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Résumé en français

Introduction
La multiplication actuelle des services de télécommunications (voix, données, image, vidéo)
amène les acteurs du marché à repenser les architectures des émetteurs/récepteurs pour
pouvoir répondre à la �exibilité croissante demandée par les utilisateurs que nous sommes,
à savoir, recevoir tout, partout et avec une qualité de service acceptable. Derrière cette
contrainte forte se cache d'immenses challenges technologiques visant à concevoir un termi-
nal mobile universel supportant plusieurs standards avec lequel le réseau sera transparent
à l'utilisateur. On parle alors de terminal multistandard. Le domaine de la radio logicielle
a ainsi pour objectif d'apporter des réponses à cela tant sur le plan de la convergence des
réseaux, l'accès à de multiples interfaces air et la �exibilité des systèmes de traitement
tant logiciels que matériels.

En 1995, Jo Mitola jeta les principes de la radio logicielle en proposant une architecture
dite idéale : une antenne large bande suivie d'un convertisseur analogique/numérique à très
haute fréquence d'échantillonnage permettant de traiter tout signal de façon numérique, à
condition que les processeurs soient extrêmement rapides. Le terminal multistandard prend
alors tout son sens si les processeurs sont dits recon�gurables (ou reprogrammables) par
téléchargement de logiciels associés à la norme sur laquelle se base la télécommunication
à passer.

Les obstacles technologiques sont cependant très grands, comme par exemple la réalisa-
tion de convertisseurs analogique/numérique ultra rapides, de processeurs à très forte puis-
sance de calcul et à faible consommation ou d'ampli�cateurs de puissances et d'antennes
très large bande.

L'aspect de la radio logicielle développé dans ce travail concerne celui de la paramétri-
sation. C'est un domaine nouveau dont l'objectif est de proposer des solutions pour réaliser
un terminal multistandard en recherchant les traitements communs entre standards et en
les mutualisant. Cette recherche aboutit à l'identi�cation de fonctions et d'opérateurs
communs, suivant le niveau de granularité voulu. Le challenge est ensuite de rendre ces
traitements recon�gurables par passage de paramètres, d'où le nom de paramétrisation.

L'opérateur étudié dans cette thèse est la FFT, déjà identi�ée dans [21]. Il est bien
connu que de nombreux traitements peuvent être e�ectués de façon équivalente dans le do-
maine fréquentiel, justi�ant ainsi l'utilisation d'une FFT commune et �exible. L'égalisation,
la fonction de �ltrage, l'estimation de canal ou la (dé)modulation OFDM sont des exem-
ples de fonctions utilisant l'opérateur de FFT. L'objet de ce travail est alors d'étendre
l'ensemble de ces fonctions au codage de canal (de type codes en blocs) en identi�ant des



2 Résumé en Français

codes dont les traitements (codage et décodage) peuvent être réalisés avec les opérateurs
de type FFT. Cela implique :

• l'adaptation de l'opérateur FFT pour le calcul de transformées dans des corps �nis

• la réalisation et la validation d'une architecture �exible de FFT (dans le corps des
complexes et dans les corps de Galois).

Les codes en blocs identi�és, permettant de conserver l'architecture de base de la FFT
complexe pour ensuite l'adapter à des corps �nis, sont les codes de Reed-Solomon dé�nis
sur les corps de Galois de type CG(Ft) où Ft est le nombre de Fermat d'ordre t.

L'articulation du travail est alors la suivante :

Le chapitre 1 présente les principes de la radio logicielle et de la paramétrisation.

Le chapitre 2 présente les codes de Reed-Solomon dé�nis dans GF (Ft) et les di�érentes
opérations de codage/décodage pouvant impliquer une FFT. Ce sont le calcul des syn-
dromes et l'algorithme de Chien.

Le chapitre 3 propose une architecture de FFT réalisant à la fois des transformées dans
CG(Ft) et dans le corps des nombres complexes. C'est l'opérateur DMFFT pour Dual
Mode FFT. Cette architecture repose sur une structure de type papillon dont tous les
opérateurs ont été tous rendus recon�gurables. Elle a été implémentée sur FPGA (Stratix
II) et nous avons montré qu'elle était plus optimale qu'une structure de type "Velcro" où
les deux opérateurs (FFT complexe et FFT dans CG(Ft)) sont juxtaposés, sans souci de
recon�guration, le passage de l'un à l'autre se faisant par un simple "switch".

En�n, le chapitre 4 propose des solutions pour réaliser un opérateur TMFFT (pour Tri
Mode FFT) dont l'objectif est d'e�ectuer des transformées dans le corps des complexes,
dans CG(Ft) mais aussi dans CG(2n), intégrant ainsi les codes de Reed-Solomon classiques
dé�nis sur CG(2n).

1 La paramétrisation dans le contexte de la radio logicielle
1.1 Les architectures radio logicielles
La radio logicielle est un ensemble de techniques visant à répondre aux évolutions des
radiocommunications. Suivant l'architecture de l'émetteur, on peut distinguer plusieurs
déclinaisons du principe de la radio logicielle, de la structure superhétérodyne (Figure 1.a)
à celle de la radio logicielle idéale (Figure 1.b) en passant par les deux versions de la radio
logicielle restreinte (Figure 1.c et d).

La radio logicielle idéale est optimale car la conversion numérique analogique est di-
rectement e�ectuée en radio fréquence, suivie de processeurs. La radio logicielle restreinte
est celle correspondant à une numérisation en fréquence intermédiaire (ou bande de base
dans le cas extrême). Dans le cas idéal, une large bande de fréquence est alors directe-
ment numérisée englobant ainsi plusieurs signaux associés à di�érents standards. Cette
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Figure 1: Les quatre principales architectures de récepteurs radio

fonctionnalité fait alors référence à un système dit multistandard, capable d'opérer selon
di�érents modes et o�rant plusieurs services. Le passage d'un mode à un autre est alors
possible à condition que les processeurs de traitement du signal soient recon�gurables par
téléchargement des logiciels associés aux normes des standards.

A�n de réaliser d'une façon optimale un tel système, il est nécessaire de rechercher les
points de convergence entre les standards à supporter par le terminal de façon à rendre
les traitements communs. Cet aspect est connu sous le nom de la paramétrisation et est
développé dans la partie suivante.

1.2 Principes de la paramétrisation
Le principe de la paramétrisation est de rechercher dans un premier temps les caractères
communs entre les traitements de di�érents standards puis d'en proposer des architectures
communes et �exibles, à l'opposé d'une approche de type Velcro. La paramétrisation se dé-
cline selon deux approches : l'approche théorique et l'approche pragmatique. L'approche
théorique consiste à lister de façon hiérarchique tous les appels de fonctions possibles dans
un terminal (par exemple, la modulation OFDM fait appel à la FFT, qui elle même fait
appel à l'opérateur papillon et ce dernier faisant appel aux opérateurs arithmétiques clas-
siques). De cette façon, on montre en se basant sur la théorie des graphes qu'il est possible
de choisir un chemin optimal (selon une fonction de coût/performance à dé�nir) permet-
tant de privilégier l'appel à certains opérateurs, qui deviennent alors communs.
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L'autre approche, dite pragmatique, consiste dans un premier temps à identi�er les
traitements communs puis dans un second temps à réaliser un opérateur générique qui
devra alors être recon�gurable. C'est cette approche qui a été privilégiée dans ce travail.

Ces traitements communs se déclinent en fonctions ou opérateurs communs.

1.2.1 Approche par fonctions communes
Le premier type de paramétrisation (et le plus naturel) se fait au niveau fonction. Le niveau
de granularité est élevé. Bien souvent, les travaux ayant eu pour objet de proposer des
fonctions communes aboutissaient à des opérateurs plus génériques que recon�gurables.
Les structures proposées telles que [19], [20] et [27] sont certes communes mais prohibitives
en terme de surface et surtout n'exploitent pas vraiment le principe de recon�guration.
Elles sont de plus peu évolutives car reliées à des standards prédé�nis. Cet aspect implique
de diminuer le niveau de granularité. C'est l'approche opérateur commun.

1.2.2 Approche par opérateurs communs
La granularité est ici plus faible que celle des fonctions communes. L'idée est de tirer parti
d'une structure de calcul existante et de la faire évoluer de façon à la rendre commune et
recon�gurable. La réutilisation devient alors optimale. Par exemple, un opérateur de type
�ltrage a été identi�é dans [29] permettant de réaliser des opérations de codage de canal
ou de calcul de CRC. C'est l'opérateur MulDiv. Cette étude a été étendue pour aboutir à
l'opérateur proposé dans [31].

Un autre opérateur a été identi�é comme opérateur commun dans [21] : il s'agit de
l'opérateur FFT. Ce dernier se retrouve en e�et dans bons nombres de traitements tels
que la (dé)modulation OFDM, l'égalisation, le �ltrage, etc. L'objectif de cette thèse
est d'étendre l'application de cet opérateur au codage de canal. Ainsi, la structure de
l'opérateur de FFT a été repensée et étendue a�n de réaliser aussi des transformées de
Fourier dans des ensembles tels que les corps �nis de Galois. L'application choisie est le
codage de canal et en particulier une classe particulière des codes de Reed-Solomon (RS)
dont les mots de codes sont de longueur 2n et permettant ainsi d'exploiter la structure
classique de FFT pour le codage et certaines opérations du décodage.

L'objet de la section suivante est de présenter l'intérêt de la FFT pour traiter ces codes
RS.

2 La FFT et le codage de canal
2.1 Transformée de Fourier dans les corps �nis
De la même façon qu'il existe des tranformées de Fourier dé�nies sur des ensembles in�nis
(tel que le domaine des nombres complexes C) utilisées classiquement en traitement du
signal, il existe aussi des transformées de Fourier sur des ensembles �nis (tels que les corps
de Galois CG(q) utilisés en particulier dans le traitement des codes cycliques.

Dans C, la transformée de Fourier discrète d'un vecteur v = (v0, v1, ..., vN−1) de nom-
bres réels ou complexes est un vecteur V = (V0,V1, ...,VN−1) dé�ni par:

Vk =
N−1
∑

i=0

e−j 2πik
N vi k = 0, ...,N− 1 (1)
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N étant un entier représentant la longueur de la transformée et j =
√
−1. La base de

Fourier exp(−j2π/N) est la Nème racine de l'unité dans C. Dans un corps de Galois
CG(q), l'élement primitf α d'ordre N est la Nème racine de l'unité. Par analogie entre
exp(−j2π/N) et α, considérons un vecteur v = (v0, v1, ..., vN−1) dans CG(q) et α un élé-
ment d'ordre N de ce corps. Le vecteur v et sa transformée de Fourier sont reliés par les
équations suivantes [44]:

Vj =

N−1
∑

i=0

αijvi ⇐⇒ vi =
1

N

N−1
∑

j=0

α−ijVj , (2)

pour j = 0, ...,N− 1.
Le tableau 1 montre alors les simulitudes entre les opérations de FFT dans C et de

FFT dans CG(q).

Table 1: Simulitudes entre les opérations de FFT dans C et de FFT dans CG(q) .

dans C dans CG(q)

Transformée
Vk =

∑N−1

i=0
e−j 2πik

N vi, k=0,...,N -1 Vj =
∑N−1

i=0
αijvi, j=0,...,N -1d'un vecteur v

Noyau de la
exp(−j2π/N)

α (racine primitive
transformée du corps de Galois)

2.2 Traitement fréquentiel des codes Reed-Solomon dé�nis sur CG(q)

Les transformées de Fourier dé�nies dans CG(q) ont été introduites dans l'étude des codes
cycliques dans un souci de réduction de complexité des décodeurs par Gore [46] et puis
par Michelson [47], Winograd [48] et Chien [49]. Plus tard, Blahut [50], a�n d'optimiser
l'utilisation des transformées de Fourier a traduit le processus de codage (classiquement
e�ectué en temporel) dans le domaine fréquentiel. Il a aussi adapté les di�érents algo-
rithmes de décodage de façon à être réalisés dans le domaine fréquentiel.

Le principe du codage d'un code C(n, k) proposé par Blahut consiste à former un
mot d'information de longueur k dans le domaine fréquentiel dans lequel 2t composantes
prédéterminées sont �xées à 0 (t : pouvoir de correction du code). Ensuite, le mot de code
temporel de longueur n est obtenu à l'aide d'une transformée inverse de Fourier.

Pour le décodage, la transformée de Fourier peut être utilisée pour le calcul des deux
étapes les plus longues, à savoir le calcul des syndromes et l'algorithme de Chien.

Partant de la structure de base de l'opérateur FFT dé�nie dans C, l'objectif de ce travail
est de la faire évoluer a�n qu'elle puisse aussi réaliser des transformées dans les corps �nis
pour le codage de canal. On parle alors d'un opérateur commun et recon�gurable. Les
codes cycliques considérés dans ce travail sont les codes de Reed-Solomon (RS).
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D'après ce qui a été dit précédement, la réalisation de cet opérateur commun implique
alors :

• que la longueur des transformées soit une puissance de 2

• que les opérations arithmétiques requises par les deux modes utilisent les mêmes
ressources.

Cependant, dans les applications actuelles, les codes RS utilisés sont dé�nis dans
CG(2m) et leurs transformées sont donc de longueur 2m − 1 et non 2m. Nous avons
donc été amené à considérer des codes RS dont les mots de code sont de longueur 2m. La
classe de codes RS identi�ée dans ce travail est celle des codes RS dé�nis sur CG(Ft) où Ft

est un nombre de Fermat de la forme 22t
+ 1. Sachant bien que la structure arithmétique

des CG(Ft) est plus complexe que celle des CG(2m), le choix de ces codes RS dé�nis sur
CG(Ft) traités dans le domaine fréquentiel se justi�e par la réutilisation d'une structure
de transformée pré-existante, à savoir celle de la FFT complexe.

Il est à noter que les codes RS dé�nis sur CG(Ft) ont été recommandés par l'agence
spatiale européenne (ESA) pour des télécommunications spatiales [69]. Il s'agissait d'un
code RS(256,224) dé�ni dans CG(257) concaténé avec un code convolutif.

Lorsque la transformée est e�ectuée sur les corps �nis CG(Ft), on parle de la trans-
formée de Fermat (Fermat Number Transform (FNT)). Cette transformée présente de
nombreux avantages. Sa structure est alors identique à celle de la FFT. Par conséquent,
les mêmes algorithmes peuvent être utilisés pour les FFT aussi bien que pour la FNT, à
condition que la FFT puisse opérer modulo(Ft).

2.3 Intérêt du traitement fréquentiel pour le décodage des codes RS sur
CG(Ft)

Comme pour les codes RS classiques (dé�nis sur GF (2m)), le décodage des codes RS
dé�nis sur CG(Ft) s'e�ectue selon trois phases :

• Phase 1 : calcul des syndromes

• Phase 2 : algorithme de Berlekamp

• Phase 3 : algorithmes de Chien et de Forney

Le calcul des syndromes et l'algorithme de Chien sont les phases les plus longues du
décodage. L'exécution de chacune d'entre elles nécessite n cycles, avec n la longueur
du mot de code. Théoriquement, en utilisant une FNT de longueur n = 22t , ce temps
d'exécution sera réduit à log(n) cycles à condition que la FNT soit implémentée avec
sa structure entière comportant log(n) étages de n

2 papillons. Cependant, puisque cette
approche théorique est directement liée à la réalisation pratique de l'opérateur FNT, cette
réduction de temps de calcul n'est pas réaliste puisque l'implémentation de la structure
entière d'une FFT consomme environ les deux tiers d'un FPGA (dans le cas de n = 16
sur un composant Stratix II).
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L'intérêt des codes RS dé�nis sur CG(Ft) a été détaillé. Il faut maintenant établir
leurs performances en terme de taux d'erreur binaire. C'est ce qui fait l'objet de la section
suivante.

2.4 Performances des codes RS dé�nis sur CG(Ft)

Les performances en terme de taux d'erreur binaire sont présentées pour les codes RS
dé�nis sur CG(Ft) et sur CG(2m) et ceci pour des capacités de correction identiques.
Elles sont établies sur des canaux gaussiens. La �gure 2 donnent les performances pour
quatre types de codes :

• (i) système non codé

• (ii) RS(16,12) dé�ni sur CG(17) avec des codages et décodages fréquentiels. Tous
les symboles des mots de codes sont représentés sur 5 bits.

• (iii) cas identique au précédent mais avec codage temporel, décodage fréquentiel. Les
symboles de parité et les symboles d'information sont représentés sur 4 bits (4-4).

• (iv) cas identique au précédent (iii) mais seuls les symboles de parité sont représentés
sur 5 bits et les symboles, d'information sur 4 bits (5-4), décodage fréquentiel.

• (v) RS(15,11) dé�ni sur CG(16), décodage fréquentiel
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Figure 2: Performances des di�érents codes RS sur CG(17) et CG(16).

Les conclusions liées à ces simulations sont les suivantes. D'une part, le codage fréquen-
tiel dégrade les performances des codes. Il est donc préférable d'utiliser un codage tem-
porel. La raison vient du fait que le mot de code n'est pas systématique et qu'une erreur
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sur un symbole à la réception véhicule, du fait de la transformée, un nombre important
d'erreurs.

D'autre part, les performances des codes RS sur CG(Ft) sont semblables à celles des
codes RS sur CG(2m) à condition que les symboles de parité soient émis sur m + 1 bit.
Ceci est un argument supplémentaire pour justi�er leur utilisation dans un futur terminal
recon�gurable utilisant des FFT comme opérateur commun.

Nous allons maintenant aborder la réalisation de l'opérateur FFT recon�gurable per-
mettant d'e�ectuer des transformées dans C et CG(Ft). Cet opérateur est le DMFFT
pour Dual Mode FFT.

3 Architecture de l'opérateur DMFFT
Le chapitre 3 se focalise sur l'implémentation de l'opérateur DMFFT. Cet opérateur dual
mode est un opérateur recon�gurable capable d'e�ectuer deux types de transformées :
FFT et FNT. Le passage d'un mode à un autre est assuré par la mise à jour de cer-
tains paramètres qui entraîne la recon�guration des interconnections et des opérateurs
arithmétiques constituant le DMFFT.

L'implémentation du DMFFT est basée sur celle de la FFT classique dans C. L'idée de
base est d'exploiter la structure de l'opérateur FFT complexe en termes de bus de routage
des �ux de données, de mémorisation des calculs intermédiaires et des racines de Fourier
ainsi que des ressources arithmétiques disponibles dans la structure.

En général, il y a plusieurs façons d'implémenter les algorithmes de FFT dans C. La
plupart des travaux dans ce domaine ont été réalisés en utilisant des DSP [71] [72] et des
processeurs dédiés [73]. Cependant, grâce à leur grande capacité de calcul et leur prix
économique, les composants FPGA représentent aujourd'hui une solution e�cace pour
implémenter des agorithmes nécessitant des calculs intensifs.

Le calcul de la transformée de Fourier rapide fut initié avec la publication par Cooley
et Tuckey d'un algorithme permettant la réduction du complexité de calcul de O(N2) à
O(N log N), N représentant la longueur de la transformée. Cet algorithme peut être
implémenté avec di�érentes racines : radix-2, radix-4 ou radix-16. Un ordre élevé de radix
permet de réduire le nombre de multiplications mais la structure ne sera plus régulière.
Pour réduire la complexité de calcul, des algorithmes utilisant deux racines di�érentes ont
été développés sous le nom split-radix. Pour plus de détails sur les di�érents algorithmes,
le lecteur pourra se référer à [79].

Dans cette étude nous avons choisi d'implémenter l'algorithme radix-2 puisqu'il o�re
certaines avantages en terme de régularité de la structure et la simplicié des calculs dans
l'opération papillon. L'objectif est de valider l'architecture de l'opérateur recon�gurable
que nous proposons et d'évaluer sa complexité et ses performances en terme de temps de
calcul.

3.1 L'architecture du papillon type-FFT
Le coeur de calcul de l'opérateur FFT classique est connu sous le nom papillon. Le schéma
de ce papillon classique est illustré sur la �gure 3. Il est composé de trois opérateurs
arithmétiques : multiplieur, additionneur et soustracteur. Dans le mode calcul de FFT
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dans C, ces opérateurs réalisent les opérations binaires sur des nombres complexes (ou
réels). Etant donné que l'opérateur FFT devra réaliser des transformées dans CG(Ft),
l'architecture du papillon doit être redé�nie au niveau des opérateurs de façon à pouvoir
opérer dans CG(Ft). Dans ce dernier mode de fonctionnement, la racine de Fourier est
remplacée par la puissance correspondante de l'élément primitf α comme le montre la �g-
ure 3. Chacun des opérateurs doit être conçu d'une façon recon�gurable lui permettant
d'exécuter des opérations dans C ainsi que dans CG(Ft). Dans les paragraphes suivants
nous allons présenter les architectures recon�gurables de ces trois opérateurs. Leur con-
ception s'est basée sur l'architecture des opérateurs arithmétiques pré-implémentés dans le
papillon complexe puisque l'idée de base est d'exploiter une structure FFT déjà existante.

r

N
w

i

Figure 3: L'architecture du papillon FFT/FNT

3.2 L'additionneur recon�gurable proposé
Il existe di�érentes architectures des additionneurs binaires dont les prinicipales sont les ad-
ditionneurs à propagation de retenue (CPA), les additionneurs à retenue conservée (CSA)
et les additionneurs à retenue anticipée (CLA).

Les additionneurs modulo Ft sont dérivés des architectures des aditionneurs binaires
normaux.

Considérons un nombre A = an−1an−2...a0 écrit sous la forme:

A =
n−1
∑

i=0

2iai.

La réduction modulo 2n + 1 de A peut être réalisée soit par une division et le reste
de la division constitue le résultat, soit par une soustraction itérative du modulo jusqu'au
A < 2n + 1. Ayant

2n mod (2n + 1) = 2n − (2n + 1) = −1,

la réduction modulo 2n + 1 peut être reformulée de la façon suivante:

A mod (2n + 1) = (A mod 2n − A div 2n) mod (2n + 1), (3)

où A mod 2n et A div 2n correspondent respectivement aux mots binaires de taille n bits
de poids le moins signi�catif et de poids le plus signi�catif. Le terme modulo 2n + 1 à
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droite de l'équation 3 est utilisé pour la correction �nale dans le cas où un résultat négatif
est obtenu.

Dans la littérature, les travaux les plus importantes dédiés à la réalistation des addi-
tionneurs modulo 2n±1 sont basés sur les architectures des additionneurs CLA en utilisant
la représentation diminuée de 1 des nombres traités [85][86][87][88].

Nous considérons ici les travaux développés par Zimmermann [85]. En se basant sur
une architecture PPA (Parallel Pre�x Adder) et en utilisant la représentation diminuée
de 1, Zimmermann a proposé un multiplieur modulo 2n + 1 dont le principe est décrit ci
après.

Soient A et B deux nombres quelconques. Avec une représentation diminuée de 1, ils
peuvent s'écrire sous la forme A′ = A − 1 et B′ = B − 1. Leur somme diminuée de 1
(S′ = S − 1) peut s'écrire

S′ = A′ + B′ + 1,

et l'addition modulo (2n + 1) peut être reformulée avec l'équation suivante:

(A′ + B′ + 1) mod (2n + 1) =

{

(A′ + B′) mod 2n if A′ + B′ ≥ 2n

(A′ + B′ + 1) mod 2n if A′ + B′ < 2n

= (A′ + B′ + cout) mod 2n. (4)

L'architecture matérielle de l'équation 4 proposée par Zimmermann [85] consiste à réin-
jecter la retenue �nale de l'addition binaire normale dans le dernier bloc de l'additionneur
PPA. Pour éviter les e�ets des boucles combinatoires, Zimmerman a proposé d'insérer
un étage de calcul supplémentaire. Pour des opérandes de petites tailles et moyennes,
l'architecture proposée par Zimmermann constitue un bon compromis complexité-temps de
calcul. Pour des tailles d'opérandes plus grandes, d'autres architectures ont été proposées
[86][87][88]. Ces architectures traitent les nombres avec leurs représentations diminuées
de 1. Cependant cette représentation sou�re du problème de multiples interprétations des
sorties égales à zéro. Une sortie égale à zéro peut représenter un vrai résultat nul ou bien
erroné. Pour remédier à ce problème, il est nécesaire d'utiliser un circuit pouvant détecter
le résultat correct [87].

En plus, la représentation diminuée de 1 nécessite des circuits de conversion (représen-
tation binaire normale vers représentation diminuée de 1 et l'inverse) en utilisant des incré-
mentation/décrémentation qui pourront être dans certains cas plus coûteuses comparées
aux avantages que cette représentation présente.

Tenant compte de ces deux inconvénients et du fait que l'additionneur modulo 2n + 1
que l'on compte réaliser sera implémenté dans la structure de l'additionneur complexe pré-
implémentée dans le papillon, nous avons choisi de réaliser l'additionneur modulo 2n + 1
suivant une autre technique utilisant deux additionneurs [90]. Cette technique permet
d'une part d'exploiter les additioneurs disponibles dans le papillon et d'autre part de prof-
iter des performances de ces additionneurs cablés et pré-implémentés dans les composants
FPGA. Quant au temps de calcul, le chemin critique pourra être réduit en utilisant un
étage de pipeline. Tous ces paramètres seront évalués lors de l'implémentation FPGA.

Dans [90], l'auteur propose quelques architectures pour réaliser un additionneur modulo
2n + 1 basée sur l'idée d'utiliser deux additionneurs, le premier pour réaliser l'addition
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binaire normale et le deuxième pour réaliser la réduction modulo 2n + 1. La meilleure
architecture proposée dans [90] qui traite des nombres avec leur représentation binaire
normale sur n + 1 bits est constituée de deux additioneurs et d'une porte NOR et elle
fournit la somme incrémentée de 1.

Nous avons proposé une architecture d'un additionneur modulo 2n + 1 basée sur le
même principe présenté dans [90] et qui fournit la somme correcte. L'addition modulo
2n + 1 est décrite par l'équation suivante:

(x + y) mod (2n + 1) =























(x + y) mod 2n si 0 ≤ x + y < 2n

(x + y) mod 2n + 2n − 1 si 2n < x + y ≤ 2n+1

2n si (x = 2n et y = 0)
ou (x=0 et y = 2n).

(5)

En d'autres termes,

(x + y) mod (2n + 1) = S2
nS2 + S2

n2n, (6)
où S2 représente la somme du deuxième additionneur:

S2 = [S2
n+1S

2
n...S2

0 ] = [S1
n−1...S

1
0 ] + (2n − 1)(S1

n+1 ∨ S1
n),

et S1 la somme du premier additionneur:

S1 = [S1
n+1S

1
n...S1

0 ] = x + y.

La démonstration de l'équation 6 est expliquée dans le chapitre 3. Sa réalisation
matérielle est illustrée sur la �gure 4.a. L'implémentation de cet additionneur modulo 2n+1
dans l'architecture de l'additioneur complexe mène à l'architecture recon�gurable de la
�gure 4.b. L'opérateur résultant est un additionneur ayant deux modes de fonctionnement,
dans CG(Ft) et dans C. Le passage d'un mode à un autre est assuré par un signal de
contrôle DM.

3.3 Le soustracteur recon�gurable proposé
L'architecture classique d'un soustracteur binaire est basée sur l'architecture de l'additionneur.
Pour réaliser une soustraction en complément à 2 à l'aide d'un additionneur, il su�t
d'inverser l'opérande à soustraire et de mettre la retenue d'entrée à 1. Pour la soustrac-
tion modulo 2n + 1, une légère modi�cation de l'architecture de l'additionneur conduit à
l'opérateur représenté sur la �gure 5.a dont le principe de fonctionnement est décrit par
l'équation suivante:

(x − y) mod (2n + 1) =

{

2n si (x = 2n and y = 0)
(x + y + 1 + Sn) mod 2n sinon.

(7)

La �gure 5.b représente le soustracteur recon�gurable contrôlé par le signal DM per-
mettant de choisir le mode de fonctionnement dans CG(Ft) ou bien dans C.
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Figure 5: Le soustracteur modulo 2n + 1 et le soustracteur recon�gurable

3.4 Le multiplieur recon�gurable proposé
La multiplication modulo 2n + 1 est largement utilisée dans les systèmes des nombres
résiduels (RNS) [81] et dans la cryptographie [91]. Plusieurs algorithmes ont été dévelop-
pés pour réaliser des multiplieurs modulo 2n + 1. Parmi ces algorithmes, certains sont
basés sur des éléments de base de bas niveau tel que le full-adder et les portes logiques
(NAND/XOR), et d'autres sont dédiés à des implémentations sur des composants FPGA.
Ce dernier type d'algorithme permet de béni�cier des avantages qu'o�rent les composants
FPGA récents, tels que l'intégration des ressources arithmétiques comme les multiplieurs
binaires.

Les techniques de multiplication modulo 2n + 1 peuvent être divisées en trois classes:

1. multiplication à l'aide des Look Up Tables (LUT).
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2. multiplication avec un multiplieur (n + 1) ∗ (n + 1) bits.

3. multiplication basée sur des additionneurs Carry Save.

Dans la première méthode, les produits de multiplication modulo 2n + 1 sont sauve-
gardés dans des tables et le résultat souhaité est indexé par une adresse formée par les
deux opérandes. La taille des tables croît exponentiellement avec la longueur du mot et
pour des valeurs de n ≥ 8, la taille de mémoire nécessaire devient très grande ce qui rend
cette méthode peu intéressante [92]. Pour réduire la taille des tables, des méthodes ont
été proposées dans [94] [95]. Ces méthodes permettent de réduire la taille des mémoires
de O(22n × n) à O(2n × n). Malgré cette réduction, cette méthode basée sur des LUT ne
pourra pas être une alternative pour réaliser des multiplications modulo 2n + 1 pour des
grandes valeurs de n.

Dans la deuxième méthode utilisant un multiplieur (n+1)∗(n+1) bits, les algorithmes
développés traitent les nombres dans l'ensemble Z

∗
2n+1 = {a | 1 ≤ a ≤ 2n}, où le nombre

2n est représenté par le nombre 0. L'algorithme de base est l'algorithme Low-High décrit
par l'équation suivante [93]:

x ⊙ y = (cL − cH) mod (2n + 1) =

{

(cL − cH) mod 2n si cH ≤ cL

(cL − cH + 1) mod 2n si cH > cL,
(8)

où ⊙ représente la multiplication modulo Ft et où

cL =

n−1
∑

i=0

pi2
i et cH =

n−1
∑

i=0

pn+i2
i,

représentent respectivement les mots de n-bit de poids plus faible et plus fort.
L'implémentation directe de l'équation 8 exige un multiplieur n × n-bits, trois sous-

tracteurs, un additionneur, un comparateur et un multiplexeur. Des reformulations de
l'équation 8 ont été proposées permettant l'amélioration de l'architecture matérielle du
multiplieur. Nous citons ici la reformulation introduite par Beuchat [93]. L'auteur a
suggéré d'utiliser un multipieur (n + 1) × (n + 1)-bits en décomposant le produit

P = P2n22n + 2n
n−1
∑

i=0

pn+i2
i +

n−1
∑

i=0

pi2
i,

et d'écrire la multiplication modulo 2n + 1 sous la forme

x ⊙ y =

{

(c′L + c′H + 2) mod 2n si P2n = 1 or (P2n = 0 et c′L + c′H + 1 < 2n),
(c′L + c′H + 1) mod 2n ailleurs,

(9)

avec c′L =
∑n−1

i=0 pi2
i et c′H =

∑n−1
i=0 pn+i2

i. L'architecture matérielle réalisant l'équation
9 est illustrée sur la �gure 6.

Avec cette architecture, la multiplication xy est réalisée avec un multiplieur n×n-bits
et ensuite la réduction modulo 2n + 1 est faite à l'aide de deux additionneurs.
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Figure 6: Le multiplieur modulo 2n + 1 [93]

Dans la troisième méthode basée sur les additionneurs Carry Save, la réduction modulo
2n+1 est exécutée au niveau de chaque produit partiel xiy. Plusieurs architectures ont été
proposées [85] [89] [92]. Le circuit correspondant est constitué d'un générateur des produits
partiels, de deux additionneurs Carry Save modulo 2n + 1, d'une unité de correction et
d'un multiplexeur.

Considérons maintenant le choix entre les deux dernières méthodes. Dans [92], les
auteurs ont comparé l'architecture basée sur le multiplieur (n + 1) ∗ (n + 1)-bit à celle
basée sur les additionneurs Carry Save et ont montré que la première architecture o�re
un excellent compromis complexité-temps de calcul. Dans [93], l'auteur a montré, en
implémentant les deux mêmes classes de multiplieurs sur des composants FPGA Virtex-
II, que le multiplieur modulo 2n +1 basé sur le multiplieur (n+1)∗(n+1)-bit o�re un gain
en termes de complexité et temps de calcul par rapport à un multiplieur modulo 2n+1 basé
sur des additionneurs Carry Save. Ce gain diminue et la deuxième méthode devient plus
avantageuse quand les multiplieurs sont implémentés sur des composants Virtex-E. Ceci est
dû au fait que les Virtex-II contiennent des multiplieurs pré-implémentés dont l'utilisation
présente des avantages comparés à une implémentation basée sur des additionneurs, tandis
que les Virtex-E ne contiennent pas des multiplieurs cablés et avec ce type de composant
la deuxième méthode est plus avantageuse.

En tenant compte des résultats de comparaison dans [92] [93] et du fait que notre
multiplieur modulo 2n +1 sera réalisé en exploitant les ressoures disponibles dans le multi-
plieur complexe, nous avons choisi d'adopter la première méthode basée sur le multiplieur
(n+1)∗ (n+1)-bit. Cependant, les multiplieurs réalisés dans [92] [93] selon cette méthode
traitent les nombres dans l'ensemble Z

∗
2n+1 = {a | 1 ≤ a ≤ 2n}. Pour notre application, le

multiplieur sera sollicité pour les calculs de la FNT et doit donc traiter tous les nombres de
l'ensemble Z2n+1 = {0, 1, ..., 2n}. Pour cela, nous avons modi�é l'architecture présentée
dans [93] et nous avons proposé l'architecture illustrée sur la �gure 7 qui, implémentée
dans le multiplieur complexe conduit à un multiplieur recon�gurable dont l'architecture
est représentée sur la �gure 8.

Ce multiplieur est capable d'opérer dans C ainsi que dans CG(Ft). Le passage d'un
mode à un autre est controlé par le signal DM. Les valeurs 1, 0 de DM indiquent repec-
tivement l'exécution des multiplications complexes et modulaires. Sur la �gure 8, nc

représente le nombre de bits utilisés pour les nombres complexes dont les 2t + 1 bits de
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poids faible seront utilisés pour les nombres dans CG(Ft). Le principe de fonctionnement
de ce multiplieur recon�gurable est exprimé par l'équation suivante:

Pr =

{

(Br Wr − Bi Wi) si DM=1
(Br ⊙ αi), i = {0, 1, ..., Ft−1

2 − 1} si DM=0
Pi = (Br Wi + Bi Wr).

3.5 Architecture du papillon recon�gurable
Les trois opérateurs arithmétiques recon�gurables réalisés sont connectés entre eux selon le
modèle papillon pour former un papillon recon�gurable dont l'architecture est représentée
sur la �gure 9. Le signal DM contrôle maintenant l'ensemble des opérateurs pour déter-
miner le mode de fonctionnement du papillon. DM = 1 indique l'exécution des opérations
dans C et le multiplexeur au niveau des ROM contenant les coe�cients de Fourier et les
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puissances de α sélectionne le premier bloc de mémoire (ROM contenant les coe�cients
de Fourier complexes). Dans ce mode de fonctionnement, toutes les ressources arithmé-
tiques du papillon sont utilisées. Quand DM passe à zéro, les opérations modulo Ft seront
exécutées et le multiplexeur sélectionne le deuxième bloc de mémoire ROM contenant les
puissances de la racine primitive α. Parmi les quatre multiplieurs, seul le premier est utilisé
et les autres sont inactifs. Les sorties du papillon actives dans ce mode de fonctionnement
sont P 1

r et P 2
r . La longueur des mots binaires traités est égale à 2t + 1 déterminé par le

corps CG(Ft) dans lequel les opérations sont dé�nies.
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Figure 9: L'architecture du papillon recon�gurable

3.6 Architecture de l'opérateur DMFFT
Dans ce paragraphe nous allons présenter l'architecture de l'opérateur recon�gurable dit
DMFFT (Dual Mode FFT). L'élement de base ou bien le coeur du DMFFT est le papillon
recon�gurable présenté dans le paragraphe précédent.

Concernant l'implémentation de la FFT complexe, mis à part les besoins en ressources
arithmétiques, deux aspects principaux doivent être pris en compte. Le premier est la
dynamique des nombres où deux représentations peuvent être utilisées : représentation
en virgule �xe ou représentation en virgule �ottante. Cet aspect a un e�et direct sur la
précision, les erreurs de quanti�cation et la complexité matérielle. Une grande dynamique
permet d'obtenir une bonne précision mais au prix d'une grande complexité matérielle.
Un compromis précision-complexité doit donc être choisi. Dans ce travail, nous avons
considéré la représentation en virgule �xe et nous avons étudié la précision de calcul des
transformées en fonction du nombre de bits avec lesquels les mots binaires sont représentés.

Le deuxième aspect est le besoin de blocs de mémoires où deux types sont utilisés :
les mémoires RAM pour sauvegarder les calculs intermédiaires et les mémoires ROM pour
sauvegarder les tables des racines de Fourier. La taille des mémoires exigée est directement
liée à la représentation utilisée et à la stratégie d'implémentation de la FFT.
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En général, il y a plusieurs façons d'implémenter une FFT complexe. Parmi ces dif-
férentes façons, il y a deux méthodes qui peuvent être vues comme deux extrêmes. La
première consiste à réaliser la transformée avec un seul papillon dont sa fonctionalité est
exécutée N/2 logN fois, avec N la longueur de la transformée. Un bloc de contrôle et des
blocs de mémoires (RAM et ROM) sont nécessaires. Cette méthode permet d'obtenir un
circuit très simple mais un temps de calcul très grand (O(N/2 logN)).

La deuxième méthode consiste à implémenter la structure complète de la FFT, c.à.d
logN étages et N/2 papillons dans chaque étage. Avec cette méthode, il n'y a pas besoin
d'utiliser des mémoires RAM puisque les données sont traitées en parallèle. Le circuit
résultant permet d'obtenir un temps de calcul réduit (log N) mais avec une complexité très
élevée. Cette méthode est très coûteuse en termes de ressources matérielles. Pratiquement
une FFT-16 occupe 65 % d'un STRATIX-II.

Entre ces deux extrêmes, il y a une méthode qui peut constituer un bon compromis
entre un temps d'exécution moyen et une complexité matérielle acceptable. Cette méthode
consiste à implémenter logN étages et chaque étage est constitué d'un papillon, d'une unité
de contrôle et des blocs mémoires (RAM et ROM).

Basée sur cette dernière méthode, nous avons réalisé une architecture composée de log
N étages et d'une unité de contrôle globale GCU (Global Control Unit). Cette architecture
est représentée sur la �gure 10. Le GCU permet d'ajuster les paramètres suivants:

1. le mode de fonctionnement FFT/FNT

2. la longueur de la transformée N

3. la taille des mots binaires dans les deux domaines C et CG(Ft).

log N stages

Global Control Unit 

(GCU)

Global Control Unit 

(GCU)

Stage 1 Stage 2 Stage (log N)
Data input Data output

Figure 10: L'architecture de l'opérateur DMFFT

L'architecture interne d'un étage est représentée sur la �gure 11. Un étage est consti-
tué d'un papillon recon�gurable nommé RPE (Recon�gurable Processing Element), d'une
unité de contrôle de l'étage SCU (Stage Control Unit), des blocs de mémoires RAM et
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ROM avec leurs unités de génération de mémoires AGU (Address Generating Unit). Le
principe de fonctionnement de chacune de ces unités est décrit en détail dans le chapitre
3. Nous notons que le type de mémoire utilisée joue un rôle important sur le débit global
de l'opérateur DMFFT. En e�et, les composants Stratix-II disposent de trois types de
mémoire :

• RAM-1-Port: un port d'écriture et un port de lecture

• RAM-2-port: deux modes de fonctionnement possibles. Un simple port en écriture
et un autre en lecture, ou bien deux ports en écriture et deux ports en lecture

• RAM-3-Port: un port d'écriture et deux ports de lecture.

Selon l'étude de routage de données développée dans le chapitre 3, l'utilisation du
premier type de RAM permet à l'opérateur de consommer un symbole par cycle et de
fournir en sortie un symbole par cycle. Avec l'utilisation du 3ème type de RAM, le DMFFT
peut consommer et produire deux symboles par cycle.

RPE

Data out

Stage Architecture 
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Stage Control Unit
(SCU)

i
B

AGU
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r
W

i
W

i

ROMs

AGU

Data in

Figure 11: L'architecture de l'étage de l'opérateur DMFFT

3.7 Implémentation sur FPGA
Dans l'introduction, nous avons décrit deux approches possibles pour concevoir un système
multi-standards : l'approche Velcro et l'approche recon�gurable. Dans ce paragraphe, nous
allons comparer ces deux approches en implémentant les di�érents circuits (RPE, DMFFT)
et en évaluant le paramètre η = 1

TC ∗ 106, avec C le nombre des ALUT consommés et T
le temps d'exécution exprimé en ns. Ce facteur η introduit dans [97] représente le rapport
performance-coût permettant d'évaluer en un seul paramètre la contribution de C et T.
Dans cette étude, toutes les expérimentations ont été réalisées sur des composants FPGA
STRATIX-II (ALTERA).
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3.7.1 Implémentation du RPE
Comme nous l'avons déjà mentionné, l'implémentation de la FFT complexe considérée
dans cette étude traite les nombres avec une représentation en virgule �xe. Cette représen-
tation constitue une approximation des nombres traités. Ensuite tout au long du calcul de
la transformée, des quanti�cations sont opérées pour ajuster le nombre de bits à traiter à
la capacité des mémoires ou des opérateurs arithmétiques. Nous pouvons donc distinguer
quatre sources de bruit :

1. les erreurs dues aux données quanti�ées à traiter à l'entrée du circuit.

2. les erreurs dues aux valeurs quanti�ées des coe�cients W = e−j2π/N .

