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1 Introduction

As an introduction I review some research directions I explored during last years, with a
pointer to associated publications. The following pages develop into more details some of
this fields, voluntarily ignoring those which I found less relevant.

After my PhD, my research in PDE was aimed toward doubly nonlinear elliptic-parabolic
equations and a transport equation with boundary conditions involved in an elementary
Level Set method [A13]. This Level Set method was developed to capture an interface in an
injection molding process. The term elementary refers to the fact that there was no surface
tension in this model by contrast with [45].

In September 1998, I obtained my first position in Mulhouse University and collaborated
with S. Akesbi on his research themes which encompassed the study of numerical schemes
for neutrons transport equations [A12, A11, A7]. I got also interested in the modeling and
simulation of fabrics draping (Mulhouse is a town with a strong textile history, where there
is a corresponding engineering school). I co-directed, with Alain Brillard, the PhD thesis
of Nadjombé Faré on that subject (publication [A10]). This amounted to solve a nonlinear
elasticity problem in large displacements. I also published articles on doubly nonlinear PDE,
from the theoretical and numerical point of view (publications [A8, A9, A6]).

In September 2002 I moved back to Grenoble University on a position created to further
develop interaction of applied mathematicians with Biologists and Physicists. In that direc-
tion I developed with Georges-Henri Cottet a new method for the modeling and computation
of fluid-structure interaction problem (publications [A5, A4, A3]), applied to biological mem-
branes (publications [B17, B16]) and cardiomyocyte contraction (publications [B15, A2]).
This collaboration was supported by a local funding and a national grant for which I was
coordinator. Moreover, two PhD thesis are about to be defended under our direction (Claire
Bost and Thomas Milcent).

In connexion with the preceding, we developed a workgroup between our research team
and a Physics laboratory in Grenoble (Chaouqi Misbah team) on the modeling of the behavior
of phospholipidic vesicles in shear flow (article in preparation). A collaboration with John
Stockie (U. Vancouver) about parametric instability of the immersed boundary model was
initiated recently (work in progress).

At last during Spring and Summer 2007 I visited Fadil Santosa (U. Minnesota) and
we developed a method for the minimization of functionals defined on curves moving on a
surface [A1]. The motivation is the reconstruction of isocurves of activation potential on the
myocardium.
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2 Numerical analysis of elliptic-parabolic equations [A9]

2.1 Introduction and motivations

My interest for doubly nonlinear equations arose during my PhD, while I was modeling an
injection moulding process [84]. Since the mold thickness was small, under a kinematic
assumption of Hele-Shaw, it was possible by integration of Navier-Stokes equations to obtain
a pressure equation which in turn could be written as a doubly nonlinear equation:

d

dt
B(u) + A(u) = f (1)

where B is a superposition et A an elliptic operator. A lot of publications have been devoted
to this kind of equations from the pioneering work of [99] and [60] up to very recently [23, 100].
The problem we addressed in [A8] was to prove existence of a solution to (1) in the case where
B can degenerate and therefore cannot bring all the compactness in time usually brought by
the time derivative in parabolic equations, whereas operator A is not pseudo-monotone in
the elliptic sense. This equation belongs to the class of elliptic-parabolic equations. We
defined an ad hoc pseudo-monotony for these equations and prove existence of solutions in
this class. The nonlinear semigroup approach [28] found in this kind of equation a new field of
application initiated by F. Simondon [102] and more recently developed by Ph. Bénilan and
P. Wittbold [29, 30] as well as F. Otto [94]. At last note that new results using renormalized
solutions have been published very recently and weaken even more assumption on B to obtain
existence.

The numerical analysis of related problems was first considered in [42][83] in the case
where b−1 is Lipschitz continuous and the equation written as a porous-medium equation.
This scheme was adapted to more general porous medium equations in [66][71]. More recently
W. Jger and J. Kačur [67] and J. Kačur [72] studied the numerical approximation of (EP ).
However their numerical scheme was shown to converge for strictly increasing and Lipschitz
continuous b, or in the particular case where a depends on u through b(u).

In this article we introduce a numerical scheme for the case where b could become constant,
but remains between two strictly increasing linear functions outside some compact set (see
remark 1):

(H2) b is a locally Lipschitz function on R and

∃K ≥ 0, ∃(ℓ, L), 0 < ℓ ≤ L, ∀r ∈ R, |r| ≥ K, min(ℓr, Lr) ≤ b(r) ≤ max(ℓr, Lr)

Note that under this assumption b can still become constant on some open set. However the
constant steps have to be of bounded length.

Remark 1 For example if we consider b(r) = 0 on [−1, 1], b(r) = r − 1 on [1,+∞[ and
b(r) = r + 1 on ] − ∞,−1] (H2) is verified with K = 2, L = 1, ℓ = 1

2 . However both

b(r) = sgn(r)
√
|r| and b(r) = max(r, 0), fail to verify (H2), the first one because it is non-

Lipschitz in zero, the second one because it does not remain between to strictly increasing
linear functions in the neighborhood of −∞.
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2.2 Existence of mild solutions

Note that under assumptions (H1) and (H2), the existence of weak solutions is an open
question, although some progress in that direction have been made recently [30] in dimension
one. The good notion of solution there, is the notion of mild solutions since it is proved in
[29] that there exists an exact mild solution u of (EP ).

For an integer N we denote by tn = nh, n = 0, ..., N the subdivision of [0, T ] in N small
intervals of length h = T

N
(see the remark below explaining why we work with a constant

step subdivision). An exact mild solution of (EP ) is a measurable function u verifying
v = b(u) ∈ C([0, T ];L1(Ω)), v(0) = v0 and, for any ε > 0, there exists N ∈ N such that for
any

f1, . . . , fN ∈ L∞(Ω) such that
∑

n

∫ tn+1

tn

‖f(t) − fn+1‖1dt ≤ h,

u0 ∈ L∞(Ω) such that ‖v0 − b(u0)‖1 ≤ h,

there exists (u1, . . . , uN ) verifying for n = 0, . . . , N − 1





b(un+1) − b(un)

h
− div a(un+1,∇un+1) = fn+1 in D′(Ω)

un+1 ∈W 1,p
0 (Ω) ∩ L∞(Ω).

(2)

and such that ‖v(t) − b(un+1)‖1 ≤ ε for any t ∈ (tn, tn+1], n = 0, . . . , N − 1.

Remark 2 The exact mild solution verifies more than the preceding, since the time subdivi-
sion needs not to be of constant step. It could be useful for an adaptative time step numerical
scheme (see the final discussion and conclusion). However the technics developed thereafter
can be adapted to a varying step subdivision without difficulty. So we chose for sake of read-
ability to present the constant step algorithm.

2.3 Existing schemes for related problems

The idea in [67] (under their assumptions a weak solution does exist) is basically to approach
the solution of the equivalent equation

b′(u)ut − div a(u,∇u) = f (3)

by the following scheme: for N integer and h = T
N

we denote by un the approximation of
u(tn). Given un, to get un+1 one first compute the solution θn+1 of the elliptic problem

λn(θn+1 − un) − h div a(un,∇θn+1) = hf(tn+1) (4)

with the Dirichlet boundary condition, where λn ∈ L∞(Ω) should verify

∥∥∥∥λn −
bd((1 − α)un + αθn+1) − bd(un)

θn+1 − un

∥∥∥∥
∞

< h.

Then un+1 is obtained by
un+1 = (1 − α)un + αθn+1.
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The function bd is a regularization of b: bd(s) = b(s)+hds; d ∈ (0, 1
2) and α close to 1 are the

parameters of the method. The coefficient λn is obtained eventually thanks to an iteration

λk+1
n =

bd((1 − α)un + αθk
n+1) − bd(un)

θk
n+1 − un

where θk
n+1 is obtained as the solution of (4) with λn = λk

n. This algorithm is proved to
converge when b is strictly increasing and Lipschitz continuous. The numerical scheme we
present now is stable even when b′ is identically zero on some open set, or does not satisfy a
global Lipschitz condition (see (H2)).

2.4 Numerical algorithm

Given f1, . . . , fN , u0, we are now addressing the problem of the numerical resolution of (2).
We point out that the initial condition in (EP ) is in fact given on b(u) instead of u for a
parabolic problem. This is because in (EP ), in general, one has only the time continuity
of b(u). If b has some constant steps in its graph, then the initial condition on u can be
undetermined.

For the same reason, the explicit scheme





b(un+1) − b(un)

h
− div a(un,∇un) = fn+1, n = 0, . . . , N − 1

b(u0) = v0,

could easily be solve in vn+1 := b(un+1) but nothing could prevent vn+1 from going out of
the range of b. Then un+1 could not be recovered. And even if vn+1 remains in the range of
b, its degeneracy could bring a bad numerical behavior.

So we have to solve the implicit scheme directly in u. For this we introduce the following
iterative process to get un+1 from un:

(S)





Let u0
n+1 ∈ L∞(Ω) (e.g. un), solve for k = 0, 1, . . .,

uk+1
n+1 − ρdiv a(uk+1

n+1,∇u
k+1
n+1) = λku

k
n+1 −

ρ
h

(
b(λku

k
n+1) − b(un)

)
+ ρfn+1

where ρ > 0 is a given parameter, and (λk) is a sequence of ]0, 1[ such that

lim
k→∞

λk = 1,
∏

k≥0

λk = 0,
∑

k≥0

|λk+1 − λk| <∞. (5)

For example λk = 1 − 1
k+1 is a convenient choice. Note that the introduction of λk in this

scheme is an application of the ideas of B. Halpern [61] sharpened by P.-L. Lions [81] and
more recently by H. Bauschke [25]. Indeed, in the interesting case, where b can degenerate,
the iteration (S) with λk = 1 is non-expansive but not strictly contractant.

Remark 3 Let us compare (S) (with λk = 1) with the scheme of Jger and Kačur that we
recalled before, in the simpler case where α = 1 and without regularization of b: in this case
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we have θn+1 = un+1 and λk+1
n =

b(uk
n+1

)−b(un)

uk
n+1

−un
and we make the following iteration to get

uk+1
n+1 from uk

n+1:

λk+1
n (uk+1

n+1 − un) − h div a(un,∇u
k+1
n+1) = hf(tn+1).

Setting ρk+1
n = h

λk+1
n

we get

uk+1
n+1 − ρk+1

n div a(un,∇u
k+1
n+1) = un + ρk+1

n f(tn+1).

Thus our scheme appears as an analog of this scheme, with a correction term in the right
hand side. The first advantage, from the computational point of view, is that there is no need
to compute these λk+1

n for which one has to test whether uk
n+1 = un or not. Another point is

that this scheme could exhibit a bad numerical behavior at times where u(t) is discontinuous.
Indeed, solutions u of (EP ) need not to be continuous in time. Only b(u) have to. If such a
discontinuity happens, the estimation of the derivative of b in λk+1

n is nonsense. On contrary
numerical tests we made (see at the end of article) show that our method works even in case
of discontinuous u.

2.5 Convergence of the algorithm

First we prove that under assumptions (H1) − (H2) there exists a solution uk+1
n+1 to the

equation involved in (S). This is performed by first truncating the u dependence of a, and by
invoking a classical result of [82]. Then we are able to prove that u is bounded independently
of the truncation level, so that existence is obtained for the equation without truncation.
In order to rpove the convergence of the whole sequence (and not of some subsequence) we
further assume:

(UC)

{
∀f ∈ L∞(Ω) il existe au plus une solution de

u ∈W 1,p
0 (Ω) ∩ L∞(Ω), b(u) − div a(u,∇u) = f dans D′(Ω).

This assumption is for example fulfilled when a is strictly monotonic.

We prove the following convergence results that gives an explicit bound for the choice of
ρ in (S) depending of the data.

Proposition 1 Assume (H1)(H2) and (UC) hold. Let M defined by

M = max(‖u0
n+1‖∞,

1

ℓ
‖hfn+1 + b(un)‖∞,

2K

1 − ρℓ
h

,
2 ρ

h

1 − ρℓ
h

max
[−K,K]

|b|)

where K is defined in (H2). Let LM the Lipschitz constant of b on [−M,M ]. Then for
ρ < min( h

L
, 2h

LM
) the iterative scheme (S) converges, i.e.

lim
k→∞

uk
n+1 = un+1 strongly in L1(Ω),

where un+1 verifies (2).
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FIGURE 2: Test 2: Degenerate case b(u) = 0 for |u| ≤ 1 and linear outside.

Let us point out that our bound on ρ, is easily computable so that we can implement this
algortihm. Constant M appears when we estimate ‖uk

n+1‖∞ independently of k, see Lemma
6.2 of [A9].

Note that in [67], an iteration on k is performed until convergence to get the right coeffi-
cient λn in (4). Each iteration solves a linear scheme. When un+1 is known, they prove the
convergence of the step function uN (t) = un+1 on (tn, tn+1] toward the weak solution u(t) as
the time step goes to zero.

Under our assumptions on a and b, the existence of a weak solution is still an open question
(see [30] for one dimension). For a mild solution we do not need to show the convergence in
time since it is included in its definition: once convergence in k is achieved for un+1, then by
definition of mild solution b(un+1) approaches b(u) on (tn, tn+1] up to ε. If b is non-degenerate,
as in [67], this gives information on the behavior of un+1. On the contrary, note that if b = 0
we do not get a real convergence result; the point is that in this case, from the definition of
[29], every measurable function u is a mild solution !

Note however that under some additional assumptions on a, it is proved in [29] that there
exists a weak solution w of (EP ) such that b(w) = b(u) a.e. We thus have in this case the
convergence of our scheme (in the same meaning) toward this weak solution.

2.6 Numerical tests

The stop criterium for iterations, in all the following tests is ‖uk+1−uk‖2

‖uk+1‖2
≤ 10−6 where ‖ · ‖2

is the Euclidean norm and uk the vector approaching, at iteration k, the space-discretization
of u. The first numerical test is to emphasize the ability of our scheme to converge for really
degenerated b. We chose b(u) = 0 for |u| ≤ 1, b(u) = u − 1 for u > 1 and b(u) = u + 1 for
u < −1, with u0(x) = 1

2x(1 − x) (thus v0(x) = b(u0(x)) = 0) and f(x, t) = 10t+ 1.

Note that the value of u0 plays no role, we just take this value so that it solves the equation
at t = 0, ensuring a continuity of u. Here we are in a totally degenerate case since we start in
a zone where b is identically zero. One see that u increases (in time) as f increases whereas
b remains zero until u reach 1. The time for which ‖u(t)‖∞ reaches 1 can be computed
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FIGURE 3: When u is discontinuous, our algorithm (left) and the method of Jäger and
Kačur (right).

explicitly and is tc = 0.7. Thus for t < tc, we solve a pure elliptic problem and starting from
t = tc we solve a parabolic problem. We can see on figure 2 that tc is well computed.

In the two previous cases, u was continuous in time (and space). We compared our method
with Kačur algorithm, and found that the two methods give exactly the same results. For
the parameters of Kačur algorithm, we took α = 1, and d = 5 (see [67]). Note that d = 5
is not permitted theoretically, but it works here and gave better results than d = 1 (since
the regularisation term of b, hd is smaller). In test 2 Kačur algorithm converges in even less
iterations than our scheme.

We turn now to a case where u is discontinuous. On the same space-time domain, take
the odd function b defined on R

+ by b(r) = 1 for r > 1, and b(r) = −r2 + 2r for 0 ≤ r < 1.
With f(x, t) = 40t for t < 0.5, and −40t for t ≥ 0.5, and u0 = v0 = 0. The point is that
the discontinuity of f occurs when (EP ) is elliptic (because u > 1), so u has a jump too, at
t = 0.5, and falls into [−1, 1] where the equation is parabolic. There is a parabolic transition
while u remains in [−1, 1], and then the equation becomes elliptic so the rapidly varying f
acts directly on u. Trying to make algorithm of [67] converging is hard, we had to rely on
relaxation with α = 0.9 and with a great regularisation term hd with d = 0.2, or it does not
converge for t = 0.5. Then there is a large smoothing of the profile induced by the method.
Thus our method can handle discontinuities in u that seem hard to compute with the other
algorithm. On figure 3 the superposed graphs of u (resp. b(u)) obtain by the two methods
are plotted.

2.7 Conclusion and possible extensions

We develop a new algorithm to deal with the numerical computation of solution to degenerate
elliptic-parabolic equations, which performs better in that case than known algorithms.

Note that as indicated before, the time step needs not to be constant in the definition of
mild solution, leading to an adaptative time step method. This may be interesting, when the
solution is expected to present a jump (in u) at a certain time. Indeed in this case one could
operate thiner time discretization around this discontinuity time.

