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Dr. Diego MOLLÁ ALIOD Macquarie University Co-directeur

Dr. Mark DRAS Macquarie University Directeur adjoint





Abstract

The grammaticality of a sentence has conventionally been treated in a binary way:

either a sentence is grammatical or not. A growing body of work, however, focuses

on studying intermediate levels of acceptability, sometimes referred to as gradience.

To date, the bulk of this work has concerned itself with the exploration of human

assessments of syntactic gradience. This dissertation explores the possibility to build

a robust computational model that accords with these human judgements.

We suggest that the concepts of Intersective Gradience and Subsective Gradience

introduced by Aarts for modelling graded judgements be extended to cover deviant

language. Under such a new model, the problem then raised by gradience is to classify

an utterance as a member of a specific category according to its syntactic characteris-

tics. More specifically, we extend Intersective Gradience (IG) so that it is concerned

with choosing the most suitable syntactic structure for an utterance among a set of

candidates, while Subsective Gradience (SG) is extended to be concerned with calcu-

lating to what extent the chosen syntactic structure is typical from the category at

stake. IG is addressed in relying on a criterion of optimality, while SG is addressed

in rating an utterance according to its grammatical acceptability. As for the required

syntactic characteristics, which serve as features for classifying an utterance, our in-

vestigation of different frameworks for representing the syntax of natural language

shows that they can easily be represented in Model-Theoretic Syntax; we choose to

use Property Grammars (PG), which offers to model the characterisation of an utter-

ance. We present here a fully automated solution for modelling syntactic gradience,

which characterises any well formed or ill formed input sentence, generates an optimal

parse for it, then rates the utterance according to its grammatical acceptability.

Through the development of such a new model of gradience, the main contribution

of this work is three-fold.

First, we specify a model-theoretic logical framework for PG, which bridges the gap

observed in the existing formalisation regarding the constraint satisfaction and con-

straint relaxation mechanisms, and how they relate to the projection of a category
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during the parsing process. This new framework introduces the notion of loose satis-

faction, along with a formulation in first-order logic, which enables reasoning about

the characterisation of an utterance.

Second, we present our implementation of Loose Satisfaction Chart Parsing (LSCP),

a dynamic programming approach based on the above mechanisms, which is proven

to always find the full parse of optimal merit. Although it shows a high theoretical

worst time complexity, it performs sufficiently well with the help of heuristics to let

us experiment with our model of gradience.

And third, after postulating that human acceptability judgements can be predicted

by factors derivable from LSCP, we present a numeric model for rating an utterance

according to its syntactic gradience. We measure a good correlation with grammatical

acceptability by human judgements. Moreover, the model turns out to outperform an

existing one discussed in the literature, which was experimented with parses generated

manually.

Keywords Gradience, acceptability, grammaticality, optimality, configuration, Mo-

del-Theoretic Syntax, Property Grammars, characterisation, constraint-based chart

parsing, robustness, loose constraint satisfaction.
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Résumé

La grammaticalité d’une phrase est habituellement conçue comme une notion bi-

naire : une phrase est soit grammaticale, soit agrammaticale. Cependant, bon nom-

bre de travaux se penchent de plus en plus sur l’étude de degrés d’acceptabilité

intermédiaires, auxquels le terme de gradience fait parfois référence. À ce jour, la

majorité de ces travaux s’est concentrée sur l’étude de l’évalution humaine de la gra-

dience syntaxique. Cette étude explore la possibilité de construire un modèle robuste

qui s’accorde avec ces jugements humains.

Nous suggérons d’élargir au langage mal formé les concepts de Gradience Intersec-

tive et de Gradience Subsective, proposés par Aarts pour la modélisation de jugements

graduels. Selon ce nouveau modèle, le problème que soulève la gradience concerne la

classification d’un énoncé dans une catégorie particulière, selon des critères basés sur

les caractéristiques syntaxiques de l’énoncé. Nous nous attachons à étendre la notion

de Gradience Intersective (GI) afin qu’elle concerne le choix de la meilleure solution

parmi un ensemble de candidats, et celle de Gradience Subsective (GS) pour qu’elle

concerne le calcul du degré de typicité de cette structure au sein de sa catégorie. La GI

est alors modélisée à l’aide d’un critère d’optimalité, tandis que la GS est modélisée

par le calcul d’un degré d’acceptabilité grammaticale. Quant aux caractéristiques syn-

taxiques requises pour permettre de classer un énoncé, notre étude de différents cadres

de représentation pour la syntaxe du langage naturel montre qu’elles peuvent aisément

être représentées dans un cadre de syntaxe modèle-théorique (Model-Theoretic Syn-

tax ). Nous optons pour l’utilisation des Grammaires de Propriétés (GP), qui of-

frent, précisément, la possibilité de modéliser la caractérisation d’un énoncé. Nous

présentons ici une solution entièrement automatisée pour la modélisation de la gradi-

ence syntaxique, qui procède de la caractérisation d’une phrase bien ou mal formée,

de la génération d’un arbre syntaxique optimal, et du calcul d’un degré d’acceptabilité

grammaticale pour l’énoncé.

À travers le développement de ce nouveau modèle, la contribution de ce travail

comporte trois volets.
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Premièrement, nous spécifions un système logique pour les GP qui permet la révision

de sa formalisation sous l’angle de la théorie des modèles. Il s’attache notamment à

formaliser les mécanismes de satisfaction et de relâche de contraintes mis en œuvre

dans les GP, ainsi que la façon dont ils permettent la projection d’une catégorie lors du

processus d’analyse. Ce nouveau système introduit la notion de satisfaction relâchée,

et une formulation en logique du premier ordre permettant de raisonner au sujet d’un

énoncé.

Deuxièmement, nous présentons notre implantation du processus d’analyse syntaxi-

que relâchée à base de contraintes (Loose Satisfaction Chart Parsing, ou LSCP), dont

nous prouvons qu’elle génère toujours une analyse syntaxique complète et optimale.

Cette approche est basée sur une technique de programmation dynamique (dynamic

programming), ainsi que sur les mécanismes décrits ci-dessus. Bien que d’une com-

plexité élevée, cette solution algorithmique présente des performances suffisantes pour

nous permettre d’expérimenter notre modèle de gradience.

Et troisièmement, après avoir postulé que la prédiction de jugements humains d’accep-

tabilité peut se baser sur des facteurs dérivés de la LSCP, nous présentons un modèle

numérique pour l’estimaton du degré d’acceptabilité grammaticale d’un énoncé. Nous

mesurons une bonne corrélation de ces scores avec des jugements humains d’acceptabilité

grammaticale. Qui plus est, notre modèle s’avère obtenir de meilleures performances

que celles obtenues par un modèle préexistant que nous utilisons comme référence, et

qui, quant à lui, a été expérimenté à l’aide d’analyses syntaxiques générées manuelle-

ment.

Mots-clés Gradience, acceptabilité, grammaticalité, optimalité, configuration, syn-

taxe modèle-théorique (Model-Theoretic Syntax), Grammaires de Propriétés, analyse

syntaxique tabulaire par contraintes, robustesse, satisfaction relâchée de contraintes.
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mon travail, et pour leurs commentaires experts: Denys Duchier, Gerald Penn et Eric
Villemonte de la Clergerie.
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as of 22 January 2008)

A language is a block: it is an antic fundament where every passer-by laid their
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(Personal translation)
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Chapter 1

Introduction

In Computational Linguistics, grammaticality has traditionally been treated as a bi-

nary notion, whereby a string either does or does not belong to language. Yet in

practice it has also long been admitted that uttered language, from gibberish to clas-

sical literature, reveals intermediate degrees of acceptability.

Intuitively, motivations for studying graded acceptability are easy to grasp. We

have all experienced everyday-life situations where uttered language may be more

or less acceptable, whether spoken or written. Subsequently, handling these situa-

tions automatically is a problem faced in various domains of Language Technology

(LT) such as Text Analytics1, Information Retrieval, Summarisation, Machine Trans-

lation, Question-Answering, Natural Language Generation, and so on. Just as an

example—and to take cases of not-so-intuitive situations, grammaticality measures

may be used in Summarisation (Wan et al., 2005) in order to evaluate qualitative

aspects of language. In Machine Translation as well, alternative sentences in the

target language may be discriminated on the basis of their measured grammatical-

ity. However, very few studies from Computational Linguistics have attempted to

systematically investigate the theoretical possibility of capturing a gradient of accept-

ability with a computational model, and evaluate to what extent model and human

judgement correlate.

1The term Text Analytics appeared fairly recently in the LT community, and covers the
fields previously known as Text Mining or Information Extraction. See the Text Analytics Wiki
(http://textanalytics.wikidot.com/) for more information.
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2 CHAPTER 1. INTRODUCTION

The venture is indeed challenging in many respects. Firstly, the observation of the

phenomenon to be modelled is arguable in nature since it concerns human judgement,

hence it is intrinsically subjective; evaluating the fit of a model is, therefore, open

to argument. The lack of a reference is a serious impediment to providing a scale

of magnitude for numerical estimates. Secondly, because the knowledge involved in

making such a judgement being itself fairly unclear, all sorts of problems regarding its

representation inevitably arise. What kind of information is involved in a judgement

about acceptability? How to represent that information? How to process it in order to

make a decision? And thirdly, what are the numeric elements which a predictive model

of grammatical acceptability should be based upon? Can all linguistic phenomena

involving syntactic gradience be captured by the same numeric account, or do they

require different numeric models to be designed?

This dissertation explores the possibility to build a robust computational model

that correlates with human judgements. We address the questions above in order

to provide a numeric model, which captures the graded aspects of the syntax of a

language—referred to as (syntactic) gradience. The problem is addressed from the

two angles of knowledge representation and numeric modelling.

This work is organised around four main parts. In Chapter 2, taking as a starting

point existing linguistic and psycholinguistic analyses of gradience, we investigate (a

subset of) them with respect to the syntactic information they contain, and how to

present, represent, and process it. We explore different attempts made by others to

circumscribe linguistic phenomena involving gradience and we draw conclusions about

the type of linguistic knowledge required. The model of syntactic gradience devised by

Aarts (2007) is of particular interest, even though it is not concerned with ill formed

language. The proposed dichotomy of phenomena involving gradience into those con-

cerned with Intersective Gradience and those concerned with Subsective Gradience is

identified to be particularly well-suited to serve as a bottom line for further exten-

sions, in order to cover other dimensions of language than those tackled by Aarts.

We also consider different existing options for adequately representing that linguis-

tic knowledge, by making sure that the representation we choose suits the purpose

of a numerical assessment. Hence we explore the ability of various computational
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frameworks to overcome syntactic deviance and still inform on observed syntactic

characteristics. On the processing side, we explore various parsing strategies, which

are compatible with the kind of representation of language as previously identified,

and which present the resulting linguistic information in a form suitable to numerical

processing. Our investigation leads us to choosing Property Grammars (PG) (Blache,

2000, 2005) as one of the most suitable frameworks.

Yet this framework presents a number of shortcomings in its existing formalisation,

which prevent from reasoning with the characterisation of an utterance—a key concept

introduced in PG for reprensenting the syntax of an utterance. We observe that the

problem does not come from the theory in itself as presented initially, but more from

its formalisation (VanRullen, Guénot, and Bellengier, 2003; VanRullen, 2005), which

takes a different point of view and does not aim to address the question of reasoning.

Therefore, in Chapter 3 we specify a new logical system for PG, in order to further

formalise the theory and overcome the issue at stake for the purpose of reasoning.

In Chapter 4, we introduce the implementation of a robust chart parser using

the model-theoretic framework from the previous chapter. This parser is robust in

always producing a full parse for unrestricted input. It also aims to ensure that the

output analysis is the optimal one with respect to a merit function. Such an aim is

theoretically an important one as it directly participates in the model of syntactic

gradience we advocate through this work. We calculate the algorithm’s theoretical

worst time complexity, and we evaluate its performance over the same corpus as we

are using for the experimental study from next chapter.

In Chapter 5, given the parser’s output, we experiment with numeric models of

syntactic gradience, and measure to what extent each model fits acceptability by

human judgements. Relying on the reviewed literature, we start by postulating differ-

ent factors of influence on acceptability which are substantiated by linguistic and/or

psycholinguistic evidence. These factors are complemented by other intuitive ones,

for which no linguistic studies were found in the literature. Each of these factors is

captured in numerical terms, which derive from syntactic elements taken from the

parser’s outputs. These terms are then used in different rating functions, each one
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corresponding to a model of gradience. One of these models is a pre-existing one pre-

sented in Blache, Hemforth, and Rauzy (2006). We run a comparative investigation of

all of them, which aims to determine which one performs better at predicting human

judgement of acceptability. The gold standard we are using comes from a psycholin-

guistic experiment run independently from the present study. That experiment used

Magnitude Estimation (Bard, Robertson, and Sorace, 1996) with human annotators

in order to assess acceptability of individual sentences. The corpus is mostly made up

of controlled ill-formed sentences (94% of the total). The fit of each model is figured

by Linear Regression, and a correlation coefficient is measured: on the full corpus a

correlation ρ = 0.54 is is obtained, and ρ = 0.64 is obtained on exactly the same data

sample (from the same corpus) as used by Blache, Hemforth, and Rauzy, who report

a correlation ρ = 076. The most salient difference between their experiment and ours

is that Blache, Hemforth, and Rauzy rely on manual parses, while we experimented

with syntactic parses which were automatically generated by our parser.

Chapter 6 draws conclusions and discusses avenues for further work.



Chapter 2

Background

Anyone who knows a natural language knows that some utterances are not
completely well formed. Speakers produce utterances that even they would agree

are grammatically imperfect — not by some external authority’s standard but
by their own. But experienced users of a language are also aware that some

ungrammatical utterances are much closer to being grammatical than others.
(Pullum and Scholz, 2001)

2.1 Introduction

The above epigraph from Pullum and Scholz perfectly summarises the starting point

of this work. Natural language must be taken here in its

ordinary, common-sense notion (...) under which we can say that The
Times in the UK, The New York Times in the USA, The Sydney Morning
Herald in Australia, and other newspapers around the world, all publish in
the same language — though of course we would not deny that there may
be local differences concerning which expressions are judged grammatical
by the relevant editors. (Pullum and Scholz, 2001, p. 38)

If we agree—and we do—that such a notion of natural language is indeed ordinary,

then it naturally entails that studying natural language must account for language in

its entirety, which includes well formed utterances from the UK, the USA, or Australia,

as well as those being “not completely well formed” or “grammatically imperfect”,

regardless of how close they are from being grammatical. We come back on these

5
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aspects into more details in §2.3.1. Then once acknowledged such variations, it seems

reasonable to wonder about how to answer the question how close is such or such

utterance from being grammatical?, and about what form the answer can take. These

are the broad questions we have in mind for the present chapter, and more generally

for this study.

We start, in §2.2, by exploring epistemological aspects of linguistic gradience, as

the propensity of language to possess varying degrees of acceptability is sometimes

referred to. In section §2.3 we explore the different options available in terms of types

of theoretical frameworks for dealing with a notion of natural language which matches

the ordinary one. In §2.4 we investigate more specifically the existing computational

models of gradience. In §2.5 we then focus on exploring different specific frameworks

involving gradience, or open to an account of it. §2.6 concludes the chapter; it sum-

marises our review of the literature and states the standpoint we will be taking for

the rest of this study.

2.2 Epistemology of Gradience

This section presents a brief overview of epistemological considerations around gra-

dience, with a prime focus on syntactic gradience in natural language. The section

is essentially—though not exclusively—based on the reader on fuzzy grammar from

Aarts et al. (2004), as well as Aarts’ own works on gradience (2004a; 2004b; 2007;

May 2007). Together they cover a very large spectrum of the literature, from Aristo-

tle until modern time, and constitute a thorough investigation of the topic. See also

Haji-Abdolhosseini (2005, pp. 7–11) for another interesting review of gradience in

grammar, also presented around Aarts’ works (until 2004).

As a starting point and since, to the best of our knowledge, there exists no reference

definition as such for the term gradience1, we venture to sum up our readings with

the following one:

Gradience denotes the property or fact of being variable, or graded; propensity

1In the English literature in linguistics, the term Gradience seems to appear for the first time in
1961 with Dwight Bolinger in his book Generality, Gradience, and the All–or–None (1961).
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to variability or boundary vagueness. Applied to linguistics it refers to the

propensity of natural language to possess varying degrees of acceptability.

Different views and interpretations of gradience co-exist in the literature. In very

general terms, questions of gradience arise in categorisation problems, where it refers

to categorical vagueness. From there, different interrogations arise: Isn’t classical

categorisation enough, as advocated in Bouchard (1995) and Newmeyer (2000)? Does

“categorical vagueness” refer to Aritotelian sharp boundaries with strict membership

rules while acknowledging the possibility for certain members to be atypical to differ-

ent degrees (Jackendoff, 1983; Lakoff, 1987a; Aarts, 2007, May 2007)? Or does it refer

to loose boundaries, with membership rules applying to different degrees (Ross, 1972,

1973; Lakoff, 1973, 1987a; Sorace and Keller, 2005)2? Should degrees of acceptability

be captured on a discrete scale, or should it be a continuum (Schütze, 1996; Duffield,

2003)?

As far as categorical indeterminacy is concerned, different situations are concerned

with gradience.

Unmet Membership Requirements Cases where items can not be categorised

properly because there is not any class for which the item to be classified meets

exactly all the membership requirements. For Hudson (1990), for instance, the

question of whether a three-legged cat is still a cat is addressed by the Best Fit

Principle.

Membership Ambiguity As the number of membership features grows, an item

could belong to either one or another class, and thus assigning it to one or the

other class might not be as trivial and obvious as it is when all the features are

met. In this case the problem is slightly different and is now concerned with dis-

criminating more or less precisely between more than one category membership.

Aarts uses the metaphor of a heap of sand (Eubilide’s Paradox of the Sorites3)

2For Lakoff (1987a), some categories, like tall man or red are graded, with fuzzy boundaries, while
some others, like bird have sharp boundaries. That explains why Lakoff is cited in both cases.

3Check the Standford Encyclopedia of Philosophy’s entry (Hyde, Fall 2005) for more details on
the Sorites Paradox.



8 CHAPTER 2. BACKGROUND

to illustrate the resistance of an item to a change of state, from member of

category A to member of category B:

Does one grain make a heap? Evidently not. Do two grains make a
heap? No. Do one hundred grains make a heap? Yes. Where does
one draw the line? (...) when can we call a collection of grains a heap?
Is there a cut–off point such that n grains of sand form a heap, but
n− 1 do not?

Aarts proposes an interpretation of gradience based on prototypicality. Using a

set-theoretic-like terminology, two classes of problems concerned with gradience are

discriminated: the phrase Subsective Gradience (SG) is coined for referring to “degree

of resemblance to a categorial prototype”, while Intersective Gradience (IG) is coined

for referring to “degree of inter-categorial resemblance”. Subsective Gradience has to

do with how close an item is to a prototypical item within a given category, while

Intersective Gradience has to do with the relative position of an item between two

(or more) categories. Aarts investigates linguistic phenomena from that SG/IG angle.

Phenomena are taken at the word level (e.g., SG within the Adjective class), and at

the constructional level. We only report here the discussion about the phrasal and

constructional levels, as we are not concerned, in this thesis, by the lexical level.

2.2.1 Subsective Gradience

In the SG approach, members of a category may only present a subset of the features

which characterise a prototypical member of the category. The degree of prototypical-

ity of a form class member then depends on how many of these features are satisfied.

Aarts insists on the risk of confusion between ‘degree of prototypicality’ and ‘degree

of membership’, the latter notion being best illustrated by a reference to Jackendoff

(1983) for whom

(...) one might think of a typical bird such as a robin as 100% bird, but
a penguin as perhaps only 71% bird and a bat as 45% bird. (...) The
difficulty with this view (pointed out to me by John Macnamara) is that
a penguin is not 71% bird and 29% something else, it just is a bird.

In this regard, Aarts also claims that:
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(...) linguistic formatives, while showing degrees of form class prototypi-
cality, do not display degrees of class membership.

Class membership is seen as a binary (i.e. all-or-none) notion, which requires well-

defined boundaries for classes, whereas prototypicality is a graded notion. For in-

stance, in the class of adjectives (Aarts, 2007, p. 105):

(...) happy is a more typical (alternatively, ‘prototypical’) exemplar of
the class of adjectives than thin, which in turn is more centrally like an
adjective than alive and utter.

This basically means that happy, thin, alive and utter are all legitimate members

of the class of adjectives, even though they present different degrees of prototypicality.

In that approach gradience is not ubiquitous and categories have sharp boundaries.

What this point emphasises is that gradience is not about defining loose boundaries

to categories, but rather about loosing the rules of categorisation. A ‘gradience-is-

everywhere’ kind of approach, as Aarts calls it, would make a different assumption in

this regard.

2.2.2 Intersective Gradience

Intersective Gradience is concerned with phenomena which show properties from two

different form classes. Adopting Aarts’ terminology, a form class member is said

to converge on another class when it presents properties from both categories. The

question is raised and investigated as to whether linguistic gradience is a matter

of fuzzy class boundaries and intersecting categories, or whether the classes have

sharp boundaries. In the latter case, advocated by the author, the classes do not

intersect and the formatives concerned with (intersective) gradience are seen as a set

of properties which intersect with the sets of properties from two form classes.

2.2.3 Constructional Gradience

For what we are interested in, Constructional Gradience (CG), as coined and diss-

cused by Aarts, is merely a generalisation of the IG/SG view on gradience, where the
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classes are syntactic constructions. The notion of construction as adopted in Aarts

is intentionally quite broad, and although not unrelated to Construction Grammar

(CxG) (Goldberg, 1995; Kay, 2002) (see §2.3.3 for more details), no explicit connec-

tion is made to one constructionist framework in particular. Instead, a construction

is described informally as

(. . . ) a string of elements (words, phrases, etc.) that has a distinctive
patterning which plays a role in different parts of the grammar. Put dif-
ferently, in an everyday and pre-theoretical sense, the term ‘construction’
designates a particular configuration of elements that has an identifiable
grammatical role to play. These characterizations give prominence to the
linear ordering of elements, and exclude semantic considerations from the
definition. (Aarts, 2007, p. 170)

Syntactic Characterisation It is clear from the quotation above that Aarts adopts

a syntactic approach to construction, which rules out semantics, arguing that “the

semantics attributed to constructions is often too vague (. . . ), too elaborate (. . . ),

or too skeletal” (Aarts, 2007, pp. 192–195). We think that such an assumption

might turn out to be quite restrictive, in some cases. In order to illustrate these

situations, it is probably best to point out the distinction made in CxG between the

construction’s meaning on one hand, and on the other hand the licensing semantic

properties, which may participate in the construction definition. The authoritative

definition of a construction in CxG (Goldberg, 1995, p. 5) states:

C is a construction iff C is a form-meaning pair 〈Fi, Si〉 such that
some aspect of Fi or some aspect of Si is not strictly predictable from C’s
component parts or from other previously established constructions.

Meanwhile, and still in Goldberg (1995, p. 152), constructions such as the Caused-

Motion Construction (C-MCx) are discussed where semantic properties are among the

requirements specified in the definition of the construction, alongside the syntactic

structure (emphasis is ours):

[The English Caused-Motion] construction can be defined (in active form)
structurally as follows (where V is a nonstative verb and OBL is a direc-
tional phrase:
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[SUBJ [V OBJ OBL]]

This definition is meant to cover the following types of expressions:

1. They laughed the poor guy out of the room.

2. Frank sneezed the tissue off the table.

3. Mary urged Bill into the house.

4. Sue let the water out of the bathtub.

In this case the definition of the construction clearly includes semantic properties,

namely a nonstative verb and a directional phrase. Follows an interesting discussion,

where Goldberg investigates examplars such as 1 and 2, for which it is observed that

the construction involves intransitive predicates which, out of the context of this

construction, can not occur transitively at all. Therefore, analysing cases of C-MCx

without taking into account these licensing semantic properties would mean dealing

as well with formatives which present the same licensing syntactic properties as those

of the C-MCx, but which are not C-MCxs, precisely because the licensing semantic

properties do not hold.

Clearly, Aarts decides to prevent meaning from accounting for gradience, which

is fine; but he seems to reject the licensing semantic properties as well, which, from

our point of view, is more arguable, for the reason mentioned above. In fact, no

such a disctinction is acknowledged regarding semantics. Instead, it is argued that a

construction structure ought to be studied strictly distinctively from its usage, which

also cover pragmatics—and, we understand, possibly more dimensions. Then in order

not to rely on semantics, Aarts advocates a characterisation of constructional IG and

SG “by making reference to the distributional potential of particular constructions”.

This way, “[t]he most typical exemplar of a construction will be the one that is dis-

tributionally the most versatile” (Aarts, 2007, p. 196). This use of the distributional

properties of constructions to define form classes is challenged by Croft (May 2007),

in turn argued further by Aarts (May 2007). We are not going to take a more active

part in the debate, which goes beyond the scope of our work, since the discussion is

mostly concerned with non-deviant formatives.
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2.2.4 Markedness

Aarts (2007, p. 91) reports that the notion of markedness was first used in works

on syntax in Chomsky (1961), but was mostly developed in the 1980s (Chomsky,

1981). Markedness comes along with the dual notions of core and periphery of a

grammar. The underlying idea is that Universal Grammar specifies a core grammar,

which tackles the unmarked cases, while the marked cases belong to the periphery.

The core grammar has a fixed set of rules and parameters, which, according to Aarts,

(...) can be conceived of as mental ‘switches’ which are either set to ‘on’
or ‘off’, depending on the particular language. Probably the most well-
known parameter is the Head Parameter, which stipulates that languages
are either ‘head first’ or ‘head last’, that is, heads either precede their
complements, or follow them. English is a head-first language, Japanese
is a head-last language.

As for the periphery, for Chomsky it consists of

borrowings, historical residues, inventions, and so on.... [The] marked
structures have to be learned on the basis of slender evidence...,so there
should be further structure to the system outside of core grammar. We
might expect that the structure of these further systems relates to the
theory of core grammar by such devices as relaxing certain conditions of
core grammar, processes of analogy in some sense to be made precise, and
so on, though there will presumably be independent structure as well: hi-
erarchies of accessibilities, etc.

Chomsky (1981, cited in Aarts, 2007, p. 92)

Aarts points out that Generativists “envisaged a radical split between core and periph-

ery, but allowed for some kind of gradience within both the core and the periphery”.

Markedness is thus a means for dealing with variation, but remains a binary notion.

For Aarts,

switches, after all, do not allow for mid-way positions. (...) the notions of
core and periphery too are very distinct, and the theory does not appear to
allow for a shading between the two. The gradient markedness model can



2.3. GRADIENCE AND FRAMEWORKS FOR KR 13

be seen as a compromise between the gradient and all-or-none conceptions
of the nature of grammatical architecture (although, of course, it was never
intended to be like that). (Aarts, 2007, p. 93)

Aarts goes further in asserting that markedness can not be seen as the same as sub-

sective gradience, since “[m]arkedness divides categories into two, a core and a pe-

riphery, whereas subsective gradience recognizes a gradient amongst elements within

categories”.

2.3 Gradience and General Frameworks for Knowl-

edge Representation

2.3.1 Generative-Enumerative Syntax vs. Model-Theoretic

Syntax

The question now arises as to what kind of formal framework should be chosen in

order to state grammar(s) and study the syntax of natural language in a fashion

which allows for representing and dealing with gradience. As pointed out by Pullum

(2007),

work in formal syntax over the past fifty years has been entirely domi-
nated by (...) the string-manipulating combinatorial systems categorized
as Generative-Enumerative Syntax in Pullum and Scholz (2001).

Generative-Enumerative Syntax (GES) models a language as a set of legal strings. A

GES grammar provides a set of production rules which enables the enumeration of all

the elements in this set. In fact, and more precisely, the problem of enumerating all

legal sentences in the language is seen as being equivalent to the problem of generating

a tree structure for each of them, the vocabulary being the given finite set of terminals.

The enumeration is then performed in combining the grammar rules in all the possible

ways in order to generate the set of equivalent trees. When the process succeeds and

generates a tree the sentence being analysed, seen as a set of terminals, is said legal

according to the grammar in use.
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Such a reading of the parsing process in GES will allow us to make a few points.

One is with regard to the vocabulary: the lexicon of the natural language at stake

and the lexicon of terminals for the meta-language used to describe the equivalent

tree structures are made one and same thing. That is to say, the lexicon used by the

meta-language to describe natural language is the same as the lexicon of the natural

language being described. Practically it means that the natural words—or characters

if we take the problem from the morphological level—make up the set of terminals

of the description language. As a consequence, the theory is incapable of handling

the dynamic aspect of natural language whereby new lexical items are created every

day—and this, beyond the trivial fact that creating an exhaustive list of all the lexical

terms in a natural language is quite impractical. It disregards lexical openness as a

legitimate property of natural language.

Another point is with regard to the grammar rules: a grammar rule is a production

rule, which merely informs on what the tree structure of an enumerable sentence is.

There is no room for informing on the grammatical properties that hold or fail for

a sentence which can not be enumerated. This aspect of GES closes the door to

providing a grammatical analysis of a so-called ill-formed sentence. If no sequence of

grammar rules can be found to generate a string then very little can be said about

the syntactic structure of the input sentence, besides maybe leaving behind a series

of alternative partial sequences.

As a matter of fact, a body of work aims to recover from the failing process and

keep the enumeration going in relying on these partial sequences. Various techniques

have been deployed to extend GES and develop recovery processes. Weischedel and

Sondheimer (1983), for instance, use grammar-dependent recovery meta-rules in order

to diagnose errors and try to generate parses of longest path for ill-formed input;

Carbonell and Hayes (1983) use a similar approach to focus on specific types of errors;

Mellish (1989) relies on grammar-independent extra rules to exploit the information

left behind by an active chart parser and to search the space of incomplete parsing

parses for sources of errors; McCoy, Pennington, and Suri’s mal-rules (1996) also

expand the grammar with a set of error productions; mal-rules are also found more

recently in Bender et al.’s system for Computer-Assisted Language Learning (2004),
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or declined as an error grammar in Foster and Vogel (2004). In a similar yet slightly

different trend, Douglas and Dale (1992) propose a mechanism of constraint relaxation

to extend the PATR-II formalism. However, all these approaches are limited in scope

as to which extra-grammatical linguistic phenomena can be diagnosed or recovered

from, and most of them are grammar-dependent. Therefore a solution still needs

to be found, which would abstract away from specific errors and specific parsing

strategies, in order to analyse unrestricted natural language and report on gradient

grammaticality. GES models a language as a set of legal strings, and anything which

does not belong to that set is simply ruled out from the domain of study.

It raises the question of whether natural language, as an “ordinary, common sense

notion”, can be covered in all its aspects by such a formal framework. The question

was addressed in various works from Pullum and Scholz (2001; 2005; 2007) (henceforth

P&S), who compare the family of GES frameworks and the family of Model-Theoretic

Syntactic ones, and investigate how different linguistic phenomena can be described

in each of the two frameworks. The phenomena being mostly discussed are lexical

openness, gradient gramaticality, and expression fragments. We will come back on

their argument shortly.

According to P&S the works on GES originate from Post’s formalisation of proof

theory (Post, 1943). In GES the notion of language is defined with respect to the

one of grammar, as the set of strings which can be generated by the grammar. A

grammar is said generative in the sense that it provides a recursive enumeration of

sets. The family of GES frameworks is consider to cover “all the familiar types of

phrase structure grammar, classic MIT transformational grammar (TG), Backus-Naur

form, and all typical statements of the syntax of programming languages4”, as well

as “all of categorial grammar including Montagovian syntax, tree adjoining grammar,

the ‘minimalist program’, the neominimalism of Stabler and Keenan, and nearly all

4 This view of statements of the syntax of programming languages (PL) is a contentious point in
P&S’s view: thanks to Gerald Penn (examiner, rapporteur) for pointing out that “BNF is actually a
very superficial way of describing PL syntax as strings, and is only the final step in the development
of a PL syntax that begins with an ‘abstract syntax’ that is much more akin to Pullum’s model-
theoretical view. What is interesting is that the PL community do not have any problem with using
both—not only are they not status competitors, but they complement each other by addressing
different aspects of computation and interpretation.”
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statements of the formation rules for logics” (Pullum, 2007).

P&S claim that such an approach to formalising the syntax of natural language

presents several drawbacks, and present Model-Theoretic Syntax (MTS) as an alterna-

tive “do[ing] much better on representing the facts” about different natural language

phenomena. Unlike GES, “MTS takes a grammar to be a set of statements of which

(algebraically idealized) well-formed expressions are models”. More specifically,

MTS frameworks, as I understand them, are distinguished by the adop-
tion of three general positions: (I) rules are statements about expressions;
(II) grammars are finite sets of such rules; (III) well-formedness of an
expression consists in satisfaction of the grammar. (Pullum, 2007)

In other words, MTS takes a descriptive point of view on syntax, whereby “a grammar

should describe the syntactic properties of expressions of a language by making general

statements about their syntactic properties”.

Expression P&S use the term expression to refer to the objects that linguist in-

vestigate. It covers sentences, clauses, phrases, words, idioms, lexemes, syllables, ...

from natural language in its ordinary, and common sense. Expressions are taken

to have syntactic structure, not merely to be analyzable in terms of struc-
tures imposed on them or posited for them by linguists. (Pullum, 2007)

P&S also coin the term quasi-expression to refer to an expression, which violates at

least one rule.

Rules In Pullum (2007) MTS rules are defined as being:

simply assertions about the structure of expressions. That is, an MTS rule
makes a statement that is either true or false when evaluated in the struc-
ture of an expression. If a structure is to be grammatically well formed
according to a certain rule, then the rule must be true as interpreted in
that structure.

Such a definition for MTS rules makes them incredibly similar to the characteris-

tic properties from Aarts, with perhaps the difference that Aarts seems not to have
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generalised the notion to quasi-expressions. In contrast, in GES a rule is rather a

processing instruction; it is a step in the procedure of derivation, which does not

state anything about the well-formedness of an expression and can not be interpreted

in isolation. P&S exemplify the difference with the case of the ‘Merge’ operation in

Transformational Grammar:

‘Merge’ cannot be understood as a condition on the structure of expres-
sions. It is a dynamic tree-building concatenation operation, joining two
items together and adding a node immediately dominating them. Notice
that it is stated informally as an imperative. (Pullum, 2007).

Grammar An MTS grammar is simply a finite, unordered set of rules. Since no

procedural aspect is involved, a grammar does not include any instructions or re-

strictions regarding a sequential application of rules. For instance, rules about verb

agreement are stated independently from rules of word order. P&S give the following

examples of grammatical statements: ‘The subject noun phrase of a tensed clause is

in the nominative case’; ‘The head verb of the verb phrase in a tensed clause agrees in

person and number with the subject of that clause’; ‘Verbs always follow their direct

objects’; or ‘Attributive modifiers precede the heads that they modify’.

What is not clear, however, is whether the pairwise independence of the rules in

the grammar is a strict requirement. Bearing in mind the modelling of gradience it

seems important to enforce that a constraint be atomic, in the sense that it models

a single grammatical statement. We are concerned here with cases where it may be

necessary to subordinate the success of a constraint to (the success or the failure of)

another one. One could imagine, for example, the need for a rule such as ‘In French,

when the direct object precedes the auxiliary avoir [to have] the past participle agrees

in person and number with the direct object’. Such a rule is arguably made of two

statements: a first statement ‘The direct object may precede the auxiliary avoir’,

followed by a second statement, which is conditionned by the success of the first one:

‘The past participle agrees in person and number with the direct object’. For the

sake of gradience it might be useful to have two, or maybe three statements: the

implication, its consequent, and its antecedent. When it comes to account for the
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gradience of an utterance we just want to make sure that we do not count either too

many or too few satisfied and/or violated statements.

We take the lack of specific requirement in that respect as flexibility provided to the

grammar writer.

Grammaticality In GES an expression is grammatical, that is, well-formed if and

only if it can be generated—in the sense of derivation—by a series of rules from the

grammar. That is, the notion of grammaticality is a procedural one.

Alternatively in MTS,

[a]n expression is well formed according to an MTS grammar if and only if
the semantic consequences of the grammar are true in its syntactic struc-
ture. Grammaticality is thus defined by reference to the semantic conse-
quences of rules (the semantics of the formal language in which the rules
are stated, that is — not the semantics of the natural language being de-
scribed). An expression is fully well formed if and only if its structure
complies with every requirement that is a semantic consequence of what
the grammar says. (Pullum, 2007)

Grammaticality in MTS contains no procedural aspect. Instead, the grammaticality

of an expression results from the observation of its syntactic properties. Conversally,

ungrammaticality in MTS is defined by violation of one or more of the rules of the

grammar.

Such a notion of grammaticality is also compatible with the sharp boundaries Aarts

assigns to categories. Since the notion of expression covers a rather large spectrum

of items, from syllables to sentences, in case of a phrase structure the definition of

grammaticality applies not only to natural language as a whole, but also to syntactic

categories, from lexical to constructional. Therefore, in such an approach, categories

have sharp boundaries, in that an expression can clearly be qualified as being either

grammatical or ungrammatical, whether or not it violates some of the rules specifying

the category.

P&S compare the two families of frameworks on their ability to describe different

phenomena of natural language considered as being distinctive. They show not only

that MTS is well suited to describing their syntactic structure, but also that GES is
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conversely ill suited to their description. The different phenomena under investigation

concern:

• gradient ungrammaticality, that is, “the gradient character of the property of

being ungrammatical”;

• expression fragments, like interruptions in a conversation;

• lexical openness, that is, “the open nature of natural language lexicons”.

As much as we agree we P&S that GES is no suited to describe gradient ungrammat-

icality and lexical openness, we would be more cautious about expression fragments,

as we have seen previously that GES could be extended in various ways to handle

these cases. We take P&S’s view as concerning the strict GES frameworks only in

this respect.

Next we report their discussion about gradient ungrammaticality, similar argu-

ments applying to lexical openness.

Gradient Ungrammaticality P&S consider that some utterances, the quasi-

expressions, are “vastly less deviant than others”. An unaugmented GES framework

can not say anything about these quasi-expressions, since no derivation can generate

it—if there was one, then it would be a well-formed expression. Chomsky (1961)

attempted to augment a generative grammar in order to describe degrees of ungram-

maticality. P&S show why the proposed solution is inadequate. Chomsky’s solution

consists of mapping the ungrammatical strings from the complement of the generated

set to a number representing the degree of their ungrammaticality. Given a language

over a vocabulary VT , the proposed function f : V ∗T − L(G) 7→ {1, 2, 3} maps any

sequence w to a degree of ungrammaticality. P&S discuss a function, which relies on

a relation of similarity between lexical category sequences, and emphasise three prob-

lems with the proposal. One problem is that three degrees are not sufficient, far more

degrees being easily observable, and more importantly that “none of the degrees of

difference in ungrammaticality in these examples is described under Chomsky’s pro-

posal (it does not cover deviance resulting from violations of constraints on inflection
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at all, as far as we can see)”. Example 2.1 is provided where the six expressions are

increasingly ungrammatical.

(2.1) a. I am the chair of my department.

b. *I are the chair of my department.

c. *Me are the chair of my department.

d. *Me are the chair of me’s department.

e. *Me are chair the of me’s department.

f. *Me are chair the me’s department of.

That first argument might be a bit excessive, in that that the number of degrees being

limited to three is more of an incidental property of Chomsky’s proposal.

The second problem being stressed is “the lack of any relationship between the

proposed degrees of ungrammaticality and any specific violations of grammatical con-

straints”. The argument relies essentially on the observation that Chomsky’s proposal

to assign a degree to an arbitrary set of words depends only on similarities among

lexical category sequences, and does not depend on any aspect of syntactic struc-

ture. As a consequence, the degree assigned to an ungrammatical string would be

exactly the same for all the grammars sharing the same lexicon. By contrast, “with

model-theoretic grammars the same resources employed to describe the fully gram-

matical expressions also yield a description of the quasi-expressions”. An example is

presented, which suggests that degrees of ungrammaticality be described by defining

a partial order among structures. A possible solution is sketched as follows. An ar-

bitrary set of structures for expressions and quasi-expressions is assumed (universe U
of labelled trees), along with an MTS grammar Γ; a partial order �UΓ is defined for

〈U ,Γ〉, which holds between two structures when one of the two is at least as close to

being grammatical as the other. It is captured by the fact that τ1 �UΓ τ2 if and only if

τ1 satisfies at least as many of the constraints of Γ as τ2:

�UΓ
def
= {〈τ1, τ2〉 : τ1, τ2 ∈ U ∧ |{φ : τ1 |= φ}| ≥ |{φ : τ2 |= φ}|} (2.2)
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τ1 �UΓ τ2 means, when true, that the quasi-expression presenting the structure τ1 is

ungrammatical to a greater degree than a quasi-expression presenting the structure

τ2.

An important point being emphasised by P&S is that “no extra machinery is

called for: the suggested analysis of degrees of ungrammaticality simply exploits the

content of the MTS grammar that is constructed to describe the fully grammatical

expressions: on any set U , there is a relation �UΓ for MTS grammar Γ”. Note the

importance of the arbitrary set of syntactic structures U : our understanding is that it

would take more than defining a partial order to GES just to generate the equivalent

of U and to achieve the same result, if possible.

The third problem is that there exists no algorithm for determining the status of

an arbitrary word sequence, since the question5 is undecidable because of the Turing-

equivalence of Transformational Grammar.

2.3.2 Optimality Theory

Optimality Theory (OT) (Prince and Smolensky, 1993) is a linguistic theory based

on principles and parameters, and is usually seen as a development of generative

grammar. Although mostly used in works on phonology, OT is also a framework

suitable to natural language parsing. From a processing point of view, the central

idea of the theory is that an input can be described by an optimal output structure,

whose choice, among a set of candidate structures, results from a competition among

constraints. A grammar consists of a hierarchy of constraints on candidate structures.

The constraints are ranked, universal and violable. Two types of constraints co-

exist, for encoding either faithfullness or markedness. The constraints of faithfullness

specify to what extent an output structure should fit the input. For instance, the

output must—or not—preserve the linear order among segments in the input. The

constraints of markedness are used to implement parameters—in the sense of Principle

5In plain language, the question could be worded informally as follows: For a Transformational
Grammar G, a word sequence w 6∈ L(G), and a lexical category sequence κ for w, can we find a word
sequence w′ in the language L(G) and a lexical category sequence κ′ for w′ such that κ and κ′ are
related—through the relation of similarity used in the definition of the function f?
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and Parameters—which are open to variation.

Competitive Constraint Processing The parsing process involves a series of

pairwise competition between candidates. This competitive process, called evaluation,

relies on the constraint ranking in order to determine which of the candidate structures

for a given input satisfies the highest-ranking constraint. In fact, what prevails in

the competition is the rank of the violated constraints: the highest ranking of the

violated constraints gets the corresponding candidate structure to lose. Thus the

constraints are foremost used to filter out the sub-optimal structures, and the winning

candidate is the less ungrammatical one. Such a way of conceiving the parsing process

makes Blache (2001)—who is interested in studying the role played by constraints in

linguistic theories—present the OT constraints as filtering ones, as opposed to those

from HPSG (Pollard and Sag, 1994), for instance, which also play a more active role

in building the structure. In OT, the generation of the candidate structures is taken

care of by the GEN function and do not involve any of the constraints. Note that

another difference between HPSG and OT stands in that the HPSG constraints do

not compete. For Blache, the fact that constraint failures in OT are only meaningful

to the filtering process requires relying on a constraint hierarchy (constraint can be

evaluated independently, but only its position with respect to the others is important),

which differs significantly from traditional constraint satisfaction.

The Notion of Structure One problem concerns what the so-called structures

exactly stand for. Conceptually OT is meant to cover all dimensions of language—

phonology, syntax, semantics, . . . —, which justifies leaving open the type of structure,

so that it suits the kind of information that needs to be encoded. Yet Blache (2001)

observes that the granularity of the structure of the constrained objects directly de-

termines the use of constraints, and impacts the type of parsing process involved. For

instance, different types of parsing process are applicable whether it deals with trees

or categories. If the objects are highly structured and differentiated, then a costly

generate-and-test is required, whereas if the objects are more canonical, then tradi-

tional constraint satisfaction is applicable. OT, like Constraint dependency Grammar
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(see §2.5.1) stands in the former category, while HPSG is more—though not entirely,

according to Blache—in the latter. Blache (2001) advocates the use of constraint

satisfaction, arguing, among many other reasons, that the approach benefits from

extensive work both theoretical and applied, to make the processing of constraints

practical. Other reasons are connected to those, which make Pullum and Scholz pre-

senting the family of MTS frameworks (see §2.3.1) as better suited to representing

all aspects of language; the link between their respective arguments is the notion of

constraint, which is considered as central in either case. We will come back on that

aspect later.

Generation of the Candidates Another problem, related to the first one, is the

lack of specification regarding the production of the candidate structures. As we

said previously, the theory relies on the assumption that all the possible candidates

are generated separately from the evaluation step—which handles the competition

aiming to determine the optimal structure—during a preliminary step, and makes no

assumption regarding what a structure should be like. The GEN function is responsible

for the production of a possibly infinite set of candidates for the input structure, and

is presented as a black box. The problem here, is that no details of GEN are ever

supplied, especially not concerning the supply of the set of alternative candidates,

which is often considered as obvious.

The Role of Constraint Violation One more issue comes from the key role

granted in the evaluation process to the violation of constraints. The fact that the

constraints in OT are universal means that they are defined independently from any

context they may apply to. For instance, the constraint ranking may change from

one language to another. Consequently, the constraints are often conflicting, in order

to cover all aspects of language. From these conflicts inevitably arise inconsistencies,

which need to be solved in order for the decision process to identify the optimal struc-

ture. Since constraint violation is necessary for the evaluation process to discriminate

and pick the optimal candidate, the grammar specifies constraints which are precisely

meant to fail.
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Grammaticality The last source of concern about OT is with regard to grammat-

icality. We observe that the notion of the grammaticality of a structure is defined by

reference to the one of the other candidates: a structure is defined as grammatical in

OT if and only if it wins all the competitions against the other candidate, and thus

turns out to be the optimal one. But is grammaticality conceptually equivalent to

optimality? Is it the same thing to conclude that a structure is the best possible one

for a given input with respect to a grammar, and to conclude that this input is itself

grammatical? Such a conception of grammaticality does not exactly match the no-

tion of common-sense we have discussed in §2.3.1—i.e. which discriminates between

expressions and quasi-expressions. Let us take the problem the other way around:

consider an expression Q and a quasi-expression Q′, and assume a set of candidate

structures for each of them (assuming that the GEN function is capable of providing a

set of structures for both—we will come back on that assumption shortly); the opti-

mal structure for Q is said to be grammatical in the OT sense of it, and the optimal

structure for Q′ is said to be grammatical as well, again in the OT sense of it. The

situation thus raises the following matters:

• How to discriminate expressions from quasi-expressions?

• How to compare Q to Q′ and their respective grammaticality?

These two questions remain unsolvable in native OT6.

Keller (2000, p. 243) asserts that

[i]n line with all major linguistic frameworks, Standard Optimality The-
ory (. . . ) assumes a binary notion of grammaticality: the competition
between candidate structures selects one candidate (or a set of candidates
sharing the same constraint profile) as optimal and, hence, grammati-
cal. All losing candidates, i.e., those structures that are suboptimal, are
assumed to be ungrammatical; Starndard OT makes no predicitions the
relative ungrammaticality of suboptimal candidates.

6It was pointed out to us by Gerald Penn (examiner, rapporteur) that “hard” constraints were
proposed to solve that problem, and we can only imagine that other mechanisms, such as prioritising
the constraints, could be helpful as well. It is nevertheless unclear, given the very nature of OT and
the role granted to constraint violation, how extensions could avoid being grammar-dependent and
thus limited in scope. The role played by GEN also remains highly unclear, as we discuss it later in
this very section.
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We agree with Keller about the lack of status provided for the suboptimal structures,

but we disagree with the alleged similarity between the “binary” grammaticality in OT

and the binary grammaticality “in all major linguistic frameworks”. The optimality-

theoretic grammaticality is indeed binary in that it involves, by definition, no degree

of grammaticality—the winning candidate is considered as being fully grammatical.

However, and still assuming that GEN is capable of generating structures for both

expressions and quasi-expressions, this notion of grammaticality strongly differs from

the one in all major frameworks (we take them to be GES frameworks) in that, as

we have just shown, OT considers as grammatical any input for which an optimal

structure can be found, and regardless of whether the input is an expression or a

quasi-expression. In doing so, OT loosens up the boundaries of the set of gram-

matical utterances in order to include quasi-expressions, and subsequently makes no

differentiation between the two. Therefore the framework as such, unlike other frame-

works where binary grammaticality applies, is not capable of discriminating between

grammaticality and ungrammaticality—i.e., any input for which candidate structures

are generated necessarily ends up being optimality-theoretically grammatical.

At this stage of the discussion it is necessary to come back on the quite strong

assumption we have been making all the way through: the ability of the GEN function

to provide a set of candidate structures for both expressions and quasi-expressions.

As already emphasised in §2.3.1 a generative framework is not well suited to the gen-

eration of structures for quasi-expressions; hence we are left with MTS frameworks

for GEN. Unfortunately, to the best of our knowledge there exists no attempt to (ex-

plicitely) implement OT for syntax along with an MTS framework. Yet we can not

think of any reason why it would not be possible. In fact, we will see later that the

solution we propose for modelling syntactic gradience does borrow central concepts

from OT, although we have not fully investigated the possibility of implementing OT

with an MTS framework. The question, therefore, remains open.
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2.3.3 Construction Grammar

The main and general idea governing Construction Grammar (CxG) is that the mean-

ing of the whole is not a compositional function of the meaning of the parts, but that

constructions carry their own meaning. The suggestion was first made by Lakoff (1977)

in his paper about Linguistic Gestalts, then discussed further in Lakoff (1987b). CxG

is sometimes presented as a family of frameworks for language studies rather than a

framework as such. Early noticeable use and development of CxG frameworks are

those by Goldberg (1995), Kay (1998), Kay and Fillmore (1999) among others. Other

different kinds of CxG frameworks were described, such as Cognitive Grammar (Lan-

gacker, 1986, 1987), Radical Construction Grammar (Croft, 2001), Embodied Cons-

truction Grammar (Bergen and Chang, 2005), Fluid Construction Grammar (Steels

and de Beule, 2006a), and others. Beyond the differences which motivate each of these

frameworks, they all share the same idea that compositional semantics is not enough

to for all aspects of a construction’s meaning.

The Notion of Construction A widely accepted generalisation of the definition

for the notion of Construction is the one provided by Goldberg (1995, p. 5) (already

introduced in §2.2.3):

C is a construction iff C is a form-meaning pair 〈Fi, Si〉 such that
some aspect of Fi or some aspect of Si is not strictly predictable from C’s
component parts or from other previously established constructions.

