
HAL Id: tel-00354934
https://theses.hal.science/tel-00354934

Submitted on 21 Jan 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Un point de vue unifié sur la diagnosticabilité
Xavier Pucel

To cite this version:
Xavier Pucel. Un point de vue unifié sur la diagnosticabilité. Réseaux et télécommunications [cs.NI].
INSA de Toulouse, 2008. Français. �NNT : �. �tel-00354934�

https://theses.hal.science/tel-00354934
https://hal.archives-ouvertes.fr

Remerciements

Cette thèse est le fruit de trois années de travail, non seulement de moi-
même, mais de plusieurs personnes sans qui elle ne serait pas. Bien qu’ils ne
soient pas mentionnés comme auteurs, ils ont participé à la réalisation de cet
ouvrage.

J’ai eu la chance de travailler avec Louise Travé-Massuyès, ma directrice de
thèse, qui m’a transmis sa vocation de la recherche. Son rapport au travail est
un exemple, tant par la réussite de sa carrière que par l’aisance et le naturel
quotidiens avec lesquels elle exerce ce métier. J’ai également bénéficié de sa
clairvoyance scientifique, qui m’a fourni un sujet de recherche à la fois motivant
et valorisant. Je continue grâce à elle dans cette voie avec une sérennité et une
volonté rares.

Les membres de mon jury de thèse : Louise Travé-Massuyès, Philippe Dague,
Luca Console, Jean-Jacques Lesage, Christophe Chassot, Jose Aguilar et Yan-
nick Pencolé ont accepté d’évaluer mes travaux. Le temps et l’énergie qu’ils ont
investi à cette tâche sont des preuves de confiance très motivantes. Les cor-
rections minutieuses et pertinentes de Philippe Dague, Luca Console, Louise
Travé-Massuyès et Yannick Pencolé démontrent l’intérêt qu’ils ont pour mes
travaux. Ils me rendent au moins une partie de l’estime que je leur porte, et j’en
tire une immense satisfaction.

Mes collaborateurs directs, dans l’ordre chronologique Louise Travé-Mas-
suyès, Marie-Odile Cordier, Stefano Bocconi, Claudia Picardi, Daniele Thesei-
der Dupré et Yannick Pencolé ont tous sans exception été des interlocuteurs
pertinents et avisés, et ont joué un rôle important dans chacune de mes contri-
butions scientifiques. Mes travaux sont tous issus des échanges que j’ai eus avec
eux, tant dans l’inspiration que dans la transpiration.

Mes collaborateurs indirects, principalement les membres du projet WS-
DIAMOND ainsi que les membres du groupe diagnostic, supervision et conduite
(DISCO) du LAAS-CNRS, ont participé à instaurer une atmosphère de saine
émulation.

Mes collègues de travail, par ordre alphabétique : Vincent Albert l’indien
dans la ville, François Armando dont l’autodérision et le cynisme sont aussi
fiables et constants que la lumière du phare dans la nuit, Mehdi Bayoudh et

1

2 REMERCIEMENTS

ses prises de position, Emmanuel Bénazéra le routard sans guide, Eva Marais
celle qui vient du monde normal, Fabien Perrot le geek, Hervé Ressencourt le
flegmatique, Pauline Ribot et ses potins, Siegfried Soldani le super actif, Nicolas
Van Wambeke et sa classe internationale, ont su me détourner du boulot lorsque
c’était possible voire nécessaire. Le café et les parties de xblast, open arena, poker
ou uno ont été des moments ou de détente et de relâchement, notamment des
règles du fair play, de l’humour ou du uno.

Perrine Laurent, ma concubine, m’a libéré par son amour et sa présence de
beaucoup de doutes et de soucis qui auraient pu me détourner l’esprit de ma
thèse.

Mes amis des troglodytes, auprès desquels j’ai fini de construire mon identité
pendant mes études, m’ont donné de nombreuses occasions de festoyer, et m’ont
permis de découvrir d’autres modes de vie à travers leurs emplois, leurs lieux
de vie et leurs projets.

Mes amis du Louron et du ski m’ont supporté et ont partagé avec moi l’amour
de la montagne et le goût du sport et de l’effort. Mon instituteur Michel Castillon
a parié sur l’informatique avant tout le monde, et a fait nâıtre en moi une passion
de l’informatique qui a donné lieu à une vocation vingt ans plus tard.

Mes parents, Paule par son soutien, et Jean-Yves par son exemple, et peut-
être Philippe par son absence, m’ont toujours encouragé dans la voie des études.
Eux et mon frère Matthieu m’ont apporté un soutien constant et infaillible
depuis toujours. Ils m’ont soutenu dans mes choix d’orientation, et m’ont permis
de me réaliser dans mon travail.

À toutes et à tous, et à celles et ceux que j’ai pu oublier,
Merci.

Contents

Introduction 17

I Models and approaches for Diagnosability 19

1 Model-based diagnosis and diagnosability 23

1.1 Model-based diagnosis . 23

1.2 Diagnosability analysis . 24

1.3 Knowledge representation and abstraction 25

1.3.1 Functional abstraction . 26

1.3.2 Abstraction by aggregation 27

1.3.3 Qualitative abstraction 27

1.4 Modelling formalisms . 28

1.5 Diagnosis context . 30

2 Different formalisms for diagnosability 33

2.1 State-based approaches . 33

2.1.1 FDI approaches . 34

2.1.2 DX approaches . 37

2.1.3 Unification . 41

3

4 CONTENTS

2.1.4 Towards unified definitions 42

2.2 Event-based approaches . 44

2.2.1 Automata . 44

2.2.2 Petri nets . 54

2.3 Hybrid systems . 57

3 Unified definitions 59

3.1 Faults and fault modes . 59

3.1.1 Different interpretations of a fault 60

3.1.2 Unified denomination . 61

3.1.3 Models for faults and fault modes 62

3.2 Diagnosability . 63

3.2.1 State of the art conclusion 65

II Diagnosability through Fault Signatures 67

4 Signatures for Event-Based approaches 71

4.1 A new point of view on EBS observables 72

4.1.1 Infinite event sequences 72

4.1.2 Fault signatures . 74

4.2 Formal Comparison . 75

4.2.1 Preliminary definitions . 75

4.2.2 Equivalence . 76

4.3 Examples . 77

4.3.1 Fault signatures for EBS diagnosability 78

4.3.2 Operational comparison of SBS and EBS 78

CONTENTS 5

4.3.3 Results . 81

4.4 Conclusion of the comparison . 82

5 Signatures for partial fault modes 83

5.1 Partial fault modes . 83

5.2 Diagnosability analysis . 85

5.3 Distributed diagnosability analysis 88

5.3.1 Constraint networks . 88

5.3.2 Diagnosis approach . 90

5.3.3 Constraint propagation control 91

5.3.4 Diagnosability analysis . 94

5.3.5 Algorithm . 97

5.3.6 Example . 98

5.4 Conclusion . 103

6 Signatures for properties 105

6.1 Macrofault diagnosability . 106

6.2 Diagnosability revisited . 107

6.2.1 System representation . 107

6.2.2 Diagnosability of a set of states 108

6.2.3 Comparison with unified diagnosability 109

6.2.4 Signature and preemptability 109

6.2.5 Diagnosability of a set of properties 111

6.2.6 Comparison with macrofault diagnosability 111

6.3 Application to repair preconditions 112

6.4 Example . 113

6 CONTENTS

6.4.1 Fault mode diagnosability analysis 115

6.4.2 Macrofault diagnosability analysis 117

6.4.3 Repair precondition diagnosability analysis 117

III Application and algorithmic aspects 119

7 Applicative context 123

7.1 Introduction to Service Oriented Architectures 123

7.2 Orchestration and choreography 124

7.3 Web services . 127

7.3.1 XML . 127

7.3.2 SOAP . 128

7.3.3 WSDL . 128

7.3.4 UDDI . 129

7.3.5 WS-BPEL . 130

7.3.6 Semantic web services and Ontologies 130

7.4 Diagnosis requirements in SOA 131

8 Implementation and test case 133

8.1 Binary decision diagrams . 133

8.2 Software architecture . 135

8.2.1 Diagnosers . 135

8.2.2 Assignments and constraints 137

8.3 Implementation aspects . 140

8.3.1 Test case . 140

8.3.2 Implementation . 142

CONTENTS 7

Conclusion and perspectives 145

IV Résumé en Français 147

Introduction 149

9 Modèles et approches 153

10 Définitions unifiées 155

10.1 Fautes et modes de faute . 155

10.1.1 Les différentes interprétations d’une faute 156

10.1.2 Dénomination unifiée . 157

10.1.3 Modèles pour les fautes et modes de faute 158

10.2 Diagnosticabilité . 159

11 Diagnosticabilité et signatures 161

11.1 Signatures pour approches à base d’évènements 162

11.2 Signatures pour modes de fautes partiels 163

11.3 Signatures d’ensembles d’états 165

11.4 Application et aspects algorithmiques 166

Conclusion 167

Bibliography 169

List of Figures

1.1 Overall approach for diagnosability 25

1.2 Model abstraction levels . 29

1.3 Modelling formalisms . 30

2.1 A fault signature matrix . 36

2.2 Polybox and DX model . 38

2.3 Minimal, partial and kernel diagnoses 39

2.4 Polybox ARRs . 41

2.5 No exoneration FSM . 42

2.6 A system and its diagnoser . 48

2.7 Diagnoser and diagnosability . 49

2.8 Synchronous product of two automata 51

2.9 Supervision patterns simplify the modeling 53

4.1 Maximal languages and fault signatures 78

4.2 A water flow system . 79

4.3 Fault signature matrices for the system 80

4.4 Automaton describing the system 81

4.5 Fault signatures (discriminant sub words are bolder). 82

9

10 LIST OF FIGURES

5.1 Partial fault mode signature comparisons 87

5.2 Admissible and non admissible partial assignments 93

5.3 Distributed constraint-based model 99

5.4 Rank 1 extension . 100

5.5 The admissible extensions of rank 2 partial fault modes contained
in the ToDo2 set. 102

5.6 The admissible extensions of rank 3 partial fault modes contained
in the ToDo3 set. 102

6.1 Macrofault diagnosability . 107

6.2 The set of states S1 is not diagnosable. S2 is diagnosable. 108

6.3 Signature Sig(S), diagnosable space D(S) and undiagnosable
space UD(S) of a set of states S. 110

6.4 The set of states S0 is preemptable. 111

6.5 A pipe and a tank . 113

6.6 States, diagnosable blocks and repair plans of the system. 115

6.7 Fault modes diagnosability results. 116

6.8 Macrofaults diagnosability results. 116

6.9 Repair preconditions diagnosability results. 116

7.1 Composing orchestrations on different partners lead to choreogra-
phies. Conversely, the total sale choreography can be decomposed
into various supporting choreographies, or further in orchestrations.125

7.2 Orchestration and Choreography 126

7.3 Example of an XML-based language 128

8.1 Example of a simple BDD . 135

8.2 Class diagram for diagnosers . 138

8.3 Diagnoser activation order . 139

LIST OF FIGURES 11

8.4 Assignment and constraint representation 140

8.5 FoodShop workflow . 141

8.6 Diagnosability result . 143

8.7 Diagnoser feedback . 144

List of Definitions

Definition 2.1 FDI Detectability . 35

Definition 2.2 FDI Fault signature . 36

Definition 2.3 FDI Isolability . 36

Definition 2.4 DX System model . 37

Definition 2.5 DX Diagnosis . 37

Definition 2.6 DX Partial and Kernel diagnosis 39

Definition 2.7 SBS Exoneration assumptions 41

Definition 2.8 SBS Faults and observables 42

Definition 2.9 SBS Diagnosis candidate 43

Definition 2.10 SBS Discriminability . 43

Definition 2.11 SBS Diagnosability . 43

Definition 2.12 Finite state automaton . 44

Definition 2.13 Regular language, acceptation 45

Definition 2.14 POBS and P−1
OBS

. 46

Definition 2.15 EBS Diagnosability . 47

Definition 2.16 Diagnoser . 47

Definition 2.17 Petri Net . 54

Definition 2.18 Multimode system diagnosability 58

Definition 2.19 Hybrid system diagnosability 58

13

14 LIST OF DEFINITIONS

Definition 3.1 ISO Fault . 59

Definition 3.2 Unified Fault . 61

Definition 3.3 Unified Fault mode . 61

Definition 3.4 Fault modes set representation 62

Definition 3.5 Fault modes variable representation 62

Definition 3.6 Unified Fault signature . 63

Definition 3.7 Unified Diagnosis candidate, Diagnosis 64

Definition 3.8 Unified Discriminability, Detectability 64

Definition 3.9 Unified Diagnosability . 64

Definition 4.1 ω-languages . 73

Definition 4.2 EBS set of observables . 73

Definition 4.3 EBS Fault signature . 74

Definition 4.4 SBS Diagnosability recalled 75

Definition 4.5 EBS Diagnosability reformulated 75

Definition 4.6 EBS Diagnosability with fault modes 76

Definition 5.1 Partial fault mode . 84

Definition 5.2 Partial fault mode Signature 84

Definition 5.3 Partial fault mode Discriminability 85

Definition 5.4 Partial fault mode Diagnosability 85

Definition 5.5 Assignment, constraint, satisfaction 88

Definition 5.6 Restriction, extension . 89

Definition 5.7 Consistency, combination 89

Definition 5.8 Constraint-based diagnosis 90

Definition 5.9 Admissibility . 91

Definition 5.10 Complete set of admissible extensions 92

LIST OF DEFINITIONS 15

Definition 6.1 Macrofault, Characteristic signature 106

Definition 6.2 Macrofault Diagnosability 106

Definition 6.3 Diagnosable block . 108

Definition 6.4 Generalised Diagnosability 108

Definition 6.5 Signature of a set of states 109

Definition 6.6 Diagnosable space, Undiagnosable space 110

Definition 6.7 Preemptability . 110

Definition 6.8 Diagnosability of a set of properties 111

Definition 6.9 Repair precondition . 113

Definition 7.1 Orchestration and choreography 124

Definition 8.1 If-then-else boolean operator 134

Definition 8.2 Reduced Ordered Binary Decision Diagram 134

Introduction

The development of information technologies and its applications in the indus-
try as well as in services has introduced complex automated systems about
everywhere in our lives. The number of systems used by people who have ab-
solutely no idea of how they work is increasing if not exploding. In our own
pockets, cellular phones are a good example, not to mention cars, planes, food
industry, cosmetic industry, entertainment, communication, financial markets,
etc. This is a fact, in modern societies, people rely on systems they do not fully
understand.

As the systems around us become more complex, their failures become more
and more difficult to predict, understand and repair. The need for tools for
assisting the supervision of those systems has been motivating a growing effort
for the last twenty to thirty years. The problem of fault diagnosis has been
addressed many times, and is nowadays a mature research field. The tech-
niques used for diagnosis have evolved from ad-hoc approaches to model-based
approaches, considered more practical and more adaptive. An important issue
identified during the numerous industrial applications of model-based diagnosis
is that in many cases the diagnosis problem is addressed after the system is
designed, making impossible the addition of sensors, or even the modification
of the system in order to provide more information to the diagnosis engine.

Today, the ability of a system to be diagnosed has become a marketing
argument and is part of the specifications of many kinds of systems. It is
important for a system designer and manufacturer to ensure that a system is
diagnosable, i.e. that the faults that may occur in it are identifiable relatively
easily. This is a key to provide more reliable systems, in which maintenance
costs are more predictable. This property of the system is called diagnosability,
and needs to be addressed at design time. It is meant to be a factor to take into
account during design, at the same level as production cost or other product
qualities. The resulting need for tools that allow one to analyze a system’s
diagnosability and provide feedback to the designer is then straightforward.

The problem of diagnosability analysis is still recent in the research field.
Various research communities have addressed the problem of model-based di-
agnosis in distinct and parallel tracks, and the resulting diagnosability analysis
approaches inherited this heterogeneity. Although the formalisms used in these
approaches are very different, the reasoning principle is very similar. Some work

17

18 INTRODUCTION

has been done in order to compare and unify these approaches. This thesis con-
tributes to this unification work and provides a general view on diagnosability
that accounts for the existing diagnosis and diagnosability approaches. This
thesis also addresses the problem of the integration of diagnosis in a general
supervision assistance tool.

This document is divided into three parts. First, an overview on diagnosis
and diagnosability analysis approaches is provided. In the exercise of model-
based diagnosis, a hard and important part is building the system model. A
state of the art of the existing formalisms and algorithms for diagnosability
analysis reveals a significant diversity in the formalisms and in the approaches.
An original investigation of implicit hypotheses and differences in each approach,
and a resulting debated position for unified definitions for all the approaches
are reported.

The second part includes the core of this thesis’ contribution. The concept
of fault signatures, imported from state-based approaches, is elected to be an
universal concept for defining diagnosability. It is extended to event-based ap-
proaches in such a way that a unique definition of diagnosability stands for all
the existing modeling approaches. This concept of fault signatures is extended
for providing an efficient diagnosability checking approach. It is further ex-
tended to more general properties like repair preconditions or quality of service
in order to integrate more easily diagnosability in a general supervision module.

The last part depicts an application to web services. The technology of
web services is based on languages that appeared recently. These languages
derived from XML (eXtensible Markup Language) are very modular and very
structured, and have benefited from an important industrial interest since their
introduction a little before year 2000. Their ability to implement distributed
programs that deliver services, and to compose those services into more complex
services, inside as well as across companies, has designed a particular need for
reliability of these systems. The great modularity and flexibility of the systems
created with these technologies makes model-based approaches very suited for
their supervision. The diagnosability approach proposed to analyze such sys-
tems reuses an existing diagnosis algorithm. This algorithm uses a constraint
network model and is based on constraint propagation. By modifying the ex-
ecution context of the diagnosis algorithm, an original diagnosability analysis
algorithm is obtained. This algorithm has several advantages, in particular a
modular architecture, low communication rate, and a compact representation
of the results to the designer.

The results obtained in this thesis provide grounds for a sound and efficient
development of diagnosability analysis. The unified definitions allow better
communication between the communities that use different formalisms. The
extensions allow better integration of diagnosis and diagnosability analysis with
other supervision tasks. Finally, this thesis provides a high level, lowly technical
point of view on diagnosability which can make it easier to import into the
industry.

Part I

Models and approaches for

Diagnosability

19

21

The problem of fault diagnosis is faced by almost every one that designs
complex automated systems. The solutions to this problem evolved from as-
sociative to model-based approaches. The problem of model-based diagnosis
was addressed separately by two distinct communities. The community of au-
tomatic control developed Fault Detection and Isolation (FDI) techniques for
continuous and event based systems. The community of Artificial Intelligence
developed approaches based on first-order logic and constraint networks. Both
communities also used discrete-event formalisms to adress the diagnosis prob-
lem. These approaches were developed in three distinct and parallel tracks, and
comparing them reveals great similarity in the overall reasoning, but great di-
versity in the modeling details. When these communities address the problem
of diagnosability analysis, the same diversity is reproduced.

This chapter provides an overview of model-based diagnosability analysis
approaches. First, considerations about how to model an automated system are
presented, independently of the underlying formalism. Then the existing for-
malisms and approaches to diagnosability are described. Finally, generic notions
are defined for all approaches, which provide grounds for abstract reasoning.

Chapter 1

Model-based diagnosis and

diagnosability

Fault diagnosis is a problem that needs to be addressed when supervising an
automated system. The system offers a predefined interaction with the user or
with a controller: it receives inputs (commands, parameters, etc) and produces
outputs (products, sensor values, etc). Some of the inputs and outputs are
known to the user, and allow one to estimate in a relative way what is happening
in the system. The system is not 100% reliable, and some faults may alter
its behavior and prevent it from fulfilling its purpose, or even threaten the
security of its users. The problem of fault diagnosis consists in monitoring the
observations emitted by the system, and look for symptoms that would indicate
that the system is under a fault.

1.1 Model-based diagnosis

Automated fault diagnosis has been receiving interest from the scientific com-
munity for over thirty years. The early approaches to diagnosis like expert
systems are based on association of symptoms to faults, in a similar way as
medical diagnosis is performed. These approaches rely on the reuse of past ex-
perience in order to assist the diagnosis of future faults. The main limitation
of these approaches is that the experience may be very long to acquire, partic-
ularly for the cases in which several faults are combined, and sometimes longer
than the system’s life cycle. Moreover, these methods may not be applied to
a new system, or to a newly modified system. Any modification of the system
makes all or most of the expert knowledge outdated. Finally, in some systems,
the number of possible faults is so large and these faults are so rare that these
approaches are simply not accurate.

In response to the limitations of associative diagnosis approaches, model-

23

24 CHAPTER 1. MODEL-BASED DIAGNOSIS AND DIAGNOSABILITY

based diagnosis approaches were developed. They are based on a description
of the system’s behavior in a mathematical language called the system model.
This model is generally provided by the system designer, and describes at least
the normal behavior of the system. Better results are achieved when the model
describes the behavior of the system under predefined faults, or when the model
accounts for the system structure, i.e. the components that intervene in the
system behavior.

Some preliminary work can be performed at design time, in order to facilitate
the diagnosis process. In some approaches, preliminary work consists in selecting
the consistency tests to rely on for diagnosis, this selection can be assisted
by automated tools. In some other approaches, preliminary work consists in
compiling the model into an automaton that organizes all the reachable diagnosis
results, and that just needs to be fed with the runtime observations. In other
approaches, no preliminary work is done, diagnosis is performed on the model
“out of the box”, fed on line by observations.

In some cases, several fault situations can explain the observations, the diag-
nosis is ambiguous. The precision of the diagnoses that are produced at runtime
is an important aspect. It is not worth modeling a system and running a diag-
nosis engine if it always provides diagnoses that are so undetermined that no
decision can be made upon them. This problem is called diagnosability analysis,
and is a prerequisite for diagnosis.

1.2 Diagnosability analysis

Industries that want to add diagnosis capabilities to their systems often face
a particular problem, that comes from the fact that the system designers are
in most cases not competent in model-based diagnosis. Hence diagnosis is not
taken into account at design time, but later on in the system development
process. The problem of this protocol is that diagnosis cannot influence the
design of the system, for example to add a sensor inside a solid block of the
system. This can be avoided by providing to the designers tools that provide
feedback about the diagnosis capabilities of the system.

Diagnosability is the property of a system and its instrumentation to exhibit
different symptoms for a predefined set of anticipated faults. Diagnosability
analysis totally relies on the existence of a model of the system, as illustrated
in figure 1.1. It is often defined as a Boolean, yes/no property, but it is more
complex than that. In most cases, when several faults are combined, the ob-
servations are so disturbed that they do not allow to make the distinction if an
additional fault occurs on top of that, this would make the system not diagnos-
able. However, the more faults are considered, the less probable it is for them to
be present at the same time, and some diagnosis approaches limit the analysis
to single or double faults, and do not consider other faults. Other diagnosis
approaches only provide so called minimal diagnoses, i.e. if a single fault and a
double fault including the single one can explain the observations, the algorithm

1.3. KNOWLEDGE REPRESENTATION AND ABSTRACTION 25

System model

System
normal model

System
fault model

Normal
observables

Faulty
observables

DiagnosabilityCompare

Select

Project

Select

Project

Figure 1.1: Overall approach for diagnosability

chooses the single fault. Some works aim at defining diagnosability as a degree,
i.e. an integer or real number, but this is, as well as the Boolean representation,
not enough to express diagnosability in all its complexity.

If a system is not diagnosable enough, this may result from two causes:

• The system does not contain enough sensors, or the sensors are badly
placed. The observations returned by the sensors do not allow one to
discriminate two different fault situations. This can be solved by adding
sensors in the system, which is not always possible.

• The system produces sufficient information, but the model is not precise
enough, it is too abstract (abstraction is defined and discussed in section
1.3). In this case, it is not necessary to modify the system, but only the
model used for diagnosis. Some information needs to be added in order
to provide better inputs to the diagnosis engine.

It seems natural to use the same model for diagnosability analysis and di-
agnosis, since the results of diagnosability analysis would not be relevant for a
diagnosis approach that uses another model. Modelling a system for diagnos-
ability analysis and for diagnosis is consequently the same task.

1.3 Knowledge representation and abstraction

When supervising a system, having an exact and precise diagnosis requires a
correct and sufficiently complete model. An incorrect model may result in erro-
neous diagnoses, and a model not complete enough may result in too imprecise
diagnoses. The issue of model correctness for diagnosis has been addressed in
[Lopéz-Varela, 2007], and is not considered in this document.

26 CHAPTER 1. MODEL-BASED DIAGNOSIS AND DIAGNOSABILITY

The size of the model is also an important question. Model-based diagnosis
and diagnosability analysis are complex algorithms, and the computation time
increases with the size of the model. There are two ways to control the size of
the model: the formal language used for modeling the system, and the level of
abstraction at which the modeling is done. Moreover, some additional factors
may influence the modeling, in particular the type of faults and the type of
decision to be taken in reaction to a diagnosis. This chapter presents the aspects
mentioned above to take into account when modeling a system for diagnosis.

The first step when designing a diagnosis module is to choose which infor-
mation to take into account for diagnosis. This step has dramatic consequences
on the final result since the information discarded at the modeling stage is then
inaccessible during diagnosis. Hence if some crucial information is neglected, the
resulting module will probably exhibit a poor diagnosability level. On the other
hand, it is in general impossible to express and compute information about the
whole system in its finest details, because this would make the diagnosis problem
intractable for a computer. The choice of which information to make abstrac-
tion of and which information to take into account is consequently a difficult
choice that must be done by a human designer.

A model is always an abstraction of the real world in the sense that there
are always some aspects of the system that are not included in the model.
In [Ressencourt, 2008, Lind, 2003], several types of abstraction are identified:
functional abstraction, abstraction by aggregation, and qualitative abstraction.

1.3.1 Functional abstraction

Functional abstraction consists in describing what the system does instead of
how it works [Chittaro et al., 1993]. It relies on a classification of the knowledge
about the system, and its organisation into a hierarchy. At the lowest level of
abstraction stands knowledge about the physical composition of the system,
while at its highest level is the knowledge about the system purpose. 4 classes
are proposed:

Structural knowledge: this is the lowest abstraction level. It describes the
components, their nature and how they are interconnected. It contains
what the components are made of, and the interconnection rules. This is
a pure physical knowledge totally independent of how it works and what
for.

Behavioral knowledge: at this level, the behavior of components is repre-
sented. It describes how the components work and how they interact,
their states and they operation.

Functional knowledge: this level is attached to the description of the pro-
cesses that happen in the system, and the roles played by the components
in the realization of these processes.

1.3. KNOWLEDGE REPRESENTATION AND ABSTRACTION 27

Teleological knowledge: This is the highest level of abstraction, that de-
scribes the goals of the system, and the conditions that must be fulfilled
while achieving these goals. This is a pure specification level of knowledge,
totally detached of how the system is implemented.

Most diagnosis approaches rely on structural and behavioral knowledge, and
sometimes on functional knowledge. However, the link with teleological knowl-
edge must not be neglected, since diagnosis is just a part of the supervision
task, and in general repair or reconfiguration takes into account teleological
knowledge.

1.3.2 Abstraction by aggregation

Abstraction by aggregation, also known as structural abstraction, consists in
encapsulating knowledge into a “black box”. The relations between pieces of
knowledge inside and outside the black box are kept, but the relations be-
tween pieces of knowledge inside the black box are abandoned. This kind of ab-
straction has been used for model-based diagnosis [Chittaro and Ranon, 2004,
Autio and R.Reuter, 1998].

The abstraction by aggregation is generally applied to all the categories of
knowledge mentioned in the previous section: when several components are
aggregated, so are the behaviors, the functions and the goals of the original
components. The result is a large black box component, whose internal behavior
functions and goals are hidden, but whose interactions with other components,
whose external functions, preconditions and goals are described.

Such an abstraction can be dictated by the possible repair actions. If replac-
ing a resistor can only be done by replacing a whole electronic card, aggregating
the components that form this card is a good idea. In this case, it is not neces-
sary to distinguish faults on two components inside the card, since the decision
that follows these two diagnoses is the same. Hence, abstraction by aggregation
can lead to the decrease of the number of modeled faults, which has a critical
impact on diagnosis and diagnosability.

1.3.3 Qualitative abstraction

A qualitative abstraction consists in reducing the domain of the variables used
to describe the model. Such an abstraction is very helpful to compact behav-
ioral or functional knowledge, and makes it easier to analyze. For example, a
real number can be abstracted into a value that can have the following three
qualitative values {−, 0,+}. Sometimes more values are necessary, and can be
related to intervals for the original variable. When using a qualitative model
for diagnosis, the idea is to capture only the relevant aspects of the behavior.

This kind of abstraction is difficult to perform, since it can have a significant

28 CHAPTER 1. MODEL-BASED DIAGNOSIS AND DIAGNOSABILITY

and unexpected impact on the diagnosability of the system. However, its impact
on the size of the model is such that it is very commonly used.

Example 1.1 (Abstraction and diagnosability) Let us consider a cluster
of electrical lights bulbs in a series circuit. If one bulb breaks into an open circuit,
all the bulbs go off, and the observations (voltage on, light off) do not allow to
tell which bulb is broken. This is an example of a non diagnosable system.

At the aggregated level, the faults in all bulbs are assimilated to a unique
fault, which makes the system diagnosable, since the absence of light indicates
that some bulb has gone off.

In reality, the observations allow us to tell that the fault occurred in the light
bulb cluster, but not in which bulb. According to what is considered as a fault
(one fault per bulb, or one fault for the whole cluster) the system is considered
as diagnosable or not.

Figure 1.2 shows how the knowledge about this system can be classified ac-
cording to its abstraction level, and shows the best level of abstraction at which
to consider the system for diagnosis. The model could be simplified further by
a qualitative abstraction, by considering that light and voltage are Boolean vari-
ables, thus simplifying the behavioral model.

1.4 Modelling formalisms

The information to be considered in the diagnosis reasoning depends mainly on
the nature of the system itself, and on the nature of the faults to be diagnosed. A
hydraulic system supposed to achieve several precise continuous functions should
not be modeled the same way as a telecommunication system characterized by
complex communication protocols, since the most suited models are different.
Although some common elements should naturally appear in both models, they
must not take into account the same aspects of the system: the precise relation
between variable values and their derivatives in the case of a hydraulic system,
or the high importance of sequential aspects in the telecommunication system.
The nature of the observation instrumentation also influences the information
to be considered, since it generally offers an abstraction of what is really going
on in the system.

Let us illustrate these considerations with examples. In an electronic signal
processing system, the physical variables are related by differential equations,
since the physical values (voltage, current) and their derivatives are linked by
constraints that result of the electronic components in the system (capacitors,
inductors, . . .).

In a telecommunication network, although a lot of signal processing is done
for modulation and demodulation, the supervisor is not interested in the details
of these operations. The important aspects of the system consist in monitoring

1.4. MODELLING FORMALISMS 29

Figure 1.2: Model abstraction levels. Classification of the knowledge used in
the diagnosis model for the system described in example 1.1. The knowledge is
classified by levels of functional and abstraction by aggregation. The highlighted
knowledge is sufficient to perform diagnosis, other knowledge do not need to be
included in the model.

30 CHAPTER 1. MODEL-BASED DIAGNOSIS AND DIAGNOSABILITY

(0, 1)

(1, 2)

(2, 3)

(3, 0)

in
=

1

in = 2

in
=

3

in
=

0

in
=

2

in = 3

in = 0

in
=

1

in
=

3

in
=

0

in = 1

in
=

2

out = (in + 1)%4

Figure 1.3: Adapted and unadapted formalisms for modeling systems.
On the left, a automaton modeling a circular adder for 2-bits coded numbers.
In each state, a couple indicates the values for the input and the output. The
initial state has a thick border.
On the right, a constraint model for the same system, much simpler, smaller
and easy to maintain.

the resource management protocols, that allow one to detect overloads or phys-
ical failures in some nodes of the network. The model focuses on the sequences
of messages, and maybe their content or delays, since the type of messages and
the order of emission is more important than their internal parameters or the
exact date of emission.

In a biological process, some physical variables can be relevant (temperature,
pressure, . . .), but some important criteria are difficult to describe with num-
bers, or even difficultly measurable, like the growth of some bacteria colony, or
the hardness of the crust of a bread bun. In those case it is generally possible to
abstract numeral aspects like the temperature into a small set of qualitative val-
ues “too cold, pretty cold, normal, pretty hot, too hot”. This kind of abstraction
does not prevent to reason on the system, and can even facilitate it. It is also
possible to abstract the derivatives of such variables into “growing, decreasing,
stable”. In such processes, these qualitative aspects are more important than
the real precise temperature or the exact number of living bacterias, or even
than the order in which two bacteria colonies appear.

Figure 1.3 illustrates how the choice of the modeling formalism is important
and has critical influence on the whole diagnosis and diagnosability analysis
tasks.

1.5 Diagnosis context

The context in which diagnosis is performed can also influence the modeling
phase. We distinguish two types of contexts:

1.5. DIAGNOSIS CONTEXT 31

• Online versus offline

• Instance versus class (for functional model mainly)

Online diagnosis is performed while the system is running, whereas offline
diagnosis is performed when the system is in a test bench. Diagnosis in each
context is a very different task, since online the observations result from the
actual use of the system, while offline it is necessary to perform tests under
various operating modes. Each context offers advantages in terms of diagnosis.
For example, online diagnosis allows one to measure how a plane wing behaves
inside turbulence, which is not possible offline, on the ground. On the opposite,
offline it is possible to test only some components or functions of the system
independently of the rest of the system. It is possible to test the command of
plane reactor separately, which would not be possible online, during a flight.
Moreover, online diagnosis applications are constrained by time, and computa-
tions must be done in adequation with the system’s dynamics. A compromise
between accuracy and performance often needs to be found.

Another type of context can arise when diagnosis is based mostly on func-
tional knowledge. This type of situation, illustrated in part III, occurs when the
system is flexible and modular, and its structure may change, while its func-
tional specifications are constant. Faults, observations and decisions that result
from diagnosis are related to functional knowledge. In this type of context, the
distinction between instance and class contexts is important.

In the functional instance context, diagnosis and in general supervision fo-
cuses on one execution, or instance, of one function. Diagnosis aims at detecting
faults that may prevent this function execution to complete successfully. The
decisions that result from diagnosis are related to this one execution of the
function. Information is not shared between several instances of the function.

In the functional class context, diagnosis and supervision are attached to
the aspects that are shared by all the executions of a function. Such aspects
contain average values, like response time, or success rate, as well as data and
components that are shared by several function instances. This context is a
necessary intermediate between functional instance supervision and structural
and behavioral supervision.

Chapter 2

Different formalisms for

diagnosability

The model-based approaches for diagnosis and diagnosability analysis that were
developed in the domains of automatic control and artificial intelligence can
be classified into two categories: state-based approaches, and event-based ap-
proaches.

State-based approaches consider state-based systems (SBS), i.e. systems in
which the characteristic aspects, in particular faults and observations depend
on the system state. Faults and observations are represented by variables, and
are associated to a set of states.

Event-based approaches consider event-based systems (EBS), systems in
which the essential aspects of the system can be modeled by discrete events.
These approaches generally model faults and observations as discrete events
between unqualified states.

Some diagnosis and diagnosability analysis approaches address hybrid sys-
tems, and benefit from the modeling power of the two previous approaches.

2.1 State-based approaches

State-based approaches to diagnosability analysis generally rely on formalisms
using a set of variables and a set of constraints over these variables in order to
describe the system behavior.

The behavior model of a SBS Σ = (R, V) is generally described by a set
of n relations R, which relate a set of m variables V . If the values domain of
each variable vi of V is denoted Dvi

, then the relations ri of R constrain the

33

34 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

set of admissible tuples of values of the variables to a subset of Dv1
× · · ·×Dv1

.
In a component-oriented model, the relations ri are associated to the system’s
physical components, including the sensors. The set R can be partitioned into
behavioral relations, which correspond to the internal components behaviors,
and observation relations which correspond to the sensors behaviors. The set
of variables V is partitioned into the set of observable variables VOBS, whose
corresponding value tuples are called observations, and the set of unobservable
variables noted VUNOBS.

Observation values, possibly processed into fault indicators by a series of
abstractions, provide a means to characterize the system at a given time. Faults
may also be characterized by variables.

Without loss of generality, we equate fault indicators and system variables
and always speak of the observation tuples. The set OBS is defined as the
set of all the possible observation tuples, i.e., OBS = {(o1, o2, . . . , ok)}. The
observation value pattern is referred to as the observed signature whereas the
expected value patterns for a given fault, obtained from the behavioral model,
provide the fault signature. Note that several value patterns may correspond to
the same fault, for example when the system undergoes several operating modes.
The fault signature is hence defined as the set of all possible observation tuples
under the fault. When fault signatures are explicitly known for all anticipated
faults, the diagnosis process comes down to comparing the observed signature
with fault signatures. The ”no fault” situation being considered as a special
fault case with its associated signature, fault signatures also allow one to test
fault detectability.