Some works extending our approach have been recently published [103].
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3 Neutrons transport equation [A11, A7]

Efficient algorithms to solve the neutrons transport equation have been an active field of
research (see [111, 59, 22, 75, 89, 74, 85, 86] and references therein). Among these schemes,
some introduced by Samir Akesbi (Université de Mulhouse) and co-authors [19, 20, 21], make
use of a splitting of the tranport operator taking into account its characteristics [18]. In the
present work we introduced a new algorithm based on this splitting and an adaptation of
minimal residual methods to the infinite dimensional case. Some very recent publications
[111, 112] extend this results further.

We present both the case where the velocity space is of dimension 1 (slab geometry) and
2 (plane geometry), because the splitting is simpler in the former.

3.1 The equations and their resolution without splitting

3.1.1 Transport equations

Dimension 1 The evolution of neutrons in a one-dimensional domain (0, L), in interaction
with them, is described by a function f(x, µ) which represents the angular flux of neutrons at
the position x traveling in the direction cosine µ ∈ (−1, 1). The cross section σ(x) accounts
for neutrons-domain interaction, whereas a kernel k(x, µ, µ′) describes collisions between neu-
trons. At last, a neutrons source is represented by a function S(x, µ).

Let L > 0 and Ω = (0, L) × (−1, 1). We consider the following problem: given a source
term S ∈ L2

+(Ω), find f : Ω → R solution of the transport equation

(P )





Tf(x, µ) = Kf(x, µ) + S(x, µ) in Ω,

f(0, µ) = 0 for µ ∈ I1 := (0, 1),

f(L, µ) = 0 for µ ∈ I2 := (−1, 0),

where Tf(x, µ) = µ
∂f

∂x
(x, µ) + σ(x)f(x, µ) with

D(T ) =

{
f ∈ L2(Ω) : µ

∂f

∂x
(x, µ) ∈ L2(Ω), f(0, µ) = f(L,−µ) = 0 for µ > 0

}
,

and K an integral operator of positive kernel k:

Kf(x, µ) =

∫ 1

−1
k(x, µ, µ′)f(x, µ′)dµ′.

We make the following assumptions (where L1
+ denotes the positive cone of L1):

(A1) σ ∈ L1
+(0, L).

(A2) (µ, µ′) → k(µ, µ′) ∈ L2
+((−1, 1)2).

(A3) If k is symmetric and even and σ constant (see remark 1), we assume:

∃c < 1,

(∫ 1

−1

∫ 1

−1
k(µ, µ′)2dµdµ′

) 1

2

≤ σc.

Assumptions in the general case are given in [A12], and are satisfied by usual neutrons
kernels.
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(A4) k(µ, µ′) =

Nk∑

l=1

al(µ)al(µ
′).

Dimension 2 The behaviour of neutrons in a two dimensional domain D, in interaction
with them, is described by a function f(x,Ω) which represents, up to some factor, the flux
of neutron density at the position x with velocity Ω ∈ B(0, 1). A function σ(x) accounts
for neutron-domain interaction, whereas a kernel k(x,Ω,Ω′) describes collisions between neu-
trons. At last, a neutron source is represented by a non-negative function S(x,Ω).

Let D bet a bounded open set of R2 with lipschitz boundary ∂D, and Q = D × B
where B = B(0, 1) =

{
Ω ∈ R2, ‖Ω‖2 < 1

}
. The outer normal n(x) to ∂D exists almost

everywhere, and we define

Γ− := {(x,Ω) ∈ ∂D ×B, Ω · n(x) < 0} .

We consider the following problem: given a source term S, find f : Q → R solution of the
transport equation

(P )

{
Tf(x,Ω) = Kf(x,Ω) + S(x,Ω) in Q,

f(x,Ω) = 0 on Γ−,

where T is the transport operator, Tf(x,Ω) = Ω · ∇xf(x,Ω) + σ(x)f(x,Ω) whose domain is

D(T ) =
{
f ∈ L2(Ω) : Ω · ∇xf ∈ L2(Ω), f = 0 on Γ−

}
,

and K an integral operator of positive kernel k:

Kf(x,Ω) =

∫

B

k(x,Ω,Ω′)f(x,Ω′)dΩ′.

We make the following
Assumptions:

(A1) σ ∈ L∞(D), ∃σ0 > 0, σ(x) ≥ σ0 a.e. on D.

(A2) k(x,Ω,Ω′) = k(x,Ω′,Ω) and k is positive.

(A3) ∃c ∈ [0, 1), ∀i ∈ {1, 2, 3, 4},

∫

Bi

k(x,Ω,Ω′)dΩ′ ≤
σ0c

4
a.e. on Q, where Bi is the i-th

quarter of the disk B, see figure 4.

(A4) k(x,Ω,Ω′) = C(x)

Nk∑

l=1

al(Ω)al(Ω
′).

Assumption (A4) is not used for theoretical proof of convergence. However, it is necessary to
assume this form for k for the numerical splitting method to work [21, 18].
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3.1.2 Source Iteration method

The standard method to solve (P ), called the source iteration method, is based on a de-
coupling between the differential and integral parts, through the following iterative scheme:
given f0 ∈ D(T ), solve

(Ps)

{
Tfn+1 = Kfn + S in Q,

fn+1 ∈ D(T ).

Close to the critical case (c ≈ 1), this algorithm becomes extremly slow. Several acceleration
methods of the convergence of (Ps) have been introduced and studied. In particular the
Diffusion Synthetic Acceleration (DSA) method [75][24] and multigrid algorithms [86][89].

The main difficulties encountered while studying these methods lead the authors either to
consider the discretized equation in the angular variable [74][85], or the continuous equation
with a truncated expansion of k with respect to this angular variable [89][74].

To our knowledge, the only theoretical proof for the acceleration of the convergence in
the continuous case (in space an angular variables) has been obtained for reflexive boundary
conditions by [75].

The idea of [19] and [20] is to introduce and study better algorithms than (Ps), adapted
from the methods of Jacobi, Gauss-Seidel and SOR, in the infinite dimensional case. These
algorithms can be accelerated by an adapted DSA method. This approach has been studied
in dimension one and two by [21], and successfully compared to standard DSA method.

Our aim is to propose a new algorithm, replacing Jacobi, Gauss-Seidel or SOR algorithms,
based on an adaptation of the minimal residual method in infinite dimensional case. As others
algorithms, it relies on a natural splitting of k.

B

B

B

B

2

3 4

1

µ

!

FIGURE 4: Decomposition of B in dimension 2.

3.2 Splitting of transport operator

Dimension 1. Let kij , i, j ∈ {1, 2} be the positive kernel defined by

kij(x, µ, µ
′) = k(µ, µ′) × 1Ωi

(x, µ) × 1Ωj
(x, µ′),
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with Ω1 = (0, L) × (0, 1), Ω2 = (0, L) × (−1, 0), and 1Ωi
the indicator function of Ωi. We

introduce the associated integral operator Ki,j :

Kij(f)(x, µ) =

∫ 1

−1
kij(x, µ, µ

′)f(x, µ′)dµ′.

Since we have Kij(f) = Kij(f.1Ωj
)1Ωi

, operator K splits into K = K11 +K12 +K21 +K22.
Note that Kij is an operator acting from L2(Ω), using only the values of f on Ωj , such that
Kijf has its support in Ωi.

The solution of (P ) is given by f = f1 + f2 with f1, f2 ∈ D(T ) solution of
(
T −K11 −K12

−K21 T −K22

)(
f1

f2

)
=

(
S1

S2

)
. (6)

It is easy to prove that fi = f1Ωi
, i = 1, 2. (cf [21]).

Dimension 2. Let Kij , i, j ∈ {1, . . . , 4} be the integral operator whose kernel is

kij(x,Ω,Ω
′) = k(x,Ω,Ω′) × 1Qi

(x,Ω) × 1Qj
(x,Ω′),

with Qi = D × Bi, Bi being the i-th quarter of the unit disk (see figure 4) and 1Qi
(x,Ω)

the indicator function of Qi. Since we have Kij(f) = Kij(f.1Qj
)1Qi

, operator K splits into

K =
4∑

i,j=1

Kij . Note that Kij is an operator acting from L2(Q), using only the values of f on

Qj , such that Kijf has its support in Qi. The solution of (P ) is given by f = f1 +f2 +f3 +f4

with f1, f2, f3, f4 ∈ D(T ) solution of



T −K11 −K12 −K13 −K14

−K21 T −K22 −K23 −K24

−K31 −K32 T −K33 −K34

−K41 −K42 −K43 T −K44







f1

f2

f3

f4


 =




S1

S2

S3

S4


 (7)

where Si = S × 1Qi
. Then we have fi = f × 1Qi

for i ∈ {1, . . . , 4}. T (cf [18]). The SOR
method introduced by [21] gives excellent results, but needs the computation of its optimal
parameter, which in turn can be very slow in the critical case. For these reasons we seeked a
method that gives good rate of convergence, but do not need any extra parameter calculation.

3.3 Minimal residual algorithm

3.3.1 Algorithm

This method was introduced by O. Axelsson [76], in the finite dimensional case, and proved
to converge provided the matrix of the linear system has a definite positive symetric part.
Using the operator splitting deviced by S. Akesbi and M. Nicolet, the transport equation is
equivalent to the following system, that we present for the case of dimension 2 only.




I − θ11 −θ12 −θ13 −θ14
−θ21 I − θ22 −θ23 −θ24
−θ31 −θ32 I − θ33 −θ34
−θ41 −θ42 −θ43 I − θ44







f1

f2

f3

f4


 =




S̃1

S̃2

S̃3

S̃4


 ,
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where we applied on components the operator T−1, and set θij = T−1Kij , S̃i = T−1Si. The
matrix of operators of our system will be preconditionned by the inverse of diagonal i.e.




(I − θ11)
−1 0 0 0

0 (I − θ22)
−1 0 0

0 0 (I − θ33)
−1 0

0 0 0 (I − θ44)
−1


 ,

leading to the following matrix of operators

A =




I −(I − θ11)
−1θ12 −(I − θ11)

−1θ13 −(I − θ11)
−1θ14

−(I − θ22)
−1θ21 I −(I − θ22)

−1θ23 −(I − θ22)
−1θ24

−(I − θ33)
−1θ31 −(I − θ33)

−1θ32 I −(I − θ33)
−1θ34

−(I − θ44)
−1θ41 −(I − θ44)

−1θ42 −(I − θ44)
−1θ43 I




In order to perform a minimal residual method, we have to make clear which operations
between matrix and vectors, appearing in the method, can be calculated from a numerical
point of view.
We are willing to solve AF = B, where F =t (f1, f2, f3, f4) ∈ D(T )4. We denote by 〈, 〉 the
scalar product in (L2(Ω))4, i.e. 〈F,G〉 = (f1, g1)+ (f2, g2)+ (f3, g3)+ (f4, g4) where (, ) is the
standard L2(Ω) scalar product. Similarly, ‖‖2 will represent the norm in (L2(Ω))4 associated
to this scalar product.
The minimal residual method, minimizing E(F ) = ‖B −AF‖2

2, takes the following form:
Let f0 ∈ D(T ), F 0 = (f01Qi

)i=1,...,4, R
0 = B −AF 0, P 0 = R0, Q0 = AP 0.

While
∥∥Rk

∥∥
2
> ε do

begin

αk =

〈
Rk, Qk

〉

〈Qk, Qk〉

F k+1 = F k + αkP k

Rk+1 = Rk − αkQk

βk+1 = −

〈
ARk+1, Qk

〉

〈Qk, Qk〉

P k+1 = Rk+1 + βk+1P k

Qk+1 = ARk+1 + βk+1Qk

end
In the previous algorithm, we have to make clear how we compute the product A times a
vector, since A contains some inverse operator.
So let g ∈ D(T ), G = (g1Qi

)i=1,...,4 and see how to compute Z = (z1, z2, z3, z4) verifying

Z = AG

Componentwise, this equality means for i = 1, . . . , 4,

zi = gi −
∑

j 6=i

(I − θii)
−1θijgj .
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Applying T (I − θii) = T −Kii to the first equation we get

(T −Kii)(gi − zi) =
∑

j 6=i

Kijgj (8)

These integro-differential equations can be calculated numerically [18] thanks to the splitting
and the special form of the kernel assumed in (A4).

3.3.2 Convergence

In order to prove the convergence of our algorithm, we have to estimate from below the
quadratic form associated to the operator matrix A. It is indeed well known (direct adpatation
of [76]) that the minimal residual method produces a sequence of residual such that

E(F k+1) ≤ E(F k)

(
1 −

〈
Rk,ARk

〉

〈Rk, Rk〉

〈
Rk,ARk

〉

〈ARk,ARk〉

)
. (9)

In [A12, A7] we prove the following by estimation the transport operator T and the integral
kernels Kii:

Proposition 2 Under assumptions (A1)-(A3) operator A has a positive definite symmetric
part and verifies

1D case: ∀F ∈ D(T )2, 〈AF, F 〉 ≥
1 − c

1 − c
2

‖F‖2
2, 〈AF, F 〉 ≥

1 − c
2

1 +
(

c
2

)2 〈AF,AF 〉

2D case: ∀F ∈ D(T )4, 〈AF, F 〉 ≥
1 − c

1 − c
4

‖F‖2
2, 〈AF, F 〉 ≥

1 − c
4

1 + c
2

〈AF,AF 〉 .

Therefore we get the following convergence result:

Proposition 3 Under assumptions (A1)-(A3), the minimal residual method converges, that
is F k converges toward the unique solution of (6) or (7), and the residual decreases when
k ≥ 0 following:

1D case: E(F k+1) ≤ E(F k)

(
1 −

1 − c

1 +
(

c
2

)2

)

2D case: E(F k+1) ≤ E(F k)

(
1 −

1 − c

1 + c
2

)
.

Our estimate of the convergence rate (15) is not optimal. Indeed, the forthcoming numerical
tests will show that our algorithm works for values of c greater than one. In dimension
2 we observed the convergence for σ = 50 up to c < 4. Figure 5 displays a comparison
our algorithm for σ = 50 with SOR. Recall that the latter requires the computation of an
optimal parameter which is not taken into account. In dimension 1 it appears clearly that
SOR explodes for c close to 1, and Figure 6 shows the same for the dimension 2. However
our method allows to exceed the critical value c = 1. Moreover our algorithm displays a good
behavior for large σ (see Figure 7) converging more and more rapidly.
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FIGURE 5: Computational costs for σ = 50 up to c = 0.999. Left: 1D. Right: 2D for several
implementation of the resolution of (8)

3.4 Conclusion

We showed through the previous numerical tests that our methods are as performant as SOR
for non-critical cases (c close to 1 or large σ), and converge even faster for critical cases.
Moreover, their implementation is as easy as standard algorithm (Ps). They are naturally
deviced for parallelization. A work is in progress for the acceleration of this algorithm by
an adapted DSA method [21], and its comparison with standard DSA. One important point
would be to be able to prove that the method indeed converges for c > 1, which would be
definitive argument for ou r method. Very recently Samir Akesbi and Abdelkader Tizaoui
implemented a GMRes algorithm which seems to beat out algorithm [112].
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4 Fabrics modeling [A10]

4.1 Introduction

This work was developed during the PhD of Nadjombé Faré in Mulhouse University. This
town in north-east of France has a strong history of textile industry, so that a one century
old engineering school devoted to that topic is present. We interacted with fabrics specialists
to model textiles as continuum media, of a special kind.

One toy problem is the drape problem, in which one studies the folds formed by a textile
which subject to its own weight and attached on a part of it boundary. There even exist
drape meter which measure the shadow area formed by those folds to characterize the textile.
We got interested in the modeling and simulation of this problem.