Such a definition implicitely makes it possible to study language phenomena such as

idiomatic structures, or argument structures, as being part of plain language, whereas

generative grammar and compositional semantics consider them as borderline cases.

As Goldberg emphasises it,

[t]heorists working within this theory [CxG] share an interest in charac-
terizing the entire class of structures that make up language, not only
the structures that are defined to be part of “core grammar”. (Goldberg,
1995, p. 6)(Emphasis in original)

In CxG the form-meaning pairing is the basic unit of language. It provides a

particurlarly flexible way of dealing with non-core cases. An example of argument
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structure is the Caused-Motion Construction discussed by Goldberg (1995), which was

already quickly presented in §2.2.3. This case study clearly shows (i) the limitations

of GES and compositional semantics, and (ii) how CxG elegantly overcomes these

limitations. For more case studies within CxG frameworks see for instance Langacker

(1987); Goldberg (1995); Kay (1998); Kay and Fillmore (1999).

Main Features of CxG Among the important features presented by CxG, one

is that it is described by Goldberg as being “generative in the sense that it tries to

account for the infinite number of expressions that are allowed by the grammar while

attempting to account for the fact that an infinite number of other expressions are

ruled out or disallowed”. At the same time, CxG is not transformational, in that no

underlying syntactic or semantic forms are posited.

Other important features are that “constructions display prototype structure and

form networks of associations. Hierarchies of inheritance and semantic networks (...)

are adopted for explicating our linguistic knowledge” (Goldberg, 1995). The inheri-

tance hierarchy of constructions captures generalisations “concerning word order facts,

case-marking properties, and links between semantics and grammatical relations”

(Goldberg, 1995, p. 108). These are two important aspects of the theory, which make

it compatible with the IG/SG conception of gradience, based on prototypicality.

Formalisation and Implementation Although a growing body of work from lin-

guistics adopts CxG for studying different aspects of natural language, from the point

of view of a computational implementation, the mathematical/logical formalisation of

the framework is still rather poor. Goldberg refers to the works on Generalized Phrase

Structure Grammar (GPSG) (Gazdar et al., 1985) and Head-driven Phrase Structure

Grammar (HPSG) (Pollard and Sag, 1994) as being particularly compatible with the

notions developed in CxG. Noticeable formalisations and implementations are Fluid

Construction Grammar (Beule and Steels, 2005; Steels, de Beule, and Neubauer, 2005;

Steels and de Beule, 2006b) (FCG), and an attempt by Blache (2004) to use Property

Grammars (Blache, 2001; Blache and Prost, 2005) (PG) as an operational computa-

tional framework for CxG. We will describe PG in detail in §2.5.3. The important
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point to emphasise here, is that the conception of language study developed in CxG

shares many of its different aims and properties with Model-Theoretic Syntax (MTS).

The descriptive nature of it, in particular, makes it open to describing variations and

graded phenomena.

2.3.4 Preliminary Conclusions on Knowledge Representation

Although variations and graded phenomena are commonly observed by linguists at

every level of natural language, from the lexical to the construtional level, their study

raises various issues of knowledge representation. These problems concern the rep-

resentation of the linguistic information about an input, and the representation of

the gradience of natural language. In this section we have reported and discussed

the literature on different types of frameworks for studying natural language, namely

the families of frameworks from Generative-Enumerative Syntax (GES) and Model-

Theoretic Syntax (MTS), the Construction Grammar (CxG) frameworks, and Opti-

mality Theory (OT). For each of them we have envisaged their ability to account for

graded phenomena, and how these phenomena are or could be represented.

A few preliminary conclusions can be drawn at this stage.

Firstly, the family of GES frameworks can be ruled out, as it is incompatible, by

conception, with representing quasi-expressions.

Secondly, the family of MTS frameworks involves a descriptive approach to the

representation of language, and a related notion of grammaticality which allow for

quasi-expressions to be considered as part of natural language and for variations and

graded phenomena in language to be represented.

Thirdly, Optimality Theory provides a notion of grammaticality which allows for

an account of graded phenomena. Meanwhile, the variety of phenomena being covered

strongly depends on the generation of a set of structures prior to applying the theory

itself. The use of a GES framework for generating that initial set of structures is

expected to prevent using OT with quasi-expressions.

A fourth conclusion is that the frameworks within Construction Grammar, by
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adopting the notion of prototype, and by their descriptive approach to language rep-

resentation, present theoretical properties well suited to handle non-core grammatical

features and variations in natural language.

A fifth conclusion is that the notion of grammaticality varies in every type of

framework.

In GES grammaticality is binary with no possibility of variations—an utterance is

either grammatical or not, and all the grammatical ones are grammatical to the same

extent. The generative notion of grammaticality is probably the most standard one

used in linguistic studies.

Grammaticality in MTS applies to an utterance (expression or quasi-expression) and

is defined with regard to whether or not an utterance violates constraints from the

grammar. MTS Grammaticality is capable of discriminating between grammatical ex-

pressions, which violate no constraints from the grammar, and ungrammatical quasi-

expressions, which violate at least one constraint. Grammaticality, therefore, involves

sharp boundaries around the set of grammatical expressions of a language; meanwhile

it allows for quasi-expressions to be ungrammatical. Ungrammaticality in MTS is

graded, in the sense that a quasi-expression can be assigned a degree according to

how many rules from the grammar it violates. The model-theoretic notion of gram-

maticality is arguably the one capturing the best the “ordinary, common-sense notion”

of it.

In OT the notion of grammaticality applies to a structure rather than to an utterance;

the grammatical structure for an utterance is the optimal one. Any utterance for which

a set of candidate structures can be generated is assigned (at least) one grammatical

structure, by virtue of the fact that there exists at least one optimal structure in the

set of candidates. The optimality-theoretic grammaticality does not discriminiate ut-

terances but discriminate structures for a given input utterance. Such grammaticality

accepts variations, in that no restriction is put on how many constraints are violated

by a grammatical structure.

In CxG grammaticality aims to discriminate between lawful and unlawful construc-

tions, but adopts the notion of prototype, which is likely—though to be confirmed—to

allow for an interpretation of grammatical variations along the line of intersective and
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subsective gradience.

The last conclusion we can draw is that all the promising frameworks for an account

of some form of gradience or another involve a descriptive approach to representing

natural language, which uses a notion of constraint as basic unit. What this notion

of constraint involves and what it precisely informs on remains to be answered.

2.4 Models of Syntactic Gradience

In this section we first review two models that specifically attempt to handle gradience.

Then in the next section we look at other possible frameworks that could be used to

model gradience.

2.4.1 Aarts’ Model

The model of gradience devised in Aarts (2007) aims to provide a formal way to

draw a conclusion when faced with cases of gradience. That is, the model is meant

to be used as a framework for making a decision as to how to classify items, whose

classification is ambiguous. Aarts tackles these ambiguous cases of classification from

the twofold angle of Subsective and Intersective Gradience (SG and IG respectively,

see §2.2). The basic suggestion is to compare the number of characteristic properties

shown by each of the contenders.

Subsective Gradience

On the SG side, if two items belong to the same class while satisfying different amounts

of characteristic properties, they are said to be in a subsective gradient relationship

and are ordered by prototypicality according to how many properties they meet. The

more properties are met, the more prototypical the item.

Definition 2.1 (subsective gradience, by Aarts, 2007, p. 205)

If α, β ∈ γ where γ is a form class characterized by morphosyntactic

properties {p1 . . . pn};
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and α is characterized by {p1 . . . px}, such that 0 < x ≤ n;

and β is characterized by {p1 . . . py}, such that 0 < y < x;

Then α and β are in a subsective gradient relationship, such that α is a more

prototypical member of γ than β.

Intersective Gradience

On the IG side, if one item shows characteristic properties from two distinct classes,

the preferred class is the one for which the item shows the most properties. The

convergence of the item to one class or the other is simply based on how many char-

acteristic properties are met by the item with respect to each of the two classes. Note

that the model of IG under discussion is not generalised to more than two classes.

Definition 2.2 (intersective gradience, by Aarts, 2007, p. 2077)

If α, β ∈ γ where γ is a form class characterized by morphosyntactic

properties {a1 . . . am} and {b1 . . . bm}, respectively;

and ∃Ψ,Ψ a grammatical formative which conforms to a set

of syntactic properties {c1 . . . cp}, such that {c1 . . . cx} ⊂ {a1 . . . am}
and {cx+1 . . . cp} ⊂ {b1 . . . bn};

Then α and β are in an intersective gradient relationship with respect to Ψ,

and its projection ΨP .

Unfortunately, most of the language phenomena and classification issues investi-

gated are lexical ones, even though constructional gradience is also quickly discussed.

Handling Deviant Language

The first comment that ought to be made about this model is that it is meant to

stay within range of well-formedness. What Aarts is interested in is solving cases of

morpho-syntactic ambiguities, and no attempt is made, apparently, to also account for

deviant inputs. Therefore what we see as drawbacks or shortcomings in this model

7This is the original definition from Aarts. For clarity, it would have probably been preferable to
make explicit that α ∼ {a1 . . . am} and β ∼ {b1 . . . bm}.
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with respect to our purpose, may not always be so with respect to Aarts’ original

purpose. However, it is interesting to see to what extent the proposed model may be

scaled up in order to also tackle cases of deviance.

An interesting aspect of Aarts’ model is precisely that gradience is captured by

the linguistic properties which are met by an item, whereas in most other models

only violated properties are considered. It gives, for instance, some insight on the

correlation between gradience phenomena—even though within the scope of well-

formedness—and the cumulativity of satisfied properties, which might turn out to

be useful for designing a model of gradience. Meanwhile, considering only satisfied

constraints also presents shortcomings when interested in cases of deviance.

Convergence

Another weakness, we believe, is revealed by cases of Intersective Gradience between

two classes presenting a significant disproportion between the amounts of properties

specifying each of them. Let us consider the following example. A and B are two

classes, A being specified by 3 characteristic properties, and B being specified by 100

different properties. An item presenting two of A’s properties and 3 of B’s properties

will converge toward B, even though 66% of A’s properties are met, for only 3% of

B’s. For that reason we are not entirely convinced by the ability of this model to

accurately capture all cases of IG8.

Besides, the notion of convergence used to formalise SG and IG considers no more

than two classes. That is, cases of gradience involving more than two classes are not

modelled. Aarts acknowledges that it is a rather strong claim (Aarts, 2007, §8.6.4

p. 228), but it is supported by the lack of obvious evidence of phenomena involving

convergence to more than two categories. Again, looking only at well-formed language

we can not think of any counter-examples either. However, should we be interested

in extending the model to also cover cases of deviant language, counter examples are

easier to build.

8It was pointed out to us that there exists a body of work on how to do handle the problem cor-
rectly in the lexical semantics literature, such as so-called “overlap scores”, e.g. Jaccard coefficients.
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Relative Importance of Properties

§8.6.1 in Aarts (2007, pp. 225–227) discusses why the model does not assign any

weights to properties, granting all of them the same relative importance. Thus the

model considers all properties as being equally influential with respect to gradience.

This choice is justified by that,

[w]hile there are computational procedures for modelling the weighting of
properties, these are not uncontroversial, for a number of reasons: first,
there are different ways of assigning weightings, and there is disagreement
as to which procedure is the optimal one. Secondly, weightings are based
on large-scale corpora, but there is no agreement about the precise com-
positional make-up of such corpora. (Aarts, 2007, p. 226)

Aarts also refers to Hudson (1990) who shares the same view, to support his decision.

Although it is true that there are many ways to set weights, and it is hard to know

which is best, it could be argued that such a lack of an established procedure does

not necessarily make the very use of weights in any way controversial. Besides, it is

also likely that seeing all properties as equally influential constitutes an impediment

to accurately modelling graded judgements.

2.4.2 Linear Optimality Theory (LOT) (Keller)

Keller’s PhD thesis (Keller, 2000) investigates gradience in grammar, and implements

a computational model for it. More specifically, his work “aim[s] (...) to investigate

how constraint ranking, constraint type, and constraint interaction determine the

degree of grammaticality of a given linguistic structure”.

Gathered Empirical Evidences

In his thesis, Keller reports various experiments about acceptability judgement. Three

main properties of gradient phenomena are identified:

1. [constraint ranking] constraint violations are ranked, i.e. they differ
in seriousness. (...)
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2. [cumulative effect] constraint violations are cumulative, i.e. the de-
gree of unacceptability increases with the number of violations. (...)

3. [soft/hard dichotomy] two types of constraints can be distinguished
experimentally: soft and hard constraints. This dichotomy captures
the intuition that certain linguistic constraints are binary, while oth-
ers induce gradient acceptability judgements.

(Keller, 2000, p. 17)(re-formatted as a bullet-list—JPP)

Constraint Ranking Property (1) includes an implicit assumption as well, whereby

only constraint violations play a role acceptability judgement, excluding de facto any

role, which could be played by satisfied constraints.

Cumulative Effect Property (2) suggests that OT’s account, which only relies on

the one top ranked constraint to decide on grammaticality, ignoring therefore the

lower ranked violated constraints, is not accurate enough.

Soft vs. Hard Constraints Property (3) introduces the discrimination between

soft constraints, whose violation induces only mild unacceptability, and hard con-

straints, whose violation induces strong unacceptability. Intuitively, it suggests that

violating a hard constraint always entails significantly more unacceptability than vi-

olating soft constraints.

Ganging-up Effect The ganging-up effect denotes the possibility for soft con-

straints to gang up against a hard constraint. That is, soft constraints violated by one

candidate structure may sometimes join forces, in order to balance and out-rank the

effect of one hard constraint violated by another—different—candidate. This consti-

tutes an exception to the basic rule whereby the violation of a hard constraint is more

unacceptable than the violation of several soft constraints.

Linear Optimality Theory (LOT)

Keller also devises a computational model for gradience, the Linear Optimality Theory

(LOT), which is validated against the different properties revealed by his empirical
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investigation. This section presents an overview of LOT.

Keller adopts an optimality-theoretic approach to tackle the problem. See §2.3.2

for a brief overview of Optimality Theory (OT).

LOT as a Model for Gradience. LOT is designed to capture the properties of

gradience, which were observed experimentally. The basic idea is to extend OT so that

the sub-optimal structures are no longer ignored, but ranked in order of acceptability.

Handling Constraint Ranking The property of Constraint ranking is obtained

by weighting the constraints, a weight being proportional to the “amount” of unac-

ceptability it yields when violated. Thus, mild unacceptability is represented by a low

value, whereas strong unacceptability is represented by a high value. Subsequently

the third property, that is the soft/hard dichotomy, is obtained as a side-effect, in that

it is derived from the interpretation of the constraint weights: a constraint with a low

weight is soft, whereas a constraint with a heavy weight is hard. As we will see next,

the constraint weights are deduced from the empirical values, as a result of a solving

process. One of Keller’s contributions is to use a machine learning algorithm in order

to determine the appropriate weights to be associated with the constraints, so that

the subsequent degree of acceptability matches the empirical judgements.

The Constraints’ Weights. Keller correlates the empirical observations of ac-

ceptability judgement with the numeric weights by setting a system of equations. The

solution to the system is the set of weights to be assigned to the constraints. Given

a set of candidate structures and the degree of acceptability observed for each can-

didate, all the candidates are compared pairwise, which gives a system made up of

k(k−1)/2 equations (where k is the number of candidates). The difference in accept-

ability between two structures must then equal the difference between the weighted

sums of violations for the two structures. Solving the system consists in finding a

solution, that is a tuple of numeric weights, for the system of equations.

Handling the Cumulativity Effect The degree of acceptability of a candidate

structure is computed by summing up the weights of all the constraints a candidate
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structure violates. By doing so, the scoring function captures the cumulativity effect.

This function is then used to rank different candidates. We notice that this function

only takes the violated constraints into account, ignoring the satisfied ones. We will

come back later to that important aspect.

Handling Soft vs. Hard Constraints As far as the soft/hard classification is

concerned, unfortunately at this stage it remains rather intuitive. The modelling study

]1, p. 283, for example, concludes that some of the constraints under investigation

are hard by virtue of the fact that the computed weights are “high”, as opposed to

other constraints weights, which are “considerably lower than the ones of the hard

constraints” (p. 286). The results would be nicely complemented by the identification

of a decision threshold between the two soft and hard classes, since it is not merely

a rough estimation of the value of their weight, but the dichotomy is also meant

to model differences in behaviour (e.g., context-dependent vs. context-independent,

cross-linguistically stable vs. not).

Shortcomings of LOT

Satisfied vs. Violated Tradeoff. Keller (2000), in using OT, implicitly assumes

that acceptability only depends on the violated constraints, the satisfied ones being

of no importance, especially for the cumulativity effect. In our opinion, acceptability

can not be accurately modelled by looking at the violated constraints only: there are

reasons to believe that a tradeoff between the influence of satisfied and the influence of

violated constraints is also relevant. Although experimental evidence are presented to

support such the approach, we could not find any convincing argument in the reported

experiments with respect to that hypothetical tradeoff. Experiments are indeed car-

ried out in order to test different sorts of constraint interactions (see Chapters 3, and

4), but only constraint violations are considered; the interaction between violations

and satisfactions is never tested.

Different reasons can be presented to support the idea of a tradeoff between satis-

fied and violated constraints. One reason could be summarised as “positive ganging

up effect”, in reference to Keller’s “ganging up effect”. In the positive version of it,
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one could argue that many satisfied constraints might gang up against a significantly

smaller number of violated ones. The satisfied constraints, when in sufficient number,

would weaken the negative strength of the violated ones. This is obviously only a

hypothesis that ought to be confirmed empirically. But in any case, it seems reason-

able to consider the possibility and therefore to expect a computational model for

gradience to account for it.

Another reason is related to the discrimination between soft and hard constraints—

recall that the discrimination is a matter of inducing either mild unacceptability (soft

constraints) or strong unacceptability (hard constraints) when violated. Let us, for

example, consider two distinct input strings, S1 and S2.

• S1 is such that:

– one hard constraint is violated (we note P−(S1) = {1H}), and

– one hard constraint is satisfied (we note P+(S1) = {1H}).

• S2 is such that:

– exactly the same one hard constraint is violated as for S1 (i.e., P−(S2) =

P−(S1) = {1H}), and

– one soft constraint is satisfied (we note P+(S2) = {1s}).

It seems reasonable, in this case, to hypothesise that the acceptability of S2 may be

lower than the one of S1; not because of the violated constraint, which is exactly the

same in both cases, but because of the satisfied constraint in each case (i.e. P+(S1)

and P+(S2)). OT, and Keller’s experiments in particular, fail to discriminate between

S1’s acceptability and S2’s acceptability, since only violated constraints are accounted

for.

Grammaticality vs. Optimality As we previously emphasised it in §2.3.2, the

notion of grammaticality in OT differs from those in generative grammar and in MTS.

Keller augments the optimality-theoretic notion of grammaticality in introducing de-

grees according to how many constraints a structure violates. Similarly, Hayes (2000)
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suggests to complement OT with bands of values in order to introduce a continuum of

well-formedness. However, in either case grammaticality is still inherently optimality-

theoretic: it applies to a structure rather than to an input, and therefore it only

allows comparisons between grammatical inputs—i.e., between inputs for which a set

of candidate structures was generated. Ungrammaticality, and furthermore degrees

of ungrammaticality, are not accounted for.

Implementation As far as implementing a model of gradience for natural lan-

guage processing is concerned, experiments with Keller’s model were only done using

sets of candidate structures which were generated manually. A machine learning al-

gorithm was proposed in order to automatically compute constraint weights from

empirical data, but the origin of the set of inputs results from a series a assump-

tions, for which no algorithm or reference to algorithms is provided. Although, as

emphasised by Keller, keeping his “assumptions regarding the input as minimal and

as theory-neutral as possible” allows him “to make claims of maximal generality”, it

prevents us from drawing definite conclusions regarding the computational adequacy

of the full model.

2.5 Implementing Syntactic Gradience

In this section we look at possible frameworks that could be used to model gradience.

In particular, we look at approaches related to Constraint Dependency Grammars,

Property Grammars and Configurations.

2.5.1 Constraint Dependency Grammar (CDG) (Maruyama)

In Constraint Dependency Grammar (CDG) the grammar is made up of a set of state-

ments about how words are connected together by dependency relations. These state-

ments are constraints, which correspond to the set of conditions of well-formedness

to be met by a string from the language. A constraint takes the form of a logical for-

mula. The variables involved are words and their different possible roles. According

to Maruyama (1990):
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(...) each word i in a sentence s has k-different roles r1(i), r2(i), . . . , rk(i).
Roles are like variables, and each role can have a pair 〈a, d〉 as its value,
where the label a is a member of a finite set L = {a1, a2, . . . , al} and the
modifiee d is either 1 ≤ d ≤ n or a special symbol nil. An analysis of the
sentence s is obtained by assigning appropriate values to the n × k roles
(...).

In other words, assigning the pair 〈a, d〉 to the role r1(i), for instance, means that

the role r1 is to be in the a dependency relation with the modifiee d. An individual

parse tree for s is a solution, which satisfies simultaneously all the constraints in the

grammar.

A range of works are based on, or extend Maruyama’s Constraint Dependency

Grammar (CDG); we will go through some of them later in this chapter.

For Maruyama (1990, p. 32):

a constraint C is a logical formula in a form

∀x1x2 . . . xp : role;P1&P2& . . .&Pm

where the variables x1, X2, . . . xp range over the set of roles (...).

Examples of constraints9 are:

(G1− 1) word(pos(x)) = D ⇒ (lab(x) = DET,

word(mod(x)) = N, pos(x) < mod(x))

“A determiner (D) modifies a noun (N) on the right with the label DET.”

(G1− 2) word(pos(x)) = N ⇒ (lab(x) = SUBJ,

word(mod(x)) = V, pos(x) < mod(x))

“A noun modifies a verb (V) on the right with the label SUBJ.”

These constraints are topological ones, in that they describe what the topology of

the output structure should be like. Each of these constraints describes a dependency,

9The constraints’ labels are those from Maruyama (1990)
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that is an arc in the output structure. In a constraint, an implication of the general

form x⇒ y can be read “x modifies y”, and represents a dependency relation between

x and y.

The Parsing Process In basic CDG the constraints are not all involved at the

same level; two classes of constraints can be identified, according to the role they play

in the parsing process. Parsing with CDG happens in two successive phases, hence

the two classes of constraints.

The first phase only involves a subset of the constraints, which constitute the “core”

grammar10. This first phase aims to build a constraint network for a specific input

sentence. The resulting network only involves the constraints present in the core

grammar. The network can be seen as a compact representation of all possible parses

for the core grammar. The second phase is concerned with pruning the network. This

is achieved by constraint propagation.

Constraint propagation refers to mechanisms of modifications of the constraint system

by means of inference rules. These rules aim to maintain/enforce local consistency

for subsets of variables. Generally speaking, and to exemplify the process11, let us

consider the two variables x, y, whose domains are respectively [23..100] and [1..33],

and a constraint x < y. Constraint propagation can narrow down the domains to

x ∈ [23..32] and y ∈ [24..33].

Returning to Maruyama, the constraint propagation mechanisms are triggered by

adding new constraints to the system. An example of such a constraint is the following

(where fe(i) is a function provided for accessing features): (G2b−1) word(pos(x)) =

PP, on table ∈ fe(pos(x))⇒ ¬(floor ∈ fe(mod(x)))

“A floor is not on a table.” Following their introduction the constraints are tested

against each value and pair of values in the network, and the domains are subsequently

modified to maintain consistency.

10Maruyama makes no reference whatsoever to the core grammar from Principles and Parameters,
and actually puts core into double-quotes.

11Example borrowed to Christian Schulte and Gert Smolka, from the web page at
http://www.mozart-oz.org/documentation/fdt/node4.html as it stands in October 2006
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2.5.2 Weighted Constraint Dependency Grammar (WCDG)

(Schröder et al.)

The Weighted Constraint Dependency Grammar (WCDG) presented in Schröder

(2002) and also discussed in KilianFoth, Menzel, and Schröder (2000); Foth (2004);

Foth, Menzel, and Schröder (2005); Menzel (1998); Schröder et al. (2000) among

others, is defined on top of Maruyama’s Constraint Dependency Grammar.

In his original work, Maruyama is only interested in parsing well-formed input.

Menzel (1995) extends CDG in different ways, in order to deal with robustness in

language processing (see, for example, Foth, Menzel, and Schröder (2005) for an

overview of robust parsing). Successive developments of this work (Menzel, 1998;

Foth, Schröder, and Menzel, 2000; Foth, Menzel, and Schröder, 2005) led to the for-

mal definition of the Weighted Constraint Dependency Grammar formalism (WCDG)

(Schröder, 2002).

The formalism is of interest to us for different reasons: it acknowledges and for-

mally accounts for a fuzzy notion of grammaticality; it is a constraint-oriented for-

malism; it relies on a scoring function, which is applied to an input utterance; it

accounts for a fine-grained discrimination between soft and hard constraints along a

continuum, by weighting them. We present here an overview of the formalism.

Unlike more traditional strategies for achieving robustness, which rely on post

mortem processing modules in order to recover from an error, with WCDG robustness

is achieved “naturally” in that it derives from the basic parsing mechanism. Among

the different aspects usually tackled by a robust processor, the focus here is essentially

put on dealing with ill-formed input.

Multi-layers Extension

Menzel advocates an independent account of different dimensions of language (e.g.

syntax, semantics, pragmatics, ...), as opposed to an integrated one. Examples of inte-

grated accounts are those in HPSG or CxG, where syntactic, semantic, and sometimes

also pragmatic components are combined within the same structure—a feature struc-

ture for HPSG, and a Construction for CxG. Menzel extends CDG (initially restricted
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to purely syntactic constraints) in introducing representation layers. Menzel (1995)

only discusses two layers: a syntactic and a semantic one, but the idea was extended

later to other dimensions of language. With Schröder (2002) the notion of layer is

then generalised further and other levels, such as the FUNCTOR-ARGUMENT level

are introduced.

The eXtended Dependency Grammar (Duchier, 1999; Debusmann, Duchier, and

Kruijff, 2004) (see §2.5.8), also based on CDG, adopts the same kind of multi-layer

approach and formalises it using multigraphs.

Constraint Weights

The weights in Schröder (2002) intuitively capture how important a constraint is, and

are established on the basis of the frequencies observed for a particular phenomenon

in a corpus—though they could also be arbitrarily set by the grammar writer. The

extracted frequencies are then used to determine penalties to be assigned to the con-

straints involved in modelling the studied phenomena, so that the combination of the

weighted constraints leads to recognising these phenomena with the same frequency

as the one observed on corpus. Note that there are not supposed to be any ill-formed

inputs in the corpus, but our understanding, very informally, is that these frequencies

concern fine-grained phenomena, which are then mapped to the constraints involved

in parsing them in order to figure weights to be assigned to these constraints.

Dynamic Weights The dynamic weights, in Schröder (2002), are a nice mechanism,

which makes it possible for weights to be functions of different dynamic features. This

way, the influence of a constraint on the overall score of the structure can be, to some

extent, controlled depending on the type of construction involved. The constraint

such a dynamic weight is assigned to is called a dynamic constraint.

In §5.8 of Schröder’s thesis, the mechanism is illustrated with a case of extra-

position of a relative clause. The underlying problem being discussed has to do with

ways of dealing with inconsistencies in the grammar. The problem is exemplified by

Schröder with the case of two different constructions, which must be captured by

inconsistent constraints. The example is a case of relative clause, with the relative
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pronoun being either extraposed or not. The way the WCDG grammar captures

the contradiction between the two constructions is by having two contradicting con-

straints, each of them being assigned a specific weight.

The source of inconsistency stands in that on one hand one constraint specifies

that the two anchors of the dependency must stick next to each other, and on the

other hand another constraint specifies that the two anchors of the dependency must

be distant from each other from a certain distance. Quite obviously a construction

can not satisfy both at the same time: in the case of German, either the pronoun is

extraposed, or it is not. Thus in either case, one of the two constraints is necessarily

violated. It is then necessary to make a choice between the two structures: which of

the two constraints should prevail, when faced with one of these constructions? The

answer provided in Schröder (2002) relies on the use of so called dynamic weights,

assigned to the constraints involved in the inconsistency. In the example exposed by

the author, this dynamic weight is a function of the distance between the two anchors

of the dependency, since it has been identified as a key factor of choice.

Unfortunately, the author does not discuss the correlation between the linguistic

aspect, which is captured by the constraint itself, and the feature captured by the

dynamic weight. Thus at the end it is not clear what is precisely captured by the

weighted constraint.

To summarise, dynamic weights make it possible to penalise a constraint according

to how frequent a construction is.

Gradation and Acceptability Judgement Schröder argues that gradation exists

in natural language at different levels, and focuses on linguistic preference, grammat-

ical acceptability, and uncertainty. Schröder observes (§§5.8.1 to 5.8.3) on a corpus

a statistical correlation between the word count of a relative clause, and the extra-

position or not of the relative pronoun, then draws a conclusion about the acceptability

(we take it here to refer to gradation as a whole) of extraposed relative clauses:

These corpus statistics suggest that both length and distance influence the
acceptability of extraposed relative clauses. However, the latter seems to
be a much stronger indicator. (Schröder, 2002, end of §5.8.3, p.178)
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While we agree on that statistical distributions provide a good account of linguis-

tic preference and uncertainty, we are still not convinced that these are suitable, by

themselves, to grammatical acceptability. The rarity of a sentence or a particular

construction does not make it necessarily less grammatically acceptable. The rela-

tionship assumed by the author between the statistical distribution of extraposed

relative clauses in a corpus, and their gradation seems more to cover linguistic pref-

erence and uncertainty than to cover grammatical acceptability. The choice of values

for dynamic weights12 is later justified as follows:

Since the acceptability of an extraposition changes gradually depending on
the length of the relative clause and the extraposition distance, dynamic
constraints (...) whose weight depends on the actual construction should
be employed. (Schröder, 2002, p.179)

As far as we understand it, statistical distributions only are taken into account for

setting these weights; we wish that some form of human judgement had been taken

into account as well (at least in the evaluation) in order for gradation to account for

the grammatical acceptability of an utterance, as it is claimed it does.

The weights in WCDG are meant to privilege the most frequent constructions

against the less frequent ones. In the context of choosing which structure best fits a

construction, it is indeed meaningful to give priority to the most frequent structure.

It is also meaningful to use such weights in order to model linguistic preference or

to resolve ambiguities among different readings of the same input, all readings be-

ing equally acceptable. However, we find these penalties to be quite different from

those also based on statistical distributions and used, for instance in Keller, in or-

der to capture the role of constraints with regard to a construction’s grammatical

acceptability.

Scoring Function

A preference mechanism among the constraints is then introduced by weighting them

according to their importance. A solution violating constraints is no longer ruled out,

12Note that the term dynamic constraint used by Schröder refers to a static constraint whose
weight is dynamically computed according to context, rather than to a constraint which would have
some dynamic properties.
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but assigned and ranked according to a confidence score. The confidence score results

from multiplicatively combining together the weights of the violated constraints. A

weight is a penalty factor, which is meant to weaken the constraint by influencing

negatively the confidence score associated to a solution of the constraint satisfaction

problem.

Then the role of the selection procedure is to deal with the structural ambiguities.

For Menzel (1995, pp. 29–30),

the selection procedure is based on a local assessment function heuristically

identifying relations to be pruned.

Menzel simply refers later to a sum of quadratic errors as the assessment function

being used for experimental purposes.

This function is meant to model the acceptability of the dependency structure.

Preference-based Reasoning

The notion referred to by Menzel as preference-based reasoning constitutes the back-

bone of the eliminative parsing strategy adopted to prune the search space of candidate

solutions. Bearing in mind that the underlying techniques are borrowed to the field of

constraint satisfaction—which includes constraint propagation—, the basic reasoning

is “(...) complemented by a second propagation principle based on preference-induced

constraints. These are activated only in situations where enough positive evidence can

be derived from almost uniquely determined preferences.” (Menzel, 1995, p. 31).

These preference-induced constraints can be seen as inference rules, where the

premises are the expression of a preference, which, when met, activates a new con-

straint. This newly-activated constraint is then propagated through the constraint

network and required in turn to hold for the input configuration. The advantage of

such a mechanism is that it prunes further the search space by constraint propagation,

but only for a preferred configuration.
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2.5.3 Property Grammars (Blache)

We only give here a brief introduction to Property Grammars, in order to discuss a

few implementations of it. We go into thorough details in ch. 3.

Property Grammars (PG) was initially defined in Blache (2001) on the basis of

the 5P formalism (Bès and Blache, 1999; Bès, Blache, and Hagège, 1999). Various

developments of it were then published (VanRullen, Guénot, and Bellengier, 2003;

Blache, 2005), including sometimes variants in some definitions. PG is a paradigm for

representing natural language, which aims to provide a framework suitable to adopt

a descriptive approach to language. By descriptive, we mean that the grammar is

made up of a collection of statements about language (called properties), in the sense

of MTS (see §2.3.1). A property, in the sense of PG, is a constraint, which models a

relationship among syntactic categories. A constraint is of one of the pre-defined types,

and takes the form of an n-ary predicate. For example, a property of Linearity between

a Determiner (DET) and a Noun (N) (noted Linearity(DET,N) or DET ≺ N) holds

true iff the determiner precedes the noun. Given the input utterance “the red book”

this Linearity constraint thus holds true between ’the’ and ’book’. A grammar is

a constraint system made of all the properties of the language. Thus, parsing an

input sentence according to a PG grammar yields a collection of statements about

the input, which either hold or fail. Such a collection of statements—whether they

hold or fail—characterises the input and is called characterisation.

The grammar also specifies syntactic constructions. The notion of construction

used in PG is similar to the one in Construction Grammar (CxG). It ranges from a

lexical item’s Part-of-Speech, to phrasal structures and top-level constructions such

as, for example, the Caused-motion or the Subject-verb Inversion constructions. Each

construction is specified by a feature structure and by a subset of properties from the

grammar. The feature structure allows specifying more fine-grained properties using

feature unification, e.g. in: Linearity(DET[person,gender], N[person,gender]) An example of

toy grammar is presented in Chapter 3, §3.2.4. An interesting aspect of PG is that

it is not tight to building a dependency structure, as in CDG. In fact, the constraint

system may contain any type of relation: e.g. dependency, constituency, uniqueness,

etc. but also user-defined relations. The formalism is thus very flexible when it comes
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to write the grammar.

Pros and Cons

From the perspective of modelling gradience, PG presents essentially two important

pros. One is with respect to the amount of syntactic information that can be rep-

resented: the characterisation of an utterance informs not only on the constituent

structure and the feature structure, but also on the syntactic relationships among

constituents, whether met or broken. It is an elegant way of keeping track of all the

different properties among constituents, which are otherwise not contained in either

of the tree structure or the feature structure. Such a representation of syntax makes

PG an MTS framework and is, therefore, especially well-suited to representing and

reasoning about both expressions and quasi-expressions.

A second one is with respect to the suitability of the characterisation to addressing

problems of gradience: the similarity that it presents with the syntactic charateristics

of an item in Aarts’ model of gradience is striking. Just as well as Aarts’ character-

istics serve as features in the categorisation of an item and for addressing the related

questions of gradience, we will see later, and in many occasions, in this dissertation

that PG’s characterisation of an utterance can do exactly the same and even more.

Besides these two main aspects, we can also stress that a property in PG may apply

to different dimensions of language—syntax, semantics, pragmatics, . . . We already

saw in §2.2.3 an example of how such a feature can turn out to be quite useful for

conditionning syntactic categories partly on semantic properties, for instance.

Another interesting feature is that the paradigm seems not to be tight to a specific

type of analytical linguistic structure, such as a dependency structure, or a phrase

structure. A word of caution is however necessary, since it has only been implemented

so far for phrasal constituent structures.

As for cons, the main one is the exponential processing cost of a constraint-based

approach. Yet, various heuristics can be implemented in order prune the search space

and drop the complexity to a more practical level.
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2.5.4 SeedParser (VanRullen)

The SeedParser is a syntactic parser for Natural Language, presented in VanRullen

(2005). It is not a model of gradience as such, but it addresses, more or less explicitly,

many of the different issues we are dealing with. Most importantly it accounts for

degrees of grammaticality. Therefore we find it quite relevant to present here.

Another reason for putting the SeedParser under scrutiny is that it implements

the Property Grammars framework, which is the one we have also chosen to use. We

will come back later on the motivation for such a choice in our case.

Scoring Function

The SeedParser from VanRullen (VanRullen, 2005) uses the density of satisfied con-

straints13 in order to guide the parsing process by sorting the partial parses. Infor-

mally the notion of density is the proportion of satisfied constraints, and is defined

as the ratio between the number of satisfied constraints and the total number of con-

straints being evaluated. Priority is given to the partial parses with best densities,

when building the upper levels. An advantage of VanRullen’s density is that, un-

like with Menzel’s and Keller’s functions, the satisfied constraints are now also taken

into account. Even further, some degree of interaction between satisfied and violated

constraints is accounted for by the ratio satisfied/violated. However, as discussed

in Blache and Prost (2005), such a “naive” ratio is not sufficient to capture many

important features involved in gradience.

Let us consider the following examples:

(2.3) (a) Quelles
What

histoires
stories

Paul
Paul

a-t-il
did-he

écrites
write[fem-plu]?

?

’What stories did Paul write?’

(b) Quelles
What

histoires
stories

Paul
Paul

a-t-il
did-he

écrit
write[masc-sing]?

?

’What stories did Paul write?’

13note that the term density is used both in VanRullen (2005) and Blache and Prost (2005) but it
corresponds to a different formulation in each case. The difference is irrelevant at this stage, and is
detailed in Chapter 5.
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(c) Quelles
What

histoires
stories

a-t-il
did-he

écrites
write[fem-plu]

Paul
Paul?

?

’What stories did he write Paul?’

(d) Quelles
What

histoires
stories

a-t-il
did-he

Paul
Paul

écrites
write[fem-plu]?

?

’What stories did he Paul write?’

These examples are given in order of (un)acceptability which corresponds in our hy-

pothesis to a progressively greater number of violated constraints. Constraints are

given here without taking into account specificities of the interrogative construction:

(C9) NP[obj] ; VP[ppas]
(C10) NP[subj] ≺ VP
(C11) NP[subj] ≺ VP, V 6⇔ NP[subj]

Even without a precise evaluation of the consequence of constraint violations type

by type, this first criterion can constitute an objective element of estimation for ac-

ceptability: unacceptability increases with the number of constraint violations (This

observation corresponds to Keller’s property of Cumulativity). This indication seems

trivial, but directly comes from the possibility of representing separately the different

types of syntactic information by means of properties. Such estimation is for example

not possible with a phrase-structure representation and even difficult using classical

constraint-based approaches such as HPSG.

However, it is necessary to have a finer-grained use of such information. In par-

ticular, the number of constraints may vary from one category to another. Some

categories, such as Adverbial Phrases, are very static and are described with a limited

number of properties. At the other end of the spectrum, the Noun Phrase, which

can have many different forms, needs an important number of properties. It is then

necessary to distinguish the number of constraint violation in these cases: violating

a constraint for an AdvP entails more consequences regarding acceptability than for

the NP. Again, this indication is purely quantitative and does not take into account

constraint type. It is probably the case that some constraints (e.g. exclusion) play

a more important role with respect to acceptability than dependency for example.

The notion of density used by VanRullen does not account for such differences among

categories.
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Grammar Graph Design

In VanRullen (2005) the SeedParser relies on a rather complex multi-graph structure,

where all the information manipulated during the parsing process is stored. One as-

pect of this representation consists in connecting a type of category (i.e. construction)

to every property defined in the grammar. For example, the Noun Phrase construc-

tion, which is encoded as a node, is connected to every property which involves an NP

in its definition (e.g. Linearity(V P,NP ), or Exclusion(NP, V P )). Moreover, every

property is also connected to all the constructions it belongs to in the grammar (e.g. a

Linearity(DET,N) is part of the definition of an NP construction, thus is connected

to it). That is, from any one construction one can access all the properties it is involved

in, and vice-versa from any property one can access directly all the constructions for

which the property is involved in the definition. Say, for example, that the NP cons-

truction is defined by—among others—a property P1 = Linearity(DET,N), and a

property P2 = Uniqueness(N), then the NP construction is accessible from both the

P1 and P2 nodes; P1 is accessible from DET and from N, and P2 is accessible from N.

One positive aspect of this representation is that it makes it possible and easy to

fetch all the relevant constraints that need to be taken into account given one single

construction. It also makes it easy to find which constructions may be triggered given

a property. Such a feature is useful during the parsing process first when it comes

to listing all the properties which hold on the categories/POS for a given input, then

again when it comes to decide which are the categories that can be inferred given

a set of properties. However, as pointed out in VanRullen (2005) many attempted

tests will fail—even though their failure was predictable, thus impacting the process’s

performance.

Parsing and Constraint Solving Strategies

The SeedParser adopts an incremental, left-to-right, bottom-up parsing strategy. As

an incremental strategy, it builds a new node by progressively incrementing the set of

its children with new constituents. There is a major inconvenient in such an approach.
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Every time a set of constituents is incremented with new ones the corresponding con-

straint system must be evaluated again with the new constituents. Such a revision

step is required because of the non-monotonicity of some of the constraint types. In-

formally, monotonic constraints in PG are those whose truth values do not change

when the set of underlying independent variables grows by addition of new ones; con-

versely, non-monotonic PG constraints are those whose values are not stable when the

set of variables grows. For instance, a constraint of uniqueness of a constituent type

which holds for a particular set of constituents may fails when the set is incremented

with a new instance of constituent from the same type as the one the constraint is

specified for. The constraint must, therefore, be revised when the set of constituents

is incremented.

The consequences of the revision process are twofold. One concerns the high

processing cost associated with it. Unfortunately VanRullen does not thoroughly

detail the implementation of the constraint satisfaction process in itself, saying simply

that it involves evaluating the constraint system while walking through the graph

structure. Besides the fact that the phase of constraint evaluation is admittedly not

optimised, and that some linguistic phenomena were intentionally ignored in order

for the SeedParser to output a result within “reasonable” time, we see as a main

inconvenient the necessity of having redundant evaluations of the same constraints. It

is inconvenient precisely because redundant, and because of the subsequent complexity

of the process.

The second inconvenient, prior to be detailed, requires a digression about the

bottom-up aspect of the strategy. It involves the projection step, which can be seen

as a top-down prediction, whereby the category of a new node is decided. This

category results from an inference mechanism, which takes the satisfaction values of

the constraints in the system as premises. Without going into the detail of the a

mechanism, the fact that it relies on the satisfaction values means that it is directly

impacted by the revision of the constraint system. If the satisfaction values change,

then the inferred categories must be revised too. In theory, the categories already

inferred might no longer be inferrable, and new categories might become inferrable.

It seems that the SeedParser handles the latter case, but we could not be entirely
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convinced that the former case is properly handled as well. Categories, therefore,

might not be considered for projection as mother node.

If part of the search space is ignored as it is, then one important claim made in PG

whereby the parsing process is not necessarily head-driven, no longer holds. The claim

is indeed based on that a category can be projected by any type of constraints, unlike

in head-driven frameworks where the projection relies exclusively on head constraints.

It is, indeed, an important feature from PG, which allows the development of parsing

strategies highly robust: if it is enough for a set of set of constituents to meet any

constraint in order to be able to infer a mother for them, then it opens up the number

of possibilities, and thereby the search space, for parsing ill-formed language since

finding a head constituent is no longer required.

In ignoring part of such an open search space the SeedParser reduces accordingly its

capacity to be robust. It is an impediment to robustness which we overcome with the

parsing strategy we develop in Chapter 4. This being said, we agree with VanRullen

that exploring the entire search space is obviously extremely costly, and especially so

in the context of an incremental strategy, where the revision process is already quite

costly. That is why VanRullen explicitely chooses to ignore, during the projection

phase, the constraints presenting the property of lacunarity, which corresponds to a

property of non-monotonicity. However, we think that a better option for pruning the

search space consists of:

• adopting a non-incremental strategy, without ignoring any type of constraints,

but

• adopting also a numerical heuristic.

It is such a solution that we develop in Chapter 4.

2.5.5 Dahl and Blache

Dahl and Blache (2004) presents an incremental parsing strategy for Property Gram-

mars, which is implemented in CHRG (Constraint Handling Rules Grammar, (Chris-

tiansen, 2005)). CHRG is a meta-language for the definition of grammars in the con-

straint programming language Constraint Handling Rules (CHR) (Fruehwirth, 1998).
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As Dahl and Blache rightfully put it, “[CHRGs] are to CHR what DCGs14 are to

Prolog. Just as DCG rules complie into Prolog rules, CHRG rules compile into CHR

rules”. The resulting parser can be described as using an incremental, left-to-right,

bottom-up strategy, with top-down prediction.

The strategy is a bottom-up one because it builds a parse tree starting from the ter-

minals (a sequence of lexical categories), up to the root. The licensing process, which

infers new non-terminal constituents, proceeds incrementally by grouping together

contiguous constituents, from left to right. Such a group of constituents constitutes

an assignment for a subset of variables involved in the CSP. A top-down prediction is

made with the first two constituents being grouped, which yields the category of the

new non-terminal on the upper level. New contiguous constituents are then tested

against the predicted category (i.e. the mother constituent), as long as a relationship

of Constituency can be established between mother and this new daughter. Let us

consider, for example, the sentence:

(2.4) The red book burns

Grouping the determiner (DET) in position ]1 with the adjective (ADJ) in position

]2 yields to predict the Noun Phrase (NP) category for the new non-terminal mother

constituent. Attempts are then made to incrementally add new contiguous daughters,

provided they meet constituency requirements from the mother. In this case the noun

(N) in position ]3 is successfully added to the sequence of daughters, but the attempt

to add the verb (V) in position ]4 fails, since a verb does not meet the constituency

requirements of an NP.

As part of the incremental process, with every new assignment—or more precisely

with every newly augmented assignment, comes a new subset of constraints from the

CSP, whose satisfiability needs to be assessed. Following up with the last example,

the process starts with the assignment A1 = [DET1, ADJ2]. The subset of constraints

concerned with variables taking values in A1, called “subset of relevant constraints”

with respect to A1, is identified, and its satisfiability is checked.

Following is the top-down prediction step, which relies on inheritance mechanisms

14DCGs: Definite Clause Grammars
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among properties. These mechanisms raise issues, which are addressed later in this

thesis.

2.5.6 Morawietz and Blache

Morawietz and Blache (2002) describe a CHR implementation of a parser for PG. It

constitutes the first parser for a constituency-based approach, which exclusively relies

on constraint programming techniques. The proposed implementation simply aims to

show that, unlike with other constraint-based formalism, a parser for PG can rely on

constraint programming techniques only.

The general strategy adopted is (again) incremental, left-to-right, bottom-up, with

top-down prediction. Besides being a “toy implementation”, merely serving the au-

thors’ point as a proof-of-concept, this parser presents the shortcomings we have

already discussed about this type of approach.

2.5.7 Configuration Task

Before we look into more frameworks we need, for upcoming references, to introduce

what is involved in solving a problem of configuration. Definition 2.3 reproduces the

definition of a general configuration task, as provided in Mittal and Frayman (1989,

pp. 1395–1396).

Definition 2.3 (Configuration Task, Mittal and Frayman, 1989)
Configuration is a special type of design activity, with the key feature that
the artifact being designed is assembled from a set of pre-defined compo-
nents that can only be connected together in certain ways. (...) [W]e define
a configuration task as follows:

Given: (A) a fixed, pre-defined set of components, where a component is
described by a set of properties, ports for connecting it to other components,
constraints at each port that describe the components that can be connected
at the port, and other structural constraints (B) some description of the
desired configuration; and (C) possibly some criteria for making optimal
selections.
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Build: One or more configurations that satisfy all the requirements, where
a configuration is a set of components and a description of the connections
between the components in the set, or, detect inconsistencies in the require-
ments.

Component-based Architecture

component Mittal and Frayman discuss a component-based (C-B) architecture in

order to address the configuration task from a general prospective. A component is

described by:

• a set of properties,

• ports for connecting it to other components,

• constraints at each port, and other structural constraints.

. Note that a component is composite structure, and a sub-component relationship

must be explicitely specified.

Ports The notion of port, as described by Mittal and Frayman, is the access point

to the “outside-world”; in a generic C-B model, it represents the location where other

components may be connected. For example, if we take the example of a computer,

the motherboard will have different ports for all sorts of extension cards to be plugged

in.

Conceptually, if we see a constituent structure as a component, the ports would

implement the connectivity of this component. That is, they could be used to encode

relationships of Immediate Dominance and Linear Precedence among components.

The Restricted Configuration Task

As shown in Mittal and Frayman (1989), the general task of configuration involves

exponential search in the worst case, the search space of all possible configurations

being on the order of
√

(pN)!, with N the number of components, and p the number

of ports per components. However, the worst case can be improved by introducing
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different restrictions on the general task, which helps reducing the complexity. Differ-

ent approaches are thus discussed in the literature according to the type of restrictions

adopted.

We only report here a few of the possible restrictions.

Typical Restrictions

Functional Architecture Mittal and Frayman (1989) adopt a functional ar-

chitecture, which is based on the observation that “[a]rtifacts are typically (but not

always) designed with some purpose in mind”. The components are considered to ex-

ercise functions, and the specifications of an artefact include functional requirements,

which must be met by the components. In the context of natural language processing,

the functions could play the role of grammatical functions, such as subject, verb, direct

object, etc.

Key Component Another restriction presented in Mittal and Frayman (1989)

relies on the notion of key component, which is pre-identified as being “crucial to

implementing some function”. Should we be interested in building a head-phrase

structure such a restriction would typically concern heads.

Specified Target An important restriction often adopted is to take into con-

sideration the specification of the desired product. In such a case, the number of

configurations to be considered is reduced by aiming at only one specific product. In

Sabin and Freuder (1996), for example,

[t]he specifications for an actual product describe the requirements that
must be satisfied by the product.

And subsequently,

[t]he solution has to produce the list of selected components and, as im-
portant, the structure and topology of the product.
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2.5.8 eXtended Dependency Grammar (XDG) (Duchier)

Duchier (1999) presents an axiomatisation of the Dependency Grammar syntax, and

formalise parsing as a configuration problem. Further developments of the basic model

(Duchier, 2001, 2003; Debusmann, Duchier, and Kuhlmann, 2005) led to the definition

of the grammar formalism called eXtensible Dependency Grammar (XDG) (Debus-

mann, Duchier, and Kruijff, 2004).

The main argument put forward in favour of such a formalisation (and formula-

tion) is to benefit from Concurrent Constraint Programming technologies, which are

quite successful at solving configuration problems. In this model, “an elegant and

concise axiomatic specification of syntactic well-formedness becomes naturally an effi-

cient program [for parsing]” (Duchier, 1999, p. 115). The well-formedness conditions

are thus global, and parsing is a process of model enumeration, then model elimi-

nation. These well-formedness conditions, that is, these axioms, are implemented as

constraints over nodes and labelled edges between nodes.