3. après une multiplication de deux nombres de n bits, le résultat est sur 2n bits et
subit une limitation à n bits avec arrondi ou troncature.

4. dans le calcul de la FFT complexe (radix-2) de longueur N , nous avons log N étages
de calcul et chaque étage comprend N/2 papillons. Il a été montré [100] que le module
maximal des nombres n'augmente que d'un facteur inférieur à 2 à chaque étage de
calcul. Donc, nous pouvons éviter un débordement en incorporant un facteur 1/2
(recadrage) dans le papillon. Ceci est équivalent à un décalage du nombre d'un bit
vers la droite.

L'emplacement de la quanti�cation (troncature et recadrage) joue un rôle important
sur la précision des calculs et aussi sur la taille des opérateurs arithmétiques. L'analyse de
l'erreur de quanti�cation a été étudiée dans [101]. L'auteur a montré que l'emplacement de
la quanti�cation selon l'architecture de la �gure 12 o�re le meilleur compromis précision-
complexité. Nous avons adopté ce modèle de quanti�cation dans l'implémentation du
RPE. Bien entendu, cette quanti�cation n'intervient que dans le calcul de la FFT complexe
et n'a�ecte pas le calcul de la FNT. Cependant, puisque nous considérons un opérateur
FFT/FNT, lors du choix de nombre de bits utilisés dans le calcul de la FFT nous devons
prendre en compte la dimension du corps CG(Ft) et les longueurs de la FNT qui seront
exécutées. En général, l'implémentation en virgule �xe de la FFT est réalisée avec un
nombre de bits entre 12 et 16 bits et il a été montré qu'un nombre de bits nc = 13 est
un bon compromis entre la précision et la complexité des opérateurs arithmétiques [101].
Cela permet de traiter des symboles dans CG(257) et ensuite l'implémentation des FNT
avec une longueur allant de 16 jusqu'au 256.
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1/2

1/2

r

N
W

Figure 12: L'emplacement de la quanti�cation dans le papillon
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Le tableau 2 représente les résultats d'implémentation du RPE et du papillon Velcro
pour di�érentes tailles de mots. nc représente la taille des mots complexes et n la taille
des symboles dans CG(Ft). Les mesures illustrées dans le tableau 2 montrent que le RPE
permet d'économiser environ 18% d'ALUT et o�re un gain de rapport performance-coût
de 20 % par rapport au papillon de type Velcro.

Table 2: Comparaison entre le papillon recon�gurable (RPE) et le papillon Velcro implé-
mentés sur STRATIX II, EP2S15F484C3.

circuit nc=9 nc=12 nc=17
n=9 n=9 n=17

Papillon Velcro 403 ALUTs 629 ALUTs 1062 ALUTs
4.20 ns 5.07 ns 5.60 ns

Papillon
recon�gurable

326 ALUTs 514 ALUTs 875 ALUTs
4.3 ns 5.18 ns 5.64 ns

Gain en ALUTs 19.1 % 18.2 % 17.6 %

η = 1
TC ∗ 106 ηV = 590 ηV = 313 ηV = 168

ηR = 713 ηR = 375 ηR = 202

Gain du rapport
performance-coût 20.8% 19.8% 20.2%

3.7.2 Implémentation du DMFFT
Nous présentons dans ce paragraphe les résultats d'implémentation de l'opérateur DMFFT
et de l'opérateur Velcro FFT/FNT. L'architecture du DMFFT est implémentée d'une façon
générique permettant de tester plusieurs longueurs de transformées et avec di�érentes
tailles des mots. De la même façon, chacun des opérateurs FFT et FNT constituant
l'opérateur Velcro est implémenté.

Dans cette implémentation, les données d'entrée et les coe�cients W = e−j2π/N de la
DMFFT (dans le mode complexe) et de la FFT sont représentées avec le même nombre de
bits n. Les blocs des mémoires RAM utilisés dans cette implémentation sont des RAM-1-
port.

Le tableau 3 récapitule les résultats d'implémentation en termes d'ALUT, de temps de
calcul, d'économie de mémoire et de gain performance-coût pour une longueur de trans-
formée N = 64 et pour di�érents nombres de bits. Selon les résultats donnés dans ce
tableau, le DMFFT permet d'obtenir, par rapport à l'opérateur Veclro une économie de
mémoire allant de 21.9% à 33%, un gain en nombre d'ALUT allant de 9% à 26 % et un
gain performance-coût allant de 9.7 % à 37 %. Ces gains varient avec le nombre de bits
nc utilisés. Cela peut s'expliquer par le fait que lorsque nc augmente, n étant constant, la
complexité du DMFFT augmente d'une façon globale au pro�t de la FFT complexe tandis
que n = 9 bits est su�sant pour réaliser des FNT de longueur (maximale) 64.

Le tableau 4 récapitule les mêmes mesures pour une longueur de transformée N = 256.
L'évolution du gain en ALUTs et du gain performance-coût est la même qu'avec une
longueur de transformée N = 64 mais avec des valeurs moins élevées. Cette diminution de
la valeur des gains peut s'expliquer par le fait que la complexité de l'opérateur DMFFT



3 Architecture de l'opérateur DMFFT 21

Table 3: Comparaison entre le DMFFT-64 et l'opérateur Velcro FFT/FNT-64 implémentés
sur Stratix II, EP2S15F484C3

nc 9 10 11 12 13 14 15 16

Opérateur
Velcro

4205 4768 5156 5831 6064 6844 7302 8143
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.86 ns 5.27 ns 5.08 ns 5.46 ns 5.74 ns 5.81 ns 5.79 ns 6.62 ns

DMFFT
3109 3744 4112 4857 5182 5975 6469 7387
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.78 ns 4.97 ns 5.0 ns 5.45 ns 5.76 ns 5.85 ns 5.86 ns 6.65 ns

Economie
de mémoire 33 % 31 % 29 % 27.2 % 25.7 % 24.3 % 23 % 21.9 %

Gain en
ALUTs 26 % 21.4 % 20.2 % 16.7 % 14.5 % 12.7 % 11.4 % 9.2 %

gain du
facteur η

37.4 % 35 % 27.5 % 20 % 16.7 % 13.9 % 11.5 % 9.7 %

est dominée par celle de la FFT. Cette dernière augmente rapidement avec la taille de la
transformée et ce qui fait chuter le gain en nombre d'ALUTs.

Table 4: Comparaison entre le DMFFT-256 et l'opérateur Velcro FFT/FNT-256 sur
Stratix II, EP2S15F484C3

nc 9 10 11 12 13 14 15 16

Opérateur
Velcro

5327 6079 6566 7518 7885 8966 9513 10770
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
5.02 ns 4.95 ns 5.13 ns 5.45 ns 5.58 ns 5.84 ns 6.1 ns 6.55 ns

DMFFT
4466 5365 5911 6819 7336 8546 9124 10389
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.86 ns 4.9 ns 5.0 ns 5.5 ns 5.63 ns 5.9 ns 6.11 ns 6.58 ns

Economie
de mémoire 33 % 31 % 29 % 27 % 25.5 % 24 % 22.8 % 21.9 %

Gain en
ALUTs 16.2 % 11.7 % 9.97 % 9.29 % 7 % 4.68 % 4 % 3.5 %

Gain du
facteur η

24 % 15.1 % 12.1 % 9.4 % 6.6 % 4.2 % 4.06 % 3.54 %

Pour sélectionner le nombre de bits o�rant le meilleur compromis entre la précision de
calcul (de la FFT) et la complexité matérielle, nous avons calculé la FFT complexe avec
Matlab dont le calcul se fait en virgule �ottante a�n d'évaluer le rapport SQNR (Signal
to-Quantization-Noise Ratio) dé�ni par

SQNR = 10 log(
E[|S(k)2|]
E[|N(k)2|] ),
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avec E[|S(k)2|] et E[|N(k)2|] représentant respectivement les moyennes quadratiques
des FFT obtenues avec Matlab S(k) et de l'erreur N(k) = S(k) − Sf (k).

La conclusion de cette étude est qu'un nombre de bits égal à 13 constitue un bon
compromis précision-complexité.

4 DMFFT et FFT dans CG(2m) : vers un opérateur FFT tri
mode

L'objectif de cette partie est de proposer des solutions pour réaliser un opérateur FFT
tri mode, opérant sur trois domaines di�érents, à savoir C, CG(Ft) et CG(2m). Ceci est
motivé par la nécessité de prendre en compte les codes RS dé�nis sur CG(2m) mais aussi
en raison de la simplicité des opérations arithmétiques dans CG(2m).

Le premier opérateur proposé est le TMVFFT pour Triple Mode Velcro FFT. Une
évolution de cet opérateur est alors proposée selon deux scénari, décrits dans la suite.

4.1 L'architecture de l'opérateur TMVFFT
L'architecture proposée est constituée de l'opérateur DMFFT et d'une FFT dé�nie sur
CG(2m) (notée par la suite FFT-GF2). Cette architecture est représentée sur la �gure 13.
Cette structure intuitive constitue une première version d'un opérateur tri-modes. Nous
allons maintenant proposer deux scénari d'évolution : le scénario 1 permet d'optimiser la
réutilisation de chacun des deux opérateurs constituant le TMVFFT ; le scénario 2 vise à
combiner ces deux opérateurs (DMFFT et FFT-GF2) pour évoluer vers un opérateur tri
mode plus optimal et recon�gurable.

Input data Output data

FFT-GF2

M
u

x

DMFFT

TM

Figure 13: L'architecture du TMVFFT

4.1.1 Scénario 1 : évolution de l'architecture TMVFFT
En général, un opérateur commun est supposé remplacer deux autres opérateurs à la condi-
tion qu'il soit capable de produire leurs fonctionnalités pendant la même durée d'exécution
de chacun des deux opérateurs. Ceci est illustré sur la �gure 15.
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TMFFT
Input data Output data

TM

Figure 14: L'architecture du TMFFT
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Figure 15: Diagramme des tâches d'un opérateur commun

L'optimisation du DMFFT selon le principe du scénario 1 peut être réalisée en aug-
mentant le débit de l'opérateur. Comme déjà évoqué, ceci peut être atteint en utilisant
des RAM-3-port permettant au DMFFT de fournir deux symboles par cycle. De cette
façon, le nombre de cycles nécessaires pour réaliser la transformée (FFT/FNT) est N

2 ce
qui permet à cet opérateur opérant dans le mode FNT d'être capable de remplacer les
deux circuits nécessaires pour exécuter le calcul des syndromes et l'algorithme de Chien.

Dans la logique de ce scénario 1, nous avons proposé une implémentation du FFT-GF2
permettant de réduire son temps d'exécution d'un facteur deux à huit, avec une complexité
raisonnable.

Cette implémentation est basée sur une méthode de calcul de la transformée de Fourier
proposée dans [105]. Nous avons reformulé cette méthode d'une façon à être adaptée à
l'implémentation matérielle.

La méthode est basée sur la factorisation de la matrice de la tranformée en produit
des matrices circulantes et matrices circulantes diagonales. Cette factorisation est possible
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grâce à la décomposition cyclotomique des polynômes dé�nis dans CG(2m). Comme les
auteurs le montrent, cette méthode comparée à d'autres algorithmes existants dans la
litérature [102] [106] [107] est plus e�cace puisqu'elle nécessite un nombre plus faible
d'opérations (multiplications et additions).

Nous avons étudié cette méthode et nous avons constaté que la décomposition cy-
clotomique polynomiale permettant la réduction des nombres des opérations peut être
exploitée pour augmenter le débit du FFT-GF2 et réduire le temps de calcul.

Le principe de cette méthode est détaillé dans le chapitre 4. Nous avons présenté
la décomposition cyclotomique des éléments du CG(2m) pour m=3, 4, 5, 6, 7 et 8 et
en se basent sur cette décomposition nous avons proposé une architectue matérielle de
l'opérateur FFT-GF2. Cette architecture permet de traiter les symboles par groupe, ce qui
permet de réduire le temps de calcul. L'architecture que nous avons proposée est constituée
de deux unités : une unité principale et une unité secondaire (�gure 16). L'unité principale,
dédiée à traiter les groupes principaux du CG(2m) (par exemple {f1, f2, f4, f8},...etc. dans
CG(24)), se compose de quatre étages dont le quatrième a une structure régulière et
paramétrable. Ainsi, le nombre de cellules implémentées dans cet étage, dé�ni suivant
la décomposition cyclotomique du CG(2m) concernée, peut être modi�é a�n d'o�rir une
�exibilité dans le temps de calcul et le débit. L'unité secondaire est dédiée à traiter les
groupes secondaires ({f5, f10}) du CG(24).
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Figure 16: L'architecture de la FFT cyclotomique

Nous avons comparé cette architecture à celle proposée dans [102] en termes de ressources
arithmétiques et temps de calcul. Les deux architectures exigent le même nombre de multi-
plieurs dé�nis dans CG(2m). En terme d'additionneurs ou portes XOR, notre architecture
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Table 5: Tableau des temps de calcul

CG
Temps de calcul
(architecture de [102])

nb. de
cellules Nc

Temps de calcul
(architecture proposée)

CG(24) 16 T ∗
c

8 6 Tc

15 3 Tc

CG(25) 32 Tc
16 12 Tc

31 6 Tc

CG(26) 64 Tc
32 18 Tc

63 9 Tc

CG(27) 128 Tc
64 36 Tc

127 18 Tc

CG(28) 256 Tc

64 120 Tc

128 60 Tc

255 30 Tc

* Tc : temps de calcul d'une multiplication dans CG(2m)

nécessite un nombre plus grand de portes XOR. Des blocs ROM sont aussi nécessaires
pour sauvegarder les coe�cients matriciels. Quant à l'architecture proposée dans [102],
elle nécessite des blocs de contrôle. Le principal avantage que présente l'architecture que
nous proposons est qu'elle permet de réduire le temps de calcul d'un facteur allant de deux
à huit (selon le CG(2m)) produisant ainsi un débit très élevé tandis que l'autre architecture
a un temps de calcul plus grand et opère à un débit �xe et plus faible.

Le tableau 5 montre les di�érents temps de calcul pour lesquels l'architecture du FFT-
GF2 proposée peut opérer et ceux de l'architecture proposée dans [102]. Pour chaque
CG(2m), il y a di�érents temps de calcul possibles pour notre architecture. Ceci est
directement lié à la struture du quatrième étage de l'unité principale, i.e. au nombre de
cellules Nc implémentées dans cet étage. Par exemple, dans CG(24), notre architecture
peut fonctionner à des vitesses deux et cinq fois plus rapide.

Nous avons implémentés l'architecture proposée pour une longueur de transformée
N = 15 sur des composants STRATIX II pour évaluer ses performances et sa complexité en
terme de nombre d'ALUT. Le tableau 6 représente les résultats de cette implémentation.
Pour un temps de calcul égal à 3Tc, l'architecture consomme 343 ALUTs. Le nombre
d'ALUTs peut être réduit à 203 en diminuant le nombre de cellules implémentées dans le
quatrième étage à 8. Ceci est au prix d'un temps de calcul plus grand qui sera 6Tc.

4.1.2 Scénario 2 : vers un opérateur tri-mode recon�gurable TMFFT
Dans cette partie nous proposons quelques solutions permettant de combiner les deux
opérateurs DMFFT et FFT-GF2 d'une façon à obtenir un seul opérateur recon�gurable
TMFFT permettant de réaliser les trois transformées de trois opérateurs : FFT-C, FNT
et FFT-GF2. Le scénario 2 suppose la réalisation du TMFFT en deux étapes :
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Table 6: Les résultats d'implémentations d'un FFT-15 (dans CG(24))
sur un composant STRATIX II, EP2S15F484C3

temps de
calcul Nc Complexité Tc

t′ = 3 Tc 15 343 ALUTs 2 ns

t′ = 6 Tc 8 203 ALUTs 2 ns

• réalisation des opérations arithmétiques dans CG(2m) à l'aide des opérateurs implé-
mentés dans le DMFFT

• incorporation de la structure physique du FFT-GF2 dans l'opérateur DMFFT.

Nous considérons dans ce paragraphe la réalisation de la première étape. Une addition
dans GF (2m) peut être réalisée à l'aide des simples portes XOR. Quant à la multiplication,
plusieurs algorithmes ont été proposés pour réaliser des multiplieurs opérant dans CG(2m)
[114] [115] [116] [117]. Dans cette étude, nous considérons la réalisation d'un multiplieur
dans CG(2m) en utilisant la structure classique d'un multiplieur binaire. Dans cet optique,
deux travaux principaux ont été développés proposant la réalisation des multiplieurs com-
binés sur DSP [118] et sur ASIC [119] capables de réaliser des multiplications binaires
classiques ainsi que dans CG(2m). Les multiplieurs proposés dans [118] [119] montrent
une réalisation d'un multiplieur opérant dans CG(28) sur une structure d'un multiplieur
binaire de taille 16 × 16 bits. En se basant sur le même principe, nous avons proposé
une architecture d'un multiplieur permettant de réaliser une multiplication dans CG(2m),
pour m=6, 4 et 8 à l'aide d'un multiplieur binaire normale. Un multiplieur binaire de taille
8×8 bits représente une structure su�sante pour réaliser une multiplication dans CG(28),
mais comme ce multiplieur est destiné à réaliser des calculs dans le domaine complexe, sa
taille sera �xée selon la précision souhaitée de la transformée de Fourier complexe.

L'architecture du multiplieur combiné est illustrée sur la �gure 17 pour un multiplieur
de base 8 × 8 bits. Ce multiplieur est composé de trois étapes principales : la génération
des produits partiels, la réduction de ces produits selon la méthode de Walace [112] et
ensuite l'addition de ces produits dans le cas d'une multiplication binaire normale et leur
réduction polynomiale dans le cas de multiplication dans CG(2m).

Nous considérons maintenant le principe de fonctionnement de ce multiplieur. En e�et,
dans le mode binaire normal, la production des produits partiels peut être réalisée à l'aide
des portes logiques AND. Ensuite, la réduction de ces produits partiels peut être réalisée
suivant le schéma arborescent de Wallace [112] construit à l'aide des éléments de base "Full
Adder" dénoté par W3 et "Half Adder" dénoté par W2.

Cet arbre de Wallace permet d'e�ectuer la somme des produits partiels d'une façon
e�cace. Cette somme tient évidement compte de la propagation de la retenue tout au
long de l'arbre. Dans le CG(2m), cet arbre doit se comporter di�érement. C'est à dire,
puisqu'il s'agit d'une addition modulo 2, la propagation de la retenue doit être évitée.
Pour cela il faut recon�gurer les interconncetions des cellules W3 et W2 d'une façon à
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éviter la propagation de retenue au niveau de chaque cellule. Dans une implémentation
FPGA, cela est possible en utilisant des LUT permettant de mettre à zéro l'entrée d'une
cellule connectée à une sortie représentant la retenue d'une autre cellule.

Partial Product genearation

Partial Product reduction

Carry-propagate adder Polynomial reduction

1 0

8 bits 8 bits

8 words by 8 bits

2 words by 16 bits 15 bits

16 88

0

16

m

S

Figure 17: Diagramme bloc du multiplieur combiné

Dans la troisième étape et à la sortie de l'arbre, un additionneur �nal termine la mul-
tiplication binaire normale. Dans le cas de la multiplication dans CG(2m), une réduction
polynomiale est nécessaire pour réduire un produit de 2m− 2 bits à un produit sur m bit.
Cette réduction est faite modulo un polynôme dit primitif caractérisant le corps de Galois
CG(2m).

La �gure 18 représente la structure de l'unité de réduction polynomiale permettant
d'opérer dans CG(2m) pour m=6, 7 et 8. Bien entendu, il est possible de l'étendre pour
d'autres valeurs de m, mais nous avons choisi ces quatres valeurs qui représentent l'ordre
des corps de Galois dans lequels les codes de Reed-Solomon les plus utilisés sont construits.

Le passage d'un mode de fonctionnement à un autre du multiplieur de la �gure 17
est assuré par un signal de contrôle S permettant de recon�gurer les interconnections de
l'arbre de Wallace et de sélectionner la sortie souhaitée. Un paramètre m est nécessaire
pour préciser l'ordre du corps de Galois et sélectionner ensuite les représentations binaires
des coe�cients αi correspondants sauvegardés dans des blocs ROM.

Le multiplieur combiné de la �gure 17 peut être facilement intégré dans le multiplieur
recon�gurable implémenté dans l'opérateur DMFFT. Cela permet d'obtenir un multiplieur
tri-mode capable d'opérer dans trois domaines di�érents: C, CG(Ft) et CG(2m).

De cette façon, nous avons toutes les ressources arithmétiques nécessaires pour réaliser
les opérations requises par l'opérateur TMFFT envisagé. La première étape du scénario
2 est donc accomplie. Concernant la deuxième étape, des études supplémentaires sont
nécessaires pour sa réalisation.
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Figure 18: Réduction polynomiale parallèle pour m = 6, 7 and 8.

5 Conclusions
Ce travail se situe dans le domaine de la radio logicielle et plus précisément dans la
recherche de structures communes pouvant aboutir à la réalisation de terminaux recon-
�gurables. Cette approche appelée paramétrisation peut être abordée de façon théorique
ou pragmatique. Seule la déclinaison pragmatique a été étudiée dans ce travail. Il s'agit
d'identi�er des opérateurs capables de réaliser plusieurs fonctionnalités, à condition de
rendre les opérateurs recon�gurables.
L'opérateur de FFT a été étudié a�n qu'il soit capable d'e�ectuer des transformées de
Fourier aussi bien dans le corps in�ni des nombres complexes que dans les corps �nis tels
que les corps de Galois. Un tel opérateur a ainsi la possibilité de réaliser les opérations
classiques où intervient la transformée de Fourier (�ltrage, (dé)modulation OFDM, égal-
isation, etc) mais aussi des opérations de décodage de canal des codes de Reed-Solomon.
Pour des raisons structurelles, seuls les codes de Reed-Solomon dé�nis sur CG(Ft) (Ft :
nombre de Fermat) ont la possibilité d'être traîtés avec une architecture semblable à celle
de la FFT classique. C'est la raison pour laquelle ils ont été étudiés dans ce travail. Leurs
performances sont quasiment identiques à celles des codes RS dé�nis sur CG(2m).
Ces études ont abouti à la dé�nition, la réalisation, la validation et l'implémentation
d'un opérateur dual (DMFFT) capable d'e�ectuer des transformées dans C mais aussi
dans CG(Ft). Le passage d'une transformée à l'autre se fait alors par recon�guration de
l'architecture. Il a été montré que cette approche est bien plus optimale qu'une approche
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de type Velcro.

En�n, nous avons proposé des solutions a�n de converger vers la réalisation d'un opéra-
teur tri mode capable d'e�ectuer des transformées dans C, dans CG(Ft) mais aussi dans
CG(2m), permettant ainsi de prendre en compte les codes RS dé�nis sur CG(2m), codes
qui sont aujourd'hui très répendus dans les standards de communication.

Les perspectives de ce travail sont nombreuses. La principale sera d'aller plus loin
dans la réalisation de l' opérateur tri-mode. Une première solution a été proposée dans ce
travail sur la base d'un multiplieur tri-mode capable d'e�ectuer des multiplications dans
C, dans CG(Ft) mais aussi dans CG(2m). C'est une première étape. Il faudra aller plus
loin pour réaliser le papillon en entier puis le TMFFT pour Tri Mode FFT.

Une autre étude sous jacente à la réalisation d'un opérateur recon�gurable est liée à
l'ordonnancement des opérations et au partage des ressources. En e�et, un tel opérateur
commun est par nature partagé entre plusieurs traitements. Il est alors nécessaire de gérer
le partage de cet opérateur et la gestion des données qui s'en suit. L'étude d'une recon-
�guration dynamique de cet opérateur, permettra de rendre la gestion de l'opérateur plus
�exible et le gain apporté par l'approche OC plus rentable.
Comme cette thèse l'a montré, il est tout à fait possible de réaliser des opérations de dé-
codage de canal à l'aide de FFT, ce qui permet de mutualiser l'utilisation de cet opérateur.
Dans cet optique, l'étude et l'implémentation de l'algorithme de Gao [109] en utilisant cet
opérateur, pourra constituer une exploitation e�cace de l'opérateur FFT puisque, comme
l'auteur le mentionne, toutes les principales opérations de décodage des codes RS peuvent
être réalisées à l'aide de la FFT. Les codes étudiés dans cette thèse sont les codes de
Reed-Solomon, une étude plus prospective pourra se pencher sur l'application de la FFT
pour des codes LDPC non-binaires et pour des codes convolutifs.





General Introduction

1 Background and context
In recent years there has been an enormous proliferation of standards in broadcast tele-
vision, radio and in mobile communications. Current examples include digital television
(DVB, ISDB), digital radio (DAB), wireless LAN(Hiperlan, 802.11a, 802.11b, ..., 802.16m),
2.5/3G and future 4G mobile communications. These standards form the basis for an ever-
growing number of sophisticated consumer electronic devices, each with the potential to
sell in very high volumes.

In typical designs, these complex standards are implemented using dedicated architec-
tures, which are optimized to reduce cost to the absolute minimum. Products developed
using dedicated architectures are often di�cult to upgrade in order to support changes to
the standards or to add new features.

At the beginning of the 90's, a concept called SoftWare Radio (SWR) has emerged
from demonstrations in military research to become a cornerstone of the third generation
strategy for a�ordable, ubiquitous and global communications [1]. This SWR technology is
a way to design a su�ciently programmable and recon�gurable architecture able to support
many di�erent transmission standards on a common platform. The recon�gurability of a
SWR system can o�er a range of bene�ts at di�erent levels. A radio system implemented
on a recon�gurable architecture can be upgraded to �x bugs or to add functionalities, and
it can also support new standards as it is assumed that there is su�cient �exibility in the
architecture.

The communication chains of di�erent standards, intended to be implemented on a
common platform, have some common signal processing operations such as channel coding,
modulation, equalization, etc. In order to exploit to a great advantage the commonalities
among these communication tasks for di�erent standards, one need �rstly to identify
these commonalities and secondly �nd the optimal way to implement a generic hardware
platform with programmable modules. In this sense, a technique called parametrization
has been introduced. The key idea is to get an optimal sharing between hardware and
software resources and �nd a best way to reuse some hardware and software modules
without a�ecting the system's performances.

This thesis �ts into the context of SWR and more precisely in the parametrization
schemes where two approaches are considered, Common Function (CF) approach and
Common operator (CO) approach. Next section describes the main scope and the main
objectives of this study.
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2 Scope and objectives
Since the publication of the Cooley-Tukey algorithm [32] which allows to enormously re-
duce the order of complexity of some crucial computational tasks like Fourier Transform,
the frequency processing has began to �nd its use in a wide range of applications. This
processing technique was rapidly credited by the tremendous increase of interest in Digital
Signal Processors (DSP) started in the seventies and continued to play a key role in the
widespread use of digital signal processing in a variety of applications like telecommuni-
cations.

In [21], it was shown that several communication tasks like �ltering, channelization,
modulation, despreading, Rake function, ..., can be realized in frequency domain. In SWR
context, the authors proposed the Fast Fourier Transform (FFT) as a CO operator that
could be implemented in a way to be able to match the requirements of the di�erent tasks
intended to be realized in frequency domain. The frequency processing of these functions
is de�ned in the traditional �eld of complex numbers C.

One of the most important and mandatory steps in a communication system is the
channel coding. The codes used for this function are de�ned in a less familiar domain
such as Galois Field (GF). The �rst objective of this thesis is to investigate the study
of channel coding (particularly cyclic codes) in frequency domain and draw an analogy
between this frequency processing and the classical frequency signal processing based in
the domain of complex �eld. In light of this analogy, comes the second objective aiming
to design a recon�gurable architecture of a common FFT operator able to operate over
two di�erent domains C and GF. For simplicity of exposition, we denote by FFT-C and
FFT-GF2 the Fourier transforms de�ned over C and GF (2m) respectively. In this way,
the designed FFT operator can be used in two di�erent contexts: channel coding and
any communication task requiring the FFT-C functionality. The codes considered in this
study are the Reed-Solomon (RS) codes. These codes are chosen to be treated in this
study for two reasons. Firstly, for their powerful error correcting capability particularly in
the case of burst errors. Secondly, their non-binary mathematical structure makes their
treatment adapted to be e�ciently performed with the arithmetical operators available in
the FFT-C architecture.

3 Contents and major achievements
This thesis is composed of four chapters. In chapter 1, we describe the SWR technology
with its important area of parametrization technique. This parametrization technique with
its two approaches CF and CO is described. We present some examples of CF and CO and
focus our attention on the CO approach where we consider the FFT as the operator to be
designed in a recon�gurable way to be subsequently considered as a CO able to support
two di�erent types of transform computations.

Chapter 2 presents an overview of channel coding and the frequency processing of
cyclic codes particularly RS codes de�ned over GF (2m). For these RS codes we present
their frequency encoding and decoding, their principal characteristics towards their im-
plementation using FFT-GF2 for the encoding and some principal decoding processes.
However, the transform length of the FFT-GF2, being of the form 2m − 1, represents a
strong challenge facing the design of a common structure for the FFT-C and FFT-GF2.
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For this, we revive a speci�c class of RS codes de�ned over a speci�c GF, such as the GF of
characteristic Ft where Ft is a Fermat number. This GF (Ft) permits to de�ne a transform
called Fermat Number Transform (FNT) having a very similar structure of that of FFT-C.
This similarity allows to e�ciently implement the FNT onto the FFT-C structure. We
show that the FNT operator can be e�ciently used to encode and perform some decoding
processes of these codes de�ned over GF (Ft). We also show that these speci�c RS codes
de�ned over GF (Ft) have almost the same performances in terms of Bit Error Rate (BER)
as compared to classical RS codes de�ned over GF (2m). Nevertheless, according to the
simulation results, we demonstrate that the frequency encoding of the RS codes de�ned
over GF (Ft) degrades the code's performances and the time domain encoding should be
used to obtain good performances.

Chapter 3 deals with the design of recon�gurable FFT operator called Dual Mode FFT
(DMFFT) operator. In this chapter we propose the architectures of all the recon�gurable
arithmetical operators (multiplier, adder and subtracter) leading to a Recon�gurable Pro-
cessing Element (RPE) representing the well known butter�y operation. This RPE imple-
mented in the classical FFT-C structure leads to the DMFFT. The rest of this chapter
focuses on the FPGA implementation of the designed DMFFT operator where we have
evaluated its complexity and speed performances and have compared them to those of the
Velcro FFT/FNT operator composed of two self-contained operators: FFT-C and FNT.

In chapter 4, we investigate some opportunities to redesign the DMFFT in such a way
to be able to provide the FFT-GF2 functionality. The reason lies in the fact that the RS
codes implemented in the actual standards are RS codes de�ned over GF (2m). This extra
functionality of the DMFFT makes it a triple mode FFT operator. At �rst, we present the
Velcro structure of this operator which we call Triple Mode Velcro FFT (TMVFFT), that
is an operator consisting of two self-contained operators DMFFT and FFT-GF2. Then, we
give two scenarios to maximize the reuse of the TMVFFT and evolve its Velcro structure.
The �rst scenario aims to increase the e�ciency of the reuse of each operator included in
the TMVFFT. The second scenario aims to merge the two operators (DMFFT and FFT-
GF2) and obtain a single and recon�gurable operator called Triple Mode FFT (TMFFT)
operator able to provide three functionalities: FFT-C, FNT over GF (Ft) and FFT-GF2
over GF (2m).

Finally, we conclude this thesis with a summary of the achieved results and present
some perspectives for future research.
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This chapter presents the SoftWare Radio technology and its related technique "the
parametrization", which is the context of interest of this thesis. It describes some SWR
architectures and gives two parametrization approaches: theoretical and pragmatic ap-
proaches. Under the pragmatic approach, we introduce two sub-approaches: Common
Function (CF) approach and Common Operator (CO) approach. As common operators,
we give two examples: MulDiv and FFT. This latest operator, candidate to be a common
and recon�gurable operator for several communications tasks and in di�erent environ-
ments, will constitute the keystone of this work.

1.1 The SoftWare Radio technology
The new context of SWR mobile communications could provide multi-standard terminals
for �exible radios. Embodiment of the commonalities among di�erent standard modules

35
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by realizing a generic and recon�gurable standard entails replacement of the analog mod-
ules by digital ones. A main reason for replacing analog with digital signal processing is
the possibility to "softly" recon�gure the system, thereby enabling the implementation
of di�erent air interfaces on a given hardware platform. This can lead to programmable
modules and �nally built an open-architecture based radio system. This long term ob-
jective paves the way to numerous technical challenges such as wide band antenna, linear
ampli�cation of a multi-standards signal, wide band analog to digital conversion, link and
cross layer adaptation, high frequency digital architecture, etc.

The SWR concept was �rst introduced in the literature around 1990 thanks to the
pioneering works of J. Mitola [1] and W. Tuttlebee [2]. There is no speci�c de�nition of the
SWR, but in our understanding, when we talk about SWR system (transmitter/receiver),
it is understood as a system whose functions are realized, piloted and executed by software.
SWR technology has generated tremendous interest in the wireless industry for the wide
ranging economic and deployment bene�ts it o�ers. It can be used to implement military,
commercial and civil applications. A wide range of radio applications like Bluetooth,
WLAN, Global Positioning System (GPS), Wideband Code Division Multiple Access (W-
CDMA), etc. can be implemented using this new technology while most of their dedicated
functions can be implemented by software.

Today's SWR is challenged by the implementation of wireless communications infras-
tructure equipments completely in hardware which make the wireless communications
industry facing the following problems:

◮ The continuously evolving wireless network from second generation (2G) to 2.5/3G
and then further onto (fourth generation) 4G force subscribers to buy new handsets
whenever a new generation of network standard is deployed. This is due to the
signi�cant di�erence in link-layer between each generation of network. So, legacy
handsets may be incompatible with newer generation network.

◮ The air interface and link-layer protocols di�er across various geographies. Euro-
pean wireless networks are predominantly Global System for Mobile communication
(GSM)/Time Division Multiple Access (TDMA) based while in US the wireless net-
works are predominantly IS94/CDMA based. This problem has inhibited the de-
ployment of global roaming facilities causing great inconvenience to user who travel
frequently from one continent to another.

In order to resolve the hardware problem or at least �nd a solution, SWR was in-
troduced to enable the implementation of radio functions in networking infrastructure
equipment and user terminal as software modules running on a generic hardware plat-
form. This signi�cantly eases migration of network from one generation to another since
the migration would involve only a software upgrade.

A SWR system would then have the following features:

• Recon�gurability: SWR system is dynamically recon�gurable that allows the im-
plementation of di�erent standards. The co-existence of multiple software modules
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permits to run the required standard by just downloading the appropriate software
module.

• Ubiquitous connectivity: Having an air interface standard as software modules
helps in realizing global roaming facility. If the terminal is incompatible with the
available network technology in a particular region, the terminal can be upgraded
by a simple download for an appropriate software module.

1.2 Receiver architectures
The multi-band, multi-mode operation of a SWR introduces stringent requirements on the
underlying system architecture. The requirement of supporting multiple frequency bands
a�ects the design of the Radio Frequency (RF) front end and the requirement of Analog-
to-Digital (ADC) and Digital-to-Analog (DAC) converters [3]. The RF front end should
be adjustable or directly suitable for di�erent frequencies and bandwidths required by the
di�erent standards that the SWR system intends to support. In the following subsections
we discuss the various RF front end architectures and then we present the today's feasible
SWR architecture.

1.2.1 Radio frequency front end
Architecture of a typical digital radio system can be represented by the block diagram
of Fig. 1.1. The transmitter is divided into an information source, a source encoder, an
encryptor, a channel encoder, a modulator, a DAC and a RF front end block. Corre-
spondingly, the receiver consists of an RF front end, an ADC, a synchronization block, a
demodulator, a detector, a channel decoder, a decryptor and a source decoder. The main
functions of RF front end are down and up conversion, channel selection, interference rejec-
tion and ampli�cation. The exact point where the conversion between digital and analog
waveforms is done depends on the architecture. In conventional radio architectures, the
conversion is done at the baseband, whereas in some speci�c SWR sub-architectures such
as Software De�ned Radio (SDR) that will be presented in subsection 1.2.5, the typical
place for the ADC and DAC is between the stages of channel modulation, at an intermedi-
ate frequency. To be transformed into an ideal SWR architecture, the architecture of the
Fig. 1.1 must employ the digital processing block (i.e. the ADC and DAC) right beside
the antenna.

Although an ideal radio would have a very minimal Analog Front End (AFE), consisting
of an ADC placed as close as possible to the antenna, any practical implementation still
needs some analog parts of RF front end, and the design of a recon�gurable RF part
remains a very complicated issue [1][3]. The receiver section is more complex than the
transmitter and the ADC is the most critical part limiting the choice of the RF front end
architecture [3]. The transmitter side of the RF front end takes the signal from the DAC,
converts the signal to the transmission radio frequency, ampli�es the signal to a desired
level, limits the bandwidth of the signal by �ltering in order to avoid interference and feeds
the signal to the antenna [2]. The receiver side converts the signal from the antenna to
a lower center frequency such that the new frequency range is compatible with the ADC,
�lters out noise and undesired channels and ampli�es the signal to the level suitable for the
ADC. The common part of every receiver architecture apart from fully digital ones is that
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the antenna feeds signal through an RF Band Pass Filter (BPF) to a Low Noise Ampli�er
(LNA). Automatic Gain Control (AGC) keeps the signal level compatible with the ADC.
A main objective during the design of an optimal RF front end is to achieve a suitable
dynamic range and minimizing additive noise while minimizing the power consumption.
Usually, there has to be trade-o� between power consumption and dynamic range.
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Channel
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Figure 1.1: Block diagram of a digital radio system

1.2.2 The classical superheterodyne architecture
The superheterodyne architecture has become an obvious choice in receivers since its
invention by Armstrong in 1917. Fig. 1.2 shows the classical superheterodyne architecture.
In this architecture, the received signal is translated into a �xed Intermediate Frequency
(IF) that is lower than the center of the RF signal. The frequency translation is done in
two stages because of many advantages of such an architecture: it has lower �ltering and
quality factor requirements and relaxes the need for isolation between the mixer inputs and
the Local Oscillator (LO). The bandwidth or center frequency of the superheterodyne's
�lters cannot be changed. They are designed according to speci�c standards that makes
this architecture unsuitable for the wideband RF front end of a SWR system.

1.2.3 Ideal SoftWare Radio architecture
The ideal SWR architecture is given in Fig.1.3. In this architecture the digital part of the
receiver is placed as close to the antenna as possible.

The need for this software radio architecture raises a number of technical challenges,
which play a signi�cant role in the development of future personal communication systems
generation. Most of these technical challenges are related to analog-to-digital conversion,
which in many cases cannot provide the advanced hardware platforms needed to support
the demanding telecommunication services.

Then, the major problem that the SWR technology faces is that the actual ADCs are
not able to cope with that very high frequency signals. All signals need to be converted
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Figure 1.2: Superheterodyne transmitter/receiver

to the digital domain, otherwise processing makes no sense. Thus, the ADC is a key
component of a software radio terminal [4]. The available ADCs sample at rates of nearly
100 Million Samples Per Second (MSPS) and quantize the signal with 14 bits. These
performances do not ful�ll the desired level of the required dynamic range mainly when
the ADCs have to cope with signals of large bandwidth and high dynamic range. Still,
it should be mentioned that beside the dynamic range, the sample rate has to ful�ll the
Nyquist criterion. These considerations leads us to conclude that the ideal software radio
architecture of Fig.1.3 is not feasible today. Therefore, the bandwidth the ADC has to
digitize must be reduced. The solution would be provided by SDR architectures as shown
in the following subsections.

ADC

DSP

LNA

DACAMP

Duplexer

Figure 1.3: The ideal software radio architecture

1.2.4 Direct conversion architecture
The direct conversion architecture needs lower number of parts and it is conceptually
attractive due to its simplicity. Its main advantage is that there are no need for any trans-
lation into IF. In the receiver side, the signal is directly down converted to baseband. The
down converted signal is then pre�ltered by a variable frequency anti-aliasing �lter and,
after analog-to-digital conversion, desired channels are chosen by software �lters. Fig. 1.4
illustrates the transmitter-receiver architecture. Direct conversion has been so far suitable
only for modulation methods that do not have signi�cant part of signal energy near DC
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(Direct Current). Despite its advantages, this architecture presents two main drawbacks.
The �rst one is associated with the fact that the LO is at the signal band which poses
possible unauthorized emissions and internal interference. Thus, this architecture needs an
extremely stable LO. This problem can be compensated with digital post processing. The
second inconvenience comes from the fact that this LO is not capable to synthesize all the
carrier frequencies of the di�erent standards the receiver has to support. Although these
inconveniences, the direct conversion architecture was suggested as promising architecture
for the future SDR systems [5] since it can o�er the possibility to switch between some
speci�c bands.

LNA LO
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ADC

DSP

ADC

HPA LO
90°

DAC

DSP

DAC

Figure 1.4: Direct conversion architecture

1.2.5 Feasible SDR architecture
Under the strong constraints discussed above, many publications [2] [6] [7] claim that to
cover all services to be supported by the software radio terminal, a limited bandwidth has
to be selected out of the full band by means of analog conversion and IF �ltering. This
concept leads to feasible SDR architecture sketched in Fig.1.5, where the ADC splits the
communication chain into two parts: the AFE and the Digital Front End (DFE).
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ADC DSP
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I/Q down 
conversion

Sample rate
conversion
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Figure 1.5: The feasible software radio receiver architecture
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The AFE selects a bundle of channels and shifts their bandwidth from RF to an IF
with which the ADC has to cope with. The DFE is a part of the receiver realizing front-end
functionalities digitally that were formerly realized by means of analog signal processing
(i.e., down conversion, channelization and sample rate conversion). Channelization com-
prises of all tasks necessary to select the channel of interest. This includes conversion to
baseband, channel �ltering, and possibly despreading. Sample rate conversion is a func-
tionality that comes from the idea that it is surely sensible to sample the analog signal
at a �xed rate. This simpli�es clock generation for the ADC, which would otherwise be
parameterizable. However, signals generally have to be processed at symbol or chip rates
dictated by the di�erent standards. Both facts lead to the necessity to digitally convert
the digitization rate to the rate of the current standard of operation.

