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RésuméMéthodes in silio pour l'étude des réarrangements génomiques : del'identi�ation de marqueurs ommuns à la reonstrution anestrale.L'augmentation du nombre de génomes totalement séquenés rend de plus en plus e�ae l'étudedes méanismes évolutifs à partir de la omparaison de génomes ontemporains. L'un des prin-ipaux problèmes réside dans la reonstrution d'arhitetures de génomes anestraux plausiblesa�n d'apporter des hypothèses à la fois sur l'histoire des génomes existants et sur les méan-ismes de leur formation. Toutes les méthodes de reonstrution anestrale ne onvergent pasnéessairement vers les mêmes résultats mais sont toutes basées sur les trois mêmes étapes :l'identi�ation de marqueurs ommun dans les génomes ontemporains, la onstrution de artesomparatives des génomes, et la réoniliation de es artes en utilisant le ritère de parimoniemaximum.La quantité importante des données à analyser néessite l'automatisation des traitements etrésoudre es problèmes représente de formidables hallenges omputationnels. A�ner les modèleset outils mathématiques existants par l'ajout de ontraintes biologiques fortes rend les hypothèsesétablies biologiquement plus réalistes.Dans ette thèse, nous proposons une nouvelle méthode permettant d'identi�er des marqueursommuns pour des espèes évolutivement distantes. Ensuite, nous appliquons sur les artes om-paratives reonstituées une nouvelle méthode pour la reonstrution d'arhitetures anestralesbasée sur les adjaenes entre les marqueurs alulés et les distanes génomiques entre les génomesontemporains. En�n, après avoir orrigé l'algorithme existant permettant de déterminer uneséquene optimale de réarrangements qui se sont produits durant l'évolution des génomes exis-tants depuis leur anêtre ommun, nous proposons un nouvel outil appelé VIRAGE qui permetla visualisation animée des sénarios de réarrangements entre les espèes.Mots-lés: génome anestral, génomique omparative, réarrangement, point de assure, per-mutation
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AbstratIn silio methods for genome rearrangement analysis: from identi�ation ofommon markers to anestral reonstrutionThe inrease in the number of entirely sequened genomes makes inreasingly aurate thestudy of the mehanisms of evolution through the omparison of ontemporary genomes. Oneof the main problems is to reonstrut plausible anestral genome arhiteture, whih furnisheshypotheses about both the history of ontemporary genomes and the general mehanisms of theirformation. While not all methods for the anestral reonstrution neessarily onverge towardsthe same results, they are all based on the same three steps: identi�ation of ommon markers inontemporary genomes, onstrution of omparative maps for these genomes, and reoniliationof these maps under a maximum parsimony riterion.The quantity of data that must be analyzed requires the automation of proessing and meet-ing these needs indues great omputational hallenges. Through re�nement of omputationalmodels and methods, we an obtain more biologially relevant hypotheses by adding biologialonstraints.In this thesis, we propose a new method for the identi�ation of ommon markers to onstrutomparative maps for evolutionary distant genomes. Next, we apply a new method of anestralgenome reonstrution based on adjaenies of synteny markers and genomi distanes betweenontemporary genomes. Finally, after orreting the existing algorithm for omputing an optimalsequene of rearrangements that oured during the evolution of modern genomes from theirommon anestor, we propose a new tool alled VIRAGE that permits the animated visualizationof rearrangement senarios between speies.Keywords: anestral genome, omparative genomis, rearrangements, breakpoints, permuta-tion
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IntrodutionGenetis is a �eld of biology that today aims in large part to explain the mahinery and fun-tioning of speies through the study of their geneti information. Understanding the funtionand evolutionary proesses that at on genomes enables sientists to provide sienti� answersand, ultimately, new medial or therapeuti solutions to diseases.A useful way to understand the struture and evolutionary history of a genome is to ompareit to other ones. While omparative genomis is still a young �eld, it is urrently undergoing aonsiderable expansion due notably to the advent of large sale sequening. The huge amountof data available in sequened genomes makes omputational approahes essential so that theanalyzes an be automated and performed on a large sale.In partiular, in silio methods are applied to study evolutionary relationships among speies.A major problem onsists in measuring evolution within a set of speies of interest by determiningthe sequene of evolutionary events that make one genome evolve from another.Evolutionary events are traditionally haraterized by mutations. Di�erent levels of mutationsan be observed. The most ommonly studied are alled puntual mutations that modify thenuleotidi omposition of the genome. Study of this mehanism led to the de�nition of an editdistane for genome sequenes [Doo90℄. However, onsidering only gene-level mutations doesnot provide su�ient lues for inferring evolutionary history between speies. In fat, Palmerand Herbon observed in 1988 [PH88℄ that the major part of genes within Brassia olearaea andBrassia ampestri are idential up to 99% but their genomes di�er in their size and gene order.Large-sale mutations that involve hanging the relative order of large segments of DNA, enablewhole genome omparison. These global mutations alled genomi rearrangements onstituteanother approah to study evolutionary events. This �eld was pioneered by works of Dobzhanskyand Sturtevant [DS38℄ in 1930's. Sine the beginning of the nineties, the interest in the study ofgenomi rearrangements has inreased onsiderably.In this thesis, we study evolutionary events through genomi rearrangements based on a ombi-natorial and algorithmi omparison of genomes. Several hallenges arise in the study of genomirearrangements. Those addressed in this thesis are presented below.Rearrangement distanes and parsimonious senariosWhile puntual mutations at on a single nuleotide base by insertion, deletion or substitution,genomi rearrangements modify the order of large genome segments by reversals, transpositionsand transloations (among others). Understanding evolutionary mehanisms progresses throughthe reonstrution of the most parsimonious sequenes of rearrangements that lead to genomeformation: parsimonious senarios.Computational approahes model genomes by signed permutations where eah element repre-sents a blok of synteni genes (i.e. groups of genes whose relative order is onserved between1



Introdutionseveral speies). Based on the parsimony riterion, the problem onsists in quantifying theminimum number of operations applied to permutations, alled rearrangement distane, and indetermining what these operations are by omputing the orresponding senarios. The sortingsigned permutations by reversals problem introdued by Sanko� [San92℄ was widely studied inthe literature and led to e�ient algorithms for solving this problem in the unihromosomal andmultihromosomal ases (Hannenhalli and Pevzner theory [HP95b, HP95a℄). However, ompu-tational model and assoiated methods do not totally agree with biologial reality. In fat, suha model does not take into the aount a ertain number of important biologial fats, �rst,by onsidering only a restrained set of operations and, seond, by avoiding some onstraintsfor studied rearrangements like entromere positioning [RAS06℄. Moreover, urrent methods anprovide a huge number of di�erent senarios that orrespond to the same rearrangement distane[Sie02℄. So, whih of these senarios is the most biologially plausible? Re�ning existing modelsby adding new biologial onstraints and solving these problems e�iently using tratable algo-rithms is a way to takle this question. Solving it requires one in turn to address onsiderableomputational hallenges.A related hallenge lies in the visualization of plausible results in order to failitate theirinterpretation by expert biologists. Indeed, genome modeling in the form of signed permutationsmakes the analysis and omparison of possible senarios di�ult.Anestral genome reonstrutionThe entral dogma of evolutionary biology postulates that ontemporary genomes evolved froma ommon anestral genome. However, the large sale study of their evolutionary relationshipsis frustrated by the unavailability of these anestral organisms that, indeed, do not exist any-more. Construting plausible hypotheses about the strutural harateristis of these anestralarhitetures is a omputational task whose results may provide deep insight both into the pasthistories of partiular genomes and the general mehanisms of their formation. This task su�ersfrom the two same important di�ulties as that the omputation of distane and senarios: howan we guarantee that the solution is biologially plausible? how an we �nd these solutions inan e�ient manner?Evolutionary inferenes are based on the omparison and reoniliation of rearrangement eventswithin ontemporary genomes. Computational reoniliation is most often formulated as themul-tiple genome rearrangement problem [SSK96, HCKP95℄: given a set of N ontemporary genomesand a distane d, �nd a tree T with the N genomes as leaf nodes and assign permutations (plau-sible anestral arhitetures) to internal nodes suh that D(T ) =
∑

(π,γ)∈T d(π, γ) is minimized.When N = 3 this is alled the median genome problem. Methods were developed aording todi�erent distanes (breakpoint distane [SB97℄, reversal distane [Cap99, Cap03℄, rearrangementdistane [BP02℄). Although e�ient algorithms exist to ompute distanes, solving the multiplegenome rearrangement problem was proved to be NP-hard (see [Bry98, PS98℄ for the breakpointdistane and [Cap99, Cap03℄ for the reversal distane) and requires heuristis even in the aseof 3 genomes.In addition to the omputational intratability of this problem, these in silio methods provideone single global solution hosen among a multitude of equivalent ones [Eri07℄ that, furthermore,do not neessarily orrespond with those provided by in vitro methods [FCG+06, BTP06℄. Know-ing that the omputed median genome (or the root genome in the rearrangement tree) representsthe basi building blok for speies tree reonstrution, this reinfores the laim that more bio-logial knowledge is required in mathematial models [RAS06℄.2



A more realisti approah is to onsider what ommon strutural features of anestral genomesmight be found. Partial reoniliation of modern genomes identi�es permutations as above butdoes not neessarily provide a total order between segments. Existing algorithms (see [MZS+06℄)for this kind of resolution rely strongly on phylogeneti data. However, nothing suggests thatreombinatory evolution oinides with mutational evolution.Identi�ation of ommon markersMathematial solutions for anestral genome reonstrution are learly sensitive to the sampleof onsidered genomes: as the number of fully sequened genomes inreases, sampling beomeslarger and anestral reonstrution more and more aurate. However, another very importantstep in methods for anestral reonstrution or distane omputation lies in the areful identi�-ation of ommon markers used to de�ne signed permutations. These markers represent regionsof the genomes that have not been broken, sine onserved segments between two (or more)related speies indiate hromosomal homology inherited from their ommon anestor. Findingonserved segments aross speies makes it possible to solve a dual problem, that onsists indeteting breakpoints, whih are the points between onserved segments along a genome whererearrangements have ourred.Several methods have been de�ned to respond to the need for �nding ommon markers withingenomes. Among them only GRIMM-Synteny [PT03a, BPT04, BZB+05℄ was preisely de�nedwith the goal of rearrangement study. Unfortunately, all reports in the literature of these teh-niques share a ommon feature of not systematially providing all the neessary details as forthe way that breakpoints are deteted, and additionally often depend on several user-spei�edparameters that a�et obtained results. This indiates that breakpoint (or onserved segment)detetion is not a trivial problem. However, all existing methods ome bak to basi omputa-tional genomis: the study of puntual mutations by alignment of genome sequenes, whih ismade easier by the inrease of omplete sequening of genomes.Alignment algorithms are either global (introdued in [NW70, Sel74℄) or loal (see Smith andWaterman [SW81℄). It has been shown that global alignment of whole genomes is not appropriatefor solving breakpoint detetion; as an example, for widely studied mammal genomes, omparisonof human and mouse led to the observation that less than the half of their genomes an be aligned[WLTB+02℄.The insight behind urrent algorithms relies on the fat that onserved segments an be aligned.This leads to �seed and extend� algorithms deomposed into three steps: anhoring, �ltering andextending. While the �rst step is solved similarly by the urrent methods, the two last onesdiverge. Moreover, the latter step is totally ignored in the ase of GRIMM-Synteny, sine its aimis to study genome rearrangements.Besides, in this ase, onserved markers resulting from this method, alled synteny bloks,smooth over the noise due to miro-rearrangements for inferring possible mehanisms behindrearrangements. Beyond determining whih rearrangements took plae, synteny bloks (andreiproally breakpoint detetion) enable analysis of regions that were broken by rearrangements.Suh analysis an provide lues on the issue of rearrangement hotspots. This latter topi hasgenerated a quite lively debate on the di�erenes between random breakage and non-randombreakage models of evolution [KBH+03, PT03a, PT03b, TMS04℄.Moreover, all urrent methods were applied and perform well on the `low-hanging fruit' ofhighly similar (e.g. mammalian) genomes, but less well on highly divergent genomes with ex-tensive map reshu�ing. Thus, algorithms with the ability to handle speies having a large3



Introdutionevolutionary span are required.What this thesis is aboutThis thesis is divided in four parts.The �rst one is dediated to a large overview of urrent omputational methods for solvinggenomi rearrangement hallenges and questions that they raise.In the �rst hapter, we introdue the mathematial model for the genome and the mehanismsof evolution. We start by de�ning the notion of ommon marker, and more preisely syntenybloks, that represent basi elements in the signed permutation model of genomes. Then, after abrief biologial presentation of rearrangements, we sum mathematial operations on permutationsthat mimi their behaviour. Finally, genomi rearrangement hallenges (rearrangement distane,parsimonious senarios, breakpoint and multiple genome rearrangement problem) are presentedaording to their orresponding mathematial formulation under the permutation model.Comparative genomis is a young and dynami �eld whose rearrangement hallenges are widelydoumented in the literature. Chapter 2 ontains a presentation of main urrent methods and adisussion of their pertinene for eah rearrangement hallenge. Here we go quite deeply into thepresented tehniques, by providing details of algorithms and of ertain approahes that are eitherthe subjet of our own work, or are of partiular relevane for our results. For identi�ation ofommon markers, we present the GRIMM-Synteny approah [PT03a, BPT04, BZB+05℄, whihis the only one whih has been expliitly developed in order to study rearrangement events.We also desribe in detail the ADHoRe [VSS+02℄ method on whih we base our work on iden-ti�ation of synteny for distant genomes presented in part II. Next follows a presentation ofrearrangement distane and orresponding parsimonious senarios, foused on the omputationof distane based on reversals only and extended to multihromosomal genomes by taking intothe aount transloations, fusions and �ssions as well as reversals. Besides the fat that theserearrangements are onsidered as the most frequent [BP02℄, e�ient algorithms exist for this setof operations (�rst suggested by Keeioglu and Sanko� [KS93℄, then improved by Hannenhalliand Pevzner's theory [HP95a, HP95b℄ and thus represent adequate bases for solving anestral re-onstrution. For the latter hallenge, we present the two main parsimony-based global methods(breakpoint and rearrangement distane), as well as the partial reonstrution approah basedon phylogeneti onsiderations (Ma et al. [MZS+06℄).Parts II, III, and IV are dediated to our ontributions in the domain. The developed approaheswere validated on real data from the Génolevures projet [DS+04℄, a large-sale omparative ge-nomis projet aross the evolutionary range of the Hemiasomyetous yeast phylum oordinatedby the CNRS and operated by a Consortium of laboratories and researh enters a�liated withdi�erent institutions. Génolevures provides an ideal appliation domain, sine ertain lades ofspeies under study present enough synteny in order to identify ommon markers and thereforeto apply omputational methods for anestral analysis.We propose in part II an original approah for identifying ommon markers in evolutionary dis-tant genomes. Chapter 3 presents this algorithm alled SyDiG - reovering Synteny in DistantGenomes - based on ADHoRe [VSS+02℄ results, while hapter 4 proposes a omparison with the4



GRIMM-Synteny method and an appliation to the Hemiasomyetous yeasts.In part III, a new piee-wise method for the reonstrution of anestral arhitetures is pre-sented. This method, detailed in hapter 5, is based on the study of both adjaenies betweenommon markers and rearrangement distanes between modern genomes. Moreover, it makesit possible to use biologial onstraints suh as entromere position. Without any phylogenetionsiderations, this leads to the onstrution of super-bloks that represent ommon anestralfeatures. After a omparison with existing global and partial methods of anestral reonstru-tion, hapter 6 presents the resulting sets of super-bloks obtained for the signed permutationsof Hemiasomyetous yeasts omputed in their turn by the SyDiG algorithm.The last part addresses the problems of omputing and visualizing optimal rearrangement se-narios between putative reonstruted anestral genomes and ontemporary ones. Chapter 7proposes a single and oherent lassi�ation of the notions involved in existing algorithms foromputing a parsimonious senario between two multihromosomal genomes. This lassi�ationmakes it possible to pinpoint the fat that urrent algorithms present errors. In the same hapter,we introdue a orret algorithm with a proof of its orretion. Finally, hapter 8 is dediated tothe presentation of a new tool alled VIRAGE that we have developed for the interative visu-alization of rearrangement mehanisms between genomes and whih permits a more omfortablerearrangement analysis by biologists.
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Chapter 1Modeling a genome and evolutionarymehanismsThe omparison of genomes is a fundamentally powerful way to understand their struture andevolutionary history. Evolutionary events are traditionally haraterized by mutations. Twomain sales of mutations are observed: puntual mutations and genomi rearrangements.The omparison of genomes through puntual mutations onsists in aligning nuleotidi se-quenes extrated from the entire genome sequenes we aim to ompare. The study of thesegene-level mutations leads to a loal sequene-based omparison of speies, that does not useall of the available information. A higher level of mutations represents another way to studygenomes by omparing them globally. These global mutations alled genomi rearrangementsmodify the order and the ontent in terms of genes within the genomes on whih they operate.The number of entirely sequened genomes beomes more and more important every yearand thus the amount of relevant data beomes so huge that automating proessing has beomeessential. Use of omputational methods to study genome rearrangements requires one to de�nea mathematial model of the genome in order to represent all of the information that it ontainsrelative to the ontent and the order of its genes. However, the ontent of genes themselves isnot to be modeled sine in suh a study we are interested in large-sale mutations.In this hapter, we present the signed permutation model ommonly used to study genome rear-rangements. Permutations are onstruted based on ommon elements between several genomesthat are supposed to be inherited from a ommon anestor. In setion 1.1, we de�ne what arethese ommon markers and more preisely the notion of synteny bloks. In the next setion,we present the prinipal rearrangement operations that are enountered and the orrespondingmathematial operations on permutations. Genomi rearrangements are at the heart of severalhallenges: reovering rearrangements that lead to the formation of a novel speies, reonstrut-ing gene arhiteture of anestor that have vanished today. The last setion of this hapterformulates all of these goals in a mathematial way based on the permutation model.1.1 Common markers: what is a synteni blok?The omparison between speies and more preisely the study of evolutionary mehanisms ofgenomes proeeds through the de�nition of points of omparison, alled ommon markers, sit-uated on the genomi sequenes of organisms. This is done by omparing the genomes of thespeies under study. 9



Chapter 1. Modeling a genome and evolutionary mehanisms1.1.1 Geneti information is ontained in the genomeThe whole geneti information of a speies is enoded in its DNA (desoxyribonulei aid)moleules and onstitutes the genome.The DNA has two omplementary strands where eah strand is omposed of sequenes ofnuleotides, or bases. The four bases found in DNA are adenine (abbreviated A), ytosine (C),guanine (G) and thymine (T). It is the order, the nature and the number of nuleotides thatenode the geneti information. From the sequene of one strand of DNA, it is possible to�nd its omplementary sequene by replaing eah base by its omplement and reversing thesequene. Adenine and thymine are omplementary, as are guanine and ytosine. DNA strandsare oriented from 5′ to 3′ aording to links 5′-3′ between desoxyribose rings that join nuleotides.The arrangement of DNA strands is alled antiparallel : the diretion of the nuleotides on onestrand is opposite to their diretion on the other strand (the 5′ extremity of one strand gets inontat with the 3′ extremity of the other strand and vie versa).The genome is divided into one or several hromosome(s), eah arrying a set of genes. A geneis a region of a hromosome, whih ontains a oding sequene. The majority of oding sequenesare transribed into mRNAs (messenger RiboNulei Aids) whih, in turn, are translated intoproteins. The remaining oding sequenes are transribed into RNAs, whih are not translatedinto proteins. For the sake of simpli�ation, we will refer to protein oding sequenes as genes.We an de�ne an orientation for eah gene. In fat, a gene is present on the two DNA strands(major and omplementary) but the transription proess is performed from only one strand. Inthe ase where a gene is transribed from the major 5′-3′ strand of the DNA sequene, it is saidto be diretly oriented. If the transription proess is done from the omplementary 3′-5′ strand,the gene has the reverse orientation.1.1.2 Common markers between speiesThe genome sequene of an organism is inherited from its parents, and in the ontext of thiswork is onsidered to be the same for all members of the same speies. The genome sequeneof a speies is derived through evolution from the sequene of its anestor speies, and relatedspeies will have inherited ommon sequene features from their last ommon anestor. Thisinheritane is as the ore of the study of genome rearrangements.From genes to synteny bloksWhole genome sequening makes possible the omparison of genomes by de�ning ommon mark-ers. Highly similar DNA sequenes are alled homologs. If sequenes orrespond to genes, wespeak about homologous genes, where we distinguish orthologs, genes in di�erent speies thatevolved from a ommon anestral gene by speiation, from paralogs, genes related by dupliationwithin a genome. These homology points de�ne ommon markers between the genomes of di�er-ent speies. Common markers an also be de�ned at a higher level of abstration. Nadeau andTaylor in [NT84℄ introdued the notion of onserved segments that are segments with preservedgene orders without disruption by rearrangements in di�erent speies.In order to mask multiple mirorearrangements in a whole genome omparison, one an usesynteny bloks, whih usually onsist of short regions of similarity that may be interrupted bydissimilar regions and gaps (de�nitions are given in [PT03a℄). Intuitively, synteny bloks anbe onverted into onserved segments by mirorearrangements. A detailed disussion of syntenybloks and their onstrution an be found in hapters 2 and 3.10



1.2. Mimiking evolutionary mehanisms by operations on permutationsSign of a ommon markerOne ommon markers are de�ned between two or more speies, a sign an be assoiated witheah of them to indiate relative hanges in orientation. Signs of ommon markers in one genomeare determined relative to an arbitrarily hosen referene genome.Let Π and Γ be two genomes, and Π be the referene genome. For a ommon marker σ of(arbitrarily hosen) sign s in Π, we have:
• if σ is a gene, whih has the same orientation in Γ as in Π, then σ has s as sign in Γ.Otherwise, the sign of σ is −s in Γ;
• in the ase of a onserved segment (synteny blok, respetively), s in Γ depends on the orderand the signs of ommon elements in this segment (synteny blok, respetively) omparedwith those in Π (see setion 2.1 for details funtion to the onsidered method).It is sometimes not possible to give a sign to ommon markers. This an happen for examplewhen gene orientation is unknown or when information about order and orientation is insu�ientfor making an unambiguous hoie.1.2 Mimiking evolutionary mehanisms by operations on per-mutations1.2.1 The genome: a signed or unsigned permutationA genome is a set of hromosomes while a hromosome is a list of markers. These markers anbe genes or synteni bloks. In this thesis we are not onerned by the omparison of the ontentof markers, only by the gene order in the genome and on its hromosomes. Thus, in the hosenmodel, a marker is represented by an identi�er, signed or not (see setion 1.1) and a hromosomean be seen as a list of signed or unsigned identi�ers, that is, a permutation.Let Π = {π1, ..., πNΠ} be a multihromosomal genome de�ned as a set of NΠ hromosomes.The ith hromosome πi = πi

1...π
i
ni

is a sequene of ni markers. The order of πi is ni. Beauseof the omplementarity of the two DNA strands, any hromosome π an be represented in twodistint ways: �from left to right� (i.e. π = π1π2...πn) or �from right to left� (i.e. −π =
−πn... − π2 − π1). These two representations are equivalent. Thus, several equivalent formsare possible for the same genome. For example, the genome {

π1, π2, π3
} an be written as

{
π1,−π2, π3

} or {
−π1,−π2,−π3

}, et.Note 1 For an unihromosomal genome Π = {π1}, the notation π represents either the entiregenome or the unique hromosome.The struture of genomes varies between organisms. Genomes of prokaryotes as well as thoseof organelles suh as mitohondria or hloroplasts are haraterized by an unique irular hro-mosome. For eukaryotes, several linear hromosomes form the genome. Over time, hromosomearhiteture evolves through rearrangement mehanisms. The di�erent possible rearrangementsthat an our in di�erent kinds of genomes are desribed in setion 1.2.2.1.2.2 Rearrangements: di�erent possible operationsGenomi rearrangements modify the genome ontent or the gene order. Operations suh asdupliations, insertions or deletions add or delete DNA fragments in the initial genome without11



Chapter 1. Modeling a genome and evolutionary mehanismsmodifying the gene order. Reversals, transloations and transpositions are operations that modifythe gene order by moving DNA fragments into a hromosome or from one hromosome to another.Combinations of these operations modify both gene ontent and gene order.Presentation of possible operationsDupliation Dupliation inserts hromosomal fragments of variable length. In general, thenew DNA fragment is inserted besides the repeated one.XXFigure 1.1: Dupliation of a gene on the hromosome X.Insertion and deletion A new DNA fragment an appear on a hromosome during the evo-lution of a speies. This is alled gene or segmental insertion. The symmetri event of DNA lossis alled gene or segmental deletion.XX XXFigure 1.2: Insertion (left) and deletion (right) of a gene on the hromosome X.Reversal Reversal is a modi�ation of the DNA struture that onsists in a 180◦ rotation of ahromosomal segment most often without loss of geneti material. Thus, a reversal modi�es theorientation of involved genes. XXFigure 1.3: Reversal of a gene sequene on the hromosome X. The involved genes belong to thewhite segment. Small arrows indiate gene orientation.12



1.2. Mimiking evolutionary mehanisms by operations on permutationsTransloation Transloation is a mutation that only ours in multihromosomal genomes,sine two hromosomes must be involved. Transloation is a exhange of geneti material be-tween two hromosomes. Figure 1.4 presents a transloation where the sequenes at the end oftwo hromosomes are exhanged. XYXYFigure 1.4: Transloation of the hromosomes X and Y.In the work of ertain authors (e.g. Hannenhalli [Han96℄), other types of transloations areonsidered in order to measure evolution between speies. In these transloations, other hro-mosomal segments than su�xes an be ombined by a reversal. For example, Hannenhalli in[Han96℄ presents the pre�x-su�x transloation with reversal: the pre�x of a hromosome is ex-hanged with the su�x of an other one and the exhanged sequenes are reversed. The �gure1.5 desribes this mehanism. XYXYFigure 1.5: Pre�x-su�x transloation of the hromosomes X and Y. The pre�x of Y and thesu�x of X are exhanged: these sequenes are reversed during the transloation.Fission and fusion These rearrangements are partiular ases of transloation. Fission is amehanism that separates a hromosome into two distint hromosomes (see �gure 1.6).Fusion is the opposite mehanism that joins together two hromosomes into an unique one(see �gure 1.7).Transposition Transposition is a mehanism that onsists in moving a DNA sequene alonga hromosome. It may or may not involve a reversal as shown on �gure 1.8. 13



Chapter 1. Modeling a genome and evolutionary mehanismsX
ZYFigure 1.6: Fission of hromosome X into two hromosomes Y and Z.
ZY
X

Figure 1.7: Fusion of hromosomes X and Y into the hromosome Z.

X Xwithout reversal with reversalX
Figure 1.8: Transposition of the genes belonging to the grey segment on the hromosome X with(right) or without (left) reversal.
Mathematial operations for rearrangementsRearrangements that do not modify gene ontent (see setion 1.2.2) an be modeled by mathe-matial operations on permutations representing a genome (see setion 1.2.1). Table 1.1 showsmathematial operations orresponding to biologial rearrangements applied to a multihromoso-mal and signed genome Π = {π1, ..., πNΠ}. The appliation of a rearrangement φ to the genome
Π results in the genome Π′ = Π.φ.14



1.3. Mathematial measure of evolutionRearrangement Notation Resulting permutationsReversal ρ
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nTable 1.1: Rearrangements onsidered as mathematial operations on permutations.1.3 Mathematial measure of evolution1.3.1 Rearrangement distaneMeasuring the evolutionary distane between two speies is one part of omparative genomisanalysis. This distane an be formulated in terms of genomi rearrangements. In our ase,for a given set of genomi rearrangements, the problem onsists in quantifying the minimumnumber of rearrangements that transform one genome into another. This measure relies on theparsimony priniple and de�nes a distane in the mathematial sense of the word. A distaneon a set E is a funtion d : E × E → R verifying:(i) d (x, x) = 0 for all x ∈ E,(ii) d (x, y) > 0 for all x, y ∈ E with x 6= y,(iii) d (x, y) = d (y, x) for all x, y ∈ E,(iv) d (x, y) 6 d (x, z) + d (z, y) for all x, y, z ∈ E.In order to provide results that are more biologially realisti, the operations are sometimesweighted. The weight depends on either the type of the onsidered operation, or the length of15



Chapter 1. Modeling a genome and evolutionary mehanismsthe implied geneti material. The distane (provided that the weight funtions are mathematialdistanes) is then the minimal sum of the osts taken among all the sequenes of operations thattransform one genome into another.1.3.2 Parsimonious rearrangement senarioIn the same way, it is important to determine evolutionary senarios orresponding to a rear-rangement distane d, that are alled parsimonious senarios. A parsimonious rearrangementsenario between genomes Π and Γ is a sequene of rearrangements (φ1, .., φn) that transformsgenome Π into Γ suh that d(Π,Γ) = n.Figure 1.9 gives an example of a parsimonious senario for two unihromosomal genomes πand γ. The number of reversals in the senario is equal to the reversal distane between them:
d(π, γ) = 4.

γ = +1 +2 +3 +4 +5 +6 +7 +8 +9-9 -8 -7 -6 -5 -4 -3 -2 -1-9 -8 -7 -6 -5 -4 -3 -2 +1-9 -8 -7 -6 +2 +3 +4 +5 +1π = -9 -8 +6 +7 +2 +3 +4 +5 +1
Figure 1.9: One parsimonious senario between unihromosomal genomes π and γ. The �rst linerepresents the genome π, the last, the genome γ and all the lines exept for the �rst are obtainedfrom the previous one by a reversal of the underlined segment.Note that, although omputations of the rearrangement distane and of a parsimonious se-nario are two losely related problems, they are often resolved independently in the relevantliterature (see setion 2.2 of hapter 2).1.3.3 BreakpointsChromosomal segments involved in rearrangements an be identi�ed in permutations by the setsof orresponding onseutive markers. These sets are delineated by breakpoints. This notion wasintrodued by Nadeau and Taylor [NT84℄ in 1984, and we an distinguish the signed ase (seede�nition 3) from the unsigned one (see de�nition 2).De�nition 1 Two onseutive elements πi and πi+1 of a hromosome π are said to be adjaentin a genome Π. Denote by πi.πi+1 an adjaeny between πi and πi+1.De�nition 2 For two unsigned genomes Π and Γ, if two elements πi and πi+1 are adjaent in
Π but neither πi.πi+1 nor πi+1.πi are present in Γ, then the pair πi.πi+1 forms a breakpoint in
Π with respet to Γ.De�nition 3 For two signed genomes Π and Γ, if two elements πi and πi+1 are adjaent in Πbut neither πi.πi+1 nor −πi+1. − πi are present in Γ, then the pair πi.πi+1 forms a breakpointin Π with respet to Γ.16



1.3. Mathematial measure of evolutionWhen genomes are linear, supplementary adjaenies have to be taken into the aount: theones between the beginning of a hromosome and its �rst element and the ones between thelast element of a hromosome and its end. Figures 1.10, 1.11 and 1.12 present breakpoints in agenome Π aording to a genome Γ for di�erent natures of genomes (unihromosomal withoutinformation about orientation (i.e. unsigned), multihromosomal, and irular, respetively).1 8 6 7 2 3 4 5 9Figure 1.10: Breakpoints in Π = {1 8 6 7 2 3 4 5 9} with respet to Γ = {1 2 3 4 5 6 7 8 9}where Π and Γ are unihromosomal and linear genomes.
π1 = -9 -8 +6 +7
π2 = +2 +3 +4 +5 +1Figure 1.11: Breakpoints in Π = {−9 − 8 + 6 + 7, + 2 + 3 + 4 + 5 + 1} with respet to

Γ = {+1 + 2 + 3, + 4 + 5 + 6 + 7 + 8 + 9} where Π and Γ are multihromosomal and lineargenomes. -9 -8+6+7+2+3+4+5+1
Figure 1.12: Breakpoints in Π = {−9 − 8 + 6 + 7 + 2 + 3 + 4 + 5 + 1} with respet to
Γ = {+1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9} where Π and Γ are unihromosomal and irulargenomes.The notion of breakpoint leads to a �rst distane used to measure evolution between speies:the breakpoint distane. Let Π and Γ be two genomes of respetively NΠ and NΓ hromosomes.The breakpoint distane b(Π,Γ) is equal to the number of breakpoints in Π (Γ, respetively) withrespet to Γ (Π, respetively). Indeed, the number of breakpoints in Π is equal to the numberof those in Γ.In the ase that NΠ < NΓ, the number of breakpoints is b(Π,Γ) = |{(πi, πi+1)|πi.πi+1 is abreakpoint in Π}|+ (NΓ −NΠ) or b(Π,Γ) = |{(γi, γi+1)|γi.γi+1 is a breakpoint in Γ}|.The omputation of the rearrangement distane and of parsimonious senarios are losely re-lated to breakpoints, sine the transformation of a permutation into another onsists in removingbreakpoints in order to obtain the target permutation. 17



Chapter 1. Modeling a genome and evolutionary mehanisms1.3.4 Multiple genome rearrangement problemMeasuring the evolutionary distane between ontemporary speies goes through the impliitreonstrution of anestral genomes: sine the anestral speies no longer exist, we do not knowtheir true genomes. Evolutionary relationships between speies, extint or ontemporary, areexpressed through a speies tree.Computational inferene of speies trees is most often formulated as the multiple genomerearrangement problem [SSK96, HCKP95℄: given a set ofN ontemporary genomes and a distane
d, �nd a tree T with the N genomes as leaf nodes and assign permutations (plausible anestralarhitetures) to internal nodes suh that

D(T ) =
∑

{π,γ}∈T d(π, γ) is minimized.When N = 3 this is alled the median genome problem. In the general ase, this formulationorresponds to the well-known Steiner tree mathematial problem [HRW92℄, whih was shownto be NP-omplete (see [Bry98, PS98℄ for the breakpoint distane and [Cap99, Cap03℄ for thereversal distane).Note that speies trees reonstruted from this de�nition do not neessarily oinide withphylogeneti trees, whih are trees in whih eah node with desendants represents the mostreent ommon anestor of the desendants, and the edge lengths orrespond to time estimates.