In that case, as the fabric only undergoes gravity, we neglected the stretching of its fibers.
Thus the model we study only take into account shear in the tangent plane to the fabric and
flexion.
In the following, greek subscripts α, β ... take values 1 or 2 and we adopt the Einstein
convention on repeated indices. We denote by f,α lthe partial derivative of f with respect to
xα and by f,αβ the second order derivatives. If X is a vector of R

3, ‖X‖ denotes its Euclidian
norm; the vector product between u and v is written u∧ v, and the scalar product u · v. The
norm ‖ ‖2 depending of its argument, stands for L2(Ω,R3) or L2(Ω,R) norm.
Assume that the fabric initially occupies a domain Ω × {0} of R

3 where Ω ⊂R
2 is an open

bounded subset with piecewise C1 boundary. Let Γ0 be a subset of ∂Ω of positive measure,
where the fabrics is fixed. The reference configuration coincides with the initial one and a
point X has coordinates X = ϕ0(x1, x2) = (x1, x2, 0) in some fixed frame (e1, e2, e3). An
admissible deformation of the initial configuration is an application ϕ sufficiently smooth,
injective in Ω and R

3 valued i.e.:

ϕ :

{
Ω → R

3

x = (x1, x2) → ϕ(x) = (ϕ1(x), ϕ2(x), ϕ3(x))

which moreover verifies:

(i) ‖ϕ,1‖ = 1, ‖ϕ,2‖ = 1 (non extensible fibers),
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(ii) ‖ϕ,1 ∧ ϕ,2‖ ≥ C0, where 0 < C0 ≤ 1 depends on the fabric.

Remark 4 1. Condition (ii) means that weft and warp fibers cannot become parallel.

2. D. Coutand [51] considered the case of a shell with C0 = 1, that is without membrane
shear. We ourselves assumed a plane configuration since this is often the case for
fabrics, but this is not a technical limitation of our method. We make use of technics
introduced in [51] and [49].

4.2 Mechanical derivation of our model

In [A10] we start from a 3D model where the fabrics occupied the domain Θ = Ω×]−h,+h[ ⊂
R

3. The fabric thickness h > 0 being very small, we make a kinematic assumption of Cosserat,
considering that deformation of the initial configuration are of the following form:

Φ(x1, x2, x3) = ϕ(x1, x2) + x3t(x1, x2)

where t(x1, x2) is unitary.
By computing the three dimensional Green Saint-Venant deformations tensor, we get

Eαβ =
1

2
(ϕ,α.ϕ,β − δαβ) +

1

2
x3(ϕ,α.t,β + ϕ,β .t,α) +

1

2
x2

3t,α.t,β E3α =
1

2
ϕ,α.t E33 = 0.

Using the small thickness assumption, we neglect terms of order higher than 1 in x3, so
that the three following tensors are involved: the membrane deformation tensor, the flexural
tensor and the transverse shear tensor:




eαβ = 1
2(ϕ,α · ϕ,β − δαβ)

χαβ = 1
2(ϕ,α · t,β + ϕ,β · t,α)

γα = 1
2ϕ,α · t

where δαβ is the Kronecker symbol.
From the fabric structure, we assume no transverse shear, which corresponds to cancel the
last tensor, which means γα = 1

2ϕ,α · t = 0. In that case t is normal to the textile mean
surface. From now we denote it N(ϕ). Differentiating γ, one may eliminate derivatives of t
from χαβ which turns to: χαβ = −ϕ,αβ ·N(ϕ).
Assuming for the sake of simplicity a linear relationship between the strain and stress tensor
(note that the material is still geometrically nonlinear) we have Σij = RijklEkl, where Σ is the
second Piola-Kirchhoff tensor and R the stiffness matrix which contains elasticity coefficients
depending of the fabrics.

Static equilibrium is characterized by application of the principle of virtual works (see
[47][48], [73]), which by integration in the thickness of the second Piola-Kirchhoff tensor leads
to the following energy:

I(ϕ) =
1

2

∫

Ω

[
G (ϕ,1 · ϕ,2)

2 + dαβ (ϕ,αβ ·N(ϕ))2
]
dx−

∫

Ω
σgϕ3dx

where the coefficients G and dαβ depends on the material properties. Under this general
form, we are not able to prove existence of minimizers due to the lack of coerciveness of I(ϕ).
More specifically, terms of the form ϕn

,αα.ϕ
n
,β for a minimizing sequence seem hard to control.

After discussion with fabric specialists1 we considered a regularized energy with an extra
term accounting for the variation of shear angle.

1among who Ron Postle, invited by the local engineering school
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4.3 Regularized energy and existence of a minimizer

Adding this regularizing term, we obtain a two-dimensionnal mechanical model that we now
study from the mathematical point of view. The energy is given by:

W (ϕ) =
1

2

∫

Ω

[
G (ϕ,1 · ϕ,2)

2 + gα ((ϕ,1 · ϕ,2),α)2 + dαβ (ϕ,αβ ·N(ϕ))2
]
dx−

∫

Ω
σgϕ3dx

where N(ϕ) : Ω →R
3, N(ϕ) =

ϕ,1∧ϕ,2

‖ϕ,1∧ϕ,1‖
is normal to the fabrics mean surface, gα > 0, dαβ > 0

and G > 0 are fabric elasticity coefficients, σ > 0 is its surface density and g > 0 gravity. In
the following we write N for N(ϕ).
The first term represents the membrane shear deformation energy, the second one accounts
for shear angle variation and the last one records flexural effects. Note that W is not convex
with respect to ϕ.

We study W on the following (non-convex) set of admissible deformations V ⊂ H2(Ω,R3)
defined by:

V =
{
ϕ ∈ H2(Ω,R3) : ‖ϕ,1‖ = ‖ϕ,2‖ = 1, ‖ϕ,1 ∧ ϕ,2‖ ≥ C0 in Ω and ϕ = ϕ0 on Γ0

}

with the topology of H2(Ω,R3). We look for a ϕ ∈ V such that W (ϕ) = infV W .
In [A10] we prove existence of such a minimizer. We first prove that W is a proper and
coercive functional. Then we obtain a priori estimates leading to a weak convergence in H2

of a minimizing sub-sequence. At last we prove some weak lower semicontinuity of W .

Proposition 4 There exists ϕ ∈ V such that W (ϕ) = inf
V
W .

The key point in the proof is to use and differentiate the constraints to get estimates on
higher derivatives of the minimizing sequence [49, 51]. The shear angle penalization term
gives some control on cross derivatives of second order of ϕ.

4.4 Numerical simulations

We implemented a descent algorithm to minimize the energy and produce a dynamic-like
animation. In the case of a very soft textile hanging on the corner of a square table, we
obtained animations that are available here:

http://www-ljk.imag.fr/membres/Emmanuel.Maitre/Drape/.
Note that this animations corresponds to a false dynamic, since we don not account for
inertia or air effects. With the tools that we now developed with level-set, we could think of
a more sound simulation, but note that orthotropy is not so trivial to implement in a simple
manner in the Level Set framework. This is an undergoing research which has applications
in simulations involving red blood cells, see new section.
For the textile problem, we did not go further since after my leaving from Mulhouse Nadjombé
Faré did not get a position. Figure 8 shows resultats obtained in 2002 and contains several
cases: a rectangular table with more or less flexible fabrics hanging from it, the case of a
circular table and the case of a spherical obstacle. There is no collision test, which explains
some strange behavior in the sphere case.

20



FIGURE 8: Four drape situations: a more or less flexible fabric hanging on the corner of a
square table; a fabric hanging on a round table; a fabric falling on a sphere.

21



5 Level-set method in continuum mechanics [A5, A4, A3, A2,
A14]

5.1 Motivations

We were interested in mechanical modeling, and more specifically in fluid-structure problems
in a biomedical context.

Our first interest was concerned with the oscillation of a cell membrane, as observed
and studied in a partner laboratory of biology. In that case the membrane had a simple
elasticity and a changing area. The aimed application was the study of cell motion through
a mechanical model consisting of an immersed elastic membrane in a fluid.

Some biological membrane have a degenerate energy. They do not undergo area changes
since they are constituted of a bi-layer of molecules the number of which is fixed. This
phospholipidic membranes are studied by physicists as model of the red blood cell membrane.
The energy driving their equilibrium shape is a curvature energy with a constraint of constant
surface area and enclosed volume.

Other biological objects are not membranes. For example biologists in Grenoble study
isolated cardiomyocytes (in a Petri box). The auto oscillation they exhibit results from the
coupling between a reaction-diffusion equation which drives the calcium dynamics inside the
myocyte, its elasticity and the surrounding fluid motion.

Those three examples share the common point of coupling the motion of a fluid and
an immersed elastic body. This is an interesting setting in order to develop a multi-physics
model of this coupling. The first difficulty that we encounter in this modeling is the difference
between natural coordinates for fluid (Eulerian) or structure (Lagrangian). In our work we
decided to develop an Eulerian elasticity for the structure. The first case is an Eulerian
formulation of the immersed boundary method with Level Set method, where we succeeded
in expressing the elasticity of an immersed elastic membrane thanks to a single function. The
generic case of an immersed body make use of 3D elasticity written in Eulerian coordinates.

Thanks to this formulation, we are able to turn the fluid-structure coupling problem into a
flow problem of some complex visco-elastic fluid of Korteweg type. This permits us to tackle
existence problems as well as numerical challenges. In the case of biomechanics, in which
coupled entities have comparable densities but are more flexible than in e.g. aerodynamics,
this approach seems to be promising.

5.2 Lagrangian elasticity of an immersed interface

We start from a Lagrangian representation of the membrane since it is more usual, and
then show that our Eulerian formulation is equivalent. Let a smooth elastic surface Γ̃ in
R

3 in a rest configuration, parametrized by a regular θ : [0,M ]2 → R
3, M > 0 (we thus

assume that the surface is not closed so that such a regular map exists). We assume that
this surface reacts only to membrane deformation (no flexural effects), and more specifically
to area change, and not to membrane shear. This last assumption is verified in the case of
phospholipidic membranes, which are made of a fixed amount of molecules which may slip
one with respect to the others on the membrane. Flexural effects are present and important
in the study of vesicles shape but we will add this effect later. As well, we considered a surface
with a boundary which is not coherent with a vesicle, but this is to introduce the Lagrangian
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representation. This will be worked around automatically by the Level Set representation.
For the sake of simplicity we assume the membrane to react only to tangential stress and more
specifically to area change. We will add curvature effects afterwards, since it plays a central
role in e.g. vesicle dynamics. The assumption of neglecting membrane shear is physically
sound in the case of phospholipidic vesicles since their membrane is constituted of molecules
which can slip along each other.

The membrane surface density in that configuration is denoted by λθ(r, s). The surface
is moving between time t = 0 et t = T , and we call Γt, its position at time t. In particular Γ0

is its initial position, and generally Γ0 6= Γ̃ unless the elastic surface is initially at rest. We
denote by (r, s) → γ0(r, s) and (r, s) → λ0(r, s) a regular parametrization and surface density
for Γ0 such that λ0|γ0,r × γ0,s| = λθ|θr × θs|. Let γ : [0,M ]2 × [0, T ] → γ(r, s, t) the regular
parametrization of Γt transported by the velocity field u of the continuous medium, that is
γ(r, s, t) = X(t; γ0(r, s)) or equivalently:

{
γt(r, s, t) = u(γ(r, s, t), t), (r, s) ∈ [0,M ]2, t ∈]0, T ]

γ(r, s, 0) = γ0(r, s), (r, s) ∈ [0,M ]2.
(10)

Γt is immersed into a Newtonian incompressible and homogeneous fluid with give density
ρf and visocity µ. This example corresponds to consider a singular density for the whole
continuous medium defined by:

ρ = ρf + λδΓt

where δΓt is the measure supported by Γt, which is defined by

∀h ∈ C0
0(Ω), 〈δΓt , h〉 =

∫

Γt

h(x)dσ.

5.2.1 Some notations

In the following we will make extensive use of the characteristic curves of u. We will denote by
(x, t) → X(x, t) the forward characteristic(resp. (x, t) → Y (x, t) the backward characteristic)
which are solutions of Xt = u(X, t) with X(0, x) = x (resp. Yt + u · ∇Y = 0 with Y (0, x) =
x). Under regularity assumptions on the velocity field (for instance W 1,∞ in space) x →
X(x, t) and x → Y (x, t) are two differentiable maps which are inverse one of the other:
X(Y (x, t), t) = x and Y (X(x, t), t) = x. Therefore their jacobians do not vanish and if we
set J(x, t) = det∇Y (x, t), we have Jt + u · ∇J = −J div u.

5.2.2 Volume conservation: incompressibility

A continuous medium is said incompressible if every open set ω is deformed into ω(t) =
X(ω, t) of same measure for all time t. Therefore

d

dt

∫

ω(t)
dx = 0

thus applying Reynolds formula there holds
∫
ω(t) div udx = 0 for all ω(t), which give the

incompressibility condition
div u = 0

From PDE verified by J we see that this condition also reads J = 1.
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5.2.3 Mass conservation

Consider an open subset ω ⊂ Ω. Let Γ0
ω the maybe empty part of Γ0 meeting ω. Let

K ⊂ [0,M ]2 such that γ0(K) = Γ0
ω. We set ω(t) = X(ω, t) (which is open since X is

differentiable with differentiable inverse) and Γω(t) = X(Γ0
ω, t). By conservation of the mass

inside ω(t) we have
d

dt

∫

ω(t)
ρ = 0

which in our case gives

d

dt

{
ρf mes(ω(t)) +

∫

K

λ(r, s, t)|γr × γs|drds

}
= 0.

From the incompressibility and as the fluid is homogeneous ρf mes(ω(t)) is constant, thus
∫

K

∂

∂t
(λ(r, s, t)|γr × γs|) drds = 0

As the domain is arbitrary, K is also arbitrary, thus

∂

∂t
(λ(r, s, t)|γr × γs|) = 0 (11)

This relation once integrated gives λ(r, s, t)|γr × γs| = λ(r, s, 0)|γ0
r × γ0

s | = λθ(r, s)|θr × θs|.
The known quantity that we can measure is this last density.

5.2.4 Conservation of linear momentum for the elastic surface

We assumed the membrane to react only to local area change, and not to membrane shear or
flexion. Therefore a natural energy associated should depend on its local area in the deformed
configuration compared to the rest configuration. Thefore we introduce the following energy:

E [γ] =

∫

[0,M ]2
E

(
|γr × γs|

|θr × θs|

)
drds (12)

where r → E(r) is an elastic constitutive law. The simplest choice is a truncated quadratical
law as E(r) = λmax(r − 1, 0)2. This law has been justified by an asymptotic analysis on a
thin elastic body with 3D elasticity following a Saint Venant - Kirchhoff law [79]. Now let us
compute the time derivative of this energy during motion of the membrane:

d

dt
E[γ] =

∫

[0,M ]2
E′

(
|γr × γs|

|θr × θs|

)
|γr × γs|t
|θr × θs|

drds.

As γt = u(γ, t) and div u = 0 we show in [A5] that

(γr × γs)t = −∇uT (γr × γs)

which immediately gives, if we set N(r, s) = γr×γs

|γr×γs|
,

|γr × γs|t = −
(γr × γs)

T∇u(γr × γs)

|γr × γs|
= −|γr × γs|(N(r, s) ⊗N(r, s)) : ∇u

= |γr × γs|(I −N(r, s) ⊗N(r, s)) : ∇u = |γr × γs|divΓt u,
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using I : ∇u = div u = 0 and the definition of surface density. Thus the sought derivative is
given by

d

dt
E[γ] =

∫

[0,M ]2
E′

(
|γr × γs|

|θr × θs|

)
|γr × γs|

|θr × θs|
(divΓt u)(γ, t)drds.

In this expression the surface measure dσ = |γr×γs|drds appears and we can use Murat-Simon
integration by part formula on manifolds without boundary:

∫

Γt

∇Γtf · udσ + f divΓt udσ =

∫

Γt

κfu · ndσ,

where κ is the manifold mean curvature. We wrote for simplicity the formula for a manifold
without boundary while we chose a surface with a boundary to be able to consider a regular
parametrization of it. We implicitly assume that boundary terms cancels, which correspond
to some boundary condition on the membrane. Recall that our aim is to model closed object,
thus we did not take care of these boundary terms, which will be irrelevant once we will skip
to the Level Set representation. This formula gives in our case

d

dt
E[γ] = −

∫

Γt

[∇ΓtT (r, s) − T (r, s)κN(r, s)] · udσ

where T (r, s) = E′
(
|γr×γs|
|θr×θs|

)
1

|θr×θs|
. From the principle of virtual powers, the power of

internal constraints corresponds to the time variation of energy, so that the elastic force per
unit of surface is given by:

F (r, s, t) = ∇ΓtT (r, s) − T (r, s)κN(r, s) (13)

which includes a tangential and a normal component. The conservation of momentum for
the elastic surface is therefore expressed by

(|γr × γs|λ(r, s, t)γt(r, s, t))t = (F (r, s, t) + fe(r, s, t))|γr × γs|

where λ(r, s, t) is the surface mass density, and fe the exterior force density per unit of surface
that we will consider to be reduced to gravity, i.e. λ(r, s, t)g. This also reads, by conservation
of the surface mass,

λ(r, s, t)|γr × γs|γtt(s, t) = (F (r, s, t) + λ(r, s, t)g)|γr × γs|. (14)

5.2.5 Conservation of linear momentum for the continuous medium

We use the same notations as in 5.2.3. The total linear momentum for volume ω(t) is given
by ∫

ω(t)
ρudx =

∫

ω(t)
ρfudx+

∫

Γω(t)
λudσ =

∫

ω(t)
ρfudx+

∫

K

λ|γr × γs|γtdrds

For the first integral, which corresponds to the fluid alone, the time derivative of the mo-
mentum of some part ω(t) of continuous medium is equal by principle to the sum of forces
applied to ω(t). Those forces are either volume or surface forces. Volume forces are restricted
to gravity ρfg. Surface forces take by the Cauchy theorem (see Duvaut [52] or Ciarlet [47])
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the particular form σn where σ is the Cauchy stress tensor and n the exterior normal to
∂ω(t). Furthermore we just computed the time derivative of the second integral. Therefore

d

dt

∫

ω(t)
ρudx =

∫

ω(t)
ρfgdx+

∫

∂ω(t)
σndσ +

∫

K

(F (r, s, t) + λ(r, s, t)g)|γr × γs|drds

which using Reynolds formula and divergence theorem gives

∫

ω(t)
ρ(ut + u · ∇u)dx =

∫

ω(t)
ρfgdx+

∫

Γω(t)
λ(r, s, t)gdσ +

∫

ω(t)
div σdx+

∫

Γω(t)
F (r, s, t)dσ.