Different principles are applied to axiomatise the notion of well-formed dependency

tree. The principles are implemented as a specific type of constraints in the grammar.

They hold either on a single or on multiple dimensions. These principles are concerned,

for instance, with a node’s valency, an edge’s label (i.e. a role), or a tree. For examples,

the climbing multi-dimensional principle, applied to the Linear Precedence dimension

(LP) and the Immediate Dominance dimension (ID), constrains the LP tree to be

a flattening of the ID tree; and the tree principle applies to a single dimension and

stipulates that this dimension must be a tree.

Configuration Task Our understanding of Duchier’s statement according to which

dependency parsing can be regarded as a configuration problem is as follows. The com-

ponents are nodes and edges, where the nodes are the words from the input string and

the edges are the roles which may connect words. The properties of these components

are features such as, for the syntactic dimension, category, valency and agreement

(number, gender, person) for the nodes, and role, modifier and modifiee for the edges.

The constraints (in the grammar) specify how the nodes may be connected together

by edges; they are the conditions of well-formedness. The desired configuration is a
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tree, which is specified by a set of specific constraints expressing “treeness” conditions.

Multiple Dimensions In XDG the initial model is extended to multiple dimen-

sions, each dimension modelling a level of linguistic description—e.g. Linear Prece-

dence, Predicate-Argument structure, Immediate Dominance, Scope structure, and

Deep Syntax. Each dimension is formalised as a Constraint Satisfaction Problem(CSP)

on its own, and the interaction among dimensions. In Debusmann, Duchier, and

Kuhlmann (2005, p. 104), “each linguistic dimension is characterised using its own

set of well-formedness conditions; interactions between different dimensions are spec-

ified at an interface level”.

As argued by Duchier, the multi-dimensional aspect of the formalism allows an

integrated representation of language, since all dimensions can be represented within

one single multi-graphs structure. Meanwhile, a drawback of such a representation

comes from that the interaction between dimensions operates through universal princi-

ples. The inconvenient of universals appears quickly as soon as the grammar attempts

to also tackle exceptions to these universals. Exceptions may either be dealt with by

introducing inconsistencies in the constraint system, which will have to be dealt with

by the solving process—this is typically the solution adopted in WCDG—, or it re-

quires the principles to be increasingly more complex as the number of exceptions

grows. To the best of our knowledge, this problem is not addressed in the literature

about XDG.

Parsing Strategy An interesting aspect of XDG is that by being formalised as

a configuration task, parsing is turned into a simple application case for existing

solving strategies. Such a parser has been implemented in MOZART/OZ, which is a

concurrent constraint programming environment.

Modelling Gradience Although XDG supports under-specification (Debusmann,

Duchier, and Kuhlmann, 2005, §6.4)—the output being a set of partial graphs—two

major criteria are still missing in XDG to make it, as it is, a model for gradience. One

is the lack of weights associated with the constraints, and the other one is the lack of
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scoring function.

2.5.9 Estratat and Henocque

Different works from Estratat and Henocque (2004a,b) and Estratat (2006) describe

PG parsing as a configuration task. Recall from §2.5.7 that a configuration task re-

quires the architecture of the aimed artifact to be described. That is, the components

and the way they connect together to form an instance of the artifact must be known.

In the present case, the components are the constructions, and the connection among

components is a constituency relationship. The components’ properties (in the con-

figuration sense of it), as well as the “connective” and the structural constraints, are

the grammar’s properties (in the PG sense of it). The goal is to build a sentence,

which, therefore, is seen as the root element in the grammar. We will discuss later in

this thesis the consequences that this goal has/yields on the way the grammar must

be designed.

Practically, the configuration solver is implemented as an Object Oriented Con-

straint Programme (OOCP). Thus, the grammar is represented as an object model.

In this model, constructions are classes, which inherit feature classes, the features

being themselves organised into a class hierarchy to represent the feature structure

associated with a construction. This model is well described in Estratat and Henocque

(2005b,a).

A feature is mapped to a CSP variable in the model. As for the properties, as

one can expect they are modelled as constraints, except the Constituency and Heads

properties, which are relations between classes. Such a choice of representation raises

at least a question, at most an issue. One aspect of PG, which makes it an interesting

formalism, is that all types of (linguistic) properties can be dealt with in exactly

the same way, unlike constituency-based formalism such as HPSG, where the Head

relation is clearly privileged over the others. What is thus possible to do in PG

is to relax a violated Head property and decide to still carry on with licensing the

constituent. It turns out to be useful, for example, when a string contains an unknown

gap. The situation may happen when parsing spoken language; a transcription of poor
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quality may contain gaps, which can not be clearly matched with a word from the

lexicon. A similar situation occurs when parsing new or made up words (i.e. instances

of lexical openness in Pullum and Scholz’s taxonomy). Relaxing the Head constraint

on a Noun, for example, may be useful in order to license a Noun Phrase. In Estratat

and Henocque’s model it is not clear to us what exactly the consequences of such a

discrimination between the Constituency and Heads properties on one hand, and the

other types of property on the other hand, are on the relaxation process and therefore

on the licensing process. If the possibility to relax a constraint is quite intuitive, the

one to relax a relation is not. Presumably, it is possible to include an isolated relation

as a constraint in the CSP, and therefore the option to relax it is still open, but the

reported description of the model prevents us from making a decision on this point.

Modelling Gradience Two key elements are missing in Estratat and Henocque’s

approach to qualify as a computational for gradience. One missing key element is the

weighting of constraints. It should be clear by now that all constraints do no have same

importance with respect to gradient grammaticality. Whether the framework could

possibly be upgraded and adapted to include weighted constraints is not a question

we have an answer to. The main question is to know whether OOCP supports the

type of weighted CSPs, which would then be concerned.

Another missing element is a scoring function, necessary to model some ordering

of candidate solutions, especially candidates partially violating the CSP. Estratat and

Henocque do not report on the ability of their approach to include deviant components

(i.e. violating part of the CSP) and elements of reasoning involving these components

and a preference order over them. We will discuss these weaknesses further as part of

the present thesis.

2.6 Conclusion

2.6.1 Summary
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Accouting for Gradience in Language Study The problem of judging natural

language acceptability involves performing a series of categorisation tasks, and making

a series of decisions concerning the choice, for an item, of a host category among several

candidates, and whether the item shows enough of the prototypical characteristics of a

category. Even when a distinction applies between well-formed and deviant items (e.g.

a horse vs. a three-legged horse) both situations are concerned with such decision-

making issues. If linguistic theories have been paying a fair amount of attention to the

former cases, they have also been failing to successfully address the latter—although

changes in this regard were observed in recent years.

Even when acknowledging gradience in natural language, different standpoints are

advocated. Ubiquitous gradience is one of them, where the clear-cut dichotomy be-

tween well-formedness and deviance is abandoned. Another one, advocated by Aarts,

combines Aristotelian sharp boundaries for categories, assimilated to constructions,

with a relaxed version of prototypicality where categorised items may not present all

prototypical characteristics.

The Notion of Grammaticality The notion of grammaticality varies from one

family of frameworks to another. Three main notions are identified: a generative

notion, a model-theoretic notion, and an optimality-theoretic one.

The generative grammaticality, probably the most standard one in linguistic studies,

is a strict binary notion whereby an utterance either belongs or not to the language.

The model-theoretic grammaticality comes closer to capture the intuitive and common-

sense notion; it discriminates between grammatical expressions, which violate no con-

straints from the grammar, and ungrammatical quasi-expressions, which violate at

least one constraint. The dual notion of ungrammaticality is graded, in the sense that

a quasi-expression can be assigned a degree according to how many constraints from

the grammar it violates.

The optimality-theoretic grammaticality applies to a structure, as opposed to an ut-

terance. The grammatical structure for an utterance is the optimal one. The accepts

variations and might be graded, in that no restriction is put on how many constraints

are violated by a grammatical structure. Ungrammaticality, and a fortiori degrees of
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ungrammaticality, are not accounted for.

Knowledge Representation The question of the suitability of linguistic and com-

putational frameworks to studying language and gradience in language was explored.

The comparison between Generative-Enumerative Syntax (GES) and Model-Theo-

retic Syntax (MTS) shows that an MTS framework is best capable of representing

syntactic information for a large spectrum of linguistic phenomena, including cases of

deviance. The general idea underpinning MTS is that a grammar is a set statements

informing about linguistic properties of an utterance—properties which may either

hold or fail. Similarly, Aarts relies on the same sort of statements, and suggests to

categorise an item according to its characteristic properties. In OT, or LOT, the

candidate structures are, again, ranked according to the constraints they violate.

Therefore, the notion of constraint appears to be playing a central role in ap-

proaches accounting for gradience. However, what kind of information is captured

by constraints, and what kind of object it applies to differ substantially from one

approach to another.

Computational Frameworks Following the preliminary conclusions we drew re-

garding requirements about knowledge representation for a computational account

of gradience in natural language, different constraint-based frameworks were investi-

gated.

The Constraint Dependency-based frameworks for language processing offer a de-

scriptive approach to language study and a graded notion of constraint which comply

to some of our requirements about knowledge representation. These frameworks adopt

an optimality-theoretic notion of grammaticality.

The paradigm Property Grammars complies with all these requirements, and

presents different features that enable the development of rating models for predicting

the acceptability of an utterance. Most importantly, these features include an elegant

and practical presentation of all the linguistic knowledge gathered about an utterance

through the notion of characterisation. The characterisation of an utterance is a de-

scriptive report on which of the constraints from the grammar are satisfied or violated



2.6. CONCLUSION 63

by the utterance.

PG allows an implementation of construction Grammar, along with a model-theoretic

notion of grammaticality and graded ungrammaticality. However, the existing imple-

mentations of parsing within PG show inconvenients, which are an impediment to the

unbiased measurement of the relative influence of constraint types.

2.6.2 Pending Questions

These are the most important questions we had in mind all the way through the

literature review, and which we keep in mind for the remainder of this dissertation.

We aim to address them, and provide answers or elements of answers during the

presentation of our works.

What Notion of Natural Language is Being Studied?

We share with Pullum and Scholz (and many other linguists) the idea that a nat-

ural language shows not only regularities and patterns of well-formedness, but also

variations within well-formedness (e.g. among different local declinations), as well as

different degrees of acceptability. It is such an “ordinary, common-sense” notion of

natural language that we take as object of study.

What Notion of Grammaticality?

As we already emphasised it in several occasions (§§2.3.1, 2.3.2, 2.3.4, 2.6.1), being

willing to find criteria on which to categorise a three-legged horse should not prevent

us from the possibility to still acknowledge that a horse is a horse when we see one.

Likewise in natural language: being able to account for a gradient of grammaticality

should not prevent us from recognising and acknowledging well-formedness as well.

Such an expectation is not met by optimality-theoretic models and alike (Keller, 2000;

Menzel, 1995; Schröder et al., 2000; Schröder, 2002), where for a syntactic structure

(of an input utterance) to be grammatical it is a matter of being better than all the

other candidate structures—that is, it is a matter of being the optimal candidate.

The problem is, that being the best candidate does not mean at all that the input is
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well-formed, and nothing is provided which would make it possible to make a clear-cut

decision as to whether an utterance is well-formed or not.

Therefore, we prefer—and adopt—a model-theoretic notion of grammaticality with

graded ungrammaticality, where classes of utterances are Constructions in the sense

of CxG. Constructions should have sharp boundaries, with prototype members.

Is Gradience Modelled And How?

How are tackled the different issues related to modelling gradience and what are these

related issues? This sums up the questions about how to bridge the gap between

natural language and computational modelling of it. We share with Aarts the idea

that natural language is made of categories with sharp boundaries and prototypes,

but we do not rule out the possibility of overlapping categories and categories with

fuzzy boundaries. We adopt a constructional approach to representing a language,

with a model-theoretic representation of syntax, as it appears to be particularly well

suited to process natural language as we conceive it.

How to Present and Represent the Linguistic Knowledge about an Utter-

ance?

The main concern we have here is twofold:

• What kind of architecture is required for processing natural language in its

ordinary notion?

• How to present the linguistic information gathered by the parsing process in

a manner which is homogeneous regardless of the degree of grammaticality or

ungrammaticality, and which provides all the information required for a degree

of acceptability?

What Notion of Constraint?

The main questions we are asking about constraints are the following:



2.6. CONCLUSION 65

• What kind of information is captured and modelled by means of constraints,

and how is it formally defined?

• What is the role played by constraints in the parsing process, if any?

• What sort of parsing strategies are adopted and what are their incentives?

What Role for the Satisfied Constraints?

Is acceptability affected by both violation and satisfaction of constraints, or does it

only depend on violated constraints?

Many of the different accounts of gradience discussed here work under the assump-

tion that only constraint violations are responsible for the degree of acceptability of

a linguistic form, thus ignoring a possible influence of the “surrounding” satisfied

constraints as well. This is, for instance, typically the case for approaches heavily

inspired from, or influenced by Optimality Theory, for which constraint violation is

quite central to language analysis (see §2.3.2 on Optimality Theory). Unfortunately,

very little—if no evidence at all—is usually provided to sustain that assumption.

What we suggest to question here is whether satisfied constraints may also have

an influence on acceptability judgements, along with the violated ones.

What scope for Constraint Weights?

The question we want to address here has to do with the spectrum of influence of

constraint violations and satisfactions: does the violation/satisfaction of a specific

constraint have same impact across constructions, or does the importance and the

strength of the violation depend on the context it applies to?

To exemplify that question, let us consider a constraint of word order: does its

violation entail same unacceptability whether it occurs in the context of a Noun

Phrase, or in the context of Verb Phrase? In fact, several other questions are triggered

simultaneously. One has to do with the granularity of the constraints: do we weight

the type of constraint—i.e., in this example, word order—or do we consider a more

fine-grained level and assign different weights to a constraint of word order between a
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determiner and a noun, and to a constraint of word order between auxiliary and past

participle? Even further: assuming that we assign a weight to the word order between

determiner and noun, should it be the same weight whether the violation occurs in

the context of a Subject-Verb Inversion construction, or in a Question construction,

or in an affirmative statement?

What we are suggesting here is that violating a constraint (of word order between

subject and verb, for that matter) may not have the same impact on the degree of

acceptability of the input, depending on which construction is used to analyse the

utterance.

What Kind of Scoring Function?

Quantifying acceptability can take different aspects, whether, for instance, involv-

ing intersective or subsective gradience, and also according to the type of syntactic

structure that is dealt with. A frequent approach, though, is to resort to a scoring

function, whose goal is to assess some aspect of gradience. Such scoring functions can

take many different forms, and serve in fact different purposes, which we propose to

investigate.

Therefore, the main questions we ask are:

• Where does a function come from? How was it designed, and how is it justified?

• Is the function linguistically motivated?

• What is the function used for: does it, for instance, compute an absolute degree

of acceptability, or a relative one, with respect to some reference?

As we will see later, the development of a scoring function is an essential aspect of this

thesis. We believe that, common to all the different accounts of gradience discussed in

the literature so far, the role and the design of the scoring function have been greatly

under-estimated.



Chapter 3

A Model-theoretic Logical

Framework for Property Grammars

I can’t get no satisfaction
I can’t get no satisfaction
’Cause I try and I try and I try and I try
I can’t get no, I can’t get no

In (I Can’t Get No) Satisfaction,
Mick Jagger and Keith Richards

for The Rolling Stones (1965)

3.1 Introduction

In Chapter 2 we came to the conclusion that neither GES nor OT provide suitable

frameworks for representing and processing unrestricted natural language, while MTS

is more appropriate. As a reminder, MTS aims to describe the syntactic properties of

expressions, where expression is taken in the sense suggested by Pullum and Scholz,

for whom it refers to an object linguists investigate. They cover sentences, clauses,

phrases, words, idioms, lexemes, syllables, . . . from natural language. The grammar

is a finite, unordered set of rules, where rules are independent statements about the

well-formedness of expressions. The syntax of a well formed expression is described

by a model satisfying the grammar.

67
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An interesting aspect of MTS is that in spite of violating grammar rules, and since

the grammar statements are independent from each other, a deviant expression may

still be characterised by a paraconsistent model, which meets some of the grammar

requirements and violates others. This property of MTS can be exploited so that the

parsing (i.e. the building of a model) of an ill-formed input is no different from the

parsing of a well-formed one, without resorting to any revision process.

The idea is in fact already implemented in Property Grammars (PG) (Blache, 2001,

2005), where each rule captures a syntactic property, and is represented as a con-

straint.

A formalisation of PG was proposed in VanRullen, Guénot, and Bellengier (2003);

VanRullen (2005) (henceforth VRetAl), whose focus is to offer a modular reprensation

of the different data structures involved in parsing with PG. Definitions are presented

in BNF, along with the appropriate implementations formatted in DTD and XML.

Interestingly the grammar is not only specified separately from the parsing process,

but is also kept separate from the specification of its own core semantics. Specifically,

the semantics of the different property types involved in the grammar is maintained

separately from the grammar itself, which enables the specification of new property

types without requiring modifications of the parsing process, or even modifications

of the grammar itself. Of course, the introduction of new property types is usually

motivated by specific needs with respect to the grammar, and therefore the grammar

will be adapted accordingly with properties of the new type(s), but the specification of

the property type semantics as such is independent from the parser and the grammar

modules.

Following the body of works from Blache on PG the outcome of parsing an input

utterance is a characterisation of this utterance. An input is characterised by a set

of satisfied and violated properties. Definitions are provided in order to enable the

specification of the conditions of satisfiability of a property (type), along with defini-

tions for the characterisation of an input. These definitions underpin the formalisation

provided for each of the different property types in use in VanRullen’s thesis.

As far as the characterisation process is concerned, VRetAl also present a set of

definitions underpinning the parsing process as implemented in VanRullen’s thesis.
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The availability of a property and subsequent notions, and the satisfiability of a prop-

erty are the main notions introduced and defined. These notions are later referred to

in the course of the description of the parsing process. However, VRetAl’s works falls

short of definitions for the constraint satisfaction and constraint relaxation mecha-

nisms, and for the inference mechanisms associated with the projection of a category.

Although definitions state that all the constraints in a PG grammar are defeasible

(VanRullen, 2005, p. 82, Definition 24: Relâchement de contraintes (Constraint Re-

laxation)) and that in order to be projected a category must meet certain requirements

(VanRullen, 2005, p. 85, Definition 30: Principe de Projectivité (Projection Princi-

ple)), neither is formally introduced how a constraint is relaxed, nor how a category

is projected.

In this chapter we introduce a new logical framework based on First Order Pred-

icate Logic (FOL) with Model-theoretic semantics, which lets us formalise the con-

straint satisfaction and constraint relaxation mechanisms, and the projection of a

category. We have decided to define a new logical system rather than use and aug-

ment the one defined by VRetAl essentially for two reasons:

• in order to ease the introduction of quantifiers, and

• in order to avoid the manipulation of different types of variables, namely énoncé

(utterance), item, and token.

In this new framework a constituent is seen as a model for a set of constraints. A

constitent model is verified for a well-formed sentence by strict satisfaction of all the

constraints in the grammar, while a paraconsistent model is verified for an ill-formed

sentence by loose satisfaction of the grammar. Projection rules are also introduced,

which allow the projection of the construction (labelled by a unique category) of a

constituent through a mechanism inspired from typing judgements in programming

languages. A formulation of the main property types in PG is also proposed.

§3.2 is dedicated to the formal definition of a new logical system for PG, and §3.3

discusses different salient properties of the framework. §3.4 closes the chapter with a

conclusion.
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3.2 A Logical System for Property Grammars

What we aim to define is a logical system (called Ξ) in which an MTS grammar

for a given natural language can be specified, and which allows reasonning about

any utterance from this language. Unlike in GES where an utterance from Natural

Language is represented on the syntactic level by a string of terminals from the logical

language, in MTS an utterance is represented on the semantic level. The logical

language in use relies on a standard First-Order Logic (FOL) baseline, and allows

specifying requirements of well-formedness about objects in the domain as formulae.

After defining syntactic and semantic rules for Ξ we focus on the formalisation of

PG in Ξ. We propose a formulation for a PG grammar and for the main constraint

types. We then define a non-classical semantic consequence in order to substantiate

the projection mechanism in PG.

3.2.1 Syntax

Language The language L we use in Ξ contains:

• constant symbols

• variables

• logical connectives, with equality (¬,∧,∨,=, . . .);

• predicate and function symbols;

• True and False symbols (respectively > and ⊥).

Definition 3.1 (Term) There exists three sorts of terms:

1. individual constants,

2. individual variables,

3. composite terms, such as f(x), f(g(x)), . . ., where f and g are function symbols.

Definition 3.2 (Atomic Formula) An atomic formula ϕ is such that either
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1. ϕ := t1 = t2, where t1 and t2 are terms, or

2. ϕ := R(t1, . . . , tn), where R is an n-ary relation symbol.

Formula A well-formed formula (wff) is a well-formed sentence of L. We sometimes

denote by φ(x1, . . . , xn) the formula φ over the variables (x1, . . . , xn).

3.2.2 Semantics

Ξ relies on standard FOL semantics; we use defintions from Gochet and Gribomont

(1990) and Shapiro (Fall 2007).

Domain of Discourse

We already quoted Pullum and Scholz (p. 16) for whom expressions from natural

language are taken

to have syntactic structure, not merely to be analyzable in terms of struc-
tures imposed on them or posited for them by linguists. (Pullum, 2007)

Therefore it is precisely this syntactic structure that the semantic objects have in

the domain D, and which we aim to reason about in Ξ. It is this structure that we

describe now.

Individuals All individuals in D are constituents. From a linguistic point of view,

a constituent is a representation of a generalised expression and may be a sentence, a

clause, a phrase, a word, an idiom, a lexeme, a syllable, . . . . A constituent is specified

by:

• A collection of features, represented as an Attribute-Value Matrix (AVM). This

feature structure contains at least:

– An identifying label

– The feature cat, whose value is a reference to the class of constituents this

constituent belongs to. A class of constituents is called a construction.
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• a possibly empty set of sub-constituents, represented as an ordered list of refer-

ences to constituents in D.

In PG, it is suggested that the structure of a constituent be even more informative

by also containing its characterisation in terms of syntactic relationships among its

sub-constituents. We discuss that aspect later, but we do not make it a requirement

in the definition of a constituent.

Lexical Item An atomic constituent, which has no sub-constituent, is a lexical

item (i.e., a word). For the sake of this thesis we assume that it is an inflected word,

since we are not directly concerned by the morphological level of the linguistic study.

But it is possible, according to the level of linguistic investigation desired, to further

decompose a word in more fine-grained sub-constituents such as syllable, stem, case-

marker, . . . . A word in the lexicon is specified as any other constituent with a feature

structure, but unlike non-atomic constituents it is not specified by any constraints.

Examples of features are gender, and number.

Lexicon What is usually defined as the lexicon is, in Ξ, no different from the gram-

mar, which we are going to define shortly. From a linguistic point of view, such a

conception of a lexicon is in line with the one in Construction Grammar, as suggested

for instance by Goldberg (1995). A word from natural language is nothing but a

specific (lexical) construction, and an uttered word is analysed as an instance of that

construction.

Definition 3.3 (Interpretation) An Interpretation for the language L is the tuple

S = 〈D, I〉, where D is the domain of discourse, and I an interpretation function

which maps each non-logical symbol to a value in D as following Gochet and Gribomont

(1990, p. 295):

1. each individual constant c is mapped to a member of D, noted ‖c‖I = cI;

2. each n-ary function symbol f is mapped to a function, which takes its arguments

in Dn and its values in D;
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3. each n-ary predicate symbol is mapped to an n-ary relation, i.e. a class of tuples

members of Dn.

Definition 3.4 (Assignment) An assignment A on an interpretation structure S
is a mapping from a set of variables to values in the domain D of S.

We note A = 〈‖x1‖A = V1, ‖x2‖A = V2, . . . , ‖xn‖A = Vn〉, or A = 〈V1, V2, . . . , Vn〉
for short, to refer to the tuple of values from the range Dn which are assigned to

variables.

Constants are interpreted with the interpretation function I, while variables are in-

terpreted with the assignment function A, and composite terms require both I and A.

Intuitively, an assignment is made up of an individual assigned to a root constituent,

and a sequence of contiguous1 individuals assigned to the sub-constituents. For exam-

ple, the assignment 〈‖x1‖A = NP1, ‖x2‖A = D2, ‖x3‖A = N3〉 assigns the embedding

constituent NP1 to x1, while x2 and x3 are assigned respectively the Part-of-Speech

constituents D2 (determiner) and N3 (noun). D2 and N3 are sub-constituents of NP1;

they are given in A in the same order as in the sentence they appear in.

Semantic Rules for Terms and Formulae

We refer here to standard rules, as stated in Gochet and Gribomont (1990, pp. 298,

300–301), for interpreting terms and formulae:

SR1 for a constant of individual c, ‖c‖I,A = ‖c‖I = cI ;

SR2 for a variable v, ‖v‖I,A = ‖v‖A;

SR3 for a function symbol f , ‖f(t1, . . . , tn)‖I,A = ‖f‖I (‖t1‖I,A , . . . , ‖tn‖I,A), where

ti are terms;

SR4 ‖P (t1, . . . , tn)‖I,A = > iff 〈tI,A1 , . . . , tI,An 〉 ∈ P I , where ti are terms and tI,A their

denotations;

1In Chapter 4 we introduce various restrictions for implementing this framework. Assumption
5 requires the contiguity of the sub-constituents of a constituent, which is captured in A by the
contiguity of the individuals.



74 CHAPTER 3. A MODEL-THEORETIC FRAMEWORK FOR PG

SR5 ‖¬X‖I,A = > iff ‖X‖I,A = ⊥;

SR6 ‖X ∧ Y ‖I,A = > iff ‖X‖I,A = > and ‖X‖I,A = >;

SR7 ‖∀xφ‖I,A = > iff φI,B = > for all assignment B identical to A, except possibly

for the individual assigned to x by B (B is called an x–variant of A);

SR8 ‖∃xφ‖I,A = > iff φI,B = > for at least one x–variant B of A.

3.2.3 Formulation of the PG Constraint Types

From a linguistic point of view, constraints in PG express linguistic statements such

as:

• A Determiner precedes a Noun (e.g. (P3.11))

• A Noun is unique (e.g. (P3.8))

• The presence of either a Noun or a Pronoun is compulsory (e.g. (P3.6))

A constraint is a well-formed formula in Ξ. In PG, several template formulae are

predefined, and these are called constraint types. A constraint type is generic, in that

it applies not only to variables but also to the constructions of these variables. For

instance, a constraint from the generic type Linearity holds between two constituents,

with each constituent being of a specific construction (e.g. linearity between a De-

terminer and a Noun). Therefore the constructions are seen as parameters of the

constraint type. A constraint type is thus defined as a multi-parametered formula,

where a parameter is always a construction.

Each constraint type is associated with a specific (multi-parametered) relation in

Ξ. Below we use the following notation; for each constraint type its parameter category

labels are put in square brackets right after the predicate label, while variables are put

in parentheses (e.g. linearity[cat1, cat2](r)). The variables in parentheses are given

to allow references out of the scope of the formula. Equivalent abbreviated notations

are also provided for each type, which omit the variables (e.g. cat1 ≺ cat2). These

abbreviated notations are those more commonly used in the literature about PG.
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In this study, we use 6 pre-defined constraint types: linearity , obligation, unique-

ness , requirement , exclusion, and dependency , which we define below.

Pre-requisites

Special Predicates Various special predicates are used in the formulation of the

constraint types and across the present study. Their semantics is meant to be intuitive:

• The relation constituents(x, y1, . . . , yn) denotes that the constituents

‖y1‖I,A , . . . , ‖yn‖I,A are immediate (sub–)constituents of the dominant con-

stituent ‖x‖I,A.

The relation is not exclusive; that is y1, . . . , yn need not be the only constituents

of x.

• The function right(x) (respectively left(x)) returns the position index in the

input string of the right end (left end) of x.

• The function . (dot), as in the term x.f , returns the value of the feature f in x.

• When necessary, the feature structure of a constituent is given as an AVM,

sometimes next to the term it is associated with (e.g. N

[
gend 1

num 2

]
)

Typed Feature Structure It may be useful, in some cases, to provide the possi-

bility to constrain not only the constructions of constituents, but also their feature

structures. For that purpose, it is necessary to enable the specification of a description

of a feature structure. The logic of typed feature structures is now well-established

(Carpenter, 1992; Kasper and Rounds, 1986); we thus only give here the minimum

definitions required for the description of flat AVMs and standard unification. Note

that we do not include any default unification operations (Bouma, 1992; Lascarides

and Copestake, 1999), following in that one of the original motivations for PG whereby

all constraints in the grammar play equal roles and are, therefore, all defeasible. It

is not clear, at this stage, how the prioritisation of constraints through the use of de-

faults in feature structures would interact with loose satisfaction, which we introduce
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later on (see §3.2.5) in order to capture constraint relaxation in PG. We acknowl-

edge that there is an avenue for further investigation here, in light, for instance, of

recent works from Malouf (2007) where a heuristic-based optimisation is presented

for default unification that can be used to prune the search space.

Using the Backus-Naur Form (BNF) notation, a Description D is defined by:

D := x.f = v | x.f1 = y.f2 | D&D

with the following semantics:

I,A |= D1&D2 iff I,A |= D1 and I,A |= D2 (3.1)

I,A |= x.f = v iff A(x).f = I(v) (3.2)

I,A |= x.f1 = y.f2 iff A(x).f1 = A(y).f2 (3.3)

This way, the Description involved, for instance, in (P3.29) is equivalent to the following

expression:

x.pers = y.pers (3.4)

& x.num = y.num (3.5)

& y.type = pers (3.6)

& y.case = nom (3.7)

We use the predicative notation Desc(x′, y′) : D to denote a two-argument Description

expressed in the language D previously defined; we use D[x/x′, y/y′] to denote the

result of substituting x for x′ and y for y′ in D, and we use D|x to denote the restriction

of D to only those literals which mention no variables other than x.

Quantifiers We extend L with the new quantifier Λ with the following semantics:

I,A |= Λx : φ iff ∀x′ ∈ dom(A) I,A |= φ[x′/x] (3.8)
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where dom(A) denotes the subset of the domain D made up of the individuals in A.

The idea, here, is to quantify only over the variables of the assignmentA. The purpose

of Λ, in the following definitions, is to maintain closed formulae. The semantics of the

existential quantifier ∃ remains unchanged.

Definitions

In the following definitions of each constraint, two formulations are provided: a general

one, with no Descriptions among the parameters, and a more fine-grained one, which

requires a parameter Description.

Definition 3.5 (Linearity) A constraint of linearity, denoted by

linearity[C1,C2](r) or linearity[C1,C2,Desc(x′, y′) : D](r) is defined in Ξ by the fol-

lowing formulae:

linearity[C1,C2](r) iff

ΛxΛy constituents(r, x, y) ∧ x.cat = C1 ∧ y.cat = C2

→ right(x) < left(y) (3.9)

linearity[C1,C2,Desc(x′, y′) : D](r) iff

ΛxΛy constituents(r, x, y) ∧ x.cat = C1 ∧ y.cat = C2 ∧D[x/x′, y/y′]

→ right(x) < left(y) (3.10)

The alternative notations are C1 ≺ C2, or lin(C1,C2).

A constraint of linearity specifies an ordering relation between constituents, in terms

of the word order in the input string.

Definition 3.6 (Requirement) A constraint of requirement, denoted by

requirement[C1,C2](r) or requirement[C1,C2,Desc(x′, y′) : D](r) is defined in Ξ by
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the following formulae:

requirement[C1,C2](r) iff

Λx constituents(r, x) ∧ x.cat = C1

→ ∃y constituents(r, y) ∧ y.cat = C2 (3.11)

requirement[C1,C2,Desc(x′, y′) : D](r) iff

Λx constituents(r, x) ∧ x.cat = C1 ∧D|x[x/x′]

→ ∃y constituents(r, y) ∧ y.cat = C2 ∧D[x/x′, y/y′] (3.12)

The alternative notations are C1 ⇒ C2, or req(C1,C2).

A constraint of requirement specifies a property of co-occurrence between constituents.

The co–occurrence is not symmetric2, in that cat1 ⇒ cat2 is not equivalent to cat2 ⇒
cat1.

Definition 3.7 (Exclusion) A constraint of exclusion, denoted by exclusion[C1,C2](r)

or exclusion[C1,C2,Desc(x′, y′) : D](r) is defined in Ξ by the following formulae:

exclusion[C1,C2](r) iff

(Λx constituents(r, x) ∧ x.cat = C1 → ¬∃y constituents(r, y) ∧ y.cat = C2)

∧ (Λu constituents(r, u) ∧ u.cat = C2 → ¬∃v constituents(r, v) ∧ v.cat = C1)

(3.13)

2It was pointed out to us that conditionality might be a more appropriate description than co-
occurrence, as co-occurrence is usually perceived as being symmetric. We keep the reference to
co-occurrence to match the literature about PG in that regard.



3.2. A LOGICAL SYSTEM FOR PROPERTY GRAMMARS 79

exclusion[C1,C2,Desc(x′, y′) : D](r) iff

(Λx constituents(r, x) ∧ x.cat = C1 ∧D[x/x′]

→ ¬∃y constituents(r, y) ∧ y.cat = C2) ∧D[y/y′]

∧ (Λu constituents(r, u) ∧ u.cat = C2 ∧D[u/u′]

→ ¬∃v constituents(r, v) ∧ v.cat = C1 ∧D[v/v′]) (3.14)

The alternative notations are C1 < C2, or excl(C1,C2).

A constraint of exclusion prevents a co–occurrence between two constructions. The

relation is symmetric.

Definition 3.8 (Obligation) A constraint of obligation, denoted by obligation[cat1](r)

or obligation[C1,Desc(x′) : D](r), is defined in Ξ by the following formulae:

obligation[C1](r) iff

Λx constituents(r, x)→ ∃y constituents(r, y) ∧ y.cat = C1 (3.15)

obligation[C1,Desc(x′) : D](r) iff

Λx constituents(r, x)→ ∃y constituents(r, y) ∧ y.cat = C1 ∧D[x/x′] (3.16)

The alternative notations are MC1 or obl(C1).

A constraint of obligation specifies a required construction. Obligation is typically

used to specify heads.

Definition 3.9 (Uniqueness) A constraint of uniqueness, denoted by uniqueness[C1]()

or uniqueness[C1,Desc(x′) : D]() is defined in Ξ by the following formulae:

uniqueness[C1](r) iff

ΛxΛy constituents(r, x, y) ∧ x.cat = C1 ∧ y.cat = C1

→ x = y (3.17)
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uniqueness[C1,Desc(x′) : D](r) iff

ΛxΛy constituents(r, x, y) ∧ x.cat = C1 ∧ y.cat = C1 ∧D[x/x′]

→ x = y ∧D[y/x′] (3.18)

The alternative notations are C1!, or uniq(C1).

A constraint of uniqueness specifies the presence of a unique constituent from a given

construction.

The Dependency Constraint Type The dependency constraint type is slightly

different from the other types, in that it is used for stating a semantic relationship

between objects rather than for checking syntactic conditions. In Blache (2005), it is

said to

(. . . ) stipulate[s] a semantic dependency between different objects of the
construction. (. . . ) On top of this role, dependency is also used in order to
implement semantic restrictions on the argument structure. This is done
directly by specifying the corresponding semantic feature in the restricted
object.

In practice, dependency is used, for instance, to enforce agreements (e.g. person, or

gender).

Definition 3.10 (Dependency) A constraint of dependency, denoted by

dependency[C1,C2,Desc(x′, y′) : D](r) is defined in Ξ by the following formula:

dependency[C1,C2,Desc(x′, y′) : D](r) iff

ΛxΛy constituents(r, x, y) ∧ x.cat = C1 ∧ y.cat = C2

→ D[x/x′, y/y′] (3.19)

The alternative notations are C1 ; C2, or dep(C1,C2).

Note that the symbol ; commonly in use in the literature about PG might be slightly

misleading since the relation is in fact symmetric.
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3.2.4 Grammar

The purpose of an MTS grammar is to specify conditions of well-formedness on the

objects from D. In PG, a condition of well-formedness is local to the context of

a specific class of utterances, called a construction. Therefore a PG grammar is

a collection of constructions, where a construction is specified by a conjunction of

constraints. Tables 3.2 and 3.3 gives an example of a PG grammar.

An important aspect of PG is that a constraint is not universal, but is a condition

of well-formedness which only applies to the instances of the construction it specifies.

In that sense, it is a membership requirement, which allows the classification of an

utterance when met. The projection process in PG specifies that from any constraint

in the grammar a constituent can be inferred (i.e. projected) of the category this

constraint specifies. Therefore, in Ξ each PG constraint is paired in the grammar with

a deduction rule—called a projection rule. A projection rule is of the form Λr r.cat =

c → φ(r). It specifies a constraint, which must be satisfied by all the constituents

of the model. It is trivially satisfied for those constituents whose construction in not

c; as for those whose construction is c, then φ(r) must be satisfied as well. In other

words, the projection rules enable judgements about the construction of a constituent.

Definition 3.11 (Grammar) A PG grammar in Ξ is defined as a set of pairs 〈φ(r), ψ〉,
where:

• φ(r) is an atomic formula in L,

• ψ is a projection rule such that Λr r.cat = cat→ φ(r), and

• cat is a construction label.

For instance, the fact that the construction labelled c is specified by the constraint

φ(r) := linearity[cat1, cat2](r) is represented by the pair 〈φ(r), ψ〉 with ψ := Λr r.cat =

c→ φ(r).

In §4.4.5 we describe different lookup tables that we use in order to consult the

grammar. One of these tables, the Projection Index, is a representation of all the
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projection rules in the grammar, where a rule’s right-hand side is indexed by the

rule’s left-hand side.

Toy Grammar We have developed a PG Construction Grammar for French, based

on the one developed by VanRullen et al. (2005). Their grammar was implemented

to participate in the EASY (Évaluation d ’Analyseurs SYntaxiques) evaluation cam-

paign for parsers of French (Gendner et al., 2003; Paroubek, Robba, and Ayache,

2007). Its implementation meets the requirements provided as part of the evalua-

tion protocol, and only uses flat constituents—i.e. without any nested constituents.

We have adapted it and extended it in order to handle constituent structures with

nested constituents. We have done so essentially (but not exclusively) by making, next

to VanRullen’s EASY grammar, several borrowings to other existing PG grammars,

sometimes allowing ourselves a rather free interpretation of them in our own imple-

mentation: the one developed by Guénot (2006), and the one developed by Blache,

Hemforth, and Rauzy and underpinning the experiments presented in their 2006 pa-

per. We have also complemented these with various other rules inspired from Riegel,

Pellat, and Rioul (1998), in order to make it a consistent core set of grammar rules for

French3. The full grammar comprises of 16 constructions including 8 Part-of-Speech

3We would like to stress that the development of a grammar for French has not been central
to this work. As a consequence, different imperfections may have slipped in. Indeed, and despite
these references of us discrepencies remain, and it goes without saying that these should only be
blamed on us. A few of those were pointed out to us by Eric Villemonte de la Clergerie (examiner,
examinateur), which we would like to address briefly.
• In S, the Dependency constraint (P3.5) does not involve any AVMs: this is not exactly a dis-

crepency, but it is asking for an explanation. This constraint does not hold on any features; the
dependency relationship between the two constructions is simply asserted (see the paragraph on
the Dependency Constraint Type, p. 80, for more details), thus the constraint holds when the two
constructions NP and VP are present in a constituent from S.
• In NP, the Uniqueness constraint (P3.9) is inaccurate: in practice, the PP-attachements are dealt

with separately from the NP construction. This kind of discrepencies are due to late evolutions that
occurred during the experimental phase.
• In NP, a Dependency constraint AP ; N is missing.
• In VP, the Exclusion constraint (P3.28) means that in case of two clitics (one of each case) one

has to be dealt with out of the VP.
• In AP, the Uniqueness constraint (P3.33) is arguable, as an AP may contain more than one

adverb; in that case, we make them as many APs.
• In AP, the Uniqueness of a past participle V[past part.]! ((P3.32)) could be generalised and re-

placed by an S[past part.]!. The problem here is that feature inheritance being not implemented, the
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categories, and 100 constraints. A brief overview of it, as well as of the lexicon, is

reported in §4.9.3. The full grammar is provided in Appendix A. A sample (Γ) of

it, presented in Tables 3.2 and 3.3, gives a flavour of the full-size implementation.

The legend is presented in Table 3.1 below4. This sample is used as the underpinning

Symbol Convention
* Identifies a deviant constituent, which violates at least one constraint

star Used as a wildcard, when no spanning parse could be found
D Determiner
N Noun
V Verb
A Adjective

Adv Adverb
P Preposition

Pro Pronoun
C Conjunction

NP Noun Phrase
VP Verb Phrase
PP Prepositional Phrase
AP Adjective Phrase

S Utterance

Table 3.1: Legend and graphic conventions used in this dissertation

grammar in various examples across this dissertation.

construction S does not have any features attached to it.
• In PP, the Requirement constraint (P3.42) is inaccurate; given (P3.41) it should rather make either

an NP or a VP a requirement.
• In PP again, about (P3.43): since VPs are allowed by (P3.41), it would be more accurate to also

have a P ; NP.
4Note that these labels are actually the English version of the real tagset in use, where the labels

are in French. We thought that given how often these labels are referred to in this dissertation using
English terms would ease the reading.
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S (Utterance)
Features Property Type : Properties

[AVM]

obligation :MVP (P3.1)

uniqueness : NP! (P3.2)

: VP! (P3.3)

linearity : NP ≺ VP (P3.4)

dependency : NP ; VP (P3.5)

NP (Noun Phrase)
Features Property Type : Properties

[AVM]

obligation : Obl (N ∨Pro) (P3.6)

uniqueness : D! (P3.7)

: N! (P3.8)

: PP! (P3.9)

: Pro! (P3.10)

linearity : D ≺ N (P3.11)

: D ≺ Pro (P3.12)

: D ≺ AP (P3.13)

: N ≺ PP (P3.14)

requirement : N⇒ D (P3.15)

: AP⇒ N (P3.16)

exclusion : N < Pro (P3.17)

dependency : N
[
gend 1

num 2

]
; D

[
gend 1

num 2

]
(P3.18)

VP (Verb Phrase)
Features Property Type : Properties

[AVM]

obligation :MV (P3.19)

uniqueness : V[main past part.]! (P3.20)

: NP! (P3.21)

: PP! (P3.22)

linearity : V ≺ NP (P3.23)

: V ≺ Adv (P3.24)

: V ≺ PP (P3.25)

requirement : V[past part.] ⇒ V[aux.] (P3.26)

exclusion : Pro[acc] < NP (P3.27)

: Pro[dat] < Pro[acc] (P3.28)

dependency : V
[
pers 1

num 2

]
; Pro


type pers
case nom
pers 1

num 2

 (P3.29)

Table 3.2: Γ: An Example PG Grammar for French (1)
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AP (Adjective Phrase)
Features Property Type : Properties

[AVM]

obligation : Obl (A ∨V[past part.]) (P3.30)

uniqueness : A! (P3.31)

: V[past part.]! (P3.32)

: Adv! (P3.33)

linearity : A ≺ PP (P3.34)

: Adv ≺ A (P3.35)

exclusion : A < V[past part.] (P3.36)

PP (Prepositional Phrase)
Features Property Type : Properties

[AVM]

obligation :MP (P3.37)

uniqueness : P! (P3.38)

: NP! (P3.39)

linearity : P ≺ NP (P3.40)

: P ≺ VP (P3.41)

requirement : P⇒ NP (P3.42)

dependency : P ; NP (P3.43)

Table 3.3: Γ: An Example PG Grammar for French (2)

3.2.5 Satisfaction

Definition 3.12 (Satisfaction (strict)) Let φ be a formula of L; the tuple 〈I,A〉
is said to strictly satisfy φ iff ‖φ‖I,A = >. We note

I,A |= φ

The tuple 〈I,A〉 such that I, A |= φ is called a strict model for φ.

Example 3.1 (Model Checking) Let us consider the sentence:

(3.20)
Les idées dorment furieusement

The ideas sleep furiously

We are going to illustrate that for any model in the class of models we can verify

that it is a model of the grammar. For doing so, we pick a complete model for the
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sentence above, and we are going to show that under such a model all the constraints in

the grammar Γ are satisfied (we will omit all the instances of rules that are trivially

satisfied). We choose the model whose constituent structure can be represented as

follows:

S7

NP5

D1

Les

The

N2

idées

ideas

VP6

dorment furieusement

sleep furiously

We proceed gradually, bottom-up, starting from the surface level. Note that we do not

describe here any specific parsing algorithm: in the perspective of Model Theory there

is no notion of algorithm for building a model.

Each word in (3.20) corresponds to a constant wi where i is the position of the word

in the sentence. We assume that all the words are in the lexicon; therefore each wi is

interpreted through I by the constituent in D of the lexical construction corresponding

to the word in the sentence that wi represents. At this stage, there are no constraints

involved and each constituent is a model of the corresponding word.

Each of these lexical constituents is now represented by a variable vi of position index

i inherited from wi. We assume that each word has a unique Part-Of-Speech (POS);

since no constraints are involved at this stage either, like previously we end up with a

new constituent for each POS, hence the following set of constituents:

E = {D1,N2,V3,Adv4}

In turn, each constituent in E is represented by a variable, respectively x1 to x4. Let

r5 be a variable representing a hypothetical dominant constituent R5 for x1 and x2.

The construction of R5 is yet unknown. We consider the assignment A5 = 〈‖r5‖ =
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R5, ‖x1‖ = D1, ‖x2‖ = N2〉. The following constraints from Γ apply:

`(P3.6)[D](r5) ∧ (P3.7)[D](r5) ∧ (P3.8)[N](r5) ∧ (P3.11)[D,N](r5)

∧ (P3.15)[N,D](r5) ∧ (P3.18)[N,D,Desc(x′, y′) :

[
x′.gend = y′.gend

x′.num = y′.num

]
](r5)

:= φ5(r5)

(3.21)

When developed, the constraints are the following:

`(Λx constituents(r5, x)→ ∃x1 constituents(r5, x1) ∧ x1.cat = D)

∧ (Λx1Λy constituents(r5, x1, y) ∧ x1.cat = D ∧ y.cat = D → x1 = y)

∧ (Λx2Λy constituents(r5, x2, y) ∧ x2.cat = N ∧ y.cat = N → x2 = y)

∧ (constituents(r5, x1, x2) ∧ x1.cat = D ∧ x2.cat = N → right(x1) < left(x2))

∧ (Λx2 constituents(r5, x2) ∧ x2.cat = N → ∃x1 constituents(r5, x1) ∧ x1.cat = D)

∧ (constituents(r5, x1, x2) ∧ x1.cat = D ∧ x2.cat = N → D[x1/x
′, x2/y

′])

(3.22)

The corresponding projection rules are the following:

`Λr5 r5.cat = NP → Obl (N ∨Pro)

∧ Λr5 r5.cat = NP → D!

∧ Λr5 r5.cat = NP → N!

∧ Λr5 r5.cat = NP → D ≺ N

∧ Λr5 r5.cat = NP → N⇒ D

∧ Λr5 r5.cat = NP → N

gend 1

num 2

; Det

gend 1

num 2


:= ψ5

(3.23)

We then verify that:

I,A5 |= (P3.6)(r5) ∧ (P3.7)(r5) ∧ (P3.8)(r5) ∧ (P3.11)(r5) ∧ (P3.15)(r5) ∧ (P3.18)(r5) (3.24)
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and:

I,A5 |= ψ5 (3.25)

Therefore, all the constraints in the grammar are (strictly) satisfied under the model

〈I,A5〉. The corresponding constituent NP5 can be represented as follows:

NP5

D1

Les

The

N2

idées

ideas

Following the same reasonning for the phrase dorment furieusement, we now as-

sume the existence of the consituent VP6, represented as follows:

VP6

dorment furieusement

sleep furiously

Let x5 and x6 be variables representing NP5 and VP6 respectively, and let r7 be a

variable representing a hypothetical dominant constituent R7 for x5 and x6. We con-

sider the assignment A7 = 〈‖r7‖ = R7, ‖x5‖ = NP5, ‖x6‖ = VP6〉. The following
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constraints from Γ then apply:

`(P3.1)[VP](r7) ∧ (P3.2)[NP](r7) ∧ (P3.3)[VP](r7) ∧ (P3.4)[NP,VP](r7)

∧ (P3.5)[NP,VP](r7)

:= φ(r7)

(3.26)

`Λr7 r7.cat = S →MVP

∧ Λr7 r7.cat = S → NP!

∧ Λr7 r7.cat = S → VP!

∧ Λr7 r7.cat = S → NP ≺ VP

∧ Λr7 r7.cat = S → NP ; VP

:= ψ7

(3.27)

We verify that:

I,A7 |= (P3.1) ∧ (P3.2) ∧ (P3.3) ∧ (P3.4) ∧ (P3.5) (3.28)

I,A7 |= ψ7 (3.29)

As a result, we can conclude that R7.cat = S; the constituent structure whose root is S7

thus models the input. Note that Equation (3.28) informs on the characterisation (see

Definition 3.14) χA7 = 〈χ+
A7
, χ−A7

〉 of S7: since A7 strictly satisfies all the constraints

in the grammar, we have χ−A7
= ∅ and χ+

A7
=
∧{(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}.

Strict satisfaction allows models to be found for well-formed input sentences (i.e.

for expressions), but it is not sufficient to model quasi-expressions, for which con-

straints fail. Therefore, in order to model ill-formed sentences we need the possibility

of relaxing failed constraints. We define loose satisfaction for that purpose.

Definition 3.13 (Satisfaction (loose)) Let φ be a formula of the form

φ =
∧

i∈{ 1...n} ai where for all i, ai is an atomic formula. A model M loosely satisfies

φ under the assignment A (denoted by M |w φ) iff there exists Ik = {i1, i2, . . . , ik} ⊆
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{1, . . . , n} such that

M |=
∧

i∈{1,...,n}\Ik

ai ∧
∧
j∈Ik

¬bj

For short, we may sometimes write A |w φ, assuming a default interpretation I.

Subsequently, a model which loosely satisfies a formula φ from L under an assignment

A is said to be loosely consistent. Loose satisfaction is illustrated in Example 3.2.

Property 3.1 Since
∧m

j=0(¬bj) ≡ ¬
∨m

j=0(bj) the definition 3.13 is equivalent to:

M |w φ iff M |=
n∧

i=0

ai and M 6|=
m∨

j=0

(bj)

The formula φ is a constraint system, that is, a conjunction of atomic formulae.