The conclusion we can draw from the above discussion is that the SWR system able to
be realized today is a system at half digitized and the second half cannot be digitized before
several years. That is, before the having availability of advanced ADCs able to provide an
extreme dynamic range and very high sample rate capable to digitize the bandwidth of all
services to be supported by the terminal and directly after the antenna.

Next section gives a brief description of ADC needed for SWR.

1.3 A/D and D/A conversion
As previously mentioned, the ADC and DAC are among the most important components
[3] for SWR systems. In many cases, they de�ne the bandwidth, the dynamic range and
the power consumption of the radio. The wideband ADC is one of the most challenging
tasks in software design. The wideband and the dynamic range of the analog signal has
to be compatible with the ADC. An ideal SWR would use data converters at RF which
would result in con�icts requiring a very high sampling rate, a bandwidth up to several
GHz and a high e�ective dynamic range while avoiding intolerable power consumption.
The physical upper bound for capabilities of ADCs can be derived from Heisenberg's
uncertainty principle. For instance, at 1 GHz bandwidth the upper limit for dynamic
range is 20 bits or 120 dB [1]. However there are other limiting factors including aperture
jitter(1) and thermal e�ects. Unfortunately, the advances in ADC performances are very
slow, unlike in many other technologies related to software de�ned radio.

The Nyquist rate fs/2 determines the maximum frequency for which the analog signal
can be faithfully reconstructed from the signal consisting of samples at the sampling rate
fs. Higher frequencies cause aliasing and therefore the ADC should be preceded by an
anti-aliasing �lter. The number of bits in the ADC de�nes the upper limit for achievable
dynamic range. A higher dynamic range requires a higher stop-band �lter attenuation.
For instance, a 16-bit ADC needs over 100 dB attenuation in order to reduce the power
of aliased signal under the half of the energy of the Least Signi�cant Bit (LSB)[1]. The
state of the art ADCs for wirless devices operate at bandwidth of over 100 MHz with 14-
bit resolution and 100 dB Spurious Free Dynamic Range (SFDR(2)), but there is already
commercial demand for even better converters for base stations [2]. The analog front end

(1)APERTURE JITTER is the variation in aperture delay from sample to sample. Aperture jitter shows
up as input noise

(2)SFDR is a measure of the relative size of the largest harmonic with respect to the fundamental for a
de�ned range of pure sine-wave input frequencies.
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of an ADC has a direct in�uence on the dynamic range. Di�erent air interface types
and standards have di�erent demands on the dynamic range. A large SFDR is needed
to allow recovery of small scale signal when strong interferences are present. Di�erent
types of receiver architectures need di�erent sampling methods [2]. A superheterodyne
receiver or a direct conversion receiver may have an I/Q baseband signal as the analog
output, for which quadrature baseband sampling is needed. Another possibility is an
intermediate frequency analog output, for which a suitable sampling strategy is required.
As an example, IF band pass sampling by using a sigma-delta ADC. Direct sampling is a
suitable method for low IF analog signals.

After this brief introduction of SWR technology and the various related architectures
and aspects, our studies will focus on the digital part of the receivers and speci�cally on the
physical layer. The SWR's problematic, in this work, will be tackled from the viewpoint
of a research of commonalities between several standards and in the standards themselves.
In this context, an important technique called parametrization that aims to optimize the
resources use in the SWR system was introduced [8]. This technique will be presented
in details in the next section where there are two approaches. These are theoretical and
pragmatic approaches which can describe the conception and realization of parameterizable
SWR systems. Before doing this, let us present some major SDR projects.

1.4 Software De�ned Radio projects
This section reviews some principal international, European and French SDR projects that
contributed to the evolution of SDR from 1990 up till today.

• SPEAKeasy : SPEAKeasy was a US department of Defence program that aimed
to prove the concept of multi-band, multi-mode software programmable radio oper-
ating from 2 MHz to 2 GHz [9]. The SPEAKeasy was designed as a totally open
architecture that provided secure connections, interoperability and programmability.
This SPEAKeasy project was divided into two phases: SPEAKeasy Phase I and
SPEAKeasy Phase II. The main goal of the SPEAKeasy Phase I (1992-1995) was
to develop a recon�gurable modem with an open architecture and to demonstrate
its feasibility [10]. The objectives were to prove the potential of the SDR, to solve
interoperability issues and provide a software architecture that would support the
addition of new waveforms.
The objective of SPEAKeasy Phase II was to extend the operational scope from the
modem to an open, modular and recon�gurable architecture for the whole radio [10].
The capabilities were supposed to include reprogrammable security, wideband mo-
dem and continuous RF coverage up to 2 GHz. Motorola was the main contractor of
the Phase II and has designed a wideband RF transceiver, which reduced distortions
caused by the IF processing by using the homodyne design [10].

• JTRS (Joint Tactical Radio System): The JTRS program, also funded by the US
department of Defense, was a process consisting of three steps that aimed to de�ne,
standardise and implement an architecture for software de�ned radios [11] [12]. The
SCA (Software Communication Architecture) de�ned by the JTRS, is the current
architecture of reference in the US and international military area. Commercial
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systems could even go towards some modi�ed SCA. SCA is the most important
topic at SDR forum.

• JCIT (Joint Combat Information Terminal): The JCIT is a multi-band, multi-mode
SDR developed by the US Navy Research Laboratory (NRL) [13]. The JCIT was
designed as product for Army avionics, operating in frequency bands from HF up to
2.5 GHz. The focus of the design was on the hardware capacity, i.e. the extensive use
of FPGAs and DSPs. The JCIT program has also made a signi�cant contribution
to the SDR Forum.

• CHARIOT (Changeable Advanced Radio for Inter-Operable Telecommunications):
The CHARIOT project was designed at Virginia Tech. The focus was on the for-
malized architecture that allowed the use of dynamically recon�gurable hardware
in SDRs [3]. The architecture was designed to be scalable and �exible by using a
layered model. The layered Radio architecture for interfacing comprises three layers:
the Soft Radio Interface (SRI), the Con�guration Layer (CL) and the Processing
Layer (PL).

• GNU Radio: GNU Radio is a software project that, combined with a minimal
hardware, can be used for building radios whose waveform processing is de�ned in
software [14] with the conventional sharing rules of GNU licensing. The purpose of
GNU radio is to perform signal processing in software. GNU Radio consists of GNU
Radio Software and GNU Radio Hardware. The hardware required for building
a receiver is composed of an RF front end and an ADC. GNU Radio Software is
organized in a such way that a graph which describes the data �ow in the radio
system is handed o� to the runtime system for execution.

In addition to these projects, some forums involving governmental and industrial ac-
tors play important roles in SDR activities. The most active one is the SDR Forum [15].
This forum is the main actor of the Software Radio and Cognitive Radio community. It is
historically based in the US and regrouping academic, governmental and industrial actors
(Aeronix, Air Force Research Laboratory-US, France Télécom, Hitachi Ltd, NEC, NTT
DoCoMo, Siemens AG, Thales, Toshiba, Virginia Tech, Xilinx, ... ). Its main objective is
to provide an international forum to research and engineering organizations, software and
technology developers, radio communication service providers and other interested parties
to exchange ideas, develop concepts, establish requirements, recommendations, speci�ca-
tions and standards.

European E�ort

European Commission funded research activities that are mainly implemented within
two frame work programmes: ACTS (Advanced Communications Technologies and Ser-
vices) and IST (Information Society Technologies).

In the context of the ACTS and IST, Europe has funded several projects related to
SDR [16] [17]. The main projects are listed below:

FIRST: Flexible Integrated Radio System Technology
SORT: Software Radio Technology
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SUNBEAM: Smart Universal Beamforming
CAST: Con�gurable radio with Advanced Software Technology
DRIVE: Dynamic Radio for IP services in Vehicular Environments
MOBIVAS: Download Mobile Value Added Services Through Software Radio and
Switching integrated Platform
PASTORAL: Platform and Software for Terminals Operationally Recon�gurable
SODERA: Recon�gurable radio for Software De�ned Radio for 3rd generation mobile
terminals
TRUST: Transparent Recon�gurable Ubiquitous Terminal
SCOUT: Smart User-centric Communication Environment
E2R: End-to-End Recon�gurability
E2R-II: End-to-End Recon�gurability phase II
ORACLE: Opportunistic Radio Communications in Unlicensed Environments
NEWCOM: Network of Excellence in Wireless Communications

End to End Recon�gurability: E2R project constitutes the major project including
about 32 organizations (Motorola, Nokia, France Télécom, CEA, Eurecom, Supélec, ...).
The key objective of the E2R project is to devise, develop, trial and showcase architectural
design of recon�gurable devices and supporting system functions to o�er an extensive set
of operational choices to the users, application and service providers, operators, and reg-
ulators in the context of heterogeneous systems [18].

In addition to these projects, the European Commission has participated to several
actions (conferences, meeting and workshops) related to the SDR: ACTS in 1998 and IST
Mobile and Wireless Communication Summit'00 to Summit'07.

Some French e�orts

In France, several RNRT (Réseau National de Recherche en Télécommunications)
projects are funded. RNRT priorities for year 2002 focused among others on high level
system design and associated veri�cation tools of the Software Radio architecture imple-
mentation on the platform. The main targeted application domains are Software Radio
system for 3G and 4G and SoC in particular. We quote here the main RNRT projects:

PETRUS: Plateforme d'Evaluation des Technologies Radio pour l'UMTS-
TDD et des Services
PLATON: PLATeforme Ouverte pour les Nouvelles générations de commu-
nications mobiles
RHODOS: Réseau Hybride Ouvert pour le Déploiement des Services mobiles
PLATONIS: PLATeforme de validaTiOn et d'expérimentatioN multI-protocoles
et multi-Services
A3S: Adéquation Architecture/Application Système
MOPCOM: Modélisation et spécialisatiOn de Plates-formes et COmposants
MDA
IDROMel: Impact des Equipements Recon�gurables pour le Déploiement des
Futures Réseaux Mobiles
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1.5 The parametrization technique
A conventional approach to the implementation of multi-standard radio is the utilization
of multiple transceiver chains each dedicated to an individual standard. Such an approach
is not �exible, as most of the hardware needs to be replaced whenever the characteristics
of the interface change. This conventional approach called "Velcro approach" does not
exploit any common aspects between the di�erent standards. In order to exploit to great
advantage the commonalities among the various signal processing operations for di�erent
standards, one need �rstly to identify these commonalities and secondly �nd the optimal
way to implement a generic hardware platform with programmable modules. This new
platform will be capable to run the appropriate software module depending on the software
requirements. In this context, a technique called parametrization was introduced [8]. This
technique can lead a designer of multi-standard system to an optimal architecture that
balances complexity and performances. The key idea is to get an optimal sharing between
hardware and software resources and a best way to reuse some hardware and software
modules without a�ecting the system's performances. Initially, this technique which is
regarded as a conception methodology appears to be as a pure theoretical approach, but
it can become a pragmatic and practical approach as soon as a set of rules are settled
helping the evaluation of a developed system. Researchers are proceeding along several
directions [8][19][20][21]. The aim was always to get a �exible radio system, but until
now, there have not been an accurate de�nition of the parametrization technique. In this
work, starting with some conceptual considerations we can say that the parametrization
is a technique that aims at optimizing the cost-performance tradeo� while building a
multi-standard terminal. It can be considered as a theoretical procedure while identifying
the common functionalities between several standards and in the standards themselves,
to become a pragmatic procedure whenever the performance and the cost of the SWR
system has to be evaluated. At this point, the parametrization should involve identifying
an optimal level of granularity, from which a component can be considered as a "common
communication block" enabling its reuse by several applications. The selection of the most
appropriate level of granularity helps the parametrization to balance between economy and
computing e�ciency. But how can one proceed to identify or select the most appropriate
level of granularity ? A very promising procedure is to consider the parametrization as
a technique based on two approaches which are the CF approach (higher level) and the
CO approach (lower level). Such a procedure can lead a designer of a multi-standard SDR
system to optimal architecture that balances costs and performances. The next subsections
give a description of the theoretical approach as well as the pragmatic approach with its
two sub-approaches.

1.5.1 Theoretical approach
Under its theoretical approach, the parametrization technique can be viewed as a con-
ception methodology of a multi-standard system. It consists in elaborating a structural
description of a SDR system intended to support several standards whose the di�erent
modules can be illustrated by a graph that represents the hierarchical level of each module
functionality. Fig. 1.6 shows the graph of several standards (UMTS, GSM, IS95, etc.).
The roots of this graph, at the coarsest grain (highest level) are the communication stan-
dards that the recon�gurable system needs to support. The lower levels represent the
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decomposition of several processing elements (coding, equalization, synchronization, etc).
Having the graphic illustration of each standard, the task focuses now on identifying the
commonalities between the di�erent standards functionalities in order to �nd the optimal
path(s) with which the multi-standard system will be conceived at the minimum cost.
Proceeding in this direction, the designer allows several standards to use the same compo-
nents and share its costs, thereby enabling a global optimization in terms of manufacturing
costs. On the other hand, minimizing the manufacturing cost will possibly decrease the
performance of the system in terms of computational time that may be unacceptable in
some practical applications. Consequently, during the parametrization phase, one should
take into account the trade-o� between manufacturing cost and performance.

Standard UMTS IS95 DECT WI-FIGSM
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Estimation Single FDM
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Figure 1.6: Global structure of the graph of several standard

In this sense, some researchers [22] have proceeded and introduced a mathematical
model to identify the optimal architecture for a multi-standard recon�gurable radio. They
modelled the radio as graph of progressively simpler functional modules and the optimal
path can be selected according to a cost function value that accounts two key parameters:
monetary cost and computational cost. This function is optimized by an heuristic based
on simulated annealing and validated by comparison with an exhaustive search. The
exhaustive search computes all the feasible solutions and compares them all and gives the
true optimal solution. As the authors stated, this latest optimization method is very slow
compared to the simulated annealing method [23], which provides the optimal solution
with a good probability at relatively low computing cost.

To better illustrate the approach introduced in [22], we reproduce in Fig. 1.7 the devel-
oped graph in which the authors considered the investigation of the best choice between
several design alternatives for the equalizer in the context of a multi-standard system
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already including an Orthogonal Frequency Division Multiplex (OFDM ) communication
mode. The considered graph shown in Fig. 1.7 is a sub-graph corresponding to the decom-
position of several processing elements (equalization, multi-channel, OFDM ) that could be
part of a SDR multi-standard system. Root nodes at the top (standards) are consequently
not represented, but would be at a higher level not shown here. The numerical value un-
der each node represent the monetary cost (MC)/computational cost (CC). The arcs are
tagged with a number of calls (number of times a lower level block is invoked to perform
a higher level function). Concerning the equalizer, its functionality can be realized either
through the Finite Impulse Response (FIR) �lter or through the FFT. By evaluating the
cost function, the authors deduced that if we consider the independently implementation
of the equalizer, it is less expensive to implement it through the FIR (1500=500+1000)
than through the FFT (2000=1000+2× 500). A multiplication factor '2' settled between
equalization and FFT, since the FFT and Inverse Fast Fourier Transform (IFFT ) are
used to perform the equalization and the IFFT is equivalent to FFT in terms of com-
putation complexity. But in a combined design involving OFDM and equalizer modules,
the overall cost of the design is only 2500 if the equalizer uses the FFT, versus 3000 if the
equalizer uses the FIR (more details about the cost computations can be found in [22]).
This is because the monetary cost of the FFT counts only once in the calculation of the
overall cost of OFDM plus equalizer.

As the authors stated (in [22]), the simulated annealing optimization method used in
their approach, is not speci�cally oriented to the problem at hand, and cannot guarantee a
solution near the "true" optimum. For this, the authors recasted the problem as a "network
design problem" and suggested that this method can lead to an optimal architecture [24].
They considered the graph of Fig. 1.7 and they discussed the building of the optimal
path by applying network design methods which have extensive literature [25]. According
to the authors ([24]), even if not formally proven that every conceivable graph of design
choices cannot be exactly represented as a network design problem, the established method
may provide in some cases a good approximation to the optimal design. To be more
realistic, the authors stated to take into account the following issues: (i) building the
hypergraph o� all design choices, (ii) considering the time needed to recon�gure the radio
while switching from a standard to another, (iii) determining the "travel time" of signals
from a component to another, (iv) de�ning the contention among high level modules for
the service of the same lower-level module when the considered radio intend to support
simultaneous communication over several standards and (v) the energy consumption.

The above discussion deals with the theoretical conception of the SDR system. The
practical realization of such system needs a methodology of conception which is, in its
own right, an active area of research. From this perspective, [26] shows an e�cient ex-
ploration methodology at a high level of abstraction. The proposed methodology is based
on structural and physical estimations allowing the design of several architectures and the
computation of their corresponding area and computing time. This methodology can be
applied to the conception of SDR system while it permits to explore the candidate solutions
and predict the cost of their technological mapping on the target hardware devices.

1.5.2 Pragmatic approach
In the theoretical approach, we have presented and discussed some methods developed
to be applied to design an optimal multi-standard architecture. During the discussion,
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Figure 1.7: Partial hypergraph with some design parameters

realization of some functions as the equalization by adopting various ways was considered
to illustrate the method and evaluate it by some �gures. Although the useful insights
that these methods provide, the approach remains theoretical while it does not reach the
practical realization of the concerned multi-standard system.

By tackling the practical realization, the approach become more and more pragmatic
and realistic. In this sense and by considering the parametrization technique, we distin-
guish between two common approaches: Common Function and Common Operator.

1.5.2.1 Common Function
By considering the structural illustration of the di�erent communication components pre-
viously shown in Fig. 1.6 for a prede�ned set of standards, we can intuitively spot three
intuitive hierarchical or granularity levels of these communications blocks. The functions
(coding, equalization, modulation ...,) at the higher level and the primitive operators (mul-
tiplier, adder, etc.) at the lower level. Between these two levels, one can �nd an intermedi-
ate and �exible level that can be attached to one of the intermediate layers containing the
remaining communications blocks (Filter bank, FIR, FFT, butter�y or MAC ). The choice
should be based on the application constraints: manufacturing cost and computational
time.

Let us begin the discussion with the higher level of granularity voluntary chosen to be
attached to the called CF approach. At this level, CF can be de�ned as a communication
function needed by two or several standards. As an example, the coding function is a task
required for all the concerned standards. So, instead of having dedicated coding functions,
one can build a generic and recon�gurable one capable of responding to the requirements
of the set of standards. One example of the common function approach, for GSM, UMTS
and Professional Mobile Radio (PMR), concerning channel coding aspects is given in [19].
In this paper the author highlights the fact that parametrization allows communication
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systems to be built with �exible components, under the restrictive assumption that these
components belong to a prede�ned set of transmission modes. Using a single processing
function, one can cover all standards under consideration.

In [27], a common structure called VITURBO for ordinary convolutional decoder and
turbo decoder was proposed. This structure permits to perform the Viterbi and Turbo
decoding.

In [20], an architecture for SWR receiver for GSM and UMTS Terrestrial Radio Access-
Frequency Division Duplexing (UTRA-FDD) has been proposed. In this architecture
several signal processing blocks dedicated to an individual standard are duplicated and
another is built in such a way to be common to the two considered standards. For instance,
there are two di�erent methods used for equalization. In the case of GSM a trellis-based
equalizer according to the Maximum A Posteriori Probability (MAP) criterion is employed
while for UMTS-FDD a Rake receiver is used, which exploits the advantage of the orthog-
onality of the di�erent multipath signals generated by using spreading codes. For channel
estimation, both standards use the same function consisting in correlating the known train-
ing or pilot sequence with the received sequence. As for the demodulation, the authors
explain in [28] the demodulation process for both GSM and UMTS signals. Moreover,
two MAP algorithms are implemented in this architecture required for the turbo decoder
of UMTS. In order to share common functions the authors proposed to adapt these two
algorithms to be used as Viterbi-equalizer and consecutive convolutional decoder in the
case of GSM. Indeed, as the equalization for GSM can be seen as a convolutional decoding
with coding rate equal to 1, this same algorithm can also be used for the �rst convolu-
tional decoder for turbo decoding in the case of UMTS. The second-MAP algorithm or
convolutional decoder can be used by GSM for ordinary convolutional decoding as well as
for the UTRA-FDD. In this latest case, the MAP-algorithm should be adapted for the use
as a second convolutional decoder in the case of turbo decoding.

In the transceiver side, the same author explains in details in [8] how one can develop a
general modulator structure that can process signals for several standards : GSM, IS-136,
UTRA-FDD and Digital Enhanced Cordless Telecommunications (DECT). The modula-
tion mode used in GSM is Gaussian Minimum Shift Keying (GMSK). GMSK is a special
form of frequency shift keying which is a non linear modulation mode. In contrast to
GMSK, the modulation modes Quadrature Phase Shift Keying (QPSK) (used in UMTS)
and its derivative π-DQPSK (used in IS-136) are linear. Therefore, the authors [28] pro-
posed to introduce the linearized version of GMSK into a SDR system. As the authors
explain, the procedure consists in splitting-up the complex envelope for the GMSK signal
into two summands with one representing the linear and the other representing the non-
linear part. Moreover, the linear part contains about 99% of the signal energy. Therefore
the GMSK signal may be well approximated by its linear part, i.e. in a software radio the
symbols to be transmitted by a GMSK signal may be pulse shaped with an impulse C0(t)
that leads to a linear modulation. Using this linear approximation, GMSK signals can be
produced by the same linear I/Q modulator employed for PSK signals [8]. The proposed
general modulator is shown in Fig. 1.8. This modulator is driven by several parameters
and the modulation mode can change by an adjustment of these parameters. More details
about the parametrization and functioning principle of this modulator can be found in [8].

All the above mentioned common structures of CF approach have a main drawback that
these structures are directly related to a prede�ned set of standards. Consequently, if the
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receiver architecture has a certain evolution, the CF should be rede�ned and redesigned to
be capable to meet the requirements of the advanced standard. From here, comes the idea
to proceed toward another approach that will give the possibility to built an open structure.
By open structure, we mean a structure whose functionality can be used independently of
the processing context or of the communication mode. This new approach called Common
Operator approach will be discussed in details in the next section where some examples
are given.
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Figure 1.8: Generalized parameterizable modulator [8]

1.5.2.2 Common Operator
Let us consider the communication chain previously shown in Fig. 1.1 as an example to
tackle our discussion about the CO approach. This Figure shows a communication chain
composed of di�erent processing blocks. The transmitter chain, for example, consists of
source encoding, encryption, channel encoding, modulation and some functions performed
by the RF front end. The functionality of each of these processing blocks is achieved by
lower level processing operations. In the previous subsection we have discussed the com-
monality aspects between standards by identifying the CF among the various components
of given standards. But if we go to lower level and also seek for commonality aspects we
can �nd a wide area of common elements. This research can continue to attain a lower
level where we �nd the primitive operators (adders, multipliers, etc). Although the goal
is to �nd the maximum of common elements and then share their functionalities between
several processing tasks, this research becomes useless and ine�ective when the latency of
systems exceeds certain limitations. So, the optimization in terms of hardware or soft-
ware resources is directly dependent on the performance in terms of delay or execution
time. In order to attain the best cost-performance trade-o�, one should identify a level of
granularity at which the designer will be based to implement the processing elements of
communication standards.

In [21], the FFT has been identi�ed as a CO. The authors show that many important
tasks (such as �ltering, equalization, channelization, OFDM modulation, etc) of a commu-
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nication receiver can be implemented through the FFT. This FFT operator, identi�ed as
a common element, can be allotted during a given time slot to each function that necessi-
tates the use of Fourier transform, which is exactly what the concept of common operator
is about. Then, we can de�ne a CO as an operator that, independently of the application
context, can be reused by each function or processing requiring its functionality. How-
ever, this operator needs to be parameterized by some parameters (for example the size of
transform, the word length, etc) to perfectly meet the requirements of each application.
This is the origin of "parametrization" term.

Obviously, the CO is identi�ed to be at a lower level of granularity than the CF.
But in certain cases, these two approaches can meet depending on the required level of
granularity. For instance, a FFT can be implemented with "butter�y" operations including
some arithmetic operations (multiplication and addition). Then, there's no reason why
we can't consider the FFT as CF and the butter�y as a CO. To avoid this ambiguity, we
should consider the global granularity of the system and subsequently proceed to identify
the common aspects and based the above de�nitions of CO and CF, we can recognize the
identi�ed common approach (CF or CO) according to its level of granularity. The CF is
at the higher level whereas the CO is at the lower level. As a logic consequence, a CF can
use a CO and the inverse is incorrect.

In the next subsections, two examples of common operators are given: MulDiv and
FFT.

1.5.2.3 MulDiv operator
An operator called "MulDiv" has been identi�ed [29]. The reason lies in the fact that
most binary error protection operations in telecommunication standards are based on
almost the same structure, presented in Fig. 1.9. These operations mainly concern Cyclic
Redundancy Check (CRC) and block channel coding whose coding principles involve the
use of a generator polynomial. The purpose is then to identify a general common structure
applied to cyclic error protection, and the way to parameterize it.
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Figure 1.9: General IIR structure

Fig. 1.9 represents an architecture that carries out the transfer function of an In�nite
Impulse Response (IIR) �lter whose expression is:

H(x) =
h0 + h1x + ... + hrx

r

g0 + g1x + ... + gr−1xr−1 + xr
.

Fig. 1.10 represents the general architecture of the MulDiv operator to be used in cyclic
codes. This structure, derivated from the structure of Fig 1.9, is implemented with the
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maximum number of shift registers and the feedback connections are parameterizable in
such a way to match the maximum number of cyclic code circuits. As shown in Fig. 1.10,
two switches have been added to correctly perform the polynomial division required in the
encoding process. Appendix A gives several examples illustrating the parametrization of
the MulDiv operator used as a CO in CRC calculation and Reed Solomon codes.
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Figure 1.10: MulDiv operator structure

At the end of the master thesis of [29], we have found that MulDiv name is registered
name as Delphi/kylix math function (Function MulDiv(nNumber, nNumerator, nDenomi-
nator : Integer): Integer ;) and that Analog Devices [30] designed a similar operator that
allows achieving the same basic coding operations in one machine cycle. This operator
named Black�n DSP, was proposed as a commercial processor using hardware operators
and supporting one cycle instruction functions such as BXORSHIFT using Linear Feed-
back Shift Register (LFSR) principle to implement CRC codes, BIXMUX instruction to
implement convolutional encoder.

The study in [31] deals with a recon�gurable LFSR as a CO.

1.5.2.4 FFT operator
The Discrete Fourier Transform (DFT), or its special and attractive class FFT, is ex-
tremely important in the area of frequency (spectrum) analysis as it takes a discrete signal
in the time domain and transforms that signal into its discrete frequency domain repre-
sentation. This area in digital signal processing was started with the publication of the
Cooley-Tukey algorithm [32] which allows to reduce the order of complexity of some cru-
cial computational tasks like Fourier Transform and convolution from N2 to N log2N ,
where N is the transform length. This processing technique was rapidly credited by the
tremendous increase of interest in Digital Signal Processors (DSP) beginning in the seven-
ties and continued to play a key role in the widespread use of digital signal processing in
a variety of applications like telecommunications, medical electronics, seismic processing,
radars, etc.

Starting from these useful considerations of the FFT in several and important steps
of digital communications, the authors in [21] have considered the FFT as CO and have
detailed the various tasks which can be performed using the FFT operator.

The authors begin their discussion by presenting the �ltering function, initially de�ned
as a convolution product, as a product of the signal transform (input of the �lter) and the
frequency response of the �lter. To keep the circular characteristics of the convolution, it
is necessary to use speci�c techniques known as overlap-add and overlap-save techniques.

For the channel equalization, the authors show that any type of equalizer (except the
MLSE) can be implemented in Frequency Domain (FD); starting from Fast Least Mean
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Squares (FLMS) [33] and Unconstrained FLMS (UFLMS) [34] through implementation in
FD [35], Quasi Newton algorithm in FD [36] and Decision Feedback Equalizer in FD [37]
to new Single-Input Multi-Output (SIMO) semi-blind algorithms [38].

It was also shown in [21], that the channelization, channel estimation, (de)correlation
multi-user detection, OFDM (de)modulation, despreading and Rake function can all be
performed in FD using FFT. Fig. 1.11 illustrates by a graph the decomposition of three
functions: equalization, multi channel and OFDM. By considering the implementation
of these three functions in FD using the FFT, one can build a global communication
block (block at the middle in the Figure) containing a Filter bank and a FFT (with its
corresponding computational units) capable to perform the set of three functions. This
result in saving some processing elements and consequently optimize the manufacturing
cost of the corresponding multi-standard system.
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1.6 Conclusions
Unlike the conventional frequency domain analysis of functions mentioned above, it is
not clear what is meant by the terms �time domain� and �frequency domain� when we
are working with channel coding function. The corresponding operations or transform
computations of this function are de�ned over �nite �elds. In this work we will emphasize
the notion of frequency processing of channel coding function and speci�cally the cyclic
codes. The main motivation is to try to integrate the FFT operator in channel coding.
At this point, the question is: how we can proceed to make the well known FFT operator
able to operate in complex numbers �eld as well as in �nite �elds such as Galois Field ?
The response will be in chapter 2 where the notion of recon�gurable FFT architecture will
be introduced.
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In this chapter we shall study the cyclic codes where we shall focus on frequency domain
treatment of these codes. The choice of cyclic codes was based on our motivation to
investigate the channel coding in the frequency domain. Being adapted to this processing,
the cyclic codes will be studied in the setting of the Fourier transform. The most important
classes of cyclic codes, the Reed-Solomon (RS) codes, are studied in this work. Encoding
and decoding in both time and frequency domain are presented. The originality of our
work does not lie in the discovery of the frequency processing of the cyclic codes but the
idea is to highlight the interest of the use of the Fourier Transform. We insist on this
vocabulary "Frequency processing" of cyclic codes and we emphasize the bene�t of such
a transform on the encoding and decoding processes of RS codes.

This chapter is organized as follows. After a brief description of the state of the art of
the channel coding, we will provide in section 2.2 some elementary knowledge of algebra
that will aid in the understanding and processing of cyclic codes. In sections 2.3 and 2.3.2,
the basics of linear and cyclic codes are described. Section 2.4 presents the theory of �nite
�eld Fourier transform that we use in section 2.5 to give a general spectral interpretation
of the cyclic codes and see how one can build an encoder in frequency domain. We also
describe techniques and some principal algorithms for decoding the cyclic codes, including
RS codes. The rest of the chapter will be dedicated to present a speci�c class of �nite
�eld transform such as the Fermat Number Transform (FNT) and their associated RS
codes constructed over GF (Ft). The investigation of these speci�c codes was motivated
by the search of a transform that has a highly composite length allowing the adaptability
between the �nite �eld transform and the complex Fourier transform to subsequently
design a common and recon�gurable architecture of the FFT which will operate over two
di�erent �elds: complex and Galois �elds.

2.1 Channel coding: state of the art
In any communication or recording system, the received signal is always a�ected by various
kinds of parasites, gaussian or non-gaussian noise, interference, fading, dispersion, etc. The
communication system or storage system must transmit its data with very high reliability
in the presence of these channel impairments. During the last decades since the rise of
data-transmission, coding techniques have been necessary in digital communications and
storage devices to reduce the error rate in the received data stream and improve the
e�ciency of the information transmission.

The history of data-transmission codes began in 1948 with the publication of a famous
paper by Claude Shannon. Shannon demonstrated that, by proper encoding of the infor-
mation, errors induced by a noisy channel or storage medium can be reduced to any desired
level without sacri�cing the rate of information transmission or storage. Since Shannon's
work, a great deal of e�ort has been expanded on the problem of devising e�cient encoding
and decoding methods for error control in a noisy environment.

Primitive communication and storage systems may seek to keep bit error rates as small
as possible by simply transmitting high signal power or by repeating the message. These
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simplistic techniques may be adequate if the required bit error rate is not too stringent, or if
the data rate is low, and if errors are caused by noise rather than by defects or interferences.
Such systems, however, buy performance with the least expendable resources: power and
bandwidth.

In contrast, modern communication and storage systems obtain high performance via
the use of elaborate message structure with cross-checks built into the waveform. The
message will then undergo several processings, source encoding, channel encoding and
modulation. The advantage of these modern communication waveforms is that high rates
can be reliably transmitted while keeping the transmitted power and spectral bandwidth
small. This advantage is o�set by the need for sophisticated computations in the receiver
(and in the transmitter) to recover the message. Such computations, however, are now
regarded as a�ordable by using the modern electronic technology.

A communication system connects a data source to a data user through a channel
transmission. Telephone lines, high-frequency radio links, coaxial cables, telemetry links,
satellite links, and even magnetic and optical disks are examples of channels. A typical
transmission (or storage) system may be represented by block diagram shown in Fig. 2.1.
The information source can be either a person or a machine (e.g., a digital computer).
The source decoder output feed into the destination, can be either a continuous waveform
or a sequence of discrete symbols. The source encoder transforms the source output into
a sequence of binary digits (bits) called the information sequence u. The channel encoder
transforms the information sequence u into a discrete encoded sequence v called a code
word.

Information 

source

Source

encoder

Channel

encoder
Modulator

Demodulator
Channel

decoder

Source

decoderDestination

channel

u v

rû

Figure 2.1: Block diagram of a digital communication system

Discrete symbols are not suitable for transmission over a physical channel or recording
on a digital storage medium. The modulator transforms each output symbol of the channel
encoder into a waveform of duration T seconds which is suitable for transmission (or
recording). This waveform enters the channel (or storage medium) and is corrupted by
noise. The demodulator processes each received waveform of duration T and produces an
output that corresponds to the encoded sequence v called the received sequence r. The
channel decoder transforms the sequence r into a binary sequence û called the estimated
sequence. The decoding strategy is based on the rules of channel encoding and the noise
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characteristics of the channel. Ideally, û will be a replica of the information sequence u,
although the noise may cause some decoding errors. The source decoder transforms the
estimated sequence û into an estimate of the source output and delivers this estimate to
the destination.

Considering the channel coding as the subject of our study, we will focus on this
communication function and we begin by discussing the various classes of codes existing
in the literature.

The are two principal categories of codes commonly used today: convolutional codes
and block codes.

Convolutional codes

The convolutional codes were discovered in 1950 and were successfully decoded by se-
quential decoding algorithms. In 1967, a much simpler algorithm to decode them known
as Viterbi algorithm was developed. In 1993, Berrou developed a powerful codes called
the turbo codes which were seen as the central event of that period.

Block codes

The �rst block codes were introduced in 1950 when Hamming described a class of
single-error-correcting block codes. Shortly thereafter Muller (1954) described a class of
multiple-error-correcting codes. The major advances came when Bose and Ray-Chadhuri
(1960) and Hocquenghem (1959) found a large class of multiple-error-correcting codes (the
BCH codes), and Reed and Solomon (1960) found a related class of codes for nonbinary
channels. Although these codes remain among the most important classes of codes, the
theory of the subject since that time has been greatly strengthened, and new codes con-
tinue to be discovered. The discovery of BCH and RS codes led to a search for practical
methods of designing the hardware or software to implement the encoder and decoder.
The �rst good algorithm was found by Peterson (1960). Later, a powerful algorithm for
decoding was discovered by Berlekamp (1968) and Massey (1969). Since that time, opti-
mization of this algorithm and other algorithms continue to be published. Soft input and
soft output decoding of block codes has been made possible thanks to Chase algorithm
[39]. This has given rise to many concatenated block codes, the most famous ones are
block turbo codes introduced by Pyndiah & al. in 1994 [40].

During the 1970s, the two di�erent axis of research in channel coding began to draw
together in some ways. In 1966, Forney introduced the concatenated codes where a block
code (called external code) and a convolutional code (called internal code) are used to-
gether. The famous example of concatenated code is which that uses RS code concatenated
with a convolutional code. This code was used for a long time on spacecraft-to-ground
telemetry links to be replaced by the turbo code after 1993.

We should not forget to quote the special class of linear block codes that is Low-Density
Parity-Check (LDPC) codes. This class of codes was �rst introduced by Gallager's thesis in
1961. After the discovery of turbo codes in 1993 by Berrou, LDPC codes were rediscovered
by Mackay and Neal in 1995.
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These codes show excellent performances in terms of error correction and start to
compete with the turbo codes, particularly LDPC codes constructed in high Galois �elds
order [41]. E�cient decoding algorithm for these non-binary LDPC codes allowing the
reduction of decoder complexity was introduced by Declercq [42].

2.2 Algebraic theory
Real numbers form a familiar set of mathematical objects that can be added, subtracted,
multiplied and divided. Similarly, complex numbers form a set of objects that can undergo
the same operations. For data-transmission codes, there is less familiar sets of objects.
These sets of objects are also de�ned together with less familiar operations. Here, we talk
about modular operations (addition, multiplication, etc). These mathematical structures
are known as Galois Field (GF) and constitute the algebraic framework which provides
the necessary tools to design encoders and decoders.

These sets with the corresponding operations will be described in the next subsections.

2.2.1 Groups
A group is a mathematical abstraction of an algebraic structure that may occur frequently
in many forms.

De�nition 2.2.1. A group G is a set, together with an operation on pairs of elements
of the set (denoted ∗), satisfying the following four properties.

1. Closure : For every a, b in the set, c = a ∗ b is in the set.
2. Associativity : For every a, b, c in the set,

a ∗ (b ∗ c) = (a ∗ b) ∗ c.

3. Identity : For every a in the set, there is an element e called the identity element, that
satis�es

a ∗ e = e ∗ a = a.

4. Inverse: If a is in the set, then there is some element b in the set, called an inverse of
a such that

a ∗ b = b ∗ a = e.

If G has a �nite number of elements, then it is called a �nite group, and the number of
elements in G is called the order of G.
Some groups satisfy the additional property that for all a, b in the group, a ∗ b = b ∗ a.
This property is called the commutativity property. Groups with this additional property
are called commutative groups, or abelian groups. In the case of an abelian group, the
symbol for the group operation is written + and is called "addition".

2.2.2 Rings
A ring is an abstract set that is an abelian group and also has an additional structure.
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De�nition 2.2.2. A ring R is a set with two operations de�ned: The �rst is called
addition (denoted by +); the second is called multiplication (denoted by juxtaposition); and
the following axioms are satis�ed.

1. R is an abelian group under addition.
2. Closure: For any a, b in R, the product ab is in R.
3. Associativity:

a(bc) = (ab)c.

4. Distributivity:

a(b + c) = ab + ac, (b + c)a = ba + ca.

The addition operation is always commutative in a ring, but the multiplication op-
eration need not be commutative. A commutative ring is one in which multiplication is
commutative, that is, ab = ba where all a, b in R.

2.2.3 Fields
A �eld is a more powerful algebraic structure in which one can add, subtract, multiply,
and divide.

De�nition 2.2.3. A �eld F is a set that has two operations de�ned on it: addition
and multiplication, such that the following axioms are satis�ed.

1. The set is an abelian group under addition
2. The set is closed under multiplication, and the set of nonzero elements is an abelian
group under multiplication.
3. Distributivity:

(a + b)c = ac + bc

for all a, b, c in the set.

Loosely speaking, an abelian group is a set in which one can add and subtract, a ring
is a set in which one can add, subtract and multiply, and a �eld is a set in which one can
add, subtract, multiply and divide.

De�nition 2.2.4. Let F be a �eld. A subset of F is called a sub�eld if it is a �eld
under the inherited addition and multiplication. The original �eld F is then called an
extension �eld of the sub�eld. For example GF (4) is an extension �eld of GF (2).

2.2.4 Vector spaces
De�nition 2.2.5. Let F be a �eld. The elements of F will be called scalars. A set V is
called a vector space, and its elements are called vectors, if there is de�ned an operation
called vector addition (denoted by +) on pairs of elements from V , and an operation called
scalar multiplication (denoted by juxtaposition) on an element of F and an element of V
to produce an element of V , such that the following axioms are satis�ed.
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1. V is an abelian group under vector addition.
2. Distributivity: For any vectors v1, v2 and any scalar c,

c(v1 + v2) = cv1 + cv2.

3. Distributivity: For any vector v, 1v=v and for any scalars c1, c2,

(c1 + c2)v = c1v + c2v.

4. Associativity: For any vector v and any scalar c1, c2,

(c1c2)v = c1(c2v).

Given a �eld F , the quantity (a1, a2, ..., an), composed of �eld elements, is called an
n-tuple of elements from the �eld F . Under the operations of componentwise addition
and componentwise scalar multiplication, the set of n-tuples of elements from a �led F is
a vector space and is denoted by the label Fn. A familiar example of a vector space is
the space of n-tuples over the real numbers. This vector space is denoted Rn. Another
familiar example is the vector space of n-tuples over the complex numbers, denoted Cn.

2.2.5 Construction of Galois Fields
The �eld known as Galois Field (GF ) is the most powerful arithmetic system on which
the coding theory is based. In this subsection, we will give the two principal procedures
for constructing Galois �elds. The �rst procedure is based on the integer rings and the
second one is based on the polynomial rings. The description of these constructions seems
to be useful for the understanding of the de�nition of the RS codes over the di�erent GF .

2.2.5.1 Galois Field based on integer rings
De�nition 2.2.6. Let Z be a commutative ring and q be a positive integer. The quotient
ring called the ring of integers modulo q, denoted by Zq, is the set {0,..., q-1} with addition
and multiplication de�ned by

a + b = (a + b) mod(q),

a.b = (a.b) mod(q).

Any element a of Z can be mapped into Zq by a′ = a mod(q). Two elements a and b
of Z that map into the same element of Zq are congruent modulo q, and a = b + mq for
some integer m.

Theorem 2.2.1. The quotient ring Zq is a �eld if and only if q is a prime integer.
This is the easier way to construct a �eld from an integer ring.
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2.2.5.2 Galois Field based on polynomial rings
A polynomial over any �eld F is a mathematical expression

f(x) = fn−1x
n−1 + fn−2x

n−2 + ... + f1x + f0,

where the symbol x is an indeterminate, the coe�cients fn−1, ..., f0 are elements of F ,
the index of fi is the integer i, and exponents of x are integers. A monic polynomial is a
polynomial with leading coe�cient fn−1 equal to one. A monic irreducible polynomial of
degree at least 1 is called a prime polynomial.

