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Zusammenfassung

Im Laufe dieser Doktorarbeit wurde der Metall-Isolator-Übergang und die Supralei-

tung in einkristallinem hoch Bor-dotierten Diamant und verwandten Materialien un-

tersucht. Die Entdeckung der Supraleitung in diesem Material in 2004 zusammen mit

der Idee, dass Halbleiter unter ausreichender Dotierung metallisch werden, haben ei-

ne detaillierte Studie des Transports bei tiefen Temperaturen motiviert und initiiert.

Darüber hinaus ergab sich neues Interesse am Metall-Isolator-Übergang und der Supra-

leitung in anderen kovalent-gebundenen Gruppe IV Elementen, was zur Untersuchung

von hoch Bor-dotierten einkristallinem Silizium sowie hoch Aluminium-dotierten 4H

Siliziumkarbid führte. Eine weitere Idee bestand darin, die supraleitenden Eigenschaf-

ten von hoch Bor-dotierten nanokristallinem Diamant zu untersuchen, um die Robust-

heit dieses Effekts bezüglich Diamant zu bestätigen. Die Untersuchung des Metall-

Isolator-Übergangs in diesem System zeigte zudem die Wichtigkeit der Granularität

dieses Systems.

Im Fall von einkristallinem hoch Bor-dotierten Diamant erlaubte das gut kontrol-

lierte Wachsen der Schichten eine detaillierte Studie des doping-induzierten Metall-

Isolator-Übergangs. Die kritische Borkonzentration nc erwies sich als dieselbe für den

Metall-Isolator-Übergang als auch für den Normalleiter-Supraleiter-Übergang. Alle

metallischen Proben zeigten Supraleitung und es wurde eine Verbindung zwischen

dem Auftreten der Supraleitung und der Nähe zum Metall-Isolator-Übergang herge-

stellt (mittels Skalengesetz).

Darüberhinaus wurde der Ursprung der Supraleitung in einkristallinem Diamant un-

tersucht. Zu diesem Zweck wurden isotopisch substituierte Proben (zum ersten Mal in

unserer Gruppe) gewachsen. Beide Arten von Substitution (Matrix sowie Dotieratom)

wurden durchgeführt, wodurch neben den Standard-12C11B-Proben die substituierten

Probenserien 13C11B und 13C10B kamen. Allerdings waren die Ergebnisse aus Tief-

temperaturtransport und Supraleitung nicht schlüssig, aber erleichtern und motivieren

eine detailliertere Studie. Raman-Spektroskopie an diesen Serien hat es erlaubt, die

Charakteristik um etwa 500 cm−1 auftretend mit einer Phononmode zu identifizieren,

die Bor-Bor-Paaren zugeordnet werden kann. Diese zeigten sich als elektrisch inaktiv
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Zusammenfassung

und spielen eine wichtige Rolle für Studien in Abhängigkeit von der Borkonzentration.

Messungen des Hall-Effekts in einkristallinem hoch Bor-dotierten Diamant ergaben

eine rätselhafte Situation, mit Ladungsträgerdichten bis um einen Faktor 10 höher

als die Borkonzentration, die durch Sekundärionen-Massenspektroskopie (SIMS) be-

stimmt wurde. Basierend auf der Tatsache, dass der Hall-Koeffizient in gestrecktem

Silizium stark durch den reentranten Charakter der Fermi-Oberfläche geprägt ist, wur-

de ein ähnlicher Vorschlag erbracht, der oben genannte Diskrepanz zwischen Hall- und

SIMS-Messungen erklären kann.

Wie bereits erwähnt, spielt die Granularität eine wichtige Rolle in Bezug auf den

Metall-Isolator-Übergang und die Supraleitung in hoch bor-dotierten nanokristallinem

Diamant. Der Transport bei tiefen Temperaturen folgt demjenigen erwartet für ein me-

tallisches oder nichtleitendes granuläres System, je nach dem Zusammenspiel zwischen

intergranulärer und intragranulärer Leitfähigkeit. Der Metall-Isolator-Übergang findet

an einer kritischen Leitfähigkeit gc statt. Die Granularität beeinflusst auch deutlich

die supraleitenden Eigenschaften durch die Einführung der supraleitenden Energie-

lücke ∆ und der Josephson-Kopplung J zwischen supraleitenden Körnern. Ein Peak

im Magnetwiderstand kann durch supraleitende Fluktuationen und die Granularität

des Systems erklärt werden.

Hoch Bor-dotiertes einkristallines Silizium gilt als Modell-System und der Metall-

Isolator-Übergang wurde ausgiebig in diesem System untersucht, mit einer kritischen

Borkonzentration von nB ≈ 4 × 1018 cm−3. Fortschritte wurden auf dem Gebiet der

Herstellung erzielt und Laser-Doping-Techniken ergaben Zugang zu Proben mit viel

höherer Borkonzentration (nB ≈ 1021 cm−3). Der Transport bei tiefen Temperaturen

solcher durch gas immersion laser doping hergestellten Proben zeigten einen supralei-

tenden Übergang bei sehr tiefen Temperaturen.

Der Metall-Isolator-Übergang wurde schon in n-Typ 4H Siliziumkarbid untersucht,

metallische Leitfähigkeit wurde noch nicht in p-Typ 4H Siliziumkarbid gefunden.

In unserem Fall wurden hoch Aluminium-dotierte Siliziumkarbid-Proben durch ei-

ne vapour-liquid-solid (VLS) Technik hergestellt, mit Konzentrationen bis zu nAl ≈
8.7×1020 cm−3. Transportmessungen bei tiefen Temperaturen und temperaturabhän-

gige Raman-Spektroskopie geben experimentellen Nachweis für den Metall-Isolator-

Übergang. Darüberhinaus werden vorläufige Ergebnisse über die LO-Phonon-Plasmon-

Kopplung in aluminium-dotierten 4H Siliziumkarbid (erstmalig) gezeigt.
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Résumé

Au cours de cette thèse, la transition métal-isolant et la supraconductivité ont été

étudiés dans le diamant monocristallin fortement dopé au bore et des matériaux voi-

sins. La découverte de la supraconductivité dans le diamant fortement dopé au bore

en 2004 a motivé, avec l’idée de rendre un semiconducteur métallique en le dopant

suffisamment, l’étude détaillée du transport à basse température dans ce système. Cela

a également donné un regain d’intérêt pour la transition métal-isolant et la supracon-

ductivité dans d’autres éléments du groupe IV à liaisons covalents, ce qui conduit à

l’étude du silicium monocristallin fortement dopé au bore ainsi du carbure de silicium

4H fortement dopé à l’aluminium. Une autre idée était de tester les propriétés supra-

conductrices dans le diamant nanocristallin fortement dopé au bore afin de confirmer la

robustesse de cet effet. En outre, l’étude de la transition métal-isolant dans ce système

a mis en évidence l’importance de l’aspect granulaire sur les propriétés de transport à

basse température.

La synthèse bien contrôlée des échantillons de diamant fortement dopé au bore

nous a permis d’étudier en détail la transition métal-isolant induite par le dopage.

La concentration critique de bore nc pour la transition métal-isolant s’est avéré être

la même que pour la transition normal-supraconducteur. Tous les échantillons métal-

liques ont été trouvés supraconducteurs et nous avons été en mesure d’établir un lien

entre l’apparition de la supraconductivité et la proximité de la transition métal-isolant.

A cet effet, une approche en loi d’échelle basée sur le transport à basse température a

été proposée.

En outre, nous avons essayé d’étudier l’origine de la supraconductivité dans le dia-

mant monocristallin fortement dopé au bore. Des échantillons avec substitution iso-

topique ont été élaborés pour la première fois dans notre groupe. Les deux types de

substitution (concernant la matrice et le dopant) ont été utilisés, ce qui donne à côté

de la série standard 12C11B les deux séries en substitution isotopique : 13C11B et
13C10B. Toutefois, les résultats sur le transport à basse température et la supracon-

ductivité n’ont pas été concluants, même s’ils ouvrent la voie et motivent une étude

plus détaillée. Des mesures de spectroscopie Raman sur les échantillons en substitution
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isotopique ont permis l’attribution du pic observé à faible nombre d’onde (autour de

500 cm−1) à un mode de vibration associé aux dimères de bore. Ceux-ci se sont révélés

d’être électriquement inactifs et jouent un rôle important pour les études en fonction

de la concentration totale de bore.

Des mesures d’effet Hall sur les échantillons de diamant monocristallin fortement

dopé au bore ont créé une situation troublante. La concentration de porteurs mesurée

par effet Hall est jusqu’à un facteur 10 supérieure à la concentration de bore déterminée

par spectroscopie de masse des ions secondaires (SIMS). Compte tenu du fait que le

coefficient de Hall dans le silicium contraint est fortement influencé par la nature ré-

entrante de la surface de Fermi, une approche similaire est proposée pour expliquer

l’écart mentionné entre mesures d’effet Hall et mesures de SIMS.

Comme nous l’avons déjà mentionné, la granularité joue un rôle important dans le

cas du diamant nanocristallin fortement dopé au bore. Le transport à basse tempéra-

ture suit celui attendu pour un système granulaire métallique ou isolant, en fonction

de l’interaction de conductance intergranulaire et intragranulaire. La transition métal-

isolant a lieu à une conductance critique gc. La granularité influence également de

manière significative les propriétés supraconductrices par l’introduction du gap supra-

conducteur ∆ et du couplage Josephson J entre les grains. Un pic en magnétorésis-

tance a été observé qui peut être expliqué par des fluctuations supraconduteurs et la

granularité du système.

Le silicium monocristallin dopé au bore a servi comme modèle de référence et la

transition métal-isolant a été étudié en détail dans ce système. Toutefois, jusqu’à 2006,

aucune transition supraconductrice n’a été observée. Beaucoup de progrès ont été faits

au niveau de la fabrication des échantillons et des techniques à dopage par laser (par

ex. GILD) ont donné accès à des échantillons avec des concentrations de bore beaucoup

plus élevées (nB ≈ 1021 cm−3). Nous avons étudié le transport à basse température de

tels échantillons, dont certains ont révélé une transition supraconductrice.

Bien que la transition métal-isolant ait été étudié dans le carbure de silicium 4H

de type n, la métallicité n’ait pas été trouvée expérimentalement pour le carbure

de silicium 4H de type p. Dans notre cas, des échantillons de carbure de silicium

4H fortement dopé à l’aluminium ont été élaborés par une technique VLS avec des

concentrations jusqu’à nAl ≈ 8.7 × 1020 cm−3. Le transport et la spectroscopie Ra-

man en fonction de la température montrent clairement la preuve expérimentale de la

transition métal-isolant dans ce système. En outre, des résultats préliminaires sur le

couplage LO-phonon-plasmon sont montrés pour la première fois dans le carbure de

silicium 4H dopé à l’aluminium.
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Summary

During this PhD project, the metal-insulator transition and superconductivity of

highly boron-doped single crystal diamond and related materials have been inves-

tigated. The discovery of superconductivity in this material in 2004 together with

the idea to render a semiconductor metallic upon doping sufficiently, initiated and

motivated the detailed study of its low temperature transport. It also yielded renewed

interest in the metal-insulator transition and superconductivity in other covalently-

bonded group IV elements, leading to the investigation of highly boron-doped cubic

single crystal silicon and also highly aluminum-doped 4H silicon carbide. Another

idea was to test the superconducting properties of highly boron-doped nanocrystalline

diamond to confirm the robustness of this effect. The study of the metal-insulator

transition in this system further revealed the importance of the granularity of this

system.

In the case of highly boron-doped single crystal diamond films, the well-controlled

synthesis of the samples allowed us to study in detail the doping-induced metal-

insulator transition. The critical boron concentration nc for the metal-insulator tran-

sition was found to be the same as for the normal-superconductor transition. All

metallic samples have been found to be superconducting and we were able to link

the occurence of superconductivity to the proximity to the metal-insulator transition.

For this purpose, a scaling law approach based on low temperature transport was

proposed.

Furthermore, we tried to study the nature of the superconductivity in highly boron-

doped single crystal diamond. Isotopically substituted samples have been grown for

the first time in our group. Both types of substitution (including host lattice and

dopant) were performed, yielding beside the standard 12C11B samples the isotopically

controlled 13C11B and 13C10B series. However, the results on the low temperature

transport and superconductivity were not conclusive, but pave the way for a more

detailed study. Raman spectroscopy measurements on the isotopically substituted

series suggest that the feature occuring at low wavenumbers (≈ 500 cm−1) is the

A1g vibrational mode associated with boron dimers, which have been shown to be
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electrically inactive and play an important role for studies as a function of total boron

concentration.

Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped

diamond samples, leading to carrier concentrations up to a factor 10 higher than the

boron concentration determined by secondary ion mass spectroscopy (SIMS). Based

on the fact that the Hall coefficient in strained silicon is greatly influenced by the

re-entrant nature of its Fermi surface, a similar approach is proposed to explain the

above mentioned discrepancy between Hall and SIMS measurements.

As already mentioned, the granularity plays an important role in the case of highly

boron-doped nanocrystalline diamond films. The low temperature transport follows

the one expected for a granular metal or insulator, depending on the interplay of inter-

granular and intragranular (tunneling) conductance. The metal-insulator transition

takes place at a critical conductance gc. The granularity also influences significantly

the superconducting properties by introducing the superconducting gap ∆ in the grain

and Josephson coupling J between superconducting grains. A peak in magnetoresis-

tance is observed which can be explained by superconducting fluctuations and the

granularity of the system.

Highly boron-doped cubic silicon served as a model system and the metal-insulator

transition has been studied extensively in this system, revealing a critical concentra-

tion nB ≈ 4 × 1018 cm−3. However, until recently, no superconducting transition

has been observed. Progress on the field of fabrication has been made and laser

doping techniques gave access to samples with much higher boron concentrations

(nB ≈ 1021 cm−3). We studied the low temperature transport of such samples grown

by gas immersion laser doping, some of which yielded a superconducting transition at

very low temperatures.

Whereas the metal-insulator transition has been studied in n-type 4H silicon car-

bide, metallicity has not been found experimentally for highly-doped p-type 4H silicon

carbide. In our case, highly aluminum-doped samples have been grown by a vapour-

liquid-solid (VLS) technique with concentrations up to nAl ≈ 8.7 × 1020 cm−3. Low

temperature transport and temperature dependent Raman spectroscopy clearly reveal

experimental evidence for the metal-insulator transition in this system. Furthermore,

preliminary results on the LO-phonon-plasmon coupling are shown for the first time

in aluminum-doped 4H SiC by Raman spectroscopy.

vi



1. Introduction

The electrical conductivity is probably the observable physical property which spans

the widest range, starting from approximately 10−22 Ω−1cm−1 in the best insulators

to around 1010 Ω−1cm−1 in pure metals (neglecting the phenomenon of superconduc-

tivity) [1, 2]. There are numerous experimental situations where materials can change

from highly conducting metals into highly resistive insulators [3, 4, 5, 6, 7, 8, 9, 10].

These metal-insulator transitions can be induced by continuous changes of control

parameters such as composition or pressure, etc. In one of the first publications [4]

Mott mentioned that The aim of this paper is to give a more detailed treatment of this

problem (the difference between metals and non-metals) and to apply it to the behavior

of a semiconductor containing a high concentration of impurity centers.

1.1. Metal-insulator transition in doped

semiconductors

In the beginning of semiconductor physics, uncontrolled impurities masked the discov-

ery of physical laws. Experiments on pure crystals provided new insights and led to

the development of semiconductor theory (effective mass, impurity states, transport).

The term doping came up to indicate that the impurities introduced can be controlled

to a certain extent. An impurity can be either a donor or an acceptor. At finite

temperatures, a donor impurity may be ionized (depending on the activation energy)

by donating an electron to the conduction band. An acceptor impurity captures one

electron from the crystal, leaving a hole in the valence band. Donors and acceptors in

semiconductors are responsible for conductivity by electrons or holes, respectively. In

the energy-band diagram the donor and acceptor levels are situated in the forbidden

gap close to the bottom of the conduction band or close to the top of the valence

band, respectively. Although amorphous (i.e. non-periodic) semiconductors do exist,

the basic approach to describe the properties of the energy bands and eigenstates of

a pure semiconductor deals with a periodic potential (with periodicity of the Bravais

1
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lattice of the crystal) and Bloch’s theorem in the independent electron approximation,

as a solution of the Schrödinger equation for a single electron,

Hψ =

(

− ~
2

2m
∇2 + U(~r)

)

ψ = Eψ (1.1)

where U(~r + ~R) = U(~r) for all Bravais lattice vectors ~R. The eigenstates ψ of the

one-electron Hamiltonian H in Eq. 1.1 can be chosen to have the form of a plane wave

times a function with the periodicity of the Bravais lattice:

ψn~k(~r) = ei~k·~run~k(~r) (1.2)

The proximity of a donor level to the bottom of the conduction band (similar reasoning

for an acceptor level) implies that an excess electron is weakly bound to the donor

center. The impurity center can be seen as a point charge and one can assume a

central potential for the electron (or hole) motion, where

U (r) =
1

4πǫ0ǫr

e2

r
(1.3)

with e the electron charge, r the distance of the center, and ǫr the dielectric permit-

tivity of the material. This resembles the problem of a hydrogen atom, except that

the product −e2 of the nuclear and electronic charges has to be replaced by −e2/ǫr,

and the free electron mass m, by the effective mass m∗. Thus the radius of the first

Bohr orbit, a0 = ~
2/me2, becomes

a∗0 =
m

m∗
ǫra0 (1.4)

Therefore, in high dielectric constant semiconductors one could easily vary the average

spacing between impurity atoms, looking for the metal-insulator transition envisioned

in Mott’s picture, which is based on the overlap of electronic wavefunctions. One has

to consider an ensemble of hydrogen atoms positioned in a regular array (lattice).

If the lattice spacing is large compared to the Bohr radius, electron wavefunctions

do not significantly overlap. A finite amount of energy is necessary for electrons to

hop from one site to the other due to electron-electron repulsion, better known as

the Hubbard correlation energy U [11, 12, 13]. Therefore, the system is insulating

at T= 0 K. In the other limit, for a lattice spacing small compared to the Bohr

radius, electron wavefunctions overlap. The ground state can be described by a half-

filled band and the system is a metal at T= 0 K. The system undergoes a metal-

2



1.1. Metal-insulator transition in doped semiconductors
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Figure 1.1.: Experimental data for the critical carrier concentration nc and the effec-
tive Bohr radius a∗0 at the metal-insulator transition in several systems, including
doped semiconductors, metal ammonia (and related systems), expanded metals, and
metal-noble gas systems. Taken from Ref. 8. The theorectical values for the sys-
tems studied in this work (C:B, Si:B, and 4H-SiC:Al) are added, in good agreement
with the experimentally obtained values.

insulator transition depending on the density of impurity atoms if electron correlations

are taken into account. This can be applied to doped semiconductors. For weakly

doped semiconductors, the electronic states at the Fermi level, if any, are localized and

the transport at low temperature follows an activated behaviour. In heavily doped

semiconductors the electronic states are delocalized and the transport is of metallic

type.

Electronic states involved in transport are spatially extended in the metal but are

localized in the insulator. On the one side, as already mentioned, this localization may

be due to strong electron-electron repulsion (the so-called Mott-Hubbard transition

[11, 12, 13]. On the other side, Anderson [14] has shown that localization may be due

to static disorder, even in the absence of electron interactions (the so-called Anderson

transition). In the case of doped semiconductors, introducing more and more impurity

atoms reduces the average spacing between impurity atoms and, thus, enhances the

overlap of the wavefunctions, but the random placement of the substitutional impurity

3



1. Introduction

atoms also creates a certain random potential and, thus, disorder. As in many other

cases of metal-insulator transitions more than one mechanism is present, each of which

is quite simple in principle. But even in the limiting cases, a theoretical solution is

not easy to obtain and the theoretical understanding of the metal-insulator transition

is far from satisfactory.

Disregarding all of these inherent problems and complexities, there remain certain

simple criteria for the occurence of a metal-insulator transition. One of these criteria

is the already mentioned idea of Mott that by lowering the density of carriers, the

screened Coulomb interaction gets stronger and, thus, leads to localization [5, 6, 7] of

the electron wavefunction. Therefore when the carrier concentration, or equivalently

the average spacing between impurity atoms, is changed, insulating states appear at

a certain critical concentration nc. Mott [5] suggested the following condition to hold:

n1/3
c a∗0 ≤ 0.25 (1.5)

where a∗0 is the effective Bohr radius (see Eq. 1.4) and nc is the critical carrier con-

centration at the metal-insulator transition at T= 0 K. Fig. 1.1 summarizes some of

the experimental data including doped semiconductors (donor systems), metal ammo-

nia (and related systems), expanded metals, and metal-noble gas systems [8]. These

system all obey the linear relationship (log-log representation) of Eq. 1.5, which is

truly remarkable. For acceptor systems, a single value of the effective Bohr radius a∗0

to describe the hole wave function is of questionable validity due to ambiguities as-

sociated with the hydrogenic model for the valence band holes [15]. Nevertheless, an

approach to determine an appropriate value of the effective Bohr radius for acceptors

is to assume a hydrogenic model and use the experimentally determined activation

energy Eact, via the relationship

Eact =
e2

2ǫra∗0
(1.6)

For boron-doped silicon Si:B with an activation energy of Eact = 44 meV this leads

for example to a∗0 [Si:B] = 1.55 nm. Therefore, the experimentally determined critical

carrier concentration of nc,exp [Si:B] = 4.06 × 1018 cm−3 [16] is quite close to the

theoretically predicted value of nc,th [Si:B] = 4.2 × 1018 cm−3, obtained from Eq. 1.5.

Similar reasoning for boron-doped diamond (Eact = 380 meV [17, 18], ǫr = 5.7) leads

to nc,th [C:B] = 4.3 × 1020 cm−3 [19], quite close to the experimentally determined

value of about nc,exp [C:B] = 4.5× 1020 cm−3 in this work (see Fig. 1.1). In the case of
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1.1. Metal-insulator transition in doped semiconductors

aluminum-doped silicon carbide, one therefore finds nc,th [SiC:Al] = 3.0 × 1020 cm−3

(using ǫr = 9.7 and Eact = 200meV ), also quite close to the experimentally determined

interval 6.4 < nc,exp [SiC:Al] < 8.7 × 1020 cm−3 of this work.

Another useful criterion is the idea of a minimum metallic conductivity, σmin, that

a metal can support [20, 6, 7]. This corresponds to the situation where the mean

free path is equal to the de Broglie wavelength of the electrons at the Fermi energy.

Mott’s idea was based on arguments developed earlier by Ioffe and Regel [21] for the

breakdown of the theory of electronic conduction in semiconductors. The conventional

Boltzmann transport theory becomes meaningless when the mean free path l becomes

comparable to the interatomic spacing d, leading to

σmin = Ce2/~d (1.7)

where the constant C can vary between 0.03 and 0.1, depending on the theoretical

model used [7]. Therefore, Mott [5, 20] proposed that the metal-insulator transition

in a perfect crystalline material at T= 0 K is discontinous, with a minimum metallic

conductivity at the transition.

Abrahams et al. [22] have, however, predicted a continuous metal-insulator transi-

tion on the basis of a scaling theory of non-interacting electrons in a disordered system,

and their results question the existence of σmin [23, 24]. Low temperature conductiv-

ity data for phosphorous- and boron-doped silicon (Si:P, Si:B) can be taken as strong

experimental evidence for a continuous metal-insulator transition in doped semicon-

ductors at T= 0 K [25, 16]. At fixed (very low) temperature, the conductivity changes

continuously with the dopant concentration and, in addition, the extrapolated zero-

temperature conductivity σ(0) varies continuously. Mobius [26, 27] questioned the

reliability of such 0 K extrapolations and suggested that the findings did not disprove

the existence of a finite σmin at the transition. His analysis pointed out that while

the continuous conductivity transition is predicted for non-interacting disordered elec-

trons, just on the insulating side of the transition the Coulomb interaction is getting

more important. Futhermore, it is also possible that 3 mK may not be a low enough

temperature to fully probe the metal-insulator transition in doped semiconductors.

Mott’s minimum metallic conductivity (σmin) criterion has also been criticized by Co-

hen and Jortner [28], who argued that there was an inhomogeneous regime near the

critical concentration nc. They suggested classical percolation theory would describe

conduction along metallic channels and, thus, the zero-temperature conductivity σ(0)

would continuously drop to zero as the width of the metallic channels decreases when

5
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one approaches nc. Mott responded [29] that one could not divide the sample into

insulating and metallic regions and gave theoretical reasons for this. The presence of

a high degree of disorder may cancel the discontinuous nature of the metal-insulator

transition, but the inclusion of strong correlation in scaling models could conversely

change a continuous transition to a discontinuous one [30, 31].

In spite of such difficulties, however, σmin continues to be a useful experimental

criterion at least at the high temperature limit [9, 26, 32, 33, 34]. As pointed out by

Fritzsche [35], σmin appears to satisfactorily represent the value of conductivity where

the activation energy for conduction disappears.

1.2. Superconductivity: General remarks

As already mentioned, conductivity values have been observed over a very wide range.

The very first approaches to describe the electronic transport were based on the ap-

proximate and ideal case of the independent electron. Experimentally observed be-

haviours demonstrating deviations from this ideal picture were explained by more

sophisticated theories including, for example, electron-electron interactions. In many

metals (without magnetic ordering) a spectacular failure of the independent electron

approximation sets in at very low temperature, in the electronially ordered state known

today as superconducting state. The most striking features of a superconductor are

the following:

1. A superconductor behaves as if it had no measurable DC electrical resistivity

(below the critical current necessary to break up the superconducting ground state).

2. A superconductor behaves like a perfect diamagnet, the response to an externally

applied magnetic field leading to surface currents and to the expulsion of the magnetic

field (Meissner effect).

3. A superconductor behaves as if there was a gap (exception: gapless supercon-

ductors) in energy of width 2∆ centered around the Fermi energy in the set of allowed

one-electron levels (directly observable in electron tunneling experiments).

Note that zero resistance alone is not a criterion for global superconductivity to

occur, since a single filamentary superconducting pathway through the sample alone

6
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leads to apparent zero resistivity by shortcircuiting the sample. Supplementary exper-

imental evidence from a.c. susceptibility measurements indicate the expulsion of the

magnetic field (no bulk superconductivity is needed). Only a measurable anomaly in

specific heat measurements probes superconducting order in the bulk of the sample.

Superconductivity is not peculiar to a few metals. It appears in more than 20 of

the elements (in bulk form and at ambient pressure), in thousands of alloys, in several

organic conductors, in many conducting oxides (including the high Tc materials, and

also in a few (doped) semiconductors.

Superconductivity was first discovered by H.K. Onnes who studied the electronic

transport of mercury at low temperatures and found a jump to zero resistivity [36].

In spite of tremendous efforts, both from the experimental and the theoretical sides,

the effect remained a puzzle for almost half a century, and was studied only in terms

of phenomenological theories [37, 38] which held some success in accounting for some

of the experimental findings but did not have microscopic theoretical justification.

The first clue towards a microscopic theory was proposed by Cooper [39], who

showed that electrons can pair up in the presence of the Fermi sea, due to a phonon-

mediated effective attractive interaction between them. Later on Bardeen, Cooper,

and Schrieffer [40] showed that superconductivity can be understood by means of a

phase-coherent, macroscopic wavefunction composed of simultaneous pairing of all the

electrons in the vicinity of the Fermi surface, which is the basis of the so-called BCS

theory of superconductivity. Their ideas were then followed by those of Bogoliubov

[41, 42] and Gork’ov [43], which cast them within the formalism of the many-body

Green’s functions. Since then, superconductivity has been a central area of study

in condensed matter physics, as one of the few examples in which a truly many-body

quantum phenomena which comes about from electron-electron interactions, gives rise

to macroscopic (and easily detectable) effects.

The BCS theory [40] was the first to successfully account for the properties of pure

superconductors, as well as for alloy systems A1−xBx, as long as the doping concen-

tration, x, is small [44] (see below). In its simplest form the BCS theory makes two

oversimplifications in the basic Hamiltonian that describes the conduction electrons.

The conduction electrons are treated in the free electron approximation and band

structure effects are ignored. The rather complicated attractive interaction between

electrons near the Fermi energy is further simplified to an effective interaction V0. In

reality, the complex interaction is the sum of an instantaneous Coulomb repulsion and

an attractive, time-dependent electron-phonon interaction.

The most prominent characteristics that distinguishes one superconductor from an-
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other is the superconductive transition temperature, Tc. Following BCS theory, in zero

magnetic field, superconducting ordering sets in below a critical temperature given by

Tc = 0.85ΘDexp

(

− 1

N(EF )V0

)

(1.8)

where ΘD is the Debye temperature and N(EF ) is the density of states at the Fermi

level. This expression is accurate only when N(EF )V0 is small (so-called weak coupling

limit). A similar expression is predicted for the zero-temperature energy gap ∆(0).