Under a given assignment a constraint system may partly hold and partly fail. The

notion of loose satisfaction captures the possibility of implicitly relaxing the violated

constraints as part of the satisfaction process. For convenience, the satisfied con-

straints
∧

i∈{1,...,n}\Ik
ai are referred to as χ+

A, while the violated constraints
∧

j∈Ik
¬bj

are referred to as χ−A.

Definition 3.14 (Characterisation) In PG, the pair 〈χ+
A, χ

−
A〉 is called the charac-

terisation of A, denoted by χA.

Example 3.2 (Loose consistency and ill-formedness) Consider the following ill-

formed sentence in French (which is missing a determiner between positions 3 and 4):

Le
The

juge
judge

octroie
grants

bref
brief

entretien
interview

à
to

ce
this

plaignant.
plaintiff.

We focus on building a model for the ill-formed NP (framed in Figure 3.1). Suppose

the grammar Γ, and the variables x and y representing respectively AP7 and N9.

We consider R6 a hypothetical dominant constituent for x and y, with r the variable

representing R6. Let A be the assignment such that A = 〈‖r‖ = R6,AP7,N9〉. The
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following constraints in Γ apply:

`(P3.6)(r) ∧ (P3.16)(r) ∧ (P3.15)(r) ∧ (P3.17)(r)

:= φ(r)
(3.30)

`Λr r.cat = NP → φ(r)

:= ψ
(3.31)

We verify that:

A |=(P3.6) ∧ (P3.16) ∧ (P3.17)

:= χ+
A

(3.32)

A 6|=(P3.15)

:= χ−A
(3.33)

Therefore, by loose satisfaction we have A |w φ, and A |w ψ. By ψ we can project

the construction NP for R6, which gives the constituent NP6. The constituent S15 can

then be reached by strict satisfaction (see Figure 3.1).

Note that strict satisfaction is a special case of loose satisfaction where χ−A is empty.

The case where χ+
A = ∅ and χ−A 6= ∅ is also potentially controversial as it raises the

question of where to draw the line: if none of the atomic formulae in φ are true then

is φ still satisfied, even loosely? We leave it up to applications and implementations

to restrict the definition(s) further. A typical restriction consists of fixing a minimum

number of strictly satisfied constraints, usually one. Should the desired syntactic

structure be more specific, such as a head-driven phrase structure, another restriction

can consist of fixing the type of constraint which must hold, in that case the presence

of a head. In Chapter 4, which is dedicated to the presentation of a parsing strategy

based on Ξ, we state five different assumptions that we make in order to further specify

the type of constituent structure we are interested in for objects in D (see §4.3.2).
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S15

NP1

D2

Le
The

N3

juge
judge

VP4

V5

octroie
grants

*NP6

AP7

A8

bref
brief

N9

entretien
interview

PP10

P11

à
to

NP12

D13

ce
this

N14

plaignant
plaintiff

Figure 3.1: Loosely consistent constituent structure for an ill-formed sentence, which
is missing a Determiner in NP

3.3 Properties of Ξ and Discussion

3.3.1 A Discriminant for Multiple Loose Models

Loose consistency comes at a cost: the multiplicity of candidate models. A possible

discriminant is the optimality of a cost to be associated with each candidate model.

Such a solution was adopted by VanRullen (2005), with the use of the density of

satisfaction of a constituent structure. Translated in Ξ the density of satisfaction

corresponds to the proportion of satisfied constraints of a model. For M |w φ, with

M |= χ+
M,M 6|= χ−M, the score of M is calculated by card(χ+

M)/ card(φ) where

card(x) is the number of atomic formulae in x. The rationale is quite intuitive: the

higher the ratio of satisfied conditions of well-formedness the better.

Of course, it might be desirable to fine-tune that cost in order to take into ac-

count differences among constraints and constraint types in the role they play and

the importance they have with respect to grammaticality. For that reason, different
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constraint-based frameworks for natural language processing (Schröder, 2002; Keller,

2006), including PG, assign weights to the constraints. Meanwhile, it is also argued

(Aarts, 2007) that since the procedures for modelling the weighting of syntactic prop-

erties are controversial from a linguistic point of view, a computational model for

degrees of grammaticality should weight all constraints equally. Yet we do not com-

pletely agree on that the controversy around procedures make the very use of weights

controversial, and we have chosen to adopt constraint weights. In §4.4.4 we present

the solution we have implemented.

3.3.2 Constituent Structure

Because the constituency relationship is hierarchical we illustrate it as a tree. But it

must be emphasised that such a tree is only remotely related to the notion of tree

as used in generative grammar. As we have just seen through this chapter the tree

structure as such, usually formalised in terms of edges and vertices, does not play

any particular role in the logical framework. Besides, an isolated constituent tree

does not describe all syntactic aspects of the constituent(s)—i.e. of the input string

it describes; the complete information about the syntactic properties of a string is

contained in the satisfied constraint system which yielded the constituent hierarchy.

It is a strength of Property Grammars to provide, with the notion of characterisation,

a more informative—because more comprehensive—representation of that syntactic

knowledge.

This being said, it may be helpful for a better understanding to draw an analogy

between a production rule from generative grammar and an inference rule in Ξ.

Let us consider the constraint φ(r) paired up with the projection rule ψ : Λr r.cat =

L→ φ(r), and the assignment A = 〈L,R1,R2, . . . ,Rn〉. The generation—in the sense

of generative grammar—of the constituent from the type L would require rewriting

using the following production rule:

L −→ R1 R2 . . . Rn (3.34)

Yet, as we said previously, the comparison between the two remains only superficial
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and incomplete, since the rule (3.34) does not capture either the possibility of loose

satisfaction or the syntactic information contained in the characterisation about re-

lationships among Ri’s. Another difference stands in that the Ri’s in the PG version

are values from the domain D (semantic level), whereas the Ri’s in the production

rule belong to the language (syntactic level).

3.3.3 Grammaticality

As far as representing natural language is concerned, grammaticality comes in sig-

nificantly different flavours. In Chapter 2 we have identified three main notions,

which co-exist in the literature: a generative-theoretic notion, where a sentence is ei-

ther grammatical or not; an optimality-theoretic notion, where a syntactic structure

is grammatical, possibly to a certain degree, if it is the optimal one among a set

of candidates; and a model-theoretic notion, where a sentence is either grammatical

or ungrammatical to a certain degree. Arguably there exists a fourth notion, con-

structional grammaticality, where a sentence is grammatical or ungrammatical with

respect to a class of expressions—a construction, possibly to a certain degree, whether

of grammaticality or ungrammaticality. We consider here that constructional gram-

maticality is a special case of model-theoretic grammaticality.

In short, the generative-theoretic grammaticality is strictly binary, and nothing

can be said about ungrammatical sentences. Quasi-expression and degree of ungram-

maticality are meaningless notions in that case. The optimality-theoretic grammat-

icality takes its name from Optimality Theory (OT) (Prince and Smolensky, 1993),

but is found, for what we are interested in here, in other approaches to natural lan-

guage processing (Schröder, 2002; Keller, 2006). OT does not discriminate between

grammatical and ungrammatical sentences. Instead, it discriminates the optimal can-

didate structure for an input sentence according to preference criteria, pre-supposing

the existence of a set of candidates.

The Model-Theoretic grammaticality, as we formalise it, combines the sharp dis-

tinction between grammatical and ungrammatical sentences, the optimality of the
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syntactic structure, and the classification of utterances in constructions. This combi-

nation is made possible by linking the grammaticality of a sentence to the consistency

of its structure, with respect to a specific construction, and by allowing constituents

to be paraconsistent (i.e. loosely consistent) in order to model ungrammatical input

utterances. Furthermore, we will see in Chapter 5 that it is also possible to model a

gradient of ungrammaticality in rating an utterance on the basis of the information

contained in its paraconsistent model.

3.3.4 Monotonicity

In mathematics, a function is said monotonic when it is steadily increasing or steadily

decreasing when the variable is incremented. Similarly, a constraint is said to be

monotonic when it is steadily strictly satisfied or steadily violated when the assignment

is incremented—an increment being a constituent. Dahl and Blache (2004) give the

following definition:

Definition 3.15 (Monotonicity, Dahl and Blache, 2004) Let XP be a phrase into

which we are considering incorporating a category Cat. Let us designate by XP+Cat

the new constituent (of type XP) formed by incorporating Cat into XP. A property5 P

is said to be success-monotonic (failure-monotonic) if all P properties that hold (fail)

in XP for A also hold (fail) in XP+Cat.

Let us try and adapt that definition in Ξ. The phrase XP is a constituent, whose

sub-constituents we denote by {x1, . . . , xn}. Let us make an assignment out of these

sub-constituents along with XP, and denote it by A = 〈XP, x1, . . . , xn〉. Let c be the

constituent of construction Cat to be incorporated in the new constituent XP+Cat. The

meaning of “incorporating a category Cat into XP+Cat” translates in Ξ into XP+Cat

being modelled by the assignment A′ = 〈XP, x1, . . . , xn, c〉. The monotonicity of a

constraint P is then defined in Ξ by:

P is success-monotonic iff if A |= P then A′ |= P (3.35)

P is failure-monotonic iff if A 6|= P then A′ 6|= P (3.36)

5The term property is taken here in the sense of PG. In that case, it should be read as constraint.
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The monotonicity of a constraint is illustrated6 in Example 3.3.

Example 3.3 The Linearity constraints are both success–monotonic and failure–monotonic,

while the Uniqueness constraints are failure-monotonic only.

Consider the constraints:

φ1 = lin[Det,N](r) (3.37)

φ2 = uniq[V](r) (3.38)

and the following assignments:

A1 = 〈R1,D11,A12,N13〉, with ‖x‖A = D11, and ‖y‖A = N13 (3.39)

A′1 = 〈R′1,D11,A12,N13,V14〉, with ‖x‖A = D11, and ‖y‖A = N13 (3.40)

A2 = 〈R2,N21,D22〉, with ‖x‖A = D22, and ‖y‖A = N21 (3.41)

A′2 = 〈R′2,N21,D22,Pro23〉, with ‖x‖A = D22, and ‖y‖A = N21 (3.42)

A3 = 〈R3,V31〉, with ‖x‖A = V31 (3.43)

A′3 = 〈R′3,V31,V32〉, with ‖x‖A = V31 (3.44)

A′′3 = 〈R′′3,V31,V32,N33〉, with ‖x‖A = V31 (3.45)

For Linearity we have the following:

A1 |= φ1 (3.46)

A′1 |= φ1 (3.47)

6Presenting proofs of the monotonicity properties of a constraint would be quite interesting, as
would be a logical/epistemological decomposition of constraints into more standard operators of
classical logic that have these properties. However, the only proofs we can think of would require
a more detailed axiomatisation, which should allow—for the essentials—for reasonning with sets
of variables; it would also require a number of assumptions to be axiomatised, in particular with
regard to the contiguity of members in a set (otherwise Linearity must be re-defined). We might be
wrong of course, but we strongly suspect that providing these axiomatisations in FOL is not quite
straightforward.
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and:

A2 6|= φ1 (3.48)

A′2 6|= φ1 (3.49)

While for Uniqueness we have:

A3 |= φ2 (3.50)

A′3 6|= φ2 (3.51)

A′′3 6|= φ2 (3.52)

(3.53)

The notion of monotonicity can actually be generalised to constraint types, since

the monotonicity of a constraint originates in its type’s semantics. Dahl and Blache

identify three categories of properties (i.e. constraints) according to their monotonic-

ity:

• the selection properties, which are both success- and failure-monotonic (Linearity,

Dependency);

• the filtering properties, which are failure- but not success-monotonic (Uniqueness,

Exclusion);

• the recoverable properties, which are success- but not failure-monotonic

(Requirement, Obligation).

A constraint (type) is said to be monotonic when it is both success-monotonic and

failure-monotonic. We also use the term non-monotonic to refer to a constraint or a

constraint type in general, which is exclusively either success- or failure-monotonic,

and when being more specific is irrelevant in context.

Dahl and Blache report that their parsing strategy only takes into account the

monotonic constraints (i.e. the selection properties) for the projection of a construc-

tion. Likewise in VanRullen (2005), where the non-monotonic constraints are called
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lacunar properties. VanRullen implements a Principle of non-projection on lacunar

properties. In doing so, these strategies overlook an important feature and motivation

of PG, whereby a constituent structure is not head-driven, nor is it driven by any

type of constraint. In particular, the structure is meant not to be head-driven. In

making judgements about the construction of a dominant constituent relying on the

monotonic constraints, only these strategies only partially implements that feature of

PG.

3.3.5 Some Related Works

Availability In their formalisation of PG, VanRullen, Guénot, and Bellengier (2003;

2005) (VRetAl) define the availability of a logical term, and of a constraint. The

availability is motivated by a procedural rationale, in order to capture that in the

context of an incremental parsing strategy an object from the domain might become

available, as an assignment is dynamically incremented. Our formalisation differs

in that such a dynamic modification of an assignment is not directly accounted for.

Meanwhile, it can be emulated in seeing the assignment after each increment as a

brand new assignment. An axiomatic could be defined in order to maintain the link

between the two assignments, before and after the increment.

In this respect, we would like to draw attention on the similarity between VRe-

tAl’s availability and the Assignment function as we defined it above (see Definition

3.4). In mapping variables to values in D the function A only applies to the theory

concerned, that is, to the set of formulae of the variables concerned. Thus a constraint

is available, in the sense of VRetAl, if its variables are mapped to values in D by A.

The requirement in VRetAl for a constraint to be available in order to be evaluable

is captured in Ξ by the fact that a model can only (loosely) satisfy a theory under an

assignment A.

Capacity of Constraint Type For VanRullen,

La capacité [d’un type de propriété] indique le nombre de fois qu’une même

propriété peut être satisfaite pour une même construction. (VanRullen,
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2005, p. 68)

The capacity [of a property type] indicates the number of times that the

same property may be satisfied for the same construction.

The capacity of a constraint type is expected to be provided with its specification.

We believe that the definition of the capacity is essentially motivated by specific

algorithmic requirements. A case at stake is, for instance, the one of Linearity: for the

same assignment one instance of Linearity may hold for a pair {x, y} of constituents,

and fail for another. Consider, for example, the following sentence along with the

words’ POS:

(3.54)
The day the student graduates

D1 N2 D3 N4 V5

Under the assignment A = 〈R,D1,N2,D3〉 such that

‖r‖A = R, ‖x1‖A = D1, ‖y2‖A = N2, ‖x3‖A = D3 the Linearity constraint is satisfied

for the variables {x1, y2}, but is violated for {x3, y2}. The idea of VRetAl’s capacity

is to differentiate these two instances of Linearity, and to enable the specification

of constraint types, which constrain the number of these instances. Linearity, for

example, is specified by VRetAl with a capacity that takes its value in (0; +∞).

However, in practice the capacities of the Linearity constraints in all the different

grammars developed by VRetAL are never valued more precisely. The reason for that

is that each constraint of Linearity in the grammar is specified for all pairs of variables,

under a specific assignment. The need for making the distinction between instances

can be justified from an implementation point of view, for instance for maintaining

constraint counts, but from a logical point of view the constraint applies to all variables

in the assignment. Transposed in the formal context that we are using, the capacity

of a constraint type would correspond to a valuation of the quantifiers involved in

the type’s specification. This way, it would be possible to specify a constraint type

which constrains the number of satisfied instances through valued quantifiers. And if

reasonning with specific instances is needed, then one can define the constraint type

local lin[C1,C2](r, x, y) such that linearity[C1,C2](r)⇔ ΛxΛy local lin[C1,C2](r, x, y).

In practice however, the constraint types currently in use in PG only require the

quantifiers to be valued in two different ways:
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• a capacity of 1 corresponds to the existential quantifier;

• a capacity of unspecified value in (0; +∞) corresponds to the quantifier Λ.

Therefore, and although the use of valued quantifiers might look theoretically inter-

esting, it seems, so far, not to be justified in practice. Moreover, since its introduction

would require using a higher-order logic we prefer the solution adopted in Ξ.

Robustness The property of robustness is usually one of a process or program, and

refers to the ability to handle unexpected or deviant input without failure. Although

the topic of the present chapter does not include any processing aspect, it does provide

important formal tools to address the question of the robustness of a parsing process,

which ought to be emphasised.

Achieving robustness is necessarily purpose-driven and we certainly do not claim

to answer the problem as a whole. Meanwhile, we do claim that the model-theoretic

framework we provide serves the (theoretical) purpose of generating a full deep struc-

ture for unrestricted input. Irrespective of any processing considerations, we observe

that through loose satisfaction a constituent structure may be a model for a deviant

input even though it fails to satisfy every specification.

Note, as well, that the observation of constraint failures is part of the regular

satisfaction process, and does not require more information than what is contained in

the grammar. This aspect of PG makes the framework differ significantly from other

approaches which aim to handle deviant language. The mechanisms of constraint

relaxation implemented in most knowledge-based robust parsers rely on an explicit set

of rules for relaxation, such as error rules or mal-rules (Weischedel and Sondheimer,

1983; Carbonell and Hayes, 1983; Mellish, 1989; Douglas and Dale, 1992; McCoy,

Pennington, and Suri, 1996; Bender et al., 2004; Foster and Vogel, 2004). Applying

such mal-rules typically involves a post-processing (or post-mortem) step extending

conventional parsing and depending on the strategy used, in order to recover from

failures. Such an error grammar7 may play different roles, whether to identify and/or

correct ill-formedness accordingly, but conceptually it always aims to specify errors (or

7The term was coined by Foster and Vogel (2004).
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classes of errors). In doing so, it enlarges the set of sentences covered by the grammar

to include ill–formed ones—that is, it expands the language under investigation to

include an additional and limited (besides the cases of infinite strings) set of sentences

otherwise considered ill-formed. The major drawback of such an approach is still to

only cover the subset of language being specified, ignoring the remainder.

The approach taken in PG is significantly different. It offers a general framework

for handling language as a whole, regardless of well-formedness, and allows parsing

any input string. Therefore, the problem of remaining uncovered utterances becomes

theoretically irrelevant8. Interestingly however, the two approaches are not completely

inconsistent. Nothing in PG prevents specifying in the grammar syntactic properties

for classes of ill-formed constructions. Such a policy may improve coverage and ac-

curacy of the parser—though we must leave that question open, since we opted for a

different grammar writing strategy.

The next chapter (Chapter 4) is dedicated to describing the—robust—parsing

strategy we have developed.

3.4 Conclusion

In this chapter we have defined a logical system for Model-Theoretic Syntax based on

First-Order Predicate Logic with a Model-theoretic semantics, in which the paradigm

of Property Grammars (PG) defined in Blache (2001, 2005) can be formulated. The

contribution of our formalisation, compared with the existing formalisations of PG,

is many-fold. First, it makes an explicit link between PG and the family of MTS

frameworks. Second, in such a model-theoretic perspective, our formalisation ab-

stracts away from any notion of algorithm for building a model. Third, it captures

the projection mechanism in logical terms through the definition of projection rules,

similar to type judgements. Fourth, it defines loose satisfaction as a non-classical log-

ical consequence, in order for consistent and parconsistent models to loosely satisfy

the constraints in the grammar, by enabling the relaxation of the violated constraints.

8Practically, however, we acknowledge that performance-related limitations remain, which we
present and discuss in Chapters 4 and 5.
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The well-formedness of a sentence is thus captured by the consistency of the model,

while ill-formedness is captured by loose consistency. Formulations were provided for

all the different standard constraint types in use in PG.



Chapter 4

Loose Constraint-based Parsing

One of the main difficulties with configuration problem solving lies in the
representation of the domain knowledge because many different aspects, such

as taxonomy, topology, constraints, resource balancing, component generation,
etc. have to be captured in a single model.

(Mailharro, 1998, p. 383)

4.1 Introduction

We have seen previously that, in general terms, a model for gradience applies to an

input item which is properly classified, as well as characterised in terms of (met and

broken) features. Such classification involves a judgement of acceptability based on

whether the item’s features meet those of the class and how important these features

are for the class. Before being able to model this acceptability judgement the input

item must, therefore, be correctly characterised, in terms of features, and correctly

classified. The aim, in this chapter, is to develop a tool, which precisely characterises

and classifies an input item, and thus provides all the input material required by the

computational model. As far as the constituent structure is concerned, by classifying a

string we mean providing a full parse tree for it, which is rooted by the class the string

belongs to—in our case a construction. Therefore the outcome (of the classification

task) must always be a full parse tree, whether the input item is deviant or not.

Although the requirements we have sound very much like those for a robust parser

103
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the usual strategies implemented in robust parsing fail to meet our expectations in

terms of coverage and nature of the outcome and are, therefore, not well-suited to a

theoretical generalisation of a model of syntactic gradience. Indeed, all the parsers

whose outcome may exclusively be a partial parse for deviant language are ruled out,

since the input string could not be considered as uniformly classified into one construc-

tion and the model for gradience would not apply to it. The stochastic approaches to

robust parsing, on the other hand, would, intuitively, probably be sufficient, but they

require to be trained on appropriately annotated corpora. Besides the practical issue

of gathering such corpora and/or designing a large-coverage language model, it is not

clear how such approaches, where errors are only represented implicitly, could produce

an output which could be used in predicting gradience1. A possible approach uses

machine learning techniques, as investigated by Mutton et al. (2006), who developed

an evaluation metric to estimate text fluency. As for the knowledge-based approaches,

whether based on mal-rules for grammar checking (Bender et al., 2004), error gram-

mar (Foster and Vogel, 2004), (traditional) constraint relaxation (Douglas and Dale,

1992), or any other recovery process they all present a similar drawback in that they

require user-defined specific modules to be applied on top of a main grammar in order

to deal with ill-formedness. Such modules are still limited in coverage. Therefore a

model of gradience based on them would also be limited to the same coverage and a

theoretical generalisation would still not be possible. Parsing strategies based on PG

also exist which are an exception to that limitation in coverage, but in their case they

are still not suitable because their outcome can not be proven optimal. Indeed, as

we already emphasised it especially in Chapter 2, §2.5.4, incremental strategies come

along with an inadequate pruning of the search space.

1Keller’s LOT, to some extent, should be seen as an exception, though the approach does not
allow for discriminating deviant from non-deviant language. This point is discussed in more details
in §2.3.2.
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Relying on Existing Approaches

SeedParser

VanRullen’s implementation of a PG parser (SeedParser) does not present such a

limitation in terms of coverage since it does handle any input string, whether well-

or ill-formed, for which a solution parse is provided. There are nonetheless different

aspects in VanRullen’s work that prevent us from relying on the SeedParser in our

own study.

Bearing in mind that the parser’s output will be used later on for rating the

input string we require the parser in use to provide us with a syntactic parse and a

characterisation for a full sentence that can be proven of optimal merit. As far as the

SeedParser is concerned it is not clear to us whether it can be proven:

1. that a full syntactic parse will always be found, if it exists; and

2. that the result parse is of optimal merit.

Typically, it is unclear whether inapropriate pruning of the search space could result

from the incremental parsing strategy as adopted. By inapropriate pruning we mean,

for instance, that the decision process whereby the boundaries of a constituent are de-

cided might ignore solutions for grouping differently the same set of sub-constituents,

without any means to control whether one (or more) of these alternative(s) would be

a better choice for the overall merit of the full input sentence. The delaying of the

evaluation of certain non-monotonic constraints also potentially influences the deci-

sion process for categorising a constituent in a way that may impact the optimality

of the chosen solution.

Therefore the parsing strategy implemented in the SeedParser does not adequately

suit our purpose.

Constraint Programming Approaches

Following Dahl and Blache (2004) and Morawietz and Blache (2002) we considered re-

lying on Constraint Logic Programming (CLP)—namely Constraint Handling Rules
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(CHR) (Fruehwirth, 1995)—for implementing a parser for PG. In fact, we did im-

plement a couple of experimental parsers based on CHR prior to implementing the

version we present in this chapter, but in each case we were confronted to different

issues which led us to abandon the Constraint Programming paradigm. The first

issue at stake comes from that we do not control the Constraint Satisfaction process

which is handed over to the Constraint Soving engine. Therefore the process of Loose

Constraint Satisfaction, controlled by the merit of a constituent, could not be imple-

mented. Could not be implemented either different filters which would aim either to

prune the search space on linguistic ground or to skip cases that be known to fail.

The second issue comes from a well-known drawback of Logic Programming and

concerns the practical difficulty one is faced with when dealing with complex data

structures.

It is not entirely clear though, whether these impediments are all to be put on the

account of CHR and CLP, or whether some of them are more linked to the specific im-

plementations of CHR that we used. In a attempt to address these two main problems

using CLP we implemented a parsing algorithm which made use of a Java implemen-

tation of CHR. Both the Java Constraint Kit (JaCK)2 and the K.U.Leuven Java CHR

System (JCHR) (Weert, Schrijvers, and Demoen, 2005) were experimented—the only

two APIs available, to the best of our knowledge, at the time of programming. As

far as representing complex data structures is concerned the solution is indeed very

elegant and satisfactory. As for controlling part of the satisfaction process it is unfor-

tunately unclear, at this stage, to what extent it is possible. Several of the problems

we encountered were likely to come from that either of these APIs were still in the

early stage of their development (JaCK was actually already no longer maintained),

and while they did provide a convenient interface between CHR and Object Oriented

Programming features they were still limited, for instance in terms of features avail-

able in order to search the solution space. Quite obviously in our context such search

facilities are a strong requirement in order to recover and walk through the charac-

terisation of constituents. It is also not clear to us whether it be possible and how to

2It seems that no publications are related to JaCK, though a documented website exists and can
be found at: http://www.pms.ifi.lmu.de/software/jack/ (online on the 27 August 2008)
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implement a process of loose constraint satisfaction.

For all these reasons we developed an algorithm for Loose Satisfaction Chart Pars-

ing (LSCP) in order to meet our requirements and we show in the present chapter

that it is correct by construction. It is correct in that the solution it outputs for

a—possibly deviant—input string is a full parse tree and is proven to always opti-

mise a merit function. More specifically, the input item being a string, classifying

it is interpreted as finding an optimal syntactic structure for it, while characterising

it is interpreted in the standard sense from PG. The result syntactic structure is a

constituent structure. Provided the model-theoretic framework we presented in the

previous chapter, finding an optimal structure is equivalent to finding an optimal

model for the input, which loosely satisfies inference rules from the grammar.

It is important to emphasise that our goal in developing an LSCP algorithm is

primarily theoretical: we aim to implement a parser whose output is proven optimal

according to a merit function, so that we know—in Chapter 5—that we are using the

best possible syntactic parse and characterisation for rating an input sentence. This

means that it is important to prove that the optimality of the output over the entire

search space. The use of heuristics should not prevent that goal, and is, therefore,

quite limited at this stage. In the conclusion section (§4.10) we envisage different

possibilities of optimisation in further works.

The chapter is organised around demonstrating the correctness of the algorithm.

As a preamble, we introduce and discuss in §4.2 the choices we made in terms of

knowledge representation. Then we proceed by stating, in §4.3, the exact problem

we are faced with, and specifying the expected solution; following is §4.4, where we

describe the algorithmic solution we have implemented for LSCP, and we show how

to build a correct solution through a step-by-step procedure. §4.6 demonstrates the

theoretical complexity of LSCP, and §4.4.4 presents and discusses the merit function

we are using for choosing the optimal structure. And finally §4.8 focuses on the heuris-

tic we have implemented in order to prune the search space and drop the practical

complexity of LSCP, while §4.9 presents an evaluation of the parser’s outcome.
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4.2 Presenting And Representing Syntactic Knowl-

edge

We have already started in §2.5.3 discussing the particular way of representing syn-

tactic knowledge in PG. We complement here the discussion in precising important

aspects of (syntactic) knowledge representation (KR) and our interpretation of them.

A powerful feature of PG regarding KR stands in the distant connection it in-

troduces between syntactic structure and procedural mechanisms. Such a distance

between knowledge structure and procedure offers a high flexibility concerning the

type of representation in use and the interpretation associated to it.

In §3.2.2 we described a constituent as a composite object showing a hierarchi-

cal structure of constituents, and we presented a constituent as a basic object from

the domain of discourse. We now detail the representation we have adopted for a

constituent.

The component-based architecture proposed in Mittal and Frayman (1989) (see

§2.5.7) as a generic representation for configuration tasks captures well all the different

views exposed in the literature. We have adopted their suggestion, and adapted it to

natural language processing. We see a constituent as a component, where component is

taken in the sense defined in Mittal and Frayman (1989). Components are organised

in a hierarchical structure, where the hierarchy relationship is a dominance relation-

ship. Siblings, in this hierarchy, are organised according to a left-to-right linear order,

and are connected among each others through typed relationships. These typed rela-

tionships among siblings are seen as properties of their dominant constituent. A typed

relationship is represented as a constraint, as defined in Chapter 3.

Therefore, the traditional tree representation of a constituent structure only rep-

resents part of the syntactic knowledge contained in a constituent. A syntactic tree is

merely a representation of both the linear order and dominance relationships among

constituents, but which does not account for typed relationships mentioned above. A

complete representation of all the relationships within one structure is the multi-graph

one adopted in VanRullen (2005). Although exhaustive and therefore extremely pow-

erful, the multi-graph representation also lacks an intuitive reading and can quickly
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turn quite difficult to grasp as its complexity increases. For that reason we choose

to maintain in two different structures the typed relationships among siblings on one

hand, and the constituency (dominance and linear order relationships) on the other

hand. The former is maintained in a constituent’s characterisation, as defined in Def-

inition 3.14, while the latter is maintained in a constituent structure, as defined below

in definition 4.1.

The outcome of the parsing process—which makes the topic of the present chapter—

is a constituent, presenting a component architecture. It is presented as a combination

of both its constituent structure and its characterisation.

4.3 Problem Specification

4.3.1 Problem Statement

The goal we have is, given an input string of unrestricted language, to build and

characterise an optimal spanning constituent for it. A constituent is optimal if it has

a maximum merit. The merit of a constituent, detailed in §4.4.4, is computed on the

basis of its characterisation.

Put differently: given a grammar formulated in Ξ, and an input string annotated

with atomic constituents (POS-tags), find a model for the input string which loosely

satisfies the grammar. The model must be of maximum merit.

In the following section we assert strict principles to further specify and constrain,

next to the grammar, what a legal constituent structure is.

4.3.2 Outcome

The expected outcome of the parsing process is a characterisation and aconstituent

structure, as defined below.

Definition 4.1 (Constituent Structure) A Constituent Structure is a tree repre-

sentation of the hierarchical internal structure of a constituent, which accounts for the

relationships of dominance and linear order among constituents. It is represented as
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a finite labelled connected directed acyclic graph (DAG), satisfying Assumption 1 to

5 below, where the nodes are constituents from the domain of discourse D (see §3.2.2

in Chapter 3). It is directed according to the relationship of dominance.

For short, we may also sometimes refer to a constituent structure as a parse tree. Note

that the parse is supposed finite. Therefore, and following Pullum and Scholz (2001),

this definition prevents infinite recursion.

Assumption 1 (Minimum Satisfaction) Every constituent in a parse tree strictly

satisfies at least one constraint.

Assumption 1 is a restriction on the notion of loose satisfaction, as defined in definition

3.13. As we briefly mentioned it in §3.2.5, definition 3.13 raises the problem of an

empty positive characterisation (χ+, the set of satisfied constraints). We restrict that

definition further by forcing χ+ to be non-empty, i.e. to contain at least one satisfied

constraint.

However, we put no restriction on the type of constraint that must be strictly

satisfied. Especially, it does not have to be an obligation one, which means that the

solution structure is not necessarily head-driven.

Assumption 2 (Spanning Parse) The solution parse must span the entire input

string. That is, every word from the input string must be a terminal in the solution

parse.

In case a full parse can not be found using the constructions specified in the grammar,

we make use of a wildcard construction (called Star). This construction is not specified

by any constraint. Its purpose is merely to span withing one root construction a forest

of partial parses.

Assumption 3 (Distinct Constituents) A constituent may contain no pairwise

intersecting constituents.

That is, within a constituent there may be no overlapping sub-constituents.
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Assumption 4 (Constituent Arity) A constituent from a POS-tag construction

has an arity of 1 (one); otherwise, a constituent has a minimum arity of 2 (two),

except when it is an immediate dominant of a POS-tag constituent, in which case the

dominant constituent may have an arity of 1.

Assumption 4 aims to prevent the risk of infinite recursion in ruling out constituents

made of a single immediate sub-constituent. In forcing constituents to be made up of

at least two immediate sub-constituents, the possibility of recursion is necessarily lim-

ited to the size of the input string. An exception is made for constituents immediately

constituted of a single POS-tag, since it is commonly accepted that, for instance, a

single Noun may constitute a Noun Phrase, or a single Adjective may constitute an

Adjective Phrase.

Assumption 5 (Continuous Constituent) Every constituent in a parse is contin-

uous, that is, all its constituents are next to each others.

Assumption 5 rules out gaps, and cross-serial dependencies. We acknowledge their

necessity for French or English for phenomena such as extraposition, but these cases

involve important issues of grammar development, and fixing them goes beyond the

scope of our work. The main problem involves the semantics of some of the pre-defined

constraint types, which would require to be re-defined. Linearity, for instance, would

need to account for the order between two crossing-over phrases, which is not the case

in the current definition (see Definition 3.5).

4.4 Algorithmic Solution

In order to address the problem we have just specified, we introduce the Loose Sat-

isfaction Chart Parser (LSCP), and we present here its algorithm. We named our

implementation of it Numbat3. In order to ease its understanding, we proceed by

successive presentations of the entire process, each one being more detailed and more

thorough than the previous ones.

3Do not look here for an acronym of any sort: our parser was simply named after the marsupial
endemic to Australia, at considerable risk of extinction, and classified as vulnerable.
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4.4.1 Correctness

Along section 4.4, we also aim to show that Algorithm 2 for LSCP is correct by cons-

truction. The notion of correctness by construction was first introduced by Dijkstra

(1968), who,

[a]s an alternative to methods by which the correctness of given programs
can be established a posteriori, (. . . ) proposes to control the process of
program generation such as to produce a priori correct programs.

The underlying idea is to start from a problem specification and show that the solution

is reached by successive application of mathematically correct rules. As opposed

to usual formal verification, which proceeds a posteriori in order to prove that the

algorithm conforms to the specification, the conclusion about correctness is obtained

by showing that the algorithm is built correctly.

Applied to the problem we are concerned with, we come to the following descrip-

tion:

Correctness For any given input string of unrestricted natural language the LSCP

finds, if it exits, the optimal spanning constituent licensed by the grammar.

By licensed by the grammar we mean that the solution parse is a loose model for the

input string, and can be proven by predicate calculus in Ξ.

We adopt the principle suggested by Dijkstra of a constructive approach to de-

signing an algorithm. In the upcoming sections, we give all the required elements in

order to show how LSCP reaches a correct and optimal solution to our problem. The

merit function in use will be described in due time (§4.4.4).

4.4.2 Sketch of the Process

We sketch here the parsing process as a configuration task.

The process starts off with an initial set of atomic constituents. The position

of each word (i.e. an atomic constituent from the lexical construction) in the input

string specifies how it may be connected to a preceding and/or a following constituent.

The elementary step consists of first plugging together subsets of constituents into
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partial configurations. Each configuration is a k-subset4 of the initial set5. Then

the process of loose constraint satisfaction of the grammar is engaged, where each

configuration is a possible assignment. finally, the legal configurations meeting our

different assumptions plus conditions of optimality are projected into constituents by

predicate calculus (see §3.2.5).

The elementary process is then iterated again with the new set of constituents,

until a spanning constituent is reached. According to needs, the process can also

include alternative, and eventually sub-optimal, solutions.

Procedure The parsing procedure is presented step by step below. Each step is

then detailed in §4.4.3.

Step 0 (Initialisation) Every POS-tagged word in the input string is made an

atomic constituent, and assigned maximum merit (1).

Step 1 (Selection) A reference span of consecutive surface words is decided, and

all the existing constituents spanning part or all of it are selected.

The set of these constituents is S. For the first iteration, the span contains

only one word, and S contains one constituent for each possible POS-tag of this

word. For a random iteration, the reference span contains n > 1 words, at

most all the words in the input string; S contains every constituent spanning

a subset of the span. None of the selected constituents in S may span words

outside the reference span decided for this step. Note that this is not meant to

aim for substructure relaxation: should a constituent be out of the span, then

the configurations involved will be covered elsewhere, with a different span.

Step 2 (Enumeration) Every possible configuration of constituents in S over the

reference span is enumerated.

Each constituent must have the exact same span as the reference one.

4According to Weisstein (2004): “A k-subset is a subset of a set on n elements containing exactly
k elements”.

5We will see later that there may be, in fact, more than one configuration for each k-subset.
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Step 3 (Characterisation) Each configuration is characterised according to the

grammar, and its merit is calculated.

The characterisation is a process of loose constraint satisfaction, where the gram-

mar is a constraint system, and a configuration an assignment.

Step 4 (Projection) Each configuration is categorised, according to its characteri-

sation, as an instance of one of the constructions specified in the grammar.

The configuration is said to be projected into a construction. The result is a set

of candidate constituents.

Step 5 (Memoization) The best (optimal) constituent is memoized in the dynamic

programming table π for the current span, while all the alternative candidates

are relaxed from the search space.

(Iteration) Iterate the process again from Step 1, until the entire input string is

spanned.

4.4.3 Algorithm

The algorithm for Loose Satisfaction Chart Parsing is based on the probabilistic

Cocke-Kasami-Younger chart parsing algorithm (CKY), reported as Algorithm 1. The

procedure described in §4.4.2 is implemented by Algorithm 2.

The skeleton of the CKY is augmented with a process of loose constraint satisfac-

tion, which implements loose satisfaction as defined in §3.2.5. Loose constraint-based

chart parsing also differs from the CKY in that no equivalent exists in PG for the

Chomsky Normal Form of a grammar, which only generates binary trees. Subse-

quently, the baseline is generalised in order to cover n-ary structures. The third and

last important difference is that the probabilities are replaced by constituent’s costs,

but we leave that aspect aside for the moment—§4.4.4 is dedicated to the merit func-

tion in use. The term chart is used here to refer to the use of a dynamic programming

table.

Let us now detail Algorithm 2 a bit more.
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Algorithm 1 Probabilistic CKY (Jurafsky and Martin, 2000, p. 455, corrected ver-
sion)

function CKY(words , grammar)
returns the most probable parse and its probability

Create and clear π[num words, num words, num nonterminals]

/∗ base case ∗/
for i← 1 to num words

for A← 1 to num nonterminals
if (A→ wi) is in grammar then
π[i, i, A]← P (A→ wi)

/∗ recursive case ∗/
for span ← 2 to num words

for begin ← 1 to num words − span + 1
end ← begin + span − 1
for m← begin to end − 1

for A← 1 to num nonterminals
for B ← 1 to num nonterminals
for C ← 1 to num nonterminals

prob ← π[begin,m,B]× π[m+ 1, end , C]× P (A→ BC)
if (prob > π[begin, end , A]) then
π[begin, end , A]← prob
back [begin, end , A]← {m,B,C}

return build tree(back[1, num words , S]), π[1, num words , S]

The grammar must be in Chomsky Normal Form; the back array is used to store back-
pointers in order to enable the generation of the final parse tree(s); each backpointer
value contains the index of the left-most daughter non-terminal, and the right-hand-
side of the rule used.
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Algorithm 2 Loose Satisfaction Chart Parsing

/∗ Initialisation ∗/
Create and clear the chart π: every score in π set to 0

/∗ Base case: populate π with POS-tags for each word ∗/
for i← 1 to num words

for (each POS-construction T of wi)
if merit(T ) ≥ π[i, 1, T ] then

Create constituent wT
i , whose construction is T

π[i, 1, T ]← {wT
i , merit(wT

i )}

/∗ Recursive case ∗/
/∗ Step 1: selection of the current reference span ∗/
for span ← 1 to num words

for offset ← 1 to num words − span + 1
end ← offset + span − 1
K ← ∅

/∗ Step 2: enumeration of all the configurations ∗/
for (every set partition P in [offset , . . . , end ])

KP ← buildConfigurations(P)
K ← K ∪KP

/∗ Step 3: characterisation of the constraint system from the grammar ∗/
for (every configuration A ∈ KP)

χA ← characterisation(A)
/∗ Step 4: projection into constructions. ∗/

/∗ CA is a set of candidate constituents. ∗/
CA ← projection(χA)
checkpoint(CA)

/∗ Step 5: memoization of the optimal candidate constituent ∗/
for (every candidate constituent x ∈ CA, of construction C)

if merit(x) ≥ π[offset , span, C] then
π[offset , span, C]← {x, merit(x)}

if π[offset , span] = ∅ then
π[offset , span]← preferred forest in K
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Dynamic Programming

LSCP relies, as the CKY and many other chart parsers, on dynamic programming. The

part of the problem concerned with finding an optimal structure is divided into finding

optimal solutions to sub-problems. These intermediate solutions are usually referred

to as optimal sub-structures. Applied to our case, the fundamental principle met by

dynamic programming is that an optimal solution constituent structure is necessarily

only made of sub-constituents, which all optimise the overall merit. Assuming that

the merit function has the right properties with respect to optimality (these properties

are discussed §4.5) it is indeed quite straightforward to show, by contradiction, that

if there exists a solution of optimal merit, and if one of its sub-constituents does

not optimise this merit, then necessarily a different sub-constituent exists, which, if

substituted to the sub-optimal one, yields a solution of better merit—this contradicts

the hypothesis.

A chart, or Dynamic Programming Table (DP-Table), is used to store these op-

timal sub-structures. The storing process involved is called memoization. Dynamic

programming also contributes to optimise the process in preventing multiple iterations

of the same sub-problem to occur. The chart we are using (π) takes the words from

the input string on the x-coordinate, and the span size on the y-coordinate. Table 4.1

illustrates how all the unlabelled sub-structures are covered using a DP-Table. Other

examples of DP-Tables are illustrated in Tables 4.2 and 4.3.

Selection Step

The Selection Step iterates over the span size, from 1 to the number of words in

the input string, and over the start position of the span (offset), so that every word

in the string is covered by span. The iteration with {offset , span} = {i, j} aims to

solve the sub-problem which corresponds to filling π at the coordinates {i, j}. The

selection S of constituents for the current span is made up of all the constituents

contained in π at the coordinates π[i, 1], π[i, 2], . . . , π[i, j− 1], . . . , π[i+ 1, 1], . . . , π[i+

1, j − 1], . . . , π[end , j − 1].

Note that the loop over span starts iterating from 1, thus allowing for constituents
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5 . . .
4 . . . . . .
3 •

N1 V2 P3

•

V2 P3 D4

•

P3 D4 N5

•

X

N1 V2

P3

•

X

V2 P3

D4

•

X

P3 D4

N5

•

N1 X

V2 P3

•

V2 X

P3 D4

•

P3 X

D4 N5

•

X

X

N1

V2

P3

•

X

X

V2

P3

D4

•

X

X

P3

D4

N5

...
...

...
2 •

N1 V2

•

V2 P3

•

P3 D4

•

D4 N5

•

X

N1

V2

•

X

V2

P3

•

X

P3

D4

•

X

D4

N5

•

N1 X

V2

•

V2 S

P3

•

P3 X

D4

•

D4 X

N5

•

X

N1

X

V2

•

X

V2

S

P3

•

X

P3

X

D4

•

X

D4

X

N5

1 N1

•

N1

V2

•

V2

P3

•

P3

D4

•

D4

N5

•

N5
span�offset Time flies like an arrow

Table 4.1: Dynamic Programming Table, partially filled with unlabelled sub-
structures, before being characterised and considered for memoization. The symbol •
represents an unlabelled root; X represents a labelled constituent—the labelling occurs
during the projection Step. Note that the collection of sub-structures represented is
not exhaustive.
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spanning one word only (e.g. an NP made of a single N), whereas the traditional CKY

(Algorithm 1) starts iterating from 2. Starting from 1 implements the exception to

Assumption 4, about a constituent arity.

Enumeration Step

We know that a valid configuration must span the words from offset to end (current

span). If we consider a set partition6 of S = [offset . . . end ], then each subset corre-

sponds to a sub-problem already solved since its cardinality is necessarily less than

the current span. Thus, the corresponding optimal sub-structure is already stored in

π and can be retrieved. A configuration is obtained from a partition by combining

together every sub-structure from the partition. Therefore, if we calculate all possible

partitions of S we can make sure that we go through all possible configurations for

the current span.

In fact, for the problem we are interested in, we do not need to calculate exactly

all the set partitions. According to Assumption 5, we only need the partitions which

are made up of subsets of contiguous elements.

Set Partitioning Algorithm 3 presents a solution to the problem of set partitioning.

Given a finite set S of n elements, let us place a binary delimiter between every

element, where a delimiter indicates a border between two subsets when set to 1, and

no border when set to 0. Each combination of 0 and 1 for the delimiters corresponds

to a partition. For n elements, there is n − 1 possible positions for the delimiter.

Therefore, all the partitions of S are enumerated by using the binary representation

of all integers from 1 to 2n−2. Note that the partition with all delimiters set to 0 is

ignored, because meaningless in our case. In the end, the number of relevant partitions

for S is 2n−2 − 1.

Example 4.1 (Set Partitionning) Let us consider the set s = {a, b, c, d} of n

words, spanning the words wi to wj, with j = i + n − 1. We want to enumerate

6According to Weisstein (2006): “A set partition of a set S is a collection of disjoint subsets of S
whose union is S”.
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Algorithm 3 Set Partitioning

function getSetPartitions(offset , span, π)
returns all the possible set partitions of [offset, . . . , end]

Partitions ← ∅
end ← offset + span − 1
for mask ← 1 to (2span−1 − 1)

binMask ← mask base 2
P ← ∅
i← offset
/∗ for each digit = 12 in binMask create a subset ∗/
for j ← 1 to span − 1

if (binMask [j] = 12) then
P ← P ∪ {π[i, j + offset − 1, X]}
i← j + offset

P ← P ∪ {π[i, end , X]}
Partitions ← Partitions ∪ {P}

return Partitions
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all the possible partitions of s. The list of all the partitions of s we are aiming for is

the following:

{{a} , {b, c, d}}

{{a, b} , {c, d}}

{{a, b, c} , {d}}

{{a} , {b} , {c, d}}

{{a} , {b, c} , {d}}

{{a, b} , {c} , {d}}

{{a} , {b} , {c} , {d}}

Each partition is obtained by applying a binary mask of delimiters to s. We use the

symbol ⊕ to represent the operation of applying a binary mask to a set. The solution

partitions are thus obtained as follows:

{a, b, c, d} ⊕ 001
.
= {{a, b, c} , {d}}

{a, b, c, d} ⊕ 010
.
= {{a, b} , {c, d}}

{a, b, c, d} ⊕ 101
.
= {{a} , {b, c} , {d}}

{a, b, c, d} ⊕ 111
.
= {{a} , {b} , {c} , {d}}

...

Enumerating the Labelled Configurations We have already seen how to re-

trieve the sub-structures from the chart π. What we have not said yet is that the

Projection Step (Step 4) may categorise the same configuration into more than one

construction, the optimal solution being memoized (Step 5) for every possible cons-

truction. The configuration must, therefore, be replicated as many times. This is the
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role7 of buildConfigurations in Algorithm 2. In order to avoid confusions, when

necessary an uncategorised (respectively categorised) configuration will be referred to

as unlabelled (labelled) configuration. Algorithm 3 can easily be adapted to include

these cases requiring replication.

Characterisation Step

The characterisation process is implemented with Algorithm 4, where an assignment

is a configuration. More specifically, the assignment is made of the set of all the

immediate constituents of the current unlabelled configuration. For the sake of the

presentation, in Algorithm 2 the Projection Step is kept entirely separate from the

characterisation, whereas it is in fact partly implemented as part of the function of

characterisation, in order to save iterations.

Recall that in PG a property is a constraint. What the characterisation process

needs to do is to check which constraints in the grammar (G) are loosely satisfied by

the assignment (A). In order to ease the process, a lookup table is created for G when

setting up the parser, which indexes every constraint by a key . This lookup table and

the nature of this key are detailed in §4.4.5. For what we are interested in here, on

the principle we must check, for every constraint in G, whether A is an assignment

for its variables. The algorithm actually proceeds the other way around; it calculates

all possible combinations of variables from A8, then it uses each combination as a

key in order to get a direct access to all constraints concerned. The combinations of

variables we need are obtained by enumeration of all the binary representations of

numbers in [1..2n − 1], where n is the cardinality of A. Each binary number is then

used as a mask over A in order to determine a combination. While iterating over the

keys for A, it is convenient to also retrieve from G, for the same key, the constructions

to be projected.

7buildConfigurations actually also combines the mechanism for keeping track of “backup”
configurations, i.e. what could turn out to be part of a forest of partial parses in case everything else
fails. These “backup” configurations come for handling what should otherwise be empty cells in the
chart. Forests of partial parses are discussed later, in the Memoization Step section, p. 116.

8Rigorously, an assignment is not made of variables but of object instances to be assigned to
variables, in our case constituents.
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Algorithm 4 Characterisation Function

function characterisation(A = 〈c1, . . . , cn〉 : assignment, G: grammar)
returns the set of evaluated properties relevant to A,

and the set of projected constructions for A.

/∗ For storing the result characterisation: ∗/
create and clear χA [property ]: table of boolean, indexed by property

/∗ For storing the result projected constructions: ∗/
create and clear CA: set of construction

/∗ For temporarily storing the properties to be evaluated: ∗/
create and clear S: set of property

for (mask ∈ [1 . . . 2n − 1])
key ← applyBinaryMask(A,mask)
if (key is in the set of indexes for G) then

/∗ Properties are retrieved from the grammar, then evaluated ∗/
S ← G[key ].getProperties()
χA ← evaluate(S)

/∗ Projection Step: retrieval of the constructions to be projected ∗/
CA ← G[key ].getDominantConstructions()

return χA , CA

The key determined by applyBinaryMask is a combination of constructions (i.e. those
constructions in A for which the corresponding bit in the mask is set to 1); it is used,
after application of a hash function, as an index for retrieving, from a lookup table,
the constraints in the grammar this combination is concerned with.
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Although it looks like constraints are reevaluated every time that the same con-

straint type must be evaluated for the same constructions, these reevaluations are

only redundand in the case of monotonic constraints (i.e. Linearity and Dependency).

For all the others, since the context of a different configuration means a different as-

signment every time, these constraints may evaluate differently under each of them,

hence the need for reevaluation.

Projection Step

Conceptually, the Projection Step consists of making a judgement about the Cons-

truction of a constituent (see §3.2.4). It is seen as a categorisation problem, where an

unlabelled configuration is categorised into a construction, according to its character-

isation. More practically, it is a matter of labelling unlabelled configurations.