The degree of a nonzero polynomial f(x), denoted deg f(x), is the index of the leading
coe�cient fn−1.

De�nition 2.2.7. The set of all polynomials de�ned over GF (q) where addition and
multiplication are de�ned as the usual addition and multiplication of polynomials is called
a polynomial ring. This polynomial ring denoted by the label GF (q)[x] can be de�ned for
each �nite �eld GF (q).

Construction of Galois �eld based on polynomial ring

Finite �elds can be obtained from polynomial rings by using constructions similar to
those used to obtain �nite �elds from the integer ring. Suppose that we have F [x], the
ring of polynomials over the �eld F . Quotient rings in F [x] can be constructed just as the
construction of quotient rings in the ring Z.

De�nition 2.2.8. For any monic polynomial p(x) with nonzero degree over the �eld
F , the ring of polynomials modulo p(x) is the set of all polynomials with degree smaller
than that of p(x), together with polynomial addition and polynomial multiplication modulo
p(x). This ring is conventionally denoted by F [x]/〈p(x)〉.

Example

Let p(x) = x3+1 a monic polynomial over GF (2). The ring of polynomials over GF (2)
modulo p(x) is GF (2)[x]/〈x3+1〉. It consists of the set {0, 1, x, x+1, x2, x2+1, x2+x, x2+
x + 1}.

Theorem 2.2.2. The ring of polynomials modulo a monic polynomial p(x) is a �eld
if and only if p(x) is a prime polynomial.

Using this theorem, whenever one can �nd a prime polynomial of degree m over GF (q),
then one can construct a �nite �eld with qm elements. In this construction, the elements
are represented by polynomials over GF (q) of a degree less than m. There are qm such
polynomials, and hence qm elements in the �eld.

As an example, we will construct GF (4) from GF (2), using the prime polynomial
p(x) = x2+x+1. This polynomial is easily veri�ed to be irreducible by testing all possible
factorizations. The �eld elements are represented by the set of polynomials {0, 1, x, x+1}.
Appendix A gives a list of prime polynomial over GF (2).
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2.2.5.3 Primitive elements
De�nition 2.2.9. A primitive element of the �eld GF (q) is an element α such that every
�eld element except zero can be expressed as a power of α.

For example, in the �eld GF (5) we have: 21 = 2, 22 = 4, 23 = 3, 24 = 1, and thus 2 is
a primitive element of GF (5). In contrast, 4 is not a primitive element in GF (5) because
2 cannot be expressed as a power of 4. Primitive elements are useful for constructing
�elds, because if we can �nd one, we can construct a multiplication table by multiplying
powers of the primitive element. Appendix A shows how one can construct GF (16) using
a primitive element of order 15.

2.3 Linear block codes
De�nition 2.3.1. A linear block code C de�ned over GF (q) is referred to a C(n, k) code
where n is the blocklength of the code and k is the blocklength of the information sequence.
Then, a linear block code is a subspace of GF (q)n which associates to k information sym-
bols, n − k symbols called "redundancy symbols".

A linear code is invariant under translation by a codeword. That is, for any codeword
c, C + c=C. This means every codeword in a linear code bears a relationship to the rest of
the code that is completely equivalent to the relationship any other codeword bears to the
rest of the code. An important characteristic of the linear code is the minimum distance of
the code. Suppose ci and cj are any two codewords in an (n,k) block code. The measure of
the di�erence between the codewords is the number of corresponding elements or positions
in which they di�er. This measure is called Hamming distance between the two codewords
and is denoted as dij . The smallest value of the set {dij} is called the minimum distance.

Hence to �nd a linear code that can correct t errors, one must �nd a linear code whose
minimum distance satis�es

dmin ≥ 2t + 1.

2.3.1 Matrix description of linear block codes
A linear block code C is a subspace of GF (q)n. The theory of vector spaces can be used
to study these codes. Any set of basis vectors for the subspace can be used as rows to
form a k by n matrix G called the generator matrix of the code. The row space of G is
the linear code C; any codeword is a linear combination of the rows of G. The set of qk

codewords forms the C(n, k) linear code.
The rows of G are linearly independent, while the number of rows k is the dimension of

the code. The matrix G has rank k. To generate a codeword from a sequence information
m of k symbols, the most natural approach is to use the following [43]:

c = m G.

Let us consider a simple example of a binary linear code. First, take the 3 by 5
generator matrix
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G =





1 0 0 0 1
1 1 0 0 1
0 0 1 1 0



 .

The data vector m = [ 1 0 1 ] is encoded into the codeword

c = m G =
[

1 0 1
]







1 0 0 0 1

1 1 0 0 1

0 0 1 1 0






=

[

1 0 1 1 1
]

.

Because C is a subspace of GF (q)n, it has a dimension k. This is equal to the number
of rows in G. Because C is a subspace, it has an orthogonal complement C⊥, which is
the set of all vectors orthogonal to C. The orthogonal complement is also a subspace of
GF (q)n, and thus itself is a code. C⊥ is called the dual code of C and has dimension n−k.
Let H be a matrix with any set of basis vectors of C⊥ as rows. Then an n-tuple c is a
codeword in C if and only if it is orthogonal to every row vector of H. That is,

cHT = 0

This check equation provides way for testing whether a word is a codeword of C. The
matrix H is called a check matrix of the code C. It is an (n− k) by n matrix over GF (q).
Because cHT = 0 holds whenever c is equal to any row of G, we have

GHT = 0

Every generator matrix G can be converted to a generator matrix for an equivalent
code called systematic code. This new generator matrix is of the form

G = [I A]

where I is a k by k identity matrix and A is a k by n − k matrix. With this new form
of G, the linear block encoder is called "systematic encoder" because it maps each data-
word into a codeword with the k data symbols unmodi�ed in the �rst k symbols of the
codeword. The remaining symbols are called check symbols.

2.3.2 Cyclic codes
The cyclic codes over GF (q) are an interesting class of linear block codes. Their impor-
tance comes from the fact that their structure is closely related to the strong structure of
the Galois �eld. In the underlying GF , the cyclic codes can be encoded and decoded us-
ing e�cient algorithms in terms of computational complexity and circuit implementations.

De�nition 2.3.2. Let c = (c0, c1, ..., cn−1) be a codeword in a linear code C. C is
called a cyclic code if c′ = (cn−1, c0, ..., cn−2) is also in C. The codeword c′ is obtained by
cyclically shifting the components of the codeword c one place to the right. Thus the cyclic
shift maps the code into itself.
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Every cyclic code can be described by a polynomial description, where a vector m can
be represented by polynomial m(x):

m = [mk−1 ... m1 m0] ⇔ m(x) = mk−1x
k−1 + ... + m1x + m0,

and the corresponding codeword to a data sequence represented by its polynomial form
c(x) is of the form:

c(x) = m(x)g(x),

where g(x) is the generator polynomial, that characterizes the code. The polynomials
c(x), m(x) and g(x) are polynomial of degree n − 1, k − 1 and n − k respectively.

This encoder is nonsystematic because the data polynomial m(x) is not immediately
visible in c(x). A systematic encoding can be obtained by a more complicated computa-
tion. The idea is to insert the data into the high-order coe�cients of the codeword, and
then choose the check symbols so as to obtain a legitimate codeword. Thus, the codeword
can be written as

c(x) = xn−1m(x) + v(x)

taking into account that c(x) is a multiple of g(x), we can write

q(x)g(x) = xn−1m(x) + v(x) ⇒ xn−1m(x) = q(x)g(x) − v(x)

and the degree of v(x) is less than the degree of g(x). So, v(x) is the residue of xn−1m(x)
when divided by g(x).

In the error control codes domain, the most popular Galois �eld is GF (q = 2) which
has the two elements "0" and "1". The corresponding extension �eld is GF (2m) which is
the most useful �eld and under it most of the encoding and decoding techniques are done.
This is the case of BCH codes, Hamming codes, etc. For these codes the time domain
symbols are in GF (2) and the spectral components are in GF (2m). For RS codes, the time
domain symbols as well as the spectral components are in GF (2m) and for this reason the
RS codes are called non-binary codes.

We began to talk here about the spectral components of cyclic codes. This notion
peculiar to the complex Fourier transform can be quite de�ned over GF . In the following,
we will describe the frequency domain treatment of cyclic codes by giving their frequency
domain de�nition and explaining their encoding decoding process in this domain. Let us
begin by giving a brief overview on the �nite �eld transform.

2.4 The Fourier transform over �nite �elds
Application of the discrete Fourier transform in the complex �eld occurs throughout the
subject of signal processing. Fourier transforms also exist in the Galois Field GF (q) and
can play an important role in the study and processing of GF (q)-valued signals that is
codewords. By using the Fourier Transform, the idea of coding theory can be described
in a setting that is much closer to the methods of signal processing.
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In complex �eld, the discrete Fourier transform of f = (f0, f1, ..., fn−1), a vector of
real or of complex number, is a vector F = (F0, F1, ..., Fn−1), given by

Fk =

n−1
∑

i=0

fie
−j2πik

n , k = 0, ..., n − 1, (2.1)

where j =
√
−1. The Fourier kernel �exp(−j2π/n)� is an nth root of unity in the

�eld of complex numbers. In the �nite �eld GF (q), an element α of order n is an nth
root of unity. Drawing on the analogy between exp(−j2π/n) and α, we have the following
de�nition [44].

De�nition 2.4.1. Let f = (f0, f1, ..., fn−1) be a vector over GF(q), and let α be
an element of GF (q) of order n. The Fourier transform of the vector f is the vector
F = (F0, F1, ..., Fn−1) with components given by

Fj =
n−1
∑

i=0

fiα
ij , j = 0, ..., n − 1, (2.2)

and the vector f is related to its spectrum F by

fi =
1

n

n−1
∑

j=0

Fjα
−ij , i = 0, ..., n − 1. (2.3)

It is natural to call the discrete index i time, taking values on the time axis 0, 1, ..., n − 1,
and to call f the time-domain function or the signal. Also, we might call the discrete in-
dex j frequency, taking values on the frequency axis 0, 1, ..., N − 1, and to call F the
frequency-domain or the spectrum.

The Fourier transform in a Galois �eld [45] closely mimics the Fourier transform in the
complex �eld with one important di�erence. In the complex �eld an element w of order
n, for example, e

−j2π

n , exists for every value of n. However, in the �eld GF (q), such an
element w exists only if n divides q−1. Moreover, if for some values of m, n divides qm−1,
then there will be a Fourier transform of blocklength n in the extension �eld GF (qm). For
this reason, a vector f of blocklength n over GF (q) will also be regarded as a vector over
GF (qm); it has a Fourier transform of blocklength n over GF (qm). This is completely
analogous to the Fourier transform of a real-valued vector: even though the time-domain
vector f has components only in the real �eld, the transform F has components in the
complex �eld. Similarly, for the GF Fourier transform, even though the time-domain
vector f is over the �eld GF (q), the spectrum F may be over the extension �eld GF (qm).
Any factor of qm − 1 can be used as the blocklength of a Fourier transform over GF (q),
but the most important values for n are the primitive blocklength, n = qm − 1. Then
w = α is a primitive element of GF (qm).

The Fourier transform over GF (q) has many strong properties, which are summarized
by the following.

1. Additivity: af + bf ′ ⇔ aF + bF ′

2. Modulation: (fiα
il) ⇔ F(j+l)mod n
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3. Translation: (f(i−l)mod n) ⇔ Fjα
jl

4. Inverse: fi = 1
n

∑n−1
j=0 Fjα

−ij , i = 0, ..., n − 1,
where n = 1 + 1 + ... + 1 (n terms).

5. Convolution: ei =
∑n−1

l=0 f(i−l)mod n gl, i = 0, 1, ..., n − 1,
if and only if Ej = FjGj , j = 0, 1, ..., n − 1

6. f(x) =
∑n−1

l=0 fix
i has a zero at αj if and only if Fj = 0.

2.5 Frequency interpretation of cyclic codes over GF (2m)

Transforms over Galois �eld have been introduced into the study of error control codes
in order to reduce decoder complexity �rst by Gore [46], later by Michelson [47], Lempel
and Winograd [48] and Chien [49]. Blahut [50] has proceeded in the sense to make these
transforms play a much more central role in the subject. He showed that the idea of
coding theory can be described in a frequency domain setting that is much di�erent from
the familiar time domain setting. In this context, by frequency domain reasoning, he
described several encoder and decoders schemes. In this section, we present the spectral
interpretation of the encoding of cyclic codes.

2.5.1 Frequency encoding of cyclic codes over GF (2m)

Let f(x) be a polynomial whose coe�cients fi, i=0, ..., n − 1, are elements of GF (q):

f(x) = f0 + f1x + ..., fn−1x
n−1,

where n divides qm − 1 for some m integer, and let α be an element of GF (qm) of order
n. The �nite �eld Fourier transform of the vector f = {f0, f1, ..., fn−1} is the vector over
GF (qm), f = {F0, F1, ..., Fn−1}, and as given in equation 2.4 can be written as

Fj =
n−1
∑

i=0

fiα
ij . (2.4)

For simplicity of exposition and for the �rst time we will restrict attention to values of
n satisfying n = qm − 1. These values of n is called primitive blocklengths. Then α is a
primitive element of GF (qm).

The spectrum polynomial of f(x) or the associated polynomial by means of the �nite
�eld Fourier transform can be written as

F (x) = F0 + F1x + ..., Fn−1x
n−1.

There is a relationship between the root of f(x) and the coe�cients of F (x). The polyno-
mial f(x) has a root at αj if and only if Fj equals zero and the polynomial F (x) has a root
at α−i if and only if the ith time component fi equals zero. Thus, in �nite �elds, when one
speaks of roots of polynomials or of spectral components equal to zero, one really speaks
of the same thing, but the terminology and the insights are di�erent.

A cyclic code over GF (q), as previously presented in section 2.3.2, can be described
in terms of generator polynomial g(x) over GF (q) of degree n − k, where k is the length
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of the dataword m(x). Every codeword is represented by a polynomial of degree n − 1,
written as c(x) = m(x)g(x). This is a convolution in time domain

ci =

n−1
∑

k=0

mkgi−k.

Therefore, this time domain convolution can be converted into a componentwise multipli-
cation and the product can be written as

Cj = MjGj .

The encoding operation can be then carried out by a multiplication of spectral components
of the two vectors M and G.

By de�nition, the generator polynomial can be written as

g(x) = (x − αj0)(x − αj0+1)...(x − αj0+i)...(x − αj0+d−2),

where d is the minimal distance of the code and j0 is an integer. Thus, in the frequency
encoding, the role of the generator polynomial is to specify the spectral components that
should be zero, the remaining components of the spectrum are �lled with information
symbols. The spectral components that are constrained to zero are those whose indices
correspond to α′s powers (roots of the generator polynomial). The inverse transform of
the built frequency vector provides the time domain codeword which will be transmitted.
The frequency encoding process is illustrated in Fig. 2.2.

A cyclic code can now be de�ned as the set of inverse Fourier transforms of all spectral
vectors that are constrained to zero in several prescribed components [44].
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Figure 2.2: Encoding process using Fourier transforms
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2.5.2 Frequency encoding of RS codes over GF (2m)

De�nition 2.3.3. A RS code of block length n over GF (q), with n a divisor of q − 1, is
de�ned as the set of all words over GF (q) of length n whose Fourier transform is equal to
zero in a speci�ed block of d−1 consecutive components, denoted {j0, j0 +1, ..., j0 +d−2}.

The blocklength of an RS code over GF (q) is directly related to the order of α. If α
has an order n = q − 1, α is a primitive element and the RS code is called a primitive RS
code. The minimum distance of an RS code is

dmin = n − k + 1

where k is the blocklength of the information sequence.
In this section we consider the RS codes de�ned over GF (2m). This class of codes is

the most popular class of cyclic codes. The RS codes are characterized by their powerful
correction capacity of burst errors [51]. They are used extensively for correcting both
errors and erasures in many systems as space communication links, Compact-Discs (CD),
audio systems [52], High-De�nition (HD) TV [53], Digital Versatile Discs and wireless
communication systems. The time and frequency domain symbols are in the same GF . In
section 2.10, we revive a less known class of RS codes de�ned over a speci�c Galois �eld
and have some speci�c characteristics that will be discussed in details.

As for any cyclic code, the encoder of RS codes can be either systematic or nonsystem-
atic. One may encode in the natural way using the generator polynomial. This encoder is
called a time domain encoder. Alternatively, one may choose to encode the RS codes di-
rectly in the transform domain by using the data symbols to specify spectral components.
This is called a frequency domain encoder.

Frequency encoding of an RS(n, k) code is as follows. Some set of d − 1 frequencies,
indexed by j = j0, j1, ..., j0 +d−2, is chosen as the set of spectral components constrained
to zero. The n − d + 1 unconstrained components of the spectrum are �lled with data
symbols from GF (q). A nonsystematic codeword is produced by taking the inverse Fourier
transform of the frequency vector. The obtained RS code is referred to as RS(n, k) where
k = n − d + 1. The common choice for j0 is j0 = 1 and the corresponding generator
polynomial is

g(x) = (x − α)(x − α2)...(x − α2t).

This is always a polynomial of degree 2t.
As an example, let us consider the code RS(7,5) with a polynomial generator

g(x) = (x − α)(x − α2) = x2 + α4x + α3

and an information sequence

m(x) = α6 x4 + x3 + α4x2 + α x + 1.

Using the two encoding techniques, we shall �nd the two codewords corresponding to
m(x).

1. Frequency domain encoding: The components that should be constrained to zero
are the components indexed by 1 and 2. Thus, the spectral vector can be written as

C = [1 0 0 α α4 1 α6]
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and the nonsystematic time domain codeword

c = IFFT (C) = [1 α α 0 α5 α α6]

2. Time domain encoding: The time domain encoding consists in multiplying m(x) by
xn−k = x2 and performing the polynomial division x2 m(x) by g(x); The coe�-
cients of the remainder v(x) of this division represent the redundancy symbols. The
resultant systematic codeword

c = [α3 α2 1 α α4 1 α6]

Z-1 Z-1

Message xn-k m(x)
S

2

S1

c(x)

3 4

Figure 2.3: Encoding circuit (in time domain) for a RS(7,5) with a generator polynomial
g(x) = x2 + α4x + α3

The time domain encoding can be realized with a division circuit which is a linear
(n − k) stage shift registers with feedback connection based on the generator polynomial
g(x). Such a circuit is shown in Fig. 2.3. The encoding operation is carried out as follows:
The switch S1 is turned on, the k information symbols α3, α2, 1, α, α4, 1, α6 are shifted into
the circuit and simultaneously through the switch S2. Shifting the message m(x) into the
circuit from the front end is equivalent to premultiplying it by x2. As soon as the complete
message has entered the circuit, the two symbols in the register form the remainder and
thus they constitute the redundancy symbols (or parity check symbols). The switch S2 is
then turned o� and the redundancy symbols are shifted out through the switch S2. These
two symbols with the k information symbols, form the complete codeword c(x).

2.5.3 Frequency decoding of RS codes over GF (2m)

During the transmission, it is possible that the encoded message (or codeword) c will be
disturbed by noise that can be represented by an error word e. Then, the received codeword
r can be written as the sum r = c+ e. The decoder must process the received codeword
so that the error word e is removed; the data is then recovered from the codeword.

The Fourier transform of the received word has components Rj = Cj + Ej for j =
0, 1, ..., n−1. The 2t spectral components, from j0 to j0 +2t−1, are called the (frequency
domain) syndromes. As mentioned in the previous section, the components Cj indexed by
j0, j0 + 1, ..., j0 + 2t − 1 are the components constrained to be zero whether the encoding
is performed in frequency or time domain. The syndromes can be written as

Sj = Rj+j0−1 = Ej+j0−1 j = 1, ..., 2t.
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It is convenient to index the syndromes starting with index one. To simplify this equation,
we take j0 = 1 and therefore Sj = Rj .

The block of 2t syndromes provides the window through which the decoder can start the
decoding process to recover the data. Let us consider the error vector with its polynomial
form

e(x) = en−1x
n−1 + en−2x

n−2 + ... + e1x + e0.

The 2t syndromes can be de�ned by

Sj = r(αj) = c(αj) + e(αj) = e(αj) j = 1, ..., 2t.

As the code can correct at most t errors, the error polynomial has at most t coe�cients
that are nonzero. Suppose that t1 errors occur, 0 ≤ t1 ≤ t and that they occur at the
unknown locations i1, i2, ..., it1 . The error polynomial can be written as

e(x) = eit1
xit1 + ... + ei2x

i2 + ei1x
i1

where eil is the magnitude of the lth error. Then, the syndrome S1 evaluated at α can be
written as

S1 = e(α) = eit1
αit1 + ... + ei2α

i2 + ei1α
i1 .

Similarly, we can evaluate the other 2t − 1 syndromes at α2, ..., α2t. For simplicity of
notation, the error values eil are denoted by Yl and the error location numbers αil by Xl.

Now, we can write the 2t as a set of simultaneous equations:

S1 = Yt1Xt1 + Yt1−1Xt1−1 + ... + Y1X1

S2 = Yt1X
2
t1 + Yt1−1X

2
t1−1 + ... + Y1X

2
1

...
S2t = Yt1X

2t
t1 + Yt1−1X

2t
t1−1 + ... + Y1X

2t
1 (2.5)

The decoding problem has now been reduced to the problem of solving a system of
nonlinear equations. This set of equations is too di�cult to solve directly. Instead, a
polynomial called locator polynomial is introduced. This polynomial that has t1 nonzero
coe�cients is given by

Λ(x) = Λt1x
t1 + Λt1−1x

t1−1 + ... + Λ1x + 1 (2.6)

and de�ned to be the polynomial with zeros at the inverse error locations X−1
l for l =

1, ..., t1. That is,
Λ(x) = (1 − xX1)(1 − xX2)...(1 − xXt1). (2.7)

The task now is to �nd the coe�cients of Λ(x). Once the coe�cients are known, the
error locations can be obtained by computing the zeros of Λ(x).

Multiply the equations 2.6 and 2.7 each by YlX
j+t1
l and set x = X−1

l . The second
equation is clearly zero, and we have

YlX
j+t1
l (Λt1X

−t1
l + Λt1−1X

−(t1−1)
l + ... + Λ1X

−1
l + 1) = 0, (2.8)
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that gives
Yl(Λt1X

j
l + Λt1−1X

j+1
l + ... + Λ1X

j+t1−1
l + Xj+t1

l ) = 0 (2.9)
Such an equation holds for each l and j. By Summing these equations for l = 1 to

l = t1, we have for each j

t1
∑

l=1

Yl(Λt1X
j
l + Λt1−1X

j+1
l + ... + Λ1X

j+t1−1
l + Xj+t1

l ) = 0 (2.10)

or

Λt1

t1
∑

l=1

YlX
j
l + Λt1−1

t1
∑

l=1

YlX
j+1
l + ... + Λ1

t1
∑

l=1

YlX
j+t1−1
l +

t1
∑

l=1

YlX
j+t1
l = 0, (2.11)

where each individual sum represents a syndrome whose index is �xed by the power of Xl.
Thus, equation 2.9 becomes

Λt1Sj + Λt1−1Sj+1 + ... + Λ1Sj+t1−1 + Sj+t1 = 0 (2.12)

and
Sj+t1 = −(Λt1Sj + Λt1−1Sj+1 + ... + Λ1Sj+t1−1), (2.13)

for 1 ≤ j ≤ 2t − t1. Equation 2.13 can be written in general form of linear recursion

Sk = −
t1

∑

j=1

ΛjSk−j mod n k = t1 + 1, ..., 2t1. (2.14)

Clearly, if we consider the more general case where t errors have occurred, the equation
2.14 becomes

Sk = −
t

∑

j=1

ΛjSk−j mod n k = t + 1, ..., 2t. (2.15)

Obviously, the number of errors in the received word is not known. The principle of
decoding is to solve the linear recursion for Λ using the smallest value of t1 [44]. This
system of equations is always solvable for Λ and t1. To solve it there is two ways: direct
method and iterative method. In both methods, the decoding process consists of two
principal steps: �nding the error locations and �nding their magnitudes.

2.5.3.1 Direct method
As a direct resolve for the linear recursion, Peterson [54] proposed an algorithm for �nding
the error locations by inverting a t1 by t1 matrix where t1, as previously mentioned, is
the smallest number (t1 ≤ t) of occurred errors. For �nding the error magnitudes, the
Gorenstein-Zierler algorithm [55] is applied.

The linear recursion of equation 2.15 can be written in matrix form:












S1 S2 ... St1

S2 S3 ... St1+1

... ...
St1 St1+1 ... S2t1−1

























Λt1

Λt1−1

...
Λ1













=













−St1+1

−St1+2

...
−S2t1













.
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Let us consider the matrix of syndromes

Mt1 =











S1 S2 ... St1

S2 S3 ... St1+1
... ...

St1 St1+1 ... S2t1−1











.

Peterson algorithm consists of the following steps:

1. Find the correct value of t1 by computing the determinants Mt, Mt−1, etc. in
succession and stopping when nonzero determinant is obtained. The actual number
of errors that occurred is then known as t1.

2. Invert Mt1 to compute Λ(x)

3. Finally, apply the Chien algorithm [56] to �nd the zeros of Λ(x) and then the error
locations.

To compute the error magnitudes, we consider the set of equations 2.5 de�ning the
syndromes. In these equations, Xl are known and Yl must be computed. Yl for l = 1, ..., t1
can be deduced from the �rst t1 equations that can be solved if the determinant of the
matrix of coe�cients

X =











X1 X2 ... Xt1

X2
1 X2

2 ... X2
t1... ...

Xt1
1 Xt1

2 ... Xt1
t1











is nonzero. This is the Gorenstein-Zierler algorithm. But

det(X) = (X1 X2...Xt1)det











1 1 ... 1
X1 X2 ... Xt1
... ...

Xt1−1
1 Xt1−1

2 ... Xt1−1
t1











.

This Vandermonde matrix does have a nonzero determinant if t1 errors occur and
therefore (X1, X2, ..., Xt1) are nonzero and distinct. Then Yl can be written as













Y1

Y2

...
Yt1













=















X1 . . . Xt1

X2 . . . X2
t1

... ...
Xt1

1 . . . Xt1
t1















−1












S1

S2

...
St1













.

For small t values, matrix inversion is reasonable; the number of multiplications neces-
sary to invert a t by t matrix is proportional to t3. However, when t is large, one should use
a more e�cient method that obviously will be more intricate but computationally much
simpler. The solution is the iterative method.
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2.5.3.2 Iterative method
The key step in the RS decoding process is the computation of the error locator polynomial
Λ(x) from the known 2t spectral components of the received words. Berlekamp [57] devel-
oped an elegant algorithm based on the language of polynomials which has been described
in terms of shift registers by Massey [58]. This algorithm known as Berlekamp-Massey al-
gorithm solves the problem by an iterative procedure that consists in designing the shortest
linear recursion (Λ(x), t1) capable to produce the known sequence of syndromes. The al-
gorithm consists of 2t iterations of computation. At each iteration, a candidate syndrome
S̄k is computed

S̄k = −
Lk−1
∑

j=1

Λk−1
j Sk−j k = 1, ..., 2t,

where Lk is the length of linear recursion. The obtained syndrome S̄k is subtracted from
the desired (or known) syndrome Sk to get a quantity

∆k = Sk − S̄k = Sk −
Lk−1
∑

j=1

Λk−1
j Sk−j .

If ∆k is zero, then the (Λ(x), Lk) is the right linear recursion. Otherwise, (Λ(x), Lk)
should be modi�ed. The main trick of Berlekamp-Massey algorithm is to use earlier iter-
ations to compute a new minimum-length linear recursion (Λ(x), Lk).

Berlekamp-Massey algorithm. In any �eld, let S1, S2, ..., S2t be given. With initial
conditions Λ(0)(x) = 1, B(0)(x) = 1, and L0 = 0, let the following set of equations for
k = 1, ..., 2t be used iteratively to compute Λ(2t)(x):

∆k =
n−1
∑

j=0

Λk−1
j Sk−j ,

Lk = δk(k − Lk−1) + (1 − δk)Lk−1,

Λ(k)(x) = Λ(k−1)(x) − ∆kxBk−1(x),

B(k)(x) = ∆−1
k δkΛ

(k−1)(x) + (1 − δk)xBk−1(x),

where δk = 1 if both ∆k 6= 0 and 2Lk−1 ≤ k− 1, and otherwise δk = 0. Then (Λ2t(x), L2t)
is a linear recursion of shortest length that produces S1, S2, ..., S2t.

Once the error locator polynomial is computed, the next step is to compute the error
values. There are two approaches to perform this last step.

The �rst approach is to continue the iterative computation. That is, after the 2t
iterations of computation of Λ(x) that produce the 2t syndromes, the remaining n − 2t
syndromes are produced by computing the discrepancy ∆k for k = 2t + 1, ..., n and at
each iteration compute Sk = Sk − ∆. Fig. 2.4 shows a �ow diagram for a decoder that
computes the frequency-domain codeword C from the frequency received word R.

As shown, a Fourier transform is placed at the front end of the decoder and an inverse
Fourier transform is needed at the end to provide the time domain decoder. We note here
that the decoder can be used with an encoder in the time domain, as shown in Fig. 2.5,
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Figure 2.4: A frequency-domain decoder

or an encoder in the frequency domain, as shown in Fig. 2.6. If a time domain encoder
is used, then the inverse Fourier transform of the corrected codeword spectrum C must
be computed to obtain the time-domain codeword c, from which the data is recovered. If
instead, the encoder uses the data symbols in the frequency domain to specify the values of
the spectrum, then the corrected spectrum gives the data symbols directly. That decoder
does not compute an inverse Fourier transform. The decoder shown in Fig. 2.4 has a
simple structure for k > 2t but when a pipelined decoder is desired, a more attractive
approach can be used.

The second approach is based on two elegant algorithms: Chien algorithm [56] to �nd
the error locations and Forney algorithm [59] to compute the error values. Chien algorithm
searches iteratively the roots of polynomial Λ(x) that can specify the error locations. This
algorithm tests the condition

t
∑

j=1

Λjα
ij = 1 i = 1, 2, ..., n − 1. (2.16)

If this sum is 1, then the (n − i)th component of the received word is erroneous. By
rewriting equation 2.16 as

t
∑

j=0

Λjα
ij = 0 i = 1, 2, ..., n − 1, (2.17)

where Λ0 = 1. In fact, the n coe�cients of equation 2.17 represent the frequency com-
ponents of polynomial Λ(x). Then, by computing the FFT of Λ(x), the error locations
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that correspond to the roots of Λ(x) can be determined by testing the spectral compo-
nents Λ(x). That is, if Γj =

∑t
j=0 Λjα

ij = 0, the (n − i)th symbol is erroneous. This
frequency reasoning is advantageous if an e�cient algorithm to compute the FFT (Λ(x))
can be applied. Then, the important task of RS decoding Chien search can be performed
with FFT.

The error values can be computed using Forney algorithm which evaluates a polynomial
called evaluator polynomial (Ω(x)) at the speci�ed error locations. The polynomial Ω(x)
can be computed using the polynomial multiplication

Ω(x) = Λ(x)S(x) mod(x2t+1),

where

S(x) =
2t

∑

j=1

Sjx
j .

The �ow diagram of Fig. 2.7 shows the frequency decoder using Forney algorithm
where Λ

′

(x) is the derivative of Λ(x). More details about the algorithm can be found in
[44].

We note that there are other important algorithms known in the literature used in the
decoding of RS codes. Among these algorithms, we �nd Sugiyama, Euclide, Gao and other
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algorithms. The study of these various algorithms is not the subject of our work. The goal
is to highlight the role of the FFT in the encoding and decoding processes by reviewing
the most important algorithms adapted to the frequency processing of RS codes.

2.6 Comparison between time and frequency domain decod-
ing of RS codes

In the previous section, the decoding procedure was stated in the language of spectral
estimation. In this section, in order to compare the frequency to the time domain decoder,
we describe the RS time domain decoding performed without any Fourier transform.

2.6.1 Time domain decoding of RS codes
Starting from the frequency processing, the idea is to replace the frequency domain vari-
ables by the time domain ones and then push the Berlekamp-Massey equations into the
time domain. Let λ and b denote respectively the inverse Fourier transforms of the vectors
Λ(x) and B(x) and replace the delay operator x with α−i, and replace product terms
with convolution terms. Replacement of the delay operator with α−i is justi�ed by the
translation property of Fourier transforms; replacement of a product with a convolution
is justi�ed by the convolution theory. Blahut [60] introduced this notion of time-domain
decoding and developed a universal time-domain RS decoder [61]. The following algorithm
describes the decoding procedure.

Algorithm (Blahut algorithm). Let r = c + e be the received noisy RS codeword,
where c is the transmitted word and e the error vector. With initial conditions λ

(0)
i = 1,
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b
(0)
i = 1 for all i and L0 = 0, let the following set of equations for r = 1, ..., 2t be used
iteratively to compute λ

(2t)
i for i = 0, ..., n − 1:

∆k =
n−1
∑

i=0

αik(λk−1
i ri,

Lk = δk(k − Lk−1) + (1 − δk)Lk−1,

λ
(k)
i = λ

(k−1)
i − ∆kα

−ibk−1
i ,

b
(k)
i = ∆−1

k δkλ
(k−1)
i + (1 − δk)α

−ibk−1
i ,

where δk = 1 if both ∆k 6= 0 and 2Lk−1 ≤ k − 1, and otherwise δk = 0. Then λ2t
i = 0

if and only if ei 6= 0 and the equation

ci = ri − si,

produce the recovered codeword. The vector si is initialized by the received codeword and
updated at each iteration as shown in the Fig. 2.8.
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2.6.2 Comparison
Let us now consider the comparison between these two ways of decoding. For the fre-
quency domain approach, the matrix update, i.e. update of Λ(x) and B(x), requires at
most 2t multiplications per iteration and the calculation of ∆k requires at most t multi-
plications per iteration. There are 2t iterations and so no more than 6t2 multiplications
are required to compute the error locator polynomial. In the other hand, the time domain
approach works directly on the raw data word as received without any transform. The
frequency-domain vectors of Berlekamp-Massey algorithm of length t are replaced by time-
domain vectors of length n. Then the time domain decoder has a computation complexity
proportional to n2 while the one of the frequency domain decoder is proportional to t2.

The time domain decoder can be attractive because there is no syndrome computation
or Chien search. This means that the decoder has a very simple structure, but the penalty
is a longer running time. As for the frequency domain decoder, its structure is more
complex but this drawback is largely compensated by its major advantage that is a shorter
running time. For this latest reason, the frequency domain decoders are more attractive
and have found their use in various applications and speci�cally in applications that require
high throughput rates.

2.7 Extended RS codes using Fourier transform
In this section, we will present the extended RS codes. The objective is just to describe
the principle of the frequency processing of these codes and show that the new length of
an extended RS code does not a�ect the length of the Fourier transform to be used in the
encoding and decoding processes.

Generally, in some applications, codewords of RS codes need to be extended to satisfy
certain speci�c requirements. To lengthen an RS code, there is an orderly way to append
up to two extra symbols to the codewords. When a code is obtained by appending one or
both of the extra symbols to each codeword, that code is called an extended RS code. If
only one extension symbol is appended, the code is called a singly extended RS code. If
two symbols are appended, the code is called a doubly extended RS code.

Each appended symbol can be viewed either as a data symbol or as a check symbol,
that is, it may be used either to expand a code by increasing the rate, or to lengthen a
code by increasing the minimum distance. In this section, we consider the singly extended
RS code and we shall brie�y describe its encoding and decoding processes.

Encoding in frequency-domain of the singly extended RS code is as follows. Let g(x)
be the generator polynomial with zeros at α2, α3..., α2t−1 and choose a block of d − 2
consecutive components, indexed by 2, 3, ..., 2t − 1, of the spectrum to be zero. The
remaining components of the spectrum are loaded by arbitrary data symbols from GF (q).
The value of the spectrum on the edge of the block of check frequencies is also arbitrary
symbol from GF (q) and this symbol is appended to the edge of the codeword as ce. A
(q − 1) inverse Fourier transform preceded by ce produce the time domain codeword. The
new codeword is composed of q symbols. Since the appended symbol does not undergo any
transform, the transform length remains q − 1. Fig. 2.9 shows such a frequency encoder.

To encode an (n, k) singly extended RS code in the time domain, use g(x), de�ned
above, to encode k data symbols into c0, c1, ..., cn′−1 where n′ = n−1. Then the extension
symbol is de�ned by
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ce =
n′
−1

∑

i=0

ciα
i,

and it is attached to c0, c1, ..., cn′−1 where n′ = n − 1 to produce the lengthening code
word ce, c0, c1, ..., cn′−1. The minimum distance of the extended code is dmin = n−k+1 =
q − k + 1.

As for the decoding, any encoder for a RS code can be used to decode an extended RS
code.

2.8 Discussion
In this chapter, until now, we have discussed the important and central role the frequency
processing can play in the encoding and decoding processes of RS codes. Compared to the
time domain processing, the frequency domain processing presents important advantages in
terms of running time and e�ciency of hardware and software implementation of principal
algorithms. But, the transforms used in that frequency domain processing are de�ned over
GF (2m) and they have the following two principal characteristics:

1. The transform length is equal to 2m − 1, where m is an integer.

2. The arithmetic operations are done modulo 2.

Indeed, our study aims to insert the complex FFT operator in the channel coding
function. However, the �rst characteristic which is the transform length of the �nite
�eld transform over GF (2m) does not match the one of the complex FFT de�ned over
the complex �eld C, which is of the form 2m. This characteristic is a strong constraint
that challenges the adaptation or the combination of the GF (2m) FFT structure with
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the complex FFT one, since the most e�cient algorithms for the FFT computations are
applied to transforms of length 2m. Under this strong constraint, we thought to seek
out a transform satisfying the complex FFT criteria while keeping in mind to include
the classical �nite �eld transform, used in the RS coding de�ned over GF (2m), in the
intended common and recon�gurable FFT structure. Next section is dedicated to �nd the
appropriate transforms.

2.9 Fermat Number Transform and GF (Ft)

The strong constraint discussed in the previous section, has led us to seek other class of
transforms which in turn will lead to other and speci�c class of RS codes. Our research
on the state of the art of �nite �eld transform and RS codes led us to spot speci�c class
of transforms and get out the corresponding class of RS codes. These speci�c �nite �eld
transforms as well as the corresponding RS codes are de�ned over GF (Ft) where Ft is
a Fermat prime number. These transforms called Fermat Number Transforms (FNT)
constitute a subclass of the Number Theoretic Transforms.

2.9.1 A brief history of Number Theoretic Transform
The de�nition of the Number Theoretic Transforms (NTT) appeared in 1971 when Pollard
[45] discussed transforms having the cyclic convolution property in a �nite ring of integers.
Later in 1972, Rader [62] [63] proposed transforms over rings of integers modulo both
Mersenne and Fermat numbers that can be used to compute error-free-convolutions of real
integer sequences. Rader �rst proposed the application of such transforms to digital signal
processing and showed that these transforms could be calculated using only additions and
bit shifting. He also showed the word-length constraint and suggested two-dimensional
transform as a possible relaxation of that constraint. Agarwal and Burrus [64] extended
Rader's Fermat Number transform theory by lengthening the transform size and showed
that the usual FFT algorithm can be used to calculate the Fermat transforms. In 1976,
Justesen [65] proposed that transforms over the �nite �eld GF (Ft) can be used to de�ne
RS codes and improve the decoding e�ciency of these codes.

Starting from Justesen proposition, the rest of this chapter will constitute the inves-
tigation of this speci�c class of Galois �eld GF (Ft) where the construction as well as the
encoding and decoding of RS codes will be examined. In turn, the treatment of these RS
codes over GF (Ft) in frequency domain will constitute the window through which we look
at the channel coding as being one of the communication tasks that can be performed
using the FFT operator in the Software Radio context.

2.9.2 Principal characteristics of FNT
Fermat Number Transforms are one of the most promising Number Theoretic Transforms
where the modulus is chosen to be a Fermat number:

Ft = 22t

+ 1,

and Ft is called the tth Fermat number. Originally, Fermat [66] conjectured in 1650
that these numbers were all primes but at present, only Ft for t = 0, 1, 2, 3, 4 are known
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as prime numbers. For t ≥ 5 the Fermat numbers are composite. The �rst �ve Fermat
prime numbers are: F0, F1, F2, F3, F4 equal to 3, 5, 17, 257 and 65537 respectively. For
t = 5, F5 = 4294967297 = (641) ∗ (6700417).

FNT have a transform length power of 2, but this transform length is directly related
to the element α chosen as a root of unity of order n, where n is the least positive integer
such that

αn = 1.

Let us discuss the relationship between the transform length and the generator element
(or the nth root of unity) α. We begin with the integer 2. The integer 2 is an α of order
n = 2t+1 (i.e. 22t+1

= 1) and the corresponding transform length is n = 2t+1. In this
case the FNT can be computed very e�ciently and is called the Rader transform [63]. As
the author showed, the arithmetic used to perform these transforms requires only integer
additions and circular shifts since the multiplications by powers of two can be performed
by simple bit rotations. This is the primary advantage of the Rader transform.

To lengthen the transform size, Agarwal and Burrus [67] proposed to use the generator
α =

√
2 for the transform rather than α = 2. If

√
2 is used as the generator of the

transform, the transform can be computed using a very fast algorithm known as FFT
with as many as 2n+2 points of integer data. In order to treat longer FNTs, Reed and
Truong [68] showed that 8

√
2 is an element of order 2t+4 in GF (Ft) and it can be used to

de�ne FNT of as many as 2t+4 data symbols. Moreover, the authors showed that these
transforms can be used to decode RS codes with codewords of as many as 2t+4 symbols.

To better understand the character of these prime moduli, we consider the example
for F2 = 17. Table 2.1 shows the various values of α and the corresponding transform
lengths.