For the fluid domain σ is a function of the deformation tensor given by

D(u) =
1

2
(∇u+ ∇ut).

In particular if we consider a Newtonian fluid this function is affine. For an incompressible
flow we get

σ = −pId + 2µD(u)

where p is the pressure and µ the fluid viscosity.

Immersed boundary model Formally, we obtain a non-homogeneous Navier-Stokes equa-
tion with a singular forcing term and a density with a singular part. We write it under the
following short way:





(ρf + λδΓt)(ut + u · ∇u) − 2 divµD(u) + ∇p

= {∇ΓtT (r, s) − T (r, s)κN(r, s)} δΓt + (ρf + λδΓt)g sur Ω×]0, T [

div u = 0 on Ω×]0, T [

γt = u(γ, t) on [0,M ]×]0, T [

where we recalled (10) which dictates the curve motion.

This formulation is exactly the immersed boundary method from Peskin [95, 96] although
it is written in a different form, and for an elastic surface rather than a volume collection
of fibers. Indeed using Peskin’s notations the immersed boundary condition amounts to mix
Eulerian and Lagrangian quantities. Fluid unknowns are Eulerian while Lagrangian markers
are used for the surface. The interaction of these two representations is done thanks to a
discrete Dirac measure. With the not so mathematical notations of [96], adapted to the
surface case (terms in |θr × θs|), this reads:
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Immersed boundary method: Eulerian description of velocity field and Lagrangian
description of immersed structure (made of a family of elastic fibers), interpolated in the
Eulerian domain.

◮ A velocity field (x, t) ∈ Ω × [0, T ] → u(x, t).

◮ (r, s, t) ∈ U × [0, T ] → γ(r, s, t) position of points on the elastic surface Γt.

◮ Force density with respect to the surface measure (r, s) in the reference configuration
is a known function Fθ(r, s, t).

◮ The surface density in the reference configuration is a known function λθ(r, s, t).

◮ Equations of motion (stress coupling):

(ρf + Λ)(ut + u · ∇u) − ν∆u+ ∇p = f (15)

div u = 0 (16)

f(x, t) =

∫

U

|θr × θs|Fθ(r, s, t)δ(x− γ(r, s, t))drds (17)

Λ(x, t) =

∫

U

|θr × θs|λθ(r, s, t)δ(x− γ(r, s, t))drds (18)

γt = u(γ(r, s, t), t) =

∫

Ω
u(x, t)δ(x− γ(r, s, t))dx (19)

Fθ(r, s, t) = Fθ[γ(r, s, t)] (20)

Equation (17) converts the Lagragian force into the Eulerian domain; equation (19) converts
the velocity field into a velocity on the Lagrangian markers. If we write the precise definition
of (17) thanks to a test function ψ : Ω → R, we get integrating on Ω

∫

Ω
f(x, t)ψ(x, t)dx =

∫

U

|θr × θs|Fθ(r, s, t)

∫

Ω
δ(x− γ(r, s, t))ψ(x, t)dxdrds

=

∫

U

|θr × θs|Fθ(r, s, t)ψ(γ(r, s, t), t)drds =

∫

Γt

Fθ(r, s, t)
|θr × θs|

|γ,r × γ,s|
ψ(x, t)dσ

therefore formally

f(x, t) =
|θr × θs|

|γr × γs|
Fθ(r, s, t)δΓt = F (r, s, t)δΓt

if F represents a surface density in the deformed configuration. Similarly, from (18), Λ is a
measure given by

Λ(x, t) =
|θr × θs|

|γr × γs|
λθ(r, s, t)δΓt = λ(r, s, t)δΓt , with x = γ(r, s, t).

We exactly recover the former expression for F , up to the choice of constitutive law.
The immersed boundary method we just described is simple and attrative. However,

at each time iteration one has to convert back and forth the coordinates, which introduces
serious volume conservation issues. Indeed the interpolated velocity field is not divergence
free thus the curve described does not enclose a volume of constant measure. This volume
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loss is acknowledged and in a good extent cured in [97, 78, 77], but the method looses its
inherent simplicity. The foremost aim of our Eulerian formulation, introduced in [A5, A4] was
to maintain the method simplicity while introducing an Eulerian localization of the interface
which suppress these interpolation problems. The original immersed boundary method can
be implemented so that it is order 2 in the case of thick interfaces, but order 1 for thin
structures [58]. Stability studies have been developed in [33, 34, 107].

Let us point out that our Eulerian formulation will by structure make natural the handling
of closed membrane, which was more delicate in Lagrangian coordinates. Moreover, the
variable viscosity or density case, which is not considered in the IBM is very simply handled
in our formulation. This is important as our cell models often exhibits a viscosity contrast
between the inner and outer fluids to take into account the biological material inside it.

5.3 Eulerian Elasticity of an immersed membrane

5.3.1 Level Set formulation

We now skip to a new representation of the interface to avoid caveats encountered with the
Lagrangian formulation. We consider Γt, that we now assume closed2 as the zero level set of
a function φ : Ω × [0, T ] → R so that

Γt = {x ∈ Ω, φ(x, t) = 0}.

As φ(γ(r, s, t), t) = 0 on [0,M ]2 × [0, T ], and γt = u(γ, t), we get by time differentiation

φt(γ(r, s, t), t) + u(γ(r, s, t), t) · ∇φ(γ(r, s, t), t) = 0.

The Level Set method [93] takes as initial condition a function φ0 whose zero level set is Γ0

and amounts to find a function φ which is solution to the above transport equation on the
whole computational domain:

{
φt + u · ∇φ = 0 on Ω×]0, T [

φ = φ0 on Ω × {0}.
(21)

A common choice for φ0 is the signed distance to the interface:

φ0(x) =

{
−dist(x,Γ0) if x is inside Γ0,

dist(x,Γ0) if x is outside Γ0.

With this choice of φ0 the exterior normal to the domain enclosed by Γt, and the surface
mean curvature are expressed in terms of φ as follows:

n(x) =
∇φ

|∇φ|
κ(x) = div

∇φ

|∇φ|

2We could get rid of this assumption by introducing a supplementary function, but once again the physical

objects we intend to model are closed.
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5.3.2 Deformations and Level Set

What is more original and proved in [A5] is that in the case of an incompressible flow,
the surface stretching is recorded in the function φ, which allows us to rephrase our fluid-
structure problem with this function. There is several ways to prove this intuitive fact, which
generalizes well to compressible case with the adjunction of J (this aspect has been recently
developed in [40, 41] in the framework of tumor growth simulation and also in [26]). We
could also start from the stretching written in Lagrangian and prove that |∇φ| verifies the
same equation, as in [A5] that is to say

|∇φ|t + u∇|∇φ| = −|∇φ|
∇φT∇u∇φ

|∇φ|2
= −|∇φ|

∇φ

|∇φ|
⊗

∇φ

|∇φ|
: ∇u (22)

However I will present the following more intrinsic demonstration which relies on the two
following propositions.

Lemma 1 Let φ : R
d → R Lipschitz on R

d and g : R
d → R integrable. We assume the exists

η0 > 0 such that ess inf |φ|<η0
|∇φ| > 0. Then for η ∈]0, η0[, there holds

∫

|φ(x)|<η

g(x)dx =

∫ η

−η

∫

φ(x)=ν

g(x)|∇φ|−1dσdν.

Proof. In [54], proposition 3 page 118, it is shown under the same assumptions that

d

ds

(∫

φ>s

g(x)dx

)
= −

∫

φ=s

g|∇φ|−1dσ a.e. s

The above result is a straightforward consequence of that identity by setting s = −t, choosing
φ and −φ and adding the obtained relations. Then we integrate from −η to η.

A more intuitive proof is to write, in a neighborhood of x the volume dx as dx = dσ×dh,
where dh is along the normal ∇φ

|∇φ| and to remark that

ν ± dν := φ(x± dh
∇φ

|∇φ|
) = φ(x) ± dh|∇φ| +O(dh2)

from which we get dx = |∇φ|−1dσdν. �

Under the following assumption on the level sets of φ,

(Hφ) ∀t ∈ [0, T ],∀f ∈ Cc(R
n), s→

∫

{|φ(x,t)|<s}
f(x)dx is of class C1 in a neighborhood of s = 0

we have the following:

Proposition 5 Let u : R
d × [0, T ] → R

d of class C1 with div u = 0 and φ solution of class
C1 of φt + u · ∇φ = 0, φ = φ0 with |∇φ| ≥ α > 0 in a neighborhood of {φ = 0} and verifying
(Hφ). Then for every function f continuous and with compact support,

∫

{φ0(ξ)=0}
f(ξ)|∇φ0|

−1(ξ)dσ(ξ) =

∫

{φ(x,t)=0}
f(Y (x, t))|∇φ|−1(x, t)dσ(x) (23)

which means that |∇φ|/|∇φ0| represents the variation of surface measure between Γt and Γ0.
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Proof. From assumption (Hφ) follows using the above Lemma that

s→

∫

{φ0=s}
f(ξ)|∇φ0|

−1(ξ)dσ(ξ)

is continuous. Therefore using Lemma 1,

∫

{φ0(ξ)=0}
f(ξ)|∇φ0|

−1(ξ)dσ(ξ) = lim
η→0

1

η

∫ η

2

− η

2

∫

φ0=ν

f(ξ)|∇φ0|
−1(ξ)dσ(ξ)dν = lim

η→0

1

η

∫

|φ0|< η

2

f(ξ)dξ.

With the change of variables ξ = Y (x, t) whose jacobian J(x, t) is 1 since div u = 0. As φ is
solution to a transport equation we have φ0(Y (x, t)) = φ(x, t) and thus

∫

{φ0(ξ)=0}
f(ξ)dσ(ξ) = lim

η→0

1

η

∫

|φ(x,t)|< η

2

f(Y (x, t))dx

which gives the announced result thanks to 1. �

Remark 5 Another proof is possible using the Reynold formula for surfaces. We give it here
in the more general compressible case to show what differs. For a C1 function g, we have

d

dt

∫

{φ(x,t)=0}
g(x, t)dσ =

∫

{φ(x,t)=0}
gt + div(gu) − g[∇u]n · ndσ

and on {φ = 0} we have using (22)

[∇u]n · n = [∇u]
∇φ

|∇φ|
·
∇φ

|∇φ|
= −

1

|∇φ|
(|∇φ|t + u · ∇|∇φ|)

Gathering terms leads to

d

dt

∫

{φ(x,t)=0}
g(x, t)dσ =

∫

{φ(x,t)=0}
((g|∇φ|)t + u · ∇(g|∇φ|))

1

|∇φ|
+ g div udσ

Moreover as J−1
t + u · ∇J−1 = J−1 div u, we can eliminate div u which gives

d

dt

∫

{φ(x,t)=0}
g(x, t)dσ =

∫

{φ(x,t)=0}

(
(gJ−1|∇φ|)t + u · ∇(gJ−1|∇φ|)

) J

|∇φ|
dσ

We now apply this formula with g(x, t) = f(Y (x, t))J(x, t)|∇φ|−1(x, t), by computing

(gJ−1|∇φ|)t + u · ∇(gJ−1|∇φ|) = f(Y )t + u · ∇[f(Y )] = 0

since f(Y ) is just the transported function f . Finally we obtain

d

dt

∫

{φ(x,t)=0}
f(Y (x, t))J(x, t)|∇φ|−1(x, t)dσ = 0

which after integration from 0 to t gives (23), if J = 1. In the compressible case we recover
results from [41, 26] where the stretching is expressed as J−1|∇φ|.
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Remark 6 From a theoretical point of view the formula (23) just says that the measure
|∇φ0|

−1(x)δ{φ0=0} is the image of |∇φ|−1(x, t)δ{φ=0} by the map x→ Y (x, t).

Corollary 1 In dimension 2, we consider a parametrization s ∈ [0,M ] → γ(s, 0) ∈ R
2 of

Γ(0) which is transported into a parametrization s → γ(s, t) of Γ(t). Expressing the surface
measure in terms of the parametrization we get since Y (γ(s, t), t) = γ(s, 0):

∫ M

0
f(γ(s, 0))|∇φ0|

−1(γ(s, 0))|γs|(s, 0)ds =

∫ M

0
f(γ(s, 0))|∇φ|−1(γ(s, t), t)|γs|(s, t)ds

for all continuous f with compact support. Thus

|∇φ|(γ(s, t), t)

|∇φ0|(γ(s, 0))
=

|γs(s, t)|

|γs(s, 0)|
.

In dimension 3, if (r, s) ∈ ω → γ(r, s, t) ∈ R
3 is a (patch of) parametrization of Γ(t), we still

have Y (γ(r, s, t), t) = γ(r, s, 0) which gives

∫

ω

f(γ(r, s, 0))|∇φ0|
−1(γ(r, s, 0))|γr × γs|(r, s, 0)drds

=

∫

ω

f(γ(r, s, 0))|∇φ|−1(γ(r, s, t), t)|γr × γs|(r, s, t)drds

therefore
|∇φ|(γ(r, s, t), t)

|∇φ0|(γ(r, s, 0))
=

|γr × γs|(r, s, t)

|γr × γs|(r, s, 0)
.

More precisely we construct φ0 such that its zero level set is Γ0, and such that

|∇φ0|(γ(r, s, 0)) =
|γr × γs|(r, s, 0)

|θr × θs|(r, s)

which corresponds to the area change between the initial and rest configuration. Then we
have

|∇φ|(γ(r, s, t), t) =
|γr × γs|(r, s, t)

|θr × θs|(r, s)
.

If the initial stretching does not depend on (r, s) (uniform stretching) this amounts to initialize
φ0 to this stretching times the signed distance to the surface.

5.3.3 Energy and elastic force expressed in Level Set

We are now in a position to express the elastic energy of an elastic membrane in terms of
the Level Set function. But we must first cope with the surface integral, which leads us to
consider as analog of (12) the following energy (here for a surface with stretching 1 at rest)

E [φ] =

∫

{φ=0}
E(|∇φ|)

1

|∇φ|
dσ.

Then we could differentiate this energy with respect to t in order to identify the singular
elastic force (Thomas Milcent in his thesis [87] inspected this direction). We could then
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develop a finite element method to give a weak meaning to measure, which is made in [33, 34]
in the framework of immersed boundary method. However we chose, as in the usual Level
Set method, to approximate the surface measure by a non singular function. Then we can
use a finite difference method on a cartesian grid with fast FFT solver for Poisson equation.
In this aim we have the following Lemma (proved in [A4] and originally in [45]) which gives a
volume approximation of a Dirac Measure supported by an hypersurface localized by a level
set:

Proposition 6 Let r → ζ(r) be a continuous function with support in [−1, 1], such that
r → 1

ε
ζ( r

ε
) converges toward δ0 in the sense of distributions. Then under assumption (Hφ),

when ε→ 0,

1

ε
ζ

(
φ

ε

)
|∇φ|⇀ δ{φ=0} in M(Rd).