In §3.2.4 we have presented a grammar as a collection of constructions, where each

construction is specified by a set of constraints. The operation we need to perform

now requires to reverse the information, in order to determine which constructions are

projected (i.e. inferred) given the knowledge we have of the set of constraints which

are loosely satisfied by a configuration–i.e., its characterisation. A lookup table is

created during the setup phase of Numbat, which let us retrieve these constructions

directly, a constraint serving as a key. This part of the process is the one actually

implemented as part of the function of characterisation (§4.4.3).

The other part of the process, implemented in the projection() function from

Algorithm 2, is concerned with enforcing the different assumptions we stated in §4.3.2.

The sub-structures not meeting these assumptions are systematically relaxed.

Memoization Step

The Memoization Step aims to store the optimal constituent for each possible cons-

truction for a given cell in the chart. The merit function in use for optimality is

presented and discussed §4.4.4.

Should the current cell in the chart not being populated with any constituents, a

preferred forest of partial parses is used instead, and populates the cell. The preferred
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forest is identified on the fly, while going through all the possible configurations (as

part of buildConfigurations in the Enumeration Step); a pointer is maintained to

the preferred configuration during enumeration. The preference goes to:

• constituents with the widest span;

• the least overall number of constituents.

This translates heuristically into a preference score computed as follows (where F is

the forest, Ci the constituents it is made up of, merit(Ci) the merit of a constituent,

and pF the preference score associated with F ):

pF = span · (merit(Ci) + span)

pF should be seen as “the score of the last chance”: when the main parsing process fails

to find a dominant construction for a set of constituents the different configurations of

these constituents somehow compete to be chosen as the default partial parse (for the

span at stake). The winner is the one with the best preference score. Note that in the

worst-case scenario a partial parse has the same granularity as the parser’s input—but

not necessarily; as far as Numbat is concerned we are left with a sequence of Part-

Of-Speech constituents. Thus the LSCP algorithm, and Numbat more specifically for

that matter, always delivers a parse for any input.

Quite obviously, as a heuristic pF is only one of the many possiblities for computing

such a preference, and it would be interesting to investigate in details some of these

possibilities and see which one gives the best results. However, what exactly makes

a forest of partial parses better than another one is unclear. For the purpose of

experimenting with gradience, since the corpus we are working with was artificially

constructed with sentences built according to specific error patterns, only complete

parses are predicted to be output by the parser; thus forests of partial parses are seen

(and evaluated) as errors (see Chapter 5 for experiments on gradience and §4.9 for

Numbat ’s evaluation). While focusing on what the default output should look like in

case of an error was not our prime concern, there might be applications where it is.

Further investigation should look at different avenues according to needs.
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One option is to look at different conjectures than widest span and the least

possible constituents, and/or different ways to capture them numerically. Maybe the

merit of each constituent should not be taken into account, for instance. Or on the

contrary, priority could be given to well-formed constituents.

Another option is to start introducing weights; first to constructions, then—more

ambitiously—to constraints. If the task of weighting constraints is known for being

labour-intensive (see, for instance, Keller, 2000 and Schröder et al., 2000, whose works

we have reviewed in Chapter 2), weighting constructions, on the other hand, should

not require as much work. First, because their number is by far less important than

the number of constraints, and second because it could probably be taken advantage

of corpora, where constituents are annotated with frequencies. It is likely that these

frequencies could be used to provide a good default shallow parse.

Note that more information could have probably been memoized, like the set

partitions, or the monotonic constraints. The memoization of monotonic constraints,

in particular, could probably be inspired from part of VanRullen’s SeedParser (in

compiling them, for example).

4.4.4 Merit Function

We have not discussed so far the merit function in use in Numbat. Its purpose may

be interpreted in two different, yet complementary ways. One way is to serve as an

optimality function, in order to identify, preferably uniquely, which characterised con-

stituent structure best describes the syntactic characteristics of an input string. The

main question the function must answer, then, concerns the criteria such a decision

of optimality is based upon.

Another interpretation comes from that the score is absolute and assigned to a

constituent, that is, with respect to a specific construction. Therefore a given input

string may be analysed in as many different constituents, and may be assigned as

many different scores as there are constructions it can be categorisied into. These

scores may then be compared with each other and used to discriminate which class

(i.e. construction) the input item belongs to. In doing so, that merit function is seen
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as a means to address the categorisation problem referred to as Intersective Gradience

(IG) by Aarts (see §2.2.2). As a reminder, IG is concerned with uniquely categorising

an item, which presents characteristics from more than one class. Even though Aarts

focuses on standard (i.e. non-deviant) language, conceptually the problem can be

generalised to tackle cases of ill-formedness, where an utterance may also be cate-

gorised in more than one construction. In such cases, a decision process is required in

order to unambiguously categorise the utterance. A word of caution ought to come

with the unambiguous aspect of the categorisation though. Indeed, it is well-known

that even standard language may be inherently syntactically ambiguous. Although

the merit function might also be, to some extent, well-suited to address this prob-

lem, it is not our purpose here and we, thus, leave that question open. The main

question the merit function must answer, again, concerns the criteria involved in this

decision-making process.

These two interpretations are in fact complementary, in that unambiguous cate-

gorisation is achieved through optimality. In other words, a solution parse is consid-

ered as the best one because it provides an optimal categorisation of an item compared

to the alternative possible categorisations.

Whether in Aarts’ address of IG, or in OT (Prince and Smolensky, 1993) or LOT

(Keller, 2000), constraint violations only are considered meaningful for addressing

that problem. We take a different standing point, since we believe that more than

simply accounting for absent or broken characteristics, the problem we are faced with

concerns finding out the most cohesive syntactic description of an utterance. By co-

hesive we mean that a syntactic description should be assessed not only for the rules

or constraints it breaks, but also for those it meets. In that sense, the greater the pro-

portion of properties it meets, the more cohesive the syntactic representation. When

all properties are met the cohesion equals its absolute maximum and the utterance

is syntactically well-formed. And conversely, an ill-formed utterance does not meet

all properties and the cohesion of its syntactic representation is strictly less than the

absolute maximum.

In contrast, in OT-like approaches the set of all the contsraints in the grammar
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is typically inconsistent, which makes it impossible for all constraints to be satis-

fied. Therefore, the structures defined as grammatical are not those satisfying all

constraints. This is a major impediment to discriminating between deviant and non-

deviant language. As a consequence, gradience is modelled in these approaches as

being ubiquituous among Optimality-Theoretically grammatical structures, which dif-

fers from our own conception of gradience.

Counting Constraints Relying on constraint counts, whether for optimality pur-

pose or for modelling gradience, raises questions regarding what is accounted for.

One question is concerned with the granularity of the material being counted, and

another one is concerned with how the cardinality of constraint sets is figured. As

for granularity, one may wonder whether a grammar statement such as “in French,

when the Direct Object is placed before the auxiliary verb avoir (to have) the past

participle must agree in number and in gender with the Subject” should be counted as

one, maybe two, or even three or up to four different statements. Indeed, it could be

seen as a single statement, but it could be split in two: “the Direct Object is placed

before the auxiliary verb avoir”, and9 “the past participle must agree in gender and

in person with the Subject”, or it could also be splitted even further with respect to

the agreement, and so on. We took the party of formulating constraints with the finer

possible granularity allowed by the formalism, while maintaining consistency in the

grammar—especially at the construction level. To follow up with the same example,

the Direct Object being placed before the auxiliary verb avoir would count as one, the

agreement as two, and the implication as one, the initial statement thus amounting to

four different constraints10. Our grammars were written so that every specified con-

straint is as atomic as possible with PG, in the sense that no variable changes would

split it in two constraints or more. This was done in order to avoid non-linearities

that may be caused by changes of variables and may distort the constraint counts.

9Of course, “and” should not be taken here as a conjunction from a strictly logical point-of-view,
since an implication of the form A⇒ B is equivalent to the disjunction ¬A∨B; it is rather a matter
of splitting one statement into two different ones.

10In practice, however, we did not implement the constraint involving the Direct Object; the reason
for that being that we did not implement any functions like Direct Object.



4.4. ALGORITHMIC SOLUTION 129

As for cardinality, the question is to decide whether a count of evaluated con-

straints should account for all instances or, alternatively, for one instance of each

constraint. we opted for counting every instance. In Chapter 3 we have illustrated

the role of quantifier-free variables with an example11 where the fragment “The day

the” is analysed as part of the sentence “The day the student graduates”. In that

example, two instances of the same constraint D ≺ N are possible:

TheD ≺ dayN (4.1)

dayN ≺ theD (4.2)

A rationale for the alternative option would be to argue that, for example, at the

sentence level multiple violations of the same constraint may not necessarily induce a

decrease of gradience strictly proportional to the number of violations. For example,

in the utterances 4.3 to 4.5 below,

(4.3) *She prepare the cake

(4.4) *She bake and eat the cake

(4.5) *She prepare, bake, and eat the cake

it is not obvious whether the degree of syntactic gradience decreases proportionally

to the number of verbs violating the person agreement. While the argument whereby

such recurrent error patterns are associated with some form of attenuation effect might

be relevant to discussions on gradience and the categorisation problem mentioned

earlier in this section, it is not involved in the optimality problem which we discussed

alongside and which is concerned with finding an optimal parse for each of these

utterances. It is the latter that we address with the merit function being discussed in

this section.

11Sentence 3.54, p. 99.
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Definitions

As mentioned earlier, this merit aims to capture the cohesion of a constituent; but it

is also expected to meet the requirement we have about the optimality of the solution

constituent, and to allow the overall merit to be optimised by partial solutions (sub-

structures). The function we are using was first defined in VanRullen (2005), and

referred to as density of satisfaction12. Although we define it here from a slightly

different perspective in order to emphasise the proportion we have been discussing,

the calculation is exactly the same.

Definition 4.2 (Cohesion, part 1) Let V be a constituent,

χ(x1, . . . , xn) = χ+(x1, . . . , xn)∪ χ−(x1, . . . , xn) its characterisation, where x1, . . . , xn

are the constituents that V immediately dominates. We note:

• P the number of constraints in χ, and P+ and P− the numbers of satisfied and

violated constraints respectively, with P = P− + P+

• n = card(x1, . . . , xn) the number of constituents V dominates.

Note that P only accounts for the constraints applying to the immediate con-

stituents of V . Each of the xi constituents being itself characterised unless it is from

an atomic construction (POS), a recursive function is now defined in order to sum up

all constraints V is concerned with.

Definition 4.3 (Cohesion, part 2) The total number P+
V (respectively P−V ) of con-

straints the constituent V satisfies (violates) is defined as follows:

P+
V =

{
0 if POS

P+ +
∑n

i=1(P+
xi

) otherwise

P−V =

{
0 if POS

P− +
∑n

i=1(P−xi
) otherwise

12The term density is used ambiguously in the literature about PG (Blache and Prost, 2005;
Blache, Hemforth, and Rauzy, 2006; VanRullen, 2005), because associated with different numerical
definitions. In order to avoid confusions, we simply avoid the term, unless for explicit references.
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Now, we can define the cohesion of V as the proportion of satisfied constraints13.

Definition 4.4 (Cohesion) The cohesion CV of the constituent V is defined by the

following ratio:

CV =
P+

V

P−V + P+
V

A score of cohesion takes its value in [0 . . . 1].

Example 4.2 (Cohesion score) In Example 4.4, the chart π contains the two can-

didate constituents VP5 and S8 at the coordinates π[2][3] represented below:

VP5

aimeV NP4

chocolatN leD

S8

VP2

aimeV

NP4

chocolatN leD

These two constituents are characterised as follows (A5 and A7 respectively):

χ+

VP5
= χ+

A5
= {(P3.19), (P3.21), (P3.23)}

χ+

S8
= χ+

A7
= {(P3.1), (P3.2), (P3.3), (P3.5)}

χ−S8
= χ−A7

= {(P3.4)}

VP5 and S8 contain the constituents VP2 and NP4 characterised themselves as

follows (with A2 and A4 respectively):

χ+

VP2
= χ+

A2
= {(P3.19)}

χ+

NP4
= χ+

A4
= {(P3.6), (P3.8), (P3.7), (P3.15), (P3.17), (P3.18)}

χ−NP4
= χ−A4

= {(P3.11)}
13It was pointed out to us by Gerald Penn (examiner, rapporteur) that out of completeness a dual

should be defined as well, in which P−V is weighted against all of the satisfied constraints. While this
is true, the dual cohesion is of no use to us.
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The cohesion scores are then the following:

CNP4
=

6

6 + 1
= 0.86

CVP2
= 1

CS8
=

4 + 1 + 6

11 + 1 + 1
= 0.79

CVP5
=

3 + 6

9 + 1
= 0.9

4.4.5 Consulting The Grammar

Because the grammar is used for different purposes, in different ways, and at different

steps in the parsing process, different indexing tables are created during the system

setup, in order to ease looking up information in the grammar. These tables save pro-

cessing effort, and thus reduce the complexity of the LSCP. We define below different

lookup tables for the grammar.

Constraint Index An assignment rarely—if ever—concerns all variables in the con-

straint system. Therefore, we index the constraints by a hashed key on the variables

they contain, in order to access them directly. More precisely, the key contains the

free variables and the variables quantified universally. Indeed, the variables quantified

existentially may be absent from the assignment. In case of Requirement or Exclusion,

for instance, the point is precisely to check whether or not the existential variables

are present in the assignment.

As an example, the constraint D ≺ N is indexed by the pair {D,N} (more exactly

a hash of it), and the constraint N⇒ D is indexed by the singleton {N}.

Projection Index We have seen in §3.2.4 that the constructions in the grammar can

be projected (i.e. inferred) by any of the constraints they are specified by. Initially,

the grammar is a set of constructions, each being specified by a set of constraints; in

order to look up which construction(s) a given constraint specifies, each construction

is indexed by as many constraints as those contained in its specification. In other
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words, each constraint in the grammar indexes all the constructions it specifies. This

way, the projection Step in the parsing process, concerned with inferring dominant

constituents, is only a matter of direct access to the lookup table.

Figure 4.1 exemplifies how the two indexes (constraint and projection) are imple-

mented into one lookup table.

Index Constraints Projected Constructions

(N,PP) N ≺ PP NP

(V,PP) V ≺ PP VP

(Adv,A) Adv ≺ A Sup,AP

(V,NP)

{
V < NP

V ≺ NP
VP,Cleft

(VP)

{
VP!
MVP

Rel,Compl,S,Cleft

Figure 4.1: Example of lookup table for the grammar (sample)

4.4.6 Algorithm Walkthrough

In order to illustrate the parsing process, we are now going to walk through the

algorithm. The process is also exemplified in Example 4.3 (along with Table 4.2)

for a well-formed utterance, and in Example 4.4 (along with Table 4.3) for a deviant

utterance.
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Example 4.3 (Parsing Chloé . . . (well-formed): characterisations) The char-

acterisations for the DP-Table presented in Table 4.2 are given below.

π[1][1] : A1 = 〈ChloeN〉
χ+
A1

= {(P3.6), (P3.8), (P3.17)}
π[2][1] : A2 = 〈aimeV 〉

χ+
A2

= {(P3.19)}
π[1][2] : A3 = 〈ChloeN , aimeV 〉

χ+
A3

= {(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}
π[3][2] : A4 = 〈leD, chocolatN〉

χ+
A4

= {(P3.6), (P3.8), (P3.7), (P3.11), (P3.15), (P3.17), (P3.18)}
π[2][3] : A5 = 〈aimeV , NP4〉

χ+
A5

= {(P3.19), (P3.21), (P3.23)}
π[1][4] : A5 = 〈NP1, V P5〉

χ+
A6

= {(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}
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4 S6

NP1

ChloeN

VP5

aimeV NP4

leD chocolatN

3 nil VP5

aimeV NP4

leD chocolatN

2 S3

NP1

ChloeN

VP2

aimeV

nil NP4

leD chocolatN

1 NP1

ChloeN

VP2

aimeV

ChloeN aimeV leD chocolatN
span�offset Chloé aime le chocolat

Table 4.2: Parsing Chloé aime le chocolat ( Chloe likes [the] chocolate): the final
DP-Table, populated with constituents
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Example 4.4 (Parsing Chloé . . . (deviant): characterisations) The character-

isations for the chart presented in Table 4.3 are given below.

π[1][1] : A1 = 〈ChloeN〉
χ+
A1

= {(P3.6), (P3.8), (P3.17)}
π[2][1] : A2 = 〈aimeV 〉

χ+
A2

= {(P3.19)}
π[1][2] : A3 = 〈ChloeN , aimeV 〉

χ+
A3

= {(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}
π[3][2] : A4 = 〈chocolatN , leD〉

χ+
A4

= {(P3.6), (P3.8), (P3.7), (P3.15), (P3.17), (P3.18)}
χ−A4

= {(P3.11)}
π[2][3] : A5 = 〈aimeV ,NP4〉

χ+
A5

= {(P3.19), (P3.21), (P3.23)}
: A7 = 〈VP2,NP4〉
χ+
A7

= {(P3.1), (P3.2), (P3.3), (P3.5)}
χ−A7

= {(P3.4)}
π[1][4] : A5 = 〈NP1,VP5〉

χ+
A6

= {(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}

We consider that every word in the input string is annotated with one and one

POS-tag only. Note that generalising the process in order to handle multiple alterna-

tive POS for each input word is rather straightforward, since POS-tags are dealt with

as lexical constructions.

For the sake of the presentation, the selection of constituents is determined by a

window placed over the input string, which delimits the current span. The window acts

as a hypothetical model (assignment) to be checked against the grammar. In order

to make sure that no sub-structure is ignored the algorithm iterates over the number

of words the window spans, from 1 to the size n of the input string. All possibilities

are considered by going through all the 5 steps for every position and every size of
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4 S6

NP1

ChloeN

VP5

aimeV NP4

chocolatN leD

3 nil VP5

aimeV NP4

chocolatN leD

S8

VP2

aimeV

NP4

chocolatN leD

2 S3

NP1

ChloeN

VP2

aimeV

nil NP4

chocolatN leD

1 NP1

ChloeN

VP2

aimeV

ChloeN aimeV chocolatN leD
span�offset Chloé aime chocolat le

Table 4.3: Parsing *Chloé aime chocolat le ( Chloe likes chocolate [the]): the final
DP-table, populated with constituents
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the window14. We proceed bottom-up, from left to right—although nothing prevents

proceeding from right to left.

Going through Steps 1 to 5 of the algorithm with a window positioned at the offset

begin and of size span corresponds to populating the DP-Table π at the coordinates

[offset][span]. To illustrate the process as it goes, we use span = 3.

Step 1 (Selection) The window is positioned over the words wi to wi+2. Therefore,

at the end of Step 5 we will have populated π[i][2].

Step 2 (Enumeration) For span i,i+2 Algorithm 3 enumerates 3 partitions, corre-

sponding to 3 assignments to collect from π:

{{a}, {b}, {c}} = {π[i][1], π[i+ 1][1], π[i+ 2][1]} (4.6)

{{a} , {b, c}} = {π[i][1], π[i+ 1][2]} (4.7)

{{a, b} , {c}} = {π[i][2], π[i+ 2][1]} (4.8)

For span = 3 we have the following 3 assignments:

A = {Ci,1, Ci+1,1, Ci+2,1} (4.9)

A′ = {Ci,1, Ci+1,2} (4.10)

A′′ = {Ci,2, Ci+1,1} (4.11)

Example 4.5 (Access to π) Let us consider the partition p = {{a} , {b, c} , {d}},
and an offset of 3. If we note π the DP table, the elements in π are indexed by a pair

of coordinates [x][y] where x is the absolute position of the subset (i.e. offset + relative

position in the partition), and y the span (i.e. the cardinality of the subset). Thus, in

the case of p, the first element {a} corresponds to the sub-trees stored at π[3][1]; the

second element {b, c} corresponds to π[4][2]; and the third element {d} corresponds to

π[6][1].

14Echoing the discussion in §3.3.4 it is important to emphasise that Algorithm 2 for LSCP is not
incremental. As we will see later in §4.4.6, the process of constraint satisfaction we are implementing
only considers assignments of fixed size, which are not incremented dynamically.
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Step 3 (Characterisation) Each assignment corresponds to a specific configura-

tion of constituents. For each assignment A,A′,A′′ we look up in the grammar (see

§4.4.5) which constraints are evaluable, and we instantiate them according to the as-

signment. The evaluation of each instantiated constraint can then take place. If we

note φA, φA′ , φA′′ respectively the constraints after instantiation, we have:

A |w φA,A′ |w φA′ ,A′′ |w φA′′

As a result, each configuration is now characterised (see Definition 3.14) as follows

(where χA, χA′ , χA′′ are the characterisations of A,A′,A′′ respectively):

χA = 〈χ+
A, χ

−
A〉 (4.12)

χA′ = 〈χ+
A′ , χ

−
A′〉 (4.13)

χA′′ = 〈χ+
A′′ , χ

−
A′′〉 (4.14)

Example 4.6 (Characterisation) In reference to Example 4.4, consider the span

aime chocolat le (word-to-word likes chocolate the), and the assignment A7 = 〈VP2,NP4〉
where VP2 is the constituent (aime)VP and NP4 the constituent (chocolat le)NP; the

toy grammar Γ from §3.2.4 tells us that the following constraints are evaluable:

φA7 = {(P3.1), (P3.2), (P3.3), (P3.5), (P3.4)}

Out of these, the following ones are satisfied:

χ+
A7

= {(P3.1), (P3.2), (P3.3), (P3.5)}

while the following one is violated:

χ−A7
= {(P3.4)}

Step 4 (Projection) For each atomic constraint in φA (respectively in φA′ and

φA′′) we look up in the grammar which construction(s) they specify. Each pair
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〈constraint,Construction〉 correponds to a projection rule (see §3.2.4). Thus to every

instantiated constraint φA, φA′ , φA′′ corresponds a set of constructions which can be

projected for this assignment. A new constituent is constructed for every distinct pair

〈Assignment,Construction〉.

Example 4.7 (Projection (single)) Following up on Example 4.6, according to Γ

the following rules apply to the constraints in φA7:

AP −→
∧
{(P3.1), (P3.2), (P3.3), (P3.4), (P3.5)}

Example 4.8 (Projection (multiple)) In order to illustrate a case where more

than one construction can be projected, consider now the hypothetical assignment

B = 〈D1,A2〉, and Γ; B is an assignment for the following constraint:

φB = {(P3.7), (P3.30), (P3.31), (P3.36)}

The following rules apply to subsets of B:

NP −→ (P3.7) (4.15)

AP −→
∧
{(P3.30), (P3.31), (P3.36)} (4.16)

Step 5 (Memoization) Every constituent C paired with the assignment A (idem

for A′ and A′′) is memoized in the chart (with Cat1 the construction of C):

if merit(χA) ≥ π[begin][span][Cat1] then

π[begin][span][Cat1]← C

The constituents for which the memoization fails are relaxed from the search space.

(Iteration) Steps 1 to 4 are iterated for each offset of spani,j. When the window

reaches the end of the string, the offset is set to 1, and the size of span(i, j) is incre-

mented.
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4.5 Optimality

What we aime to show in this section is that the Cohesion function presents all the

suitable and required algebraic properties to ensure the optimality of the solution

parse generated by our algorithm for LSCP. We already know that the algorithm goes

through all the smaller constituents (i.e. with the smaller span) first before it moves

on and generates the larger ones. Since the algorithm only considers immediate sub-

constituents when building a new constituent, what we need to show with respect

to the merit function in use—i.e. Cohesion—is that the influence of grand-children

exclusively factors through the influence of the immediate descendants of the new

constituent. If it is not the case, that is to say, if the Cohesion score is influenced

by grand-children’s scores, then for optimality to be enforced it would require the

algorithm to test the score of a newly created constituent against those of its grand-

children as well. Such a factorisation restriction, along with the Memoization Step

which only memoizes a constituent if merit(C) ≥ π[offset , span, C], establishes by

force that the solution generated by our algorithm is optimal.

As a preamble, notice that during memoization the Cohesion score is only used to

compare constituents of both same span and same construction. If two constituents

differ on one or the other, than their cohesion can not be compared with respect to

optimality; both of them are stored in the chart. This means that we are only looking

for disambiguation, and not for speed.

The Cohesion of a constituent is formulated as the ratio of constraints which

hold true for this constituent, by the total number of constraints which either hold

or fail for the constituent (see §4.4.4 for more details). The Cohesion score of a

constituent thus does not directly depend on the Cohesion scores of its children or its

grand-children. However, it depends indirectly on the children’s scores because they

have been chosen for their optimality. Therefore the algorithm goes through all the

possible configurations of children constituents in order to determine which of these

configurations is optimal. The algorithm is not required to also consider the grand-

children, since their influence only factors through the immediate descendants of the

constituent being generated.
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�

§4.8 discusses how to use the cohesion of constituents in order to prune the search

space.

4.6 Complexity

Theorem 4.1 (Complexity of Loose Satisfaction Chart Parsing) The solution

proposed for LSCP through Algorithm 2 to Algorithm 4 presents a worst time com-

plexity of

O(n42nCn)

where C is the number of constructions specified in the grammar, and n the input size

in words.

Proof The full algorithm is made up of 5 main loops, 4 of which are visible in

Algorithm 2, the fifth one being the main loop of the characterisation() function.

We label the loops (L1) to (L5), (L1) referring to the top-level one, and (L5) to the

most embedded one.

1. (L1) loops over the input size, thus iterates n times.

2. (L2) iterates at most n times. More precisely, (L2) iterates over the span offset,

and at every iteration from (L1), (L2) iterates one time less than previously.

Therefore, combining (L1) and (L2) represents

n∑
i=1

i =
1

2
n(n+ 1)

iterations.

3. (L3) enumerates the 2span− 1 partitions of the current window. With span 6 n

we can safely take

2n
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as an upper bound for (L3).

4. (L4) iterates over all the configurations for the current partition. Let p be the

current partition of the current span such that p = {{pi}16i6s}, where pi is a

k-subset and s = card(p) is the number of k-subsets. let ki be the set of distinct

constituents stored in π for pi, with ci = card(ki). We know that each pi is stored

in a different cell of the chart. The configurations are obtained by combining

every constituent found in π for one pi with every constituents of every other

pi. Therefore, the total number of configurations for p is

δp =
s∏

i=1

ci

Given that s = card(p) 6 span, we can take n as an upper bound of s. If we

take the total number C of constructions in the grammar as an upper bound of

ci, then an upper bound for δp is

Cn

5. The characterisation of a configuration sees a configuration as an assignment for

the grammar, where the grammar is a constraint system. The characterisation

task involves looking up the constraints in the grammar. We have seen in §4.4.5

that it is done by consulting a lookup table, where the constraints are indexed

by their variables being either free or universally quantified (hereafter the keys).

Therefore we need to enumerate all the combinations of variables, which may be

keys. The variables are the immediate constituents of the current configuration.

Each variable is of one and only one construction. By extension, and for the

sake of the calculation, we assimilate here a variable to its construction.

Let p be a configuration of m constructions, and let k be the maximum car-

dinality of a key in the grammar, in number of constructions. The number of

combinations for p is

δp =
k∑

i=1

(
m

i

)
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The size of k depends on the semantics of the constraint types. Currently, there

exists no constraint type defined with a k > 2. Therefore, we have

δp =

(
m

1

)
+

(
m

2

)
= m+

m(m− 1)

2
=

1

2
m(m+ 1)

If we take n as an upper bound for m, we obtain

1

2
n(n+ 1)

as an upper bound of the number of lookup table consultations.

6. (L5) iterates over all the constituents inferred by an assignment. Therefore a

(rather large) upper bound for the number of iterations is the number C of

constructions specified in the grammar.

7. (L5) being embedded in (L4) at the same level as the characterisation process,

what we want in fact is the max of 5. and 6. above, i.e. M = max(1
2
n(n+1), C).

M is determined by the sign of n(n + 1) − C; thus for n ≥
√
C we have M =

1
2
n(n+ 1). Thus for a grammar such as the on presented in Appendix A, which

counts 16 constructions, n just need to be greater than 3.

8. In the end, we have

for (L1) and (L2) combined:
1

2
n(n+ 1)

for (L3): 2n

for (L4): Cn

for (L5) and the characterisation:
1

2
n(n+ 1), for n > 3

In conclusion, the complexity of Algorithm 2 is

1

2
n(n+ 1) · 2n · Cn · 1

2
n(n+ 1) =

1

4
n2(n+ 1)22nCn

' n42nCn

�
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4.7 The Corpus of Acceptability Judgements

Before we go any further we need, for the sections to come, to briefly introduce the

corpus developed by Blache, Hemforth, and Rauzy (2006). It will be described in

more details in §5.2.

This corpus was artificially constructed, in that it results from systematically

applying a list of pre-defined patterns of errors to base sentences, in order to create new

ones. The sentences are annotated with numeric human judgements of acceptability,

as a result of psycholinguistic experiment with syntactic gradience. For what we are

concerned in this chapter the corpus has the important advantage, in the context of

evaluating Numbat, of being essentially made up of deviant language, which allow us

concentrate on evaluating the robustness of Numbat. Because built systematically, it

especially has the advantage of enabling us focus on the performance with respect to a

list of specific error patterns. These patterns, reproduced in Table 4.4, were controlled

by the investigators during the creation of the sentences in the corpus.

Meanwhile, the corpus also has various disadvantages. One of them is its small size

(about 12,000 words in 1,000 sentences), compared to the corpora in use for evaluating

large-scale parsers. This being said, it has never been our intention in this work to

compete with these parsers performance-wise15. In any case, statistical parsers do

not, and can not, provide us with the characterisation of an input which let us model

gradience.

Another disadvantage is that the range of constructions being covered in the corpus

is quite limited—not only in terms of the number of error patterns, but also in terms

of the number of contexts in which these patterns are applied. The complexity of

the constructions involved in the base sentences is not very high, in that no sentence

is more than 15 words long, none contains embedded clauses such as coordinate, or

subordinate clauses for instance, none presents a cleft structure, and so on.

15However, the performance of a statistical parser is provided as a baseline for comparison with
Numbat, but on a different corpus made of plain text. See §4.9.2 for details.
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No violations
1.1 Marie a emprunté un très long chemin pour le retour

Marie [aux.] followed a very long path on the way back
NP-violations
2.1 Marie a emprunté très long chemin un pour le retour

Marie [aux.] followed very long path a on the way back
2.2 Marie a emprunté un très long chemin chemin pour le retour

Marie [aux.] followed a very long path path on the way back
2.3 Marie a emprunté un très long pour le retour

Marie [aux.] followed a very long on the way back
2.4 Marie a emprunté très long chemin pour le retour

Marie [aux.] followed very long path on the way back
2.5 Marie a emprunté un très heureux chemin pour le retour <

Marie [aux.] followed a very happy path on the way back
AP-violations
3.1 Marie a emprunté un long très chemin pour le retour

Marie [aux.] followed a long very path on the way back
3.2 Marie a emprunté un très long long chemin pour le retour

Marie [aux.] followed a very long long path on the way back
3.3 Marie a emprunté un très chemin pour le retour

Marie [aux.] followed a very path on the way back
3.4 Marie a emprunté un grossièrement long chemin pour le retour <

Marie [aux.] followed a roughly/rudely long path on the way back
PP-violations
4.1 Marie a emprunté un très long chemin le retour pour

Marie [aux.] followed a very long path the way back on
4.2 Marie a emprunté un très long chemin pour pour le retour

Marie [aux.] followed a very long path on on the way back
4.3 Marie a emprunté un très long chemin le retour

Marie [aux.] followed a very long path the way back
4.4 Marie a emprunté un très long chemin pour

Marie [aux.] followed a very long path on
4.5 Marie a emprunté un très long chemin dans le retour <

Marie [aux.] followed a very long path in the way back
VP-violations
5.1 Marie un très long chemin a emprunté pour le retour

Marie a very long path [aux.] followed on the way back
5.2 Marie a emprunté emprunté un très long chemin pour le retour

Marie [aux.] followed followed a very long path on the way back
5.3 Marie un très long chemin pour le retour

Marie a very long path on the way back
5.4 Marie emprunté un très long chemin pour le retour

Marie followed a very long path on the way back
5.5 Marie a persuadé un très long chemin pour le retour <

Marie [aux.] convinced a very long path on the way back

Table 4.4: Error patterns. The left-most column contains a numbered label for the
pattern type and sub-type; sentences marked with < are removed from the corpus, for
reasons explained in due course in Chapter 5.
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4.8 Heuristic

Given its complexity, implementing Algorithm 2 requires resorting to practical heuris-

tics in order to prune the search space drastically. We choose to use a single one16,

which has a limited impact on the correctness of the general algorithm. Following Van-

Rullen (2005), constituents are pruned on the basis of the proportion of constraints

they strictly satisfy, with respect to the full number of constraints which either hold

or fail. That is, they are pruned according to their cohesion17 (see §4.4.4). A user-

defined satisfaction threshold determines how loose the parsing process may be and

subsequently how loose a constituent structure may be. Note that this threshold does

not aim to address the cases grammatical ambiguity inherent to a natural language.

Whether it could—or not—be used to serve that purpose as well is left open for fur-

ther investigation. As far as Numbat is concerned in such a case the user can choose

whether the outcome should be all the alternative parses or just one, picked randomly.

4.8.1 Fixing a Satisfaction Threshold

In order to fix a satisfaction threshold two questions must be addressed:

1. (Scope) What scope does it have? That is, which level in the parsing process

does it apply to?

2. (Value) What value does it have, and how to determine it?

Scope

There are different places in the process where the heuristic can be applied. These

places are not necessarily contradictory. They may be combined strategically and

16Another heuristic probably worthwhile for efficiency purpose would be to bound the number of
constraints. Something inspired from probabilistic approaches might help: at the moment, all the
configurations are taken into account, even though most of them could be deemed irrelevant, because
very unlikely. We believe that these configurations could be pruned using something like n-grams
probabilities, for example. However, such optimisation should be envisaged for practical efficiency,
but is incompatible with showing the optimality of the solution parse (the most probable parse not
being necessarily the same as the optimal one).

17A different heuristic could have been based on some mean value taking into account both the
cohesion and a dual of it.
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consistently. Each place is interpreted differently and corresponds to a strategic ori-

entation given to the process.

General Threshold A satisfaction threshold may range over the entire process,

and fix that no constituent whatsoever may be characterised by less than a ratio of

θ · 100% of satisfied constraints. For instance, in fixing θ = 1.0 the parser behaves

like a strict parser, ruling out any ill-formed constituent. When θ < 1.0, loose con-

straint satisfaction applies, and some degree of robustness is achieved by allowing

loose constituents, whose characterisation may be made of up to (1− θ)% of violated

constraints.

The problem with such a general threshold is that it has only got the strength of the

weakest link in the grammar: the number of constraints characterising a constituent

shows significant variations across the grammar, some constituents being characterised

by a much larger number of constraints than others. The smaller the characterisation,

the more important, in proportion, the violation of one constraint. Example 4.9

illustrates such a situation. Subsequently, in order for the threshold to let in poor

constituents—i.e., whose characterisation concerns a small number of constraints,

it must be set quite low. And if set to a low value, then more rich constituents

are allowed to compete as candidate structures, which increases the complexity and

somehow inhibits the impact of the heuristic.

Example 4.9 (Rich vs. Poor Constituents) The deviant Noun Phrase une long

très chemin in French ( a long very path) violates:

• a gender agreement between determiner (D) (feminine) and noun (N) (mascu-

line), and

• word order, between adverb (Adv) and adjective (A)

The constituent structure generated by Numbat is the following:
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*NP6

D[fem]1

une
a

*AP5

A2

long
long

Adv3

très
very

N[masc]4

chemin
path

Let us have a look at the characterisations of AP5 and NP6 with respect to Γ. With

A5 = 〈A2,Adv3〉 the following constraints are loosely satisfied:

A5 |w (P3.30) ∧ (P3.31) ∧ (P3.33) ∧ (P3.36) ∧ (P3.35) (4.17)

(4.17) corresponds to the following characterisation:

χA5 =

χ+
A5

= (P3.30) ∧ (P3.31) ∧ (P3.33) ∧ (P3.36)

χ−A5
= (P3.35)

(4.18)

All the constraints in χA5 project the construction AP.

Now, with A6 = 〈D1,AP5,N4〉 the following constraints are loosely satisfied:

A6 |w(P3.6) ∧ (P3.7) ∧ (P3.8) ∧ (P3.11) ∧ (P3.13)

∧ (P3.15) ∧ (P3.16) ∧ (P3.17) ∧ (P3.18) ∧ (P3.18)

(4.19)

(4.19) corresponds to the following characterisation:

χA6 =


χ+
A6

= (P3.6) ∧ (P3.7) ∧ (P3.8) ∧ (P3.11) ∧ (P3.13)

∧(P3.15) ∧ (P3.16) ∧ (P3.17) ∧ (P3.18)

χ−A6
= (P3.18)

(4.20)

In (4.18) the constraint (P3.35) represents 20% of failure (1 constraint out of 5), while

in (4.20) the constraint (P3.18) represents only 10% of failure (1 out of 10). Therefore,

the AP is a poor constituent compared to NP.
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A solution to that problem is to reduce the scope of the threshold to the construc-

tion level.

Construction-specific Threshold A satisfaction threshold may also apply to a

specific construction. The main reason for it is to locally attenuate the effect of the

general threshold. That is, it attenuates the fact that a poor constituent being charac-

terised with a very small number of constraints in the grammar may be pruned much

faster than a rich constituent being characterised with a large number of constraints

(e.g. AP vs. VP, as in Example 4.9).

In Numbat, we decided to use both a general threshold as a default one, and

construction-specific thresholds in order to lower or raise the general one, according

to cases.

In Example 4.9, the AP construction requires a lower threshold than NP in order

for loose constituents to be licensed.

Error Pattern Threshold A third type of threshold we experimented with in

Numbat applies to the different error patterns present in the corpus we used for

experimenting with syntactic gradience (see §5.2 in Chapter 5 for a description of

these patterns). This threshold allows a finer granularity of the general threshold and

is only relevant to our corpus. It was mostly used during the grammar-writing phase

in order to find out, in cases where the main solution was incorrect, whether a better

structure was proposed among the alternatives and could be reached by lowering a

threshold. This way, the main threshold could be lowered only for the sentences from

one specific type (i.e. by error pattern), without impacting too much the processing

time—as it would be the case if the main threshold itself was lowered. The different

values used by sentence type is presented in Table 4.5.

In practice, for each construction the ruling threshold was the lowest of the three.
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Pattern 1 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 3.4
Threshold 1.0 0.8 0.9 0.7 0.8 N/A 0.8 0.8 0.8 N/A

Pattern 4.1 4.2 4.3 4.4 4.5 5.1 5.2 5.3 5.4 5.5
Threshold 0.8 0.8 0.8 0.8 N/A 0.8 0.8 0.8 0.8 N/A

Table 4.5: Values for the Threshold by Error Pattern. See §5.2 in Chapter 5 for a
description of these patterns.

Scope General S VP NP PP AP Rel Coord Compl
Value 0.8 0.7 0.8 0.8 0.7 0.5 0.9 1 0.9

Table 4.6: Values for the Construction-specific Threshold

Value

In order to decide on an optimal value for the construction-specific threshold for each

construction, we ran Numbat on the same corpus as the one we are using in Chapter 5

(see §5.2 for a detailed description) until we reached a reasonable compromise between

processing time and proportion of full parses in the outcome. The corpus we used is

essentially made up of deviant utterances.

Ultimately, we obtained the values presented in Table 4.6.

4.9 Evaluation

It is virtually impossible, when evaluating a parser, to properly and completely dis-

criminate evaluation of the grammar from evaluation of the parsing strategy itself.

Our evaluation of Numbat is no exception. However, elements of answer can be found

in interpreting different observations we make about the parser’s outcome and its

numerical evaluation. These elements help understanding the mutual influence of

grammar and parsing strategy. In this section, we discuss the most important of

these elements and draw conclusions about the grammar, LSCP as a parsing strategy,

and the Numbat parser as its implementation.
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4.9.1 What and How to Evaluate?

Because the main goal that Numbat is trying to achieve is to generate full parses not

only for grammatically well-formed sentences but also for grammatically ill-formed

ones (quasi-expressions), we would like to evaluate its performance on both aspects,

which does not make the task straitforward. In the following we present two separate

evaluations: a first one, which aims to evaluate the performance on well-formed input

and to compare it with other existing parsers, and a second one, which aims to evaluate

the performance on ill-formed input and to measure to what extent it provides a

reliable input to the model of gradience—i.e. fully parsed quasi-expressions.

As far as well-formedness is concerned, evaluating a parser and the quality of its

output usually consists of measuring how it performs at parsing a corpus for which an

annotated reference exists—in our case a treebank. Since we are working with French

the only such treebank currently available is the one developed by Abeillé, Clément,

and Toussenel (2003). However, running an evaluation using this treebank was made

quite difficult mainly because of a lack of resources. In general terms, the use of a

treebank as Gold Standard requires different resources to be available and suitable to

the annotation scheme adopted in it. In particular, it is critical that the dictionary

used by the parser to be evaluated rely on the exact same tagset as the one used to

annotate the Gold Standard, in order for the POS-tagging to be appropriate. As far

as we know such a dictionary is not publicly available.

The grammar is also at stake, and requires to be developed following the same

annotation guide as the one provided to the human annotators for creating the ref-

erence. Whether developed manually or automatically—we briefly discuss in §5.5.4

the possibility of deriving such a grammar automatically from an existing one and

the problems that it raises—the task is labour-intensive and could not be envisaged

in the time frame of this study.

Hence the alternative to Abeillé et al.’s treebank which we opted for, which is

to evaluate Numbat according to the protocol designed for the French competition-

based evaluation EASY, since we have got all the resources available. This evaluation

is detailed and discussed in §4.9.2.

As for ill-formedness, the range of possibilities for evaluating full parses is even
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narrower. We opted for asking expert human annotators to make binary judgements

about the Numbat ’s output parse trees. This evaluation is detailed and discussed in

§4.9.3.

4.9.2 Evaluation ]1: EASY

EASY (Évaluation d’Analyseurs SYntaxiques) is a competitive evaluation campaign

for parsers of the French language, which took place in 2004–2005 (Gendner et al.,

2003; Vilnat et al., 2003, 2004) and involved 15 participants. The annotation guide

(Gendner et al., 2003; Paroubek, Robba, and Vilnat, 2003) includes an example-based

description of how constituents are expected to be analysed in phrases (groupes). A

specific set of 6 phrase types was designed for the purpose, where a constituent does

not include any nested children constituents other than Part-of-Speeches, and is not

embedded either in any dominant constituent structure. The resulting structure for

a sentence is flat, without any unique root. The 6 phrase types are:

(i) Noun Phrase (GN)

(ii) Adjective Phrase (GA)

(iii) Preposition Phrase (GP)

(iv) Adverb Phrase (GR)

(v) Verb Phrase (NV)

(vi) Preposition-Verb Phrase—for Verb Phrases introduced by a preposition (PV)

The evaluation uses crossing bracket plus precision and recall measures. Relations

could also be evaluated separately, but Numbat does not generate any thus we do

not tackle that aspect of EASY here. During the competition the precision and

recall measures were applied 15 different constraint relaxations (Paroubek, Robba, and

Ayache, 2007), allowing to loosen up to different degrees the constituent boundaries

and the constituent specifications. Since it is unclear which of these constraints were

applied for gathering the reported results, and since some specific implementation
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details were also unclear such as how the punctuation marks were accounted for, we

could not ensure that the exact same measurements were replicated. In the evaluation

we have run18 we assume the hardest constraints, where both left and right boundaries

must be the same as the reference, and the constituent’s label must be the same as

well. Because using the published results as a baseline for comparison with Numbat ’s

performance would potentially be inaccurate for the reasons mentioned above, we have

run the same evaluation for two other parsers developed at Université de Provence

and we compare their performance to that of Numbat. One is a shallow parser, which

was involved in the EASY competition, and the other one is a stochastic parser.

The Corpus The one-million word corpus to be parsed is made up of different

sources: general, containing “Le Monde” newspapers, and meeting reports from the

French Senate, among others; literature; e-mails; questions from the TREC conference

and the Amaryllis project; transcribed spoken language; and medical publications.

The distribution in type of source is the following:

general 21%

literature 23%

e-mail 15%

medical 6%

spoken 28%

questions 7%

The Gold Standard in use for the evaluation is a 10% sample of the main corpus,

annotated manually.

The Grammar The grammar we use was developed by Balfourier et al. (2005),

and participated in the 2004–2005 campaign with VanRullen’s SeedParser. It is made

up of 8 POS (listed in Table 3.1) plus the 6 EASY categories, thus amounting to 14

constructions. A total of 185 constraints specify all of them. The full specifications

of the grammar are reported in Appendix B.

18Credit goes to Stéphane Rauzy from LPL, CNRS (Université de Provence), for implementing
an evaluation programme on the basis of all the information available regarding the EASY measure-
ments.
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The Lexicon The lexicon we use, DicoLPL, was also developed by VanRullen et

al. (2005) (see also VanRullen, 2005, Chapter 9 for a detailed evaluation). DicoLPL

contains 444,000 forms, and was evaluated on a 153-million corpus of French news-

papers. Interestingly, the 54,000 most frequent forms are reported to cover 99% the

corpus, and 10,000 forms only are sufficient to cover 90% of it.

The POS-Tagger we use was developed by VanRullen (2005) as part of the LPLSuite.

Results Table 4.7 reports the results of the evaluation we performed of Numbat ’s

output with Balfourier et al.’s EASY grammar. In order to be comparable with our

Precision Recall F-measure
Total 0.7835 0.7057 0.7416
general lemonde 0.8187 0.7515 0.7837
general mlcc 0.7175 0.6366 0.6746
general senat 0.8647 0.7069 0.7779
litteraire 1 0.8331 0.7734 0.8022
litteraire 2 0.8413 0.8103 0.8255
litteraire 3 0.805 0.7527 0.778
litteraire 4 0.7702 0.724 0.7464
mail 10 0.7366 0.7154 0.7258
mail 9 0.702 0.6749 0.6882
medical 2 0.8712 0.7 0.7763
medical 3 0.8393 0.6839 0.7537
medical 6 0.8614 0.65 0.7409
oral delic 4 0.8494 0.7051 0.7705
oral delic 5 0.5827 0.5 0.5382
oral delic 6 0.6475 0.5676 0.6049
oral delic 7 0.6389 0.5833 0.6098
oral delic 8 0.7885 0.8077 0.798
oral delic 9 0.5833 0.5625 0.5727
questions amaryllis 0.8081 0.7432 0.7743
questions trec 0.8208 0.7069 0.7596

Table 4.7: Evaluation of Numbat according to the EASY Protocol

experiments with gradience later on, and because of the rather poor performances
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of Numbat time-wise and memory-wise19, we look at a subset of the EASY corpus,

which is made up of all the sentences of a maximum of 15 words—15 words being the

maximum sentence length in the other corpus which we are using for experimenting

with gradience. For comparison purpose Tables 4.8 and 4.9 report the results obtained

by respectively a shallow parser (ShP) using a left-corner strategy, and a stochastic

parser (StP), which were developed by Blache and Rauzy (2008). Both of them were

developed at Université de Provence and were involved in the EASY competition.

Precision Recall F-measure
Total 0.7846 0.8376 0.8102
general lemonde 0.806 0.8569 0.8306
general mlcc 0.8118 0.8678 0.8389
general senat 0.8228 0.867 0.8443
litteraire 1 0.7933 0.84116 0.8165
litteraire 2 0.7948 0.8543 0.8235
litteraire 3 0.7846 0.8297 0.8065
litteraire 4 0.7622 0.8306 0.795
mail 10 0.7341 0.7695 0.7513
mail 9 0.7260 0.7724 0.7485
medical 2 0.8389 0.8646 0.8515
medical 3 0.8093 0.8569 0.8324
medical 6 0.8378 0.8748 0.856
oral delic 4 0.7275 0.7442 0.7358
oral delic 5 0.7736 0.82 0.7961
oral delic 6 0.6270 0.7577 0.6862
oral delic 7 0.6138 0.7249 0.6648
oral delic 8 0.7662 0.8270 0.7955
oral delic 9 0.705 0.7899 0.7450
questions amaryllis 0.8334 0.8714 0.8522
questions trec 0.7723 0.8329 0.8014

Table 4.8: Evaluation of the shallow parser ShP according to the EASY Protocol

Table 4.10 reports the details of the cross bracket scores. The apparent discrepancies

observed between the total scores in Table 4.7 and Table 4.10 comes from that in

Table 4.10 the total scores are macro-averages of the constituent scores, where the

19It takes Numbat about 30 hours to process the subset of the 15-word sentences of the EASY
corpus on a single machine—a two-CPU Intel Xeon R© @ 2.6 MHz with 4GHz memory.
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Precision Recall F-measure
Total 0.9013 0.8978 0.8995
general lemonde 0.9221 0.9205 0.9213
general mlcc 0.9224 0.9146 0.9185
general senat 0.9240 0.9178 0.9209
litteraire 1 0.9261 0.9213 0.9237
litteraire 2 0.9128 0.9252 0.9190
litteraire 3 0.8999 0.8962 0.8980
litteraire 4 0.9139 0.9159 0.9149
mail 10 0.8322 0.8110 0.8215
mail 9 0.8625 0.8462 0.8543
medical 2 0.8885 0.8854 0.8869
medical 3 0.9005 0.9004 0.9004
medical 6 0.9282 0.9163 0.9222
oral delic 4 0.8361 0.8342 0.8352
oral delic 5 0.9003 0.8567 0.8779
oral delic 6 0.7905 0.8145 0.8023
oral delic 7 0.7692 0.7321 0.7502
oral delic 8 0.8759 0.8829 0.8794
oral delic 9 0.8248 0.8675 0.8456
questions amaryllis 0.9210 0.9242 0.9226
questions trec 0.9117 0.8967 0.9042

Table 4.9: Evaluation of the stochastic parser StP according to the EASY Protocol
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weight for each constituent is determined by Number of constituents observed for that category
Total number of constituents observed

.

Precision Recall F-measure
Total 0,7670 0,7057 0,7350
<GN> 0,7639 0,7942 0,7788
</GN> 0,6736 0,7004 0,6867
<GP> 0,6952 0,6024 0,6455
</GP> 0,8227 0,7129 0,7639
<NV> 0,8209 0,7418 0,7794
</NV> 0,7996 0,7225 0,7591
<GA> 0,8491 0,6870 0,7595
</GA> 0,7642 0,6183 0,6835
<PV> 0,8155 0,7534 0,7832
</PV> 0,8301 0,7668 0,7972
<GR> 0,8354 0,6947 0,7586
</GR> 0,7595 0,6316 0,6897

Table 4.10: Cross bracket measures of Numbat ’s output by constituent type, according
to the EASY Protocol

Interpretation In achieving a precision of 0.7835 Numbat is nearly as good as the

shallow parser ShP and its 0.7846 precision score, and is (expectedly) outperformed by

the stochastic parser StP which scores a 0.901 precision. However, on recall Numbat

is significantly weaker than both ShP (0.706 vs. 0.838), and StP (0.898).

