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Introduction

Since the first experiments of ElectroEncephaloGraphy (EEG) on hubyaHans Berger in
1929 [Ber29], the idea that brain activity could be used as a communicdiimel has rapidly
emerged. Indeed, EEG is a technique which makes it possible to meastine,swalp and in
real-time, micro currents that reflect the brain activity. As such, the EEsy has enabled
researchers to measure the human’s brain activity and to start tryingdadeldus activity.

However, it is only in 1973 that the first prototype of a Brain-Computerrfate (BCI)
came out, in the laboratory of Dr. Vidal [Vid73]. A BCI is a communication systghich
enables a person to send commands to an electronique device, only by oheahmtary
variations of his brain activity [WBMO02, Bir06, PNB0O5, CR07, HVEQ7]. Such a system
appears as a particularly promising communication channel for perstiegrgyfrom severe
paralysis, for instance for persons suffering from amyotrophic lasaslarosis [KKK"01].
Indeed, such persons may be affected by the “locked-in” syndromieaansuch, are locked
into their own body without any residual muscle control. Consequently,laBfears as their
only means of communication.

Since the 90’s, BCI research has started to increase rapidly, with mdrenare labo-
ratories worldwide getting involved in this research. Several internatiB@hlcompetitions
even took place in order to identify the most efficient BCI systems over thgl\(J®GM*03,
BMC*04, BMK"06]. Since then, numerous BCI prototypes and applications have been pr
posed, mostly in the medical domain [RBG7, BKG"00], but also in the field of multimedia
and virtual reality [KBCMO07, EVG03, LLRO08].

Brain-Computer Interfaces

Naturally, designing a BCl is a complex and difficult task which requires mutfijglisary
skills such as computer science, signal processing, neuroscienpsgabiology. Indeed, in
order to use a BCI, two phases are generally required: 1) an offliméngaphase which
calibrates the system and 2) an online phase which uses the BCI to rexaggrital states and
translates them into commands for a computer. An online BCI requires to folidwsad-loop
process, generally composed of six steps: brain activity measuremeptppessing, feature
extraction, classification, translation into a command and feedback [MBO3]:

1. Brain activity measurement: this step consists in using various types of sensors in

order to obtain signals reflecting the user’s brain activity [WI0&]. In this manuscript
we focus on EEG as the measurement technology.

11



12 Introduction

2. Preprocessing: this step consists in cleaning and denoising input data in order to en-
hance the relevant information embedded in the signals [BFWBO07].

3. Feature extraction: feature extraction aims at describing the signals by a few relevant
values called “features” [BFWBO07].

4. Classification: the classification step assigns a class to a set of features extracted from
the signals [LCL 07]. This class corresponds to the kind of mental state identified. This
step can also be denoted as “feature translation” [MB03]. Classificatjionitams are
known as “classifiers”.

5. Translation into a command/application: once the mental state is identified, a com-
mand is associated to this mental state in order to control a given applicatiorasac
speller (text editor) or a robot [KMHDO06].

6. Feedback:finally, this step provides the user with a feedback about the identified mental
state. This aims at helping the user controlling his brain activity and as sudChe
[WBM*02]. The overall objective is to increase the user’s performances.

/\

Me:?%r;?;ent Translation into
activity a command
} I
| Preprocessing | ‘ Classification ‘
B\ 4
Feature
extraction

3]
Figure 1: General architecture of an online brain-computer interface.