2.1.1 FDI approaches

The FDI acronym stands for Fault Detection and Isolation, and denotes the di-
agnosis approaches that are developed in the automatic and control community.
In the FDI community dealing with continuous systems, a well-known method
known as the parity-space method consists in using the system model to es-
tablish a set of Analytical Redundant Relations (ARR). This comes down to
abstracting up the set of relations R into a reduced set of ARRs, which give rise
to fault indicators known as residuals. The residual values are again abstracted
into Boolean values that equal 0 when the corresponding ARR is satisfied and
1 when it is violated, indicating in this later case that there is a fault in the
system. The observations hence result in a Boolean fault indicator tuple. In
most applications, several residuals are used to monitor several faults. Each
residual is sensitive to some faults and insensitive to some others, the Boolean
pattern providing the fault signature. The signatures for all the system faults
can be described in a fault signature matrix.

Criteria for fault detectability are given in [Nyberg, 2002]. The system is

2.1. STATE-BASED APPROACHES 35

modeled by a set of linear differential equations:

ẋ(t) =Ax(t) + Buu(t) + Bdd(t) + Bff(t)
y(t) =Cx(t) + Duu(t) + Ddd(t) + Dff(t)

(2.1)

• x is the state vector, it describes the current system state.

• y is the output vector, whose value is known by the supervisor.

• u is the known input vector, that describes the inputs that are measured
or controlled by the supervisor.

• d is the unknown inputs vector, it describes the other system inputs, like
disturbances, noise, etc.

• f is the fault signal, that is supposed to be constant.

This linear system model can also be expressed under the transfer function form,
using the Laplace transform:

y = G(s)u + H(s)d + L(s)f (2.2)

A residual generator is a function that takes as input the measured variables in
the system, i.e. u and y. It is designed so as to be insensitive to the commands
and disturbances, but sensitive to the faults. Formally, a residual generator r is
defined as:

r = Q(s)

(

y
u

)

which gives by (2.2):

r = Q(s)

[

G(s) H(s)
I 0

] [

u
d

]

+ Q(s)

[

L(s)
0

]

f

The matrix Q(s) may be used for a residual generator if and only if r is insen-

sitive to the inputs u and d, i.e. if Q(s)

[

G(s) H(s)
I 0

]

= 0, and sensitive to the

fault with Q(s)

[

L(s)
0

]

6= 0.

Definition 2.1 (FDI Detectability) A fault f is detectable if and only if
there exists a residual generator that is sensitive to its signal.

Various mathematical criteria are given in [Nyberg, 2002] for fault detectabil-
ity in linear systems.

In [Isermann, 2005], some variations of this approach are described. Faults
modeled by a signal that is added in the dynamic equation, as described above,
are called additive faults. Another type of faults can be represented by mod-
ifying the value of the parameters A, Bu or Bd, in this case they are called
multiplicative faults.

Another way to build residual generators is to perform structural analy-
sis to exhibit the subsets of equations corresponding to Minimal Structurally

36 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

f1 f2 f3 f4

r1 0 0 1 0
r2 0 1 0 1
r3 1 1 0 0

Figure 2.1: An example of a fault signature matrix. Residuals are represented
by rows, and faults in columns. A 1 (0) value indicates that the corresponding
residual is (in)sensitive to the corresponding fault. All faults are isolable since
their signatures are unique.

Overdetermined (MSO) subsystems [Krysander et al., 2008]. The relations con-
stituting a MSO can then be manipulated to perform algebraic substitutions
and eliminate unmeasured variables. The resulting relations are parity rela-
tions, or Analytical Redundancy Relations (ARR). Such relations can only be
derived if the model has more equations than variables, i.e. if the system is over
constrained. [Krysander et al., 2008]provides an algorithm that identifies the
smallest over constrained subsystems, which allows to build ARRs efficiently by
performing the substitutions only in such subsystems.

[Isermann, 2005] mentions another way to build residual generators, by
means of state observers. While the parity space approach consists in pro-
jecting the model on observed variables, the state observer approach consists in
estimating the value of unobserved variables. Both approaches take benefit of
the redundancy in the model to generate consistency tests based on the residual
generators. Overdetermined subsystems contain redundancy that can be used
to generate residuals via the parity space or the observer approach.

Fault diagnosis in non-linear systems has been addressed with the observer
approach in [Polycarpou et al., 1997], and with the parity space approach in
[Frisk, 2000].

The different faults and residuals are generally represented in a matrix called
the fault signature matrix, as illustrated in figure 2.1.

Definition 2.2 (FDI Fault signature) The signature of a fault is the set of
all tuples containing the values obtained for the different residuals when the fault
is present in the system.

Fault signatures allow one to define fault isolability: if two faults do not
stimulate the same sets of residuals, then a supervisor is able to discriminate
them. Consequently, it is possible not only to detect these faults, but to isolate
them.

Definition 2.3 (FDI Isolability) A fault is isolable if and only if its signa-
ture does not contain any common tuple with any other fault.

2.1. STATE-BASED APPROACHES 37

2.1.2 DX approaches

In the DX community, fault indicators are not usually built at design time. On
the contrary, all the computation is made at runtime. The principle of abstract-
ing the set of relations into a set of fault indicators is not applied, the abstraction
is rather concerned with the variable values. Indeed, variable continuous do-
mains are generally abstracted up into a finite number of qualitative values rep-
resenting a given homogeneous qualitative behavior, for instance ok indicating
that the variable behavior is consistent with its normal behavior, and ab indi-
cating that it is not [Hamscher et al., 1992, Dubuisson, 2001, Pucel et al., 2007].
This kind of qualitative abstraction is common in these approches, but not nec-
essary.

Conflict based diagnosis

The first original approaches to diagnosis reported in [Hamscher et al., 1992]
use first-order logic to model the system. Following approaches are based on
propositional logic, or constraint networks, but inherit the same system model
definition.

Definition 2.4 (DX System model) The system is modeled by the following
sets:

• COMPS is the set of system components.

• SD is the system description. It is a set of propositions written in first-
order logic. Faulty components are modeled by a unary predicate AB(.),
interpreted to mean “abnormal”.

• OBS is the set of observations, written as first-order logic propositions.

When c ∈ COMPS, the clauses AB(c) and ¬AB(c) are referred to as AB-
literals.

Definition 2.5 (DX Diagnosis) Let C1 ⊆ COMPS, C2 ⊆ COMPS be two
sets of components. We define D(C1, C2) as the following conjunction:

D(C1, C2) =

(

∧

c∈C1

AB(c)

)

∧

(

∧

c∈C2

¬AB(c)

)

Let ∆ ⊆ COMPS be a set of suspect components. The proposition
D(∆,COMPS \ ∆) is a diagnosis for (SD ,COMPS ,OBS) if and only if the
following proposition is satisfiable:

SD ∪ OBS ∪ D(∆,COMPS \ ∆)

A diagnosis D(∆,COMPS \ ∆) is a minimal diagnosis if and only if for every
∆′ ⊂ ∆, D(∆′,COMPS \ ∆′) is not a diagnosis.

38 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

An advantage of these approaches is that the behavior of the system may
be only specified in the normal case, as illustrated in figure 2.2. When a fault
is present, the variables of the faulty component are unconstrained, and its
behavior is unspecified. Diagnosis consists in identifying conflicts, which identify
sets of components that cannot be all in a normal behavioral mode, and in
establishing a diagnosis as a hitting set of all the conflicts.

Since faulty behavior is unspecified, it is always possible to suspect every
component to be faulty. Consequently, the conjunction D(COMPS , ∅) is al-
ways a diagnosis in all situations. In general, one needs to expect an expo-
nential amount of diagnoses with respect to the number of components. Un-
der some reasonable hypotheses on the components behavior, the whole set
of diagnosis is fully characterized by minimal diagnoses [Hamscher et al., 1992,
Dubuisson, 2001]. In this case, only minimal conflict sets and their minimal
hitting sets are considered, in order to provide minimal diagnoses, which can be
computed faster.

COMPS =
{M1, M2, M3, A1, A2}

SD =
8

>

>

>

>

<

>

>

>

>

:

¬AB(M1) ⇒ X = A.C

¬AB(M2) ⇒ Y = B.D

¬AB(M3) ⇒ Z = C.E

¬AB(A1) ⇒ F = X + Y

¬AB(A2) ⇒ G = Y + Z

9

>

>

>

>

=

>

>

>

>

;

Figure 2.2: A simple system, the polybox, is composed of 3 multipliers and 2
adders. Its model is described on the right side. Variables A, B, C, D, E, F ,
G, X, Y , and Z have finite domains.

Example 2.1 (Conflicts and diagnoses) Let the system be the one described
in figure 2.2, and let the observations be:

OBS = {A = 3 ∧ B = 2 ∧ C = 2 ∧ D = 3 ∧ E = 3 ∧ F = 10 ∧ G = 12}

With the inputs provided, both F and G should be equal to 12. Two minimal
conflicts can be computed:

AB(A1) ∨ AB(M1) ∨ AB(M2)
AB(A1) ∨ AB(M1) ∨ AB(M3) ∨ AB(A2)

The meaning of these minimal conflict sets is that at least one component in the
set {A1, M1, M2} and one component in {A1, M1, M3, A2} are faulty. Four
minimal diagnoses can be derived from these minimal conflict sets:

∆1 = {A1}, ∆2 = {M1}, ∆3 = {M2, M3}, ∆4 = {A2, M2}

Minimal diagnoses are the most optimistic diagnoses, the diagnoses that sus-
pect the smallest sets of components. Generally, it is assumed that components

2.1. STATE-BASED APPROACHES 39

Figure 2.3: Minimal, partial, and kernel diagnoses for an illustrative set of 5
diagnoses involving 3 components C1, C2 and C3.

are more likely to be normal than faulty, and minimal diagnoses are also the
most probable. However, given the set of minimal diagnoses, one cannot deduce
the whole set of diagnoses in the general case.

The concepts of partial and kernel diagnoses allow one to describe the set
of diagnoses in a compact way, but still allow one to test whether a set of
suspect components leads to a diagnosis or not. The principle is that if both
AB(C1)∧¬AB(C2)∧AB(C3) and AB(C1)∧¬AB(C2)∧¬AB(C3) are diagnoses,
it can be interpreted as C1 is faulty, C2 is not faulty, and C3 may or may not
be faulty. This can be represented more compactly by AB(C1) ∧ ¬AB(C2),
which is a partial diagnosis. Partial diagnoses are organized in a hierarchy, as
illustrated in figure 2.3. The partial diagnoses that are minimal, at the roots of
the hierarchy, are called kernel diagnoses.

Definition 2.6 (DX Partial and Kernel diagnosis) A partial diagnosis is
a satisfiable conjunction P of AB-literals such that for every satisfiable conjunc-
tion Φ of AB-literals that extends P, SD ∪ COMPS ∪ {Φ} is satisfiable.

A kernel diagnosis is a partial diagnosis that does not extend any other partial
diagnosis.

In some situations, reasoning with only the model for the normal behavior
of the system is an advantage. However, in this case it is not possible to discard
a fault in a component, and in general for one observation there are many
diagnoses. The diagnosis process can be much more precise and efficient when
fault models are provided. In this case it is possible to assess not only which
components are faulty and how, but also which components are normal.

Diagnosability analysis relies on the existence of fault models. The next
section presents how the original diagnosis approaches can be extended in order
to support diagnosability analysis.

40 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

Fault models

In the absence of fault models, only the nominal behavior of the system is spec-
ified, the faulty behavioral mode of the component is then called the unknown
mode. With such a model it is possible to detect faults, and, with the informa-
tion related to the structure of the system, to locate them.

The need for fault models has been addressed in the literature
[Hamscher et al., 1992], not necessarily for diagnosability analysis, but also for
diagnosis. Some components may host several different faults that alter differ-
ently their behavior. For example, a damaged electrical component can behave
like an open circuit or a short circuit according to the fault that occurred in it.

Fault models can be identified formally by a set of predicates or by a mode
variable for each component. The behavior of the component for each fault
is defined by a set of constraints associated to the predicate or mode variable
value that corresponds to the fault. The (minimal) conflict set / hitting set
approach is still valid with such models. The unknown mode can be defined as
a particular behavioral mode associated to an empty set of constraints.

Specific fault models can also be defined using an exoneration model. If
CM is a set of constraints representing the normal behavior of a component C,
then ¬AB(C) ⇒ CM is a normal model, and ¬AB(C) ⇔ CM is an exonerated
model. Exonerated models simply state that the exonerated component does
not behave the same way when it is faulty and when it is normal.

Diagnosability

There exists few approaches to diagnosability in the DX community. In
[Dressler and Struss, 2003], the problem of diagnosability analysis consists in
identifying the operating conditions in which various faults are discriminable
one from another.

In this approach, fault models are defined and modeled by mode variables.
The concept of observable variables is introduced by means of a projection
operator PROJobs that projects a set of states on the corresponding set of
observation tuples. Some variables, called characterizing variables, define the
operating condition of the system. The problem addressed by this approach is,
given two behavioral modes (fault/fault or fault/normal), to determine in which
conditions they are not discriminable, necessarily discriminable or possibly dis-
criminable. For a given set of characterizing variables, the set SITNotD (resp.
SITNecD) is computed, it contains the situations in which the two modes are
not discriminable (resp. necessarily discriminable). When the characterizing
variable values belong to SITNotD, the observations do not allow the supervisor
to tell in which mode the system is. On the other hand, when the characteriz-
ing variables belong to SITNecD, the supervisor knows from the observations in
which mode the system is.

2.1. STATE-BASED APPROACHES 41

ARR1 : F − (A.C + B.D) = 0
ARR2 : G − (B.D + C.E) = 0
ARR3 : F − G − A.C + C.E = 0

FA1 FA2 FM1 FM2 FM3

ARR1 1 0 1 1 0
ARR2 0 1 0 1 1
ARR3 1 1 1 0 1

Figure 2.4: Analytical Redundancy Relations and single fault signature matrix
for the Polybox example (see figure 2.2).

This comparison is to be performed for each combination of normal and
faulty behavior for all the components in the system, which can be extremely
time-consuming.

2.1.3 Unification of state-based approaches for diagnosis

and diagnosability

The diagnosis approaches developed in the DX and FDI communities have been
compared [Cordier et al., 2004], and the resulting bridging concepts were ap-
plied for diagnosability analysis [Travé-Massuyès et al., 2006b].

The comparison between the two approaches rely on the construction of an
ARR-based reasoning built over a component oriented constraint based model.
Only model of normal behavior is considered. ARRs are obtained by combining
constraints from various component models. A component C is involved in an
ARR if the ARR derives from a constraint of C, in this case the ARR may be
sensitive to a fault that affects C’s behavior. A fault signature matrix is built,
matching the ARRs in lines versus the faults (single or multiple) in columns, as
illustrated in figure 2.4. The ARR based diagnosis reasoning is compared to the
conflict based diagnosis reasoning, revealing several hypotheses that are made
on each side.

The paper [Cordier et al., 2004] provides a definition for two types of exon-
eration assumption.

Definition 2.7 (SBS Exoneration assumptions) The component exonera-
tion assumption states that if the correct behavior model is satisfiable in a given
context, then the component is assumed to be correct.

The ARR exoneration assumption states that if an ARR is satisfied, then
all the components that support it are correct.

The two assumptions are slightly different. The first assumption deals with a
single component, and assesses that when faulty, the component cannot behave

42 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

the same way as when normal. The second assumption deals with a set of
components, and also requires that the operating condition of fault condition of
one component does not mask a fault in another component.

The ARR exoneration assumption is generally implicitly made in FDI ap-
proaches. It can be released by modifying the signature matrix. A 1 in the
signature matrix means that a fault in the component necessarily results in the
corresponding ARR being violated, this corresponds to the exoneration case of
the ARR. The symbol X is introduced and means that a fault in the component
may or may not result in the corresponding ARR being violated. This allows
the designer to exonerate only some components, or some ARRs, as illustrated
in figure 2.5.

A set of properties is given that ensures that the components incriminated by
the ARR based approach are the same as the components incriminated by the
conflict based approach. The hypotheses (System Representation Equivalence,
ARR-d-completeness, ARR-i-completeness) that lead to this equivalence deal
with equivalence of the system models and properties on the set of ARRs. The
equivalence also relies on the relaxation of the exoneration assumption.

FA1 FA2 FM1 FM2 FM3

ARR1 1 0 1 1 0
ARR2 0 X 0 1 1
ARR3 X X X 0 1

Figure 2.5: Fault signature matrix for the polybox with the exoneration assump-
tion partially relaxed. Component exoneration is assumed for M2 and M3 only.
ARR exoneration i sassumed for ARR1 only.

2.1.4 Towards unified definitions

The comparison between state-based approaches to diagnosability described in
[Travé-Massuyès et al., 2006b] has led to various unified definitions related to
diagnosability. These definitions are important, since they strongly influence
the positions adopted in this thesis (defined in section 3).

Definition 2.8 (SBS Faults and observables) The faults, single or multi-
ple, are gathered into the set F = {fi}. Faults themselves are defined as the set
of atomic malfunctions, hence, a single fault can be part of a multiple fault.

The notation obs denotes the tuple value returned by the sensors. The set
OBS fi

contains all the possible tuples consisting of observed variable values
under the fault fi.

Let us assume that the model only describes the normal behavior of the
system.

2.1. STATE-BASED APPROACHES 43

In the case of FDI approaches, obs is generally the value tuple of the resid-
uals, not the observable variables. For DX approaches, obs contains the tuple
value of the variables that correspond to the sensor values.

Definition 2.9 (SBS Diagnosis candidate) For a given observation obs,
fi ∈ F is a diagnosis candidate if and only if obs ∈ OBS fi

.

fi is a minimal diagnosis candidate if and only if for each fj ⊂ fi, fj is not
a diagnosis candidate.

In the literature, the terms “diagnosis candidates” and “diagnosis” (as de-
fined in definition 2.5) are used without distinction.

Definition 2.10 (SBS Discriminability) Two faults fi and fj are said to be
strongly discriminable if and only if for any obs, when fi is among the diagnosis
candidates, fj never is, and conversely. In other words, OBS fi

∩ OBS fj
= ∅.

Two faults fi and fj are said to be non discriminable if and only if for any
obs, when fi is among the diagnosis candidates, then fj also is, and conversely.
In other words, OBS fi

= OBS fj
.

A fault fi is said to be weakly discriminable from a fault fj if and only
if, there exists an obs such that fi is a diagnosis candidate, and fj is not. In
other words, OBS fi

\ OBS fj
6= ∅. A pair of faults (fi, fj) is said to be weakly

discriminable if and only if fi is weakly discriminable from fj or fj is weakly
discriminable from fi, i.e. if and only if (fi, fj) is not non discriminable.

Discriminability is a very important concept, that will be used throughout
this thesis. It is the underlying property of detectability and diagnosability. Ac-
tually, detectability can be defined as discriminability from the normal behavior
mode. Diagnosability is defined as follows.

Definition 2.11 (SBS Diagnosability) A system is strongly diagnosable if
and only if every pair of faults is strongly discriminable:

(

∀fi, fj ∈ F , fi 6= fj

)

,OBS fi
∩ OBS fj

= ∅

A system is weakly diagnosable if and only if every pair of faults is weakly
discriminable:

(

∀fi, fj ∈ F , fi 6= fj

)

,OBS fi
\ OBS fj

6= ∅ ∨ OBS fj
\ OBS fi

6= ∅

The definitions proposed in this article are very important, however the
distinction between the individual component malfunction, and the abnormal
behavioral mode of the system is not done, both are called faults. This impacts
the ability to define formally the link between faults and components, or the set
of observations for the normal mode.

44 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

This problem is addressed in this thesis, and the definitions proposed in
section 3 introduce the notion of fault mode that allows one to make the dis-
tinction between the fault as an individual malfunction, and the fault as the
current behavior mode of the system that results from a possibly empty set of
malfunctions.

2.2 Event-based approaches

Most event-based approaches use discrete event formalisms like finite state au-
tomata and Petri nets. In these approaches, diagnosis reasoning is based on
the occurrence of discrete events, these events correspond to the occurrence of
a fault, or the occurrence of any other change in a particular behavior. The
occurrence of an event can modify the state of the system.

In classical event-based systems, the language used for describing system
states is limited: in automata states are simply enumerated, and Petri nets use
a marking, i.e. a finite set of natural integers, for characterizing the system
states. These constraints force the model designer to adopt a high abstraction
level. Some enrichments of these formalisms, like colored Petri nets, allow the
designer to stay at a low level of abstraction by providing a more expressive
language for describing system states.

2.2.1 Automata

This section presents the approaches for modeling the system that make use of
automata, more precisely finite labelled transition systems. In this domain, the
approach in [Sampath et al., 1995] is still a reference, from which interesting
enrichments or adaptations have been made, in order to deal with distributed
systems, or in order to enrich the means to describe faults.

Definition 2.12 (Finite state automaton) A finite state automaton is de-
fined by a tuple G = (Q, E, T, q0, A) where:

• Q is a finite set of states.

• E is a finite set of events.

• T ⊆ Q×E ×Q is the transition relation. When (q1, e, q2) ∈ T , also noted

q1
e

−→ q2, this means that the system can evolve from the state q1 to the
state q2 under the occurrence of the discrete event e.

• q0 ∈ Q is the initial state.

• A ⊆ Q is the set of accepting or final states.

G is deterministic if and only if T is a (partial) function T : (Q×E) → Q.

2.2. EVENT-BASED APPROACHES 45

The formalism of languages is closely linked to finite state automata, an
dit is necessary to introduce both since the following approaches rely on both
formalisms. We call E∗ the set of all finite length sequences of events of E,
including the empty sequence ε. E∗ is closed under the sequence concatenation
operator. E∗ is a language over the alphabet E, and so is any subset of E∗.
An element of s ∈ E∗ is called a sequence or word. The notation s(i) denotes
the symbol of E at index i in the word s, beginning at index 0. If e ∈ E and
s ∈ E∗, e ∈ s if and only if e appears at some index in s.

In particular, E is a subset of E∗. Consequently it is a language, even if all
the sequences it contains are only one event long. In the following, the notation
e ∈ E can indifferently refer to the event e or to the singleton sequence of
events that only contains e, and E indifferently refers to the set of symbols or
the language.

Operations over languages include classical set operations: union, intersec-
tion, complement and difference, as well as concatenation, noted . and defined
by L.L′ = {ll′, l ∈ L ∧ l′ ∈ L′}. Self concatenation is noted L1 = L and
Li = L.Li−1. L∗ is the closure of L under self concatenation that also contains
the empty word ε, also called Kleene closure.

For example, E∗
uo contains all the finite sequences of unobservable events.

E∗
uo.Eo contains all the finite sequences that result from the concatenation of a

finite sequence of unobservable events and an observable event.

Back to automata, the notation −→ is extended to sequences of events. In
the automaton G, we have, for any sequence s ∈ E∗:

q
s

−→ q′ ⇐⇒ q
s(0)
−→ q1 s(1)

−→ q2 s(2)
−→ . . . qn−1 s(n)

−→ q′

Definition 2.13 (Regular language, acceptation) A language L ⊆ E∗ is
regular if and only if:

• L = ∅, or

• L = {ε}, or

• L contains a finite set of words of E∗, or

• L is the union, or intersection, of two regular languages L′ and L′′, or

• L is the Kleene closure, or complement in E∗, of a regular language L′.

The automaton G = (Q, E, T, q0, A) accepts the language L(G) ⊆ E∗ defined
by:

L(G) =
{

s ∈ E∗
∣

∣ ∃qA ∈ A, q0
s

−→ qA

}

Property 2.1 A language is regular if and only if there exists an automaton
that accepts it.

46 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

An automaton G is live if and only if ∀qi ∈ Q,∃e ∈ E,∃qj ∈ Q, (qi, e, qj) ∈ T ,
i.e. there is an outgoing transition from every state.

A language L is live if and only if every word of L is a prefix of at least one
other word in L.

If all states are accepting states, i.e. A = Q, then G can be defined by the
tuple (Q, E, T, q0). In this case, L(G) is prefix closed, i.e. every prefix of every
word in L(G) also belongs to L(G).

The concept of trajectory, or scenario refers to a sequence of events that is
accepted by an automaton. It is used to distinguish arbitrary event sequences
(words) from sequences that actually denote a system behavior (trajectory).

The reference approach

The most well known approach for diagnosis and diagnosability analysis in
event-based approaches is the so-called “diagnoser approach” described in
[Sampath et al., 1995, Sampath et al., 1996]. The formalism and the attached
semantics for describing faults and observations are very commonly used in the
EBS diagnosis community. In this approach, the system is modeled as a finite
state automaton G.

In the diagnosis approach, the automaton used for modeling the system is
deterministic and accepts a prefix-closed, live language. In some approaches,
the system model is described directly as a regular language Lsys instead of
defining it through an automaton. The set of events is partitioned into the set
of observable events noted Eo and the set of unobservable events noted Euo.
The set of fault events, noted Ef , is a subset of Euo. Faults are assumed to be
permanent. Moreover, the system is supposed to produce observations regularly,
this assumption is expressed formally as the absence of cycles composed of
unobservable events in the automaton G.

Diagnosability definition relies on an operation called projection on observ-
able events that removes unobservable events from a word or trajectory.

Definition 2.14 (POBS and P−1

OBS
) Let ei be an event, ε be the empty word,

s, t be trajectories and ω be a trajectory containing only observable events. The
projection on observable events POBS applies to languages:

POBS : E∗ → E∗
o

∀e ∈ E ∪ {ε}, POBS(e) =

{

ε if e /∈ Eo

e if e ∈ Eo

∀s, t ∈ E∗, POBS(s.t) = POBS(s).POBS(t)

The inverse projection P−1
OBS

is defined as:

P−1
OBS

: E∗
o → Lsys

P−1
OBS

(ω) = {s ∈ Lsys,POBS(s) = ω}

2.2. EVENT-BASED APPROACHES 47

This framework allows one to define diagnosability for discrete event systems.
Informally, a system is diagnosable if and only if every fault event is necessarily
associated to a bounded observable event sequence that could not have been
generated in its absence. Formally, for any event e ∈ E, let L→e be the language
containing all the words of Lsys that end with e, L→e = E∗.{e} ∩ Lsys.

Definition 2.15 (EBS Diagnosability) An EBS is (strongly) diagnosable if
and only if:

∀efi
∈ Ef ,∃ni ∈ N,∀s ∈ L→efi

,∀t ∈ E∗
∣

∣ (st ∈ Lsys),

‖t‖ ≥ ni ⇒
(

∀u ∈ P−1
OBS

(

POBS(st)
)

, efi
∈ u
)

In [Sampath et al., 1995, Sampath et al., 1996], diagnosis and diagnosability
analysis rely on the construction of an automaton called the diagnoser, used to
monitor the system and to analyze diagnosability. The diagnoser states contain
a label indicating the current diagnosis, and the diagnoser events correspond
to the system’s observable events. When an observable event is received by
the system supervisor, the corresponding transition is fired in the diagnoser,
which brings it into a state containing the new current diagnosis, as illustrated
in figure 2.6.

Definition 2.16 (Diagnoser) The set of diagnoser labels L is defined as L =
2Ef . The label N is commonly used instead of ∅.

A diagnoser for the system automaton G = (Q, E, T, q0) is the automaton
Gd = (Qd, Ed, Td, qd0) where:

• Qd ⊆ 2Q×L, each state of the diagnoser contains a list of couples (system
state, label).

• Ed = Eo, only observable events are considered in the diagnoser.

• Td is the transition relation and uses the notation
ed−→d. We have qd

ed−→d

q′d if and only if:

(

∀(qi, l) ∈ qd

)

,

(

(

∃s ∈ E∗
uo.{ed}, ∃qj ∈ Q, qi

s
−→ qj

)

⇐⇒

(

∃(q′i, l
′) ∈ q′d, q

′
i = qj and l′ = l ∪

(

Ef ∩ {s(0), s(1), . . . s(n)}
)

)

)

• qd0 = {(q0, N)} is the initial diagnoser state.

A state of the diagnoser in which some labels mention a fault event ef and
other labels do not mention it is said to be ef -uncertain. Intuitively, a cycle
of ef -uncertain states in the diagnoser would mean that after the occurrence
of ef , the system may enter a cycle and execute a sequence of events of any
arbitrary length without exhibiting an observation that would characterize the
fault. This intuitive property has proved to be sufficient for diagnosability, but
not necessary: in some systems, even though the diagnoser contains a cycle

48 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

0 4 5

1 2 3

6 7 8

o 1

f1

uo
1

uo2 o2

uo
2

f 2

o2 o1

o3

o2

uo1

(

0, N
) (

3, f1

)

,
(

5, f2

)

,
(

7, N
) (

5, f2

)

(

8, N
)(

1, N
)

(

3, N
)

(

3, f1

)

o1

o2

o2

o1

o2

o3

o1

o2

o3

o3

o2

Figure 2.6: A diagnosable system and its diagnoser. Events fi are fault events,
events uoi are unobservable normal events, and events oi are observable.

of ef -uncertain states, the system is still diagnosable [Sampath et al., 1995].
The true equivalent property is more subtle, as illustrated in figure 2.7: an
indeterminate cycle in the diagnoser is a cycle containing only ef -uncertain
states, that corresponds to both a normal cycle and a faulty cycle in the system.
In some cases, a cycle of ef -uncertain states corresponds to a non-cyclic sequence
of events in the system, such cycle is not an indeterminate cycle. This restriction
allows one to state that a system is diagnosable if and only if its diagnoser
contains no indeterminate cycle.

A particular interesting aspect of this approach is that the diagnosability of
each fault can be evaluated separately. Some faults are diagnosable, and some
are not, the system is diagnosable when all faults are diagnosable. However, it
suffers from two major drawbacks: the diagnoser, even if it can be computed
offline at design time, is extremely complex to build and requires tremendous
amounts of memory. Moreover, diagnosability information is poor, since the
designer is only aware of which faults are diagnosable and which are not, but
does not give the reasons why, or the scenarios in which some faults are not
diagnosable.

2.2. EVENT-BASED APPROACHES 49

1

a

2
f

3a 4a

b

System n◦1

1

a

2
f

3a

a

4a

b

System n◦2

1N 1N, 3f
a

1N, 3f, 4f
a

a

4f
b

b

Common diagnoser for both systems

Figure 2.7: Diagnoser and diagnosability: a diagnosable system and an undiag-
nosable system that have the same diagnoser. Events a and b are observable,
event f is a fault event. The diagnoser state 1N, 3f, 4f may form an inde-
terminate cycle if it corresponds to a normal cycle and a faulty cycle in the
system.
In system n◦1, the diagnoser cycle over the state labeled 1N, 3f, 4f only cor-
responds to a normal cycle over state 1. It is not an indeterminate cycle, and
system n◦1 is diagnosable.
On the contrary in system n◦2, the diagnoser cycle corresponds to both a normal
cycle over state 1 and a faulty cycle over state 3. Consequently, this is an
indeterminate cycle, and system n◦2 is not diagnosable.

50 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

Complexity and efficiency The major drawback of this approach is the
computational complexity. The size of the diagnoser is exponential in the
number of states of the system model, which makes it difficultly tractable in
real applications. This problem was addressed in parallel in [Jiang et al., 2001,
Yoo and Lafortune, 2002] and polynomial time algorithms are provided. Those
algorithms are based on the construction of automata dedicated only to diagnos-
ability checking, az opposed to the diagnoser that also allows on-line supervision.

The problem of diagnosability analysis has been translated into a satisfia-
bility problem in [Rintanen and Grastien, 2007]. This translation allows one to
reuse powerful tools to perform efficient diagnosability analysis.

Distributed approach

The two drawbacks of Sampath’s approach (diagnoser size and poor feedback to
the designer) were addressed in an adaptation of the approach [Pencolé, 2005].
In this approach, the system is modeled by several communicating automata,
each automaton representing a part of the system. The formalism is extended
by defining a new kind of unobservable events called communication events. A
communication event is always present in at least two subsystems, and is always
fired synchronously by all the communicating automata that have it.

The choice of using communicating automata is particularly suited for dis-
tributed systems, since each communicating automaton represents the model of
a local component. This approach also addresses the problem of representing
parallelism, that requires a lot of resources in a classical automaton. Hence a
system model is often much smaller when expressed with communicating au-
tomata, as illustrated in figure 2.8. This formalism is still as expressive as a
classical automaton, and the full system model can be obtained by synchronizing
the automata on the set of communication events.

Pencolé’s approach to diagnosability analysis takes advantage of the decom-
position of the system into subsystems and builds interactive diagnosers, each
one is in charge of one subsystem, and all interactive diagnosers communicate
one with another in order to provide a global diagnosis for the whole system. The
size of the interactive diagnosers is much smaller than the size of the diagnoser
for the whole system, and makes tractable their construction. Diagnosability
is checked by synchronizing each interactive diagnoser with itself on observable
events, in order to create a twin diagnoser, and by synchronizing twin diagnosers
one with another, focusing on the undiagnosable scenarios. At the end of the
process, these undiagnosable scenarios are returned to the designer in order to
indicate precisely which behavior(s) of which component(s) to modify in order
to make the system diagnosable.

2.2. EVENT-BASED APPROACHES 51

1

2

c1

3

e2e3

e1

4

c2

e4

A

1

2

c1

3

c2

4

e5

5

e6

6
c2 c1

e7

B

1,1

2,2 3,2 4,1

2,4 3,4 4,6

1,6

3,1 3,6

2,62,1

4,3

4,5

1,5

1,3

3,3

2,3

3,5

2,5

c1

e5 e5

c2

e7

e4

e7

e7

e7c1

e6

e4

e4

e1

e6

e1 e1

e2

e3

e2

e3

e3

e4

e2 e3e2

e3e3e3e2 c1

P

Figure 2.8: Synchronous product of two automata: the automaton P is the
synchronous product of automata A and B over the set of communication events
{c1, c2}. Initial states are indicated by a thick border.

52 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

Enriching fault specifications

In the two previous approaches, a fault is represented by a discrete event.
Although in many cases this is sufficient, some undesirable behaviors in dis-
crete event systems need a richer specification. The approach described in
[Jéron et al., 2006] uses supervision patterns in order to monitor the system.
These patterns are described by a finite labelled transition system that uses the
same events than the system model. The pattern’s final states are reached when
the undesired behavior has been recognized in the system. Such patterns can
simply represent the occurrence of a fault, but they can also represent complex
specifications, like “event e1 must not occur n times in a row without the occur-
rence of event e2”. They simplify the modeling phase and allows to manipulate
much smaller models, as illustrated in figure 2.9.

Observations are represented by observable events, which leads to the con-
struction of one diagnoser per supervision pattern, the main step being the
synchronization of the pattern with the model. Algorithms are provided to
check the diagnosability of the pattern, and for efficient online diagnosis.

In terms of expressivity, the approach developed in [Jiang and Kumar, 2002]
allows even richer fault specifications than the supervision patterns approach,
since faulty behaviors are described by means of Linear Temporal Logic formula
(LTL). The classical automaton described in 2.12 is enriched with a set of atomic
propositions AP and a state labelling function L : Q → 2AP . Observations are
represented by a mask function on the language generated by the automaton,
which erases unobservable events from the language. This is equivalent to par-
titioning the set of events between observable and unobservable events.

Fault specifications are built by describing propositions that should be true
in normal operation. These propositions are constructed by combining elements
of AP using the usual logic operators ¬,∧,∨,⇒,⇔, and the following temporal
operators:

• Xp, next: p holds in next state.

• Gp, globally or always: p holds in all the future states.

• Fp, finally: p holds in some future state.

• p1Up2, until: p2 holds in some future state q, and p1 holds in all states
preceding q.

Linear Temporal Logic only refers to one execution of the system, i.e. one path
or trajectory, possibly infinite. A proposition holds for a path if and only if it
holds for the first state of the path.

For example, let AP contain the propositions p1 =“the pipe is clogged” and
p2 =“the tank is clean”. These propositions are used to specify the following
specifications:

2.2. EVENT-BASED APPROACHES 53

A

B

check

C
load

load

drop

0 1
drop

check
2

drop

check

3
drop

A simple system and its supervision pattern

B,0A,0

C,0

load load

A,1drop

ch
eck

C,1
load

A,2

drop

ch
ec

k

A’,0
f

C’,0

load

f

A’,1

drop
f

C’,1
load

f

A’,2

drop

f

C,2

load

A,3

B,3

C,3

drop

load

checkload

drop

A model for the diagnoser approach for the same system

Figure 2.9: Supervision patterns simplify the modeling. A robot meant to trans-
port objects needs to perform a routine check every time it travels a predefined
distance, that allows it to transport no more than 2 objects. The events drop
and check are observable. A fault in the distance counter will make the robot ig-
nore the routine check, and risk further damage. After over travelling, a routine
check is not enough to restore the robot state.
Above, the model of this system, and a supervision pattern for the fault. Below,
a model for the diagnoser approach, that appears to be much larger and harder
to maintain.