The ratio

∆(0)

kBTc

= 1.76 (1.9)

gives a fundamental formula independent of the phenomenological parameters.

Several formulations of superconductivity followed the BCS theory, the constant

effective net interaction V0 was replaced by more realistic potentials. Eliashberg [45]

developed the modern expression for the superconducting gap equation, which is char-

acterized by two parameters, λ and µ. The first corresponds to the phonon-mediated

interaction which is defined as

λ = 2

∫

g (Ω)F (Ω)

Ω
dΩ (1.10)

where g (Ω) is the square of the electron-phonon matrix element and F (Ω) is the

phonon density of states. µ represents the repulsive Coulomb interaction and can be

written as

µ = 2

∫

V (Ω) dΩ (1.11)

McMillan [46] solved the Eliashberg equation numerically and thereby determined a

semi-empirical expression for the critical temperature Tc following

Tc =
~ωln

1.2
exp

( −1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

)

(1.12)

where µ∗ is the Coulomb pseudo-potential which includes retardation effects, given by

µ∗ =
µ

1 + µ ln (EF/kBΘD)
(1.13)

and ωln is a logarithmically averaged frequency weighted with the electron-phonon

interaction via the Eliashberg funtion α2F (ω)
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ωln = exp

{

2

λ

∫ ∞

0

ln(ω)
α2F (ω)

ω2
dω

}

(1.14)

Hereby, EF is the Fermi energy. Note that for small λ Eq. 1.12 reduces to the BCS

expression in Eq. 1.8 if N(EF )V0 is identified as λ− µ∗.

As already indicated above, the starting point of the theory of disordered supercon-

ductors is due to Anderson [44], who showed that weak disorder (that is for kF l ≫ 1,

where kF is the Fermi wavevector and l is the mean-free path) has no profound effect

on the thermodynamic properties of superconductors, leaving the energy gap ∆ and

the critical temperature Tc unchanged. This is because instead of Cooper-pairing of

time-reversed states of opposite momenta and spin, the pairing occurs between time-

reversed eigen-functions of the disordered potential, and this ground state yields a

self-consistency equation for ∆ which is identical to that of the clean system. As will

be shown later, highly boron-doped single crystal diamond (also silicon) is compatible

with the BCS theory and, thus, the disorder introduced by the impurity atoms can be

considered weak in the above mentioned meaning. Therefore we shall focus only on

this limit.

Obviously, disorder may also be introduced by a change in microstructure from single

crystal material to poly- or nanocrystalline materials. In general, granular conductors

form a class of materials with tunable electronic properties, composed of close-packed

granules. Only recently progress has been made in the understanding of electronic

properties of metallic granules [47]. As will be discussed later in detail, metallic gran-

ular systems are characterized by several physical quantities such as the intragranular

conductance g0, the intergranular (tunneling) conductance g, the Coulomb charging

energy Ec, and the mean level spacing δ. Superconductivity can be placed in the

same context, quantified by adding the superconducting gap ∆ of a material of a sin-

gle granule, as well as the Josephson coupling J between the grains. Anderson [44]

showed that a BCS-like approach is valid for small grains, provided the average dis-

tance between levels, δ, is smaller than the superconducting gap ∆ (δ ≪ ∆). However,

the global properties of the granular system may be significantly different from the

equivalent single crystal material, depending on the interplay of the above mentioned

physical quantities (e.g. one speaks of a granular system if g ≪ g0).
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1.3. Motivation

With the breakthrough of the microscopic BCS theory, the search for new systems ex-

hibiting superconducting properties started. Theoretical predictions for the occurence

of a superconducting state in degenerate semiconductors or semimetals were made

early on [48, 49, 50, 51]. One motivation for the study of degenerate semiconductors

was based on the detailed informations available for the band structure, and on the

effects of uniaxial strain or hydrostatic pressure [52, 53]. Therefore, superconductivity

could then be observed as a function of band-structure changes and changes in the

number of carriers alone [54]. In particular, it was proposed that a many-valley band

structure should favor superconductivity due to additional attractive interaction by

intervalley phonons [49]. Type II superconducting transitions were indeed observed

in several systems like self-doped GeTe [55], SnTe, and reduced SrTiO3 [56, 57], with

critical temperatures in the range 50 to 500 mK. The studies included specific heat

measurements as well as Hc(Tc) phase diagrams [58, 59, 60]. Further investigations

dealt with the dependence of the critical temperature Tc on the carrier concentration.

For the two p-type materials GeTe and SnTe [61], the small increase of the critical

temperature Tc at higher carrier concentration was explained by an increased screen-

ing of the attractive (valley phonon-mediated) coupling. The same argument was used

in the case of n-type SrTiO3 in order to explain the maximum Tc [62]. Shortly after,

tunneling spectroscopy was performed at various temperatures on superconducting

GeTe, leading to a ratio 2∆/kBTc of about 4.3 close to the theoretically predicted

value of 3.5 [63]. Similar results have been obtained for SrTiO3 with a ratio of about

3.3, also confirming the theoretically predicted value by BCS [64]. All these results

were considered at that time to further validate the BCS theory of superconductiv-

ity. However, probably due to the discovery of other interesting systems with much

higher critical temperatures Tc, superconductivity in degenerate semiconductors was

not further explored. Only recently, a renewed interest was caused by the surprising

discovery of superconductivity in highly boron-doped diamond by Ekimov et. al in

2004 [65].

In the general context of the metal-insulator transition in doped semiconductors and

superconductivity, several systems have been studied in this work. Chapter 2 deals

with highly boron-doped single crystal diamond films grown by microwave plasma

assisted chemical vapor deposition (MPCVD) fabricated in our laboratory (CNRS

Grenoble, Institut Néel). The metal-insulator transition in this system will be studied

in some detail, and a link between the superconductivity and the proximity of the

10



1.3. Motivation

metal-insulator transition is suggested. Several attempts have been made in order

to corroborate the BCS-like nature of the superconductivity occuring in this system.

Preliminary results concerning the isotopic substitution (of carbon C as well as boron

B) will be presented. Furthermore, the discrepancy between the carrier concentration

measured by Hall effect and the boron concentration determined from secondary ion

mass spectroscopy (SIMS) will be addressed, and a possible link to the structural

properties of the epilayers established.

In Chapter 3, the electronic properties of highly boron-doped nanocrystalline dia-

mond films (MPCVD, provided by O. Williams from the IMO, Hasselt, Belgium) are

studied at low temperatures. As will be seen, compared to single crystal diamond,

the granularity of the nanocrystalline diamond films plays an essential role for the

metal-insulator transition as well as for the superconductivity in this system.

Beside highly boron-doped diamond, two more related materials have been studied

and will be presented in Chapter 4 and 5. Heavily boron-doped silicon thin films (pro-

vided by D. Débarre and J. Boulmer from the IEF, Orsay) grown by Gas Immersion

Laser Doping (GILD) were carefully characterized, and the occurence of superconduc-

tivity at very low temperatures will be presented in Chapter 4.

Chapter 5 deals with the experimental observation of a doping-induced metal-

insulator transition in highly aluminum-doped 4H silicon carbide (samples provided

by G. Ferro from the LMI, Lyon) grown from a vapour-liquid-solid (VLS) technique.

This PhD project will be concluded by Chapter 6, where a brief outlook will be

presented.
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2. Heavily boron-doped single crystal

diamond (C:B)

Diamond is the sp3-bonded form of carbon and crystallises in a face-centered cubic

crystal structure, consisting of two interpenetrating sublattices, whereby one lattice

is shifted one quarter along the cube diagonal. At room temperature and ambient

pressure, diamond is a metastable form of carbon. The stable form is graphite, the

sp2-bonded form of carbon. Due to its sp2-bonded structure, graphite is electrically

conductive, in contrast to intrinsic diamond. Although the standard enthalpies of di-

amond and graphite only differ by 2.9 kJ/mol [1], a large activation barrier separates

the two phases, preventing any interconversion at ambient temperature and pressure.

The very strong covalent bond is partly responsible for the unique properties of di-

amond. In Tab. 2.1 some of the outstanding properties of diamond are summarized

and compared with those of other materials.

As can be seen from Tab. 2.1, the wide bandgap semiconductors are superior to Si

in most of their properties. Key issues for industrial applications are properties like

thermal conductivity, breakdown field, and electron and hole mobility. The success-

ful application of chemical vapour deposition (CVD) to diamond growth opened up

ways to large area deposition. Its simplicity, versatility and low operating costs make

it an attractive technique for industrial applications. In addition, the extreme hard-

ness of diamond, its chemical inertness, and biocompatibility make it also ideal for a

large variety of applications in other domains, ranging from wear-resistive coatings to

biomedical implants.

In order to make diamond a competitive material for technological applications

with respect to the well established semiconductors like Si or GaAs, one has to over-

come some severe problems. The use of single crystalline diamond is hindered by the

lack of an inexpensive substrate for (homo-)epitaxial growth. Therefore, many efforts

have been dedicated to grow high quality polycrystalline and nanocrystalline mate-

rial. Nevertheless, these contain grain boundaries, twins, stacking faults, and other

defects, which all reduce the lifetime and mobilities of carriers. Active devices have
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Thermal
Dielectric Break down Electron Hole conduc- Debye

Material Band gap constant field mobility mobility tivity temperature

EG[eV ] ǫ(ω = 0) FB[ V
cm

] µe[
cm2

V s
] µh[

cm2

V s
] λ[ W

cmK
] θD[K]

Si 1.12 i 11.7 3 × 105 1400 450 1.3 640
4H − SiC 3.23 i 9.66 3 − 5 × 106 900 120 3.7 1300
6H − SiC 3.0 i 9.66 3 − 5 × 106 400 90 4.9 1200
InP 1.34 d 12.5 5 × 105 5400 200 0.68 425
GaAs 1.43 d 12.9 4 × 105 8500 400 0.55 360
GaP 2.26 i 11.1 1 × 106 250 150 1.1 445
GaN 3.2 d 8.9 5 × 106 1000 350 1.3 600
GaSb 0.73 d 15.7 5 × 104 3000 1000 0.32 266
AlN 6.2 d 8.5 1.2 − 1.8 × 106 300 14 2.85 1150

Diamond 5.47 i 5.7 1 × 107 2200 1800 22 1860

Table 2.1.: Physical properties of important semiconductors. In the band gap column
i and d denote an indirect and direct band gap, respectively. The values are given,
if temperature dependent, at room temperature [2].

been demonstrated using homoepitaxially grown diamond on natural or synthetic di-

amond substrates but, to date, there have been no affirmed reports of heteroepitaxial

growth of device-quality diamond on non-diamond substrates.

Another problem for electronic device applications is the difficulty in obtaining n-

type doping. P-type doping is relatively easy achieved by simply adding a small

amount of boron to the CVD process gas mixture. Due to its comparable atomic size,

boron can easily be introduced as an acceptor into the diamond lattice, leading to p-

type conductivity with an activation energy of 370 meV. The close packing and rigidity

of the diamond lattice makes doping with atoms larger than C very difficult. In the

case of donors, one should not call them shallow donors. Nitrogen, the most common

donor, introduces a level at 1.7 eV below the conduction band [3] and phosphorous,

the shallowest of all known donors in diamond, has an activation energy of 0.6 eV [4].

Furthermore the simple crystallograpic structure as well as the absence of magnetism

make single crystal diamond a likely model-system for the study of low temperature

transport and electronic phase transitions.

2.1. State of the art and motivation

After the discovery of superconductivity in 2004 by Ekimov et al. in a heavily boron-

doped polycrystalline diamond sample prepared by a high pressure/high temperature
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process [5], this behaviour was then confirmed for heavily boron-doped polycrystalline

[6, 7] and single crystalline [8] diamond films grown by microwave plasma enhanced

chemical vepour deposition (MPECVD), and later on also in films prepared by a chem-

ical transport reaction method [9], hot filament-assisted CVD [10], as well as in heavily

boron-doped nanocrystalline diamond films [11]. Up to now, critical temperatures Tc

up to 10 K (in a few cases) have been found [6, 10, 12, 13, 14]. The exact values not

only depend on the preparation method and the conditions used for growth. The Tc

value also depends on the experimental technique used to measure the superconduct-

ing transition, probably leading to overestimates in some cases. The orientation of the

substrate seemed to affect superconductivity in some cases [13, 15], but a complete un-

derstanding is still lacking. Most experimental [7, 16, 17, 18, 19] and theoretical works

[20, 21, 22, 23, 24] suggest a standard BCS approach involving a phonon-mediated

pairing mechanism.

The diamond lattice consists of tetragonally coordinated sp3-bonded carbon atoms

(so-called σ-bonding) with very short covalent bonds which are responsible for the

extreme hardness of the material and also for the high Debye temperature. It is now

well understood that superconductivity in magnesium diboride MgB2 [25] (with crit-

ical temperatures up to 39 K) comes from the very good coupling of phonons with

the holes at the top of the σ-bonding bands [26, 27, 28]. Moreover, sp3 hybridization

is supposed to play an essential role for the superconductivity found in silicon-based

clathrates [29, 30, 31]. While in MgB2 the metallic bands are two-dimensional and

couple to two optical phonon modes, in diamond they are three-dimensional and cou-

ple to three zone-centre optical modes. Despite a very large electron-phonon coupling

potential V0 for diamond [32, 33], the three-dimensional nature reduces its density

of states N(EF ) compared to MgB2. Therefore, theoretical calculations lead to an

electron-phonon coupling λ = N(EF )V0 of about 0.4 to 0.5 [20, 21, 22, 23, 24], quite

smaller than λ ≈ 1 in MgB2, explaining the somehow smaller critical temperatures

seen in diamond. Thereby, density functional theory calculations in the virtual crys-

tal approximation (VCA) as well as supercell calculations use the calculated electronic

and vibrational band structure to compute the electron-phonon spectral function (also

called Eliashberg function) in order to extract the electron-phonon coupling λ. As the

screening parameter µ∗ is not accessible by these calculations, typical values in the

range 0.1 to 0.15 have been used [20, 21, 22, 23, 24]. These values were taken either

because they are typical for usual metals (note, however, that for usual metals the re-

lation EF/kBΘD ≫ 1 holds), or were in good agreement with experimentally observed

critical temperatures Tc (related to λ and µ∗ by the McMillan formula [34]). While

19



2. Heavily boron-doped single crystal diamond (C:B)

VCA calculations point toward a coupling of the valence electron by optical phonon

states at the centre of the Brioullin zone (due to symmetry) [20, 21, 22], supercell

calculations indicated the importance of localized vibrational modes related to boron

atoms to the overall electron-phonon coupling [23, 24], which has been confirmed re-

cently including disorder-related effects [35]. However, theoretical calculations predict

a doping dependence of the critical temperature Tc which is not reproduced exper-

imentally, so the BCS-type estimate of this critical temperature is not an evidence

for a BCS mechanism. Application of a recently developed parameter-free approach

where the Coulomb potential µ∗ has not to be adjusted [36] should be applied to the

diamond case to further corroborate the BCS mechanism or not.

In order to prove the application of a BCS theoretical approach for the supercon-

ductivity in highly boron-doped diamond, effects of isotopic substitution with direct

influence on the vibronic energies and, thus, the electron-phonon coupling, on the crit-

ical temperature Tc should be studied. These experiments are difficult to perform, a

first approach will be discussed in Sec. 2.4. Beside this, measurements of the supercon-

ducting band gap 2∆ reveal the compatibility to the BCS theory. Below the critical

temperature Tc, a gap (2∆) centered around the Fermi level opens up in the density

of states. This has been observed by point contact tunneling spectroscopy [37], by

optical reflectance in the far infrared [18], by laser-excited photoemission spectroscopy

[38], and by scanning tunneling spectroscopy [17, 39, 40, 41]. For experiments carried

out at temperatures close to the critical temperature Tc, a V-shaped gap has been

observed for single crystal diamond ({100} [37] and {111} [38] orientation) as well

as for polycrystalline diamond [40]. Scanning tunneling spectroscopy measurements

carried out at much lower temperatures give evidence of a standard BCS lineshape

[17, 39]. Fig. 2.1(a) shows the temperature dependence of the energy gap, and a ra-

tio of 2∆/kBTc of about 3.5 very close to the BCS value in the weak coupling limit

through phonons was deduced from this temperature dependent spectroscopy [17, 41].

The scanning tunneling spectroscopy measurement in Fig. 2.1(b) shows the vortices

obtained in highly boron-doped diamond, clearly revealing the type II nature of su-

perconductivity in this system.

Moreover, electron-phonon coupling is expected to soften specific vibrational modes

(phonon softening), which has been studied by inelastic X-ray scattering (IXS) on a

free-standing 100 µm thick polycrystalline sample [42, 43]. The IXS data collected

along the direction {100} and {111} of the Brillouin zone indicate that the softening

is most pronounced at the zone center Γ point, much smaller than values predicted

by VCA calculations but in good agreement with supercell calculations. Cardona
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Figure 2.1.: (a) Temperature dependent scanning tunneling spectroscopy measure-
ments of the energy gap opening up in the superconducting state. Results are in
very good agreement with the expected BCS values [17, 68]; (b) Vortex image ob-
tained on a highly boron-doped single crystal diamond sample, clearly showing the
type II nature of superconductivity [17, 68].

et al. suggest [32, 33] that the {110} direction is energetically favoured for carrier

population. A detailed analysis of IXS data collected on homoepitaxial thick (25 µm)

layers grown by us (throughout the Brillouin zone) is underway in order to confirm

and complement existing results [42, 43], which can be compared to results from

second order Raman scattering. A strong phonon softening is expected in the case of

a spheroid Fermi surface where energy-conserving phonon scattering is possible. IXS

data indirectly confirm the electronic structure of metallic diamond films. Supercell

calculations indicate that the electronic band structure of highly boron-doped diamond

differs only slightly from that of undoped diamond, doping inducing a rigid shift of

the Fermi level into the diamond valence band (degenerate metal) [23, 44]. This was

confirmed experimentally by angular resolved photoemission spectroscopy (ARPES)

[16]. The Fermi level is situated in the diamond valence band, indicating a well-defined

spheroid (to first order) Fermi surface around the Γ point, in agreement with supercell

calculations.

Phase diagrams of the critical magnetic field Hc versus the critical temperature Tc

indicate that highly boron-doped diamond is a type II superconductor [5, 6, 8]. This

was further confirmed by scanning tunneling spectroscopy measurements at low tem-
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perature clearly showing vortices arranged in a so-called Abrikosov lattice [17]. The

coherence length ξ has been estimated either from the low temperature part of the

phase diagram or from the slope dHc2/dT at small fields close to the critical tempera-

ture Tc. Accordingly, a coherence length ξ of about 10 nm was found for polycrystalline

HPHT bulk diamond [5], 10 to 30 nm for polycrystalline MPCVD diamond films [7],

and 15 to 20 nm for {100}-oriented single crystal MPCVD diamond films [8, 37]. Sim-

ilar values have been obtained in this work. Winzer et al. estimated the mean free

path l from conductivity and Hall effect measurements carried out at 4.2 K and found

l ≈ 0.5 nm < 10 nm = ξ. Together with the estimated London penetration length λL

fo 150 nm, one clearly sees l ≪ ξ ≪ λL, indicating that superconducting diamond is

in the dirty limit [7]. This was further confirmed by ARPES measurements revealing

small values of the mean free path l ≈ 0.5 and 0.9 nm [16], and infrared spectroscopy

leading to l ≈ 2.5 and 4 nm much smaller than the coherence length ξ [8, 37] as well

as λL ≈ 50 nm [18] comparable to the value estimated by Winzer et al. [7].

As already mentioned, the discovery of superconductivity in highly boron-doped

diamond initiated a lot of experimental and theoretical efforts. The confirmation of

superconducting properties of samples (from single crystal to poly- and nanocrystalline

films) grown by several different growth techniques shows the robustness of this ef-

fect. However, the nature of the superconductivity and the compatibility with the

BCS theory still remain to be confirmed. In this context, this Chapter is divided as

follows: in Sec. 2.2 we report on the structural properties and growth conditions of

our homoepitaxial samples. Sec. 2.3 deals with the doping-induced metal-insulator

transition in highly boron-doped single crystal diamond. All metallic samples also

show superconducting properties, and a link between these two topics is suggested

based on a scaling theoretical approach of the metal-insulator transition. In Sec. 2.4

we discuss preliminary results obtained on isotopically substituted samples in order

to provide further information about the pairing mechanism in highly boron-doped

diamond. Finally, Sec. 2.5 is devoted to the puzzling situation concerning the Hall

effect in highly boron-doped single crystal diamond. In some cases, the carrier concen-

tration determined by Hall measurements exceeds the boron concentration measured

by secondary ion mass spectroscopy (SIMS) by a factor up to 10.
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2.2. Sample preparation and structural properties

As already mentioned, diamond is said to be metastable, that is kinetically stable but

not thermodynamically stable. Therefore, knowledge of the conditions under which

natural diamond is formed suggests that diamond can be obtained by heating carbon

under very high pressure (see Ref. 45 and references therein). This process forms the

basis of the high-pressure/high-temperature (HPHT) growth technique (up to 15 GPa

and 3000 K), first adapted by General Electric Company in 1955 for industrial produc-

tion [46]. Presence of a suitable metal catalyst (e.g. Ni or Co) reduces the necessary

growth pressure and temperature to 7 GPa and 2000 K, respectively (see Fig. 2.2(a)).

The diamond crystals thus produced are limited in size (a few millimeters), and are

mostly used for industrial processes which take advantage of the hardness and wear re-

sistance properties of diamond, such as cutting and machining tools and the polishing

and grinding of optics.

A breakthrough towards large area deposition was achieved by the successful appli-

cation of chemical vapour deposition (CVD) to diamond growth [47, 48, 49, 50, 51,

52, 53]. The technique generally involves growing a solid from a reactive gas mixture

which supplies the necessary active species (carbon in the case of diamond) onto a

controlled surface (substrate), as can be seen schematically in Fig. 2.2(b). The gas

mixture passes through an activation region (most commonly used: hot filament or

microwave plasma) which provides energy. This causes molecules to fragment into

reactive radicals and atoms. These reactive fragments continue to mix and complete a

complex set of chemical reactions before reaching the substrate surface. At this point

the species either adsorb and react with the surface, desorb again back into the gas

phase, or diffuse around close to the surface until an appropriate reaction site is found.

If surface reaction occurs, one possible process, if all the conditions are suitable, is the

growth of diamond. In contrast to HPHT, CVD is generally used at or below ambient

pressure (in our case 30 to 50 Torr).

Diamond synthesis advanced in the late 1960s, when J. Angus’ group discovered

that the presence of atomic hydrogen during the deposition process would lead to

preferential etching of the graphite, rather than diamond [48]. Normal conditions for

diamond growth in a CVD process involve a precursor gas (usually CH4) which is

highly diluted in hydrogen. The substrate is held at temperatures above 500 ◦C, in

order to provide a high mobility of the radicals on the substrate surface. A number of

studies have been performed to try to identify the growth species [54], and the general

consensus is now that methyl, CH3, is the important radical. Gas phase hydrogen
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(a) (b)

Figure 2.2.: (a) Thermodynamic phase diagram for the growth of diamond; (b)
Schematic description of the processes involved in CVD growth of diamond.

atoms play a crucial role during growth of CVD diamond (see Fig. 2.2(b)). They un-

dergo H abstraction reactions with stable gas-phase hydrocarbon molecules, producing

highly reactive carbon-containing radical species. This is important, since stable hy-

drocarbon molecules do not react to cause diamond growth. The reactive radicals,

especially methyl, CH3, can diffuse to the substrate surface and react, forming the

C-C bond necessary to build the diamond lattice. Furthermore, H-atoms terminate

the ’dangling’ carbon bonds on the growing diamond surface and prevent them from

cross-linking, thereby reconstructing it into a graphite-like surface. As already men-

tioned, atomic hydrogen etches both diamond and graphite but, under typical CVD

conditions, the rate of diamond growth exceeds its etch rate whilst for other forms of

carbon (graphite, for example) the opposite is true. This is believed to be the basis

for the selective preferential deposition of diamond.

Fig. 2.3 shows a schematic view of the growth chamber used for this work. This

MPCVD growth chamber was built up by E. Gheeraert [55] and P. Gonon [56], prin-

cipally based on the model of a japanese prototype used at NIRIM (National Institute

for Research on Inorganic Materials) by Kamo et al.[52]. The growth chamber con-

sists of an inner and an outer fused silica (quartz) tube, the sample holder is placed

on the inner quartz tube at the intersection with the waveguide. A microwave plasma

generator (Metal Process model G2V2) operating at a standard frequency of 2.45 GHz

supplies an adjustable microwave power in the range of 0 to 2000 W. The horizontal

position of the plasma can be adjusted by the hollow-faced piston (standing wave tun-
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Figure 2.3.: Schematic description of the MPCVD growth chamber used for the elab-
oration of highly-doped single crystal diamond epilayers at the Institut Néel, CNRS
Grenoble, France.

ing), the reflected power (water cooled with the isolator) can be minimized by adapting

the impedance. The growth chamber is connected to a pump system at the lower part,

consisting of a primary pump and a high vacuum turbo pump. While the primary

pump is used for the circulation of the gas mixture, the secondary pump ensures a

base pressure below 10−5 Torr before introduction of the gas mixture and therefore

prevents incorporation of other impurities. A single wavelength optical pyrometer is

used for reading the temperature. The sample holder consists of a 1 × 1 cm2 silicon

piece overgrown with non-intentionally doped polycrystalline diamond (in order to

avoid incorporation of silicon from the sample holder as impurity during growth). The

emission of the silicon substrate holder in the infrared, corrected by the transmission

through the optical window, is collected by the pyrometer, using an effective emissivity

of 0.4.

Several features have been added to the growth chamber in order to optimize the

quality of the grown layers. From March 2004 on, a dilutor has been installed which

allows to control the concentration of B2H6 in the gas mixture with a higher precision

compared to formerly grown samples. This has significantly improved the reproducibil-

ity of the samples, and, furthermore, the three-stage dilution system is also suited to

the growth of very weakly-doped layers with boron concentrations of the order of
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1015 cm−3. In november 2005, a gas purifier was installed on the hydrogen line (N60).

The purity of hydrogen (main gas source during growth) is now better than 99,9999

% which limits the presence of impurities like water or nitrogen considerably. As will

be seen later, the efficiency of boron incorporation increases when hydrogen is purer.

Methane and diborane are not filtered, but their purity is claimed by the supplier to

be 99,9995 % (N55).

One purpose of this work is to compare the physical properties of formerly grown

samples with the growth direction {100} which have been grown before the installa-

tion of the dilutor and the hydrogen purifier with samples grown under ameliorated

conditions. In addition to the growth direction {100}, also samples along directions

{111} and {110} have been grown. The main steps concerning the sample growth

are the substrate preparation and the growth conditions adapted for homoepitaxial

growth, including parameters controlling the gas flow, the substrate temperature, the

total pressure, etc.. Growth was realized on commercially available HPHT type Ib

substrates provided by Sumitomo (Japan). Depending on the growth direction, the

type Ib substrates had dimensions 3 × 3 × 0.3 mm for {100}, 2 × 2 × 0.3 mm for

{111}, and 2.5×2.5×0.3 mm for {110}, in contrast to the formerly grown samples for

which the thickness of the substrate was 0.5 mm. The substrates have been polished

by Sumitomo, the miscut varies from < 0.3◦ for {100}, < 3◦ for {111}, up to ≈ 8◦ for

{110} substrates.

In order to minimize the amount of impurities on the substrate surface for the

growth, a standardized cleaning process was used, consisting of the following steps:

1. The first step consists of consecutive ultrasonic cleaning of the substrate with 100

% acetone and ethanol (each up to 10 minutes), and a subsequent rinse under deionized

water (18 MΩ), in order to remove impurities of organic and lipophilic character.

2. The next step consists of an acid treatment for removal of impurities of metallic

and organic nature. During two hours, the substrate is etched by a mixture of oxidizing

acids (HClO4 : H2SO4 : HNO3) with volume proportions 1 : 3 : 4 at a temperature of

about 100◦C, followed by another mixture of HF : HNO3 with oxidizing and reducing

nature during 1 hour at the same temperature of 100◦C. In between the two mixtures,

extensive rinsing with deionized water is necessary.

3. A final rinsing step with deionized water with subsequent drying (nitrogen pistol)

is necessary before one can put the substrate into the growth chamber.