This whole architecture is summarized in Figure 1. These steps define aa BalinHow-
ever, as mentioned above, it should be noted that before operating 8€h a considerable
calibration work is necessary. This work is generally done offline and atmalibrating the
classification algorithm, calibrating and selecting the optimal features, sel¢b@nglevant
sensors, etc. In order to do so, a training data set must have beedeggveviously from
the user. Indeed, EEG signals are highly subject-specific, and as@urcbnt BCl systems
must be calibrated and adapted to each user. This training data set shotalith EEG signals
recorded while the subject performed each mental task of interesbséuees, according to
given instructions. The recorded EEG signals will be used as mental séatgkes in order to
find the best calibration parameters for this subject.
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Thesis objectives

The work presented in this PhD manuscript belongs to the framework of&@harch. More
precisely, it focuses on the study of EEG signal processing and atagigifi techniques in or-
der to design and use BCI for interacting with virtual reality applicationsedudk despite the
valuable and promising achievements already obtained in the literature, thiieRiGs still a
relatively young research field and there is still much to do in order to makd&8@me a ma-
ture technology. Among the numerous possible improvements, we are goiddriesa three
main points in this PhD thesis: improving the information transfer rate of cuB€htdesign-
ing interpretable BCI systems and developping BCI systems for concedtbfecapplications
such as virtual reality applications. The BCI community have highlighted theaséspas be-
ing important and necessary research topics for the further develoh&eI| technology
[MAM *06, KMHDO06, WBM*02, AWWO7, LSF 07].

1 - Improving the information transfer rate of BCI systems

Current BCI systems have a relatively low information transfer rate (fastrB€&lI this rate is
equal to or lower than 20 bits/min [WBM2]). This means that with such BCI, the user needs
a relatively long period of time in order to send only a small number of commamadsder to
tackle this problem, we can address the following points:

* Increasing the recognition rates of current BCI. The performances of current systems
remain modest, with accuracies, i.e., percentages of mental states correntifiéd,
which reach very rarely 100 %, even for BCI using only two classes {ia,kinds
of mental states). A BCI system which is able to make less mistakes would be more
convenient for the user and would provide a higher information tramafer Indeed,
less mistakes from the system means less time required for correcting thedemista

* Increasing the number of classes useih current BCI. The number of classes used
is generally very small for BCI. Most current BCI propose only 2 aassDesigning
algorithms that can efficiently recognize a larger number of mental statdd @nable
the subject to use more commands and as such to benefit from a highenatitor
transfer rate [KCVP0O7, DBCMO04a]. However, to really increase thermétion transfer
rate, the classifier accuracy (percentage of correctly classified ngtates) should not
decrease too much due to the higher number of classes.

» Designing asynchronous (self-paced) BCCurrent BCl are mostly synchronous, which
means their users can only interact with the application during specific timedpenmn
structed by the system. Contrary to synchronous BCI, self-paced &Cissue com-
mands at any time, and as such can issue more commands than synchrGhetithiB
the same time period [MKHO06]. Consequently, their resulting information transfer rate
should also be higher.
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2 - Designing interpretable BCI systems

Currently, the brain mechanisms are still far from being fully understood,aaconsiderable
amount of neuroscience research is still required to achieve this goatrifiResearch on BCI
systems, which aim at decoding brain activity in real time, may be seen asésprg way of
improving the understanding of the brain. Indeed, most current B@sysscan be trained to
recognize various mental states using a set of training data. ConsegqtienBCI community
has recently stressed the need to develop signal processing andad#esifiechniques for
BCI from which a human could extract knowledge and gain insights on thia lbliynamics
[MAM *06]. Moreover, even since the very beginning of BCI research sitie@n highlighted
that the employed data analysis methods “should enable interpretation, suethasearchers
can use the results for further improvement of the experimental setting?9RF However,
current BCI systems generally behave as “black boxes”, i.e., it is nedilple to interpret
what the algorithms have automatically learnt from data [M#0@]. Designing interpretable
BCI would make it possible to obtain systems that can recognize various nseatted while
providing knowledge on the properties and dynamics of these mental s&iteb. a system
could potentially be used to improve the current neuroscience knowlexigyelhas to check
and improve the designed BCI.