18



Chapter 2From ommon markers to evolutionsenariosIn hapter 1, we presented the mathematial model of signed permutations ommonly used tostudy genome rearrangements in omputational approahes. In this thesis, we are interested inthree main rearrangement hallenges that are strongly related and for whih the mathematialformulation is given in hapter 1.- Identifying ommon markers between genomes: ommon markers are at the origin of theonstrution of the permutation enoding a genome. Their identi�ation requires arefulattention, sine all of the rearrangement studies and hene all of the inferred biologialhypothesis are based on the obtained permutations.- Computing evolutionary distanes and parsimonious senarios between two genomes: mea-suring evolution between speies implies the reonstrution of the sequene of rearrange-ments that separates one genome from another. Finding the minimal number of rearrange-ments leads to the omputation of the rearrangement distane between two genomes.- Reovering anestral arhitetures: modern genomes evolved from a ommon anestralgenome that no longer exists. Finding ommon strutural features of anestral genomesmakes possible understanding the past history and evolutionary mehanisms that lead toontemporary genomes.All of these rearrangement hallenges represent omputational tasks that are widely dou-mented in literature. Sine the beginning of this researh �eld pioneered by Dobzhansky andSturtevant [DS38℄, two main problems are addressed: how an we �nd these solutions in ane�ient manner? how an we guarantee that the unovered solution is biologially plausible?Chapter 2 proposes the urrent state of existing omputational methods for all of these hal-lenges. We give a fully detailed presentation of ertain approahes on whih our work was morepreisely foused. We also disuss the pertinene of their solutions and provide a brief presenta-tion of the debates that they have sparked.2.1 Identi�ation of genome syntenyStudying evolution mehanisms of genomes through the analysis of signed permutations andtheir transformations makes sense only if these permutations faithfully desribe biologial infor-mation ontained in the genomes. Elements of these permutations represent ommon markers19



Chapter 2. From ommon markers to evolution senariosbetween speies that have to be arefully de�ned. These markers, in turn, represent onservedsegments that have not been broken, sine between two (or more) related speies, they indiatehromosomal homology inherited from their ommon anestor.Many methods developed for this purpose are �seed and extend� algorithms deomposed inthree main steps. First, genome sequenes are anhored by deteting strongly onserved regionsthrough loal alignments. The two last steps are di�erent aording to the onsidered methods.Seond step onsists in �ltering the anhors: removing anhors obtained by hane and hoosingan exemplar of dupliated regions is done by lustering or haining anhors. Finally, the obtainedonserved segments are aligned.In what follows, we present in a more detailed way the GRIMM-Synteny method [PT03a,BPT04, BZB+05℄ that is the only one expliitly de�ned in the aim of rearrangement study.We also detail i-ADHoRe [VSS+02, SVSP04, SJSV08℄ method on whih we base our work onidenti�ation of synteny for distant genomes presented in part II.2.1.1 Grimm-SyntenyGRIMM-Synteny method [PT03a, BPT04, BZB+05℄ was developed in the aim of rearrangementstudy. That is why, the latter step of traditional �seed and extend� algorithm is ignored. More-over, the GRIMM-Synteny method does not ompute onserved segments but synteni bloks.These bloks orrespond to onserved segments up to mirorearrangements.Careful readers well remark that a very similar method to GRIMM-Synteny is evoked in [ST05℄and explained under the name ST-synteny in [PPT06℄. This method need not be onsidered.In fat, Sanko� in [San06℄ explains that it is not �an alternative way of onstruting syntenibloks; the so-alled ST-synteny was only a (bungled) attempt to mimi Pevzner and Tesler'smethod, based on our reading or misreading of their paper [PT03a℄�.AnhoringThe �rst step of the method detailed in [BPT04℄ onsists in �nding potential regions of ho-mology, as the anhors, that represent the starting point of synteny bloks. It proeeds in twosuessive proessing steps: a �ltering step of anhors alled GRIMM-Anhor is applied aftertheir omputation by loal alignments.Loal alignments Anhors are found by preproessing alignments. Initially, GRIMM-Syntenyuses gapped alignments given by PatternHunter [MTL02℄. A more reent version of GRIMM-Synteny [BZB+05℄ identi�es anhors based on BLASTZ algorithm [SKS+04℄, whih provides thebest results on non-oding regions. They also evoke in [BZB+05℄ a large-sale detetion based ongenes for treating more distant genomes. Next, anhors are restrained to a set of non-overlappingand unique ones by applying GRIMM-Anhor.GRIMM-Anhor This preproessing is used to separate unique hits from repeats. The levelof an anhor indiates the number of genomi intervals it onerns, one per involved genome.For two genomes, the method onsists in building a graph where eah vertex orresponds toa maximally ontiguous region of genomi intervals, alled superinterval, and where an edgebetween two superintervals is added if at least two regions of them share an alignment. Suhalignments are alled supporting alignments. Only alignments of unique regions orrespondingto onneted omponents onsisting of only one edge are retained. They are transformed intotwo-way anhors only if all orresponding supporting alignments have the same sign, otherwise20



2.1. Identi�ation of genome syntenythe onneted omponent is also disarded. In this ase, the oordinates of onstruted two-wayanhors whose sign is the one of their supporting alignments, are de�ned by those of orrespondingsuperintervals.The searh for N -way anhors (N > 2) onsists in keeping only the interseting genomiinterval from two-way anhors of the onsidered genomes. For example, to provide three-wayanhors for genomes G1, G2 and G3, all triples of two-way anhors (G1
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3 with sign σ2 in G3.ClusteringThen, the omputation of synteni bloks onsists in ombining lose anhors together withoutonsideration of order and orientation. This lustering step is based on the anhors whose levelis equal to the number of speies under study.The proximity between anhors is based on the Manhattan distane. Let {Gi} be a set of
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i |. If two pointsare not de�ned on the same hromosome tuple, their Manhattan distane is de�ned as in�nite.Hene, the Manhattan distane between two N -way anhors on the same hromosome tupleis the Manhattan distane between their nearest endpoints (There are two terminals for eahanhor determining by the signs of the alignments).In [PT03a℄, two anhors are joined together if their Manhattan distane is inferior to a user-spei�ed threshold. In [BZB+05℄, this lustering step is done in a slightly di�erent way. First, thenearest endpoints of the two anhors are determined thanks to the Manhattan distane. Then,GRIMM-Synteny ombines or not these two anhors aording to per speies distanes: if, in allspeies, the distane |g2
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i | is less than the per-speies threshold for Gi, then the anhors arejoined together.Finally, within the obtained set of anhor lusters, those onsidered as too small are disardedfollowing the hypothesis that short bloks may be aused by hane. In the original version ofGRIMM-Synteny [PT03a℄, a user-spei�ed parameter allows one to keep only lusters whose spanis at least a minimum size in the referene speies (i.e human). In [BZB+05℄, authors propose to�x a minimum size per speies.Ordering and signingOrdering and signing anhor lusters are two important steps that require areful attention dueto onsequenes that involve during rearrangement analysis. However, details about them arequite nebulous in the literature about GRIMM-Synteny.Clusters are not supposed to overlap, but their span intervals may overlap within one of theonsidered speies. That is why, the authors in [PT03a℄ ompute the enter of mass of all anhorsforming a luster and order lusters aording to the oordinates of their enters of masses. Thisleads to the numbering of lusters aording to their order in a referene speies. However, thenotion of enter of mass is not learly de�ned.Conerning the assignation of luster orientation, the method is detailed in [PT03℄ and isbased on the notion of separable permutations. Let the permutation π = (1, ..,m) be a luster of21



Chapter 2. From ommon markers to evolution senariosanhors in the referene speies G1 and γ = (γ1, .., γm) be the signed permutation orrespondingto the same luster in another speies G2. Permutation γ is separable if (γ1, .., γr) is a signedpermutation of (1, ..r) for some r = 1, ..,m − 1. Sign of π being 1, the sign of γ denoted by σ isde�ned as follows:
• if m = 1, σ = δ suh that γ = (δ),
• for m > 1, if γ is separable, then σ = 1,
• for m > 1, if −γ = (−γm, ..,−γ1) is separable, then σ = −1,
• otherwise, it is not possible to de�ne learly the sign of γ. Authors in [PT03℄ hoose σ = 1by default or disard this luster.In the ase of more than 2 genomes, the signs of a luster are all determined relative to theone in referene speies.Strips of lustersThe last step de�nes synteny bloks by ombining lusters into strips. A strip is a sequene ofonseutive signed lusters π1, .., πn in the referene speies that either appear onseutively inthe same way or in the inverse −πn, ..,−π1 in another genome. Strips are formed without anyonsideration of distane between lusters.2.1.2 I-AdHoReGenerally, existing methods detet similar sequenes either based on nuleotide omparison, or onthe gene level. In the latter ase, the study of genes enables the detetion of homology betweenhromosomal regions that are highly divergent. I-AdHoRe (iterative Automati Detetion ofHomologous Regions) method [VSS+02, SVSP04, SJSV08℄ is based on this approah: the methodonsists in identifying hromosomal regions showing a onservation of gene order and ontent.Obtained results are alled multiplions, where the level indiates the number of homologoussegments it ontains. I-AdHoRe �rst detets multiplions of level two by AdHoRe (AutomatiDetetion of Homologous Regions) routine. Next, by iterating the proess, new genomi segmentsare added to existing multiplions in order to inrease their level.Input dataAdHoRe and i-AdHoRe methods require the data set of genes with their absolute or relativeposition on a genomi sequene and their orientation. Homologous genes are determined usingBLASTP [AGM+90℄, whih ompares amino aid sequenes instead of traditional nuleotidiones.Detetion of multiplions of level twoGene Homology Matrix The AdHoRe method [VSS+02℄ tries to determine hromosomalregions said to be ollinear, that is, regions sharing a signi�ative onservation of gene orderand ontent. The AdHoRe algorithm �rst onstruts a Gene Homology Matrix (GHMs) for eahpair of hromosomes. Within this matrix, lines and olumns orrespond to positions of genesin hromosomes. A non-zero value is assigned to ells whose the line and the olumn form apair of homologous genes. A positive or negative sign is attributed to this kind of ells, whether22



2.1. Identi�ation of genome syntenyhomologous genes have the same orientation or not. Non-zero ells represent the anhors, onwhih is based the detetion of ollinear regions.Anhor Clustering Collinear regions primarily orrespond to a set of anhors that have thesame sign and that present a proximity within the matrix. This proximity is measured by aspeial �distane funtion�, whih gives priority to anhors lose in the diagonal rather than inthe vertial or horizontal axes. This measure, alled DPD (Diagonal Pseudo Distane), is not adistane in the mathematial sense of the term, sine the triangle inequality is not veri�ed. Fortwo points (x1, y1) and (x2, y2) in the matrix, the DPD is:
d = 2max(|x2 − x1|, |y2 − y1|)−min(|x2 − x1|, |y2 − y1|).A user-spei�ed parameter �xes the maximal pseudo-distane DPD between two anhors in thesame ollinear regions and the determination of suh regions is realized by suessive iterationsof anhor lustering by gradually inreasing values of DPD until a �xed threshold. Moreover,before eah iteration, a quality �lter onserves only the most signi�ative lusters in terms of thenumber of anhors, of the quality of the diagonal and so on. Finally, ertain lusters alled baselusters are merged into a larger one if their DPD is lower than the threshold. Final lusters arealled metalusters, whih are formed of one or several base lusters.The lustering proess is �rst distintly realized on the set of positive anhors and on the setof negative ones. A post-proessing onsists in ombining both orientation lasses by lusteringlusters from di�erent orientation sets if possible. However, in this ase, it is not learly statedin [VSS+02℄ how orientation is hosen for the resulting multiplions.Detetion of higher-level multiplionsIn order to detet multiplions of higher level, i-AdHoRe algorithm is based on multiplions oflevel two for whih it tries to add, in an iterative way, one or several genomi segment(s).Segments that onstitute existing multiplions (of level two initially) are used to reate pro�les.A pro�le is a multiplion whose segments are aligned in a suh way that homologous genes areloated at the same position. Then, these pro�les are ompared to gene lists (i.e hromosomes)from input data in a way analogous to the AdHoRe algorithm [VSS+02℄: GHMs are onstrutedwhere lines orrespond to positions of genes in a hromosome while olumns represent positionsof genes in a pro�le. If an additional segment is deteted in the matrix, it is added to the existingmultiplion and the orresponding pro�le is updated. The whole proess is repeated in order to�nd potential multiplions of superior levels.Note that, whatever its level, a multiplion orresponds to a metaluster and hene is formed ofone or several base luster(s). Moreover, extremities of genomi segments that de�ne a multipli-on are determined by the leftmost and rightmost oordinates of its anhors in the metaluster.2.1.3 Other methodsSeveral methods have been de�ned to respond to the need for �nding ommon markers withingenomes. Reently, in [LS08℄, Claire Lemaitre and Marie-Frane Sagot propose a survey onthe methods for detetion of onserved segments. They fous their work on GRIMM-Synteny,whih was already presented in setion 2.1.1, CHAINNET [KBH+03℄, MAUVE [DMBP04℄ andan algorithm provided by Couronne and Pather [CPB+03℄ (denoted by CP). They laim thatthese four methods are representative of the numerous methods that exist in the domain. 23



Chapter 2. From ommon markers to evolution senariosWhile GRIMM-Synteny was developed in order to study rearrangements, the others wereomputed for other goals as alignments of onserved regions. Beause alignments of wholegenome sequenes are not appropriate for this purpose (see [WLTB+02℄), all are de�ned as �seedand extend� algorithms deomposed in three steps: (1) anhoring, (2) �ltering and (3) aligning.The �rst step requires loal alignments of genome sequenes: anhors are de�ned from un-gapped (CHAINNET) or gapped (GRIMM-Synteny and CP) loal alignments using tools likeBLASTZ [SKS+04℄ or PatternHunter [MTL02℄, or exat mathes (MAUVE). MAUVE an bemore stringent than other methods, sine it was developed for baterial organisms, that share amuh higher proportion of oding regions than mammals studied by the other approahes.The seond step is required to remove anhors obtained by hane and hoose an exemplar ofdupliated regions. This is done by lustering lose anhors by omputing a distane betweenthem (GRIMM-Synteny, CP) or by haining anhors aording to anhor order and orientationas well as their distane.Exept GRIMM-Synteny, whih omputes synteny bloks, all of the other methods proeed ina third step in order to provide �nal alignments of the genomi sequenes.To onlude, all methods have in ommon that their desription in the literature does notalways provide all the details onerning the way of deteting breakpoints and to often dependon user-spei�ed parameters that a�et obtained results.2.1.4 Fragile breakpoint model versus random breakpoint modelFinding onserved segments aross speies enables one to solve a dual problem, that onsistsin deteting breakpoints, whih are the regions between onserved segments along a genomewhere rearrangements have ourred. Breakpoints are less onserved regions that were brokenby rearrangements and their analysis an give lues on the issue of hotspots of rearrangements.A quite lively debate between random breakage and non-random breakage models of evolutiondivides authors in two groups.The proponents of the non-random distribution of breakpoints along a genome build theirtheory on two main observations. The analysis of breakpoint sequenes shows that they arehighly shu�ed due to numerous miro-rearrangements [KBH+03℄. The onentration of miro-rearrangements within these regions tends to say that they are more prone to rearrangements.A higher level analysis proposed by Pevzner et al. [PT03a, PT03b℄ onsists in studying genomirearrangements on signed permutations obtained from synteny bloks. They observed that someregions between two markers are re-used suggesting that these regions orrespond to hotspots.The �re-use� issue is also a widely debated topi about hotspots [PPT06, San06, ST05℄.Trinh et al. [TMS04℄ defend the thesis of the random model by analyzing in details the smallsegments within breakpoints: they laim that the loss of similarity between onserved bloks aredue to alignment errors or artifats.2.2 Evolutionary distanes between two genomesOne ommon markers are de�ned, signed permutations an be onstruted, and from this model,we an provide a measure of the evolution between two speies. In fat, permutations lead tothe omputation of a mathematial distane that orrespond to the minimal number of rear-rangements that transform one genome into another. The distane omputation is based on aset of rearrangements. In the relevant literature, the onsidered rearrangements are not alwaysthe same. In this setion, we fous on the method based on reversals only and its extension tothe multihromosomal ase by the addition of transloations, fusions and �ssions.24



2.2. Evolutionary distanes between two genomes2.2.1 The reversal distane for unihromosomal genomesIn 1995 Hannenhalli and Pevzner [HP95a℄ de�ned the exat reversal distane between two signedpermutations and provide the �rst polynomial-time algorithm to parsimoniously transform asigned permutation into another using reversals. Their results presented below have been refor-mulated by Setubal and Meidanis in [SM97℄. The studied genomes are represented by one signedpermutation aording to the previously desribed formalism. The rearrangement operationsonsidered are restrited to reversals only. Moreover, genomes are de�ned on the same set ofmarkers without dupliations, insertions and deletions.Figure 1.9 presents a parsimonious senario transforming the permutation π into the permu-tation γ. How an one be sure that the obtained senario is in fat a parsimonious one? Insetion 1.3.3, the notion of breakpoint was introdued. Computing a parsimonious senario andthus the rearrangement distane onsists in �nding the minimum number of rearrangementswhih remove all of the breakpoints. Thus, the study of breakpoints provides a lower bound forthe reversal distane (see lemma 1). In fat, a reversal ρ an remove at most two breakpoints:
b(π, γ) − b(π.ρ, γ) ≤ 2.Lemma 1 Let π and γ be two permutations and b(π, γ) be the breakpoint distane between thesetwo permutations. Then, the reversal distane d(π, γ) veri�es: b(π,γ)

2 ≤ d(π, γ).The approximation given by the lemma 1 is not very preise. The aim of many works hasbeen to re�ne this bound. Hannenhalli and Pevzner [HP95a℄ propose a theory based on a graphintrodued by Bafna and Pevzner in [BP93℄ whih leads to an exat formula for the omputationof the reversal distane between two signed and unihromosomal genomes.Breakpoint graphTo transform a signed permutation π into a signed permutation γ, both de�ned on the sameset of n elements, the breakpoint graph G(π, γ) is built. G(π, γ) is an edge-olored graph builtfrom unsigned representations of two signed permutations. A signed permutation π = π1 .. πnover n elements is transformed into an unsigned representation u(π) in the following way. Eahpositive element +x from π is replaed by two verties labeled 2x−1 and 2x while eah negativeelement −x is replaed by two verties labeled 2x and 2x − 1 (see �gure 2.1). If permutationsrepresent linear genomes, verties π0 = 0 and π2n+1 = 2n + 1 are added to take into aountadjaenies with the �rst and the last elements. Thus, the graph has 2n+2 verties. Note that ifgenomes are irular, unsigned permutations are de�ned over 2n elements. Edges of G representadjaenies either in π (edges {π2i, π2i+1}, drawn with solid lines), or in γ (edges {γ2i, γ2i+1},drawn with dashed lines) for i = 0, .., n (see �gure 2.2 for an example).
(a) πi is positive2πi − 1 2πi

+πi (b) πi is negative2πi 2πi − 1−πiFigure 2.1: Verties of G obtained from an element of the permutation π.A reversal applied to the permutation π an also be applied to the breakpoint graph. Thepartiularity of the breakpoint graph de�ned from two idential permutations is to have solid25



Chapter 2. From ommon markers to evolution senarios
0 7 8 9 10 15 16 13 14 1 2 6 5 4 3 11 12 17 18 19 20 22 21 23+0 +4 +5 +8 +7 +1 -3 -2 +6 +9 +10 -11 +12

C1

C2

Figure 2.2: Breakpoint graph for the linear permutations π = +4 + 5 + 8 + 7 + 1 − 3 − 2 +
6 + 9 + 10 − 11 and γ = +1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11.and dashed edges that link the same verties. Thus, transforming the permutation π into thepermutation γ onsists in making the solid and dashed edges oinide (for example this is thease for verties 5 and 4 in the breakpoint graph of the �gure 2.2). The number of yles in thebreakpoint graph de�ned from two idential permutations with n signed elements is maximal:this number is equal to n + 1. Hene, the transformation of π into γ onsists in inreasing thenumber of yles in order to obtain the permutation γ. The number of yles in the graph G(π, γ)is denoted by c(π, γ).A reversal on the breakpoint graph is de�ned by two solid edges u and v: elements between
u and v are reversed. Only some reversals inrease the number of yles, depending on theonsidered edges. A traversal (in arbitrary diretion) of a yle provides an orientation for thesolid edges. Based on the relative orientation of solid edges, we an de�ne an orientation for allpairs of solid edges in a yle.De�nition 4 If two solid edges u and v belong to the same yle of a breakpoint graph and havethe same orientation, they are said to be unoriented. Otherwise, they are oriented.Based on de�nition 4, we distinguish two kinds of yles aording to the edge orientation:oriented and unoriented yles.De�nition 5 A yle of a breakpoint graph is unoriented if all of its solid edges are pairwiseunoriented. Otherwise, the yle is alled to be oriented.It is also possible to de�ne an orientation for a dashed edge aording to the positions of itsinident verties.De�nition 6 A dashed edge {πi, πj} in G(π, γ) is oriented if |j − i| is even, otherwise it isunoriented.The orientation of a yle an then be rede�ned based on de�nition 6.De�nition 7 A yle of a breakpoint graph is unoriented if all of its dashed edges are unoriented.Otherwise, the yle is said to be oriented.For example in the breakpoint graph of �gure 2.2, edges u = {20, 22} and v = {21, 23} areoriented in the yle C2. Thus, the yle C2 is also oriented. However, the yle C1 is unorientedbeause it has only two solid edges that are both unoriented (u = {16, 13} and v = {12, 17}).26



2.2. Evolutionary distanes between two genomesTheorem 1 (Setubal and Meidanis [SM97℄) Let ρ be a reversal de�ned on two solid edges
u and v of G(π, γ) with π and γ two signed permutations. Then:(i) if u and v belong to two di�erent yles, c(π.ρ, γ) = c(π, γ) − 1,(ii) if u and v belong to the same yle and are unoriented, c(π.ρ, γ) = c(π, γ),(iii) if u and v belong to the same yle and are oriented, c(π.ρ, γ) = c(π, γ) + 1.The bound provided by breakpoints is re�ned thanks to theorem 1. In fat, for a givenparsimonious senario ρ1ρ2..ρk that transforms a signed permutation π of order n into a signedpermutation γ, we have:

c(π.ρ1.ρ2...ρk, γ) = c(γ, γ) = n + 1Aording to the theorem, we have:
c(π.ρ1, γ)− c(π, γ) ≤ 1

c(π.ρ1.ρ2, γ)− c(π.ρ1, γ) ≤ 1...
c(π.ρ1.ρ2...ρk, γ)− c(π.ρ1.ρ2...ρk−1, γ) ≤ 1By adding all the terms, we obtain

d(π, γ) ≥ c(π.ρ1.ρ2...ρk, γ) − c(π, γ) and so d(π, γ) ≥ n + 1− c(π, γ).For many permutations, this approximation is very lose to the parsimonious distane. Nev-ertheless, for some ases, this approximation is not exat. If the breakpoint graph of π and γhas only oriented yles, there exists a senario suh that the number of yles inreases at eahstep (see theorem 1, item (i)). Thus, the estimate n + 1 − c(π, γ) is an exat formula in thisase. It beomes false when there are one or several unoriented yle(s), sine reversals on thistype of yle do not modify the number of yles (see theorem 1, item (ii)). Atually, there is aon�guration of the breakpoint graph with unoriented yles for whih the formula is orret.De�nition 8 Two dashed edges {πi, πj} and {πk, πl} in G(π, γ) interleave when [i, j] and [k, l]overlap, but no one of their intervals ontains the other.De�nition 9 Two yles C1 and C2 in G(π, γ) interleave when they have interleaving dashededges g1 ∈ C1 and g2 ∈ C2.
C1 C20 5 6 2 1 4 3 7+0 +3 -1 -2 +4 0 1 2 6 5 4 3 7+0 +1 -3 -2 +4Figure 2.3: Example of a breakpoint graph where the oriented yle C1 and the unoriented one

C2 interleave. Applying the reversal de�ned by {0, 5} and {1, 4} solid edges within C1 orientsyle C2.If an unoriented yle interleaves with an oriented one, then applying a reversal to two edgesfrom the oriented yle inreases the number of yles but orients the unoriented yle (for an27



Chapter 2. From ommon markers to evolution senariosexample, see �gure 2.3). Thus, the estimation n + 1 − c(π, γ) for the reversal distane is stillexat for this on�guration.Interleaving graphUnoriented yles that do not interleave with oriented ones annot be oriented by the resolutionof neighbour yles. To solve the problem of this kind of unoriented yles, Hannenhalli andPevzner introdued the interleaving graph.De�nition 10 An interleaving graph I(G) is a graph where eah vertex represents a non-trivialyle (with more than 2 edges) of the breakpoint graph G = G(π, γ). Two verties are linked byan edge if they are interleaving.This graph an be deomposed into onneted omponents.De�nition 11 The span of a onneted omponent K of I(G) is [i, j] where πi and πj are theleftmost and rightmost verties of any yle of K in G.Components are lassi�ed aording to their orientation. For example, the breakpoint graphin �gure 2.4 has six non-trivial yles. Cyles C3 et C6 are oriented while all the others areunoriented. Figure 2.5 represents the interleaving graph obtained from the breakpoint graph ofthat in �gure 2.4. Three omponents belong to this graph: two oriented ones and one unorientedformed by the two yles C1 et C5.De�nition 12 A onneted omponent K of the interleaving graph is oriented if at least one ofits verties orresponds to an oriented yle in the breakpoint graph. Otherwise, K is unoriented.
C1

C2 C3

C4

C5

C6Figure 2.4: Example of a breakpoint graph with six non-trivial yles C1 through C6.Oriented omponents are resolved by applying reversals to two oriented edges that inreasethe number of yles. Sorting unoriented omponents is more omplex. We have seen that areversal applied to two solid edges belonging to an unoriented yle an make it oriented withoutmodifying the number of yles in the breakpoint graph (theorem 1, item (ii)). In this ase,an unoriented omponent to whih the unoriented yle belongs beomes oriented. Thus, theapproximation of the reversal distane an be re�ned by taking into the aount the numberof unoriented omponents. However, not all of the unoriented omponents require a reversal inorder to beome oriented.Hannenhalli and Pevzner [HP95a℄ give a lassi�ation for unoriented omponents based on thenotion of omponent separation de�ned below.28



2.2. Evolutionary distanes between two genomes
C3

C2

C4

C1

C5

C6

Figure 2.5: Interleaving graph I(G) of the breakpoint graph from �gure 2.4. Oriented yles areenirled. I(G) has 2 oriented omponents K1 = {C2, C3, C4}, K2 = {C6} and one unoriented
K3 = {C1, C5}.De�nition 13 Let K1, K2 and K3 be 3 onneted omponents of I(G) and let SK2

and SK3
bethe spans of K2 and K3. K1 separates K2 from K3 if there exists a dashed edge {πi, πj} in K1suh that SK2

⊂ [i, j] and SK3
6⊂ [i, j].Based on this de�nition, unoriented omponents are lassi�ed into non hurdles and hurdles.We distinguish minimal hurdles from the greatest hurdle. In �gure 2.6, omponents K1 and K3are two minimal hurdles separated by the non hurdle K2.De�nition 14 A hurdle is an unoriented omponent whih does not separate two other unori-ented omponents. Otherwise, it is a non hurdle.De�nition 15 A hurdle is minimal if its span does not ontain the span of any other hurdle.The greatest hurdle is a hurdle whose the span ontains the spans of all other hurdles.