Therefore we see that a sound numerical approximation of δ{φ=0} is given by |∇φ|1
ε
ζ
(

φ
ε

)
,

which allows to define a regularized energy by

Eε(φ) =

∫

Ω
E(|∇φ|)

1

ε
ζ(
φ

ε
)dx. (24)

Remark 7 This approximation is not so innocent it could first appear. Indeed we replaced a
purely geometrical object, namely δ{φ=0}, independent of φ representing the same geometrical
surface (and therefore scale independent), by an object which does depend of φ. This is the
origin of numerical issues in the Level Set method that we discuss later, and probably of
stability problems in some situations (Claire Bost adressed this issue in her Thesis [36]).

Differentiating this energy we get (up to a gradient term, see [A3] the details)

Fε(x, t) = div

(
E′(|∇φ|)|∇φ|(I −

∇φ⊗∇φ

|∇φ|2
)
1

ε
ζ(
φ

ε
)

)
. (25)

Expanding the divergence operator leads after some algebra

Fε(x, t) =

{
P∇φ⊥

(
∇[E′(|∇φ|)]

)
− E′(|∇φ|)κ(φ)

∇φ

|∇φ|

}
|∇φ|

1

ε
ζ(
φ

ε
)

which is in agreement with (13) obtained in Lagrangian coordinates. Gradients terms are
irrelevant in the incompressible case, since pressure forces do not work under an isochoric
displacement vanishing on the boundary.

Remark 8 Thomas Milcent proved in his thesis [87] the consistency of this approximation
(in the case of a far more general energy) in comparison with computation of this force directly
by differentiation of a sharp energy. In other words, the force obtained by differentiation of
the regularized energy converges when ε to 0 toward the force that we obtain by differentiation
of the singular energy.
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5.3.4 Multiphysics model

Let H(r) =
∫ r

−∞ ζ(s)ds. We have H(r) = 0 for r < −1, and H(r) = 1 for r > 1. We finally
set

ρ(φ) = ρ1 +H(
φ

ε
)(ρ2 − ρ1) + λθ

1

ε
ζ

(
φ

ε

)

assuming for now on that λθ is constant, and

µ(φ) = µ1 +H(
φ

ε
)(µ2 − µ1)

Then we obtain the following model (wrote here in the case where f = 0): Find (u, φ) solution
on Ω×]0, T [ of





ρ(φ)(ut + u · ∇u) − div
(
µ(φ)D(u) − E′(|∇φ|)|∇φ|∇φ⊗∇φ

|∇φ|2
1
ε
ζ(φ

ε
)
)

+ ∇π = 0

div u = 0

φt + u · ∇φ = 0

Note that ρ(φ) also verifies the transport equation and thus the conservation law associated
since div u = 0. In that respect we proposed a complex fluid model for our fluid-structure
problem in which the stress tensor is modified on a neighborhood of the membrane. This
model is a generalization of the Korteweg fluid model [110] and this is precisely from this
remark that we will attack the existence of solution to our model. The starting point is the
following energy equality which states that the spreading of elastic force does not introduce
an artificial dissipation. This is a simple consequence of how we defined our elastic energy.

Proposition 7 If φ is such that |φ| > ε on ∂Ω, we have

1

2

∫

Ω
ρε(φ(x, T ))u2(x, T )dx+

∫ T

0

∫

Ω
µ(φ)D(u)2dxdt+

∫

Ω
E(|∇φ|)

1

ε
ζ(
φ

ε
)dx

=
1

2

∫

Ω
ρε(φ0(x))u

2
0(x)dx+

∫

Ω
E(|∇φ0|)

1

ε
ζ(
φ0

ε
)dx (26)

5.3.5 Existence of a solution to the multiphysics problem

For a sake of simplicity we fix ǫ = 1, ρ1 = ρ2, µ1 = µ2 and we consider the following model

ρ(φ) (ut + (u · ∇)u) − µ∆u+ ∇π = −div (Σ(φ,∇φ)) (27)

φt + u · ∇φ = 0 (28)

div(u) = 0, (29)

where
ρ(φ) = ρ+ λζ(φ) (30)

and ρ, λ are two strictly positive coefficients (the fluid background and membrane surface
densities). Σ derives from the energy E of the membrane through the following formula

Σ(φ,∇φ) =
E

′

(|∇φ|)

|∇φ|
ζ(φ)∇φ⊗∇φ (31)
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which corresponds to (25) where the gradient term has been absorbed by the pressure π.
This system is supplemented by initial conditions for u and φ

u(x, 0) = u0(x) , φ(x, 0) = φ0(x) (32)

and boundary conditions for u. We will focus on no-slip boundary conditions (our result
easily extends to periodic boundary conditions): u = 0 on ∂Ω. ζ denotes a C∞ positive
cut-off function. Throughout this section we will assume that

r → E′(r) ∈ C1([0,+∞)). (33)

Note that the case of a linear response is given by E′(r) = λ(r − 1) (however the material is
still geometrically nonlinear).

Note also our formulation allows to recover Korteweg fluids [110] as a particular case, when
E′(r) = r, the Level Set function φ playing the role of density. Indeed if we choose E′(r) = r
and if we introduce a function Z(.) such that its derivative is

√
ζ(.), setting ψ = Z(φ) gives

ζ(φ)∇φ⊗∇φ = ∇ψ ⊗∇ψ.

Clearly, ψ is, like φ solution of the transport equation. Moreover, since div(∇ψ ⊗ ∇ψ) =
∆ψ∇ψ + D2ψ∇ψ = ∆ψ∇ψ + 1

2∇|∇ψ|2, we obtain for the right hand side of the Navier-
Stokes equations, up to a gradient term that can be absorbed in the pressure term, the usual
Korteweg source term.

In [A3] we prove the following result.

Theorem 1 Let p > 3. Assume Ω is a smooth connected bounded domain in R
3, φ0 ∈

W 2,p(Ω), such that |∇φ0| ≥ α > 0 in a neighborhood of {φ0 = 0}, and u0 ∈W 1,p
0 (Ω)

⋂
W 2,p(Ω),

with div u0 = 0. Then there exists T ∗ > 0 only depending on the initial data such that a so-
lution of (27), (28), (29) exists in [0, T ∗] with

φ ∈ L∞(0, T ∗;W 2,p(Ω)), u ∈ L∞(0, T ∗;W 1,p
0 (Ω))∩Lp(0, T ∗;W 2,p(Ω)), ∇π ∈ Lp(0, T ∗;Lp(Ω)).

Our proof is based on a compactness argument. We classically start by considering a sequence
of mollified problems for which smooth solutions are available. We consider a time-retarded
mollification of the velocity (see [43], p. 823) and a spatial regularization of the Level Set
function. We then obtain estimates using results of Solonnikov [106] on Stokes problem in
Lp. The use of Sobolev spaces for p > 3, instead of Hilbert spaces, provides more regularity
thanks to Sobolev injection theorems (in particular W 1,p ⊂ L∞ for the velocity) without
climbing in the order of derivatives. This avoids clumbersome differentiation of the pde.

5.3.6 Numerical components

Reinitialization or renormalization of φ ? It is commonly acknowledged that the func-
tion φ, through the calculation process should remain close to a (signed) distance function,
that is with a gradient norm equal to one. The invoked reason is that the spreading formula
induces a support width which depends on |∇φ| in contrast with the sharp interface measure
δ{φ=0}. Thus maintaining a constant |∇φ| = 1 ensures a constant width smeared interface.

34



However, starting from a distance function φ0, the solution of the advection equation for φ
does not in general give a distance function φ(t, ·) for t > 0. Three solutions may circumvent
this behavior:

• Reinitialization by an Hamilton-Jacobi equation. This is the classical method [108, 109]
which is achieved by solving the following partial differential equation

dτ = sign(φ)(1 − |∇d|)

with initial condition d(x, 0) = φ(x, t) a time t, and where sign takes values in {−1, 0, 1}
depending on the sign of φ. We will see that this equation is an hyperbolic one, a fact
which appears even more clearly if we write it as

dτ + w · ∇d = sign(φ)

and its characteristic are starting from {φ = 0}. Thus solving this equation results in a
reconstruction of φ starting from the interface. As we are interested by a unity gradient
only on a neighborhood of the interface, this reinitialization PDE is solved for small τ
only (about 1.5ε for instance).

Solving exactly this HJ equation certainly provides a distance function whose zero level
set coincide with those of φ, but numerically this is not true, a fact which leads to a
correcting constraint to add to the HJ equation to ensure volume conservation [108].
This is partly due to the fact that w is not a divergence-free velocity field, except in
the case of a flat interface, thus advection with this field does not provide automatic
volume conservation.

A new and radical method proposed by Smolianski [105] to correct this volume leaking is
to lower or raise the distance function to ensure volume conservation. The shift quantity
needed may be computed from the exact volume (usually known when the fluids are
incompressible) and the length of interface. Let V0 be the volume of {φ0 > 0}, which
should be conserved during the incompressible flow. At time t > 0, due to numerical
errors, V := meas{φ > 0} differs a little from V0. We look for a level set {φ > C} such
that meas{φ > C} = V0. Using [54], p. 118,

d

ds

(∫

{φ>s}
g(x)dx

)
= −

∫

{φ=s}
g|∇φ|−1dσ p.p. s

which for g = 1 and a distance function (recall that HJ equation has been solved) reads

d

ds
meas{φ > s} = −L({φ = s})

where L denotes the length of a curve. Thus integrating between 0 and C give

V0 − V = −

∫ C

0
L({φ = s})ds

Thus at first order in C one has V0 − V ≈ −CL({φ = 0}). We thus conclude that an
approximative value for C is

C ≈
V − V0

L({φ = 0})

and we correct φ by φ− C to get our volume conserved.
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• Modifying the advection equation outside of the interface. Gomes and Faugeras (as
observed by H.-K. Zhao et al (JCP, 1996) from a remark by Evans and Spruck) partially
proved that if one replaces the advection equation by the non-local PDE

φt(x, t) + (u · ∇φ)(x− φ∇φ, t) = 0

then {φ = 0} is still advected with velocity u, and φ remains a distance function for all
times. While this algorithm seems to be applicable in the context of image processing,
the non-locality of the equation is a serious obstacle to its practical use in fluid flows.

• Renormalize φ by its gradient. As observed by G.-H. Cottet, though φ is not a distance
function, one could get a reasonable approximation of the distance to the interface using

φ
|∇φ| , at least close enough from this interface. Numerical tests in [A4] indicate that this

is a realistic counterpart to reinitialization, for length calculation (a prototype of singu-
lar force calculation, see figure 9). Moreover, this avoids reinitialization and subsequent

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

Time

L
e
n
g
th

FIGURE 9: Comparison between reinitialization (dashed lines) and renormalization (con-
tinuous lines) for N = 64, 128, 256, in a test where an interface is stretched by a rotating
velocity field. Top curve is a high resolution front tracking solution.

volume loss, which leads to excellent volume conservation properties. One striking ex-
ample of this good behavior has been recently obtained on an accuracy test in [104].
In this paper the author introduces two discrete delta functions which are supposed to
be used efficiently for interface length calculation. We used the renormalization trick
to achieve results which show order two convergence, except for really rough grids.
Although less accurate than the second order delta function proposed by the author,
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this simple method seems thus a good counterpart (this kind of approximation was also
studied in [53]).

Mesh Size Smereka 1 Renormalization Smereka 2
Rel. Error Order Rel. Error Order Rel. Error Order

0.2 9.38 × 10−3 1.5 × 10−1 2.68 × 10−3

0.1 2.23 × 10−3 2.07 5 × 10−3 5.49 × 10−4 2.29
0.05 8.12 × 10−4 1.46 1.3 × 10−3 1.9 1.32 × 10−4 2.05
0.025 2.71 × 10−4 1.58 3 × 10−4 2.1 2.90 × 10−5 2.18
0.0125 7.58 × 10−5 1.83 8 × 10−5 1.9 7.79 × 10−6 1.90
0.00625 3.04 × 10−5 1.32 2 × 10−5 2 1.84 × 10−6 2.08

Numerical method used Il all the simulations proposed we used mostly the same ingre-
dients. The Navier-Stokes equations were discretized by a finite difference method on a MAC
mesh where the velocity and pressure unknowns are located in such a way that the discrete
divergence is exactly zero. This permits to enforce the volume constraint very accurately.
The incompressibility constraint is enforced by a projection method of Chorin type. The
transport equations are solved by a WENO5 scheme. Note that this high order is motivated
by the fact that the advected quantities are regular in space and their derivatives are used
to compute the elastic stress.

5.3.7 Numerical stability of the coupling

The model we discretize consists of Navier-Stokes equations with a source term which can be
expressed, in the case where E′(r) = λ(r − 1) as:

F (x, t) = λ

{
P∇φ⊥ (∇|∇φ|)) − (|∇φ| − 1)κ(φ)

∇φ

|∇φ|

}
|∇φ|

1

ε
ζ(
φ

ε
),

where P∇φ⊥ is the projector onto the tangent plane, κ(φ) the mean curvature, and λ the
membrane stiffness (we do not consider curvature forces here). As the advection terms are
explicited we have a classical CFL condition to respect. Moreover, we have to write some
kind of CFL condition for this elastic force such that in one time step, it would not create
a displacement greater than a mesh cell. This type of extra condition for the stability of
curvature driven flow has been computed initially by Brackbill [37] in the case of a two-phase
flow by estimating capillary waves speed. In [105], this condition is rediscovered by arguing
on a CFL condition for the source term. Applied to our elastic force, we computed a stability
condition which takes the following expression:

∆t < ∆te =

√
ρα

λ|∇φ|(2|∇φ| − 1)
h

3

2

where ε = αh is the interface width. This condition corresponds to the one of [37], up to a
constant, if we consider |∇φ| = 1 and α = 1. In our case however, the width of interface as
well as the stretching is involved. This condition could become very restrictive in the case of
a stiff membrane (large λ), as in phospholipidic vesicles, since it behaves as h

3

2 .
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On another hand, Paul Vigneaux in his thesis and an article with Cédric Galusinski
[57, 56] exhibits a stability condition for low Reynolds number and large surface tension (the
case of micro-fluid dynamics). In that case their condition reads, neglecting gravity,

∆t < C
µ

σ
h

where µ is the viscosity and σ the surface tension. In that case, where inertia is neglected,
we obtain a less restrictive condition, of order 1 in h.

In her thesis [36] Claire Bost clarifies these stability conditions by introducing a simplified
1D problem, which exhibits both of the two stability conditions. Thanks to a Fourier analysis
she found a stability condition compatible with the former two.

An important question for the stability of these fluid-structure coupling problems is the
conservation of some discrete energy, after time and/or space discretization. This kind of
questions has been addressed in the framework of the ALE method [55, 44] and the second
gradient theory [68] by Jamet et al [69]. They introduced a method to conserve energy at a
discrete level and in doing so suppressed some parasitic currents appearing is the numerical
simulations when the surface tension is large.

In the framework of immersed boundary method, stability questions have been addressed
by [113, 107, 33, 34], which defined explicit, semi-implicit or fully implicit schemes and studied
their stability. In particular Boffi et al [33, 34] in the implementation of IBM with a sharp
interface term computed through a finite element formulation, found an explicit scheme stable
under a Brackbill type condition and an unconditionally stable implicit scheme (in dimension
2). Another approach still in dimension 2 was proposed by T. Y. Hou and Z. Shi [63, 64]
where the interface is parametrized by curvilinear coordinate and the angle of tangent vector
to the curve. They were able in this formulation to develop a spectral analysis and produce
a semi-implicit scheme stable under a Brackbill condition.

With Claire Bost we tried to construct numerical schemes that conserve a discrete energy.
We faced the problem of the spreading of the elastic force through the cut-off function, which
brings an extra nonlinearity. We are indeed able to produce such a scheme, but for which we
are not able to control the width of interface. This problem of interface width is also present
in the phase-field method where we introduce an ad hoc extra term in the transport equation
to control it. This seems to be the major difference between the two methods and maybe an
explanation of the possible better behavior of phase field in that context.

5.3.8 Application: cellular motility and parametric instability

Several tests have been developed in order to validate our numerical code [A4, A3]. We
present an application of our method to the study of vesicle protrusions. This is a joint work
with John Stockie (U. Vancouver). Cells, for example for their motion, create protrusions on
their membrane. The underlying mechanism is still controversial in the Biologists commu-
nity. It is attributed to polymerization / depolymerization process of actin filaments in the
neighborhood of the membrane, but this is modeled differently between authors (cf [90, 35]
and references therein). As a two-phase continuous medium, or a visco-elastic medium, or as
a microscale network. As I am not specialist to decide between these models, I got interested
in an article of Cortez, Peskin, Stockie and Varela [50] into which the authors study the
parametric instability of the system formed by an elastic membrane immersed in a 2D fluid.
Parametric instability is well known to everybody who once use a swing. In the immersed
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membrane case, we could imagine that the periodic variation of somme parameter of the
system, as the stiffness for example, could lead to large unstable deformations. This is what
is proved in [50] and that we study in dimension 3 with John Stockie.