In Tab. 2.2 the generally used growth procedure and conditions are summarized for

the growth directions {100} and {111}. Before growth, the boron concentration of

the gas mixture was carefully prepared with help of the dilutor. Then, at first, the
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Growth direction {100} {111}
Hydrogen plasma

Temperature [◦C] 880 900
Pressure [Torr] 30 50
Gas flow H2 [sccm] 100 200
Duration 2h00 0h30

Non-intentionally doped layer

Temperature [◦C] 830 900
Pressure [Torr] 30 50
CH4/H2 [%] 0.25 0.15
Duration 1h00 0h20

Boron-doped layer

Temperature [◦C] 830 900
Pressure [Torr] 30 50
CH4/H2 4 0.15 - 0.6
B/C [ppm] 100 - 2500 500 - 6000
Duration 0h40 - 24h00 0h10 - 3h30

Table 2.2.: Growth conditions used for the elaboration of highly boron-doped single
crystal diamond at the Institut Néel, CNRS Grenoble, France.

substrate was treated by a hydrogen plasma as a final in situ cleaning step at about

900◦C for a duration of 30 up to 120 minutes (depending on the growth direction,

see Tab. 2.2). This was also used to stabilize the temperature and pressure of the

growth chamber before introduction of the gas mixture for growth. Then, a non-

intentionally doped buffer layer is grown in order to reduce the translation of defects

from the substrate into the grown layer, and to adjust the lattice mismatch between

the substrate and the boron-doped layer. The growth conditions for the buffer layer

are shown in Tab. 2.2. Subsequently, the boron-doped epilayer is grown, with the

appropriate growth conditions seen in Tab. 2.2. In general, the growth rate depends

not only on the substrate orientation (higher growth rates for {111}-oriented substrates

under similar condition), but also on the CH4/H2 ratio used for growth. The value

CH4/H2 = 4 % was chosen for {100}-oriented growth in order to get acceptable values

for the growth rate of about 1µm/h.

In the case of highly-doped diamond films, the high resolution X-ray diffraction

peaks from the substrate and the boron doped homoepitaxial films can be distin-

guished, as can be seen in Fig. 2.4 (for symmetrical reflection (004) and (111)). The

spectra for formerly grown samples (DMO and CN series) are compared with spectra
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(a) (b)

Figure 2.4.: (a) (b) High resolution X-ray diffraction spectra obtained for highly-doped
diamond films along the (004) or (111) Bragg reflection, respectively. Formerly
grown sample (DMO or CN in (2)) are compared with the more recently grown
samples (PA in (1)) under improved conditions.

on recently grown samples (PA) for the growth directions {100} and {111}, respec-

tively. One clearly sees the better quality of the recently grown samples with respect

to the FWHM of the diffraction peaks and the uniformity of the spectra.

In Fig. 2.5 a typically obtained reciprocal space map of an (100)-oriented homoepi-

taxial epilayer is presented. Reciprocal space mapping compares the shape and po-

sition of the film and substrate reciprocal lattice points and gives information such

as layer tilt, strain, relaxation, lattice parameter, and mosaicity. The intensity con-

tours show the symmetrical diffraction peak originating from the epilayer and from

the diamond substrate. The boron-doped diamond epilayer shows no tilt with respect

to the diamond substrate, confirming the coherent growth. The width of the rocking

curve along the vertical axis (ω-scan) shows that the mosaicity of the HPHT type

Ib substrate is maintained in the epilayer. The lineshape along the horizontal axis

(2Θ − ω-scan) representing the strain distribution, becomes somewhat larger in the

epilayer.

Recently, in order to get information not only along the symmetrical growth axis

{100}, but also on planes inclined to the sample surface, reciprocal space maps around

so-called asymmetric reflections have been performed. This is particularly important
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Figure 2.5.: Reciprocal space map of an (100)-oriented homoepitaxial epilayer for the
(004) Bragg reflection. The mosaicity of the HPHT type Ib substrate is maintained
in the epilayer, the strain distribution becomes larger in the epilayer.

(a) (b) (c)

Figure 2.6.: Reciprocal space maps of sample DMO420 around the asymmetric reflec-
tions {1̄1̄3} ((a)) and {113} ((c)), as well as the symmetric reflection {004} ((b)),
indicating the in-plane lattice matching and the constrained growth of the epilayer.
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(a) (b) (c)

Figure 2.7.: Reciprocal space maps of sample PA10 around the asymmetric reflec-
tions {1̄1̄3} ((a)) and {113} ((c)), as well as the symmetric reflection {004} ((b)),
indicating the in-plane lattice matching and the constrained growth of the epilayer.

to obtain information about whether or not the epilayer has grown under relaxed

or constrained conditions, as one can probe the in-plane lattice parameter change.

In general, the position of a given reciprocal lattice point is specified by (h, k, l).

These reciprocal lattice points can be separated into symmetric reflections with planes

parallel to the surface and otherwise asymmetric reflections. In the following, we focus

on samples oriented along {004} and, thus, the symmetric reflections are described by

h = k = 0 and l 6= 0 and the asymmetric reflections with general (h, k, l) values. In

Fig. 2.6 and Fig. 2.7, reciprocal space maps are shown for both samples DMO420 and

PA10, respectively, along the symmetric reflection {004} as well as on the asymmetric

reflections {113} and {1̄1̄3}, respectively. (ω)-scans and (2Θ−ω)-scans were performed

after alignment in the vicinity of these reflections. Hereby, the (ω, 2Θ) data have been

converted using

Q‖ = sin(Θ)sin(Θ − ω) (2.1)

Q⊥ = sin(Θ)cos(Θ − ω) (2.2)

where Q‖ and Q⊥ are related via

Q‖ =
λ

2a‖

√
h2 + k2 (2.3)

Q⊥ =
λ

2a⊥
l (2.4)

with a‖ and a⊥ the in-plane and out-of-plane lattice constant, respectively, and λ the

used wavelength. When a thin film is deposited on a substrate, the film lattice may
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(a) (b)

Figure 2.8.: Coherent growth of the epilayer on the substrate results either in (a)
strained growth (with in-plane lattice matching) or (b) to relaxed growth (in-plane
strain relaxed due to misfit dislocation).

be constrained to coincide with the substrate lattice (fully strained) or the film lattice

may be completely free of the substrate lattice (fully relaxed). In our samples, data

along the asymmetric reflection {113} and {1̄1̄3}, respectively, taken for the substrate

and the epilayer, lie vertically above each other in reciprocal space. This indicates

the matching of the in-plane lattice constant with the substrate. The dashed lines in

Fig. 2.6 and Fig. 2.7 correspond to a radial line representing the fully relaxed case. A

quantitative analysis of the in-plane lattice parameter is underway.

So, if one assumes that all epilayers grow coherently on the substrate (as shown above

for two of them), that is without misfit dislocation which would relax the in-plane

strain, the films are under perpendicular strain (δa⊥/a), as is shown schematically

in Fig. 2.8(a) in contrast to relaxed growth shown schematically in Fig. 2.8(b). The

introduction of substitutional boron into diamond leads to an expansion δa/a of the

lattice parameter due to larger covalent radius of boron (rB = 0.088 nm) compared

to that of carbon (rC = 0.077 nm). The measured lattice parameters a⊥epi have to be

corrected in order to calculate those of the epilayers in the relaxed state aepi. Assuming

that the epilayer is much thinner than the substrate, strain in the substrate can be

neglected. By taking into account the strongly anisotropic elasticity of diamond, one

gets for the lattice parameter in the relaxed state [57, 58] (depending on the substrate

orientation)

δa

asub

=
aepi − asub

asub

=
a⊥epi − asub

asub

c11
c11 + 2c12

= γ100

a⊥epi − asub

asub

{100} (2.5)
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Figure 2.9.: Calculated change of the lattice parameter in the relaxed state (δa⊥/asub)
with respect to the boron concentration nB as determined from secondary ion mass
spectroscopy (SIMS) (see Tab. 2.3 to 2.6) for the two growth directions {100} (a)
and {111} (b), respectively, and for formerly grown samples (DMO and CN) and
recently grown samples (PA).

δa

asub

=
aepi − asub

asub

=
a⊥epi − asub

asub

c11 + 2
3
C

c11 + 2c12
= γ111

a⊥epi − asub

asub

{111} (2.6)

where c11, c12, and c44 are the elastic constants and C = 2c44 − c11 + c12. In the case

of diamond [59], γ100 = 0.8113 and γ111 = 0.9136. The perpendicular strains a⊥epi/asub

can be determined from the angle separation (∆Θ = Θsub − Θepi) between the peak

position of the diamond substrate Θsub and the boron-doped epilayer Θepi by

δa⊥

asub

=
a⊥epi − asub

asub

=
∆Θ

tan(Θsub)
(2.7)

The theoretical value of the peak position of the diamond substrate Θsub can be cal-

culated using the Bragg condition

2dhklsin(Θhkl) = nλ with dhkl =
a√

h2 + k2 + l2
(2.8)

where a is the diamond lattice constant, {h, k, l} the Miller indices of the diffraction

planes, and λ the wavelength of the x-rays (see App. A.2). Therefore one gets 2Θ100 =
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Figure 2.10.: Lattice parameter expansion as a function of the boron atomic density
in C:B alloys. Full squares refer to XRD results published in Ref. 62 about HPHT
crystals, and open squares to relaxed values deduced in Ref. 61 from XRD analysis
of (100)-oriented epilayers grown by MPCVD. Other open symbols correspond to
the results of ab initio calculations on supercells where either isolated boron atoms
(circles) or boron pairs (stars) substituted carbon atoms. The straight lines are
linear interpolations corresponding to randomly substitutional (dotted) and non
substitutional or clustered (dash-dotted) incorporation of boron in diamond.

119.526 and 2Θ111 = 43.917.

The calculated change of the lattice parameter in the relaxed state (δa⊥/asub) are

shown in Fig. 2.9 with respect to the boron concentration nB as determined from

secondary ion mass spectroscopy (SIMS) (see Tab. 2.3 to 2.6) for the two growth

directions {100} and {111}, respectively, and for formerly grown samples and recently

grown samples. As already mentioned, as a result of the larger covalent radius of boron

(rB = 0.088 nm) compared to that of carbon (rC = 0.077 nm), the introduction

of boron into diamond leads to an expansion of the lattice parameter. Vegard [60]

assumed that the cumulated difference between the covalent radii of the dopant and

host atoms are uniformly distributed over all sites and induces a linear variation of

the lattice parameter with the (in our case) boron concentration following
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2. Heavily boron-doped single crystal diamond (C:B)

δa

a
=
rB − rC

rCnC

[B] = βsize [B] (2.9)

where nC is the atomic density of diamond, i.e. 1.76×1023cm−3, leading to a numerical

value of βsize = 8.12 × 10−25cm3. In the case of (100)-oriented growth (Fig. 2.9(a)),

the calculated values lie between two linear interpolations, with a high proportion

of samples following Vegard’s law up to about 1 at. %, corresponding to a higher

value than previously reported [58, 61]. At higher boron concentrations, a weaker

expansion has been reported, which can be attributed to the contribution of free holes

and to the negative deformation potentials at the valence band maximum, or to the

occurence of boron pairs or clusters. The weakening of the lattice expansion due to

interstitial and/or aggregated incorporation of boron has been studied recently [62].

The weighted average of the specific atomic volumes of C (5.67 Å3/atom) and B (7.28

Å3/atom) results (in first order) in a linear variation of the type

δa

a
= βvol [B] (2.10)

with βvol = 5.38 × 10−25cm3 [62], which corresponds to the lower linear interpolation

in Fig. 2.10. More recently, ab initio calculations have been used to demonstrate the

influence of substitutional isolated boron atoms as well as boron pairs on the lattice

expansion [63]. As has been reported previously, at high boron concentrations the

formation of boron pairs (B2 dimers) are energetically favoured compared to interstitial

incorporation or formation of Bn clusters [44]. Furthermore, these B2 dimers are

electrically inactive and do not contribute free holes as isolated boron atoms do. As

can be seen in Fig. 2.10, the lattice expansion due to B2 dimers (stars in Fig. 2.10) is

lower than predicted by Vegard, and is found to be compatible with a linear expression

of the type

δa

a
= βpair [BB] (2.11)

with βpair = 12.4 × 10−25cm3 [63]. This contribution alone does not suffice to explain

the low expansion values at high boron concentrations. An additional term from a

free carrier contribution was first suggested by Bardeen and Shockley [64] and intro-

duced by Yokota [65] through deformation potentials at the edge of the valence and

conduction bands to describe the dependence with the high doping levels of the semi-

conductor lattice constant. Hereby, the lattice parameter corresponds to the minimum

value of the total energy of the semiconductor, which includes an electronic component
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2.2. Sample preparation and structural properties

from the variation of the free carrier concentration and an elastic component from that

of the cell parameter. This corresponds to the contribution of isolated substitutional

boron atoms (open circles in Fig. 2.10) which are electrically active and contribute free

holes, leading to a depletion of the bonding states near the valence band maximum.

A linear expression of type

δa

a
=
Dp

3K
[h+] = βp [h+] (2.12)

can be used to describe this contribution, where Dp is the hydrostatic deformation

potential at the top of the valence band [66] and K is the bulk elastic modulus of

diamond (K = 4.42 × 107Ncm−2 [59]). Taking all these terms into account, one gets

δa

a
= βsize [B] + βpair [BB] +

Dp

3K
[h+] (2.13)

By coincidence, the data points obtained from the ab initio calculations for isolated

boron atoms lie on the same linear interpolation (with βvol) obtained for the specific

volume approach of boron clusters. Assuming that the lower linear interpolation in

Fig. 2.10 mimics results of calculations for systems free of boron pairs and where

[B] = h+, one can estimate βp = βvol − βsize = −2.74 × 10−25cm3. This yields

Dp = −2.26 eV , in good agreement with former band struture calculations where

Dp = −2.4 eV [67].

In the case of (111)-oriented growth (Fig. 2.9(b)), the experimental expansion values

are always significantly lower than predicted by Vegard, even at relatively low boron

content. The values are somewhat close to what is expected for boron pairing, probably

indicating that such boron pairing is favoured for growth in direction {111}. This was

already suggested previously [44, 15]. Furthermore, the presence of electrically inactive

boron pairs is likely to explain the somewhat higher boron concentration threshold

necessary to obtain metallicity and superconductivity in our (111)-oriented epilayers

compared to (100)-oriented single crystal diamond films [68].
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2. Heavily boron-doped single crystal diamond (C:B)

Sample CH4/H2 [%] B/C [ppm] NB [1020cm−3] d [µm] ∆(Θ) [◦]

DMO {100}
411 4 1200 2.4 250 -
662 4 500 4.0 2500 -
666 4 705 4.8 2500 0.0364
400 4 800 6.3 2700 0.0523 (0.0125*)
418 4 1730 9.0 3000 0.0913 (0.0212*)
420 4 2200 11.5 2000 0.1158 (0.030*)
412 4 1600 12.0 3000 0.0237*
419 4 1845 13.0 3750 0.0268*
438 4 2000 16.0 900 0.0290*
507 4 1800 19.0 100 -
509 4 1800 26.0 75 0.1893

Table 2.3.: Overview of the formerly grown samples DMO along direction {100}. Be-
side information about the gas mixture used for growth, the boron concentration
and the thickness determined from secondary ion mass spectroscopy (SIMS) is in-
dicated, as well as results of the symmetrical HRXRD analysis (Results with ∗ are
obtained under experimental conditions using the Mo Kα1 with a wavelength of
λ = 0.07093 nm).

CN {111} CH4/H2 [%] B/C [ppm] NB [1020cm−3] d [µm] ∆(Θ) [◦]

109 0 3000 3.0 0.6 n.d.
110 5 10000 30.0 0.5 0.04835
112 8 6000 14.0 0.8 0.0148
113 10 4500 6.0 0.8 0.00687

Table 2.4.: Overview of the formerly grown samples CN along direction {111}. Beside
information about the gas mixture used for growth, the boron concentration and the
thickness determined from secondary ion mass spectroscopy (SIMS) is indicated, as
well as results of the symmetrical HRXRD analysis.
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Sample CH4/H2 [%] B/C [ppm] NB [1020cm−3] d [µm] ∆(Θ) [◦]

PA {100}
06 4 100 2.05 2.0 0.0129
21 4 300 1.9 0.9 n.d.
27 4 350 2.5 ≥ 20.0 0.01914
33 4 400 3.3 0.9 0.0256
36 4 430 4.9 ≥ 20.0 0.03776
26 4 450 3.6 - 4.2 0.84 0.03107
08 4 600 6.4 2.0 0.0568
34 4 1000 12.6 ≥ 20.0 0.0989
09 4 1200 11.4 3.8 0.0883
10 4 1500 13.0 4.2 0.1229
16 4 1500 18.0 ≥ 20.0 0.1213
22 4 1500 13.2 0.75 0.14033
30 4 1500 14.0 1.5 0.13001
14 4 1800 12.9 3.7 0.1137
15 4 2000 14.8 3.5 0.13255
19 4 2500 40 1.2 0.2066
23 4 2500 45 2.0 0.24292

Table 2.5.: Overview of the more recently grown samples PA along direction {100}.
Beside information about the gas mixture used for growth, the boron concentra-
tion and the thickness determined from secondary ion mass spectroscopy (SIMS) is
indicated, as well as results of the symmetrical HRXRD analysis.

PA {111} CH4/H2 [%] B/C [ppm] NB [1020cm−3] d [µm] ∆(Θ) [◦]

01 0,15 6000 17.7 0.34 0.0256
28 0,15 6000 17.0 0.02 n.d.

07 0,3 1500 17.9 0.42 0.0226
02 0,3 6000 35.6 0.37 0.0603

11 0,45 6000 50.7 0.23 0.0854

20 0,6 500 4.5 0.35 n.d.
25 0,6 740 2.25 0.45 n.d.
31 0,6 1000 9.5 0.45 n.d.
03 0,6 6000 65.0 0.3 0.10895
17 0,6 6000 70.6 0.23 0.09265

Table 2.6.: Overview of the more recently grown samples PA along direction {111}.
Beside information about the gas mixture used for growth, the boron concentra-
tion and the thickness determined from secondary ion mass spectroscopy (SIMS) is
indicated, as well as results of the symmetrical HRXRD analysis.
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2. Heavily boron-doped single crystal diamond (C:B)

2.3. Metal-insulator transition and superconductivity

(C:B)

As already mentioned, in diamond the critical boron concentration of the metal-

insulator transition coincides with the one necessary to obtain superconducting behav-

iour. This is illustrated by Fig. 2.11(a) which shows the temperature dependence of

the resistivity for several (100)-oriented boron-doped single crystal diamond samples.

Formerly and recently grown samples have been compared, and the boron concentra-

tion as determined from secondary ion mass spectroscopy (SIMS) is indicated. The

low temperature transport changes from a clear insulating behaviour with a diverging

resistivity when approaching T→ 0 K to a metallic (and even superconducting) be-

haviour with a finite zero-temperature conductivity (σ0 6= 0) by increasing the boron

concentration nB from nB = 4.0 × 1020 cm−3 to about nB = 4.8 × 1020 cm−3. Within

the 10 % uncertainty of SIMS one finds a critical boron concentration of approximately

nc ≈ 4.5 × 1020 cm−3, which is in very good agreement with zero-temperature model

calculations of the vanishing ionization energy or of the chemical potential for both

the insulating and the metallic phase [37], yielding nc ≈ 5.2 × 1020 cm−3.

In Fig. 2.11(b), the resistivities obtained experimentally (at T = 10K) are compared

with resistivity values calculated from a recently proposed generalized Drude approach,

for both formerly and recently grown samples [69, 70]. The critical concentration

for the doping-induced metal-insulator transition is estimated from these results and

calculated using the dielectric function model with a Lorentz-Lorenz correction [71,

72, 69]. Within this approach, the static resistivity can be written as

ρ(0) =
16~k3

F

12πnBEF

∫ ∞

0

Q2∂α(Q,W )/∂W |W=0

[ǫ+ α1(Q, 0)]2
dQ (2.14)

where W = ~ω/4EF , Q = q/2kF , and α1 and α2 are related to the total dielectric

function through

ǫT (q, ω) = ǫ+ α1(q, ω) + iα2(q, ω) (2.15)

Hereby, ǫ is the dielectric constant, EF is the Fermi energy, and kF is the Fermi wave

number. Furthermore, only a single valence band with an effective mass m∗ = 0.74

and ǫ = 5.7 has been considered, and it has been assumed that scattering arises from

randomly distributed Coulomb impurities. This approach leads also to a critical boron

concentration nc on the order of (4− 5)× 1020 cm−3, in good agreement with our ex-
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Figure 2.11.: (a) Temperature dependence of the resistivity of several formerly grown
(DMO) and more recently grown (PA) samples. The transition from insulating
samples to metallic and superconducting samples is shown; (b) Resistivity (at T= 10
K) as a funtion of boron concentration deduced from SIMS for both sets of samples
(DMO and PA). The solid line corresponds to calculations in the general Drude
model. A metal-insulator transition is predicted for nB ≈ 4.5 × 1020 cm−3, in good
agreement with experimental data.

perimentally obtained value. On the metallic side of the transition, the experimental

values are slightly higher than the theoretically calculated values, as quantum interfer-

ence effects which are likely to increase the resistivity have to be taken into account.

On the insulating side of the transition, the experimental values are lower than the

theoretically obtained values due to the fact that the theoretical approach does not

take into account the presence of any hopping channel for electronic transport.

Previous analysis of the metal-insulator transition in ion-implanted boron-doped

films had suggested a critical boron concentration nc of about 4 × 1021 cm−3 [73],

about one order of magnitude higher than our experimentally and theoretically ob-

tained values. This was probably due to the reduced doping efficiency coming from

non-substitutional incorporation of boron in the diamond lattice, leading to the for-

mation of interstitial boron and boron vacancy pairs [74]. The formation of B2 dimers

(on substitutional sites) yields deep gap states. Therefore these B2 dimers are elec-

trically inactive, thus not providing free carriers to the system [44]. Furthermore,

the implantation process unavoidably results in the creation of defects in the mate-
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2. Heavily boron-doped single crystal diamond (C:B)

rial and, thus, to the trapping of free carriers. By comparing our results obtained

on highly boron-doped single crystal CVD diamond to experimental data obtained

in 2005 on free-standing highly boron-doped polycrystalline CVD diamond, one finds

a good agreement with values 1.76 × 1020 cm−3 < nc < 4.25 × 1020 cm−3 [75] and

3.4 × 1020 cm−3 < nc < 5.5 × 1020 cm−3 [7].

Below the critical boron concentration, the resistivity is rapidly increasing with

decreasing temperature, and cannot be explained by a simply Boltzmann-like activated

behaviour. A so-called hopping transport mechanism has to be taken into account,

which requires the existence of localized states around the Fermi level. Hopping of

carriers from one occupied localized state to another unoccupied localized state may

yield a finite current density, and the probability that a carrier hops from an occupied

to an unoccupied site, separated by a distance R, depends on the overlap of the wave

functions of the two sites and on their energy difference ∆E. This probability Γ is

given by

Γ ∝ exp (−2αR) exp

(

− ∆E

kBT

)

(2.16)

which contains a factor, exp (−2αR), describing the tunneling process between the

occupied and unoccupied sites, with α the decay parameter of the localized wave

function. ξ = 1
α

is also known as localization length. The interplay between thermal

activation and tunneling processes leads to hopping transport [76, 77], characterized

by a stretched exponential temperature dependence of the conductivity following

σ(T ) = σ0 exp

[

−
(

T0

T

)m]

(2.17)

with m depending on the hopping mechanism. In the case where ∆E
kBT

≪ 2αR, Γ is

maximum for R minimum, which implies that carriers hop from one to the nearest-

neighboring sites. For nearest-neighbour hopping (NNH) m equals unity for simple

activated behaviour [78]. In contrast, variable range hopping assumes that the most

probable hopping process is not to a nearest neighbour. Mott et al. suggested that

the required thermal activation energy ∆E decreases with the hopping distance RHopp

between two sites, while hopping over a large distance reduces the probability for

tunneling. Optimizing Eq. 2.16 with respect to the hopping distance RHopp leads to

m = 1/4 in Eq. 2.17 in the case of variable range hopping (VRH), as predicted by Mott

[79]. Whether one has to deal with two- or three-dimensional hopping conduction

depends on the dimensionality of the accessible states contributing to the hopping
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2.3. Metal-insulator transition and superconductivity (C:B)

transport, and we will focus here only on the three-dimensional case. Hereby, the

optimization process of Eq. 2.16 gives us the following expressions for the T0 value

and the optimum hopping lenght RHopp:

T0 =

(

512

9π

)(

1

kBN (EF ) ξ3

)

, RHopp =

(

9

8π

)
ξ
4

(

1

N (EF ) kBT

)
1

4

(2.18)

Mott assumed the density of states at the Fermi level, N (EF ), to be constant [80],

but the upper relationship is also valid for more sophisticated approaches taking into

account the energy dependence of the density of states (e.g. bandtail approach) [81].

As can be seen in Fig. 2.12, we observe variable range hopping (VRH) taking m =

1/4 in Eq. 2.17 in the formerly as well as recently grown samples. The T0 values range

from 10600 K down to 180 K, continuously decreasing when approaching the metal-

insulator transition from the insulating side. The slight difference between formerly

and recently grown samples with respect to the slightly lower boron concentration in

the case of recently grown samples for similar T0 values can be explained by the higher

doping efficiency in the latter due to higher purity during growth. One should also

note the slightly higher conductivities obtained.

As shown in Fig. 2.12(a), the VRH law is observed clearly for both the conductivity

σ(T ) and the Hall carrier concentration nH(T ) = 1/RHet (e the electronic charge, t

the thickness of the sample) for the sample with nB = 2.4 × 1020 cm−3. The T0 and

T0,H values extrapolated from the temperature dependence of the conductivity and

the Hall carrier concentration are 3700 K and 500 K, respectively, yielding a ratio

T0,H/T0 ≈ 0.13. Variable range hopping occurs via phonon-assisted tunneling between

localized states, so that a classical treatment of the Hall effect affecting carriers during

hopping is not appropriate. Holstein showed that for multihopping processes it is

possible to obtain a dependence of the jumping rate on magnetic field [82]. Based on

the work of Holstein, Gruenewald et al. predicted [83], in the case of transport in three

dimension, a temperature dependence of the Hall coefficient and the Hall mobility of

the form

RH(T ) = RH,0e
(1−δ)(T0/T )1/4

, (2.19)

µH(T ) = µH,0e
−δ(T0/T )1/4

(2.20)
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Figure 2.12.: (a) Semilogarithmic plot of the conductivity and the inverse Hall coef-
ficient as a function of T−0.25 (typical for variable range hopping) for two formerly
grown samples DMO with nB = 2.4 × 1020 cm−3 and nB = 4.0 × 1020 cm−3; (b).
Similar plot as in (a) for two recently grown samples PA on the insulating side of
the transition, with nB = 2.5 × 1020 cm−3 and nB = 3.3 × 1020 cm−3, respectively.

with δ = 3/8. This prediction was later confirmed experimentally [84]. Thus, variable

range hopping predicts that the conductivity σ(T ) as well as the Hall carrier concen-

tration nH(T ) depend on the temperature according to Eq. 2.17 (m = 1/4) and that

the ratio T0,H/T0 = (1 − δ)1/4 = (5/8)1/4 = 0.153 (see Eq. 2.19), which is in good

agreement with our experimental result T0,H/T0 ≈ 0.13.

As already mentioned, T0 is related to the localization length ξ and to the density

of states at the Fermi level N (EF ) through T0 = (CM/kBN (EF ) ξ3)1/4, where CM

is a numerical constant. Percolation theory confirmed the initially by Mott proposed

temperature dependence of the conductivity following Eq. 2.17 with m = 1/4, but

there exists a discrepancy on the value of CM ranging from 1 to 28 (for instance

(512/9π)1/4 = 2.08 for the original Mott picture (see Eq. 2.18)) depending on the

model used [85, 86, 87, 88, 89].