54 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

• f1 = G¬p1: the pipe never gets clogged (it is true in all states that not
the pipe is clogged).

• f2 = GFp2: the tank is clean from time to time (it is true in all states
that in a future state the pipe is clean), meaning the sequences of states
in which the pipe is not clean are all finite.

f1 is called a safety specification that requires that something bad (pipe clogged)
never happens. On the opposite, f2 is a liveliness specification requiring that
something good (tank clean) keeps happening. It is claimed that levelness state-
ments bring a significant enrichment to the fault specifications for diagnosis, in
comparison to the approaches described in the previous sections. However, diag-
nosing that “the tank has ceased to be cleaned from time to time” is impossible
from a finite observation, since the tank may always be cleaned in the future.
The only way to reach such a diagnosis would be to prove that something bad
prevents the tank from being cleaned, which falls back to a safety specification
that can be expressed in the diagnoser approach. In this approach, diagnosabil-
ity is defined in such a way that faults related to a likeness specification cannot
be diagnosable. This seems consistent with the previous consideration, but then
the utility of specifying faults with a aliveness statement seems very limited.

Although this approach does not enrich the scope of abnormal behaviors that
can be diagnosed, the model allows the use of model checking methods that pro-
vide efficient algorithms for checking diagnosability, and building one diagnoser
per fault specification. Moreover, this richer language may help making the
system modeling easier.

2.2.2 Petri nets

The Petri net formalism is a very powerful way to model automated systems,
in particular when parallelism and synchronization are important.

Definition 2.17 (Petri Net) A Petri Net is defined by a tuple (Q, T, A,M0)
where:

• Q is the set of places.

• T is the set of transitions.

• A : (Q × T) ∪ (T × Q) → N
+ describes the Petri net arcs.

• M : Q → N is the initial marking.

More details on Petri nets can be found in [Peterson, 1981]. At each moment
of its execution, the state of the modeled system is indicated by the current
marking. When adding labels to transitions, it is possible to generate the graph
of reachable markings which is equivalent to the automata used in the previous
section unless some infinite markings are reachable. However, asynchronous

2.2. EVENT-BASED APPROACHES 55

communications and parallelism are much easier to model with Petri Nets than
with automata, and in general the graph of reachable markings is much larger
than the original Petri net.

Translation of the reference approach

The approach described in [Haar et al., 2003] appears to be a translation of the
reference approach using automata to the Petri net formalism. The purpose
is to be applied to highly asynchronous distributed systems; this is the kind
of systems in which Petri nets are highly more efficient than automata as a
modeling language. A labelling function λ : T → Σ labels the transitions
with symbols. The null symbol is accepted ε ∈ Σ, and the set of unobservable
transitions is defined as UO = λ−1(ε), while the set of observable transitions as
O = T \UO. It is assumed that two observable transitions cannot be labelled by
the same symbol. Each symbol (except ε) corresponds to a distinct observation.
Faults are also represented by transitions, Φ ⊆ UO is the set of fault transitions.

The regular language generated by the automaton is translated into the set
of configurations of the Petri net, this notion is similar but takes into account
the asynchronous aspect. Notions of “length” and “last event” of a word are
translated into “height” and “maximal event” of a configuration. Two words
having the same observable projection are translated into two configurations
being isomorphic with respect to the observable equivalence relation. The def-
inition of diagnosability states that if a configuration κ has a fault event1 as
a maximal event, then any configuration that continues κ over a given finite
height is isomorphic (w.r.t. the observable equivalence relation) with only con-
figurations containing the same fault event.

Another translation

Another approach [Wen and Jeng, 2004] is derived from the standard
automaton-based definition, but is not as close to the original definition. Faults
are modeled by faulty transitions, as the set of transitions T is partitioned into
normal transitions TN and faulty transitions TF . The modeling of observa-
tions is quite different from the automaton approaches, as the set of places P is
partitioned into observable places Po and unobservable places Puo.

The approach relies on the construction of a diagnoser under the form of
an automaton. The definition of the automaton, using label propagation and
range functions, is a straightforward adaptation of the original definition of the
diagnoser given in [Sampath et al., 1995]. The definition of indeterminate states
and cycles in the diagnoser also follows the same principles. Diagnosability is
not stated as a property of the system model, but as a property of the diagnoser.
The problem of indeterminate cycles mentioned in figure 2.7 has been taken care
of in this approach.

1Configuration events are linked to the Petri net transitions by an homomorphism.

56 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

Interpreted Petri net-based approach

Another approach described in [Ramı́rez-Treviño et al., 2004] makes use of In-
terpreted Petri nets for diagnosis and diagnosability analysis. An Interpreted
Petri net is defined by the tuple (N, Σ, λ, ϕ) where:

• N is a Petri net.

• Σ = {α1, α2, . . .} is the input alphabet of the net, αi being an input
symbol.

• λ : T → Σ ∪ {ε} is the labelling function. ε labels an internal event. Two
transitions with the same input places and same input weight may not
have the same label (except ε).

• ϕ : R(N, M0) → (Z+)q is the output function, where R(N, M0) is the set
of reachable markings, and q is the size of the output vector.

Interpreted Petri nets can be synchronized between one another, allowing one
to model components separately, and to build the full model automatically.

Observations are characterized by sequences of input-output symbols, de-
fined as sequences of pairs of input and output that are consistent with the
system: ω = (α1, y1)(α2, y2) . . . (αn, yn), where αi ∈ Σ∪{ε} is the current input
when the output changes from yi−1 to yi. The set of all input-output sequences
that can be generated by the Interpreted Petri net IPN from a marking M is
denoted Λ(IPN,M). Λk(IPN,M) denotes the set of input-output sequences
of length k, and ΛB(IPN,M) denotes blocking input-output sequences: after
generating one of these sequences, the Interpreted Petri net is in a deadlock (no
transitions or only self loop transitions are enabled).

Faults are characterized by faulty places. Moreover, there is no distinction
between several types of faults: places may be normal or faulty. The problem
of fault diagnosis is then a problem of detection, and if needed isolation of the
sub model containing the marked faulty place. The set of reachable markings
R(N, M0) is hence partitioned into faulty markings and normal markings. A
marking is faulty when at least one faulty place is marked. The definition states
that a system is diagnosable if and only if there exists a k ∈ N such that for every
faulty marking Mf and every normal marking Mn, we have: (Λk(IPN,Mf) ∪
ΛB(IPN,Mf))∩(Λk(IPN,Mn)∪ΛB(IPN,Mn)) = ∅. An algorithm is provided
that allows to check a sufficient condition for diagnosability.

This approach is limited by the fact that only one type of fault is consid-
ered, although it seems to be extensible to several types of faults. However,
the inability to check necessary and sufficient criteria for diagnosability is dis-
appointing. Moreover, using places especially to express the presence of faults
and not representing the system state may seem strange for non Petri net users.

2.3. HYBRID SYSTEMS 57

2.3 Hybrid systems

In an attempt to combine the expression power of both state-based and event-
based approaches, diagnosability has been addressed for systems modeled with
hybrid formalisms.

In [Biswas et al., 2006], the formalism of Real Time Hybrid Systems (RTHS)
is used. In this formalism the behavior of the system is described by the notion
of trace, which is a sequence of transitions that capture both continuous and
discrete changes. The condition for diagnosability is expressed as a reachability
condition, and tested via an adaptation of the diagnoser defined in section 2.2.1
to RTHS.

In [Fourlas et al., 2002], Hybrid Input/Output Automata are used. The hy-
brid behavior is described by an hybrid execution which is an alternating se-
quence of continuous evolutions called trajectories and actions. Observations
are only achieved by the measurement of transition guards over continuous
variables. Input actions are not considered for diagnosis.

Two other approaches rely on the abstraction of continuous dynam-
ics and fault indicators into a set of discrete events [Bayoudh et al., 2008,
Daigle et al., 2008]. Event-based diagnosability is then performed in a clas-
sical way, according to the diagnoser approach defined in section 2.2.1. In
[Daigle et al., 2008], the system is represented by means of hybrid bond graphs,
and discrete events are created to represent the change of value of residuals.
In [Bayoudh et al., 2008], the system is modeled by a hybrid automaton, and
discrete events model the changes of overall signature, which seems to limit the
combinatorial explosion due to the number of generated events.

In [Bayoudh et al., 2006, Bayoudh et al., 2008], a system is modeled by
means of a hybrid automaton. Diagnosability is defined in several steps:

1. Multimode systems are defined.

2. Diagnosability for multimode systems is defined as an enrichment of FDI
approaches.

3. Hybrid systems are defined as multimode systems with constraints over
the transitions between modes.

4. The continuous dynamics are abstracted under the form of events rep-
resenting the modification of the values of the residuals. The system is
then represented under the form of an automaton, on which the diagnoser
approach is applied.

A hybrid system is modeled by a hybrid automaton S =
(V,Q, E, T, R, (v0, q0)) where:

58 CHAPTER 2. DIFFERENT FORMALISMS FOR DIAGNOSABILITY

• (Q, E, T, q0) is a finite state automaton with observable events Eo, unob-
servable events Euo and fault events Ef . The states of the automaton are
called modes.

• V is a set of continuous variables, partitioned into the observable variables
O and unobservable variables X.

• R is a set of constraints on V ∪ Q. Each constraint Ri is associated to a
mode of the system.

• (v0, q0) is the initial condition.

In a multimode system, there is no constraint over the transitions between
modes. It is a hybrid model in which E = ∅ and T = Q × Q. Some of these
system modes are normal, and some are faulty.

Applying the parity space approach to each mode of the multimode system
generates one set of residuals per mode. When the system is in a mode qi, the
residuals generated for this mode are equal to 0. However when the system is
in mode qi, the residuals generated for other modes qj may become equal to 1.
The signature is applied to modes instead of only faults. Each mode qi of the
system is associated to its signature, that indicates the value tuple for all the
residuals generated from all the modes.

By denoting OBS qi
the set of all the observations that can be recovered in

mode qi, the strong diagnosability definition is similar to definition 2.11 page
43:

Definition 2.18 (Multimode system diagnosability) In a multimode sys-
tem, a mode qi is diagnosable if and only if it is discriminable from any other
mode qj:

∀qi, qj ∈ Q,OBS qi
∩ OBS qj

= ∅

The translation to hybrid system is done by transforming the residual
switches into events, thus creating “diagnosis automata” that describe the be-
havior of the FDI diagnosis system. These automata are synchronized with the
mode automaton (Q, E, T, q0) to create the behavior automaton.

Definition 2.19 (Hybrid system diagnosability) A hybrid system S is di-
agnosable if and only if its behavior automaton is diagnosable according to def-
inition 2.15.

Hybrid system diagnosability analysis is still a recent research domain, and
this thesis focuses mainly on state-based and event-based approaches, that can
be considered as mature. However, the unification of diagnosability analysis
approaches should undoubtedly apply to hybrid approaches with an adapted
point of view.

Chapter 3

Unified definitions

The approaches for diagnosability analysis described in the previous chapter 2
are very different one from another. Still, all approaches reference some common
concepts that can be used as a basis for a global, model-independent view on
diagnosability analysis. This chapter summarizes the hypotheses and points of
view adopted in each approach, and describes the position that is adopted in this
thesis. The resulting definitions account for all the diagnosability approaches,
and claim to provide a unifying point of view.

3.1 Faults and fault modes

Definition 3.1 (ISO Fault) In document ISO/CD 10303-226 of the Interna-
tional Organization for Standardization, a fault is defined as an abnormal con-
dition or defect at the component, equipment, or sub-system level which may
lead to a failure.

The fundamental concept in diagnosis and diagnosability, shared by all the
approaches, is the concept of fault. In definition 3.1, a failure occurs when
the system does not fulfill the purpose for which it has been designed and con-
structed. This informal definition has been interpreted in various ways according
to the existing modeling approaches.

This section presents the different meanings in the existing model-based
diagnosis approaches for the concept of fault. The position used in the following
chapters of this thesis is presented and debated.

59

60 CHAPTER 3. UNIFIED DEFINITIONS

3.1.1 Different interpretations of a fault

The concept of fault bears the same name in most diagnosis approaches, al-
though comparison shows that it is subject to significantly different interpreta-
tions according to the point of view.

In FDI approaches, the assumption of the single fault is common. In this
case, it is assumed that two components in the system may not be in abnormal
condition at the same time. Each fault is a different cause for the system not
to fulfill its purpose. However, in many approaches this assumption is relaxed,
and the system may be subject to “multiple faults”. The relaxation of this
assumption makes the diagnosis approach more realistic in some application
domains, but complexifies the diagnosis reasoning and makes diagnosability
much harder to achieve, especially since sensors may be faulty and provide
erroneous observations to the supervisor. As a compromise between the validity
of the model and diagnosability, the scope of considered faults may be extended
to only double faults, or triple, etc. The system behavior is influenced by the
current fault.

In DX approaches, the behavior of each component depends on the presence
or absence of faults inside it. The presence of these faults is characterized by
one or several discrete variables called mode variables, each fault combination
corresponds to a value for the tuple of mode variables. An important aspect
is that mode variables may be binary (absence/presence of the fault), but may
have a larger finite domain if needed.

In event-based approaches, faults are events, and may have occurred or not.
Since in classical approaches faults are permanent, there is no distinction be-
tween trajectories containing one occurrence of a fault event, and trajectories
containing several occurrences of the same fault event. The system behavior
results from the set of fault events that have occurred in it.

Example 3.1 Consider a hydraulic system in which a valve can get stuck open
or stuck closed, and a pipe can get clogged.

• FDI representation: there are 5 different faults: 3 single faults (pipe
clogged, valve stuck closed, valve stuck open) and 2 multiple faults (pipe
clogged & valve stuck closed, pipe clogged & valve stuck open). The nom-
inal mode and each fault are associated to a set of constraints that define
the system behavior in the corresponding condition.

• DX representation: 2 mode variables are associated to the two components
that may be faulty. The valve status is described by the variable:

valve ∈ {normal, stuck open, stuck closed}

The pipe status is described by the variable:

pipe ∈ {normal, clogged}

3.1. FAULTS AND FAULT MODES 61

• DES representation: 3 fault events are defined: “pipe gets clogged”, “valve
gets stuck open”, and “valve gets stuck closed”.

This example illustrates the diversity of the interpretations of the notion of
faults in the existing approaches. According to the approaches, 2 variables, 3
faults or 5 faults are used to represent the various behaviors that can be adopted
by the system.

3.1.2 Unified denomination

Having a unified view on the different approaches for diagnosability analysis
requires to define concepts that allow one to express the various interpretations
of a fault developed in the different communities. This section provides the
definition for fault and fault mode that will be used further on in this thesis,
and positions them with respect to the interpretations described in the previous
section. These definitions aim to be as intuitive as possible and result from
exchanges with members of the different model-based diagnosis communities as
well as other research communities.

Definition 3.2 (Unified Fault) A fault is an elementary unexpected event
that occurs in a system or component and may alter its behavior. A system or
component in which a fault has occurred is said to be faulty, and the fault is said
to be present. Several different faults may occur in various orders in the same
system or component.

In the following of this thesis, faults are assumed to be permanent. This
definition matches the DES interpretation of a fault, in the sense that the fault
is an event, and that it is elementary. The DX interpretation also corresponds
to this definition since diagnosis consists in assessing which components are
faulty. The FDI interpretation is not consistent with this definition, since in
FDI, saying that a fault is present implicitly means a single fault (except if
stated explicitly as a multiple fault) thus implying that other faults are absent.
The FDI interpretation actually corresponds to what is defined here as a fault
mode.

Definition 3.3 (Unified Fault mode) The system’s behavioral mode that re-
sults from the occurrence of a given combination of faults is a fault mode. A
fault mode corresponds to the presence of some faults and to the absence of
the other faults. The normal system behavior corresponds to the absence of all
faults, it is a fault mode called the normal mode of the system. The occurrence
of a fault modifies the fault mode of the system.

A fault mode can represent the absence of faults (normal behavior), a single
fault, or a multiple fault. In DX approaches, a fault mode is defined by assigning
a value to all the mode variables in the system. In event based approaches,
the fault mode contains all the fault events that have occurred in the system
trajectory.

62 CHAPTER 3. UNIFIED DEFINITIONS

3.1.3 Models for faults and fault modes

A unified definition for faults and fault modes is not useful if it cannot be
translated into the various formal languages used in the different model-based
diagnosis approaches. In this section, formal representations of faults and fault
modes are proposed, and their links with the different existing formalisms are
clarified.

A straightforward way to model faults and fault modes is to represent fault
modes as sets of faults. When all faults are independent, any combination of
faults is possible in the system, and the set of fault modes is the power set of
the set of faults. However, as illustrated in example 3.1 page 60, some faults
may not be present at the same time in the system. In the general case, the set
of fault modes is a subset of the different combinations of faults.

Definition 3.4 (Fault modes set representation) The set of all the faults
that may occur in the system is denoted Fsys. A fault mode f is represented by
the set of faults that are present when the system is in f . The set of all reachable
fault modes is denoted Fsys.

Fsys ⊆ 2Fsys

The normal mode is a fault mode containing no fault, and denoted ∅.

This definition is easily translated to the DES formalism, since faults are
represented by events. The fault mode is represented by the set of faults events
that belong to the system trajectory. The FDI approach also copes easily with
this formalism, since one or several sets of constraints are associated to each
fault mode, independently of the formalism used to represent them.

The integration of this formalism with DX approaches is slightly more dif-
ficult. Let us first consider the case of binary independent faults: each fault is
represented by a mode variable that ranges over the domain {normal, faulty},
and all combinations of faults are possible. The occurrence of a fault is charac-
terized by the modification of the corresponding mode variable value. A fault
mode is characterized by the assignment of all mode variables to a value. Each
fault mode can hence be associated to a value for the tuple of all mode variables.

Definition 3.5 (Fault modes variable representation) The system is as-
sociated to a set of n discrete mode variables mi that range over finite domains
Di and characterize the presence or absence of faults. A fault mode f is defined
by the assignment of all the mode variables to a value. The set of all reachable
fault modes Fsys is defined as:

Fsys =
{

(v1, v2, . . . vn),∀i ∈ {1 . . . n}, vi ∈ Di

}

Relaxing the assumption that faults are binary and independent makes the
mapping between the set representation and the mode variable representation
used in DX approaches slightly more difficult and arbitrary. For example, a
mode variable with 3 values, like {normal, fault1, fault2}, corresponds in the

3.2. DIAGNOSABILITY 63

set representation to 2 faults that cannot be present at the same time. This
exclusion can result from the fact that they correspond to two different ways
to alter the same component, in that case the faults are the events changing
the mode variable value from normal to fault1 and from normal to fault2. The
exclusion can also result from the faults representing two levels of alteration of
the same component like two degrees of wear, in that case the faults correspond
to the mode variable value changing from normal to fault1 and from fault1 to
fault2.

If a 3-valued mode variable may represent components that would be mod-
eled in two different ways with other approaches, a 4-valued mode variable m
may be used to represent even mode kinds of components:

• 1 type of alteration with 3 levels of alteration of the component: m ∈
{normal, low wear, medium wear, advanced wear}.

• 2 independent faults: m ∈ {normal, alteration1, alteration2, alteration1 &
alteration2}.

• 2 exclusive types of alteration, one of those types has 2 levels of alteration:
m ∈ {normal, alteration1, alteration2 low, alteration2 high }.

• 3 exclusive types of alteration: m ∈ {normal, alteration1, alteration2,
alteration3}.

All these different components have different set representations for their faults.

As illustrated above, there is no a priori correspondence between mode vari-
ables and fault events. The presence of each fault is characterized by one mode
variable, but one mode variable may describe the presence or absence of several
faults. Still, when considering all the faults at once, two different reachable
combinations of faults in the system are necessarily represented by two differ-
ent values of the tuple of all mode variables. Conversely, two different values
for the tuple of all mode variables necessarily represent a different combination
of present and absent faults, otherwise a mode variable would have two values
representing the same situation. In DX representations, the current fault mode
is represented by the value of the tuple of all the mode variables in the system.

3.2 Diagnosability

The definitions mentioned in section 2.1.4 are now revisited. The weaknesses
plotted in the previous approaches are overcome thanks to the considerations
developed in the previous section about faults and fault modes.

Definition 3.6 (Unified Fault signature) The fault signature is a function
Sig : Fsys → OBS. For each fault mode fi, it associates the observations that
can be obtained when the system is under fi.

64 CHAPTER 3. UNIFIED DEFINITIONS

This definition is totally consistent with the unified state-based approach
definition of section 2.1.3, the only difference is that it accounts for the difference
between faults and fault modes.

Diagnosis provides a set of explanations, or candidates, for the current ob-
servations. Each diagnosis candidate assesses the presence of some faults and
the absence of other faults. It is consequently a fault mode.

Definition 3.7 (Unified Diagnosis candidate, Diagnosis) A fault mode
fi is a diagnosis candidate for the current observation obs if and only if it
can explain the current observations:

obs ∈ Sig(fi)

A diagnosis for obs is the set of all diagnosis candidates for obs.

Definition 3.8 (Unified Discriminability, Detectability) Two fault
modes fi and fj are discriminable if and only if:

Sig(fi) ∩ Sig(fj) = ∅

A fault mode fi is detectable if and only if it is discriminable from the
normal mode:

Sig(fi) ∩ Sig(∅) = ∅

The property of detectability is not relevant for the normal fault mode.
According to the previous definition, the normal mode is not detectable, since
it is not discriminable from itself. Such definition can be adapted to exclude
the normal mode, although we do not find it necessary.

Definition 3.9 (Unified Diagnosability) A fault mode is diagnosable if and
only if it is discriminable from any other fault mode.

A system is diagnosable if and only if every pair of fault modes is discrim-
inable:

(

∀fi, fj ∈ Fsys, fi 6= fj

)

, Sig(fi) ∩ Sig(fj) = ∅

These definitions of discriminability and diagnosability are candidates for
unified definitions since they are related to fault modes, and can hence apply to
any modeling approach described before. However, at this point of the thesis
report, the attentive reader could notice that the set of observables OBS has
not been defined for event-based approaches. This implies that the definitions
of signature, and all the definitions above do not hold.

Defining the set of observables OBS for event-based approaches is not triv-
ial. It is actually the topic of the next chapter, and needs the use of additional
formalisms, in particular ω-languages and Büchi automata. It is however possi-
ble, and we will prove that the definitions given in this section provide a unified
point of view on diagnosability, for all the mentioned diagnosability approaches.

3.2. DIAGNOSABILITY 65

3.2.1 State of the art conclusion

The various approaches to diagnosability analysis use very different formalisms,
but they address the same problem with very similar approaches.

We have unified the definition and the models for faults and fault modes,
that account for all the existing modeling approaches. In order to claim that
the diagnosability definitions that result from this positioning are universal, we
still lack a unified definition of the set of observables.

The unified definitions described above mention a set of observables. This
formal representation is adapted for state-based approaches, since diagnosis is
performed on one observation at a time, and that it does not rely on any relation
between observations.

In event-based approaches, the fact that a finite observation can be continued
in order to have more information is fundamental in the definition of diagnos-
ability. Representing the observables as a set with no particular structure seems
unadapted, however the next chapter proposes a solution to this problem.

Part II

Diagnosability through

Fault Signatures

67

69

It has been shown in the previous part that the various model-based diag-
nosis approaches are classified into two categories: state-based and event-based
approaches.

Chapter 3 has shown that the fundamental concepts of fault and fault mode
can be expressed and modelled in a unified way. Unified definitions for these
concepts are given in definitions 3.2 to 3.5 and are adopted in the rest of this
thesis.

The other definitions 3.6 to 3.9, concern diagnosis and diagnosability. They
rely on a set of observables OBS . These definitions unify the state-based ap-
proaches in which an observation is a value for the observable variable tuple.
However, for event-based approaches, it is shown that the observables are or-
ganized into languages, and that diagnosis relies on this language structure.
Hence the different nature calls for further developments before these “unified”
definitions apply to event-based approaches.

This part contains the core of the thesis contribution. First, the set of observ-
ables OBS is defined for event-based approaches, and the resulting definitions
of signature and diagnosability are given. It is then proved that the definitions
given in chapter 3 unify all diagnosability approaches.

In chapter 5, the complexity problem induced by the great number of pairs
of fault modes is addressed. The concept of partial fault mode, inspired from the
concept of partial diagnosis defined in DX approaches (definition 2.6, page 39) is
introduced. The application of fault signatures to partial fault modes provides
an efficient algorithmic approach for diagnosability analysis. An implementation
of this algorithm is described in section 5.3.

Finally, the concept of fault signature is extended, in the case of state-based
systems, to any property that defines a set of system states. The purpose of
this extension is to allow diagnosability analysis not only for faults, but also for
properties such as repair preconditions, quality of service, etc.

Chapter 4

Signatures for Event-Based

approaches

As described in section 2.1, the concept of fault signature is applicable for all
state-based diagnosis and diagnosability analysis approaches. In this chapter,
it is shown that it can be applied to event-based approaches as well.

In state-based approaches, observations are modelled by means of observ-
able variables. In most cases, these observable variables are discrete: in FDI
approaches, the continuous variables are involved in consistency checks, whose
results (check passes or check fails) are generally discrete. Diagnosis reasoning
takes as input those discrete variable values in order to provide an explanation
in terms of faults or fault modes. An important aspect is that during the di-
agnosis reasoning, each discrete variable has a unique value, which means the
system does not evolve from the point of view of the diagnosis process.

State-based approaches are often considered to be based on a snapshot of
the system, i.e. on its state at one precise instant. This is oversimplified, since
incremental approaches exist for diagnosis, and since FDI residuals are generally
numeric filters based on a memory and several observations. Reasoning on a
temporal observation window (i.e. on the last n observations, n being a finite
integer) may allow to increase diagnosability for many systems, but it does not
solve the problem in general. There is a part of the past history that is not taken
into account for diagnosis, which may contain pertinent information. Moreover,
there is no diagnosability analysis approach in state-based approach that ac-
counts for incremental with observation windows, or with all the observations
in the system history.

In event-based approaches, observations are modelled by observable events.
The diagnosis process takes into account the sequence of all events that are
observed during the system life cycle. The consideration of the system history
is the fundamental difference between state-based and event-based approaches

71

72 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

to diagnosis and diagnosability analysis. It impacts strongly the diagnosis rea-
soning, since in event-based approaches, the diagnosis process is not restarted
again each time a new observation is received: the process keeps track of the
system history, and updates the diagnosis candidates when new observations
are received. Diagnosability analysis also takes into account the possibility of
evolution of the diagnosis, and only requires the delay between the occurrence
of a fault and characteristic symptoms to be bounded.

4.1 A new point of view on EBS observables

The definition of a set of observables is strongly linked to the relative lifetimes
of observations and diagnosis process. In state-based approach, since diagnosis
is performed on a unique observation or on the last few observations, it can-
not make use of possible relations between past observations and recent ones.
The observables can consequently be gathered into a simple set. In event-based
approach, diagnosis is based on a finite observation of the system, in which sev-
eral observable events occur. Diagnosis is based on the observed sequences of
events, but each time a new observable event is received, the sequence evolves.
Considering the set of all observable sequences of events is not sufficient for di-
agnosability. It is necessary to consider the language of all observable sequences
of events, since diagnosability is strongly linked with the notion of extension of
a sequence of events.

The solution described here relies on an original point of view. The concepts
of observation and observable, that are not clearly distinguished in state-based
approach, are clarified.

In EBS, an observation is a finite sequence of events; yet, any observation
can potentially be continued. Hence, the observable, i.e. the potential observa-
tions, are considered as the infinite continuations of the finite observable event
sequences. When two infinite observables are different, they differ at some fi-
nite index i. A finite observation of length i or more is then sufficient to make
the distinction between these two infinite observables. From now on, we dis-
tinguish the set of observations POBS(Lsys) that contains finite observable event
sequences and the set of observables OBS that contains infinite observable event
sequences.

4.1.1 Infinite event sequences

In the event-based context, in order to account for the possibility to refine the
diagnosis after the fault has occurred, we reason in terms of the infinite sequences
events that may be generated by the system. The formalisms of ω-languages
and Büchi automata allow us to define and reason about such objects.

An original definition of fault signatures for event based systems is now pro-

4.1. A NEW POINT OF VIEW ON EBS OBSERVABLES 73

vided. It relies on infinite words and Büchi automata, as well as the projection
of behavioral event sequences on observable events.

ω-words and ω-languages

Classical languages and regular languages only contain finite words, although
they may contain an infinite number of finite words. The language theory is
extended to infinite words under the concept of ω-languages.

Definition 4.1 (ω-languages) An ω-word is an infinite word, i.e. an infinite
sequence of symbols of an alphabet E. It is defined as a function:

σ : N −→ E

The set of all ω-words on the alphabet E is noted Eω. Any subset Lω ⊆ Eω

is an ω-language.

We consider more particularly ω-regular languages, defined as follows. L1

and L2 being regular languages, Lω
1 is an ω-regular language that contains all

the infinite concatenations of words of L1. Moreover, L2L
ω
1 is also an ω-regular

language that contains the concatenations of words in L2 with words in Lω
1 .

ω-regular languages are closed under set union, intersection and complement
inside Eω. No other ω-language is regular.

Infinite words cannot be accepted by normal automata, we need to define
another type of automata. A Büchi automaton Gω can be easily derived from the
automaton G, since Gω is defined by the same attribute tuple as the finite state
automaton Gω = G = (Q, E, T, q0, A), the difference between the two automata
is that Gω only accepts infinite words. Gω accepts an infinite trajectory σ =
(e1e2 . . . en . . .) if and only if σ starts from the initial state q0 and visits a state
a ∈ A infinitely often. An ω-language is regular if and only if there exists a
Büchi automaton that accepts it.

To the automaton G that models the system behavior is associated the
corresponding Büchi automaton Gω, and the ω-regular language accepted by
Gω is noted Lmax

sys . Note that the language E∗ only contains finite words and
does not contain ω-words (E∗ and Eω are disjoint). The ω-language Lω

sys,
which contains all ω-words constructed as infinite sequences of words of Lsys,
is in general a superset of Lmax

sys .

The POBS function is extended in order to apply to infinite words. In the hy-
pothesis that the system contains no cycle of unobservable events, the projection
over the set of observable events of an infinite trajectory is also infinite.

Definition 4.2 (EBS set of observables) The set of observables OBS is de-
fined as the projection on the observable events of the ω-language Lmax

sys .

OBS = POBS

(

Lmax
sys

)

74 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

4.1.2 Fault signatures

For each fault mode f ∈ Fsys, the f-language, denoted Lf , describes all possible
trajectories in which the faults of f occur and no other fault. Lf is defined as
the subset of the automaton language Lsys, restricted to the words containing
at least one occurrence of every single fault composing f , and no occurrence of
any other fault. Lf describes all possible scenarios leading to f . The words of
the f -language are called f-trajectories.

Because of our particular interest for diagnosability, among the set of f -
trajectories, we pay special attention to those that can be obtained when the
observation temporal window can be arbitrarily extended, i.e. to observables.
The concept of fault signatures hence relies on the extension of the f -language
to infinite words. The maximal f -language Lmax

f is defined as the subset of
Lmax

sys restricted to the ω-words that contain at least one occurrence of every
fault composing f , and no occurrence of any other fault.

The fault signatures are obtained by projecting maximal f -languages on
observable events. For each fault mode f ∈ Fsys, the set of observable infi-
nite trajectories obtained by projection of the ω-words of Lmax

f over the set
of observable events is called the f-signature. With the above definitions, it
is possible to define the signature function Sig as the function associating its
f -signature to any fault mode f ∈ Fsys :

Definition 4.3 (EBS Fault signature) The maximal fault language Lmax
f is

defined by:

∀f ∈ Fsys, L
max
f = {σ ∈ Lmax

sys |∀Fi ∈ Fsys, Fi ∈ f ⇔ Fi ∈ σ}

= Lmax
sys ∩

(

Lf .
(

E \ (Fsys \ f)
)ω
)

The fault signature is the projection of the maximal fault language on observable
events:

∀f ∈ Fsys , Sig(f) = POBS

(

Lmax
f

)

From definitions 4.2 and 4.3, it comes easily that the signature of a fault
mode is a subset of OBS , and that every observable belongs to the signature of
at least one fault mode.

We have defined the set of observables and the fault signature for event-
based approaches, we now prove that the diagnosability definition as originally
stated for EBS can be expressed in terms of fault signatures in the same way as
SBS diagnosability definition.

4.2. FORMAL COMPARISON 75

4.2 Formal Comparison

4.2.1 Preliminary definitions

The definitions provided in chapter 2, adapted to the unified definitions and
notations given in part 3 are now recalled. The SBS definition is just a reminder
of the one given in chapter 3. The concepts of single fault or multiple fault, that
in fact assess the presence or absence of all faults in the system, are now referred
to as fault modes fi ∈ Fsys.

Definition 4.4 (SBS Diagnosability recalled) A SBS is diagnosable if and
only if:

(

∀fi, fj ∈ Fsys, fi 6= fj

)

, Sig(fi) ∩ Sig(fj) = ∅

In the original EBS definition 2.15, the fault events previously noted efi
∈ Ef

are now referred to as faults Fi ∈ Fsys. Moreover, a significant difference is
introduced in the definition: the original definition only applies to trajectories
ending with a fault event (s ∈ L→efi

), the definition reformulated here applies
to any trajectory containing the fault at any index (Fi ∈ s). The proof of
equivalence between the two definitions 2.15 and 4.5 is given below.

Definition 4.5 (EBS Diagnosability reformulated) An EBS is diagnos-
able if and only if:

∀Fi ∈ Fsys,∃ni ∈ N,∀s ∈ Lsys | (Fi ∈ s),∀t ∈ E∗ | (st ∈ Lsys),

‖t‖ ≥ ni ⇒
(

∀u ∈ P−1
OBS

(

POBS(st)
)

, Fi ∈ u
)

Proof Let p(Fi, ni, s, t) denote the logical sentence

‖t‖ ≥ ni ⇒
(

∀u ∈ P−1
OBS

(

POBS(st)
)

, Fi ∈ u

The language L→Fi
is obviously a subset of the language LFi

= {s ∈
Lsys|Fi ∈ s}. Consequently, if the proposition ∀t ∈ E∗ | (st ∈ Lsys), p(Fi, ni, s, t)
holds for all s in LFi

, it trivially holds for any s in L→Fi
. Then, definition 4.5

⇒ definition 2.15.

Let Fi ∈ Fsys, ni ∈ N and s ∈ L→Fi
be such that ∀t ∈ E∗ | (st ∈

Lsys), p(Fi, ni, s, t). Then, for any t2 such that stt2 ∈ Lsys, we also have
p(Fi, ni, s, tt2), since ‖tt2‖ ≥ ‖t‖ ≥ ni. Let now t1, t

′ ∈ E∗ be such that t1t
′ = tt2

and ‖t‖ = ‖t′‖. We then have p(Fi, ni, s, t1t
′), and since ‖t‖ = ‖t′‖ ≥ ni,

we have p(Fi, ni, st1, t
′). Let s′ = st1, and let us consider which language

can s′ range over. s is a word that ends with Fi, and t1 is a prefix of
tt2 which ranges over all the continuations of s in Lsys. Since Lsys is live,
t1 ranges over all the continuations of s in Lsys. Finally, we have that if
∀s ∈ L→Fi

,∀t ∈ E∗|(st ∈ Lsys), p(Fi, ni, s, t) then ∀s′ ∈ Lsys|(Fi ∈ s′),∀t′ ∈
E∗|(s′t′ ∈ Lsys), p(Fi, ni, s

′, t′), and definition 2.15 ⇒ definition 4.5. �

76 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

4.2.2 Equivalence

In this section, proof is given of the equivalence between the diagnosability
definition in the EBS and SBS approaches. We first provide a third formulation
of the EBS diagnosability (already given in definitions 2.15 and 4.5) by extending
it to fault modes by definition 4.6, which provides a better insight into the
definition interpretation. This result then allows us to complete the proof.

Our third formulation of the EBS diagnosability accounts for all the system
fault modes: normal mode (which is actually trivial), single faults as well as
multiple faults.