Table 2.1: The powers of α and the corresponding transform lengths over GF (F2)

n=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1n=1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2n=1 2 4 8 16 15 13 9 1 2 4 8 16 15 13 9 1
3n=1 3 9 10 13 5 15 11 16 14 8 7 4 12 2 6 1
4n=1 4 16 13 1 4 16 13 1 4 16 13 1 4 16 13 1
6n=1 6 2 12 4 7 8 14 16 11 15 5 13 10 9 3 1

As we see in Table 2.1, integer 2 is of order 8 and 4 is of order 4. For the integers 3 and
6, n = Ft − 1 = 16 is the least positive integer for which 316, and 616 are equal to 1 (mod
17). Note that 6 =

√
2 in the sense that 62 = 2 (mod 17) . Then, 3 and 6 are primitive

roots of GF (17) and their successive powers for n = 0 to 15 allows to generate all the
elements of GF (17) = {0, 1, 2, ..., 22t}. Therefore, by using one of the primitive roots, one
can reach the largest possible length of FNT.

Having the complex FFT implementation issues in mind, the goal is to implement the
�nite �eld transform FNT using the hardware resources available in the complex FFT
circuit. However, the FNT with the primitive element α = 3 seems to be an appropriate
choice for the following reasons. Firstly, if α = 3 is taken as the generator of the trans-
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form, the maximum possible transform length is attained and the structure of the FNT
is similar to the complex FFT structure. Secondly, the arithmetic operations required for
the FNT computation are operations modulo Ft. Thus, these operations can be computed
as ordinary real operations using the complex operators (multiplier, adder and subtracter)
implemented in the FFT and then a modulo Ft reduction returns the desired result. There-
fore, by redesigning the operators constituting the FFT circuit, we can compute a �nite
�eld transform such as the FNT. This way leads to an optimal exploitation of the arith-
metic resources which is exactly what the concept of common operator is about. This is
the corner stone of our work where a prototype hardware of recon�gurable operator able
to support FFT and FNT computation is discussed in the next chapter.

Our problematic study is then positioned. Let us now consider the speci�c class of RS
codes. According to the above discussion, the RS codes that will be considered in the �rst
stage of our study are the RS codes de�ned over GF (Ft) where the FNT will be e�ciently
implicated. In the next section, we will study the encoding and decoding processes of these
codes as well as their performance in term of Bit Error Rate (BER) and Frame Error Rate
(FER).

2.10 Fermat transform-based RS codes
In this section we rediscover the RS codes de�ned over GF (Ft) and we show that these
codes have almost the same performances in terms of BER compared to the classical RS
codes de�ned over GF (2m). We note here that the RS codes de�ned over GF (Ft) was
recommended for Spacecraft communication [69] where the RS(256,224) over GF(257) was
studied to be used together with a convolutional code. We suppose that the reason for
which these speci�c RS codes are not so widespread compared to classical RS codes lies
in the arithmetical structure of the Galois �eld over which they are de�ned. That means,
the arithmetical structure of GF (2m) is more simple than that of GF (Ft).

In this study, we revive these codes for the main motivation that their hardware im-
plementation can be partially performed with the aid of pre-implemented FFT where the
building of a SWR system is considered.

Let us discuss the characteristics of GF (Ft). In fact, as shown in previous section,
this �nite �eld can be represented as the set of numbers 0, 1 , 2, ..., 22t with addition
(or subtraction), multiplication and division modulo (Ft). It should be pointed out that
a word of length 2t bits is required to represent the elements of GF (Ft) and an extra bit
is needed to represent the last number 22t . This symbol in GF (Ft) cannot be represented
easily as a 2t-bit word. To remedy this, there are two solutions: the �rst one assumes
the information symbols are restricted in the range from 0 to 22t − 1 and, if the symbols
22t occur as a parity check symbol, this value is deliberately changed to 0 and an error
is committed. We can suppose that the decoder will correct such an error automatically.
The second approach consists in representing the information symbols by 2t bits and the
parity check symbols by 2t +1 bits. An obvious third solution that consists in representing
each one of the elements of GF (Ft) by 2t +1 bits should not be taken into account because
it decreases the useful data rate. The choice between the �rst two solutions should be done
according to the simulation results of these RS codes.
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2.10.1 Encoding of RS codes de�ned over GF (Ft)

In section 2.5.1, we have described in details the two ways of RS encoding over GF (2n) in
time and frequency domains. The same principles can be applied to the RS codes de�ned
over GF (Ft) with the di�erence that the arithmetic operations are done modulo Ft rather
than modulo 2. The encoding in the time domain uses a generator polynomial to calculate
the parity check symbols. In the frequency domain, the encoding consists in constraining
some speci�ed spectral components to zero and �lling the unconstrained components of
the spectrum with data symbols of GF (Ft). Then, the inverse Fermat transform generates
a nonsystematic codeword.

Now let us discuss which one of the two encoding ways is more suitable to obtain
the best performances in terms of BER. In the frequency encoding case, after �lling the
constrained and unconstrained spectrum components, the symbols of the codeword are
generated by an inverse Fermat transform. As a consequence, each of the codeword symbols
may take the value 22t . In the time domain encoding case, the information symbols are
2t-bit symbols and a polynomial division, using the generator polynomial, produces a
systematic code word composed of the original information symbols and of the parity
check symbols. The probability to obtain the symbol "22t" is restricted to the parity
check symbols. Thus, the probability that the symbol 22t occurs during the time domain
encoding, is quite inferior than that of the frequency domain encoding. For this reason,
the time domain solution seems to be most appropriate for encoding the RS codes de�ned
over GF (Ft). Such a decision will be justi�ed in the simulation results. The information
symbols will be then represented by 2t-bits and for the parity check symbols, there are two
possibilities. It is either to add an extra bit for each symbol or to change 22t to zero when
it occurs. The results of simulations in the subsection 2.10.3 specify the most suitable way
to represent such symbols.

2.10.2 Decoding of RS codes de�ned over GF (Ft)

In section 2.5.3, we have described the di�erent algorithms used for the decoding of RS
codes de�ned over GF (2m). These algorithms can be applied to decode the RS codes
de�ned over GF (Ft). However, the highly used RS decoding procedure in actual applica-
tions is that composed of the Berlekamp-Massey algorithm, Chien algorithm and Forney
algorithm (see Fig. 2.7). In this section, we consider this procedure and we will show
the e�cient role the FNT can play by performing the most time-consuming steps of the
decoding process. To better illustrate the task, we divide the decoding process into three
phases as illustrated in Fig. 2.10. The �rst step consists of a Fermat transform to per-
form the syndrome computation, and the second performs the spectral analysis using the
Berlekamp-Massey algorithm and some polynomial computations. The third step also
consists of a Fermat transform to perform the Chien search followed by Forney algorithm
to correct the erroneous symbols.

As illustrated in Fig. 2.10, each of the syndrome computation and Chien search takes
n clock cycles, where n is the block length of the code, which is the most long time in the
decoding process. The suggested FNT to be implemented to replace the corresponding
circuit of each of the syndrome computation and Chien search has a transform length
equal to power of 2. Thus, using the fast algorithms to compute the transforms, FNT
can be implemented into log n stages where each stage is composed of n/2 computational
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units. By computational unit, we mean the "butter�y" consisting of a multiplier, adder
and subtracter. This e�cient implementation of the FNT permits to reduce each n cycles
to log n cycles. Even tough this seems to be ideally, this suggestion is realistic and
promising as it leads to a discussion of building a very fast RS decoder. If a fast FNT
seems a�ordable, this opens another discussion about the use of the FNT as a common
operator while it is capable to perform the required tasks at least two times faster than the
existing solutions. Since these theoretical approaches are directly related to the practical
implementation of the FNT circuit, the ideas will be more clear in the next chapter where
the FNT and FFT implementations are considered.
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Figure 2.10: The three phases of RS decoding process over GF (Ft)

2.10.3 Performances comparison between RS over GF (Ft) and RS over
GF (2m)

In this subsection, we give simulation results in terms of BER and FER vs Eb

N0
(Eb is

the energy per bit and N0 the power spectral density of the channel noise) for di�erent
RS coding schemes with correcting capacity tc equal to 2. In this simulation, random
data with a BPSK modulation are transmitted over an Additive White Gaussian Noise
(AWGN) channel. In Fig. 2.11 and Fig. 2.12, we have a set of �ve BER and FER curves:
(i) uncoded; (ii) RS(16,12) over GF (17) with frequency encoding and frequency decoding
using the Berlekamp-Massey algorithm and the recursive extension, the codeword symbols
are represented by 5 bits each; (iii) RS(16,12) over GF (17) with time domain encoding and
frequency domain decoding using the algorithms indicated in Figure 2.10, the information
symbols and the parity check symbols are represented by 4 bits (4-4); (iv) it is the same
case of (iii) with the only di�erence that each parity check symbol is transmitted over 5
bits (5-4); (v) RS(15,11) over GF (16).

We start this analysis with curve (ii) of Fig. 2.11. In this case, for low Eb

N0
values, the

BER is high compared to other coding schemes. This phenomena can be explained by
the following: �rstly, the loss of useful data rate by transmitting each symbol over 2t + 1
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Figure 2.11: Performances of RS(16,12) over GF (17) and RS(15,11) over GF (16) with
BPSK modulation on AWGN channel. (F.E: Frequency Encoding))

bits increases the channel error probability and consequently the BER. Secondly, if the
number of erroneous symbols is higher than the correcting capacity, the decoding fails and
since the symbols of code words are generated by the Fermat transform, the symbols will
be all erroneous resulting in an high BER. Curve (iii) also indicates a high BER due to
the fact that the symbol 22t

= 16 is set to zero knowing that its probability occurrence
is not equal to zero. We have calculated this probability for di�erent Eb

N0
values to be

around 5.8 %, which in turn degrades the code performances. This degradation is clearly
illustrated in Fig. 2.12 where we observe that at high (Eb/N0), the performances in terms
of FER of curve (iii) worsen as compared to curves (ii). This can be explain by the fact
that the probability of occurrence of symbol 22t (estimated to be around 5.8 %) and that
does not depend on the energy of signal, deliberately decreases the code's error correcting
capability.

Now, let us consider the two curves (iv) and (v) of Fig. 2.11. To solve the problem
of the symbol ”22t

”, we have transmitted each information symbol over 2t bits and each
parity check symbol over 2t +1 bits. In this way, the symbol ”22t

” is correctly represented.
Fig. 2.11 shows that the performances of the RS(16,12) de�ned over GF (17), using the
time domain encoding and the frequency domain decoding according to the algorithms
presented in Fig. 2.10, has similar performances as RS(15,11) de�ned over GF (16).

The asymptotic di�erence is 0.16 dB and can be expressed by the expression (in dB):

∆ = 10log(1/R1) − 10log(1/R2), (2.18)
where R1 and R2 are the code rates of RS(15,11) and RS(16,12) respectively. Here,

∆ = 10log(15/11) − 10log(68/48) = 0.16 dB. This di�erence decreases with the code
length. To justify this, let us consider the two RS codes: RS(255,223) over GF(256) and
RS(256,224) over GF(257), where the codes of each pair have the same error correcting
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capability (tc). The associated code rates R1 and R2 are equal to 0.87 and 0.86 respectively.
Applying equation 2.18, ∆ in this case is equal to 0.05 dB. This drop of ∆ can be explained
also by evaluating, for each RS code, the channel error probability

Pi =
1

2
erfc

√

Ri
Eb

N0
, i = 1, 2. (2.19)

Figure 2.13 shows the channel error probability of each RS code. As we remark, the
di�erence between the two curves of channel error probability in the case of RS(255,223)
and RS(256,224) is very low compared to that of the RS(15,11) and RS(16,12).

Theoretically, the RS codes over GF (Ft) have the same error correcting capability,
the small di�erence in terms of BER is due to the di�erence between the channel error
probabilities. In turn, the channel error probability varies according to the code rate. The
lower the di�erence between the code rates, the lower the di�erence between the channel
error probabilities. Consequently, for long RS codes the di�erence in term of BER becomes
negligible.

2.11 Conclusions: towards the recon�gurable FFT operator
DMFFT

In order to maximize the reusability of the FFT operator we proceeded in the sense of
building a �exible FFT operator able to support two di�erent kinds of computations
in two di�erent environments. Starting from the complex and classical structure of the
FFT dedicated to perform OFDM modulation, frequency equalization ... etc, the idea
is to gracefully exploit this complex structure with the included arithmetic resources to
perform a �nite �eld transform able to be used in the channel coding. For this, we sought



88 The Fast Fourier Transform and channel coding

0 1 2 3 4 5 6 7 8
10

−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (dB)

C
h

an
n

el
 e

rr
o

r 
p

ro
b

ab
ili

ty
RS(15,11)
RS(16,12)
RS(255,223)
RS(256,224)

Figure 2.13: The channel error probability for di�erent RS codes.

a �nite �eld transform that satis�es the complex FFT criteria, such as the FNT. We then
opt to design an operator capable to perform the FFT and FNT. This operator will be
called "DMFFT" (Dual Mode FFT). By dual mode we mean complex mode (over complex
�eld C) and �nite mode (over �nite GF (Ft)). In this way, we can call the DMFFT as a
common and recon�gurable operator. Common means to carry out two di�erent tasks in
two di�erent contexts and recon�gurable means that the operator's hardware con�guration
can change to match the requirements of each functioning mode.

Next chapter will be dedicated to describe in details the hardware design and FPGA
implementation of the DMFFT. In chapter 4, we will discuss some opportunities to make
the DMFFT a triple mode operator by including the GF (2m) transform functionality
among the functionalities that can be provided by the intended triple mode operator.
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In the previous chapter we described the e�cient use of the FNT in the decoding process
of the RS codes de�ned over GF (Ft) and we discussed the possibility for designing it onto
the FFT architecture. In this chapter we shall turn our attention to the implementation of
the global operator "DMFFT" which is able to produce the FFT and FNT functionalities.
This implementation will be based on the implementation techniques of the FFT. FFT
denotes, throughout this chapter, the complex Fourier transform.

In general, there are many di�erent ways of implementing the FFT algorithms. Most of
the research to date for the implementation of these algorithms have been performed using
general purpose processors [70], Digital Signal Processors (DSPs) [71] [72] and dedicated

89
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FFT processors [73]. However, thanks to their high computation capacity at high perfor-
mance and economical price, Field Programmable Gate Arrays (FPGAs) have become a
viable solution for performing computationally intensive tasks such as FFT. In this sense,
applications for custom chips and programmable DSP devices have been tackled, such as
the FFT Megacore function [74] [75].

In the present work, the target hardware for the implementation and evaluation of
the proposed architectures is the Altera's FPGA devices using the traditional hardware
description language VHDL. We note that another mapping language has been widely
used in the literature such as C++ language, System-C language [76] [77] and Handel-C
language [78].

This chapter begins with the basics of FFT algorithms where we select the algorithm
which will be implemented. In Section 3.2, we describe the architectures of the proposed
recon�gurable arithmetic operators and the architecture of the heart of the FFT algorithm
known as the "butter�y" operation. Section 3.3 provides the architecture of the recon-
�gurable DMFFT operator. In Section 3.4, the FPGA-based implementation complexity
study of the proposed operators as well as for the DMFFT is given. A conclusion ends the
chapter.

3.1 Fast Fourier Transform algorithms
We recall that the Discrete Fourier Transform (DFT) of an N -point discrete-time complex
sequence f(n), indexed by n = 0, 1, ..., N − 1, is de�ned by

F (k) =
N−1
∑

n=0

f(n)W kn
N , k = 0, 1, ..., N − 1 (3.1)

where W kn
N = e−j2π/N and j =

√
−1. W kn

N is referred as the twiddle factor.
As well known, the complexity of the DFT direct computation can be signi�cantly re-

duced from N2 to Nlog2N by using fast algorithms that use a nested decomposition of the
summation in equations to exploit various symmetries in the complex multiplications. One
of the most famous algorithms is the Cooley-Tukey radix-r which recursively divides the
input sequence into N/r sequences of length r and requires logrN stages of computation.
Each stage of the decomposition typically shares the same hardware, with the data being
read from memory, passed through the FFT unit and written back to memory. Each pass
through the FFT unit is required to be performed logrN times. Popular choices of the
radix are r=2, 4 and 16. Increasing the radix of the decomposition leads to a reduction in
the number of passes required through the FFT unit at the expense of device resources.
An elaborate description of various FFT algorithms can be found in [79].

In general, each algorithm can be represented either as Decimation In Time (DIT) or
Decimation In Frequency (DIF). For Cooley-Tukey radix-2 algorithm, the decimation-in-
time (DIT) recursively partitions the DFT into two half-length DFTs of the even-indexed
and odd-indexed time samples

F (k) =

N/2−1
∑

n=0

f(2n)W kn
N/2 + W k

N

N/2−1
∑

n=0

f(2n + 1)W kn
N/2, k = 0, 1, ..., N/2 − 1 (3.2)
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and

F (N/2+k) =

N/2−1
∑

n=0

f(2n)W kn
N/2−W k

N

N/2−1
∑

n=0

f(2n+1)W kn
N/2, k = 0, 1, ..., N/2−1. (3.3)

The radix-4 algorithm can be obtained by decomposing equation 3.2 and 3.3 into Xk,
XN/4+k, XN/2+k and X3N/4+k, k = 0, 1, ..., N/4 − 1.

To further improve the computational complexity of the radix-r algorithms, an algo-
rithm called split-radix algorithm was proposed [80]. The basic idea is to mix two di�erent
radixes: radix-2 for the even part of the transform and radix 4 for the odd part. The num-
ber of required real additions and multiplications is usually used to compare the e�ciency
of di�erent FFT algorithms. In terms of the multiplicative comparison, the split-radix
FFT is computationally superior to all the other algorithms. However, the split-radix
FFT is inherently irregular because radix-2 stages are used for the even-half operations
and radix-4 stages are used for the odd-half operations. This irregularity leads to an
unbalanced delay of the pipeline path.

An objective choice for the best FFT algorithm can not be made without knowing
the constraints imposed by the environment in which it has to operate under. The main
criteria for choosing the most suitable algorithm other than the amount of required arith-
metic operations (costs) is the regularity of structure. Several other criteria (e.g. latency,
throughput, scalability, control) also play a major role in choosing a particular FFT algo-
rithm. The search of the best FFT algorithm does not make the subject of our study. The
objective is to test the feasibility of the recon�gurable FFT operator (DMFFT) and then
evaluate its performances. For this, we have chosen radix-2 FFT implementation for our
system because it has advantages in terms of regularity of hardware, ease of computation
and number of processing elements.

Obviously, for a given transform length N power of 2 (or power of 4), the algorithm
chosen to be applied to perform FFT should be valid to perform the FNT. Indeed, since
the symmetry and periodicity properties

αk+N = αk, αk+N/2 = −αk (3.4)

are accomplished, every radix-r algorithm applied to FFT can be applied to the FNT.
Fig. 3.1 shows the traditional 64-point FFT data�ow diagram. What we need to do

here, is to manipulate this circuit in a way to perform the FNT. The heart of this circuit
known as the "butter�y" operation is the element which will be mainly concerned in the
manipulation. Here, manipulation means the recon�guration of the operators constituting
the butter�y as well as the connection between those operators. The switching from FFT
mode to FNT mode should be accompanied by the replacement of the twiddle factor W
by the primitive element α of the given Galois �eld. Fig. 3.2 shows the butter�y structure
with the two operating modes. The internal architecture of this butter�y as well as the
design of modular arithmetic operators will be discussed in details in the next section.

3.2 The FFT-like butter�y architecture
The FFT-like butter�y architecture as shown in Fig. 3.2 consists of three arithmetic
operators: multiplier, adder and subtracter. In the FFT mode these operators process
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Figure 3.1: A traditional FFT data�ow diagram

r

N
w

i

Figure 3.2: The FFT/FNT butter�y

complex data by performing complex multiplications and additions. In the FNT mode,
the data is de�ned over �nite �eld that is GF (Ft) and the operations performing the FNT
computations are needed to be done modulo Ft. So, these arithmetic operators should
be redesigned to be able to support complex and modular operations. The realization of
recon�gurable operators (adder, subtracter and multiplier) is described in details in the
following subsections.

3.2.1 The recon�gurable adder
By using the logic resources employed in the complex adder used in the FFT-like butter-
�y we will implement a modulo Ft adder. Modulo arithmetic has been used in various
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applications. The most important application is in Residue Number Systems (RNS) [81]
[82]. First, let us describe the basic principles and circuit structures used for the ordinary
addition of binary numbers to discuss afterwards the di�erent ways to realize modular
adders.

3.2.1.1 Foundations
Considering binary addition, one can �nd several architectures that o�er a variety of time
delay and area complexity [83].

� Carry Propagate Adders (CPA): A Carry Propagate Adder (CPA) adds two
n-bit operands A = (an−1, an−2, ..., a0) and B = (bn−1, bn−2, ..., b0) and an optional
carry-in cin by performing carry propagation. The result is an irredundant (n + 1)-
bit number consisting of the n-bit sum S = (sn−1, sn−2, ..., s0) and a carry-out cout.
The advantage of this adder is that it o�ers a small design but the penalty is that
the computation time grows linearly with the operand wordlength due to the serial
carry-propagation.

� Carry Save Adders (CSA): The Carry Save Adder (CSA) avoids carry prop-
agation by treating the intermediate carries as output instead of advancing them
to the next higher bit position, thus saving the carries for later propagation. The
operands are represented with the numbers ai ∈ {0, 1, 2} using two digits such as:
ai = ai,c + ai,s where ai,c and ai,s ∈ {0, 1}. The result is a redundant n-digit carry-
save number, consisting of the two binary numbers S (sum bits) and C (carry bits).
The carry save adder has a constant delay (i.e., independent of n).

� Parallel Pre�x/Carry-Lookahead Adders (PPA/CLA): Parallel-pre�x adders
(PPA) are adders using the direct parallel-pre�x scheme for fast carry computa-
tion. They are also called carry-lookahead adders (CLA). Let us consider n inputs
(xn−1, xn−2..., x0) and an arbitrary associative operator "•". In the pre�x problem,
n outputs (yn−1, yn−2, ..., y0) can be computed from the n inputs using the operator
• as follows:
y0 = x0

y1 = x1 • x0
... ...
yn−2 = xn−2 • xn−3 • · · · • x1 • x0

yn−1 = xn−1 • xn−2 • · · · • x1 • x0

The problem can also be formulated recursively:
y0 = x0

yi = xi • yi−1; i = 1, 2, ..., n − 1

In other words, in a pre�x problem every output depends on all inputs of equal
or lower magnitude, and every input in�uences all outputs of equal or higher magni-
tude. Binary carry-propagate addition can be formulated as a pre�x problem using
intermediate pre�x variables [84]: the carry generate term gi and the carry propagate
term pi. This addition, treated hereinafter, has been considered in the realization
of the most e�cient modulo (2n ± 1) adders. Other addition schemes exist in the
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literature as Carry-Skip Adder (CSA), Carry-Select Adder(CSA), Carry-Increment
Adder (CIA), etc. Reference [83] gives good details about the comparison between
the di�erent algorithms.

3.2.1.2 Modulo 2n + 1 addition: state of the art
The most important work that treat the modular addition (modulo 2n ± 1) is based
on the parallel pre�x scheme and diminished-one number system [85][86][87][88]. In the
diminished one number system, each number X is represented by X ′ = X − 1 and the
representation of the value 0 is treated in a special way (i.e. 0 is not used or treated
separately). Therefore, diminished-one modulo (2n + 1) circuits require only n bits for
their number representations. The architectures presented in [85][86][87][88] are derived
from a normal binary adder. In this subsection, to clearly show how a modular adder can
be derived from a normal adder, we consider the work of Zimmermann [85] to illustrate
the idea and subsequently compare it to our proposed modulo(2n + 1) adder treating the
numbers in normal representation.

Binary numbers with n bits are denoted as A = an−1an−2...a0 and can be written as

A =

n−1
∑

i=0

2iai.

The reduction of the number A modulo (2n + 1) can be accomplished by a division
and the remainder constitutes the result, or by iteratively subtracting the modulus until
A < 2n + 1. Since

2n mod (2n + 1) = 2n − (2n + 1) = −1,

the reduction modulo 2n + 1 can be formulated as

A mod (2n + 1) = (A mod 2n − A div 2n) mod (2n + 1), (3.5)
where A mod 2n and A div 2n correspond to the low and high n-bit word respectively.
The modulo operation on the right hand side is used for �nal correction if the subtraction
yields a negative result (i.e., 2n + 1 has to be added once). Thus, the modulo (2n + 1)
reduction can be computed by subtracting the high n-bit word from the low n-bit word
and then conditionally adding 2n + 1 [89].

Furthermore, the modulo operator has the property that the sum and the product
modulo M are equivalent to the sum and the product of their operands modulo M :

(A + B) mod (M) = (A mod M + B mod M) mod M,

(A.B) mod (M) = (A mod M).(B mod M) mod M.

Using the pre�x scheme, Zimmermann proposed an architecture relying on the end-
around-carry adder. The binary addition principle is as follows.

Let A = an−1an−2...a1a0 and B = bn−1bn−2...b1b0 two n-bit numbers and S =
sn−1sn−2...s1s0 their sum. Using the commonly known terms, the carry generate term
gi = ai.bi and the carry propagate term pi = ai + bi, where + denotes an OR operation,
the computation of the carries can be done in parallel by implementing the formula:

ci = gi +
i−1
∑

j=0

(
i

∏

k=j+1

pk)gj +
i

∏

k=0

pkcin,



3.2 The FFT-like butter�y architecture 95

where cin represents the initial carry-in. The bits sn−1sn−2...s1s0 of the sum S are de�ned
as si = hi ⊕ ci−1, where hi = ai ⊕ bi and ⊕ denotes an exclusive-OR operation. By
introducing the associative operator •, the carry computation can be transformed into a
pre�x problem [84]:

(gm, pm) • (gk, pk) = (gm + pm.gk, pm.pk),

and the carries are given by ci = Gi, where Gi is the �rst member of the group relation
(assuming that carry input cin = 0):

(Gi, Pi) =

{

(g0, p0) if i = 0

(gi, pi) • (Gi−1, Pi−1) if 1 ≤ i ≤ n − 1.

Fig. 3.3 shows the general pre�x adder structure. A variety of other pre�x structures
with di�erent sizes exists, which represents alternative circuit area-delay trade-o�s. It is
shown in [83] that the class of pre�x adders contains the most e�cient adder architectures
for the entire range of area-delay trade-o�s, i.e., from the smallest ripple-carry adder (serial
pre�x) to the fastest carry-lookahead adder (parallel-pre�x).

Parallel-prefix carry computation cin

cout

a0 b0a1 b1an-2 bn-2an-1 bn-1

ai

bi

gi hi
pi

hi
ci-1

sis0s1sn-2sn-1

Figure 3.3: The block diagram of a parallel-pre�x adder [85]

By using the diminished one number representation, ordinary addition of two numbers
A and B represented by A′ = A − 1 and B′ = B − 1 respectively, looks as follows:

A + B = S

(A′ + 1) + (B′ + 1) = S′ + 1

A′ + B′ + 1 = S′,

and the modulo (2n + 1) can be formulated as

(A′ + B′ + 1) mod (2n + 1) =

{

(A′ + B′) mod 2n if A′ + B′ ≥ 2n

(A′ + B′ + 1) mod 2n if A′ + B′ < 2n

= (A′ + B′ + cout) mod 2n.
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In order to realize this modulo (2n + 1) addition using the parallel-pre�x adder, Zim-
mermann proposed to use an end-around-carry parallel-pre�x adder with cin = cout (i.e.,
with an inverter in the carry-feedback path):

(A′ + B′ + 1) mod (2n + 1) = (A′ + B′ + cout) mod 2n. (3.6)

Using an ordinary adder and by connecting the carry output via an inverter back to
the carry input may create a combinational loop and then produce an erroneous sum. To
�x this problem, Zimmermann proposed to incorporate an extra stage in the pre�x adder
circuit as shown in Fig. 3.4. The new pre�x-structure is increased by n black nodes and
the critical path by one black node.

For small and medium operand widths, this adder forms a good compromise in both
complexity and delay terms. However, for wide operands, the re-entering carry input has
a very large fan-out requirement, leading to considerably slower designs. Moreover, for
wide operands, the area grows considerably because of the re-entering carry's bu�ering
requirements.

In [86], to avoid the disadvantage of large fan-out, the authors utilized the idea of carry
recirculation in each pre�x level, instead of doing that at the end of the addition. The
resulting architecture is capable to operate as fast as the fastest known integer modulo 2n

or modulo (2n−1) with the penalty of increased implementation area. Another structure is
proposed by the authors based on CLA architectures with more than one level of CLA and
using the idea of performing the addition in two cycles. This CLA adder design produces
both faster and smaller implementations for small n. In [87], an e�cient adder architecture
is proposed. This architecture is based on the idea to decompose the architecture of adder
of Fig.3.4, used as a building block, into m blocks (m=2 or 3) and a single AND-OR
complex gate is utilized for forming the carry output for each block. The modulo (2n + 1)
addition is considered as a two cycles operation. During the �rst cycle, the ordinary
addition takes place. In the second, the carry output is complemented and connected to
the carry-in to be added to the two operands. The resulting adder is called select-pre�x
adder due to its similarity to carry-select adder. The authors of [87] showed that for n > 8
this adder is capable of o�ering the best compromise delay-area complexity compared to
the adders proposed in [86].

All the architectures of modulo (2n + 1) adder described above, use the diminished
one number representation. These diminished-one adders su�er from the problem of the
correct interpretation of all the zero outputs, since it may represent a valid zero output
(that is, an addition with a result of 1) or a real zero output (that is, an addition with a
result of 0). As an example, let us consider the diminished-one modulo 9 addition of A = 6
and B = 4 with C = 5. In diminished-one number we have A′ = 5 = 1012, B′ = 3 = 0112

and C ′ = 4 = 1002. The diminished-one modulo additions are presented in the Fig. 3.5.
To detect the correct result from the real zero (incorrect result), it is necessary to

implement an additional circuit depicted in Fig. 3.6 [87]. The real zero results when two
inputs are complementary. Then, this circuit indicates '0', '1' when a real zero and correct
result are obtained respectively.

However, the diminished-one number system often requires the conversion from and
to the normal number representation using incrementation/decrementation which might
be too expensive when compared to its advantage [85]. In addition, compared to the
normal binary adders, the modulo 2n + 1 adder requires some extra stages which leads to
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Parallel-prefix carry computation

cout

a0 b0a1 b1an-2 bn-2an-1 bn-1

Extra stage

s0s1sn-2sn-1

gi gi-1

g p

pi-1pi

Figure 3.4: The modulo 2n + 1 adder for parallel-pre�x architecture and diminished-one
arithmetic [85]

A’=          101

B’=          011

+

S        1  000

+
cout 0

Correct result 000
(indicating the value 1)

C’=          100

B’=          011

+

S        0  111

+
cout 1

result indicating 000
real zero

Figure 3.5: Diminished-one modulo additions

an increase of the adder's complexity. Taking these facts into account, and the fact that
the modular operators which we aim to realize will be implemented using the arithmetic
operators available in the complex butter�y, these modular operators should deal with
numbers in normal representation. This type of realization allows us to exploit at a great
advantage the existing resources and perform their re-con�guration at a minimum cost.

3.2.1.3 The proposed modulo 2n + 1 adder
The algorithms described in the previous subsection are generally designed for standard
integrated circuits and are based on very-low level basic elements such as NAND and XOR
gates. However, as mentioned in the introduction of this chapter, the target hardware of
our implementation is FPGA devices. These devices embed dedicated carry logic, memory
blocks and some multipliers. Taking advantage of these embedded building blocks, the
FPGA-based modular adders that we have proposed can outperform classical architectures.
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a
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i
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0
b

0
a

n-1 b
n-1

Figure 3.6: Real zero indication circuit

Let us consider the modulo (2n + 1) addition of equation 3.6. By using the normal
number representation, Beuchat [90] proposed to use two adders, one for the binary ad-
dition and the second for the modulo 2n + 1 reduction. In this case, the symbol 2n that
requires (n + 1)-bits for its binary representation should be treated separately. The sum
modulo (2n + 1) of two numbers x and y of the equation 3.6 can be rewritten as

(x + y + 1) mod (2n + 1) =

{

2n if x = 2n and y = 2n

(x + y) mod 2n + cout if 0 ≤ x + y < 2n+1.
(3.7)

The direct implementation of equation 3.7 is illustrated in Fig. 3.7.a. By represent-
ing the sum of the two operands x and y of equation 3.7 by (n + 2)-bits, (1.6) can be
reformulated to be written as [90]

(x + y + 1) mod (2n + 1) = (x + y) mod 2n + sn+12
n + sn+1 ∨ sn, (3.8)

where sn represent the nth bit of the output of the �rst adder. This last equation leads
to the architecture illustrated in Fig. 3.7.b that returns the desired result incremented by
one [90]. The proof of correctness of this algorithm can be found in [90].

Let us consider the classical structure of the complex butter�y shown in Fig. 3.8. The
implemented adder in that structure is a complex operator consisting of two real adders.
By exploiting these available adders we can, from one hand, avoid the change of the binary
adder and the use of an extra stage for the modular reduction. From the other hand, we
can take advantage in terms of speed and complexity improvements that the embedded
adders in the FPGAs can allow. Starting from this consideration and the considerations
of the diminished-one system mentioned in the previous subsection, we propose a modulo
2n + 1 adder based on the idea to use the two binary adders available on the complex
butter�y. The adder we propose, depicted in Fig. 3.9.a, gives the desired result directly
and the modulo 2n + 1 addition can be expressed as:

(x + y) mod (2n + 1) =











(x + y) mod 2n if 0 ≤ x + y < 2n

((x + y) mod 2n + (2n − 1)) mod 2n if 2n < x + y ≤ 2n+1

2n if x + y = 2n.

(3.9)
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Figure 3.7: Two architectures of modulo 2n + 1 adder proposed by [90]

In other words,

(x + y) mod (2n + 1) = S2
nS2 + S2

n2n, (3.10)
where S2 denotes the sum of the second adder:

S2 = [S2
n+1S

2
n...S2

0 ] = [S1
n−1...S

1
0 ] + (2n − 1)(S1

n+1 ∨ S1
n),

and S1 the sum of the �rst adder:

S1 = [S1
n+1S

1
n...S1

0 ] = x + y.

Now, let us demonstrate the correctness of equation 3.10. First of all, let us consider
x and y two elements of GF (Ft = 2n + 1), 0 ≤ x, y ≤ 2n. Then,

0 ≤ x + y ≤ 2n+1.

We have to distinguish between the four following cases to establish the correctness of our
algorithm:

1. For x + y = 2n+1 (i.e. x = y = 2n), we have

S1 = 2n+1(i.e. S1
n+1 = 1, S1

i = 0 for i = 0, ...,n),

consequently S2 = 0 + 2n − 1, S2
n = 0 and our algorithm returns 2n − 1.

2. For x + y = 2n (i.e. x = 0 and y = 2n or x = 2n and y = 0), we have:

S1
n = 1, S1

n+1 = 0,

and
(S1

n ∨ S1
n+1 = 1), S2 = 2n + 2n − 1 = 2n+1 − 1.

In this case S2
n = 1 and the multiplexer selects 2n as a result. This is the only case

where S2
n = 1.
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Figure 3.8: Internal structure of the complex butter�y

3. For 2n < x + y < 2n+1, we have:

S1 = 0.2n+1 + S1
n2n + ... + S1

0 ,

or
2n mod (2n + 1) = (−1 + 2n + 1) mod (2n + 1) = (−1) mod (2n + 1).

The second adder of Fig. 3.9.a returns an addition modulo 2n, then (−1) modulo
2n = 2n − 1. Consequently the following equations

2n + 2n − 1 < S2 = x + y + 2n − 1 < 2n+1 + 2n − 1,

2n+1 ≤ S2 < 3 ∗ 2n − 1,

give S2
n = 0 and our algorithm returns (x + y + 2n − 1) mod 2n.

4. Finally, for 0 ≤ x + y < 2n, we have:

S1
n+1 = S1

n = S2
n = 0 and (x + y) mod 2n+1 = x + y.

The modulo 2n + 1 adder of Fig. 3.9.a can be implemented onto the complex adder
(Fig. 3.8) by interchanging the wired connections and incorporating an OR gate and a
multiplexer. Hence, we achieve a recon�gurable adder that can perform two di�erent kinds
of additions: complex and modular additions. Fig.3.9.b illustrates the architecture of the
recon�gurable adder piloted by a parameter "DM" (Dual Mode) that selects the desired
functioning mode (complex or modular mode).

3.2.2 The proposed recon�gurable subtracter
As well known, the arithmetic subtracter is usually based on the arithmetic adder structure.
An adder can be transformed into a subtracter by inverting the operand to be subtracted



3.2 The FFT-like butter�y architecture 101

0
+

2n

+

n+1 bits

(x+y) mod (2n +1)

2n

n-1 bits

n bits

n+1 bits

x y
n+1 bits

S1

S2

Optional pipeline stage 

(a)  Proposed modulo 2n+1 adder (b)  Proposed reconfigurable adder

DM

1

1

0

1

0

0

1

0

1

Figure 3.9: The proposed modulo 2n + 1 and recon�gurable adders

from the other one and by setting the carry-in to 1. Obviously, this method can be applied,
but in our case, by taking advantage of the nature of the modulo 2n +1 subtraction, some
improvements for the subtracter can be obtained compared with the adder structure. We
suggest here an architecture for the modular subtracter whose subtraction operation can
be expressed as:

(x − y) mod (2n + 1) =

{

2n if (x = 2n and y = 0)
(x + y + 1 + Sn) mod 2n otherwise.

(3.11)

n+1 bits

n+1 bits

2n

n bits

x y

1 0

1

0...,,,1 nn
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+

2n

+
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(a)  Proposed modulo 2n+1 subtracter (b)  Proposed reconfigurable subtracter
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Figure 3.10: The proposed modulo 2n + 1 and recon�gurable subtractors

Let us demonstrate the correctness of this algorithm. First of all, let us consider x and
y any two (n + 1)-bit elements in GF (Ft) (y the operand to be subtracted from x) and
S = (x + y + 1) their (n + 2)-bit sum before the modular reduction. x and y satisfy the
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equation: 0 ≤ x + y ≤ 2n+1.
We have:

2n − 1 ≤ y ≤ 2n+1 − 1,

that gives
2n − 1 + 1 ≤ x − y = x + y + 1 ≤ 2n + 2n+1 − 1 + 1

2n ≤ x + y + 1 ≤ 3 ∗ 2n.

We have to distinguish between the three following cases to establish the correctness of
our algorithm:

1. if x ≥ y =⇒ x + y + 1 ≥ 2n+1, Sn+1 = 1, Sn = 0,
and the algorithm returns x + y + 1.

2. if x ≤ y =⇒ x + y + 1 < 2n+1, Sn+1 = 0, Sn = 1,
and the algorithm returns x + y + 1 + 1.

3. if (x = 2n and y = 0) =⇒ Sn+1 = Sn = 1,
and the algorithm returns 2n.

Fig. 3.10.a depicts the hardware architecture of the modulo 2n + 1 subtracter. In-
corporating this subtracter into the complex one, we obtain the recon�gurable subtracter
illustrated in Fig. 3.10.b. Here, we note that the carry-in of the second adder/subtracter
of Fig. 3.10.b. is connected to the parameter "DM" which is set to "1" when the complex
subtraction is done and passes to "0" when the modular subtraction is performed.

3.2.3 The recon�gurable multiplier
In this section, we shine the light at the di�erent ways to perform multiplication modulo
2n + 1 and then our proposed multiplier will be discussed.

3.2.3.1 Multiplication over GF(Ft): state of the art
The modulo 2n + 1 multiplication is widely used in the computation of convolutions,
Residue Number Systems (RNS) [81] and cryptography (IDEA International Data En-
cryption Algorithm) [91]. Many algorithms and implementations have been developed for
implementing multiplication in standard integrated circuits as well as in FPGAs. Some
algorithms are based on very low-level basic elements such as full-adder and NAND/XOR
gates. On the other hand, advantages can be taken from embedded arithmetic resources
available in the recent FPGAs devices. In this subsection, we describe the principal tech-
niques used for the modulo 2n +1 multiplication and then we discuss the most appropriate
algorithms to our application. Modulo 2n + 1 multiplication techniques discussed below
can be divided into three principal classes [92] [93]:

1. multiplication by means of look-up table (�quarter square� tables, logarithm tables);

2. multiplication by an (n + 1) ∗ (n + 1)-bit multiplier;

3. multiplication based on Carry-Save adders;
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• Multiplication by means of Look-Up Tables (LUT): In this method the prod-
ucts of modulo (2n + 1) multiplications are stored in a table and the desired result is
obtained from a memory cell. The content of this memory cell is indexed by an address
formed by the two operands. As mentioned in [92], the table grows exponentially with the
wordlength n. The associated ROM implementation requires a memory space of 22n ∗ n
bits (n=8: 512 kb; n=16: 64 Gb). Hence, for a wordlength n ≥ 8, the LUT is not feasible
for integration due to its area requirement. To reduce the required memory, two meth-
ods were suggested. The �rst one called �quarter squared� table based on the following
equation [94]:

xy mod (2n + 1) =

(

(

x + y

2

)2

−
(

x − y

2

)2
)

mod (2n + 1)

= (Φ(x + y) − Φ(x − y)) mod (2n + 1)

where Φ(x + y) and Φ(x − y) are evaluated by LUT. This method permits the table to
reduce the memory size from O(22n × n) to O(2n × n).

The second method is based on the fact that the multiplication modulo p is isomorphic
to the addition modulo (p − 1) [95]. In this method, the logarithms of the two operands
are determined �rst and the result is then obtained by calculating the anti-logarithm of
their sum. Compared to the �rst method, table sizes remain the same but there is no need
for an explicit modulo (2n + 1) arithmetic unit. From these considerations, the authors in
[92] conclude that LUT methods cannot be a satisfactory alternative for modulo (2n + 1)
multiplication when large word length are processed.