K1

K2

K3Figure 2.6: Breakpoint graph omposed of 3 omponents K1, K2 and K3. All of them areunoriented and are formed by only one unoriented yle.A reversal applied to solid edges belonging to two di�erent yles dereases the number ofyles (see theorem 1, item (iii)), but if the implied yles are unoriented they are transformedinto an oriented yle as well as are all unoriented omponents that separate them. Thus, nonhurdles an beome oriented by applying reversals to hurdles whih they separate. Let h(π, γ)be the overall number of hurdles in the breakpoint graph of π and γ. The new approximation ofreversal distane is then given by the formula:
d(π, γ) ≥ n + 1− c(π, γ) + h(π, γ) 29



Chapter 2. From ommon markers to evolution senariosNevertheless, �hard-to-sort� permutations exist where the resolution of all the hurdles annotremove all of the non hurdles. In this ase, a supplementary reversal is needed. The on�gurationof this kind of permutation is alled a fortress and is based on the notion of protetion.De�nition 16 A hurdle K1 protets a non hurdle K2 if removing K1 transforms K2 into ahurdle. A super hurdle is a hurdle that protets a non hurdle. Otherwise, it is a simple hurdle.Components K1 and K3 are super hurdles belonging to the breakpoint graph of the �gure 2.6.If the number of super hurdles is odd and all of them are super hurdles, then it is not possibleto remove all of the non hurdles. A supplementary reversal is needed.De�nition 17 We all a fortress a breakpoint graph that has an odd number of hurdles that areall super.Let f(π, γ) be the funtion that returns 1 if the breakpoint graph is a fortress, and 0 otherwise.Then, the reversal distane is given by theorem 2.Theorem 2 (Hannenhalli and Pevzner [HP95a℄) For two unihromosomal genomes π and
γ, d(π, γ) = n + 1− c(π, γ) + h(π, γ) + f(π, γ).In [HP95a℄, Hannenhalli and Pevzner present a onstrution of the breakpoint graph and theother strutures for omputing the reversal distane in O(n2) for permutations π and γ of order
n. Thus, the reversal distane d(π) is also omputed in O(n2). Later, Berman and Hannenhalli in[BH96℄ improved the algorithm for omputing onneted omponents of the interleaving graphand proposed to solve the reversal distane in O(nα(n)), where α is the inverse Akermanfuntion. In [BMY01℄, Bader et al. again improved the onneted omponent omputation andgave a linear-time algorithm for reversal distane.2.2.2 Extension to multihromosomal genomesHannenhalli and Pevzner [HP95b℄ extended their theory for reversal distane omputation tothe multihromosomal ase. They propose a polynomial algorithm that omputes the minimumnumber of rearrangements for transforming one multihromosomal genome into another, all ofthem de�ned on the same set of markers without repetition. Rearrangements spei� to multi-hromosomal genomes are taken into the aount as well as reversals: transloations, fusions and�ssions. However, both the formula for rearrangement distane and the algorithm for omputinga parsimonious senario present errors. These were partially orreted by Tesler in [Tes02a℄.Ozery-Flato and Shamir in their turn rede�ne some notions and suggest further orretions forthese problems [OFS03℄. In what follows, we present using our notations the last results for therearrangement distane omputation based on Hannenhalli and Pevzner's theory and obtainedafter Tesler, and Ozery-Flato and Shamir's orretions.Unihromosomal vision for a multihromosomal genomeHannenhalli and Pevzner propose mimiking the behaviour of a multihromosomal genomethrough the unihromosomal model. Two steps are needed to transform a multihromosomalgenome into an unihromosomal genome: apping and onatenate. Let Π and Γ be two multi-hromosomal genomes de�ned over the same set of Ng gene markers.A apping of Π and Γ onsists in adding two ordinals alled aps to the extremities of eahhromosome. Let C = {c0, c1, .., cn} with n = 2max(NΠ, NΓ) − 1 be the set of distint aps30



2.2. Evolutionary distanes between two genomesdi�erent from the Ng gene markers in Π and Γ. We denote by Π̂ = {π̂1, ..., π̂max(NΠ,NΓ)} aapping of Π where the ith hromosome is π̂i = c2(i−1) πi
1...π

i
ni

c2(i−1)+1. If NΓ > NΠ, the
NΓ − NΠ last hromosomes of Π̂ are empty hromosomes omposed of 2 suessive aps. From
C, we similarly de�ne Γ̂ with NΠ −NΓ empty hromosomes if NΠ > NΓ. A onatenate π̂ of Π̂is a signed permutation π̂ obtained by onatenating hromosomes after hoosing an orientationand an order for eah of them. At the end of these two steps, we obtain an unique permutationin whih eah reversal an be read as a multihromosomal rearrangement. See for illustrationexample 2.7.Genomes: Π = {1 2, 3 4, 5 8 7 6} Γ = {1 2 3 4, 5 6 7 8}Cappings: Π̂ = {9 1 2 10,11 3 4 12,13 5 8 7 6 14} Γ̂ = {9 1 2 3 4 10,11 5 6 7 8 12,13 14}Conatenates: π̂ = 9 1 2 10 11 3 4 12 13 5 8 7 6 14 γ̂ = 9 1 2 3 4 10 11 5 6 7 8 12 13 14Figure 2.7: Example from [Tes02a℄ of a apping and a onatenate for two genomes Π and Γ.Caps are indiated by bold haraters.Breakpoint graphThe breakpoint graph for multihromosomal genomes is built from permutations π̂ and γ̂. Thedistane value omputed on G(π̂, γ̂) depends on the hosen apping and onatenate. Let G(Π,Γ)be the graph obtained by removing all edges that involve onatenate and apping from G(π̂, γ̂),that is, all dashed edges inident to ap verties and all solid edges between two ap verties orbetween a ap vertex and the �rst or the last element. Then we an distinguish three types ofverties: (1) isolated verties alled tails, (2) ap verties of degree 1 alled Π-aps, and (3) otherverties of degree 1 alled Γ-tails. Figure 2.8 shows the transformation of a graph G(π̂, γ̂) intothe graph G(Π,Γ).Cyles and pathsAs in the unihromosomal ase, the graph G(Π,Γ) an be deomposed into yles but alsointo paths. If a path starts and ends with Π-aps (two Γ-tails, or one Π-ap and one Γ-tail,respetively) then it is a ΠΠ-path (ΓΓ-path or ΠΓ-path, respetively). Orientation for yles andpaths in the multihromosomal ase is de�ned in a way analogous to yle orientation for theunihromosomal ase.De�nition 18 A yle or a path of a breakpoint graph is unoriented if all its dashed edges areunoriented. Otherwise, the yle is said to be oriented.New notions spei� to multihromosomal genomes are also de�ned for edges and for ylesand paths of breakpoint graph: interhromosomality and intrahromosomality.De�nition 19 A dashed edge of a breakpoint graph is intrahromosomal if its verties belong tothe same hromosome. It is said interhromosomal otherwise.De�nition 20 A yle or path of a breakpoint graph is interhromosomal if one of its dashededges is interhromosomal. Otherwise, it is intrahromosomal. 31



Chapter 2. From ommon markers to evolution senarios(a) G(π̂, γ̂)
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TΠ Γ Π Π ΠΓ ΓΠ Γ Π9 1 2 10 11 3 4 12 13 5 8 7 6 14Figure 2.8: Example from [Tes02a℄ of the transformation of G(π̂, γ̂) into G(Π,Γ) by removingedges representing the hosen onatenate (from (a) to (b)) and apping (from (b) to ()).Genomes π̂ and γ̂ are the same as those in �gure 2.7. Spei� verties are denoted by T (Tails),

Π (Π-ap) and Γ (Γ-tails).Interleaving graphAn Edge interleaving de�ned for unihromosomal genomes (de�nition 8) is applied to dashededges of a breakpoint graph representing multihromosomal genomes and extended to yles andpaths.De�nition 21 Two yles or paths C1 and C2 in G(Π,Γ) interleave when they have interleavingedges g1 ∈ C1 and g2 ∈ C2.Then, for multihromosomal genomes, the interleaving graph I(G) is a graph where eah vertexrepresents a non-trivial path or yle of the breakpoint graph G = G(Π,Γ). Two verties arelinked by an edge if they are interleaving.In the same way as in de�nition 12, we de�ne orientation for eah omponent of I(G) aordingto the orientation of its verties and we distinguish oriented omponents from unoriented ones.Moreover, in the same way as for yles and paths, a omponent K of I(G) is interhromosomalif one of its verties is interhromosomal, it is intrahromosomal otherwise. Let U(G) be theset of unoriented omponents of I(G), IU(G) the set of unoriented and intrahromosomal ones.Within unoriented and intrahromosomal omponents, we distinguish real omponents fromunreal omponents. Denote by RU(G) the set of real omponents.32



2.2. Evolutionary distanes between two genomes
K ′ K K ′′

Figure 2.9: Counterexample of the separation notion given by the de�nition 23. Any element
k ∈ K is suh that K ′

max < k < K ′′
min. However, K does not separate K ′ from K ′′ as it shouldaording to [HP95a℄.De�nition 22 A onneted omponent K of I(G) is real if K is intrahromosomal, unoriented,and it has no Π-ap or Γ-tail in its span.The notion of omponent separation (see de�nition 13) is de�ned in the same way as in theunihromosomal ase partitions of U(G), IU(G) and RU(G): hurdles and non hurdles for the�rst, knots and non knots for the seond, and real knots and non-real knots for the third.Note that the de�nition that Hannenhalli and Pevzner give for the notion of separation in theirpaper on the multihromosomal ase [HP95b℄ (see de�nition 23) is di�erent from the de�nition13 previously given by the same authors [HP95a℄ and is inorret (see ounterexample 2.9). Aonneted omponent K orresponds to the set of integers K̄ = {i : i ∈ C ∈ K} representingthe set of positions of the permutation belonging to yles or paths of K. For a set of integers

K de�ne Kmin = mink∈K k and Kmax = maxk∈K k.De�nition 23 (Hannenhalli et Pevzner [HP95b℄) A omponent K separates K ′ from K ′′if there exists k ∈ K suh that K ′
max < k < K ′′

min.A hurdle is super if it protets (see de�nition 16) a non hurdle, otherwise it is simple. A hurdlean be the greatest one if its span ontains all the spans of the others hurdles, otherwise it is aminimal hurdle. These notions are de�ned similarly for knots and real knots. The graph G is afortress (fortress of knots, or fortress of real knots, respetively) if it ontains an odd number ofhurdles (knots, or real knots, respetively) that are all super.Within the set of unreal omponents, Ozery-Flato and Shamir [OFS03℄ distinguish those alledsemi-real knots, whih are haraterized by their potential of beoming real knots.De�nition 24 A semi-real knot is a omponent in IU(G)\RU(G) that does not ontain a ΓΓ-path in its span and that beomes a minimal real knot or the greatest simple real knot after losingits ΠΓ-paths.The greatest semi-real knot is a semi-real knot that beomes the greatest simple real knot afterlosing its ΠΓ-paths. A semi-real knot is alled a minimal semi-real knot if losing its ΠΓ-pathsmakes it a minimal real knot. From the semi-real knot, Ozery-Flato and Shamir [OFS03℄ de�nethe notions of simple omponent and weak fortress of real knots.De�nition 25 A simple omponent is a omponent of I(G) with at least one ΠΓ-path that isnot a semi-real knot.De�nition 26 A graph G is a weak fortress of real knots if (a) G has an odd number of realknots, (b) there exists the greatest real knot in G, () all real knots are super exept the greatestone and (d) the number of semi-real knots in G is not zero. 33



Chapter 2. From ommon markers to evolution senariosNote that a weak fortress of real knots beomes a fortress of real knots by losing the ΠΓ-pathsin a semi-real knot. Example 1 gives the details of the omponents for the breakpoint graph of�gure 2.10.
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Figure 2.10: Breakpoint graph G(Π,Γ) for Π = {−1 2 4 7 6 5 8 3 9, 10 11 13 12} and Γ =
{1 2 3 4 5 6 7 8 9 10 11 12 13}. Tails verties are marked by T, Π-aps by Π and Γ-tails by
Γ. Non-trivial yles and paths are denoted by letters from A to F . The interleaving graph
I(G) orresponding to G(Π,Γ) is omposed of 5 onneted omponents: K1 = {A}, K2 = {B},
K3 = {C,D}, K4 = {E} and K5 = {F}.Example 1 Figure 2.10 presents a breakpoint graph G(Π,Γ). The omponent K1 of I(G) isintrahromosomal oriented, U = {K2,K3,K4, K5}, IU = {K2,K3,K5} and RU = {K2,K3}.
K3 is a super hurdle while K4 and K5 are simple hurdles, and K3 and K5 are super knots.However, K2 and K3 are real knots (K2 is the greatest one), while K5 is a minimal semi-realknot and K1 is a simple omponent.Rearrangement distaneOzery-Flato and Shamir [OFS03℄ give an exat formula for distane between two multihromoso-mal genomes Π and Γ as shown in theorem 3. Denote by Ḡ(Π,Γ) the graph obtained by losingall the ΠΓ-paths in simple omponents of G(Π,Γ).Theorem 3 (Ozery-Flato [OFS03℄)
d(Π,Γ) = b(Π,Γ)− c(Π,Γ) + pΓΓ(Π,Γ) + r(Π,Γ) + ⌈s′(Π,Γ)−gr′(Π,Γ)+fr′(Π,Γ)

2 ⌉.The parameters of the formula are the following:- b(Π,Γ) is the number of solid edges in G(Π,Γ) (b = Ng + max(NΠ, NΓ)),- c(Π,Γ) is the number of yles and paths,- pΓΓ(Π,Γ) is the number of ΓΓ-paths,- r(Π,Γ) is the number of real knots,- s′(Π,Γ) is the number of semi-real knots in G(Π,Γ),- gr′(Π,Γ) is equal to 1 if Ḡ has the greatest real knot and s′ > 0, and is 0 otherwise,- fr′(Π,Γ) is equal to 1 if either (i) Ḡ is a fortress of real knots and the greatest semi-realknot does not exist in Ḡ, or (ii) Ḡ is a weak fortress of real knots.By adapting the linear-time algorithm of Bader et al. for unihromosomal genomes [BMY01℄,Tesler in [Tes02a℄ omputes the rearrangement distane in linear time.34



2.3. Parsimonious senarios2.2.3 Other distanesThe distane omputation methods previously presented rely on reversals and transloationsinluding �ssions and fusions, whih are spei� ases. Although these rearrangements are on-sidered as the most frequent operations during speies evolution, di�erent sets of rearrangementsand the orresponding genomi distane and senarios are also investigated in the literature.Certain studies looked into transloations only. Keeioglu and Ravi [KR95℄ were the �rstones to propose a 2-approximation for omputing distane by transloations. In 1996, Hannen-halli [Han96℄ presents the �rst polynomial-time algorithm for the signed transloation distane,subsequently orreted by Ozery-Flato and Shamir in [OFS06℄. Reently, Li et al. [LQWZ04℄proposed a linear implementation for distane omputing and Wang a quadrati algorithm to�nd an optimal sequene of transloations.Transforming a permutation by transpositions into another (see setion 1.2.2) has also beenwidely studied. However, the omplexity of this problem is still open. Bafna and Pevzner [BP98℄gave a 1.5-approximation algorithm to �nd the minimum number of transpositions to transformone genome into another. Hartman et Shamir [HS03℄ proposed a simpler 1.5-approximationalgorithm for the same time omplexity. Walter et al. [WSO+05℄ improved the time omplexityof the initial algorithm by giving a O(n3) implementation. To date, the best known algorithmis a 1.375-approximation provided by Elias and Hartman in [EH05℄.The omplexity of the genomi distane problem is still unknown for ertain sets of onsideredrearrangements. In fat, there are e�ient algorithms when only one rearrangement is taken intothe aount, but ombinatory problems beome more di�ult by the addition of new rearrange-ment types. However, the theory of Hannenhalli and Pevzner [HP95b℄ presented in this setionleads to a linear algorithm [Tes02a℄ for omputing distane in terms of reversals, transloations,fusions and �ssions.2.3 Parsimonious senariosThe rearrangement distane estimates the minimum number of rearrangements that separatetwo genomes, while parsimonious senarios onsist in learly de�ning whih rearrangements o-urred during their evolution. These two problems are strongly related but they are often solvedindependently. This setion proposes an overview of the method based on the Hannenhalli andPevzner's theory [HP95b℄ for reovering one rearrangement senario.2.3.1 Computing a parsimonious senario for unihromosomal genomesThere are several algorithms for omputing a parsimonious senario between two unihromosomaland signed genomes by reversals. Many of them are based on the Hannenhalli and Pevznermodel of the breakpoint graph (see setion 2.2.1). From their theory, Hannenhalli and Pevznerdeveloped the �rst polynomial algorithm for this problem and proposed an O(n4) implementationwhere n is the permutation order. Other more e�ient algorithms were developed thereafter:Berman and Hannenhalli [BH96℄, Kaplan et al. [KST97℄ and Bader et al. [BMY01℄ algorithmsrequire O(n2), while the one proposed by Bergeron in [Ber01℄ and [BS01℄ requires O(n3). Morereently, Tannier and Sagot in [TS04℄ solve this problem with a O(n
√

n log n)-time algorithm.All of the quoted algorithms exept the last one are based on safe reversals. A reversal is safeif it dereases the reversal distane by one. There are two types of safe reversals: proper safereversals and hurdle-utting safe reversals. The latter onsist in solving the problem of unorientedomponents and this is done in the same way by all the algorithms. Algorithms di�er in the way35



Chapter 2. From ommon markers to evolution senariosproper safe reversals in oriented omponents are found: although the methods are all based onthe interleaving graph or the overlap graph (easily obtained from the interleaving graph), thenotion of safe reversal is de�ned di�erently.2.3.2 Computation of an optimal senario for multihromosomal genomesIn order to make the problem easier, �nding a parsimonious senario between two multihro-mosomal genomes in terms of reversals and transloations is redued to the unihromosomalase in a way analogous to the distane problem. For two multihromosomal genomes Π and Γ,omputing optimal appings Π∗ and Γ∗ and then optimal onatenates π∗ and γ∗ are needed toobtain unihromosomal permutations to whih existing algorithms for the unihromosomal asean be applied from the breakpoint graph G(π∗, γ∗). Eah reversal in the obtained senario isinterpreted as a rearrangement, either a transloation or a reversal.As was the ase for distane resolution, the initial theory of Hannenhalli and Pevzner forthis problem [HP95b℄ was orreted �rst by Tesler [Tes02a℄, and then in turn Ozery-Flato andShamir [OFS03℄. In what follows, we present in detail the last results [HP95b, Tes02a, OFS03℄for the two main steps that lead to the onstrution of G(π∗, γ∗): optimal appings and optimalonatenates.Optimal appingsOptimal appings Π∗ and Γ∗ formalize the problem of �nding positions and signs for aps in thegenome Γ suh that d(Π∗,Γ∗) = d(Π,Γ) (see lemma 4). This is done for any arbitrary appingin Π. In the breakpoint graph, it onsists in adding 2NΓ edges linking a Π-ap to a Γ-tail and
NΠ −NΓ edges between two Π-aps if NΠ > NΓ. Hannenhalli and Pevzner prove in [HP95b℄ aset of tehnial lemmas required to build optimal appings.Lemma 2 ([HP95b℄) For every ΠΠ-path and ΓΓ-path in G(Π,Γ), there exists either an inter-hromosomal or an oriented dashed edge whih joins these paths into a ΠΓ-path.Lemma 3 ([HP95b℄) For every two unoriented ΠΓ-paths, there exists either an interhromo-somal or an oriented dashed edge whih joins these paths into a ΠΓ-path.Let Γ′ be the set of the 2max(NΠ, NΓ)! possible appings for Γ.Lemma 4 ([HP95b℄) d(Π,Γ) = minΓ̂∈Γ′ b(Π̂, Γ̂)− c(Π̂, Γ̂) + h(Π̂, Γ̂) + f(Π̂, Γ̂).Optimal appings Π∗ and Γ∗ verify: d(Π,Γ) = b(Π∗,Γ∗) − c(Π∗,Γ∗) + h(Π∗,Γ∗) + f(Π∗,Γ∗).Ozery-Flato and Shamir give in [OFS03℄ an algorithm for onstrution of the sequene of dashededges leading to optimal apping Γ∗ (see algorithm 1).Despite orretions for optimal apping problem brought by Ozery-Flato and Shamir in [OFS03℄,the algorithm they propose remains inorret. In hapter 7, we show a ounterexample for Ozery-Flato and Shamir's algorithm and we introdue a orret algorithm for optimal apping as wellas the proof of its orretion.Optimal onatenatesHannenhalli and Pevzner in [HP95b℄ indiate that it is sometimes neessary to �ip (i.e. reverse)some hromosomes in order to obtain optimal �nal permutations. Tesler in [Tes02a℄ spei�es thatat most one reversal of one or several entire hromosome(s) is required during the omputation36



2.3. Parsimonious senariosAlgorithm 1 Optimal_Capping1: Construt the graph G = G(Π,Γ)2: while there is a ΠΠ-path in G do3: Find an interhromosomal or an oriented edge joining this ΠΠ-path with a ΓΓ-path (lemma2) and add it to G4: end while5: while G has more than two semi real-knots do6: Find an interhromosomal or an oriented edge joining ΠΓ-paths in any two semi real-knots(lemma 3) and add it to G7: end while8: Close all ΠΓ-paths in simple omponents in G9: if G has two semi real-knots but it is not a fortress of real-knots then10: Find an interhromosomal or an oriented edge joining ΠΓ-paths in these semi real-knots(lemma 3) and add it to G11: end if12: Close any remaining ΠΓ-paths in G13: Find a apping Γ̂ de�ned by the graph G(Π̂, Γ̂)of an optimal senario based on optimal permutations. However, Tesler shows that reversingsome hromosomes is not always su�ient to obtain optimal permutations. Some hromosomesneed to be reordered as well to avoid non-biologial operations whih just exhange two aps.Then, optimal permutations verify the following theorem:Theorem 4 (Tesler [Tes02a℄) Let d(Π,Γ) denote the distane between two multihromosomalgenomes, Π and Γ. There is a onstrutive polynomial-time algorithm to produe two permuta-tions π∗ and γ∗ whose reversal distane is drev(π
∗, γ∗) = d or d + 1 suh that optimal reversalsenarios between these permutations diretly mimi optimal rearrangement senarios betweengenomes Π and Γ. When drev = d + 1, one reversal step mimis �ipping a blok of onseutivewhole hromosomes, whih does not ount as an operation in a multihromosomal rearrangementsenario; there are examples when suh a step is required.Tesler determines optimal onatenates π∗ and γ∗ based on two steps: proper �ipping andproper bonding of hromosomes [Tes02a℄.Proper �ipping Chromosome orientation an modify the nature of the interhromosomalomponents of the orresponding breakpoint graph. An optimal orientation indues a breakpointgraph without unoriented interhromosomal omponents: in this ase, the breakpoint graph issaid to be properly �ipped. For that, eah hromosome has to be properly �ipped as well.De�nition 27 ([HP95b℄) A hromosome πi of a genome Π is properly �ipped in G = G(π̂, γ̂)if every interhromosomal edge originating from it belongs to an oriented omponent of G.De�nition 28 ([HP95b℄) The graph G(π̂, γ̂) is properly �ipped if all hromosomes are prop-erly �ipped.De�nitions 27 and 28 applied to graphs G = G(π̂, γ̂) are extended to graphs G(Π̂, Γ̂) by Teslerin [Tes02a℄ despite the absene of edges inident to tail verties. 37



Chapter 2. From ommon markers to evolution senariosTesler also extends lemma 5 to graphs G(Π̂, Γ̂) and presents algorithm Proper_Flip_Left(algorithm 2) whih leads to a properly �ipped graph. Example 2.11 presents an appliation ofthe algorithm 2.Lemma 5 ([HP95b℄) If a hromosome πi is not properly �ipped in G = G(π̂, γ̂), then it isproperly �ipped in the graph G′ obtained by �ipping that hromosome. Moreover, every properly�ipped hromosome in G remains properly �ipped in G′.Algorithm 2 Proper_Flip_Left(G)1: Determine omponents of G2: Classify omponents of G3: Determine all distint hromosomes i1, i2, .., ik that ontain the leftmost vertex of one ormore interhromosomal unoriented omponents4: Flip hromosomes i1, i2, .., ikProper bonding Proper bonding onsists in reordering hromosomes in Π̂ and Γ̂ in order thatthe pairs of aps that separate two hromosomes are the same within both genomes, whih onse-quently avoids non-biologial operations that simply exhange two aps during the onstrutionof a parsimonious senario.De�nition 29 ([Tes02a℄) A bond is a ouple of aps (c1, c2) suh that c1 is the right signedap of the hromosome i and c2 is the left signed ap of the hromosome i + 1.The set of the bonds of a onatenate π̂ is then the following
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+1, n + 1) are alled external bonds while the others are alled internalbonds.De�nition 30 ([Tes02a℄) A bond (a, b) of the permutation γ̂ is a proper bond when either

(a, b) or (−b,−a) is a bond in π̂.As it is shown by Tesler in [Tes02a℄, optimal onatenates π∗ et γ∗ an be obtained fromoptimal appings so that following onditions are veri�ed:1) G(π∗, γ∗) is properly �ipped, and2) Either(i) all internal and external bonds in γ∗ are proper relative to π∗; or(ii) there is one improper internal bond and one improper external bond.Methods developed by Tesler in [Tes02a℄ for building optimal onatenates π∗ and γ∗ fromoptimal appings Π∗ and Γ∗ onsist in onatenating at eah step two hromosomes A and Bof Π∗ to reate a novel bond between these two hromosomes. The onatenate A + B is thusobtained by reating a bond (a, b) with a the right ap of A and b the left ap of B. We look38



2.3. Parsimonious senarios(a) Genomes : Π = {1 4 2, 3 5 8 6, 7 9} Γ = {1 2, 3 4 5 6, 7 8 9}Cappings : Π̂ = {10 1 4 2 11,12 3 5 8 6 13,14 7 9 15} Γ̂ = {10 1 2 11,12 3 4 5 6 13,14 7 8 9 15}(b) Graph G(Π∗,Γ∗)

b b b b b b
T T T T T T10 1 4 2 11 12 3 5 8 6 13 14 7 9 15hromosome 1 hromosome 2 hromosome 3() Reversal of hromosome 2
b b b b b b

T T T T T T10 1 4 2 11 -13 -6 -8 -5 -3 -12 14 7 9 15hromosome 1 hromosome 2 hromosome 3(d) Reversal of hromosome 1
b b b b b b

T T T T T T-11 -2 -4 -1 -10 -13 -6 -8 -5 -3 -12 14 7 9 15hromosome 1 hromosome 2 hromosome 3Figure 2.11: Appliation of the algorithm Proper_Flip_Left to genomes Π and Γ. (a) Entrydata. (b) Graph G(Π∗,Γ∗) obtained from optimal appings Π∗ = Π̂ and Γ∗ = Γ̂. There aretwo interhromosomal and unoriented omponents: hromosomes 1 and 2 are those to �ip. ()Proper �ipping of hromosome 2. (d) Proper �ipping of hromosome 1. Obtained graph isproperly �ipped.for the same bond in Γ∗ with A′ + B′ obtained by onatenating two of these hromosomes A′and B′. If a and b are loated on two di�erent hromosomes in Γ∗, Π∗ and Γ∗ an have thesame bond: the onatenate A + B is said to be legal in this ase. On the ontrary, if a and bare on the same hromosome of Γ∗, reating the bond (a, b) in Γ∗ is impossible: A + B is saidto be illegal. Of ourse, �ipping hromosomes is allowed for reating proper bonds as long ashromosomes are properly �ipped (ondition (1) of optimal onatenates).Tesler proposes the algorithm form_optimal_onatenate (algorithm 3) that builds optimalonatenates. Steps (1), (2) and (17)-(21) are omputed in O(n). In the worst ase, steps (5)-(12) have to be done (NC − 1) times, whih indues a omplexity in O((NC − 1)n). However, at39



Chapter 2. From ommon markers to evolution senarios(a) Genomes: Π = {−5 1 3, 2 4} Γ = {1, 2 3 4 5}Cappings: Π̂ = {6 − 5 1 3 7,8 2 4 9} Γ̂ = {6 1 7,8 2 3 4 5 9}(b) Graph G(Π,Γ)

b b b bb b
T TT T T TΠ Π Π ΠΓ Γ Γ Γ6 -5 1 3 7 8 2 4 9hromosome 1 hromosome 2() Graph G(Π∗,Γ∗)

b b b bb b
T TT T T T6 -5 1 3 7 8 2 4 9hromosome 1 hromosome 2

Π
∗

= Π̂, Γ
∗

= {-7 − 1 9, 8 2 3 4 5 -6}(d) Graph G(Π∗,Γ∗) after properly �ipping
b b b bb b

T TT T T T7 -3 -1 5 -6 8 2 4 9hromosome 1 hromosome 2(e) Graphs G(π∗, γ∗) of optimal onatenates
7 -3 -1 5 -6 8 2 4 9hromosome 1 hromosome 2

(1)

Conatenates: π∗ = {-7 − 3 − 1 − 5 -6, 8 2 4 9}
γ∗ = {-7 − 1 9, 6 − 5 − 4 − 3 − 2 -8}

(2)

Conatenates: π∗ = {-7 − 3 − 1 − 5 -6, 8 2 4 9}
γ∗ = {-7 − 1 9, 8 2 3 4 5 -6}

7 -3 -1 5 -6 8 2 4 9hromosome 1 hromosome 2Figure 2.12: Example from [Tes02a℄ of the onstrution of optimal onatenates. (a) Entry data.(b) Graph G(Π,Γ) on whih rearrangement distane is omputed: d = 7−4+0+0+⌈0+0+0
2 ⌉ = 3.() Graph G(Π∗,Γ∗) of optimal appings. (d) Properly �ipping of the graph G(Π∗,Γ∗) byreversing hromosome 1. (e) Graphs G(π∗, γ∗) of optimal onatenates. The bond (−6, 8) isillegal and reversing hromosome 1 is not possible. Optimal onatenate γ∗ is building from twohromosomes of Γ∗. Two onatenates for γ∗ are possible: (1) There exists an oriented yle(dotted lines) between 4 Tail verties. (2) There exists an unoriented yle (dotted lines) between4 Tail verties but whih overlap an oriented omponent.40



2.3. Parsimonious senarioseah iteration, only one ap among the 2(i− 1) aps of π̂1,..,π̂i−1 an form an illegal bond withthe ap of π̂i. So, the probability of doing steps (6) to (11) is 1
2(i−1) . And hene the averageomplexity is O((1

2 + 1
4 + .. + 1

2(NC−1))n) = O(n ln(NC)).Algorithm 3 form_optimal_onatenate(G, π̂, γ̂)1: Initialize the list of pairs of aps on the hromosomes of Γ2: G = proper_flip_left(G)3: i = NC4: while i ≥ 2 do5: if the bond from π̂i−1 to π̂i + .. + π̂NC is illegal then6: if i > 2 then7: π̂i−2, π̂i−1 = −π̂i−1,−π̂i−28: else9: π̂i−1 = −π̂i−110: end if11: G = Proper_Flip_Left(G)12: end if13: Form the bond π̂i−1 + (π̂i + .. + π̂NC ).14: Update the list of bonds and blok aps of Γ∗ (if step 9 ourred this iteration, and this isnot possible, skip it).15: i = i− 116: end while17: π̂ = π̂1 + .. + π̂NC18: if There are no improper bonds then19: Form the onatenate γ∗ starting with the same ap as π∗ and with the same internalbonds.20: else21: Conatenate the two bloks of Γ∗ together so that γ∗ and π∗ start with the same ap.22: end ifOptimal senarioUnihromosomal methods for building parsimonious senarios are easily adapted to the mul-tihromosomal ase by using optimal onatenates π∗ and γ∗ as permutations. For methodsthat need the breakpoint graph, the graph G(π∗, γ∗) obtained after optimal onatenates anbe diretly used. In this ase, eah reversal is interpreted as a multihromosomal rearrangement(reversal, transloation, fusion or �ssion). However, reversals delimited by aps are stronglyonstrained. In fat, only reversals starting at a left ap and ending at a right ap are allowedbeause they orrespond to a reversal of a whole hromosome. All of the algorithms previouslypresented in setion 2.3.1 respet this onstraint beause the reversals to apply are determinedby dashed edges and their orientation in the breakpoint graph. Yet, during optimal apping andoptimal onatenate onstrutions, yles inluding aps are either trivial (and do not requirea reversal) or interhromosomal and oriented. In the latter ase, the edges hosen for reversalonnet two aps or two non-ap elements. For an example of a multihromosomal senario, see�gure 2.13.As in the ase of the rearrangement distane, optimal appings an be found by a linear-time algorithm that relies on identi�ation of onneted omponents. Tesler [Tes02a℄ provides41



Chapter 2. From ommon markers to evolution senariosa quadrati-time algorithm to ompute optimal onatenates. Then, the time to ompute arearrangement senario is O(n2) using the Bader et al. quadrati-time algorithm [BMY01℄ forparsimonious senario by reversals.(a) π∗; Transloation
7 -3 -1 5 -6 8 2 4 9hromosome 1 hromosome 2(b)

7 -2 -8 6 -5 1 3 4 9hromosome 1 hromosome 2
(1) Reversal (2) Reversalof hromosome 2

7 -2 -8 6 -5 1 3 4 9hromosome 1 hromosome 2()
7 -2 -8 6 -5 -4 -3 -1 9hromosome 1 hromosome 2

(1) Reversalof hromosome 2 (2) Reversal
7 -2 -8 9 -4 -3 -1 5 -6hromosome 1 hromosome 2(d) Transloation

7 -2 -8 -9 1 3 4 5 -6hromosome 1 hromosome 2(e) γ∗

7 -2 -8 -9 1 3 4 5 -6hromosome 1 hromosome 2Figure 2.13: Two parsimonious senarios from optimal onatenates obtained in the �gure 2.12(seond solution). Eah rearrangement is delineated by a retangle on the permutation. (a)Only one edge is oriented: it determines the transloation to apply. (b) and () The reversal ofelements 1, 3 and 4 and the reversal of the hromosome 2 are independent: the appliation orderis arbitrary. (d) and (e) A last transloation leads to γ∗.2.3.3 Why is giving only one optimal senario misleading?Setions 2.2 and 2.3 introdued the two linked problems of �nding a genomi distane betweentwo genomes and a sequene of rearrangements that realizes this distane. If the �rst task42



2.4. Global methods for anestral reonstrutionis onsidered as a good approximation for the real evolutionary distane, the seond one mayprovide lues about evolutionary mehanisms that ourred during history of the two speies.In the ase of the reversal distane (transloation and reversal distane by extension), algo-rithms previously presented in 2.3.1 ompute one parsimonious senario. Nevertheless, a studyled by Siepel in [Sie02℄ - where he proposes an algorithm to �nd all safe reversals - shows thatthere exists a huge number of parsimonious senarios. For example, for two permutations oforder n = 100 and reversal distane d = 0.5n, hundreds of safe reversals are possible. Bergeronet al. in [BCHSO02℄ proposed the following theorem to evaluate the number of parsimonioussenariosTheorem 5 (Bergeron et al. [BCHSO02℄) If π is a random permutation on n elements,and if ρ a random oriented reversal of π, then the probability that ρ is unsafe is O( 1
n2 ).The parsimony priniple is thus not enough to provide a sequene of rearrangements that makepossible an evolutionary study that is also biologially realisti. In order to redue the number ofparsimonious senarios in a useful way, one should take into onsideration additional biologialonstraints. Several approahes have been developed to onstrain the sorting of permutations.One of these approahes onsists in taking into the aount the length of reversed segments:Lefebvre et Al. [LEMTS03℄ proeed aording to the priniple that small reversals prevail, asa large number of those an be observed in omparing genomes of related speies [CNN+00℄.Other publiations determine parsimonious senarios that onserve ommon strutures betweenthe two studied genomes all along the sequene (see [Fig04℄ and [BBCP07℄).2.4 Global methods for anestral reonstrutionThe large sale study of moleular evolution through the omparison of ontemporary genomes isfrustrated by the impossibility of knowing with ertainty the arhiteture of the ommon anestralgenomes. Construting plausible hypothesis about the strutural harateristis of these anestralarhitetures is a omputational task whose results may provide deep insight both into the pasthistories of partiular genomes and the general mehanisms of their formation. This task hastwo important di�ulties: how an we guarantee that the solution is biologially plausible? howan we �nd these solutions in an e�ient manner?Anestral reonstrution methods require three basi steps: identi�ation of ommon markersin the ontemporary genomes (see setion 2.1), onstrution of omparative maps of the genomes(using the permutation model, see setion 1.2), and reoniliation of these maps using a riterionof maximum parsimony to reonstrut anestral maps. Computational reoniliation is mostoften formulated as the multiple genome rearrangement problem [SSK96, HCKP95℄: given a setof N ontemporary genomes and a distane d, �nd a tree T with the N genomes as leaf nodesand assign permutations (plausible anestral arhitetures) to internal nodes suh that D(T ) =

∑

(π,γ)∈T d(π, γ) is minimized. When N = 3 this is alled the median genome problem. Sanko�and Blanhette [SB97℄ developed a method based on the breakpoint distane for unihromosomalgenomes, while Caprara used the reversal distane [Cap99, Cap03℄ to �nd an anestral genomefor 3 permutations. As for Bourque and Pevzner, they provide algorithms to reover anestralmultihromosomal genomes based on rearrangement distane [BP02℄. In both ases the mediangenome problem was proved to be NP-hard (see [Bry98, PS98℄ for the breakpoint distane and[Cap99, Cap03℄ for the reversal distane).All of these methods provide a global solution to the median genome problem, whih is thebasi problem in the reonstrution of evolutionary trees. In what follows, we will present43



Chapter 2. From ommon markers to evolution senariosthe breakpoint-based and rearrangement-based methods respetively proposed by Sanko� andBlanhette [SB97, SB98℄, and Bourque and Pevzner [BP02℄. Finally, we will show that forwhihever distane on whih the resolution of the median genome is based, the lak of biologialonstraints in in silio methods leads to non representative medians and thus to problematireonstruted trees.2.4.1 Breakpoint-based methodSanko� and Blanhette [SB97℄ propose to resolve the genome median problem based on break-point analysis by reduing it to the Travelling Salesman Problem (TSP) (introdued in [BLW76℄).They give an algorithm for three unsigned unihromosomal genomes whih is easily extensible tothe anestral reonstrution for signed genomes and for more than three genomes. Finally, basedon the resolution of the genome median problem, several strategies are onsidered to reonstrutthe phylogeneti tree [BBS97, SB98℄. Algorithms presented below are integrated in the softwareBpAnalysis and reimplemented in GRAPPA [BMW+, MWB+01℄ whih propose faster runningtimes [MTWW02℄.Median genome problemIn what follows, we present the initial algorithm given in [SB97℄ for the median problem in thease of unihromosomal and unsigned genomes de�ned on the same set of markers G, then wepresent its extension to unihromosomal and signed genomes.Redution to TSP for unsigned genomes To redue the median genome problem to TSP,genomes and their adjaenies are interpreted in terms of the graph theory. Genomes are repre-sented by a omplete weighted graph G. Verties of G are elements of G. An edge {g, h} linkingtwo verties g and h represents the adjaeny between the elements of G orresponding to g and
h. Let u(gh) be the frequeny of this adjaeny in the 3 genomes, that is, the number of genomesin whih it appears (from 0 to 3). TSP onsists in determining an Hamiltonian path of minimalost, the weight of an edge {g, h} being de�ned by w(gh) = 3 − u(gh). Thus, applying TSP to
(G,w) leads to an optimal genome A that minimizes the breakpoint number between A and theonsidered genomes. Sanko� and Blanhette use a branh-and-bound algorithm for whih theyde�ne a lower bound.Denote by P ⊆ E(G) the set of available edges. This set is disjoint from the fragment F ⊆
E(G), that orresponds to the seleted edges at a given instant in the onstrution of A. Let
score =

∑

{g,h}∈F w(gh). Clearly, it is not neessary to go through branhes of the searh treethat have a possible minimum sore greater than the best sore that has already been omputed.De�nition 31 The availability of a vertex g ∈ V (G), denoted by a(g), is equal to 2, 1 or 0depending on whether g is inident to 0, 1 or more than one edge in F , respetively.Let µ(g) be the sum of the a(g) smallest weight(s) of edges in P inident to g. A path A ofweight WA providing a solution to TSP, is onstruted from the set of edges in F with someedges from P . Let ν(g) be the sum of weights of the a(g) edges from A in P inident to g.Clearly, µ(g) ≤ ν(g). Then,
WA = score +

∑

{g,h}∈E(A)∩P

w(gh),44



2.4. Global methods for anestral reonstrution
WA = score +

1

2

∑

g|{g,h}∈E(A)∩P

w(gh).The weight of an edge in E(A) ∩ P is doubly ounted:
WA = score +

1

2

∑

g|{g,h}∈E(A)∩P

ν(g).Sine µ(g) ≤ ν(g), the lower bound is de�ned by:
L(P ) =

1

2

∑

g|{g,h}∈E(A)∩P

µ(g).