3 - Developping BCI systems for concrete virtual reality appications

With only a few exceptions [GEHD3, VMS'06], current BCI systems are mostly studied and
evaluated inside laboratories, in highly controlled conditions. To furtheeldp BCI tech-
nology, it is necessary to study BCI in real-life or close to real-life conditionith a larger
number of users/subjects. It is also essential to exploit efficiently thevailahle commands
provided by current BCI systems. Indeed, by designing smart inessfaicd appropriate inter-
action paradigms for BCI based applications, the amount of possible aildtdg actions for
the user could be increased, and the time necessary to select theseamiidrise decreased.
In this thesis manuscript, we focus on Virtual Reality (VR) applications. éddee would like

to develop, study and improve BCI-based VR applications, such as énitggtapplications
that could be used by the general public.

Approach and contributions

This manuscript describes the work we carried out in order to addresthitbe objectives
mentioned above. More precisely, thiest chapter of this manuscript proposes an overview
of current BCI designs and applications. The following chapters ateated to the scientific
contributions we proposed. These contributions can be gathered intcarig part 1) gath-
ers contributions related to EEG signal processing and classificatioreagh®art 2) gathers
contributions related to virtual reality applications based on BCI technoliglgye precisely,
Part 1 deals respectively with feature extraction and preprocessisgification, interpretable
BCI design and self-paced BCI design. Part 2 deals respectively veitsitialy of BCI use for
entertaining VR applications in close to real-life conditions, and with the useB@ldor ex-
ploring and interacting with a Virtual Environment (VE), here a virtual muaselMore details
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are given in the following sections.

Part 1: EEG signal processing and classification

In order to increase the information transfer rates of current BCl systnd to design inter-
pretable BCI, improvements can be brought at all processing levelse ptéprocessing level,
at the feature extraction level and at the classification level. To improve fibrenation trans-
fer rate at the feature extraction level, we could design more robustfficidre features. To
this end, we should design algorithms that can capture the relevant infonmaltibed to each
targeted mental state while filtering away noise or any unrelated informationedver, it is
known that each subject is different from the other, regarding theligpper spatial components
of his brain activity for instance. Consequently, an ideal feature didraalgorithm for BCI
should be trainable in the sense that it should be able to learn and usd-spigjeific features.
Moreover, it is particularly important to design feature extraction methods#rabe trained
on multiclass data (e.g., [DBCMO04b]).

In order to obtain an interpretable BCI, we can first obtain interpretalaltufes. Fea-
tures that are abstract mathematical information such as autoregrassfigients (see section
1.5.1.2) are very unlikely to be interpreted by a human. To be able to extétagant informa-
tion about the brain dynamics from the features, the ideal features stmuldy physiological
information.

We believe that inverse solutions are ideal candidates to address alptiiate Indeed,
inverse solutions are methods that make it possible to reconstruct the actithitybrain vol-
ume by using only scalp measurements and a head model (see section 1gistjchAhey
can localize the sources of activity within the brain, thus recovering aiggscally relevant
information. Moreover, in works preceding this PhD thesis, we have sltbat inverse solu-
tions were promising and efficient (in terms of classification accuracyjaspidters for BCI
[CLLO6]. Other pioneer studies performed by different groups helge found that inverse
solutions were promising feature extraction methods for EEG-based B&P{G5, KLHO05].
Consequently, i€hapter 2, we propose a trainable feature extraction algorithm for BCI which
relies on inverse solutions and can deal with multiclass problems. The ebpdgorithm,
known as FURIA Fuzzy Region oflnterestActivity), is assessed on EEG data sets from BCI
competitions and compared with the algorithms of the competition winners.

To build an interpretable BCI system with a high information transfer rate it (sradses-
sary to work at the classification level. To date, numerous classifierstesretried and used
to design BCI [MABO3, LCL"07] (see also section 1.6). However, some classifiers that proved
to be efficient in other contexts of pattern recognition have not beenrexpiet for BCI de-
sign [MAM™06]. A category of classifiers appears as particularly attractive fdrd&Sign:
the fuzzy classifiers, which are classification algorithms based on the/tbifuzzy logic and
fuzzy sets of Zadeh [Zad96a, Men95]. Indeed, Bezdek has higatghat fuzzy classifiers
were "perfectly suitable to deal with the natural fuzziness of real-lifesdiaation problems"
[BP92].