From a numerical point of view the tests we developed with our membrane model clearly
illustrated that a spherical membrane slightly perturbed, and with a stiffness varying with a
precise periodicity, could exhibit an instability, which means very large displacements com-
pared with the initial perturbation. We want to stress out that this does not correspond
to a resonance phenomenon under a suitably chosen forcing term. For example without ini-
tial perturbation of the membrane the periodic fluctuations of its stiffness do not create any
motion.

Some videos are available on my web page. The following example (figure 10) is academic:
it corresponds to a membrane with stiffness 1 immersed in a fluid of Reynolds 100. The
spherical membrane is perturbed in the following way: we consider a meridian on this sphere
that we perturb by a small amplitude (2.5%) oscillation in cos(4θ). Then we consider the
surface generated by this perturbed meridian. The membrane stiffness is oscillating between
0.5 and 1.5. The pictures below show the deformed immersed membrane (the fluid is not
represented). The colors on the surface give the stretching. The pressure slices in the middle
of the vesicle are plotted on the edges of the graphical box.

5.4 Flexural membrane with constant local area

5.4.1 Curvature force

In the case of the study at equilibrium or in a shear flow of phospholipidic vesicles, the
method developed above gives an interesting counterpart to phase-field methods [31]. Il this
setting, the elastic surface is nearly inextensible and therefore the curvature forces drive the
geometrical equilibrium shape. In our model, we in fact somehow penalize the area invariance
constraint by considering a membrane with a very large stiffness, and we add a curvature
energy. We can consider the following general form:

Gε(φ) =

∫

Ω
G(κ(φ))|∇φ|

1

ε
ζ(
φ

ε
)dx

the standard case corresponding to G(r) = 1
2r

2. As above the time derivative of the curvature
energy will compare to the power of curvature forces Hε(x, t), and we have

d

dt
Gε(φ) = dGε(φ)(φt) = dGε(φ)(−u · ∇φ) = −

∫

Ω
Hε(x, t) · udx (34)

which give by identification (see article in preparation [A14]):

Hε(x, t) = div

[
−G(κ(φ))

∇φ

|∇φ|
+

1

|∇φ|
P∇φ⊥

(
∇[|∇φ|G′(κ(φ))]

)] 1

ε
ζ(
φ

ε
)∇φ.

It is possible to obtain a divergence form for the curvature forces which involves the second
fundamental form. We obtained in [A14] l’expression Hε(x, t) = div σε

c with

σε
c =

{
|∇φ|

[
G(κ(φ))I +

∇φ

|∇φ|
⊗ ∇G′(κ(φ))

](
I −

∇φ⊗∇φ

|∇φ|2

)

−G′(κ(φ))

(
I −

∇φ⊗∇φ

|∇φ|2

)
D2φ

(
I −

∇φ⊗∇φ

|∇φ|2

)}
1

ε
ζ(
φ

ε
) (35)
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FIGURE 10: Parametric instability of an immersed elastic membrane
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5.4.2 Links with phase field method and second gradient theory

The behavior of vesicles in shear flow, which is a physics model of red blood cells in arteries,
has been studied extensively in the Laboratory of Spectrometry (LSP) in Grenoble by J.
Beaucourt, Th. Biben, C. Misbah and their co-authors [31, 27, 32] and experimentally by M.
Mader and T. Podgorski.

The method they developed is a phase field method (they call it advected field method
though) which is in some aspects very similar to the Level Set method. Therefore we set
up a workgroup to exchange ideas about our experience of such methods. An article in
about to be submitted, which makes a comparison of the two approaches [A14]. The basic
differences between the two methods are the following. The Eulerian phase function Φ which
captures the interface takes its values in [0, 1]. It is constant excepted in the neighborhood
of the interface, where it varies quickly but smoothly from 0 to 1 (from the inner fluid to
the outer fluid). The transition width is a parameter ε of the method, which compares to
the one introduced in Level Set. The phase field function Φ corresponds to H(φ

ε
) in Level

Set. A surface integral in this formulation does not involve a cut-off function ζ but the
gradient of Φ, which is equivalent since H ′ = ζ. The fundamental difference is thus not
in this representation choice but rather in the equation used to move the phase function.
While in Level Set the function is merely advected, recording some mechanical information
on the interface (stretching), the phase field equation is a transport equation corrected with
terms ensuring that the width of interface remains constant. This avoids the reinitialization
or renormalization step which is mandatory in Level-Set, but another equation is needed to
compute the stretching. Typically Φ verifies:

Φt + u · ∇Φ = εΦ(Φ(1 − Φ2) + ε2(∆Φ + c|∇Φ|)) (36)

the source terms maintaining values of Φ in [0, 1], with a transition zone of width ε. In the
original publication [31], the correction terms were found heuristically. The model has to
be supplemented by some stretching equation, since this information is not included in the
phase function. Recently, D. Jamet and C. Misbah [70] applied the second gradient theory,
introducing a thermodynamic potential for this multi-physics problem. This potential has the
phase function, its gradient and the stretching as variables. By differentiating this potential
they obtained membrane and flexural forces and we prove in [A14] that the curvature forces
(which are geometrical) coincide, while membrane forces could be identified up to a particular
choice of the elastic constitutive law E′(r) = λ ln r in the Level Set method (which is nearly
linear for small stretching).

On a numerical point of view, along with quantitative comparison between the methods
[A14] , a stability study comparing the two methods in the case of a stiff membrane is still
to be developed. While the Level Set method seems more natural since there is no extra
term added in the advection equation, the spreading via a cut-off function of the elastic force
seems to play a role in its stability. As indicated above, we investigated with Claire Bost
numerical schemes which conserve some numerical energy, and for which it is still possible to
control the width of interface. This work is still in development.

5.4.3 Application to phospholipidic vesicles

As a field of application we present in the static case the computation of 3D vesicles shapes.
The problem is then to determine a surface of given area and enclosed volume, minimizing the
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FIGURE 11: Computation of optimal shape for vesicles. Top: τ = 0.8. Bottom: τ = 0.586.
From initialization to steady state from the left to the right. Computations by Thomas
Milcent.

mean curvature energy. The swelling ratio is the parameter which determines the equilibrium
shape. It is defined as the ratio of the vesicle area over the area of the sphere enclosing the
same volume. Thanks to the isoperimetric inequality this number τ is between 0 and 1.
For values close to 1, equilibrium shapes are ellipsoids, which when τ decreases turn to a
peanut shape. A bifurcation appears for smaller values of τ where a donut (without a hole)
shape appears. This is the classical shape that we know for red blood cell. For very small
swelling ratios, vesicles can take very strange shapes [101] which are in effect observed in
some pathologies of red blood cells. Figure 11 reproduces computations on the bove model
which have been implemented by Thomas Milcent in his thesis [87] and were published in
[A2].

The dynamical case is more interesting since the behavior of vesicles in a shear flow
depends on the ratio of the inner fluid viscosity with respect to the outer fluid viscosity.
Indeed for nearly equal viscosities, the vesicle reaches a steady state at a fixed angle, and its
membrane rolls around in a tank-treading motion. As the vesicle is not spherical, dissipation
occurs inside the vesicle. When the inner viscosity is too high, this dissipation is too costly
from the energetic point of view. Then the vesicle tumbles around itself so that the inner
fluid is nearly in a rigid motion. All these behaviors have been studied in detail in [31, 27, 88].

It is important in the dynamical case to perform a dimension analysis on our model to
extract its relevant parameters. We recall the equation of conservation of linear momentum:

ρ(ut + u · ∇u) − div(µD(u)) + ∇p =

{
∇[E′(|∇φ|)] − div

[
E′(|∇φ|)

∇φ

|∇φ|

]
∇φ

|∇φ|

+ div

[
−G(κ(φ))

∇φ

|∇φ|
+

1

|∇φ|
P∇φ⊥

(
∇[|∇φ|G′(κ(φ))]

)] ∇φ

|∇φ|

}
|∇φ|

1

ε
ζ

(
φ

ε

)
.

Let L, U , ρref and µref characteristic length, velocity, density and viscosity. Let x = Lx′, u =
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FIGURE 12: Tank-treading motion of a vesicle in a sear flow. Viscosity contrast: 1. Colors
stand for iso-pressure lines.

Uu′, t = (L/U)t′, ρ = ρrefρ
′, µ = µrefr, p = ρrefU

2p′, φ = Lφ′, and ε = Lε′. Differentiating
we find

ut =
U2

L
u′t′ , ∇u =

U

L
∇′u′, D(u) =

U

L
D′(u′), div(µD(u)) =

Uµref

L2
div′(rD′(u′)),

∇p =
ρrefU

2

L
∇′p′, ∇φ = ∇φ′, κ(φ) =

1

L
κ′(φ′)

where κ(φ) is the curvature. In dimensionless variables (dropping the ′), and for the particular
case E′(r) = λ(r − 1) and G(r) = 1

2r
2 we get:

ρ(ut + u · ∇u) −
1

Re
div(rD(u)) + ∇p =

{
1

We

[
∇[E′(|∇φ|)] − div

[
E′(|∇φ|)

∇φ

|∇φ|

]
∇φ

|∇φ|

]

+
1

Ck
div

[
−G(κ(φ))

∇φ

|∇φ|
+

1

|∇φ|
P∇φ⊥

(
∇[|∇φ|G′(κ(φ))]

)] ∇φ

|∇φ|

}
|∇φ|

1

ε
ζ

(
φ

ε

)

where

Re =
LUρref

µref
, We =

ρrefU
2L

λ
, Ck =

ρrefU
2L3

κ

In a shear flow one important quantity is the shear rate γ, from which we can express the
characteristic velocity U = γL. Substituting LUρref by Reµref in We and Ck we finally get

Re =
LUρref

µref
, We = Re

µrefγL

λ
, Ck = Re

µrefγL
3

κ

which are the dimensionless parameters from [27] with Re = 1 in We and Ck (in that article
the Stokes equation is considered). The behavior of the vesicle is determined by the value of
these parameters.

Below we plotted simulation results corresponding to generic situations (an intermediate
regime has been discovered by C. Misbah [88]). On figure 12, which corresponds to Re =
0.0001, We = 0.000025, Ck = 0.25, visosity contrast 1, swelling ratio 0.7, we observe that the
vesicle reaches a stationary angle.

By contrast on figure 13 which corresponds to the same parameters but with a viscosity
ratio of 4 (the inner visosity 4 times greater than in the former test), we observe a tumbling
motion. If rather than multipying the inner visosity by 4 we divide the outer by the same
number (Re = 0.0004, We = 0.000025, Ck = 0.25, viscosity contrast 4) there is still tumbling
but as the exterior fluid is less viscous the peanut shape of the vesicle is more evident (figure
14).
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FIGURE 13: Tumbling motion of vesicle in a shear flow. Viscosity contrast: 4. Reynolds:
10−4. Colors stand for iso-pressure lines.

FIGURE 14: Tumbling motion of vesicle in a shear flow. Viscosity contrast: 4. Reynolds:
4.10−4. Colors stand for iso-pressure lines.
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5.5 Fluid-structure interaction: generic case

We now consider the case where the immersed elastic body is not thin but rather is a body
of same dimension as the fluid.

5.5.1 Some comments on Eulerian elasticity

Remember that we consider the incompressible case (which is well relevant in the biological
context) but that our methodology could be extended to compressible medium thanks to
suitable insertion of jacobians, as pointed out in the membrane case (remark 5 page 30). For
the time being, we consider the the elastic body occupies the whole domain Ω, the fluid-
structure situation being restored later. As the velocity field is incompressible and vanishes
on ∂Ω, we are in the particular case where the reference configuration coincides with the
deformed one from a geometrical point of view. This make the Eulerian formulation easier
to settle. Let τ → X(τ ;x, t) the characteristics of u. To simplify we set X(ξ, t) := X(t; ξ, 0)
for the forward characteristics. We also consider the backward characteristics Y (x, t) :=
X(0;x, t). One important point of our approach is to remark that the backward characteristics
verify a vectorial transport equation:

Yt + u · ∇Y = 0, Y (0) = x. (37)

The first point in elasticity is to measure how distances change between the initial and
deformed configurations. In Lagrangian elasticity, we usually make the following elementary
computation: If ξ and ξ + dξ are two close (material) points in the initial configuration,
the are after deformation in X(ξ, t) and X(ξ + dξ, t) which are distant of |X(ξ, t) − X(ξ +
dξ, t)|2 ≈ dξT∇XT∇Xdξ at order 1. The tensor C = ∇XT∇X(ξ) therefore measure distance
variations between initial and deformed configurations. Conversely in Eulerian elasticity we
consider two close (geometrical) points x and x+ dx and we compute at which distance were
two material points initially if the are on x and x + dx at time t. Therefore we consider
|Y (x, t) − Y (x + dx, t)|2 ≈ dxT (∇Y T∇Y )(x)dx = dxT (∇X∇XT )−1(ξ)dx at order 1, with
ξ = Y (x, t). Thus the tensor B = ∇X∇XT (ξ) = ∇Y −1∇Y −T (x) appears to measure this
distance. This explain the central role played by B rather than C in Eulerian elasticity.

As a matter of fact, it is pleasant to remark that B et B−1 are solution to Eulerian PDE,
that are

Bt + u · ∇B = ∇uB +B∇uT B−1
t + u · ∇B−1 = −∇uTB−1 −B−1∇u. (38)

while we would not obtain such relation for C.

5.5.2 Isotropic case

Due to the incompressibility assumption, the invariants of B are, in R
3, trB = |∇Y −1|2 and

trB−1 = |∇Y |2, thus the stored energy may be written as [A3]

E =
1

2

∫

Ω
W (trB, trB−1) dx

where (a, b) →W (a, b) is a given function. Note that, from (38), we have

(trB)t + u · ∇(trB) = 2 tr(∇uB) = 2B : ∇u ,

(trB−1)t + u · ∇(trB−1) = −2 tr(B−1∇u) = −2B−1 : ∇u . (39)
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Taking the time derivative of E and using (39) gives

dE

dt
=

1

2

∫

Ω

∂W

∂a
(trB)t +

∂W

∂b
(tr(B−1))t dx

=
1

2

∫

Ω

∂W

∂a
(−u · ∇(trB)) +

∂W

∂b
(−u · ∇(trB−1)) +

∂W

∂a
2B : ∇u−

∂W

∂b
2B−1 : ∇u dx

=

∫

Ω
−

1

2
u · ∇W +

(
∂W

∂a
B −

∂W

∂b
B−1

)
: ∇u dx

=

∫

Ω

[
−

1

2
∇W − div

(
∂W

∂a
B −

∂W

∂b
B−1

)]
· u dx.

This expression should equal minus the power of stress forces, that is −
∫
Ω div σ ·u dx. There-

fore the incompressibility assumption leads to the following stress:

σ = −pI +
∂W

∂a
(trB, trB−1)B −

∂W

∂b
(trB, trB−1)B−1. (40)

Note that thanks to Cayley-Hamilton theorem, B−1 = trB−1
I− (trB)B+B2. Therefore, up

to a gradient term which is absorbed in the pressure, B−1 could be replaced by (trB)B−B2,
as in [91]. The Eulerian formulation of isotropic elasticity we just presented is summarized
in the following proposition:

Proposition 8 The deformation of an isotropic elastic material in Eulerian coordinates is
governed by the following equations:





ρ(ut + u · ∇u) − div
(
α1B − α2B

−1
)

+ ∇p = f, on Ω×]0, T [,

div u = 0, on Ω×]0, T [,

Yt + u · ∇Y = 0, B = ∇Y −1∇Y −T , on Ω×]0, T [,

u = 0, on ∂Ω×]0, T [,

u = u0, Y = id, on Ω × {0}.

where the αi are functions of (trB, trB−1) defined as partial derivatives of an energy function
W .

The following remark is important from the computational point of view. We recall that

B = ∇Y −1∇Y −T = ∇X∇XT =
3∑

i=1

X,ξi
⊗X,ξi

.