• Multiplication by an (n + 1) ∗ (n + 1)-bit multiplier: This method starts from
the equation 3.5 recalled below:

P mod (2n + 1) = (P mod 2n − P div 2n) mod (2n + 1). (3.12)

Let us notice that the algorithms developed in this class deals with the numbers be-
longing to the set Z

∗
2n+1 de�ned as Z

∗
2n+1 = {a ∈ Z2n+1 | gcd(a, 2n + 1) = 1} is a group

of order φ(2n +1) under the operation of multiplication modulo (2n +1), where φ denotes
the Euler's totient function (for a ≥ 1, φ(a) denotes the number of integers in {1,...,a}
which are relatively prime to a). If (2n + 1) is a Fermat prime, the set Z

∗
2n+1 contains

φ(2n +1) = 2n elements and the following bijection between Z2n = {a | 0 ≤ a ≤ (2n −1)}
and Z

∗
2n+1 = {a | 1 ≤ a ≤ 2n} is considered. Consequently, the element 0 is replaced by

2n. The original algorithm used in this technique was the "Low-High" algorithm which
was described by the designer of the IDEA used to perform the modular multiplication
[93]. This Low-High algorithm provides the programmer with a tool to perform modulo
2n + 1 multiplication (denoted by ⊙) of two integers when they are in Z

∗
2n+1. By noticing

that the integer 2n is congruent to (−1) modulo (2n + 1), equation 3.12 can be rewritten
as

x ⊙ y = (cL − cH) mod (2n + 1) =

{

(cL − cH) mod 2n if cH ≤ cL

(cL − cH + 1) mod 2n if cH > cL,
(3.13)
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where cL and cH are the lower and higher words respectively of the product x ⊙ y
de�ned as

cL =
n−1
∑

i=0

pi2
i and cH =

n−1
∑

i=0

pn+i2
i.

This method implements the ⊙ operator when x and y are nonzero. However, the
cases where x = 0 or y = 0 must be treated separately. To remedy this problem, Lai in
[91] slightly modi�ed cL and cH :

c′L =











(2n + 1 − x) mod 2n if y=0,
(2n + 1 − y) mod 2n if x=0,
xy mod 2n otherwise,

and c′H =











0 if y=0,
0 if x=0,
xy div 2n otherwise.

(3.14)

Consequently, x ⊙ y can be performed according to

x ⊙ y =

{

(c′L − c′H) mod 2n if c′H ≤ c′L,

(c′L − c′H + 1) mod 2n if c′H > c′L,
(3.15)

The direct hardware implementation of equation 3.15 requires an unsigned n × n-bit
multiplier, two subtractors and a multiplexer. The modulo (2n + 1) reduction involves a
comparator, a subtracter and an adder ([93] Fig.1.a). To reduce the area of the ⊙ operator
(by removing the two subtracters and the comparator), [93] has suggested to rede�ne c′′L
and c′′H as

c′′L =























0 if x 6= 0 and y = 0,

0 if x = 0 and y 6= 0,

1 if x = 0 and y = 0,

xy mod 2n otherwise,

and c′′H =























0 if x 6= 0 and y = 0,

0 if x = 0 and y 6= 0,

1 if x = 0 and y = 0,

xy div 2n otherwise,
(3.16)

and by noting that

(c′′L − c′′H) mod 2n = (c′′L − c′′H + 2n) mod 2n = (c′′L + c′′H + 1),

(c′′L − c′′H + 1) mod 2n = (c′′L + c′′H + 2) mod 2n, (3.17)
the test on c′′L and c′′H can be rewritten as:

c′′L ≥ c′′H ⇔ c′′L + 2n − c′′H ≥ 2n ⇔ c′′L + c′′H + 1 ≥ 2n. (3.18)

Consequently, the comparison between c′′L and c′′H can be transformed to a simple check
of the carry-out of the sum c′′L + c′′H + 1. Then, Equation 3.15 can be rewritten as

x ⊙ y =

{

(c′′L + c′′H + 1) mod 2n if c′′L + c′′H + 1 ≥ 2n,

(c′′L − c′′H + 1) mod 2n if c′′L + c′′H + 1 < 2n.
(3.19)

With equation 3.19, one still need to test the four cases of the input data (x and
y) expressed by the Equation 3.16. To simplify these tests, Curiger [92] proposed an
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architecture that uses an (n + 1) × (n + 1)-bit multiplier (instead of n × n-bit multiplier)
to treat the special cases x = 2n and/or y = 2n correctly. The modular reduction is
performed by implementing a subtracter, modulo 2n adder and an OR gate to set the
carry-in of the modulo 2n adder. However, Beuchat [93] showed that the architecture
proposed by Curiger su�ers from an incorrect result when x = 1 and y = 1. To remedy
the problem, Beuchat suggested, by exploiting the most signi�cant bit of the product
P = xy, to decompose P as

P = P2n22n + 2n
n−1
∑

i=0

pn+i2
i +

n−1
∑

i=0

pi2
i,

x ⊙ y =

{

(c′′′L + c′′′H + 2) mod 2n if P2n = 1 or (P2n = 0 and c′′′L + c′′′H + 1 < 2n),
(c′′′L + c′′′H + 1) mod 2n otherwise,

(3.20)

where c′′′L =
∑n−1

i=0 pi2
i and c′′′H =

∑n−1
i=0 pn+i2

i. The hardware architecture implement-
ing the equation 3.20 is depicted in Fig. 3.11.
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Figure 3.11: The modulo 2n + 1 multiplier [93]

• Multiplication based on Carry-Save Adders: In this method, the modulo
(2n + 1) reduction is performed at the level of each partial product xiy (instead of being
done at the end of the multiplication). In [92], Curiger proposed a modulo 2n+1 multiplier
architecture with Booth-recoded partial products and concurrent modulo reduction with
carry-save addition. This architecture was improved in [96]. In [89], a modulo (2n + 1)
multipliers based on diminished-one number representation with highly regular modulo
carry-save adder arrays and trees were realized. In [85], the architecture proposed by [89]
was improved by the precomputation of a correction term Z, using a faster �nal adder
and using a normal number representation. The corresponding algorithm is based on the
following equation

x ⊙ y = (
n−1
∑

i=0

(xi y 2i) mod (2n + 1)) mod (2n + 1) (3.21)

that, by [85], can be rewritten as
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x ⊙ y = (n + 2 +

n−1
∑

i=0

PPi) mod (2n + 1), (3.22)

where
PPi = xi.yn−i−1...y0yn−1...yn−i + xi.0...0 1...1.

Here, ”0...0 1...1” denotes the number with n − i '0' and i '1'. The corresponding cir-
cuit involves a modulo partial product generator, a modulo (2n + 1) carry-save adder, a
correction unit, a multiplexer and a �nal modulo (2n + 1) adder.

3.2.3.2 The proposed recon�gurable multiplier
In this subsection, we will discuss the last two classes of modulo 2n+1 multipliers previously
described. In [92], Curiger compared the architecture based on the (n + 1) ∗ (n + 1)-bit
multiplier to the two architectures based on the adders summing the intermediate products.
The authors concluded that the �rst architecture o�ers an excellent time/complexity trade-
o� compared to other architectures.

In [93], Beuchat compared the same two classes of multipliers by considering the im-
plementation of the architecture based on the (n + 1) ∗ (n + 1)-bit multiplier and the
carry-save adder based architecture on FPGAs devices from Xilinx family. As the au-
thor noticed, the �rst architecture allows a signi�cant gain in terms of area and delay
compared to the second architecture when the implementation on Virtex-II is considered.
The implementation on Virtex-E showed that this gain in terms of area decreases while
the delay worsens when stage pipelines are not considered. The algorithms based on the
entire multipliers are adapted to the FPGAs implementation and particularly in the case
of devices embedding hardwired multipliers. For this, the (n + 1) × (n + 1)-bit multiplier
presented an important gain in terms of area and delay when implemented on Virtex-II
where embedded multipliers can be used. This gain decreases in the case of Virtex-E where
no multipliers are embedded.

Remembering that the modulo multiplier we aim to design should treat the numbers
in Z2n+1 rather than in Z

∗
2n+1 and will be implemented onto the complex multiplier where

entire real multipliers are available. Taking into account these considerations and the
results of discussion drawn above, we have proposed to adopt the modulo 2n +1 multiplier
based on the (n+1)∗ (n+1)-bit multiplier. By slightly modifying the algorithm described
in [93], we designed our modulo 2n + 1 multiplier (Fig. 3.12) whose modular addition is
realized according to the following equation:

x ⊙ y =

{

(cL + cH + 2) mod 2n if cL + cH + 1 < 2n

(cL + cH + 1) mod 2n otherwise,
(3.23)

where x and y are elements from Z2n+1 = {0, 1, ..., 2n}.
In this architecture, we have eliminated the two blocks dedicated to test the nil values

of operands x and y since these nil values will be included in the modular computations.
The other simpli�cation is the elimination of the OR gate as the most signi�cant bit (P2n)
is not necessary for the multiplication range required to perform the FNT transform. This
simpli�cation comes from the fact that the second operand will be represented by the
powers of the primitive element αi, i ∈ {0, 1, ..., Ft−1

2 − 1} with a range that does
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Figure 3.12: Proposed modulo (2n + 1) multiplier

not exceed Ft − 2 since αFt−1
2 = Ft − 1 = −1 mod (Ft). The modulo 2n + 1 multiplier

is now realized and therefore by incorporating it onto the complex multiplier, we obtain
the recon�gurable multiplier illustrated in Fig. 3.13. This operator, having two operating
modes, is capable of performing complex and modulo 2n+1 multiplications. The switching
from one mode to the other can be done by a simple adjustment of the control signal "DM".
This signal pilots the multiplexors that are capable to change the connections between the
operators. In the modular mode, as per Fig. 3.13, only the highlighted blocks will be
activated to perform the modulo 2n + 1 multiplication. However, the whole architecture
will be fully utilized when a complex multiplication is solicitated.

In our scenario, the signal DM is set to 1, 0 in the complex and modular mode respec-
tively. As for the operators size ”nc”, representing the wordlength, it is �xed according to
the complex FFT architecture and the number of bits allocated to represent the elements
of GF (Ft) is equal to 2t + 1. Only a part n + 1 = (2t + 1) of the total bits nc will be
used in the modular computation as shown in Fig. 3.13. Considering the modular mode,
the signal enters through the real input Br, multiplies by the coe�cients αi (selected by
the mux 1) where it then endures modular reduction by the subtracter and the adder
to be driven out through the real output Pr. As for the complex mode, the data enter
through the two inputs Br and Bi, both cosine (Wr) and sine (Wi) memories are selected
to undergo with the input data the complex operations and get ejected through the output
signal Pr and Pi. The above discussion on the operator functioning is expressed in the
following equation

Pr =

{

(Br Wr − Bi Wi) if DM=1
(Br ⊙ αi), i = {0, 1, ..., Ft−1

2 − 1} if DM=0
(3.24)

Pi = (Br Wi + Bi Wr).

3.2.4 The recon�gurable butter�y
The three arithmetic recon�gurable operators are designed, connected and pipelined to
build the hardware structure of the recon�gurable butter�y described in Fig. 3.14. This
butter�y receives two nc-bit input signals and a signal control DM . When DM is 1, the
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Figure 3.13: Proposed recon�gurable multiplier

butter�y operates in the complex mode and the size of operators (i.e. the wordlength)
is �xed according to the complex FFT requirement (precision, area complexity). In this
mode, all the arithmetic resources available in the architecture are used and the mux 1
selects the output of the ROM containing the cosine-coe�cients Wr. The �ow of the data
through the architecture is controlled by the signal DM which commands the di�erent
multiplexors. When DM passes to 0, the butter�y operates in GF (Ft) and the arithmetic
operations are performed modulo Ft. The input data is driven through the two real inputs
Ar and Br, the two other inputs (Ai and Bi) are unused. In this mode, one of the four
real multipliers is used and the others are deactivated. The wordlength is n + 1 = 2t + 1
bits that corresponds to the lower bits of the complex words represented by nc bits. The
ROM selected in this case is the one containing the powers of α (αi). The output data
is driven out on the two real ouputs P 1

r and P 2
r where only their lower n-bits are used.

As shown in the Fig. 3.14, two pipeline stages are used to reduce the critical path. The
emplacement of these stages is based on the implementation results discussed in the next
chapter. Now, the heart of the recon�gurable FFT operator is designed which will allow
us to design a global dual mode FFT operator (DMFFT ) capable of carrying out, in a
optimal way, two di�erent transforms.

3.3 The Dual Mode FFT operator: DMFFT
By using the recon�gurable butter�y presented in the previous section we will realize the
recon�gurable FFT operator called DMFFT. This realization of the Dual Mode FFT will
be based on the realization techniques of the complex FFT while taking into account the
considerations of recon�guration aspects.

Considering the implementation of the complex FFT, apart from the arithmetic re-
sources (multipliers and adders) requirements, two principal issues should be taken into
account. The �rst one is the word-length or the size of the arithmetic operators where two
possible number representations can be used: �xed-point and �oating-point. This issue
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Figure 3.14: The recon�gurable butter�y architecture

a�ects precision, quantization errors and hardware complexity. Increased word-length of
data and twiddle factors increase the precision and reduce the quantization error at the
cost of area (and power). Conversely, to maintain a lower hardware cost, a shorter word-
length can be chosen at the sacri�ce of precision. In this work we consider the �xed-point
arithmetic for the FFT computations. This matter will be discussed in section 3.4.

The second one is the memory requirement in which two memory types are required:
RAM to store the intermediate data between two consecutive stages of computation, and
ROM to store the twiddle factors and the powers of α.

There are many di�erent ways of implementing an FFT operator. Among these di�er-
ent ways, there are two methods that can be seen as two extremes: the �rst one consists
in performing the transform computations by using only a single memory unit and one
arithmetic unit. This method leads to a very simple circuit in terms of area, but the
penalty is the very high computation time required to execute the transform. The second
one consists in implementing the entire FFT structure composed of log N stages and N

2
arithmetic units in each stage, where N is the transform length. For this method, no RAM
blocks are needed between two consecutive stages since the entire sequence is processed in
parallel. This method leads to a very high speed computation at a very large thus expen-
sive area. As we will see later, this method is not practically feasible since it consumes
the totality of a FPGA device. Between these two extremes, one can �nd a method that
can constitute an important trade-o� between area complexity and computation time.
This way of implementing the FFT consists in implementing logN stages where each stage
contains one Processing Element (PE), some memory blocks and a control unit needed to
control the data stream.

Based on this latest method and on the complex FFT structure, the DMFFT archi-
tecture we propose consists of a GCU (Global Control Unit) and log N stages as shown
in Fig. 3.15.
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Figure 3.15: The DMFFT architecture

The uppermost GCU is composed of the following individual circuits:

1. FFT/FNT operation selection: there is a control signal DM which determines the
operating mode. The values 1, 0 of DM indicate that the complex Fourier transform
and Fermat transform are performed respectively.

2. Transform size selection: the DMFFT operator is designed to perform various
lengths of FFT and FNT computations. The parameter m determines the num-
ber of stages to be implemented and then the transform size N = 2m.

3. Word-length size: to provide the system designer with maximum �exibility, the in-
put/output data and the twiddle factor's word-length has been designed in a way to
vary by a simple adjustment of corresponding parameters. A parameter nc deter-
mines the complex word-length, nw determines the twiddle factor word-length and
t determines the desired Fermat number and subsequently the length n = 2t + 1 of
the GF (Ft) valued symbols.

This GCU is also responsible for the initialization of the entire DMFFT architecture
and for the control of the data input and data output and the synchronization between
two consecutive input frames.

3.3.1 Stage architecture
The proposed FFT architecture is a pipeline architecture where a pipeline level is em-
ployed between two consecutive stages. This allows a reduced critical path and then a
high throughput rate. The internal structure of each stage except stage 1 is illustrated
in Fig. 3.16. As shown, the stage architecture is composed of the following design units:
SCU (Stage Control Unit), AGU (Address Generating Unit), memory blocks (RAM and
ROM) and recon�gurable butter�y called RPE (Recon�gurable Processing Element). As
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for stage 1, its architecture is similar to the one presented in Fig. 3.16 with some modi�-
cations. In this stage, no multipliers nor ROM blocks are needed since the corresponding
twiddle factors are equal to 1. Consequently, the RPE of Fig. 3.16 is replaced by two
operators: recon�gurable adder and recon�gurable subtracter which are described in sub-
sections 3.2.1.3 and 3.2.2 respectively.

RPE

Data out

Stage Architecture 

1
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Stage Control Unit
(SCU)

i
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AGU

RAMs

r
W

i
W

i

ROMs

AGU

Data in

Figure 3.16: The general architecture of a DMFFT stage

3.3.2 Stage Control Unit (SCU)
Each stage in the DMFFT architecture contains a Stage Control Unit (SCU). This SCU
handles the data storage and the data output in the actual stage. The data output is
controlled by two signals enable out and start out connected directly to the next stage to
indicate when the data is ready to be transferred. These two signals represent, for the
next stage, the two signals enable in and start in that manage the data input. Then, the
input data of stage i is controlled by the SCU of stage i − 1. For stage 1, the input data
is operated by the GCU. The �nal output data of the DMFFT is handled by the SCU of
the �nal stage (stage log N ).

The SCU is also responsible for handling the read/write operations from and to the
memories (RAMs and ROMs).

3.3.3 Address Generator Units (AGUs)
The purpose of the AGUs is to provide the input/ouput RAMs and ROMs with the correct
addresses. The ROM addresses of each stage are generated with the aid of virtual counter
that synchronizes the output of twiddle factors (Wr, Wi and αi) with the data stream.
These twiddle factors are provided while taking into account the bit-reversal of the input
data.



112 Architecture of the DMFFT operator

There is another virtual counter to control the read/write operations from and to the
RAMs storage blocks. The initialization of all these virtual counters is done thanks to the
control signals provided by the SCU.

3.3.4 Memory Blocks
Altera provides parameterizable megafunctions that can from one hand help to save valu-
able design time and from another hand allow the use of e�cient and optimized functions
from delay and complexity point of view. Among the resources available in the Altera's
devices, there are ROM and RAM storage functions.

ROM megafunctions

The ROM megafunctions available in Altera's devices are single-port ROM with sep-
arate input and output ports. These storage functions support both synchronous and
asynchronous modes of operation. The input and output ports are controlled by input
clock and output clock respectively. An enable signal is provided that allows the optional
use of enabling or disabling the output port. When the memory is disabled, the output
port is high-impedance. The ROM initialization can be done using memory initialization
�le or HEX �le. We have created the ROM blocks using the MegaWizard Plug-In Manager
(1). To initialize these ROMs, we computed the twiddle factor's coe�cients for di�erent
word-lengths and various transform lengths by using MATLAB software to generate the
�les (.mif) and then by using Quartus II, we converted the �les.mif to hexadecimal �les
(.hex).

RAM megafunctions

There are three types of RAM megafuntions available in Altera's devices (STRATIX
II):

• RAM: 1-PORT
• RAM: 2-PORT
• RAM: 3-PORT

TheRAM-1-PORT implements a single-port RAM that can operate with two modes:
single clock mode and dual clock mode. In single clock mode, the read and write operations
are synchronous with the same clock. Dual clock mode operates with two independent
clocks: input clock for write operation and output clock for read operation.

The RAM-2-PORT implements a dual-port RAM function and o�ers the possibility
of simultaneous read and write access to memory cells. The two clock modes are also
available in this RAM function. In addition, for this dual port RAM, one can specify
either one of the two-dual port modes: a simple dual-port mode (one read port and one
write port) or a true dual-port mode (two read ports and two write ports).

(1)MegaWizard Plug-In Manager is a tool integrated in Quartus II software helping to create or modify
design �les that contain custom megafunctions variations.
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The RAM-3-PORT implements a tri-port RAM function: one write port and two
read ports. Single and dual clock modes are available in this RAM function. The tri-port
RAM supports applications that require parallel data transfer in which two independent
clock ports use di�erent access rates for read and write operations.

Let us discuss the use of RAM for the DMFFT implementation. Firstly, let us describe
the operating principle of a traditional FFT by considering the FFT butter�y-structure of
the FFT-16 illustrated in Fig. 3.17. This architecture represents the whole FFT structure
where the maximum number of RPE is implemented.
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Figure 3.17: The FFT-like butter�y architecture

In this �gure, only the wired butter�ies with twiddle factors are shown. The purpose
is to illustrate how the butter�ies are routed into the FFT structure to thereafter better
understand the scheduling of the butter�y processing. As discussed earlier in this section,
performing the FFT computation with this architecture seems to be the most expensive
solution. The alternative is to perform the FFT computation by implementing one RPE
in each stage where this RPE must perform all the butter�y operations required in the
given stage. But the point is that in which order the butter�y operations should be
executed. Indeed, there are two methods to process these operations. The �rst one
consists in performing the butter�y operations successively as shown in Fig. 3.18 where
Bi

j represents the jth butter�y operation in the ith stage.
Due to the nature of the butter�y routing of the FFT structure shown in Fig. 3.17,

there are some latencies between the start of the processing of any two consecutive stages.
In Fig. 3.18, the scheduling of the butter�y processing is based on the fact that the
outputs Bi

j,1 and Bi
j,2 of stage i must be consumed consecutively by the two consecutive

butter�y operations of stage i + 1. This method leads to a non FIFO bu�ering of the



114 Architecture of the DMFFT operator

t=18

t=14

Stage 1 Stage 2 Stage 3 Stage 4

t=1

t=2

1

1B

1

2B

1

3B

1

4B

1

5B

1

6B

1

7B

1

8B

2

1B

2

2B

2

3B

2

4B

2

5B

2

6B

2

7B

2

8B

3

1B

3

3B

3

2B

3

4B

3

5B

3

7B

3

6B

3

8B

4

1B

4

5B

4

2B

4

6B

4

3B

4

7B

4

4B
4

8B

t=3

t=4

t=5

t=6

t=7

t=8

t=9

t=10

t=11

t=12

t=13

t=15

t=16

),(
1

1,2

1

1,1 BB

),(
1

2,2

1

2,1 BB

),(
1

1,4

1

1,3 BB

),(
1

2,4

1

2,3 BB

),(
1

1,6

1

1,5 BB

),(
1

2,6

1

2,5 BB

),(
1

1,8

1

1,7 BB

),(
1

2,8

1

2,7 BB

),(
2

1,3

2

1,1 BB

),(
2

2,3

2

2,1 BB

),(
2

1,4

2

1,2 BB

),(
2

2,4

2

2,2 BB

),(
2

1,7

2

1,5 BB

),(
2

2,7

2

2,5 BB

),(
2

1,8

2

1,6 BB

),(
2

2,8

2

2,6 BB

),(
3

1,5

3

1,1 BB

),(
3

2,5

3

2,1 BB

),(
3

1,6

3

1,2 BB

),(
3

2,6

3

2,2 BB

),(
3

1,7

3

1,3 BB

),(
3

2,7

3

2,3 BB

),(
3

1,8

3

1,4 BB

),(
3

2,8

3

2,4 BB

t=17

i

jB i

j
B 1,

i

j
B 2,

i: denotes the stage number

j: denotes the Butterfly number

in the stage i

Stage i

Figure 3.18: The scheduling of butter�y processing (non FIFO bu�ering)

data. Let us consider stage 2 and stage 3 of Fig. 3.18. The outputs (B2
1,1 and B2

1,2) of the
butter�y B2

1 should be consumed by the �rst two butter�y operations B3
1 and B3

3 . But,
B3

1 and B3
3 require the pair (B2

3,1,B2
3,2) to perform their computations correctly and since

the pair (B2
2,1,B2

2,2) is computed and stored before (B2
3,1,B2

3,2), it leads to a non FIFO
memory. To be processed continuously, the butter�y operations of stage 3, should start
their computations after 5 clock cycles from the computation start of stage 1. Taking
into account the latency of each stage, the global latency is 10 clock cycles and the �rst
frequency sequence will be computed after 18 clock cycles.

The second method of scheduling the butter�y operations is illustrated in Fig. 3.19.
This method is based on the fact that the butter�y operations of the stage i that need,
for their computations, the components Bi−1

j,1 of stage i−1 to be scheduled and performed
�rstly. Once the available Bi−1

j,1 are processed, the butter�y operations employed to treat
the components Bi−1

j,2 will be performed. This scheduling of the butter�y operations leads
to FIFO bu�ering of the intermediate computations between any two consecutive stages.
The size of the RAM needed to store the components Bi

j,2 is twice the size of that needed
to store the components Bi

j,1 (as shown in Fig. 3.16). We note that the latency and the
memory requirements are the same in the two methods.

According to the butter�y operation scheduling and to the principle of treatment of
the data of stage i by the butter�y operations of stage i + 1, we note the following. By
using RAM-1-PORT blocks, the throughput rate of the DMFFT will be one symbol by
clock cycle since the butter�y operation needs two symbols for its computation which are
stored in the same memory. To provide two symbols per clock cycle, we need to use RAM-
3-PORT blocks (one write port and two read ports). As shown in Fig. 3.16, for complex
FFT, 4 RAM blocks are needed to store the two complex components of the butter�y (two
blocks for the real components and two for the imaginary ones). In the case of �nite �eld
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Figure 3.19: The scheduling of butter�y processing (FIFO bu�ering)

transform or FNT, the RAM blocks dedicated to store the real components will be reused
to store momentarily the intermediate GF (Ft) valued computations.

3.3.5 Recon�gurable Processing Element (RPE)
The recon�gurable butter�y designed in subsection 3.14 represents the core of the DMFFT
operator. This butter�y called RPE is implemented in each stage and its operating mode
is controlled by the GCU. The data stream acquisition of a RPE employed in stage i
is controlled by the SCU of stage i − 1. The RPE acquires the data and applies the
multiplication of the twiddle factors with the corresponding symbols and the intermediate
results continue the way to the adders and subtractors to undergo the corresponding
operations. The storage of the RPE computation results in the RAM blocks is handled by
the SCU.

3.4 FPGA implementation and complexity study
In chapter 1, we have brought up two approaches of designing a multi-standard or multi-
mode system: the velcro approach and the recon�gurable approach, and we have suggested
that this latest approach is more e�cient than the former. In this section, we will justify
this suggestion by implementing these two approaches and giving some evaluating �gures.
Embodiment of this issue by comparing the DMFFT operator performances to those of
the alternative Velcro operator seems to be an appropriate solution. By Velcro operator,
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we mean here a global operator that constitutes the implementation of two self-contained
operators: FFT and FNT.

During the last decade, the FPGA devices have demonstrated the ever-growing ability
to handle in hardware a number of complex functions which would have been developed in
software. Therefore, actual FPGA-based �exible computing systems have real potentials
of merging the �exibility of general-purpose computing systems and the high performance
of custom designed hardware. These FPGA devices embed some fundamental arithmetic
operators (multipliers, adders, etc.) that are at the heart of all computing systems. Their
cost and speed performance have a direct in�uence on the performance of a computing
system built from them. In this work, we have designed the DMFFT operator based on
the processing element RPE which in turn is based on the fundamental arithmetic oper-
ators. Then, implementing this DMFFT on FPGA can take advantage of the embedded
arithmetic resources and then provide a potential and high performance operator.

The FPGA implementation of the DMFFT and the Velcro operator will be then in-
vestigated. A complexity study of these two operators will be drawn by evaluating their
performance-to-cost ratio de�ned in [97]. This ratio called η is expressed as 1

TC ∗106, where
C is the number of logic blocks related to the cost of a FPGA-based circuit and T the
execution time in nanoseconds (ns). As η increases, a better tradeo� between execution
time and cost is obtained.

Usually, the mapping of a circuit design onto an FPGA device is accomplished by a
software development tool provided by the FPGA manufacturer. These software tools
have their predetermined cost and timing measures. The software used for our designs is
the Quartus II v.6 and the device target is the Stratix II family from ALTERA.

3.4.1 The Stratix II family
This subsection gives a brief overview of useful features of Stratix II devices for this work.
Stratix II presents an e�cient logic structure that maximizes the performance and enables
device densities approaching 180,000 equivalent Logic Elements (LEs). Stratix II devices
o�er up to 9 Mbits of on chip, TriMatrix memory and has up to 96 DSP (Digital Signal
Processing) blocks with up to 384 (18−bit×18−bit) multipliers for e�cient implementation
of high performance �lters and other DSP functions. Depending on the device, up to 1,170
I/O user pins can be supported.

The architecture of Stratix II devices is based on two-dimensional row and column that
provides signal interconnects between Logic Array Blocks (LAB), memory block struc-
tures and DSP blocks. Each LAB consists of eight Adaptive Logic Modules (ALMs), carry
chains, LAB control signals, local interconnects and register connection chain lines. An
ALM is the Stratix II device family's building block of logic providing e�cient implemen-
tation of user logic functions. The local interconnect transfers signals between ALMs in
the same LAB. Register chain connections transfer the output of an ALM register to the
adjacent ALM register in an LAB.

One ALM contains a variety of Look Up Tables (LUT)-based resources that can be
divided between two Adaptive LUTs (ALUTs) as shown in Fig. 3.20. With up to eight
inputs to the combinatorial logic, one ALM can implement various combinations of two
functions. In addition to the adaptive LUT-based ressources, each ALM contains two
programmable registers, two dedicated full adders, a carry chain, a shared arithmetic
chain and a register chain. The ALUT is the cell used in the Quartus II software for logic
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synthesis. Thus, the number of ALUTs will be used throughout this work as a metric to
evaluate the FPGA-based circuit complexity and then the parameter η.

Carry_in

Shared_arith_in reg_chain_in

carry_out

Shared_arith_out
Reg_chain_out

Combinatorial Output

Register Output

Combinatorial Output

Register Output

Full

Adder
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Logicr

Reg 0

Reg 1

D      Q

D      Q

ALUT 1

ALUT 2

The combinatorial logic is adaptively divided between the two ALUTs

ALM

Figure 3.20: High-Level block diagram of the Stratix II ALM and its relationship with the
ALUTs

We will start the complexity study by evaluating the performances of our proposed
modulo 2n + 1 adder previously discussed in subsection 3.2.1.3 and comparing it to the
adder proposed in [90]. Then, a complexity comparison between the Velcro and the recon-
�gurable adder will be given. This complexity comparison, Velcro vs recon�gurable ap-
proach, will continue by considering the RPE basic element to be ended with the DMFFT
operator.

3.4.2 The modulo (Ft) adder complexity
We have written a synthetizable VHDL code(2) of the di�erent basic elements of the
DMFFT. The �rst experiment compares our proposed adder (Fig. 3.9) to the one pro-
posed in [90]. The two operators have been implemented for three di�erent adder sizes
(n = 5, 9, 17) linked to the practical Fermat numbers Ft=17, 257 and 65537. Table 3.1
summarizes the implementation results. By analyzing the measures of the two key param-
eters (cost in term of ALUTs and critical path delay), we observe that the two adders have
almost the same performances with a slight di�erence in the number of ALUTs required
for large n, where some additional ALUTs are needed for our adder. But in view of the
fact that our proposed adder returns exactly the desired addition result, it is still more
advantageous since the adder presented in [90] needs an additional correction circuit while
it returns the desired result incremented by one.

3.4.3 The recon�gurable adder complexity
By a second experiment, we have implemented a Velcro and a recon�gurable adders. The
Velcro adder contains a complex and a modulo (Ft) adder implemented separately and the

(2)All experiments described in this paper were performed on a PC (pentium 4, 3 GHz, 1 GB of memory)
running Windows XP. The VHDL code was synthesized using Quartus II version 6 and implemented on
STRATIX II, EP2S15F484C3 Device with the option "Standard Fit" as the level of the Fitter's e�ort.
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Table 3.1: Comparison between the two modulo (Ft) adders on a STRATIX II,
EP2S15F484C3 device (n = 2t + 1)

circuit n=5 n=9 n=17
Fig1.k [90] 16 ALUTs 28 ALUTs 52 ALUTs

(without pipeline) 2.369 ns 2.75 ns 3.48 ns
Fig.3.9a 16 ALUTs 28 ALUTs 60 ALUTs

(without pipeline) 2.88 ns 3.43 ns 4.25 ns
Fig1.k [90] 21 ALUTs 38 ALUTs 69 ALUTs

(with pipeline) 2.369 ns 2.369 ns 2.369 ns
Fig.3.9a 22 ALUTs 40 ALUTs 86 ALUTs

(with pipeline) 2.369 ns 2.369 ns 2.369 ns

recon�gurable one contains a �exible modulo (Ft) adder able to perform both additions
over GF (Ft) and C �elds. Table 3.2 summarizes their performances: ηV for the Velcro
adder and ηR for the recon�gurable adder.

Table 3.2: Comparison between the recon�gurable and the Velcro adders on a STRATIX
II, EP2S15F484C3 device (n = 2t + 1).

circuit n=5 n=9 n=17

Complex adder 30 ALUTs 54 ALUTs 102 ALUTs
2.369 ns 2.369 ns 2.369 ns

Modulo (Ft)

adder
21 ALUTs 40 ALUTs 86 ALUTs
2.369 ns 2.369 ns 2.369 ns

Velcro adder 51 ALUTs 94 ALUTs 188 ALUTS
2.369 ns 2.369 ns 2.369 ns

recon�gurable
adder

37 ALUTs 67 ALUTs 121 ALUTs
2.369 ns 2.369 ns 2.416 ns

η = 1

TC
∗ 106

ηV = 8276 ηV = 4490 ηV = 2245
ηR = 10832 ηR = 6300 ηR = 3420

The �rst two rows of Table 3.2, gives some �gures of the implementation of each
complex and modulo Ft adder implemented independently. The third row, gives the im-
plementation measures of the Velcro operator containing the two adders implemented in
single circuit. Concerning the comparison between the Velcro and recon�gurable adders,
it is seen from Table 3.2 that the recon�gurable operator has the highest performance-to-
cost ratio compared to the Velcro circuit. This is the expected result as the recon�gurable
approach seems to be the more e�cient approach.

3.4.4 The recon�gurable butter�y complexity
In the beginning of this section we have reported that the dynamic range is an important
issue to be taken into account in any hardware implementation while it a�ects the compu-
tation precision as well as the circuit complexity. Now, we will discuss in details this issue
by considering the quanti�cation methods applied to the �xed-point FFT computations. In
subsection 3.4.5, we give some �gures illustrating the relationship between the wordlength
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and the precision for a �xed-point FFT computations while taking into account the gain in
terms of ALUTs. This can help to select the best tradeo� precision-circuit complexity. We
should point out that this issue concerns the complex FFT while the wordlength required
for the FNT computations is �xed by the given Galois �eld (GF (Ft).

3.4.4.1 Quanti�cation error analysis of the FFT
When the FFT is computed in a �xed-point arithmetic, some truncation and round oper-
ations are needed to maintain the same wordlength of the input and output data. These
operations introduce some errors called quanti�cation errors that can a�ect the accuracy
of the FFT computations. Lots of researches have analyzed the e�ect of these quanti�ca-
tion errors [98], [99], [100] where the output Signal-to-Quantizaion-Noise Ratio (SQNR)
is evaluated. These analysis assume �xed point-arithmetic with nc-bit wordlength where
two quanti�cation operations are considered: truncation of the multiplication result by
WP and scaling by a factor 1/2 of the addition results.

Let us consider the butter�y computations of the DIT-FFT algorithm described in the
following equations:

Bi+1
j,1 = Bi

j,1 + W r
N Bi

j,2

Bi+1
j,2 = Bi

j,1 − W r
N Bi

j,2,

where Bi+1
j,1 and Bi+1

j,2 represent the outputs of the jth butter�y operation at the (i+1)th
stage. These equations show that the magnitude of computation results increases at each
stage. In [100], it is shown that the maximum magnitude of the butter�y outputs at each
stage is usually inferior or equals to 2:

max(|Bi
j,1|, |Bi

j,2|) ≤ max(|Bi+1
j,1 |, |Bi+1

j,2 |) ≤ 2 max(|Bi
j,1|, |Bi

j,2|).

Then, by applying a scaling factor 1
2 to the butter�y outputs we can prevent the

over�ow. This quanti�cation can be performed by a simple 1-bit right-shifting of the
binary words. The variance of the resulting error is about σ2 ≈ 2−2b

16 [100], where b is the
number of bits to the right of radix point after truncation.

The second quanti�cation is done after the multiplication by the twiddle factors. After
each real multiplication of two b-bit numbers, the 2b-bit product is truncated to be b-bit
number. The variance of this error truncation is σ2 ≈ 2−2b

12 .
In [101], the author studied the e�ect of the emplacement of these two quanti�cations

in the butter�y. After various computer simulations, the author showed that the best
solution is to employ the truncation of b bits right after the real multiplier and the scaling
(right bit-shifting) right after the real adder (and subtracter) as shown in Fig. 3.21.

This butter�y represents the best complexity-precision tradeo�. We note here that
there are other ways of quanti�cation that lead to better precision but need wider size of
arithmetic operators.

For our implementation, since we consider an FFT/FNT operator, an additional issue
should be taken into account that is the relationship between the wordlength of complex
data and GF (Ft) symbols. That means, before we �x the wordlength to be used in the
FFT computations, we should predetermine which GF (Ft) should be considered, i.e. which
FNT length should be performed. In general, the dynamic range used for the �xed-point
FFT implementation is between 10 and 16 bits [101]. This dynamic range allows the
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Figure 3.21: The emplacement of the quanti�cations in the butter�y

construction of GF (Ft) for four Fermat prime numbers Ft: t = 0, 1, 2, 3. In practice, the
most interesting GF (Ft) used among these Galois �elds is GF (Ft = 257). It allows the
various FNT lengths (from 16 up to 256) and consequently the building of various RS
codes. Next subsection discusses the implementation of a dual mode butter�y realizing
the FNT over GF (257) and the FFT for various wordlengths. The case of F4 = 65537 is
also tested.

3.4.4.2 FPGA implementation of the recon�gurable and Velcro butter�y
Table 3.3 shows some measures of the implementation on Stratix II of the recon�gurable
and Velcro butter�ies for di�erent nc and n values that represent the C and GF (Ft) symbol
wordlengths respectively. The values n = 9 and n = 17 are the required bits number to
map the symbols in GF (Ft = 28 + 1 = 257) and GF (Ft = 216 + 1 = 65537) respectively.

Now let us discuss the �gures given in Table 3.3. For the recon�gurable butter�y, there
is a small delay excess of around 2% compared to the Velcro solution. This time penalty
is widely balanced by complexity gain values (in term of ALUTs) around 18% in favor of
the common butter�y operator. Moreover, the performance-to-cost ratio ηR has always
the highest value compared to ηV . The associated gains are 20.8, 19.8 and 20.2 % for nc

equal to 9, 12 and 17 respectively.
These performance �gures clearly justify once again the interest of using a common

and recon�gurable operator instead of Velcro operator.

3.4.5 The DMFFT complexity study
Now we arrive to the implementation of the DMFFT. As a test, we have implemented the
entire structure of the DMFFT-16 containing 4 × 8 butter�ies. The implemented circuit
consumed 60 % of the Stratix II, EP2S15F484C3 Device. Consequently, a larger length
of DMFFT cannot be implemented on such FPGA device, from where comes the need to
adopt a more simple structure such the structure previously illustrated in Fig. 3.15.

To evaluate the performances of this DMFFT architecture, we have implemented it
on Stratix II (Fig. 3.22) and compared its performances to those of a Velcro FFT/FNT
operator implemented on the same device (Fig. 3.23). The RAM blocks used in this
implementation are RAM single port.

Table 3.4 shows the implementation measures for the DMFFT-64 implemented for
di�erent wordlengths. The Fourier/Fermat transforms that can be performed in this same
architecture have N = 64 as transform length. Regarding the Fourier transforms, the
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Table 3.3: Comparison between the recon�gurable butter�y and the Velcro butter�ies on
a STRATIX II, EP2S15F484C3 device.

circuit nc=9 nc=12 nc=17
n=9 n=9 n=17

Velcro butter�y 403 ALUTs 629 ALUTs 1062 ALUTs
4.20 ns 5.07 ns 5.60 ns

Re-con�gurable
butter�y

326 ALUTs 514 ALUTs 875 ALUTs
4.3 ns 5.18 ns 5.64 ns

ALUT's gain 19.1 % 18.2 % 17.6 %
Delay's excess 2.18 % 2.16 % 0.7 %

η = 1
TC ∗ 106 ηV = 590 ηV = 313 ηV = 168

ηR = 713 ηR = 375 ηR = 202

Performance-to
-cost ratio gain 20.8% 19.8% 20.2%
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Figure 3.22: Layout of the DMFFT-64 implemented on a Stratix II, EP2S15F484C3

wordlength plays an important role on the accuracy of the computations. This accuracy
increases as the wordlength increases. As for the Fermat transforms, they are de�ned over
GF (257) whose symbols are represented by 9 bits.

The measures given in Table 3.4 represent the cost in terms of ALUTs, the critical
path delay in ns, the memory saving, the gain in terms of ALUTs and the performance-
to-cost ratio gain that the DMFFT presents compared to the Veclro operator. This latest
measure represents the percentage gain between ηR and ηV . According to these measures,
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Figure 3.23: Layout of the Velcro FFT/FNT-64 implemented on a Stratix II,
EP2S15F484C3

Table 3.4: Comparison between the DMFFT-64 and the Velcro FFT/FNT-64 operator on
a Stratix II, EP2S15F484C3

nc 9 10 11 12 13 14 15 16

Velcro
operator

4205 4768 5156 5831 6064 6844 7302 8143
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.86 ns 5.27 ns 5.08 ns 5.46 ns 5.74 ns 5.81 ns 5.79 ns 6.62 ns

DMFFT
3109 3744 4112 4857 5182 5975 6469 7387
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.78 ns 4.97 ns 5.0 ns 5.45 ns 5.76 ns 5.85 ns 5.86 ns 6.65 ns

Memory
saving 33 % 31 % 29 % 27.2 % 25.7 % 24.3 % 23 % 21.9 %

ALUT's
gain 26 % 21.4 % 20.2 % 16.7 % 14.5 % 12.7 % 11.4 % 9.2 %

η's
gain 37.4 % 35 % 27.5 % 20 % 16.7 % 13.9 % 11.5 % 9.7 %

we remark that depending on the wordlength, the DMFFT presents a memory saving
around between 20 and 30 %, a gain in ALUTs and performance-to-cost ratio gain that
go from 9.2 % up to 26 % and from 9.7 % up to 37.4 % respectively. These gains have
their maximum values for nc = n = 9, i.e. when the FNT mode exploits the maximum
number of the resources dedicated to the FFT mode. These gains have their minimum
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values when nc = 16. In this case, there are 7 bits unused by the FNT mode while in the
Velcro operator, 9-bits wordlength is su�cient to implement the FNT.