Fuzzy Inference Systems (FIS) are fuzzy classifiers that can lezzx fif-then” rules able
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to classify data [Chi97a]. FIS have been successfully used in sesthil pattern recogni-
tion tasks such as hand-writing recognition [AL96b], ElectroMyoGrafitiMG) classification
[CYL ™00] or even brain research, e.g., for EEG monitoring [BUO3, HLE. Moreover, Chan
et al have stressed the suitability of FIS for classification of non-stationary lulimalesignals
[CYL100]. Actually, the “fuzzyness” of FIS makes it possible to deal with théaimlity of
such signals and to tolerate their possible contradictions [0 In addition to these points,
FIS exhibit several interesting properties that may address our olgigctiirst, FIS are uni-
versal approximators [Wan92]. Then, FIS are known to be intergestalhich means that it
is possible to extract knowledge from what they automatically learnt [G@B7a]. Finally,
it is also possible to add a priori knowledge to FIS under the form of “haade” fuzzy rules
[Chi97a]. All these points make FIS very interesting candidates for BSleph.

Therefore, inChapter 3, we study the use of a FIS for classification in an EEG-based
BCI. More particularly, we study FIS by assessing their classificatiofopeances, their in-
terpretability, the possibility to provide them with a priori knowledge. We alsdystheir
outlier rejection capabilities, i.e., their capabilities to reject data that do nasmnd to any
of the classes they learnt. For this study, we focus on the classificatide@Ekgnals recorded
during movement imagination.

As mentioned above, inverse solution-based features represemblpbical knowledge
and fuzzy inference systems can represent what they have leatet the form of a set of
rules. These two properties appear as particularly interesting to attaibjeatiee of designing
an interpretable BCI. However, the interpretability of these methods coubdisieed further.
Indeed, a BCI system would be more easily interpretable if it could expinedsnowledge it
has extracted from EEG data using simple and clear words.

Therefore, inChapter 4, we propose an algorithm, which is based on inverse solutions and
fuzzy inference systems, to design fully interpretable BCI systems. Thisithlgn relies on
the paradigm of “computing with words” of Zadeh [Zad96b] in order toresp what has been
learnt by the BCI system using only simple words, and not mathematical faionga

Finally, in order to design BCI with higher information transfer rate and totheen in
real applications, it is essential to design efficient Self-Paced BCI C3PBloreover, and
independently from the information transfer rate, a SPBCI provides #renith a more natural
and convenient mode of interaction. This point is also important as oner afbjectives is to
design BCl-based virtual reality applications for the general public. s€gumentlyChapter
5 deals with the design of EEG-based SPBCI. More precisely, this chapteiders SPBCI
design as a pattern rejection problem. As such, it introduces new patjectiore methods for
SPBCI design and studies and compares various pattern rejection megipdidd #o various
classification algorithms.

Part 2: Virtual reality applications based on BCI technology

In order to design practical BCl-based applications, and particulatlyalireality applications,
it appears as essential to gather knowledge about the influence, doleeds of the user of the
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system. To gather relevant and significant knowledge, the related stidiekl be performed
with a sufficiantly high number of subjects in close to real-life conditions. Eguaently, in

the work presented iChapter 6, we studied both the performances and the preferences of
21 naive subjects who used a BCI to interact with an entertaining VR applicdtiong an
exhibition. More precisely, this chapter presents a simple self-paced Bichwses a single
electrode and a single feature. Thanks to this BCI, subjects could lift aavBpaceship by
using real or imagined foot movements. The correct recognition rateimebttaere measured,
and the users’ feelings about their BCI experience were collected asjogstionnaire.