By definition, ∇Yj ·X,ξi
= δij . By the incompressibility of the elastic body we have det∇Y =

1, and thus we have the followng simple expression of X,ξi
in the Eulerian domain

X,ξ1 = ∇Y2 ×∇Y3, X,ξ2 = ∇Y3 ×∇Y1, X,ξ3 = ∇Y1 ×∇Y2. (41)

This has two consequences: first it means that the computation of B in the Eulerian model
reduces to simple algebraic operations involving the derivatives of Y , which keeps the com-
putational complexity of the model at reasonable level. Secondly, it allows to interpret B as
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a sum of projections on lines where two different Level Set functions Yi are constant (we will
use that in 5.6.2 to link this equation to Born-Infeld model, see [38]).

As an example we write the expression of α1 and α2 in the case of the Saint-Venant
Kirchhoff constitutive law (in R

3). The energy density in this case is given by

λ1

2
(trE)2 + λ2 trE2, E =

1

2
(C − I),

where λ1 and λ2 are the Lamé coefficients. It is easy to see that trE = 1
2 tr (B − I) and trE2 =

1
4 tr (B − I)2. Expanding these terms and using the identity tr(B2) = (trB)2−2 trB−1 (since
detB = 1) leads to:

WSK(a, b) =
1

8
(λ1 + 2λ2)a

2 − (
3λ1

4
+
λ2

2
)a−

λ2

2
b+

9λ1 + 6λ2

8

This corresponds to the following coefficients in proposition 8:

α1 =
λ1 + 2λ2

4
(trB − 3) + 2λ2, α2 = −

λ2

2
.

5.5.3 Transverse anisotropy

We now turn to the anisotropic case, that is when the elastic body exhibits preferred stretching
directions. We have two particular reasons for considering this important case. First this is a
case often encountered in biological tissues, an application which was one of the motivations
for the present work. As a matter of fact, continuous elastic models in such tissues can
generally be seen as an idealization of viscous fluids filled with one or two dimensional fibers.
Secondly, thin anisotropic elastic bodies seem to be an appropriate setting if one wishes to
recover membrane models in the limit of width tending to zero, a question we will investigate
in 5.3.4. Let τ(y) be a preferred direction (at time t = 0) and assume that the material
response is indifferent to arbitrary rotations about the direction τ and by replacement of τ
by −τ . Following [91], this leads to an energy function, which depends not only (in material
coordinates) on trC, trC−1, but also on τTCτ and τTC2τ . Note first that, due to the
Cayley-Hamilton theorem, we can replace this last invariant by τTC−1τ . As we will see
below, this form has a more direct mechanical meaning. It is also more tractable in our Level
Set approach. The energy may thus be written in Lagrangian coordinates under the following
form

E =

∫

Ω
W (trC, trC−1, τ(y)TCτ(y), τT (y)C−1τ(y)) dy.

The invariants of B and C are the same. We use the change of variables y = Y (x, t) with
unit Jacobian (due to incompressibility), to get (with the notation τ(Y ) for τ(Y (x, t)))

E =

∫

Ω
W (trB, trB−1,

∣∣∇Y −1(x, t)τ(Y )
∣∣2 ,
∣∣∇Y T (x, t)τ(Y )

∣∣2)dx.

Still applying our method of differentiation of energy we get the following stress:

σ = −pI +
∂W

∂a
B −

∂W

∂b
B−1 −

∂W

∂c
∇Y T τ ⊗∇Y T τ +

∂W

∂d
∇Y −1τ ⊗∇Y −1τ.
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In the case of a fiber material as the cardiomyocyte, τ will represent the direction of the fiber.
The quantity

∣∣∇Y −1(x, t)τ(Y )
∣∣ represents the stretching in the direction of fiber. Let us now

consider an elastic body of a given width, occupying initially a domain enclosed between two
level sets of a function φ (that is, a thick membrane). Then we may consider as preferred
direction τ(y) = ∇φ0(y). Let φ(x, t) = φ0(Y (x, t)) the transported function; we have

∇Y T τ(Y ) = ∇Y T∇φ0(Y ) = ∇φ(x, t)

∇Y −1τ(Y ) = ∇Y −1∇φ0(Y ) = ∇Y −1∇Y −T∇Y T∇φ0(Y ) = B∇φ(x, t).

Therefore, |B∇φ| records the stretching along the direction∇φ0(Y ) whereas |∇φ| carries the
stretching in the direction ∇φ, or the area change of φ = 0 in the incompressible case, as
proved in proposition 5. These two directions do not coincide in general. This distinction
was easier to state precisely in this Level Set representation, under which the stress tensor
has a simpler expression than usual descriptions used (for instance in comprarison with (73)
of [91], p. 79, or (6.209) in [62], p. 269):

σ = −pI +
∂W

∂a
B −

∂W

∂b
B−1 −

∂W

∂c
∇φ⊗∇φ+

∂W

∂d
B∇φ⊗B∇φ. (42)

We have established the following result:

Proposition 9 The deformation of a transverse isotropic elastic material, with initial pre-
ferred direction ∇φ0(y), where φ0 is a distance function, is governed by the following equa-
tions: 




ρ(ut + u · ∇u) − div σ = f, on Ω×]0, T [,

div u = 0, on Ω×]0, T [,

Yt + u · ∇Y = 0, on Ω×]0, T [,

φ(x, t) = φ0(Y (x, t)), on Ω×]0, T [,

u = 0, on ∂Ω×]0, T [,

u = u0, Y = id, on Ω × {0}.

where σ is given by (42) and the αi are functions of |∇Y |2, |∇Y −1|2, |∇φ|2, |B∇φ|2 defined
as partial derivatives of an energy function W .

Remark 9 (i) We could recover the form of Ogden and Holzapfel by taking their I5 invariant
based on C2 instead of using C−1. This would correspond in the above formulation to changing
|∇Y −1τ(Y )| into |∇Y −T∇Y −1τ(Y )| and make the Level Set formulation slightly less direct.
(ii) If we consider an initial level-set function which is not a distance, and define τ(y) =
∇φ0

|∇φ0|
(y), then the corresponding part of the above stress has to be divided by |∇φ0(Y (x, t))|.

(iii) We could have derived directly the stress from the fact that ∇φ and B∇φ satisfy similar
stretching equations, as seen from (38), namely

∇φt + u. · ∇(∇φ) = −∇uT∇φ (B∇φ)t + u. · ∇(B∇φ) = ∇uB∇φ

Annie Raoult recently clarifies in a deep way the field of anisotropic elastic energies, by
studying the number of invariants that should be involved depending on the symmetry group
that leaves the material invariant [98].
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FIGURE 15: Convergence of pressure profiles at t = 0.2 (left) and t = 2.2 (right) to the
reference profile (membrane) for different values of ε

Another remark concerns the existence theory for this model. The main difference with
the immersed membrane case is that there is no dissipation in the solid. If we rather consider a
visco-elastic solid it is straightforward to generalize our existence results under some regularity
assumption on the coefficients αi.

At last a small computation done in [A3] shows that in dimension 2, the stress tensor
(42) can be expressed thanks to the last two terms, which gives

σ = −pI − β1(|∇φ|, |B∇φ|)∇φ⊗∇φ+ β2(|∇φ|, |B∇φ|)B∇φ⊗B∇φ. (43)

An asymptotic analysis, as the thickness goes to zero, on this generic model recovers the
immersed membrane model, a fact that we correlated numerically by considering a sequence
of annular solids thiner and thiner and observing, on figure 15 the convergence of pressure
profiles.

5.5.4 Multi-physics model of fluid-structure coupling

We are now in a position to derive generic fluid-structure interaction Eulerian models relying
on Level Set functions. It essentially suffices to introduce an additional Level Set function to
capture the fluid-solid interface and switch between the fluid and solid stress forms.

Let us denote by ΩF (t) and ΩS(t) respectively the moving fluid and solid domains and
by Σ(t) their interface. Assume that the interface Σ(0) coincides with the zero level set of a
smooth function Ψ0 and that Ψ0 is positive inside ΩS(0). The densities of the fluid and solid
are denoted by ρF and ρS . In the sequel, H denotes the Heaviside function. The following
result gives a general Level Set formulation for fluid-structure interaction:

Proposition 10 With the above notations, a generic fluid-structure interaction model is
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given by the following system of equations:




ρ(Ψ)(ut + u · ∇u) − div (H(Ψ)σS + (1 −H(Ψ))σF ) = f, on Ω×]0, T [

div u = 0 in Ω×]0, T [,

Yt + u · ∇Y = 0 in Ω×]0, T [,

φ(x, t) = φ0(Y (x, t)) , Ψ(x, t) = Ψ0(Y (x, t)) in Ω×]0, T [,

u = 0 in ∂Ω×]0, T [,

u = u0, Ψ = Ψ0, Y = Id in Ω × {0}.

In the above system, ρ(Ψ) = H(Ψ)ρS +(1−H(Ψ))ρF , σF = −pI +2µD(u) is the fluid stress
tensor, and σS is the elastic stress tensor. In the case of isotropic elasticity in ΩS, σS is given
by (40). For a transverse isotropic solid with preferred direction at time zero τ(y) = ∇φ0(y),
σS is given by (42) with φ(x, t) = φ0(Y (x, t)).

This result merely states that the momentum conservation equation implicitly translates the
fact that the deformations satisfy the flow equations in the fluid, the elasticity equations in
the solid and fulfill continuity of velocity and stresses at the fluid-solid interface.

5.5.5 Application to cardiomyocyte contraction

In a recent article, Okada et al. [92] investigated the mechanism of calcium wave propagation
in connection with cardiomyocyte contraction. They developed a 3D simulator using the
model of Subramanian et al (2002) for the calcium dynamics and relying on the Negroni
and Lascano’s contraction model of Negroni et Lascano (1996) which couples calcium con-
centration with force generation. For the elastic part an isotropic Saint Venant-Kirchhoff
hyperelastic model was assumed and myofibrills, Z-lines, sarcolemma, cytoskeleton and cy-
toplasm were represented by various finite element families. As presented above we use a
Level Set approach of the fluid-structure coupling that occurs between the surrounding fluid
and the cardiomyocyte, considering these two as a unique incompressible continuous medium.
The microscopic internal structure of the cardiomyocyte is not described: the passive prop-
erty of the myocyte is given by nonlinear elasticity, with a transverse isotropy assumption
accounting for the topology of the sarcolemma.

Experiments developed in Montpellier on rat cardiomyocytes by physicians in collabo-
ration with Y. Usson (biologist in Grenoble, TIMC) brought us the ability to work on real
geometry. We consider an immersed cardiomyocyte and describe the fluid-structure inter-
action problem in Eulerian coordinates. For the calcium dynamics we used the model of
Goldbeter which describes the CICR system (see [A2] for details and references). This dy-
namics is added in the stress tensor as an active part along the preferred direction τ , which
is the actin/myosin fiber direction. More precisely, the stress tensor we consider is given by:

σ = −pI + α1B − α2B
−1 + (α4 + T0γ(Z))∇Y −1τ ⊗∇Y −1τ,

where Z is the solution to the CICR reaction-diffusion system in the cardiomyocyte. Z is the
calcium concentration and γ(Z) is a threshold function which triggers the contraction when
Z takes a sufficiently great value. Two cases are considered and happen in vivo: either Z is
spatially uniform and the contraction is triggered in all the myocyte. This is the physiological
case. Either Z propagates as a wave, which corresponds to the isolated cardiomyocyte case
(the calcium wave is created by random calcium sparks).
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FIGURE 16: Uniform contraction of a cardiomyocyte under an homogeneous calcium release

Uniform contraction of an incompressible cylinder In order to test our computational
code, we started by an incompressible cylinder in uniform contraction. The simulation is made
on a MAC grid of size 1003 and a contraction is computed in 3 hours on an AMD 64 processor
3GHz.

Uniform contraction in real geometry One strong aspect of our method is that the
complicated interface of the cardiomyocyte is note resolved by the mesh but rather captured
by a Level Set function, so that the computational code for a cylinder or for a real car-
diomyocyte only differs in the function repsenting the object. Moreover this function is very
simply extracted from the experimental data which consist of a binary 3D image, that is, an
Heaviside function (figure 16). In the case of a calcium wave, the contraction, the contraction
is of far less amplitude (figure 17). The biological data are given in [A2].

5.6 Links with other models

5.6.1 Optimal transportation

In [39], Y. Brenier establishes a link between optimal transportation and Boussinesq equations
that he further generalizes. Let Ω be a bounded and connected domain of R

d and y0 a map
from Ω to R

d. The optimal transportation problem is to find, among all rearrangements y of
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FIGURE 17: Calcium wave propagating in a cardiomocyte. The color represent the calcium
concentration. Final time: 1s

y0 the one minimizing the cost ∫

Ω
|y(x) − x|2dx.

To this aim the AHT model (for Angenent-Haker-Tannenbaum) consists in finding the steady
state of the following system:

∂ty + (v · ∇)y = 0, (44)

−∆v + ∇p = y, div v = 0, (45)

with the initial condition y(x, 0) = y0 and an homogeneous Dirichlet boundary condition for
v. This system has a solution (y, v, p) = (y(x, t), v(x, t), p(x, t)) ∈ R

d×R
d×R whose expected

behavior when t→ +∞, is obtained from the identity proved in [39]:

d

dt

∫

Ω

1

2
|y(t, x) − x|2 dx = −

∫

Ω
|∇v|2 dx. (46)

Y. Brenier then introduces a generalization of (44-45) which contains the Boussinesq equations
of fluid mechanics. This system reads

ǫ(∂tv + (v · ∇)v) − ∆v + ∇p = F (x, y), div v = 0, (47)

∂ty + (v · ∇)y = G(x, y), (48)

where F and G are smooth functions. The Boussinesq case is recovered by setting ε = ρ0,
G = 0 et F (x, y) = y, y being a vectorial function with one non zero component. This
component is equal to gδρ, ρ0 + δρ being the decomposition of density used in that model.

We observe that our immersed membrane model (or immersed solid) is similar to (47-48),
with G = 0 and F depending on (x, y,∇y,∇2y). We can rephrase our immersed membrane
problem, for example, neglecting the inertia

∂ty + (v · ∇)y = 0, φ = φ0(y),

−∆v + ∇p = div

(
E′(|∇φ|)|∇φ|

∇φ⊗∇φ

|∇φ|2
1

ε
ζ(
φ

ε
)

)
, div v = 0,
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with the initial condition y(0, x) = y0(x) and an homogeneous Dirichlet condition on v. The
associated optimal transportation problem is to find among all rearrangements y of y0 the
one minimizing ∫

Ω
E(|∇φ|(x))

1

ε
ζ(
φ

ε
)dx with φ(x) = φ0(y(x)).

5.6.2 Born-Infeld model

In [38], the authors first consider a non conservative version of the equations of Born-Infeld
(BI). These equations, in the weak field limit, gives Maxwell equations. Y. Brenier remarked
that this system could be augmented by adding conservation laws of combination of BI
unknowns (ABI system). This augmented system, written under the non conservative form
is:

τt + u · ∇τ − τ div u = 0,

ut + u · ∇u− b · ∇b− d · ∇d− τ · ∇τ = 0,

bt + u · ∇b− b · ∇u+ τ∇× d = 0,

dt + u · ∇d− d · ∇u− τ∇× b = 0.

In the limit for high fields, which corresponds to τ = 0, we obtain the equations

ut + u · ∇u− b · ∇b− d · ∇d = 0,

bt + u · ∇b− b · ∇u = 0,

dt + u · ∇d− d · ∇u = 0.

Our model could be put under this form. Indeed, considering the vectorial transport equations
satisfied by the backward characteristics (still in the incompressible case)

Yt + u · ∇Y = 0,

with initial condition Y (x, 0) = x, an elementary computation shows that

(∇Y −T )t + u · ∇(∇Y −T ) = ∇Y −T∇uT .

Applying the divergence operator (column vector made of divergences of row vectors) shows
that div(∇Y −T ) verifies a transport equation, which since it is initially zero, proves that
div(∇Y −T ) = 0 for all time (see also [80]). But in the incompressible case, ∇Y −T = (∇Y2 ×
∇Y3,∇Y3 ×∇Y1,∇Y1 ×∇Y2)

T so that we have

div(∇Yi ×∇Yj) = 0 ∀i, j. (49)

Given that

(∇Yi)t + u · ∇(∇Yi) + ∇uT∇Yi = 0

we have also, arguing as in Lemma 3.1 of [A5],

(∇Yi ×∇Yj)t + u · (∇Yi ×∇Yj) = ∇u(∇Yi ×∇Yj) = (∇Yi ×∇Yj) · ∇u. (50)
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Moreover using the decomposition of B as in (41) and considering the isotropic model of
proposition 8 with α1 = 1 and α2 = 0 we have

ut + u · ∇u− div


∑

i<j

(∇Yi ×∇Yj) ⊗ (∇Yi ×∇Yj)


+ ∇p = 0.