Table 3.5 represents the implementation measures of the DMFFT-256 and the Velcro
FFT/FNT-256 operator. The memory saving is practically the same and the other gains
evolve in the same manner of that of DMFFT-64 but with lower values. This is due to the
fact that the DMFFT complexity is dominated by that of the FFT and when the transform
length increases, the FFT complexity increases rapidly while the FNT complexity remains
moderate.

Table 3.5: Comparison between the DMFFT-256 and the Velcro FFT/FNT-256 operator
on a Stratix II, EP2S15F484C3

nc 9 10 11 12 13 14 15 16

Velcro
operator

5327 6079 6566 7518 7885 8966 9513 10770
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
5.02 ns 4.95 ns 5.13 ns 5.45 ns 5.58 ns 5.84 ns 6.1 ns 6.55 ns

DMFFT
4466 5365 5911 6819 7336 8546 9124 10389
ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs ALUTs
4.86 ns 4.9 ns 5.0 ns 5.5 ns 5.63 ns 5.9 ns 6.11 ns 6.58 ns

Memory
saving 33 % 31 % 29 % 27 % 25.5 % 24 % 22.8 % 21.9 %

ALUT's
gain 16.2 % 11.7 % 9.97 % 9.29 % 7 % 4.68 % 4 % 3.5 %

η's
gain 24 % 15.1 % 12.1 % 9.4 % 6.6 % 4.2 % 4.06 % 3.54 %

In order to select the wordlength that can provide the best tradeo� precision-cost,
it was necessary to evaluate the in�uence of the wordlength on the precision or on the
accuracy of FFT computations and then illustrate the corresponding result vs the gain in
ALUTs. To perform this simulation, we have evaluated by software the FFT using �oating-
point arithmetic and have compared the results with those obtained with the DMFFT as
shown in Fig. 3.24.

Floating-point FFT

Fixed-point FFT

SQNR
computation

SQNR
-

+
x(n) Q xq(n)

Figure 3.24: Block diagram of the simulation analysis

The output of the conceptual block diagram of Fig. 3.24 represents the Signal-to-
Quantization-Noise Ratio

SQNR = 10 log(
E[|S(k)2|]
E[|N(k)2|] ), (3.25)
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where E[|S(k)2|] and E[|N(k)2|] represent the root-mean-square of the useful signal
(provided by the �oating-point FFT) and the quantization-noise respectively. During
simulation, random patterns are generated, quanti�ed and fed into the two FFT blocks.
Fig. 3.25 illustrates (from left to right) the SQNR evaluations for FFT-64 and FFT-256
vs the complexity gains for the same transform lengths previously given in Figs. 3.4 and
3.5. As we remark in Fig. 3.25, when the number of bits increases, the SQNR increases
whereas the complexity gain in terms of ALUTs decreases.

As a tradeo� between precision and complexity, 13-bit wordlength seems to be the best
solution.
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Figure 3.25: The relationship between the wordlength and the gain in ALUTs for N=64
and N=256

3.5 Conclusions
This chapter has investigated the design and FPGA implementation of a recon�gurable
DMFFT operator. This design was based on the realization of recon�gurable arithmetical
operators (multiplier, adder and subtracter) leading to the DMFFT operator. This op-
erator provides two functionalities: FFT and FNT. During the experimentations, it was
highlighted that the implementation of the whole FFT structure for large transform length
is not a practical solution with the actual FPGA devices while an FFT-16 consumes 65
% of the STRATIX II devices. Then, another implementation strategy was adopted. The
best computing time-area complexity tradeo� was obtained by implementing, for trans-
form length N , log N computation stages where each stage is composed of one processing
element (known as butter�y), a stage control unit and some memory blocks. With this im-
plementation strategy, the DMFFT and the Velcro FFT/FNT operators were implemented
and compared. The implementation results showed, in favor of the DMFFT operator, an
important memory saving and gains in terms of ALUTs and in terms of performance-to-
cost ratio which vary with the wordlength and the transform length. The DMFFT operator
that was built constitutes a CO candidate to integrate a SDR system intending to support
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several standards where the complex Fourier transform and the RS coding are required.
The RS codes that can be teated with this operator are the RS codes de�ned over GF (Ft).

The next step is to extend the study towards the classical RS codes de�ned over
GF (2m) and design an operator which, besides the two functionalities FFT and FNT,
provides also the �nite �eld Fourier transform de�ned over GF (2m). Next chapter will
discuss the evolution of the Dual mode operator DMFFT towards a triple mode operator.
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4.1 Introduction
The analysis presented in Chapter 2 has suggested the use of RS codes de�ned over GF (Ft)
by taking advantages of the use of FNT to perform the longest steps of the decoding
process. This FNT functionality is provided by the DMFFT operator as seen in Chapter
3. Nevertheless, RS codes implemented in the various actual standards are codes de�ned
over GF (2m). Then, the inclusion of the �nite �eld Fourier transform de�ned over GF (2m)
as an extra functionality to be provided by our designed CO is a necessity to be on actual
standardization's trend.

From error correcting capability point of view, we have shown that the performances
of the speci�c RS codes de�ned over GF (Ft) are as good as those of RS codes de�ned over
GF (2m). Starting from this hypothesis and from the main objective aiming to insert the
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complex FFT in the channel coding, in Chapter 3 we have designed a common operator
able to provide two functionalities: complex Fourier transform and Fermat transform. The
resulting operator can perform any communication task requiring the complex Fourier
transform and contributes e�ciently in the decoding process of RS codes de�ned over
GF (Ft) thanks to the Fermat transform.

The hardware design realized in Chapter 3 constitutes a serious and concrete attempt
to design a recon�gurable operator by exploiting the hardware resources of complex FFT.
This attempt showed the feasibility of such an operator and led to a dual mode FFT whose
performances are more e�cient than those of the Velcro FFT/FNT.

From hardware complexity point of view, we should point out that the mathematical
structures used in GF (2m) are still simpler than those used in GF (Ft). That is, a modulo
2 addition (i.e. XOR operation) is simpler than a modulo Ft addition. Then, a RS
encoder/decoder over GF (2m) compared to a RS encoder/decoder over GF (Ft) should be
less complex. However, the use of RS codes over GF (Ft) presents an advantage in the
presence of a pre-implemented complex FFT while the FFT and FNT structures are very
similar.

Starting from these considerations, we have investigated the realization of an operator
able from one hand to take advantage of the complexity gain o�ered by the DMFFT
and from the other hand to meet the requirements of the current standards. For this, we
proposed the realization of a Triple Mode Velcro FFT operator (TMVFFT) able to provide
three functionalities: complex Fourier transform (FFT-C), Fermat Number Transform
(FNT) and �nite �eld Fourier transform over GF (2m) (FFT-GF2). This operator, able to
support three processing contexts via a simple parameter adjustment, could be a CO for
a SWR system intended to receive several communication standards.

This chapter begins by presenting the general architecture of the TMVFFT operator
with its Velcro approach and thereafter gives some suggestions to upgrade this operator
towards a single and recon�gurable Triple Mode FFT operator (TMFFT).

4.2 TMVFFT operator architecture
In the light of the above discussion, we present in this section the architecture of the
TMVFFT. This architecture seems to be obvious, but the idea is to start from this archi-
tecture and reach a more e�cient architecture.

Fig. 4.1 shows the Velcro approach of the triple mode FFT where TM is a control signal
used to select the functioning mode to be performed. This architecture consists of two
self-contained operators: DMFFT and FFT-GF2. This approach will generally provide the
best performance but at a high circuit complexity. We can minimize the circuit complexity
by going towards a recon�gurable approach where the two architectures are combined and
therefore the same hardware resources can be reused for both architectures. Nevertheless,
this reusability of the hardware resources should not a�ect the system's performance.
Thus, we need to �nd the right level of complexity at which we reach a performance level
acceptable for the set of practical applications involved in the SWR system functionality.
This is the level that gives the optimum performance-cost trade-o�.

Starting from these considerations, we propose in the next section two scenarios allow-
ing the the evolution of the TMVFFT.
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Figure 4.1: The TMVFFT architecture

4.3 Scenarios for the evolution of the TMVFFT architecture
In this section, we describe the two scenarios we propose. The �rst one leads to an
optimal use of the TMVFFT while the second serves as a road-map to progress from the
TMVFFT of Fig. 4.1 towards a Triple Mode FFT (TMFFT) operator shown in Fig. 4.2.
The practical realization of the �rst scenario is described in the following sections. As
for the second scenario, we give some guidelines that could aid the achievement of this
scenario envisaged as a perspective of this work.

TMFFT
Input data Output data

TM

Figure 4.2: The TMFFT architecture

¥ Scenario 1: Speeding up the computing time. This scenario supposes that an
operator can be reused during a given time slot if its computing time is at least twice
faster than the existing alternative operators. With this scenario, the architecture
of the triple mode operator is still a Velcro architecture.

¥ Scenario 2: Combination of the two operators (DMFFT and FFT-GF2).
This scenario is based on the combination of the DMFFT and FFT-GF2 opera-
tors. The aim is to implement the FFT-GF2 using the arithmetical resources of the
DMFFT. The resulting operator is a recon�gurable triple mode operator (TMFFT)
able to provide transforms over three di�erent domains: C, GF (Ft) and GF (2m).
The switching from one mode to another can be performed by simple parameter
adjustments.
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4.4 Scenario 1: optimal use of the TMVFFT via the upgrade
of the DMFFT

In general, a CO intending to replace two operators (operator 1 and operator 2) by pro-
viding their functionalities, could e�ciently achieve this mission if it is capable to perform
the task of each operator in half the time needed by each one of the two operators. Then,
such use of the CO does not a�ect the performances of the concerned system. Fig. 4.3
illustrates this principle. As shown in this �gure, the CO is considered as twice faster than
each of the two operators. Consequently, if operator 1 task (Op1 task) and operator 2
task (Op2 task) are initially performed with Tc each, the CO is able to perform both Op1
task and Op2 task in Tc.

Common

Operator

Tc /2 Tc /2

Op1 task

Tc

Op2 task

Tc

Op1 task

Tc

Op2 task

Operator1

Tc

Operator2

Tc

Tc

Figure 4.3: Task diagram of Common Operator

In this section, we consider the evolution of the TMVFFT architecture by upgrading
the functioning e�ciency of the DMFFT as shown in Fig. 4.3. As discussed in the previous
chapter (section 3.3.4), the type of RAM plays an important role in the processing time of
the RPE. Let us start with the DMFFT architecture of Fig. 4.4. This �gure shows only a
part of the architecture that represents the RPE, RAM blocks and the data routing buses.

The architecture of Fig. 4.4 employs RAM-1-port blocks (one write port and one read
port). Let us consider n the number of clock cycles needed to perform the FFT (or the
FNT) functionality. The corresponding computing time to provide a transform sequence
is equal to t = n Tc. By employing a RAM-3-Port (one write port and two read ports),
the architecture of Fig. 4.4 evolves towards the architecture of Fig. 4.5.

This architecture is more e�cient in terms of computing time which in this case is
equal to t′ = (n/2) Tc. By this way, during a time t, the DMFFT operator is able to
provide both FFT and FNT functionalities.

For example, with the architecture of Fig. 4.5, the DMFFT operator can compute two
sequences of Fermat transform during a time t. This allows the DMFFT, used in the RS
decoding process, to replace the syndrome computation block and the Chien search circuit
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Figure 4.5: The DMFFT architecture with RAM 3-Port

and provide their functionalities during the same time t and without a�ecting the original
time of the decoding process.

This approach can be extended and a computing time t′′ = (n/4) Tc can be attained by
implementing two RPEs per stage, i.e. duplication of the architecture of Fig. 4.5 within
the global DMFFT architecture previously shown in chapter 3 (Fig. 3.15). The order
of this evolution can be determined according to the need of the DMFFT functionalities
required in the SWR system. We should then predetermine the right need of the DMFFT
functionalities in SWR system and base the DMFFT structure on that need while taking
into account the hardware complexity that should not exceed certain limits.

4.5 Scenario 1: optimal use of the TMVFFT via the upgrade
of the FFT-GF2

In this section, based on the principle illustrated in Fig. 4.3, the design of a new FFT-
GF2 architecture leading to an e�cient use of FFT-GF2 implemented in Fig. 4.1 will be
described.
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In the GF (2m) domain, the best algorithm to compute the �nite �eld Fourier transform
has been introduced by Wang and Zhu [102]. This algorithm allows the reduction of a
number of multiplications from O(n2) to O(1

4n(log n)2), where n is the transform length.
A VLSI chip was designed by the authors for the simple case of GF (24) by using the
technology λ = 1, 5µm CMOS. The required computing time is (n + 1)Tc where Tc is the
time required for doing one multiplication over the underlying �eld. This long computing
time restricts the use of the FFT circuit that should be allotted to only one task during a
given time slot.

Starting from SWR considerations, the idea is then to design a FFT-GF2 with perfor-
mances that can evolve this operator into a CO. To reach this objective, we proceed in a
way which allows us to speed up the transform computing time while taking into account
the hardware complexity. The solution is the use of cyclotomic FFT. This solution is based
on representing a polynomial as a sum of linearized polynomials. This approach was �rstly
suggested in [103] and then generalized in [104]. Based on this approach, an attractive
method to compute Fourier transform over GF (2m) is proposed in [105]. In that paper, the
authors compared their proposed method to main related works existing in the literature
(as Horner's method and Goertzel's algorithm and some others algorithms) and showed,
throughout a complexity study, that their suggested method requires a lower number of
multiplication and addition operations. As mentioned, their suggested method is more
e�cient for short FFT lengths (n ≤ 255). For large transform lengths, more e�cient FFT
algorithms are preferred [102] [106] [107].

The method proposed in [105] is based on the factorization of the transform matrix
into a product of binary circulant matrix and a diagonal circulant matrix. This method
takes advantages of the cyclotomic decomposition of an original polynomial into a sum of
linearized polynomials and then provides a matrix form of the transform computations.
By carefully studying this method, we have noticed that the cyclotomic decomposition
of polynomials used to reduce the number of operations (multiplications and additions)
can be equally exploited to get a set by set treatment of the input sequence. This means
that instead of sequential processing (symbol by symbol) by the FFT circuit of the input
data used in [102], we propose to design a FFT circuit taking advantages of the cyclo-
tomic decomposition of the input sequence to process the data set by set according to this
decomposition. This leads to a �exible FFT-GF2 able to perform its transform computa-
tion with a time t′ ≤ t

2 , where t refers to the computing time required by the algorithm
[102] which will be used in the rest of this section. According to [102], t is expressed as
t = (n + 1)Tc.

The architecture we aim to design, which is based on the method proposed by [105],
could make the FFT-GF2 a CO thanks to the reduced computing time at which this CO
will operate. This leads to get an optimal exploitation of resources and �nd a best way to
re-use some hardware modules without a�ecting the system's performances.

In [108], the application of the cyclotomic FFT to the RS decoding is discussed where a
reduction complexity of the syndrome evaluation is shown. In [104], an improved algorithm
for �nding roots of polynomials over �nite �elds is presented.

In this work, we consider the use of the FFT to perform both steps: syndrome compu-
tation and Chien search in the RS decoding process. This architecture can be e�ciently
used to implement the Gao algorithm [109] whose main operations can be performed using
the Fourier transform and the method proposed in [110]. It can also be used in any other
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application necessitating the use of FFT-GF2 and speci�cally when fast computations and
high throughput rate are required.

For the description of the method introduced in [105] and its implementation we will
proceed as follows. In section 4.5.1 we summarize the method by de�ning some of its key
concepts. For more details on some basic de�nitions and computation developments, the
lecturer will be referred to Appendix C. Section 4.5.2 gives the hardware interpretation of
the method and section 4.5.2.4 describes the proposed hardware architecture. The perfor-
mance evaluation of the designed architecture is done by considering its implementation on
FPGA devices and comparing it with the VLSI implementation of the algorithm proposed
in [102]. Some implementation �gures (i.e. critical path delay and hardware complexity)
are given in section 4.5.2.5. Finally, a conclusion ends this chapter.

4.5.1 Cyclotomic algorithm for the �nite �eld transform computation
De�nition 4.2.6. A polynomial L(y) over GF (2m), where m is an integer, is a linearized
polynomial if

L(y) =
∑

i

Liy
2i

, Li ∈ GF (2m). (4.1)

It can be easily shown that L(y) satis�es L(a + b) = L(a) + L(b). This property leads
to the following theorem, presented here in a slightly modi�ed form with respect to that
de�ned in [57].

Theorem.1. Let x ∈ GF (2m) and let β = (β0, β1, ..., βm−1) be a basis of the �eld. If

x =
m−1
∑

i=0

xiβi, then L(x) =
m−1
∑

i=0

xiL(βi), (4.2)

where xi ∈ GF (2). Let us consider the cyclotomic cosets Cks
modulo n = 2m − 1 over

GF (2):

C0 = {0},
Ck1

= {k1, k12, k12
2, ..., k12

m1−1},
...

Ckl
= {kl, kl2, kl2

2, ..., kl2
ml−1},

where ks ≡ ks2
ms mod n. Then any polynomial

f(x) =
n−1
∑

i=0

fixi, fi ∈ GF (2m)

can be decomposed as

f(x) =
l

∑

i=0

Li(x
ki), (4.3)

where

Li(y) =

mi−1
∑

j=0

fki2jmod n y2j

.
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In fact, equation (4.3) represents a way of grouping indices 0 ≤ i < n of f(x) terms
into cyclotomic cosets : i ≡ ks2

j mod n. Obviously, this decomposition is always possible.
Note that the term f0 can be represented as L0(x

0), where L0(y) = f0y.

The cyclotomic FFT algorithm described in [105] is based on representing the polyno-
mial f(x) as a sum of linearized polynomials (cyclotomic decomposition of the polynomial)
as we will explain in the following.

Let us consider f = f0, f1, ..., fn−1, n | (2m − 1), a vector of n GF (2m) elements. The
Fourier transform of f is denoted by Fj with

Fj =

n−1
∑

i=0

fiα
ij , j = 0, ..., n − 1, (4.4)

and α is the primitive element of order n in the �eld GF (2m). The vector f(x) can be
expressed by a polynomial

f(x) =

n−1
∑

i=0

fix
i, i = 0, ..., n − 1. (4.5)

According to equation 4.3, f(x) can be expressed as

f(αj) =

l
∑

i=0

Li(α
jki). (4.6)

It is known [57], that αki is a root of a minimal polynomial of degree mi (mi|m) and
thus belongs to a sub�eld GF (2mi). Thus all the values (αki)j lie in GF (2mi) and so they
can be decomposed in some basis βi = (βi,0, ..., βi,mi−1) of the sub�eld and represented as:

αjki =

mi−1
∑

s=0

aijsβi,s, aijs ∈ GF (2). (4.7)

Then each linearized polynomial can be evaluated at the basis points of the corre-
sponding sub�eld by the formula

Li(βi,s) =

mi−1
∑

p=0

β2p

i,sfki2p , (4.8)

and according to equation 4.3,

Fj = f(αj) =
l

∑

i=0

mi−1
∑

s=0

aijsLi(βi,s)

=
l

∑

i=0

mi−1
∑

s=0

aijs(

mi−1
∑

p=0

β2p

i,sfki2p), (4.9)
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where j ∈ [0, n − 1].

This equation can be represented in matrix form as

F=ALf, (4.10)

where F = (F0, F1, ..., Fn−1)
T , f = (f0, fk1

, fk12, fk122 , ..., fk12m1−1 , ..., fkl
, fkl2, ..., fkl2

ml−1)T

are vectors consisting of some permutations of elements Fj and fi, respectively, A is a ma-
trix with elements aijs ∈ GF (2) and L is a block diagonal matrix with elements β2p

i,s.
It is possible to choose the same basis for all linearized polynomials of the same degree

mi in equation (4.3) to obtain a very small amount of di�erent blocks in the matrix L and
consequently simplify the problem of constructing a fast algorithm for multiplication of the
matrix L by a vector f over GF (2m). Moreover, if the normal basis βi is used in equation
(4.9), all the blocks of the matrix L are circulant matrices. Then, the multiplication by
this matrix can be performed by a cyclic convolution of degree mi. Indeed, there are
e�cient algorithms which can be applied to perform the cyclic convolution e�ciently [43]
and then reduce the computation complexity of the FFT.

The cyclotomic FFT algorithm can be considered as two principal stages of multipli-
cations: (i) multiplication of the block diagonal matrix L by the original vector f and (ii)
multiplication of the binary matrix A by the resultant vector S = Lf . The matrix L can
be decomposed into (l + 1) circulant matrices according to the cyclotomic decomposition
of f , where (l + 1) represents the number of cyclotomic cosets. Then, the mutiplication
Lf can be performed by a set of cyclic convolutions. The development of this step is given
in Appendix C. Taking into account the results of such a development, Equation 4.10 can
be rewritten as

F=AQ(B.(PF)), (4.11)
where Q is the binary block diagonal matrix of combined post-additions for l+1 cyclic

convolutions, B is the combined vector of constants, and P is the binary block diagonal
matrix of combined pre-additions. Further details can be found in Appendix C.

4.5.2 Hardware interpretation
By turning the algorithm into a hardware language we design an architecture consisting
of four stages with a parameterized and a modular architecture for the fourth stage. It
is this last stage which determines computing time and the throughput rate of the global
architecture.

In this section we reformulate the algorithm presented in [105] to be adapted to hard-
ware implementation. Firstly, we give a cyclotomic decomposition of various GF (2m)
and we show the in�uence of this decomposition on the FFT structure and then on the
computing time and global throughput rate.

Secondly, we introduce di�erent steps of computation which will be adapted to the
hardware interpretation of the FFT algorithm, and to better understand the procedure
we give some examples in GF (24). Next, we present how the mathematical and matrix
equations can be expressed as logic gates (AND, XOR) and some multipliers over GF (2m).



136 DMFFT and FFT over GF (2m): from a dual to a triple mode FFT operator

4.5.2.1 Cyclotomic decomposition
The elements of GF (2m) can be grouped into cyclotomic cosets Cks

. These cosets do not
all have the same size, so the processing blocks that the data have to cross will not be
the same. That is, the cosets of the same size will be processed by the same processing
blocks independently of the others which, in turn will be processed by other computational
blocks. The structure of the FFT circuit is then based on the cyclotomic decomposition of
the GF (2m) symbols constituting the time sequence. We have written a Matlab program
to calculate the di�erent cyclotomic cosets for several GF . Table 4.1 shows these cosets
with their corresponding GF .

As shown in Table 4.1, each GF consists of three classes of cosets : (i) a coset that
contains only one element (ii) cosets which contain more than one element and (iii) cosets
with the highest possible number of elements. We observe that the number of cosets
containing the highest number of elements are always more large as compared to other
cosets. Consequently, the number of cycles needed to perform the FFT computation is
determined by this latest class of cosets.

Table 4.1: The cyclotomic cosets for di�erent GF.

GF Cyclotomic cosets

GF (23) 1 C{1}, 2 C{3}*

GF (24) 1 C{1}, 1 C{2}, 3 C{4}
GF (25) 1 C{1}, 6 C{5}
GF (26) 1 C{1}, 1 C{2}, 2 C{3}, 9 C{6}
GF (27) 1 C{1}, 18 C{7}
GF (28) 1 C{1}, 1 C{2}, 3 C{4}, 30 C{8}

* n C{m} : n sets of m elements

4.5.2.2 The di�erent steps for the FFT algorithm
Here, we divide the cyclotomic FFT algorithm into four steps that will help the designer
to adequate the theoretical approach to the hardware architecture.

Step 1. Determine the cyclotomic cosets (their number and the size of each one) of the
given GF , choose the basis of each class of cosets and decompose each element of GF (2m)
with respect to the normal basis. For example in GF (24), we have �ve cyclotomic cosets:

C0 = {f0},
C1 = {f1, f2, f4, f8},
C3 = {f3, f6, f12, f9},
C5 = {f5, f10},
C7 = {f7, f14, f13, f11},
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where fi represents the data to be transformed. The basis for C1, C3, C7 is (β, β2, β4, β8),
where β = α3 and α an element of GF (24) which can be decomposed as α = β + β8. For
C5, we can choose as basis (γ, γ2) where γ = α5.

Step 2. Develop f(αi), i = 0, ..., n − 1, according to f(αj) =
∑l

i=0 Li(α
jki) and de-

duce the coe�cients "aijs" of the matrix A. For example, in GF (24) l=4, k0=0, k1=1,
k2=3, k3=5, k4=7 and f(α1) = L0(α

0) + L1(α) + L2(α
3) + L3(α

5) + L4(α
7)

= L0(1) + L1(β) + L1(β
8) + L2(β) + L3(γ) + L4(β) + L4(β

2) + L4(β
4),

where we can deduce the coe�cients "aijs”=(1 1 0 0 1 1 0 0 0 1 0 1 1 1 0). The same
procedure applied to the others f(αi) leads to obtain the matrix A shown in Appendix C.

Step 3. Develop Li(y), i = 0, ..., l, according to (5). As shown in [105], Li(y) repre-
sents a cyclic convolution between the normal basis and the fi.

Example: in GF (24), by applying the algorithm for four-point cyclic convolution
described in ([43], chapter 11) we can write the matrix product S = Lf as

S = Lf = Q

(

(

R βT
i

)

.
(

P fi

)

)
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(4.12)

Step 4. Apply the same interpretation done in step 3 to the coset C5. For this coset,
we obtain a two-point cyclic convolution.

At the end of step 4 we have all the elements necessary to implement the equation
F = ALf = AS. The hardware implementation of these matrices product is described in
the next subsection.

4.5.2.3 Interpretation
Here, we consider the hardware interpretation of the di�erent steps described above to
subsequently present the implementation of 15-point FFT over GF (24). As previously
mentioned, this �eld consists of �ve cyclotomic cosets (C0, C1, C3, C5, C7). The same
principle can be applied to other FFT lengths. The architecture we propose is based on
the cyclotomic decomposition and is composed of two units. The �rst one is the principal
unit dedicated to process, set by set, the data symbols which belong to the third class
of cosets (C1, C3, C7). It is the processing of data by group which allows to decrease the
computing time and leads to a high throughput rate. The second one is the additional unit
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used to process the data symbols which belong to the second class of cosets C5. The only
element of the �rst class of cosets which represents the �rst symbol of the "time-domain"
data is processed at the last stage of computation.

We start the hardware interpretation of the algorithm from step 2 of the previous
subsection. The inputs of the FFT circuit are the fi which are grouped according to the
cyclotomic decomposition and processed consecutively (C1,C3 and then C7). So, taking
these fi's as inputs we tackle the implementation of equation 4.11 from right to left. Then,
the �rst stage of the architecture which implements the matrix product V1 = Pfi (V1 is
a column vector) is composed of XOR gates that provide the eight modulo 2 additions
of the coset elements. The result of the second matrix product V2 = (RβT

i ) is also a
column vector whose elements belong to GF (24) which subsequently will be multiplied by
V1. Indeed, V2 can be predetermined and then implemented as the multiplicands of the
multipliers which will perform the vector multiplication [V ] = [V1].[V2]. At this second
stage only eight multipliers are needed since the �rst element of V2 is always equal to 1
(it is the sum of the normal basis). The third stage consists of the multiplication of the
matrix Q by the vector V . This multiplication can be implemented by XOR gates which
perform the four (number of rows of the matrix Q) combinations of the V elements.

Once the vector S is computed, we can tackle the implementation of the last stage
(stage 4) which represents the most important task. Stage 4 will perform the following
multiplication :

F = A
([

Cp0 Cp1 Cp3 Cp5 Cp7

]T )

, where Cp0 = f0 and Cp1, Cp3, Cp5, Cp7 are the
processed cosets corresponding to C1, C3, C5, C7 respectively. Vector F is composed of
the 15 frequency components. Let us consider, as an example, the computation of the
component F1. Bearing in mind that the Cpi (i=1,3,7) are generated consecutively, each
one of these cosets will be multiplied by the corresponding set of elements of each one of
the 15 rows of the matrix A. Firstly, we consider that the coset Cp5 is processed in parallel
by another block. Then F1 is produced after 3 clock cycles where each cycle corresponds
to 4 XOR additions and 15*4 AND-multiplication in parallel of each processed coset by
its corresponding set in matrix A. After each multiplication the result will be stored in
a register to be added to the next multiplication (and additions) result. Once the third
multiplication is achieved, the total is added to the result of the processing of C5 (Cp5)
and then the sum is added to f0 to �nally obtain the component F1.

In this approach we have considered the implementation of 15 cells (in stage 4) that
process the data in parallel what reduces the computing time and produces a high through-
put rate. We can reduce the complexity by executing repeatedly the functionality of the
implemented cells. This issue will be discussed in more details in the next section. In Ap-
pendix C, we describe in details the development of theoretical computations of cyclotomic
FFT-15.

4.5.2.4 Hardware architecture
Starting from the decomposition of the FFT computation into four steps and their hard-
ware interpretation described in the previous section, now we present the FFT architecture
and we discuss the di�erent ways to implement the last stage of the proposed architec-
ture. Fig. 4.6 shows the FFT-15 architecture that operates at the minimum computing
time and produces the highest throughput rate over GF (24). Fig. 4.7 shows in details
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the internal architecture where the wired logic circuits, the ROM and the control unit of
stage 4 are exhibited. As expected, this architecture consists of four stages. The �rst
stage is composed of �ve 4-bit-XOR gates. These gates are interconnected according to
the matrix S. The second stage is composed of eight multipliers whose multiplicands are
predetermined and implemented. The third stage consists of ten XOR gates implemented
according to the matrix Q.

5 XOR gates

implemented

according to the 
matirx P

Eight GF(2n)
multipliers

(The multiplicands
are given

by the vector V2 )

10 XOR gates
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according to 
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Figure 4.6: The cyclotomic FFT architecture

According to the cyclotomic decomposition of the data in a given GF , there are several
choices of implementation of the last stage that consequently lead to di�erent computing
time values. In the architecture of Fig. 4.6, the last stage is composed of the maximum
number of cells and the symbols of the coset C5 are processed by an additional unit.
We can choose to process this latest coset with the principal unit but this will be to the
detriment of the increase of the clock cycle number (needed to compute the transform),
i.e. the decrease of the throughput rate. In this case the multiplicands of the multipliers
of the second stage have to be updated with the corresponding values.

As shown in Fig. 4.7, each cell of stage 4 consists of 6 XOR gates, 4 AND gates and
a shift register. The AND gates are piloted by the coe�cients of the matrix A. These
coe�cients are stored in ROM memories and generated synchronically with the processing
of the di�erent cyclotomic cosets.

Indeed, the various possibilities of the fourth stage implementation are directly re-
lated to the cyclotomic decomposition previously shown in Table 4.1. Depending on the
underlying �eld, the computing time t′ can be expressed as t′=(1)ceil(nNs

Nc
).Tc, where Nc

(1)y=ceil(x) rounds x to the nearest integer greater than or equal to x
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Figure 4.7: The cyclotomic FFT internal architecture

represents the number of cells implemented in stage 4, and Ns is the number of cosets that
have the higher possible number of elements. The throughput rate (R) can be expressed
as R = n

t′ fc, where fc = 1
Tc

is the system clock frequency.
Table 4.2 shows the di�erent computing time with the corresponding amount of cells.

In fact, according to the importance given to one of the two metrics (hardware complexity
and execution speed), the designer can select his appropriate structure among di�erent
choices.

As shown in Table 4.2, we have a FFT architecture which at least operates twice as
fast and can go up to 8 times faster than the architecture presented in [102]. Obviously, at
this very high speed, there will be a price to pay, that is the increase of the amount of logic
blocks necessitated by the realization of this architecture. Then, a comparison between
the number of multipliers and adders (XOR gates) required by the two architectures is
necessary. Indeed, in [102], the author shows that over GF (2m), 1

2m(m+1) multipliers and
the same number of adders are required to implement the algorithm. As for our proposed
architecture, the number of multipliers required is equal to 2m + 2(mC2 − 1), where mC2

is the maximum number of elements of the cosets which belong to the second class (for
example in GF (28), mC2 = 4).

The number of XOR gates can be estimated as the number of XOR and AND gates
required by stage 4 while stage 1 and stage 3 have a very simple structure compared to
stage 4. Then this number of gates is proportional to Nc.ncg, where ncg is the number of
gates necessitated by one cell.
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Let us consider the case of GF (24) to compare the required amount of logic gates. For
our architecture and at a computing time equal to 3Tc, 10 (2m+2(mC2−1) = 8+2 = 10)
multipliers and 60 AND gates + 109 XOR gates are required. The number of AND and
XOR gates can be reduced to 32 AND + 67 XOR if we choose to run out the transform at
t′ = 6 Tc. The architecture proposed in [102] requires 10 multipliers, 10 XOR and a control
block which is needed in each stage to test the degree of polynomial. The conclusion we can
draw from the above comparison is that our architecture needs 2m+2(mC2−1) multipliers,
that is in some GF (2m) inferior to 1

2m(m + 1), a large amount of XOR and AND gates
and a very small ROM memory but without any control blocks. A counter modulo m is
only needed in stage 4 to initialize the memory addresses. The architecture presented in
[102] needs less XOR gates but needs some control blocks and operates at a �xed execution
time t = (n + 1)Tc while our architecture operates at various speeds allowing very fast
computing time which can down to t′ = t

8 . Note that Tc is always considered as the time
required to perform a GF (2m) multiplication. The GF (2m) multiplier implemented in
this work is the one proposed by [111].

Table 4.2: Computing time table

GF
Computing time
(architecture of [102])

nb. of cosets
Ns

nb. of cells
Nc

Computing time
(proposed architecture)

GF (24) 16 Tc 3 8 6 Tc

15 3 Tc

GF (25) 32 Tc 6 16 12 Tc

31 6 Tc

GF (26) 64 Tc 9 32 18 Tc

63 9 Tc

GF (27) 128 Tc 18 64 36 Tc

127 18 Tc

GF (28) 256 Tc 30
64 120 Tc

128 60 Tc

255 30 Tc

4.5.2.5 FPGA implementation
To evaluate the complexity of the proposed FFT architecture, we consider its implementa-
tion on Altera's STRATIX-II FPGA. The performance of this FPGA-based architecture, is
determined by evaluating its area complexity and critical path delay. The area complexity
can be represented by the number of logic units necessitated by the FPGA implementation
while the critical path delay is represented by the clock cycle delay (Tc = 1

fc
).
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Table 4.3: FFT-15 (over GF (24)) implementation results on STRATIX
II, EP2S15F484C3 Device

Computing
time Nc Area Tc

t′ = 3 Tc 15 343 ALUTs 2 ns

t′ = 6 Tc 8 203 ALUTs 2 ns

We have written a synthetizable VHDL code(2) of the di�erent stages of the architec-
ture. The pipeline stages are employed as shown in Fig. 4.7. Table 4.3 summarizes some
implementation results at two di�erent computing time values. The results illustrated
in Table 4.3 show that this architecture consumes a very small amount of ALUTs (343
ALUTs < 1% of the total amount available in the STRATIX II device) at computing time
t′ = 3 Tc where Tc is restricted to 2 ns. The area can be reduced to 203 ALUTs by reducing
the number of cells implemented in stage 4. In this case the computing time increases to
t′ = 6 Tc.

Until now, scenario 1 was dedicated to optimize the computing time of each operator
included in the TMVFFT. Nevertheless, having a Velcro design, the TMVFFT operator
architecture is supposed to evolute toward a more e�cient design based on some recon�g-
urability aspects what the next section will deal with.

4.6 Scenario 2: toward a combined TMFFT operator
This scenario aims to combine the FFT-GF2 structure with the DMFFT structure on the
same die area to obtain a combined and recon�gurable operator TMFFT. This combination
can be achieved if the following two steps can be realized.

1. Providing the GF (2m) operations, mainly the multiplications, with the binary mul-
tipliers implemented in the DMFFT operator.

2. Incorporation of the FFT-GF2 physical structure into the DMFFT structure.

We begin the discussion with the �rst step where the approach for a combined multiplier
exploits the fact that the partial product generations of both GF (2m) multiplier and
standard binary multiplier can be performed using the same array and interconnections
between cells.

(2)All experiments described in this work were performed on a PC (pentium 4, 3 GHz, 1 GB of memory)
running Windows XP. The VHDL code was synthesized using Quartus II version 6 and implemented on
STRATIX II, EP2S15F484C3 Device with the option "Standard Fit" as the level of the Fitter's e�ort.
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4.6.1 Basic binary multiplication
Let us consider the basic principle of the standard binary arithmetic multiplier. In 1964,
Wallace [112] introduced a notion of a carry-save tree constructed from one-bit full adders
as a way of reducing the number of partial product bits in a fast and e�cient way. Later,
Dadda [113] re�ned Wallace's method by de�ning a cell placement strategy that minimizes
the number of full-adders and half adders, at the cost of a larger carry propagate adder.
For our multiplier design, we will consider the Wallace's method since it is structurally
more regular.

Wallace'method is based on parallel counters and the multiplication of two binary
numbers is performed in the following sequence.

� Form all partial products in parallel with an array of AND gates.

� Reduce the partial products through a series of reduction stages to two numbers by
strategically applying (3,2) and (2,2) counters. Architectures of counter (3,2) (or
full adder) denoted by "W3" and (2,2) counter (or half adder) denoted by "W2" are
illustrated in Fig. 4.8.

� Sum the two numbers produced in step 2 using a fast carry-propagate adder to
generate the �nal product.

sc

a bW
2

W
2

ba c

sc

W
3

202020

2021

Figure 4.8: The W3 and W2 architectures

4.6.2 GF (2m) multiplication
As for the GF (2m) multiplication, it is viewed as a polynomial multiplication modulo
f(x), where f(x) is the irreducible polynomial characterizing the �eld GF (2m).

Let us consider the multiplication of two GF (2m) numbers A and B. A and B can be
represented by means of the vector basis {αm−1, ..., α1, α0}, where α is a primitive element
of the �eld, as

A = am−1α
m−1 + ... + a1α

1 + a0α
m−1,

B = bm−1α
m−1 + ... + b1α

1 + b0α
m−1,

where ai, bi are coe�cients in GF (2).
The polynomial multiplication C(x) = A(x)B(x) mod f(x) can be calculated by �rstly

building the partial products

Pi(x) = A(x)bi, for i = 0, ..., m − 1.
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Secondly, since the polynomial's coe�cients belong to GF (2), all partial products Pi(x)
have to be added modulo 2. A partial result Cp(x) can be obtained with

Cp(x) =
∑

Pi(x) mod 2

Cp(x) = c0 + c1x + ... + c2m−2x
2m−2,

which is obviously not an element of the �eld GF (2m) and should be reduced modulo
f(x).

A GF (2m) multiplier then performs two basic operations. The product of two elements
and the modulo f(x) correction. The �rst operation can be performed by ANDing the
corresponding ai and bi, for i = 0, ...,m− 1, and subsequently adding the partial products
modulo 2. These partial products must be arranged in rows, with each row shifted i
positions to the left as shown in Fig. 4.9. This step is similar to the standard binary
product with the only di�erence that the sum of partial products in this case is done
modulo 2. Thus, an opportunity to exploit cells and the interconnection structure of
partial product generator of a typical binary multiplier unit is possible. The modulo
correction should be performed separately.

Figure 4.9: Partial product matrix

Early designs of GF (2m) multipliers used a serial approach. Although serial GF (2m)
multipliers have low hardware requirements, they are very slow. Consequently, several
parallel designs have been proposed in the literature [114] [115] [116] [117]. In [118] [119],
the idea to combine GF (2m) with a standard binary multiplier on DSP processor was
investigated. In [118], the proposed design is based on a Wallace tree multiplier which
has been modi�ed to perform either conventional binary or GF (2m) multiplication. Their
polynomial reduction (or modulo correction) introduces a linear delay. In [119], a new
wiring scheme, to avoid adding carries of partial product reduction, is proposed and a
parallel polynomial reduction is used. The authors designed a multiplier capable of per-
forming either 16-bit two's complement or unsigned multiplication, or two independent
8-bit GF (28) multiplications. In the following, we propose a general approach allowing
the implementation of any GF (2m) multiplier, for 6 ≤ m ≤ 8, in the recon�gurable mul-
tiplier proposed in chapter 3. We start here from the standard binary structure of the
multiplier shown in Fig. 4.10. The partial product generation or bitwise ANDing of aibi
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Partial Product Generation

Partial Product Reduction

Carry propagate Addition

A B
N bits N bits 

N words by N bits 

2 words by 2 N bits 

2 N bits

A B

Figure 4.10: Steps for N by N multiplication

is performed regardless of the type of multiplication (GF (2m) or standard binary multi-
plication). The partial product reduction should be redesigned in such a way to avoid the
carries propagation if the GF (2m) multiplication is to be performed. This can be realized
by recon�guring the wire connects of the "W3" cells. The new wiring scheme is illustrated
in Fig. 4.11. This wiring scheme can be easily realized in a recon�gurable way on FPGA
devices using a reprogrammable LUTs. Arriving at the last step (the polynomial reduc-

W
3

202020

2021

W
2

2020

2021

Figure 4.11: The (3,2) and (2,2) counters in GF (2m) multiplication

tion), it can be performed in parallel by using the method considered in [116]. Let P (α)
be the extended result before the polynomial reduction. P (α) can be expressed as



146 DMFFT and FFT over GF (2m): from a dual to a triple mode FFT operator

P (α) =

2m−2
∑

i=m

piα
i +

m−1
∑

i=0

piα
i, (4.13)

where αi for m ≤ i ≤ 2m − 2 can be substituted by

Ai(α) =

m−1
∑

j=0

ai,jα
j .

The Ai(α) are the canonical representations in the �eld's base of the �eld elements αi

that appear in the �rst summation in Equation 4.13.
Let us consider an example of multiplication of two elements A and B in GF (24). Let

f(x) = x4 + x + 1 be the primitive polynomial and

A = α10 = 0.α3 + α2 + α + 1 = (0111),

B = α12 = α3 + α2 + α + 1 = (1111).

The multiplication operation is described in Fig. 4.12. The classical method of multi-
plication shown in the upper left side of Fig. 4.12 is expressed by hardware circuit which
is based on Wallace tree. This tree, originally designed to perform the standard binary
multiplication, is modi�ed in such a way to avoid the carries propagation between the
cells constituting the tree. In this approach we have considered the disconnection of the
carry's outputs and the corresponding neighboring cell inputs that are set to zero. The
disconnected wires are represented by black dots. This wiring scheme can be realized by
means of reprogrammable LUT1s that connect the carry outputs of each AiBi unit to
the corresponding entries of the W3 cells. A LUT1 maintain the carry propagation (by
connecting the input to the output) in the case of standard binary multiplication and set
its output to zero in the case of GF (2m) multiplication.