Definition 4.6 (EBS Diagnosability with fault modes) An EBS is diag-
nosable if and only if:

∀f ∈ Fsys,∃nf ∈ N,∀s ∈ Lf ,∀t ∈ E∗ | (st ∈ Lsys),

‖t‖ ≥ nf ⇒ ∀u ∈ P−1
OBS

(

POBS(st)
)

,∀Fi ∈ f, Fi ∈ u

Theorem 4.1 Given Fsys the set of faults and Fsys the set of fault modes
of a system, the EBS diagnosability definition formulated for faults Fi ∈ Fsys

(definition 4.5) is equivalent to the EBS diagnosability definition formulated for
fault modes f ∈ Fsys (definition 4.6).

Proof Let us consider a fault mode f and a trajectory s in the f -language Lf .
The diagnosability condition of definition 4.5 is verified for each Fi ∈ f with
possibly different ni values. Taking the largest value of all these ni values as nf

makes the condition of definition 4.6 true. Conversely, if definition 4.6 holds for
all the fault modes containing a fault Fi with possibly different nf values, then
by taking the largest of all these nf values as ni, definition 4.5 holds. It follows
that definition 4.5 is equivalent to definition 4.6, which accounts explicitly for
fault modes f = {Fi}, i = 1, . . . , n. �

The above result shows that the EBS diagnosability definition can be given
in terms of fault modes (instead of faults), like the SBS diagnosability definition.
The EBS diagnosability definition is now proved to be equivalent to the SBS
diagnosability definition.

Theorem 4.2 The EBS diagnosability (definition 4.5) is equivalent to the uni-
fied diagnosability (definition 3.9).

Proof It is first proved that if definition 4.6 is verified for one fault mode f2, then
for any fault mode f1 such that f1 \f2 6= ∅, the statement Sig(f1)∩Sig(f2) = ∅
holds.

Let f1 and f2 be two fault modes such that f1\f2 6= ∅, and let the conditions
expressed in definition 4.6 be verified. The set A1 = {POBS(st

ω), s ∈ Lf1
, stω ∈

Lmax
sys } is a superset of Sig(f1), since it includes ω-words not in Lmax

f1
(if another

fault occurs in t). Yet, all the trajectories in P−1
OBS

(A1) contain at least all
faults in f1. From definition 4.6, all the words of P−1

OBS
(Sig(f2)) contain at least

4.3. EXAMPLES 77

one occurrence of all the faults in f2, and no occurrence of any other fault Fi

(otherwise definition 4.6 would be violated for f2 ∪ {Fi}). Since f1 \ f2 6= ∅ this
implies that A1 and Sig(f2) are disjoint, and consequently Sig(f1)∩Sig(f2) = ∅.

The statement above is easily generalized to any pair of fault modes (fi, fj),
since if fi 6= fj then either fi \ fj 6= ∅ or fj \ fi 6= ∅. Hence definition 4.5 ⇔
definition 4.6 ⇒ definition 3.9.

Assume now that the condition expressed in definition 3.9 is true: for any
fault mode fk 6= fl, all words in Sig(fk) are distinct from all words in Sig(fl).

Let fi be a fault mode, consider all the fault modes fk such that fi ⊆ fk and
the set Ai = {POBS(st

ω), s ∈ Lfi
, stω ∈ Lmax

sys }. Then from the definition of fault
signature, we have Ai ⊆

⋃

fk⊇fi
Sig(fk). Consequently, all words in P−1

OBS
(Ai)

contain at least all faults in fi (otherwise definition 3.9 would not hold).

This allows us to state that for all ω-words stω such that s ∈ Lfi
, stω ∈

Lmax
sys , we have POBS(st

ω) ∈ Ai, and P−1
OBS

(

POBS(st
ω)
)

⊆ P−1
OBS

(Ai). Consequently,

∀u ∈ P−1
OBS

(

POBS(st
ω)
)

,∀Fi ∈ fi, Fi ∈ u.

Expressing the property above in terms of finite words now completes the
demonstration. The set Pre(Lfi

) contains the most prefixed words of Lfi
, i.e.

Pre(Lfi
) = {s ∈ Lfi

| s′ prefix of s ⇒ s′ /∈ Lfi
}. For any s ∈ Pre(Lfi

), we
denote nmaxs the length of the longest word(s) in P−1

OBS

(

POBS(s)
)

and define
ns = nmaxs − ‖s‖ (in the absence of cycles of unobservable events, the finite
bound nmaxs exists). We then define nfi

as the greatest value for ns when s
ranges over Pre(Lfi

).

Let us reexpress the property: for all s ∈ Lfi
, for all tω such that

stω ∈ Lmax
sys , let t be the prefix of tω of length nfi

. For ω-words, we stated

that ∀u ∈ P−1
OBS

(

POBS(st
ω)
)

,∀Fi ∈ fi, Fi ∈ u, and since t is a prefix of tω,

P−1
OBS

(

POBS(st)
)

contains only prefixes of words in P−1
OBS

(

POBS(st
ω)
)

. Hence, the

(infinite) continuations of the words of P−1
OBS

(

POBS(st)
)

contain all the faults in

fi, and since ‖t‖ = nfi
, words in P−1

OBS

(

POBS(st)
)

necessarily contain all the faults
in fi.

This means that for any trajectory st such that s ∈ Lfi
, st ∈ Lsys, ‖t‖ ≥

nfi
⇒ ∀u ∈ P−1

OBS

(

POBS(st)
)

,∀Fi ∈ fi, Fi ∈ u, which is the condition of definition
4.6. Generalizing to any fi, it implies definition 4.6 and definition 4.5. �

4.3 Examples

This section presents two examples that illustrate the results reported in this
chapter. The first example illustrates the fault signatures in an EBS and com-
pares it to the classical diagnoser approach, and the second compares EBS and
SBS approaches in an operational way. Bridges between state variables in the
SBS view and events in the EBS view are provided and diagnosability analysis

78 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

is performed along the SBS and the EBS diagnosis approaches.

4.3.1 Fault signatures for EBS diagnosability

Let us consider again the example that was used in section 2.2 to illustrate the
diagnoser approach for diagnosability, described by figure 2.7 page 49. It was
explained why the first system is diagnosable while the second is not.

Diagnosability is now tested by building the fault signatures instead of the
diagnoser. In both systems, there is only one fault, and consequently two fault
modes: normal noted ∅, and faulty noted {f}. Figure 4.1 presents the details
of the construction of fault signatures for both systems. In system n◦1, the
signatures are disjoint, however system n◦2, the ω-word aω belongs to both
signatures. System n◦1 is hence diagnosable, and system n◦2 is not.

The equivalence of these diagnosability results with the ones obtained by
the diagnoser approach illustrates the equivalence of definitions 4.5 and 3.9: the
signature approach to diagnosability shows the same results as the diagnoser
approach.

System n◦1 System n◦2

Lsys a∗, a∗faab∗ a∗, a∗fa∗, a∗faab∗

Lmax
sys aω, a∗faabω aω, a∗faω, a∗faabω

Lmax
∅ aω aω

Lmax
{f} a∗faabω a∗faω, a∗faabω

Sig(∅) aω aω

Sig({f}) a∗bω aω, a∗bω

Figure 4.1: Maximal languages and fault signatures for the two systems illus-
trated in figure 2.7 page 49.

4.3.2 Operational comparison of SBS and EBS

The system represented in figure 4.2 is inspired of [Puig et al., 2005]. It is
composed of two water tanks with heights y1 and y2, and a pump connected by
a water flow channel. Both tanks supply consumers c1 and c2. The delays τ1,
respectively τ2, correspond to the time needed for the water to reach tank2 from
tank1, and tank1 from the pump. It has two operating modes: pump on and
pump off. We consider faults in sensors y1, y2, c1 and c2, named respectively
Fy1, Fy2, Fc1 and Fc2.

The example is limited to single faults and it is assumed that the system
does not switch its operating mode between the occurrence of a fault and the

4.3. EXAMPLES 79

Figure 4.2: A water flow system

apparition of its symptoms, in order to simplify the models of the system.

Continuous model, state-based diagnosis

The discretized and linearized non-linear dynamic equations are:

y1(t + ∆t) = y1(t) − k1c1(t) + k2upump(t − τ2) − k3uout(t)

uout(t) = k
√

y1(t)
∼= k4y1(t)

upump = k[a(h − y2)
2 + b(h − y2) + c]

∼= k5 + k6y2(t)

y2(t + ∆t) = y2(t) − k7c2(t) + k8uout(t − τ1) − k9upump(t)

where ∆t is the sampling time. upump being the flow through the pump, we can
state that when the pump is off, we have upump(t) = 0.

From these equations, it is possible to predict the values for y1 and y2 with:

ŷ1(t + ∆t) = (1 − k3k4)y1(t) − k1c1(t) + k2k6y2(t − τ2) + k2k5

ŷ2(t + ∆t) = (1 − k9k6)y2(t) − k7c2(t) + k8k4y1(t − τ1) − k9k5

Pump on mode

ŷ1(t + ∆t) = (1 − k3k4)y1(t) − k1c1(t)

ŷ2(t + ∆t) = y2(t) − k7c2(t) + k8k4y1(t − τ1)

Pump off mode

80 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

From the equations above, two consistency tests can be obtained in the form
of analytical redundancy relations:

r1(t + ∆t) = y1(t + ∆t) − ŷ1(t + ∆t)

= y1(t + ∆t) −
[

(1 − k3k4)y1(t) − k1c1(t) + k2k6y2(t − τ2) + k2k5

]

r2(t + ∆t) = y2(t + ∆t) − ŷ2(t + ∆t)

= y2(t + ∆t) −
[

(1 − k9k6)y2(t) − k7c2(t) + k8k4y1(t − τ1) − k9k5

]

Pump on mode

r1(t + ∆t) = y1(t + ∆t) − ŷ1(t + ∆t)

= y1(t + ∆t) −
[

(1 − k3k4)y1(t) − k1c1(t)
]

r2(t + ∆t) = y2(t + ∆t) − ŷ2(t + ∆t)

= y2(t + ∆t) −
[

y2(t) − k7c2(t) + k8k4y1(t − τ1)
]

Pump off mode

Using these analytical redundancy relations, we deduce the fault signature
matrices shown in figure 4.3.

The fault signature matrices indicate that the system is not diagnosable
since, for example, the observable (Pump on, r1 = 1, r2 = 1) belongs to two
fault signatures.

Fy1 Fy2 Fc1 Fc2

r1 1 1 1 0
r2 1 1 0 1

Pump on mode

Fy1 Fy2 Fc1 Fc2

r1 1 0 1 0
r2 1 1 0 1

Pump off mode

Figure 4.3: Fault signature matrices for the system

Discrete event model, dynamic diagnosis

For the EBS model of the system, the following events are used : pon,poff , fired
when the pump is turned on or off ; FS fired when a fault occurs on sensor S ;
r1, r2 fired when analytical redundancy relations r1 and r2, are violated.

The automaton is shown in Figure 4.4. An arc labelled a.b represents two
arcs labelled a and b, a leading to a state in which only b may occur.

From the automaton and following section 4.1, it is possible to build the
signatures for all the faults (see Figure 4.5). Remember that all the events
except faults are observable. The fault signatures are disjoint sets, the system
is hence diagnosable.

4.3. EXAMPLES 81

a.b
⇐⇒

a b

poff pon

Fc2.r2

Fc1.r1

Fy2.r2.r1

Fy1.r1.r2

poff pon

Fc2.r2

Fc1.r1

Fy1.r1.r2

Fy2.r2.pon .r1

Figure 4.4: Automaton describing the system

4.3.3 Results

These examples show that, although EBS and SBS diagnosability definitions are
formally equivalent, operational diagnosability assessment critically depends on
the nature of observables.

In the SBS approach, diagnosability is not achieved, as fault signatures are
not disjoint. (Pump on, r1 = 1, r2 = 1) is a signature for both Fy1 and Fy2, and
(Pump off, r1 = 0, r2 = 1) is a signature for both Fy2 and Fc2.

In the EBS model, in the pump on mode, the symptoms r1 = 1 and r2 = 1
appear in the order (r1r2) for Fy1 and in reverse order (r2r1) for Fy2. Taking this
order into account permits fault discrimination between Fy1 and Fy2 in dynamic
diagnosis. In addition, in the pump off mode, both Fy2 and Fc2 are followed by
the r2 symptom, but only in the case of Fy2, a pon command will be followed
by the r1 symptom. Notice that diagnosability stands on the assumption that
the pump will be turned on some time: it is only after the pon command that
the faults can be discriminated.

82 CHAPTER 4. SIGNATURES FOR EVENT-BASED APPROACHES

Fault Signature

∅ (ponpoff)ω

Fc1 (ponpoff)∗r1(ponpoff)ω

(ponpoff)∗ponr1(poffpon)ω

Fc2 (ponpoff)∗r2(ponpoff)ω

(ponpoff)∗ponr2(poffpon)ω

Fy1 (ponpoff)∗r1r2(ponpoff)ω

(ponpoff)∗ponr1r2(poffpon)ω

Fy2 (ponpoff)∗r2ponr1(poffpon)ω

(ponpoff)∗ponr2r1(poffpon)ω

Figure 4.5: Fault signatures (discriminant sub words are bolder).

4.4 Conclusion of the comparison

It has been shown that the EBS diagnosability definition could be stated in terms
of fault signatures. This result proves that the definitions given in chapter 3
unify both state-based and event-based approaches to diagnosability. A formal
comparison shows that EBS diagnosability analysis can be done by constructing
the fault signatures or equivalently by using the diagnoser approach, and the
same results are obtained. An operational comparison shows that EBS and
SBS approaches do not generally give the same diagnosability results, this is
due to the representation formalism, and illustrates the considerations provided
in section 1.4. The choice of the knowledge to be represented, and the formalism
used to represent this knowledge influence the final diagnosability results.

The formal comparison between SBS and EBS approaches related in section
4.2 is based on the adaptation of the EBS definition from faults to fault modes.
We could have equivalently adapted the SBS definition to faults. This idea has
led to the considerations provided in the next chapter, signatures for partial
fault modes.

Chapter 5

Signatures for partial fault

modes

This chapter describes how the unification work described in the previous chap-
ters leads to a new characterization of diagnosability that allows one to perform
diagnosability analysis efficiently.

The concept of signature has been applied, until now, only to fault modes. In
this chapter, we define partial fault modes, and adapt the definition of signature
to them. We show that computing the signatures for partial fault modes allows
us to decrease the number of signature comparisons for diagnosability analysis.

This chapter is based on the variable representation of fault modes (see
definition 3.5 page 62), initially defined in state-based approaches. In event-
based approaches, it is easier to model fault modes as sets (see definition 3.4),
but the translation from the set representation to the variable representation is
straightforward when using binary mode variables, as described in section 3.1.3.

The concepts of partial fault mode and their signature are model in-
dependent. They are applied to a distributed context, with distributed
constraint-based models. An algorithm, for computing the signatures for
partial fault modes is presented, based on a diagnosis algorithm defined in
[Pucel et al., 2007, Ardissono et al., 2005, Console et al., 2007]. Diagnosability
analysis based on partial fault mode signatures is then performed in this context.

5.1 Partial fault modes

A fault mode is related to the whole system: it describes the behavioral mode of
all the components in the system. In the variable representation (see definition
3.5), it is represented by an assignment to all mode variables. Diagnosis consists

83

84 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

in deciding in which fault mode the system is, by assessing which faults have
occurred and which have not.

Our approach is based on the analysis of partial fault modes, that are related
to only some of the system components.

The set of variables of the system is noted V . Vmode ⊂ V is the set of mode
variables, these variables are generally noted mi, i ∈ {1 . . . n}. VOBS is the set of
observable variables, noted oj , j ∈ {1 . . . m}.

Definition 5.1 (Partial fault mode) A partial fault mode is defined by as-
signing a value to some of the system mode variables. A partial fault mode in
which all mode variables are assigned is a fault mode.

The scope of a partial fault mode pfm is the set containing the mode variables
assigned by pfm. It is noted Sco(pfm).

The rank of a partial fault mode is the cardinality of its scope.

Two partial fault modes pfm1 and pfm2 are alternative if and only if they
have the same scope, but are not equal.

A partial fault mode pfm1 refines another partial fault mode pfm2 if and only
if Sco(pfm2) ⊂ Sco(pfm1) and pfm1 ⇒ pfm2.

For example, m1 = ok ∧ m2 = ok and m1 = ok ∧ m2 = ab are alternative
partial fault modes, while m1 = ab∧m2 = ok refines m1 = ab. Fault modes are
partial fault modes with the greatest rank, i.e. the number of mode variables.
Fault modes are all alternatives with one another, and cannot be refined.

Reasoning on partial fault modes allows one to reason on some instantiated
parts of the system while keeping the rest unconstrained. Actually, two alterna-
tive partial fault modes describe two different fault situations in a subsystem,
and two sets of fault situations in the system. Hence, defining signatures for
partial fault modes allows to one perform diagnosability analysis starting from
subparts of the system.

Definition 5.2 (Partial fault mode Signature) The signature of a partial
fault mode pfm is the union of the signatures of all the fault modes that refine
pfm.

Sig(pfm) =
⋃

f∈Fsys

∣

∣f refines pfm

Sig(f)

The point behind this definition is that in some types of formalisms for
expressing the system model, it is possible or even simpler to compute the
signature of a partial fault mode than the signature of a fault mode. In this
case, it is possible to perform diagnosability analysis directly on partial fault
modes, which, as we will see in the next section, can be more efficient.

5.2. DIAGNOSABILITY ANALYSIS 85

Definition 5.3 (Partial fault mode Discriminability) Two partial fault
modes are discriminable if and only if their signatures are disjoint.

In the special case where the considered partial fault modes are fault modes,
this definition falls back to definition 3.8. The following property is a straight-
forward consequence of the previous definitions:

Theorem 5.1 Two partial fault modes pfm1 and pfm2 are discriminable if and
only if every refinement of pfm1 is discriminable from every refinement of pfm2.

Diagnosability definitions based on discriminability generally apply to fault
modes, however property 5.1 allows us to state the notion of diagnosability in
a more generic way, fault modes being particular cases of partial fault modes:

Definition 5.4 (Partial fault mode Diagnosability) A partial fault mode
is diagnosable if and only if it is discriminable from all its alternatives.

A system is diagnosable if and only if all its partial fault modes are diagnos-
able.

Here again, if restricted to fault modes, this definition falls back to definition
3.9. In general, it is sufficient that all the partial fault modes at a given rank
n are diagnosable for the system to be diagnosable. Proving this statement is
pretty straightforward with theorem 5.1.

5.2 Diagnosability analysis with partial fault

modes

The definitions and properties of partial fault modes allow one to decrease the
number of signatures to be compared. When signatures for partial fault modes
can be computed efficiently, this approach provides improved performance for
diagnosability analysis.

Diagnosability analysis relies on checking the discriminability of pairs of
alternative partial fault modes. In the previous approaches, only pairs of total
fault modes are checked. In this approach, we first check the discriminability
of alternative pairs of partial fault modes of rank 1. Such comparison provides
information about a whole set of pairs of fault modes. Then if comparing pairs
of partial fault modes of rank 1 is not sufficient, pairs of rank 2 are compared,
and so on.

Figure 5.1 illustrates the comparisons that are performed for 3 variables and
arbitrary discriminability results. The analysis is done in 3 steps:

1. First, rank 1 pairs of partial fault modes (left column) are checked. The
pair

(

m1=ok
m1=ab

)

is discriminable, hence we know that the 8 pairs of rank 2

86 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

partial fault modes, and the 16 pairs of total fault modes that refine this
pair are also discriminable.

2. Then we check the 10 rank 2 pairs of partial fault modes (central column)
that were not discarded at rank 1 analysis. At rank 2, 3 discriminable
pairs are found, thus discarding 8 other pairs of total fault modes.

3. Finally, we check the remaining 4 pairs of rank 3 partial fault modes,
which are in fact pairs of fault modes. At rank 3, no new discriminable
pair is found.

Figure 5.1: Partial fault mode signature comparisons. For 3 binary mode vari-
ables, there are 28 pairs of fault modes to compare. In this example, the results
are obtained with only 17 comparisons. The algorithmic benefit grows with the
number of mode variables.

88 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

5.3 Distributed diagnosability analysis

The overall approach described in the previous section is now applied to a
distributed diagnosability analysis approach. As already mentioned, the model
used in this approach is a state-based model that uses constraint networks. It
was originally described in [Ardissono et al., 2005, Console et al., 2007].

5.3.1 Constraint networks

The formalism of constraint networks has similarities with the first-order logic
described in section 2.1.2. We first provide definitions for some concepts that
are used throughout this section. In this formalism, we consider a set V of
variables that range over discrete, finite sets of values. The set of values that a
variable vi ∈ V can take is its domain, noted Dom(vi).

In the following, we assume there is a total order on the set of variables
V , and we speak indifferently of sets and tuples of variables. The domain of a
set/tuple of variables of V is the Cartesian product:

Dom
(

(v1, v2, . . . , vn)
)

= Dom(v1) × Dom(v2) × . . . × Dom(vn)

Definition 5.5 (Assignment, constraint, satisfaction) An assignment γ
is defined by a pair (Sγ , valγ) where Sγ ⊆ V is the assignment’s scope, and
valγ ∈ Dom(Sγ) is a tuple of values for the variable tuple Sγ .

In the following, the scope Sγ is noted Sco(γ), and the value of a variable
v ∈ Sco(γ) is noted γ(v). γ is:

• A total assignment if and only if Sco(γ) = V .

• The unique empty assignment if and only if Sco(γ) = ∅.

• A partial assignment if and only if ∅ ⊂ Sco(γ) ⊂ V .

A constraint C is defined by a pair (SC , RC) where SC ⊆ V is the constraint’s
scope, and RC ⊆ Dom(SC) denotes all the value tuples allowed for SC by the
constraint. The notation Sco(C) = SC denotes the constraint scope.

An assignment γ satisfies a constraint C if and only if they have the same
scope, and the value tuple defined by γ belongs to the constraint relation RC .
An assignment γ satisfies a set of constraints if and only if it satisfies every
constraint in this set.

Two constraints C and C ′ are equivalent, noted C ≡ C ′ if and only for any
assignment γ, (γ satisfies C) ⇔ (γ satisfies C ′).

An assignment can be seen as a constraint that is only satisfied by itself.
Conversely, a constraint can be defined by the set of assignments that satisfy it.

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 89

Definition 5.6 (Restriction, extension) The restriction or projection of an
assignment γ on a non empty set of variables S ⊂ Sco(γ) is the unique assign-
ment γ′ such that Sco(γ′) = S and ∀v ∈ S, γ′(v) = γ(v). For any set T ⊆ V ,
the notation γ|T denotes the restriction of γ on T ∩ Sco(γ).

γ is an extension of γ′ if and only if γ′ is the projection of γ on Sco(γ′).

The restriction of a constraint C on a set of variables S ⊂ Sco(C), noted
C|S is the unique constraint such that Sco(C ′) = S, and for any assignment
γ, (γ satisfies C) ⇒ (γ|S satisfies C|S) and (γ satisfies C|S) ⇒ (at least one
extension of γ to Sco(C) satisfies C).

C is an extension of C ′ if and only if C ′ is the projection of C on Sco(C ′).

We finally introduce the concept of consistency, which is fundamental for
constraint-based reasoning. It captures the idea of compatibility between as-
signments and constraints. The operation of combination is also introduced,
and is indifferently denoted by the operator “∧” or the operator “∪”. In this
document we prefer the notation “∧”.

Definition 5.7 (Consistency, combination) Two constraints C and C ′ are
consistent if and only if either Sco(C) ∩ Sco(C ′) = ∅, or there exists an assign-
ment that satisfies both C|Sco(C)∩Sco(C′) and C ′|Sco(C)∩Sco(C′).

Two assignments γ and γ′ are consistent if and only if either Sco(γ) ∩
Sco(γ′) = ∅, or γ|(

Sco(γ)∩Sco(γ′)
) = γ′|(

Sco(γ)∩Sco(γ′)
).

An assignment γ is consistent with a constraint C if and only if either
Sco(γ) ∩ Sco(C) = ∅ or γ|(

Sco(γ)∩Sco(C)
) satisfies C|(

Sco(γ)∩Sco(C)
).

The combination of two consistent constraints C and C ′ is the unique con-
straint C ′′ = C ∧ C ′ such that Sco(C ′′) = Sco(C) ∪ Sco(C ′) and such that for
any assignment γ, (γ satisfies C ′′) ⇔ (γ|Sco(C) satisfies C and γ|Sco(C′) satisfies
C ′).

The combination of two consistent assignments γ and γ′ is the unique as-
signment γ′′ = γ ∧ γ′ such that Sco(γ′′) = Sco(γ) ∪ Sco(γ′) and such that
∀v ∈ Sco(γ), γ′′(v) = γ(v) and ∀v ∈ Sco(γ′), γ′′(v) = γ′(v).

The combination of an assignment γ and a constraint C is the constraint
C ′ = C ∧ γ such that Sco(C ′) = Sco(C) and for any assignment γ′, (γ′ satisfies
C ′) ⇔ (γ′ satisfies C and γ′ consistent with γ).

Consistency captures a similar concept as satisfaction, but is slightly more
general in the sense that it applies to assignments and constraints that do not
have the same scope.

As we will see in next section, a system can be modeled by a constraint or

90 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

a set of constraints, and defining mode and observable variables allows us to
perform diagnosis and diagnosability analysis.

5.3.2 Diagnosis approach

The diagnosability analysis approach that we present in this section relies on
a diagnosis approach described in [Ardissono et al., 2005, Console et al., 2007]
that makes use of a constraint-based model. In this approach, not only the
model is reused for diagnosability analysis, but also an important part of the
diagnosis algorithm. We first describe the diagnosis context and algorithm.

Constraint-based reasoning for distributed diagnosis

Constraint-based models can be used to represent a state-based system. In
this case, the model M consists in a set of constraints over the characterizing
variables. The constraints describe the system behavior, by accepting exactly
all the situations that may be reached during operation. Introducing mode
variables allows one to qualify the system behaviors as normal or faulty, hence
permitting to perform diagnosis.

The overall principle of diagnosis reasoning with constraint-based models is
to receive as input an assignment obs on some observed variables, and deter-
mine which assignments to mode variables are consistent with the model and
the observations. The diagnosis problem can be seen as a specific constraint
satisfaction problem, that consists in listing all the assignments to mode vari-
ables that are consistent with M ∧ obs. Very efficient algorithms exist in the
centralized case [Hamscher et al., 1992, Darwiche, 1999, Dechter, 2003].

Definition 5.8 (Constraint-based diagnosis) Let M be a model and obs be
an observation. We denote by Vmode the set of mode variables. An assignment
γ is a diagnosis candidate for M and obs if and only if Sco(γ) = Vmode, and γ
is consistent with M ∧ obs.

An assignment γ is a partial diagnosis for M and obs if and only if Sco(γ) ⊂
Vmode and every extension of γ to Vmode is a diagnosis candidate.

In some contexts (geographic distribution, collaboration between compa-
nies, etc), diagnosis cannot be performed by a single entity. Diagnosis is then
performed by several entities by means of local diagnosers, which may commu-
nicate with a common supervisor (decentralized approach), or directly with one
another (distributed approach).

The overall architecture, initially described in [Ardissono et al., 2005,
Console et al., 2007] is based on several local diagnosers LD1, . . . , LDn which
cooperate with a supervisor D. Each local diagnoser LDi is responsible for a
component Ci (or a set of components), while D puts together information from

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 91

local diagnosers and selects which local diagnosers to question further in order
to diagnose problems.

Each local diagnoser possesses a model of its components; the approach
makes the following assumptions about models:

• Each model is given as a set of constraints over finite-domain variables.

• For some components there is a distinguished mode variable that expresses
which behaviour mode the component is in. We consider, for the sake of
simplicity, that there is only one normal mode named ok and only one
fault mode named ab.

• Interactions with other components are represented by means of “shared”
variables (where “shared” means that each model has its own variable, and
an implicit equality constraint exists between the two). These variables
are called interface variables.

5.3.3 Constraint propagation control

In such contexts, the most limited resource for diagnosis computation is gen-
erally the communication rate. It is often preferred to decrease the amount of
communications, even at the cost of a reasonable computation overhead. In
particular, it is desirable to limit the assignments to the variables that are re-
ally relevant in the diagnosis process. For example, if an observation received
by local diagnoser LD1 results from a fault in the subsystem managed by lo-
cal diagnoser LD2, then other local diagnosers should not be involved in the
diagnosis process, except if their subsystems participate in the communication
between the subsystems managed by LD1 and LD2.

The task of the local diagnosers and the supervisor is based on partial as-
signments to model variables (in particular, to mode variables and to interface
variables). A partial assignment corresponds to some hypothesis of behaviour
on a part of the system. The operation performed by a local diagnoser in order
to explain an abnormal behaviour is called the Extend operation, each output
partial assignment being an extension of an input partial assignment, and is
used to propagate hypotheses across the system, either to find local causes of
an abnormal situation or to explore the consequences of an hypothesis.

Reasoning on partial assignments is synergistic with the notion of admissibil-
ity. Some partial assignments are admissible with respect to the system model,
and the diagnosis reasoning is done exclusively on such assignments. We present
a definition, and explain how this property facilitates diagnosis reasoning.

Definition 5.9 (Admissibility) Let M be a model and let γ be a partial as-
signment. We say that γ is admissible with respect to M if and only if:

1. γ is consistent with M ;

92 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

2. the restriction of M ∧ γ to variables not assigned by γ is equivalent to the
restriction of M itself to the same variables:

(M ∧ γ)|Sco(M)\Sco(γ) ≡ M |Sco(M)\Sco(γ)

Let us now illustrate and explain the concept of admissibility. When one
considers a partial assignment, one faces the question of what are the total as-
signments that are consistent with this assignment and the model. In the general
case, such an operation is done by appending to an assignment γ the various
tuples contained by (M ∧ γ)|Sco(M)\Sco(γ). In the case of an admissible assign-
ment, this operation is simply done by appending the tuples of M |Sco(M)\Sco(γ),
as illustrated in figure 5.2.

For diagnosis, the concept of admissibility is very important: let obs be a
partial assignment to some observed variables, and let γ be an extension of obs
that assigns some mode variables, but not all. If γ is admissible, this means
that the tuple of unassigned mode variables can range over its original domain,
i.e. that the restriction of γ to Sco(γ) ∩ Vmode is a partial diagnosis, because
the model always allows all the values in their domain for mode variables.

Reasoning on admissible partial assignments allows one to perform diagnosis
without involving unneeded local diagnosers and analyzing unneeded parts of
the system. Ideally, keeping the partial assignments as general as possible, by
only manipulating “minimal” admissible extensions of the observations would
be the best. However, as discussed in [Console et al., 2007], in general this
cannot be done without local diagnosers sharing more information with each
other about their local models (something that is not desirable in a distributed
environment). Then the weaker notion of complete set of admissible extensions
is used.

Definition 5.10 (Complete set of admissible extensions) Let M be a
model and let γ be a partial assignment. A set E of admissible assignments
extending γ is complete if every total assignment consistent with M ∧ γ is an
extension of some δ ∈ E.

In the diagnosis approach, for each assignment α in input, a local diagnoser
computes a complete set of extensions (with respect to the local model Mi) for
α ∧ ω where ω are local observations that are performed by the local diagnoser
and can, of course, discard some hypotheses.

The overall diagnostic process starts from an abnormal observation obs in
component i, and its local diagnoser is asked to compute a complete set of
admissible extensions of obs.

If an extension computed by the local diagnoser LDi assigns a value to an
interface variable shared by service local diagnoser LDj , then LDj is invoked
by the supervisor to further extend the assignment, taking into account the
local model, and the observations in the components monitored by LDj , which
may discard some hypotheses. At the end of the supervisor loop, a complete

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 93

Figure 5.2: Admissible and non admissible partial assignments. m4 = ok is not
admissible with respect to the model M . On the contrary, m4 = ok ∧ y = ok is
admissible : the tuple of unassigned variables can range over the values allowed
by M . In other words, M ∧ (m4 = ok ∧ y = ok) does not constrain variables
(o1, o2, z) more than M alone.

94 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

set of admissible extensions for the observations obtained in the whole system
is computed. The extensions in this set can be restricted to mode variables in
order to obtain a complete list of partial diagnoses.

In the approach described in the following sections, the same decentralized
algorithm is used to predict observable consequences of some faults, indepen-
dently of the presence of other faults. This is the base of diagnosability analysis.

5.3.4 Diagnosability analysis

The diagnosis algorithm follows this general scheme:

1. Receive an observation as input.

2. Extend : compute a complete set of admissible extensions for the input.

3. Restrict these extensions to mode variables.

4. Return this restriction as a complete set of partial diagnoses.

Intuitively, the complete set of admissible extensions contains all the possible
causes for an abnormal observation. However, the model does not contain any
information about causality. The extension operation explores the causes or
consequences of the input hypothesis without distinction. It can hence be used
to compute the consequences of the presence and absence of some faults in the
system, and generate the fault signatures as consistent assignment on observable
variables. The general scheme of signature generation is the following:

1. Receive a partial fault mode as input.

2. Extend : compute a complete set of admissible extensions for the input.

3. Restrict these extensions to observable variables.

4. Return this restriction as a complete “partial signature”.

These so called “partial signatures” are an important aspect of this diagnosabil-
ity analysis approach. This section presents several theorems that prove that
these “partial signatures” can be used to check if the signatures of alternative
partial fault modes intersect, and deduce their discriminability.

The first theorem shows that the Extend operation only needs to be per-
formed for rank 1 partial fault modes. Complete sets of admissible extensions
for higher rank partial fault modes can be obtained by combining those for rank
1.

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 95

Theorem 5.2 Let pfm1 and pfm2 be two consistent partial fault modes, and let
us assume to have a complete set Ext(pfmi) of admissible extensions for each
of them. Then the set:

{α1 ∧ α2 | α1 ∈ Ext(pfm1), α2 ∈ Ext(pfm2), α1 consistent with α2}

is a complete set of admissible extensions for pfm1 ∧ pfm2.

Proof Let α1 be any element of Ext(pfm1) and α2 any element of Ext(pfm2)
such that α1 and α2 are consistent. It is pretty straightforward that α1 ∧ α2 is
a partial assignment and is an extension of pfm1 ∧ pfm2.

Now let us prove that α1 ∧ α2 is admissible. First, α1 ∧ α2 is trivially
consistent with M . From definition 5.6 it is easily proved that for any assignment
γ, and for any sets S′′ ⊂ S′ ⊂ Sco(γ), we have (γ|S′)|S′′ = γ|S′′ . Consequently,
we have:

M |Sco(M)\Sco(α1∧α2) ≡
(

M |Sco(M)\Sco(α1)

)

|Sco(M)\Sco(α1∧α2)

≡
(

(

M ∧ α1

)

|Sco(M)\Sco(α1)

)

|Sco(M)\Sco(α1∧α2)

≡
(

M ∧ α1

)

|Sco(M)\Sco(α1∧α2))

≡
(

(

M ∧ α1

)

|Sco(M)\Sco(α2)

)

|Sco(M)\Sco(α1∧α2)

≡
(

(

M ∧ α1 ∧ α2

)

|Sco(M)\Sco(α2)

)

|Sco(M)\Sco(α1∧α2)

≡
(

M ∧ α1 ∧ α2

)

|Sco(M)\Sco(α1∧α2)

Hence α1 ∧ α2 is admissible.

Finally, let us prove that the set of admissible extensions defined in theo-
rem 5.2 is complete. Let ext be any total extension of pfm1 ∧ pfm2 consistent
with M . ext is trivially an extension of pfm1 (resp. pfm2). Since Ext(pfm1)
(resp. Ext(pfm2)) is complete, then ext is an extension of some assignment
γ1 ∈ Ext(pfm1) (resp. γ2 ∈ Ext(pfm2)). Consequently, ext is an extension of
γ1 ∧ γ2 which means that the set defined in theorem 5.2 is complete. �

The next property is the one on which the whole approach rests: it states
that the discriminability of two alternative partial fault modes can be assessed
by comparing their respective complete sets of admissible extensions.

Theorem 5.3 Let pfm1 and pfm2 be two alternative partial fault modes, and
let us assume to have a complete set Ext(pfmi) of admissible extensions for
each of them. Then pfm1 and pfm2 are discriminable if and only if for any
(α1, α2) ∈

(

Ext(pfm1) × Ext(pfm2)
)

, α1|VOBS is not consistent with α2|VOBS.

Proof For any partial fault mode pfm, every observable obs ∈ Sig(pfm) is the
projection on VOBS of a total assignment γ such that γ is consistent with M∧pfm.
If Ext(pfm) is a complete set of admissible extensions for pfm, then there exists
a δ ∈ Ext(pfm) such that γ is an extension of δ. Consequently, γ|VOBS

= obs is
an extension of δ|VOBS

.

