneti
 
onsideration: 
omputational inferen
e of spe
ies trees 
an be donethrough the resolution of the well-studied multiple genome rearrangement problem [SSK96,HCKP95℄ by optimizing Steiner points [HRW92℄;(2) With phylogeneti
 
onsideration: the root node of the spe
ies tree is initialized to super-blo
ks of the N -genome instan
e resolution. Then given a phylogeneti
 tree, super-blo
kinferen
e of internal nodes is solved by 
ombining information from leaves that 
orrespondto modern genomes and root node. The bias potentially indu
ed by allowing phylogeneti

onsiderations in spe
ies tree re
onstru
tion is redu
ed by the fa
t that root node is initially
omputed without this kind of information.Biologi
al appli
ations of this work 
an be extended to other 
lades. In fa
t, although theSyDiG and super-blo
ks algorithms were developed in the 
ontext of the Génolevures proje
t,these methods are general enough to be applied to other spe
ies. From the appli
ative pointof view, it is important to apply these methods to various types of genomes. For example, itwould be pertinent to test the s
alability of our methods on the Drosophila twelve [SLK+07℄.Moreover, the sequen
es of �ve spe
ies phylogeneti
ally 
lose to the yeast Candida glabrata willbe soon available in the Génolevures proje
t. Other than the s
ienti�
 interest in the validationof our methods on other spe
ies, a 
omplete rearrangement study for these organisms would be131



Con
lusionof medi
al interest, sin
e Candida glabrata is a human pathogen, that is at the origin of diseasessu
h as Candidemia when it infe
ts the bloodstream.
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