L(P ) is used as a lower bound in the branh-and-bound algorithm BBF (algorithm 4) usedby algorithm 5 to ompute a median genome. The searh is reursive. The algorithm is greedyuntil it �nds the �rst solution whose the sore represents an upper bound for the rest. If its ost
U = L(E(G)), then this solution is optimal. Other bounds exist but Sanko� and Blanhettehose this one beause it is easily adaptable to anestral searh for more than 3 genomes.Algorithm 4 BBF(P,F,A, score, best)if |F | = |V (G)| and score < best thenConserve A = F as best urrent solution

best← scoreend ifif |F | < |V (G)| thenif L(P ) + score < best thenhoose {g, h} ∈ P to add to Fwhere a(g) > 0, a(h) > 0 and w(gh) as small as possible,and F ∪ {{g, h}} is not a yle of less than |V (G)| verties.BBF(P − {{g, h}}, F ∪ {{g, h}}, A, score + w(gh), best)BBF(P − {{g, h}}, F , A, score, best)end ifend ifAlgorithm 5 genome median omputationRequire: A ompleted and weighted graph (G,w)Ensure: A solution A to TSP for (G,w)
V (A)← V (G)
F ← ∅
P ← E(G)
score← 0
best←∞BBF(P ,F ,A,score,best)Adaptation to the signed ase When marker signs are known, they partiipate in thedetermination of breakpoints (see setion 1.3.3): for an adjaeny g.h between two elements g45



Chapter 2. From ommon markers to evolution senariosand h in a signed genome, there is no breakpoint if either g.h or −h. − g appears in the othergenome. In addition to the determination of the order of elements, redution to TSP has also to�nd the sign of eah element. To do so, the graph model of genomes has to be slightly modi�ed.Two verties of G are assoiated with eah element g: g and −g. Thus, the set of vertiesof G is V = {g1, g2, .., gn,−g1,−g2, ..,−gn} for a set of G = {g1, g2, .., gn} markers. The signedelement g is then represented by the edge {g,−g}. Consequently, for eah edge {g, h} in E(G),denote by u(gh) the number of genomes where −g and h are adjaent. Weights of edges are thenomputed in the following way: w(gh) = 3−u(gh) if g 6= −h; if g = −h, this edge is used to linktwo verties representing an unique element and has to be over by the solution path. A value
−M has to be attributed to w(gh) suh that M is su�iently high in order to fore the preseneof this edge in the obtained path.Proposition 1 (Sanko� and Blanhette [SB97℄) If s = s1,−s1, s2,−s2, .., sn,−sn is a so-lution to TSP on the graph (G,w) then the genome median is given by S = s1s2...sn.In the same way, it is possible to ompute a lower bound L(G) suh that µ(g) = −M + mwith m the smallest weight of edges inident to g.Generalization to more than 3 genomes The median problem an be applied for N > 3genomes. In this ase, it orresponds to a ompletely unresolved tree where there are N + 1verties with N leaves (ontemporary genomes) and one vertex of degree N that is the mediangenome. Based on the proedure BBF given before (algorithm 4), this is done by modifying
w(gh) whih beomes N − u(gh).Phylogeneti tree reonstrutionTo solve the multiple rearrangement problem, Blanhette et al. [BBS97℄ and Sanko� and Blan-hette [SB98℄ give a heuristi analogous to the iterative improvement method of Sanko� et al.[SCL76℄ adapted for the genomis ontext in [SSK96, FNS96℄.The latter is based on a �xed phylogeneti topology seen as an unrooted binary tree T . The
N leaves of T orrespond to onsidered genomes and the anestral genomes that are sought arerepresented by its N − 2 internal nodes. This is a phylogeneti version of the Steiner problemthat onsists in iteratively improving anestral genomes by solving the median genome problemfor the 3-stars de�ned by an intermediate vertex and its immediate neighbours.This strategy requires one to initialize internal permutations. In fat, the global optimalityof the obtained tree depends on this initialization step. That is why Sanko� and Blanhette[SB98℄ (see also [BBS97℄) propose several initialization strategies. Assigning values to internalnodes an be done arbitrarily by assigning random permutations. A more reasonable solutionassigns permutations by onsensus from the three losest genomes in extremities. However, sim-ulations realized by the authors to ompare initialization strategies show that more omplexmethods prove to be more e�ient. These methods are based on the resolution of an initial TSPwhere edge-weights are either the average of the orresponding edge-weights at the three im-mediately neighbours, or omputed by dynami programming minimizing adjaeny disruptionsand reations.2.4.2 Rearrangement-based methodSetion 2.4.1 presents Sanko� and Blanhette's work on the median problem based on breakpointstudy. The breakpoint number between two genomes leads to a lower bound for the rearrange-46



2.4. Global methods for anestral reonstrutionment distane between the two same genomes.Although these two distane measures are losely related, it turns out that the study of re-arrangements for reonstrution of phylogeneti trees is more representative from the biologialpoint of view than the one of breakpoints [SM01, MSTL02℄. Bourque and Pevzner were in-terested in this problem in the unihromosomal ase as well as the multihromosomal one andimplemented a program for tree reonstrution alled MGR [BP02℄ that relies on another toolfor distane omputation, namely GRIMM [Tes02b℄. To present Bourque and Pevzner's method,we �rst apply it to N = 3 genomes (the median genome problem) and then give extensions for
N > 3 genomes (the multiple genome rearrangement problem).Median genome problemUnihromosomal genome method Let G1, G2, G3 be three unihromosomal and signedgenomes de�ned over the same set of gene markers G. For this kind of genome, only one typeof rearrangement is taken into the aount: reversals. Bourque and Pevzner's method [BP02℄onsists in applying suessive reversals to G1, G2 or G3. From the parsimony priniple, reversalsto apply, alled good reversals, are intuitively those whih make ontemporary genomes loserto the searhed anestor. But whih are these reversals sine the median genome is unknown?Bourque and Pevzner indiate and on�rm by simulation that a reversal applied to a genomewhih movers this genome loser to the other two an reasonably be onsidered as a good reversal.Thus, the proposed algorithm applies good reversals to G1, G2 or G3 in order to make themonverge towards an unique permutation: the anestor.De�nition 32 Let G1, G2, G3 be the onsidered genomes for the median problem. A goodreversal ρ applied to G1 is a reversal suh that: d(G1.ρ,G2) < d(G1, G2) and d(G1.ρ,G3) <
d(G1, G3). De�ned similarly for G2 and G3.Denote by ∆(ρ) the global redution of reversal distanes ∆(ρ) = d(G1, G2) + d(G1, G3) −
(d(G1.ρ,G2) + d(G1.ρ,G3)). A reversal dereases the distane between two genomes by at most
1, then a good reversal ρ veri�es ∆(ρ) = 2. It is possible to enumerate all the possible goodreversals appliable to G1, G2 or G3. However, there are two problems: if several good reversalsexist, whih should one apply? If there is no good reversal, whih reversal should be appliedthen?It is important to note that there are interations between reversals. If two reversals havedisjoint spans then applying one has no onsequene on the other. Nevertheless, if their spansoverlap, applying one reversal an modify the �quality� of another. Thus, the number of goodreversals in resulting permutations an vary as a funtion of the good reversal applied. Bourqueand Pevzner base their method on the hypothesis that good reversals applied in the orretorder a�et the less likely good reversals that are available, and so they de�ne the notion of bestreversal.De�nition 33 Let nρ the number of good reversals after applying ρ. A best reversal ρ amonggood reversals is suh that nρ is maximal.When the number of good reversals is su�ient to onverge towards an unique permutation, thethree genomes form a perfet triangle (see �gure 2.14 for an example). In the ontrary ase, if allof the good reversals are used up, a best reversal ρ with ∆(ρ) < 2 has to be found. Bourque andPevzner propose a searh of depth k in the tree of possible reversals whih minimizes the globalsum of reversal distanes for eah pair of genomes. Let ρ1, ρ2, .., ρk be a sequene of k reversals47



Chapter 2. From ommon markers to evolution senariosapplied to G1, then they de�ne ∆(ρ1, ρ2, .., ρk) = d(G1, G2) + d(G1, G3) − (d(G1.ρ1..ρk, G2) +
d(G1.ρ1..ρk, G3)) as the global redution of reversal distanes for this sequene of reversals.De�nition 34 Let ρ1, ρ2, .., ρk be the sequene of reversals applied to G1 suh that ∆(ρ1, ρ2, .., ρk)is maximal. If there is no good reversal, the best reversal in G1 is the �rst reversal ρ1 of thesequene suh that ∆ is maximal. De�ned similarly for G2 and G3.

G1: 1 2 3 4 5 6 7 8 9
G2: 1 2 − 3 4 − 6 − 5 7 9 − 8
G3: −1 2 − 3 − 4 5 6 7 9 − 8
A: 1 2 − 3 4 5 6 7 9 − 8

Genomes G1 G2 G3

G1 0 4 5

G2 4 0 3

G3 5 3 0

G1 G3

G2

A

reversal(−6 − 5)
reversal(8 9)reversal(−9)reversal(3) reversal(−1)reversal(−4)

Figure 2.14: Perfet triangle formed by genomes G1, G2 et G3 from [BP02℄. MGR gives anoptimal anestor A for these genomes as well as optimal senarios. The table indiates distanesfor eah ouple of genomes: they are equal to those found in the onstruted genomi tree goingthrough A.The algorithm onsists in applying a suession of best reversals �rst taken among good re-versals.Adaptation to the multihromosomal ase In the ase of multihromosomal genomes, thenumber of onsidered operations is higher: transloations, fusions and �ssions added to reversalsare the most frequent rearrangements in multihromosomal genomes.Bourque and Pevzner generalize the algorithm given for unihromosomal genomes using therearrangement distane rather than the reversal distane. Notions of global redution ∆(ρ) for areversal ρ, good, and best reversals are extended to multihromosomal ase as global redution
∆(ρ) for a rearrangement ρ, good, and best rearrangements aording to the rearrangementdistane.However, the hoie of the rearrangement to apply is more onstrained in the multihromosomalase. In fat, there exists a situation spei� to multihromosomal genomes: for 3 multihro-mosomal genomes, all possible ouples of genomes an have a rearrangement distane equal to1 (see example 2.15). Thus, reonstruted anestor an be equally G1, G2 or G3. In order toresolve this ambiguity, Bourque and Pevzner give priority to reversals and transloations against�ssions and fusions in the hoie of good and best rearrangements, starting from the observation48



2.4. Global methods for anestral reonstrutionthat the two �rst types of operations are the most frequent in studied speies (i.e. mammaliangenomes).
G1 = {1 2 3 4 5}
G2 = {1 2 − 5 − 4 − 3}
G3 = {1 2, 3 4 5}Figure 2.15: Example from [BP02℄ of three multihromosomal genomes, G1, G2 and G3, all atdistane 1 from eah other. A reversal separates G1 from G2, a �ssion separates G1 from G3 and

G2 from G3.Another biologial onstraint is presented in [BP02℄. It is based on the following hypothesis:a good rearrangement is a rearrangement that does not break a onserved adjaeny.De�nition 35 A pair of elements g.h is a onserved adjaeny if g.h or its opposite, −h.− g,is present in all genomes as onseutive elements.In fat, aording to the parsimony priniple, it is less likely that nature breaks an adja-eny to form it again later. However, the hypothesis suh as it is formulated by Bourque andPevzner, does not seem to bring a new onstraint in anestral reonstrution. By onstrution, aonserved adjaeny between two genomes annot be broken during the omputation of a parsi-monious senario being reonstruted later. This runs ounter to the parsimony riterion. Thus,rearrangements that break an adjaeny onserved in N genomes annot exist in a parsimonioussenario.Multiple genome rearrangement problemResolving the multiple genome rearrangement problem is based on the same priniple as forthree genomes. However, the notion of good rearrangement has to be rede�ned with respet to
N genomes. This is done by rede�ning the global redution ∆(ρ) of rearrangement distanes forthe rearrangement ρ applied to the genome Gi:

∆(ρ) =
∑

j 6=i

d(Gi, Gj)−
∑

j 6=i

d(Gi.ρ,Gj)De�nition 36 Let N be the number of onsidered genomes. A good rearrangement ρ applied to
Gi is a rearrangement that dereases the rearrangement distane between Gi and all the N − 1other genomes by ∆(ρ) = N − 1.Contrary to the median genome problem, we must determine the starting point for the treereonstrution. Two strategies are onsidered: the �rst onsiders all N genomes and progressesbit-by-bit towards a ommon anestor; the seond starts from the median problem (for 3 genomes)and, by suessive additions of one genome, determines a phylogeneti tree.The �rst method desribed is without onstraint: good rearrangements are applied until 2genomes onverge towards an unique permutation. The operation is done again for N−2 genomesand the reonstruted intermediate anestor. This proess is reiterated until the omplete reso-lution of the median problem for the three last genomes. This method is hardly appliable when49



Chapter 2. From ommon markers to evolution senarios
N is high and good rearrangements are quikly used up. That is why Bourque and Pevznerpropose the seond method.The seond tehnique is onstrained by rearrangement distanes. In fat, the starting pointonsists in solving the median problem with the 3 losest genomes in terms of rearrangements.Then, supplementary genomes are suessively added to the partially onstruted tree T . Let
G1, G2, .., Gl be the genomes already plaed into the tree T . In order to plae the genome Gl+1into the tree, one has �rst to determine whih edge of the tree has to be divided to insert Gl+1,and seond to minimize rearrangement distanes between leaves. The plaement heuristi hosenby Bourque and Pevzner to loate Gl+1 is still based on rearrangement distanes: the edge todivide is the one for whih its two extremities and the genome Gl+1 form a perfet triangle orat least ome to it as lose as possible. Thus, for eah edge {u, v} of T , the median genome A of
u, v and Gl+1 is omputed. Bourque and Pevzner de�ne then the addition ost of a genome toan edge.De�nition 37 The addition ost of a genome Gl+1 to an edge {u, v} is: C(u, v) = d(u,A) +
d(v,A) + d(Gl+1, A)− d(u, v) where A is the median genome of u, v and Gl+1.The edge {u, v} to divide for inserting Gl+1 is the one for whih C(u, v) is minimal. Byonstrution, the inferred anestor onverges towards speies that are lose to eah other.2.4.3 Other works based on parsimonyThe multiple genome rearrangement problem is widely treated in the literature. We have alreadymentioned the method based on the reversal distane proposed by Caprara [Cap03℄ based on thebreakpoint graph model of Hannenhalli and Pevzner [HP95a℄. Another approah was proposed bySiepel and Moret [SM01℄ that permits the extension of GRAPPA software [BMW+℄ by replaingthe breakpoint median routine by a reversal one.Other repertoires of operations were onsidered to solve the multiple rearrangement problem.For example, Adam and Sanko� [AS08℄ developed an approah similar to that of Bourque andPevzner [BP02℄, but taking into aount transpositions and blok-interhanges whih an beseen as a generalization of transpositions (exhanged segments in blok-interhange an not beontiguous) as well as reversals and transloations. This set of operations is grouped in the DCJ(Double-Cut-and-Join) model introdued by Yanopoulos et al. [YAF05℄.All of these studies impliitly start from genomes with the same marker ontent where eahmarker is present in exatly one opy. It is not rare that studied genomes have several opiesfor a marker (e.g. marker families). Starting from a ontemporary genome where eah markerappears twie, El-Mabrouk and Sanko� [EMS03℄ propose to reover the anestral dupliatedgenome under the whole-genome dupliation hypothesis by minimizing the number of reversalsand/or transloations based on Hannenhalli and Pevzner's theory [HP95a, HP95b℄. Zheng etal. [ZZAS08℄ adapted this method to the genome halving problem by guiding the reonstrutionwith one or several outgroup genome(s) that diverged before the genome dupliation event.As well as whole genome dupliation event, dupliations at a segmental level exist. The latterase was studied by El-Mabrouk [EM02℄ who proposed an algorithm that omputes an anestralgenome without dupliation from a genome having marker families of any size by minimizingreversals and dupliation transpositions. In the same paper [EM02℄, this method is used inorder to extend the multiple genome rearrangement algorithm based on breakpoint analysis[SB97, BBS97, SB98℄ by taking into aount dupliation events.50



2.5. Piee-wise reonstrution2.4.4 Lak of biologial onstraintsMedians are not uniqueA onsiderable drawbak to formulating the problem as the searh for a single omplete assem-bly that minimizes the sum of genome distanes, is that the set of mathematially equivalentsolutions is quite large and widespread. For example, in [BZB+05℄ more than 3000 solutions arefound for the human-murid anestor, and indeed a statistial study of the variane between min-imal solutions by [Eri07℄ suggests that reporting an unique median arhiteture is misleading,partiularly when medians are the basis of phylogeneti tree reonstrution. A more realistiapproah is to onsider what ommon strutural features of anestral genomes might be found.Partial reoniliation of omparative maps identi�es permutations of markers as above but doesnot neessarily provide a total order between segments (see setion 2.5).In silio versus ytogeneti methodsA wider debate exists between the proponents of the in silio approah through rearrangement-based methods and the proponents of the ytogeneti approah. Exempli�ed by Froenike etal. [FCG+06℄, the latter group argues essentially that under-sampling in the in silio approahombined with the tendeny of losely related genomes to attrat the median, leads to non-unique results that diverge from those found using ytogeneti methods. Bourque et al. in theirresponse [BTP06℄ argue that under-sampling will disappear with time and that the distintionbetween strong and weak adjaenies (present or not in all explored reonstrutions) identi�edin the in silio method permits reliable omparison between the di�erent approahes. Moreover,in silio method overome ertain problems of ytogeneti reonstrution: small segments (< 1Kb), interhromosomal and intrahromosomal rearrangements as well as marker orientation anbe studied.Rohi et al. in their perspetive [RAS06℄ suggest that a ombination of the two approahesshould lead to more realisti anestral arhitetures, but furthermore that it is neessary to bettermodel biologial onsiderations, espeially entromere repositioning and segmental dupliation.2.5 Piee-wise reonstrutionIn the previous setion, we have seen that reporting an unique global median arhiteture ismisleading. A more realisti approah is to onsider what ommon strutural features of anestralgenomes might be found. Partial reoniliation of omparative maps identi�es permutations ofmarkers as above but does not neessarily provide a total order between segments.In what follows, we present the method of Ma et al. [MZS+06℄ for �nding ontiguous anestralregions (CARs) by assigning to eah node of a given phylogeneti tree a set of adjaenies thatrepresent a onsensus between those found in ontemporary genomes, omputed using a methodanalogous to Fith's parsimony method [Fit71℄ and relying on knowledge of the phylogenetitree. However, we will show that onsideration of phylogeny for the reonstrution of anestralarhiteture is not ompletely justi�ed sine no proof has been provided that reombinatoryevolution oinides with mutational evolution.2.5.1 Method from phylogeneti dataMa et al. [MZS+06℄ propose a omputational method to predit the order and orientationof onserved segments in the anestor through the detetion of CARs (Contiguous Anestral51



Chapter 2. From ommon markers to evolution senariosRegions), that represent onsistent parts in the anestor. Their method is based on adjaeniesin ontemporary genomes, requires a phylogeneti tree and is quite similar to Fith's parsimonymethod [Fit71℄, nuleotides being replaed by adjaenies as elements of phylogeny.Predeessor and suessor graphsLet Tp be the onsidered phylogeneti tree where leaf nodes are ontemporary genomes. Amodern genome is represented by permutations as it is desribed in setion 1.2.1. Dupliationevents are not take into the aount. However, it is not expliitly spei�ed whether ontemporarygenomes share exatly the same set of markers.Inferring CARs onsists in �nding an unique predeessor and suessor for eah element in theanestral genome. First, Ma et al. independently solve predeessor and suessor searhes by atwo-step method. In what follows, we present the predeessor searh.The �rst stage omputes a set Pu(i) of possible predeessors for an element i in the node u in abottom-up fashion. In the ase where u is a leaf node, Pu(i) is a singleton representing the uniquepredeessor of i in u. Otherwise, u has two hild nodes, v and w, and Pu(i) = Pv(i) ∪ Pw(i) or
Pu(i) = Pv(i)∩Pw(i) depending on whether sets Pv(i) and Pw(i) are disjoint or not. This is donefor all nodes of Tp inluding outgroups until the ommon anestor R of all speies is reahed.The information on predeessors an be summed into a graph alled Predeessor graph foreah node u. The predeessor graph for a node u of Tp is a direted graph where eah marker isrepresented by two verties (positive and negative versions). Two speial verties (symbol 0 forboth) are added to represent the beginning and the end of a hromosome. An edge (a, b) of apredeessor graph means that the element a belongs to the set Pu(b).The seond step onsists in re�ning, for anestral nodes, predeessor graphs built during the�rst stage by propagating PR(i) down the tree. During the desent in the tree, designate by
A and D anestor and its desendant along a branh. For eah i of D, PD(i) is re�ned in thefollowing way: PD(i) = PD(i)∩PA(i) if PD(i)∩PA(i) 6= ∅; otherwise, PD(i) remains unhanged.Similarly, sets of suessors for eah element i of a node u of Tp, Su(i) are inferred and lead tosuessor graph onstrution. In a suessor graph of a node u, an edge (a, b) means that theelement b belongs to the set Su(a).Graph reoniliation into CARsClearly, predeessor and suessor graphs of a leaf node are idential while those for anestralnodes generally di�er. However, they are not totally di�erent and ommon parts an be extratedfrom a new graph G obtained by the intersetion of the predeessor and suessor ones.Ambiguities for some elements may still remain: an element i an (a) have several possiblepredeessors in G, or (b) have several possible suessors, or () partiipate in a yle of G. Inorder to hoose an unique predeessor and suessor for an element in G, G is transformed intoa weighted graph aording to phylogeneti information. The weight wA(i, j) of an edge (i, j)of the graph G of a anestral node A is 1 if neither i nor j are in ambiguous ase (a) or (b);otherwise,

wA(i, j) = L(A,L).wR(i,j)+L(A,R).wL(i,j)
L(A,L)+L(A,R)where L(A,R) (L(A,L), respetively) is the length of the branh linking an anestral node A toits right (left, respetively) hild. Note that if L (R, respetively) is a leaf node, then wL(i, j) = 1if edge (i, j) belongs to its predeessor graph, and wL(i, j) = 0 otherwise.Based on this weighted graph for an anestral node A, Ma et al. propose a greedy heuristi52



2.5. Piee-wise reonstrutionapproah to ompute a set of paths that over all the nodes in G, trying to maximize the totaledge weights in all of them. This is done by a onstrutive algorithm that tries to add edgesto paths representing CARs starting from the edges of greatest weight. An edge is retainedin resulting paths if its addition does not ause an ambiguous ase (a) or (b). This proess isrepeated until no more edges an be added. To solve the ambiguous ase () in the resultinggraph, Ma et al. laim that if suh a ase appears then the weight of eah edge in the formedyle is 1. Consequently, disarding any edge to break the yle is su�ient. See example 2 fora omplete illustrated ase. A(1 -2 4 8 9 • 5 6 -10 -7 -11 12)B(1 2 3 4 5 6 • 7 8 -9 10 11 12)C(1 2 3 • 4 -5 6 • 7 9 -8 10 -11 12)O(1 3 4 -5 6 • 7 -12 8 11 9 10)F E D0.30.7
0.3 0.90.3

0.8

Figure 2.16: The phylogeny of genomes A,B, C [MZS+06℄. The target anestor is E, and O is theoutgroup. The bullet symbol separates hromosomes. Branh lengths are above eah branh.
1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.17: Predeessor graph of A from [MZS+06℄.
1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.18: Predeessor graph of B from [MZS+06℄.Example 2 Figures 2.17 to 2.26 are those of the pratial example given by Ma et al. in[MZS+06℄. Given a phylogeny between genomes A, B and C (see �gure 2.16), predeessor graphsof A, B and C are diretly onstruted from the leaf genomes (see �gures 2.17, 2.18 and 2.19).Figures 2.20, 2.21 and 2.22 represent the predeessor graphs of internal nodes D, E and F ob-tained after the bottom-up step. Predeessor graph of E (see 2.23) is adjusted by propagating thepredeessor graph of F. In the same way, the �nal suessor graph of E is obtained (see 2.24).53
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1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.19: Predeessor graph of C from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.20: Predeessor graph of D from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.21: Predeessor graph of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.22: Predeessor graph of F from [MZS+06℄.Resulting CARs (see �gure 2.26) are determined from intersetion of predeessor and suessorgraphs of E (�gure 2.25) where ambiguities are solved based on phylogeny information.CARs with dupliationsThe initial method of Ma et al. for inferring CARs does not inorporate dupliation events.Reently, in [MRR+08℄, Ma et al. propose a heuristi algorithm alled DUPCAR that is anextension of CARs method by inluding dupliations based on a set of gene trees in addition toa phylogeneti tree and a set of ontemporary genomes.54



2.5. Piee-wise reonstrution
1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.23: Predeessor graph of E after being adjusted by F from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0
Figure 2.24: Suessor graph of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 0

Figure 2.25: Intersetion of the predeessor and suessor graphs of E from [MZS+06℄.1 2 3 4 5 6 7 8 9 10 11 12-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -120 00.540.54
0.200.25

0.25 0.200.250.25 0.540.54
Figure 2.26: The resulting CARs from [MZS+06℄.2.5.2 Phylogeny vs evolution mehanismsThe method proposed by Ma et al. does not try to solve the multiple genome rearrangementproblem and learly leans on phylogeneti data to predit an anestral genome. Phylogeny rela-tionships between speies are inferred aording to the rate of mutations in genomi sequenes.Another evolutionary measure between speies onsists in omputing rearrangement or break-point distanes based on a mathematial model for genomes. While the former implies a temporalnotion, the latter does not provide information on the time-sales of the rearrangement events.Although these two measures may onverge towards similar results, it is not systemati. In-55



Chapter 2. From ommon markers to evolution senariosdeed, some authors propose to study the relationship between the phylogeneti distribution ofspeies and the disruption of synteni bloks via hromosomal inversion events (see [BSR+08℄for appliation to Drosophila genomes).However, in the ase of the multiple genome rearrangement problem for whih we present twomethods (see setion 2.4.2 for rearrangement-based method and setion 2.4.1 for breakpoint-based one), the authors speak in terms of phylogeneti tree reonstrution. Aording to theparagraph above, the use of this term is somewhat misleading sine rearrangements represent adi�erent measure of evolution: thus we will prefer using the notion of rearrangement tree, thatan be by de�nition di�erent from the phylogeneti tree for the same set of speies.
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Part IISyDiG: unovering Synteny in DistantGenomes
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Chapter 3SyDiG algorithmComparative analysis of omplete genomes has over the past ten years provided inreased under-standing of the proesses and mehanisms of evolution, development, and gene regulation. Onearea where signi�ant insight has been obtained is genome rearrangements, where the meha-nisms of hromosomal dynamis have been explored through omparison of hromosomal mapswithin and between speies. A key prerequisite for suh studies is the aurate identi�ationof genome synteny, sine onserved gene order between two (or more) related speies indiateshromosomal homology inherited from their ommon anestor.In setion 2.1, we presented several omputational methods for the identi�ation of genomesynteny. In partiular, we foused our attention on GRIMM-Synteny [PT03a, BPT04, BZB+05℄,whih determines synteny bloks with the expliit aim of studying rearrangements. However,all of these methods perform well on the `low-hanging fruit' of highly similar (e.g. mammalian)genomes, but less well on highly divergent genomes with extensive map reshu�ing.In this hapter we present a new algorithm, alled SyDiG (Synteny in Distant Genomes) thatproesses omplete genome sequenes in order to infer ross-speies synteny, and algorithms withthe ability to handle speies having a large evolutionary span. Our method omputes syntenybloks for N ≥ 2 genomes. It is a three-step proess. First, we perform a pre-proessing step thatonsists in determining homologous genes and, from those, in omputing multiplions of leveltwo using AdHoRe routine [VSS+02℄. Multiplions onstitute the starting point of our studyand all of the homology information ontained in them is desribed in terms of graph theorythrough the synteny graph. Seond, based on this graph, we try to extend ertain homologies bytransitivity. Finally, initial homology information and supplementary homologous elements areused to reonstrut synteny bloks.3.1 Pre-proessingThe starting point for synteny identi�ation is the de�nition of pairwise homology relationshipsbetween genomes. We use the onsensus lustering algorithm [NS07℄, although raw lusteringmethods an be used suh as [EDO02℄.Sequene similarity is generally deteted either at the DNA level or by relying on genomimaps. In the latter ase, the study of gene order makes it possible to detet homology even forhighly divergent hromosomi regions. This is exatly the role of i-ADHoRe [SVSP04, SJSV08℄,a method, explained in setion 2.1.2, for identifying segments of hromosomal homology (multi-plions) through the identi�ation of gene order and ontent onservation.Reall that a multiplion is formed by one or several homologous genomi segments and its59