BCI have been recently shown to be a suitable interaction device for VRcatpns
[LSFT07]. Indeed, various prototypes have been proposed in order forpesimple navi-
gation tasks in VE by thoughts [LF®6, FLG"07, LFSP07, SLS08] as well as a few virtual
object manipulation tasks [LKFO5a, Bay03]. Despite these promising first prototypes, cur-
rent BCl-based VR applications can only provide the user with few and linmitexiaction
tasks. Indeed current BCI systems can only provide the user with el number of com-
mands (only 2 for most BCI), and current BCl-based VR applicationdlyncesy on low-level
interaction technigues limiting the possibilities offered to the user.

In Chapter 7, we present a BCl-based VR application which enables its users to visit a
virtual museum by using thoughts only. In order to exploit efficiently the smathber of
commands provided by a BCI we proposed a novel interaction technigquigCfbbased VR
application. This interaction technique enables the user to send high-lexgards, leaving
the application in charge of most of the complex and tedious details of the itbersesk. We
also designed a self-paced BCI system which can provide its users withr@dt commands.

Finally, conclusions and perspectives of the work presented in this rorpiLere given in
thelast chapter.
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Chapter 1

Brain-Computer Interfaces Design
and Applications

1.1 Introduction

This first chapter aims at reviewing the main BCI designs and their applicafidnis chapter
first gives some definitions related to BCI. Then it reviews the methods ahditpies used
to design a BCI. As such, it details the different processing steps camgpasBCl, that is,
measurements of brain activity (Section 1.3), preprocessing (Sectionfdafijre extraction
(Section 1.5) and classification (Section 1.6). Finally, Section 1.7 presamis BCI applica-
tions and prototypes already developped, by emphasising virtual regtiigaions.

1.2 Definitions

A BCI can formally be defined as a “communication and control channetitheg not depend
on the brain’s normal output channels of peripheral nerves and nstigglBM T02]. The
messages and commands sent through a BCI are encoded into the tsmerechvity. Thus, a
BCl user “produces” different mental states (alternatively, we cguttss#t a user is performing
a mental task or is generating a given neurophysiological signal) whilerais hctivity is
being measured and processed by the system. Traditionally, the dife@rgystems are
divided into several categories. Among these categories, reseandiably oppose dependent
BCI to independent BCI, invasive BCI to non-invasive BCI as well aschronous BCI to
asynchronous (self-paced) BCI.

1.2.1 Dependent versus independent BCI

One distinction which is generally made concerns dependent BCI verdapeéndent BCI
[AWWO07]. A dependent BCl is a BCI which requires a certain level of metmtrol from the
subject whereas an independent BCI does not require any motookoRar instance, some
BCI require that the user can control his gaze [L'KI5a]. In order to assist and help severely
disabled people who do not have any motor control, a BCI must be indepenHowever,

19
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dependent BCI can prove very interesting for healthy persons, er tocuse video games for
instance [AGGO7]. Moreover, such BCI may be more comfortable aridreasuse.

1.2.2 Invasive versus non-invasive BCI

A BCI system can be classified as an invasive or non-invasive BQ@irdiry to the way the
brain activity is being measured within this BCI [WBNd2, LNO6]. If the sensors used for
measurement are placed within the brain, i.e., under the skull, the BCl is saditedsive. On
the contrary, if the measurement sensors are placed outside the hélael soalp for instance,
the BCI is said to be non-invasive. Please refer to Section 1.3 for morgsdatathe brain
activity measurement methods employed in BCI.

1.2.3 Synchronous versus asynchronous (self-paced) BCI

Another distinction that is often made concerns synchronous and asywcis BCI. It should
be noted that it is recommended to denote asynchronous BCI as “self“paCl. [PGNOG6,
MKH *06]. With a synchronous BCI, the user can interact with the targeted appliconly
during specific time periods, imposed by the system [KBB, PNM"03, WBM*02]. Hence,
the system informs the user, thanks to dedicated stimuli (generally visualdogy), about
the time location of these periods during which he has to interact with the appticitie user
has to perform mental tasks during these periods only. If he performtahiasks outside of
these periods, nothing will happen.