As the boron concentration increases, the wave functions of adjacent impurity cen-

ters overlap more and more, yielding to the formation of an impurity band. High

concentration induces a large impurity bandwidth, corresponding to a large spread in

the energy of the localized states of the impurity centers. The impurity bandwidth

reflects two contributions: a homogeneous one due to the interaction between the
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2.3. Metal-insulator transition and superconductivity (C:B)

impurities (even in the case without disorder) and an inhomogeneous one due to the

disorder-induced variation of inter-impurity distances and, thus, interaction potentials

and associated energies. In the ideal case, the distance between the boron impurity is

given by

rB−B = (
3

4πnB

)1/3 (2.21)

where nB is the boron concentration. The magnitude of the Coulomb interaction

between the impurity atoms gives information about the impurity band width w, and

can be calculated as

w =
e2

4πǫ0ǫrrB−B

(2.22)

where ǫr is the dielectric constant [90, 91]. The hopping distance RHopp and the

hopping energy ǫ are related to each other by the three dimensional normalization

equation of the one particle DOS N(ǫ) expression

4π

3
R3

Hopp

∫ ǫ

0

N(ǫ)dǫ = 1 (2.23)

where ǫ is the one-particle energy measured from the Fermi energy EF . The theory of

variable range hopping assumes a constant density of states at the Fermi level, which

can be estimated using Eq. 2.21 to Eq. 2.23 to

N(EF ) =
nB

w
(2.24)

Far away from the metal-insulator transition, the impurity centers are spatially well

separated, and the localization length ξ can be assumed to be of the order of the

Bohr radius aB and one finds T0 values on the order of 106 K, in good agreement

with the value reported by Sato [91] ((T0)
1/4 = 42 K1/4). Close to the transition, the

localization length ξ is expected to diverge, which would lead to very small T0 values

compared to the value far away from the transition. As can be seen schematically

in Fig. 2.13, the driving parameter of the metal-insulator transition describing the

distance from the transition point, can be expressed through the boron concentration

nB by (|nB/nc − 1|) with nc the critical boron concentration. The regime close to the

transition (in terms of the driving parameter) can be described by two characteristic

exponents, ν and η (see Ref. 34 and references therein). Phase A and B in Fig. 2.13

correspond to the insulating and metallic regime, respectively. As indicated, close to
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2. Heavily boron-doped single crystal diamond (C:B)

Figure 2.13.: Schematic description of the application of scaling laws to a phase
transition between phase A and phase B. The transition is in our case driven by
the boron concentration nB. The typical length scale L of the system, directly
connected to the localization length ξ, will diverge when approaching the transition
with the first critical exponent ν. The second critical exponent η relates the energy
scale to the length scale.

the transition small parts of phase A can coexist in phase B and vice versa. The

typical length scale of the system, directly connected to the localization length ξ, will

diverge when approaching the transition through

L ∝ (|nB/nc − 1|)−ν (2.25)

with the first critical exponent ν. The larger the coexisting part, the less probable is

its occurence, leading us to a second expression relating the energy scale to the length

scale via

E ∝ L−η = (|nB/nc − 1|)νη (2.26)

Both critical exponents ν and η used in Eq. 2.25 and Eq. 2.26 are positive by definition.

Therefore, the 3D density of states at the Fermi level (see Eq. 2.24) is expected to

scale as L3−η, leading to a scaling behaviour of T0 following

T0 ∝ E = L−η = (|nB/nc − 1|)νη (2.27)

Taking ν, η > 0, one finds a vanishing T0 value by approaching the transition, which

is in qualitative agreement with our experimental findings. Furthermore, assuming
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Figure 2.14.: (a) Semilogarithmic representation of the conductivity for two samples
(CN) as a function of T−0.25 (VRH). Close to the transition, the T0 values become
smaller and the preexponential factor gains weight. σ0 ∝ 1/T s with s = 1/2 can
account for the deviation from classical VRH at high temperatures; (b) The conduc-
tivity of the same samples than in (a) follow a power law T 1/3 at low temperature,
clearly demonstrating the proximity of the samples to the metal-insulator transition.

ν ≈ 1, η ≈ 3, and nc ≈ 4.5 × 1020 cm−3, the rescaled values of T0 of all our samples

are also in quantitative agreement with the theoretically estimated values, taking

T0 ≈ 106 K far away from the transition [70].

Fig. 2.14(a) shows the temperature dependence of the conductivity for two highly

boron doped single crystal diamond samples grown along the {111} direction, with

boron concentrations nB = 3×1020 cm−3 and nB = 6×1020 cm−3, similar to what has

been found for (100)-oriented films on the insulating side of the transition. The critical

boron concentration for the metal-insulator transition is therefore slightly higher for

(111)-oriented films than for (100)-oriented films, probably due to the more favourable

formation of B2 dimers, as already discussed in Chap. 2.2). Compared to its value far

away from the transition, T0 becomes very small close to the transition (240 K and

160 K in Fig. 2.14(a)). Thus, the variation of the exponential term exp(−(T0/T )m)

becomes small close to the metal-insulator transition and the temperature dependence

of the prefactor σ0 in Eq. 2.17 should be taken into account (σ0 ∝ 1/T s). As can be

seen Fig. 2.14(a), the small deviations from the variable range hopping regime (also

seen in Fig. 2.12) at high temperatures can be well reproduced taking s = 1/2 as

predicted in the Mott regime [77].
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Figure 2.15.: (a) Temperature dependence of the conductivity for formerly grown
samples (DMO) on the metallic side of the transition. The solid lines are fits to the
data following Eq. 2.29 typical for a disordered metal; (b) Equivalent square root
representation of the temperature dependence of the conductivity for recently grown
samples (PA) on the metallic side, indicating the dominance of the localization term
at low temperatures.

As will be discussed in detail in Chap. 3.2, at low temperatures, the temperature de-

pendence of the conductivity should show a crossover from the variable range hopping

regime (with m = 1/4 in Eq. 2.17) to the so-called Efros-Shklovskii hopping regime

(with m = 1/2 in Eq. 2.17) [92, 93, 94]. Electron-electron interactions lead to the

formation of a so-called soft Coulomb gap ∆CG, which reduces the number of states

available for hopping [77]. In the case of boron-doped diamond, such a crossover has

been reported by Tshepe et al. [73], and a progressive change from m = 1/4 at high

temperatures to m = 1/2 and finally m = 1 (presence of a hard gap, see Ref. 77) at

low temperatures has been reported by Sato et. al [91] for nB ≈ 1.76×1019 cm−3. Nev-

ertheless, in our case, the deviations from the variable range hopping regime seen in

Fig. 2.12 and Fig. 2.14(a) cannot be explained by a crossover to Efros-Shklovskii hop-

ping regime due to a weaker temperature dependence. It is important to note that the

Coulomb gap ∆CG is also expected to vanish when approaching the transition (similar

to Eq. 3.2). This leads to a vanishingly small region in which Efros-Shklovskii hopping

could be observed. Finally, not much is known about the temperature dependence of

the prefactor for this type of hopping.

In the critical regime of the transition [34], the conductivity σ is expected to scale
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2.3. Metal-insulator transition and superconductivity (C:B)

as

σ(T ) ∝ 1

L
∝ E1/η ∝ T 1/η (2.28)

Tshepe at al. [73] reported that such a temperature dependence accounts very well

for the deviation from variable range hopping at low temperatures, taking η ≈ 3.

Fig. 2.14(b) shows the power law dependence in temperature T 1/3 of the conductivity

of the same samples as shown in Fig. 2.14(a) holding over a large range of temperatures,

indicating a close vicinity to the metal-insulator transition. McMillan [34] suggested

that 1 < η < 3 depending on the relative importance of one-electron localization and

many-body correlation and screening effects. Scaling analysis applied to disordered

metals revealed η ≈ 2 [95, 96], whereas in doped silicon η ≥ 3 [88, 89], in good

agreement with numerical calculations [97].

Fig. 2.15 shows the temperature dependence of the conductivity σ for metallic highly

boron-doped single crystal diamond samples (Fig. 2.15(a) for formerly grown samples

(DMO) with a linear scale in temperature, and Fig. 2.15(b) for recently grown (PA)

samples in the more common
√
T representation). Electron-electron interactions and

localization effects typical for disordered metals (see Ref. 98 and references herein),

are leading to

σT = σ0 + A× T 1/2 +B × T p/2 (2.29)

where p is an index depending on the scattering mechanism. Thouless [99] argued

that inelastic scattering introduces random fluctuations in the time evolution of an

electronic state, which limit quantum interference necessary for localization. The

inelastic scattering time τin ∝ T−p and, thus, the electron diffuses a distance LTh =

(Dτin)1/2 = aT−p/2 with D = (v2
F τ/d) the diffusion constant. At lowest temperatures,

the localization term dominates the interaction term with the
√
T dependence because

the index p is greater than one, depending on the inelastic scattering mechanism (The

estimates for p are 3/2 and 2 for Coulomb interactions in the dirty and clean limit,

respectively, and 3 in the case of electron-phonon scattering [98]). In the case of

Ge : Sb, p = 2 (pure limit with electron-electron inelastic processes) gives a fairly good

fit [100]. Considering p = 2, this is in good agreement with our experimental data

(see Fig. 2.15), taking reasonable A (≈ 1 − 10 Ωcm/K1/2) and B (≈ 1 − 10 Ωcm/K)

values. The
√
T dependence of the interaction term has already been found in doped

semiconductors [101, 102], for Si : P the coefficient A was found to change sign as a

function of disorder which was succesfully explained using a Thomas-Fermi screening
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Figure 2.16.: Conductivity extrapolated to zero temperature as a function of the boron
concentration nB deduced from SIMS measurements in boron-doped diamond films
(DMO and PA). The solid line corresponds to the prediction of the scaling theory
of the metal-insulator transition with a critical exponent ν ≈ 1.

approximation [103].

As already mentioned, on the basis of scaling theoretical approaches, the typical

length scale and energy scale are related to the driving parameter via critical exponents

ν and η. For the three-dimensional case, the zero-temperature conductivity σ(0) (see

Eq. 2.29) is expected to scale with the same exponent as the coherence length ξ,

following

σ0 = σ(0) ∝ 1/L = 0.1(e2/~)(1/L) = 0.1(e2/~)(1/a)(nB/nc − 1)−ν (2.30)

where a is the Bohr radius (≈ 3.5 Å). Note that the prefactor σM = 0.1(e2/~a) equals

the minimum metallic conductivity introduced by Mott (see Eq. 1.7).

As can be seen in Fig. 2.16, the extrapolated zero-temperature conductivity σ(0)

scales almost linearly with the distance from the metal-insulator transition, measured

in terms of the boron concentration nB. The result ν ≈ 1 is in good agreement
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2.3. Metal-insulator transition and superconductivity (C:B)

with the theoretical prediction [104, 34]. This has also been found in many compen-

sated semiconductors (Ge:Sb [105], Si:P,B [106], Ge:Ga,As [107]) and amorphous alloys

[34, 95, 108, 109], as well as uncompensated Ge:Sb [110]. In contrast to this, ν ≈ 0.5

has been obtained with nominally uncompensated semiconductors (Si:P [111], Si:As

[112, 113, 114], Ge:As [115], Si:B [116]) and turns out to be incompatible with theoret-

ical predictions [98, 117]. More recently, higher order calculations of the scaling theory

(exclusively with disorder and no interactions) predict ν ≈ 1.3 [118, 119, 120, 121],

and is shown to be independent of the strength of spin-orbit interactions [122] (which

should play a role in the case of Si:B where ν ≈ 0.5 was found [116]). It is there-

fore clear that the effect of disorder alone cannot explain the experimental results

of ν ≈ 0.5 or 1. Chayes et al. combined the theories of Mott and Anderson and

successfully set the lowest limit ν > 2/3 [123]. In response to these discrepancies,

several theoretical ideas supporting ν ≈ 0.5 have been proposed [88, 124, 125], but a

complete understanding is still lacking. More recently, ν ≈ 1.3 was found in uncom-

pensated Si:P [126]. Stupp et al. questioned the large critical region of concentration

used for the extrapolation. The restriction to values of concentration for which A in

Eq. 2.29 is positive leads to a scaling with a critical exponent ν ≈ 1.3 in agreement

with theoretical predictions. Shlimak et al. [127] also found ν ≈ 1 for uncompen-

sated Ge:As. Nevertheless, the exponents ν ≈ 1 − 1.3 claimed for melt-doped Si:P

[126] and Ge:As [127] should be interpreted with great caution. Due to the spatial

fluctuations of the dopant concentration (also segregation is a typical phenomenon),

the definition of a critical region is difficult. Nevertheless, precise measurements on

homogeneously doped, uncompensated Ge:Ga reveal ν ≈ 0.5 [128]. More recently,

Itoh et al. presented a complete scaling analysis in compensated and uncompensated

Ge:Ga [129]. The critical exponent characterizing the zero-temperature conductivity

σ(0) changes from ν ≈ 0.5 to ν ≈ 1 for uncompensated and compensated Ge:Ga,

respectively, directly revealing the influence of the disorder on the critical exponent.

As can be seen in Fig. 2.16, in the case of highly boron-doped single crystal diamond,

the linear scaling of the extrapolated zero-temperature conductivity is not restricted

to a small range of concentrations close to the critical carrier concentration nc (as is

the case of other studied systems like Si:P,B [116, 126] or Ge:Ga [128, 129]). One has

to mention that the control of the boron concentration at these high dopant concen-

trations is rather difficult, as already indicated by the depth profile of Secondary Ion

Mass Spectroscopy (SIMS) (10 % uncertainty). However, the scaling ansatz is not

only qualitatively, but also quantitatively in good agreement with our experimental

data, thereby using a Bohr radius of a ≈ 3.5 Å. The robustness of the effect leads
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Figure 2.17.: Critical temperature Tc (as deduced from mainly a.c. susceptibility
measurements or, if not possible, from resistivity measurements) as a function of
the boron concentration nB as determined from SIMS measurements in boron-doped
diamond (DMO and PA). The open circle has been taken from Ekimov et. al [5].
The solid line corresponds to Tc ≈ (nB/nc − 1)0.5.

us to the conclusion that ν ≈ 1 is a good approximation, in good agreement with

theoretical predictions. Previously, Tshepe et al. [73] obtained ν ≈ 1.7 in the case of

boron-implanted films, which remains unexplained.

Superconductivity has been observed in all the metallic samples. Fig. 2.17 shows the

critical temperature Tc with respect to the distance of the metal-insulator transition,

measured again in terms of the boron concentration nB. No superconducting transition

was found in samples with nB < 4× 1020 cm−3 on the insulating side of the transition

(see discussion on VRH above). The critical temperatures Tc shown in Fig. 2.17

have been mostly obtained from a.c. susceptibility measurements as the onset of

diamagnetic screening. Transport measurements (90 % of the normal state resistance)

have been used to determine the critical temperature Tc of sample DMO666 with

nB = 4.8 × 1020 cm−3, where no onset of diamagnetic screening could be observed

down to 20 mK. Transport measurements tend to overestimate the critical temperature
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2.3. Metal-insulator transition and superconductivity (C:B)

(see comparison for sample DMO400 with nB = 6.3 × 1020 cm−3 in Fig. 2.17) due

to contributions from filamentary superconducting pathways shortcircuiting the bulk

resistance. Very homogeneous samples (DMO509 with nB = 2.6 × 1021 cm−3 lead

to similar Tc values obtained by either a.c. susceptibility measurements or transport

measurements, as well as in this case from tunneling spectroscopy measurements [17].

However, one should note that the critical temperature Tc values are remarkably large

down to the metal-insulator transition (Tc ≈ 0.15 − 0.4 K for nB/nc ≈ 1.1). Such a

Tc is actually observed in metals but for a carrier concentration up to a factor 100 to

1000 higher.

As already mentioned, BCS theory [130] predicts that the critical temperature Tc

can be written as

Tc = 0.85ΘDexp

(

− 1

N(EF )V0

)

(2.31)

where ΘD is the Debye temperature, N(EF ) is the density of states at the Fermi level,

and V0 the effective interaction potential (valid for N(EF )V0 ≪ 1). More realistic

approaches take into account the attractive interaction between the electrons (due to

electron-phonon coupling λ) on the one side and the Coulomb repulsion (µ) between

them on the other side.

McMillan [131] solved the (more realistic) Eliashberg (gap) equation [132] numeri-

cally and thereby determined a semi-empirical expression for the critical temperature

Tc following

Tc = Tlogexp

( −1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

)

(2.32)

with Tlog = ~ωln/1.2 (see Eq. 1.14), and µ∗ is given by

µ∗ =
µ

1 + µ ln (EF/kBΘD)
(2.33)

Hereby, EF is the Fermi energy. As already mentioned, for small λ Eq. 2.32 reduces

to the BCS expression in Eq. 2.31 if NV0 is identified as λ − µ∗. In metals, the

typical electronic energy scale (identified with the Fermi energy EF ) is much larger

than the typical lattice dynamics (identified with the Debye-temperature), so that

EF/kBΘD ≈ 100. One finds µ∗ ≈ 1/ln(EF/kBΘD) ≈ 0.15. In doped diamond,

EF/kBΘD < 3 and µ∗ ≈ µ. The low number of carriers is expected to lead only

to poor screening of the Coulomb interactions and, thus, a reduction of µ is not

expected, but the proximity to the metal-insulator transition provokes µ∗ ∝ µ→ 0 by
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(a) (b)

Figure 2.18.: (a) λ parameter deduced from calculations in the supercell approxima-
tion ([23, 24]) and virtual crystal approximation ([20, 22, 21]). The solid and dashed
line correspond to λ ∝ (nB/nc−1)β laws with β ≈ 0.2 and 0.5, respectively; (b) The
corresponding µ∗ values are displayed (open squares and closed circles, respectively),
obtained by introducing the experimental Tc values in the McMillan equation. The
shaded areas correspond to ensembles {λ, µ∗} compatible with our Tc values.

approaching the transition. The parameter µ∗ being much less accessible to theoretical

calculations than the electron-phonon coupling λ, in most cases a standard value

µ∗ ≈ 0.1 − 0.15 is used [20, 21, 22, 24, 133], leading to Tc values (by using Eq. 2.32

and the calculated value for λ) of the order of a few Kelvin, in good agreement with

experimental values. The theoretical values of the coupling constant λ are shown in

Fig. 2.18(a), either obtained from ab-initio calculations in a supercell approximation

[24, 133] (open symbols) or from virtual crystal approximations [20, 21, 22] (closed

symbols). All calculations agree on a value of λ ≈ 0.4 − 0.5 for nB ≈ ×1022 cm−3

(far away from the metal-insulator transition), the dispersion gets quite large in the

experimentally available lower doping region (nB ≈ ×1020 − 1021 cm−3). Theoretical

calculations in this doping regime are still missing due to computational limitations.

The influence of the proximity of the metal-insulator transition on the supercon-

ducting properties have been studied for a variety of disordered metals [96, 134, 135],

revealing the importance of screening of the interaction potential. It has been shown

that many disordered superconductors present a dramatic enhancement of their crit-

ical temperature when approaching the metal-insulator transition, starting from the

pure system and making it more and more disordered (e.g. in the case of W [136], Zr
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2.3. Metal-insulator transition and superconductivity (C:B)

[137], Al [138], Pd [139], (MoSi, MoGe, WSi, WGe, SiAu) [134], oxide superconductors

[135]). Morel and Anderson [140] included the effect of screening by expressing λ and

µ∗ (see Eq. 2.32 [131, 132]) in terms of the screened Coulomb potential, and compared

them to experimental data on elemental metals/superconductors. Using a Coulomb

electrostatic potential of the form V (x) = e2

x
exp(−kTFx), the Fourier transform can

be written as

V (q, kTF ) =
4πe2

k2
TF + q2

(2.34)

where kTF is the Thomas-Fermi wavevector (related to the Thomas-Fermi screening

length lTF by lTF = 1/kTF ). Integrating Eq. 1.10 and Eq. 1.11, Morel and Anderson

found

λ = N
4πe2

k2
TF + q2

c

= NV0 (2.35)

and

µ = ln(1 +
q2
c

k2
TF

) = −ln(λ) (2.36)

where N is the density of states at the Fermi level, kF the Fermi wavevector, and

qc a phonon cutoff. Hereby, qc = 2kF was suggested by Anderson and Morel and by

Pines [141], and q2
c = 0.6q2

D by de Gennes [142], where q2
D = (3/4π)2/34π2/a2

0 is related

to the lattice constant a0, leading to the simple result qca0 ≈ 3. In order to explain

the dramatic enhancement of the critical temperature Tc, Soulen et al. [96] replaced

the Thomas-Fermi wavevector kTF by an approriate wavevector ks directly related to

the distance r = (x − xc)/xc from the metal-insulator transition (driving parameter

x with critical parameter xc) as k2
s ∝ k2

TF/(1 + b/r2) (b a constant). Approaching

the transition, V increases towards its unscreened value V0, and accounts for the

enhancement of the critical temperature Tc (see Eq. 2.31 and Eq. 2.32). The drop of

the critical temperature Tc is explained by the drastic decrease of the density of states.

Following scaling theory [131], the density of states N is expected to scale as

N ∝ E−1L−3 ∝ Lη−3 ∝ (nB/nc − 1)ν(3−η) (2.37)

where η and ν are the critical exponents for the typical energy and length scale,

respectively (E ∝ 1/Lη). For disordered metals, η ≈ 2 and ν ≈ 1 were found [95, 96],

and the linear drop of N leads to vanishingly small critical temperatures Tc close to

the metal-insulator transition. Furthermore, Soulen et al. [96] assumed a Coulomb
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potential µ∗ ≈ 0.15, based on arguments presented above (see Eq. 2.33). As already

mentioned, EF/kBΘD < 3 in doped diamond and, therefore, one finds µ∗ ≈ µ (see

Eq. 2.33). The low number of carriers is expected to lead only to poor screening of the

Coulomb interactions and, thus, a reduction of µ is not expected, but the proximity

to the metal-insulator transition provokes µ∗ ∝ µ→ 0 by approaching the transition.

As already seen in Fig. 2.18(a), all theoretical calculations of the coupling constant

λ have been performed for very high dopant concentrations. However, it is tempting to

extrapolate these λ values towards the critical concentration nc, assuming for instance

that a scaling law applies to λ ∝ (nB/nc − 1)β. In contrast to the above mentioned

examples of disordered superconductors for which an enhancement of the critical tem-

perature Tc was found by approaching the transition, no such maximum Tc value has

been observed so far. This can tentatively be explained by a negligible value of kTF

(or ks) with respect to qc in Eq. 2.34, and one expects λ ∝ N ∝ (nB/nc − 1)ν(3−η)

(β = ν(3− η)). The solid and dashed line in Fig. 2.18(a) represent values for the cou-

pling constant λ following λ ∝ (nB/nc − 1)β with β = 0.2 and β = 0.5, respectively.

In Fig. 2.18(b) the calculated µ∗ values obtained from Eq. 2.32 are shown, using both

sets of λ values. The λ values with β = 0.5 reproduce well the calculated λ values

using the virtual crystal approximation [20, 21, 22], but as seen in Fig. 2.18(b) such a

strong decrease of the coupling constant λ leads to unrealistic negative values for the

Coulomb potential µ∗. The shaded regions in Fig. 2.18(a) and Fig. 2.18(b) indicate

ensembles of {λ, µ∗} values compatible with experimental Tc values, as obtained by in-

verting Eq. 2.32. For λ values with β = 0.2 which are compatible with the theoretical

results of supercell calculations [24, 133], inverting Eq. 2.32 gives smoothly decreasing

µ∗ values, in good agreement with scaling analysis fo the metal-insulator transition.

The main point is that the coupling constant λ has to remain relatively large down to

the transition in order to reproduce the high critical temperatures Tc without intro-

ducing unrealistic negative values for the Coulomb potential µ∗. Therefore, the value

of β has to be very low (< 0.3), and, since β = ν(3 − η) and ν ≈ 1, one obtains that

η ≥ 2.7, in good agreement with transport data in the critical region (nB ≈ nc and

σ(T ) ∝ T 1/η).

54



2.4. Isotopic substitution in heavily boron-doped single crystal diamond: 13C11B, 13C10B

2.4. Isotopic substitution in heavily boron-doped single

crystal diamond: 13C11B, 13C10B

At the very beginning of superconductivity, the question whether the atomic mass of

the lattice atoms plays an essential role for the superconductivity or not was already

adressed by Onnes in 1922 [143] through the study of two isotopically different sorts of

lead (Pb). However, with the insufficient precision in determining the superconducting

transition temperature no dependence on atomic mass could be found [144], and one

had to wait until 1950. Maxwell [145, 146] and at the same time Reynolds et. al

[147, 148] showed that the superconducting transition temperature for mercury (Hg)

followed

Tc ∝M−1/2 (2.38)

with M the atomic mass of the by now available, well-controlled isotope variants of Hg.

These results on superconducting Hg were very important at this time in substantiating

the upcoming ideas of a phonon-mediated interaction [149, 150, 151, 152] playing an

essential role later in the BCS theory [130]. Only recently, such a study on isotopically

substituted highly boron-doped diamond (grown with HPHT method) was performed,

clearly indicating the importance of the host lattice on the superconductivity [19]. This

confirms the by most experimentalists and theorists believed phonon-mediated nature

of superconductivity in this system. In order to give further insights on the topic, a

parallel study of isotopically substituted diamond grown by MPCVD was performed.

2.4.1. Growth and structural properties of 13C11B and 13C10B

diamond

Two series of isotopically substituted diamond films have been grown by MPCVD. The

first one only substituted the host lattice carbon atom 12C →13 C leaving the natural

boron abundance of 80 % 11B. In addition, the other series also substituted the boron

dopant 11B →10 B. Therefore, three different types of isotopically substituted sets of

samples have been grown: the normal 12C11B and the substituted 13C11B and 13C10B.

Both sets of substituted samples have been grown using standard growth conditions

because no experience on this topic existed before in our laboratory. The corresponding

gas source was exchanged by equivalent isotopically substituted gas source, with other

words 13C-containing methane CH4 and 10B-containing diborane B2H6 have been
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Figure 2.19.: High resolution X-ray diffraction spectra for the three sets of isotopically
controlled samples. The good strutural quality is maintained in the two substituted
series.
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Sample PA B/C [ppm] d N11B N10B NBtot

13C11B [µm] [1020cm−3] [1020cm−3] [1020cm−3]

38 0 - - - -
39 300 0.75 1.6 0.4 2.0
40 600 0.84 4.0 0.9 4.9
41 1000 0.8 6.1 1.6 7.7
42 1200 0.9 7.4 1.8 9.2
43 1500 - - - -
13C10B

44 300 0.96 0.25 1.4 1.65
45 600 0.83 0.45 4.6 5.1
46 1000 0.8 0.35 7.4 7.7
47 1200 0.86 0.35 8.9 9.2

Table 2.7.: Overview of the isotopically substituted samples. The boron concentration
of both boron isotopes and their sum (total boron concentration), as well as their
thickness, as determined from SIMS measurements, is summarized.

used. For all samples grown with the standard source gases 12CH4 and 11B2H6 one

should note that these gases are not isotopically clean, and the natural abundance of
13C is about 1.1 % and that of 10B even much higher with about 19.9 %. Tab. 2.7

summarizes the results obtained from secondary ion mass spectroscopy (SIMS). As can

be seen directly, the natural abundance of 10B is kept maintained in all samples grown

with the standard gas source 11B2H6, whereas for the 13C10B series the content of
11B is about 5 % of the total boron concentration. The structural properties of both

series have further been studied with high resolution X-ray diffraction and Raman

spectroscopy.

Fig. 2.19 shows the HRXRD spectra for the three different series xCyB along the

(004) diffraction peak. The lineshape of both substituted series are comparable to

the standard set of samples, indicating the good structural quality of the samples.

The comparison of the HRXRD data as well as the results obtained from SIMS, the

efficiency of boron incorporation in a wide doping range (up to 1200 ppm) is reduced for

growth in a 13C environment with respect to both boron isotopes. This is probably

due to a higher impurity of the substituted gas source. Small amounts of oxygen

are known to reduce the incorporation efficiency of boron because of preferentially

formation of volatile boron oxides on the growing surface. However, the high boron

incorporation (as estimated from HRXRD comparison with samples PA19 and PA25,

2500 ppm) in sample PA43 (with 1500 ppm) thus remains unexplained.
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Figure 2.20.: Visible Raman spectra (633 nm) for both series of isotopically sub-
stituted samples: (a) 13C11B and (b) 13C10B. In comparison to a 12C HPHT Ib
substrate (natural abundance of 19.9 % 10B), the zone center phonon frequency
ω0 is shifted down to about 1282 cm−1 for both 13C substituted series of samples,
indicating a high degree of isotopic purity for the carbon host lattice. Also shown is
the already discussed Fano resonance occurring at higher doping levels, indicating
a large number of free carriers.

Fig. 2.20 shows the Raman spectra (633 nm) obtained on both series of isotopically

substituted samples. As already mentioned, the strong covalent bonding and the

light mass of the constituent atoms result in a large frequency for the zone center

mode. By the control of the isotopic composition of CVD diamond via that of the gas

employed, the study of the properties of diamond in which its isotopic composition

plays a special role was possible. Several examples are thermal conductivity [153],

lattice parameter [154], indirect gap [155], multiphonon infrared spectroscopy [156],

and Raman [157, 158, 159] and Brillouin [160, 161] scattering. Chrenko [157] and Hass

et. al [158] studied the frequency of the zone center optical phonon (ω0) in a series

of samples which ranged in isotopic composition from x = 0.011 to 0.99, with x the

atomic fraction of 13C. The decrease in ω0 is found to follow a (Mx)
−1/2 dependence as

expected from the virtual crystal approximation (VCA), withMx = xM13+(1−x)M12.