Chapter 3. SyDiG algorithmlevel indiates the number of segments it ontains. In this study i-ADHoRe is solely used toompute level two multiplions that will be simply alled multiplions in the rest of the hapter.Notie that i-ADHoRe determines the multiplions based on gene order. Hene, the oordinatesystem used is at gene level: eah element of a genomi segment is mapped to a gene and eahhromosomi segment is delimited by two genes, one on eah side.Multiplions obtained by i-ADHoRe orrespond to homologies between two genomi segments(belonging to the same genome or not). The goal now is to re�ne these homologies into syntenybloks for the set of onsidered genomes {G1, .., GN}. We do this by analyzing the ompositionof eah multiplion and omputing the synteny bloks using transitivity relations.3.2 Synteny graphThe �rst step is to assemble all the information ontained in the multiplions into a graph. Thisgraph has to represent two types of information: �rst, homology between genomi segments;seond, possible overlaps between multiple segments of the same hromosome. Let {G1, .., GN }be the set of genomes for whih we want to ompute synteny bloks and M be the set ofmultiplions obtained by AdHoRe for these genomes.For the needs of the method, we propose a more formal de�nition of the notion of multiplion.Let M = 〈I1, I2, A〉 be a (level two) multiplion where I1 and I2 denote the genomi segmentsthat it ontains, and A is the set of anhors within it. We note a genomi segment Ii as a sequeneof genes Ii = (gi
b, .., g

i
e) suh that gi

b and gi
e represent the gene boundaries of this segment. Agene gi

j of a genomi segment Ii is a pair 〈pj , cj〉 suh that pj is its relative position on thehromosome cj . If two genes g1
i ∈ I1 and g2

j ∈ I2 form an anhor in M , then 〈g1
i , g2

j 〉 ∈ A.Figure 3.1 shows an example of multiplions for N = 5 genomes. This same example will befollowed through the hapter.The synteny graph G is de�ned from the setM of multiplions for the N genomes under study.De�nition 38 A synteny graph G = (V,E) is a non-oriented edge-olored graph suh that- V = {gi
j | gi

j ∈ Ii ∈M ∈M} is the set of all genes partiipating in a multiplion,- E is the edge set suh that ∀e = {gi
n, gj

m} ∈ E either gi
n and gj

m form an anhor in amultiplion of M (dashed edge), or gi
n and gj

m are onseutive on the same hromosome(blak edge).In this graph, we an distinguish three types of verties:(1) boundary verties orrespond to gene boundaries of genomi segments partiipating in amultiplion,(2) anhor verties orrespond to genes that form an anhor with some other gene and are notboundaries of any genomi segments,(3) interleaving verties are the other verties that are neither a boundary nor an element ofan anhor.Note that boundary verties always form an anhor, sine AdHoRe omputes multiplions insuh a way that extremities of genomi segments that de�ne them are determined by the leftmostand rightmost oordinates of their anhors. Thus, a gene an be both a boundary of one or several60



3.2. Synteny graph
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Chapter 3. SyDiG algorithmgenomi segments taking part in multiplions and a simple anhors in other segments. An anhorvertex is a gene that forms an anhor stritly inside one or several multiplions.Figure 3.2 shows the synteny graph obtained for the 5 genomes and their multiplions of �gure3.1.
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c suh that(i) gb = 〈pbmin

, c〉 ∈ Ii with 1 ≤ i ≤ k suh that pbmin
= min({pi | gi = 〈pi, c〉 ∈ Ii, 1 ≤ i ≤ k}),62



3.3. Extension of homologous boundaries(ii) ge = 〈pemax , c〉 ∈ Ii with 1 ≤ i ≤ k suh that pemax = max({pi | gi = 〈pi, c〉 ∈ Ii, 1 ≤ i ≤
k}),(iii) 2 onseutive genes on the extended segment belong to the same genomi segment: ∀gi, gi+1 ∈
Imax, ∃I ∈ {I1, .., Ik} suh that gi ∈ I and gi+1 ∈ I,(iv) the extended segment satis�es the riterion of maximality: ∀I 6∈ {I1, .., Ik} et ∀j ∈ [1, k], Iand Ij do not overlap.The set of extended segments obtained for a given synteny graph G is omputed from theonneted omponents of the subgraph of G indued by the blak edges of G. In fat, theresulting subgraph an be deomposed into hains that orrespond to extended segments.The synteny graph of �gure 3.2 ontains 9 extended segments, namely:- S1
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Chapter 3. SyDiG algorithmGroups of homologous boundaries
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3.4. Reonstruting synteny bloksboundaries arises. In order to do this we searh in the groups of homologous genes for a boundaryhomologous to g2
3 in I1

1 (see table 3.2). In this ase, we �nd the gene g1
3 .The algorithm add_boundaries implements this operation. Funtion extended_segment re-turns the extended segment to whih a given genomi segment belongs. In the ase of theaddition of a supplementary boundary, if the urrent boundary has no homologous gene in thetarget genomi segment, then it is neessary to pik a gene in this segment as the homologousone. This is done by the routine loate: the homologous gene is the one that is proportion-ately loated in the target segment at the same plae than the urrent boundary in its genomisegment.Algorithm 6 add_boundaries(S)Require: Set of extended segments SEnsure: Set of extended segments S with new boundaries1: Let B be the set of boundaries for S2: while B 6= ∅ do3: b = shift(B)4: Let I be the set of genomi segments in whih b is inluded5: for all I ∈ I do6: for all I ′ suh that ∃M = 〈I, I ′, A〉 ∈ M do7: if 6 ∃ bh ∈ I ′ suh that bh and b are two homologous boundaries then8: if ∃ ba ∈ I ′ suh that ba and b are two homologous genes then9: S′ = extended_segment(I ′,S)10: Mark ba as boundary in S′11: Add ba in B12: Add ba in the group of boundaries homologous to b13: else14: S′ = extended_segment(I ′,S)15: locate(bnew, S′)16: Mark bnew as boundary in S′17: Add bnew in B18: Add bnew in the group of gene homologous to b19: Add bnew in the group of boundaries homologous to b20: end if21: end if22: end for23: end for24: end while25: return SFor the example of �gure 3.1, six new boundaries are added. All the new boundaries are shownin �gure 3.3. The resulting groups of homologous boundaries are shown in table 3.3.3.4 Reonstruting synteny bloksOne boundary homology is ompletely solved, we de�ne the genomi segments and their homol-ogy relations. In an extended segment, two boundaries form a genomi segment that is neessarilyhomologous with at least one other genomi segment. In order to obtain genomi segments thatare disjoint for a given hromosome, it is su�ient to go through eah extended segment in order,65



Chapter 3. SyDiG algorithm
Final groups of homologous boundaries
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3.4. Reonstruting synteny blokswhere two suessive boundaries delimit a genomi segment. Then, from boundary homology,we dedue homologies between segments delimited by these boundaries. This implies �nding thetwo orresponding boundaries in another genome. If the boundaries are ordered in the same wayfor the two segments, then the mutual interval orientation is positive; if not, then it is negative.The result is the set of groups of homologous genomi segments.Finally, in order to obtain synteny bloks for the N genomes under study, these groups are�ltered in order to keep only those that ontain at least one segment per genome. Final syntenybloks for the example of �gure 3.1 are shown in �gure 3.4.
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9) are also exluded, sine they do not partiipate in syn-teny bloks for all of the onsidered genomes (i.e there are no segments homologous to them inertain genome(s)).Moreover, additional �lters make it possible to adapt obtained synteny bloks as ommonmarkers used in the elaboration of signed permutations in order to study rearrangement events.3.4.1 DupliationsGenerally, the permutation model does not allow dupliation events, so the SyDiG algorithmproposes to keep only the longest segment in a synteny blok where more than one segmentbelongs to one genome. The intuition behind this �lter parameter is that the longer the segment,the smaller the probability that synteny was omputed by hane. Nevertheless, other parametersto hoose between dupliate segments should be onsidered suh as for example synteny blokneighbouring. This is the subjet of future work. 67



Chapter 3. SyDiG algorithm3.4.2 ConatenationIn the same permutation model, identi�ers represent synteny bloks. Under the parsimonyriterion, two identi�ers that are adjaent in all the onsidered genomes annot be separated tobe joined again later. That is why, two modes are implemented in SyDiG algorithm. The �rstone provides all the synteny bloks and permits one to study their respetive genomi segments.The seond mode onsists in onatenating synteny bloks that appear onseutively in all theonsidered genomes. This leads to the onstrution of signed permutations with fewer identi�ers,but enoding exatly the same information as far as a study of rearrangements is onerned.3.5 ComplexityThe SyDiG algorithm determines synteny bloks by onstruting synteny graph and performingoperations on this graph. Synteny graph onstrution is linear in the number of genes involvedin genomi segments partiipating in multiplions. Moreover, omputing extended segments inthe partiular subgraph of the synteny graph indued by blak edges an be omputed in lineartime in terms of the number of verties. Finding groups of homologous genes and groups ofhomologous boundaries an be omputed in both ases in linear time in terms of the number ofverties and dashed edges. Boundaries addition is omputed in O(n3) in the worst ase, where
n denotes the number of verties in the synteny graph. Finally, the reonstrution of syntenybloks is realized by sanning the extended segments and the groups of homologous boundaries:the omplexity in time is thus O(n2). Thus, SyDiG algorithm an be omputed in a simple wayin O(n3) where n denotes the number of genes involved in genomi segments.
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Chapter 4AppliationsNadeau and Taylor [NT84℄ were the �rst to de�ne onserved segments as segments having apreserved gene order with no rearrangements between them. Synteny bloks are built of theseonserved segments, smoothing over the noise due to mirorearrangements. These bloks onsti-tute gene markers that are the starting points for further analysis.Synteny information has various appliations for omparative genomis, suh as omputingrearrangement distanes [HP95a℄ or senarios [Tes02b℄, inferring the least ommon anestor andrearrangement trees [BP02℄. The impliations of the analysis of genomi synteny an reah evenfurther, providing insights into the manner by whih evolution proeeds. This latter topi hasgenerated a quite lively debate on the di�erenes between random breakage and non-randombreakage models of evolution [PT03a, PT03b, TMS04℄.Several methods have been de�ned to respond to the need for �nding ommon markers withingenomes in order to study rearrangements. The main methods presented in setion 2.1, GRIMM-Synteny ([PT03a℄, [BPT04℄, [BZB+05℄) and CHAINNET developed by Kent [KBH+04℄ and usedby Ma [MZS+06℄, are applied to mammal data (human, mouse, rat and hiken for GRIMM-Synteny and human, mouse, rat and dog for the other) and rely on nuleotide-level alignmentsas obtained with tools suh as BLASTZ (for example [SKS+04℄).Comparative genomis analyses obviously rely on the quality of the primary omputation ofgenomi synteny. In this hapter, we revisit the most ommonly used algorithm for syntenyomputation, namely GRIMM-synteny [PT03a, BPT04, BZB+05℄ (see 2.1.1, page 20 for detailsof the method). We argue that this algorithm, whih works well for the mammalian genomes forwhih it was developed, produes results whose quality dramatially dereases with the inreaseof the evolutionary distane. We further identify the issue as a need for more areful homologyidenti�ation as a preliminary step.In the �rst setion, we ompare Grimm-Synteny and SyDiG on mammal and yeast genome sets.Then, we present a pratial appliation to Hemiasomyetous yeasts that leads to rearrangementanalysis presented in hapter 6.4.1 GRIMM-Synteny versus SyDiG algorithmIn order to realize this omparison, we re-implemented GRIMM-Synteny as the software is notpublily available. Our reimplementation was validated using bak-to-bak omparison withresults available on the author's webpage [Tes04℄.The �rst hallenge for omparing the behavior of these algorithms is the judiious hoie of dataproessing. Indeed, GRIMM-Synteny and SyDiG rely on di�erent data. The former proeeds69



Chapter 4. Appliationsby diret sequene alignment at DNA level (leaned up by RepeatMasker [SHG04℄). The latterrelies on the existene of pre-omputed protein families. While DNA alignments suh as BLASTZare reasonable for losely related genomes suh as mammals, only alignments at protein levelan reover distant similarities for speies suh as yeasts [Duj06℄. The data presented below wasretrieved from publi databases on the 17th of June 2008.- Mammal genomes: we have onsidered human, mouse and rat genomes. For these genomes,two sets of data have been retrieved from Ensembl (release 49) and Uniprot (UniRef50,release 13.5, the 10th of june 2008) data.- Yeast genomes (Ashbya gossypii (Ergo), Kluyveromyes latis (Klla), Kluyveromyes ther-motolerans (Klth), Zygosaharomyes rouxii (Zyro), and Saharomyes kluyveri (Sakl)):data were provided by Génolevures and are available as of the 3rd of September 2008.4.1.1 Yeast resultsIn order to apply Grimm-synteny to yeast data, we have omputed 3 data sets from TBLASTXalignments:- unre�ned alignments (206191 alignments),- the longest alignments when several ones overlap (51085 alignments),- the shortest alignments when several ones overlap (59028 alignments).Anhors were omputed by GRIMM-Anhor for the levels from 2 to 5. Results for levels 2 to 4are shown for eah data set in tables 4.1, 4.2 and 4.3. No 5-level anhors are found for unre�nedand longest sets and only one 5-way anhor is found for the shortest set. Based on these results,we do not use GRIMM-Synteny routine to �nd synteny bloks, sine the number of anhors istoo small.SyDiG was used to ompute synteny bloks for the same speies. Numbers of synteny bloksfor respetively two, three and four organisms are shown in tables 4.4, 4.5 and 4.6. A total of640 synteny bloks are de�ned for the set of the 5 genomes (without onatenation).genomes unre�ned longest shortestErgo-Klth 3659 3887 4629Ergo-Sakl 3383 3615 4288Ergo-Zyro 3578 3792 4353Klla-Ergo 3159 3333 3856Klla-Klth 3221 3407 3974Klla-Sakl 3028 3202 3716Klla-Zyro 2926 3107 3537Sakl-Klth 3152 3376 3961Zyro-Klth 3313 3567 4116Zyro-Sakl 3249 3508 4044Table 4.1: 2-level anhors on Hemiasomyete yeasts obtained by GRIMM-Synteny70



4.1. GRIMM-Synteny versus SyDiG algorithmgenomes unre�ned longest shortestErgo-Sakl-Klth 174 184 440Ergo-Zyro-Klth 214 202 441Ergo-Zyro-Sakl 104 103 262Klla-Ergo-Klth 320 181 353Klla-Ergo-Sakl 348 211 387Klla-Ergo-Zyro 314 162 345Klla-Sakl-Klth 47 82 156Klla-Zyro-Klth 112 87 170Klla-Zyro-Sakl 98 124 296Zyro-Sakl-Klth 89 187 247Table 4.2: 3-level anhors on Hemiasomyete yeasts obtained by GRIMM-Syntenygenomes unre�ned longest shortestErgo-Zyro-Sakl-Klth 0 0 14Klla-Ergo-Sakl-Klth 4 4 20Klla-Ergo-Zyro-Klth 17 3 21Klla-Ergo-Zyro-Sakl 11 1 24Klla-Zyro-Sakl-Klth 1 3 12Table 4.3: 4-level anhors on Hemiasomyete yeasts obtained by GRIMM-Syntenygenomes numberErgo-Klth 278Ergo-Sakl 248Ergo-Zyro 338Klla-Ergo 384Klla-Klth 328Klla-Sakl 303Klla-Zyro 381Sakl-Klth 93Zyro-Klth 247Zyro-Sakl 199Table 4.4: 2-level synteny bloks on Hemiasomyete yeasts obtained by SyDiG4.1.2 Mammal resultsResults for GRIMM-Synteny are available on the webpage "Human-mouse-rat alignments" (byGlenn Tesler, the 16th of Marh 2004) [Tes04℄. In order to run SyDiG on the mammalian genomedata, an approximation of protein families is required. We have onsidered two di�erent sets:- the Ensembl ml lustering results (pairwise homology relationships and gene ordered lists)[HAB+07℄,- the UniRef50 lusters (pairwise homology relationships and gene ordered lists) [Con08℄.71



Chapter 4. Appliations genomes numberErgo-Sakl-Klth 324Ergo-Zyro-Klth 439Ergo-Zyro-Sakl 405Klla-Ergo-Klth 490Klla-Ergo-Sakl 484Klla-Ergo-Zyro 554Klla-Sakl-Klth 386Klla-Zyro-Klth 480Klla-Zyro-Sakl 472Zyro-Sakl-Klth 284Table 4.5: 3-level synteny bloks on Hemiasomyete yeasts obtained by SyDiGgenomes numberErgo-Zyro-Sakl-Klth 465Klla-Ergo-Sakl-Klth 542Klla-Ergo-Zyro-Klth 619Klla-Ergo-Zyro-Sakl 604Klla-Zyro-Sakl-Klth 526Table 4.6: 4-level synteny bloks on Hemiasomyete yeasts obtained by SyDiGTo run the AdHoRe [VSS+02℄ routine on our data, we explored di�erent sets of i-AdHoReparameters. To be onordant with results obtained in [BP02℄, we have hosen a gap size of 15,a luster gap size of 20 and 9 as minimum number of anhor points. The number of syntenybloks obtained by the SyDiG algorithm is shown in table 4.7 for eah set of data.genomes Ensembl UniRef50Human-Mouse 144 380Human-Rat 137 215Mouse-Rat 147 244Human-Mouse-Rat 230 465Table 4.7: Synteny bloks on mammals obtained by SyDiG algorithm4.1.3 DisussionThe number of synteny bloks obtained by the two studied methods onerning mammaliangenomes is quite similar. However, the number of anhors for yeast genomes obtained byGRIMM-synteny is low omparing to the number of alignments and moreover the signal withingenomes is lost bit-by-bit when the number of onsidered genomes inreases (no anhor for the5 speies for example).The main issue omes down to the observation that homologous genes orrespond neither toDNA alignments, nor to anhors of level 2. Indeed, two anhors of level 2 annot onsist of thesame nuleotide sequenes from the same genome. Quite to the ontrary, one gene from one72



4.2. Appliation to yeast genomes

Figure 4.1: Di�erene between anhors and homologous genes. We have gene homologiesbetween (g1, g7), (g2, g7), (g3, g8), (g4, g9), (g5, g10), (g6, g11). However, (SI1, SI7) and (SI2, SI7)an not orrespond to any anhor sine SI7 is ommon to two ouples. Other ouples
(SI3, SI8), (SI4, SI9), (SI5, SI10), (SI6, SI11) represent anhors.genome Gi an be homologous to 2 (or indeed many more) genes in another genome Gj (see�gure 4.1).Analysis of these results shows that for mammalian genomes SyDiG performs as well as Grimm-Synteny. While two data sets (UniRef50 and Ensembl) generate slightly di�erent results, theyare both omparable (for appropriately-hosen i-ADHoRe parameters) with the results publishedin [BPT04℄.On the other hand, when dealing with distant speies suh as yeasts, GRIMM-Synteny per-forms quite poorly. The only way to oax out a signal was to perform quite strong alignmentpre-�ltering of the TBLASTX results.A partiularly aute problem is that the GRIMM-Synteny proedure disards n-ary homolo-gies. Not only do these paralogous families ontain biologially pertinent information, they areoften the best andidates for onserved markers between genomes: in the yeasts, for example,half of the genes onserved between speies are members of paralogous families of up to 30 mem-bers, and disarding these homologies an lead to drasti under-identi�ation of hromosomalhomology.4.2 Appliation to yeast genomesWe have applied the SyDiG algorithm in the ontext of the Génolevures projet [DS+04℄ for thease of non-WGD Hemiasomyetous yeasts. The data onsists in 5 ompletely sequened yeastsfrom the Saharomyetaae lades: Kluyveromyes latis (Klla), Saharomyes kluyveri (Sakl),Zygosaharomyes rouxii (Zyro), Ashbya (Eremotheium) gossypii (Ergo) and Kluyveromyesthermotolerans (Klth). These genomes have little genome redundany and a relatively high (for73



Chapter 4. Appliationsyeasts) onservation of synteny.From orthology and synteny relations identi�ed using Génolevures protein families [NS07℄, theSyDiG algorithm obtains 487 synteny bloks for these genomes (mean size 51 genes). Thesesynteni bloks ontain 8�200 genes (mean size 14 genes) and over roughly 60% of eah genome.Basing these permutations only on protein-oding genes is su�ient, sine yeast genomes arehighly ompat (protein-oding genes over approximately 80% of the genome), and gene relisare quite rare (approximately 4%) [Duj06℄. By ombining pairwise syntenies, eah genome wasfatored into a sequene of ordered synteni bloks, from whih a set of distint bloks ommonto all genomes was determined. An arbitrary referene genome was hosen, and all the bloksforming this genome were numbered by unique sequential identi�ers from 1 to n. By keepingthe longest bloks, permutations of 120 identi�ers are onstruted, that are representative ofthe pairwise evolutionary distanes for these genomes. We are able to plae ative and inativeentromeres in eah genome permutation by loating the �anking genes. Eah of 9 entromeresis enoded by two identi�ers, resulting in 15 additional bloks. Thus, eah genome is representedas a signed permutation of 135 elements, in whih hromosomal rearrangements (fusion, �ssion,transloation, inversion) an be studied (see hapter 6 for an appliation).Comparative genome maps are painted (see �gure 4.2) with K. thermotolerans as referene.Ative entromeres are represented by red ovals, telomeres are represented by triangles. Theassigned letter indiates the agreement of this entromere aross the �ve speies. Markers arewell distributed on the hromosomes, so the hoie of these markers is representative of thearhiteture of the ontemporary genomes. A high degree of synteny, and a limited number oflarge-sale rearrangements, is observed between K. thermotolerans and S. Kluyveri ; they sharemany ommon adjaenies and their rearrangement distane is half of that seen between otherpairs of genomes. Note that K. latis presents two synteni breaks in entromere areas: theentromere of Klla0F is loated between the �anking genes of entromeres h and b, and theentromere of Klla0A is loated between the �anking genes of entromeres h and e. Moreover,S. kluyveri has an ative entromere (the entromere i), that was disabled in all the other studiedgenomes.
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4.2. Appliation to yeast genomes

Figure 4.2: Distribution of the 120 longest ommon synteny bloks representing major onservedsegments within Hemiasomyete yeasts. Eah unique numbered synteny blok is given a olorindiating its hromosome in the referene genome (Klth), and a diagonal bar indiating itsrelative position on the hromosome. Other genomes are signed permutations of these oloredbloks; a hange of slope in the diagonal bar indiates an inversion. Blok widths are to sale andthe size of interleaving non-synteni regions is shown by large grey lines. Red irles: entromeres;gray triangles: telomeres.
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Part IIIFrom super-bloks to onstrainedmedian assemblies
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Chapter 5Super-blok onstrutionThe study of evolutionary mehanisms is made more and more aurate by the inrease inthe number of fully sequened genomes. One of the main problems is to reonstrut plausibleanestral genome arhitetures based on the omparison of ontemporary genomes.In hapter 2, we presented urrent methods that have largely foused on �nding ompletearhitetures for anestral genomes, and, due to the omputational di�ulty of the problem, stopafter a small number of equivalent minimal solutions have been found. Reent results suggest,however, that the set of minimum omplete arhitetures is very large and heterogeneous [Eri07℄.In fat these solutions are olletions of onserved bloks, freely rearranged.In this hapter, we propose an approah for identifying ommon anestral features for thegeneral, N -genome instane, that builds a bridge between breakpoint and rearrangement meth-ods and additionally permits the use of biologial onstraints. The main ontribution is theomputation of super-bloks, sequenes of markers hosen in funtion of the frequeny of theorresponding adjaenies without any use of phylogeny. Here we follow the hypothesis thatadjaenies having support in two or more ontemporary genomes onstitute the semanti ba-sis of an anestral arhiteture [SB97℄. Super-bloks an of ourse be joined to produe �nalassemblies; algorithmially, it is an optimization problem in terms of rearrangement distane ofthe sequene of fusions of super-bloks. The solution spae of genome medians is thus redued,and only arhitetures respeting the adjaeny semantis are returned. Although the mathe-matial model does not allow the onsideration of segmental dupliation, entromere positionsare introdued and onstrain the �nal assemblies by allowing only one ative entromere in eahhromosome of the anestral arhiteture.We show that in theory our method allows for solutions that are either minimal or reasonablylose to the minimal in the mathematial model. Although the addition of biologial onstraintsan in priniple lead to non-optimal mathematial solutions, pratially this does not our andthe key advantage of our method is that it dereases the number of mathematially equivalentsolutions by using biologial onstraints as a �lter on the solution spae.This hapter is organized as follows. Setion 5.1 gives the neessary preliminaries. In setion5.2, we introdue the notion of dependeny for the adjaenies and show the relationship betweenadjaenies and distanes. Setion 5.3 provides the methodology for reonstrution of super-bloks from adjaenies, and the strategy for building �nal assemblies by an optimal sequene offusions. All this work is under revision in [JSN℄.
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Chapter 5. Super-blok onstrution5.1 PreliminariesLet Π = {π1, .., πNΠ} and Γ = {γ1, ..., γNΓ} be two multihromosomal genomes de�ned aordingto the mathematial model presented in setion 1.2. As a reminder, the number of breakpoints
b between two genomes is a distane suh that for 2 multihromosomal genomes Π and Γ with
NΠ < NΓ, the number of breakpoints is b = |{(πi, πi+1)|πi.πi+1 is a breakpoint in Π}|+(NΓ−NΠ)or b = |{(γi, γi+1)|γi.γi+1 is a breakpoint in Γ}|.Let G1, ..., GN be N multihromosomal genomes de�ned over the same set of distint genemarkers G. We denote by u(g.h) the frequeny of the adjaeny g.h in the N genomes, thatis, the number of genomes in whih it appears. We denote by A the set of all adjaenies in
G1, .., GN .Following Hannenhalli and Pevzner [HP95a℄, we will use the unsigned representation of a signedgenome in terms of breakpoint graph (see setion 2.2.2 page 31 for more details). The notionsof adjaenies and breakpoints are transferred to the breakpoint graph quite naturally. As thehoie of added verties at the extremities of eah hromosome is arbitrary, we denote by 0 anytelomere without taking into the aount its hromosome. Hene, for a hromosome π = π1...πnwe introdue two supplementary adjaenies denoted by 0.π1 and πn.0. In what follows, wewill systematially use greek letters to denote elements of a signed permutation and latin lettersto denote elements of a non-signed permutation: we will note by (gi hi).(gj hj) the adjaenyorresponding to πi.πj exept for adjaenies with telomeres that will be noted (0).(g1 h1) and
(gn hn).(0). For any adjaeny a = πi.πj = (gi hi).(gj hj), its reversal −a is de�ned by −πj.− πiin the signed permutation, and by (hj gj).(hi gi) in the non-signed permutation.Example 3 Let us onsider four genomes G1 = {1 2 3 4, 5 6}, G2 = {1 2 34, −5, −6},
G3 = {2 1 3 4, −6 5} and G4 = {3 1 4 2 − 5, 6}. Their adjaenies an then be partitionedaording to frequeny of ourrene in Gi as shown in table 5.1.frequeny adjaeny

4 6.0

3 3.4, 0.5, 4.0

2 0.1, 1.2, 0.6, 5.0,2.3
1 5.6, 0.2, 2.1, 1.3, 4.2, 3.1, 1.4, 0.3, −5.6, 2.− 5Table 5.1: Adjaenies for genomes G1, G2, G3 and G4 sorted by frequeny.5.2 Dependent adjaeniesThe onstrution of super-bloks is based on the study of adjaenies. This study onsists inde�ning the frequeny of adjaenies in the genomes and the adjaeny relationships themselves.The intuition behind our approah is that an adjaeny of higher frequeny should be preferen-tially present in a median genome. Mathematially, we are looking for an anestral arhiteturethat represents a ompromise between the rearrangement distane and the number of breakpointsunder the parsimony riterion.In what follows, the onsidered rearrangement distane is expressed in terms of reversals,fusions, �ssions and transloations and is omputed aording to Hannenhalli and Pevzner'stheory [HP95a℄ (see setion 2.2.2).80



5.2. Dependent adjaenies5.2.1 Pairwise adjaeny relationshipsLet A be a subset of the set of all adjaenies A for genomes G1, ..., GN . We build the adjaenygraph G = (V,E) for A in the following way. For any adjaeny (gi hi).(gj hj), we reate fourverties (gi, hi, gj and hj) and three edges. Two of the edges represent elements of the originalpermutation: e1 = (gi, hi) and e2 = (gj , hj). One of the edges represents the adjaeny itself:
e3 = (hi, gj).Two adjaenies are dependent if their elements are related, either by ompleting or by on-traditing eah other. Let a and b be two adjaenies a = (ga

1 ha
1).(g

a
2 ha

2) and b = (gb
1 hb

1).(g
b
2 hb

2),and G = (V,E) the adjaeny graph for {a, b}.De�nition 42 We say that a and b omplement eah other if either (i) ∃ v1, v2 ∈ V suh that
d(v1) = d(v2) = 1 and ∀v 6= vi, i ∈ [1, 2] we have v 6= 0 and d(v) = 2, or (ii) ∃v ∈ V suh that
v = 0 and ∀v ∈ V we have d(v) = 2. We say that a and b ontradit eah other if either (i)
∃ v ∈ V suh that d(v) > 2, or (ii) ∀v ∈ V we have v 6= 0 and d(v) = 2.For example, adjaenies (1 2).(3 4) and (6 5).(4 3) omplement eah other. Indeed, we anform the sequene 1 2 3 4 5 6. On the ontrary, (1 2).(3 4) and (6 5).(2 1) are in ontradition,as are (1 2).(3 4) and (2 1).(3 4). As an be seen on �gure 5.1, the two ontraditions are slightlydi�erent. Indeed, the latter involves the presene of a yle (yle ontradition), while theformer does not (vertex ontradition).(a) (1 2).(3 4) and (6 5).(4 3)

1 2 3 4 5 6 (b) (0).(1 2) and (1, 2).(3 4)

0 1 2 3 4 () (0).(1 2) and (1, 2).(0)

0 1 2

(d) (1 2).(3 4) and (6 5).(2 1)

1 2
3 4

5 6 (e) (1 2).(3 4) and (3 4).(2 1)

1 2 3 4 (f) (1 2).(3 4) and (2 1).(3 4)

1 2 3 4Figure 5.1: Adjaeny graphs showing (a), (b) and () two adjaenies that omplement eahother, (d), (e) and (f) two adjaenies that ontradit eah other. Element edges are representedby solid lines; adjaeny edges are represented by dashed lines.When adjaenies omplement eah other there is no problem to put them together in orderto form a oherent hromosome. However, when two adjaenies a and b are in ontradition, weneed to hoose one or the other. The intuition given in the beginning of this setion is to preferadjaenies with higher frequenies. However, it is possible to have a median genome in termsof rearrangement distanes with an adjaeny of lower frequeny that is in ontradition withan adjaeny of higher frequeny as illustrated in the example 4. Notie that the adjaeny 3.2that is present in M1 has frequeny 2, while the adjaeny 2.3 present in M2 is of frequeny 1.Beause of a better global number of ommon adjaenies (11 breakpoints against 12 for M2), M1appears as the best median genome in terms of rearrangement distanes and breakpoint numberbut M2 is also a good andidate for anestral gene order in terms of rearrangement distanes.Example 4 Consider three genomes G1 = {1 2 3 4 5 6 7}, G2 = {1 3 2 4 5, 6 7} and G3 = {1 4 3 2 5 6, 7}.Their pairwise rearrangement distanes are: d(G1, G2) = 3, d(G1, G3) = 5 and d(G2, G3) = 5.Two optimal (median) solutions M1 and M2 are possible for these genomes: M1 = {1 -2 -3 4 5, 6 7}81



Chapter 5. Super-blok onstrutionand M2 = {1 -3 -2 4 5, 6 7}. The rearrangement distanes from M1 and M2 to G1, G2 and G3are shown below.
G1 G2 G3

M1 2 1 4

M2 1 2 4Notie that the adjaeny 3.2 that is present in M1 has frequeny 2, while the adjaeny 2.3present in M2 is of frequeny 1.5.2.2 Adjaenies and distanesExample 4 is in apparent ontradition with the intuition that the adjaenies of higher frequen-ies should be preferred. In this setion, we analyze in more detail in whih ases it is appropriateto follow this intuition.Bounds for rearrangement distanesIf two genomes Π and Γ are not equal, then d(Π,Γ) is at least 1. If d(Π,Γ) = 1, then thereare exatly two breakpoints in Π (say a and c), and two in Γ (say b and d). See �gure 5.2 forillustration. We say then that Π and Γ are idential up to a, c (symmetrially b, d).
(a) breakpoints in Π

π1 ... πk πk+1 ... πl πl+1 ... πn

a c

(b) breakpoints in Γ
π1 ... πk −πl ...−πk+1 πl+1 ... πn

b dFigure 5.2: Π and Γ are idential up to a, c (or b, d). This implies (a) the existene of 2 breakpoints
a = πk.πk+1 and c = πl.πl+1 in Π, and (b) of 2 breakpoints b = πk.− πl and d = −πk+1.πl+1 in
Γ.
Lemma 6 Let Πa,Πb and Γa be three genomes suh that an adjaeny a is present in genomes
Πa and Γa, but not present in Πb. Furthermore, let Πa and Πb be idential up to 2 adjaenies,one of these adjaenies in Πa being a, and one in Πb being b. Then, |d(Πa,Γa)− d(Πb,Γa)| ≤ 1.Proof: Let us denote the respetive distanes d(Πa,Γa) = da and d(Πb,Γa) = db. We know that
Πa and Πb are idential up to 2 adjaenies, hene d(Πa,Πb) = 1.Rearrangement senarios between genomes in Πa, Πb and Γa are represented on the sketh herebelow. Arrows represent senarios and the value on them is the orresponding rearrangementdistane.82