96 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

Let us suppose that pfm1 and pfm2 are not discriminable, and let obs ∈
Sig(pfm1) ∩ Sig(pfm2). Then, the previous paragraph result implies that there
exists an α1 ∈ Ext(pfm1) and an α2 ∈ Ext(pfm2) such that obs is an extension
of both α1|VOBS

and α2|VOBS
. Consequently, α1|VOBS

and α2|VOBS
are consistent.

If α1|VOBS
and α2|VOBS

are consistent, then there exists an assignment obs
that extends both α1|VOBS

and α2|VOBS
to VOBS and is consistent with M . Then,

there exists a total assignment γ that extends obs and is consistent with M ∧α1

(resp. M∧α2). γ is then necessarily consistent with M∧pfm1 (resp. M∧pfm2).
Consequently, obs = γ|VOBS

belongs to Sig(pfm1) (resp. Sig(pfm2)). Since obs
belongs to the signatures of pfm1 and pfm2, these two partial fault modes are
not discriminable. �

The next property is the most complex. It enables us to have an early
detection of hopelessly non-discriminable pairs, so to avoid refining them at
higher ranks.

Theorem 5.4 Let pfm1 and pfm2 be two alternative undiscriminable partial
fault modes. Let D be their common scope, and Ext(pfm1) and Ext(pfm2) be
two respective complete sets of admissible extensions.

Let Sco(Ext(pfmi)) =
⋃

αi∈Ext(pfmi)
Sco(αi) for i ∈ {1, 2}. We consider a

mode variable m /∈
(

Sco(Ext(pfm1))∪Sco(Ext(pfm2))
)

and two (possibly equal)
partial fault modes pfm′

1 and pfm′
2 such that Sco(pfm′

1) = Sco(pfm′
2) = {m}.

We define pfm′′
1 = pfm1∧pfm′

1 and pfm′′
2 = pfm2∧pfm′

2, and have that pfm′′
1

is discriminable from pfm′′
2 if and only if pfm′

1 is discriminable from pfm′
2.

Let us illustrate this theorem by an example. Let m1 and m2 be two mode
variables, and let m1 = ok and m1 = ab be undiscriminable. Let us finally
assume that the complete sets of admissible extensions Ext(m1 = ok) and
Ext(m1 = ab) never assign the variable m2.

We already know by theorem 5.1 that if m2 = ok is discriminable from
m2 = ab then (m1 = ok ∧m2 = ok) is discriminable from (m1 = ab ∧m2 = ab).
Theorem 5.4 tell us that if m2 = ok is not discriminable from m2 = ab, the
hypotheses allow us to deduce that (m1 = ok ∧ m2 = ok) is undiscriminable
from (m1 = ab ∧ m2 = ab). The following pairs are built in a similar way and
are also undiscriminable:

• (m1 = ok ∧ m2 = ok) and (m1 = ab ∧ m2 = ok)

• (m1 = ok ∧ m2 = ab) and (m1 = ab ∧ m2 = ok)

• (m1 = ok ∧ m2 = ab) and (m1 = ab ∧ m2 = ab)

Proof It is supposed that pfm1 and pfm2 are alternative and undiscriminable.
Then there exists α1 ∈ Ext(pfm1) and α2 ∈ Ext(pfm2) such that α1|VOBS

and
α2|VOBS

are consistent. Let m ∈ Vmode \
(

Sco(Ext(pfm1)) ∪ Sco(Ext(pfm2))
)

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 97

and let pfm′
1 and pfm′

2 be two (possibly equal) partial fault modes such that
Sco(pfm′

1) = Sco(pfm′
2) = {m}.

We are now proving that if pfm′
1 is not discriminable from pfm′

2 then pfm1 ∧
pfm′

1 is not discriminable from pfm2 ∧ pfm′
2.

α1 is consistent with M , pfm′
1, pfm′

2, and α2|VOBS
. Moreover, α2 is consistent

with M , pfm′
1, pfm′

2, and α1|VOBS
. Consequently, the following constraints are

satisfiable:

• C1 ≡ M ∧ α1 ∧ pfm′
1 ∧ α2|VOBS

• C2 ≡ M ∧ α2 ∧ pfm′
2 ∧ α1|VOBS

Recall that α1|VOBS
is consistent with α2|VOBS

. If pfm′
1 and pfm′

2 are equal
or undiscriminable, then (M ∧ pfm′

1)|VOBS
is consistent with (M ∧ pfm′

2)|VOBS
.

Consequently, C1|VOBS
and C2|VOBS

are consistent, which makes pfm1 ∧ pfm′
1

undiscriminable from pfm2 ∧ pfm′
2.

On the other hand, if pfm′
1 and pfm′

2 are discriminable, then it comes from
theorem 5.1 that pfm1 ∧ pfm′

1 and pfm2 ∧ pfm′
2 are discriminable. �

5.3.5 Algorithm

We now detail the algorithm that allows to perform distributed diagnosability
analysis using constraint-based models and limiting the constraint propagation
by using partial fault mode discriminability analysis.

Output = ∅; Disc1 = ∅; k = 1;

ToDo1 = {(m = ok, m = ab) | m mode variable};

while (k ≤ maxrank ∧ ToDok 6= ∅)

for each pair (pfm1, pfm2) ∈ ToDok

Ext1 = Extend(pfm1); Ext2 = Extend(pfm2);

AddDisc(Disck,Ext1,Ext2, pfm1, pfm2);

AddToDo(ToDok+1,Ext1,Ext2, pfm1, pfm2);

Output = Output ∪ Disck;

Disck+1 = Update(Disck, k + 1);

ToDok+1 = ToDok+1 \ Disck+1;

return Expand(Output, k);

The algorithm has a main loop that proceeds rank by rank until either the
maximum rank has been reached, or all the pairs of partial fault modes of
higher ranks need not be analyzed thanks to the properties. At the end of
the algorithm Output contains the set of all pairs of discriminable alternative

98 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

partial fault modes of all ranks (including those that the algorithm did not
explicitly analyze).

At iteration k, ToDok contains the set of pairs of alternative partial fault
modes of rank k that should be analyzed for discriminability. The goal of
iteration k is to find discriminable pairs of rank k, adding them to the output
set, and to prepare the pairs that should be analyzed during iteration k+1. For
these reasons it computes two sets: Disck (discriminable pairs of rank k) and
ToDok+1 (pairs to be analyzed in the next iteration).

The Extend function takes as input a partial fault mode pfm and returns a
complete set of admissible extensions for pfm. This complete set of admissible
extensions is either computed by constraint propagation as described in section
5.3.3, or obtained by combining the extensions of rank 1 partial fault modes, as
allowed by theorem 5.2.

The function AddDisc checks the discriminability of a pair using theorem
5.3 and if discriminable adds it to the Disck set.

The AddToDo function is called for undiscriminable pairs, and computes
the pairs of extensions to be checked using theorem 5.4 as follows. Let us denote
by D the common scope of pfm1 and pfm2. Then for each partial assignment
α1 ∈ Ext1, α2 ∈ Ext2, if α1 or α2 assigns a value to a mode variable m 6∈ D,
then the following set of refinements is added to ToDok+1:

{(pfm1 ∧ (m = v1), pfm2 ∧ (m = v2)) | v1,2 ∈ {ok, ab}}

Finally, the set Disck+1, representing refinements of rank k + 1 of discrim-
inable pairs, is computed from Disck and subtracted from ToDok+1, since
these pairs are trivially discriminable. Disck is added to the final output set.

Since the analysis, thanks to search space pruning, could end before reach-
ing the maximum rank, the final output set is obtained by expanding all the
discriminable pairs found during the loop to higher ranks.

5.3.6 Example

The notions described in this section are illustrated by a small example.
The way in which we model components in this example is taken from
[Ardissono et al., 2005], although we give here a simplified version.

In the example there are two local diagnosers LD1 and LD2, in charge of
three and two components respectively. The diagnosability analysis reasoning is
distributed on those two local diagnosers, that communicate with a Supervisor.
Each component model has a mode variable, representing the correctness status
of the component, and one or more data variables that represent the correctness
status of input and/or output data.

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 99

Figure 5.3: A distributed constraint-based model. Two local diagnosers LD1

and LD2 are in charge of respectively 3 and 2 components. The model of a
component is represented by a constraint and defined by the list of the satisfying
variable tuples. An implicit equality constraint exists between the variables of
different components that have the same name, for example C2.x = C3.x.

Each component is modelled as a constraint expressing how the correctness of
output data depends on the correctness of the inputs and of the component itself.
For example, component C3 has one inputs and two outputs. The model states
that if either the component or the input is incorrect, then both the outputs are
incorrect as well. However, if both the activity and the input are incorrect, then
only output o3 is incorrect (o2 is correct because the two abnormalities mask
each other).

The composed model is typically obtained by adding equality constraints
between connected variables; in order to keep the example as simple as pos-
sible we directly used the same variable name rather than adding an equality
constraint.

In this example we apply the algorithm defined in the previous section to
the system described in figure 5.3. In a slight abuse of notation, “mi is diag-

100 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

nosable” is used to express that mi = ok and mi = ab are discriminable, hence
diagnosable.

Rank 1

pfm
mode vars observable vars

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5

m1 = ok

ok ∗ ∗ ok ok ok ∗ ∗ ok ok

ok ∗ ∗ ok ab ok ∗ ∗ ok ab

ok ∗ ∗ ab ∗ ok ∗ ∗ ab ab

m1 = ab

ab ∗ ∗ ok ok ab ∗ ∗ ok ok

ab ∗ ∗ ok ab ab ∗ ∗ ab ok

ab ∗ ∗ ab ok ab ∗ ∗ ok ab

ab ∗ ∗ ab ab ab ∗ ∗ ab ab

m2 = ok
∗ ok ok ∗ ∗ ∗ ok ok ∗ ∗
∗ ok ab ∗ ∗ ∗ ab ab ∗ ∗

m2 = ab
∗ ab ok ∗ ∗ ∗ ab ab ∗ ∗
∗ ab ab ∗ ∗ ∗ ok ab ∗ ∗

m3 = ok
∗ ok ok ∗ ∗ ∗ ok ok ∗ ∗
∗ ab ok ∗ ∗ ∗ ab ab ∗ ∗

m3 = ab
∗ ok ab ∗ ∗ ∗ ab ab ∗ ∗
∗ ab ab ∗ ∗ ∗ ok ab ∗ ∗

m4 = ok

∗ ∗ ∗ ok ok ∗ ∗ ∗ ok ok

ok ∗ ∗ ok ab ok ∗ ∗ ok ab

ab ∗ ∗ ok ab ab ∗ ∗ ab ok

m4 = ab

∗ ∗ ∗ ab ab ∗ ∗ ∗ ab ab

ok ∗ ∗ ab ∗ ok ∗ ∗ ab ab

ab ∗ ∗ ab ok ab ∗ ∗ ok ab

m5 = ok

∗ ∗ ∗ ok ok ∗ ∗ ∗ ok ok

ok ∗ ∗ ab ok ok ∗ ∗ ab ab

ab ∗ ∗ ab ok ab ∗ ∗ ok ab

m5 = ab

∗ ∗ ∗ ab ab ∗ ∗ ∗ ab ab

ok ∗ ∗ ok ab ok ∗ ∗ ok ab

ab ∗ ∗ ok ab ab ∗ ∗ ab ok

Figure 5.4: The admissible extensions of all partial fault modes of rank 1 re-
stricted to mode and observable variables.

At step one the Supervisor computes a complete set of admissible extensions
of all partial mode assignments of rank 1 (see figure 5.4). The information
gathered at this stage suffices for the rest of the analysis, and the Supervisor
does not need to invoke the local diagnosers anymore. As we said earlier, only
observable and mode variables are kept, while interface variables are discarded
(none in this case, since all interface variables are observable, see figure 5.3).

At this point the Supervisor starts to perform the diagnosability analysis
from rank 1. Looking at the observable variables, we see m1 and m4 are diag-
nosable, since the extensions of alternative pairs restricted to observable vari-
ables are not consistent. Thus, the pair of assignments (m1 = ok, m1 = ab)
(resp. (m4 = ok, m4 = ab)) is inserted in the Disc1 set. As a consequence, each
refinement of m1 = ok (resp. m4 = ok) is discriminable from each refinement of

5.3. DISTRIBUTED DIAGNOSABILITY ANALYSIS 101

m1 = ab (resp. m4 = ab). These pairs of refinements are inserted in the Disc2

set for further use.

Continuing with rank 1 analysis, the algorithm finds that:

• m2 is not diagnosable (considering only restrictions to observable vari-
ables, the 2nd extension of m2 = ok is consistent with the 1st extension of
m2 = ab)

• pairs of partial fault modes in the scope {m2, m3} need to be checked,
since m3 is present in the extensions of m2 (property 5.4).

Therefore, the algorithm inserts in the ToDo2 all pairs of partial fault modes
in the scope {m2, m3} :

(m2 = ok ∧ m3 = ok, m2 = ok ∧ m3 = ab)
(m2 = ok ∧ m3 = ok, m2 = ab ∧ m3 = ok)
(m2 = ok ∧ m3 = ok, m2 = ab ∧ m3 = ab)
(m2 = ok ∧ m3 = ab, m2 = ab ∧ m3 = ok)
(m2 = ok ∧ m3 = ab, m2 = ab ∧ m3 = ab)
(m2 = ab ∧ m3 = ok, m2 = ab ∧ m3 = ab)

Analyzing the last fault mode variable, m5, the algorithm determines that
it is also non diagnosable (considering only restrictions to observable variables,
the 2nd extension of m5 = ok is consistent with the 1st extension of m5 = ab),
and that it needs to check at rank 2 the pairs of partial fault modes with scopes
{m1, m5} or {m4, m5}.

Some of those pairs are contained into the Disc2 set, and do not need to be
checked, since m1 and m4 are diagnosable. Therefore only the following four
combinations are inserted in ToDo2:

(m5 = ok ∧ m1 = ok, m5 = ab ∧ m1 = ok)
(m5 = ok ∧ m1 = ab, m5 = ab ∧ m1 = ab)
(m5 = ok ∧ m4 = ok, m5 = ab ∧ m4 = ok)
(m5 = ok ∧ m4 = ab, m5 = ab ∧ m4 = ab)

Rank 2

At this stage, rank 2 analysis can start: combining the results of extend at rank
1, all extensions of the partial fault modes contained in ToDo2 are computed
(see figure 5.5).

Examining the six pairs of partial fault modes assigning m2 and m3, the
algorithm can determine that they are all discriminable except m2 = ok∧m3 =
ab and m2 = ab ∧ m3 = ok. The relative extensions do not mention any other
mode variables, therefore the algorithm concludes that refinements of (m2 =
ok ∧ m3 = ab) are not discriminable from refinements of (m2 = ab ∧ m3 = ok).

102 CHAPTER 5. SIGNATURES FOR PARTIAL FAULT MODES

pfm
mode variables observable variables

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5

(m2 = ok ∧ m3 = ok) ∗ ok ok ∗ ∗ ∗ ok ok ∗ ∗

(m3 = ok ∧ m3 = ab) ∗ ok ab ∗ ∗ ∗ ab ab ∗ ∗

(m2 = ab ∧ m3 = ok) ∗ ab ok ∗ ∗ ∗ ab ab ∗ ∗

(m2 = ab ∧ m3 = ab) ∗ ab ab ∗ ∗ ∗ ok ab ∗ ∗

(m5 = ok ∧ m1 = ok)
ok ∗ ∗ ab ok ok ∗ ∗ ab ab

ok ∗ ∗ ok ok ok ∗ ∗ ok ok

(m5 = ab ∧ m1 = ok)
ok ∗ ∗ ok ab ok ∗ ∗ ok ab

ok ∗ ∗ ab ab ok ∗ ∗ ab ab

(m5 = ok ∧ m1 = ab)
ab ∗ ∗ ok ok ab ∗ ∗ ok ok

ab ∗ ∗ ab ok ab ∗ ∗ ok ab

(m5 = ab ∧ m1 = ab)
ab ∗ ∗ ok ab ab ∗ ∗ ab ok

ab ∗ ∗ ab ab ab ∗ ∗ ab ab

(m5 = ok ∧ m4 = ok) ∗ ∗ ∗ ok ok ∗ ∗ ∗ ok ok

(m5 = ok ∧ m4 = ab)
ok ∗ ∗ ab ok ok ∗ ∗ ab ab

ab ∗ ∗ ab ok ab ∗ ∗ ok ab

(m5 = ab ∧ m4 = ok)
ok ∗ ∗ ok ab ok ∗ ∗ ok ab

ab ∗ ∗ ok ab ab ∗ ∗ ab ok

(m5 = ab ∧ m4 = ab) ∗ ∗ ∗ ab ab ∗ ∗ ∗ ab ab

Figure 5.5: The admissible extensions of rank 2 partial fault modes contained
in the ToDo2 set.

Examining the 4 pairs of partial fault modes assigning m5 and m1 or m4,
the algorithm can determine that m5 = ok ∧ m1 = ab, m5 = ab ∧ m1 = ab,
m5 = ok∧m4 = ok and m5 = ab∧m4 = ok are diagnosable. On the other hand,
the pairs (m5 = ok∧m1 = ok, m5 = ab∧m1 = ok) and (m5 = ok∧m4 = ab, m5 =
ab ∧ m4 = ab) are not discriminable, their extensions mention respectively m4

and m1. The algorithm puts in the ToDo3 set the following combinations:

(m5=ok∧m1=ok∧m4=ok , m5=ab∧m1=ok∧m4=ok)
(m5=ok∧m1=ok∧m4=ab , m5=ab∧m1=ok∧m4=ab)
(m5=ok∧m1=ab ∧m4=ab , m5=ab∧m1=ab ∧m4=ab)

In fact, pairs with different values for m1 or m4 are discarded due to prop-
erty 5.1 (m1 and m4 being diagnosable, these combinations are in Disc3).

pfm
mode variables observable variables

m1 m2 m3 m4 m5 o1 o2 o3 o4 o5

(m5 = ok ∧ m1 = ok ∧ m4 = ok) ok ∗ ∗ ok ok ok ∗ ∗ ok ok

(m5 = ab ∧ m1 = ok ∧ m4 = ok) ok ∗ ∗ ok ab ok ∗ ∗ ok ab

(m5 = ok ∧ m1 = ok ∧ m4 = ab) ok ∗ ∗ ab ok ok ∗ ∗ ab ab

(m5 = ab ∧ m1 = ok ∧ m4 = ab) ok ∗ ∗ ab ab ok ∗ ∗ ab ab

(m5 = ok ∧ m1 = ab ∧ m4 = ab) ab ∗ ∗ ab ok ab ∗ ∗ ok ab

(m5 = ab ∧ m1 = ab ∧ m4 = ab) ab ∗ ∗ ab ab ab ∗ ∗ ab ab

Figure 5.6: The admissible extensions of rank 3 partial fault modes contained
in the ToDo3 set.

5.4. CONCLUSION 103

Rank 3

By checking the observable variables for each pair (see figure 5.6), the algorithm
finds that the 1st and the 3rd pairs are discriminable which makes the respective
partial fault modes diagnosable, while the 2nd pair is not discriminable. Since
the extensions do not constrain other fault modes, all the pair refinements are
not discriminable as well. Therefore the algorithm stops at rank 3.

Results

Two partial fault modes are not discriminable if and only if they refine the
pairs (m2 = ok ∧ m3 = ab, m2 = ab ∧ m3 = ok) or (m1 = ok ∧ m4 = ab ∧ m5 =
ok, m1 = ok ∧ m4 = ab ∧ m5 = ab). Partial fault modes that do not refine any
of the 2 above are diagnosable. In terms of fault modes, 20 fault modes are not
diagnosable (80 non discriminable pairs can be built), and 12 are diagnosable.

5.4 Conclusion

This chapter has shown that the concept of fault signature can be extended to
partial fault modes, which can decrease the number of signature comparison in
order to analyze diagnosability. Moreover, expressing the results of diagnosabil-
ity analysis in terms of pairs of discriminable partial fault modes is smaller, and
we claim that this format is more suited to be fed back to the designer.

Although the concepts of fault mode and signature apply to both SBS and
EBS, the algorithm described here applies to SBS. We are confident that a
similar approach can be done for EBS, although the problem of computing
signatures for partial fault modes in a tractable way is open.

Chapter 6

Signatures for state

dependent properties

This chapter presents a generalization of diagnosability not only to fault modes
and partial fault modes, but to any set of states of a SBS. In a state based model-
ing framework, any condition or property of the system generally expresses as a
set of states. This generalization hence allows one to analyze the diagnosability
of, for instance, repair preconditions or of a given quality of service.

Diagnosis and diagnosability analysis are now mature research fields, and the
problem of integrating diagnosis into a general purpose supervision tool is re-
ceiving increasing interest. The integration of diagnosability analysis into a gen-
eral design support tool is also a very significant issue [wsdiamond, 2005 2008,
Cordier et al., 2007].

In [Cordier et al., 2007], a new definition of diagnosability is provided, based
on the idea that some faults need not be discriminated, for example because the
same repair can repair them. This consideration has led to the definition of
macrofaults for which diagnosability definition is a generalization of our unified
diagnosability definition 3.9. This work was developed during this thesis, more
precisely after the work described in chapter 4, and before the one described in
this chapter. Then, our new definition of diagnosability is given, and we prove
that it is a generalization of both our unified definition 3.9 and the one given
in [Cordier et al., 2007]. Finally, an example illustrates how this definition can
greatly facilitate the integration of diagnosability and diagnosis into a general
supervision tool.

105

106 CHAPTER 6. SIGNATURES FOR PROPERTIES

6.1 Macrofault diagnosability

In [Cordier et al., 2007], the idea that a repair may repair several fault modes
is addressed by the definition of macrofaults. A definition of diagnosability
of macrofaults is proposed, this definition is used for defining formally self-
healability. This work follows the results of chapter 4, and accounts for the
unified definition of diagnosability for fault modes. The diagnosability definition
is based on the idea that for repair, not all pairs of fault modes need to be
discriminable: the set of available repairs may have a coarser granularity than
elementary faults. Then the fault modes that do not need to be discriminated
one from another are gathered into a macrofault.

This raises a significant difference compared to the fault mode approach.
Whereas fault modes are disjoint, macrofaults may overlap if a fault mode be-
longs to two macrofaults. In the macrofault approach, it is considered that
when the system state belongs to several macrofaults, it belongs to an overlap-
ping fault mode, and identifying one of the macrofaults with certainty is enough
for the system to be diagnosable.

In this approach, only covering sets of macrofaults are considered, i.e. sets
of macrofaults such that every fault mode belongs to at least one macrofault.
Consequently, whatever the system state is, at least one of the macrofaults is
present.

Definition 6.1 (Macrofault, Characteristic signature) A macrofault MFi

is a set of fault modes. MFi is present if and only if the system is in one of the
fault modes fj ∈ MFi.

A characteristic signature cSig(MFi) is a set of observations that allow one
to assess with certainty that the macrofault MFi is present.

cSig(MFi) ⊆
(

⋃

fj∈MFi

(

Sig(fi)
)

\
⋃

fk /∈MFi

(

Sig(fk)
)

)

Note that there are several possible characteristic signatures for each macro-
fault. If O is a characteristic signature for a macrofault MFi, then any O′ ⊆ O
is also a characteristic signature for MFi.

Definition 6.2 (Macrofault Diagnosability) A covering set of macrofaults
{MFi}, i.e. a set of macrofaults that cover all the fault modes, is diagnosable if
and only if there exists a set of characteristic signatures for these macrofaults
that form a partition of OBS.

When such a partition is established as illustrated in figure 6.1, it is always
possible to find out at least one present macrofault. As a state may belong
to several macrofaults (this is the case for all states in f2 in figure 6.1), an
observation can also correspond to several macrofaults. However, it is only
needed, for each observation, to assess with certainty that one macrofault is
present. Being aware of all the present macrofaults allows the supervisor to

6.2. DIAGNOSABILITY REVISITED 107

SD

SDf0

SDf1

SDf2

SDf3

POBS OBS

Sig(f0)

Sig(f1)

Sig(f2)

Sig(f3)

cSig(MF0)

cSig(MF1)

cSig(MF2)

MF0 = {f0}, MF1 = {f1, f2}, MF2 = {f2, f3}

Figure 6.1: Macrofault diagnosability: the fault modes f1, f2, f3 are not diag-
nosable. The set of macrofaults {MF0, MF1, MF2} is diagnosable.

choose and plan the repair, but this is not needed to achieve diagnosability of
macrofaults.

This definition is a generalization of the unified diagnosability definition 3.9,
since fault modes are particular macrofaults. Because macrofaults may overlap
when they contain a common fault mode, this definition applies to a greater
range of sets of states than the fault mode definition.

Macrofault diagnosability is less constrained than fault mode diagnosability
(definition 3.9), in the sense that in a system verifying fault mode diagnosability,
any covering set of macrofaults is diagnosable.

6.2 Diagnosability revisited

This section presents a new definition of diagnosability, which applies to any
set of states, that may correspond to any state dependent property. It is based
upon the analysis of the set of states in which a property holds. It is a gener-
alization of existing diagnosability definitions which only apply to sets of states
characterized by the presence or absence of some faults. Comparisons show that
this new definition is consistent with the existing ones.

6.2.1 System representation

The system is assumed to be described by a formula sd which can be expressed
in propositional logic. The set of variable tuples for which sd is satisfied is
denoted SD , it contains all variable tuples satisfying sd and describes the set
of all the system states, faulty or non faulty. We recall that the set of variables

108 CHAPTER 6. SIGNATURES FOR PROPERTIES

SD OBSPOBS

S1

o1

o2

S2

o4

o3

Figure 6.2: The set of states S1 is not diagnosable. S2 is diagnosable.

is denoted V, O denotes the set of observable variables, and the set OBS con-
tains all the reachable tuples of observable variables. In other words, it contains
the restrictions of the variable tuples SDto the variables in O. The projection
on observables POBS is in this context a function from SD to OBS that asso-
ciates each state s of SD to its corresponding observation in OBS by removing
unobservable variables from the variable tuple defining s.

We have seen before that fault modes can be described by an assignment to
mode variables (see definition 3.5 page 62) which is a particular case of formula.
A fault mode can hence be associated to a set of states. The notation SDfi

denotes the set of states associated to the fault mode fi. The signature of a
fault mode is defined as the projection on observables of its set of states:

∀fi ∈ Fsys, Sig(fi) = POBS(SDfi
)

6.2.2 Diagnosability of a set of states

We now introduce a new definition of diagnosability. This definition is stated in
terms of states instead of observables and signatures. This aspect is original and
provides a dual characterization of the classical definitions, that can prove useful
is some contexts where characterizing the set of observables is more difficult than
the set of states.

Definition 6.3 (Diagnosable block) Let =OBS be the equivalence relation de-
fined on SD by:

∀s1, s2 ∈ SD , s1 =OBS s2 ⇔ POBS(s1) = POBS(s2)

Each equivalence class of =OBS is called a diagnosable block of the system. The
set of diagnosable blocks of the system is the quotient set of SD by =OBS.

Definition 6.4 (Generalised Diagnosability) A property or its correspond-
ing set of states S ⊆ SD is diagnosable if and only if S is exactly a union of
diagnosable blocks.

Figure 6.2 depicts a system with 7 states and 4 possible observations. The
diagnosable blocks are represented by white sets with dashed lines. Observation

6.2. DIAGNOSABILITY REVISITED 109

o2 is received in two different states, one inside S1 and one outside. Thus, when
observing o2, a supervisor is unable to decide whether the system is in S1 or
not. On the other hand, it is always possible to decide from the observations
whether the system state belongs to S2 or not.

6.2.3 Comparison with unified diagnosability

Since definition 6.4 applies to any set of states, it applies in particular to fault
modes. It is shown now that when applied to fault modes, this definition is
equivalent to the unified diagnosability definition 3.9.

Theorem 6.1 A system is diagnosable according to the unified definition 3.9 if
and only if for every fault mode f , SDf is diagnosable according to definition
6.4.

Proof Assume that the system is not diagnosable in the sense of definition 3.9.
There exists two fault modes fi and fj whose signature intersect, i.e. there
exists a state si ∈ SDfi and another state sj ∈ SDfj leading to the same
observation. These two states obviously belong to the same diagnosable block,
say d, and, since SDfi and SDfj are disjoint, none is a superset of d. Since
diagnosable blocks form a partition of SD , si (resp. sj) does not belong to any
other diagnosable block than d. Hence, SDfi (resp. SDfj) is not a union of
diagnosable blocks, and thus is not diagnosable according to definition 6.4.

Assume now that one fault mode fi is not diagnosable as of definition 6.4, i.e.
SDfi

is not a union of diagnosable blocks. Then since both diagnosable blocks
and fault modes states form a partition of SD , there exists a diagnosable block d
containing a state si of SDfi

and at least one state sj belonging to another fault
mode SDfj

. These two states lead to the same observation o, which necessarily
belongs to both Sig(fi) and Sig(fj). Consequently the signatures of all fault
modes are not all pairwise disjoint, i.e. the system is not diagnosable according
to definition 3.9. �

6.2.4 Signature and preemptability

Definition 6.4 expresses the diagnosability of a single property. This definition
is now extended to a set of properties. For this, the classical notion of signature
is extended and the notion of preemptability is introduced. The new definition
of the signature applies to sets of states as opposed to the unified definition 3.9
that applies to fault modes.

Definition 6.5 (Signature of a set of states) The signature of a set of
states S, or of the property p mapped to S, is the set of observations that can
be obtained when the system is under one of these states:

Sig(S) = {POBS(s), s ∈ S}

110 CHAPTER 6. SIGNATURES FOR PROPERTIES

SD

D(S)

UD(S)

UD(S)

D(S)

S

OBS

Sig(S)

Sig(S)

POBS

P−1
OBS

Figure 6.3: Signature Sig(S), diagnosable space D(S) and undiagnosable space
UD(S) of a set of states S.

This definition applies equally to the complement set S. As sets of states gener-
ally overlap, comparing their signatures with one another does not bring much
information. It is worthy to compare their signatures with the signatures of
their respective complements. Indeed, if a set of states corresponds to a given
property of the system, its complement corresponds to the negation of the prop-
erty.

Definition 6.6 (Diagnosable space, Undiagnosable space) The diagnos-
able space D(S) (resp. undiagnosable space UD(S)) of a set of states S mapped
to a property p is the subset of S in which it is possible (resp. impossible) to
assert from the observations whether the property p holds.

UD(S) = S ∩ P−1
OBS

(

Sig(S) ∩ Sig(S)
)

D(S) = S \ UD(S)

As illustrated in figure 6.3, D(S) can also be defined as the union of the diag-
nosable blocks included in S. The diagnosable blocks that intersect but are not
included in S form UD(S) ∪ UD(S). The intersection of this set with S gives
UD(S). Hence, when a set of states is diagnosable, its undiagnosable space is
empty.

When a property p is undiagnosable, it can be preemptable if its undiagnos-
able space is included in the union of the diagnosable spaces of other properties.
In this case these other properties may preempt p in the sense that when the
validity of p is uncertain, one of these other properties is valid, which may be
enough to take a decision.

Definition 6.7 (Preemptability) A property or its corresponding set of
states S is preemptable with respect to a set of properties {Si|1 ≤ i ≤ n} if
and only if:

UD(S) ⊆
n
⋃

i=1

(

D(Si)
)

6.2. DIAGNOSABILITY REVISITED 111

S0

UD(S0)

UD(S1) = UD(S2) = ∅

S1

S2

Figure 6.4: The set of states S0 is preemptable.

Or equivalently:

(

Sig(S) ∩ Sig(S)) ⊆
n
⋃

i=1

(

Sig(S′) \ Sig(S′)
)

Figure 6.4 illustrates a set S0 whose undiagnosable space is included into two
diagnosable sets S1 and S2.

6.2.5 Diagnosability of a set of properties

This section presents a definition of diagnosability for a set of properties that
accounts for the mutual influence that properties may have with one another
by the means of preemptability.

Definition 6.8 (Diagnosability of a set of properties) A set of properties
is diagnosable if and only if each property is either diagnosable or preemptable
with respect to this set.

When this definition applies to a set of disjoint sets of states, then it falls
back to definition 6.4 applied to each set. Moreover, if a set of sets of states is
diagnosable according to definition 6.8, then the union of all its sets of states
is diagnosable according to definition 6.4. Indeed, let Si be the set of states
corresponding to the i-th property of a diagnosable set of properties. For each
i, UD(Si) is either empty or included in the union of the diagnosable sets of
other sets of states. Hence,

⋃

i Si =
⋃

i D(Si) is diagnosable since each D(Si) is
a union of diagnosable blocks.

6.2.6 Comparison with macrofault diagnosability

Now it is shown that definition 6.8 is equivalent to definition 6.2 when applied
to macrofaults.

Theorem 6.2 A covering set of macrofaults is diagnosable according to defini-
tion 6.2 if and only if it is diagnosable according to definition 6.8.

112 CHAPTER 6. SIGNATURES FOR PROPERTIES

Proof First, given a macrofault MFi, let us consider Sig(D(MFi)). This set
contains no observation from a state in which MFi is absent, and is hence a
characteristic signature for MFi. Let us map each macrofault MFi to the set
Σi = Sig(D(MFi)) \

⋃

j<i Sig(D(MFj)). Σi is a characteristic signature for MFi

since it is a subset of Sig(D(MFi)).

Second, let o ∈ Sig(D(MFi)). We have either o /∈ Σi, or o ∈ Σj with j < i,
and if o ∈ Σi then necessarily o /∈ Σk with k 6= i. Hence, the set of all Σi forms
a partition of the set

⋃

i Sig(D(MFi)).

The previous statements are now used to establish the equivalence. The
covering set of macrofaults {MF0 . . . MFn} is diagnosable according to definition
6.8 if and only if the set of all D(MFi) covers SD (see section 6.2.5), which is
equivalent to the set

⋃

i Sig(D(MFi)) covering OBS . Consequently, from the
statements above, it follows that the set Π = {Σ0 . . .Σn} partitions OBS , and
the set of macrofaults is diagnosable according to definition 6.2. �

6.3 Application to repair preconditions

The ultimate goal of diagnosis is to achieve a level of self-awareness that eases
decision making about the actions to be undertaken to bring back the system
into a nominal state. Diagnosis is hence driven by repair goals. This is why the
definitions of diagnosability 6.4 and 6.8 are now applied to sets of states that
map to repair preconditions. When a repair precondition is diagnosable, it is
possible to decide when to apply the repair and when not. It is a complementary
approach to fault diagnosis, the knowledge of which fault is present and the
knowledge of how to repair it are different, and both are important for a system
supervisor. Knowing which fault happened but being unable to decide which
repair is suited is odd. On the other hand, knowing how to repair a faulty system
without knowing the details of the faults is a problem for low cost maintenance
or feedback to the system designers. Hence, diagnosability analysis of repair
preconditions is a complement to fault diagnosability analysis.

A repair is an action or a process that puts a system back to a normal
state from a faulty abnormal state. Repairs can be plans driven by goals
[Friedrich et al., 2005], reconfigurations [ten Teije et al., 2004], or other actions.
In most approaches, repairs have preconditions, which generally define a set of
states. In the case of repair plans, the plan may contain actions that bring ad-
ditional information about the system state, thus refining the diagnosis. Plans
may also contain conditional branchings, especially in order to react to addi-
tional diagnosis information.

A repair may not be executed in every state of the system for various reasons.
An action or plan that repairs a system from a given state may damage it even
more in some other states. For example changing a wheel is not possible if
the vehicle is not at full stop. Also, it is considered in this paper that repairs
being the system back in a normal state, partial repairs are not considered. For

6.4. EXAMPLE 113

Tank

Clog

hp

te

if

of

Figure 6.5: A pipe and a tank

example, changing one wheel repairs a vehicle with one flat tire, but it does not
repair a vehicle with two flat tires.

In most cases, non faulty states do not belong to repair preconditions, since
it is not useful to repair a normal system. However, when there is an ambiguity
about the presence for a fault, some supervision policies consider that it is better
to repair a normal system than let the system run with the fault. Consequently,
normal states may belong to repair preconditions.

Definition 6.9 (Repair precondition) A repair precondition is a set of
states, in which the repair can be applied, and in which the application of the
repair brings the system to a normal state.

This definition implies that if two repair preconditions are verified at the
same time, only one repair needs to be applied.

No assumption is made in this paper about the relation between fault modes
and repair preconditions. A repair may be applicable in only some of the states
of a fault mode, while each fault mode may be repaired differently according to
the current system state.

Each repair precondition is described by a logic proposition rpi. The propo-
sition rpi generally constrains mode variables as well as variables defining the
operational state of the system. The set RPi ⊆ SD contains all the system
states fulfilling rpi. The set RPi is the complement of RPi in SD , it is the set
of system states for which the i-th repair is not suited.