Therefore, ω0 is found to be about 1332.5 cm−1 for isotopically pure 12C diamond

and 1282 cm−1 for isotopically pure 13C diamond. One important result shown in

Fig. 2.20 is that ω0 is shifted down to about 1282 cm−1 for both 13C substituted series

of samples, indicating a high degree of isotopic purity for the carbon host lattice.

For several samples, the contribution from the substrate can be seen, situated as a
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Figure 2.21.: Raman spectra of three comparable samples in boron concentration,
but originating from the three different isotopically substituted series of samples.
The Raman spectrum of sample PA08 is shifted to lower wavenumber by a factor
√

12/13, taking into account the change of mass of the carbon host lattice. All
features correspond to carbon-related phonon modes. No effect of boron substitution
can be seen.

response around 1332 cm−1. Also shown in Fig. 2.20 is the Fano resonance occurring

at higher doping levels. The Fano effect arises when quantum interference takes place

between a discrete energy state (phonon) and a continuum of energy states (electrons),

and gives rise to characteristically asymmetric lineshapes [162]. For the isotopically

substituted samples, their lineshape is similar to the one obtained for samples grown

with the standard source gases, and is a clear feature indicating a high density of free

carriers.

In Fig. 2.21, the Raman spectra of three samples with similar boron concentra-

tions in the range from 1000 cm−1 to 1400 cm−1 are compared. One sample of each

isotopically substituted series has been chosen in order to check the influence of the

isotopic substitution on the frequencies of the specific phonon modes. For better il-

lustration, the Raman spectrum of sample PA08 is shifted to lower wavenumber by a

factor
√

12/13, taking into account the change of mass of the carbon host lattice. It

is important to note that all features seen in Fig. 2.21 correspond to carbon-related

phonon modes and do not change upon substitution of the boron isotope.
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Figure 2.22.: Critical temperature Tc (as deduced from mainly a.c. susceptibility
measurements or, if not possible, from resistivity measurements) as a function of
the boron concentration nB as determined from SIMS measurements in boron-doped
diamond (DMO and PA) as shwon in Fig. 2.17. In addition, Tc values of both
series of isotopically substituted samples are added, but the variation of Tc is not
conclusive.

2.4.2. Isotopic substitution and superconductivity

If the above mentioned transition from the normal to the superconducting state in

Hg were purely electronic, there should be no dependence upon the nuclear masses.

This dependence of the critical temperature for superconductivity upon isotopic mass

was the first direct evidence for interaction between the electrons and the lattice, and

supported the BCS theory of lattice coupling of electron pairs. It is quite remarkable

that an electrical phenomenon like the transition to zero resistivity should involve a

purely mechanical property of the lattice.

The isotope effect of the superconducting critical temperature Tc is best described

in terms of the isotope coefficient α defined by the relation Tc ∝ M−α, where M is

the atomic mass. Therefore, assuming the dependence of the critical temperature Tc

on the atomic mass M is given, one gets
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α = − dlnTc

dlnM
(2.39)

As was already mentioned before, in BCS theory the critical temperature Tc is given

by

Tc = 0.85ΘDexp

(

− 1

N(EF )V0

)

(2.40)

where ΘD ∝ ωc ∝ M−1/2 is the Debye temperature, directly depending on the lattice

vibrations and the atomic mass of the lattice. In the exponential term, the electron-

phonon coupling λ = N(EF )V0 enters. It can be shown in a general way that the

coupling parameter λ does not depend on the isotopic mass [163]. Therefore, Eq. 2.40

and Eq. 2.39 are leading to classical BCS result α = 1/2, in good agreement with

the value obtained for many conventional superconductors. The more sophisticated

expression for the critical temperature obtained by McMillan [131]

Tc = Tlogexp

( −1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

)

(2.41)

where µ∗ is given by

µ∗ =
µ

1 + µ ln (EF/kBΘD)
(2.42)

takes into account the interplay between attractive coupling (λ) and repulsive Coulomb

interactions (µ∗). Application of Eq. 2.39 to Eq. 2.41 gives the more complicated

expression for the isotope coefficient α

α =
1

2

[

1 − 1.04 (1 + λ) (1 + 0.62λ)

[λ− µ∗ (1 + 0.62λ)]2
µ∗2

]

(2.43)

which reduces to the classical BCS result 1/2 for µ∗ = 0 and is, in general, less than

this when µ∗ is finite. So the isotope coefficient will be close to its ideal value when the

electron-phonon coulping λ gets much larger than the Coulomb interaction potential

µ∗, which is expected for an electron-phonon system with large Tc.

Fig. 2.22 shows the dependence of the critical temperature Tc as determined from

a.c. susceptibility measurements on the total boron concentration nB measured by

SIMS. The total boron concentration was obtained as a sum of the two contributions

arising from the two boron isotopes 11B and 10B (nB,tot = n11B + n10B). As can be

seen from Fig. 2.22, only two of the isotopically substituted samples show a signifi-
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Figure 2.23.: Visible Raman spectra (633 nm) for both series of isotopically substi-
tuted samples in the low wavenumber range. (a) compares the isotopically substi-
tuted 13C11B series with the reference 12C11B series and (b) compares both isotopi-
cally substituted series 13C11B and 13C10B.

cant reduction of the critical temperature Tc with respect to the uncertainty in the

boron concentration, as expected from the higher atomic mass. These preliminary

results show that a phonon-mediated interaction between electrons may account for

the superconductivity in highly boron-doped diamond. However, the elaboration of a

more adequate series of samples with the corresponding range of boron concentrations

should be feasible now and stimulates subsequent work on this interesting topic. The

isotopic substitution and its effect on the superconductivity in highly boron-doped

diamond remain to play a key role in order to determine wether or not BCS theory

accounts for the superconductivity in this system.

2.4.3. Isotopic substitution and existence of boron dimers B2

Most experiments favor a standard BCS picture involving a phonon-mediated pairing

mechanism. Due to the high concentrations of boron atoms in the diamond host

lattice, theoretical calculations have addressed the impact of boron clustering on the

electronic structure and to the relevance of boron related vibrational modes to the

electron-phonon coupling.

Ab initio supercell calculations [44] suggest that a significant fraction of boron atoms

may form boron dimers (B2), which has already been mentioned in the context of SIMS
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and HRXRD analysis. This is based on thermodynamical energetical considerations

for various neutral and charged defect structures and confirm earlier theoretical work

on the formation of boron dimers [166, 167, 168]. Several local vibrational modes

have been associated with the existence of such dimers, the most prominent being the

Raman active A1g stretching modes at low wavenumbers. As was shown previously,

the A1g stretching mode has a parallel-polarized character [164]. The calculations

on the B2-related vibrational modes indicate that upon disorder one should expect a

rather broad feature in the 450 − 550 cm−1 range of the Raman spectra [164, 165].

Fig. 2.23 shows the Raman spectra of a large set of isotopically well-controlled samples

in the low wavenumber range. Comparing Fig. 2.23 and the above presented Raman

spectra obtained at higher wavenumbers (see Fig. 2.20), a pronounced but not quite

symmetric peak around 500 cm−1 and a second weaker feature at 1000 cm−1 are

present, as well as the already discussed Fano resonance around the softened zone-

center optical mode. Neither of the two broad peaks at 500 cm−1 and 1000 cm−1

is involved in this Fano interference, clearly indicating that these vibrational modes

hardly couple to the electronic states. Supercell calculations further confirm that boron

dimers are electrically inactive and that dimer-related phonon modes do not couple to

the hole states at the top of the valence band [44]. Therefore, in the high doping range

the rather smooth evolution of the critical temperature Tc for the superconducting

transition probably reflects the presence of electrically inactive B2 dimers.

All these conclusions are based on theoretical considerations and until now, no direct

experimental evidence could be given in order to corroborate the formation of such

B2 dimers. These calculations cannot rule out the presence of other types of defects

and the related vibrational modes. For instance, boron situated interstitially in the

diamond lattice also contributes to low energy modes (370− 450 cm−1) [167], but the

high formation energy of such a defect do not play in favour in order to account for

the very strong Raman peak at about 500 cm−1 [168]. Also, vibrational modes in the

500 − 600 cm−1 energy range can arise from the presence of B − C stretching modes

[24, 44], which contribute significantly to the electron-phonon coupling. However, this

is not consistent with the above presented Raman study. From a theoretical point of

view, future calculations should be able to display the effect of disorder in order to

get more insight into the electronic properties of a random distribution of dimers and

isolated boron atoms. From the experimental point of view, isotopic substitution is

necessary to confirm the contribution of boron atoms to the vibrational modes.

Fig. 2.23 showed the comparison of Raman spectra obtained on several isotopically

substituted samples. In Fig. 2.24 the dependence of the peak position of the low
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Figure 2.24.: Dependence of the peak position of the low wavenumber feature seen in
Fig. 2.23 on the total boron concentration nB determined from SIMS is shown for
the same sets of samples.

wavenumber feature seen in Fig. 2.23 on the total boron concentration nB determined

from SIMS is shown for the same sets of samples. The origin of the low wavenumber

peak for electrically insulating must be different for the one of metallic samples. The

probed volume is much larger in case of insulating samples, and the low wavenumber

peak is likely related to a defect-activated transversal acoustic phonon mode. The

inset of Fig. 2.23 zooms out the peak position for metallic samples grown under well-

controlled conditions. For the metallic samples, the probed volume is much smaller

and the obtained signal strictly related to the epilayer. A rather smooth decrease

in wavenumber is obtained on the metallic side of the metal-insulator transition. As

pointed out by theoretical calculations, the B2-related vibrational modes are rather

sensitive to the chemical environment in the large doping limit [44]. It is expected that,

upon additional hole-doping, the associated modes should be softened. Furthermore,

one can see a clear difference in the peak position for the different set of samples with

respect to similar boron concentrations in the sample. Both isotopically substituted
12C11B and 13C10B samples seem to behave in a similar way whereas the peak position

of 13C11B samples is reduced compared to the other two series.

It becomes clear that from the experimental point of view it is difficult to identify the
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Figure 2.25.: (a) Schematic description of the vibrational mode A1g; (b) Simplified
picture equivalent to situation (a), the boron atoms coupled to the rest of the host
lattice via the effective coupling constant keff

c ; (c) Similar representation of (a) and
(b), taking into account nearest neighbour environment.

origin of the vibrational mode around 500 cm−1. Both types of isotopic substitution

(13C →12 C and 11B →10 B) lead to the same shift in frequency. The ratio of the

corresponding wavenumbers (straight lines in Fig. 2.23 are guide to the eyes) has a

value of 0.98, quite close to both approximations
√

12/13 ≈ 0.961 and
√

10/11 ≈ 0.953

using the simplest dependence ω =
√

k/m for the frequency (k being the force constant

and m the mass). However, based on the combined Raman study and theoretical

calculations we will focus on B2 dimers. Fig. 2.25 (a) shows the associated A1g

stretching mode. We will show that the diamond host lattice plays an essential role

in the determination of this vibrational mode. Fig. 2.25 (b) shows a rather simplified

picture corresponding to this stretching mode. The first neighbours to the boron atoms

are kept fixed and interact only via the force constant kC . This linear approximation

is a good representation of the real three-dimensional vibration because the sum of

the projections of the three first neighbours onto the B −B direction equals one as a

consequence of geometry. The eigenfrequency ω1,BB of the stretching mode (x1 = −x2

with x1 and x2 the relative position of the left and rigth boron atom) simple model

shown in Fig. 2.25 (b) can be calculated and the following relationship holds

ω2
1,BB =

2kB + keff
C

mB

(2.44)

where kB and keff
C are the force constants as shown in Fig. 2.25 (b), and mB the

mass representing the boron atom. One can already see from Eq. 2.44 that the first
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neighbours to the B2 dimer play an essential role via the force constant keff
C . In order

to connect keff
C to the chemical environment surrounding the first neighbour carbon

atoms, one can take a look to the already more complicated model shown in Fig. 2.25

(c). The mass mC of the first neighbours appear and one distinguishes between three

different types of force constants: kBB (= kB) between two boron atoms, kCB between

the boron atom and the first neighbours, and kCC connects these to the rest of the host

lattice. The solution to this problem is a bit more complicated, but can be compared to

the simpler model of Fig. 2.25 (b) by making two simplifications. The first neighbour

carbon atoms follow the boron stretching mode with the same frequency ω2,BB, and

in the limit of fixed first neighbours (corresponding to the wall in Fig. 2.25 (b)) ω2,BB

can be written as

ω2
2,BB =

2kBB

mB

+

(

1

mB

+
1

mC

)

kCB (2.45)

One should note that with the upper simplifications kCC does not appear in Eq. 2.45,

but ω2,BB can be directly compared to ω1,BB of Eq. 2.44, leading to

keff
C = kCB

(

1 +
mB

mC

)

(2.46)

keff
C not only depends on the carbon atomic mass, but also on the boron atomic mass.

Using Eq. 2.44, one further gets for the ratios

ω(12, 11)

ω(13, 10)
=

10

11

2k11 + k12,11

2k10 + k13,10

≈ 1 (2.47)

ω(12, 11)

ω(13, 11)
=

11

11

2k11 + k12,11

2k11 + k13,11

≈ 1

0.982
≈ 1.04 (2.48)

ω(13, 10)

ω(13, 11)
=

11

10

2k10 + k13,10

2k11 + k13,11

≈ 1

0.982
≈ 1.04 (2.49)

Introducing the change of kC with its chemical environment via Eq. 2.46, one obtains

two independent equations with three open variables kBB,11, kBB,10, and kCB. There-

fore an adequate choice of these three parameters can fullfill the upper equations, and

account for the experimental findings. The above mentioned models are only simplified

versions of the real situation. However, the agreement with our experimental data on

the different series of isotopically substituted samples leads us to the conclusion that

the broad feature seen in Raman around 500 cm−1 can be attributed to the vibrational

A1g stretching mode related to B2 dimers.
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Further insights could be obtained by taking into account the missing series of iso-

topically substituted samples with the combination 12C10B. Unfortunately it was not

possible to elaborate such a series during this work, but is highly motivated together

with a more detailed study of the isotope effect on the superconducting properties.

2.5. Hall effect in heavily boron-doped single crystal

diamond

Based on its exceptional electronic and thermal properties, diamond is an attractive

material for electronic devices working at high temperature. Diamond films can now

be grown at low temperature and low pressure by chemical vapor deposition (CVD),

which allows the achievement of such devices. The active carrier concentration and

mobility are important parameters for semiconductor materials when using them for

device applications. The key feature of Hall effect measurements is the ability to

determine the carrier density, the carrier type, and the mobility. The Hall effect is

a phenomenon that occurs in a conductor carrying a current when it is placed in a

magnetic field perpendicular to the current [169]. The charge carriers in the conductor

become deflected by the magnetic field and give rise to an electric field (Hall voltage)

that is perpendicular to both the current and magnetic field (see App. A.4). Hall

theory [170, 171] predicts the Hall coefficient RH as

RH =
rH (p− b2n)

q (p+ bn)2 (2.50)

where b = µn/µp the ratio of the mobilities and n and p the density of the electrons

and holes, respectively. rH is the Hall scattering factor. For extrinsic p-type material

with p≫ n, Eq. 2.50 reduces to

RH =
rH

qp
(2.51)

and rH is defined as the ratio of the Hall mobility µH to the drift mobility µ. A

knowledge of the Hall coefficient leads to a determination of the carrier type as well

as the carrier density. The Hall factor rH depends on the scattering mechanism,

temperature, magnetic field, and also on the band structure. The range of values

for rH varies from 1.1 for acoustic deformation potential scattering to 1.9 for ionized

impurity scattering in the non-degenerate case [172]. New characteristics like strain

and alloying change the valence band structure and an extra scattering process, alloy
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Figure 2.26.: Hall carrier concentration nHall as a function of the boron concentration
nB = nSIMS as determined from SIMS measurements for several formerly grown
DMO and more recently grown PA samples. One clearly sees an up to a factor
12 discrepancy for older samples, giving up a puzzling situation. The solid line
corresponds to the situation nHall = nSIMS.

disorder scattering, may be present. Until recently, little was known of the influence of

these new characteristics on the Hall mobility and Hall factor. The influence of strain

on the Hall factor has been investigated for undoped strained Si, strained Si1−xGex,

and relaxed Si1−xGex [173, 174, 175].

Fig. 2.26 shows the carrier concentration nHall measured from Hall effect as a func-

tion of the boron concentration nSIMS as determined from secondary ion mass spec-

troscopy (SIMS) for several formerly and recently grown samples on the metallic side

of the transition. For formerly grown samples (DMO) a large discrepancy can be seen

between both concentrations, with up to a factor 10 for γ, which gives up a puzzling

situation.

In the following, several contributions to the Hall effect are taken into account in

order to explain their influence and impact on the Hall effect measurements. As will be

seen, Eq. 2.50 and Eq. 2.51 are valid in the case of a uniformly doped layer, but have

to be modified in order to take into account the distribution of dopants as seen from

the depth profile of SIMS. However, the more sophisticated method cannot account for

the observed large discrepancy. Another possibility already mentioned is the influence
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of the electronic band structure on the Hall scattering factor rH . Eq. 2.51 is valid for

the special case of a spheroid Fermi surface, and has to be modified to account for the

warped electronic valence band structure of diamond. In addition, an outlook will be

given on the influence of strain on the electronic band structure of diamond and its

influence on the Hall scattering factor rH . However, the striking difference between

results obtained on formerly grown (DMO) and recently grown (PA) samples is not

yet understood, a more detailed study of the strain distribution and its influence on

the electronic band structure is necessary.

2.5.1. Hall effect in layered structures

The Hall coefficient is determined experimentally as

RH =
dVH

BI
(2.52)

where d is the sample thickness, VH the Hall voltage, B the magnetic field, and I the

current (see Appendix). The thickness d is well defined for uniformly doped wafers.

In contrast, a non-uniform distribution of dopants (as seen from the depth profile in

secondary ion mass spectroscopy) can complicate the situation. While standard four-

point probe measurements characterize the sheet resistance only, a combination with

Hall effect or van der Pauw measurements allow separation of the carrier sheet density

and mobility contributions to the sheet resistance. In the case of highly boron-doped

(p-type with p ≫ n in Eq. 2.50) diamond, one gets an effective carrier concentration

peff = rH/qRH with rH = 〈τ 2〉 / 〈τ〉2 (τ being the mean time between carrier colli-

sions, and in general a certain relationship τ ∝ E−α). In uniformly doped layers peff

conincides with the carrier concentration, but results from Hall effect measurements

on non-uniformly doped layers are more difficult to understand. The resistivity and

mobility varies with the film thickness as the carrier or doping density does. A Hall

effect measurement gives only information about the average values of carrier density,

mobility, and resistivity. Taking into account a spatially varying carrier density p(t)

and mobility µp(t), the sheet resistance Rsh and the Hall coefficient RH can be written

as [176]

Rsh(t) =
1

σsh(t)
=

1

q
∫ t

0
p(x)µp(x)dx

(2.53)

and
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RH(t) =

∫ t

0
p(x)µ2

p(x)dx

q(
∫ t

0
p(x)µp(x)dx)2

(2.54)

assuming rH = 1, which simplifies to Eq. 2.51 for p(x) = p = const (note that

[p] = cm−3) and µp(x) = µ = const ([µ] = cm2/V s). To determine resistivity and

mobility profiles, Hall effect measurements have to be performed as a function of the

film thickness. This can be achieved by removing thin portions of the film by etching

and subsequent measurement of the Hall coefficient. Profiles have been obtained for

GaAs by application of electrolytic etching [177], but a more common method to

remove in a reliable way thin portions of the film is by use of anodic oxidation and a

subsequent oxide step [178]. In this case of our diamond samples, a controlled removal

is not yet optimized and, thus, a study of the depth profile of the resistivity and

mobility profiles was not yet feasible.

An estimate of the error introduced by omitting the spatial variation of the doping

density and mobility can be obtained by taking a look to the simplest case of a two

layer structure. Assuming an upper and lower layer of thickness d1 and d2 with

conductivities σ1 and σ2, respectively, one finds [179, 180]

RH = RH1
d1

d
(
σ1

σ
)2 +RH2

d2

d
(
σ2

σ
)2 (2.55)

with d = d1 + d2 and σ = σ1d1/d+ σ2d2/d, and RH1,2 the Hall constant of layer 1 and

2, respectively. Imagine the case of a more heavily doped upper layer with σ1 ≫ σ2,

so that

σ ≈ d1σ1

d
, RH =

RH1d

d1

(2.56)

and the Hall measurement characterizes the upper layer, leading to a misleading un-

derestimation of the conductivity σ1 and overstimation of the Hall coefficient RH1

(factor d1/d). This has been experimentally observed in HgCdTe [181], but cannot

account for the discrepancy shown in Fig. 2.26 for highly boron-doped single crystal

diamond (by taking into account the contribution from the substrate).

Equivalent to Eq. 2.55, Eq. 2.54 leads for a two layer structure with carrier concen-

tration P1 and P2 (note that Pi = pidi and [Pi] = cm−2), respectively, to the following

weighted averages for the effective hole density P [182]

P =
(P1µ1 + P2µ2)

2

P1µ2
1 + P2µ2

2

(2.57)
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and Hall mobility µH

µH =
P1µ

2
1 + P2µ

2
2

P1µ1 + P2µ2

(2.58)

As can be seen immediately, for large mobility variations throughout the layer, P

will be significantly less than P1 +P2, and µH will lie between µ1 and µ2. Therefore, it

is possible that the mobility of an inhomogeneous samples is higher than the expected

bulk mobility. Recently, this effect has been observed in boron-doped single crystal

diamond [183, 184]. However, following Eq. 2.57, the average number of carriers P

cannot exceed the dopant concentration as for instance determined by SIMS and, thus,

other effects have to be taken into account in order to explain this puzzling situation.

2.5.2. Influence of band structure on the Hall effect

The Hall scattering factor rH is defined as the ratio of the Hall mobility µH to the

drift mobility µ and affects the experimentally accessible Hall coefficient RH via RH =

rH/qp (for p ≫ n). An equivalent expression based on the relaxation time τ between

scattering events leads to rH = 〈τ 2〉 / 〈τ〉2. The relaxation time is obtained as the

reciprocal sum of the total scattering rates, and has a typical dependence on the

eigenstate energy (τ ∝ E−α, α depending on the scattering mechanism) [185]. In

Fig. 2.27, the influence of electric and magnetic fields on electrons in a Brillouin zone

approach is shown in order to derive the typical equations for the Hall effect, and to

get first insights about the importance of the Fermi surface shape on the Hall effect

measurements (see Ref. 186).

In part Fig. 2.27(a), the effect of an electric field alone is shown. The simplest

case of a spherical Fermi surface is assumed, and the zone center corresponds to the

lowest energy value (typical for a conduction band minimum at Γ). The net result of an

applied electric field E (in the positive x-direction) is a shift of the electron distribution

by −eEτ , and an increase of the number of electrons in quantum states in the Brillouin

zone near region A and in decrease of the number near region B. The velocities (defined

as the gradient of the energy distribution) near A have a component to the left, near B

to the right. An average momentum P corresponging to the unbalance in the velocity

distribution results in a net current to the right (due to the negative charge of the

electron) in the direction of the electric field.

Fig. 2.27(b) shows the case where also a perpendicular magnetic field is applied to

the situation shown in Fig. 2.27(a). The vector force −e(~v × ~B) on the electron will

result in a changing momentum. Since the force is perpendicular to ~v, this results in
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(a) (b)

Figure 2.27.: The influence of (a) electric and (b) magnetic fields on electrons in a
Brioullin zone approach is shown in order to derive the typical equations for the
Hall effect. A spherical Fermi surface is assumed, and the zone center corresponds
to the lowest energy value (typical for a conduction band minimum at Γ).

a flow of representative points along the energy contours and the force ~F does not

change the energy as it acts perpendicular to the motion ~s (~F · ~s = 0). Note that due

to the Pauli principle the flow does not change the density of the points and, thus,

remains incompressible. This results in a counterclockwise shift (in the case of holes

clockwise) of points in A and the average velocity vector will make an angle Θ with

the electric field direction as indicated in Fig. 2.27(b). In terms of relaxation times,

it is easy to understand that the angle Θ between the current and the electric field is

given by the magnetron frequency times the mean free time. This can be seen from

the change in current dI due to the N electrons (n = N/V the density)

dI = (ne2/m) ~Edt− (e/m)~I × ~Bdt (2.59)

and the steady state condition that the sum of all changes is zero, giving

(ne2/m) ~Edt− (e/m)~I × ~Bdt− ~Idt/τ = 0 (2.60)

where −~Idt/τ is the change of current due to collisions. Taking the electric field
~E = E ~ex in x-direction and the magnetic field ~B = B~ez in z-direction one finds the

usual equations for the Hall effect
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Ix = (ne2τ/m)Ex = σEx (2.61)

and

0 = σEy − (−IxBz)(eτ/m) (2.62)

The Hall coefficient RH is found to be RH = Ey/IxBz = −eτ/mσ = µ/σ = −1/en

(Note that the charge q = −e for electrons was used). Furthermore, for small angles Θ

one finds Θ = Ey/Ex = eτBz/m = µHBz which defines the Hall mobility µH = Θ/Bz.

In general, the Hall mobility won’t be equal to the mobility required in the expression

for conductivity. The Hall scattering factor rH = µH/µ is introduced and depends on

the detailed band structure. A more general relaxation time approximation leads to the

following expression for the current density j induced by an external electromagnetic

field (E,B) [173, 175, 187, 188]

ji =
∑

j

σijEj +
∑

jk

σijkEjBk + · · · (2.63)

where i,j,k = x,y,z, and one gets

σxx = − e2

4π3

∫

τv2
x

∂f0

∂E
d3k (2.64)

and

σxyz =
e3

~4π3

∫

τ 2vx
∂f0

∂E

[

vx
∂vy

∂ky

− vy
∂vy

∂kx

]

d3k (2.65)

where

~v =
1

~

~∇kE(~k) (2.66)

is the velocity, E(~k) the energy dispersion relation, and f0 is the distribution function

at its equilibrium (for instance Boltzmann or Fermi-Dirac). The drift and Hall mobility

µ and µH in this approximation are obtained as

µd,xx =
σxx

ne
, µH,xyz =

σxyz

neµd,xx

(2.67)

with n the carrier concentration. The Hall factor rH is defined as the ratio µH,xyz/µd,xx,

and for a parabolic conduction band with E = ~
2k2/2m∗, one obtains the already
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2. Heavily boron-doped single crystal diamond (C:B)

Figure 2.28.: Re-entrant energy surface in the kz = 0 plane in the Brillouin zone.
Regions with a large component vx become important. The y-component of the
average velocity plays an important role for the Hall effect.

above mentioned common result

rH =
µH,xyz

µd,xx

=
nm∗

~2

∫

d3k
4π3 τ

2k2
x

∂f0

∂E
[∫

d3k
4π3 τk2

x
∂f0

∂E

]2 =
〈τ 2〉
〈τ〉2

(2.68)

Eq. 2.68 has to be modified in order to account for an arbitrary shape of the Fermi

surface, as shown schematically in Fig. 2.28 [186]. This figure represents again the

kz = 0 plane in the Brillouin zone for a re-entrant energy surface. In this case, the

velocity vector varies in magnitude for a contour of constant energy. From Eq. 2.64 and

Eq. 2.65 it becomes clear that regions with a large component vx become important. As

in the above mentioned case of a parabolic energy distribution, a magnetic field implies

a flow along the contours of constant energy, in the direction of the arrows shown

in Fig. 2.28. Electrons in quantum states in δs1 and δs2 will be displaced towards

δs′1 and δs′2, respectively. In contrast to the parabolic case discussed before, these

displacements result in a net increase in the +y-component of the average velocity.
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In other words, the electron rotates in the clockwise direction rather than in the

counterclockwise direction as would have been the case for a spheric Fermi surface,

and, thus, can give a contribution normally associated to the presence of holes. In

summary, a reduction of the value rH = µH/µ to values smaller than 1 is probably

due to the re-entrant shape of the Fermi surface.