An interesting first conclusion that can be drawn from these figures is that it

emphasises Numbat ’s ability to adapt to different grammars. In that case, the EASY

grammar is significantly different from the one we use for experimenting with gradience

in terms of output structure: the EASY output is a flat structure, where the top-level

constituents are only made up of Part-Of-Speech, whereas the grammar involved in

our experiments is designed for full hierarchical constituent structures, with nested

constituents. As far as Numbat is concerned, it must be acknowledged that the version

of LSCP it implements was more focused on producing nested structures than flat

ones. Despite such a difference in terms of expected outcome, Numbat is flexible

enough to handle it with a precision similar to the one of a shallow parser.

As for recall, the score can be explained by looking at one of the weakest link
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in the parsing process when it comes to generate an EASY outcome. An element of

explanation comes indeed from the choice of heuristic that we have made for choosing

a preferred constituent that has no dominant category. we have introduced that

numeric heuristic (the preference score) in §4.4.3, where we detail the Memoization

Step of LSCP. As a reminder, the preference score is different from the cohesion

score (defined in §4.4.4); its purpose is merely to continuously maintain a preferred

configuration of constituents should a cell in the chart not being populated, since in

that case the cohesion can not be calculated. This preferred configuration is always

dominated by a root constituent of the wildcard type Star. In the case of an EASY

grammar, where all the specified constructions are flat, we fall into that case and

the choice of the (optimal) output structure essentially relies on this heuristic. For

memory, the preference goes to constituents with the widest span and the least overall

number of constituents. This translates in the following expression:

pF = span · (merit(Ci) + span)

At this stage the preference score is simply used as a heuristic, and is only one of the

many possibilities that exist for expressing it. Clearly, there might be better numeric

functions, for instance to suit the EASY structure and achieve a better recall, that

would be worth investigate. We leave that option open for further works.

The reason why computing the cohesion is not possible is that parsing according

to the EASY grammar is in fact similar to the kind of situations that leads, in the

general case, to output a forest of partial parses: LSCP, through its CKY basis, is

primarily designed to produce a full parse, and is not optimised to produce a flat

structure. Initially, one might expect to see a flat structure spanning the input string

as a set of nodes belonging to the same virtual parse tree, which would connect all

of them to each other. A naive approach might then be to simply stop the parsing

process as soon as all the nodes we need were constructed. However, such an approach

is, in fact, not compatible with LSCP because the process is not incremental, which

here means that the final decision about which constituents belong the solution is

postponed until a decision can be made about the optimality of the full structure. As
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a consequence, it is necessary to attempt building a full parse in order to know how

to group together the words from the input string. In other words, it is necessary to

complete the entire chart before a structure that spans the entire input, even a flat

structure, can be decided.

4.9.3 Evaluation ]2: quasi-expressions

In that evaluation we asked five independent annotators, all linguists, to assess whether

the Numbat ’s output parse trees were correct or not. The corpus in use was the one

introduced in §4.7, made up of 94% of quasi-expressions. The annotators were asked

(see Appendix C for the full instructions, in French) to answer the following question

for every parse tree presented:

In your opinion, does the syntactic tree associated with each sentence con-
stitute a possible and acceptable parse for the input sentence?

It is important to emphasise that the acceptability judgement must be
performed, as much as possible, on the basis of syntactic criteria only.
The objective is not to make a judgement about the acceptability of the
sentence as such (most of them are intentionally ill-formed) but rather
about the syntactic parse provided for it. The difficulty stands in the
assessment of the adequation between ill-formedness and full syntactic
parse.

The possible answer was necessarily binary: the parse structure is correct or not.

Further instructions were given to ensure that the acceptability judgement was based,

as much as possible, on syntactic criteria only, and that acceptability was concerning

the parse tree, rather than the sentence itself.

We acknowledge that the reliability of such an evaluation is arguable. A possible

improvement would be to run a more thorough psycholinguistic experiment, similar

to the one that is available for sentence graded acceptability (see Chapter 5, especially

§5.2), in order to assess whether the syntactic parse assigned to an ill-formed sentence

is “sufficiently good” or whether it is “bad”. Yet, since these automatically generated

parses are taken as input for the different rating schemes that we discuss in Chapter

5, we considered it was important to have at least an idea of “how good” these full
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parses are, hence this evaluation. We insist on full parses, in order to stress that the

EASY evaluation protocol is not enough in this respect, as we pointed out in §4.9.2.

Note that we did not ask the annotators to assess whether the parse was the best

possible one, but simply whether it was “a possible and acceptable [one]”, deciding

on the best possible one would have made the task harder and probably less reliable.

The objective is essentially to determine whether the parse which is considered as

the best one by the parser constitutes a reasonable input for the numeric models of

gradience by human judgements.

Note, as well, that a similar argument of reliability could apply to §4.9.4 where we

discuss elements of accuracy and aim to interpret why a syntactic parse is considered

as an error: rather than relying only on our own intuition in order to determine

whether a parse was an error, this evaluation, to some extent, helps to support the

discussion.

Grammar and Lexicon The lexicon we use is the same as the one used for the

EASY evaluation and reported in §4.9.2. The grammar (PGCxG) was already briefly

mentioned earlier in §3.2.4, where a sample of it is presented as the toy grammar Γ.

PGCxG contains 16 constructions, including 8 POS, and 100 constraints are required

to specify it. Besides the 8 POS and the other 5 constructions presented in 3.1 (4

phrasal constructions plus sentence S) the remaining 3 constructions are:

• Relative clause

• Completive clause

• Conjunction clause

The full specifications of PGCxG can be found in Appendix A.

The Measurements Since, to the best of our knowledge, there exists no established

evaluation procedure in the context we have set, we propose to adapt the precision

and recall measurements. Our purpose is to provide measures which account for how

many of the solutions are full parses—as opposed to forests of partial parses, and
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User Correct Total Complete Precision = Recall =
user parses Correct

Complete
Correct
Total

1 77 112 101 0.76 0.69
2 79 112 101 0.78 0.71
3 88 112 105 0.84 0.79
4 139 231 211 0.66 0.6
5 86 127 114 0.75 0.68

TOTAL 469 694 632 0.74 0.68

Table 4.11: Precision and Recall measures for Evaluation ]2 on quasi-expressions

how many of these full parses are correct by human judgement. In the absence of a

reference annotation we propose to interpret:

• the total number of input sentences as the number of predictions,

• the number of complete parses as the number of observations,

• the number of correct parses by human judgement as the number of correct

solutions.

Thus we obtain:

precision =
correct

complete

recall =
correct

total

Results The results presented in Table 4.11 show a precision of 0.74, and a recall

of 0.68. It gives an F -measure of 0.71:

F = 2 · precision · recall/(precision + recall) ' 0.71

The full parses represent 92% of the sentences in the corpus. The measure of pre-

cision indicates that 74% of the full parses are evaluated as syntactically correct,
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while the recall indicates that the correct full parses represent 68% of the entire cor-

pus. Considering that the quasi-expressions represent 94% of the entire corpus, and

when compared with the scores on well-formed sentences (precision/recall/F-measure

= 0.78/0.71/0.74), these measures show a rather good achievement of Numbat over

deviant language.

4.9.4 Elements of Accuracy

The measures of precision and recall show the extent to which there is agreement

across the results, and the measures fail to inform on different aspects of accuracy.

Unfortunately, providing overall measures of accuracy is not straightforward. It is

nevertheless possible to provide cues about specific phenomena that are observed.

The two questions about accuracy we are mostly interested in answering are:

1. Given the possibly deviant syntactic characteristics of a string (i.e., its charac-

terisation), is this string categorised in the correct construction?

2. Is a deviant (sub-)string actually found deviant by Numbat?

We focus on these two questions because they are the most important ones in order to

evaluate the quality of the syntactic information our experimental models of gradience

will be tested on. As we already discussed it in Chapter 2, an assessment of the degree

of grammaticality of an item requires the knowledge of two elements in order to be

performed:

1. a class—in our case, a construction; that is the class with respect to which the

degree of grammaticality is calculated;

2. the item’s (syntactic) characteristics.

Regarding the latter, and since we are concerned with deviant language, we want to

make sure that broken characteristics are correctly identified, since they will play a

major role in calculating a degree.

Although these two questions are seemingly quite typical of a categorisation prob-

lem, they turn out to be less than trivial to evaluate when aspects of gradience enter
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the picture. Yet different phenomena are clearly observed, and the systematic classi-

fication of the utterances in the corpus into types and sub-types—according to error

patterns applied—allow us to evaluate, to some extent, how these phenomena are

dispersed across the corpus. Interestingly, Evaluation ]2 also reveals a significant

collection of unexpected cases, in spite of all the care put by the investigator into

controlling every aspect of the corpus. We discuss here the most salient of these

cases.

Categorisation Failure

Case 1: Missing Adjectives In the case exemplified in Figure 4.2 the adverb très

(very) is seen by Numbat as modifying the Verb, whereas it is expected to be modifying

a (missing) Adjective. The bracketing is incorrect, since the Adverb belongs here to

the VP instead of being part of the NP. The parser fails to categorise the Adverb

correctly. These cases are evaluated by annotators as syntactically incorrect. The
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Figure 4.2: Numbat ’s output for case of missing Adjective—The judge [aux.] granted
a very interview to this plaintiff. The Adverb is analysed as a modifier of the Verb,
whereas it is expected to be modifying a (missing) Noun.

problem here comes from a drawback in POS-tagging. A morphological difference

ought to be made between an adverb modifying an adjective, and an adverb modifying
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a verb20. Unfortunately, the POS-tagger we are using (VanRullen, 2005) does not

make such a difference.

Characterisation Failure

Case 2: Substantive Adjectives In the case exemplified in Figures 4.3 and 4.4

the syntactic structure provided by Numbat is evaluated as correct by annotators,

whereas it is meant to be deviant, since it results from an error pattern. The problem

is that Numbat analyses an Adjective Phrase as being head of a Noun Phrase, whereas

this AP was meant to be modifying a (missing) Noun. This case reveals an under-

specification of the grammar. Indeed an Adjective Phrase head of a Noun Phrase is

licensed by the grammar, in order to cover cases of substantive adjectives. Therefore,

sentences such as those in Figures 4.3 and 4.4, where an adjective does not modify

any Noun, are identified as cases of substantive adjectives by the parser, whereas they

are not. This case is a potentially troublesome because it is rightfully structured,

but for the wrong reason. The missing Noun is expected not to prevent identifying

an NP, and indeed it does not. However, no constraints are found to fail, which is

expected to entail a wrong assessment of the utterance’s gradience. The parser fails

to find the case deviant, although it is actually so.

The phenomenon reveals a case of under-specification, but it is not clear, at this

stage, whether it is at the level of the lexicon and the POS-tagger, with a piece of

information going missing about substantive adjectives, or whether it is at the level of

the grammar, which should better discriminate the two situations. We are tempted

to believe that it is a combination of both.

The case illustrated in 4.4 probably also reveals a limitation in the way the corpus

was artificially constructed. It could probably be argued21 that the easiest correction

to be consider would be a missing clitic between position 2 and 3—in English, it

would be equivalent to a missing one after fast. Under such a conjecture, the parse

20It was pointed out to us by Eric Villemonte de la Clergerie (examiner, examinateur) that an
even finer-grained distinction should be made in cases such as illustrated by the adverb très, which
can modify both an adjective and an adverb, but can not stand alone.

21Thanks to Eric Villemonte de la Clergerie (examiner, examinateur) for bringing this point to
our attention.
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Figure 4.3: Numbat ’s output for case of false substantive adjective—Marie [aux.]
followed a very long on the way back.
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Figure 4.4: Numbat ’s output for case of false substantive adjective—Your son [aux.]
threw a very fast to your team-mate.
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from Figure 4.4 would then be correct. This means that the base sentence (i.e. before

application of the error pattern), in some cases, in not necessarily the best possible

baseline for discussing the accuracy of the parser’s solution.

Case 3: Multiple Past Participles The constituent structure in 4.5 illustrates

a case where the redundancy of a past participle is not analysed by Numbat as de-

viant. It is a case of under-specification of the grammar, which licences multiple past
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Figure 4.5: Numbat ’s output for case of redundant past participle—Guillaume has
given given a very original present to his friend.

participles in a VP. Cases of double past participle are indeed found, for instance, in

French conjugation, or in passive voice constructions. Discriminating and specifying

correctly such cases in the grammar is not straightforward and is out of the scope of

this study.

Again, this case is a source of problems because it is rightfully structured by

Numbat, but for the wrong reasons. The redundant past participle is expected not to

prevent identifying the VP, and indeed it does not. However, as in the case of an AP

heading an NP, no constraints are found to fail, which is expected to entail a wrong

assessment of the utterance’s gradience. The parser fails to find the case deviant,

although it is actually so.
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Borderline Case: Forest of Partial Parses

Since an important goal of the parser was to find a full parse for every sentence, the

forests of partial parses were evaluated to incorrect. Numbat performs significantly

well in this respect, since 92% of the sentences in the corpus get a full spanning

constituent structure, and all the well-formed sentences get a full parse. However,

and since forests are also taken into account by our experimental models of gradience,

we now look at these into more details.

Why do we end up with partial parses, and in which cases? The cases

concerned with partial parses may originate from different sources:

1. even in seeing language from the broad descriptive perspective we have been

taking, it is not always possible to envisage every uttered language as a sequence

of higher-lever constructions; many real-life contexts can be found where uttered

language is incomplete. In §2.3.1 we have already discussed the classification

of language phenomena suggested by Pullum and Scholz (2001), which gives us

clues in this regard. Spoken language, for instance, is an actual source of such

situations: interruptions during conversations, fluent speech, hesitations, and so

on. Such a class of utterances is referred to as structural fragments by Pullum

and Scholz (2001). Because of their fragmented nature it is quite predictable

that these utterances will not be easily parsed as complete utterances. A forest

of partial parses seems more likely and more appropriate.

2. The use of a numeric heuristic means that finding a full parse can not be guar-

anteed in every case.

Even assuming that all sentences in our corpus should get a full parse, for those cases

which do not, deciding whether the problem comes from the grammar or from the

heuristic in the parser is not straightforward. There are two possible elements of

answer to that problem:

1. a cohesion threshold fixed too high, which prevents the parser from finding a

full spanning parse; and
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2. the grammar.

We observe that most cases of forest, that is, 93% of the forests (i.e. 42 out 45

cases) are cases of VP-violation (Type 5) (see §5.2 for more details about types of

sentences), and 69% (31 out of 45) are cases of sentences with a missing head verb, as

in Figures 4.6 and 4.7. A missing verb prevents finding a VP, which in turn prevents
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Figure 4.6: Numbat ’s output for case of missing Verb: forest of partial parses—
Guillaume a very original present to his friend.

finding a main sentence—the wildcard construction (*star) is used as root, instead of

the expected category utterance (S). We also observe that out of the 39 constraints

specifying the VP construction in the grammar, 30 of them involve a verb constituent,

while only 9 of them concern constituents other than the verb. That is 77% of the VP

specification which concerns the head verb. Moreover, 8 of the 9 constraints without a

verb concern the pronoun (P) construction, the ninth one specifying the uniqueness of

an NP. It is important to emphasise that the constraints over pronoun constructions

only cover special cases, and a VP without any P is perfectly fine. Therefore, it

becomes extremely difficult—in fact, impossible in that case—to identify a VP with

no P and a missing a head verb, since 38 of the 39 constraints can not be evaluated.
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Figure 4.7: Numbat ’s output for case of missing Verb: forest of partial parses—The
judge a very brief interview to this plaintiff.

Thus, in conclusion, even a low threshold for the VP construction is not enough to

enable the parser to consider as legitimate candidates for the Utterance construction

constituent structures which would be missing a VP. Such cases require to be specified

in the grammar in order to be handled by the parser.

4.9.5 Conclusion

In conclusion, the Numbat parser achieves good precision and recall of respectively 0.74

and 0.68, which are taken for measures of its ability to provide a correct full syntactic

structure for deviant language. For lack of accuracy measures, different phenom-

ena were observed and discussed. Cases of constructions being correctly categorised

but wrongly characterised reveal under-specifications at the levels of the lexicon, the

POS-tagger, and the grammar. These cases might turn out to be troublesome when

assessing their score of gradience. Forests of partial parses represent only 8% of the

corpus, which means a good achievement of the main goal for Numbat, concerned
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with providing a full spanning tree for deviant language. Closer investigation of these

forests shows that they also reveal under-specification in the grammar for cases of

structural fragments.

4.10 Conclusion

Our goal in this chapter was to develop a robust parser which let us experiment

with syntactic gradience. We have presented an algorithm for Loose Satisfaction

Chart Parsing (LSCP) in order to meet that goal. LSCP is a dynamic programming

approach, which generates a full parse structure of optimal merit for any input ut-

terance. The algorithm shows a worst time complexity of O(n42nCn). Numerical

heuristics based on the merit of constituents is used to prune the search space and

drop the time complexity.

The parser was run over a corpus made of 94% of deviant utterances. The output

was evaluated by human annotators, in order to determine whether the parse trees

provided by LSCP for deviant language were acceptable. It results a measure precision

of 0.74 and a measure of recall of 0.68. These measures are very good ones, especially

when put in the perspective of how much of the corpus involves deviant language.
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Chapter 5

A Computational Model For

Syntactic Gradience

5.1 Introduction

So-called measures of grammaticality are used in many areas of Computational Lin-

guistics such as Summarisation, Machine Translation, Question-Answering or Natural

Language Generation, but are rarely substantiated by a proven ability to capture hu-

man judgement of acceptability. In fact, very few studies from computational linguis-

tics have attempted to systematically investigate the possibility to capture a gradient

of acceptability with a computational model, and evaluate to what extent model and

human judgement correlate. The venture is indeed quite challenging. The observation

of the phenomenon to be modelled is arguable in nature since it is concerned with

human judgement, and therefore evaluating the the fit of a model is open to argu-

ment. This work aims to model the propensity of language to possess varying degrees

of acceptability—referred to as gradience.

In line with previous work (Aarts, 2004b, 2007; Blache and Prost, 2005; Blache,

Hemforth, and Rauzy, 2006; Foth, 2004; Keller, 2000; Schröder, 2002; Sorace and

Keller, 2005) we focus on syntactic gradience. We suggest that the concepts of Inter-

sective Gradience and Subsective Gradience introduced by Aarts for modelling graded

judgements be extended to deviant language. Under such a new model the problem
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then raised by gradience is to classify an utterance as a member of a specific construc-

tion according to its syntactic characteristics. More specifically, we propose to extend

Intersective Gradience (IG) so that it is concerned with choosing the most suitable

syntactic structure for an utterance among a set of candidates, while Subsective Gra-

dience (SG) is extended to be concerned with calculating to what extent the chosen

syntactic structure is typical from the construction at stake. We claim that the two

problems, despite their overlap, should be addressed separately. We propose that IG

be addressed in relying on a criterion of optimality, while SG should be addressed in

rating an utterance according to its grammatical acceptability.

The question of the optimality of a syntactic structure was addressed in Chapter

4, using Property Grammars (PG) and the characterisation of an input to model its

syntactic properties. In this chapter, we focus on completing our model of gradience

with an address of SG, where an utterance is rated according to its syntactic gradi-

ence. We start by postulating factors of influence on SG, then we propose two different

numeric models to capture these factors. We then investigate to what extent these

numerical accounts of gradience correlate to human judgements of grammatical ac-

ceptability. These human judgements were gathered independently from the present

work, as part of a psycholinguistic experiment reported in Blache, Hemforth, and

Rauzy (2006). Their experiment involve 44 annotators, all native speakers of French,

and with no particular knowledge of linguistics1. We show that despite language de-

viance and despite imperfections in the automatically generated syntactic parses, our

model still provides very good results at predicting an utterance’s acceptability. It

even outperforms the results of a similar experiment (Blache, Hemforth, and Rauzy,

2006, henceforth BHR06) where manual parses were used. Note that unlike all the

approaches mentioned above, the model we propose for rating an utterance relies

exclusively on the automatically generated output of our parser.

As a preamble, in §5.2 we present the reference corpus we are using for our inves-

tigation and the way this corpus,along with the human judgements, was gathered. In

1Note that although the underlying corpus in use is the same the experiment from Blache, Hem-
forth, and Rauzy is not to be confused with the evaluation of Numbat that we have run and presented
in 4.9.3, which involves 5 annotators, all linguists, but who were not asked to provide any sort of
numerical values.
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§5.3 we present and discuss the approach we have adopted for modelling syntactic gra-

dience, then we postulate five factors of influence. In §5.4 we present the two models

we have designed for rating an utterance, as well as the model introduced in BHR06.

In §5.5 we present the comparative empirical investigation of the two models we have

introduced, along with the one from Blache et al. And finally, we draw conclusions in

§5.6.

5.2 Reference Corpus

The corpus and data we are using as a reference for human judgement of acceptability

was gathered independently from the present study; corpus and experimental protocol

are described in Blache, Hemforth, and Rauzy (2006, p. 62) as follows.

We ran a questionnaire study presenting participants with 60 experi-
mental sentences (...). 44 native speakers of French completed the ques-
tionnaire giving acceptability judgements following the Magnitude Esti-
mation technique. 20 counterbalanced forms of the questionnaire were
constructed. Three of the 60 experimental sentences appeared in each
version in each form of the questionnaire, and across the 20 forms, each
experimental sentence appeared once in each condition. Each sentence
was followed by a question concerning its acceptability.

These 60 sentences were combined with 36 sentences of various forms
varying in complexity (simple main clauses, simple embeddings and doubly
nested embeddings) and plausibility (from fully plausible to fairly implau-
sible according to the intuitions of the experimenters). One randomisation
was made of each form.

Procedure: The rating technique used was magnitude estimation (ME,
see Bard, Robertson, and Sorace, 1996). Participants were instructed to
provide a numeric score that indicates how much better (or worse) the
current sentence was compared to a given reference sentence (Example: If
the reference sentence was given the reference score of 100, judging a target
sentence five times better would result in 500, judging it five times worse
in 20). Judging the acceptability ratio of a sentence in this way results in
a scale which is open-ended on both sides. It has been demonstrated that
ME is therefore more sensitive than fixed rating-scales, especially for scores
that would approach the ends of such rating scales (cf. Bard, Robertson,
and Sorace, 1996). Each questionnaire began with a written instruction
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where the subject was made familiar with the task based on two examples.
After that subjects were presented with a reference sentence for which
they had to provide a reference score. All following sentences had to be
judged in relation to the reference sentence. Individual judgements were
logarithmized (to arrive at a linear scale) and normed (z-standardized)
before statistical analyses.

The resulting figures are reported in Table 5.1. Four of the error types correspond

to semantic errors (pointed with < in Table 5.1) and are thus removed from the corpus,

because out of the scope of our investigation. We are then left with 16 different

types of sentences, one of which being the base sentence (well-formed), and 15 others

corresponding to deviant utterances. For each type the mean acceptability score is

calculated.

Next to the data collection BHR06 reports an experiment, where these scores of

acceptability judgement were correlated to the scores calculated automatically. How-

ever, the characterisations and the parse trees used as input material for calculating

the scores with the model were produced manually. Our own experiment relies on

output automatically generated and provided by the parser Numbatthat we have de-

veloped, and presented in Chapter 4.

5.3 Modelling Syntactic Gradience

Ultimately, we are interested in designing a model of prediction for acceptability judge-

ment based on syntactic gradience. The approach we adopt for modelling syntactic

gradience proceeds in two steps:

1. categorisation of the utterance as a construction2, based on syntactic criteria;

2. assessment of a score of syntactic gradience for the utterance, based on the

characterisation3 of the utterance.
2For what we are interested in in this chapter, a construction is a class of utterances, specified by

a common set of conditions of well-formedness. See 3.2.4 for more details.
3The characterisation of an utterance is the set of constraints that the utterance meets and/or

violate. See Definition 3.14 for more details. For the purpose of modelling gradience, it can be seen
as the syntactic characteristics (in the sense of Aarts), which serve as features for classifying an
utterance in a construction.
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No violations
1.1 Marie a emprunté un très long chemin pour le retour 0.465

Marie [aux.] followed a very long path on the way back
NP-violations
2.1 Marie a emprunté très long chemin un pour le retour -0.643

Marie [aux.] followed very long path a on the way back
2.2 Marie a emprunté un très long chemin chemin pour le retour -0.161

Marie [aux.] followed a very long path path on the way back
2.3 Marie a emprunté un très long pour le retour -0.871

Marie [aux.] followed a very long on the way back
2.4 Marie a emprunté très long chemin pour le retour -0.028

Marie [aux.] followed very long path on the way back
2.5 Marie a emprunté un très heureux chemin pour le retour -0.196 <

Marie [aux.] followed a very happy path on the way back
AP-violations
3.1 Marie a emprunté un long très chemin pour le retour -0.41

Marie [aux.] followed a long very path on the way back
3.2 Marie a emprunté un très long long chemin pour le retour -0.216

Marie [aux.] followed a very long long path on the way back
3.3 Marie a emprunté un très chemin pour le retour -0.619

Marie [aux.] followed a very path on the way back
3.4 Marie a emprunté un grossièrement long chemin pour le retour -0.058 <

Marie [aux.] followed a roughly/rudely long path on the way back
PP-violations
4.1 Marie a emprunté un très long chemin le retour pour -0.581

Marie [aux.] followed a very long path the way back on
4.2 Marie a emprunté un très long chemin pour pour le retour -0.078

Marie [aux.] followed a very long path on on the way back
4.3 Marie a emprunté un très long chemin le retour -0.213

Marie [aux.] followed a very long path the way back
4.4 Marie a emprunté un très long chemin pour -0.385

Marie [aux.] followed a very long path on
4.5 Marie a emprunté un très long chemin dans le retour -0.415 <

Marie [aux.] followed a very long path in the way back
VP-violations
5.1 Marie un très long chemin a emprunté pour le retour -0.56

Marie a very long path [aux.] followed on the way back
5.2 Marie a emprunté emprunté un très long chemin pour le retour -0.194

Marie [aux.] followed followed a very long path on the way back
5.3 Marie un très long chemin pour le retour -0.905

Marie a very long path on the way back
5.4 Marie emprunté un très long chemin pour le retour -0.322

Marie followed a very long path on the way back
5.5 Marie a persuadé un très long chemin pour le retour -0.394 <

Marie [aux.] convinced a very long path on the way back

Table 5.1: Error patterns. The left-most column contains a numbered label for the
pattern type and sub-type; the right-most column gives the mean score of acceptability
(human judgement); sentences marked < are removed from the corpus.
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Each of the two steps involves a decision made on the basis of a numerical value for a

constituent. We argue that because these decisions are different in nature, they rely

on different ranking schemes and therefore require different scoring functions.

The first step is concerned with deciding which construction an item belongs to

among several candidates, and was already addressed in 4.4.4. The decision is made

by ranking the characterisation of the item with respect to each construction. Note

that, since a construction presents a hierarchical structure of construction elements,

this categorisation problem is recursive in nature. The Numbat parser presented in

Chapter 4 provides us with an optimal constituent structure for any input string. By

default, should a full parse not being found, the output is a sequence of disconnected

constituents (i.e. a forest of partial parses) presented as single tree rooted by the

wildcard construction Star (see the Memoization Step in §4.4.3 for more details on how

this default solution is built). The parser’s output is interpreted as providing a class

(i.e. a construction) for the input, along with a characterisation of the constituent in

terms of satisfied and violated constraints.

The second step is concerned with rating an utterance, so that the score corre-

lates with its acceptability. Note that in the remainder of this chapter we use the

term acceptability to refer to human judgement of grammatical acceptability, unless

mentioned otherwise. The correlation presumes that a score signifying acceptability

is available for the utterance. The rating problem as such consists of assessing how

acceptable each utterance is with respect to its construction. Thus, the problem is

to calculate a score for the input, based on the characterisation, which reflects the

utterance’s syntactic gradience. The comparison we run later in this chapter among

rating models for syntactic gradience is performed in reference to the results gathered

by the empirical study on human judgement of acceptability run independently from

our own investigation and presented in BHR06.

The first step of this approach to language processing is quite similar in nature

to the one formalised in Optimality Theory (OT) (Prince and Smolensky, 1993) and

extended by Keller (2000) (LOT, see §2.4.2) in order to rank all candidate structures—

though there exists differences regarding the criteria in use in the decision process

regarding optimality. The second step, however, differs significantly from OT or even
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Keller’s LOT which are not open to rating an utterance4. We come back to this

argument in §5.3.2.

What we are trying to suggest here is that the Intersective/Subsective (IG/SG)

interpretation of syntactic gradience by Aarts (2004b, 2007) (see §2.2) can be extended

in order to cover deviant language. Such an extension consists of seeing the candidate

structures for an utterance from the first step as as many constructional categories.

Finding out which candidate is the most suitable one—according to a criterion of

optimality or other—is then a problem of intersective gradience. Subsective gradience,

on the other hand, involves deciding to what extent the optimal structure is typical

for the constructional category concerned. Thus, it corresponds to the second step we

described.

Next, we introduce and discuss how we address each of the two steps mentioned

above.

5.3.1 Merit vs. Rate

Is it the same problem on one hand to decide, among a list of candidates, which cons-

truction the constituent belongs to, and on the other hand to calculate the degree of

acceptability of a constituent? We claim it is not. The two problems are significantly

different, although obviously not completely separate. The first proble problem, dis-

cussed in §4.5, relies on a merit function in order to determine which of the candidate

syntactic structures is of optimal merit, while the second problem is concerned with

rating an input sentence according to its syntactic gradience. Put in slightly different

words, the merit function is used by the parser for determining the optimality of a

candidate structure, while a model of gradience is to be used for rating an utterance.

Although it could intuitively be argued that the same numerical model could be used

for achieving both tasks, we are going to argue that not only the two problems are

sufficiently distinct to be handled separetly, but most importantly that using one and

4This point was already discussed in the sub-section about Grammaticality in §2.3.2, as well as
in §2.4.2, especially in the sub-section on Shortcomings of LOT. As far as rating an utterance is
concerned, the problem comes from that these theories can not compare the respective degrees of
grammaticality of two quasi-expressions.
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same numerical model for both the merit function and the model of gradience raises

important concerns.

We are arguing that a model of gradience should be independent from the input

characterisation, and thus from the input syntactic parse. Since the merit function is

directly involved in generating the characterisation of a sentence, it is not a suitable

candidate for modelling gradience. Therefore, merit and rate require to rely on nu-

merical functions which are independent from each other. In being independent from

the input parse the model of gradience can then be generalised and used in combi-

nation with other parsers, as long as a characterisation is provided for the sentence

to be rated. Besides, using the merit function as the model of gradience would also

present several drawbacks, which we would like to discuss now.

One drawback stands in that any modifications in the model calibration would

necessarily change, at the same time, the criteria of optimality which the parser relies

on in order to generate a parse. This is not something for the model of gradience to

change, as it would be a very different way of looking at gradience. From our point

of view, the syntactic characterisation of a sentence must be taken as an observation,

to which the model of gradience is applied in order to rate the sentence.

Another drawback is methodological, since the comparison among candidate models

of gradience would be highly arguable if the models under investigation do not take

same input. This would indeed be the case if the models are also used by the parser as

the merit function which determines the optimal parse. For different merit functions

one could expect different optimal parses to be generated. Therefore, two or more such

functions, when used as models of gradience, would rely on different characterisations

of the same sentence. Such a situation would jeopardise their comparison since it

could not be performed indenpendently from external variable factors.

Despite that argument, we have considered the Cohesion of a constituent as one of

the models in competition, in order to back up our claim and make sure that it is not

suitable to modelling gradience. The scores obtained are reported in Table 5.2, while

the scatter plot in Figure 5.1 shows the linear regression between Cohesion scores

and acceptability judgements. As explained earlier in §5.2 into more details, the type

corresponds to an error pattern, and the reference scores of Acceptability are those
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Type Acceptability Cohesion
1.1 0.4647 0.9981
2.1 -0.6484 0.9513
2.2 -0.1614 0.9738
2.3 -0.8711 0.9994
2.4 -0.0281 0.9736
3.1 -0.4067 0.9930
3.2 -0.2157 0.9982
3.3 -0.6193 0.9926
4.1 -0.5811 0.9761
4.2 -0.0779 0.9783
4.3 -0.2129 0.9342
4.4 -0.3852 0.9730
5.1 -0.5603 0.9762
5.2 -0.1935 0.9967
5.3 -0.9054 0.9342
5.4 -0.3217 0.9685

ρ = 0.2814

Table 5.2: Human judgements of acceptability and Cohesion, per sentence type (i.e.
error pattern)

of human judgement. What we are interested in here is that the Cohesion performs

rather badly as a model of gradience, since it only shows a very low correlation (ρ =

0.2814) to the Acceptability ratings of the human judges.

Note as well that the Cohesion scoring function does not require any calibration

since it does not involve any parameters.

5.3.2 Postulates

We postulate that acceptability can be predicted by factors derivable from the output

of Loose Satisfaction Chart Parsing (LSCP) (see Chapter 4). Three of our postu-

lates (1, 2, and 3) are substantiated by empirical evidence and work in the field of

Linguistics and Psycholinguistics, while two others (4 and 5) are hypothetical.
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Figure 5.1: Cohesion vs. Acceptability: model fit over the full corpus

Failure Cumulativity

Since we are interested in deviant language, constraint failures must be accounted for.

Postulate 1 (Failure Cumulativity) Gradience is impacted by constraint failures;

that is, an utterance’s acceptability is impacted by the number of constraints it violates.

We denote by N−c the number of constraints violated by the constituent c.

This factor corresponds to Keller’s cumulativity effect, and is substantiated by em-

pirical evidence:

Constraint violations are cumulative, i.e., the unacceptability of a struc-
ture increases with the number of constraints it violates. (...) this is an
effect of considerable robustness and generality; it applies to both soft and
hard violations, and to multiple violations of the same constraint and of
different constraints.(Keller, 2000, p. 122)
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Success Cumulativity

Meanwhile, it was suggested in different works (Aarts, 2004b; Blache and Prost, 2005;

Blache, Hemforth, and Rauzy, 2006; Aarts, 2007) (see §2.4.1, especially §2.4.1), that

gradience is also affected by successful constraints.

Postulate 2 (Success Cumulativity) Gradience is impacted by constraint successes;

that is, an utterance acceptability is impacted by the number of constraints it satisfies.

We denote by N+
c the number of constraints satisfied by the constituent c, and Ec =

N+
c +N−c .

The underlying intuition is that failures alone are not sufficient to account for

acceptability. Unlike in other accounts of syntactic gradience which only or mostly

rely on constraint failures (e.g. Keller’s LOT §2.4.2, Schröder’s WCDG §2.5.2) we

postulate that some form of interaction between satisfied and violated constraints

contributes to the gradience of acceptability. Keller’s model is prevented from even

being open to the possibility of taking any form of success cumulativity into account

due to be based on OT. Since OT, by conception, discriminates candidate structures

only on the basis of the constraints they violate, relying on satisfied constraints is not

an option.

Constraint Weighting

Following the intuition commonly shared by everyone interested in modelling gradi-

ence, and supported by empirical evidence (Blache and Prost, 2005; Blache, Hemforth,

and Rauzy, 2006; Bresnan and Nikitina, 2003; Foth, 2004; Gibson, 2000; Heinecke et

al., 1998; Keller, 2000; Sorace and Keller, 2005; VanRullen, 2005), all constraints do

not have the same importance with respect to acceptability:

Postulate 3 (Constraint Ranking) Acceptability is impacted to a different extent

according to which constraint is satisfied or violated.

Here we postulate that constraints are weighted according to their influence on ac-

ceptability. The constraint weights are as many variable parameters for tuning up the

model, and their values are estimated during the calibration phase. The question of
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whether such weights are proportional to the importance of either constraint success

or failure is addressed in assuming that a given constraint is of same importance either

way in absolute value. We denote by W+
c (respectively W−

c ) the sum of the weights

assigned to the constraints satisfied (respectively violated) by the constituent c.

Weighting Scope and Granularity Scope and granularity of a constraint weight

are actually tightly connected to each other. The scope has to do with how widely

a weight applies: does the same weight apply to all constraints of one constraint

type5, or to each individual constraint? Whereas the granularity has to do with the

level at which a weight applies: does the same weight apply at the grammar level,

or at the construction level? Scope and granularity can then be grouped in different

ways: all constraints of the same type at the grammar level, or all constraints of the

same type at the construction level, or individual constraints at the construction level,

or individual constraints at the grammar level—the difference between the last two

possibilities assumes that the same constraint may occur in the specification of more

than one construction.

Although the influence on gradience gets more flexible and accurate with a more

fine-grained and narrowe scope, a too fine granularity and a too narrow scope would

also be quite complex to manage and require thorough empirical studies beyond the

scope of this work. Therefore, we opt for a compromise, where the weighting scheme

is restricted to the constraint types at the grammar level, which means that all con-

straints of the same type in the grammar are assigned the same weight. For examples,

all constraints of linearity (i.e. word order) are weighted 20, all constraints of obliga-

tion (i.e. heads) are weighted 10, and so on. denote by that in WCDG (see §2.5.2), for

instance, Schröder opted for more flexibility with weights being assigned to each in-

dividual constraint at the grammar level. However, as expected, the task of assigning

values to every weight is proven very costly.

Automatic Weighting Unfortunately, as emphasised by Aarts (see §2.4.1), very

few uncontroversial automated methods exists for the acquisition of weight values.

5See §3.2.3 for definitions of constraint types in PG.
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In Keller’s Linear Optimality Theory (see §2.4.2) the constraint weights, along with

empirical data gathered from corpora, form an equation system, which is solved using

the least squares method. Although the method is not directly applicable as such

in our case, it seems to be possible to adapt a corpus-based approach using machine

learning. The question must remain open. As far as this study is concerned, wet

calibrated the weights along with the other parameters using the method of gradient

ascent. We describe it in §5.5.

In VanRullen (see §2.5.4) constraint weights do not play any significant practical

role, though the framework is open to their implementation.

Constraint Ranking Subsequent to the weighting scheme, a ranking is applied to

the constraints, which conforms to Keller’s findings in this respect. As we will see in

§5.5, we assume no particular pre-ranking. Since the constraints are ranked according

to their weights, and since the weights serve as parameters for tuning up the model,

the constraints are automatically ranked by side-effect. Thus the constraint ranking

is observed empirically.

Similarly, we do not pre-establish a dichotomy into soft and hard constraints as

suggested by Keller (see §2.4.2), but observed it empirically, with weights tending to

extremal values (the constraints of linearity and obligation being clearly hard ones).

Constructional Complexity

Postulate 4 (Constructional complexity) Acceptability is impacted by the com-

plexity of the constituent structure.

How to precisely measure and model the complexity of a constituent is an open ques-

tion, which we do not claim to fully answer. In fact, this factor of influence probably

ought to be investigated in itself, and split into more fine-grained postulates with

respect to acceptability and syntactic gradience. Yet, we do make a number of at-

tempts in this work to capture factors which are likely to be involved in a constituent’s

complexity. One of these attempts is to measure the complexity of the construction

a constituent belongs to as the amount of constraints specifying this construction in

the grammar.
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We denote by TC the total number of constraints specifying the construction C of

the constituent c. TC is not to be confused with Ec. TC is a constant specific to a

construction, while Ec depends on a constituent. They may relate in different ways:

• we may have TC > Ec if there are constraints from C which can not be evaluated

in c; or

• we may have TC < Ec when multiple instances of the same constraint from C
can be evaluated in c.

This postulate aims to address, among others, the problems concerned with the risk

of disproportionate convergence raised in §2.4.1. The underlying idea is to balance

the number of violations with the number of specified constraints: without such a

precaution a violation in a rather simple construction, such as AP—specified by seven

constraints in our toy grammar Γ presented in §3.2.4,would be proportionally much

more costly than a violation in a rather complex construction, such as NP—specified

by fourteen constraints in Γ6.

Propagation

Postulate 5 (Propagation) Acceptability is propagated through the relationships of

dominance; that is, an utterance acceptability depends on its nested constituents’ ac-

ceptability.

The number of nested constituents is denoted by Zc. Here we postulate that the nested

constituents’ acceptability is propagated to their dominant constituent. Although

this may seem trivial, it is not necessarily so. The process of loose satisfaction yields

a full and legal constituent structure, where deviant constituents are visible from

their immediate dominant constituents, but all violations are overcome beyond them.

Therefore, the information of a deviant constituent may be lost, unless it is propagated

explicitly. The situation is exemplified with a simple case in Figure 5.2 (see Table

3.1 for a legend). Subsequently the models we investigate are dependent functions of

their sub-constituents’ score.

6See Example 4.9 for an illustration of that case.
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Figure 5.2: Propagation Postulate. The violation of word order between Adverb and
Adjective is visible from the immediately dominant Adjective Phrase, but may be lost
if not propagated to the Noun Phrase and further.
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5.4 Rating Models

A rating model for gradience aims to place an item along a scale by assigning a score

(or rate) to it. That score is representative of both the item’s absolute worth, and

what it is worth with regard to other items—i.e. its position on a gradient.

First we formulate a series of intermediate scoring functions as an attempt to

capture these factors. Then we introduce the full models under investigation.

5.4.1 Scoring Terms

In this section we introduce various scoring components, which aim to capture the

postulates previously mentioned. These components are involved in the different

models we investigate later. Each component is meaningful as such, but not sufficient

when considered alone.

Blache and Prost (2005) first introduced the notion of density, later re-defined

in BHR06 as Satisfaction Ratio. In order to avoid confusions with the density of

satisfaction from VanRullen (2005), for which a different definition is provided (see

§4.4.4 for more details), we adopt the terminology and the definition of a Satisfaction

Ratio from BHR06. The Satisfaction Ratio and Violation Ratio capture postulates

2 and 1, respectively. Their definitions are reproduced in Definition 5.1 and 5.2

respectively.

Definition 5.1 (Satisfaction Ratio) We define the Satisfaction Ratio (SRatio) for

the constituent c as follows:

%+
c =

N+
c

Ec

Definition 5.2 (Violation Ratio) We define the Violation Ratio (VRatio) for the

constituent c as follows:

%−c =
N−c
Ec

The ability of these two scores to model gradience is investigated in Blache and Prost

(2005) for various constructions on relatively small corpora (Le Monde, 15,420 words,
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transcriptions of spoken corpora, 523 and 1,923 words). The emphasis is put on de-

viant language. The SRatio is meant to capture the cumulativity effect discussed in

Keller (2000) and Sorace and Keller (2005) (see §2.4.2). However, shortcomings are

also observed. Blache and Prost (2005) report, for instance, that the SRatio does not

necessarily grow with grammaticality; cases are reported of grammatical constructions

for which low SRatio is observed, whereas a high one, proportional to grammaticality,

was expected. It is suggested by the authors that such a discrepancy may be partly

explained by the influence of differences in the construction specifications in terms of

number of constraints involved. The conclusion we can draw here is that although

SRatio and VRatio are meaningful factors for quantifying aspects of grammatical-

ity, their prediction power is not strong enough to accurately model acceptability

judgement.

With respect to our own postulates (see §5.3.2), SRatio is meant to implement the

success cumulativity factor, while VRatio is meant to implement the failure cumula-

tivity factor. The suggestion in Blache and Prost (2005) regarding the influence of

the construction specifications is also captured by Postulate 4.

BHR06 introduces more scoring components, in order to account for different

aspects of gradience. We reproduce them here7.

Definition 5.3 (Completeness Index) We denote by TC the total number of con-

straints specifying construction C; the Index of Completeness for the constituent c of

construction C is define in BHR06d as the following ratio:

Ec =
Ec

TC

The Completeness of a constituent puts the number of constraints it is concerned

with into the perspective of the number of constraints specifying the construction it

belongs to. This score contributes to the implementation of Postulate 4 (see §5.3.2),

which suggests that the complexity of a constituent influences its acceptability.

7Part of the notation adopted in Blache, Hemforth, and Rauzy was changed, essentially because
we find one-letter terms easier to read in mathematical formulae than two-letter terms: SR is now
%+, CC is now E, QI is now W, PI is now P, and GI is now g.
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Definition 5.4 (Quality Index) The Index of Quality for the constituent c is de-

fined in BHR06 as the following ratio:

Wc =
W+

c −W−
c

W+
c +W−

c

The quality of a constituent implements Postulate 3 (see §5.3.2), which suggests that

all constraints do not have same importance with respect to acceptability, and there-

fore must be weighted accordingly. This score represents the overall importance of

the constituent in the form of a mean weight. The Index of Quality is the average

weight of all the constraints it is characterised with, where the weights of satisfied

constraints are positive, and those of violated constraints are negative.

5.4.2 Combining Terms into Scoring Functions

Precision

Definition 5.5 (Precision Index) The Index of Precision for the constituent c is

defined in BHR06 as the following ratio:

Pc =
k · Wc + l · %+

c +m · Ec

3

The Precision of a constituent combines its Quality (Wc), its Satisfaction Ratio (%+
c ),

and its Completeness (Ec) within one score. We assume that the three terms are of

different importance; thus, each of them is associated with a multiplicative coefficient8

in order to balance their respective strength. These coefficients (k, l,m) are used as

variable parameters for tuning up the model. From now on we will refer to them as

adjustment coefficients.

In addition to those terms defined in Blache and Prost (2005); Blache, Hemforth,

and Rauzy (2006) and VanRullen (2005), and the Index of Precision introduced in

BHR06, we define a number of new scoring functions, in order to overcome some of

the shortcomings and drawbacks we observed in using the former.

8Note that the factor 1/3 could be removed and 〈k, l,m〉 set to a third of the chosen values. We
keep the following definitions as such in reference to the original model defined by Blache et al.
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Anti-Precision

We observe that the SRatio in use in the Precision score seems to over-emphasise the

role of success cumulativity, that is, the role of the successful constraints characterising

a constituent. Therefore, and in order to check to what extent it is the case, we define

(Definition 5.6 below) an index of Anti-Precision, where the Satisfaction Ratio term

in the Precision Index is replaced by the Violation Ratio as a negative term.

Definition 5.6 (Anti-Precision Index) We define the Index of Anti-Precision for

the constituent c as the following ratio:

P̃c =
k · Wc − l · %−c +m · Ec

3

Different from the Precision score, the Anti-Precision emphasises the factor of failure

cumulativity, while maintaining a tradeoff with success cumulativity.

Taxed Precision

Another observation we make is that the factor of complexity might not be cap-

tured accurately enough, leaving too large a gap between the importance of failures

on poorly characterised constituents on one hand, and the importance of failures on

richly characterised constituents on the other hand. We have already observed (see

§2.4.1) that there are poor constructions and rich constructions in terms of how many

constraints they require to be specified, and that a single failure has more important

consequences on a poor constituent than on a rich constituent. From there, we hy-

pothesise that out of fairness the rich constituents already violating constraints ought

to be penalised proportionally to the number of constraints they are concerned with.

We define the notion of Taxed Precision to capture that intuition.

Definition 5.7 (Taxed Precision) Let T be a penalty, in number of constraints.

We define the Taxed Precision of the constituent c as the following ratio:

P̃ ′c =
k · Wc − l · N−+T

N+
c +N−c

+m · Ec

3
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The penalty rates applied for T are the following:

T =


1 if 5 < E 6 10

2 if 10 < E 6 15

3 if 15 < E

Note that these penalty rates are static, constant, and heuristically determined. In

further works, it might be interesting to consider them as variable parameters, in

order to bring more flexibility to the model.

5.4.3 Rating Functions

Among the numerous functions we have investigated, the following ones more partic-

ularly draw our attention for the significance of their results.

Grammaticality

Definition 5.8 (Grammaticality Index) The Index of Grammaticality (g) for the

constituent c is defined in BHR06 recursively as follows (where ci is a nested con-

stituent of c, and Zc the number of nested constituents in c):

gc = Pc · gci
= Pc ·

∑Zc

i=1 gci

Zc

BHR06 report experiments which aim to validate the ability of g to predict accept-

ability. A sample of 16 sentences from the annotated corpus we described in §5.2

was used for these experiments, and a very good correlation (coefficient ρ1 = 0.76) is

reported between g and human acceptability judgements. An even better correlation

of coefficient ρ2 = 0.87 is reported on a smaller sample of corrected data9. Such fig-

ures lead the authors to present the Index of Grammaticality as highly promising for

predicting acceptability. However, several aspects of the study presented should be

taken cautiously.

9Sentences showing a too low reliability were removed.
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Shortcomings First of all, the small size of the data sample (16 sentences at most)

makes it quite hard to draw definite conclusions regarding the reliability of the g–

model, and scaling up the experiments is necessary.

Secondly, very little is said about the input material underpinning the different

calculations, such as grammar in use, syntactic parse and characterisation (in the

sense of Property Grammars) of the input strings. Unfortunately, the influence of

these factors on the final score is not discussed. The content of the characterisation,

for instance, plays a crucial role and is directly and tightly linked to various choices

made concerning the syntactic structure under consideration. We also notice that

the weighting scheme provided p. 61 of BHR06 does not include any dependency

constraints, even though dependency is listed in §2 (p. 58) as a pre-defined constraint

type in PG.

And thirdly, the question of the scalability of the model involves addressing the

problem of processing text automatically in order to provide the model with the

expected—and required—syntactic material. We understand that the results pre-

sented in BHR06 were based on manual characterisations of the corpus being investi-

gated. Such a manual characterisation disguises the problems encountered when char-

acterising (i.e. parsing) automatically. The policy adopted for choosing the optimal

intermediate parses among all the possible candidates, for instance, is not mentioned.

In addition to the model of GI introduced by Blache et al., we also investigate

other models which we have designed. Those new models are defined below.

Coherence

The index of Coherence is similar to the one of Grammaticality, except that it relies

on Anti-Precision rather than Precision.

Definition 5.9 (Coherence) We define the Coherence of a constituent c recursively

as follows:

γc = P̃c · γci
= P̃c ·

∑Zc

i=1 γci

Zc
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Taxed Coherence

The index of Taxed Coherence is again similar to the one of Grammaticality, except

that Precision is replaced by Taxed Precision.

Definition 5.10 (Taxed Coherence) We define the Taxed Coherence of a con-

stituent c recursively as follows:

γ′c = P̃ ′c · γ′ci
= P̃ ′c ·

∑Zc

i=1 γ
′
ci

Zc

5.5 Empirical Investigation

In this section we propose to investigate comparatively the three models for syntactic

gradience we have just specified. Each of these models is defined for the same nine

variable parameters: six of them are the weights assigned to each of the six con-

straint types, and three of them are multiplicative coefficients for the different terms

of the scoring functions. Since the goal assigned to these models is to predict human

acceptability judgements, our task, in this experiment, is to seek the combination of

values for the different variables in such a way that the scores computed by the models

correlate as well as possible with the reference values of acceptability. The problem

is one of optimisation, which involves choosing values for the nine different variables

available. The parameter space is, therefore, a 9-dimension space.