5.2. Dependent adjaenies
Πa

Πb

Γa

da

db

1 1There exists a senario between Πa and Γa via Πb (see the above sketh). Thus d(Πa,Γa) ≤
d(Πb,Γa) + 1. Similarly, there exists a senario between Πb and Γa via Πa. Thus d(Πb,Γa) ≤
d(Πa,Γa) + 1. So |d(Πa,Γa)− d(Πb,Γa)| ≤ 1. �This lemma an be generalized to N genomes Gi, eah having either the adjaeny a, or b, ornone. In theorem 6 we onsider two genomes Ma and Mb idential up to two adjaenies, and webound the di�erene of the sum of rearrangement distanes between Gi and these two genomes.Let A be the adjaeny set of genomes G1, ..., GN , and let C be the set of all pairs of ontra-ditory adjaenies from A.Theorem 6 For any pair of adjaenies {a, b} ∈ C and two genomes Ma and Mb idential upto 2 adjaenies with a ∈Ma and b ∈Mb, it holds that

∑N
i d(Ma, Gi)−

∑N
i d(Mb, Gi) ≤ N.Proof: Let Ga

i (Gb
i and Go

i , respetively) be the genomes having the adjaeny a (b and none,respetively) with |Ga
i | = Na (|Gb

i | = Nb and |Go
i | = No, respetively). Sine N = Na + Nb + No,we have:
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i ).Aording to lemma 6 we have:

∣
∣
∣
∣
∣

Na∑

i

d(Ma, G
a
i )−

Na∑

i

d(Mb, G
a
i )

∣
∣
∣
∣
∣
≤ Na, and

∣
∣
∣
∣
∣

Nb∑

i

d(Mb, G
b
i )−

Nb∑

i

d(Ma, G
b
i )

∣
∣
∣
∣
∣
≤ Nb.In the ase of genomes Go

i , there exists a senario between Go
i and Ma via Mb, as shown on thesketh here below. 83



Chapter 5. Super-blok onstrution
Ma

Mb

Go
i

d(Go
i ,Ma)

d(Go
i ,Mb)

1 1So, d(Go
i ,Ma) ≤ d(Go

i ,Mb) + 1. Similarly, there exists a senario between Go
i and Mb via Ma,and so d(Go

i ,Mb) ≤ d(Go
i ,Ma) + 1.As the distanes are symmetri, we an apply the inequality:
|d(Ma, G

o
i )− d(Mb, G
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i )| ≤ 1 ∀i ∈ [1..No]and thus ∣
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�Types of rearrangementsTheorem 6 provides a general theoretial bound. Let us onsider that u(a) > u(b). The worstase di�erene ∑N
i d(Ma, Gi) −

∑N
i d(Mb, Gi) ≈ N is in fat rarely met. Lemma 7 below andits orollary analyze the problemati ases in terms of distanes and breakpoints.Sanko� and Trinh in [ST05℄ show that the rearrangement distane an be deomposed intodi�erent types of rearrangements aording to the number of deleted breakpoints. The rear-rangement distane d between two genomes an be written as d = d2 + d1 + d0, where d2, d1and d0 are the numbers of rearrangements that delete two, one and no breakpoints, respetively.Moreover, this deomposition is unique. If b is the number of breakpoints between the two samegenomes, then b = 2d2 + d1. Let ba and bb (da and db) be the number of breakpoints (rearrange-ment distanes) between Πa and Γa and between Πb and Γa, respetively. We an deomposedistanes and breakpoints for Πa and Πb with respet to Γa:

ba = 2d2
a + d1

a and da = d2
a + d1

a + d0
a,

bb = 2d2
b + d1

b and db = d2
b + d1

b + d0
b .From these deompositions introdued by Sanko� and Trinh, we propose a more detailed analysisof no-breakpoint rearrangements. In the rest of this setion we show that the number of no-breakpoint rearrangements d0

b an be bounded in terms of d0
a.Lemma 7 Let Πa,Πb and Γa be three genomes as in lemma 6. Then, db = d2

a + d1
a + d0

b + 1 and
d0

a − 2 ≤ d0
b ≤ d0

a.Proof: Let a and c be the two breakpoints in Πa with respet to Πb. Two ases are possible:1. Γa has the adjaeny a but not c, then bb = ba + 1,84



5.2. Dependent adjaenies2. Γa has the adjaenies a and c, then bb = ba + 2.In the �rst ase, we have bb = 2d2
a + d1

a + 1 and 0 ≤ |da − db| ≤ 1 (lemma 6). The distaneequality db = d2
a + (d1

a + 1) + d0
b follows. And so, d0

a − 2 ≤ d0
b ≤ d0

a.In the seond ase, two sub-ases have to be onsidered:(a) bb = 2(d2
a + 1) + d1

a, or(b) bb = 2d2
a + d1

a + 2.Parts of the breakpoint graphs G(Πa,Γa) and G(Πb,Γa) are shown below for the ase where
Γa has adjaenies a and c. In G(Πb,Γa), the rearrangement de�ned by the edges {πk,−πl} and
{−πk+1, πl+1} deletes two breakpoints. breakpoint graph G(Πa,Γa)π1 ... πk πk+1 ... πl πl+1 ... πn

a c

breakpoint graph G(Πb,Γa)π1 ... πk −πl ...−πk+1 πl+1 ... πn

b dWe an easily see that only sub-ase (a) is possible. So, we have db = (d2
a + 1) + d1

a + d0
b , andso d0

a − 2 ≤ d0
b ≤ d0

a. �Corollary 1 Let Πa,Πb and Γa be three genomes as in lemma 6. Then:1. if db = da + 1, then d0
b = d0

a,2. if db = da, then d0
b = d0

a − 1,3. if db = da − 1, then d0
b = d0

a − 2.Corollary 1 provides a range of possible situations under the hypothesis that u(a) > u(b).Indeed, in the �rst ase, the intuition of preferring a over b is valid. In the seond ase it stillremains valid sine for the same distane, we delete breakpoints. But in the third ase, thisintuition no longer holds.In pratie the third ase is very infrequent, and Sanko� and Trinh even disregard it ompletelyin [ST05℄. Indeed, unoriented omponents needing no-breakpoint rearrangements are unommonin breakpoint graphs. This situation for a pair of genomes implies that in order to obtain
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a
i ) + 1 and hene

∑N
i d(Ma, Gi)−

∑N
i d(Mb, Gi) ≈ N .Bounds for breakpointsThe result of theorem 6 an be transposed to breakpoints as shown in theorem 7. Let us denote

Na the number of genomes with adjaeny a, Nb the number of genomes with adjaeny b and
No the number of genomes with neither adjaenies a nor b. 85



Chapter 5. Super-blok onstrutionTheorem 7 For any pair of adjaenies {a, b} ∈ C suh that u(a) > u(b) and two genomes Maand Mb idential up to 2 adjaenies with a ∈Ma and b ∈Mb, it holds that
Na − 2Nb −No ≤

N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) ≤ 2Na −Nb + No.Proof: Let Ga
i (Gb

i and Go
i , respetively) be the genomes having adjaeny a (b and none, respe-tively) with N = Na + Nb + No. We have:

N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) =
Na∑

i

b(Mb, G
a
i )−

Na∑

i

b(Ma, G
a
i ) +

Nb∑

i

b(Mb, G
b
i )−

Nb∑

i

b(Ma, G
b
i ) +

No∑

i

b(Mb, G
o
i )−

No∑

i

b(Ma, G
o
i )We already know (see lemma 7) that

1 ≤ b(Mb, G
a
i )− b(Ma, G

a
i ) ≤ 2 for all i ∈ [1..Na], and

−2 ≤ b(Mb, G
b
i )− b(Ma, G

b
i ) ≤ −1 for all i ∈ [1..Nb].We know that sine Ma and Mb are idential up to a (or b), there are two more adjaenies cand d that di�er between these genomes (see �gure 5.2). Consequently, any genome Go

i an haveeither c, or d, or neither. Hene,
−1 ≤ b(Mb, G

o
i )− b(Ma, G

o
i ) ≤ 1 for all i ∈ [1..No].And so we have:

Na − 2Nb −No ≤
N∑

i

b(Mb, Gi)−
N∑

i

b(Ma, Gi) ≤ 2Na −Nb + No �Theorem 7 provides a theoretial bound for the number of breakpoints. Let us onsider again
u(a) > u(b) ≥ 1. In pratie, the worst di�erene ∑N

i b(Mb, Gi)−
∑N

i b(Ma, Gi) ≈ Na−2Nb−Nois not as bad as it seems.For example, for 5 genomes the worst ase Na − 2Nb −No is superior or equal to 0 for 3 of allpossible 5 ases. If an adjaeny a is present in all 5 genomes, then learly Na − 2Nb −No = 5.Table 5.2 shows possible values for Na, Nb and No in the 4 remaining ases.Nevertheless, for two ases the value Na−2Nb−No is negative (but very lose to 0). Fortunately,the worst ase (ase 4, table 5.2) never ours. Indeed, reall that we are onsidering genomes
Ma and Mb, idential up to a, c (symmetrially b, d). In this 4th ase, the genomes Ga

i haveadjaeny a but not c, the genomes Gb
i have the adjaenies b and d while the No genomes whihhave neither a nor b, possess d. Hene, the frequeny of adjaeny d is 3, those of a and c areequal to 2, while b has frequeny 1. Thus, we will have resolved the on�it between d and a or

c whih is an already studied ase (ase 2, table 5.2).86



5.3. From adjaenies to �nal assembliesase # Na Nb No Na − 2Nb −No1 4 1 0 22 3 2 0 -13 3 1 1 04 2 1 2 -2Table 5.2: Given 5 genomes and ontraditory adjaenies a and b s.t. u(a) > u(b) ≥ 1, 4possible ases of presene of a or b in urrent genomes arise. Given are the possible values for
Na,Nb and No, and the worst ase di�erene of the total number of breakpoints.5.3 From adjaenies to �nal assembliesSetion 5.2 implies that we an hoose adjaenies with higher frequenies beause they lead toa reasonable ompromise between the breakpoint and the rearrangement distane approahes.Based on the adjaenies we propose to build super-blok assemblies of median genomes.The onstrution of super-bloks is done in two steps. First, we build a partition P of adja-enies where eah part is omposed of inter-dependent adjaenies. P is partially ordered byadjaeny frequeny of the parts' elements. Seond, P is inspeted in dereasing order of itsparts, and the super-blok sets are onstruted by favoring adjaenies with higher frequeny.Finally, to �nd adjaenies not yet resolved, the last part of our method looks for a sequeneof fusions of super-bloks that minimizes the rearrangement distanes.5.3.1 Groups of dependent adjaeniesWe have seen previously that there exist di�erent relationships between adjaenies. They anomplement eah other and, in this ase, we an assemble them together in order to form a oher-ent hain of elements. When two adjaenies are in ontradition, then either there are di�erentpossibilities to omplement the same element (vertex ontradition), or these two adjaenieshave the same elements up to their order or to their orientation (yle ontradition).It is reasonable (see setion 5.2) to prefer adjaenies with higher frequenies when there is aon�it. That is why, if a and b are two adjaenies in vertex ontradition, then we will havea preferene for a if u(a) > u(b), and need to onsider both possibilities only if u(a) = u(b).However, in the ase of yle ontradition, a and b are very similar beause of the presene ofthe two same elements and example 4 shows that a median genome an have either one or theother. Hene, for a yle ontradition, we relax the onstraint and onsider both adding a oradding b even for di�erent frequenies.Let P(A) be a partition of A. We de�ne P0(A) by the membership in the same elementaryyle without 0 (that is a yle ontaining 2 adjaenies). Parts of P0(A) are either singletonsor sets of adjaenies where every pair is in yle ontradition. For a given set of adjaenies A,the highest frequeny of its elements is denoted u(A) = maxa∈A u(a) and is alled set frequeny.We denote by G the adjaeny graph ontaining all the adjaenies of A.We de�ne the merging of parts ⊔ : P(A)→ P(A) as follows.De�nition 43 ⊔(P(A)) is a partition of A suh that for any p ∈ ⊔(P(A))

• ∃ p1 ∈ P(A) s.t. p = p1 or
• ∃ p1, p2 ∈ P(A) s.t. p = p1 ∪ p2 and moreover ∃ a ∈ p1 and ∃ b ∈ p2 s.t. u(a) = u(b) =87



Chapter 5. Super-blok onstrution
u(p1) = u(p2) and either a and b are dependent or a and b partiipate in a yle c ∈ Gwithout vertex v = 0 s.t. ∀v ∈ c we have u(v) ≥ u(a).Starting from P0(A), the merging of parts ⊔ de�nes a sequene of partitions Pi(A) where ∀i >

0,Pi(A) = ⊔(Pi−1(A)). Obviously, there exists an n for whih ⊔ reahes its �xed point denotedby ⊔n(P(A)), that is Pn(A) = ⊔(Pn(A)).De�nition 44 A group g is a part of ⊔n(P(A)).Example 5 The adjaenies of the example 3 are partitioned into groups as shown in table 5.3.grp. freq. adjaenies
4 6.0(4)

3 3.4(3), 4.0(3)

3 0.5(3)

2 0.1(2), 1.2(2), 2.1(1), 2.3(2)

2 0.6(2)

2 5.0(2)Table 5.3: Partition of adjaenies from example 3 into groups. The adjaenies are noted withtheir frequeny in parenthesis, and the groups are sorted by dereasing group frequeny. Onlygroups with u(g) > 1 are represented.5.3.2 Super-bloks and partial assembliesDe�nition 45 A super-blok is a set S of n ≥ 1 adjaenies suh that ∀a, b ∈ S, a does notontradit b, and there exists an order over S suh that ∀i ∈ [1, n), ai omplements ai+1, and
a1, an are either independent or a1 = an = 0. A partial assembly P = {Sk} is a set of super-bloks suh that ∀k, l with k 6= l if Sk ∩ Sl 6= ∅ ⇒ Sk ∩ Sl = {0}.Lemma 8 The adjaeny graph G = (V,E) of a partial assembly P is a graph suh that (1)
∀v ∈ V , d(v) ≤ 2, exept for v = 0, and (2) any yle in G ontains 0.Proof: By onstrution from de�nition 45. �Super-bloks, and thus partial assemblies, are formed by going through the groups of adjaeniesin dereasing order of their frequenies. For a given partial assembly P = {Sk} and a urrentgroup g, any adjaeny b ∈ g is removed from it if there exists an adjaeny a ∈ Sk ∈ P inontradition with b. This operation is alled lean and produes a gc ⊆ g, gc = lean(g,P).However, when inspeting the urrent group gc we do not have any means to prefer some of itsadjaenies over the others.The addition of all the adjaenies of gc = lean(g,P) to P is not always possible. It islear why this is the ase for any a, b of gc in mutual ontradition. Nevertheless, the additionof several adjaenies of gc that do not ontradit eah other an reveal ontraditions. Thissituation arises sine the assembly of non-ontraditing adjaenies of gc an form a yle orsine dependenies between adjaenies belonging to groups of di�erent frequeny an exist (see�gure 5.3).88



5.3. From adjaenies to �nal assemblies
1 2 3 4 5 6 7 8

P
︸ ︷︷ ︸

2.3 4.1

1 2 3 4 5 6 7 8
P1

1 2 3 4 5 6 7 8
P2Figure 5.3: Two di�erent adjaeny graphs result from adding gc = {2.3, 4.1} to P =

{{1.2}, {3.4}} depending on whih adjaeny between 2.3 and 4.1 is added. Adding both 2.3 and
4.1 reates a forbidden yle.The trivial way to exhaustively enumerate all the possibilities when adding g to P, is toonsider all possible orders over gc, whih is for a |gc| = n equal to n!. A less naive approahbrings it down to a omplexity of O(2n/3) by onsidering maximal independent sets.De�nition 46 A maximal independent set of gc is a set of adjaenies µ suh that (i) ∀a, b ∈ µ,
a and b do not ontradit eah other and (ii) ∀a ∈ gc\µ, ∃c ∈ µ suh that a and c are inontradition.LetM be the set of all maximal independent sets for gc.Lemma 9 For any maximal independent set µ ∈ M, its adjaeny graph G = (V,E) veri�es
∀v ∈ V , v 6= 0, d(v) ≤ 2.Proof: Suppose there exists a vertex v ∈ V suh that v 6= 0 and d(v) ≥ 3. Let Y the neighboursof v in G with |Y | = d(v). Then, there exists an unique vertex y ∈ Y suh that (v y) is anelement of the original permutations. Therefore, there exist at least two verties y1 and y2 ∈ Ysuh that {v, y1} and {v, y2} orrespond to real adjaenies. So, these two adjaenies sharing
v are in ontradition. This ontradits the fat that these two adjaenies belong to the samemaximal independent set of gc. Then, ∀v ∈ V , d(v) ≤ 2, exept for v = 0. �Thus, we have to onsider all maximal independent subsets of gc. The problem is known to beNP-omplete [GJ79℄ and of omplexity O(2n/3), where n is the number of elements in gc [TT76℄.Let GP be the adjaeny graph for P and let Gµ be the adjaeny graph for a maximalindependent set µ of M. Let G0

µ be a graph obtained by removing the vertex 0 and all of itsinident edges from Gµ. Then, the onneted omponents of G0
µ an be either hains where allverties have the degree equal to 2, exept the two extremities whih have the degree 1, or yleswhere all verties have the degree 2. Simply adding all the verties and edges of Gµ to GP mayresult in on�its (see lemma 10). Let G∪ be the adjaeny graph G∪ = {VP ∪ Vµ, EP ∪Eµ}.Lemma 10 The adjaeny graph G∪ is a graph suh that ∀v ∈ V , v 6= 0, d(v) ≤ 2.Proof: Suppose there exists a vertex v ∈ V suh that v 6= 0 and d(v) ≥ 3. Let Y the neighboursof v in G with |Y | = d(v). Then, there exists an unique vertex y ∈ Y suh that (v y) is anelement of the original permutations. Therefore, there exist at least two verties y1 and y2 ∈ Ysuh that {v, y1} and {v, y2} orrespond to real adjaenies that ontradit eah other and:1. {v, y1} and {v, y2} ∈ GP or, 89



Chapter 5. Super-blok onstrution2. {v, y1} and {v, y2} ∈ Gµ or,3. {v, y1} ∈ Gµ and {v, y2} ∈ GP or,4. {v, y1} ∈ GP and {v, y2} ∈ Gµ.Cases 1 and 2 are in ontradition with lemmas 8 and 9. For ase 3 (ase 4, respetively), theadjaeny represented by the edge {v, y1} ({v, y2} respetively) was removed by lean from g toobtain gc. So it is not possible to have these two ases. �Forbidden yles an appear in G∪. It is lear that Gµ an have yles without 0. But ylesan also appear by losing hains of GP by one or several hain(s) of G0
µ. In order to obtain anadjaeny graph of a partial assembly from G∪, we have to disonnet all existing yles without0 by deleting some adjaeny from µ in eah yle (see lemma 11).Let C = {c1, c2, .., cm} be a set of all yles without 0 in G∪.Lemma 11 If C 6= 0, then ∀i, j s.t. i 6= j, ci and cj are disjoint, and eah yle c ∈ C has oneor several adjaenies from µ.Proof: Let ci, cj ∈ C. Suppose that they are not disjoint. Then, there exists a vertex v suh that

v ∈ ci and v ∈ cj . Thus, d(v) ≥ 3, whih ontradits lemma 10.Let c ∈ C suh that for all adjaenies a of c, we have a 6∈ µ. Then, c ∈ GP , whih ontraditslemma 8. �Let {G≺} be the set of all graphs resulting from adding gc to P for all possible orders ≺ over gc.Let µj be the set of adjaenies from a maximal independent set µ that partiipate in a yle
cj ∈ C. We denote by Sµ = µ1 × µ2 × ... × µm the Cartesian produt of the sets of adjaeniesfrom a maximal independent set µ partiipating in yles {c1, .., cm} ⊂ C.Lemma 12 The following equality holds:

{G≺} =
⋃

µ∈M

⋃

~a∈Sµ

{G∪ \ {ai}}where ~a is omposed of {ai} and |~a| = m, and G∪ \ {ai} denotes the graph G∪ without the edges
{ai}.Proof: Let us denote the right side of the equation by {GM}. The inlusion {GM} ⊆ {G≺} isobvious. Let us suppose ∃G ∈ {GM} suh that G /∈ {G≺}. This means that for some partiular
µ and ~a we have 〈G∪〉\{a1, a2, .., am} /∈ {G≺}. Whih ontradits the fat that µ is maximal. �Let us denote the operation of adding a group g to P by ⊕. This operation produes all possiblepartial assemblies {Pi} = P ⊕ g and an be realized by the algorithm add_group (algorithm 7).The omplexity of this algorithm is bounded by the researh of maximal independent sets over
gc.Lemma 13 Let P be a partial assembly and let g1 and g2 be two groups of same frequeny
u(g1) = u(g2). Then, ⊕ is assoiative: (P ⊕ g1)⊕ g2 = (P ⊕ g2)⊕ g1.Proof: Suppose ⊕ to be not assoiative. Then, there exists an adjaeny a in g1 and b in g2 suhthat a and b imply a ontradition in the onstruted partial assembly P⊕g1⊕g2. Then, either:90



5.3. From adjaenies to �nal assembliesAlgorithm 7 add_group(g,P)Require: a group g, a partial assembly PEnsure: P is a set of partial assemblies1: let GP be the adjaeny graph for P2: let P = ∅ and gc = lean(g,P)3: let M be the set of all maximal independent sets over gc4: for all µ ∈ M do5: let Gµ be the adjaeny graph for µ6: let T be the set of all onneted omponents of G0
µ7: let Gnew = {VP ∪ Vµ, EP ∪ Eµ}8: let C = ∅9: while G0

new has a yle c do10: let V = ∅ be the set of adjaenies from µ partiipating in c11: for all t ∈ T do12: if t ∩ c 6= ∅ then13: let V = V ∪ adjacencies(t)14: let Gnew = {Vnew\{t[0]}, Enew}15: end if16: end for17: let C = C ∪ {V }18: end while19: let G = {VP ∪ Vµ, EP ∪ Eµ}20: let Gµ = {G}21: for all c ∈ C do22: G = ∅23: for all a ∈ c do24: for all Gµ ∈ Gµ do25: G = G ∪ {{Vµ, Eµ\{a}}}26: end for27: end for28: Gµ = G29: end for30: let P = P ∪ partial_assemblies(Gµ)31: end for32: return P1. a and b form a vertex ontradition or,2. a and b form a yle ontradition or,3. a and b partiipate in a yle without 0.In ase 1, if u(a) = u(b) then a and b should be in the same group (see de�nition 44). If
u(a) 6= u(b) then u(g1) 6= u(g2), whih ontradits the hypothesis. In ase 2, if a and b form ayle ontradition then a and b should be in the same group (see de�nition 44), whih ontraditsthe hypothesis. In ase 3, all the verties in the yle have a frequeny greater than u(g1) =
u(g2). Therefore, aording to the de�nition 44, a and b should be in the same group. So, ⊕ isassoiative. �Based on lemmas 12 and 13, and algorithm 7, the onstrution of all partial assemblies forgenomes G1, ..., GN proeeds as shown in algorithm 8. Notie that we do not onsider groupswhere u(g) = 1 sine these adjaenies do not have any additional support in any other genome.5.3.3 Fusions of super-bloksAlgorithm 8 builds all partial assemblies by resolving on�its between adjaenies up to groupfrequeny 2. Groups of frequeny 1 are exluded sine there is no evidene if they are presentby hane or not. 91



Chapter 5. Super-blok onstrutionAlgorithm 8 partial_assemblies(G1 , ..., GN )Require: G1, ...,GN genomes over the same set of gene markersEnsure: P is a set of partial assemblies1: let A be the set of all adjaenies for G1, ...,GN2: let G = {g} be the set of all groups for A3: let n = maxGu(g)4: let P = {∅}5: for all gi s.t. n ≥ i ≥ 2 do6: let P′ = ∅7: for all P ∈ P do8: PP = P ⊕ gi9: P′ = P′ ∪ PP10: end for11: P = P′12: end for13: return PDe�nition 47 A fusion of super-bloks S1 = (a1, ..., an) and S2 = (b1, ..., bm) is a super-blok
S suh that the order of de�nition 45 is either S = (a1, ..., an, b1, ..., bm), or S = (a1, ..., an,
−bm, ...,−b1), or S = (b1, ..., bm, a1, ..., bn), or S = (b1, ..., bm, −an, ...,−a1).This de�nition implies that a super-blok S suh that a1 = 0.πi and an = πj .0 annot par-tiipate in a fusion. Indeed, suh a super-blok already forms a hromosome from telomere totelomere.Let {P} be the set of all partial assemblies up to group frequeny 2 for genomes G1, ..., GNand P ∈ {P} a partial assembly. The number of super-bloks in P an be relatively high. Thisis due to the fat that some elements annot be inter-onneted beause of the low frequeny(equal to 1) of orresponding adjaenies. Suh elements are loated at the extremities of thesuper-bloks. We onnet them in order to form hromosomes by fusions of super-bloks withoutworsening the distane and breakpoint bounds (see theorem 8).Theorem 8 For any P ∈ {P} of G1, ..., GN suh that P = {Sk}, there exists a genome M suhthat for any hromosome π of M either ∃Sk ∈ P suh that π = Sk, or ∃ {Sk} ⊆ P suh that πis formed by a series of fusions π = S1...Sk. Moreover,

∑N
i d(M,Gi)−

∑N
i d(P,Gi) ≤ 0 and ∑N

i b(M,Gi)−
∑N

i b(P,Gi) ≤ 0.Proof: By onstrution �To �nd an optimal sequene of fusions, we lassify them by their e�et on the global rearrange-ment distane (the sum of rearrangement distanes between median genome and G1 . . . GN ). Agreedy randomized algorithm is used to �nd anestral andidates obtained after a limited num-ber of fusions. By the parsimony riterion, solutions that minimize the global rearrangementdistane are onserved.
92



Chapter 6AppliationsIn this hapter, we propose appliation examples for our method for super-blok onstrution pre-sented in hapter 5. In setion 6.1, we apply our method to a set of non-WGD1 Hemiasomyetegenomes in the Kluyveromyes and related lades provided by the Génolevures Consortium, withdivergene similar to that of hordates [Duj06℄. For this phylogeneti branh, our method showsa high onvergene in the struture of di�erent versions of super-bloks (16 in all), reinforing theintuition that super-bloks enode the semantis of the anestral genome. We an thus performa reonstrution, despite extensive map reshu�ing. In setion 6.2, we show the pertinene ofour method on theoretial test ases and omparisons to existing methods. Finally, setion 6.3provides a wider disussion about the super-blok method. All this work is under revision in[JSN℄.6.1 A Median Genome for non-WGD yeastsWe have applied our method to analyze anestral arhitetures for the Génolevures projet[DS+04℄ in the ase of non-WGD Hemiasomyete yeasts. The data onsists in 5 ompletely se-quened yeasts from the Saharomyetaae lades: Kluyveromyes latis, Saharomyes kluyveri,Zygosaharomyes rouxii, Ashbya (Eremotheium) gossypii and Kluyveromyes thermotolerans2.These genomes have little genome redundany and a relatively high (for yeasts) onservation ofsynteny.Signed permutations representing eah genome were omputed using the SyDiG algorithm (seepart II, page 59), using pairwise synteni bloks obtained by the i-ADHoRE method [SVSP04℄from orthology and synteny relations identi�ed using Génolevures protein families [NS07℄. Thesesynteni bloks ontain 8�200 genes (mean size 14 genes) and over roughly 60% of eah genome.Basing these permutations only on protein-oding genes is su�ient, sine yeast genomes arehighly ompat (protein-oding genes over approximately 80% of the genome), and gene relisare quite rare (approximately 4%) [Duj06℄. By ombining pairwise syntenies, eah genome wasfatored into a sequene of ordered synteni bloks, from whih a set of distint bloks ommonto all genomes was determined. An arbitrary referene genome was hosen, and all the bloksforming this genome were numbered by unique sequential identi�ers from 1 to n.The permutations omputed by this in silio hromosomal painting ontained 487 bloks (mean1Whole-Genome Dupliation, an unique polyploidization event proposed in the anestral Saharomyes lin-eage; non-WGD yeasts from the other branhes of the phylogeneti tree are not a�eted by this atastrophievent.2Abbreviations: Klla, K. latis; Sakl, S. kluyveri ; Zyro, Z. rouxii ; Ergo, A. gossypii ; Klth, K. thermotolerans.93



Chapter 6. Appliationssize 51 genes); keeping the longest bloks brought the permutations to 120 identi�ers3 (mean size,94 genes). We were able to plae ative and inative entromeres in eah genome permutationby loating the �anking genes (personal ommuniation from Jaky de Montigny). Eah of 9ontemporary entromeres was enoded by two suessive identi�ers, resulting in 15 additionalbloks. Thus, eah genome was represented as a signed permutation of 135 elements (see �g-ure 6.1) , in whih hromosomal rearrangements (fusion, �ssion, transloation, inversion) werestudied. The pairwise rearrangement distanes between these genomes are shown in table 6.1.Klth:1a {} a2 3 4 5 6 7 8 $9 10b {} b11 12 13 14 15 16 17 18 19 20 21 $22 23 24 25 26 27 28 29 30 31 32 33 {} 34 35 36 $37 38 39 40 41 42d {} d43 44 45 46 47 48 49 50 51 52 53 54 55 56i i57 58 59 60 61 $62 63 64 65 66 67 68e {} e69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 $84 85 86 87 88 89 90 91 92 93 94f {} f95 96 97 98 99 100 101 $102 103 104 105 106 107 108 109 110 111 112 113 114g {} g115 116 117 118 $119 120 121 122 123 124 125 126 127 128 129 130 131h {} h132 133 134 135 $Ergo:b11 -52 -51 -89 131h {} h132 96 -8 -65 103 -129 -128 $-20 -19 -18 -17 61 40 -43d {} d-42 -41 45 46 92 100 -78 -29 118 $116 117 9 31 32 33 {} 34 35 36 b-10 49 50 13 86 -38 $93 83 91 -81 -48 23 -63 5 6 94f {} f95 -75 -74 119 120 12 -22 -104 99 135 -88 -37 $-77 -76 85 62 -134 -133 -115g {} g-114 -113 58 59 60 80 82 -98 -26 -105 53 54 106 $47 87 -7 121 122 123 124 125 126 127 67 68e {} e69 -16 -15 39 130 97 71 -30 -25 102 -24 66 70 4 55 56i i57 -84 $-28 -27 -73 -108 -90 -44 -3 -2a {} a-1 109 110 111 72 79 64 -112 21 14 -107 101 $Klla:-103 -116 -86 85 -99 131h {} 68e e69 -67 21 133 -15 $104 105 123 61 -60 117 -55 93 91 -74 -96 -81 40 -43d {} d-42 -41 -24 $84 88 -82 -112 -129 31 102 -54 -53 -6 -8 -52 -51 30 -46 89 92 122 -119 -111 -70 {}$-36 -35 -34 -33 -32 -59 124 118 49 16 17 b-10 -83 -100 -73 121 -95f {} f -94 -65 -64 -63 -108 -90 19 20 $-57i i-56 -101 -97 -58 27 -45 107 -66 26 -80 1a {} a2 -87 23 9 -115g g-114 -44 -125 13 -29 -28 98 -134 75 76 77 78 79 $48 37 -106 120 -7 126 -135 38 -128 127 -50 b11 {} h-132 72 39 25 71 -110 -109 -18 -113 62 -130 47 14 -4 22 -12 3 -5 $Sakl:-8 -7 121 122 123 124 125 126 127 128 129 112 42d {} d43 44 $-118 -4 -3 -2a {} a-1 -117 -116 80 81 -91 -93 -92 -38 -37 12 $84 85 86 87 88 -82 30 113 114g {} g115 101 $-83 26 39 130 -132h {} h-131 133 134 -25 -24 45 46 $-36 -35 -34 {} -33 -32 -31 -41 -40 -71 135 -107 -106 47 14 15 16 17 18 19 20 $-96 -95f {} f-94 -65 -64 -63 5 6 -120 -119 13 -29 -28 -27 100 $-99 -98 -97 102 103 104 105 62 89 10b {} b11 -9 -23 59 60 -61 -22 $-21 -58 -57i {} i-56 -55 -54 -53 -52 -51 -50 -49 -48 -79 -78 -77 -76 -75 -74 -73 -72 90 108 109 110 111 66 67 68e e69 70 $Zyro:-83 106 107 -115g {} g-114 82 -54 62 -135 -71 72 -79 99 -117 -116 77 $41 42d d43 44 13 -29 -28 -27 -88 -113 -30 -57i i-56 -55 -61 47 10b {} b11 -111 58 59 60 23 $110 101 -90 129 -7 31 32 -34 {} -33 35 6 17 18 19 -65 -89 -127 81 -91 -93 -92 -84 $-100 86 87 -76 -37 38 109 -21 -8 94f {} f95 -97 102 103 104 105 -112 96 -64 -63 5 $22 -12 128 -134 -133 -132h {} h-131 -130 45 46 -123 -122 -121 $-36 -118 -4 -3 -2a {} a-1 -25 -120 49 50 51 73 74 75 53 -98 48 -119 52 -108 78 20 $-24 40 -16 -15 -14 -125 -124 66 67 -69e {} e-68 70 9 80 -26 -39 -85 -126 $Figure 6.1: Signed permutations on 135 elements for ontemporary non-WGD Hemiasomyeteyeasts (Zyro, Ergo, Klla, Klth and Sakl). Klth is taken as referene for the numbering. Theharater $ represent the end of a hromosome. The positions of the ative entromeres areloated by two embraes. A letter indiates the agreement of the �anking genes of a entromereaross the �ve speies.Comparative genome maps were painted (see �gure 6.2) with K. thermotolerans as referene.Ative entromeres are represented by red ovals, telomeres are represented by triangles. Theassigned letter indiates the agreement of this entromere aross the �ve speies. Markers arewell distributed on the hromosomes, so the hoie of these markers is representative of thearhiteture of the ontemporary genomes. A high degree of synteny, and a limited number oflarge-sale rearrangements, is observed between K. thermotolerans and S. Kluyveri ; they sharemany ommon adjaenies and their rearrangement distane is half of that seen between otherpairs of genomes. Note that K. latis presents two synteni breaks in entromere areas: the3The number of retained markers does not allow one to obtain an anestral permutation andidate by usingthe publi version of MGR.94