Analogous to the case for electrons, a similar behaviour can occur for holes in the

valence band. The Hall scattering factor rH has been studied in the case of undoped

strained Si [175], as well as strained Si1−xGex [173, 174, 175], and relaxed Si1−xGex

[175]. In that case, a three-band model has been used, and Eq. 2.64 and Eq. 2.65

need to be evaluated for the energy dispersion describing the light hole band (lh), the

heavy hole band (hh), and the spin-orbit band (so). Eq. 2.67 reads then

µn
d,xx =

σn
xx

ne
, µn

H,xyz =
σn

xyz

neµn
d,xx

(2.69)

for n = lh, hh, and so. The Hall scattering factor can thus be written as

rH =
(pso + plh + phh)(psoµ

soµso
H + plhµ

lhµlh
H + phhµ

hhµhh
H )

(psoµso + plhµlh + phhµhh)2
(2.70)

where

pn =
1

4π3

∫

fn(ǫn)d3k (2.71)

with fn the corresponding distribution function, and ǫn the energy dispersion for each

band (n = lh, hh, and so). The Hall scattering factor rH was found to depend strongly

on strain (and the related change in the electronic band structure), varying from a

value of ≈ 3 to ≈ 0.1. Such a strong variation of rH due to the strong anisotropy of the

valence band structure could be a possible key to the understanding of the discrepancy

between Hall effect and SIMS measurements in highly boron-doped diamond.

With the discovery of superconductivity, renewed interest came up in the electronic

band structure of highly boron-doped diamond. Since then, several studies have ap-

peared, either using VCA [20, 21, 22, 35] or a supercell method [23, 24, 35, 44, 168],

and more focused on the electron-phonon coupling said to be responsible for supercon-

ductivity. It has been found experimentally as well as theoretically that the electronic

band structure of highly boron-doped diamond resembles the one of undoped diamond,

with the Fermi level situated below the top of the valence band [16]. The study of

the valence band structure of diamond-type semiconductors goes back at least as far

back as to the work done by Shockley in 1953 [189]. A detailed study began in the
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classic paper by Dresselhaus, Kip, and Kittel [190] in which the A, B, C parameters

were introduced in a three-band k · p model, where one finds for the light hole band

and heavy hole band

Elh,hh(k
2) = Ak2 ±

√

B2k4 + C2(k2
xk

2
y + k2

yk
2
z + k2

zk
2
x) (2.72)

and for the spin orbit band

Eso(k
2) = −∆ + Ak2 (2.73)

where ∆ is the spin-orbit split-off (Note that k4 = (k2
x + k2

y + k2
z)

2), and an arbi-

trary wave vector ~k = (kx, ky, kz). Increasing interest in the optical and transport

properties of quantum semiconductor structures motivated the use of more complete

tight-binding techniques. These works attempt to reproduce the warping of the va-

lence band as shown in Eq. 2.72, and relate the calculated effective masses along the

main symmetrical axes to the above mentioned parameters A, B, and C. An equiva-

lent notation uses the Luttinger parameters γ1, γ2, and γ3 [191] (and for completeness

κ) which can be expressed as

γ1 = −1

3
(2F + 4G+ 4M) − 1, (2.74)

γ2 = −1

6
(2F + 4G− 2M), (2.75)

γ3 = −1

6
(2F − 2G+ 2M), (2.76)

κ = −1

3
γ1 +

2

3
γ2 + γ3 −

2

3
(2.77)

where F , G, and M are related to the Dresselhaus parameters A, B, C via

L = F + 2G, M = H1 +H2, N = F −G+H1 −H2 (2.78)

giving

A =
1

3
(L+ 2M) + 1, B =

1

3
(L−M), C2 =

1

3
(N2 − (L−M)2) (2.79)

where H2 is taken to be negligible small. An effective measure of the warping can be

defined as the relative change in energy along symmetry axes, for instance [192]
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Figure 2.29.: A schematic diagram of the Fermi surface of diamond in the (001) plane

of ~k-space is shown. One should note the bulging out of this surface for the heavy
hole band along the {110} directions. Adapted from Ref. 33.

δ(Σ,∆) = lim
k→0

E(∆) − E(Σ)

E(∆)
(2.80)

where Σ is the {110}-direction (Γ −K) and ∆ is the {100}-direction (Γ −X) in the

Brillouin zone. This can be expressed with the parameters A, B, and C as follows

δlh,hh(Σ,∆) = 1 −
A±

√

B2 + C2

4

A± |B| (2.81)

Note that in k · p theory, a single parameter C is used to describe the warping, but

does not provide a measure of the difference in warping between the light hole and

heavy hole band as can be seen from Eq. 2.81 where A and B also enter. It is often

said that there is no warping if C = 0.

As already mentioned, recent theoretical and experimental work on the electronic

band structure of highly boron-doped diamond reveal a standard ~k-dependent diamond-

like band structure with a Fermi energy situated in the valence band which corresponds

to the boron doping [16]. Once the valence band structure is identified, straightfor-

ward calculation of the drift and Hall mobility µ and µH following Eq. 2.69, as well

as the Hall scattering factor rH (see Eq. 2.70) can be undertaken [173, 174, 175]. A

detailed study of the valence band structure via first principles supercell calculations
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is underway. Results on undoped (relaxed) diamond neglecting spin-orbit effects gave

similar values of effective masses along the main symmetry axes and, thus, a set of

Luttinger parameters, as density functional theoretical calculations in the local density

approximation, assisted by k · p calculations [191]. A schematic diagram of the Fermi

surface of diamond in the (001) plane of ~k-space is shown in Fig. 2.29 [33]. One should

note the bulging out of this surface for the heavy hole band along the {110} directions.

Unfortunately, the {110} direction has not been investigated in the recent angular re-

solved photoemission study and, thus, needs to be confirmed. From the similarities

seen in Fig. 2.29 and Fig. 2.28, one can imagine the possible influence of the warped

anisotropic valence band structure on the Hall scattering factor rH . However, prelim-

inary calculations of the Hall scattering factor rH using parameter sets (γ1, γ2, γ3) or

equivalently (A,B,C) show that the anisotropy alone cannot account for the large dis-

crepancy between Hall effect and SIMS measurements. Based on the idea to take into

account the influence of strain on the valence band structure in Si and Si1−xGex, this

motivates the detailed study of the band structure and of its evolution with strain. It

has been shown previously that due to the coherent growth of the highly boron doped

epilayer, the lattice parameter in the plane remains unchanged while an expansion of

the lattice in the growth direction is observed. Unfortunately, a detailed theoretical

investigations of this problem is still lacking. Recently developed k · p methods taking

into account the effect of strain on the band structure [193] could be used in order to

fit results from supercell calculations, in order to obtain new set of Luttinger para-

meters under strained conditions. This would be further in agreement with the fact

that the discrepancy between Hall effect and SIMS measurements is larger for higher

doped samples with therefore higher amount of intrinsic strain. However, the differ-

ence between formerly grown sample (DMO) for which the above mentioned picture

would apply, and recently grown samples (PA) is still an open question.
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3. Heavily boron-doped

nanocrystalline diamond thin films

As already mentioned, diamond is a potential candidate for various applications due

to its outstanding materials properties. The lack of an inexpensive substrate for ho-

moepitaxial growth motivated many efforts made in growth of poly- and nanocrys-

talline diamond films. Heteroepitaxial growth can be done on a variety of materials

used as substrate, for instance silicon but also quartz, opening up the way for large-

area application. The material we refer to as nanocrystalline diamond is a small

grain size polycrystalline diamond, grown under conventional growth conditions us-

ing a hydrogen-rich gas phase. Obviously, after a certain thickness, nanocrystalline

diamond become a conventional microcrystalline diamond. The roughness is hereby

proportional to the thickness. Therefore smaller grain sizes are generally more desir-

able.

In the following, a study of the transport properties of heavily boron-doped nanocrys-

talline diamond thin films at temperatures down to 50 mK will be presented. The films

show superconducting properties with critical temperatures Tc up to 2.1 K. The system

undergoes a doping-induced metal-insulator transition with an interplay of intergranu-

lar conductance g and intragranular conductance g0, as expected for a granular system

with metallic grains. Metallic samples far away from the transition show similarities

to heavily boron-doped single crystal diamond. Metallic samples close to the tran-

sition show a more rich behaviour. Global phase coherence leads in both cases to

superconductivity. A peak in the low-temperature magnetoresistance measurements

for samples close to the transition is explained due to corrections to the conductance

according to superconducting fluctuations.
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Figure 3.1.: (a) Typical AFM image of a nanocrystalline diamond sample, with grain
sizes of about 200 nm. The grain size does not change upon boron incorporation;
(b) UV-Raman spectra (325 nm) of several boron-doped nanocrystalline diamond
thin films. One clearly sees the D and G peak originating from sp2-bonded carbon
as well as a peak associated with the central phonon line (at 1332 cm−1 for undoped
diamond). With increasing doping the central phonon line shifts to lower energies
and for high doping concentrations a Fano resonance around the central phonon line
can be seen.

3.1. Sample preparation and structural properties of

heavily boron-doped nanocrystalline diamond thin

films

Nanocrystalline diamond films were grown in a metallic microwave plasma-enhanced

chemical vapor deposition (MPCVD) reactor from a hydrogen-rich gas phase, with

CH4/H2 ≤ 4 %. Doping with boron was achieved by adding trimethylboron to the

gas phase with molar concentrations B/C reaching 10000 ppm (see Tab. 3.1). These

films were grown on quartz substrates (suitable for transport measurements). The

quartz substrate were either prepared by mechanical polishing (Bmec prefix) or by

ultrasonic seeding (Bus prefix) with a monodisperse solution of nanodiamond particles,

in order to provide a high density of nucleation sites for film growth [1]. The substrate

temperature was maintained at 700 ◦C, while the total pressure and input power were

varied between 30 to 40 Torr and 2500 to 3500 W, respectively.

Fig. 3.1 (a) shows a typical AFM image (4µm× 4µm) of a boron-doped nanocrys-
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3.2. Metal-insulator transition in heavily boron-doped nanocrystalline diamond

talline diamond sample. The typical sample thickness is about 200 nm, with grain

sizes about 150 nm. The grain size does not depend on the dopant concentration [2].

The UV-Raman spectra shown in Fig. 3.1 (b) display the presence of the D and G

peaks [3], originating from sp2-bonded carbon in the grain boundaries, as well as a

peak associated with the central phonon line (at 1332 cm−1 for undoped diamond).

With increasing doping a shift of the central phonon line to lower energies and a

clear Fano resonance can be seen, as already reported in highly boron-doped single

crystalline, polycrystalline, and nanocrystalline diamond [4, 5, 6, 7, 8].

3.2. Metal-insulator transition in heavily boron-doped

nanocrystalline diamond

Renewed interest in doping-induced electronic phase transitions came up as supercon-

ductivity was discovered in heavily boron-doped polycrystalline diamond prepared in a

high pressure high temperature process [9], and was confirmed by several other groups

[8, 10, 11, 12, 13, 14] in polycrystalline, single crystalline, and nanocrystalline boron-

doped diamond (see Ref. 15 and 16, and references therein). The metal-insulator

transition in highly boron-doped diamond has been analyzed in ion-implanted films

[17] and more recently by our group in single crystalline diamond [18] (see Chap. 2.3).

In this part of the work, we report on the metal-insulator transition in highly boron-

doped nanocrystalline diamond (B:ncd) thin films, clearly showing the influence of

the granular structure on the transport properties at low temperatures. Tuning the

microscopic parameters, a granular material can vary from a relatively good metal

to an insulator, depending on the strength of electron tunneling coupling between

conducting grains.

Fig. 3.2 shows the room temperature conductivity as a function of the free car-

rier concentration as determined from room temperature Hall effect measurements

for several boron-doped nanocrystalline diamond thin films with boron concentrations

(SIMS) in the range from 9.7 × 1016 cm−3 up to 3.0 × 1021 cm−3 (see Tab. 3.1). A

strong increase of almost 10 orders of magnitude from 10−8 (Ωcm)−1 up to 75 (Ωcm)−1

already indicates a transition from insulating to metallic samples. Compared to the

room temperature conductivity of heavily boron-doped single crystal diamond [4, 18],

boron-doped nanocrystalline diamond films have substantially lower conductivities in

the high doping range (one order of magnitude). High temperature transport mea-

surements on weakly-doped nanocrystalline diamond films reveal an activation energy
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Sample [TMB] nHall,300K [B] σ300K µ300K

ppm [cm−3] [cm−3] [Ω−1cm−1] [cm2/V s]

Bus0 0 < 1015 9.7 · 1016 1.5 · 10−8 -
Bme50 50 1.2 · 1016 - 3.4 · 10−3 1.82
Bmec150 150 7.0 · 1015 2.4 · 1019 2.4 · 10−3 2.1
Bus20 20 7.0 · 1018 - 0.25 0.22
Bus100 100 9.5 · 1019 - 0.30 0.02
Bmec2500 2500 3.9 · 1019 2.3 · 1020 0.8 0.13
Bus1000 1000 2.5 · 1020 2.9 · 1020 6.2 0.15
Bmec5000 5000 5.6 · 1020 1.3 · 1021 21.7 0.27
Bus3000 3000 1.1 · 1021 1.3 · 1021 29.3 0.16
Bus4000 4000 - 3.0 · 1021 34.9 -
Bus4500 4500 1.1 · 1021 1.8 · 1021 63.3 0.36
Bus10000 10000 1.4 · 1021 - 55.2 0.24
Bus6660 6660 2.0 · 1021 2.7 · 1021 75.8 0.24
Bus5000 5000 2.4 · 1021 - 72.2 0.19

Table 3.1.: The 200 nm thick samples are designated after the seeding procedure on
the substrate before growth and the boron concentration in the gas phase during
growth in ppm. The Hall carrier concentration, the Hall mobility, and the con-
ductivity as determined from Hall and van der Pauw measurements taken at room
temperature, as well as the results of SIMS measurements are summarized. Sample
Bus0 showed no detectable Hall effect.

of about 390 meV [2], and, thus, indicate substitutional incorporation of boron in

these films (see Ref. 19 and references therein). Assuming full ionization at very high

doping levels, the difference between the Hall carrier concentration and the larger

boron concentration as determined by SIMS (see Tab. 3.1) indicates the compensating

effects of the grain boundaries. For heavily boron-doped single crystal diamond, the

apparent Hall carrier concentration takes values up to ten times higher than the boron

concentration measured by SIMS [18], which is discussed in Chap. 2.5.

The temperature dependence of the normalized resistance ρ/ρ(300K) in the range

300 K down to 350 mK is shown in Fig. 3.3 for several samples. In contrast to the

minimum resistivity observed in single crystal diamond at intermediate temperatures

[18], the resistivity of nanocrystalline diamond increases with decreasing temperature.

The highly doped samples with nB ≥ 1.3× 1021cm−3 (see Tab. 3.1) also show super-

conductivity with a critical temperatures of about Tc = 2.1 K (Samples Bus1000 and

Bme5000 behaved like a disordered metal, but showed no superconductivity down to

350 mK).

Fig. 3.4 (b) shows the effective activation energy Eact as determined from the slope
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Figure 3.2.: Room temperature conductivity as a function of the free carrier concen-
tration, as determined from room temperature Hall effect measurements, shown for
several boron-doped nanocrystalline diamond thin films with boron concentrations
(SIMS) in the range from 9.7 1016 cm−3 up to 3.0 1021 cm−3 (see Tab. 3.1). The
strong increase of the conductivity with boron doping, from 10−8 (Ωcm)−1 up to
75 (Ωcm)−1, already indicates the transition from the insulating to the metallic
samples.

of Arrhenius plots of the temperature dependent conductivity, normalized to its room

temperature value σ∗. Thermally activated transport via hopping conduction (Eact >

kBT ) is only observed for the weakly doped samples Bus100 and Bmec2500. The

highly-doped samples behave like a disordered metal. The apparent activation energy

of a disordered metal is only a small fraction of kBT in the corresponding temperature

range (Eact < kBT ), as already reported elsewhere [20, 21, 22]. Therefore, the critical

boron concentration nc for the metal-insulator transition lies in the range from 2.3 ×
1020 cm−3 up to 2.9 × 1020 cm−3, in good agreement with what was found for single

crystal and polycrystalline diamond (see Ref. 15 and 16, and references therein). As

will be shown below, the metal-insulator transition is not only due to the increasing

doping within the grains, but also to the increase in intergranular coupling between

metallic grains.

Fig. 3.5 (a) shows the temperature dependence of the normalized conductivity for the

weakly-doped samples Bus100 and Bmec2500, which are close to the metal-insulator

transition. An Efros-Shklovskii (ES) type of hopping dependence is observed over
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Figure 3.3.: Temperature dependence of the normalized resistance ρ/ρ(300K) from
300 K down to 350 mK. Highly doped samples with nB ≥ 1.3 1021cm−3 show
superconductivity with a critical temperatures of about Tc = 2.1 K.

a strikingly wide range of temperatures, from 300 K down to 20 K. The exponential

decrease of conductivity with decreasing temperature is typically seen on the insulating

side of disordered materials such as heavily doped semiconductors. The interplay

between thermal activation and tunneling processes leads to hopping transport [23, 24],

characterized by a stretched exponential temperature dependence of the conductivity

following

σ(T ) = σ0 exp

[

−
(

T0

T

)m]

(3.1)

with m depending on the hopping mechanism. For nearest-neighbour hopping (NNH)

m equals unity for simple activated behaviour [25], whereas m = 1/4 in the case

of variable range hopping (VRH), as predicted by Mott [26]. Taking into account

that Coulomb interaction leads to a reduction of the single-particle density of states

near the Fermi energy and, thus, to an opening up of the so-called Coulomb gap, the

hopping mechanism is called Efros-Shklovskii VRH with m = 1/2 instead of m = 1/4

[27, 28, 29]. The Coulomb interaction plays an important role at low temperatures,

and the crossover from VRH to ES-hopping should be observed below a certain critical

temperature. For highly boron-doped single crystal diamond, insulating samples close
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3.2. Metal-insulator transition in heavily boron-doped nanocrystalline diamond

to the metal-insulator transition exhibit VRH and no crossover to Efros-Shklovskii

VRH could be seen, probably due to the decrease of the T0 value when approaching

the metal-insulator transition [18] (see Chap. 2.3). A crossover from VRH to Efros-

Shklovskii VRH has recently been reported by Tshepe et al. in boron-ion-implanted

films [17] as well as by Sato et al. in a lower-doped single crystal diamond [30]. The

theoretical value of T0,ES for Efros-Shklovskii VRH in Eq. 3.1 is given by

T0,ES =
e2β

4πkBǫ0ǫrξ
(3.2)

with ǫr the relative permittivity and ξ the localization length (decay length of wave

function for isolated impurity atoms). The coefficient β is equal to 2.8 according to

Shklovskii [24] or equal to 0.57 according to Adkins [31]. Taking ǫr = 5.7, β = 2.8,

and ξ = 0.3 nm as the effective Bohr radius of the boron acceptor in diamond [32], one

obtains for n≪ nc T0,ES = 2.7×104 K. From the fit of the low temperature transport

data of the low doped samples Bus100 and Bmec2500 we find T0,ES values of the

order of 3000 K (see Fig. 3.5 (a)), which is a factor of 9 smaller than the theoretically

predicted value. A discrepancy of a factor 5 can be explained by the choice of the value

β. Another possibility is the scaling of T0,ES when approaching the metal-insulator

transition[17], or a temperature-induced smearing of the Coulomb gap [33, 34].

An Efros-Shklovskii hopping conductivity over a wide range of temperatures has also

been found in metallic and semiconducting granular arrays [35, 36, 37, 38, 39, 40, 41].

This temperature dependence has been a puzzle for a long time, and a detailed un-

derstanding was only recently achieved (see Ref. 42 and references therein). Multiple

cotunneling processes can lead to Efros-Shklovskii-like variable range hopping in gran-

ular metal arrays with weak intergrain coupling [41, 43, 44]. For quantum dot arrays,

random charging of dots and long range Coulomb interactions create a soft Coulomb

gap [45].

The physical quantities characterizing a granular material are the intragranular con-

ductance g0, the intergranular (tunneling) conductance g (both g0 and g dimensionless

conductance (corresponding to one spin component) and measured in the units of the

quantum conductance e2/~: g = G/(2e2/~) with G the conductance ([G] = Ω−1).),

the charging energy Ec = e2/4πkBǫ0ǫrd (d is the grain size), and the mean level spac-

ing δ = (νV )−1 with ν the density of states and V the volume of the grain (notation

used as in Ref. 42, ν should not be confused with the critical exponent used before).

A ”granular system” is obtained in the limit g ≪ g0, whereas the case g ∼ g0 can be

viewed as a homogeneously disordered system. Samples with g > gc exhibit metallic
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Figure 3.4.: (a) Temperature dependence of the normalized conductivity σ/σ(300K)
for several samples in the range 300 K down to 350 mK. The highly doped sample
with nB = 3.3 1021cm−3 also shows superconductivity with a critical temperature
Tc = 2.6K; (b) Temperature dependence of the slope of the Arrhenius plots for
the same samples. The Ioffe criterion as explained in detail in the text suggests
a crossover from a thermally activated transport and, thus, insulating regime to a
metallic regime. The critical concentration nc for this crossover is estimated to be
about 3 × 1020cm−3 as determined from SIMS.

transport whereas samples with g < gc show insulating behaviour, corresponding to

metallic grains with strong and weak intergrain coupling, respectively. Here, gc is the

critical conductance which is related to Ec and δ as

gc = (1/2πD) ln(Ec/δ) (3.3)

where D is the dimensionality [42]. For a grain size d ≈ 150 nm and a typical density of

states ν ≈ 1020 eV −1cm−3 one gets Ec ≈ 20K and δ ≈ 1mK. One could expect two-

dimensional effects, as the grain size is of the same order of magnitude as the thickness

and, thus, gc ≈ 0.52 or gc ≈ 0.77 for a three-dimensional or two-dimensional system.

These values lie between the estimated conductances for samples Bus100 and Bus1000

(see Tab. 3.1). This is in good agreement with the criterion of effective activation

energy used above to determine the metal-insulator transition in this material (see

Fig. 3.4 (b)).

As already mentioned above, for g < gc insulating behaviour is predicted follow-

ing an Efros-Shklovskii variable range hopping, which is observed in nanocrystalline
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Figure 3.5.: (a) Temperature dependence of the normalized conductivity for the low
doped samples Bus100 and Bmec2500, following a Efros Shklovskii type of hopping
dependence over a wide range of temperatures. The T0 values of both samples are
indicated; (b) Logarithmic temperature dependence of the normalized conductivity
for several highly doped samples as expected for a granular metal. The deviations
are explained in detail in the text.

diamond over a wide temperature range (see Fig. 3.5 (a)). An estimate of the local-

ization length ξ from the experimentally determined T0 values gives ξ ≈ 1 nm, which

corresponds to localization within one grain. This result is important because larger

values would imply strongly coupled clusters of grains.

For samples with g > gc, several contributions to the conductivity can be seen,

depending on the temperature range (see Ref. 42 and references therein). For temper-

atures T > Γ (Γ = gδ can be interpreted as the width of the smearing of the energy

levels in the grains), one should find a logarithmic temperature dependence (for two-

as well as three-dimensional systems) of the conductivity [42]:

σT = σ0

(

1 − 1

πzg

)

ln

[

gEc

T

]

= a+ bln(T ) (3.4)

with z the coordination number of the arbitrary periodic lattice (Ec taken in Kelvin,

or T in units of Kelvin).

This behaviour has been reported for several granular metallic systems [37, 46, 47,

48, 49]. As can be seen in Fig. 3.5 (b), some of the nanocrystalline samples show a loga-

rithmic temperature dependence at low temperatures. A crossover to superconducting
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Figure 3.6.: Zoom of the temperature dependence of the normalized resistance
ρ/ρ(300K) for the highly boron-doped nanocrystalline sample Bus5000 with nB =
2.4 × 1021 cm−3, compared to the diamagnetic response obtained from a.c. sus-
ceptibility measurements. The onset of diamagnetic screening corresponds to the
transition to zero resistance.

behaviour occurs for the highly conducting samples (Bus4000 to Bus10000). The tem-

perature at which the deviation from the logarithmic temperature dependence takes

place increases with doping. Electron-electron interaction is responsible for the log-

arithmic temperature dependence, at higher temperatures interactions with phonons

lead to a power law dependence (whole temperature range for Bus1000). No clear

logarithmic temperature dependence can be seen for samples Bus6660 and Bus10000

(see Fig. 3.5 (b)). One possibilty is that the intergranular conductance g increases

with doping. Therefore, one reaches g ∼ g0, and these samples should be treated as a

homogeneously disordered system. The decrease in conductivity at low temperatures

can be explained by localization effects and electron-electron interactions typical for

disordered metals (see Ref. 50 and references therein), leading to

σT = σ0 + A× T 1/2 +B × T p/2 (3.5)

where p is an index depending on scattering mechanism [50], and σ0 the finite con-

ductivity extrapolated to zero temperature, in good agreement with the experimental

data. As will be seen in the next Chapter, very highly conductive nanocrystalline sam-

ples show similar superconducting properties as the single crystal diamond samples

studied before, whereas nanocrystalline diamond samples close to the metal-insulator
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transition exhibit a more rich behaviour. An increase in intergranular conductance g

with doping could indeed account for this resemblance as pointed out above.

The highly-doped metallic nanocrystalline diamond films undergo a superconduct-

ing transition at low temperatures, as was recently reported by another group [8, 20,

21, 22]. This group used as criterion for superconductivity the transition to zero re-

sistance alone which is not a sufficient, but a necessary condition. However, due to

the small volume specific heat measurements are not even imaginable, but until now

even the magnetic response has not been measured. Fig. 3.6 compares the tempera-

ture dependence of the normalized resistance ρ/ρ(300K) for the highly boron-doped

nanocrystalline sample Bus5000 with nB = 2.4 × 1021 cm−3 with the diamagnetic

response obtained from a.c. susceptibility measurements. The onest of diamagnetic

screening correspond to the transition to zero resistance, clearly indicating a response

of the bulk rather than a shortcircuiting due to a superconduting filamentary pathway.

3.3. Magnetoresistance and phase diagram of heavily

boron-doped nanocrystalline diamond thin films

As already mentioned, the physical quantities characterizing a granular material are

the intragranular conductance g0, the intergranular (tunneling) conductance g, the

charging energy Ec = e2/4πkBǫ0ǫ0rd (d is the grain size), and the mean level spacing

δ = (νV )−1 (ν is the density of states and V the volume of the grain) [42]. A ”granular

system” is obtained in the limit g ≪ g0 whereas the case g ∼ g0 can be viewed as a

homogeneously disordered system. Samples with g ≪ 1 are insulating while samples

with g ≫ 1 are metallic. If the constituent grains are made of a superconducting

material, the behaviour of such a system can be quantified by adding one more energy

parameter, the superconducting gap ∆ of the material of a single grain. The interplay

between Josephson coupling J and and grain charging Coulomb energy Ec determine

whether global macroscopic superconductivity is built up in the sample or not.

Fig. 3.7 (a) shows the magnetoresistance for sample Bus6660 at several constant

temperatures. With increasing magnetic field superconductivity is broken, the onset

is shifted to lower magnetic field values with increasing temperature. This behaviour

is quantitativly similar to results obtained on equivalent heavily boron-doped single

crystal diamond films. In the inset of Fig. 3.7 (b) the superconducting transition in

zero field is shown, from the phase diagram Hc2(T ) a critical magnetic field of about

2.5 T is estimated, similar to single crystal diamond in the same doping range.
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3. Heavily boron-doped nanocrystalline diamond thin films

The superconducting properties of a granular system are in many ways determined

by the properties of the granules of which is it formed. The superconducting gap ∆

exists in each grain and its value is close to the gap magnitude in the bulk, provided

∆ ≫ δ [42]. Anderson showed that the superconducting gap is suppressed or can

even be fully destroyed if the latter inequality is not satisfied [51, 52], which has

been confirmed experimentally [53, 54, 55]. In our case, δ = (νV )−1 ≈ 1mK and

∆ ≈ 300µV = 3.6 K [56] and, thus, these effects can be neglected. Sufficiently strong

coupled grains (g ≫ 1) can maintain (global) superconducting coherence because

the coupling reduces the phase fluctuations. Based on the ideas of Anderson, the

interplay between Josephson coupling J = πg∆/2 and Coulomb charging energy Ec

was suggested by Abeles [57] to identify whether superconductivity can exist in a

granular system, indicating a large interval of conductances Ec/∆ = gs ≪ g ≪ 1

where superconductivity should exist while the corresponding normal array represents

an insulating state. The Anderson-Abeles criterion was found to be in conflict with

many experiments [58, 59, 60, 61]. It was found that the superconductor-insulator

transition (in granular as well as homogeneously disordered films) is determined by

the normal-state resistance with a critical value R0 = h/(2e2)2 ≈ 6.4 kΩ rather than

the ratio of the Josephson and Coulomb energies [62, 63, 64]. From the theoretical

point of view this corresponds to a resistively shunted Josephson junction [65, 66, 67],

a phenomenological resistive term in the coupling was applied to granular systems

leading to the same result [68, 69, 70]. This dissipative coupling was identified with

direct electron tunneling processes between grains in addition to Josephson couplings

[71].