6.4 Example

The concepts and definitions described in the previous sections are illustrated
by a simple example. It is shown that definitions 6.4 and 6.8 allow us to analyse
diagnosability at different levels (faults, macrofaults, or repair preconditions)
and that the returned information may be different and complementary.

System The system consists in a fluid pipe with variable input flow, which is
supposed to provide a constant output flow. A tank is used to compensate

114 CHAPTER 6. SIGNATURES FOR PROPERTIES

flow variations. This tank is filled when the input flow is higher that the
expected output, and provides water when the input flow is too low.

Faults Two faults are considered. First, the pipe may be clogged, which reduces
greatly the flow capacity of the pipe. Second, the tank is supposed to be
always able to deliver water, however in exceptional conditions, the tank
may occur to be empty. When this occurs, the input flow is directed in
priority to the tank. If the input flow is sufficiently high, it can supply
both the empty tank and the output.

Sensors A pressure sensor is placed in the pipe, in order to detect abnormally
high pressures. This happens when the pipe is clogged, and there is input
flow.

Model The model of this system contains five variables:

• if describes the input flow and has 3 values: none, low, and high.

• of is Boolean and equals 1 when there is an output flow.

• hp is Boolean and equals 1 when the pressure inside the pipe is ab-
normally high.

• pc is Boolean and equals 1 when the pipe is clogged.

• te is Boolean and equals 1 when the tank is empty.

The behaviour of the system is described by the following constraints:

of = 1⇔
(

te = 0 ∨ (if = high ∧ pc = 0)
)

hp = 1⇔ (if 6= none ∧ pc = 1)

Observables The variables if , of and hp are observable.

Repairs The following repairs are available:

1. It is possible to unclog the pipe thanks to a chemical action (rp1).
This repair can be applied when the pipe is clogged. For safety
reasons, it must not be applied when the pipe is not clogged. If the
tank is empty, this repair is not sufficient to bring back the system
in a normal state.

rp1 : (pc = 1 ∧ te = 0)

2. It is also possible to unclog the pipe mechanically (rp2). The action
consists in sending someone on site and clean the pipe. This repair
can only be applied when the pipe is empty (no input flow), but is
not sufficient if the tank is empty, since it will not bring the system to
a normal state. This repair can if necessary be applied in the normal
mode: once the cleaner is on site, if the pipe is not clogged, then the
cleaner will do nothing.

rp2 : (te = 0 ∧ if = none)

3. Finally, if the tank is empty, it is possible to redirect the whole flow
through the tank (rp3). This permits to mechanically unclog the
pipe if needed. However, the manipulations involved in this repair
require that there is no flow in the pipe.

rp3 :
(

te = 1 ∧ (if = none ∨ pc = 1)
)

6.4. EXAMPLE 115

te : 0 1
pc : 1 0 0 1

if : none

low

high
SD

RP1 RP2 RP3

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

States Observation
if hp of

s0, s1 none 0 1
s2, s3 none 0 0

s4 low 1 1
s5 low 0 1
s6 low 0 0
s7 low 1 0
s8 high 1 1

s9, s10 none 0 1
s11 high 1 0

Figure 6.6: States, diagnosable blocks and repair plans of the system.

The system has 12 different states, represented in figure 6.6 as well as the
diagnosable blocks and their corresponding observations. The application of
definitions 6.4 and 6.8 to the fault modes, macrofaults and repair preconditions
are now illustrated on this system.

6.4.1 Fault mode diagnosability analysis

The system has 4 fault modes, named normal, pipe clogged, tank empty and
pipe & tank that define 4 sets of states whose diagnosability is analyzed. The
analysis details are described in figure 6.7.

According to definition 6.4, none of these fault modes is diagnosable. More-
over, fault modes are by definition disjoint sets, and the notion of preemptability
is not relevant when dealing with disjoint sets of states, since disjoint sets cannot
preempt one another. Consequently, no fault mode is diagnosable according to
definition 6.8 either.

116 CHAPTER 6. SIGNATURES FOR PROPERTIES

Fault mode States Intersected blocks UD

SDnormal {s1, s5, s9} {s0, s1} and {s9, s10} {s1, s9}
SDpipe clogged {s0, s4, s8} {s0, s1} {s0}
SD tank empty {s2, s6, s10} {s9, s10} and {s2, s3} {s2, s10}
SDpipe & tank {s3, s7, s11} {s2, s3} {s3}

Figure 6.7: Fault modes diagnosability results.

Macrofault States Intersected blocks UD

MF1 {s1, s2, s5, s6, s9, s10} {s0, s1} and {s2, s3} {s1, s2}
MF2 {s0, s4, s8} {s0, s1} {s0}
MF3 {s2, s3, s6, s7, s10, s11} {s9, s10} {s10}

Figure 6.8: Macrofaults diagnosability results.

Repair precondition States Intersected blocks UD

RP1 {s0, s4, s8} {s0, s1} {s0}
RP2 {s0, s1} none ∅
RP3 {s2, s3, s7, s11} none ∅

Figure 6.9: Repair preconditions diagnosability results.

In each table, the column “Intersected blocks” lists the diag-
nosable blocks that intersect but are not subset of the correspond-
ing set of states.

6.4. EXAMPLE 117

6.4.2 Macrofault diagnosability analysis

Let us consider for example the set of macrofaults defined by {MF1, MF2, MF3}
with MF1 = {normal, tank empty} and MF2 = {pipe clogged} and MF3 = {tank
empty, pipe & tank}. The diagnosability analysis is given in Table 6.8.

None of these macrofaults is diagnosable with respect to definition 6.4. More-
over, only MF3 is preemptable, with UD(MF3) ⊂ D(MF1), which is not enough to
make the set of macrofaults {MF1, MF2, MF3} diagnosable according to definition
6.8.

6.4.3 Repair precondition diagnosability analysis

The sets of states corresponding to the repair preconditions are represented in
figure 6.6. Diagnosability analysis provides the results indicated in Table 6.9.

The undiagnosable spaces of repair preconditions RP2 and RP3 are empty,
which means these sets of states are unions of diagnosable blocks. They are
diagnosable, according to definition 6.4. Moreover, RP1 is not diagnosable,
but UD(RP1) ⊂ D(RP2), it is preemptable. The set of repair preconditions
{RP1,RP2,RP3} is diagnosable with respect to definition 6.8.

Part III

Application and algorithmic

aspects

119

121

This part presents the application of the diagnosability approach described
in chapter 5 to web services, or more generally to systems which comply to
Service Oriented Architectures (SOA). The generalized definition provided in
chapter 6 has not led yet to any application work since it has been designed
during the implementation of the approach of chapter 5.

The application of the signature based diagnosability analysis is done in
service oriented architectures, which prove to be a particularly constrained con-
text. The system distribution, the high modularity and the privacy of some
data make supervision difficult in such an environment. Our implementation
uses partial assignments that allow us to comply to both distribution and pri-
vacy constraints, and we will see that our implementation offers a sufficient
modularity to fit those architectures.

Chapter 7

Applicative context:

Service Oriented

Architectures and Web

Services

Service Oriented Architectures (SOA) have recently benefited from an impor-
tant interest from the industry. SOA are useful for process analysis, design or
specification, in many kinds of processes: software, manufactures, or admin-
istration. The concepts introduced by SOA allows to express and manipulate
functional knowledge (see section 1.3), which makes SOA an attractive paradigm
for process analysis, particularly in environments with heterogeneous or evolu-
tive components.

7.1 Introduction to Service Oriented Architec-

tures

SOA originated in the context of software for commercial transactions on the
internet. In such context, components are very heterogeneous and evolutive
(hardware, software, web servers, data bases, etc), and a system can be involved
in various transactions that fulfill various purposes. The only constant charac-
teristic of a system in this context is the function, or service, it provides. This
is why services (or functions) are the central concept of SOA. Atomic services,
called activities, can be composed by a business process in order to provide an
elaborated service. An execution, or instance, of a business process is a work-
flow. A new workflow is started each time a consumer, or client, invokes the
service. The business process can also be called a workflow model.

123

124 CHAPTER 7. APPLICATIVE CONTEXT

Example 7.1 (Shop) A shop offers two services. The first service receives a
list of items, reserves them if available, and outputs some information about
these items: reservation number, availability, price, shipment delay, etc. The
second service performs the confirmation and payment of a reservation. It takes
as input the reservation number and bank account coordinates, launches the
shipment process and outputs a bill. The shipment process is delegated to another
service.

The payment service cannot be invoked at any time with any reservation
number. If the reservation number is not valid, it will output an error. Hence,
the two services are part of a unique business process.

In the example above, two services are linked by a unique business process.
Actually, the business process that reserves items and the business process that
receives the payment are two parts of a greater business process destined to sell
items. This global business process is associated to a global selling service that
encapsulates the reservation and payment services.

The business process realized by a service provider is generally not published
to consumers. The provider only publishes an abstraction of its business pro-
cess that allows consumers to invoke the service, like the structure of the request
and response messages. Some more elaborated frameworks allow the provider
to publish to consumers abstract processes, that describe several message ex-
changes, conditional branchings and such control structures. This abstraction
leads to a great flexibility, since equivalent services can easily be substituted.
However for model-based reasoning this is problematic since no entity is aware
of the details of the whole process.

The two most important aspects of SOA when considering system super-
vision are the great modularity, and the model privacy. These aspects are
developped in the next sections.

7.2 Orchestration and choreography

The possibility of having several business partners executing several parts of
a business process leads to two critically different contexts for process anal-
ysis, called orchestration and choreography. The gap between boths context
is not very clear. The position and definitions adopted here are defined in
[Eder et al., 2006], along with a formal meta-model of orchestrations and chore-
ographies.

Definition 7.1 (Orchestration and choreography) An orchestration is a
business process executed by a unique service provider. A choreography is a
business process executed by two or more service providers.

Orchestrations and choreographies analysis have been addressed sepa-
rately in the literature. The problems of choreographies conformance and

7.2. ORCHESTRATION AND CHOREOGRAPHY 125

Figure 7.1: Composing orchestrations on different partners lead to choreogra-
phies. Conversely, the total sale choreography can be decomposed into various
supporting choreographies, or further in orchestrations.

automated composition of orchestrations have been addressed many times
[Hamadi and Benatallah, 2003, Baldoni et al., 2004, van der Aalst et al., 2006,
Busi et al., 2005]. Various languages address the problem of description
and execution of business processes: BPEL4WS [OASIS, 2007], WS-CDL
[W3C, 2005b], etc.

Both orchestrations and choreographies are business processes, and conse-
quently are processes. There are various relations between orchestrations and
choreographies, according to the context of the service providers:

• An orchestration can be split into several orchestrations (see example 7.1).

• An orchestration executed by a general service can be internally realized
by a choreography of internal services.

• A choreography can be divided into orchestrations, by considering the pro-
cesses executed by each partner. These orchestrations realize the chore-
ography, see figure 7.2.

• A choreography can also be divided into other sub-choreographies involv-
ing less service providers. These sub-choreographies support the former
choreography, see figure 7.2.

126 CHAPTER 7. APPLICATIVE CONTEXT

Figure 7.2: The same process, seen at different abstraction levels. At the lowest
abstraction level, the 3 participants are considered as different partners, and
the process is seen as a choreography. At a higher level of abstraction, the
whole Foodshop is considered as a single service encapsulating the Shop, the
Supplier and the Shipment; the process is then seen as an orchestration, and
communication details are abstracted out. Finally, at a even higher level of
abstraction, the process of buying food is seen as an atomic operation of which
the details are not relevant for the model of the whole larger process of preparing
a ceremony.

The distinction between choreography and orchestration totally depends on
the definition of the different providers. For the sake of clarity and performance,
several service providers can be abstracted into one, for example the depart-
ments of a society that deliver themselves various services can be abstracted
into a single service, the society, when dealing with large external processes.
The same business process can be seen, according to the abstraction level, as a
choreography, an orchestration, or even an internal operation, as illustrated in
figure 7.2.

A service provider has in general no restriction about its clients, and a service
can be used by several consumers. A business process can consequently be
part of several larger business processes, and share some sub-parts with other
business processes.

7.3. WEB SERVICES 127

SOA are used for modelling and analysing existing processes, but the most
important application is for distributed software programming, especially web
services.

7.3 Web services

The ambassador technology of SOA is the web services specification, that con-
tains several languages based on XML and adopted as a standard by the W3C.
The capacity of SOA to integrate components from different companies has
made it very interesting for the management of commercial transactions over
the Internet. This sector has been very dynamic these last few years.

The web services specification initially relies mainly on 3 languages: SOAP,
WSDL and UDDI. These languages allow the specification of communication
protocols for service invocation, and to provide a directory of services. Several
other languages are candidate for standardization by the W3C, since the 3
standard languages do not allow the specification of business processes.

7.3.1 XML

The eXtensible Markup Language [W3C, 2006] was first specified in 1998 as a
subset of SGML (Standard Generalized Markup Language). It is a markup
language that allows users to specify their own markups. It is the base language
for most standard and non standard languages used in specifications related to
web services. It has a text format, and is designed to be human readable.

A fundamental extension of XML is the XPath (XML Path Language) that
provides means to select nodes in an XML document based on its tree repre-
sentation and extract values under string, integer, Boolean, and other formats.
XML Schema [W3C, 2004] is another important extension for defining and val-
idating schemas, using the language XSD (XML Schema Definition). A schema
defines markup names, and constraints over the markups (for example, one may
want the markup <paragraph> to appear inside the markup <chapter>). Since
XSD is an extension of XML, it is defined in an XSD file. Another important
extension is the XSLT language (XML Stylesheet Language Transformation)
[W3C, 1999] that expresses transformation of XML documents into other docu-
ments, based on markup patterns or functional programming. XSLT is also an
extension of XML and can be described in an XSD file. Parsers and transformers
for XML files have been implemented in various programming languages.

Various other extensions of XML are used for many applications ranging over
the description of text, images, mathematical formulas, general documents, or
remote telescope control or even theology semantics, although the relevance of
these extensions can vary as much as the topics they address. It is also used to
specify many aspects of distributed programming in SOA.

128 CHAPTER 7. APPLICATIVE CONTEXT

<?xml version="1.0" encoding="UTF-8"?>

<BOOK xml:id="simple_book"

xmlns="http://docbook.org/ns/docbook" version="5.0">

<TITLE>Very simple book</TITLE>

<CHAPTER xml:id="chapter_1">

<TITLE>Chapter 1</TITLE>

<PARA>Hello world!</PARA>

<PARA>I hope that your day is proceeding

<emphasis>splendidly</emphasis>!</PARA>

</CHAPTER>

<CHAPTER xml:id="chapter_2">

<TITLE>Chapter 2</TITLE>

<PARA>Hello again, world!</PARA>

</CHAPTER>

</BOOK>

Figure 7.3: DocBook is an XML-based language used to describe text docu-
ments. Source: wikipedia [Wikipedia,].

7.3.2 SOAP

The Simple Object Access Protocol [W3C, 2007a] is a standard language based
on XML. It describes message structures for data transfer between applications.
In several aspects it is similar to HTML (HyperText Markup Language), the
standard language used to describe web pages:

• It can be transported by HTTP1 or SMTP2 to its destination.

• The root SOAP markups <soap:Envelope>, <soap:Header>, <soap:-

Body> are very similar to their structural equivalent in HTML <html>,
<head> and <body>.

The main difference is that SOAP contains no predefined markups related
to the data it encapsulates. HTML contains predefined markups that allow
to describe a web page. In opposition, SOAP, as an XML-based language, is
extensible, and the inner markups are defined by the designer according to the
communication needs. SOAP can easily be treated using XSLT transformers, in
order for example to add styling information and to produce a human readable
web page.

7.3.3 WSDL

The Web Service Description Language [W3C, 2007b] is a standard language
for describing web services interfaces. It is generally used together with SOAP
and XSD for describing the structure of the input and output messages.

1HyperText Transfer Protocol: the standard protocol for querying web servers.
2Simple Mail Transfer Protocol: the standard protocol for reading and writing emails.

7.3. WEB SERVICES 129

A web service description defines interfaces, the provided services and their
associated messages. A binding links the messages defined by an interface to a
communication protocol, e.g. SOAP. Finally, an endpoint maps a binding to an
address, generally an URL3. In short, the same service may be accessed with
different protocols at different URL addresses.

Several operation patterns are defined for interfaces:

In-Only The service receives an input and never answers.

Robust In-Only The service receives an input and may output fault messages,
but no other type of message.

In-Out The service receives a request and outputs a response. A fault message
may replace or complete the response.

In-Optional-Out The service receives an input, and may output a response
and/or a fault message if necessary.

Out-Only The service sends a notification to the consumer and does not await
answers.

Robust Out-Only The service sends a notification to the consumer and ac-
cepts responses containing fault messages.

Out-In The service notifies the consumer and awaits for a response. A fault
messages replaces or completes the answer.

Out-Optional-In The service sends a notification to the consumer and accepts
a response and/or a fault message if any.

The patterns of style “in-only” or “in-out” are suited for use with SOAP over
HTTP protocol, in a client-server manner. The “out-only” or “out-in” patterns
are more difficult to implement over HTTP, since some particular mechanisms
like permanent connections are needed. When using SOAP over SMTP (i.e.
in emails), or even in peer-to-peer networks, all those patterns are directly
realizable.

Although the specification of WSDL 2.0 allows more complex patterns to
be defined, only the eight above are part of the W3C recommendation and are
likely to be understood by all programming tools. Consequently, WSDL is not
able to describe stateful services realized by business processes.

7.3.4 UDDI

The Universal Description Discovery and Integration standard [OASIS, 2004]
was originally proposed as a core web service standard. It provides a directory

3Uniform Resource Locator: a string describing the location of a file or service on the
Internet, e.g. http://www.laas.fr/

130 CHAPTER 7. APPLICATIVE CONTEXT

of web services, organised in yellow pages, white pages and green pages. A
UDDI directory is a web service that accepts standard SOAP search requests
and replies WSDL descriptions of web services that correspond to the request.

The use of UDDI has decreased a lot recently. Analysts explain that au-
tomated discovery and consumption of services is not the way companies do
business, and UDDI as a way to interact with external companies has not met
great success. It is said to be useful inside companies as a way to find mobile
endpoints: if the endpoint of a service changes (the software has moved to an-
other computer), the WSDL file of this service must be updated. This can be
done by publishing the new WSDL file to a UDDI directory that lists all the
mobile endpoints of the society. Service consumers get the new endpoint by
consulting the updated UDDI directory.

7.3.5 WS-BPEL

The Web Services Business Process Execution Language is an Oasis standard
[OASIS, 2007]. It provides a way do describe business processes based on web
services. The basic operation is the invocation of a web service, and the aim of
the business process is to provide web services. It relies on the languages SOAP,
WSDL and also XSLT and XPath.

The language can characterize executable and abstract business processes.
Executable business processes describe the workflow that must be carried on by
the business partner during the transaction. It is an implementation, and can
be executed by a BPEL engine to provide actual services. Abstract business
processes are not complete, and allow to describe only some aspects of an exe-
cutable business process. They can be used for specifying the behavior exposed
to a choreography partner, or for specifying templates processes.

The language offers the standard control instructions: parallel branching
and joins, conditional branching, loops, etc. Moreover, data in SOAP request
and responses can be accessed and computed with XPath. The data can be
reorganized from existing message structures (response of a web service) to new
structures (request to another web service) with XSLT transforms.

7.3.6 Semantic web services and Ontologies

Automated composition of web services and choreography conformance checking
are two very active research field in the web community. The consideration of
semantic metadata can considerably help to solve such problems: when a service
requires an integer number as input, knowing that this parameter is the number
of ordered products allows one to provide much more focused algorithms. Lan-
guages have been defined for semantic description of web services, like WSDL-S
[W3C, 2005a] that allows semantic annotations inside WSDL files.

7.4. DIAGNOSIS REQUIREMENTS IN SOA 131

Ontologies are a mean to organize, structure, compare and map semantic
information. Semantic knowledge is expressed thanks to an ontology. The
composition of services that use different ontologies for semantic annotation re-
quires ontology manipulation. Several languages address this need, among which
OWL-S [DAML,] is the most used, in particular in the research community.

7.4 Diagnosis requirements in Service Oriented

Architectures

SOA permit a very high level of modularity and flexibility. Since services are
defined by their interface, substituting a service with an equivalent one inside
a business process is fairly easy. Moreover, a service is meant to be involved in
several different business processes with different companies.

Abstraction and modularity are challenges for supervision, in the sense that
nobody can access the information about the whole business process: the model
is distributed among the business partners. Supervision of such systems re-
quires cooperation between the different actors of the process. However, since
the different companies do not publish the internal details of the workflow they
execute, supervision modules, while cooperating, must not publish private in-
formation either. Cooperation must be set up by communicating only on public
data. Moreover, since the same service may be involved into several business
processes, its supervision module needs to cooperate with various combinations
of partners. Finally, some business partners may provide supervision functions
while other partners don’t. Consequently, supervision systems in SOA must
also be very modular, abstract and flexible.

Since the supervision system must offer the same modularity as the system,
it is natural to cast it into a Service Oriented Architecture. For diagnosis, each
service is associated to a diagnoser Di, that is aware of its internal implementa-
tion. A given diagnoser Di exposes its services to other diagnosers. Diagnosis
is performed by a workflow, that can start either from inside the diagnoser Di

(if symptoms appear in the service supervised by Di) or from another diagnoser
that invokes diagnosis services on this diagnoser (if symptoms appear in a part-
ner’s service). According to the business process to supervise, the diagnoser can
cooperate with the diagnosers of different partners, or with no diagnoser if the
partner is not equipped with diagnosis capabilities.

In service oriented architectures, the internal implementation of services is
not published to business partners. Consequently, the composition of services
is based on functional knowledge (see section 1.3), since structural knowledge
is private. A business process is a complex function that is realized by the
composition (or aggregation) of several smaller functions that correspond to the
inner services.

As a consequence, the models used for diagnosis in service oriented archi-

132 CHAPTER 7. APPLICATIVE CONTEXT

tecture are organized around the functional knowledge. Hence the description
of faults, observations and communications is done at the functional level. Of
course, internally, a local diagnoser can use structural knowledge (if any) to
further refine the diagnosis at the structural level. However, the distributed
diagnosis architecture that results form the constraints of service oriented ar-
chitectures makes use of functional knowledge for communication between the
diagnosers.

The algorithm described in chapter 5 is suited to be implemented into ser-
vices oriented architectures for several reasons. First, its hierarchical structure
reproduces the way services are composed. It can be adapted to orchestrated
cases as well as choreographed cases, in this case the different partners need to
agree in order to have a common global diagnoser to which they will publish a
minimum of information, in particular for diagnosability analysis.

Chapter 8

Implementation and test

case

The diagnosis algorithm described in chapter 5 has specifically been designed
for web services. However, it is suited for all kinds of distributed contexts, and
its modularity makes it a good candidate for service oriented architectures in
general. This chapter describes the details of the implementation, and presents
an illustrative test case.

As explained in the previous chapter, the diagnosis and diagnosability model
is organized around functional knowledge. The model is supposedly derived
from a workflow specification, for example in BPEL4WS language. In that
case, we do not include any structural knowledge in the local models. Services
are functions that compose activities, i.e. sub functions. The focus is put on
the instance level, i.e. every execution of the workflow is monitored separately.
Diagnosis aims at assessing which activity(ies) fail to deliver its (their) function.

8.1 Binary decision diagrams

The problem of checking the admissibility (see definition 5.9) of a partial assign-
ment can be very complex if implemented incorrectly. In addition, exploring the
space of the extensions of a partial assignment in order to find a complete set
of admissible extensions is computationally expensive. We chose to use Binary
Decision Diagrams to store the models and check admissibility. This section
presents an overview of BDDs and how they can be used to represent a system
model.

From now on, let us assume that all the variables used in the system model
are Boolean, i.e. they range over the domain {0, 1} and Dom(V) = B

|V | (see
definition 5.5 page 88). We associate each constraint C to the Boolean function

133

134 CHAPTER 8. IMPLEMENTATION AND TEST CASE

B such that:

• B : B
|V | −→ B

• For any Boolean tuple (v1, v2 . . . vn) ∈ B
|V |, B

(

(v1, v2 . . . vn)
)

= 1 if and

only if the assignment γ =
(

V, (v1, v2 . . . vn)
)

is consistent with C.

Each constraint can consequently be represented by a Boolean expression. The
ternary operator if-then-elsen noted ite, is a very powerful operator for canonical
representation of Boolean expressions.

Definition 8.1 (If-then-else boolean operator) The if-then-else operator
ite is a ternary operator defined as:

ite(x, y, z) = (x ∧ y) ∨ (¬x ∧ z)

x is the test variable, y the positive test clause, and z the negative test clause.

The Shannon expansion of a Boolean formula f on a variable xi consists in
whiting f under the following form:

f = ite(xi, f ∧ xi, f ∧ ¬xi)

The formula f∧xi (resp. f∧¬xi) can be obtained by replacing every occurrence
of xi in f by 1 (resp. 0).

The if-then-else normal form is obtained by applying the Shannon expansion
to f on all the variables. Given a total order on the variables used in a set of
Boolean formulas, the if-then-else normal form applied in increasing variable
order is a canonical (i.e. unique) representation of Boolean formulas. Two
formulas are equivalent if and only if their expression in if-then-else normal
form is equal (given a total order on variables).

The if-then-else normal form can be used to store compactly and manipulate
efficiently a great number of Boolean formulas, by the means of Reduced Ordered
Binary Decision Diagrams (ROBDDs) [Meinel and Theobald, 1998]:

Definition 8.2 (Reduced Ordered Binary Decision Diagram) A Bi-
nary Decision Diagram (BDD) is a rooted, directed, acyclic graph, which
consists of decision nodes and two terminal nodes called 0-terminal and
1-terminal.

Each decision node is labeled by a Boolean variable and has two child nodes
called low child and high child. The edge from a node to a low (high) child
represents an assignment of the variable to 0 (1).

Such a BDD is called ordered if the different variables appear in the same
order on all paths from the root. A BDD is said to be reduced if it does not
contain any isomorphic subgraphs.

8.2. SOFTWARE ARCHITECTURE 135

x1

x2

x3 x3

0 1

Figure 8.1: A Reduced Ordered Binary Decision Diagram (ROBDD) for the
expression ite(x1, ite(x2, ite(x3, 0, 1), ite(x3, 1, 0)), 0) that is equivalent to x1 ∧
(x2 6= x3).

Efficient algorithms are given in [Meinel and Theobald, 1998] in order to
compute operations on ROBDDs. This efficiency led us to use this data struc-
ture to represent the assignments and constraints manipulated during diagnos-
ability analysis.

8.2 Software architecture

The diagnosis architecture has been extended from its specification in chapter 5.
We initially considered several local diagnosers coordinated by a global diagnoser
that plays the role of supervisor of all the local diagnosers. We now introduce a
hierarchical architecture, in which a global diagnoser can also have a supervisor,
all the diagnosers are organized into a tree with a root supervisor. All the leafs
are local diagnosers, and all the other diagnosers are global diagnosers that
supervise the diagnosers placed below them in the structural hierarchy.

We have implemented a prototype in Java, although the BDD library, called
BuDDy is internally coded in C++. The main software components are detailed
in this section.

8.2.1 Diagnosers

The software architecture is centered over the different types of diagnosers.
Several interfaces and implementations are defined, and a class diagram is given
in figure 8.2.

Diagnoser interface: this is the most abstract interface, it defines the meth-
ods that any kind of diagnoser should implement:

136 CHAPTER 8. IMPLEMENTATION AND TEST CASE

• StartDiagnosis is called by a diagnoser (or by the system) on its su-
pervising diagnoser. It is used to launch a diagnosis process from bot-
tom up. The requested diagnoser extends the inputs, and then calls
its supervisor’s StartDiagnosis method. The input to this method is
a set of assignments, that represents the abnormal observation (when
called by the system) or the hypotheses that explain the initial ob-
servation.

• ExtendForDiagnosis is called by the supervisor, or by the StartDiag-
nosis method. It receives some assignments as input, and computes
a complete set of admissible extensions with respect to the model of
the subsystem this diagnoser is in charge of. The implementations of
this method completely differ in local and global diagnosers.

• GetDiagnosis allows one to get the partial diagnoses for the moni-
tored subsystem at the end of the diagnosis process.

OrchestratedDiagnoser interface: this interface provides methods that
need to be implemented by diagnosers that accept a supervisor. This
methods provide a “supervisor endpoint” that can be used either by a
classical global diagnoser supervisor, or by a diagnosability analyzer su-
pervisor. The methods are:

• ExtendForDiagnosability is always called by the supervisor. Its only
difference with the ExtendForDiagnosis method is that the results
are restricted not only to interface variables, but also to mode and
observable variables.

• (Get/Set)Supervisor gets or sets the supervisor of this diagnoser for
the supervised instance of business process.

• Get(Mode/Observable/Interface)Variables are called by the super-
visor in order to qualify the assignments that are returned by the
extend operations. In particular, the knowledge of mode and observ-
able variables is required for diagnosability analysis. Such knowledge
is not needed by the supervisor for diagnosis, but for diagnosability
analysis, it is necessary to know mode and observable variables.

• GetDomain(Variable) returns the domain of the specified variable of
the subsystem this diagnoser is in charge of. This method is used to
create the initial alternative rank 1 partial fault modes, in the case of
non binary mode variables. We have assumed that all the variables
are binary, which results from the use of ROBDDs. However, the
software architecture is ready to release this assumption, which is
illustrated by the existence of this method.

LocalDiagnoser interface: this interface provides methods that need to be
implemented only by local diagnosers. It specifies methods that allow to
manage observations: since global diagnosers are not in contact with the
system, only local diagnosers need to manage observations.

• AddObservation(Assignment) merges the specified new observation
with the previous observations if any, into a unique assignment to
observable variables.

8.2. SOFTWARE ARCHITECTURE 137

• GetObservations returns an assignment to observable variables con-
taining the values observed in the monitored business process in-
stance.

AbstractDiagnoser class: this abstract class provides a partial implementa-
tion of the Diagnoser and OrchestratedDiagnoser interfaces. It imple-
ments the supervisor and diagnoses management. The Extend methods
are not implemented since they depend on the model.

AbstractLocalDiagnoser class: this abstract class adds the methods defined
in the LocalDiagnoser interface to the AbstractDiagnoser class. It imple-
ments the observations management.

BDDLocalDiagnoser class: this class adds the implementation of all the
model related methods to the AbstractLocalDiagnoser class. It relies on
the BDDLocalModel class described in next section to store the model and
perform admissibility checks.

GlobalDiagnoser class: this class adds the implementation of all the model
related methods to the AbstractDiagnoser class. It relies on the structural
description of its subsystem, and delegates the Extend operations to the
relevant diagnosers of which this is the supervisor.

The DiagnosabilityAnalyzer class is not part of the diagnoser type hier-
archy, since it is not a diagnoser itself. It is a component of a different type,
that is placed above the topmost supervisor of the diagnoser structural hierar-
chy. This class first computes all pairs of alternative rank partial fault modes,
and relies on the methods getModeVariables, extendForDiagnosability, and get-
Domain defined in the OrchestratedDiagnoser type. Later, in order to check
the discriminability of a pair of partial fault modes, the method getObservabl-
eVariables is used to restrict the admissible extensions to observable variables.
Figure 8.3 shows the activation sequences of the diagnosers during diagnosis and
diagnosability analysis.

8.2.2 Assignments and constraints

The BDD library does not provide an easy way to encode and decode assign-
ments and constraints from XML, text, or any other format used for commu-
nication between diagnosers, or between a diagnoser and a human user. Since
diagnoser need to exchange sets of assignments, a java class Assignment is used
to represent an assignment. It is based on a hash-based mapping between ob-
jects representing variables, and objects representing values. Such a structure
is easy to convert into a textual format.

Constraints are only needed during the Extend operation. They are used to
represent a local model, and to check the admissibility of partial assignments.
These operations are internal to the local diagnosers, it is hence not necessary to
translate the model under a communication format. Models are directly stored
under the form of a BDD, however they are initially specified by the designer

138 CHAPTER 8. IMPLEMENTATION AND TEST CASE

Figure 8.2: Class diagram for the different types of diagnosers.

8.2. SOFTWARE ARCHITECTURE 139

Diagnoser

Orchestrated
Diagnoser

Local
Diagnoser

Local
Diagnoser

Local
Diagnoser

Local
Diagnoser

1.Start diagnosis

4.Start diagnosis 5.Extend

2.Extend 3.Extend

Orchestrated
Diagnoser

Diagnosability
Analyzer

Orchestrated
Diagnoser

Local
Diagnoser

Local
Diagnoser

Local
Diagnoser

Local
Diagnoser

1.Extend

2.Extend 6.Extend

3.Extend 4.Extend 5.Extend

Figure 8.3: Diagnoser activation sequences for diagnosis (above) and diag-
nosability analysis (below). This picture gives an example of the order in
which the local diagnosers are involved in the process. In general, some di-
agnosers may never be invoked and some may be invoked twice (as discussed in
[Ardissono et al., 2005]).

140 CHAPTER 8. IMPLEMENTATION AND TEST CASE

Figure 8.4: Assignment and constraint representations used in the program.
Text representation relies on a hash-based mapping and is used for communi-
cation with the supervisor or with the global diagnoser. BDD representation is
used for computing the complete set of admissible extensions.

in a text file. Figure 8.4 shows the different representations of assignments and
constraints inside and outside the local diagnoser.

8.3 Implementation aspects

8.3.1 Test case

The test case consists in a food shop web service that provides a service of menu
composition and online payment. The company has an online shop (that does
not have a physical counterpart) and several warehouses (WH1,. . . , WHn) lo-
cated in different areas that are responsible for stocking imperishable goods and
physically delivering items to customers, depending on the area each customer
lives in.

Customers (C1,. . . , Ck) interact with the FoodShop Company in order to
place their orders, pay the bills and receive their goods. In case of perishable
items, that cannot be stocked, or in case of out-of-stock items, the FoodShop
Company must interact with several suppliers (SUP1,. . . , SUPm).

Although most of the interactions in this example are electronic, and take
place between Web Services, in some cases there are physical actions and inter-
actions that are performed by humans (e.g. the sending of a package). These
too are modeled in the context of Web Services.

In each conversation the following actors take part: one customer, the online
shop, one warehouse, and a variable number of suppliers, which could also be 0
(represented in gray). When a customer places an order, the shop first selects
the warehouse that is closest to the customer’s address, and that will thus take
part in the conversation. Ordered items are split into two categories: perishable
(cannot be stocked, so the warehouse cannot possibly have them in stock) and
imperishable (the warehouse might have them).

8.3. IMPLEMENTATION ASPECTS 141

Ws-Diamond Web-Service Diagnosability, Monitoring and Diagnosis

The Foodshop Scenario

StoreOrder

SplitOrder

Supplier:: Warehouse::
CheckAndReserve

MergeUnavailableList

CancelOrder

CalculateTotalCost

AskCustomer
Conf rmation

ReceiveOrder

ReceiveCustomer
Conf rmation

[yes] [no]

[ok] [cancel]

Shop Supplier

Warehouse

CheckAndReserve

CancelOrder
CancelOrder

Supplier:: Warehouse::
CancelOrder

CancelOrder
Supplier:: Warehouse::

CancelOrder

ReplySomething
NotAvailable

ReplyCustomer
Conf rmation

Conf rmOrder
Supplier::

Warehouse::
Conf rmOrder

CheckAndReserve

Availability

Return
UnavailableList

CancelReservation Conf rmOrder

AssembleShipment

SendShipment

CheckAndReserve

Availability

Return
UnavailableList

CancelReservation ForwardOrder

ReceiveSupplier
Shipment

PrepareCustomer
Package

SendCustomer
Package

Figure 8.5: FoodShop workflow. The test case consists in 3 web services, a
Shop, a Supplier and a Warehouse.

Perishable items are handled directly by the shop, while imperishable items
are handled by the warehouse. The first step is to check whether the ordered
items are available, either in the warehouse or from the suppliers (we have not
considered items exchanges among different warehouses, in order not to make
the example too complicated). If they are, they are temporarily reserved in
order to avoid conflicts between several orders. Once the shop receives all the
answers on availability, it can decide whether to give up with the order (again,
in order to keep things simple, this happens whenever there is at least one
unavailable item) or to proceed. In the former case, all item reservations are
canceled and the conversation ends.