6.2. Comparison to MGRZyro Klth Sakl Klla ErgoZyro 0 84 79 115 101Klth 0 45 105 88Sakl 0 98 85Klla 0 109Ergo 0Table 6.1: Pairwise rearrangement distanes between non-WGD Hemiasomyete genomes asalulated from ommon synteny bloks representing 135 major onserved segments. For abbre-viations, see footnote on page 93.entromere of Klla0F is loated between the �anking genes of entromeres h and b, and theentromere of Klla0A is loated between the �anking genes of entromeres h and e. Moreover,S. kluyveri has an ative entromere (the entromere i), that was disabled in all the other studiedgenomes.We omputed 16 sets of super-bloks, eah ontaining either 34 or 35 super-bloks. Thesesuper-blok sets are highly similar. Indeed, 29 super-bloks are ommon among all of the sets,and there are only 4 on�its (see �gure 6.3). A given partial assembly of super-bloks P rep-resents a potential struture of an anestral arhiteture. Finally, it is possible to onstrut a�nal assembly from these super-bloks by suessive fusions. Two sets of assemblies were om-puted: with and without the onstraint on entromere position. For both of these ases 90 �nalassembly andidates were generated. In the �rst ase the global sum of distanes ∑
(M,Gi)varies between 281 and 285 (283,4 on average); in the seond ase it varies between 281 and 283(282,2 on average). The latter represents biologially plausible arhitetures whose rearrange-ment distanes are lose to minimal. The whole set of solutions shows a high onvergene interms of rearrangement distanes, reinforing the intuition that the omputation of anestralarhitetures by super-bloks assembly results in a redued neighborhood in the searh spae.Further �ltering of the results was done by a plausibility metri p based on the hromosomalstruture of the andidate solution (distributions of hromosome sizes and of entromere loa-tions on the hromosome). Figure 6.2 shows the andidate for anestral arhiteture whih hasthe best ompromise between a maximal value for p and minimal value for ∑

(M,Gi) = 284.6.2 Comparison to MGRWe ompare our super-blok algorithm to the software MGR-MEDIAN [BP02℄ developed toreonstrut anestral gene orders aording to rearrangement distane. MGR is not publilyavailable software, so we ould only make omparisons to publily available results, or to resultsthat an be omputed using the MGR demonstration web site4. This web site handles smallinstanes; although it is not formally stated on the MGR webpage, it seems that this publiversion is limited to genomes of at most 30 markers.6.2.1 Human, Cat, Mouse InstanesMGR onstruts median genomes for the three-genome ase only; if more are provided it om-putes the rearrangement tree. For this reason, we used the only available multi-hromosomal4http://nbr.sds.edu/GRIMM/mgr.gi 95



Chapter 6. Appliationsdata from the MGR webpage: that of human, at and mouse (anestral permutation availableon-line). This dataset has 114 markers [BP02℄. For this dataset, we obtain two versions P1 and
P2 of 32 super-bloks that di�er only in one super-blok. The anestral permutation obtainedby MGR ontains all of the super-bloks of one of the two sets P2 (see �gures 6.4 and 6.5).6.2.2 Simulated instanesIn order to estimate the onservation of super-bloks, we generate simulated instanes, where thedistanes between genomes are bounded. An arbitrary anestral genome is generated from whiha spei�ed number of random rearrangements are applied to give three genomes. We speify thenumber of genes (n) and hromosomes (N), and the number of rearrangements done during thesimulation (r); this parameter is an upper bound on the optimal median genome sore. Wegenerated 300 instanes with parameters n = 30, N between 1 and 5, and r = 50. For all ofthese instanes, we omputed the sets of super-bloks, the median genome obtained by the publiversion of MGR, and the possible assemblies into median genomes.The number of sets of super-bloks varies between 1 and 4, and the number of nontrivial super-bloks in a set varies between 2 and 10. This small number of partial assemblies and nontrivialsuper-bloks is due to the small number of identi�ers with only 3 genomes. MGR does notprovide an anestral permutation for 60 of the 300 instanes. For the 240 remaining instanes,the median genome proposed by MGR onserves the totality of the super-bloks exept for oneinstane (�gure 6.6). For this instane, we �nd one partial assembly deomposed into 7 nontrivialsuper-bloks. The median solution A_MGR reovered by MGR has a global rearrangementdistane of 41 and ontains 6 of the 7 super-bloks. The super-blok 23 24 25 is missing in
A_MGR although it has support in two of the three genomes of the instane (G2 and G3).Nevertheless, it is possible to obtain better solutions in terms of super-blok onservation, thatpresent moreover a better global rearrangement sore. Super-blok assemblies return 10 di�erentsolutions that are equivalent in terms of global rearrangement distane and better than the onefound by MGR (39 against 41). Moreover, all of these solutions ontain the 7 super-bloks ofthe partial assembly.The super-blok fusion proedure generates medians that are ompetitive from the rearrange-ment distane point of view. Moreover, our method provides andidates that have better break-point harateristis than those obtained by MGR. Example 4 page 81 shows 3 genomes G1,
G2 and G3. For this dataset, we obtain two partial assemblies of super-bloks that lead to twooptimal solutions M1 and M2 in terms of rearrangement distane. However, they have a di�erentglobal number of breakpoints: 11 breakpoints for M1 against 12 for M2 (see example 6). Undera parsimonious riterion, M1 appears as the best anestral andidate for G1, G2 and G3. MGRgives M2 as anestral gene order for this dataset. For the human, mouse and at genomes, thefusion proedure provides the same result in terms of rearrangements, and a better ompromisein terms of breakpoints (see �gure 6.5).Example 6 We onsider the three genomes from example 4. Super-bloks algorithm leads to twopartial assemblies P1 = {1, 3 2, 4 5, 6 7} and P2 = {1, 2 3, 4 5, 6 7}. From those two, two optimal(median) solutions M1 and M2 are possible: M1 = {1 -2 -3 4 5, 6 7} and M2 = {1 -3 -2 4 5, 6 7}.The rearrangement distanes (d) and the number of breakpoints (b) from M1 and M2 to G1, G2and G3 are shown below.96



6.3. Disussion
G1 G2 G3d b d b d b

M1 2 3 1 2 4 6

M2 1 2 2 3 4 76.2.3 Instane with entromeresWhen ontemporary entromere positions are known, they an be used to onstrain anestorreonstrutions: biologially plausible results must have one and only one entromere per re-onstruted hromosome. These onstraints are not taken into aount in the MGR algorithm,whih an onsequently return mathematially optimal, but biologially absurd, results.In the same way that it was explained in the last subsetion, we generated one instane of 3genomes with 30 markers. On these genomes, we plaed ative and inative entromeres: eahentromere is loated between two identi�ers. We omputed super-blok sets and assembliesfor this instane, and ompared our results with those returned by MGR (�gure 6.7). For thisinstane, we obtain one partial assembly with 8 super-bloks. The solution reovered by MGRhas a global rearrangement distane of 35 and ontains all the super-bloks. Nevertheless, thissolution is not viable due to the fat that the seond hromosome of this median has no ativeentromere.Viable solutions that respet this biologial onstraint may be non minimal in terms of rear-rangement distane, so respeting this biologial onstraint an require exploration of solutionsthat are mathematially suboptimal. For this example, we �nd 10 solutions that respet super-bloks and where global rearrangement sore varies between 34 and 36. All minimal solutionsare absurd as they do not respet the entromere onstraint, but we do �nd 3 viable solutionswith a global distane equal to 35 (�gure 6.7).6.3 DisussionComputing the median for a given set of genomes is informative when the sample set of genomes isarefully hosen and the interpretation of the ommon features that are so identi�ed is performedwith aution. As with any statistial study, if the sample is too small or not representative ofthe population under study, then the median may be biased. It is not the objet of this workto provide guidane into sampling strategies for genome omparisons, but to provide robustmathematial tools for performing the omparisons. Pratial studies ([Eri07℄, [GNS08℄, forexample) onur that the set of plausible medians is quite large and that it is misleading topresent just one as �the� anestral arhiteture of a set of genomes (see setion 2.4.4 page 51 formore details).The fous of this work is on the identi�ation of ommon strutural features that are likelyto be inherited from anestral genomes. These super-bloks an be seen as omplex traits inthe sense of Dollo parsimony, whose onservation and possible loss from a ommon anestoris more likely than independent gain in separate lineages. They are identi�ed without use ofa hypothesized phylogeny, and indeed nothing suggests that reombinatory evolution oinideswith mutational evolution (see setion 2.5.2 page 55).This use of phylogeny is an important feature of the work of [MZS+06℄ (see setion 2.5.1 page51 for the method of Ma et al.). Super-bloks share ertain aspets of the motivation behindCARs: that is, assembling only adjaenies having su�ient support in ontemporary genomes.The sharing tree of super-bloks (suh as seen in �gure 6.3) enodes all the possibilities of97



Chapter 6. Appliationsanestral genome arhitetures by inluding in the super-bloks the adjaenies ommon to atleast 2 genomes, and leaving the super-blok extremities as the only plaes where no semantiallysound assembly is possible. This �nal assembly is then just a question of optimization undersome metri, and in this work we use the Hannenhalli-Pevzner rearrangement distane.The super-bloks themselves implement a ompromise between the rearrangement and break-point distanes, and thus, thanks to the latter, enode the anestral semantis, while leavingroom for optimization thanks to the former.In pratie, our method realizes two suessive searh-spae redutions. First, the super-bloksthemselves diminish the number of unresolved adjaenies (left for the optimization step). Se-ond, we rely on the biologial onstraints for further searh-spae redution, as well as solution�ltering. In partiular, in our appliation to the non-WGD yeasts we use the entromere posi-tions, yielding biologially plausible solutions only.6.3.1 Gene and Segmental DupliationAounting for gene and segmental dupliation is an important hallenge, that we do not addressin this work. In [MRL+07℄ Martin et al. use the interleaving patterns of gene orders to studyrearrangements before and after the hypothesized whole genome dupliation (WGD) event inthe Saharomyes lineage [WS97℄. Interestingly, they laim that a series of partial genomedupliations leads to more parsimonious rearrangement senarios that does a single whole genomedupliation in apparent ontradition of the widely aepted hypothesis [KBL04, DS+04℄. Intheir study they ombined rearrangement events with dupliation and deletion events; duringa preproessing step their method renumbers dupliated elements in gene orders to produe apermutation ompatible with the Hannenhalli-Pevzner rearrangement algorithms that they use.For omputational reasons, only a single hromosome of A. gossypii is studied in detail. Forthis example our results agree; indeed, the segments in their �gure 5 (and supplemental �le S1provided by reviewer 2) are found in our adjaent markers 52 and 51 (Figure 6.2), onserved inour median and all genomes we onsider exept Z. rouxii. Our study is otherwise quite di�erent.Sine we deliberately only onsider speies outside of the WGD lineage, we are not onernedwith the large-sale dupliations and deletions that mask the underlying rearrangement events.Our method works e�iently on omplete genomes, and is not reliant on the Hannenhalli-Pevznermethod, but rather proposes a partial reoniliation between it and the breakpoint method. Oursuper-bloks method does not take dupliations into aount, sine it is not obvious how to weighdupliated adjaenies when ounting their frequeny. This is a diretion for future work.6.3.2 Towards Anestor Constrution in YeastsComparative genomis in the hemiasomyete yeasts has proven extremely informative aboutthe basi mehanisms of eukaryoti moleular evolution, both using geneti tools and omputeranalysis. These speies represent a homogeneous phylogeneti group with small and ompatgenomes, but nonetheless a large diversity at the physiologial and eologial levels, and anevolutionary range omparable to the Chordate phylum [DS+04, Duj06℄. They provide a kindof `evolutionary playground' in whih various genome-modifying mehanisms have been testedover and over. Building a mathematial desription of this rih history will provide importantinsight.In this work we have used our super-blok method to onstrut a plausible anestral arhite-ture for a phylogenetially irumsribed group of non-WGD yeasts, using ordered markers de-rived from all-against-all searh for onserved synteni segments. Surprisingly, highly similar sets98



6.3. Disussionof super-bloks are onstruted from these markers, reinforing the idea that the anestral seman-tis an be reovered using adjaenies observed in ontemporary genomes. Final assemblies ofthese super-bloks were onstruted by an optimization proedure using the Hannenhalli-Pevznerrearrangement distane as a metri. A strength of our method is that suh �nal assemblies anbe made to respet biologial onstraints on hromosome arhiteture, in this work entromereposition.Sine our method an e�iently handle hundreds of markers in dozens of genomes simultane-ously, these results open the way to a more in-depth study of the rearrangement history of theyeasts. This will require tehnial advanes, for deteting synteny in the presene of segmen-tal dupliation, for masking the e�ets of highly mobile elements, and for improved respet ofbiologial onstraints.
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Chapter 6. Appliations

Figure 6.2: Reonstrutions of genome-sale homology from ommon synteny bloks representingmajor onserved segments. Med is the proposed anestral arhiteture with ∑
d(Med,Gi) = 284.Eah unique numbered synteny blok is given a olor indiating its hromosome in the referenegenome (Klth), and a diagonal bar indiating its relative position on the hromosome. Othergenomes are signed permutations of these olored bloks; a hange of slope in the diagonal barindiates an inversion. Blok widths are to sale and the size of interleaving non-synteni regionsis shown by large grey lines. Red irles: entromeres; gray triangles: telomeres.100



6.3. Disussion

Figure 6.3: Sharing tree of super-bloks from the 16 sets of super-bloks obtained from non-WGD Hemiasomyete yeasts genomes. The root ontains the super-bloks shared among allthe 16 sets. Eah path from the root to a leaf represents a set of super-bloks. The numberinside the leaf nodes indiates the sum of the distane between this set of super-bloks and theontemporary genomes. Colors and marker numbers were hosen using Klth as a referene. Thediagonal line in eah box indiates the relative position and orientation of the marker on thereferene genome.
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Chapter 6. Appliations
HUMAN: 1 2 3 4 5 6 7 8, 9 10 11 12 13 14,15 16 17 18 19 20, 21 22 23 24,25 26 27 28 29 30 31 32 33, 34 35,36 37, 38 39 40 41 42 43,44 45 46 47 48, 49 50 51 52 53 54 55 56,57 58 59 60 61 62 63 64 65 66 67 68,69 70, 71 72 73 74 75 76 77 78 79,80 81, 82 83,84 85 86 87, 88,89 90, 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109,91, 110 111 112 113 114CAT: -22 -21 23 24, -70 -69,86 87 -85 -84, -37 -36,-26 -25 27 28 29 30 31 -33 -32, 106 107 -109 -108,44 45 -58 -57 -60 -59 61 62 63 64 65 66 67 68 90 91,1 2 3 -10 -9 11 12 13 14, -88 -20 -19 -18 -17 15,-50 -49 53 54 -52 -51 55 56, 46 47 48,-89 80 81, -38 39 40 41 42 43,-71, -75 -74 -73 -72 -77-76 78 79, -83 -82,34 35, -7 -6 8 -5 -4,16, 92 93 94 95 96 97 98 99 100 101 102 103 104 105110 111 112 113 114MOUSE: 34 35, 11 12 13 14 -8 -7 -6,32, 44 45 -43 -42 -41 -10 -9 -54 -53 84 85 -87 -86,-65, -20 -19 -5 -4 -3 -2 -1,33 38 39 40, 57 58 59 60 61 62,36 37, 82 83 -52 -51 48 49 50,15 16, -56 -55 -70 -69 -18 -17103 104 105 -93 -92, -89 -88 -68 -67,-26 -25 -24, 23 71 -75 -74 -73 -72 76 77 78 79,-47 -46, 21 22 90 91 63 64 -6680 81, -97 -96 98 99 100 106 107 -109 -108 -95 -94 101 102-31 -30 -29 -28 -27, 110 111 112 113 114A: -8 -7 -6, 71 -75 -74 -73 -72 76 77 78 79,80 81, -70 -69 -5 -4 -3 -2 -1,82 83, -12 -11 -52 -51 55 56,49 50, 44 45 -43 -42 -41 -40 -39 -38,-14 -13 92 93 94 95 96 97 98 99 100 101 102 103-37 -36, -30 -29 -28 -27 25 26,-35 -34, 87 -85 -84 53 54 9 10,32 33 -31 -48 -47 -46,21 22 88 89, 104 105 106 107 -109 -108,86 -91 -90 -68 -67 -66 -65 -64 -63 -62 -61 -60 -59 -58 -57,-16 -15 17 18 19 20, -24 -23,110 111 112 113 114Figure 6.4: Human, mouse and at permutations as well as the anestral permutations (A)reovered by MGR-MEDIAN [BP02℄.
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6.3. Disussion
Super-bloks ommon to all the partial assemblies-8 -7 -6-7172 73 74 7576 77 78 7980 8182 83-50 -49-70 -69-5 -4 -3 -2 -1-14 -13 -12 -1151 5255 5646 47 48-45 -4436 3734 35-33 -32-31 -30 -29 -28 -2725 26-22 -2188-8990 9157 58 59 60 61 62 63 64 65 66 67 6884 85 -87 -8653 54-10 -9-16 -15 17 18 19 2023 24108 109 -107 -106 -105 -104 -103 -102 -101 -100 -99 -98 -97 -96 -95 -94 -93 -92-114 -113 -112 -111 -110Super-blok spei� to P1 Super-blok spei� to P2-43 -42 -41 -40 -39 38 -43 -42 -41 -40 -39 -38Figure 6.5: 2 sets of super-bloks obtained from the publi dataset of Human, Cat and Mousegene order (see �gure 6.4).
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(a) G1: -27 16 1,-8 30 14 15 -26 -21,20 -22 -25 17 18 -24 3 -5 -4 6 9 -29 -28 -19 23 -2 7 10 11 12 13
G2: 29 -20 16 -8 -7 15 -12 18,19 13 14 9 -4 -21 30 28 -25 -24 -23 2 22,-1 -11 -10 3 5 6 17 26 27
G3: 9 10 19 -27 -26 -25 -24 -23 -16 -15,-4 -3 -2 -13 -12 5 6 20,14 18 -11 -28 -30 -29 -22 -21 -17,-1 -8 -7(b) F: -27 -26, 10 11, 23 24 25, -6 -5, -8 -7, -13 -12, -28 -30() A_MGR: 10 11 2 3 4 7 8 23 24 -18 -17 25 22 -20 -6 -5 12 13,9 15 16 1,-27 -26 -21 30 28 29 -14 -19(d) A_SB: 29 30 28 -8 -7,21 26 27 -19 23 24 25 22 -20,-18 -17 -6 -5 12 13 2 3 4 -11 -10 -9,14 15 16 1Figure 6.6: Results for (a) the simulated instane G1, G2 and G3: (b) Super-blok set F , ()median genome A_MGR provided by the publi version of MGR and (d) one of the 10 mediansolutions reovered by fusions of super-bloks.
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6.3. Disussion

(a) G1: 1 {c} 10 3 -30 -23 -19 22 14 15 27 28 -13 -12 -11 25 9,26 {c} 8,20 21 -24 5 6 -2 7 -29 -18 {c} -17 -4 -16
G2: -7 5 11 12 13 14 23 24 -18 {c} -17 -6,1 {c} 10,26 {c} 8 27 -3 21 22 -16 -4 28 -30 -29 15 19,20 -2 -9 {c} -25
G3: -24 28 -18 {c} -17 -13 4 -29 -16 -11 -7 23 -19 14 15 25 9,26 {c} 8 27 12 -3 -30 5 6,-22 -21 -20 1 {c} 10 2(b) F : 25 9, -22 -21 -20, 11 12 13, 17 18, -27 -26 -8, -15 -14, -6 -5, -10 -1() A_MGR: -9 {c} -25 17 {c} 18 -28 -27 -8 {c} -26,20 21 22 -16 7 11 12 13 -15 -14 19 23 24 -30 5 6,29 -4 -3 -2 -10 {c} -1(d) A_SB: 1 {c} 10 2 -7 -23 -19,-9 {c} -25 -15 -14 -22 -21 -20,3 4 -29 -18 {c} -17 -6 -5 24,26 {c} 8 27 28 -30 16 -13 -12 -11Figure 6.7: (a) A simulated instane G1, G2 and G3 with ative entromere positions indiated bythe letter  between embraes. (b) For this instane, a set of super-bloks F is obtained. () Themedian genome A_MGR provided by the publi version of MGR presents a hromosome withoutative entromere.(d) A_SB is a sub-optimal median solution in terms of global rearrangementsore whih is plausible for entromere onstraint.
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Part IVOptimal rearrangement senarios
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Chapter 7Computing a orret optimal senarioAnalysis of genome rearrangements provides a measure for the evolutionary distane betweenspeies. Two losely related problems are onsidered in the study of genome rearrangements. The�rst problem is to �nd, by parsimony riteria and for a de�ned set of rearrangement operations,the exat number of suh operations needed to rewrite one genome into another. The seondproblem is to ompute a most parsimonious rearrangement senario. Solving the latter wouldenable the understanding of evolutionary mehanisms.In the onsidered model (see setion 1.2), two genomes de�ned on the same set of gene markerswithout dupliations, are represented by signed permutations. Thus, the analysis of genomesleads to a ombinatorial problem of transforming one signed permutation into another. Thetheory proposed by Hannenhalli and Pevzner [HP95a, SM97℄ for unihromosomal genomes basedon reversals only is presented in detail in hapter 2 (see setion 2.2.1). Their main results onsistin an exat formula for reversal distane, and the �rst polynomial time algorithm for omputinga parsimonious reversal-based senario between two signed permutations.This theory was further adapted by the same authors to the multihromosomal ase and ispresented in the same hapter, setion 2.2.2. For multihromosomal genomes, a larger set ofrearrangement operations is onsidered: transloations, fusions and �ssions as well as reversals.In [HP95b℄, Hannenhalli and Pevzner devise a method that mimis all multihromosomal rear-rangements by reversals operating on an unique permutation. This is ahieved by a onversion tothe unihromosomal model, whih requires an optimal apping to leverly delineate hromosomesof a given genome, as well as an optimal onatenate in order to assemble them into a singlepermutation. The omputed parsimonious senario relies on the struture of this permutation.However, both the formula for rearrangement distane and the algorithm for omputing aparsimonious sequene of operations given by Hannenhalli and Pevzner [HP95b℄ present errors.Tesler in [Tes02a℄ partially orreted the rearrangement distane formula. In the same paper,the algorithm that leads to optimal onatenates was ompleted by a proper bonding step (formore details, readers are invited to refer setion 2.3.2). Ozery-Flato and Shamir in turn rede�nedsome notions and suggest further orretions essentially for the rearrangement distane formula[OFS03℄. Nevertheless, the algorithm that is supposed to onstrut an optimal apping, fails.Various de�nitions and their relationships presenting inoherenes between papers by di�erentauthors, we �rst propose a single and oherent lassi�ation of interleaving graph omponentsbased on relevant literature in setion 7.1. This lassi�ation permits a better understandingof what is wrong in the existing algorithm for determining optimal apping. In setion 7.2, wepresent ases for whih Ozery-Flato and Shamir's algorithm fails and provide a ounterexamplefor eah ase. Finally, we introdue in setion 7.3, a orret algorithm for optimal apping with109



Chapter 7. Computing a orret optimal senarioa proof of its orretion. This whole work was published in [JN07℄.7.1 Double lassi�ation of onneted omponentsLet Π and Γ be two multihromosomal genomes with respetively NΠ and NΓ hromosomes de-�ned over the same set of gene markers Ng. Two steps are needed to enode a multihromosomalgenome as an unique permutation: apping and onatenate. Π̂ and Γ̂ represent a apping of Πand Γ and we denote by π̂ and γ̂ onatenates for Π̂ and Γ̂.The notions of adjaenies and breakpoints are transferred to the breakpoint graph de�ned in[HP95a℄. Denote by G(Π,Γ) (G(Π̂, Γ̂), G(π̂, γ̂) respetively) the breakpoint graph onstrutedfrom permutations Π and Γ (Π̂ and Γ̂, and π̂ and γ̂ respetively).The distane value is omputed based on the breakpoint graph G(Π,Γ), free of any appingand onatenate, in whih we an distinguish three types of verties: isolated verties alled tails,ap verties of degree 1 alled Π-aps, and other verties of degree 1 alled Γ-tails. The graph
G(Π,Γ) an be deomposed into yles and paths that are haraterized by their extremities(ΠΠ-path, ΓΓ-path and ΠΓ-path).Constrution of the interleaving graph I(G) (see setion 2.2.2 page 32 for more details) isde�ned from non-trivial paths or yles (with more than 2 edges) of the breakpoint graph
G = G(Π,Γ) and based on the notion of edge interleaving. We propose a oherent and un-ambiguous lassi�ation for the onneted omponents of an interleaving graph that is the resultof a synthesis of previously ited referenes. In fat, the omponents an be lassi�ed in twodi�erent and omplementary ways, as shown in �gure 7.1.7.1.1 Intrinsi lassi�ationWe all intrinsi lassi�ation the way to disriminate between omponents based on the prop-erties of their edges. It is represented by the vertial hierarhy of �lled nodes in �gure 7.1. Adashed edge (representing an adjaeny in Γ) {π̂i, π̂j} in G(Π,Γ) is oriented if |j − i| is even,otherwise it is unoriented. The same edge is intrahromosomal if the verties π̂i and π̂j belongto the same hromosome, and interhromosomal otherwise. A onneted omponent K of I(G)is oriented (interhromosomal, respetively) if any yle or path belonging to K has at least oneoriented (interhromosomal, respetively) dashed edge, otherwise K is unoriented (intrahromo-somal, respetively). Let U(G) be the set of unoriented omponents of I(G), IU(G) the set ofunoriented and intrahromosomal ones.We have seen that the di�ulty to ompute the rearrangement distane omes from unorientedand intrahromosomal omponents (see the unihromosomal ase, setion 2.2.1 page 28). Theintrinsi lassi�ation is then re�ned for this set of omponents: we distinguish real omponentsfrom unreal omponents within unoriented and intrahromosomal omponents. As a reminder,a onneted omponent K of I(G) is real if K belongs to IU(G) and if it has no Π-ap or Γ-tailin its span. Let RU(G) be the set of real omponents.Example 7 gives the intrinsi lassi�ations for the breakpoint graph of the �gure 7.2.7.1.2 Extrinsi lassi�ationWe all extrinsi lassi�ation the way to desribe a omponent by its relationship with surround-ing omponents. It is represented horizontally by dashed lines in �gure 7.1. This lassi�ationonerns the sets of unoriented omponents U(G), IU(G) and RU(G) that require a more de-tailed study in order to determine the rearrangement distane as well as the algorithms that lead110



7.1. Double lassi�ation of onneted omponents
Conneted omponents
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MinimalThe greatest

Real knotsNon real knots
Simple
Super

MinimalThe greatest
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Extrinsilassi�ation

Figure 7.1: Double lassi�ation of onneted omponents. The hildren nodes form a partitionof the omponent set represented by their parent node. Intrinsi lassi�ation is read from topto bottom while extrinsi lassi�ation is read from left to right.to parsimonious senario omputation.The �rst partition for these sets relies on the notion of omponent separation (see de�nition13 page 29). U(G) is partitioned into non hurdles and hurdles, where a hurdle is a omponentof U(G) that does not separate two other omponents in the same set. The notion of separationde�nes in the same way the partitions of IU(G) and RU(G): knots and non knots for the former,and real knots and non-real knots for the latter.The seond level of the extrinsi lassi�ation is based on protetion notion (see de�nition 16page 30). Within the hurdle set, we distinguish the super hurdles from the simple ones. A hurdleis super if it protets a non hurdle, otherwise it is simple. These notions are de�ned similarly forknots and real knots.While protetion notion haraterizes hurdle (knots, real knots respetively) relationships withnon hurdles (non knots, non real knots, respetively), the last level of lassi�ation is based on therelationships between hurdles themselves. A hurdle an be the greatest one if its span ontainsall the spans of the others hurdles, otherwise it is a minimal hurdle. These notions are de�nedsimilarly for knots and real knots. 111



Chapter 7. Computing a orret optimal senarioExample 7 gives the extrinsi lassi�ations for the breakpoint graph of the �gure 7.2.
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b b b b b b
T T T T T TΠ Π Π ΠΓ Γ0 27 28 2 1 3 4 7 8 13 14 11 12 9 10 15 16 5 6 17 18 29 30 31 32 19 20 21 22 25 26 23 24 33 34 3514 -1 2 4 7 6 5 8 3 9 15 16 10 11 13 12 17

G(Π, Γ)

Figure 7.2: Breakpoint graph G(Π,Γ) for Π = {−1 2 4 7 6 5 8 3 9, 10 11 13 12} and Γ =
{1 2 3 4 5 6 7 8 9 10 11 12 13}. Tails verties are marked by T, Π-aps by Π and Γ-tails by
Γ. Non trivial yles and paths are denoted by letters from A to F . The interleaving graph
I(G) orresponding to G(Π,Γ) is omposed of 5 onneted omponents: K1 = {A}, K2 = {B},
K3 = {C,D}, K4 = {E} and K5 = {F}.Example 7 Figure 7.2 presents a breakpoint graph G(Π,Γ). The intrinsi lassi�ation is asfollows: K1 is intrahromosomal oriented, U = {K2,K3,K4, K5}, IU = {K2,K3,K5} and
RU = {K2,K3}. The extrinsi lassi�ation is: K3 is a super hurdle while K4 and K5 aresimple hurdles, and K3 and K5 are super knots. However, K2 and K3 are real knots (K2 is thegreatest one), while K5 is a minimal semi-real knot and K1 is a simple omponent.7.1.3 Partiular strutures and distane formulaBased on this lassi�ation, partiular strutures of the breakpoint graph are de�ned. Countingspei� omponents (de�ned both by the nature of their edges and their relationships with otheromponents) is required in order to ompute the rearrangement distane. Within the set ofunreal omponents we an distinguish those alled semi-real knots that are haraterized bytheir potential of beoming real knots (see de�nition 24 page 33). A simple omponent is de�nedas a omponent with at least one ΠΓ-path and whih is not a semi-real knot.From all these onsiderations, global spei� strutures for the breakpoint graph are de�ned.The breakpoint graph G is a fortress (fortress of knots, or fortress of real knots, respetively) ifit ontains an odd number of hurdles (knots, or real knots, respetively) that are all super. Wesay that a graph G is a weak fortress of real knots if (a) G has an odd number of real knots, (b)there exists the greatest real knot in G, () all real knots are super exept the greatest one and(d) the number of semi-real knots in G is stritly greater than 0. Note that a weak fortress ofreal knots beomes a fortress of real knots by losing the ΠΓ-paths in a semi-real knot.Denote by Ḡ(Π,Γ) the graph obtained by losing all the ΠΓ-paths in simple omponents of
G(Π,Γ). Ozery-Flato and Shamir [OFS03℄ give an exat formula for the distane between twomultihromosomal genomes Π and Γ (see theorem 3 page 34): d(Π,Γ) = b − c + pΓΓ + r +

⌈s′−gr′+fr′

2 ⌉ where b is the number of solid edges in G(Π,Γ) (b = Ng + max(NΠ, NΓ)), c is thenumber of yles and paths, pΓΓ is the number of ΓΓ-paths, r is the number of real knots, s′ isthe number of semi-real knots in G(Π,Γ), gr′ is equal to 1 if Ḡ has the greatest real-knot and
s′ > 0, and is 0 otherwise, fr′ is equal to 1 if either (i) Ḡ is a fortress of real knots and thegreatest semi-real knot does not exist in Ḡ, or (ii) Ḡ is a weak fortress of real knots.Computing the distane between two multihromosomal genomes is independent of appingand onatenation. However, omputing a parsimonious senario onsists in �nding a sequene of112