On the contrary, with a self-paced BCI, the user can produce a mentaintasder to
interact with the application at any time [MKH6, BWB07, SSI:07, MMO03]. He can also
choose not to interact with the system, by not performing any of the mentatsiaed for
control. In such a case, the application would not react (if the BCI woriperly).

Naturally, self-paced BCI are the most flexible and comfortable to usallydall BCI
should be self-paced. However, it should be noted that designing-passtl BCI is much
more difficult than designing a synchronous BCI. Indeed, with synaue BCI, the system
already knows when the mental states should be classified. With a setf-p&dethe system
has to analyse continuously the input brain signals in order to determineavtiéhuser is
trying to interact with the system by performing a mental task. If it is the casesytbtem has
also to determine what is the mental task that the user is performing. For tdesms, the
wide majority of currently existing BCI are synchronous [WBBR, PNBO5]. Designing an
efficient self-paced BCI is presently one of the biggest challenge @@iecommunity and a
growing number of groups are addressing this topic [MKid, BWB07, SSt:07, MMO3].

1.3 Measurements of brain activity

The first step required to operate a BCI consists in measuring the sultjesitisactivity. Up
to now, about half a dozen different kinds of brain signals have bemtifabd as suitable for
a BCl, i.e., easily observable and controllable [WBG2]. This section first describes the
different available techniques for measuring brain activity. Then itritess the brain signals
that can be used to drive a BCI.
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1.3.1 Techniques for measuring brain activity
1.3.1.1 Overview of measurement techniques used for BCI

Numerous techniques are available and used, in order to measure lingty aithin a BCI
[WLA 06, dM03]. Among these techniques, we can quote MagnetoEnceplaploGiMEG)
[MSB*07, BJL"08], functional Magnetic Resonance Imaging (fMRI) [WM@&4], Near In-
fraRed Spectroscopy (NIRS) [CWMO07], ElectroCorticoGraphy (ECH.MS*06] or implanted
electrodes, placed under the skull [LNO6]. However, the most usedochéshby far Elec-
troEncephaloGraphy (EEG) [WL06]. Indeed, this method is relatively cheap, non-invasive,
portable and provides a good time resolution. Consequently, most cB@&rgystems are
using EEG in order to measure brain activity. Thus, in this thesis work, we fegused on
EEG-based BCI designs.

1.3.1.2 Invasive BCI

Although EEG is the most widely used technique, it should be noted that adayeapidly
growing part of BCl research is dedicated to the use of implanted elestraduieh measure the
activity of groups of neurons [LNO6, FZ4, HSF 06, NicO1, SCWMO06]. Currently, most
of this research has focused on the design and evaluation of invaSi@Bprimates [LNO6,
NicO1]. However, recent results have shown the usability of suchregste humans [HSFO6,
SCWMO06]. Implanted electrodes make it possible to obtain signals with a much tpediey
and a much better spatial resolution than with non-invasive methods. Insieme invasive
methods can measure the activity of single neurons while a non-invasivedrsibh as EEG
measure the resulting activity of thousands of neurons. As such, it ieesteyl that invasive
BCI could obtain better results, in terms of performances (information &anate, accuracy,
fiability, ...), than non-invasive methods, and especially than EEG. Menvéhis statement
still needs to be confirmed and is still a topic of debate within the BCl communityeeleshd
even if EEG-based BCI are based on much noisier and coarser sigaalthtse of invasive
BCI, some studies have reported that they can reach similar informatiofetrsaites [WMO04,
Wol07]. The main drawback of invasive BCI is precisely the fact that #reyinvasive, which
requires that the subject endures a surgery operation in order to eisydtem. Moreover,
implanted electrodes have a limited lifetime, which makes the subject endurerregrgary
operations in order to replace the electrodes. Then, the use of implantéeds might be
dangerous for the health of the subjects. Finally, implanting electrodes imartisibrain also
raises numerous ethic problems. These points make non-invasive BCinast especially
EEG-based BCI, the most used and the most popular BCI systems. Inlitiveirig of this
manuscript, we will focus exclusively on non-invasive BCl based oGEE