If the order goes on, the shop computes the total cost (items + shipping) with
the aid of the warehouse, that provides the shipping costs. Then it sends the bill
to the customer, that can decide whether to pay or not. If the customer does
not pay, all item reservations are canceled and the conversation ends here. If
the customer pays, then all item reservations are confirmed and all the suppliers
(in case of perishable or out-of-stock items) are asked to send the goods to the
warehouse. The warehouse will then assemble a package and send it to the
customer

The initial example description above has been restricted to one warehouse
and one supplier, and the workflow has evolved to the one depicted in figure
8.5.

142 CHAPTER 8. IMPLEMENTATION AND TEST CASE

8.3.2 Implementation

The implementation of the software architecture described above has the fol-
lowing advantages:

Feedback to the designer: as described in chapter 5, the diagnosability anal-
ysis approach provides the results in terms of pairs of partial fault modes.
This is particularly convenient for the designer, since it allows one to rea-
son about subparts of the system and consider few faults at a time, as
illustrated in figure 8.7.

The played scenario illustrates the obtained discriminability results for a
selection of partial fault modes, in particular for a pair in which one fault
is masked by another fault.

Modularity: the two diagnoser implementations can be connected to a super-
visor, possibly a DiagnosabilityAnalyzer. Consequently, it is possible to
analyze the diagnosability of any subsystem being monitored by one diag-
noser. In figure 8.3 the diagnosability analyzer is placed above the highest
global diagnoser, but could have been placed above any diagnoser.

When a service is involved in several business processes, for each instance
of the different workflows, an instance of the service diagnoser is created.
According to the business process realized in the workflow, the diagnoser
will have a different supervisor that will connect it to the diagnosers of
the involved services.

Figures 8.6 and 8.7 show how partial fault modes can describe more briefly
the diagnosability of a system, and how the prototype takes advantage of these
in its result browsing interface. In this case, only three faults are considered,
and the results in terms of partial fault modes are human readable. However,
with more faults, even expressed with partial fault modes, the diagnosability
results need a browsing tool, that allows the designer to focus on only a few
faults at a time.

8.3. IMPLEMENTATION ASPECTS 143

Fault mode 1 Fault mode 2

S
to

re
O

rd
er

m
o
d
e

S
p
li
tO

rd
er

m
o
d
e

A
ss

em
b
le

m
o
d
e

S
to

re
O

rd
er

m
o
d
e

S
p
li
tO

rd
er

m
o
d
e

A
ss

em
b
le

m
o
d
e

D
is

cr
im

in
a
b
le

?

ok ok ok ab ok ok yes
ok ok ok ok ab ok yes
ok ok ok ab ab ok yes
ok ok ok ok ok ab yes
ok ok ok ab ok ab yes
ok ok ok ok ab ab yes
ok ok ok ab ab ab yes

ab ok ok ok ab ok yes
ab ok ok ab ab ok no
ab ok ok ok ok ab yes
ab ok ok ab ok ab yes
ab ok ok ok ab ab yes
ab ok ok ab ab ab no

ok ab ok ab ab ok yes
ok ab ok ok ok ab yes
ok ab ok ab ok ab yes
ok ab ok ok ab ab no
ok ab ok ab ab ab yes

ab ab ok ok ok ab yes
ab ab ok ab ok ab no
ab ab ok ok ab ab yes
ab ab ok ab ab ab no

ok ok ab ab ok ab yes
ok ok ab ok ab ab no
ok ok ab ab ab ab yes

ab ok ab ok ab ab yes
ab ok ab ab ab ab no

ok ab ab ab ab ab yes

pfm1 pfm2

S
to

re
O

rd
er

m
o
d
e

S
p
li
tO

rd
er

m
o
d
e

A
ss

em
b
le

m
o
d
e

S
to

re
O

rd
er

m
o
d
e

S
p
li
tO

rd
er

m
o
d
e

A
ss

em
b
le

m
o
d
e

D
is

cr
im

in
a
b
le

?

ok ab yes

ok ok ok ab yes
ok ok ab ok yes
ok ok ab ab yes
ok ab ab ok yes

ab ok ab ab no

ok ab ok ok ab ab no
ab ab ok ab ab ab no
ok ok ab ok ab ab no

Figure 8.6: Diagnosability of the system, expressed in terms of pairs of fault
modes (left side), and pairs of partial fault modes (right side).

144 CHAPTER 8. IMPLEMENTATION AND TEST CASE

Figure 8.7: Diagnoser feedback screenshot from the prototype. The interface
for browsing the diagnosability results is based on the principle of partial fault
modes. The designer can select one (or several) faults on the left column, which
defines a scope for partial fault modes. The right side displays discriminability
information for pairs of alternative partial fault modes that have or extend the
selected scope.
Above, the analysis of the fault in the SplitOrder activity (highlighted on the
left side), below the analysis of the combinations of the faults SplitOrder and
Assemble (also highlighted). In the discriminable pair (SplitOrder mode = ok ∧
Assemble mode = ok, SplitOrder mode = ok ∧ Assemble mode = ab) the fault
SplitOrder is present on both sides. This pair is hence not relevant when consid-
ering only the fault SplitOrder and is visible in the first screen shot above. On
the contrary, it brings information for the diagnosability of the fault Assemble
and is visible in the second screen shot.

Conclusion and perspectives

In this thesis, a unified point of view on diagnosability has been developed,
based on a comparison of the different approaches that correspond to the dif-
ferent modeling formalisms used in this research domain. The notions of set of
observables and fault signature have been extended to event based approaches,
which has allowed us to express diagnosability with a unified formal defini-
tion. This definition carries the idea that two different combinations of faults
must not be able to provide a common observation for the system to be diag-
nosable. This unification of diagnosability and the underlying concepts opens
many investigation paths. Contributions that are useful in the framework of a
specific modeling formalism can be adapted to other formalisms. In particular
the concepts of partial fault modes and diagnosable blocks, defined for state
based approaches can be adapted to event-based approaches and are likely to
provide equivalent generalisations with respect to the classical diagnosability
approaches.

The problem of diagnosis based on multiple models with different formalisms
was addressed in [Ressencourt, 2008], and illustrates the need for such applica-
tions. The unification of diagnosability definitions is an important step towards
diagnosability analysis using different models. The hardest part of model-
based diagnosability analysis has often been depicted as the modeling stage
[Hamscher et al., 1992]. The possibility to use different models is very promis-
ing for facilitating the modeling stage. Two different models can be used to
model two different system components, or to model two different aspects of
the same component. There are many constraints that influence the choice of
a modeling formalism, and this work provides more freedom in the choice of a
model and a unified framework for diagnosability analysis. This is particularly
true for hybrid systems that couple state based and event based models. These
should directly benefit from unified diagnosability.

The unified diagnosability definition is independent from the underlying
model, and focuses on the relation between faults and observables. This high
level point of view allowed us to adapt efficiently a particular constraint based
diagnosis algorithm for diagnosability analysis, by introducing the concept of
partial fault mode. This approach allows us to reason on subparts of the system,
and to decrease significantly the number of signature comparisons. It is at our
knowledge a completely new approach, with no equivalent in the state based or
the event based worlds. The concept of partial fault mode and its properties

145

146 CONCLUSION

have been applied to a distributed state based approach, showing the duality
with constraint based diagnosis [Console et al., 2007] that reasons exclusively
on partial assignments. We claim that it is possible to adapt it to event based
approaches by adopting the formalism of ω-languages as described in chapter 4.
We applied this diagnosability approach in the context of service oriented archi-
tectures, and implemented it. This implementation provides a high modularity
in response to the constraints of service oriented architectures, and provides an
original interface for the designer to browse the results of diagnosability, that
benefits from the partial fault modes point of view.

The application of model-based diagnosis and diagnosability analysis to soft-
ware systems is still a young applicative domain. This field opens many connec-
tions with the software safety engineering domain, in which diagnosis is most of
the time ignored at the benefit of symptom based reactions that may result quite
inappropriate. With the growing need for complex software systems, such appli-
cations are likely to receive interest from the research and the industry worlds.
The problem of diagnosis in the environment of communication networks has
received interest in [Pencolé and Cordier, 2005], at the level of hardware and
communication protocols. In this thesis the applicative level of communica-
tion networks has been considered. Both applications are complementary and
integrating them in a general communicating systems diagnosis framework is
an interesting perspective. Adaptive network communications, ad-hoc networks
and sensor networks are also interesting application contexts for model-based
diagnosis.

Diagnosability analysis takes place during the design phase, and is meant to
provide feedback to the system designer for one to optimize the system or its
model for diagnosis. The problem of integrating diagnosability into a general
design support tool was also addressed in this thesis. In the context of state
based systems, the unified definition was generalized in order to account for
any set of states. Sets of states can characterize properties like faults, which
falls back to standard approaches, but can characterize many other kinds of
properties, like repair preconditions, levels of quality of service, etc. This con-
tribution is limited to the characterization of diagnosability, and an algorithmic
approach is still to be developed. The adaptation to event based approaches,
using the ω-language formalism, should lead to interesting comparison with the
supervision patterns approach [Jéron et al., 2006] and the linear temporal logic
approach [Jiang and Kumar, 2002], since all of them permit to analyze not only
faults, but also any property that can be expressed with a given language. This
work provides grounds to apply the techniques of diagnosability analysis to the
analysis of many kinds of properties. This is a step towards a validation frame-
work that ensures a system is suited for supervision at design time. The final
purpose is to provide means to design more reliable systems more easily.

Quatrième partie

Un point de vue unifié sur

la diagnosticabilité

147

Introduction

Le développement des technologies de l’information et de ses applications
dans l’industrie et les services a introduit des systèmes automatisés complexes
partout dans notre vie. Le nombre de systèmes dont les utilisateurs ne con-
naissent pas le fonctionnement interne est en augmentation, sinon en explosion.
Jusque dans nos poches, les téléphones portables sont un très bon exemple,
sans parler des voitures, avions, de l’industrie agro-alimentaire, l’industrie des
cosmétiques, des marchés financiers, etc. Le fait est que dans les sociétés mod-
ernes, les gens se fient à des systèmes qu’ils ne comprennent pas totalement.

Alors que ces systèmes abondent autour de nous, leurs défaillances devi-
ennent de plus en plus difficiles à prévoir, comprendre et à réparer. Le besoin
d’outils d’assistance à la surveillance de ces systèmes a entrâıné des efforts crois-
sants durant ces vingt à trente dernières années. Le problème du diagnostic de
fautes a été adressé de maintes fois, et est aujourd’hui un domaine de recherche
mature. Les techniques utilisées pour le diagnostic ont évolué d’approches ad
hoc vers des approches à base de modèles, considérées plus pratiques et plus
adaptatives. Un problème important identifié au cours des nombreuses applica-
tions du diagnostic à base de modèles dans l’industrie est que dans la plupart
des cas, le problème du diagnostic n’est considéré qu’une fois le système conçu,
ce qui rend impossible l’ajout de capteurs, ou même la modification du système
afin de fournir de meilleures informations à l’outil de diagnostic.

Aujourd’hui, la capacité d’un système à être diagnostiqué est devenue un ar-
gument commercial, et fait partie des spécifications de tous types de systèmes.
Il est important pour le concepteur et constructeur d’un système de s’assurer
que celui-ci est diagnosticable, c’est-à-dire que les fautes qui peuvent l’altérer
sont identifiables relativement facilement. Cet aspect est une clé pour fournir
des systèmes plus fiables, dans lesquels les coûts de maintenance sont plus
prévisibles. Cette propriété du système, appelée diagnosticabilité, doit être
étudiée lors de la conception du système. Elle est vouée à être un facteur à
prendre en compte lors de la conception, au même titre que les coûts de fabrica-
tion, ou d’autres qualités du produit. Il est alors nécessaire de disposer d’outils
permettant d’analyser la diagnosticabilité d’un système et de donner des retours
aux concepteurs.

Le problème d’analyse de la diagnosticabilité est encore un domaine de
recherche récent. Plusieurs communautés ont développé des approches pour le

149

150 INTRODUCTION

diagnostic à base de modèles différentes et séparées, et les solutions pour l’anal-
yse de la diagnosticabilité qui en découlent ont hérité de cette hétérogénéité.
Bien que les formalismes utilisés dans ces approches soient très différents, le
principe de raisonnement est très similaire. Des travaux ont été menés afin d’u-
nifier ces approches. Cette thèse contribue à ce travail d’unification et propose un
point de vue général sur la diagnosticabilité qui prend en compte les approches
existantes du diagnostic et de la diagnosticabilité. Cette thèse s’intéresse aussi
à l’intégration du diagnostic dans un outil plus général d’assistance à la super-
vision.

Ce document est constitué de trois parties. En premier lieu, une vue d’ensem-
ble sur le diagnostic et l’analyse de diagnosticabilité est fournie. Dans l’exercice
du diagnostic à base de modèle, construire le modèle du système est un aspect
difficile et très important. Un état de l’art des formalismes et algorithmes exis-
tants révèle une diversité significative dans les formalismes et les approches. Une
recherche originale des hypothèses implicites et des différences entre chaque ap-
proche et une position argumentée pour des définitions unifiées sont consignées.

La seconde partie contient le coeur de la contribution de cette thèse. Le
concept de signature de fautes, importé des approches à base d’états, est choisi
comme un concept unificateur pour définir la diagnosticabilité. Il est étendu
aux approches à base d’évènements de telle manière qu’une définition unique de
la diagnosticabilité tient pour l’ensemble les approches considérées. Ce concept
de signature de faute est étendu afin de fournir une approche efficace d’anal-
yse de la diagnosticabilité. Il est encore étendu à des propriétés plus générales
comme les préconditions de réparation ou la qualité de service afin d’intégrer
plus facilement la diagnosticabilité dans un module de supervision général.

La dernière partie décrit une application aux services web. La technologie
des services web est basée sur des langages apparus récemment. Ces langages
dérivés de XML (eXtensible Markup Language, langage à balises extensible)
sont très modulaires et fortement structurés, et ont bénéficié d’un important
intérêt de l’industrie depuis leur apparition peu avant l’an 2000. Leur capacité à
implémenter des programmes distribués qui fournissent des services, et à com-
poser ces services dans des services plus complexes, à l’intérieur comme entre
plusieurs compagnies, a entrâıné un besoin particulier pour la fiabilité de ces
systèmes. Les grandes modularité et flexibilité des systèmes créés à partir de ces
technologies rend les approches à base de modèles tout à fait adaptées pour leur
supervision. L’approche d’analyse de diagnosticabilité proposée pour analyser
de tels systèmes réutilise un algorithme de diagnostic existant. Cet algorithme
utilise un modèle à base de réseaux de contraintes et repose sur la propaga-
tion de contraintes. En modifiant le contexte d’exécution de l’algorithme, un
algorithme original d’analyse de diagnosticabilité est obtenu. Cet algorithme
a plusieurs avantages, en particulier une architecture modulaire, une économie
des communications, ainsi qu’une représentation compacte des résultats pour le
concepteur.

Les résultats obtenus dans cette thèse fournissent une base saine et claire
pour un essor de l’analyse de la diagnosticabilité. Les définitions unifiées per-
mettent une meilleure communication entre les communautés qui utilisent des

151

formalismes différents. Les extensions permettent une meilleure intégration du
diagnostic et de la diagnosticabilité avec d’autres tâches de supervision. En-
fin, cette thèse propose un point de vue de haut niveau, peu technique sur la
diagnosticabilité, ce qui peut la rendre plus facile à introduire dans l’industrie.

Chapitre 9

Modèles et approches de la

diagnosticabilité

Quiconque conçoit un système automatisé complexe est confronté au prob-
lème du diagnostic des fautes. Les solutions à ce problème ont évolué d’approches
associatives à des approches à base de modèles. Le problème du diagnostic à
base de modèle a été adressé séparément par plusieurs communautés. La com-
munauté d’automatique a développé des technique de Détection et Isolation
de Fautes (FDI) pour les systèmes continus et à base d’évènements discrets. La
communauté d’Intelligence Artificielle (DX) a développé deux approches, basées
respectivement sur la logique et des formalismes à évènements discrets. Ces ap-
proches ont été développées dans des courants distincts et parallèles, et leur
comparaison révèle de grandes similarités dans le raisonnement général, mais de
grandes diversités dans les détails de la modélisation. Lorsque ces communautés
s’attelèrent au problème de l’analyse de la diagnosticabilité, la même diversité
fut reproduite.

Les industries qui souhaitent ajouter des capacités de diagnostic à leurs
systèmes font souvent face à un problème particulier, qui résulte du fait que
les concepteurs du systèmes ne sont généralement pas formés en diagnostic. Le
diagnostic n’est pas pris en compte au moment de la conception, mais plus tard
dans le processus de développement du système. Le problème de cette manière
de fonctionner est que le diagnostic ne peut pas influencer la conception du
système, par exemple pour mener à l’insertion d’un capteur dans un bloc solide
du système. Ceci peut être corrigé en fournissant un retour aux concepteurs à
propos des capacités en diagnostic du système et de son instrumentation.

La diagnosticabilité est une propriété d’un système consistant à exhiber
différents symptômes pour un ensemble prédéfini de fautes anticipées. Elle est
souvent définie comme booléenne, oui/non, mais elle est beaucoup plus com-
plexe. Dans la plupart des cas, lorsque plusieurs fautes sont combinées, les ob-
servations sont tellement perturbées qu’elles ne permettent pas de distinguer

153

154 CHAPITRE 9. MODÈLES ET APPROCHES

une nouvelle faute qui pourrait s’ajouter à celles déjà présentes. Ceci rend le
système non diagnosticable. Toutefois, plus on considère de fautes, moins il est
probable qu’elles soient toutes présentes en même temps dans le système, et
certaines approches de diagnostic se limitent aux fautes uniques ou doubles, et
ne considèrent pas les fautes plus complexes. D’autres approches de diagnostic
se contentent de fournir les diagnostics minimaux, c’est-à-dire que si une faute
unique et une double faute double incluant cette faute unique peuvent expliquer
les observations, l’algorithme choisit la faute unique, en général plus probable.
Des travaux tentent de définir la diagnosticabilité comme un degré, entier ou
réel, mais c’est, au même titre que la représentation booléenne, insuffisant pour
exprimer la diagnosticabilité dans sa complexité.

Si un système n’est pas assez diagnosticable, cela peut provenir de deux
causes :

– Le système ne contient pas assez de capteurs, ou ceux-ci sont mal placés.
Les observations fournies par les capteurs ne permettent pas de discriminer
deux situations de faute différentes. La solution est d’ajouter des capteurs
dans le système, ce qui n’est pas toujours possible.

– Le système produit suffisamment d’informations, mais le modèle n’est pas
assez précis, ou ne contient pas les informations pertinentes pour le diag-
nostic. Dans ce cas, il n’est pas nécessaire de modifier le système, mais
uniquement le modèle utilisé pour le diagnostic.

Il semble naturel d’utiliser le même modèle pour le diagnostic et la diagnos-
ticabilité, puisque les résultats de l’analyse de diagnosticabilité ne seraient pas
pertinents par rapport à une approche de diagnostic qui n’utiliserait pas le même
modèle. Modéliser un système pour le diagnostic et l’analyse de diagnosticabilité
est par conséquent la même tâche.

Chapitre 10

Définitions unifiées

Les approches d’analyse de la diagnosticabilité décrites dans le chapitre 2
varient beaucoup de l’une à l’autre. Toutefois, toutes les approches font référence
à des concepts communs qui peuvent servir de base à une analyse de diagnosti-
cabilité globale, indépendante du modèle. Ce chapitre résume les hypothèses et
points de vue adoptés dans chaque approche, et décrit la position qui est adoptée
dans cette thèse. Les définitions qui en résultent tiennent compte de toutes les
approches de la diagnosticabilité, et fournissent un point de vue unifié.

10.1 Fautes et modes de faute

Le concept fondamental dans le diagnostic et la diagnosticabilité, partagé
par toutes les approches, est le concept de faute.

Définition 10.1 (ISO Fault) Dans le document ISO/CD 10303-226 de
l’Organisation Internationale de Standardisation, une faute est définie comme
une condition ou un défaut anormal au niveau du composant, équipement ou
sous-système, qui peut mener à un échec.

Dans la définition 10.1, un échec se produit lorsque le système ne remplit
pas le but pour lequel il a été conçu et construit. Cette définition informelle a
été interprétée de différentes façons selon les approches de modélisation.

Nous présentons maintenant les différentes interprétations dans les approches
de diagnostic à base de modèle du concept de faute. La position adoptée dans
cette thèse est présentée et argumentée.

155

156 CHAPITRE 10. DÉFINITIONS UNIFIÉES

10.1.1 Les différentes interprétations d’une faute

Le concept de faute porte le même nom dans la plupart des approches de
diagnostic, bien qu’une comparaison mette à jour qu’il est sujet à des différences
d’interprétation significatives.

Dans les approches FDI, l’hypothèse de la faute unique est courante. Dans
ce cas, on suppose que deux composants dans le système ne peuvent pas être
dans un état anormal en même temps. Chaque faute est une cause différente
qui peut mener à un échec du système à remplir sa fonction. Toutefois, cette
hypothèse est fréquemment relâchée, et le système peut être sujet à des « fautes
multiples ». La relaxation de cette hypothèse rend l’approche de diagnostic plus
réaliste dans certains domaines d’application, mais complexifie le raisonnement
de diagnostic et rend la diagnosticabilité beaucoup plus difficile à atteindre,
surtout si les capteurs peuvent subir des fautes et envoyer des informations
erronées au superviseur. En compromis, l’ensemble des fautes considérées peut
être limité aux fautes doubles, ou triples, etc. Le comportement du système est
influencé par la faute courante.

Dans les approches DX, le comportement de chaque composant dépend de la
présence ou absence de fautes. La présence de ces fautes est caractérisée par une
ou plusieurs variables discrètes appelées variables de mode, chaque combinaison
de faute correspond à une valeur du tuple des variables de mode. Un aspect
important est que les variables de mode peuvent être binaires (absence/présence
de la faute) mais peuvent adopter un domaine fini plus grand si nécessaire.

Dans les approches à base d’évènements, les fautes sont des évènements, et
peuvent avoir eu lieu ou non. Comme dans les approches classiques, les fautes
sont permanentes, il n’y a pas de distinction entre les trajectoires qui contiennent
une ou plusieurs occurrences du même évènement de faute. Le comportement
du système résulte de l’ensemble des fautes qui sont arrivées.

Exemple 10.1 Considérons un système hydraulique dans lequel une vanne peut
rester bloquée en position ouverte ou fermée, et un tuyau peut se boucher.

– Représentation FDI : il y a 5 fautes différentes : 3 fautes uniques (tuyau
bouché, vanne bloquée ouverte, vanne bloquée fermée) et 2 fautes mul-
tiples : (tuyau bouché & vanne bloquée ouverte, tuyau bouché & vanne
bloquée fermée). Le mode normal et chaque faute sont associés à un en-
semble de contraintes qui définissent le comportement du système dans le
mode correspondant.

– Représentation DX : 2 variables de mode sont associées aux deux com-
posants qui peuvent subir une faute. Le statut de la vanne est défini par
la variable :

vanne ∈ {normal, bloquée ouverte, bloquée fermée}

Le statut du tuyau est défini par la variable :

tuyau ∈ {normal, bouché}

– Représentation SED : 3 évènements de faute sont définis : « le tuyau se
bouche », « la vanne se bloque ouverte », et « la vanne se bloque fermée ».

10.1. FAUTES ET MODES DE FAUTE 157

Cet exemple illustre la diversité des interprétations de la notion de faute
dans les approches. Selon l’approche, 5 fautes, 2 variables ou 3 énènements de
faute sont utilisés pour représenter les différents comportements qui peuvent
être adoptés par le système.

10.1.2 Dénomination unifiée

Avoir une vue unifiée sur les différentes approches pour la diagnosticabilité
nécessite la définition de concepts qui nous permettent d’exprimer les différentes
interprétations d’une faute. Cette section propose une définition pour faute et
mode de faute qui sera utilisée dans cette thèse, et les positionne par rapport
aux interprétations décrites dans la section précédente. Ces définitions visent
à être aussi intuitives que possible, et résultent d’échanges avec les membres
des différentes communautés de diagnostic à base de modèle, ainsi que d’autres
domaines de recherche.

Définition 10.2 (Faute) Une faute est un évènement élémentaire inattendu
qui survient dans un système ou un composant, et qui peut altérer son comporte-
ment. Un système ou composant dans lequel une faute est apparue est déclaré
fautif, et la faute est dite présente dans le système ou composant. Plusieurs
fautes différentes peuvent arriver dans divers ordres sur le même système ou
composant.

Cette définition reprend la vision des approches à base d’évènements d’une
faute, dans le sens que la faute est un évènement, et qu’elle est élémentaire.
L’interprétation DX correspond aussi à cette définition, puisque le diagnostic
consiste à définir quels composants sont fautifs. L’interprétation FDI n’est pas
cohérente avec cette définition, puisqu’en FDI, deux fautes ne peuvent pas être
présentes dans le système au même moment : le système ne peut pas être au
même instant dans une faute unique, et une faute multiple. L’interprétation FDI
correspond en fait à ce que nous définissons ici comme un mode de faute.

Définition 10.3 (Mode de faute) Le mode de comportement du système qui
résulte de l’occurrence d’une combinaison donnée de fautes est un mode de
faute. Un mode de faute correspond à la présence de certaines fautes, et à l’ab-
sence des autres fautes dans le système. Le comportement normal du système
correspond à l’absence de toutes les fautes, c’est un mode de faute appelé mode
normal du système. L’apparition d’une faute modifie le mode de faute courant
du système.

Un mode de faute peut représenter l’absence de fautes (comportement nor-
mal), une faute unique, ou une faute multiple. Dans les approches DX, un mode
de faute est défini en affectant une valeur à toutes les variables de mode du
système. Dans les approches à base d’évènements, le mode de faute résulte de
l’ensemble des évènements de faute qui sont apparus dans la trajectoire du
système.

158 CHAPITRE 10. DÉFINITIONS UNIFIÉES

10.1.3 Modèles pour les fautes et modes de faute

Une définition unifiée des fautes et modes de faute n’est pas utile si elle
ne peut pas être traduite dans les différents langages formels utilisés dans les
approches de diagnostic. Dans cette section, des représentations formelles des
fautes et modes de faute sont proposées, et leurs liens avec les différents formal-
ismes sont clarifiés.

Une manière directe de modéliser les fautes et les modes de faute est de
représenter les modes de faute comme des ensembles de fautes. Lorsque les
fautes sont indépendantes, n’importe quelle combinaison de faute est possible
dans le système, et l’ensemble des modes de faute est l’ensemble des parties
de l’ensemble des fautes. Toutefois, comme il est illustré dans l’exemple 10.1,
certaines fautes ne peuvent pas coexister dans le système. Dans le cas général,
l’ensemble des modes de faute est inclus dans l’ensemble des parties de l’ensem-
ble des fautes.

Définition 10.4 (Mode de faute : représentation par ensembles)
L’ensemble de toutes les fautes qui peuvent apparâıtre dans le système est noté
Fsys. Un mode de faute f est représenté par l’ensemble des fautes qui sont
présentes lorsque le système est dans le mode f . L’ensemble de tous les modes
de fautes atteignables est noté Fsys.

Fsys ⊆ 2Fsys

Le mode normal est un mode de faute qui ne contient aucune faute, noté ∅.

Cette définition est facilement traduite dans les formalismes à base d’évène-
ments, puisque les fautes sont représentées par des évènements. Le mode de
faute est représenté par l’ensemble des évènements de faute qui appartiennent
à la trajectoire du système. L’approche FDI est également compatible avec
cette interprétation, puisqu’un ou plusieurs ensembles de contraintes sont as-
sociés à chaque mode de faute, indépendamment du formalisme utilisé pour les
représenter.

Définition 10.5 (Mode de faute : représentation par variables) Le
système est associé à un ensemble de n variables de mode discrètes notées mi

qui couvrent des domaines finis Di et caractérisent la présence ou l’absence de
fautes. Un mode de faute f est défini par l’affectation de toutes les variables de
mode à une valeur. L’ensemble de tous les modes de fautes atteignables Fsys

est défini par :

Fsys =
{

(v1, v2, . . . vn),∀i ∈ {1 . . . n}, vi ∈ Di

}

En relâchant l’hypothèse que les fautes sont binaires et indépendantes, la
correspondance entre la représentation par ensembles et la représentation par
variables utilisée dans les approches DX est sensiblement plus difficile et ar-
bitraire. Par exemple, une variable de mode avec 3 valeurs possibles, comme
{normal, faute1, faute2}, correspond dans la représentation par ensembles à deux

10.2. DIAGNOSTICABILITÉ 159

fautes qui s’excluent mutuellement. Cette exclusion peut provenir du fait que
les deux fautes représentent deux altérations différentes du même composant.
Dans ce cas les fautes font évoluer la variable de mode de la valeur normal à
faute1 et de normal à faute2. Cette exclusion peut aussi provenir du fait que les
fautes représentent deux degrés d’altération du même composant. Dans ce cas,
elles changent la valeur de la variable de mode de normal à faute1 et de faute1

à faute2.

Si une variable de mode à trois valeurs peut représenter deux types de fautes
différents, une variable à 4 valeurs peut représenter encore plus de types de
fautes :

– 1 type d’altération avec 3 niveaux d’altération ;
– 2 fautes indépendantes ;
– 2 types d’altération, l’un d’entre eux ayant 2 niveaux d’altération ;
– 3 types exclusifs d’altération.

Tous ces systèmes différents peuvent être représentés de la même manière avec
des variables de mode, mais ont des représentations par ensembles différentes.

Comme nous l’avons illustré ci-dessus, il est impossible d’établir une cor-
respondance à priori entre les variables de mode et les évènements de faute.
Toutefois, en considérant toutes les fautes à la fois, la correspondance est fais-
able : deux combinaisons différentes de fautes sont nécessairement représentées
par deux valeurs différentes du tuple de variables de mode. Inversement, deux
valeurs différentes du tuple de variables de mode représentent nécessairement
deux situations de fautes différentes dans le système.

10.2 Diagnosticabilité

Les définitions présentées dans le chapitre 2 et résumées dans le chapitre
10 sont maintenant révisées. Les faiblesses identifiées dans ces approches sont
corrigées grâce aux définitions de faute et mode de faute de la section précédente.

Définition 10.6 (Signature de faute) La signature de faute est une fonction
Sig : F → OBS. À chaque mode de faute fi, elle associe les observations qui
peuvent être obtenues lorsque le système est dans fi.

Cette définition est reprise de la définition de [Cordier et al., 2004,
Travé-Massuyès et al., 2006b], la seule différence est qu’elle est exprimée sur
des modes de faute.

Le diagnostic fournit un ensemble d’explications, ou de candidats pour l’ob-
servation courante. Chaque candidat au diagnostic définit la présence de cer-
taines fautes et l’absence d’autres fautes ; c’est un mode de faute.

Définition 10.7 (Candidat au diagnostic, Diagnostic) Un mode de faute
fi est un candidat au diagnostic pour l’observation obs si et seulement si il peut
expliquer cette observation :

obs ∈ Sig(fi)

160 CHAPITRE 10. DÉFINITIONS UNIFIÉES

Un diagnostic pour obs est l’ensemble des candidats au diagnostic pour obs.

Définition 10.8 (Discriminability, Detectability) Deux modes de faute
fi, fj sont discriminables si et seulement si :

Sig(fi) ∩ Sig(fj) = ∅

Un mode de faute fi est détectable si et seulement si il est discriminable du
mode normal :

Sig(fi) ∩ Sig(∅) = ∅

La propriété de détectabilité n’est pas pertinente pour le mode normal. Selon
la définition précédente, le mode normal n’est pas détectable puisqu’il n’est pas
discriminable de lui-même. La définition peut être adaptée pour exclure le mode
normal, bien que nous n’en voyons pas la nécessité.

Définition 10.9 (Diagnosticabilité) Un mode de faute est diagnosticable si
et seulement si il est discriminable de tous les autres modes de faute.

Un système est diagnosticable si et seulement si toutes les paires de modes
de faute sont discriminables :

(

∀fi, fj ∈ Fsys, fi 6= fj

)

, Sig(fi) ∩ Sig(fj) = ∅

Ces définitions de discriminabilité et diagnosticabilité sont candidates aux
définitions unifiées, puisqu’elles s’appuient sur les modes de fautes, et peuvent
donc être traduites dans toutes les approches de modélisation décrites dans
le chapitre 2. Toutefois, à ce stade, l’ensemble d’observables OBS n’a pas été
défini pour les approches à base d’évènements. Cela implique que les définitions
de signature, et toutes les définitions ci-dessus, ne tiennent pas.

La définition de l’ensemble des observables OBS pour les approches à base
d’évènements n’est pas triviale. C’est le sujet du chapitre 4, et elle requiert l’util-
isation de formalismes tels que les automates de Büchi et les ω-langages. C’est
toutefois possible, et il est prouvé que les définitions données précédemment
fournissent un point de vue unifié sur la diagnosticabilité, pour les approches
mentionnées dans ce document.

Chapitre 11

La diagnosticabilité à

travers les signatures de

faute

Nous avons montré précédemment que les différentes approches du diagnostic
à base de modèles peuvent être classées en deux catégories : les approches à base
d’états et à base d’évènements.

Nous avons montré dans le chapitre 3 et résumé dans le chapitre 10 que les
concepts fondamentaux de faute et mode de faute peuvent être modélisés d’une
manière unifiée. Les définitions unifiées 10.2 à 10.5 sont adoptées dans le reste
de ce document.

Les autres définitions 10.6 à 10.9, concernent la diagnosticabilité. Elles re-
posent sur un ensemble d’observables OBS . Ces définitions unifient les approches
à base d’états dans lesquelles une observation est une valeur pour le tuple
des variables observables. Toutefois, dans les approches à base d’évènements,
il est prouvé que les observations sont organisées en langages, et que le diag-
nostic repose sur cette structuration. Par conséquent, la nature différente des
observations appelle à d’autres développements avant d’appliquer ces définitions
« unifiées »aux approches à base d’évènements.

Cette partie résume le coeur de la contribution de la thèse. D’abord, l’ensem-
ble des observables OBS est défini pour les approches à base d’évènements, et
les définitions résultantes de signature et diagnosticabilité sont données. Il est
prouvé que les définitions du chapitre 10 unifient toutes les approches.

Ensuite, le problème de la complexité introduit par le grand nombre de paires
de modes de fautes est adressé. Le concept de mode de faute partiel, inspiré
du concept de diagnostic partiel défini dans les approches DX, est introduit.
L’application des signatures de fautes aux modes de faute partiels ouvre la porte

161

162 CHAPITRE 11. DIAGNOSTICABILITÉ ET SIGNATURES

à une approche algorithmique efficace pour l’analyse de la diagnosticabilité. Une
implantation de cet algorithme est décrite.

Finalement, le concept de signature de faute est étendu, dans le cas des
approches à base d’états, à n’importe quelle propriété qui définit un ensemble
d’états. Le but de cette extension est de permettre d’analyser la diagnosticabilité
non seulement des fautes, mais aussi d’autres propriétés comme les préconditions
de réparation, la qualité de service, etc.

11.1 Signatures pour approches à base d’évène-

ments

Dans les approches à base d’états, les observations sont modélisées au moyen
de variables observables. Dans la plupart des cas, ces variables sont discrètes :
en FDI, les variables continues sont impliquées dans des test de cohérence dont
les résultats sont en général booléens (succès ou échec du test). Le raisonnement
de diagnostic reçoit en entrée ces variables discrètes, et fournit une explication
en termes de fautes ou modes de faute. Un aspect important est que durant le
raisonnement de diagnostic, chaque variable discrète a une valeur fixe, ce qui
signifie que le système n’évolue pas du point de vue du diagnostic.

Dans les approches à base d’évènements, les observations sont modélisées
par des évènements observables. Le processus de diagnostic reçoit en entrée la
séquence de tous les évènements qui ont été observés pendant la vie du système.
Cette prise en compte de l’histoire du système est la différence fondamentale
entre les approches de diagnostic à base d’états et d’évènements. Elle impacte
fortement le raisonnement de diagnostic, puisque dans les approches à base
d’états, le processus de diagnostic n’est pas redémarré à chaque fois qu’une nou-
velle observation est reçue : le processus garde en mémoire l’histoire du système,
et met à jour les candidats au diagnostic lorsque de nouvelles observations sont
reçues. La diagnosticabilité tient elle aussi compte de la possibilité d’évolution
du système, et requiert simplement que le délai entre l’occurrence d’une faute
et de ses symptômes caractéristiques soit bornée.