7.2. Cases for whih optimal apping algorithm failsreversals mimiking multihromosomal rearrangements that satisfy the minimal distane. Thus,optimal apping and optimal onatenate are required to �nd a parsimonious senario. Neverthe-less, in spite of orretions brought by Tesler [Tes02a℄ and by Ozery-Flato and Shamir [OFS03℄,the algorithm for omputing optimal apping remains inorret.7.2 Cases for whih optimal apping algorithm failsOptimal apping Π∗ and Γ∗ is �nding positions and signs for aps in the genome Γ suh that
d(Π∗,Γ∗) = d(Π,Γ) (see lemma 4 page 36). This is done for any arbitrary apping in Π. In thebreakpoint graph, it onsists in adding 2NΓ edges linking a Π-ap to a Γ-tail and NΠ−NΓ edgesbetween two Π-aps if NΠ > NΓ.The algorithm for onstrution of an optimal apping that takes into the aount the lastorretions for rearrangement distane is provided by Ozery-Flato and Shamir [OFS03℄ (seealgorithm 1 page 37). However, this algorithm is inorret. There are two ases for whih theiralgorithm fails. In what follows, we desribe eah of these ases and provide a ounterexample.7.2.1 Di�erene in the number of hromosomesSine the distane funtion is symmetri, we have d(Π,Γ) = d(Γ,Π) and so Ozery-Flato andShamir [OFS03℄ onsider only the ase where NΓ ≤ NΠ without lost of generality. However, theproposed algorithm fails if NΓ < NΠ. The number of Π-aps is equal to 2max(NΠ, NΓ) and theone of Γ-tails is 2NΓ. Clearly, the number of Π-aps is stritly greater that the number of Γ-tailsif NΓ < NΠ. Thus, pΠΠ > pΓΓ. Steps 2 and 3 of algorithm 1 onsist in joining a ΠΠ-path with a
ΓΓ-path to the point of ΠΠ-path exhaustion aording to lemma 2 page 36. Consequently, thenumber of ΓΓ-paths is not su�ient to lose all the ΠΠ-paths when NΓ < NΠ. See �gure 7.3and example 8 for a ounterexample.
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Chapter 7. Computing a orret optimal senarioknots and there exists the greatest semi-real knot then fr′ = 0. Moreover, the greatest semi-realknot and the greatest real knot an not exist simultaneously, so gr′ = 0. Hene, the genomidistane is d = b− c + pΓΓ + r + ⌈s′2 ⌉ = b− c + pΓΓ + r + s′

2 sine s′ is even. The step 5 of theoptimal apping algorithm in [OFS03℄ joins any two semi-real knots. Suppose that the greatestsemi-real knot is joined by an interhromosomal or oriented edge to another semi-real knot. Theobtained graph is still a fortress of real knots, but the greatest semi-real knot does not existanymore, so fr′ = 1. Thus, we get d = b− (c−1)+pΓΓ +r+ ⌈ (s′−2)+1
2 ⌉ = b− c+1+pΓΓ +r+ s′

2 .See �gure 7.4 and example 9 for a ounterexample.
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K10.Example 9 The breakpoint graph G = G(Π,Γ) in �gure 7.4 is a fortress of real knots with
fr′ = 0. The distane is d(Π,Γ) = 34 − 14 + 0 + 3 + ⌈4−0+0

2 ⌉ = 25. Step 5 of Ozery-Flato andShamir's algorithm allows joining the greatest semi-real knot K1 to K8 by an interhromosomaledge (dashed line), whih results in a new graph G′. G′ is still a fortress of real knots, but fr′ = 1.So d = 34− 13 + 0 + 3 + ⌈2−0+1
2 ⌉ = 26, whih does not respet the minimal distane.7.3 A orret algorithm for optimal appingIn what follows we propose a new algorithm for optimal apping (algorithm 9) and the proof ofits orretion (theorem 9). The proof is based on two tehnial lemmas from [HP95b℄ (lemmas2 and 3 page 36) and possible on�gurations for pertinent parameters of the breakpoint graphpresented by �gure 7.5.Theorem 9 (Jean and Nikolski [JN07℄) Let d = d(Π,Γ) be the distane between two multi-hromosomal genomes Π and Γ. Algorithm 9 onstruts an optimal apping Γ̂ for any arbitraryapping Π̂, suh that d(Π̂, Γ̂) = d.Proof: Let M be the total number of edges needed to lose all the paths. If NΠ > NΓ, then

M = 2NΓ + NΠ−NΓ, otherwise M = 2NΓ. Building a apping Γ̂ involves adding M edges ei to
G(Π,Γ). This proess de�nes a new graph Gi for the ith addition of an edge. It results after M114



7.3. A orret algorithm for optimal appingAlgorithm 9 Corret_Optimal_Capping1: Construt the graph G = G(Π,Γ)2: while there is a ΓΓ-path in G do3: Find an interhromosomal or oriented edge joining this ΓΓ-path with a ΠΠ-path (lemma2) and add it to G4: end while5: Close all remaining ΠΠ-paths in G6: Close all ΠΓ-paths in simple omponents in G7: if s′ is even and s′ ≥ 2 and G is a fortress of real knots then8: if G has the greatest semi-real knot then9: Close all ΠΓ-paths in the greatest semi-real knot10: else11: Close all ΠΓ-paths in any one semi-real knot12: end if13: end if14: while G has more than one semi-real knot do15: Find an interhromosomal or oriented edge joining ΠΓ-paths in any two semi-real knot(lemma 3) and add it to G16: end while17: Close all remaining ΠΓ-paths in G18: Find a apping Γ̂ de�ned by the graph G(Π̂, Γ̂)
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e1→ G1...
eM→ GM = G(Π̂, Γ̂). We denote by di the distaneomputed on the graph Gi, and we index by i all the distane formula parameters.For eah parameter p we denote by ∆p the di�erene of its values for suessive graphs pi−pi−1.Then ∆ = di−di−1. In what follows, we prove that for eah added edge ∆ = 0 and onsequently

dM − d0 = 0.The �rst while loop (lines 2-4 in algorithm 9 results in ∆ = 0. Indeed, if Gi−1 has a ΓΓ-paththen there also exists a ΠΠ-path. Conneting a ΓΓ-path with a ΠΠ-path via an interhromosomal115



Chapter 7. Computing a orret optimal senarioor an oriented edge results in ∆pΓΓ
= −1, ∆c = −1, and hene in ∆ = 0. The graph struturemodi�ations in lines 5 and 6 do not a�et any parameter value, and thus we still have ∆ = 0.Starting from line 5, what remains is to lose ΠΓ-paths in semi-real knots. The proof for thispart of the algorithm is based on a ase analysis. The last part of distane formula, ⌈s′−gr′+fr′

2 ⌉,depends on the parity and value of s′. Moreover, semi-real knots an beome real knots and thenmodify the values of gr′ and fr′. That is why, we have also to onsider the parity and value of r.The greatest semi-real knot (the semi-real knot, respetively) does not have the same behavioras the minimal ones: we have to take into the aount the presene or absene of these partiularomponents. All the possible graph on�gurations are shown in �gure 7.5. We show that for allof them ∆ = 0. Notie that on�gurations 1, 3, 11, 13, 21 and 23 in �gure 7.5 are impossiblesine the greatest semi-real knot and the greatest real knot an not exist simultaneously.The then part of the if statement (lines 7 through 13 in algorithm 9) onerns three possibleases:1. the greatest semi-real knot exists (on�gurations 4 and 14),2. the greatest semi-real knot does not exist, but the greatest real knot exist (on�gurations8 and 18),3. the greatest semi-real knot and the the greatest real knot do not exist (on�gurations 9and 19).For these 6 on�gurations we have ∆c = ∆pΓΓ
= 0 and ∆s′ = −1. The values of ∆fr′ , ∆r and

∆gr′ vary between the three ases.1. We are in the then part at line 9, fr′i−1 = 0 and fr′i = 0 sine the number of real-knotsbeomes even. So ∆fr′ = 0, ∆r = 1 and ∆gr′ = 1.2. We are and the else part at line 11, fr′i−1 = 1 and fr′i−1 = 1. Closing all the ΠΓ-paths ina minimal semi-real knot does not modify the number of real knots: the greatest real knotbeomes an unreal omponent. Thus, ∆r = 0, ∆gr′ = −1 and ∆fr′ = 03. We have gr′i−1 = gr′i = 0. Therefore ∆r = 1, ∆gr′ = 0 and ∆fr′ = −1 sine the number ofreal knots beomes even.Thus in all the possible ases before line 14 we have ∆ = 0.The seond while loop (line 14 through 16) is entered in three ases:1. s′i−1 = 2 (on�gurations from 2 to 10 exept 3),2. s′i−1 > 2 is even (on�gurations from 12 to 20 exept 13),3. s′i−1 is odd (on�gurations from 22 to 30 exept 23).In all of these on�gurations ∆c = −1, ∆pΓΓ
= ∆r = 0 and ∆s′ = −2. The values ∆gr′ and

∆fr′ depend on the on�guration.1. For all on�gurations, exept 6 and 8, we have. ∆gr′ = ∆fr′ = 0. For on�gurations 6 and8, ∆gr′ = −1. For on�guration 6, fr′i−1 = fr′i = 0. For on�guration 8, Gi−1 an be aweak fortress of real knots, and so fr′i−1 = 1 or 0 but fr′i = 0 sine s′i = 0. Thus, ∆fr′ iseither 0 or -1.116



7.3. A orret algorithm for optimal apping2. In all on�gurations ∆gr′ = 0. For all on�gurations exept 18, ∆fr′ = 0 sine fr′i−1 =
fr′i = 0. For 18, if Gi−1 is a weak fortress of real knots then Gi is one too, and fr′i−1 =
fr′i = 1, otherwise fr′i−1 = fr′i = 0, and so ∆fr′ = 0.3. Two ases are possible: (a) one of the two semi-real knots is the greatest semi-real knot or(b) the two semi-real knots are minimal. For (a) gr′i−1 = gr′i = 0 and fr′i−1 = 0, but fr′i iseither 1 or 0 depending on whether Gi−1 is a fortress of real knots. For (b) ∆gr′ = ∆fr′ = 0.Applying the distane formula from theorem 3, we obtain ∆ = 0 in all ases.If at this point (line 17) there still remains a semi-real knot and one of the following onditionsholds1. either Gi−1 has the greatest real knot (on�gurations 26 and 28),2. or Gi−1 has the greatest semi-real knot (on�gurations 22, 24 and 25),3. or Gi−1 has neither one nor the other (on�gurations 27, 29 and 30),then we have to lose the ΠΓ paths.For all these ases, we have ∆c = ∆pΓΓ

= 0 and ∆s′ = −1. The values of ∆r, ∆gr′ and ∆fr′depend on the partiular on�guration.1. ∆r = 0 and ∆gr′ = −1 sine s′i = 0. As for the value of fr′, onsider that Gi−1 an beeither a weak fortress of real knots, or a fortress of real knots, or none. In all of these asesthe value of fr′ does not hange.2. ∆r = 1, ∆gr′ = 0, and ∆fr′ = 0 sine the greatest semi-real knot beomes the greatestsimple real knot.3. ∆r = 1 and ∆gr′ = 0. As for the value of fr′, fr′i−1 is either 1 or 0 depending on whether
Gi−1 is a fortress of real knots or not, and fr′i = 0.Applying the distane formula from theorem 3, we obtain ∆ = 0 in all ases.We see then, that in all possible ases, graph modi�ations G(Π,Γ) = G0

e1→ G1...
eM→ GM =

G(Π̂, Γ̂) by our algorithm are neutral with respet to the distane formula. �
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Chapter 8VIRAGE: an interative tool for thevisualization of rearrangement senariosE�ient algorithms exist to ompute rearrangement senarios between two genomes. In par-tiular, hapters 2 and 7 present algorithms based on the Hannenhalli and Pevzner theory forthe omputation of a rearrangement senario between two signed multihromosomal genomes interms of reversals, transloations, fusions and �ssions. The �rst implementation that made it pos-sible to analyze rearrangements in multihromosomal genomes was realized in GRIMM [Tes02b℄.However, the resulting rearrangement senario is visualized as a stati, and possibly quite long,sequene of permutations. Genome modeling in the form of signed permutations makes the anal-ysis and omparison of senarios di�ult. Hene, a hallenge lies in the visualization of plausibleresults in order to failitate their interpretation by expert biologists.We developed a new tool alled VIRAGE for VIsualization of ReArrangement within GEnomes,whih permits the interative and animated visualization of several rearrangement senarios. Re-arrangements taken into the aount are reversals, transloations, fusions and �ssions. VIRAGEis divided in two main parts: the generator of the visualization doument and the visualizer ofrearrangement senarios.In this hapter, we �rst present the generator of the visualization doument. This generator isstrongly based on the genome graph, a ommon struture to all of the senarios. The obtaineddoument ontains information relative to senarios under study and also inludes modules re-quired for the visualizer of rearrangements. A seond setion is dediated to the visualizer, whihis built of two main parts: the sequening module that manages the ourse of senarios aordingto users' instrutions and the animating module that enables the animation of rearrangements.8.1 Generator of the visualization doumentThe generator of the visualization doument is the stati part of VIRAGE, whih onsists inproduing an SVG (Salable Vetor Graphis [SVG01℄) doument from a set of senarios providedas parameters. The ode of the generator is written in Python.8.1.1 Syntax of input �lesVIRAGE requires as many input �les as there are di�erent senarios to visualize. The hosensyntax for a senario is similar to the one of GRIMM results [Tes02b℄.A senario is a sequene of genomes where two onseutive genomes di�er by one transforma-119



Chapter 8. VIRAGE: an interative tool for the visualization of rearrangement senariostion among reversals, transloations, fusions and �ssions. In a senario �le, eah line orrespondsto a step in the senario, i.e to one genome.A multihromosomal genome is represented by a signed permutation where elements are sep-arated by spae harater and delimiters '$' are inserted after hromosomes. If entromerepositions are known, it is possible to add this information in the senario �le by indiating eahentromere by a letter framed by two braes. See �gure 8.1 for an example.1 2 3 4 {a} 90 $ 5 6 {b} 911 2 -4 -3 {a} 90 $ 5 6 {b} 91-1 2 -4 -3 {a} 90 $ 5 6 {b} 91-1 2 -4 -3 {a} 90 $ -5 6 {b} 91-1 2 4 -3 {a} 90 $ -5 6 {b} 91-1 2 4 3 {a} 90 $ -5 6 {b} 91Figure 8.1: Example of a senario �le between two multihromosomal genomes. The �rst linerepresents the soure genome, the last, the target genome and all the lines exept for the �rst areintermediate genomes obtained from the previous one by a reversal in this example. Genomeshave two hromosomes delimited by the harater '$' and two entromeres loated by letters aand b between braes.We onsider three di�erent on�gurations for the set of input �les:- 1− 1 ase: all of the input �les start and end by the two same genomes;- 1− n ase: all of the �rst lines of input �les orrespond to the same genome;- n− 1 ase: all of the last lines of input �les orrespond to the same genome.A syntati analysis of senario �les is realized in order to verify that �les are well formed.8.1.2 Genome graph and nearly genome graphVIRAGE was developed to ease the visualization of one or several rearrangement senariosbetween speies. In the ase of multiple senarios, we group the di�erent senarios togetherinto a ommon data struture: the genome graph. This graph is the basis for the rest of theimplementation. Moreover, this struture is quite useful for the end users. In fat, it makesit possible to quikly visualize the mutual organization of senarios and, during the animatedphase, to understand the urrent step in the senarios' progress.Vertex hierarhyA senario is a sequene of genomes that represent intermediate states during evolution. Hene,we an assoiate to eah genome its index within a senario, and genomes are ordered aordingto their indies. The notion of order between genomes must be onserved in the genome graph.That is why the genome graph is a direted graph where verties represent genomes while eahedge represents a transformation between two onseutive genomes in a senario. However,it is possible that intermediate genomes are idential within several senarios. The genomegraph takes into aount these ommon points between the senarios by modeling the equivalentgenomes by an unique vertex. Nevertheless, in order to failitate the reading of graphs by users,the depth position of a vertex in the genome graph must be equal to the index of orresponding120



8.1. Generator of the visualization doumentgenomes in the senarios. However, aording to the ase under study, equivalent genomes mayhave di�erent indies:- the 1−1 ase is the ase where if the provided senarios are parsimonious then intermediategenomes that are idential have neessarily the same index in their orresponding senarios.Otherwise, idential genomes may have di�erent indies,- the 1−n ase onerns evolution from a ommon anestral genome towards n of its desen-dants. The n senarios under study may have di�erent lengths. Hene, idential genomesan our at di�erent indies in the senarios,- the n − 1 ase is the mirror of the 1 − n ase. It is treated in the same manner that the
1− n ase.Considering these di�erent ases, one genome present in two senarios is represented by onlyone vertex in the genome graph if it appears at the same index in two senarios. Let S = {s} bethe set of the senarios to visualize and s = (g1, g2, ..., gm) a senario of S where g1 is the souregenome, gm is the target genome and the others are intermediate ones.De�nition 48 A genome graph is a direted ayli graph G = (V,E) suh that:- V = {(g, i) | ∃ gi ∈ s ∈ S such that g = gi},- E = {((g1, i), (g2, i + 1)) | ∃ gi and gi+1 ∈ s ∈ S such that g1 = gi and g2 = gi+1}.The genome graph is onstruted by sanning through all of the senarios. At the kth step ofthe algorithm, genomes at index k are ompared in order to reate orresponding verties.In the n− 1 ase, senarios are preproessed: all of them are inverted in order to simulate thisase by an equivalent 1 − n ase. Next, the diretion of all the edges of the obtained genomegraph is inverted. The �nal graph is a direted ayli graph but no longer a genome graph,sine indies onsidered to onstrut the initial graph are those of senarios from the ommongenome to its n desendants. This graph is alled a nearly genome graph. See example 10 forthe onstrution of a nearly genome graph.Example 10 Let us onsider 4 senarios from 4 distint genomes to a ommon one. Table 8.1shows these senarios and table 8.2 presents the same senarios but inverted. g5 is present atdi�erent indies in senarios 1 and 2 while its index is the same in the inverted senarios. Thus,genome g5 is represented by an unique vertex in the genome graph of �gure 8.2 and the nearlygenome graph presented in �gure 8.3. On the other hand, genome g6, whih has the same indexin initial senarios but not in their inverse is represented by two distint verties in the (nearly)genome graph.Edge labelingOne the (nearly) genome graph is obtained, we an assoiate a rearrangement to eah edge.The supported rearrangements are reversals, transloations, fusions and �ssions. All of the othertransformations are de�ned as unknown rearrangements. Algorithm 10 spei�es the kind ofrearrangement that transforms genome gi into genome gi+1.Next, spei� information for eah rearrangement is de�ned: 121



Chapter 8. VIRAGE: an interative tool for the visualization of rearrangement senariosindex senario 1 senario 2 senario 3 senario 41 g1 g2 g3 g42 g7 g5 g6 g63 g5 g9 g11 g104 g8 g11 g115 g11Table 8.1: 4 senarios from 4 distint genomes to the ommon genome g11.index senario 1 senario 2 senario 3 senario 41 g11 g11 g11 g112 g8 g9 g6 g103 g5 g5 g3 g64 g7 g2 g45 g1Table 8.2: Inverted senarios of table 8.1.
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Figure 8.2: Genome graph obtained from the senarios of table 8.2.- reversal: the sequene of markers within a hromosome of gi that are reversed within thesame hromosome in gi+1,- transloation: two sequene extremities in two distint hromosomes of gi that are reversedand exhanged between the two same hromosomes in gi+1,- fusion: two extremity markers of two distint hromosomes of gi that are onseutive inan unique hromosome in gi+1,- �ssion: two onseutive markers within a hromosome of gi that are extremities of two122



8.2. Rearrangement visualizer
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Figure 8.3: Nearly genome graph for senarios of table 8.1.distint genomes in gi+1,- unknown rearrangement: no spei� information is required, sine this kind of transforma-tion is not animated.The searh of rearrangements is realized through a semanti analysis of genomes in order toverify that a given transformation between two genomes is interpretable by only one rearrange-ment. Otherwise, the transformation will be onsidered as an unknown rearrangement.8.1.3 SVG doument generationAfter the syntati analysis of senarios and the onstrution of the (nearly) genome graph labeledby rearrangements, all of this information is registered in graphi form in an SVG doument.In partiular, a graphi version of the (nearly) genome graph and the genomes is generated inthe doument. The doument also registers spatial positions of genomes as well as all the stepsof transformations. Finally, sequening and animating modules (explained in setions 8.2.2 and8.2.3) are inluded in the doument.8.2 Rearrangement visualizerThe visualizer is the dynami part of VIRAGE, whih enables users to observe rearrangements asanimations thanks to a browser. It is divided in two modules: the sequening and the animatingmodules. The assoiated ode is written in javasript. 123



Chapter 8. VIRAGE: an interative tool for the visualization of rearrangement senariosAlgorithm 10 Type of a rearrangement that transforms gi into gi+11: if gi and gi+1 have the same number of hromosomes then2: if gi and gi+1 di�er from one hromosome then3: it is a reversal4: else5: if gi and gi+1 di�er from two hromosomes then6: it is a transloation7: else8: it is an unknown rearrangement9: end if10: end if11: else12: if gi has one hromosome more than in gi+1 then13: it is a fusion14: else15: if gi has one hromosome less than in gi+1 then16: it is a �ssion17: else18: it is an unknown rearrangement19: end if20: end if21: end if8.2.1 InterfaeDesriptionThe graphi interfae inludes a global ontrol bar, the (nearly) genome graph and a spae forthe representation of genomes. This spae is divided in three parts: start and target genomesare respetively represented at the left hand side and at the right hand side while middle spaeis reserved for animated genomes. Figures 8.4, 8.5 and 8.6 show the three possible on�gurations(ases 1− 1, 1− n and n-n) of the graphi interfae.

Figure 8.4: Graphi interfae for a 1− 1 ase.124



8.2. Rearrangement visualizer

Figure 8.5: Graphi interfae for a 1− n ase.

Figure 8.6: Graphi interfae for a n− 1 ase.Genome representationA genome is visualized as a set of lines that orrespond to distint hromosomes. Eah genomemarker is represented by a box olored aording to its hromosome in the �rst starting genome.The box ontains the number and the sign of the marker. If entromere positions are known,they are indiated by an ellipse shape, whih ontains the orresponding letter inside. Figure 8.7shows an example of a starting genome without a entromere. 125



Chapter 8. VIRAGE: an interative tool for the visualization of rearrangement senarios
Figure 8.7: Graphi representation of a genome.Control barThe ontrol bar is used to progress through senarios. Various funtionalities are available: stepby step or ontinuous reading, forward or bakward; stopping; and diretly going to start or endgenome(s). A graphi representation of the (nearly) genome graph is presented below the ontrolbar. The diretion of edges are represented by the spatial position of their verties: the graph isread from left to right. The urrent displayed states of senarios are indiated by verties framedin red irles. This graph is given as an informative guide and annot be modi�ed. An exampleis presented �gure 8.8.

Figure 8.8: Control bar and graphial representation of a genome graph.8.2.2 Sequening moduleThe sequening module is a set of javasript funtions that assures the running of senariosaording to users' instrutions. In partiular, this module permits:- to update the genome graph display,- to launh the animations,- to ontrol the dependeny relationships between steps of senarios: a transformation thatleads to a vertex an be realized only if all of its predeessor verties are already reahed.8.2.3 Animating moduleThis module generates animations appropriate for eah kind of rearrangements. The priniple isthe same for all of the rearrangements: a�eted hromosomes are �extrated� from their initialposition and aligned aording to exhanged markers if neessary. Finally, after the modi�ation,126



8.2. Rearrangement visualizerhromosomes are replaed to their initial position. Figures 8.9 and 8.10 show animations for eahkind of rearrangements.

Figure 8.9: Animations of a reversal (left) and a transloation (right).
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Chapter 8. VIRAGE: an interative tool for the visualization of rearrangement senarios

Figure 8.10: Animations of a fusion (left) and a �ssion (right).
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ConlusionThe subjet of this thesis is in the general researh domain of omparative genomis. More par-tiularly, we were interested in the study of evolutionary events through genomi rearrangementsbased on a ombinatorial and algorithmi omparison of genomes. We developed original om-putational methods, that advane the state of the art by, on one hand, overoming limitationsof existing approahes and, on the other hand, by providing a omplete and adapted frameworkfor a rearrangement study in distant genomes.Theoretial ontributionsAnalyzing and understanding evolutionary events is a long and omplex proess. It �rst startswith the identi�ation of ommon markers between speies, seond requires the formulation ofhypothesis about anestral genomes and third unovers rearrangement senarios. In this thesis,we have ontributed to these three questions in a omputational way.In an appliative framework, we were interested in distant genomes, for whih existing methodsfor identi�ation of ommon markers do not perform well. In fat, a ertain number of om-putational methods already exist for identifying ommon markers, that an be either onservedsegments or synteny bloks. However, these methods, whih are e�ient for some genomes, donot preserve su�ient signal for others so that a rearrangement study an be done. Thus, we wereled to develop a new method alled SyDiG -Synteny in Distant Genomes- , whih an be equallyapplied to both lose and distant genomes. Based on pairwise hromosomal homologies (i.emultiplions) provided by AdHoRe [VSS+02℄, SyDiG algorithm onserves all of the informationontained within the multiplions in a graph and, from it, infers new homology relationships bytransitivity. Contrary to other approahes suh as GRIMM-Synteny [PT03a, BPT04, BZB+05℄,SyDiG algorithm does not �lter input data but solves potential on�its at the very end.We also introdued the notion of super-bloks for identifying ommon anestral features forthe general N -genome instane (N ≥ 3). We started from the observation that, given the verylarge number of equivalent solutions, providing one global arhiteture is misleading. That is why,based on adjaeny and rearrangement analysis under the signed permutation model of genomes,we developed a new method that builds the sharing tree of super-bloks representing all thepossible sets of super-bloks. Eah set of super-bloks is a set of reliable anestral hromosomalfragments whose extremities are unsolved adjaenies due to the lak of information. Thisapproah makes it possible to onstitute the basis of the putative anestral arhiteture and, byombining super-bloks of a same set, to provide a global solution to the problem without anyphylogeneti onsideration.This thesis started by the detailed study of Hannenhalli and Pevzner theory [HP95a, HP95b℄and all the peripheral works on the omputations of the rearrangement distane and parsimonioussenarios. This study led us to propose a lear view of the main notions by providing a single and129



Conlusionoherent lassi�ation of interleaving graph omponents. This lassi�ation highlighted errors inthe algorithm for optimal apping proposed by Ozery-Flato and Shamir [OFS03℄, that it itselfpart of the reovery of a parsimonious senario in terms of reversals, transloations, fusions and�ssions. We thus pinpointed ases for whih their algorithm fails and provided a new algorithmfor this step with a proof of its orretion.We were onfronted with the fat that analyzing senarios by reading suessive permutationsis a quite laborious task. This kind of output data does not possess a high ase of use for biol-ogist experts. We thus developed a new tool alled VIRAGE -VIsualization of ReArrangementswithin GEnomes- that permits the interative exploration of one or several senario(s) betweentwo speies or between one ommon anestor and its desendants thanks to the genome graph.Visually, eah rearrangement mehanism among reversals, transloations, fusions and �ssions islearly shown by isolating hromosomes on whih it ours and by dynamially applying it tothem.Appliative ontributionsThroughout this thesis, we were involved in Génolevures projet [SDI+06℄, a large-sale om-parative genomis projet studying speies in the Hemiasomyetous yeast phylum. Génolevuresprovided an ideal appliation domain, sine the lade of speies under study presented enoughsynteny in order to identify ommon markers and therefore to apply omputational methods foranestral analysis.At the beginning of our work, we �rst attempted to use existing methods, in partiular, forthe detetion of ommon markers. However, urrent methods either revealed themselves to benot suitable to this type of genomes, or were not available. Therefore, we had to go bak to basisand reonsider ertain theoretial foundations. We thus have developed a omplete frameworkfor genome rearrangement analysis starting with SyDiG for the identi�ation of ommon mark-ers, through the onstrution of super-bloks, up to the visualization of obtained senarios byVIRAGE.All of the developed approahes were validated on a set of �ve ompletely sequened yeasts fromthe Saharomyetaae lades: Kluyveromyes latis, Saharomyes kluyveri, Zygosaharomyesrouxii, Ashbya (Eremotheium) gossypii and Kluyveromyes thermotolerans.Perspetives and future workFrom the theoretial point of view, organisms represent very omplex mahineries that ompu-tational models do not totally manage yet to simulate. It is hene still required to re�ne existingmodels by adding new biologial onstraints in order to provide more biologially realisti results.SyDiG algorithm developed in this thesis omputes synteny bloks that ontain exatly one seg-ment per genome by avoiding groups of homologous segments non-representative of all genomesand by keeping only the longest segment in the ase where more than one segment belongs to thesame genome. These �lters are applied in order to obtain ommon markers that an easily betranslated in the usual model for genomes to perform urrent rearrangement methods. In fat,two limitations are impliitly onsidered in a large part of the literature on rearrangements:- dupliation events are not taken into the aount: eah gene marker is present exatly onein eah genome;- genomes have exatly the same gene ontent: insertions and deletions of genes are avoided.130



In the same way, super-blok onstrution leans on this standard genome model, that doesnot take into aount dupliation, insertion and deletion events. Nevertheless, this model is notappropriate for most genomes. In fat, while small genomes suh as viruses or organelles maybe simulated by this model, divergent speies notably those under study present di�erent opiesof the same gene. Thus, it would be interesting to onsider dupliation events on one hand, andto allow genomes with di�erent gene ontents on the other hand.Some of urrent methods for anestral reonstrution or distane omputation have been al-ready extended for taking into the aount these biologial onsiderations. Sanko� [San99℄ intro-dued the exemplar distane between two genomes based on the hypothesis that their ommonanestor has only one opy per family. Thus, the idea of the method onsists in getting bakthe best anestral position of eah gene by removing all but one member of eah marker in eahgenome, its exemplar, so as to minimize some rearrangement distane (breakpoint or reversal)between the two redued genomes. Another approah proposed by El-Mabrouk [EM02℄ onsistsin �nding, for one genome with multigene families, its anestral genome without dupliates suhthat the distane between them in terms of dupliation transpositions and reversals is minimized.These two approahes were used to reover anestral nodes of a speies tree [EM00a, EM02℄ andwe an imagine applying a similar approah during super-blok onstrution.El-Mabrouk and Sanko� were also interested in omparing genomes with di�erent gene on-tents. The former in [EM00b℄ extended the Hannenhalli and Pevzner theory [HP95a℄ by inlud-ing insertions and deletions of gene bloks in the omputation of rearrangement distane. Asfor Sanko� and olleagues [SB97℄, they adapted the TSP resolution of the median problem forgenomes for whih sets of genes di�er in very few genes. Our super-blok onstrution builds abridge between breakpoint and rearrangement distanes and methods proposed by El-Mabroukand Sanko� may provide a strong basis in order to extend our algorithms.Finally, we propose an approah for identifying ommon anestral features for the general,
N -genome instane, through the omputation of super-bloks. This omputation is a partiularinstane of speies tree reonstrution by onsidering a N -star as the target tree. The ontinua-tion of our work is to solve, for a set of modern genomes, the whole reonstrution of the speiestree by reovering the root and internal nodes. Two approahes an be onsidered.(1) Without phylogeneti onsideration: omputational inferene of speies trees an be donethrough the resolution of the well-studied multiple genome rearrangement problem [SSK96,HCKP95℄ by optimizing Steiner points [HRW92℄;(2) With phylogeneti onsideration: the root node of the speies tree is initialized to super-bloks of the N -genome instane resolution. Then given a phylogeneti tree, super-blokinferene of internal nodes is solved by ombining information from leaves that orrespondto modern genomes and root node. The bias potentially indued by allowing phylogenetionsiderations in speies tree reonstrution is redued by the fat that root node is initiallyomputed without this kind of information.Biologial appliations of this work an be extended to other lades. In fat, although theSyDiG and super-bloks algorithms were developed in the ontext of the Génolevures projet,these methods are general enough to be applied to other speies. From the appliative pointof view, it is important to apply these methods to various types of genomes. For example, itwould be pertinent to test the salability of our methods on the Drosophila twelve [SLK+07℄.Moreover, the sequenes of �ve speies phylogenetially lose to the yeast Candida glabrata willbe soon available in the Génolevures projet. Other than the sienti� interest in the validationof our methods on other speies, a omplete rearrangement study for these organisms would be131



Conlusionof medial interest, sine Candida glabrata is a human pathogen, that is at the origin of diseasessuh as Candidemia when it infets the bloodstream.
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