Since we have (49) there holds div(a⊗ b) = b · ∇a+ (div b)a,

ut + u · ∇u−
∑

i<j

(∇Yi ×∇Yj) · ∇(∇Yi ×∇Yj) + ∇p = 0. (51)

We observe that we recover the ABI model under its non conservative form with a pressure
term, if we choose two of the three fields. This is the Eulerian analog of membrane equation
described by [38], and spatial or string equations are recovered taking respectively three or
one field.
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6 Level Set method and optimization of functional defined on
surfaces [A1]

6.1 Introduction

This is a joint work with Fadil Santosa from University of Minnesota, who collaborates with
a biomedical firm. The motivation is to identify polarization on the surface of myocardium
from measures inside the ventricle. To determine an anomaly in this polarization, physicians
insert a balloon probe through an artery up to inside the ventricle. This probe measures
the potential at its surface. From this information we aim to reproduce the polarization
wave on the myocardium surface. This is an ill posed problem, amounting to solve the
Cauchy problem for a Poisson equation. Some regularization technics of Tikhonov type have
been tried without fully satisfactory solving the problem. Fadil Santosa had the idea to
regularize the problem by adding some extra information on the object to be identified. The
polarization could be searched as a binary field: polarized/depolarized. This amounts to
localize an interface between these two zones, which is moving onto the myocardium surface.
As the separating curve could change topology, the natural way to represent it is by a Level
Set method. We know from [46] that it is possible to represent a codimension 2 object in R

3

thanks to two Level Set functions. But this turns the problem of moving a 1D curve on a
2D surface to a 3D problem, which is not so optimal.

Therefore we chose to introduce an hybrid method: indeed the myocardium surface which
does not move a lot, and does not change topology (hopefully) could be safely represented
in parametric form. The curve can then be represented by a Level Set function but in the
parameter space, which is a 2D square in general. We then obtain an Eulerian method in a
square of R

2 to represent a curve on a surface in R
3.

We first developed our method on some academic situation: the isoperimetric problem
on a surface. The application to our identification problem is under progress.

Consider a smooth fixed surface S included in some bounded open set Ω ⊂ R
3. On this

surface, we denote a closed curve by Γ. The arclength of the curve, denoted by ℓ(Γ), is to be
minimized while the area enclosed by the curve is A(Γ) is fixed. The optimization problem
then is

min
Area(Γ)=C

ℓ(Γ).

In the planar case, this is a classical problem whose solution is given by the isoperimetric
theorem (the unique solution is a circle). On general surfaces the problem is harder and
although there have been some recent advances, some open questions remain (see [65] and
references therein). The goal of this work is to develop an effective numerical method for
solving problems of this type.

Some notations:

• γ(r, s) : J2 → R
3 is the parameterization of the fixed surface S. In component form

γ = (γ1, γ2, γ3)
T .

• ∇ = (∂r, ∂s)
T . The 3-D cartesian gradient is denoted by ∇x.

• φ(r, s) = 0 is the Level Set function for the curve on S described in the parameter
space.
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•

∇γ =




γ1,r γ1,s

γ2,r γ2,s

γ3,r γ3,s


 , ∇γT =

(
γ1,r γ2,r γ3,r

γ1,s γ2,s γ3,s

)
.

•

∇ × γ =




−γ1,s γ1,r

−γ2,s γ2,r

−γ3,s γ3,r


 , ∇× γT =

(
−γ1,s −γ2,s −γ3,s

γ1,r γ2,r γ3,r

)
.

• ∇φ = (φr, φs)
T , and ∇× φ = (−φs, φr)

T .

• For 2-vectors u and v,

u⊗ v =

[
u1v1 u1v2
u2v1 u2v2

]
.

• Divergence of a 2-by-2 matrix is

divA =

[
A11,r +A12,s

A21,r +A22,s

]
.

Since the surface S is fixed, we can choose the following parametrization. Let J be an
interval, and γ : J2 → R

3 be such that

S = {x |x = γ(r, s), (r, s) ∈ J2}.

We will view the iterative optimization method as a discretization of a ‘flow’. Therefore,
it will be most convenient to consider the problem in the continuous setting. To this end,
the curve on the surface is denoted by Γt, where the subscript t denotes its dependence on
time t. The curve Γt is given a level-set representation in the parameter domain J2. Let
φ : J2 × (0, T ) → R such that

Γt = {x |x = γ(r, s), φ(r, s, t) = 0}.

We will consider two cases:

(i) S has a boundary but the curve Γt does not touch this boundary. We assume φ > α > 0
on ∂J2.

(ii) S has no boundary. In that case γ is taken periodic in r and s.

An obvious generalization is the case where S is a truncated cylinder, then γ will be periodic
in one direction and φ will be constrainted to be positive on the boundary of the parameter
space of the other direction. All that follows applies to that case as well.

To move the curve Γt, we will evolve the level-set function φ(r, s, t) according to a transport
equation with a given velocity field. To constrain the area enclosed by the curve Γt on S, we
will need to find a projection for the velocity field. These ideas are discussed in more detail
below.

We note that in our formulation the surface is given explicitly whereas the curve on the
surface is given implicitly as the zero-level set of function φ(r, s). This fact requires us to
derive formulas for simple quantities such as arclength and area, which are substantially more
complicated than those in [46]. We need to work with the parameter variables in order to
obtain two-dimensional equations for the motion of the curve.
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6.2 Arclength and surface area

The computation of arclength of Γt on the surface S takes a few steps. In [A1] we prove

ℓ(Γt) = lim
ε→0

∫

J2

∣∣∣∣∇γ
∇×φ

|∇φ|

∣∣∣∣ |∇φ|
1

ε
ζ(
φ

ε
) drds

= lim
ε→0

∫

J2

|∇γ∇×φ|
1

ε
ζ(
φ

ε
) drds.

We therefore consider for fixed ε > 0 the approximation of the length of Γt as cost function:

ℓε(Γt) =

∫

J2

|∇γ∇×φ|
1

ε
ζ(
φ

ε
) drds =

∫

J2

|∇×γ∇φ|
1

ε
ζ(
φ

ε
) drds. (52)

In the case of a planar surface |∇×γ∇φ| = |∇φ| and we recover the usual formula.
The enclosed area Γt on S is likewise approximated by

Aε(Γt) :=

∫

J2

(
1 −H

(
φ

ε

))
|γ,r × γ,s| drds.

whereH(r) =
∫ r

−∞ ζ(s)ds is a regularized Heaviside function. Finally our problem could be
stated in a regularized way as:

min
Γt

ℓε(Γt) under the constraint Aε(Γt) = C. (53)

We want to preserve this area while moving the curve with a velocity field w, which means
as φ evolves as

φt + w · ∇φ = 0. (54)

Writing that the time derivative of Aε with respect to t is zero gives the following condition
on w:

div(|γ,r × γ,s|w) = 0. (55)

The next step is to find a velocity field that not only preserves the area, but also reduces the
arclength.

6.3 Descent algorithm

Arguing by analogy with Eulerian mechanics we look for a fictitious force F (φ) such that

dℓε(Γt)

dt
= −

∫

J2

F (φ) · w drds. (56)

After some heavy computations we found in [A1] the following expression:

F (φ) = −div

(
∇×γT ∇×γ∇φ

|∇×γ∇φ|

)
1

ε
ζ(
φ

ε
)∇φ. (57)

The idea is now to choose w colinear to this force and to project it as in the resolution of
Navier-Stokes equations in order to enforce the constraint (55). We therefore set

w =
F

|γ,r × γ,s|2
−

∇p

|γ,r × γ,s|
. (58)

57



with the ”pressure” p such that

∆p = div

(
F

|γ,r × γ,s|

)
. (59)

The weights in the construction of w allows to get a simple Poisson equation for the pressure,
and a decreasing energy. Obtaining such a simple equation allows to use fast FFT solvers
(FISHPACK).

Substituting F for its expression in terms of w in (56) we obtain thanks to the boundary
conditions i or (ii)

dℓε(Γt)

dt
= −

∫

J2

|γ,r × γ,s|
2|w|2drds ≤ 0.

Therefore we observe that moving the curve with the field w, makes the curve length decrease.
This length will stop decreasing if, and only if, w vanishes.

6.4 Curve moving algorithm

To sum up, the minimization process is done by solving the following system of PDEs

φt + w · ∇φ = 0, (60)

w +
1

|γ,r × γ,s|
∇p =

1

|γ,r × γ,s|2
F (φ), (61)

div(|γ,r × γ,s|w) = 0. (62)

The evolution terminates when the velocity field w becomes zero.
The divergence-free condition may be implemented by a slightly modified projection

method. For example for the classical Chorin-type projection we perform these steps

φn+1 − φn

δt
+ wn · ∇φn = 0,

w̃n+1 =
1

|γ,r × γ,s|2
F (φn+1),

∆pn+1 = div(|γ,r × γ,s|w̃
n+1),

wn+1 = w̃n+1 −
1

|γ,r × γ,s|
∇pn+1.

We may of course use some more advanced time-stepping scheme but this algorithm is pre-
sented here for the sake of simplicity. For example we can use F (3

2φ
n+1 − 1

2φ
n) rather than

F (φn+1), so that wn+1 will approximate the velocity at time n+ 3
2 and the next step in the

transport of φ will be more accurate.

6.5 Geodesic curvature

We will next provide a geometric interpretation of the force F in (57). When the miminization
(53) is solved using the algorithm in (60)-(62), the process terminates when the velocity w
is zero. Recall from differential geometry that curves which minimize their length under a
fixed enclosed area constraint are linked to constant geodesic curvature curves [65]. We will
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show that the geodesic curvature of the curves becomes constant when the velocity is zero.
Further, the geodesic curvature provides a method for verifying numerical calculations. After
lengthy computations we obtain the following equivalent form of (56):

F (φ) = −|γ,r × γ,s|κg
1

ε
ζ

(
φ

ε

)
∇φ. (63)

Then we can prove that our algorithm, if it converges, will produce a curve with constant
geodesic curvature. Indeed we saw that its length stops decreasing if and only if w vanishes,
which in (61) gives

1

|γ,r × γ,s|
∇p =

1

|γ,r × γ,s|2
F (φ).

Observe that the force does not vanish since it still tend to reduce the length of the curve
which is impossible due to the surface constraint. From (63) we have

∇p = −κg
1

ε
ζ

(
φ

ε

)
∇φ = −κg∇

[
H(

φ

ε
)

]
(64)

In order the right hand side of this equality to be a gradient, it is necessary and sufficient that
κg is constant on level sets of φ, which in particular means that Γt has a constant geodesic
curvature.

6.6 Numerical examples

In the context of moving a curve with given enclosed surface, our projection algorithm has
a clear advantage over other algorithms that use a penalty term to enforce the fixed area
constraint. Our implementation uses a MAC grid which ensures accurate divergence-free
condition (Chorin type projection method), even in the case where γ is not identity (see
[A1]). Thus the surface area constraint is not penalized but enforced. Surface area loss from
initialization to stationary state in the case of an ellipse on a cylinder relaxing to a circle is
about two percents for a 64 × 64 grid, under one percent (0.66 %) for a 128 × 128 grid and
0.06% for a 256 × 256 grid. Moreover, as the Poisson equation associated to the projection
method lies on the rectangular parametric space, fast FFT solvers (e.g. FISHPACK) may be
used, leading to very small computational costs.

The boundary conditions are of Dirichlet type in case of non-closed supporting surfaces,
and periodic in one direction in the case of surfaces of revolution. Note however that our
algorithm as presented above in its native form requires a regular parametrical representation
of the supporting surface in the neighborhood of the moving curve. This fact rules out, for
example, the case where the supporting surface is a closed sphere, unless if the curve remains
away from the singular poles. In this last case the algorithm works since the force is localized
around the curve. In order to deal with a sphere without any a priori extra information on
the curve motion, we have to adapt the algorithm to handle parametrical patches. This work
is under development.

We first demonstrate our minimization algorithm on a simple problem of finding the
shortest closed curve on a paraboloid. The minimizer is known to be a circle. In figure 18,
we show the evolution of the minimization starting with an ellipsoid on the paraboloid. As
can be seen the flow ends with a horizontal circle.
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FIGURE 18: Minimization of curve length at prescribed enclosed surface area, on a
paraboloid. Convergence toward the horizontal circle. Last picture shows a non-perspective
plot of the final state.
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FIGURE 19: Minimization of curve length leading to a topological change. Last picture on
the right is without perspective to demonstrate symmetry property.

In the next example, the supporting surface is a cylinder of radius a = 1. An ellipse
in the parametric space is chosen as initialization, which gives the curve drawn on the left-
most picture in figure 19. This curve is wrapped around the cylinder: the top and bottom
loops are running on the back part of the surface while the thinest part of domain en-
closed by the curve is drawn on the front. Computations are made on a 128 × 128 grid.
Due to the fact that the area enclosed by the curve is greater than 4πa2, the minimiz-
ing curve is known to be made of two circles [65], a fact that our computations recover.
See http://www-ljk.imag.fr/membres/Emmanuel.Maitre/Levelset/ for videos of the min-
imization process.
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7 Conclusion and future work

My work has been mainly concerned by the modeling of physical or biological phenomenon
with often a care about the efficiency of their implementation from the numerical point of
view. In that respect it appeared that the Eulerian modeling in continuum mechanics did
not attract all attention it deserves, speaking of its simplicity and efficiency. This is even
more true in the modeling of biological systems where the concept of multiphysics medium
is particularly relevant. Therefore I have several paths to further develop this topic.

The first one concerns the handling of a full elasticity in the elastic membrane model.
Up to now, we were able to deal with an energy only function of the local area change.
However, for the simulation of red blood cells, we have to add some membrane full elasticity,
because these biological entities have an extra network of actin under the phospholipidic
bilayer membrane. While this should not play a role in the equilibrium shapes, we expect a
modified behavior in shear flow. The same model could also be relevant for the case of an
isotropic fabric. We therefore work in that direction with our Physicists colleagues of LSP.

The stability question is central in fluid-structure coupling problems, and number of
publications are devoted to that issue, independently of the method used. In her thesis
Claire Bost proposed an elementary 1D model which allows to recover the stability conditions
usually used in the literature. The study of efficient numerical schemes, stable for stiff elastic
objects remains a challenging question. In that respect it seems that the discretization of
singular source terms in multiphysics methods plays a role which remains to be studied.
This bringsus back to the question of Eulerian representation of the interface and discussion
between Level Set and phase field methods that we addressed in [A14]. On a close topic a
joint work with John Stockie about parametric instability of an immersed 3D membrane is
under development.

Identifying the polarization on the myocardium surface that we aim to implement from
our academic work with Fadil Santosa is already started in dimension 2. More generally I
am thinking about the use of this Level Set method in the parameter space in the case where
the surface is the manifold of parameters to some dynamical system. Could we write some
descent like optimization algorithms to look for optimal trajectories of this system ?

At last and more generally we developed with Georges-Henri Cottet these last years several
techniques of multiphysics type to deal with fluid-structure interaction problems (elastic and
rigid). All these tools will be integrated into a coherent computational library which could
be used by other researchers. For the time being Iker Bellicot is integrating some part of
our code inside the software SOFA of the INRIA team EVASION of our laboratory. We aim
at providing a software where non specialists could deal with the interaction of rigid, elastic
bodies and fluids with as few software development as possible.

The numerical implementation of all these models was very exciting for me, as well as
exchanges I developed with my physicists colleagues, among who I want to single out Chaouqi
Misbah and Philippe Peyla. I am convinced that model analogies, from which multiphysics
takes its origin, are very useful to reformulate problems and bring new insight to solve issues,
at the mathematical and numerical level.
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[72] J. Kačur. Solution of Some Free Boundary Problems by Relaxation Schemes. SIAM
J. Numer. Anal., 36(1):290–316, 1999.

[73] T.J. Kang and W.R. Yu. Drape simulation of woven fabric by using finite-element
method. J. Text. Inst., 86(4), 1995.

[74] K. M. Khattab and E. W. Larsen. Synthetic acceleration methods for linear trans-
port problems with highly anisotropic scattering. Nuclear Science and Engineering,
107(3):217–227, 1991.

67



[75] E.W. Larsen. Unconditionally stable diffusion-synthetic acceleration methods for the
slab geometry dicrete-ordinates equations. Nucl. Sci. and Eng., parts I-II, 1988.
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1984.
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