La définition d’un ensemble d’observables est fortement liée aux durées de
vie relatives des observations et du processus de diagnostic. Dans les approches
à base d’états, puisque le diagnostic est effectué sur une unique observation,
il ne peut pas utiliser des relations entre deux observations. Les observables
peuvent par conséquent être rassemblés en un simple ensemble. Dans les ap-
proches à base d’évènements, le diagnostic est basé sur une observation finie
du système, durant laquelle plusieurs évènements observables apparaissent. Le
diagnostic est basé sur les séquences d’évènements observées, mais à chaque nou-
vel évènement observable, la séquence évolue. Considérer l’ensemble de toutes
les séquences d’évènements observables n’est pas suffisant pour la diagnosti-
cabilité. Il est également nécessaire de considérer le langage des évènements
observables, puisque la diagnosticabilité est liée à la notion d’extension d’une

11.2. SIGNATURES POUR MODES DE FAUTES PARTIELS 163

séquence d’évènements.

La solution adoptée ici repose sur un point de vue original. Les concepts
d’observation et d’observable, qui n’étaient pas clairement distingués jusqu’à
présent, sont clarifiés.

Dans les systèmes à base d’évènements, une observation est une séquence
finie d’évènements ; toutefois, n’importe quelle observation peut potentiellement
être continuée, étendue. Donc les observables, c’est-à-dire les observations poten-
tielles, son considérés comme étant les continuations infinies des séquences finies
d’évènements observables. Lorsque deux observables infinis sont différents, ils
diffèrent à un index fini, donné, i. Une observation finie de longueur supérieure
à i est alors suffisante pour distinguer ces deux observables infinis. Nous distin-
guons alors l’ensemble des observations, issu de la projection du langage Lsys

sur les évènements observables, de l’ensemble des observables OBS qui contient
des séquences infinies d’évènements observables.

Le chapitre 4 montre comment les automates de Büchi et les ω-langages
permettent de définir formellement l’ensemble OBS pour les approches à base
d’évènements. Il est prouvé que la définition 10.9 de la diagnosticabilité des
approches à base d’états est équivalente à la définition classique de la diagnos-
ticabilité des approches à base d’évènements.

11.2 Signatures pour modes de fautes partiels

Cette section décrit comment le travail d’unification décrit précédemment
nous a conduit à une nouvelle caractérisation de la diagnosticabilité qui nous
permet d’effectuer son analyse de manière efficace.

Le concept de signature a été appliqué jusqu’à présent aux modes de fautes.
Nous définissons en outre les modes de faute partiels, et leur adaptons la
définition de signature. Il est montré comment le calcul des signatures des modes
de faute partiels permet de diminuer le nombre de comparaisons de signatures
pour l’analyse de la diagnosticabilité.

Nous adoptons ici la représentation par variables des modes de faute
(définition 10.5), initialement donnée dans les approches à base d’états. En
utilisant des variables de mode binaires, la traduction en représentation par
ensembles est directe, ainsi que nous l’avons montré en section 9.

Les concepts de mode de faute partiel et sa signature sont indépendants
du modèle. Ils sont appliqués dans un contexte distribué, à l’aide de modèles
à base de contraintes. Un algorithme pour le calcul des signatures et de
leur intersection est présenté, basé sur l’algorithme de diagnostic défini en
[Pucel et al., 2007, Ardissono et al., 2005, Console et al., 2007]. L’analyse de di-
agnosticabilité basée sur les signatures de modes de faute partiels est alors ef-
fectuée.

164 CHAPITRE 11. DIAGNOSTICABILITÉ ET SIGNATURES

Un mode de faute est relatif au système tout entier : il décrit le comportement
de tous les composants du système. Dans la représentation par variables, il est
représenté par une affectation à toutes les variables de mode. Le diagnostic
consiste à décider dans quel mode de faute le système se trouve. Notre approche
est basée sur l’analyse des modes de faute partiels, qui sont relatifs à certains
des composants du système.

Définition 11.1 (Mode de faute partiel) Un mode de faute partiel est
défini en affectant une valeur à certaines des variables de mode du système.
Un mode de faute partiel qui affecte toutes les variables de modes est un mode
de faute.

La portée d’un mode de faute partiel pfm est l’ensemble des variables de
mode affectées par pfm. Il est noté Sco(pfm).

Le rang d’un mode de faute partiel est la cardinalité de sa portée.

Deux modes de faute partiels pfm1 et pfm2 sont alternatifs si et seulement
si ils ont la même portée mais sont différents.

Un mode de faute partiel pfm1 raffine un autre mode de faute partiel pfm2 si
et seulement si Sco(pfm2) ⊂ Sco(pfm1) et pfm1 ⇒ pfm2.

Par exemple, m1 = ok ∧ m2 = ok et m1 = ok ∧ m2 = ab sont alternatifs,
tandis que m1 = ab ∧ m2 = ok raffine m1 = ab.

Raisonner sur des modes de faute partiels nous permet de raisonner sur cer-
taines parties du système, sans tenir compte du reste. En fait, deux modes de
faute partiels alternatifs décrivent des situations de faute différentes dans un
sous-système, soit deux ensembles de situations de faute du système. Définir les
signatures pour les modes de faute partiels nous permet d’analyser la diagnos-
ticabilité en commençant par des sous-parties du système.

Définition 11.2 (Signature de mode de faute partiel) La signature d’un
mode de faute partiel est l’union des signatures de tous les modes de fautes qui
le raffinent.

Sig(pfm) =
⋃

f∈Fsys

∣

∣f raffine pfm

Sig(f)

Dans certains formalismes, il est possible de calculer les signatures pour des
modes de faute partiels. Ceci peut être très utile pour l’analyse de diagnostica-
bilité.

Définition 11.3 (Discriminabilité, Diagnosticabilité) Deux modes de
faute partiels sont discriminables si et seulement si leurs signatures sont
disjointes.

Un mode de faute partiel est diagnosticable si et seulement si il est discrim-
inable de toutes ses alternatives.

11.3. SIGNATURES D’ENSEMBLES D’ÉTATS 165

Un système est diagnosticable si et seulement si tous les modes de faute
partiels sont diagnosticables.

Une conséquence des définitions ci-dessus est que si deux modes de faute
partiels pfm1 et pfm2 sont discriminables, alors tous les modes de fautes raffi-
nant pfm1 sont discriminables de tous les modes de fautes raffinant pfm2. En
comparant les signatures d’une paire de modes de fautes partiels, nous obtenons
des informations sur un grand nombre de modes de fautes.

11.3 Signatures d’ensembles d’états

Cette section résume une généralisation de la diagnosticabilité, non seule-
ment aux modes de faute et modes de faute partiels, mais à n’importe quel
ensemble d’états d’un système à base d’états. Dans un tel système, une pro-
priété correspond généralement à un ensemble d’états. Cette généralisation nous
permet donc d’analyser la diagnosticabilité, par exemple, des préconditions de
réparation, ou d’un niveau de qualité de service.

Le diagnostic et l’analyse de diagnosticabilité sont des domaines de
recherche matures, et le problème de leur intégration dans un outil
de supervision général reçoit un intérêt croissant [wsdiamond, 2005 2008,
Cordier et al., 2007]. La diagnosticabilité des préconditions de réparation est
étudiée dans [Cordier et al., 2007] par l’introduction du concept de macrofaute,
et nous montrons que notre approche est une généralisation de la solution qui
y est décrite.

Notre définition généralisée est exprimée par rapport aux états au lieu des
observables et des signatures. Cet aspect original fournit une caractérisation
duale de la diagnosticabilité, ce qui peut être utile dans certains contextes dans
lesquels l’ensemble des observables est plus difficile à caractériser que l’ensemble
des états.

Définition 11.4 (Bloc diagnosticable) Soit =OBS la relation d’équivalence
définie sur l’ensemble des états SD par :

∀s1, s2 ∈ SD , s1 =OBS s2 ⇔ s1 et s2 mènent à la même observation

Chaque classe d’équivalence de =OBS est un bloc diagnosticable du système.
L’ensemble des blocs diagnosticables du systèmes est l’ensemble quotient de SD
par =OBS.

Définition 11.5 (Diagnosticabilité) Une propriété ou l’ensemble correspon-
dant S ⊆ SD est diagnosticable si et seulement si S peut être construit par union
de blocs diagnosticables.

Il est montré dans le chapitre 6 que cette définition élargit la définition
unifiée 10.9. De plus, la définition d’une propriété supplémentaire, nommée
préemptabilité permet de comparer et de généraliser l’approche utilisant des
macrofautes décrite en [Cordier et al., 2007].

166 CHAPITRE 11. DIAGNOSTICABILITÉ ET SIGNATURES

11.4 Application et aspects algorithmiques

Cette section résume l’application de l’approche de diagnosticabilité définie
dans la section 11.2 aux web services, ou plus généralement aux architectures
orientées service (SOA). Le contexte des architectures orientées service est par-
ticulièrement contraignant. La distribution du système, la grande modularité et
la privauté de certaines données rendent la supervision difficile. Notre implan-
tation utilise des affectations partielles, ce qui nous permet de répondre aux
contraintes de distribution et de privauté, et il est montré que notre implanta-
tion offre une modularité suffisante pour s’intégrer dans de telles architectures.

Conclusion

Dans cette thèse, un point de vue unifié sur la diagnosticabilité a été déve-
loppé, à partir d’une comparaison des approches correspondant aux différents
formalismes de modélisations utilisés dans ce domaine de recherche. Les notions
d’ensemble d’observables et de signature de faute ont été étendues aux approches
à base d’évènements, ce qui nous a permis d’exprimer la diagnosticabilité avec
une définition formelle unifiée. Cette définition exprime l’idée que deux combi-
naisons de fautes différentes ne doivent pas pouvoir mener à une observation
commune, sous peine de rendre le système non diagnosticable. Cette unifica-
tion de la diagnosticabilité et des concepts sous-jacents ouvre de nombreuses
perspectives. Les contributions utilisées dans le cadre d’un formalisme partic-
ulier peuvent être adaptées à d’autres formalismes. En particulier les concepts
de mode de faute partiel et de bloc diagnosticable, définis pour les approches
à base d’états, peuvent être adaptés aux approches à base d’évènements, et
sont susceptibles de permettre des généralisations équivalentes par rapport aux
approches classiques de diagnosticabilité.

Le problème du diagnostic basé sur plusieurs modèles avec différents for-
malismes a été adressé dans [Ressencourt, 2008], et illustre le besoin pour de
telles applications. L’unification des définitions de diagnosticabilité est un pas
important vers l’analyse de la diagnosticabilité utilisant des modèles multiples.
La partie la plus difficile du diagnostic à base de modèle a souvent été considérée
comme la phase de modélisation du système [Hamscher et al., 1992]. La possi-
bilité d’utiliser différents modèles est très prometteuse pour faciliter cette phase
de modélisation. Deux modèles différents peuvent être utilisés afin de modéliser
des aspects différents d’un même composant. De nombreuses contraintes peu-
vent influencer le choix d’un formalisme de modélisation, et ce travail fournit
une plus grande liberté dans le choix du modèle, ainsi qu’un cadre unifié pour
l’analyse de diagnosticabilité. Ceci est particulièrement vrai dans le cas des
systèmes hybrides qui couplent des modèles à base d’états et d’évènements. Les
approches qui s’intéressent à de tels systèmes devraient bénéficier directement
de la diagnosticabilité unifiée.

La définition unifiée de la diagnosticabilité est indépendante du modèle sous-
jacent, et se concentre sur la relation entre les fautes et les observables. Ce point
de vue de haut niveau nous a permis d’adapter efficacement un algorithme de
diagnostic à base de propagation de contraintes pour l’analyse de la diagnos-
ticabilité, en introduisant le concept de mode de faute partiel. Cette approche

167

168 CONCLUSION

nous permet de raisonner sur des sous-parties du systèmes, ainsi que de dimin-
uer de manière significative le nombre de comparaisons de signatures. C’est à
notre connaissance une approche nouvelle, sans équivalent dans le monde des ap-
proches à base d’états ou d’évènements. Le concept de mode de faute partiel et
ses propriétés ont été appliqués à une approche distribuée à base d’états, mon-
trant la dualité avec le diagnostic à base de contraintes [Console et al., 2007]
dont le raisonnement est basé exclusivement sur des affectations partielles.
Nous affirmons qu’il est possible d’adapter cet algorithme aux approches à base
d’évènements en adoptant le formalisme des ω-langages décrits dans le chapitre
4. Nous avons appliqué cette approche de diagnosticabilité dans le contexte
des architectures orientées services, et l’avons implanté. Cette implantation est
hautement modulaire en réponse aux contraintes des architectures orientées ser-
vice, et fournit une interface originale bénéficiant des propriétés des modes de
faute partiels, qui permet au concepteur de naviguer dans les résultats de l’-
analyse.

L’application du diagnostic à base de modèle et de l’analyse de la diag-
nosticabilité aux systèmes logiciels est encore un domaine d’application jeune.
Ce champ d’applications ouvre de nombreuses connexions avec le domaine de la
sécurité informatique, dans lequel le diagnostic est la plupart du temps ignoré au
bénéfice de réactions aux symptômes qui peuvent être inadaptées. Avec le besoin
croissant de systèmes logiciels complexes, de telles applications sont susceptibles
d’entrâıner un engouement dans le monde de la recherche et de l’industrie. Le
problème du diagnostic dans l’environnement des réseaux de communications a
reçu de l’intérêt dans [Pencolé and Cordier, 2005], au niveau du matériel et des
protocoles de signalisation. Dans cette thèse, le niveau applicatif des réseaux
de communication est considéré. Ces deux applications sont complémentaires et
leur intégration dans un environnement général de diagnostic de réseaux com-
municants est une perspective intéressante. Les réseaux adaptatifs, réseaux ad
hoc et les réseaux de capteurs offrent également des contextes d’application
intéressants pour le diagnostic à base de modèles.

L’analyse de diagnosticabilité se déroule pendant la phase de conception,
et sert à fournir un retour au concepteur du système, afin d’optimiser le
système ou son modèle pour le diagnostic. Le problème d’intégrer la diagnos-
ticabilité dans un outil général d’assistance à la conception est aussi adressé
dans cette thèse. Dans le contexte des systèmes à base d’états, la définition
unifiée a été généralisée afin de prendre en compte n’importe quel ensemble
d’états. Les ensembles d’états peuvent caractériser des propriétés comme les
fautes, ce qui nous ramène aux approches classiques, mais peuvent aussi car-
actériser d’autres types de propriétés, comme les préconditions de réparation,
les niveaux de qualité de service. Une approche algorithmique qui permet de
vérifier ces propriétés est une perspective importante. L’adaptation aux ap-
proches à base d’évènements, en utilisant le formalisme des ω-langages, de-
vrait mener à une comparaison intéressante avec l’approche à base de motifs
de supervisions [Jéron et al., 2006] ainsi qu’avec l’approche utilisant la logique
temporelle linéaire [Jiang and Kumar, 2002], puisque ces approches permettent
aussi d’analyser non seulement les fautes, mais toute propriété qui peut être
exprimée dans un certain langage. Ce travail fournit une base pour appliquer
les techniques d’analyse de diagnosticabilité à l’analyse de diverses propriétés.

169

C’est un pas vers un outil de validation qui assure qu’un système est adapté à
la supervision dès la phase de conception. Le but final est de fournir des outils
permettant de concevoir plus facilement des systèmes plus fiables.

Bibliography

[Ardissono et al., 2005] Liliana Ardissono, Luca Console, Anna Goy, Giovanna
Petrone, Claudia Picardi, Marino Segnan, and Daniele Theseider Dupré. En-
hancing web services with diagnostic capabilities. In Proceedings of the 3rd
IEEE European Conference on Web Services, Växj Sweden, 2005.

[Autio and R.Reuter, 1998] K. Autio and R.Reuter. Structural abstraction in
model-based diagnosis. In Proceedings of the 13th European Conference on
Artificial Intelligence (ECAI’98), pages 269–273, Brighton, UK, 1998.

[Baldoni et al., 2004] Matteo Baldoni, Cristina Baroglio, Alberto Martelli, and
Viviana Patti. Reasoning about interaction protocols for web service compo-
sition. In Proc. of 1st Int. Workshop on Web Services and Formal Methods,
WS-FM 2004, volume 105 of Electronic Notes in Theoretical Computer Sci-
ence, pages 21–36. Elsevier Science Direct, 2004.

[Bayoudh et al., 2006] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Hybrid
systems diagnosability by abstracting faulty continuous dynamics. In Proceed-
ings of the 17th International Workshop on Principles of Diagnosis DX’06,
Burgos, Spain, 2006.

[Bayoudh et al., 2008] M. Bayoudh, L. Travé-Massuyès, and X. Olive. Coupling
continuous and discrete event system techniques for hybrid system diagnos-
ability analysis. In Proceedings of the 18th European Conference on Artificial
Intelligence (ECAI2008), pages 219–223, Patras, Greece, 2008.

[Biswas et al., 2006] Santosh Biswas, Dipankar Sarkar, Siddhartha Mukhopad-
hyay, and Amit Patra. Diagnosability analysis of real time hybrid systems. In
Proceedings of the IEEE International Conference on Industrial Technology,
ICIT’2006, pages 104–109, Mumbai, India, December 2006.

[Busi et al., 2005] Nadia Busi, Roberto Gorrieri, Claudio Guidi, Roberto Luc-
chi, and Gianluigi Zavattaro. Towards a formal framework for choreogra-
phy. In WETICE ’05: Proceedings of the 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise, pages
107–112, Washington, DC, USA, 2005. IEEE Computer Society.

[Chittaro and Ranon, 2004] Luca Chittaro and Roberto Ranon. Hierarchical
model-based diagnosis based on structural abstraction. Advanced Engineering
Informatics, 155(1-2):147–182, 2004.

171

172 BIBLIOGRAPHY

[Chittaro et al., 1993] Luca Chittaro, Giovanni Guida, Carlo Tasso, and Elio
Toppano. Functional and teleological knowledge in the multimodeling ap-
proach for reasoning about physical systems: A case study in diagnosis. IEEE
Transactions on Systems, Man, and Cybernetics, 23(6):1718–1751, Novem-
ber/December 1993.

[Console et al., 2007] Luca Console, Claudia Picardi, and Daniele Theseider
Dupré. A framework for decentralized qualitative model-based diagnosis. In
Proceedings of the 20th International Joint Conference on Artificial Intelli-
gence, IJCAI’07, pages 286–291, Hyderabad, India, January 2007.

[Cordier et al., 2004] Marie-Odile Cordier, Philippe Dague, François Lévy, Mar-
cel Staroswiecki, and Louise Travé-Massuyès. Conflicts versus analytical re-
dundancy relations: a comparative analysis of the model based diagnosis
approach from the artificial intelligence and automatic control perspectives.
IEEE Transactions on Systems, Man, and Cybernetics Part B, 34(5):2163–
2177, October 2004.

[Cordier et al., 2006] Marie-Odile Cordier, Louise Travé-Massuyès, and Xavier
Pucel. Comparing diagnosability in continuous and discrete-event systems. In
Proceedings of the 17th International Workshop on Principles of Diagnosis,
DX’06, pages 55–60, 2006.

[Cordier et al., 2007] Marie-Odile Cordier, Yannick Pencolé, Louise Travé-
Massuyès, and Thierry Vidal. Self-healability = diagnosability + repairability.
In Proceedings of the 18th International Workshop on Principles of Diagnosis,
DX’07, pages 265–272, Nashville, TN, USA, May 2007.

[Daigle et al., 2008] Matthew Daigle, Xenofon Koutsoukos, and Gautam
Biswas. An event-based approach to hybrid systems diagnosability. In
Proceedings of the 19th International Workshop on Principles of Diagnosis
DX’08, Blue Mountains, Australia, September 2008.

[DAML,] DARPA Agent Markup Language Program DAML. Owl-s: Se-
mantic markup for web services. http://www.daml.org/services/owl-
s/1.1/overview/.

[Darwiche, 1999] Adnan Darwiche. Utilizing device behavior in structure–based
diagnosis. In In Proceedings of the 16th International Joint Conference on Ar-
tificial Intelligence, IJCAI’99, pages 1096–1101, Stockholm, Sweden, August
1999.

[Dechter, 2003] Rina Dechter. Constraint Processing. Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2003.

[Dressler and Struss, 2003] Oskar Dressler and Peter Struss. A toolbox inte-
grating model-based diagnosability analysis and automated generation of di-
agnostics. In Proceedings of the 14th International Workshop on Principles
of Diagnosis, DX’03, 2003.

[Dubuisson, 2001] Bernard Dubuisson. Diagnostic, intelligence artificielle et
reconnaissance des formes. ic2 productique. Hermes Science Publications,
2001.

BIBLIOGRAPHY 173

[Eder et al., 2006] Johann Eder, Marek Lehmann, and Amirreza Tahamtan.
Choreographies as federations of choreographies and orchestrations. In ER
(Workshops), pages 183–192, 2006.

[Fourlas et al., 2002] G.K. Fourlas, Kostas J. Kyriakopoulos, and N. J Krikelis.
Diagnosability of hybrid systems. In Proceedings of the 10th Mediterranean
Conference on Control and Automation, MED’2002, Lisbon, Portugal, 2002.

[Friedrich et al., 2005] Gerhard Friedrich, Georg Gottlob, and Wolfgang Nejdl.
Formalizing the repair process — extended report. Annals of Mathematics
and Artificial Intelligence, 11(1-4):187–201, april 2005.

[Frisk, 2000] Erik Frisk. Residual generator design for non-linear, polynomial
systems - a gröbner basis approach. In Proceedings of IFAC Safeprocess, 2000.

[Haar et al., 2003] Stefan Haar, Albert Benveniste, Eric Fabre, and Claude
Jard. Partial order diagnosability of discrete event systems using petri nets
unfoldings. In Proceedings of the 42nd IEEE Conference on Decision and
Control (CDC), Hawaii, USA, December 2003.

[Hamadi and Benatallah, 2003] Rachid Hamadi and Boualem Benatallah. A
petri net-based model for web service composition. In ADC ’03: Proceedings
of the 14th Australasian database conference, pages 191–200, Darlinghurst,
Australia, Australia, 2003. Australian Computer Society, Inc.

[Hamscher et al., 1992] Walter Hamscher, Luca Console, and Johan de Kleer.
Readings in model-based diagnosis. Morgan Kaufmann Publishers Inc, 1992.

[Isermann, 2005] Rolf Isermann. Model-based fault-detection and diagnosis —
status and applications. Annual Reviews in Control, 29(1):71–85, May 2005.

[Jéron et al., 2006] Thierry Jéron, Hervé Marchand, Sophie Pinchinat, and
Marie-Odile Cordier. Supervision patterns in discrete event systems diag-
nosis. In Proceedings of the 8th International Workshop on Discrete Event
Systems, (WODES’06), pages 262–268, Ann-Arbor (MI, USA), July 2006.

[Jiang and Kumar, 2002] Shengbing Jiang and Ratnesh Kumar. Failure diag-
nosis of discrete event systems with linear-time temporal logic fault specifi-
cations. IEEE Transactions on Automatic and Control, 49(6):934–945, June
2002.

[Jiang et al., 2001] Shengbing Jiang, Zhongdong Huang, Vigyan Chandra,
and Ratnesh Kumar. A polynomial algorithm for testing diagnosabil-
ity of discrete-event systems. IEEE Transactions on Automatic Control,
46(8):1318–1321, August 2001.

[Krysander et al., 2008] Mattias Krysander, Jan Åslund, and Mattias Nyberg.
An efficient algorithm for finding minimal overconstrained subsystems for
model-based diagnosis. IEEE Transactions on Systems, Man, and Cybernet-
ics Part A, 38(1):197–206, January 2008.

[Lind, 2003] Morten Lind. Making sense the abstraction hierarchy in the power
plant domain. Cognition, Technology & Work, 5(2):67–81, June 2003.

174 BIBLIOGRAPHY

[Lopéz-Varela, 2007] Carmen G. Lopéz-Varela. Détection et diagnostic basés
cohérence. PhD thesis, LAAS-CNRS, Université de Toulouse, 2007.

[Meinel and Theobald, 1998] Christoph Meinel and Thorsten Theobald. Algo-
rithms and Data Structures in VLSI Design. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1998.

[Nyberg, 2002] Mattias Nyberg. Criterions for detectability and strong de-
tectability of faults in linear systems. International Journal of Control,
75(7):490–501, May 2002.

[OASIS, 2004] Organization for the Advancement of Structured Information
Standards OASIS. Universal description, discovery and integration v3.0.2
(uddi). http://uddi.org/pubs/uddi v3.htm, October 2004.

[OASIS, 2007] Organization for the Advancement of Structured Information
Standards OASIS. Web services business process execution language version
2.0. http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html, April
2007.

[Pencolé and Cordier, 2005] Yannick Pencolé and Marie-Odile Cordier. A for-
mal framework for the decentralised diagnosis of large scale discrete event
systems and its application to telecommunication networks. Artificial Intel-
ligence Journal, 164(1–2):121–170, 2005.

[Pencolé, 2005] Yannick Pencolé. Assistance for the design of a diagnosable
component-based system. In 17th IEEE International Conference on Tools
with Artificial Intelligence, Hong-Kong, November 2005.

[Peterson, 1981] James Lyle Peterson. Petri Net Theory and the Modeling of
Systems. Prentice Hall PTR, 1981.

[Polycarpou et al., 1997] Marios M. Polycarpou, Arun T. Vemuri, and Amy R.
Ciric. Nonlinear fault diagnosis of differential/algebraic system. In Pro-
ceedings of IFAC Symposium on Fault Detection, Supervision and Safety for
Technical Processes, pages 510–515, 1997.

[Pucel et al., 2007] Xavier Pucel, Stefano Bocconi, Claudia Picardi,
Daniele Theseider Dupré, and Louise Travé-Massuyès. Diagnosability
analysis for web services with constraint-based models. In Gautam Biswas,
Xenofon Koutsoukos, and Sherif Abdelwahed, editors, Proceedings of the
18th International Workshop on Principles of Diagnosis, DX’07, pages
360–367, Nashville, TN, USA, May 2007.

[Pucel et al., 2008] Xavier Pucel, Louise Travé-Massuyès, and Yannick Pencolé.
Another point of view on diagnosability. In Proceedings of the 19th Interna-
tional Workshop on Principles of Diagnosis, DX’08, Blue Mountains, Aus-
tralia, September 2008.

[Puig et al., 2005] V. Puig, J. Quevedo, T. Escobet, and B. Pulido. On the
integration of fault detection and isolation in model based fault diagnosis. In
Proceedings of the 16th International Workshop on Principles of Diagnosis
(DX’05), pages 227–232, 2005.

BIBLIOGRAPHY 175

[Ramı́rez-Treviño et al., 2004] Antonio Ramı́rez-Treviño, Elvia Ruiz-Beltrán,
Israel Rivera-Rangel, and Ernesto López-Mellado. Diagnosability of discrete
event systems: a petri net based approach. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA ’04), pages 541–546,
New Orleans LA (USA), April 2004.

[Ressencourt, 2008] Hervé Ressencourt. Diagnostic hors-ligne à base de modèles
: Approche multimodèle pour la génération automatique de séquences de tests ;
Application au domaine de l’automobile. PhD thesis, LAAS-CNRS, Université
de Toulouse, 2008.

[Rintanen and Grastien, 2007] Jussi Rintanen and Alban Grastien. Diagnos-
ability testing with satisfiability algorithms. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence (IJCAI-07), pages
532–537, January 2007.

[Sampath et al., 1995] Meera Sampath, Raja Sengupta, Stephane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis. Diagnosability of dis-
crete event system. IEEE Transactions on Automatic Control, 40(9):1555–
1575, September 1995.

[Sampath et al., 1996] Meera Sampath, Raja Sengupta, Stephane Lafortune,
Kasim Sinnamohideen, and Demosthenis Teneketzis. Diagnosability of dis-
crete event system. IEEE Transactions on Control Systems Technology,
4(2):105–124, March 1996.

[ten Teije et al., 2004] A. ten Teije, F. van Harmelen, and B. Wielinga. Con-
figuration of web services as parametric design. In E. Motta, N. Shadbolt,
A. Stutt, and N. Gibbins, editors, Proceedings of the 14th International Con-
ference, EKAW-2004, number 3257 in Lecture Notes in Artificial Intelligence,
pages 321–336, Whittleburry Hall, UK, October 2004. Springer Verlag. ISBN
3-540-23340-7.

[Travé-Massuyès et al., 2006a] Louise Travé-Massuyès, Marie-Odile Cordier,
and Xavier Pucel. Comparing diagnosability in cs and des. In Proceedings
of the 6th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Processes, Beijing, China, August 2006.

[Travé-Massuyès et al., 2006b] Louise Travé-Massuyès, Teresa Escobet, and
Xavier Olive. Diagnosability analysis based on component-supported ana-
lytical redundancy relations. IEEE Transactions on Systems, Man, and Cy-
bernetics Part A, 36(6):1146–1160, November 2006.

[van der Aalst et al., 2006] Wil M. P. van der Aalst, Marlon Dumas, Chun
Ouyang, Anne Rozinat, and H. M. W. Verbeek. Choreography confor-
mance checking: An approach based on bpel and petri nets. In Frank Ley-
mann, Wolfgang Reisig, Satish R. Thatte, and Wil M. P. van der Aalst,
editors, The Role of Business Processes in Service Oriented Architectures,
volume 06291 of Dagstuhl Seminar Proceedings. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), S chloss Dagstuhl, Germany,
2006.

176 BIBLIOGRAPHY

[W3C, 1999] World Wide Web Consortium W3C. Xsl transformations (xslt)
version 1.0. http://www.w3.org/TR/xslt, November 1999.

[W3C, 2004] World Wide Web Consortium W3C. Xml schema part 0: Primer
second edition. http://www.w3.org/TR/xmlschema-0/, October 2004.

[W3C, 2005a] World Wide Web Consortium W3C. Web service semantics -
wsdl-s. http://www.w3.org/Submission/WSDL-S/, November 2005.

[W3C, 2005b] World Wide Web Consortium W3C. Web services choreogra-
phy description language version 1.0. http://www.w3.org/TR/ws-cdl-10/,
November 2005.

[W3C, 2006] World Wide Web Consortium W3C. Extensible markup language
(xml) 1.1 (second edition). http://www.w3.org/TR/xml11/, August 2006.

[W3C, 2007a] World Wide Web Consortium W3C. Soap version 1.2 part
1: Messaging framework (second edition). http://www.w3.org/TR/soap12-
part1/, April 2007.

[W3C, 2007b] World Wide Web Consortium W3C. Web services
description language (wsdl) version 2.0 part 1: Core language.
http://www.w3.org/TR/wsdl20/, June 2007.

[Wen and Jeng, 2004] YuanLin Wen and MuDer Jeng. Diagnosability of petri
nets. In Proceedings of the IEEE International Conference on Systems, Man
and Cybernetics, pages 4891–4896, The Hague, Netherlands, October 2004.

[Wikipedia,] The free encyclopedia Wikipedia. Docbook.
http://en.wikipedia.org/wiki/DocBook, permanent link:
http://en.wikipedia.org/w/index.php?title=DocBook&oldid=256309262.

[wsdiamond, 2005 2008] Web services diagnosability, monitoring and diagnosis.
http://wsdiamond.di.unito.it/, 2005–2008. European Project IST-516933.

[Yoo and Lafortune, 2002] Tae-Sic Yoo and Stéphane Lafortune. Polynomial-
time verification of diagnosability of partially observed discrete-event systems.
IEEE Transactions on Automatic Control, 47(9):1491–1495, September 2002.

Un point de vue unifié sur la diagnosticabilité

Mots-clé : Diagnosticabilité, Diagnostic, Raisonnement à base de modèle, Détection
et identification de défaillances, Tolérance aux fautes.

Résumé : Le problème du diagnostic de défaillances à base de modèle dans les
systèmes complexes a reçu un intérêt croissant durant les dernières décennies. Ce
problème doit être pris en compte dès la phase de conception du système, au moyen
de l’analyse de la diagnosticabilité. La diagnosticabilité est la propriété d’un système
consistant à exhiber des symptômes différents pour un ensemble de situations de
défaillances anticipées. Plusieurs approches ont été développées basées sur différents
formalismes de modélisation, toutefois les raisonnements menant à la diagnosticabilité
sont très semblables dans toutes ces approches. Cette thèse développe une comparaison
des approches existantes et établit une définition unifiée de la diagnosticabilité. Une
nouvelle approche pour l’analyse de diagnosticabilité, basée sur les modes de faute par-
tiels, est décrite et implémentée dans le contexte des architectures orientées services,
plus précisément sur des web services. Une nouvelle généralisation de la définition de la
diagnosticabilité à n’importe quel ensemble d’état est présentée, qui permet de prendre
en compte de nouveaux types de propriétés, comme les préconditions de réparation,
ou la qualité de service. Ces travaux ouvrent des perspectives pour le raisonnement de
diagnosticabilité indépendant du modèle, pour la diagnosticabilité basée sur d’autres
types de modèles, ainsi que pour l’intégration du diagnostic dans un outil de surveil-
lance plus général. Le diagnostic et l’analyse de diagnosticabilité des systèmes logiciels
est encore un domaine jeune, et ouvre de nombreuses connections avec le domaine de
la sécurité informatique.

Another point of view on diagnosability

Keywords : Diagnosability, Diagnosis, Model based reasoning, Fault detection and
identification, Fault Tolerance.

Abstract : The problem of model-based fault diagnosis in complex systems has
received an increasing interest over the past decades. Experience has proved that
it needs to be taken into account during the system design stage, by means of di-
agnosability analysis. Diagnosability is the ability of a system to exhibit different
symptoms for a set of anticipated fault situations. Several approaches for diagnosabil-
ity have been developed using different modelling formalisms., yet the reasoning for
diagnosability analysis is very similar in all these approaches. This thesis provides a
comparison of these and a unified definition of diagnosability. An original approach for
diagnosability analysis, based on partial fault modes, is described and implemented
in the context of service oriented architecture, more precisely on web services. An
original generalization of the definition of diagnosability to any set of system states
is presented, that accounts for many kinds of properties, like repair preconditions or
quality of service. This work opens perspectives for model independent diagnosability
reasoning, diagnosability based on other types of models, and in integrating diagnosis
into a general purpose supervision tool. Model-based diagnosis and diagnosability of
software systems is still a young applicative domain, and opens many connections with
the software safety engineering domain.

	Introduction
	I Models and approaches for Diagnosability
	Model-based diagnosis and diagnosability
	Model-based diagnosis
	Diagnosability analysis
	Knowledge representation and abstraction
	Functional abstraction
	Abstraction by aggregation
	Qualitative abstraction

	Modelling formalisms
	Diagnosis context

	Different formalisms for diagnosability
	State-based approaches
	FDI approaches
	DX approaches
	Unification
	Towards unified definitions

	Event-based approaches
	Automata
	Petri nets

	Hybrid systems

	Unified definitions
	Faults and fault modes
	Different interpretations of a fault
	Unified denomination
	Models for faults and fault modes

	Diagnosability
	State of the art conclusion

	II Diagnosability through Fault Signatures
	Signatures for Event-Based approaches
	A new point of view on EBS observables
	Infinite event sequences
	Fault signatures

	Formal Comparison
	Preliminary definitions
	Equivalence

	Examples
	Fault signatures for EBS diagnosability
	Operational comparison of SBS and EBS
	Results

	Conclusion of the comparison

	Signatures for partial fault modes
	Partial fault modes
	Diagnosability analysis
	Distributed diagnosability analysis
	Constraint networks
	Diagnosis approach
	Constraint propagation control
	Diagnosability analysis
	Algorithm
	Example

	Conclusion

	Signatures for properties
	Macrofault diagnosability
	Diagnosability revisited
	System representation
	Diagnosability of a set of states
	Comparison with unified diagnosability
	Signature and preemptability
	Diagnosability of a set of properties
	Comparison with macrofault diagnosability

	Application to repair preconditions
	Example
	Fault mode diagnosability analysis
	Macrofault diagnosability analysis
	Repair precondition diagnosability analysis

	III Application and algorithmic aspects
	Applicative context
	Introduction to Service Oriented Architectures
	Orchestration and choreography
	Web services
	XML
	SOAP
	WSDL
	UDDI
	WS-BPEL
	Semantic web services and Ontologies

	Diagnosis requirements in SOA

	Implementation and test case
	Binary decision diagrams
	Software architecture
	Diagnosers
	Assignments and constraints

	Implementation aspects
	Test case
	Implementation

	Conclusion and perspectives

	IV Résumé en Français
	Introduction
	Modèles et approches
	Définitions unifiées
	Fautes et modes de faute
	Les différentes interprétations d'une faute
	Dénomination unifiée
	Modèles pour les fautes et modes de faute

	Diagnosticabilité

	Diagnosticabilité et signatures
	Signatures pour approches à base d'évènements
	Signatures pour modes de fautes partiels
	Signatures d'ensembles d'états
	Application et aspects algorithmiques

	Conclusion
	Bibliography