Two questions thus arise regarding how to linguistically interpret different parts

of the parameter space:

1. What kind of correlation are we aiming for? That is, what constitutes a good

correlation?

2. Is there a linguistic interpretation of the values assigned to the different param-

eters?

Question 1 is equivalent to asking (i) whether we are aiming to minimise or max-

imise the correlation, and (ii) what is a linguistic interpretation of the value for the

correlation coefficient.
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As far as predicting acceptability is concerned, the greater the (reference) score, the

more acceptable the (type of) utterance. Therefore, we are aiming to is maximise the

scores computed by the models. Since no restriction is put yet on the values to be

assigned to parameters, the possibility of negative correlations must be considered.

The interpretation of a negative correlation coefficient would be that the more accept-

able a type of utterance, the less acceptable the prediction by the model. Therefore

an anti-correlation (i.e. a Pearson’s correlation coefficient ρ < 0) is not linguistically

motivated, and the corresponding part of the parameter space must be discarded.

The model’s score can always be negated in order to obtain ρ > 0 and discard the

parameter space corresponding to ρ < 0.

Question 2 relates to determining a domain of value for each variable, and led us

to restrict it. Six of the parameters are weights assigned to constraint types, which

are meant to capture the impact of each constraint type on acceptability in absolute

value10. Therefore, negative values carry no meaning for them and are subsequently

discarded. The other three parameters are adjustments of the tradeoff among the

different individual scores involved in each model. These adjustments inform on the

relative influence of each of the postulates captured by the individual scores on the

overall rating. Different elements of linguistic interpretation of all these parameters

are discussed along §§5.5.1 to 5.5.4, on the basis of the numeric results we present.

This optimisation task was performed manually, using the method of the gradient

ascent. We use as a starting point for the set of parameter values those reported by

BHR06 as performing best for the g–model. We first choose one dimension (i.e. one

parameter) and seek an improvement of the correlation coefficient in increasing the

parameter progressively, until a local maximum is reached. We iterate the process in

each direction of the parameter space individually, until we can conjecture a ranking of

all the parameters. We then seek further improvement of the correlation in modifying

the order of magnitude for each parameter value. Different arbitrary changes are also

made in the ranking of the parameter values on the basis of the change of correlation

observed, in order to make sure that another local maximum can not be reached. It

10Whether a constraint type has a positive or a negative influence on gradience is not captured by
a signed value of its weight but rather through the relative importance of this weight with respect
to the other ones.
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would be interesting in further works to think about how to automate these arbitrary

changes, in a Simulated Annealing fashion.

5.5.1 Model Calibration

Calibrating the models consists of finding the right order of magnitude among the

different parameters (i.e. adjustment coefficients and constraint weights) in order

to maximise the correlation with the values of acceptability as established by hu-

man judgement. Different combinations were attempted, which are reported in Table

5.3, along with the correlations obtained. A record in the table is a run of Numbat

over the entire corpus with all the parameters being set to the corresponding values

(adjustments and weights).

Adjust. Weight Correlation
] k l m wl wo we wr wd wu Max g γ γ′

1 10 6 2 5 3 1 1 1 2 0.2767 0.0926 0.2747 ∗0.2767
2 1 6 3 10 4 3 3 2 1 0.3071 0.2073 0.1308 ∗0.3071
3 10 4 1 15 5 1 1 1 1 0.3429 0.2141 ∗0.3429 0.3295
4 7 3 2 10 5 1 2 1 3 0.4193 0.2418 0.4156 ∗0.4193
5 5 10 8 20 10 4 2 1 2 0.4315 0.0779 0.3998 ∗0.4315
6 5 10 2 4 3 1 1 1 2 0.4317 0.0762 ∗0.4317 0.4041
7 5 2 1 5 3 2 2 1 2 0.4672 0.3371 0.4634 ∗0.4672
8 4 2 1 20 3 5 4 2 10 0.4707 0.3932 0.4658 ∗0.4707
9 6 2 1 10 5 2 3 1 2 0.4767 0.3664 ∗0.4767 0.4746
10 4 2 1 10 7 2 3 4 5 0.4918 0.3609 0.4845 ∗0.4918
11 4 2 1 5 3 2 2 0 2 0.4974 0.3891 0.4945 ∗0.4974
12 4 2 1 5 3 2 2 1 2 0.4984 0.3805 0.4946 ∗0.4984
13 5 2 1 10 5 2 2 1 2 0.5145 0.4153 ∗0.5145 0.5121
14 4 2 1 20 10 4 4 2 4 0.5340 0.4529 ∗0.5340 0.5325
15 4 2 1 20 10 2 3 4 5 0.5350 0.4402 0.5342 ∗0.5350
16 4 2 1 20 10 2 4 3 1 0.5402 0.4857 ∗0.5402 0.5345
17 4 2 1 20 10 5 4 3 2 0.5425 0.4745 ∗0.5425 0.5381

0.5425

Table 5.3: Calibration of combined adjustments and constraint weights for all three
models. Column ] is a record Id; column Max contains the maximum correlation for
each record—the corresponding value is also pointed out visually in the Correlation
columns (∗0.000); the records are sorted by increasing Max correlation.
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Observations and Speculations

1. The best correlation (ρ = 0.5425) is obtained for record ]17, for the γ–model.

The constraint weights are ranked in the following order: wu < wd < wr <

we < wo < wl, that is, uniqueness < dependency < requirement < exclusion <

obligation < linearity. It is important to emphasise that this constraint ranking

differs from the one in Keller (2000) in that the constraints are not only ranked

according to how much unacceptability they entail, as in Keller, but according

to how important they are in absolute value with respect to acceptability.

2. Whatever the combination of parameters, γ and γ′ always perform better than

g, which confirms, as suggested in §5.4.2 when defining the Anti-Precision score,

that the g–model is over-emphasising the role of success cumulativity compared

to the role of failure cumulativity. g is even outperformed on records ]11 and

]12, which reproduce the set of values reported in BHR06 as the best performing

one.

3. The best performing set of values (rec. ]17) grants much importance to Linearity

(a factor 10 between wl = 20 and the minimum wu = 2, and a factor 2 between

wl and its next follower wo = 10), then to Obligation (a factor 5 between

wo = 10 and wu, and a factor 2 between wo and its very next follower we = 5).

Then follow the remaining weights, ranging over [2 . . . 5]. This observation of

two constraint types (namely Linearity and Obligation) having relatively high

weights on the one hand, and the remaining weights having rather low values

on the other hand, seems to confirm the hard vs. soft dichotomy discussed in

§2.4.2.

5.5.2 Data Sample from Blache et al. (2006)

In order to perform a more accurate comparison between our results using the parser’s

outcome and the results from the semi-automatic experiments reported in BHR06 we

performed a series of measurements using the same data sample as Blache et al., which

is a subset of the full corpus. The results are reported in Table 5.4, and the scatter
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plot from Figure 5.3 illustrates how the g–model fits acceptability. The correlation

Adjust. Weight Correlation
] k l m wl wo we wr wd wu Max g γ γ′

1 4 2 1 20 3 5 4 2 10 0.5301 0.5294 ∗0.5301 0.5193
2 4 2 1 5 3 2 2 0 2 0.6017 0.5408 ∗0.6017 0.5903
3 4 2 1 5 3 2 2 1 2 0.6017 0.5246 ∗0.6017 0.5925
4 4 2 1 20 10 5 4 3 2 0.6427 ∗0.6427 0.6024 0.5872

0.6427

Table 5.4: Correlations on the same data sample as in Blache, Hemforth, and Rauzy
(2006). The model discussed by BHR06 is g; Record ]2 and ]3 use the same param-
eter scheme as the best one reported in BHR06 (Record ]2 simulates the absence of
dependency constraints); Record ]4 uses the same scheme as the best one from Table
5.3.

coefficient (ρ = 0.6427) obtained is much better than the one over the full corpus.

Blache and colleagues report an even better correlation coefficient than ours of 0.76.

However, their experiment is semi-automatic, and relies on characterisations of the

sentences which were performed manually, therefore avoiding parsing problems.

The best correlation (rec. ]4) is obtained for the same scheme as the best one from

Table 5.3, but surprisingly this time g outperforms the other two models. This em-

phasises the crucial influence of Linearity on acceptability, but the roles of Uniqueness

and Obligation are still unclear – though they are seemingly preponderant.

5.5.3 Top Scores

Model Fits

Figures 5.4 to 5.6 illustrate how each model fits acceptability judgement for their

respective top scoring correlation. All three scatter plots show a normal distribution.

Nevertheless, the figures reveal pairs of correlates which lie significantly far apart from

the rest of the distribution.
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Figure 5.3: Grammaticality (Index) vs. Acceptability: model fit over the same data
sample as in BHR06.
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Figure 5.4: Grammaticality (Index) vs. Acceptability: model fit over the full corpus
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Figure 5.5: Coherence vs. Acceptability: model fit over the full corpus
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Figure 5.6: Taxed Coherence vs. Acceptability: model fit over the full corpus
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Gradients

Now, if we look in more detail at how the models rate the different sentence types a

gradient can be established for each model. These gradients are reported in Tables

5.6 to 5.8, where the detailed scores are sorted in decreasing order (best is first).

These figures are those obtained by every model in its best configuration—i.e., g is

parametered as in record ]16 from Table 5.3, and γ and γ′ are parametered as in

]17. As a reminder, Table 5.5 reports the reference scores of acceptability (human

judgement) for each type of sentence, sorted in decreasing order as well. The column

“Ref. Rank” in each table indicates the rank of the score given by the human judges

for this type.

Rank Type Acceptability
1 1.1 0.4647
2 2.4 -0.0281
3 4.2 -0.0779
4 2.2 -0.1614
5 5.2 -0.1935
6 4.3 -0.2129
7 3.2 -0.2157
8 5.4 -0.3217
9 4.4 -0.3852
10 3.1 -0.4067
11 5.1 -0.5603
12 4.1 -0.5811
13 3.3 -0.6193
14 2.1 -0.6484
15 2.3 -0.8711
16 5.3 -0.9054

Table 5.5: Human judgements of acceptability – reference scores, sorted from best
(]1) to worst (]16). Each score is the mean normalised score for the sentence type;
each type of sentence corresponds to a specific error pattern; the individual scores were
obtained by Magnitude Estimation.
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Type Ref. Rank Rank g

2.3 15 1 17.9491
1.1 1 2 15.6753
5.2 5 3 15.6594
3.2 7 4 15.5030
4.2 3 5 15.2604
3.1 10 6 14.5974
4.4 9 7 14.0848
2.2 4 8 13.3994
4.3 6 9 12.9084
2.4 2 10 12.1384
4.1 12 11 11.1118
5.4 8 12 11.0152
3.3 13 13 10.7176
5.1 11 14 9.5038
2.1 14 15 9.3499
5.3 16 16 2.9866

Table 5.6: Gradient of g–scores, sorted from best (]1) to worst (]16).

Type Ref. Rank Rank γ

2.3 15 1 4.1063
1.1 1 2 3.9557
5.2 5 3 3.9347
3.2 7 4 3.9068
4.2 3 5 3.7824
3.1 10 6 3.6361
2.2 4 7 3.6019
4.3 6 8 3.3271
2.4 2 9 3.2541
3.3 13 10 3.0417
5.4 8 11 2.9105
4.1 12 12 2.7727
2.1 14 13 2.4321
5.1 11 14 2.2578
4.4 9 15 2.1632
5.3 16 16 1.3439

Table 5.7: Gradient of γ–scores, sorted from best (]1) to worst (]16).
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Type Ref. Rank Rank γ′

2.3 15 1 3.8873
1.1 1 2 3.6930
5.2 5 3 3.6674
3.2 7 4 3.6467
4.2 3 5 3.5193
2.2 4 6 3.3601
3.1 10 7 3.2425
4.3 6 8 3.1775
2.4 2 9 3.0647
3.3 13 10 2.6997
4.1 12 11 2.5873
5.4 8 12 2.5517
2.1 14 13 2.1923
5.1 11 14 2.1000
4.4 9 15 1.8326
5.3 16 16 1.2145

Table 5.8: Gradient of γ’–scores, sorted from best (]1) to worst (]16).

5.5.4 Interpretation

In this section we interpret some significant figures observed above.

As a preamble, we observe that the gradients for the different models reported in

Tables 5.6 to 5.8 all present a reasonable match to the reference gradient. The most

important discrepancies concern the Types 2.3, 2.4, and 4.4. Type 5.3 also shows

interesting characteristics, as will presently be explained.

VP-violation: Type 5.3

Type 5.3 (VP-violation), which comes worst by human standards, is ranked correctly

at ]16 by all models (see Tables 5.6, 5.7 and 5.8). However, the scatter plots from

Figures 5.4 to 5.6 also show that the corresponding pair of correlates is always way

out of range (bottom left corner). This is explained by the fact that all parses of
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Type 5.3 are always forests of partial parses11 (with only one exception). Cases of

parses for Type 5.3 are exemplified in Figures 5.7, 5.8 and 5.9 (see Table 3.1 for a

legend). Sentences of Type 5 concern VP violations; more specifically, those of Type

*star

NP

N

Marie
Marie

*PP

NP

D

un
a

AP

Adv

très
very

A

long
long

N

chemin
path

P

pour
on

NP

D

le
the

N

retour
way back

Figure 5.7: Example of a forest of partial parses automatically generated by Numbat
for Type 5.3 (VP-violation)—Mary a very long path on the way back.

5.3 are missing head verbs. As already discussed in §4.9, this is a case where the

parsing strategy shows weaknesses. Although the strategy in itself does not grant

any preferred role to head verbs in VP, the grammar, nevertheless, does, since 77%

of the specification of VP are constraints which concern a verb. Therefore, finding a

VP in a sentence without any verb in only using the constraints that hold and fail is

extremely unlikely, since such a sentence is only concerned by at most 23% of the VP

specification. The same problem is propagated in cascade at the sentence level.

These cases reveal the relative weakness of the model to accurately account for

forests of partial parses: it successfully ranks them, but the score they are assigned is

much too low compared to the others.

11Type 5.3 is the only error pattern for which it happens.
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Figure 5.8: Example of a forest of partial parses automatically generated by Numbat
for Type 5.3 (VP-violation)—Virgile very confidential data to the enemy.
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*star
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Figure 5.9: Example of a forest of partial parses automatically generated by Numbat
for Type 5.3 (VP-violation)—All this very warm letter for their colleague.

NP-violation: Type 2.3

The sentence Type ranked highest is the same for all models (2.3, NP-violation),

whereas it is ranked second last by the human judges, i.e. ]15. This type concerns a

missing head noun, exemplified in Figures 5.10 and 5.11 (see Table 3.1 for a legend).

Such a discrepancy is explained by a combination of elements. One is the same

as the one discussed about Type 5.3, concerning the preponderant role of heads in

constructions such as NP and VP, which are specified by a very large number of

constraints compared to other constructions. The same negative effect is observed

here, where the absence of head noun prevents Numbat from finding a noun phrase.

However, a second explanation exists for the case of the NP specification, which unlike

the one for VP allows either an N or an AP (i.e. a substantive adjective) to head

the construction. This explains why sentences such as those in Figures 5.10 and 5.11

are parsed correctly. This alternative for the head position of NP exists in French
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Figure 5.10: Example of a parse automatically generated by Numbat for Type 2.3
(NP-violation)—The shrews [aux.] sent a very rude/rough to their neighbour.
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Figure 5.11: Example of a parse automatically generated by Numbat for Type 2.3
(NP-violation)—All have signed this very warm for their colleague.
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in order to license perfectly fine cases of substantive adjectives, such as in (5.1) and

(5.2)—the corresponding parses are illustrated in Figure 5.12.

(5.1) Je lis le petit.

I read the small [one].

(5.2) Marie emporte le froid pour midi.

Marie takes the cold [one] for lunch.
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S
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A
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PP
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N
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lunch

Figure 5.12: Substantive adjectives: constituent structures for the example sentences
(5.1) and (5.2). Parses generated manually.

These cases are discussed in §4.9.4. They were meant to be deviant as a result of

having an error pattern applied to them, but their deviance turns out to be arguable.

Two conclusions may be drawn from the problem raised by these cases of NP-

violation (Type 2.3). One conclusion concerns ambiguities in the grammar, which the

parser can hardly be expected to clear up. These ambiguities mostly come from that

the grammar is clearly under-specified. One option could have consisted in translating

the lexicalised Tree-Adjoining Grammar (TAG) for French (FTAG) developed by

Abeillé and Candito (2000) into a Property Grammar. The problem, then, would be

to work out translation rules from TAG to PG. Whether achieved automatically or

manually the task appears to us as a non-trivial one. And since FTAG was, to the
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best of our knowledge, the only12 large coverage grammar readily available for French

at the time the experiments were run, we chose to give our work a different direction.

Incidently, it is worth noticing that the source of ambiguity does not exclusively

come from the grammar itself. The ability of a lexicon to encode more fine-grained

information, or the ability of a POS-tagger to handle it, could also be blamed to some

extent.

Another conclusion concerns the limited content of the corpus—or, should we say,

the lack of a larger one annotated with human judgement of acceptability. It would

be interesting, for instance, to investigate cases of NP-violation similar to Type 2.3

where sentences contain no AP in a position to be taken as a substantive one.

NP-violation: Type 2.4

Sentences of Type 2.4 (missing determiner in NP) are ranked second most acceptable

by humans, while all the models rank them ]9 or ]10. Figure 5.5.4 shows that the

optimal parse generated by Numbat for this error pattern successfully finds an NP

where the determiner is missing. This case looks a bit puzzling to us. What we

can say is that we observe that for the three Types 5.3, 2.3, and 2.4 which raise

discrepancies, a missing construction is concerned: missing head verb for 5.3, missing

head noun for 2.3, and now missing determiner for 2.4. It is likely that what these

cases put forward is a weakness of all three numeric models to accurately report on a

missing element, or maybe on a missing requirement.

12In her PhD thesis Guénot (2006) presents a grammar “covering most of the basic syntactic
phenomena for French”, which was developed in the framework of PG. By the time the grammar was
published, integrating it with ours turned out to involve complex and time-consuming adaptations
of both the Numbat parser and Guénot’s grammar, in order to overcome various technical issues and
incompatibilities. Among other reasons, the feature structure used by Guénot, for instance, is much
more detailed and fine-grained than the one we have implemented in Numbat ; the extensive use of
disjunctions in different constraints is also much broader than what Numbat can handle and require
de-multiplying these constraints into more basic ones; Guénot’s grammar also relies on inheritance
mechanisms among constructions, which are not all implemented in Numbat.
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Figure 5.13: Example of a parse automatically generated by Numbat for Type 2.4 (NP-
violation: missing determiner)—The employees have delivered very complete report to
their manager.



5.5. EMPIRICAL INVESTIGATION 211

S

NP

N

Marie
Marie

VP

V

a
[aux.]

V

emprunté
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Figure 5.14: Example of a parse automatically generated by Numbat for Type 4.4
(PP-violation)—Marie [aux.] followed a very long path on.

PP-violation: Type 4.4

Sentences of Type 4.4 (PP-violation) are another case of divergent correlates. Sen-

tences of this type—exemplified in Figures 5.14 and 5.16—end ab-normally with a

preposition. Numbat treats many cases of PP-violation of Type 4.4 as of word order

violations and groups the final preposition with the preceding NP in order to make a

PP. This does not capture well enough a reader’s intuition that the final preposition

is expected to introduce an upcoming PP—that is, the expectation is that a noun

phrase should follow the preposition. Figure 5.15 shows that even in the sub-optimal

alternative solutions Numbat tries to group the final Preposition with what precedes
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Figure 5.15: Alternative parses automatically generated by Numbat for the same input
as in Figure 5.14.
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Figure 5.16: Example of a parse automatically generated by Numbat for Type 4.4 (PP-
violation)—Jean [aux.] put a very big bunch on. Note that the English translation
does not accurately reflect the error pattern, since to put on could be seen as a phrasal
verb; using on top of instead of on would better show the missing end of the sentence,
but is no longer a preposition.
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it. This can be explained by the fact that Numbat aims to minimise the proportion of

violated constraints. Therefore, a violation of word order with preceding constituents

is very likely to always be preferred over than alternative options which would have

to consider hypothetical missing constituents. This type of error pattern raises a

limitation of the strategy of optimality adopted in Numbat.

5.6 Conclusion

In this chapter we have introduced two models (γ and γ′) for a computational account

of syntactic gradience. These models rate a natural language utterance according to

its syntactic characterisation.

We have postulated that acceptability can be predicted by factors derivable from

the output of the LSCP. Three of these factors ((i) to (iii) below) are substantiated by

empirical evidence and work from linguistics and psycholinguistics, while two others

((iv) and (v) below) are hypothetical. These factors are the following:

(i) failure cumulativity stipulates that the effects of failing constraints cumulate

towards lower acceptability;

(ii) success cumulativity stipulates that successful constraints tend to induce a con-

vergence towards higher acceptability;

(iii) constraint ranking stipulates that all constraints be weighted proportionally to

their impact on acceptability, but does not presume exact values for the weight-

ing scheme which is fine-tuned empirically;

(iv) recursive cumulativity stipulates that nested constituents recursively influence

acceptability of their mother constituent;

(v) constructional complexity stipulates that acceptability is influenced by the rel-

ative complexity of constituent types, measured by the number of constraints

required to specify them. The models we have proposed implement these five

factors in various ways.
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We have run a comparative empirical investigation of the two models we specified,

along with a third pre-existing one presented in BHR06, in order to determine how

their respective ratings correlate with human judgement of acceptability. Each of the

three models is only relying on the syntactic characterisation provided by Numbat.

The experiments were performed over a 512–sentence (about 6000 words) corpus in

which the sentences are evenly spread among 15 types of deviance and 1 type of well-

formedness. This corpus was annotated with human judgements of acceptability, as a

result of psycholinguistic works carried out independently from the present study and

are reported in BHR06. The best correlation (ρ = 0.5425) was found for one of the

two models we introduced, namely the index of Coherence (γ–model). The fact that

the model outperforms the one of BHR06 (g–model) confirms the hypothesis that the

Grammaticality Index over-emphasises the role of Success Cumulativity compared to

the one of Failure Cumulativity. This result could also be seen, to some extent, as

a corroboration of Keller and the LOT’s emphasis on violation; the tradeoff, though,

in the g–model, between satisfaction and violation remains significant, whereas it is

absent from LOT.

The significance of the results presented in this chapter is tightly linked to the

significance of the syntactic material used by the different models. The fact that

our experiments were run using the parses generated automatically by Numbat is

one of the major contributions of this dissertation. When evaluating Numbat (see

§4.9) we measured a Precision of 0.74 and a recall of 0.68. Although these figures

reveal a reasonably good quality of the syntactic material produced by the parser, it

also reveals shortcomings regarding how to handle deviant language: 32% of the input

strings are still not good enough—or, more precisely, not good enough for the purpose

of modelling their syntactic gradience. That is, the correlation of 0.5425 is obtained

in spite of 32% of the corpus being characterised incorrectly or insufficiently correctly.

Different types of sentences—i.e. error patterns—were discussed for being involved

in pairs of bad correlates. In most cases the problem was identified as stemming from

issues in the syntactic material provided by the parser, with maybe one exception

for the sentence Type 2.4. Therefore, we are confident that further improvements of

the parser’s accuracy should subsequently improve the performance of the different



5.6. CONCLUSION 215

models.

Our investigation of the different models provided a weighting scheme for the con-

straint types, which was observed empirically. This weighting scheme lets us rank

the constraint types, in absolute value, in order of increasing importance for accept-

ability. The γ–model ranks the constraint types the following order: Uniqueness <

Dependency < Requirement < Exclusion < Obligation < Linearity. The higher the

constraint is ranked, the more influential it is on acceptability, whether positively

when the constraint holds, or negatively when it fails. The order of magnitude among

γ–scores along the gradient seems to confirm the soft vs. hard dichotomy suggested

by Keller (2000, 2003), and discriminate linearity and obligation as hard constraints.

However, further work is required in order to confirm and narrow down this classifi-

cation.

Another contribution from the γ–model is its potential prediction power. We

showed that the significantly bad correlates could be explained by issues in the input

syntactic characterisation rather than by the γ–rating itself. Cases of false-positives,

pseudo-false-negatives, forests of partial parses, and under-specification of the gram-

mar were discussed.

5.6.1 Further Work

More Variable Parameters The small number of variable parameters in each

model limits their flexibility by restricting the possibilities of calibration. To overcome

this inconvenience, it might be interesting to consider the different tax rates from the

Taxed Coherence (γ′–model) as as many variable parameters.

Backing the Factors of Influence An important avenue of further investigation

would be to substantiate all the factors we are using for predicting gradience with

linguistic evidence. A body of work on psycholinguistic on linguistic complexity and

sentence processing (Gibson, Schütze, and Salomon, 1996; Gibson, 1998, 2000; Warren

and Gibson, 2002; Gruber and Gibson, 2004; Grodner and Gibson, 2005), for instance,

seems to constitute a good starting point. The Prediction Locality Theory (Gibson,

1998) and related work provides a framework for measuring sentence complexity on
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psycholinguistic grounds, which might be able to also provide clues as to how deviant

language can best be processed automatically.



Chapter 6

Conclusion

In this work we have addressed part of the problem concerned with replacing the

traditional binary notion of grammaticality with intermediate degrees of acceptabil-

ity in natural language processing. We have focused more specifically on devising,

implementing and evaluating a computational model for syntactic gradience. We

have presented a fully automated solution, which characterises any well formed or

ill formed input sentence, generates an optimal parse for it, then rates the utterance

according to its grammatical acceptability. Our new model extends the concepts of

Intersective Gradience (IG) and Subsective Gradience (SG) introduced by Aarts for

modelling graded judgements in order to cover deviant language. Under such a model,

the problem raised by gradience is to classify an utterance as a member of a specific

category according to its syntactic characteristics. IG, in its extended form, is con-

cerned with choosing the most suitable syntactic structure for an utterance among

a set of candidates. This problem was addressed in using a criterion of optimality

for discriminating the candidates. SG, in its extended form, is concerned with cal-

culating to what extent the chosen syntactic structure is typical from the category

at stake. This problem was addressed in defining a numeric model for rating an

utterance according to its grammatical acceptability, using the utterance’s syntactic

characteristics. Our investigation of different frameworks for representing the syntax

of natural language shows that these syntactic characteristics, which serve as features

for classifying an utterance, can easily be represented in Model-Theoretic Syntax. We

217
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chose to work with Property Grammars (PG), a constraint-based formalism defined

by Blache (2001), which offers to model the characterisation of an utterance in terms

of satisfied and violated properties.

Through the development of such a new model of gradience, the main contribution

of this work is three-fold.

First, we specify a model-theoretic logical framework for PG, which bridges the gap

observed in the existing formalisation regarding the constraint satisfaction and con-

straint relaxation mechanisms, and how they relate to the projection of a category

during the parsing process. This new framework introduces the notion of loose satis-

faction, along with a formulation in first-order logic, which enables reasoning about

the characterisation of an utterance.

Second, we present our implementation of Loose Satisfaction Chart Parsing (LSCP),

a dynamic programming approach based on the above mechanisms, which is proven

to always find the full parse of optimal merit.

And third, after postulating that human acceptability judgements can be predicted by

factors derivable from LSCP, we present the numeric function of Coherence for rating

an utterance according to its syntactic gradience. The ability of the model to predict

human judgements of grammatical acceptability was investigated. The correlation

between Coherence and human acceptability is measured with a coefficient ρ = 0.54.

6.1 Summary

We have addressed the problem raised by the development of an automated model

of syntactic gradience from the two perspectives of knowledge representation (KR)

and numeric modelling. We started by investigating works from the fields of Linguis-

tics and Psycholinguistics analysing gradience in natural language. With respect to

KR, we were interested in identifying what sort of linguistic information is involved

when dealing with gradience, and how to present, represent, and process it. The

literature review revealed that although degrees of acceptability in language are ob-

served and well-acknowledged, traditional approaches to language processing based
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on Generative-Enumerative Syntax (GES) fail to offer a suitable framework to ac-

count for graded aspects of language. Reasoning with gradience requires an ability

to represent a description of (morphosyntactic, among others) characteristic proper-

ties of uttered language. It requires, in particular, to be able to state characteristic

properties for deviant language, which is not possible in GES. On the other hand,

the literature review also reveals that Model-Theoretic Syntax (MTS) enables the

formulation of such statements about the observed properties of an item.

In Chapter 3, we presented a new logical framework for PG. Our investigation

of existing frameworks meeting the requirements we have in terms of KR for mod-

elling gradience led us to conclude that PG is one of the most suitable one. Yet, the

formalisation of the paradigm falls short of a formulation for reasoning about the char-

acterisation of an utterance. The projection mechanism, in particular, whereby the

construction of a new constituent is inferred from a characterisation during the pars-

ing process, raises different problems. We argued that these problems occur when the

projection of a construction is too tightly connected to incremental parsing strate-

gies. It introduces unnecessary limitations in terms of processing, although absent

from PG in its original conception. An important argument for introducing a new

formulation is that a constructional approach to language processing requires being

able to implement a parsing process, which is not driven by any particular type of

constraint, such as heads. Constraints in PG all present a property of monotonicity,

which raises processing issues with respect to implementing such a no-drive parsing

strategy. We showed that the problems subsequent to handling the property of mono-

tonicity occur in the case of an incremental parsing strategy, but can be avoided by

further formalising PG. We thus defined a model-theoretic logical framework, which

introduces the notion of loose satisfaction, in order to capture, independently from

any processing aspect, the possibility offered in PG to satisfy and/or relax constraints

within the same mechanism. Through loose satisfaction a newly inferred constituent

may present anomalies, which make it violate part of the grammar, and still be loosely

consistent. Through predicate calculus, a constituent structure made up of loosely

consistent constituents can then be inferred for any input string. The inference mech-

anism involved in building a constituent structure allows for both incremental and
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non-incremental parsing strategies to be implemented.

In Chapter 4, we presented our implementation of Loose Satisfaction Chart Pars-

ing (LSCP) based on the above mechanisms. The LSCP algorithm is a dynamic

programming approach, which optimises a merit function. The strategy adopted is

non-incremental. The constraint solving process, which yields the constituent struc-

ture, does not involve any revision process in order to handle non-monotonic con-

straints. As such, the strategy is naturally not driven by any of the constraint types

in particular—especially not heads. Such a feature is an important one in order, for

instance, to allow constructions with no head, as well as for implementing inheritance

mechanisms which do not necessarily rely on a head feature principle (Guénot, 2006).

Although the algorithm proposed for LSCP shows a high theoretical worst time

complexity of O(n42nCn), it is correct by construction and proven to theoretically

always find the parse of optimal merit. In practice, the use of heuristics make it

perform sufficiently well to allow us experimenting with our models of gradience. In

order to evaluate the ability of LSCP to provide full parses for unrestricted input

language, the corpus we used was mostly made of controlled deviant utterances (94%

of the sentences were ill-formed). 92% of the corpus was parsed with full syntactic

structures. The parser’s output was evaluated by 6 different human annotators, who

were asked to make a binary judgement about the correctness of each parse. The main

difficulty of the task was to decide whether the parse structures provided by the parser

were the best possible syntactic analysis. Precision (Number of correct trees/Number

of complete trees) was measured at 0.74, while Recall (Number of correct trees/Total

Number of sentences in the corpus) was measured at 0.68.

In chapter 5, we started by postulating that the acceptability of an utterance can

be predicted from the combined effect of different factors of influence. We argued that

factors found in existing models presented in the literature, although necessary, were

not sufficient to accurately account for all aspects of gradience when taken separately.

Subsequently, we have put forward different factors found throughout the literature

in order to tackle all of them. As a result, we ended up with five factors of influence:

(i) failure cumulativity, often referred to in the literature as cumulativity effect

(Keller, 2000, 2006; Bresnan and Nikitina, 2003) stipulates that the effects of
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failing constraints cumulate towards more unacceptability;

(ii) constraint weighting, found in many works involving gradience (Blache and

Prost, 2005; Blache, Hemforth, and Rauzy, 2006; Bresnan and Nikitina, 2003;

Foth, 2004; Gibson, 2000; Heinecke et al., 1998; Keller, 2000; Sorace and Keller,

2005; VanRullen, 2005), stipulates that all constraints may be weighted propor-

tionally to their impact on acceptability;

(iii) success cumulativity stipulates, as suggested in Aarts (2004b, 2007) and Blache

and Prost (2005); Blache, Hemforth, and Rauzy (2006), that the successful

constraints tend to induce a convergence towards more acceptability;

(iv) propagation stipulates, as suggested in Blache and Prost (2005), that nested

constituents recursively influence acceptability of their mother constituent;

(v) constructional complexity stipulates, as suggested in Blache, Hemforth, and

Rauzy (2006), that acceptability is influenced by the relative complexity of con-

stituent types, particularly in terms of the amount of constraints required to

specify them.

These five factors were numerically captured into scores derived from the parser’s

output, and combined into two rating models.

The ability of these two models to fit acceptability judgement by human stan-

dards was investigated, in comparison with a third pre-existing model. The model of

Coherence (γ–model), which we devised, turned out to outperform the other two. It

shows a good correlation coefficient of 0.5425 with acceptability by human standards.

It is especially good when put in the perspective of the parser’s evaluation, whose

precision and recall of 0.74 an 0.68 respectively show that there is still room for im-

provement with regard to parsing deviant language with full constituent structures.

The interpretation of our experimental results also revealed that the cases for which

the model was lacking accuracy at predicting acceptability were cases for which the

parser did not provide a correct parse. Such a match between bad performance from

the parser and bad performance from the model is also a very encouraging observation,

which complements the performance on the positive syntactic structures. Altogether
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it confirms first, that a numerical model such as the one of Grammaticality or the

one of Coherence is a good indicator of the syntactic gradience of an utterance, and

second, that rating the syntactic gradience of an utterance provides a good prediction

of the degree of acceptability. Furthermore, the match observed for the pairs of bad

correlates opens avenues for further works, and lets us speculate on the origin of the

problems we identified. Different sources of problems were pointed out, such as the

under-specification of the grammar, and of the lexicon.

With respect to the pending questions raised in the Background Chapter (§2.6.2),

this dissertation has highlighted different elements of answer.

The notion of Natural Language that we have adopted in our formalisation of

PG and in our implementation of LSCP conforms to the intentional one we

have expressed initially. It covers expressions, as well as quasi-expressions (in

the sense of Pullum), and allows a continuum of acceptability.

The notion of grammaticality that we have adopted and implemented with LSCP

combines the binary notion from GES, the degrees of grammaticality and un-

grammaticality and the sharp boundaries from the model-theoretic notion, and

the degrees of grammaticality and the optimality of a syntactic structure from

the optimality-theoretic notion.

The notion of gradience that we have modelled involves a constraint-based char-

acterisation of language, which allows rating an utterance on syntactic criteria

according to its degree of acceptability. We have shown that such a modelling of

syntactic gradience can be used for predicting human acceptability judgement.

The linguistic knowledge about an utterance that we have adopted is repre-

sented in the notion of characterisation proposed in PG. It combines traditional

constituent structure with a constraint-based representation of the relationships

(met or not) among constituents, and allows dealing indifferently with expres-

sions and quasi-expressions.

The notion of constraint that we have implemented is the one offered by PG. We

have formalised it using first-order logic with model-theoretic semantics.
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The satisfied constraints in our model were granted a competitive role alongside

the violated one in accounting for syntactic gradience.

The constraint weights in PG and in LSCP in particular can have various scopes

and granularities according to needs. In Numbat they have been implemented

with the granularity of a constraint type and the scope of the grammar.

Each of the different scoring functions implemented in Numbat serves a differ-

ent purpose and models a specific aspect of syntactic gradience. For the main

ones, the Cohesion function rates a candidate structure for an utterance and

allows the ranking of candidates according to a criterion of optimality, while the

function of Coherence rates an utterance according to its degree of grammati-

cality or its degree of ungrammaticality.

6.2 Further Work

6.2.1 On Scaling Up

The complexity of the algorithm we have proposed for Loose Satisfaction Chart Pars-

ing, as expected, is proven exponential. This is not surprising from a Constraint

Satisfaction Problem—especially not given the solving strategy adopted. One could

argue that since such a result was expected, one could have gone for better, well-known

alternatives, but the main motivation was to investigate how the way Property Gram-

mars, and Model-Theoretic Syntax more generally, represent information can be used

for the purpose of modelling and predicting syntactic gradience, which includes prov-

ing the optimality of the solution parse. In that respect, and as far as scaling up the

approach is concerned, we observe different elements that deserve some attention.

Regarding the complexity, more than simply a theoretical exercise, calculating it

brings some insight for identifying where the risk of explosion comes from. This lets

us speculate on which aspects of a knowledge-based parsing strategy for PG should

be paid attention to, especially when aiming for generating full phrase structures for

unrestricted natural language. Of course, as we said earlier, the strategy that we have
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implemented is to be blamed, but only to some extent; interestingly enough, with a

complexity of O(Cn) (C being the number of constructions, and n the sentence length

in words) the grammar size turns out to be a factor of major influence, through the

number of constructions being specified. Intuitively, we know that the grammar size

plays a role in a parser’s complexity, but its influence is usually not of that order

of magnitude. In fact, most of the time it is a negligeable factor against the input

length. In LSCP, the factor Cn comes from going through all the configurations of

a set partition. Dropping that factor involves reducing either the number of con-

figurations, or reducing the number of set partitions being considered, or preferably

both. Reducing the number of configurations will drop the factor C, while reduc-

ing the number of set partitions will drop the exponent n. An incremental strategy,

for instance, heuristically reduces significantly the number of set partitions, but the

number of configurations is likely to remain of the same order of magnitude, since a

heuristic in that respect would require speculating on which constructions are worth

being considered, and which are worth ignoring. A solution to explore, though, would

be to find a way to introduce a top-down prediction in the process. Relying on the

probabilities attached to phrase structures in corpora could be an option, if the main

focus is put on efficiency rather than on optimality with respect to gradience (the

most probable parse is not necessarily the same as the optimal one).

Regarding the incremental strategies, we note that while VanRullen does not cal-

culate the theoretical complexity of his SeedParser, he measures a practical one in

correlating the number of instructions involved in parsing a sentence with the sen-

tence length in number of words. The measured complexity is polynomial of degree

2.3 (C ·N2.3 with C a constant and N the number of words). Yet varying the grammar

size is not being considered, so we do not know how it performs in that respect.

In conclusion, and as far as scaling up LSCP is concerned, the question of the

grammar size thus becomes a crucial one. Our implementation of an algorithm for

LSCP is likely not to be, as such, suitable for large-scale applications involving a

large-coverage grammar. Yet, it does not mean that the underpinning strategy is

completely void for that matter, but more that it is faced with similar problems to

those faced by other Constraint Solving strategies. The difference stands in that the
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combinatorial explosion is just postponed to later by strategies which do not aim to

generate optimal full phrase structures for both well-formed and ill-formed sentences,

as we do. And last, the decision to go for a strategy based on an exhaustive search

was motivated by the need to show the optimality of the resulting output in order to

experiment with gradience and rule out, as much as possible, the possibility of better

parses. Scaling up would require revising this aim of optimality.

6.2.2 On Modelling Gradience

How would the results presented in this work scale up for a large-coverage gram-

mar, over non-artificial sentences? The question of the large grammar was already

addressed. As for non-artificial sentences, one may also wonder how the model of

gradience would behave. When analysing our experimental results with modelling

gradience we could not find any substantial evidences that would challenge the very

approach of using a numerical model based on constraint counts for predicting gra-

dience. Most of the problems that we have identified drew attention on the parser’s

output and led us to discuss expectations and content-related requirements in that

regard. But this pertains to the model input, not to either the existence of the model

itself, or even its scalability. Therefore, it can be argued that the model can be refined

in different ways, some of which we will discuss later. We could not think of any strong

reasons why it would not scale up successfully, especially over non-artificial sentences.

This being said, scaling up the experiments would raise different issues, such as re-

garding the gathering of human judgements of acceptability, or the model calibration.

But assuming these, then a reference scale could be established for gradience scores.

Now, on a different but just as relevant matter, it is clear that acceptability judge-

ment as a whole is more than likely to involve other criteria than just syntactic ones1.

Therefore, one avenue of investigation for improving and scaling up our model of

gradience involves the introduction of criteria taken on other linguistic dimensions

than syntax, that is, from semantics, pragmatics, phonology, and so on. Construction

1This, of course, does not make the study of syntactic gradience taken separately from other lin-
guistic dimensions irrelevant. Syntactic gradience, even in isolation from the rest, is still informative
of the overall acceptability of a sentence.
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Grammar conceptually already allows an account of semantic constraints in the spec-

ification of constructions, and Property Grammars (PG) have no restriction in this

regard either. In chapter 2 we have argued that ruling out semantic constraints from

a model of gradience is an impediment to handling constructions such as the English

Caused-Motion Construction (EC-MCx), which involve semantic constraints in their

specification—nonstative verb and directional phrase for that matter. One could eas-

ily imagine including, in the specification of the EC-MCx within PG, constraints of

Obligation over a Verb feature (for nonstative), and over a feature of the prepositional

phrase inherited from the preposition stating the directional semantic aspect. Such a

descriptive approach to language specification adopted by PG carries a great potential

in this respect, and allows focusing on the modelling of a large spectrum of linguistic

phenomena, especially those involving gradience.

Another important avenue for further work concerns the linguistic substantiation

of the different factors that we have postulated as being of some form of influence on

graded acceptability judgements, and for which we have already made suggestions.

6.2.3 Generalisation and Optimisation of Loose Constraint-

based Parsing

Another avenue of further investigation involves optimising our implementation of

LSCP. Conceiving the parsing process as a configuration task, and implementing it

as a Constraint Satisfaction process opens a whole range of possibilities regarding its

implementation. Configuration tasks are found in very large-scale industrial prob-

lems, such as product configuration or software configuration, and require a high level

of robustness. Ideally, we would aim to see the parsing activity just as any other

large-scale configuration task, so as not to have to worry about algorithmic aspects of

constraint satisfaction, and concentrate on problems of language modelling. Different

works are already heading in that direction. Haji-Abdolhosseini (2005), for instance,

investigates the possibility of applying a semiring-based framework for Constraint Sat-

isfaction Problems (CSPs) (Bistarelli, Montanari, and Rossi, 1997; Bistarelli et al.,
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1999; Bistarelli and Rossi, 2001) to language processing. The semiring structure pro-

posed by Bistarelli et al. provides an interesting framework for generalising different

classes of CSPs, including classical CSP, Valued CSPs, fuzzy CSPs, weighted CSPs,

and more. Haji-Abdolhosseini (2005) shows that Keller’s Linear Optimality Theory

can be seen as an instance of the class of Semiring-based CSPs (SCSPs). Starting

from these works, it would be interesting to see how Loose Satisfaction fits into the

SCSP framework, and how the different aspects of gradience in natural language that

we have discussed could be modelled in such a framework.
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du français. Presses Universitaires de France.

John R. Ross. 1972. The category squish: Endstation Hauptwort. In P. M. Peranteau,
J. N. Levi, and G. C. Phares., eds., Papers from the eighth regional meeting of the
Chicago Linguistics Society, 316–328.

John R. Ross. 1973. Nouniness. Three Dimensions of Linguistic Research 137–257.
Reprinted in (Aarts et al., 2004, ch. 22).