In the approach of Chakravarty et al. (see Ref. 71) the originally strong Coulomb

interaction is reduced by the electron tunneling to other grains. This renormalization

corresponds to the screening of the Coulomb interaction by free charges usually seen

in metals. In the case of strong coupling (g ≫ 1) and strong Coulomb interaction

(Ec ≫ ∆) the charging energy is renormalized to ≈ ∆/g. Therefore, for g ≫ 1 the

effective Coulomb energy is always smaller than the Josephson coupling J ≈ g∆, and

superconductivity occurs at sufficiently low temperatures [72, 73]. With Ec ≈ 20 K

this is the case of sample Bus6660, as can be seen in Fig. 3.7(a). Low temperature

transport measurements have shown that these samples are in the homogeneously

disordered limit g ≈ g0, and, thus, the BCS theory should be a good starting point

to describe the granular system, in good agreement with our experimental data, and

comparing equivalent nanocrystalline and single crystal diamond films.

Fig. 3.8 (a) shows the magnetoresistance of sample Bus4000 at several constant low
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Figure 3.7.: (a) Magnetoresistance for sample Bus6660 at several constant tempera-
tures, similar to results obtained on equivalent heavily boron-doped single crystal
diamond films. For sample Bus6660 g ≈ g0 ≫ 1 holds and the properties are
not very different from those of the bulk superconductor; (b) The inset shows the
temperature dependence of the resistivity in the vicinity of the superconducting
transition. The phase diagram obtained from temperature sweeps at constant mag-
netic field (RT (H)) and magnetic field sweeps at constant temperature (RH(T ))
indicate a critical magnetic field Hc2 of about 2.5 T comparable to values obtained
in single crystal material.
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Figure 3.8.: (a) Magnetoresistance of sample Bus4000 at several constant tempera-
tures, revealing regions with negative and positive magnetoresistance, respectively;
(b) Zoom in of the graph show in (a).
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temperatures in the range from 100 up to 500 mK and with perpendicular fields up to

14 T. Bulk superconductivity (superconducting grains) is destroyed by application of

extremely strong fields, the positive magnetoresistance in the high-field limit resembles

the behaviour seen in metallic single crystal and nanocrystalline diamond films [4, 8].

By decreasing the magnetic field, a region with negative magnetoresistance is found.

Only at sufficiently weak magnetic fields the resistivity starts to decrease and the

sample displayed superconducting behaviour. Similar behaviours have been reported

in other granular systems [38, 74, 75]. In Fig. 3.8 (b) a zoom into the region of the

negative magnetoresistance is shown, also showing the crossing point.

Negative magnetoresistance due to weak localization can play a role in disordered

metals [50, 76], but the characteristic magnetic fields are several Tesla, such that all

weak-localization effects are strongly suppressed. Beloborodov et al. explained the

negative magnetoresistance of a granular metal by the suppression of the density of

states (DOS) due to superconducting fluctuations [77].

The theory of superconducting fluctuations near the transition into the supercondut-

ing state was developed long ago (see Ref. 78 and references therein). One fluctuation

contribution comes from nonequilibrium Cooper pairs forming a new transport channel

(δσAL) [79], and another comes from coherent scattering of electrons forming a Cooper

pair on impurities (δσMT )[80, 81, 82]. Both corrections enhance the conductivity and

lead to a positive magnetoresistance. The formation of nonequilibrium Cooper pairs

results in a fluctuational gap in the one-electron spectrum [83]. This suppression of

the density of states has been shown to lead to a correction of the conductivity δσDOS

[77]. While in conventional superconductors δσAsl and δσMT are more important than

δσDOS, in granular systems the DOS correction plays a very important role [77, 84].

The conductivity δσDOS is negative and its absolute value decreases with increasing

magnetic field, thus leading to the negative magnetoresistance. This is what is seen

for sample Bus4000 in Fig. 3.8. One should keep in mind that for sample Bus4000 g

is close to one, approaching the quantum resistance R0 = ~/(2e)2 ≈ 6.4 kΩ for which

a superconductor-insulator transition is expected. In the case of a superconductor-

insulator transition, similar behaviours of the magnetoresistance have been reported

[85, 86, 87]. The origin of such a transition is still under debate. Some theories claim

that it may be understood in terms of Cooper-pair scattering out of the superconduct-

ing condensate into a Bose-glass [88, 89], others claim that a percolation description

of the superconductor-insulator transition is more adequate [90].
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4. Superconductivity in heavily

boron-doped cubic silicon

As already mentioned, superconductivity has been found very early in several doped

semiconductors such as GeTe, PbTe, and SrTiO3 and with characteristics that con-

firmed the idea of an (phonon-mediated) attractive interaction between electrons

pointed out in the BCS theory [1, 2, 3]. Theoretical calculations have predicted that

germanium [4] as well as silicon [5, 6] should become superconducting upon doping

in their face-centered cubic (diamond) structure. However, at the beginning of this

thesis superconductivity had only been found in silicon in its β − Sn and hexagonal

metallic phases obtained under extreme pressures of the order of 10 GPa [7, 8, 9].

With the discovery of superconductivity in highly boron-doped diamond [10] as well

as in silicon clathrates [5, 11, 12], renewed interest came up for group IV elements. For

sufficiently high boron doping, silicon becomes metallic, but the calculations showed

that it was necessary to incorporate boron well above its thermodynamical solubility

(via out of equilibrium processes [13]) in order to reach superconducting properties at

a well observable scale [14].

4.1. Sample preparation and structural properties of

heavily boron-doped cubic silicon

The ongoing miniaturization in CMOS technologies reaching the sub 0.1 µm regime

requires the realization of box-like ultra-shallow highly-doped junctions [15]. In this

context, the International Technology Roadmap for Semiconductors (ITRS) suggested

laser processing techniques as potential candidates [16, 17, 18], in contrast to the ex-

isting technologies such as rapid thermal annealing or spike annealing (posterior to an

ion implantation step) [19]. The laser doping technique can be classified into two main

categories: laser thermal processing (LTP) and gas immersion laser doping (GILD).

Common to both techniques, a pulsed laser beam induces a melting/solidification cy-
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4. Superconductivity in heavily boron-doped cubic silicon

Figure 4.1.: Diagrams of the three initial steps of gas immersion laser doping: (a)
adsorption of BCl3 on the silicon wafer surface, (b) local surface melting of silicon
induced by a laser shot, and (c) formation of the Si:B layer upon cooling.

cle over a depth which is mainly controlled by the laser energy density (see Fig. 4.1).

In the LTP case, dopants are ion implanted before the laser processing, whereas in the

GILD case, the dopants are chemisorbed on the silicon substrate surface prior to the

laser shot (see Fig. 4.1 (b)). As shown in Fig. 4.1 (c), during the solidification period,

the molten silicon grows epitaxially from the underlying crystalline silicon. The diffu-

sion coefficient of dopant atoms in liquid silicon is several orders of magnitude larger

than in solid silicon, and dopants may diffuse over the whole melted depth. The solid-

ification has to be too fast for boron atoms to pair up (or cluster) near the interface,

but has also to be slow enough so that the liquid phase epitaxy at the interface is

perfect. The dopants are set in substitutional sites at concentrations well above their

solubility limit (in silicon about 6× 1020 cm−3 [20, 21, 22]) due to the high velocity of

the solidification process. The laser-doped layer is limited to the melted region and,

thus, highly-doped box-like structures are possible to be realized.

Gas immersion laser doped silicon samples have been prepared by D. Débarre and

J. Boulmer of the Institut d’Electronique Fondamentale (Université Paris Sud and

CNRS) in Paris, France [13, 23, 24]. Laser processing takes place in a high vacuum

chamber with a 10−7 mbar base pressure. After cleaning and removing the native

oxide, the {100}-oriented silicon substrate is introduced in the chamber. In a spe-

cial GILD configuration, ten separate 2 × 3 mm2 areas of the same wafer have been

processed. A homogenized XeCl excimer laser with a wavelength λ = 308 nm was

used, the melting/solidification cycle was repeated 200 times with a duration of 25 ns

of each laser pulse. As dopant precursor gas BCl3 was injected and chemisorbed on

the substrate surface prior to each laser shot. The laser is thereby triggered after each
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Figure 4.2.: (a) High resolution X-ray diffraction measurements of three Si:B su-
perconducting samples along the Bragg reflection (004); (b) Secondary ion mass
spectroscopy depth profile of samples 1 and 3, with boron concentrations of about
nB = 4.7 and 1.9 × 1021 cm−3, respectively.

gas injection pulse with a time delay of the order of 10 ms. The power and duration of

the pulses were adjusted in order to ensure maximum doping over the whole thickness

of the melt, based on the in situ monitoring of the transient reflectivity at 675 nm

together with a previous calibration by secondary ion mass spectroscopy [24]. In the

following we will focus on three of the samples without loss of generality.

The incorporation of boron in silicon leads as in the case of diamond to the formation

of biaxially strained layers due to in-plane lattice matching [23, 24]. In contrast to

boron-doped diamond, the lower covalent radius of boron with respect to that of

silicon [25] results in a lattice contraction in the growth direction. In Fig. 4.2(a), the

high resolution X-ray diffraction analysis along the (004) Bragg reflection of the three

samples is shown. Beside the narrow line arising from the substrate, one or two broad

diffraction peaks can be observed at higher diffraction angles corresponding to a lattice

contraction in the growth direction. This indicates a non-uniform distribution of the

strain perpendicular to the surface and, thus, of the boron content, but confirms the

epitaxial single crystal character of the films. For instance, the two broad maxima

of sample 1 situated at 35.56◦ and 36.02◦ correspond to a contraction of the lattice

parameter a along the {001}-direction of ∆a/a = −2.5 % and −3.7 %, respectively,

and correspond to an isotropic lattice parameter variation of −1.4 % and −2.1 %.

Application of Vegard’s law as in the case of boron-doped diamond and previous
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Figure 4.3.: UV-Raman spectra (325 nm) of the three Si:B samples in the 350 −
650 cm−1 range. Note that no signal from the silicon substrate could be detected
due to the very small absorption length. Also shown are the Phonon density of
states as well as the Eliashberg funtion as obtained from ab initio calculations in a
supercell approximation [14].

calibrations, this corresponds to substitutional boron concentrations of 5.7 at. % (2.8×
1021 cm−3) and 8.4 at. % (4.2 × 1021 cm−3), respectively [23, 24]. The XRD analysis

shown in Fig. 2.11 indicates that sample 2 has a slightly lower boron concentration,

whereas sample 3 has a much lower boron concentration than sample 1. This is

in good agreement with secondary ion mass spectroscopy measurements presented in

Fig. 4.2(b). The depth profile of samples 1 and 3 are shown, with boron concentrations

of about nB = 4.7 and 1.9 × 1021 cm−3, respectively, corresponding to 9.3 at. % and

4.0 at. %. The thickness of both samples are approximately 35 nm for sample 1 and

170 nm for sample 3. Hall effect measurements performed at room temperature on

sample 1 give a free hole density of the order of (5±2)×1021 cm−3, which is comparable

to the higher boron concentration deduced above.

The Raman spectra of the three samples are shown in Fig. 4.3, clearly showing two

features around 480 cm−1 and 600 cm−1, respectively. The former corresponds to the

zone-center optical mode of silicon and is shifted by about 40 cm−1 with respect to the

peak position of 520 cm−1 found in pure silicon. The broadened Raman peaks agree

well with the phonon density of states obtained from ab initio calculations [14]. This

softening is caused by the large amount of free carriers, which more than compensates
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Figure 4.4.: Temperature dependence of the resistivity for the three Si:B samples,
typical for a disordered metal. The inset shows the respective superconducting
transition seen at low temperatures.

the effect of lattice contraction. Experimentally, the shift to lower frequency and

the broadening are more pronounced for sample 1, which has the highest critical

temperature Tc as will be shown later. The Raman active mode around 590−600 cm−1

seen experimentally has been already reported in non-superconducting films [26, 27].

Ab initio calculations identify it with a Si-B stretching mode [14, 28]. This good

match between theory and experiment further confirms the incorporation of boron on

substitutional sites.

4.2. Superconductivity of heavily boron-doped cubic

silicon at low temperatures

Fig. 4.4 shows the temperature dependence of the resistivity ρ of sample 1 from room

temperature down to 350 mK, clearly showing metallic behaviour dρ/dT < 0. The

increase in resistance at low temperatures can be explained by localization effects and

electron-electron interactions typical for disordered metals (see Ref. 29 and references

therein), leading to
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Figure 4.5.: Temperature dependence of the d.c. electrical resistivity (normalized to
its normal state value) and of the real part of the a.c. susceptibility. The onset of
diamagnetism at 0.34 K occurs at a value of 10 % of the normal state resistance,
whereas full diamagnetic screening is not achieved until 150 mK.

σT = σ0 + A× T 1/2 +B × T p/2 (4.1)

as was already pointed out for the case of highly boron-doped single crystal diamond

samples [30]. The room-temperature sheet resistance of the three samples 1, 2, and 3

are 35, 17, and 8 Ω, respectively, while their resistivities are of the order of 0.1 mΩcm.

As shown in the inset of Fig. 4.4, the temperature dependence of the normalized

resistivity was measured for the three samples down to 30 mK in a dilution refrigerator.

Samples 1 and 2 undergo superconducting transitions to zero resistance at 150 mK and

45 mK, respectively, whereas sample 3 only shows a partial transition. Hereby it should

be noted that elemental boron cannot account for this superconducting transition as

it only becomes superconducting under very high pressures of the order of 160 GPa

[31].

The temperature dependence below 0.5 K of the electrical resistance R (d.c.) and

of the real part of the a.c. magnetic susceptibility χ′ is plotted in Fig. 4.5. A sharp

drop of the resistance is observed with an onset around 0.4 K and an immeasurably

small R value is observed below 150 mK as already mentioned above. Similarly, as the
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4.2. Superconductivity of heavily boron-doped cubic silicon at low temperatures

(a) (b)

Figure 4.6.: (a) (1) Hc2 measured by magnetic field sweeps RT (H) at 50, 150, 200,
250, 300, and 350 mK; (2) Tc2 measured by temperature sweeps RH(T ) at magnetic
fields of 0.1, 0.2, 0.3, 0.4, and 0.5 T; (b) Temperature dependence of the upper
critical field Hc2, as obtained from the 10 % criterion. Open symbols represent the
maxima of dR/dT and dR/dH. The solid line corresponds to classical theory.

temperature decreases there is an onset of diamagnetism below 0.34 K (corresponding

to 10 % of the normal state resistance), but full magnetic screening is not achieved

until 150 mK. These measurements unambiguosly demonstrate the occurence of super-

conductivity in sample 1. The foot of the resistive and diamagnetic transitions, as well

as the width of the magnetic response, are typical of an inhomogeneous superconduc-

tor [32]. This inhomogeneity is expected, as already pointed out by the non-uniform

boron distribution detected by XRD.

In order to define the phase diagram, electrical measurements have been performed.

Fig. 4.6(a) (1) and Fig. 4.6(a) (2) show the temperature dependence of the resistance

for various constant magnetic field values (RH(T ), T-sweeps) or the magnetic field

dependence of the resistance for various constant temperature values (RT (H), H-

sweeps). The magnetic field is hereby applied perpendicular to the plane of the sample.

The transitions remain sharp and no hysteresis or supercooling was seen. The relatively

high value of the critical field Hc2(T = 0K) ≈ 0.4 T, which exceeds that of lead

(8 × 10−2 T), the strongest known type I superconductor, suggests that boron-doped

silicon is a type II superconductor. The critical temperature Tc2 and the critical
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Figure 4.7.: Temperature dependence of the d.c. electrical resistivity (normalized
to its normal state value) and of the real part of the a.c. susceptibility for a Si:B
sample of the new series. The onset of diamagnetism occurs at 0.6 K, together with
the transition to zero resistance.

magnetic field Hc2 (taken at 10 % of the normal state value of the resistance which

corresponds to the onset of diamagnetism in zero field) are plotted in Fig. 4.6(b). In

order to get an idea of the width of the transition, the positions of maxima of the slope

of the resistance versus temperature (dR/dT) in the T-sweeps as well as of maxima

of dR/dH in the H-sweeps are also shown in Fig. 4.6(b). Compared to the standard

BCS dependence, the critical field versus temperature curve has a marked curvature

[33]. On the one hand, this observation could be due to the films inhomogeneity if, for

instance, the dimensions of the superconducting regions are restricted parallel to the

film surface or due to percolation or localization phenomena [34, 35]. On the other

hand, the observed dependence could be explained by paramagnetic limitations if the

carriers are assigned a gyromagnetic factor g 40 % larger than the standard value 2

[36]. One can use the phase diagram to estimate the coherence length ξ. Using the

experimentally obtained slope of Hc2 against temperature at Tc, an estimate in the

so-called orbital limit yields ξ = 13 nm, whereas a larger estimate of approximately

20 nm is found based on the values Tc and Hc2(0) (at zero temperature) within the

standard BCS theory. Both values are not much smaller than the estimated thickness

((35 ± 5) nm) of the sample, which can also act to limit the extent of the coherence

length [37].
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4.2. Superconductivity of heavily boron-doped cubic silicon at low temperatures

Furthermore, ab initio supercell calculations have been performed in order to study

the electronic, vibrational, and electron-phonon coupling properties of boron-doped

silicon [14]. The calculated band structure resembles that of undoped silicon, the

Fermi level is located approximately 0.5 eV below the top of the valence band (for

a 6.25 % doping level). This confirms the degenerate nature of boron-doped silicon

at such high dopant concentrations, as already seen for highly boron-doped single

crystal diamond. Compared to diamond, most of the coupling originates from the

optical modes [6, 38, 39]. By using the Eliashberg function (also shown in Fig. 4.3),

an average over the Brillouin zone and phonon bands yields a coupling constant λ

of about 0.28, which is in good agreement with results obtained within the virtual

crystal approximation (λ = 0.3 for 5 % doped Si) [6]. For commonly used values

of the screened Coulomb repulsion µ∗ in the range 0.08 to 0.12, one obtains critical

temperatures Tc in the range 0.5 to 0.03 K from the already mentioned McMillan

formula [40]. This suggests that a standard BCS mechanism can account for the

observed superconducting transition. Theory as well as experimental results lead us

to expect that a higher superconducting transition temperature might be achieved if

more boron could be incorporated into the silicon [6, 41], opening up new ways to

exploit superconductivity in nanostructured, mesoscopic devices. More recently, our

results have been confirmed on a new set of approximately 20 samples grown under

improved conditions. The superconductivity has been shown to occur at temperatures

up to 0.6 K (see Fig. 4.7), a range of temperature easily accessible to 3He pumped

cryostats, instead of the more complicated dilution refrigerator.

It has been shown that highly boron-doped silicon exhibits superconducting prop-

erties, which is a very promising result for future fundamental research on the one

hand and which concludes a standing quest of such a transition in silicon-based sys-

tems on the other hand. In the future, gas immersion laser doping and laser thermal

processing of implanted silicon could yield silicon samples highly doped with other

dopants as for instance aluminum (p-type) or phosphorous (n-type). Theoretical cal-

culations have been performed recently and show that the critical temperature Tc

could be higher than in boron-doped silicon by one order of magnitude in the case of

aluminum-doped silicon [28]. Furthermore, this special type of laser processing tech-

nique could be adapted to germanium as substrate material, the group IV element for

which a superconducting transition has not yet been found.
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5. Metal-insulator transition in

heavily aluminum-doped 4H:SiC

SiC is a promising semiconducting material for manufacturing high-power, high-temperature,

and high-speed electronic devices, in particular the 4H polytype. In order to minimize

on-state losses in SiC devices, highly-doped p-type layers are necessary to reduce the

ohmic contact resistance of devices below 1×10−5 Ω cm2. Aluminum is the usual shal-

low acceptor dopant in SiC crystals and epilayers with an activation energy of about

191 meV (from photoluminescence studies [1]) or around 205 meV (from electronic

transport studies [2]). Very high doping concentrations are needed in order to obtain

low resistivity material. Aluminum implantation is commonly used to prepare highly

doped samples, but problems related to the annealing of the crystal damage and the

electrical activation of acceptor atoms in SiC still remain [3, 4]. As an alternative,

Vapour-Liquid-Solid (VLS) mechanism in Al-Si melt has been shown to be an appro-

priate method for growing high quality epitaxial 4H-SiC layers with a high amount of

aluminum [5].

5.1. Sample preparation and structural properties

The Al-doped epitaxial 4H-SiC layers were grown by a VLS mechanism in an Al-Si

melt at low temperatures (1100 C) on n+ doped Si face 4H-SiC (0001) substrate, 8◦

off oriented toward [112̄0]. The growth conditions have been described elsewhere in

detail [6]. In the following, VLS93 and VLS98 are the names of the insulating and the

metallic layers, respectively.

In Fig. 5.1 one can see the SIMS profile of two samples grown by the VLS mechanism

with aluminum concentrations of about 3.4 to 6.4 ×1020 cm−3 for sample VLS93 and of

about 8.7 ×1020 cm−3 for sample VLS98. The uniformity of doping is an indication of

the high quality of the epilayers grown by the VLS mechanism, as previously reported

using Raman spectroscopy and Transmission electron microscopy [5]. One should
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Figure 5.1.: SIMS profiles for highly aluminum-doped 4H-SiC samples VLS93 and
VLS98, with aluminum concentrations of about 3.4 to 6.4 ×1020 cm−3 for sample
VLS93 and of about 8.7 ×1020 cm−3 for sample VLS98.

note that such a high doping level is difficult to achieve by standard CVD or by ion

implantation without any degradation of the layer quality. The onset of the SIMS

profile of sample VLS93 seen in Fig. 5.1 is only an artefact of the measurement. Due

to the non-uniformity of the SIMS profile of sample VLS93, the uncertainty on the

resulting thickness value led us to refer to sheet resistance values in the following.

5.2. Metal-insulator transition in heavily

aluminum-doped 4H:SiC

Beside the technological relevance of heavily doped SiC, the study of doping-induced

insulator to metal transitions in wide band gap semiconductors is interesting in its

own right. Persson et al. have studied theoretically the metal-insulator transition in

p-type SiC polytypes [7]. Hereby, Mott’s original model, an extended Mott-Hubbard

model, and a model based on the total energy of the metallic and non-metallic phases

have been used and led to values of the critical aluminum concentration in the same

range, with an upper limit of 2.7×1020 cm−3 [7]. The electrical transport properties of

highly doped 4H-SiC samples prepared by aluminum implantation have been reported
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Figure 5.2.: (a) (1) Temperature dependence of the sheet resistance (log. scale) for
VLS93, showing a clear insulating behaviour; (2) Temperature dependence of the
sheet resistance (lin. scale) of sample VLS98. A metallic behaviour dρ/dT < 0
is clearly seen. The appearance of a drop in resistance at very low temperatures
probably indicates the onset of a superconducting transition. Attention should
be payed to the different scales of the resistance; (b) Doping dependence of the
activation energy EAct on the aluminum level in 4H-SiC. Experimental values of
Ivanov et al. [12], Matsuura et al. [13], and Pernot et al. [2] are included. The
dashed line represents the theoretical concentration dependence following EAct =
E0 − α× n

1/3
Al with E0 = 220 meV and α = 2.32 × 10−5 meV cm.

for samples with nAl up to 2 × 1021 cm−3 (note that this concentration refers to

the total implanted aluminum concentration, not only the activated one), but no

metallic behaviour could be found (finite activation energy of the conductivity at

low temperatures) [2, 8, 9, 10]. Recently, renewed interest came up for the metal-

insulator transition in n-type SiC polytypes [11]. In this PhD project, we present the

experimental observation of the metal-insulator transition in highly aluminum-doped

4H-SiC polytype.

The temperature dependence of the sheet resistance down to 360 mK for the two

different aluminum-doped 4H-SiC samples is shown in Fig. 5.2 (a,1) and (a,2), respec-

tively. One clearly sees that sample VLS93 is following an insulating behaviour while

sample VLS98 follows a metallic behaviour dρ/dT < 0. Assuming a doping efficiency of

100 %, the critical concentration of aluminum for the doping-induced metal-insulator

transition lies in the range between 3.4 to 8.7 ×1020 cm−3 as determined from SIMS.

In Fig. 5.2 (b) the doping dependence of the activation energy EAct of the aluminum
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Figure 5.3.: Comparison of Raman spectra (632 nm) taken at room temperature
and 4 K for two aluminum-doped samples VLS93 and VLS98. All samples show
a clear Fano resonance at room temperature. Only for sample VLS98 does the
Fano resonance persist down to 5 K, indicating no significant change in the carrier
concentration and, therefore, suggesting metallic behaviour.

level in 4H-SiC is shown. Experimental values of Ivanov et al. [12], Matsuura et al.

[13], and Pernot et al. [2] are included. The theoretical concentration dependence

following EAct = E0 − α × n
1/3
Al with E0 = 220 meV and α = 2.32 × 10−5 meV

cm is indicated. As mentioned, Persson et al. predicted a critical value of aluminum

concentration of 2.7 × 1020 cm−3 [7], already questioned by the experimental findings

of several groups [2, 8, 9, 10]. Matsuura et al. [13] and Pernot et al. [2] calculated

values for α of about 1.9× 10−5 meV cm and 1.7× 10−5 meV cm, respectively. The

upper limit of 8.7 ×1020 cm−3 for the aluminum concentration determined in this work

can be used to calculate a lower limit of α = 2.32 × 10−5 meV cm.

As shown in Fig. 5.2 (a,1), the sample VLS93 follows an insulating behaviour. At-

tention should be payed to the logarithmic scale for the sheet resistance, indicating an

increase of about three orders of magnitude down to low temperatures. No general fit-

ting in terms of hopping conduction or temperature activated behaviour was possible,

the conductance of sample VLS93 showing a remarkable linear temperature depen-

dence over the whole temperature range, probably as a result of the non-uniformity

of the carrier concentration as indicated by the SIMS profile in Fig. 5.1.

128



5.3. LO-phonon-plasmon-coupled mode in 4H-SiC:Al

Fig. 5.2 (a,2) shows the temperature dependence of the sheet resistance for the

aluminum-doped 4H-SiC samples VLS98, showing clear metallic behaviour dρ/dT <

0. The increase in resistance at low temperatures can be explained by localization

effects and electron-electron interactions typical for disordered metals (see Ref. 14

and references herein), leading to

σT = σ0 + A× T 1/2 +B × T p/2 (5.1)

where p is an index depending on scattering mechanism and σ0 the finite conductivity

extrapolated to zero temperature, as was already pointed out for the case of highly

boron-doped single crystal diamond samples (see Chap. 2.3, Eq. 2.29).

The appearance of a drop in resistance shown in Fig. 5.2 (a,2) at very low temper-

atures up to about 7 K was verified several times and may indicate the onset of a

superconducting transition, probably masked by the high disorder and inhomogeneity

of the sample. Indeed, superconductivity was found recently in boron-doped SiC with

a critical temperature of Tc ≈ 1.4 K [15]. A similar behaviour of the temperature

dependence of the resistivity was seen in heavily boron-doped silicon [16], as well as

heavily boron-doped diamond [17].

Raman spectroscopy clearly identifies the SiC polytype to be 4H-SiC [18]. Distortion

and asymmetry of Raman bands occur when scattering by a discrete phonon state

interferes with a broad continuum of electronic states [19]. This effect, called Fano

interference or resonance, was first observed in SiC by Colwell and Klein [20]. The Fano

resonance seen around the central TO phonon line at 776 cm−1 is a clear indication

of a high free carrier concentration [18]. Fig. 5.3 shows the Raman spectra (633

nm) of the two aluminum-doped 4H-SiC samples VLS93 and VLS98 taken at room

temperature and at around 5 K, respectively. One clearly sees that the Fano resonance

persists in the case of the sample VLS98 down to 5 K, therefore following a clear

metallic behaviour. In contrast to this, the Fano resonance seen in sample VLS93 had

completely disappeared at around 5 K. This indicates a strong decrease in the number

of free carriers with decreasing temperature as expected for an insulating sample.