Fig. 4.12 shows an example of GF (24) multiplier whose whole architecture, except the
polynomial reduction, is implemented on the standard binary multiplier. This implemen-
tation can be extended for any GF (2m) multiplier provided that the size of the original
binary multiplier can support the size of the GF (2m) multiplier to be implemented.

In the next subsection, we propose a recon�gurable architecture of a combined multi-
plier that can support either a binary multiplication or GF (2m) multiplication for m=6,
7 and 8.

4.6.3 Combined multiplier
In this subsection we consider the combination of GF (2m) multiplier, for m = 6, 7, 8,
with the standard binary multiplier. Fig. 4.13 shows a block diagram of the combined
multiplier 8 × 8 bits. In this design, we restrict the sizes of GF multipliers according to
the code lengths of RS codes used in the practical applications.

The architecture we propose is based on the Wallace's tree for the partial product
reduction. A tree of size 8 × 8 is su�cient to perform GF (28) multiplication. However,
the tree size is �xed according to the desired precision for the complex Fourier transform.
As seen in chapter 3, a 13 bit-wordlength represents a good complexity-precision tradeo�.
Thus, for GF (2m) multiplication, the Wallace's tree can process any two words for m ≤ 13
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Figure 4.13: Block diagram of the combined multiplier

but a further attention should be taken into account for the realization of the polynomial
reduction. For this, in the following we restrict the values of m to the more practical ones.
The multiplier receives a control signal S to pilot the switching from the standard binary
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addition to modulo 2 addition and to manage the con�guration of the interconnection
between the neighboring cells according to the model previously shown in Fig. 4.12. The
multiplier performs the partial product reduction regardless of the size of the operands.
If the size is smaller than 13, the operands can be concatenated by "0". The rest of the
architecture is the carry-propagate adder (for the standard binary multiplication) and the
polynomial reduction unit (for the GF (2m) multiplication).

The part which will be in�uenced by the variable length of the GF multiplier is the
polynomial reduction unit since the reduction is based on the binary representation of
the powers of α which varies with the order of the Galois �eld. For this, we propose a
recon�gurable polynomial reduction unit as shown in Fig. 4.14.
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Figure 4.14: Parallel polynomial reduction for m = 6, 7 and 8.

This polynomial reduction unit receives 15 bits from the partial product reduction
block and a parameter m which de�nes the size of GF (2m) multiplication to be performed.
According to the chosen GF , the corresponding powers of α are selected from the ROM
blocks. By ANDing these powers of α with the corresponding Pi, for m ≤ i ≤ 2m − 2,
and XORing their results with the word {Pm−1 ... P1 P0}, the GF (2m) multiplication is
provided on 8 bits. Four LUT1s (L1, L2, L3, L4) are needed to select the corresponding
entries of the two �rst XOR gates depending on the GF (2m). These LUT1s are con�gured
to provide their outputs according to Table 4.4. If m < 8, the most signi�cant bits of Pis
are pre-initialized to zero and the rest of bits will contain the useful result. The latency of
the polynomial reduction unit is equivalent to the time needed to perform one 8-bit AND
and four 8-bit XOR.
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Table 4.4: Con�guration of the LUT1s

multiplier
size L1 L2 L3 L4

m = 6 0 0 P6 P7

m = 7 P6 0 0 P7

m = 8 P6 P7 0 0

The combined multiplier shown in Fig. 4.13 can be easily integrated within the recon-
�gurable multiplier designed in Chapter 3 leading to triple mode multiplier (Fig. 4.15)
able to perform three di�erent multiplications: (i) conventional binary multiplication (ii)
multiplication over GF (Ft) and (iii) multiplication over GF (2m).
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Figure 4.15: Triple mode multiplier

With this multiplier and by taking into account that a modulo 2 addition can be
realized by means of XOR gates, the arithmetical resources required to design the TMFFT
will be available. Thus, step 1 of scenario 2 is practically accomplished.

To achieve scenario 2, step 2 should be realized. Further studies beyond this thesis is
needed for this step which aims to �nd a way allowing the structure of the GF (2m)-FFT
to be integrated within the DMFFT operator.



150 DMFFT and FFT over GF (2m): from a dual to a triple mode FFT operator

4.7 Conclusions
In this chapter, we have presented a TMVFFT operator consisting of two self-contained
operators: DMFFT and FFT over GF (2m). This triple mode operator is able to provide
three di�erent types of transforms: FFT over C, FNT over GF (Ft) and FFT over GF (2m).
To optimize the reuse and the concept of this operator, we have proposed two scenarios
allowing its evolution. Scenario 1 allows the maximization of reuse of each functionality
provided by the TMVFFT by reducing the computing time. In this context, we have dis-
cussed the evolution of the DMFFT and we have designed a FFT-GF2 based on cyclotomic
decomposition of polynomials representing the input data. A very fast computing speed is
attained which makes the FFT-GF2 able to produce its functionality at least twice faster
than the existing solutions.

Scenario 2 investigated some opportunities to combine the FFT-GF2 with the DMFFT.
This can lead to a new operator architecture called TMFFT that performs the same three
functionalities in a economical way, i.e. by exploiting the same logical cells at the gate level
with a low complexity and a marginal delay overhead. This second scenario consists of two
steps: step 1 aiming to merge the arithmetical operators and step 2 aiming to integrate
the FFT-GF2 within the DMFFT. Step 1 was developed in this work by designing a
combined and recon�gurable multiplier able to perform a standard binary multiplication
and GF (2m) multiplications for m = 6, 7 and 8. The designed structure can be easily
implemented onto the recon�gurable multiplier realized in Chapter 3 to obtain a triple
mode multiplier which will constitute the core of the TMFFT operator. As for the step 2,
further studies are needed to develop it and achieve the intended TMFFT.

The TMFFT architecture will serve as the basis for a CO able to be implicated in
OFDM modulation and channel coding particulary the RS codes.



Conclusions and prospects

This thesis has addressed the problem of parametrization technique under the CO approach
where it is in line with the optimal design of a SWR system intended to support several
communication standards. In this context, we investigate the frequency processing of cyclic
codes particularly RS codes with the aim to insert the classical FFT operator, initially
used for complex Fourier transform, in the encoding and decoding processes of RS codes.
By examining the characteristics of the Fourier transform FFT-GF2 used to process the
encoding and some decoding processes of classical RS codes de�ned over GF (2m), we
found that the adequacy of its structure to the structure of FFT de�ned over C (FFT-C)
is challenged by the transform length. That is, the most e�cient algorithms applied to a
transform of length 2m in the case of FFT-C computations cannot be applied to compute
FFT-GF2 since its transform length is of the form 2m−1. For this, we thought to seek out
a transform satisfying the FFT-C criteria while keeping in mind to �nd a way to include
the FFT-GF2, used in the RS coding de�ned over GF (2m), in the intended common and
recon�gurable FFT structure.

To be able to exploit the whole FFT-C structure we explored �nite �eld transforms
having a highly composite length. The candidate transforms were the Fermat transforms
de�ned over GF (Ft). These transforms led us to revive a speci�c class of RS codes de�ned
over GF (Ft). These codes were studied in 1976 where the authors have emphasized the
importance of their codeword length allowing the use of e�cient algorithms to compute
their associated Fermat transforms. These codes were also recommended for the use in
spacecraft communications where the RS(256,224) over GF (257) was studied to be used
together with a convolutional code.

From arithmetical structure point of view, we have noticed that the arithmetical op-
erations de�ned over GF (2m) are simpler than those de�ned over GF (Ft). However, our
choice to study these speci�c RS codes was motivated by the fact that the FNT trans-
form used in the processing of encoding and decoding processes of these codes will be
based on the pre-implemented FFT-C. We have studied and simulated these codes and
we have shown that their performances are almost similar to those of RS codes de�ned
over GF (2m). According to the simulations results, we have shown that the frequency
encoding of these codes is not the suitable solution since the representation of the symbol
"Ft − 1" a�ects all the spectral components of the codeword. Then, we proposed to use
time domain encoding and represent the information symbols by 2t bits and the check
parity symbols by 2t + 1 bits.

As a �rst contribution, we have investigated the redesign of the FFT-C in such a way to
be able to provide two functionalities: complex Fourier transform and Fermat transform.
Conceptually, the design of such a dual mode operator implies the design of arithmetical
operators capable to operate over the two domains: C and GF (Ft). We have proposed
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recon�gurable architectures for the multiplier, adder and subtracter. These operators
implemented on the complex butter�y (available in the FFT-C) led to a recon�gurable
butter�y that will constitute the core of the dual mode operator. Based on the FFT-C
structural strategy, we have designed the architecture of the DMFFT operator.

To evaluate the complexity and speed performances of this operator, we have consid-
ered its implementation on ALTERA's FPGA devices. Compared to a Velcro FFT/FNT
operator, the DMFFT presented an important gain in terms of ALUTs and memory sav-
ing. We have shown that for a transform length N = 64 implemented with di�erent
wordlengths (9 ≤ nc ≤ 16), the DMFFT presents a memory saving between 20 and 30%, a
gain in ALUTs and performance-to-cost ratio gain that go from 9.2 % up to 26 % and from
9.7 % up to 37.4 % respectively. This deviation of gain in ALUTs and in performance-to-
cost ratio is directly related to the wordlength, so as nc increases, these gains decrease. For
N = 256, the DMFFT presents the same memory saving and the other gains evolve in the
same manner of that of DMFFT-64 but with lower values. This is due to the fact that the
complexity of the DMFFT architecture is mainly dominated by the FFT-C architecture
complexity which increases with the increase of the wordlength and the transform length.
The high nc values are necessary to get a good FFT-C computations precision while in
the Velcro FFT/FNT, a 9-bit wordlength is su�cient to implement the FNT. Then, for a
transform length N ≤ 256, the use of the DMFFT is largely e�cient and allows to process
RS codes which have codeword length N ≤ 256 and whose principals are N=64, 128 and
256.

In order to treat the classical RS codes de�ned over GF (2m) used in the actual stan-
dards, we have proposed the design of a triple mode FFT operator able to provide three
functionalities: FFT-C, FNT and FFT-GF2. We started from a Velcro architecture con-
sisting of two self-contained operators DMFFT and FFT-GF2 and we have proposed two
scenarios to upgrade this Velcro architecture. The �rst scenario aimed to maximize the
reusability of the TMVFFT by speeding up the computing time of each operator included
in the TMVFFT. Based on cyclotomic decomposition, we proposed an e�cient architec-
ture of the FFT-GF2 allowing a reduced computing time and a very high throughput
rate.

The second scenario aimed to combine the FFT-GF2 with the DMFFT by exploiting
the same logical cells at the gate level to obtain a recon�gurable TMFFT operator. From
this perspective, we have proposed a generic combined multiplier able to perform a stan-
dard binary multiplication and GF (2m) multiplications for m=6, 7 and 8. We have also
showed that this multiplier can be easily implemented into the recon�gurable multiplier
proposed in chapter 3 which leads to a triple mode multiplier able to operate over three
di�erent �elds: C, GF (Ft) and GF (2m). Having this triple mode multiplier and taking
into account that the addition in GF (2m) can be realized by XOR gates, the necessary
arithmetical tools to implement the FFT-GF2 are available in the DMFFT operator. What
remains to achieve scenario 2 is the integration of the FFT-GF2 structure on the DMFFT.
Thus, further studies are needed to reach the TMFFT.

Prospects

This thesis provided a framework that naturally extends to investigate future research
topics of interest among which we mention the following:
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• Design of a wiring methodology of the FFT-GF2 cells allowing the incorporation of
the FFT-GF2 within the DMFFT operator.

• Development of a dynamic recon�guration that allows the elimination of some mul-
tiplexors and some control blocks leading to more e�cient recon�gurable DMFFT
and TMFFT operators. A related study is to de�ne a task scheduling technique to
manage the sharing of the recon�gurable operator considered as common between
several processings.

• Study of the Gao algorithm for decoding the RS codes. This algorithm consists
of the following main operations: interpolation, partial gcd, and long division of
polynomials. As the author mentioned, all these operations can be implemented by
the fast algorithms based on FFTs.

• The desirable continuation of this work would be the extension of the use of the
recon�gurable FFT towards the convolutional codes and non-binary LDPC codes.
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Appendix A

CRC and Reed-Solomon codes with
MulDiv

This appendix presents how the MulDiv operator can be parameterized to be used in CRC
and RS codes over GF (2m).

A.1 The CRC calculation with MulDiv
Cyclic redundancy check coding is an error-control coding technique for detecting errors
that occur when a message is transmitted. Unlike block or convolutional codes, CRC codes
do not have a built-in error correction capability. Instead, when an error is detected in a
received message word, the receiver requests the sender to retransmit the message word.
The principle of the CRC calculation is as follows: consider a binary message M whose
polynomial representation is M(x) and G(x) a generator polynomial of degree d. The
transmitted message T (x) has a polynomial representation:

T (x) = xdM(x) + R(
xdM(x)

G(x)
), (A.1)

where R(.) represents the remainder of the Euclidian polynomial division.
This remainder can be calculated using a circuit similar to the one presented in Fig.

1.10. The parameters hi and gi have just to be parameterized in accordance with the CRC
calculation.
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Figure A.1: CRC 8 calculation for the GSM standard with Muldiv operator

Fig. A.1 is an example of the CRC 8 calculation in the case of the GSM standard.
All hi coe�cients are equal to zero as well as some of gi. The generator polynomial has
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expression 1 + D2 + D3 + D4 + D8. The CRC calculation of the circuit of Fig. A.1 can be
carried out as follows: the message is shifted into the registers from the right end while the
upper switch is turned on and at the same time the lower switch is connected to the input
"1" and shifts M(x) to the output of the circuit. After the entire message M(x) has been
shifted into the registers, the contents of these registers form the remainder of the division
of xdM(x) by G(x). Then, the upper switch is turned o� and the lower one is turned to
the input "2" to get the remainder result located in all the shift registers. Starting from
this example, the same structure is applied for the CRC 3 (see Fig. A.2).
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Figure A.2: CRC 3 calculation for the GSM standard with Muldiv operator

The generator polynomial is expressed as 1 + D + D3. As in Fig. A.1, the switches of
Fig. A.2 have the same functions.

Tab. A.1 summarizes all the CRC polynomials for three di�erent standards: IEEE
802.11.g, GSM and UMTS.

The next section will show how the MulDiv architecture can be derived for some chan-
nel coding/decoding operations. The identi�ed codes are the well known error correcting
cyclic codes and the Reed-Solomon codes.

Table A.1: CRC polynomials for GSM, UMTS and IEEE 802.11.a
standards

Standards CRC polynomial
IEEE 802.11.g GCRC−16(D) = D16 + D12 + D5 + 1

GSM

GCRC−3(D) = D3 + D + 1
GCRC−8(D) = D8 + D4 + D3 + D2 + 1

GCRC−6(D) = D6 + D5 + D3 + D2 + D + 1
GCRC−40(D) = (D23 + 1) + (D17 + D3 + 1)

UMTS

GCRC−24(D) = D24 + D23 + D6 + D5 + D + 1
GCRC−16(D) = D16 + D12 + D5 + 1

GCRC−12(D) = D12 + D11 + D3 + D2 + D + 1
GCRC−8(D) = D8 + D7 + D4 + D3 + D + 1
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A.2 Error-correcting cyclic codes
The encoding circuit of error-correcting cyclic codes is similar to that of the CRC codes
described in the previous section. The decoding of error-correcting cyclic codes consists
of three steps: syndrome computation, association of the syndrome to an error pattern
accomplished by an error-pattern detector, and error correction. The syndrome computa-
tion can be accomplished with MulDiv operator whose complexity is linearly proportional
to the number of parity-check digits (i.e., n − k where n, k are the code and message
block-length respectively). The error-correction step constitutes simply adding (modulo
2) the error pattern to the received vector. This can be achieved with a single XOR gate if
corrections are carried out in a serial manner (i.e. one digit at a time). The association of
the syndrome to an error pattern can be completely speci�ed by a decoding table. Fig. A.3
shows the decoding circuit for a (7,4) cyclic code. In this circuit, the syndrome is formed
by shifting the entire received vector into the syndrome register. At the same time, the
received vector is stored in the bu�er register. The syndrome is read into the detector
and is tested for the corresponding error pattern. The output of the detector is 1 if, and
only if, the syndrome in the syndrome register corresponds to a correctable error pattern
with an error at the highest-order position xn − 1. In the circuit of Fig. A.3, the error
pattern detector is made with a single three-input AND gate. In this decoder, the MulDiv
operator forms a main circuit element, which accomplishes the syndrome computation.
Having this recon�gurable operator, we can think of a decoder, which can decode cyclic
codes generated by any generator polynomial g(x). To do this, one also needs to recon�g-
ure the error pattern detector. The recon�gurability of the error pattern decoder and of
the MulDiv operator allows the creation of a decoder that can decode various block-length
cyclic codes.

Input

Z-1

Switch

Multiplexer

Output
Buffer register

MulDiv

Z-1 Z-1

Switch

Switch

Figure A.3: Decoding principle for the (7,4) cyclic code generated by 1 + x + x3 using
MulDiv operator

A.3 Reed Solomon codes with MulDiv operator
In this section, we show that the Galois Field (GF ) basic operations as well as encoding
and some decoding processes of RS codes can be performed with the aid of MulDiv.
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A.3.1 Basic operations in Galois Field (GF)
It is interesting to show that the circuits that generate the GF symbols and the circuits
that perform the multiplication of two GF elements are based on the MulDiv architecture.
The aim is now to present MulDiv as an operator that can be parameterized to generate
and multiply the GF elements.

Let us begin with the generation of GF elements. Fig. A.4 represents the circuit
generating all the non zero elements of GF (24). To perform this generation, the vector
(1 0 0 0) which is the binary representation of α0 = 1 (bit at the top left is the least
signi�cant bit), where α is the primitive element of GF , is loaded into the register. Then,
successive shifts of the register will generate the vector representations of the successive
powers of α. This circuit can be also used to multiply an arbitrary element of GF (24) by
α.

Z-1 Z-1 Z-1

Switch

Z-1

Figure A.4: Architecture for generating elements of GF (24) with MulDiv operator

Now, let us consider the multiplication of two arbitrary elements A and B of GF (24).
By expressing these two elements in their polynomial form, A = a0 + a1α + a2α

2 + a3α
3

and B = b0 + b1α + b2α
2 + b3α

3, then the product A.B can be expressed by:

B.A = (((a3B)α + a2B)α + a1B)α + a0B.

This calculation can be realized with the MulDiv operator, as shown in Fig. A.5.

Z-1 Z-1
Z-1Z-1

b0 b1
b2

b3 Register B

Register A
MulDiv

Switch

a0 a1 a2 a3

Shift register Z

Figure A.5: Architecture for multiplying two elements of GF (24) with MulDiv operator

With this architecture, the shift registers Z−1 are initially empty and (a0, a1, a2,
a3) and (b0,b1,b2,b3), the vector representations of A and B, are respectively loaded into
registers A and B. Then registers A and Z are shifted four times. At the end of the fourth
shift, register Z contains the product A.B in vector form.
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A.3.2 RS coding and decoding algorithms
The RS encoding can be carried out using MulDiv operator with the same parametrization
aspect previously discussed. Since the RS encoding is realized by means of polynomial
divisions, it can be easily performed with the aid of MulDiv and in this case, the hardware
resources: adder, multiplier and storage devices deal with elements from GF (2m) rather
than from GF (2).

The RS decoding process consists of the successive following steps: syndrome compu-
tation, erasure location polynomial, Berlekamp algorithm (to compute the error-locator
polynomial Λ(x)), some polynomial computations, Chien search, polynomial evaluation
and error-correction algorithm. Among these operations, there are four operations that
can be realized using the MulDiv operator.

Let us consider the received word R(x) = C(x) + S(x), where S(x) denotes the syn-
drome polynomial and C(x) the code word that can be expressed as the product of the
polynomial generator: C(x) = g(x)q(x). Then, the syndrome S(x) de�ned as the remain-
der of division of R(x) by g(x) can be performed with MulDiv.

The polynomial computations imply the derivation of two polynomials: Ω(x) (the error-
evaluator polynomial) and Λ′(x) (the derivative of Λ(x)). The polynomial computation of
Ω(x) can be expressed as follows:

Ω(x) = S(x)Λ(x)(modx2t),

where for t = 2:
S(x) = S1 + S2x + ... + S4x

3,

and
Λ(x) = Λ0 + Λ1x + ... + Λ3x

3.

Then the Ωi can be expressed as the following equations:

Ω0 = Λ0S1,

Ω1 = Λ0S2 + Λ1S1,

Ω2 = Λ0S3 + Λ1S2 + Λ2S1,

and �nally
Ω3 = Λ0S4 + Λ1S3 + Λ2S2 + Λ3S1.

These computations can be easily performed using MulDiv as shown in Fig. A.6,
where the adder, multiplier and registers denote the devices that deals with elements from
GF (24).

The computation of Λ′(x) can be implemented with a simple wired circuit where:
Λ′

2i = Λ2i+1, for i = 0, ..., t − 1. The "Chien search" consists in �nding the roots of the
error locator polynomial Λ(x) that can be realized with the circuit of Fig. A.7. These
roots identify the error locations. Once an error location is found, the next step is to
�nd the error values, what consists in evaluating the polynomials Ω(x) and Λ′(x) for the
�nite �elds elements 1, α, α2, ..., αn−1, where n is the the code block-length. This step
is called the polynomial evaluation. This polynomial evaluation and the Chien search
are performed by multiplying the polynomial coe�cients by successive powers of α and
summing the partial products. Each multiplication can be realized by MulDiv operator
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where the polynomial coe�cient can be loaded in register A, and register B contains the
binary representations of αi for i = 1, ..., t. Each elementary multiplication module of Fig.
A.7 circuit is similar to the one presented in Fig. A.5. In that sense, the MulDiv operator
is a basic element of the polynomial evaluation of RS decoding algorithms.

321

1234 ,,, SSSS

0123

Z-1

0123

1234 ,,, SSSS

0123

WithMulDiv

Z-1Z-1

Switch

Figure A.6: Polynomial computation Ω(x)

MulDivMulDiv

2 t t

i

il

i

1

2 t

MulDiv

Output
1

Buffer
Input

…

l=1, …, n-1

Figure A.7: Chien search computation

To conclude, encoding and some steps of the decoding process of RS codes can be
realized with the MulDiv operator as shown in Fig. A.8. This operator can be parameter-
ized with the appropriate weights hi and gi (explained in Fig. 1.9) so as to perform the
corresponding operation.

A.4 The MulDiv hardware implementation: the MDI and
MDIV operators

By considering the example of CRC calculation, we will show how the MulDiv operator can
signi�cantly reduce the complexity in terms of computation complexity. Let us consider
the MulDiv hardwired pattern shown in Fig. A.9. This hardwired pattern, seen as a
common operator, executes one task in one clock cycle. This structure is parameterized
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Polynomial 

Computation

RS Encoder

RS Decoder

Syndrome

computation

Chien

search

Error

correction 

algorithm

MulDivMulDiv

MulDivMulDiv

Polynomial

evaluation

MulDivMulDiv
MulDivMulDiv

Erasure

Polynomial

computation

Berlekamp

algorithm

MulDivMulDiv

Figure A.8: RS encoder-decoder with MulDiv operator

(by the gi and hi coe�cients) and will be called MDI. The MDI operator is the elementary
structure of MulDiv.

LUT

Z-1

LUT

gi

hi

MDI

gi

hi

Figure A.9: The MDI operator

In this case, the coe�cients gi are associated to the CRC polynomials and hi are settled
to zero). By concatenating several MDI patterns, we get the general structure of the CRC
previously shown in Fig. A.1 where the number of MDI cells is related to the degree
of the CRC polynomial (eight in this example). Knowing that the degree of most CRC
polynomials is multiple of four, a novel operator called "MDIV" can be de�ned (see Fig.
A.10) and considered as a common operator able to executes one task in one clock cycle.

Table A.2 shows the bene�t of using the MDIV operators (which includes MDI op-
erator) instead of classical elements such as shift registers. By considering the standards
IEEE 802.11.g, GSM and UMTS, we have reported the �gures concerning the operator
numbers per standard, for each CRC polynomial.

It can be seen that the use of a hardwired common operator, that executes one task
in one clock cycle, leads to a signi�cant reduction in the computation complexity.
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MDI MDI MDI MDI

MDIV

Figure A.10: The MDIV operator composed of 4 MDI operators

Table A.2: CRC calculation with MulDiv
Number of
operators

without MulDiv

Number of
operators with
MDIV and MDI

Standard CRC polynomial

IEEE 802.11.g GCRC−16(D) = D16 + D12 + D5 + 1 16 SR, 3 XOR 4 MDIV, 1 XOR

GSM

GCRC−3(D) = D3 + D + 1 3 SR, 2 XOR 3 MDI, 1 XOR
GCRC−8(D) = D8 + D4 + D3 + D2 + 1 8 SR, 4 XOR 2 MDIV, 1 XOR

GCRC−6(D) = D6 + D5 + D3 + D2 + D + 1 6 SR, 5 XOR 1 MDIV, 2 MDI,
1 XOR

GCRC−40(D) = (D23 + 1) + (D17 + D3 + 1) 40 SR, 5 XOR 10 MDIV, 1 XOR

UMTS

GCRC−24(D) = D24 + D23 + D6 + D5 + D + 1 24 SR, 5 XOR 6 MDIV, 1 XOR
GCRC−16(D) = D16 + D12 + D5 + 1 16 SR, 3 XOR 4 MDIV, 1 XOR

GCRC−12(D) = D12 + D11 + D3 + D2 + D + 1 12 SR, 3 XOR 3 MDIV, 1 XOR
GCRC−8(D) = D8 + D7 + D4 + D3 + D + 1 8 SR, 5 XOR 4 MDIV, 1 XOR

Total number 168 48



Appendix B

Some elements for Galois �elds
construction

In this Appendix we give some principal algebraic tools helping to the construction of
Galois �elds.

B.1 Some prime polynomials for di�erent GF (2m)

Table B.1: Prime polynomials over
GF (2)

m Prime polynomial
2 x2 + x + 1
3 x3 + x + 1
4 x4 + x + 1
5 x5 + x2 + 1
6 x6 + x + 1
7 x7 + x3 + 1
8 x8 + x4 + x3 + x2 + 1
9 x9 + x4 + 1
10 x10 + x3 + 1
11 x11 + x2 + 1
12 x12 + x6 + x4 + x + 1
13 x13 + x4 + x3 + x + 1
14 x14 + x10 + x6 + x + 1
15 x15 + x + 1

B.2 Construction of GF(16)
The �eld GF (16) can be constructed with the polynomial x4 + x + 1, and the element
α = x of order 15 is a primitive element (α0 = α15 = 1). The following table gives the
di�erent GF (16) elements with the corresponding polynomial and binary representations.

167
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Table B.2: The elements of GF (16)

Element polynomial notation Binary notation
0 0 0 0 0 0
α0 1 0 0 0 1
α1 x 0 0 1 0
α2 x2 0 1 0 0
α3 x3 1 0 0 0
α4 x + 1 0 0 1 1
α5 x2 + x 0 1 1 0
α6 x3 + x2 1 1 0 0
α7 x3 + x + 1 1 0 1 1
α8 x2 + 1 0 1 0 1
α9 x3 + x 1 0 1 0
α10 x2 + x + 1 0 1 1 1
α11 x3 + x2 + x 1 1 1 0
α12 x3 + x2 + x + 1 1 1 1 1
α13 x3 + x2 + 1 1 1 0 1
α14 x3 + 1 1 0 0 1



Appendix C

FFT over GF (2m)

In this Appendix we gives some basic de�nitions and we develop the computation of FFT-
15 over GF (24).

C.1 Basic notions and de�nitions
In this section, we will review some de�nitions and basic notions required for later devel-
opments of cyclotomic FFT algorithm. We also highlight some speci�c characteristics of
the Galois Field of characteristic 2, GF (2m).

Let G be a group together with the operation denoted by • and let H be a subset of
G. Then H is called a subgroup of G if H itself a group with respect to the restriction of
• to H.

De�nition 1. Let h, h1, h2, ..., hm be a sequence of elements of H and choose h1

to be the identity element. A matrix decomposition of G is called a coset decomposition
when the matrix is constructed as follows:

1. The �rst row consists of the elements of H, with identity at the left and every other
element of H appearing once.

2. Choose any element of G not appearing in the �rst row and multiply this element by
each element of the sequence hi , for i = 1, ...,m. The resulting vector constitutes
the second row of the array.

3. Construct a third, fourth, ..., row similarly, each time choosing a previously unused
group element for the element in the �rst column.

4. Stop when all the group elements appears somewhere in the array.

The array is

C =



















h1 = 1 h2 h3 h4 · · · hm

g2 • h1 = g2 g2 • h2 g2 • h3 g2 • h4 · · · g2 • hm

g3 • h1 = g3 g3 • h2 g3 • h3 g3 • h4 · · · g3 • hm

g4 • h1 = g4 g4 • h2 g4 • h3 g4 • h4 · · · g4 • hm
... ... ... ... ... ...

gn • h1 = gn gn • h2 gn • h3 gn • h4 · · · gn • hm



















169
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The �rst element on the left of each row is known as a coset leader. Each row in the
array is called left coset, or simply as a coset when the group is abelian.

De�nition 2. Let ki be any integer, with 0 ≤ ki ≤ pm − 1, and let mi the smallest
integer such that kip

mi ≡ ki mod (pm − 1). The cyclotomic cosets mod pm − 1 are de�ned
by

Cki
= {ki, kip, kip

2, . . . , ki2
mi−1}, i = 1, . . . , l, (C.1)

where ki is the coset leader, i ∈ [1, l], l being the number of cyclotomic cosets modulo
pm − 1.

Examples:

1- The cyclotomic cosets mod 7 (p = 2, m = 3) are:

C0 = {0},
C1 = {1, 2, 4},
C3 = {3, 6, 5}.

2- The cyclotomic cosets mod 15 (p = 2, m = 4) are:

C0 = {0},
C1 = {1, 2, 4, 8},
C3 = {3, 6, 9, 12},
C5 = {5, 10},
C7 = {7, 11, 13, 14}.

De�nition 3. Let GF (2m) be a Galois �eld of order n = 2m − 1. Each element of
GF (2m) can be represented as a linear combination: a0+a1α+...+am−2α

m−2+am−1α
m−1

and the set {1, α, α2, ..., αm−1} is called the basis of the �eld.

De�nition 4. Let GF (q) be a �eld and GF (Q) be an extension �eld of GF (q). Let
β be in GF (Q). The prime polynomial f(x) of smallest degree over GF (q) with f(β) = 0
is called the minimal polynomial of β over GF (q).

De�nition 5. A primitive polynomial p(x) over GF (q) is a prime polynomial over
GF (q) with the property that in the extension �eld constructed modulo p(x), the �eld
element represented by x is a primitive element.

De�nition 6. A matrix whose each row is obtained from the preceding row by one left
(right) cyclic shift is called circulant matrix. Circulant matrices can be square or rectan-
gular matrices. If the entries of a circulant matrices are submatrices, the resultant matrix
is referred to as a block circulant matrix. A circulant n × n-matrix can be represented as
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A =











A0 A1 · · · An−1

A1 A2 · · · A0
... ... ... ...

An−1 A0 · · · An−1











.

C.2 Development of equation 4.11
Let us consider step by step the multiplication F = ALf . Starting from the right side,
the multiplication Lf represents a set of cyclic convolutions of each block Li by the the
corresponding cyclotomic coset of the vector f . The matrix L is composed of (l+1) blocks
((l + 1) represents the number of cyclotomic cosets of f) and can be represented as

L =















L0 0
L1

. . .
Ll−1

0 Ll















.

By using the normal basis of the GF (2m), the Lis can be expressed as

Li =











γ20

i γ21

i · · · γ2mi−1

i

γ21

i γ22

i · · · γ20

i... ... ... ...
γ2mi−1

i γ20

i · · · γ2mi−2

i











.

Then, the multiplication of Li by the corresponding sub-vector or cyclotomic coset of
f can be represented as











Si,0

Si,1
...

Si,mi−1











=











γ20

i γ21

i · · · γ2mi−1

i

γ21

i γ22

i · · · γ20

i... ... ... ...
γ2mi−1

i γ20

i · · · γ2mi−2

i





















fi,0

fi,1
...

fi,mi−1











, (C.2)

where (fi,0, fi,1, · · · , fi,mi−1)
T represent the ith cyclotomic coset.

As shown in [105], the computation of Equation C.3 can be performed by a cyclic
convolution of each row of Li by the subvector fi = (fi,0, fi,1, · · · , fi,mi−1)

T , which can be
represented by polynomial form as

Si(x) = Si,0 + Si,mi−1x + . . . + Si,1x
mi−1

= (γi + γ2mi−1

i x + . . . + γ2
i xmi−1)(fi,0 + fi,1x + . . . + fi,mi−1x

mi−1) mod (xmi−1).

This latest Equation can be computed by applying an algorithm proposed by Berlekamp
[57] for the cyclic convolution computation. By his algorithm, Berlekamp shows that every
cyclic convolution can be decomposed as the product of some predetermined matrices:
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









Si,0

Si,1
...

Si,mi−1











= Qi











Ri











γi

γ2mi−1

i ...
γ2

i











.Pi











fi,0

fi,1
...

fi,mi−1





















, (C.3)

where Qi, Ri and Pi are binary matrices predetermined according to the length of the
cyclic convolution. The symbol ”.” denotes componentwise multiplication of vectors.

Thus, if Bi denotes Ri(γi γ2mi−1

i · · · γ2
i )T , Equation 4.10 can be rewritten as

F=AQ(B.(PF)). (C.4)

C.3 Computation of cyclotomic FFT-15 over GF (24)

Let f = {fi}, for i = 0, ..., 24 − 2, be the input sequence to be transformed. These fi

can be rearranged according to the cyclotomic decomposition modulo 24 − 1 of the set
{0, ..., 24 − 2}.

The integers {0, 1, ..., 14} will be decomposed into cyclotomic cosets Cks
, 0 ≤ s < 15,

where each Cks
consists of the set {ks, ks2, ks2

2, ..., ks2
ml−1}, ks is the coset leader such

that 0 ≤ ks ≤ 14 and ml is the smallest integer such that ks2
ml ≡ ks mod 15. l + 1

represents the number of cyclotomic cosets.
Table C.1 shows the cyclotomic decomposition of f .

Table C.1: FFT-15 cyclotomic cosets

C0 C1 C2 C3 C4
(m0 = 1, k0 = 0) (m1 = 4, k1 = 1) (m2 = 4, k2 = 3) (m3 = 2, k3 = 5) (m4 = 4, k4 = 7)

{f0} {f1, f2, f4, f8} {f3, f6, f12, f9} {f5, f10} {f7, f14, f13, f11}

Let α be a root of the primitive polynomial x4+x+1 and let (γ1, γ
2
1 , γ4

1 , γ8
1) be the basis

of the �eld GF (24), where γ1 = α3. As for the fourth cyclotomic coset, the corresponding
primitive polynomial of degree m3 = 2 is x2 + x + 1. α5 is root of this latest polynomial
and we can choose (γ2, γ

2
2), where γ2 = α5 as a basis of the linearized polynomial of degree

m3 = 2. These two basis satisfy the property γi + γ2
i + ... + γ2mi−1

i = 1.
The elements of GF (16) can be expressed as the combination of the basis (γ1, γ

2
1 , γ4

1 , γ8
1)

as following:
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





















































α0

α1

α2

α3

α4

α5

α6

α7

α8

α9

α10

α11

α12

α13

α14























































=























































γ1 + γ2
1 + γ4

1 + γ8
1

γ1 + γ8
1

γ1 + γ2
1

γ1

γ2
1 + γ4

1

γ2
1 + γ8

1

γ2
1

γ1 + γ2
1 + γ4

1

γ4
1 + γ8

1

γ8
1

γ1 + γ4
1

γ1 + γ2
1 + γ8

1

γ4
1

γ1 + γ4
1 + γ8

1

γ2
1 + γ4

1 + γ8
1























































. (C.5)

The decomposition of the polynomial f(x) according to the following equation:

f(x) =

4
∑

i=0

Li(x
ki),

and the substitution of x by αi gives the frequency components Fj , for i, j = 0, ..., 14.
Let us consider the development of some components.
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f(α0) = L0(α
0) + L1(α

0) + L2(α
0) + L3(α

0) + L4(α
0)

= L0(1) + L1(γ1) + L1(γ
2
1) + L1(γ

4
1) + L1(γ

8
1) + L2(γ1) + L2(γ

2
1) + L2(γ

4
1) + L2(γ

8
1)

+L3(γ)2 + L3(γ
2
2) + L4(γ1) + L4(γ

2
1) + L4(γ

4
1) + L4(γ

8
1),

f(α1) = L0(α
0) + L1(α) + L2(α

3) + L3(α
5) + L4(α

7)

= L0(1) + L1(γ1) + L1(γ
8
1) + L2(γ1) + L3(γ2) + L4(γ1) + L4(γ

2
1) + L4(γ

4
1),

f(α2) = L0(α
0) + L1(α

2) + L2(α
6) + L3(α

10) + L4(α
14)

= L0(1) + L1(γ1) + L1(γ
2
1) + L2(γ

2
1) + L3(γ

2
2) + L4(γ

2
1) + L4(γ

4
1) + L4(γ

8
1),

f(α3) = L0(α
0) + L1(α

3) + L2(α
9) + L3(α

15) + L4(α
6)

= L0(1) + L1(γ1) + L2(γ
8
1) + L3(1) + L4(γ

2
1),

f(α4) = L0(α
0) + L1(α

4) + L2(α
12) + L3(α

5) + L4(α
13)

= L0(1) + L1(γ
2
1) + L1(γ

4
1) + L2(γ

4
1) + L3(γ2) + L4(γ1) + L4(γ

4
1) + L4(γ

8
1),

f(α5) = L0(α
0) + L1(α

5) + L2(α
15) + L3(α

10) + L4(α
5)

= L0(1) + L1(γ
2
1) + L1(γ

8
1) + L2(1) + L3(γ

2
2) + L4(γ

2
1) + L4(γ

8
1),

f(α6) = L0(α
0) + L1(α

6) + L2(α
3) + L3(α

15) + L4(α
12)

= L0(1) + L1(γ
2
1) + L2(γ1) + L3(1) + L4(γ

4
1),

f(α7) = L0(α
0) + L1(α

7) + L2(α
6) + L3(α

5) + L4(α
4)

= L0(1) + L1(γ1) + L1(γ
2
1) + L1(γ

4
1) + L2(γ

2
1) + L3(γ2) + L4(γ

2
1) + L4(γ

4
1),

f(α8) = L0(α
0) + L1(α

8) + L2(α
9) + L3(α

10) + L4(α
11)

= L0(1) + L1(γ
4
1) + L1(γ

8
1) + L2(γ

8
1) + L3(γ

2
2) + L4(γ1) + L4(γ

2
1) + L4(γ

8
1),

f(α9) = L0(α
0) + L1(α

9) + L2(α
12) + L3(α

15) + L4(α
3)

= L0(1) + L1(γ
8
1) + L2(γ

4
1) + L3(1) + L4(γ1),

f(α10) = L0(α
0) + L1(α

10) + L2(α
15) + L3(α

5) + L4(α
10)

= L0(1) + L1(γ1) + L1(γ
4
1) + L2(1) + L3(γ2) + L4(γ1) + L4(γ

4
1),

f(α11) = L0(α
0) + L1(α

11) + L2(α
3) + L3(α

10) + L4(α
2)

= L0(1) + L1(γ1) + L1(γ
2
1) + L1(γ

8
1) + L2(γ1) + L3(γ

2
2) + L4(γ1) + L4(γ

2
1),

f(α12) = L0(α
0) + L1(α

12) + L2(α
6) + L3(α

15) + L4(α
9)

= L0(1) + L1(γ
4
1) + L2(γ

2
1) + L3(1) + L4(γ

8
1),

f(α13) = L0(α
0) + L1(α

13) + L2(α
9) + L3(α

5) + L4(α)

= L0(1) + L1(γ1) + L1(γ
4
1) + L1(γ

8
1) + L2(γ

8
1) + L3(γ2) + L4(γ1) + L4(γ

8
1),

f(α14) = L0(α
0) + L1(α

14) + L2(α
12) + L3(α

10) + L4(α
8)

= L0(1) + L1(γ
2
1) + L1(γ

4
1) + L1(γ

8
1) + L2(γ

4
1) + L3(γ

2
2) + L4(γ

4
1) + L4(γ

8
1),

This system of equations can be written in matrix form as
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(C.6)
Each Li constitutes a (mi × mi)-matrix. By developing the Lis, Equation C.6 is

equivalent to

F = A
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,

which can be written as the following form:

F = ALf. (C.7)

The multiplication of matrix L by matrix f is equivalent to four cyclic convolutions (three
four-point cyclic convolutions and one two-point cyclic convolution) of Li by the corre-
sponding cyclotomic coset of fi.

The four-point cyclic convolutions
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,

can be computed using short convolution algorithms described in [43]. For example
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(C.8)
Similarly, the two-point cyclic convolution

(

S9

S10

)

=

(

γ1
2 γ2

2

γ2
2 γ1

2

)(

f5

f10

)

can be computed using short two-point convolution algorithm.

(
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S10

)

=

[

1 1 0
1 0 1

]


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
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.
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]



 .

As previously shown, the FFT can be written with a simple form as

F=AQ(B.(PF)), (C.9)

where
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
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and
Q2 =

(

1 1 0
1 0 1

)

,
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with,
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 .

fC1
, fC2

, fC3
, fC4

are the transposed vector containing the elements of cyclotomic
cosets C1, C2, C3, C4 respectively.

As shown in Chapter 4, the hardware implementation of the matrix computations of
Equation C.9 can be tackled from right to left, that is, the multiplication Pf is performed
�rstly, then the computation of matrix B, the multiplication of the result by the matrix
Q and �nally the multiplication of the latest result by matrix A.
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