Daniel Sabin, and Eugene C. Freuder. 1996. Configuration as Composite Constraint
Satisfaction. In George F. Luger., ed., Proceedings of the Artificial Intelligence and
Manufacturing Research Planning Workshop, 153–161. Albuquerque, New Mexico:
AAAI press.
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VanRullen, Guénot, and Bellengier (2003),

3, 46, 68, 98, 239

VanRullen (2005), 3, 48, 50, 68, 69, 92, 97,

98, 108, 130, 147, 155, 165, 183,

188, 190, 221, 224, 239

Vilnat et al. (2003), 153, 239

Vilnat et al. (2004), 153, 239

Wan et al. (2005), 1, 239

Warren and Gibson (2002), 215, 239

Weert, Schrijvers, and Demoen (2005), 106,

239

Weischedel and Sondheimer (1983), 14, 100,

239, 247

Weisstein (2004), 113, 240

Weisstein (2006), 119, 240

5P, 46

acceptability, 43, 160

acceptability judgement, 176

accuracy, 163, 170

analytics, 1

anti-correlation, 195



244 INDEX

Anti-Precision

Index, 191

argument structure, 26

arity

constituent, 111

artifact, 54

assignment, 73

definition, 73

assumption, 110, 111

availability, 98

AVM, 71

capacity, 98

category

syntactic, 46

CDG, 22, 38

characterisation, 3, 46, 47, 62, 68, 72, 89,

93, 109, 114, 118, 122, 124, 136,

139, 143, 222

definition, 90

characterise

to, 46

characteristic, 62

characteristics, 47

chart, 114, 117, 131, 136, 140

chart parsing, 114

CKY, 114

algorithm, 114

coefficient

adjustment, 190

coherence, 193

taxed, 194

cohesion, 127, 130, 131, 147, 159, 168

Completeness, 189, 190

Index, 189

Complexity

constituent structure, 185

complexity, 191

component, 54, 55, 57, 108, 109

component-based architecture, 55

Concurrent Constraint Programming, 57

configuration, 54, 55, 57, 112, 113, 139,

143

labelled, 122

unlabelled, 122, 124

consistency, 69

constituency, 109

constituent, 108

continuous, 111

dominant, 108

poor, 148–150

rich, 148

constituent structure, 108, 109, 126

constraint, 30, 54, 57, 74, 81, 143

defeasible, 69

hard, 185

notion of, 62

propagation, 40

relaxation, 100

soft, 185

system, 90

topological, 39

Constraint Dependency Grammar (CDG),



INDEX 245

38

constraint propagation, 40

constraint ranking, 185

constraint relaxation, 15, 69

constraint satisfaction, 69

loose, 114

Constraint Satisfaction Problem (CSP), 58

constraint system, 46

constraint type, 74

dependency, 75

exclusion, 75

linearity, 75

obligation, 75

requirement, 75

uniqueness, 75

construction, 46, 71, 81, 124, 176

definition in CxG, 26

in CxG, 10

lexical, 72, 136

Construction Grammar, 26

convergence, 186

core, 12

correctness, 107, 112

CSP, 58

cumulativity

Keller, 189

success, 191

cumulativity effect

in LOT, 36

CxG, 10, 72

density

satisfaction, 130

dependency

constraint type, 75, 193

definition, 80

Dependency Grammar, 57

Description, 75, 76

dimension, 47, 58

discourse

domain of, 72

distinct constituents, 110

domain (of discourse), 71, 108

dominance, 108, 109

DP-Table, 134, 135, 138

DP-table, 137

DP-Table, see Dynamic Programming Ta-

ble, 117

dynamic programming, 114, 117

Dynamic Programming Table, 117, 118

dynamic programming table, 114

EASY, 82, 152, 153

evaluation

in OT, 22

exclusion

constraint type, 75

definition, 78

expression, 16, 29, 47

expression fragment, 19

eXtended Dependency Grammar (XDG),

57

fail, 46



246 INDEX

failure-monotonic, 95

faithfullness, OT, 21

feature, 71

structure, 71

feature structure, 46

Fluid Construction Grammar, 27

forest of partial parses, 122, 124, 168, 178

formula, 71, 74

atomic, 70

multi–parametered, 74

FTAG, 208

ganging-up effect, 34

generative grammar, 93

Generative-Enumerative Syntax

Generative-Enumerative Syntax, 13

Generative-Enumerative Syntax (GES), 62

GES, 13, 18, 28, 62

gradation, 43

gradience, v, 2, 6, 8, 9, 163, 170, 173, 188

constructional, 9

intersective, 2, 8, 9, 127, 173, 179

subsective, 2, 8, 173, 179

gradient ascent, 185, 195

grammar, 46

error, 15, 100

generative, 15

grammaticality, 18, 61

gradient, 15

in OT, 24

index, 192

measure, 173

granularity, 184

heuristic, 159

hold, 46

idiomatic structure, 26

IG, see gradience

intersective, 8

ill-formedness, 148

Immediate Dominance, 55

index, 110

constraint, 132

projection, 132

input

deviant, 100

unrestricted, 100

interpretation, 73

definition, 72

function, 72

item, 69

judgement, 124

key, 143

knowledge representation, 108

lacunar property, 98

lexical openness, 14, 19

lexicon, 72

Linear Optimality Theory (LOT), 33, 34

linear order, 108, 109

Linear Precedence, 55

linearity

constraint, 96



INDEX 247

constraint type, 75

definition, 77

property, 96

linguistic preference, 43

LOT, 33, 34

LSCP, 181

complexity, 142

mal-rule, 14, 100

markedness, 12

in OT, 21

mask, 122

measure

grammaticality, 1

memoization, 114, 117, 118, 140

merit, 109, 112, 117

function, 126

merit function, 129

meta-rule

Weischedel and Sondheimer (1983), 14

model, 69

loose, 112

strict, 85

model-theoretic

framework, 100

Model-Theoretic Syntax, 15, 16

Model-Theoretic Syntax (MTS), 62

monotonic, 97

constraint, 95

function, 95

monotonicity, 95, 97

definition, 95

failure-, 95–97

success-, 95, 97

MTS, 28, 46, 47, 62

multi-graph, 108

non-monotonicity, 97

Object Oriented Constraint Programme,

59

obligation

constraint type, 75

definition, 79

optimality

function, 126

Optimality Theory, 21

optimisation, 194

OT, 28

paraconsistency, 69

paradigm, 46

parameter space, 194

parse tree, 110

parsing, 57, 109

parsing process

robustness, 100

parsing strategy, 50

incremental, 50, 98

partition

set, 119, 143

pattern

error, 150

periphery, 12

PG, 46



248 INDEX

PGCxG, 161

phrase

in EASY, 153

phrase structure, 47

port, 54, 55

Precision, 193

Anti-, 191, 193

evaluation measure, 214

Index, 190, 194

Taxed, 191, 194

precision

evaluation measure, 153, 158, 161–163,

170

predicate, 46

special, 75

preference, 125

preference score, 125, 159

production rule, 13, 14, 93

projection, 51, 69, 97, 114, 132, 133

Step, 121, 124

property, 46, 47, 54, 55, 108

Property Grammar, 95

recoverable, 97

selection, 97

Property Grammars, 193

Property Grammars (PG), 46

Property Grammars, logical system, 67

property type, 68

property, filtering, 97

prototype

in CxG, 29

prototypicality, 8

degree of, 8

Quality

Index, 190

quasi-expression, 16, 19, 29, 47, 160

ratio

satisfaction, 188, 190, 191

violation, 188, 191

Recall, 214

recall, 153, 158, 159, 161–163, 170

requirement, 55

constraint type, 75

definition, 77

robustness, 100

rule, 17

error, 100

production, in generative grammar, 93

projection, 69, 81, 140

satisfaction

loose, 69, 91, 110, 186

minimum, 110

process, 100

strict, 69, 85, 91

strict, definition, 85

scope, 184

score

preference, 125

SG, see gradience

subsective, 8

span, 113



INDEX 249

specification, 46, 100

star, 110

statement, 46, 62

valid, 46

structural fragment, 168

structure

composite, 55

phrase, 47

sub-structure, 117, 121, 124, 136

optimal, 117, 119

success-monotonic, 95

symbol

non-logical, 72

syntactic tree, 108

table

lookup, 143, 144

term, 70

theory, 98

threshold, 168

construction-specific, 150, 151

general, 148, 150

satisfaction, 147, 148, 150

token, 69

tree, 93, 108

spanning, 110
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<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE grammaire SYSTEM "grammaire.dtd">
<?xml-stylesheet type="text/xsl" href="grammaire.xsl"?>
<grammaire comment="J-Ph. Prost (October 07)" label="GP 13" type="MULTEXT">
<!-- ************************************************************************************** -->
<!-- ************************************************************************************** -->
<!-- *****************************    G  R  O  U  P  E  S    ************************************** -->
<!-- ************************************************************************************** -->
<!-- ************************************************************************************** -->
<!-- ************************************************************************************** -->

<categorie comment="adjectif et syntagme adjectival" label="A">
<!-- ************************************************************************************** -->

<traits comment="traits de l&apos;adjectif et du syntagme adjectival" label="A_traits">
<trait comment="pos2" label="soucat" type="CARACTERE">

<valeur comment="qualificatif" label="f"/>
<valeur comment="indéfini" label="i"/>
<valeur comment="ordinal" label="o"/>
<valeur comment="possessif" label="s"/>
<valeur comment="cardinal" label="k"/>

</trait>
<trait comment="pos3" label="type" type="CARACTERE">

<valeur comment="comparatif" label="c"/>
<valeur comment="positif" label="p"/>

</trait>
<trait comment="pos4" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
<valeur comment="féminin" label="f"/>

</trait>
<trait comment="pos5" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<propagation label="soucat"/>
<propagation label="type"/>
<propagation label="genre"/>
<propagation label="nombre"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="conjonction" label="C">

<!-- ************************************************************************************** -->
<traits comment="traits de la conjonction" label="C_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="coordination" label="c"/>
<valeur comment="subordination" label="s"/>

</trait>
<propagation comment="pas de trait propagé puisque pas de syntagme" label=""/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="déterminant" label="D">

<!-- ************************************************************************************** -->
<traits comment="traits du déterminant" label="D_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="article?" label="a"/>
<valeur comment="démonstratif" label="d"/>
<valeur comment="indéfini" label="i"/>
<valeur comment="possessif" label="s"/>
<valeur comment="interrogatif" label="t"/>
<valeur comment="cardinal" label="k"/>

</trait>
<trait comment="pos3" label="ordre" type="CARACTERE">

<valeur comment="première personne" label="1"/>
<valeur comment="deuxième personne" label="2"/>
<valeur comment="troisième personne" label="3"/>

</trait>
<trait comment="pos4" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
<valeur comment="féminin" label="f"/>

</trait>
<trait comment="pos5" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<trait comment="pos6" label="possesseur" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<trait comment="pos7" label="resultatFusion" type="CARACTERE">

<valeur comment="défini" label="d"/>
<valeur comment="indéfini" label="i"/>

</trait>
<trait comment="pos8" label="fusionAvecQuoi" type="CARACTERE">

<valeur comment="à + le" label="a"/>
<valeur comment="de + le" label="d"/>

</trait>
<propagation label="soucat"/>
<propagation label="ordre"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="possesseur"/>
<propagation label="resultatFusion"/>
<propagation label="fusionAvecQuoi"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="Nom" label="N">

<!-- ************************************************************************************** -->
<traits comment="traits du nom" label="N_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="commun" label="c"/>
<valeur comment="propre avec déterminant" label="d"/>
<valeur comment="propre sans déterminant" label="p"/>
<valeur comment="latin?" label="l"/>
<valeur comment="cardinal" label="k"/>

</trait>
<trait comment="pos3" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
<valeur comment="féminin" label="f"/>

</trait>
<trait comment="pos4" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<trait comment="pos5" label="sigle" type="CARACTERE">

<valeur comment="sigle (abréviation, etc.)" label="s"/>
</trait>
<trait comment="pos6" label="typeNomPropre" type="CARACTERE">

<valeur comment="pays" label="c"/>
<valeur comment="habitants" label="h"/>
<valeur comment="société" label="s"/>

</trait>
<propagation label="soucat"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="sigle"/>
<propagation label="typeNomPropre"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="pronom" label="P">

<!-- ************************************************************************************** -->
<traits comment="traits du pronom" label="P_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="démonstratif" label="d"/>
<valeur comment="indéfini" label="i"/>
<valeur comment="personnel" label="p"/>
<valeur comment="relatif" label="r"/>
<valeur comment="possessif" label="s"/>
<valeur comment="interrogatif" label="t"/>
<valeur comment="réfléchi" label="x"/>
<valeur comment="cardinal" label="k"/>

</trait>
<trait comment="pos3" label="ordre" type="CARACTERE">

<valeur comment="première personne" label="1"/>
<valeur comment="deuxième personne" label="2"/>
<valeur comment="troisième personne" label="3"/>

</trait>
<trait comment="pos4" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
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<valeur comment="féminin" label="f"/>
</trait>
<trait comment="pos5" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<trait comment="pos6" label="typePronom" type="CARACTERE">

<valeur comment="nominatif" label="n"/>
<valeur comment="accusatif (cod)" label="a"/>
<valeur comment="datif (coi)" label="d"/>
<valeur comment="oblique (le reste)" label="o"/>

</trait>
<trait comment="pos7" label="possesseur" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<propagation label="soucat"/>
<propagation label="ordre"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="typePronom"/>
<propagation label="possesseur"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="adverbe / syntagme adverbial / syntagme prépositionnel" label="R">

<!-- ************************************************************************************** -->
<traits comment="traits de l&apos;adverbe" label="R_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="général" label="g"/>
<valeur comment="particule" label="p"/>

</trait>
<trait comment="pos3" label="type" type="CARACTERE">

<valeur comment="comparatif" label="c"/>
<valeur comment="positif" label="p"/>
<valeur comment="associé à négation" label="d"/>
<valeur comment="négatif" label="n"/>

</trait>
<propagation label="soucat"/>
<propagation label="type"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="préposition" label="S">

<!-- ************************************************************************************** -->
<traits comment="traits de la préposition" label="S_traits">

<trait comment="pos2" label="soucat" type="CARACTERE">
<valeur comment="préposition" label="p"/>

</trait>
<trait comment="pos3" label="type" type="CARACTERE">

<valeur comment="à" label="a"/>
<valeur comment="de" label="d"/>

</trait>
<trait comment="pos4" label="composeur" type="CARACTERE">

<valeur comment="composition" label="+"/>
<valeur comment="pas de composition" label="0"/>

</trait>
<trait comment="pos5" label="categComposeur" type="CARACTERE">

<valeur comment="Déterminant" label="D"/>
<valeur comment="Adjectif" label="A"/>
<valeur comment="Pronom" label="P"/>
<valeur comment="pas de composition" label="0"/>

</trait>
<trait comment="pos6" label="soucatComposeur" type="CARACTERE">

<valeur comment="Déterminant article?" label="a"/>
<valeur comment="Déterminant ou Pronom démonstratif" label="d"/>
<valeur comment="Déterminant ou Adjectif ou Pronom indéfini" label="i"/>
<valeur comment="Déterminant ou Adjectif ou Pronom possessif" label="s"/>
<valeur comment="Déterminant ou Pronom interrogatif" label="t"/>
<valeur comment="Déterminant ou Adjectif ou Pronom cardinal" label="k"/>
<valeur comment="Adjectif qualificatif" label="f"/>
<valeur comment="Adjectif ordinal" label="o"/>
<valeur comment="Pronom personnel" label="p"/>
<valeur comment="Pronom relatif" label="r"/>
<valeur comment="Pronom réfléchi" label="x"/>

<valeur comment="pas de composition" label="0"/>
</trait>
<trait comment="pos7" label="typeComposeur" type="CARACTERE">

<valeur comment="Adjectif comparatif" label="c"/>
<valeur comment="Adjectif positif" label="p"/>
<valeur comment="Déterminant ou Pronom première personne" label="1"/>
<valeur comment="Déterminant ou Pronom deuxième personne" label="2"/>
<valeur comment="Déterminant ou Pronom troisième personne" label="3"/>
<valeur comment="pas de composition" label="0"/>

</trait>
<trait comment="pos8" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
<valeur comment="féminin" label="f"/>
<valeur comment="pas de composition" label="0"/>

</trait>
<trait comment="pos9" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>
<valeur comment="pas de composition" label="0"/>

</trait>
</traits>

</categorie>
<!-- ************************************************************************************** -->

<categorie comment="verbe" label="V">
<!-- ************************************************************************************** -->

<traits comment="traits du verbe" label="V_traits">
<trait comment="pos2" label="soucat" type="CARACTERE">

<valeur comment="principal" label="m"/>
<valeur comment="modal" label="o"/>
<valeur comment="auxiliaire avoir" label="a"/>
<valeur comment="auxiliaire être" label="e"/>

</trait>
<trait comment="pos3" label="mode" type="CARACTERE">

<valeur comment="infinitif" label="n"/>
<valeur comment="indicatif" label="i"/>
<valeur comment="impératif" label="m"/>
<valeur comment="conditionnel" label="c"/>
<valeur comment="subjonctif" label="s"/>
<valeur comment="participe" label="p"/>

</trait>
<trait comment="pos4" label="temps" type="CARACTERE">

<valeur comment="présent" label="p"/>
<valeur comment="passé" label="s"/>
<valeur comment="imparfait" label="i"/>
<valeur comment="futur" label="f"/>

</trait>
<trait comment="pos5" label="ordre" type="CARACTERE">

<valeur comment="première personne" label="1"/>
<valeur comment="deuxième personne" label="2"/>
<valeur comment="troisième personne" label="3"/>

</trait>
<trait comment="pos6" label="nombre" type="CARACTERE">

<valeur comment="singulier" label="s"/>
<valeur comment="pluriel" label="p"/>

</trait>
<trait comment="pos7" label="genre" type="CARACTERE">

<valeur comment="masculin" label="m"/>
<valeur comment="féminin" label="f"/>

</trait>
<propagation label="soucat"/>
<propagation label="mode"/>
<propagation label="temps"/>
<propagation label="ordre"/>
<propagation label="nombre"/>
<propagation label="genre"/>

</traits>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="Noyau Verbal" label="NV">

<!-- ************************************************************************************** -->
<proprietes comment="0.8" label="proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<refCateg comment="verbe" label="V"/>
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</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg label="V">
<refValeur label="soucat" operateur="=" valeur="m"/>
<refValeur label="mode" operateur="=" valeur="p"/>
<refValeur label="temps" operateur="=" valeur="s"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="GN"/>

</membre>
</clause>

</propriete>
<propriete label="exigence">

<clause weight="1">
<membre>

<refCateg label="V">
<refValeur label="mode" operateur="=" valeur="p"/>
<refValeur label="temps" operateur="=" valeur="s"/>

</refCateg>
</membre>
<membre>

<operationLogique label="OU">
<refCateg label="V">

<refValeur label="soucat" operateur="=" valeur="a"/>
</refCateg>
<refCateg label="V">

<refValeur label="soucat" operateur="=" valeur="e"/>
</refCateg>

</operationLogique>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V">

<refValeur label="soucat" operateur="=" valeur="o"/>
</refCateg>

</membre>
<membre>

<refCateg label="V">
<refValeur label="mode" operateur="=" valeur="n"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V">

<refValeur label="soucat" operateur="=" valeur="a"/>
</refCateg>

</membre>
<membre>

<refCateg label="V">
<refValeur label="mode" operateur="=" valeur="p"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V">

<refValeur label="soucat" operateur="=" valeur="e"/>
</refCateg>

</membre>
<membre>

<refCateg label="V">
<refValeur label="mode" operateur="=" valeur="p"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="exclusion">
<clause weight="1">

<membre>
<refCateg label="P">

<refValeur label="typePronom" operateur="=" valeur="a"/>
</refCateg>

</membre>
<membre>

<refCateg label="GN"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="P">

<refValeur label="typePronom" operateur="=" valeur="d"/>
</refCateg>

</membre>
<membre>

<refCateg label="P">
<refValeur label="typePronom" operateur="=" valeur="a"/>

</refCateg>
</membre>

</clause>
</propriete>
<propriete label="linearite">

<clause weight="1">
<membre>

<refCateg label="V"/>
</membre>
<membre>

<refCateg label="GN"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V"/>

</membre>
<membre>

<refCateg label="R"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V"/>

</membre>
<membre>

<refCateg label="GP"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="V"/>

</membre>
<membre>

<refCateg label="Compl"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>

</refCateg>
</membre>
<membre>

<refCateg comment="adverbe" label="R"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>

</refCateg>
</membre>
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<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="accusatif" label="typePronom" operateur="=" valeur="a"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="datif" label="typePronom" operateur="=" valeur="d"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="adverbe" label="R"/>

</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="accusatif" label="typePronom" operateur="=" valeur="a"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="adverbe" label="R"/>

</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="datif" label="typePronom" operateur="=" valeur="d"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="adverbe" label="R"/>

</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>

</refCateg>
</membre>

</clause>
</propriete>
<propriete comment="modif TV: il manque les OU" label="dependance">

<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">
<membre>

<refCateg comment="verbe" label="V">
<refValeur comment="pas un participe" label="mode" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="i"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="m"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="c"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="s"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="n"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="i"/>
<refTrait label="ordre"/>

</refCateg>
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</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="m"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="c"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="s"/>
<refTrait label="ordre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="ordre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="i"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>

<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="m"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="c"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="s"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="nominatif" label="typePronom" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="n"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="i"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="nombre"/>
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</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="m"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="c"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés" weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="pas un participe" label="mode" operateur="=" valeur="s"/>
<refTrait label="nombre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="pronom" label="P">
<refValeur comment="réfléchi" label="soucat" operateur="=" valeur="x"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="groupe nominal" label="GN">

<!-- ************************************************************************************** -->
<traits comment="traits du groupe nominal" label="GN_traits"/>
<proprietes comment="0.8" label="proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<operationLogique label="OU">

<refCateg comment="nom" label="N"/>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
</refCateg>
<refCateg comment="pronom" label="P">

<refValeur comment="démonstratif" label="soucat" operateur="=" valeur="d"/>
</refCateg>
<refCateg comment="pronom" label="P">

<refValeur comment="indéfini" label="soucat" operateur="=" valeur="i"/>
</refCateg>
<refCateg comment="pronom" label="P">

<refValeur comment="relatif" label="soucat" operateur="=" valeur="r"/>
</refCateg>
<refCateg comment="pronom" label="P">

<refValeur comment="possessif" label="soucat" operateur="=" valeur="s"/>
</refCateg>
<refCateg comment="pronom" label="P">

<refValeur comment="interrogatif" label="soucat" operateur="=" valeur="t"/>

</refCateg>
<refCateg comment="adjectif" label="GA"/>
<refCateg label="Compl"/>

</operationLogique>
</membre>

</clause>
</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg comment="Nom" label="N"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="Det" label="D"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg label="Compl"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg label="Rel"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="personnel" label="soucat" operateur="=" valeur="p"/>
<refValeur comment="oblique" label="typePronom" operateur="=" valeur="o"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="démonstratif" label="soucat" operateur="=" valeur="d"/>
</refCateg>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="indéfini" label="soucat" operateur="=" valeur="i"/>
</refCateg>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="relatif" label="soucat" operateur="=" valeur="r"/>
</refCateg>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="possessif" label="soucat" operateur="=" valeur="s"/>
</refCateg>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur comment="interrogatif" label="soucat" operateur="=" valeur="t"/>
</refCateg>

</membre>
</clause>

</propriete>
<propriete label="exigence">

<clause weight="1">
<membre>
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<refCateg comment="Nom" label="N">
<refValeur label="soucat" operateur="=" valeur="c"/>

</refCateg>
</membre>
<membre>

<refCateg comment="det" label="D"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="Nom" label="N">

<refValeur label="soucat" operateur="=" valeur="d"/>
</refCateg>

</membre>
<membre>

<refCateg comment="det" label="D"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="Nom" label="N">

<refValeur label="soucat" operateur="=" valeur="k"/>
</refCateg>

</membre>
<membre>

<refCateg comment="det" label="D"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="adjectif" label="GA"/>

</membre>
<membre>

 <operationLogique label="OU">
<refCateg comment="det" label="D"/> 
<refCateg comment="nom" label="N"/>
 <refCateg comment="préposition" label="S">

<refValeur comment="composee avec déterminant" label="categComposeur" operateur="=" 
valeur="D"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>
<propriete label="exclusion">

<clause weight="1">
<membre>

<refCateg comment="nom" label="N"/>
</membre>
<membre>

<refCateg comment="pronom" label="P"/>
</membre>

</clause>
</propriete>
<propriete label="linearite">

<clause weight="1">
<membre>

<refCateg comment="déterminant" label="D"/>
</membre>
<membre>

<refCateg comment="nom" label="N"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="déterminant" label="D"/>

</membre>
<membre>

<refCateg comment="pronom" label="P"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="déterminant" label="D"/>

</membre>

<membre>
<refCateg comment="adjectif" label="GA"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg label="N"/>

</membre>
<membre>

<refCateg label="Rel"/>
</membre>

</clause>
</propriete>
<propriete label="dependance">

<clause weight="1">
<membre>

<refCateg comment="nom" label="N">
<refTrait label="genre"/>

</refCateg>
</membre>
<membre>

<refCateg comment="det" label="D">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="nom" label="N">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg comment="det" label="D">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="groupe prépositionnel" label="GP">

<!-- ************************************************************************************** -->
<proprietes comment="0.7" label="proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<refCateg comment="préposition" label="S"/>

</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg comment="préposition" label="S"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="Groupe nominal" label="GN"/>

</membre>
</clause>

</propriete>
<propriete label="exigence">

<clause comment="correction v.1.4" weight="1">
<membre>

<refCateg comment="prep" label="S"/>
</membre>
<membre>

<refCateg label="GN"/>
</membre>

</clause>
</propriete>
<propriete label="linearite">
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<clause weight="1">
<membre>

<refCateg comment="préposition" label="S"/>
</membre>
<membre>

<refCateg comment="groupe nominal" label="GN"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="préposition" label="S"/>

</membre>
<membre>

<refCateg comment="noyau verbal" label="NV"/>
</membre>

</clause>
</propriete>
<propriete label="dependance">

<clause weight="1">
<membre>

<refCateg label="GN"/>
</membre>
<membre>

<refCateg label="S"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="groupe adjectival" label="GA">

<!-- ************************************************************************************** -->
<proprietes comment="0.5" label="proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<operationLogique label="OU">
<refCateg comment="adjectif" label="A"/>
<refCateg comment="verbe" label="V">

<refValeur comment="participe" label="mode" operateur="=" valeur="p"/>
<refValeur comment="temps" label="temps" operateur="=" valeur="s"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg comment="adjectif" label="A"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="verbe" label="V">

<refValeur comment="participe" label="mode" operateur="=" valeur="p"/>
<refValeur comment="temps" label="temps" operateur="=" valeur="s"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="adverbe" label="R"/>

</membre>
</clause>

</propriete>
<propriete label="exclusion">

<clause weight="1">
<membre>

<refCateg comment="adjectif" label="A"/>
</membre>
<membre>

<refCateg comment="verbe" label="V">
<refValeur comment="participe" label="mode" operateur="=" valeur="p"/>
<refValeur comment="temps" label="temps" operateur="=" valeur="s"/>

</refCateg>
</membre>

</clause>
</propriete>
<propriete label="linearite">

<clause weight="1">
<membre>

<refCateg comment="adverbe" label="R"/>
</membre>
<membre>

<refCateg comment="adjectif" label="A"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="Proposition relative" label="Rel">

<!-- ************************************************************************************** -->
<traits label="Pas de traits pour la categorie Relative"/>
<proprietes comment="0.9" label="proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<refCateg comment="pronom" label="P">

<refValeur label="soucat" operateur="=" valeur="r"/>
</refCateg>

</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg comment="pronom" label="P">
<refValeur label="soucat" operateur="=" valeur="r"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg comment="phrase" label="S"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg comment="noyau verbal" label="NV"/>

</membre>
</clause>

</propriete>
<propriete label="exclusion">

<clause weight="1">
<membre>

<refCateg comment="phrase" label="S"/>
</membre>
<membre>

<refCateg comment="Noyau verbal" label="NV"/>
</membre>

</clause>
</propriete>
<propriete label="linearite">

<clause weight="1">
<membre>

<refCateg label="P">
<refValeur label="soucat" operateur="=" valeur="r"/>

</refCateg>
</membre>
<membre>

<refCateg label="Ut"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="P">

<refValeur label="soucat" operateur="=" valeur="r"/>
</refCateg>
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</membre>
<membre>

<refCateg label="NV"/>
</membre>

</clause>
</propriete>
<propriete label="exigence">

<clause weight="1">
<membre>

<refCateg label="Ut"/>
</membre>
<membre>

<refCateg label="P">
<refValeur label="soucat" operateur="=" valeur="r"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="NV"/>

</membre>
<membre>

<refCateg label="P">
<refValeur label="soucat" operateur="=" valeur="r"/>

</refCateg>
</membre>

</clause>
</propriete>
<propriete label="dependance">

<clause weight="1">
<membre>

<refCateg label="Ut"/>
</membre>
<membre>

<refCateg label="P">
<refValeur label="soucat" operateur="=" valeur="r"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="NV"/>

</membre>
<membre>

<refCateg label="P">
<refValeur label="soucat" operateur="r" valeur="="/>

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
  <categorie comment="Coordination Nominale" label="CN">
<!-- ************************************************************************************** -->
    <traits comment="Traits du CN" label="S_Traits"/>
    <proprietes comment="1" label="Proprietes">
      <propriete label="obligation">
        <clause weight="1">
          <membre>
            <refCateg label="C"/>
          </membre>
        </clause>
      </propriete>
      <propriete label="exigence">
        <clause weight="1">
          <membre>
            <refCateg label="N"/>
          </membre>
          <membre>
            <refCateg label="N"/>
          </membre>
        </clause>
        <clause weight="1">
          <membre>

            <refCateg label="GN"/>
          </membre>
          <membre>
            <refCateg label="GN"/>
          </membre>
        </clause>
      </propriete>
    </proprietes>
  </categorie>
<!-- ************************************************************************************** -->

<categorie comment="Enoncé" label="Ut">
<!-- ************************************************************************************** -->

<traits comment="Traits de la phrase" label="S_Traits"/>
<proprietes comment="0.7" label="Proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<refCateg label="NV"/>

</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg label="NV"/>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="GN"/>

</membre>
</clause>

</propriete>
<propriete label="linearite">

        <clause weight="1">
          <membre>
            <refCateg label="CN"/>
          </membre>
          <membre>
            <refCateg label="NV"/>
          </membre>
        </clause>

<clause weight="1">
<membre>

<refCateg label="GN"/>
</membre>
<membre>

<refCateg label="NV"/>
</membre>

</clause>
</propriete>
<propriete label="dependance">

<clause weight="1">
<membre>

<refCateg label="GN"/>
</membre>
<membre>

<refCateg label="NV"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ************************************************************************************** -->
<categorie comment="" label="Compl">

<!-- ************************************************************************************** -->
<traits label="Compl_traits"/>
<proprietes comment="0.9" label="Proprietes">

<propriete label="obligation">
<clause weight="1">

<membre>
<operationLogique label="OU">

<refCateg label="C">
<refValeur label="soucat" operateur="=" valeur="s"/>

</refCateg>
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<refCateg label="S">
<refValeur label="type" operateur="=" valeur="d"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>
<propriete label="unicite">

<clause weight="1">
<membre>

<refCateg label="C">
<refValeur label="soucat" operateur="=" valeur="s"/>

</refCateg>
</membre>

</clause>
<clause weight="1">

<membre>
<refCateg label="S">

<refValeur label="type" operateur="=" valeur="d"/>
</refCateg>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg label="NV"/>

</membre>
</clause>
<clause weight="1">

<membre>
<refCateg label="Ut"/>

</membre>
</clause>

</propriete>
<propriete label="exclusion">

<clause weight="1">
<membre>

<refCateg label="NV"/>
</membre>
<membre>

<refCateg label="Ut"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

</grammaire>
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Appendix B

PG EASY Grammar
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<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE grammaire SYSTEM "grammaire.dtd">
<?xml-stylesheet type="text/xsl" href="grammaire.xsl"?>
<grammaire label="Grammaire de Propriétés EASY" comment="J-Ph. Prost (March 07) ; ML Guénot, T VanRullen | 14-09-2004 | version 
2" type="MULTEXT">

<!-- ***************************************************************************************** -->
<!-- ***************************************************************************************** -->
<!-- *****************************    G  R  O  U  P  E  S    *************************************** -->
<!-- ***************************************************************************************** -->
<!-- ***************************************************************************************** -->

<!-- ***************************************************************************************** -->
<categorie label="A" comment="adjectif et syntagme adjectival">

<!-- ***************************************************************************************** -->

<traits label="A_traits" comment="traits de l'adjectif et du syntagme adjectival">
<trait label="soucat" comment="pos2">

<valeur label="f" comment="qualificatif"/>
<valeur label="i" comment="indéfini"/>
<valeur label="o" comment="ordinal"/>
<valeur label="s" comment="possessif"/>
<valeur label="k" comment="cardinal"/>

</trait>
<trait label="type" comment="pos3">

<valeur label="c" comment="comparatif"/>
<valeur label="p" comment="positif"/>

</trait>
<trait label="genre" comment="pos4">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>

</trait>
<trait label="nombre" comment="pos5">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<propagation label="soucat"/>
<propagation label="type"/>
<propagation label="genre"/>
<propagation label="nombre"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="C" comment="conjonction">

<!-- ***************************************************************************************** -->

<traits label="C_traits" comment="traits de la conjonction"> 
<trait label="soucat" comment="pos2">

<valeur label="c" comment="coordination"/>
<valeur label="s" comment="subordination"/>

</trait>
<propagation label="" comment="pas de trait propagé puisque pas de syntagme"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="D" comment="déterminant">

<!-- ***************************************************************************************** -->

<traits label="D_traits" comment="traits du déterminant">
<trait label="soucat" comment="pos2">

<valeur label="a" comment="article?"/>
<valeur label="d" comment="démonstratif"/>
<valeur label="i" comment="indéfini"/>
<valeur label="s" comment="possessif"/>
<valeur label="t" comment="interrogatif"/>
<valeur label="k" comment="cardinal"/>

</trait>
<trait label="ordre" comment="pos3">

<valeur label="1" comment="première personne"/>
<valeur label="2" comment="deuxième personne"/>
<valeur label="3" comment="troisième personne"/>

</trait>
<trait label="genre" comment="pos4">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>

</trait>
<trait label="nombre" comment="pos5">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="possesseur" comment="pos6">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="resultatFusion" comment="pos7">

<valeur label="d" comment="défini"/>
<valeur label="i" comment="indéfini"/>

</trait>
<trait label="fusionAvecQuoi" comment="pos8">

<valeur label="a" comment="à + le"/>
<valeur label="d" comment="de + le"/>

</trait>
<propagation label="soucat"/>
<propagation label="ordre"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="possesseur"/>
<propagation label="resultatFusion"/>
<propagation label="fusionAvecQuoi"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="N" comment="Nom">

<!-- ***************************************************************************************** -->

<traits label="N_traits" comment="traits du nom">
<trait label="soucat" comment="pos2">

<valeur label="c" comment="commun"/>
<valeur label="d" comment="propre avec déterminant"/>
<valeur label="p" comment="propre sans déterminant"/>
<valeur label="l" comment="latin?"/>
<valeur label="k" comment="cardinal"/>

</trait>
<trait label="genre" comment="pos3">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>

</trait>
<trait label="nombre" comment="pos4">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="sigle" comment="pos5">

<valeur label="s" comment="sigle (abréviation, etc.)"/>
</trait>
<trait label="typeNomPropre" comment="pos6">

<valeur label="c" comment="pays"/>
<valeur label="h" comment="habitants"/>
<valeur label="s" comment="société"/>

</trait>
<propagation label="soucat"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="sigle"/>
<propagation label="typeNomPropre"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="P" comment="pronom">

<!-- ***************************************************************************************** -->

<traits label="P_traits" comment="traits du pronom">
<trait label="soucat" comment="pos2">

<valeur label="d" comment="démonstratif"/>
<valeur label="i" comment="indéfini"/>
<valeur label="p" comment="personnel"/>
<valeur label="r" comment="relatif"/>
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<valeur label="s" comment="possessif"/>
<valeur label="t" comment="interrogatif"/>
<valeur label="x" comment="réfléchi"/>
<valeur label="k" comment="cardinal"/>

</trait>
<trait label="ordre" comment="pos3">

<valeur label="1" comment="première personne"/>
<valeur label="2" comment="deuxième personne"/>
<valeur label="3" comment="troisième personne"/>

</trait>
<trait label="genre" comment="pos4">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>

</trait>
<trait label="nombre" comment="pos5">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="typePronom" comment="pos6">

<valeur label="n" comment="nominatif"/>
<valeur label="a" comment="accusatif (cod)"/>
<valeur label="d" comment="datif (coi)"/>
<valeur label="o" comment="oblique (le reste)"/>

</trait>
<trait label="possesseur" comment="pos7">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<propagation label="soucat"/>
<propagation label="ordre"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="typePronom"/>
<propagation label="possesseur"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="R" comment="adverbe / syntagme adverbial / syntagme prépositionnel">

<!-- ***************************************************************************************** -->

<traits label="R_traits" comment="traits de l'adverbe">
<trait label="soucat" comment="pos2">

<valeur label="g" comment="général"/>
<valeur label="p" comment="particule"/>

</trait>
<trait label="type" comment="pos3">

<valeur label="c" comment="comparatif"/>
<valeur label="p" comment="positif"/>
<valeur label="d" comment="associé à négation"/>
<valeur label="n" comment="négatif"/>

</trait>
<propagation label="soucat"/>
<propagation label="type"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="S" comment="préposition">

<!-- ***************************************************************************************** -->

<traits label="S_traits" comment="traits de la préposition">
<trait label="soucat" comment="pos2">

<valeur label="p" comment="préposition"/>
</trait>
<trait label="type" comment="pos3">

<valeur label="a" comment="à"/>
<valeur label="d" comment="de"/>

</trait>
<trait label="composeur" comment="pos4">

<valeur label="+" comment="composition"/>
<valeur label="0" comment="pas de composition"/>

</trait>
<trait label="categComposeur" comment="pos5">

<valeur label="D" comment="Déterminant"/>

<valeur label="A" comment="Adjectif"/>
<valeur label="P" comment="Pronom"/>
<valeur label="0" comment="pas de composition"/>

</trait>
<trait label="soucatComposeur" comment="pos6">

<valeur label="a" comment="Déterminant article?"/>
<valeur label="d" comment="Déterminant ou Pronom démonstratif"/>
<valeur label="i" comment="Déterminant ou Adjectif ou Pronom indéfini"/>
<valeur label="s" comment="Déterminant ou Adjectif ou Pronom possessif"/>
<valeur label="t" comment="Déterminant ou Pronom interrogatif"/>
<valeur label="k" comment="Déterminant ou Adjectif ou Pronom cardinal"/>
<valeur label="f" comment="Adjectif qualificatif"/>
<valeur label="o" comment="Adjectif ordinal"/>
<valeur label="p" comment="Pronom personnel"/>
<valeur label="r" comment="Pronom relatif"/>
<valeur label="x" comment="Pronom réfléchi"/>
<valeur label="0" comment="pas de composition"/>

</trait>
<trait label="typeComposeur" comment="pos7">

<valeur label="c" comment="Adjectif comparatif"/>
<valeur label="p" comment="Adjectif positif"/>
<valeur label="1" comment="Déterminant ou Pronom première personne"/>
<valeur label="2" comment="Déterminant ou Pronom deuxième personne"/>
<valeur label="3" comment="Déterminant ou Pronom troisième personne"/>
<valeur label="0" comment="pas de composition"/>

</trait>
<trait label="genre" comment="pos8">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>
<valeur label="0" comment="pas de composition"/>

</trait>
<trait label="nombre" comment="pos9">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>
<valeur label="0" comment="pas de composition"/>

</trait>
</traits>

</categorie>

<!-- ***************************************************************************************** -->
<categorie label="V" comment="verbe">

<!-- ***************************************************************************************** -->

<traits label="V_traits" comment="traits du verbe">
<trait label="soucat" comment="pos2">

<valeur label="m" comment="principal"/>
<valeur label="o" comment="modal"/>
<valeur label="a" comment="auxiliaire avoir"/>
<valeur label="e" comment="auxiliaire être"/>

</trait>
<trait label="mode" comment="pos3">

<valeur label="n" comment="infinitif"/>
<valeur label="i" comment="indicatif"/>
<valeur label="m" comment="impératif"/>
<valeur label="c" comment="conditionnel"/>
<valeur label="s" comment="subjonctif"/>
<valeur label="p" comment="participe"/>

</trait>
<trait label="temps" comment="pos4">

<valeur label="p" comment="présent"/>
<valeur label="s" comment="passé"/>
<valeur label="i" comment="imparfait"/>
<valeur label="f" comment="futur"/>

</trait>
<trait label="ordre" comment="pos5">

<valeur label="1" comment="première personne"/>
<valeur label="2" comment="deuxième personne"/>
<valeur label="3" comment="troisième personne"/>

</trait>
<trait label="nombre" comment="pos6">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="genre" comment="pos7">

<valeur label="m" comment="masculin"/>
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<valeur label="f" comment="féminin"/>
</trait>
<propagation label="soucat"/>
<propagation label="mode"/>
<propagation label="temps"/>
<propagation label="ordre"/>
<propagation label="nombre"/>
<propagation label="genre"/>

</traits>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="NV" comment="Noyau Verbal">

<!-- ***************************************************************************************** -->

<proprietes label="proprietes" comment="">
<propriete label="obligation">

<clause>
<membre>

<refCateg label="V" comment="verbe"/>
</membre>

</clause>
</propriete>

<propriete label="facultativite">
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="j" comment="accusatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="d" comment="datif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="general"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="type" operateur="=" valeur="n" comment="negation"/>
</refCateg>

</membre>
</clause>

</propriete>

<propriete label="unicite">
<clause>

<membre>

<refCateg label="V" comment="verbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="j" comment="accusatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="d" comment="datif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="exigence">
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
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<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>
</refCateg>

</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="exclusion">
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
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<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="p" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="p" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="p" comment="non infinitif"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="linearite">
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adverbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>

<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
</refCateg>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="a" comment="accusatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="d" comment="datif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="a" comment="accusatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="d" comment="datif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="V" comment="verbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>
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</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="dependance" comment="modif TV: il manque les OU">
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="n" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>

<refTrait label="ordre"/> 
</refCateg>

</membre>
</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="n" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
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</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="pas un participe"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="n" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="n" comment="nominatif"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="n" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="i" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="m" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="c" comment="pas un participe"/>
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<refTrait label="nombre"/> 
</refCateg>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
<clause comment="ajout TV: les verbes au participe ne sont pas concernés">

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="s" comment="pas un participe"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="GN" comment="groupe nominal">

<!-- ***************************************************************************************** -->
<traits label="N_traits" comment="traits du nom">

<trait label="soucat" comment="pos2">
<valeur label="c" comment="commun"/>
<valeur label="d" comment="propre avec déterminant"/>
<valeur label="p" comment="propre sans déterminant"/>
<valeur label="l" comment="latin?"/>
<valeur label="k" comment="cardinal"/>

</trait>
<trait label="genre" comment="pos3">

<valeur label="m" comment="masculin"/>
<valeur label="f" comment="féminin"/>

</trait>
<trait label="nombre" comment="pos4">

<valeur label="s" comment="singulier"/>
<valeur label="p" comment="pluriel"/>

</trait>
<trait label="sigle" comment="pos5">

<valeur label="s" comment="sigle (abréviation, etc.)"/>
</trait>
<trait label="typeNomPropre" comment="pos6">

<valeur label="c" comment="pays"/>
<valeur label="h" comment="habitants"/>
<valeur label="s" comment="société"/>

</trait>
<propagation label="soucat"/>
<propagation label="genre"/>
<propagation label="nombre"/>
<propagation label="sigle"/>
<propagation label="typeNomPropre"/>

</traits>
<proprietes label="proprietes">

<propriete label="obligation">
<clause>

<membre>
<operationLogique label="OU">

<refCateg label="N" comment="nom"/>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="d" comment="démonstratif"/>
</refCateg>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="i" comment="indéfini"/>
</refCateg>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
</refCateg>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="s" comment="possessif"/>
</refCateg>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="t" comment="interrogatif"/>
</refCateg>
<refCateg label="A" comment="adjectif"/>

</operationLogique>
</membre>

</clause>
</propriete>
<propriete label="unicite">

<clause>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="d" comment="démonstratif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="i" comment="indéfini"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="s" comment="possessif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="t" comment="interrogatif"/>
</refCateg>

</membre>
</clause>

</propriete>
<propriete label="facultativite">

<clause>
<membre>

<refCateg label="D" comment="det"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition">

<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 
déterminant"/>

</refCateg>
</membre>
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</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refValeur label="soucat" operateur="=" valeur="p" comment="propre"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="#" valeur="p" comment="non particule"/>
<refValeur label="type" operateur="#" valeur="n" comment="non négatif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="exigence">
<clause> 

<membre>
<refCateg label="A" comment="adjectif"/>

</membre>
<membre>

<operationLogique label="OU">
<refCateg label="D" comment="det"/>
<refCateg label="N" comment="nom"/>
<refCateg label="S" comment="préposition">

<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 
déterminant"/>

</refCateg>
</operationLogique>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="A" comment="adj"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="A" comment="adj"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>
<membre>

<refCateg label="A" comment="adj"/>
</membre>

</clause>
</propriete>

<propriete label="exclusion">

<clause> 
<membre>

<refCateg label="N" comment="nom">
<refValeur label="soucat" operateur="=" valeur="c" comment="non propre"/>

</refCateg>
</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause> 

<membre>
<refCateg label="N" comment="nom">

<refValeur label="soucat" operateur="=" valeur="d" comment="non propre"/>
</refCateg>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause> 

<membre>
<refCateg label="N" comment="nom">

<refValeur label="soucat" operateur="=" valeur="l" comment="non propre"/>
</refCateg>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause> 

<membre>
<refCateg label="N" comment="nom">

<refValeur label="soucat" operateur="=" valeur="k" comment="non propre"/>
</refCateg>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
</propriete>

<propriete label="linearite">
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="P" comment="pronom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="R" comment="adverbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
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<clause>
<membre>

<refCateg label="S" comment="préposition">
<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 

déterminant"/>
</refCateg>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition">

<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 
déterminant"/>

</refCateg>
</membre>
<membre>

<refCateg label="P" comment="pronom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition">

<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 
déterminant"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adverbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition">

<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 
déterminant"/>

</refCateg>
</membre>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="A" comment="adj"/>
</membre>

</clause>
</propriete>

<propriete label="dependance">
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="genre"/>

</refCateg>
</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="S" comment="préposition">
<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 

déterminant"/>
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adj">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="S" comment="préposition">
<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 

déterminant"/>
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adj">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">
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<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="S" comment="préposition">
<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 

déterminant"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adj">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="S" comment="préposition">
<refValeur label="categComposeur" operateur="=" valeur="D" comment="composee avec 

déterminant"/>
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adj">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adj">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>

</categorie>

<!-- ***************************************************************************************** -->
<categorie label="GP" comment="groupe prépositionnel">

<!-- ***************************************************************************************** -->

<proprietes label="proprietes">
<propriete label="obligation">

<clause>
<membre>

<operationLogique label="OU">
<refCateg label="S" comment="préposition"/>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>

<propriete label="facultativite">
<clause>

<membre>
<refCateg label="N" comment="nom">

<refValeur label="soucat" operateur="#" valeur="p" comment="nom non propre"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="d" comment="démonstratif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="i" comment="indéfini"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="s" comment="possessif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="t" comment="interrogatif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="A" comment="adj"/>
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</membre>
</clause>
<clause>

<membre>
<refCateg label="D" comment="det"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adv">

<refValeur label="soucat" operateur="#" valeur="p" comment="non particule"/>
<refValeur label="type" operateur="#" valeur="n" comment="non négatif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="unicite">
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="N" comment="nom"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="d" comment="démonstratif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="i" comment="indéfini"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="s" comment="possessif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="t" comment="interrogatif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="D" comment="det"/>

</membre>

</clause>
</propriete>

<propriete label="exigence" comment="correction v.1.5: suppression de N#p=>D">
<clause>

<membre>
<refCateg label="A" comment="adj"/>

</membre>
<membre>

<operationLogique label="OU">
<refCateg label="D" comment="det"/>
<refCateg label="N" comment="nom"/>

</operationLogique>
</membre>

</clause>
<clause comment="correction v.1.4">

<membre>
<refCateg label="S" comment="prep"/>

</membre>
<membre>

<operationLogique label="OU">
<refCateg label="N" comment="nom"/>
<refCateg label="P" comment="pronom"/>
<refCateg label="R" comment="adv">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
<refCateg label="R" comment="adv">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
<refCateg label="R" comment="adv">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>

<propriete label="exclusion">
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="r" comment="relatif"/>
<refValeur label="typePronom" operateur="=" valeur="o" comment="oblique"/>

</refCateg>
</membre>
<membre>

<operationLogique label="OU">
<refCateg label="N" comment="nom"/>
<refCateg label="P" comment="pronom"/>
<refCateg label="A" comment="adjectif"/>
<refCateg label="D" comment="déterminant"/>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
<refCateg label="R" comment="adverbe">

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</operationLogique>

</membre>
</clause>

</propriete>

<propriete label="linearite">
<clause>

<membre>
<refCateg label="S" comment="préposition"/>
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</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="P" comment="pronom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="D" comment="déterminant"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="préposition"/>

</membre>
<membre>

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="P" comment="pronom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="R" comment="adverbe"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="D" comment="déterminant"/>

</membre>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif"/>

</membre>
<membre>

<refCateg label="N" comment="nom"/>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adverbe"/>

</membre>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
</propriete>

<propriete label="dependance">
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adjectif">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif">

<refTrait label="genre"/>
</refCateg>
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</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif">

<refTrait label="genre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adjectif">
<refTrait label="genre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="N" comment="nom">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adjectif">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="D" comment="det">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="A" comment="adjectif">

<refTrait label="nombre"/>
</refCateg>

</membre>
<membre>

<refCateg label="A" comment="adjectif">
<refTrait label="nombre"/>

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="GA" comment="groupe adjectival">

<!-- ***************************************************************************************** -->

<proprietes label="proprietes">
<propriete label="obligation">

<clause>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
</propriete>
<propriete label="unicite">

<clause>
<membre>

<refCateg label="A" comment="adjectif"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="GR" comment="groupe adverbial">

<!-- ***************************************************************************************** -->
<proprietes label="proprietes">

<propriete label="obligation">
<clause>

<membre>
<operationLogique label="OU">

<refCateg label="R" comment="adverbe">
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>

</refCateg>
<refCateg label="R" comment="adverbe">

<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>
</refCateg>
<refCateg label="R" comment="adverbe">

<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>
</refCateg>
<refCateg label="R" comment="adverbe">

<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>
</refCateg>

</operationLogique>
</membre>

</clause>
</propriete>
<propriete label="unicite">

<clause>
<membre>

<refCateg label="R" comment="adverbe"/>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

<!-- ***************************************************************************************** -->
<categorie label="PV" comment="groupe adverbial introduit par une préposition">

<!-- ***************************************************************************************** -->
<proprietes label="proprietes">

<propriete label="obligation">
<clause>

<membre>
<refCateg label="S" comment="prep"/>

</membre>
</clause>

</propriete>

<propriete label="facultativite">
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
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<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="p" comment="participe"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="#" valeur="o" comment="non oblique"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"/>

</membre>
</clause>

</propriete>

<propriete label="unicite">
<clause>

<membre>
<refCateg label="S" comment="prep"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe"/>

</membre>
</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="j" comment="accusatif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="p" comment="personnel"/>
<refValeur label="typePronom" operateur="=" valeur="d" comment="datif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom">

<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/>
</refCateg>

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"/>

</membre>
</clause>

</propriete>

<propriete label="exigence">
<clause>

<membre>
<refCateg label="S" comment="prep"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 

</membre>
</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="n" comment="infinitif"/>

</refCateg>
</membre>

</clause>
</propriete>

<propriete label="exclusion">
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="p" comment="participe"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
<clause>

<membre>
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<refCateg label="V" comment="verbe">
<refValeur label="mode" operateur="=" valeur="p" comment="participe"/>

</refCateg>
</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refValeur label="mode" operateur="=" valeur="p" comment="participe"/>
</refCateg>

</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
</propriete>

<propriete label="linearite">
<clause>

<membre>
<refCateg label="S" comment="prep"/> 

</membre>
<membre>

<refCateg label="R" comment="adv"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="prep"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="S" comment="prep"/> 

</membre>
<membre>

<refCateg label="P" comment="pronom"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"/> 

</membre>
<membre>

<refCateg label="P" comment="pronom"/> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="c" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="p" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="R" comment="adv"> 

<refValeur label="soucat" operateur="=" valeur="p" comment="particule"/>
<refValeur label="type" operateur="=" valeur="n" comment="négatif"/>

</refCateg> 
</membre>
<membre>

<refCateg label="R" comment="adv"> 
<refValeur label="soucat" operateur="=" valeur="g" comment="non particule"/>
<refValeur label="type" operateur="=" valeur="d" comment="non négatif"/>

</refCateg> 
</membre>

</clause>
<clause>

<membre>
<refCateg label="P" comment="pronom"/> 

</membre>
<membre>

<refCateg label="V" comment="verbe"/> 
</membre>

</clause>
</propriete>

<propriete label="dependance">
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refTrait label="ordre"/> 
</refCateg>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/> 
<refTrait label="ordre"/> 

</refCateg>
</membre>

</clause>
<clause>

<membre>
<refCateg label="V" comment="verbe">

<refTrait label="nombre"/> 
</refCateg>

</membre>
<membre>

<refCateg label="P" comment="pronom">
<refValeur label="soucat" operateur="=" valeur="x" comment="réfléchi"/> 
<refTrait label="nombre"/> 

</refCateg>
</membre>

</clause>
</propriete>

</proprietes>
</categorie>

</grammaire>
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Évaluation syntaxique : consignes aux évaluateurs

Jean-Philippe Prost

1 Contexte

L’objet de l’opération est d’évaluer la sortie d’un outil informatique d’analyse
syntaxique. Cet outil a pour but de construire un arbre syntaxique pour un
énoncé quelconque, potentiellement malformé. Cet arbre syntaxique doit être
complet (c’est-à-dire avec une racine unique), et constituer une analyse plausible
sur le plan syntaxique.

2 Description de la tâche

Une liste de phrases, indépendantes les unes des autres, chacune annotée d’un ar-
bre syntaxique1, vous est présentée. La question à laquelle vous devez répondre,
pour chaque phrase envisagée, est la suivante :

l’arbre syntaxique proposé constitue-t-il une analyse possible et acceptable de
la phrase ?

Il est important d’insister sur le fait que la décision en matière d’acceptabilité
doit se faire, autant que possible, sur des critères syntaxiques. L’objectif n’est
pas de juger l’acceptabilité de la phrase en soi (la plupart sont intentionellement
malformées), mais bien celle de l’analyse syntaxique qui lui est associée. La
difficulté réside dans l’évaluation de l’adéquation entre malformation et arbre
syntaxique complet.

2.1 Feuille de résultats

La réponse apportée est nécessairement binaire : l’arbre est correct ou ne l’est
pas. Un arbre correct est noté 1, tandis qu’un arbre incorrect est noté 0. Vous
pouvez reporter les résultats dans la colonne Correct de la feuille de résultats
jointe. La colonne Alternative est décrite § 3. La colonne Commentaire est
optionnelle. Elle peut vous permettre de joindre une note libre, pour justifier une
réponse difficile, soulever ce qui vous semble être une anomalie, ou simplement
faire part d’une remarque.

2.2 Catégories lexicales et syntaxiques

Les catégories lexicales et syntaxiques utilisées sont basées essentiellement sur
le système d’annotation MULTEXT, à quelques détails prêts. Les catégories
que vous rencontrerez sont les suivantes :

D Déterminant
1Certaines phrases sont en fait également associées à une liste d’alternatives ; seule la

solution principale, présentée sur fond blanc, fait l’objet de cette évaluation.
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N Nom

V Verbe

A Adjectif

R Adverbe

C Conjonction

P Pronom

S Préposition

GN Groupe Nominal

NV Noyau Verbal

GA Groupe Adjectival

GP Groupe Prépositionnel

CN Coordination Nominale2

Ut Phrase (pour Utterance, en anglais)

Star catégorie “joker”, représentant l’absence d’une racine unique

2.3 Consignes supplémentaires

1. Un arbre dont la pseudo-racine est Star est nécessairement incorrect.

2. Les catégories lexicales sont considérées comme correctes. Certaines anoma-
lies peuvent cependant subsister. Dans ce cas, l’arbre doit être considéré
comme incorrect. Une note signalant le cas dans la colonne Commentaire
de la feuille de résultats sera la bienvenue.

3 Tâche subsidiaire

Lorsque l’arbre principal est jugé incorrect, et qu’une liste d’alternatives est
proposée (arbres sur fond coloré), indiquer dans la colonne Alternative si une
solution correcte y figure (valeur: 1). La réponse par défaut est négative (i.e.
aucune alternative correcte), il n’est donc pas nécessaire de renseigner ce cas.
Il est inutile également de parcourir les alternatives lorsque l’arbre principal est
correct.

4 Remarques complémentaires

• Le corpus qui vous est présenté comporte une centaine de phrases, ce
qui devrait demander environ 1h à évaluer. Cependant, le facteur temps
n’ayant aucune importance, vous pouvez décider de vous arrêter lorsque
vous le souhaitez—voire même réclamer un corpus supplémentaire !

• Les phrases sont numérotées ; il est normal que certains numéros man-
quent.

2L’existence de la Coordination Nominale n’est justifiée que pour des raisons techniques.
Elle doit simplement être vue comme un groupe nominal englobant une coordination.
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