5.3. LO-phonon-plasmon-coupled mode in 4H-SiC:Al

As already indicated, Raman spectroscopy is a powerful tool to characterize silicon

carbide crystals non-destructively. It can not only be used to identify the polytype

of the SiC crystal, but also to study the structural properties including e.g. stacking
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Figure 5.4.: Room temperature Raman spectra of the two aluminum-doped 4H-SiC
samples VLS93 and VLS98 together with a nominally undoped 4H-SiC reference,
focussing on the (a) transversal optical and (b) longitudinal optical phonon modes,
respectively.

disorder and stress evaluation, as well as the electronic properties giving thus infor-

mation about e.g. the carrier concentration. For the latter purpose, Raman scattering

from the LO-phonon-plasmon-coupled modes has been studied. This method has been

applied in many III-IV semiconductors [21] as for instance GaP [22] and InP [23], as

well as in ZnO [24] and ZnSe [25]. The rapid progress in growth of SiC single crystals

has motivated the same study in n-type 3C-SiC [26], n-type 4H-SiC [18, 27, 28] and n-

type 6H-SiC [18, 27, 28]. To our knowledge, no such study for p-type SiC polytype has

shown a shift of the respective phonon mode due to the LO-phonon-plasmon-coupling

[29, 30]. In our case, (temperature dependent) Raman spectroscopy has been used and

reveal a clear shift of the LO phonon mode with increasing hole carrier concentration

(the LO-phonon-plasmon-coupled mode).

Fig. 5.4 shows the Raman spectra (633 nm) taken at room temperature of the two

aluminum-doped 4H-SiC samples VLS93 and VLS98 together with a nominally un-

doped 4H-SiC reference. Fig. 5.4(a) focusses on the region around the transversal

optical (TO) phonon modes centered at 776 cm−1 (E2T ) and 796 cm−1 (E1T ), whereas

Fig. 5.4(b) is centered around the longitudinal optical (LO) mode around 964 cm−1

(A1LO) [31, 32, 33]. In Fig. 5.4(a), the well-observed Fano resonance is more pro-

nounced in sample VLS98, in agreement with the much higher carrier concentration

in this metallic sample. Furthermore, no discernible change in the peak intensity and

position as well as the FWHM for the TO mode at 776 cm−1 can be seen, clearly
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Figure 5.5.: Temperature dependence of the LO-phonon-plasmon-coupled mode for
sample (a) VLS93 and (b) VLS98, respectively, compared to the spectra taken for
a typical substrate used for the growth of both samples.

indicating the stress-free nature of the samples [34]. In Fig. 5.4(b), the A1LO mode

located at 964 cm−1 in the undoped 4H-SiC reference sample is broadened and shifted

to higher frequencies in the two highly-doped samples VLS93 and VLS98 with alu-

minum concentrations of 3.4 to 6.4 ×1020 cm−3 and 8.7 ×1020 cm−3, respectively. A

very strong shift of about 24 cm−1 in sample VLS98 and of about 19 cm−1 in sample

VLS93 is seen. The broadening and shift of these peak profiles are typical features of

LO-phonon-plasmon coupling.

As already mentioned, similar results on the LO-phonon-plasmon-coupled modes

have been observed for the n-type 4H-SiC polytype [18, 27, 28]. This group studied

the dependence of the peak position for carrier concentrations up to 5×1018 cm−3, with

shifts up to 16 cm−1. The n-type substrates used for the growth of the aluminum-doped

4H-SiC layers VLS93 and VLS98 have carrier concentrations of about 5 × 1018 cm−3

and, thus, care has to be taken in the analysis of the peak position of the LO-phonon-

plasmon-coupled modes.

Fig. 5.5(a) and Fig. 5.5(b) show the temperature dependence of the LO-phonon-

plasmon-coupled mode for sample VLS93 and VLS98, respectively, compared to the

spectra taken for a typical substrate used for the growth of both samples. At high

temperature, a clear difference between the contribution from the substrate and from

the sample is seen for both samples VLS93 and VLS98. This difference is maintained

in sample VLS98 even at low temperatures, whereas it is difficult to differentiate

between the contribution from the substrate and the layer for sample VLS93 at low
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temperatures. This can be clearly seen in Fig. 5.6(a), showing the peak position of

the LO-phonon-plasmon-coupled mode for sample VLS93 and VLS98 as well as the

substrate reference sample. A more detailed lineshape analysis of the Raman spectra

is necessary taking into account the two-layer structure of our samples, in order to

obtain quantitative information about the real peak position.

The dielectric function ǫ(ω) is considered to be given by the contributions from the

phonons and plasmons, and can be written as

ǫ(ω) = ǫ∞

{

1 +
ω2

LO − ω2
TO

ω2
TO − ω2 − iωΓ

−
ω2

p

ω (ω + iγ)

}

(5.2)

where ωLO, ωTO are the frequencies of the A1LO and A1TO modes, respectively, Γ the

phonon damping constant and γ the plasma damping constant. The plasma frequency

ωp is given by

ω2
p =

4πne2

ǫ∞m∗
(5.3)

with n the carrier concentration and m∗ the effective mass. Note that from the Raman

spectra (due to the backscattering geometry) of the axial mode A1LO we could only

obtain information about the longitudinal effective mass along the same c-axis (or

ML in the Brillouin zone). Neglecting both damping terms in Eq. 5.2, the (two) LPP

(LO-phonon-plasmon) frequencies are roots of the equation ǫ(ω) = 0, following

ω2
LPP, ± =

1

2

{

ω2
LO + ω2

TO ±
[

(

ω2
LO + ω2

TO

)2 − 4ω2
pω

2
T

]1/2
}

(5.4)

This gives the usual non-linear behaviour displayed schematically in Fig. 5.6(b). It

is important to note that this picture is only valid taking the phonon and plasmon

damping constant (Γ and γ, respectively) negligible small, corresponding to a perfect

crystal with infinite lifetime for carriers and phonons. Moreover, the plasmon damping

constant is inversely proportional to the carrier mobility. Therefore, a good agreement

of experimental data with this simplified model was found in the case of highly conduc-

tive GaN bulk crystals [35]. Perlin et. al have been able to identify the two branches

LPP+ and LPP− for samples with very high carrier concentrations and mobilities

[35]. The same approach can not be made for the n- and p-type 4H-SiC samples. The

crossing point of the plasmon frequency and the LO-phonon frequency would yield

much too high carrier concentration using Eq. 5.3 (only unrealistic values of the ef-

fective mass m∗ ≈ 15m0 would correspond to the experimental situation). Therefore,

a slight plasmon overdamping had to be introduced in order to fit the data correctly
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Figure 5.6.: (a) Peak position of the LO-phonon-plasmon-coupled mode for sample
VLS93 and VLS98 as well as the substrate reference sample; (b) Roots of Eq. 5.4
for ǫ(ω) = 0, in the case of negligible phonon and plasmon damping.

in the case of n-type 4H-SiC samples with carrier concentrations in the range 1016 to

1018 cm−3 [18, 27, 28]. As already mentioned, in p-type 4H-SiC a similar fitting of the

LO-phonon-plasmon-coupled modes as a function of the carrier concentration has not

yet been performed. Previous studies on samples with carrier concentrations up to

1 × 1020 cm−3 showed no shift of the LO-phonon mode, thus suggesting a very weak

phonon-plasmon coupling [29, 30]. However, our experimental data show a clear shift

in frequency which is attributed to the LO-phonon-plasmon-coupled mode LPP+.

The corresponding lower branch LPP− (shown schematically in Fig. 5.6(b)) would

appear at wavenumbers too close to the Rayleigh scattered light in our experiments

and, thus, could not be observed simultaneously. As already mentioned, in the case

of n-type 4H-SiC a lineshape analysis introducing the plasmon frequency ωp and the

phonon and plasmon damping constants Γ and γ, respectively, as adjustable parame-

ters, reproduced very well the experimental data [18, 27, 28].

Fig. 5.7(a) and Fig. 5.7(b) show schematically the influence of both the plasmon

and phonon damping constant γ and Γ, respectively, on the lineshape of the LO-

phonon-plasmon-coupled mode following the usual fitting procedure [18, 26, 27, 28].

As seen in Fig. 5.7(a), a small plasmon damping constant γ = 0.5 × ωp (with re-

spect to the plasmon frequency ωp) yields a symmetric lineshape centered close to the

plasmon frequency ωp as it was depicted in Fig. 5.6(b) valid for negligible damping.

Overdamping (as for n-type 4H-SiC [28]) results in a strong shift to lower frequencies
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Figure 5.7.: Influence of both the plasmon and phonon damping constant (a) γ and (b)
Γ, respectively, on the lineshape of the LO-phonon-plasmon-coupled mode following
the usual fitting procedure [18, 26, 27, 28].

and to a more asymmetric lineshape, similar to the lineshapes obtained at low tem-

peratures for the 4H-SiC substrate (n-type) and the aluminum-doped sample VLS93

shown in Fig. 5.5(a). Keeping the plasmon damping parameter constant, an increase

in the phonon damping constant shown in Fig. 5.7(b) does not shift significantly the

center frequency, but results in a more symmetric lineshape, as was observed for both

aluminum-doped samples VLS93 and VLS98 (see Fig. 5.5). However, a detailed analy-

sis of the lineshape is necessary taking into account the layered structure in order to

seperate the contribution to the signal from the n-type 4H-SiC substrate and the highly

aluminum-doped layer, respectively. Unfortunately we were not able to perform Hall

effect measurements on both layers, probably due to the layered structure. Müller et

al. [30] were not able to detect a discernible shift in the LO-phonon frequency due to

the coupling to the plasmon, but correlated the Hall carrier concentration pHall to the

linewidth FWHMLPP+ of the LO-phonon-plasmon-coupled mode for carrier concen-

trations in the lower-doped range 3 × 1016 to 2 × 1019 cm−3, following an analytical

expression pHall = 2.63×1014× (FWHMLPP+)4.03. Neglecting the contribution of the

substrate (valid at higher temperatures), the linewidth FWHMLPP+ for both sam-

ples VLS93 and VLS98 estimated at room temperature, are approximately 25 cm−1

and 40 cm−1, respectively. This would correspond to carrier concentrations of about

1.1 × 1020 cm−3 and 7.5 × 1020 cm−3 for samples VLS93 and VLS98, respectively,

in good agreement with the aluminum concentration determined from secondary ion
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mass spectroscopy (3.4 to 6.4 × 1020 cm−3 and 8.7 × 1020 cm−3). The underestimate

is probably due to the underestimate of the linewidth resulting from neglecting the

contribution from the substrate and/or due to the partial ionisation of acceptors for

sample VLS93.

The doping-induced metal-insulator transition has been observed in highly aluminum-

doped 4H-SiC via electronic transport measurements and temperature dependent Ra-

man spectroscopy. The possible onset of a superconducting transition at low tempera-

ture for the metallic sample motivates a more detailed study of such highly aluminum-

doped samples. Furthermore, we presented the first experimental evidence of a shift

of the LO-phonon-plasmon-coupled mode LPP+ in p-type 4H-SiC with respect to

the LO-phonon frequency of the undoped material. In various other materials, this

shift has been studied extensively in order to obtain information on the electronic

properties, for instance effective mass, carrier concentration, and mobility. A similar

approach motivates new measurements of the Hall effect in our double layer system

in order to extract more information from the temperature dependent Raman spec-

troscopy measurements. A complementary study of the far infrared absorption could

give information on the free carrier concentration via the plasma edge.
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6. Outlook

The first part of this PhD project reports on the metal-insulator transition and its

impact on the superconductivity in highly boron-doped single crystal diamond. The

main idea behind the isotopic substitution for this material was the examination of

the isotope effect which turned out to be a difficult task, hopefully made easier by

our results. However, the identification of the low wavenumber phonon mode with the

vibrational mode related to boron dimers was proposed on the basis of this substi-

tution. The effect of the (high) boron incorporation on the structural properties has

been studied. The electronic band structure of diamond has been discussed and the

relevance of strain for electronic properties has been pointed out.

In addition, work done during this PhD project contributed to several other studies

related to aspects of superconductivity in single crystal diamond. Low temperature

scanning tunneling spectroscopy measurements on a more recently grown sample con-

firmed the BCS compatibility (via the temperature dependancy of the superconducting

gap), and also the better quality of the sample, which is also under study by trans-

mission electron microscopy (TEM, U. Cádiz). A more detailed study of the until

now not well understood magnetic field-induced resonances observed in the BCS gap

is underway. Based on an already performed study of the phonon softening for su-

perconducting diamond samples by Hösch et al. (PRB 75, 140508R (2007)), a more

detailed study of this softening and its dependence across the metal-insulator tran-

sition was motivated by inelastic X-ray scattering (IXS) measurements performed at

the ESRF, Grenoble, France, by M. Hösch, together with our second order Raman

spectroscopy measurements. Furthermore, a study of the electronic band structure

via angular resolved photo emission spectroscopy (ARPES) is planned in the near

future, in order to confirm the results obtained by Yokoya et al. (Nature 438, 647

(2005)), and extend their study to probe other directions in the Brillouin zone.

The superconductivity of highly boron-doped diamond samples could further be

used to fabricate new devices as for example SQUIDs due to the high critical mag-

netic fields. Together with the high stiffness of diamond, the fabrication of nanome-

chanical structures from this material are of high interest for fundamental research.
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6. Outlook

With suspended diamond nanostructures one could reach GHz vibration frequencies

comparable with thermal energies at milliKelvin temperatures. Highly boron-doped

nanocrystalline diamond films grown on a standard silicon wafer (with intermediate

SiO2 layer) are hereby of particular interest due to the easy adaption of lithographic

lift-off techniques.

As already mentioned, granularity plays an important role in highly boron-doped

nanocrystalline diamond. The grain size is about 200 nm, in the reach of standard

processing techniques. Etching on a 150 nm scale would result in a linear chain of

superconducting granules, an innovative method to mimic a one-dimensional chain of

Josephson junctions.

In the case of highly boron-doped single crystal silicon, the reproducibility and

amelioration of the superconducting properties are the first step towards new super-

conduting devices based on this material. One could hereby benefit from the already

existing highly advanced processing tools for silicon. From the fundamental point of

view, the dependence of the superconducting transition temperature on the dopant

concentration, as well as the study of the origin of the superconductivity via isotopic

substitution or via scanning tunneling spectroscopy (study is underway), remain open

questions.

Only recently, highly boron-doped 3C-SiC has been found superconducting by Ren

et al. (JPSJ 76, 103710 (2007). Further investigation of the possible occurence of

superconductivity in highly aluminum-doped 4H-SiC is thus highly motivated. Even

from a more general point of view, in the case of highly-doped column IV elements

or compounds, there are still many other systems open for the study of superconduc-

tivity, for example highly-doped germanium-based samples as well as n-type silicon

and diamond (even if much progress has been made, note that highly-doped n-type

diamond samples are not yet available).
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A. Experimental techniques

A.1. Secondary Ion Mass Spectroscopy (SIMS)

Secondary ion mass spectroscopy is a powerful technique for the analysis of impurities

in solids. The technique relies on removal of material from a solid by sputtering

and on analysis of the sputtered ionized species. A primary ion beam impinges on

the sample and (ionized) atoms from the sample are ejected from the sample in case

they receive enough energy from the incident ions. These ions are further analyzed

with a mass spectrometer. It allows simultaneous detection of different elements with

resolution limits (depending on the element and the background signal) as low as 1014

to 1015 cm−3. Unfortunately it is a destructive characterization method since removing

material by sputtering leaves a crater in the sample. Profilometric measurements of

the crater depth are used for calibration of the thickness. The secondary ion signal

of a given element is monitored as a function of time giving access to the dopant

density profile on a scale of several microns, with a depth resolution of 1 to 5 nm.

The impurity density is obtained by comparison with the secondary ion signal of a

reference sample with a well-known dopant profile. One should note that secondary

ion mass spectroscopy determines the total, and not the electrically active impurity

density. No information about the actual configuration of the impurity atoms in the

host lattice is obtained.

In the case of highly boron-doped single crystal diamond, all measurements have

been performed by F. Jomard at the GEMaC (Groupe d’Etude de la Matière Conden-

sée) at the CNRS and Université de Versailles Saint Quentin (UVSQ). A commercially

available CAMECA IMS 4f instrument was used and a diamond reference implanted

with 2× 1015 cm−2 was measured in the same runs for calibration. An incident beam

of Cs+ ions with an energy of 10 keV was used, the extraction bias being 4.5 kV.

The boron density profiles of several samples (PA in {001} growth direction in

the configuration 12C11B) are shown in Fig. A.1(a). Hereby the total amount of

boron is presented, based on the assumption of a natural abundance of 19 % for 10B.
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Figure A.1.: (a) Several depth profiles of the boron concentration as measured by
SIMS for several recently grown samples PA; (b) Typical SIMS depth profile for
each of both series of isotopically substituted samples: (1) The data for samples
grown with 11B containing diborane B2H6 clearly reflect the already mentioned
natural abundance of 19 % for 10B, whereas (2) samples grown with the isotopically
marked diborane 10B2H6 only contain small amounts of the isotope 11B.

For samples grown with boron concentrations in the gas phase up to B/C = 2000

ppm, uniform profiles are obtained (on a log-scale). Presented on a linear scale,

deviations in the 10 % range determine the total error bar. The little shoulder seen

as the signal decreases (at the interface epilayer/substrate) reveals the high boron

concentrations in the approximately 50 nm thick buffer layer due to the memory effect

of the growth chamber. The SIMS data shown in Fig. A.1(b) (1) and (2) show two

typical, isotopically resolved density profiles for the other two possible configurations
13C11B and 13C10B studied in this work. The data for samples grown with 11B

containing diborane B2H6 clearly reflect the already mentioned natural abundance of

19 % for 10B, whereas samples grown with the isotopically marked diborane 10B2H6

only contain small amounts of the isotope 11B.

The highly boron-doped nanocrystalline diamond samples have been analysed by

the Centre of Surface and Materials Analysis (CSMA Ltd.) in England, also using

a Cameca IMS 4f secondary ion mass spectrometer. The primary beam consists of

O+
2 ions with a nominal impact energy of about 8 keV (incident angle 30◦). The

calibration was performed using a 11B ion implanted diamond-like carbon standard
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A.2. High resolution X-ray diffraction

Figure A.2.: Schematic description of the setup used for the high resolution X-ray
diffraction measurements.

with 5 × 1014 cm−2.

A.2. High resolution X-ray diffraction

The X-ray diffraction (XRD) data were collected around symmetrical Bragg reflec-

tions, {004}- and {111}-direction according to the orientation of the substrate. In the

case of highly boron-doped diamond as well as silicon, in-plane lattice matching leads

to either an expansion or contraction of the lattice parameter a in the growth direc-

tion. Therefore, a XRD signal is detected under different angles for the substrate and

the epilayer, corresponding to the different lattice spacings due to the difference in size

of the constituent atoms. In the case of boron-doped diamond, the higher Bohr radius

of boron with respect to carbon leads to a lattice expansion in the growth direction

and hence a peak in XRD is seen at smaller diffraction angles as the substrate. For

boron-doped silicon, the inverse situation occurs. The Bohr radius of boron is smaller

compared to the one of silicon, a peak in XRD is detected at higher diffraction angles

corresponding to a contraction of the lattice in growth direction. In order to get fur-

ther information on the mosaicity and the strain distribution in the epilayer, reciprocal

space mapping (rsm) around symmetrical and also on asymmetrical Bragg reflections

have been performed. The out of plane mapping ({311}-direction) experimentally

proves the biaxially strained nature of our boron-doped epilayers.

High-resolution XRD measurements were performed with a commercial Philips Ma-

terials research diffractometer which is shown schematically in Fig. A.2. The triple
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axis diffractometer is using as a source the CuKα1 line with a wavelength λ = 0.15406

nm, selected through a (220) Ge four-reflection channel cut monochromator. The an-

gular resolution was better than 3 × 10−3 degrees. The rocking curves consist in fact

of a (2Θ−ω)-scan, by measuring the diffracted intensity as a function of the rotation,

ω, of the sample, with a continuous change of 2ω for the detector. This resembles the

normally used rocking curves where only the sample is rotated due to the fact that

our detector opening is not wide enough in order to detect the total signal. In the case

of reciprocal space mapping, another analyzer was located in front of the detector to

increase selectivity. A series of (2Θ − ω)-scans is performed for a range of ω values

about the specific X-ray reflection.

A.3. Raman spectroscopy

Raman spectroscopy is based on the Raman effect first reported by Raman in 1928,

based on the inelastic interaction of the incident light with the vibrational modes of

the material probed. The scattered light from the sample is found to contain mainly

wavelengths that were incident on the sample (so-called Rayleigh scattering) but also

at different wavelengths at much lower intensities. The interaction of light with optical

phonons is called Raman scattering, whereas the interaction with acoustic phonons

results in Brillouin scattering. Raman spectroscopy is only practical when an intense

monochromatic light source like a laser is used. One distinguishes between Stokes-

shifted and Anti-Stokes-shifted scattering depending on wether a phonon is emitted

to the lattice or absorbed from the lattice. The latter is much weaker in signal,

and it is the Stokes-mode which is usually measured. One should note that Raman

spectroscopy is a non-destructive and, thus, very powerful characterization tool.

Raman spectroscopy measurements have been performed using a single monochro-

mator Jobin-Yvon Labram Infinity model, operating at either 633 nm in the visible

(internal HeNe laser source) or 325 nm in the UV (external HeCd laser source). An

optical microscope is used to focus the laser on the sample surface, the micro-Raman

spectra are obtained in a backscattering geometry under confocal conditions. Mea-

surements done at room temperature are realized using a ×100 objective in the visible

(1800 cm−1 grating, notch filter) and a ×40 objective in the UV (2400 cm−1 grating,

edge filter). For the low temperature measurements down to 5 K, a He flow cryostat

was used and measurements were restricted to a long working distance ×50 objective

in the visible. It was not possible to perform UV-Raman measurements at low tem-
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A.4. Electronic transport, Hall effect, and a.c. susceptibility measurements

peratures due to the opacity of the optical window of the cryostat. A liquid nitrogen

cooled charged-coupled device (CCD) was used for signal collection.

A.4. Electronic transport, Hall effect, and a.c.

susceptibility measurements

The temperature dependence of the resistivity has been obtained using a standard four

terminal configuration, with current injection on the outer leads and voltage measure-

ment on the inner leads. There exist following relationship between the resistivity ρ

and the measured resistance R as

R = ρ
L

A
= ρ

L

wd
=
ρ

d

L

w
(A.1)

where ρ
d

is also known as the so-called sheet resistance Rsh. w is the width of the

contacts, whereas L is the distance between the voltage leads.

Hall effect measurements have been performed in the van der Pauw contact con-

figuration, a comparison with van der Pauw measurements of the resistivity enabled

us to determine the carrier concentration as well as the mobility. The Hall effect was

discovered by Hall in 1879. Hall studied the nature of the force acting on a conduc-

tor carrying a current in a magnetic field. As schematically shown in Fig. A.3(a),

the charge carriers in the conductor become deflected by the magnetic field and give

rise to an electric field (Hall voltage) that is perpendicular to both the current and

magnetic field.

In the y-direction there is no net current, therefore

Jy = Jh + Je = epvhy + envey = 0,⇒ pvhy = −nvey (A.2)

with vhy and vey the drift velocities in y-direction and p and n the carrier concentration

for holes and electrons, respectively. The net force experienced by the carriers, as

shown in Fig. A.3(a), is

Fhy =
evhy

µh

= eEy − evhyBz (A.3)

for holes (h) and

Fey =
evey

µe

= eEy + eveyBz (A.4)
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(a) (b)

Figure A.3.: (a) Schematic description of the principle of the Hall effect; (b) Schematic
description of the setup used for a.c. susceptibility measurements.

for electrons (e). Substituting vhx = µhEx and vex = µeEx, one gets together with

Eq. A.2 the expression

Ey(pµh + nµe) = BzEx(pµ
2
h − nµ2

e) (A.5)

The total current density is finite and is given by the usual expression

Jx = epvhx + envex = (pµh + nµe)eEx (A.6)

and using substituting Eq. A.6 for Ex in Eq. A.5 one obtains for the Hall coefficient,

by definition,

RH =
Ey

JxBz

=
pµ2

h − nµ2
e

e(pµh + nµe)2
=

p− nb2

e(p+ nb)2
(A.7)

with b = µe/µh. In the case p≫ n one finds the well-known result RH = 1/qp.

As already mentioned, zero resistivity alone is no indication for the occurence a

superconducting transition in the bulk material. Superconducting filamentary paths

across the sample could shortcircuit the rest of the sample, yielding zero resistance.

Filamentary superconductivity is rather sensitive to the currents applied to the sample.

The fact that the superconducting resistive transition is quite stable over a relatively

large range of applied currents (10 nA up to 10 µA) is an indication for a transition in

the bulk. However, only complementary measurements of for instance the magnetiza-

tion or the specific heat can give insight about the bulk nature of the superconducting

148



A.4. Electronic transport, Hall effect, and a.c. susceptibility measurements

transition. Unfortunately, all attempts measuring the specific heat anomaly typical for

a superconducting transition (and reported by Ekimov et. al) remained unsuccessful.

Laser cutting of the thickest possible epilayer deteriorated the material due to graphi-

tization. More easily accessible is the Meissner effect seen in superconductors, the

expulsion of a magnetic field due to the perfect diamagnetism (provoked by induced

dissipationless currents) of the superconductor. The magnetic susceptibility χ for a

superconductor can therefore be written as

χ =
dM

dH
= −1 (A.8)

where M is the magnetization and H the magnetic field. The magnetic induction B

equals zero in the superconductor, and the relation B = µ0(H +M) leads to Eq. A.8.

The superconducting transition corresponds to a change in the susceptibility from

χ = 0 in the normal state to χ = −1 in the superconducting state.

Measurements of the a.c. susceptibility were obtained by recording the change in

the self inductance of a small coil using standard Lock-In amplification. The mounting

of the sample is shown schematically in Fig. A.3(b), the sample is glued to the (ther-

malizing) sample holder and the superconducting epilayer covers the whole surface of

the coil. An a.c. current i = i0sin(ωt) applied to the coil results in an a.c. magnetic

field h = h0sin(ωt). The real and imaginary part of the impedance is measured with

the Lock-In, which can be written as

Z(ω) = R + jωL (A.9)

with L the inductance of the coil and R the resistance. The magnetic flux Φ through

the coil is directly related to the inductance L via Φ = LI with I the total current.

Assuming the ideal case of an infinite coil, and that the whole surface of the coil is

covered by the (superconducting) sample, Φ = BS with S the total covered surface,

using BS = Li0 one obtains

Lω =
µ0(1 + χ)HSω

i0
(A.10)

To detect the superconducting transition it is sufficient to measure the change in the

self inductance.
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Jerôme Lesueur and Christoph Nebel, who accepted to render an expert opinion for

this PhD thesis, and Etienne Gheeraert, who also took part of the examining

jury.

Jean-Pascal Brison, chef de service du SPSMS, as well as Bernard Salce and Marc

Sanquer, chefs du LCP and LaTEQS, who gave me the possibility to work in

their group at the CEA Grenoble where I gained a lot of and in experience.
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and Franck Dahlem, Anne-Marie AFM Bonnot, Daniel PPMS Braithwaite,

the dilution and diluette Masters Xavier Jehl, Marc Sanquer, Andrew Huxley,

150
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Colombier, Céline Tavares, Pierre-Nicolas Volpe, Roland Dietmüller, and
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TITRE 
 
Transition métal-isolant et supraconductivité du diamant dopé au bore et des 
matériaux voisins 
 
  
RESUME 
 
La transition métal-isolant et la supraconductivité induites par le dopage ont été 
étudiées dans le diamant monocristallin fortement dopé au bore (propriétés 
structurales, approche en loi d’échelle de la transition métal-isolant, substitution 
isotopique, structure de bande et son importance pour les mesures d’effet Hall, 
modes de vibration des dimères de bore) et dans des matériaux voisins. La 
supraconductivité a été découverte dans le cas du silicium monocristallin fortement 
dopé au bore (échantillons élaborés par la méthode GILD), ainsi que la transition 
métal-isolant dans le cas du carbure de silicium 4H fortement dopé à l’aluminium 
(échantillons élaborés par la méthode VLS). L’étude de la transition métal-isolant 
et du magnétotransport à basse température dans le diamant nanocristallin dopé au 
bore a montré l’importance de la granularité de ce système. 
 

 
 
 
TITLE 
 
Metal-insulator transition and superconductivity in heavily boron-doped diamond 
and related materials 
 
 
SUMMARY 
 
The doping-induced metal-insulator transition and superconductivity have been 
studied in highly boron-doped single crystal diamond (structural properties, scaling 
law approach for the metal-insulator transition, isotopic substitution, band structure 
and its influence on Hall effect measurements, vibrational modes for boron dimers) 
and related materials. Superconductivity has been discovered in the case of highly 
boron-doped single crystal silicon (samples prepared by GILD), as well as the 
metal-insulator transition in the case of highly aluminum-doped 4H silicon carbide 
(samples prepared by VLS). The study of the metal-insulator transition and of the 
low temperature magnetotransport in highly boron-doped nanocrystalline diamond 
has shown the importance of the granularity in this system. 
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