1.3.1.3 Electroencephalography

Electroencephalography measures the electrical activity generateel lmath using electrodes
placed on the scalp [NdS05]. EEG measures the sum of the post-synaptitigls generated
by thousands of neurons having the same radial orientation with respet $oalp (see Fig-
ure 1.1). The first EEG measurements on a human subject have bearctezhith 1924 by
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Hans Berger. It is at that time that he worked out the name of “electrpbat@myram”. His
fundamental discovery was published in 1929 [Ber29].
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Figure 1.1: Examples of EEG signals, recorded using 2 EEG electro@an(€ C4) for a
healthy subject (time is displayed in seconds).

Signals recorded by EEG have a very weak amplitude, in the order of somevoits.
It is thus necessary to strongly amplify these signals before digitizing asakgsing them.
Typically, EEG signals measurements are performed using a number obditwhich varies
from 1 to about 256, these electrodes being generally attached usifagto eap. The contact
between the electrodes and the skin is generally enhanced by the userafuxtive gel or
paste [Rei05]. This makes the electrode montage procedure a generalystadd lengthy
operation. It is interesting to note that BCI researchers have receoiyged and validated
dry electrodes for BCI, that is, electrodes which do not require cctivdugels or pastes for use
[PFB"07]. However, the performance of the resulting BCI (in terms of maximunrimédion
rate) were, on average, 30% lower than the one obtained with a BCI| basaeldctrodes that
use conductive gels or pastes.

Electrodes are generally placed and named according to a standard namdely, the 10-
20 international system [Jas58] (see Figure 1.2). This system hadritglty designed for
19 electrodes, however, extended versions have been proposeteirt@ deal with a larger
number of electrodes [AES91].

EEG signals are composed of different oscillations named “rhythms” [NlieOHese
rhythms have distinct properties in terms of spatial and spectral localizgt@ne are 6 clas-
sical brain rhythms (see Figure 1.3):

» Delta rhythm: This is a slow rhythm (1-4 Hz), with a relatively large amplitude, which
is mainly found in adults during a deep sleep.

» Theta rhythm: This a slightly faster rhythm (4-7 Hz), observed mainly during drowsi-
ness and in young children.
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Figure 1.2: Positions and names of the 10-20 international system elec{mdiires from
www.wikipedia.org).

» Alpha rhythm: These are oscillations, located in the 8-12 Hz frequency band, which
appear mainly in the posterior regions of the head (occipital lobe) whenutiject has
closed eyes or is in a relaxation state.

* Mu rhythm: These are oscillations in the 8-13 Hz frequency band, being located in the
motor and sensorimotor cortex. The amplitude of this rhythm varies when Hyecsu
performs movements. Consequently, this rhythm is also known as the fseoswr
rhythm” [PNO1].

» Beta rhythm: This is a relatively fast rhythm, belonging approximately to the 13-30 Hz
frequency band. It is a rhythm which is observed in awaken and marspersons. This
rhythm is also affected by the performance of movements, in the motor &#884].

» Gamma rhythm: This rhythm concerns mainly frequencies above 30 Hz. This rhythm
is sometimes defined has having a maximal frequency around 80 Hz or 104 Kz
associated to various cognitive and motor functions.

1.3.2 Neurophysiological signals used to drive a BCI

BCI aim at identifying, in the brain activity measurements of a given subjeet,on several

specific neurophysiological signals (i.e., brain activity patterns), inrdaassociate a com-
mand to each of these signals. Various signals have been studied and fstimae avere

revealed as relatively easy to identify (automatically), as well as relatiady ® control for

the user. These signals can be divided into two main categories [CS03,\OWBM
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Figure 1.3: The different brain rhythms as measured by EEG (picturesm fr
www.wikipedia.org).

» Evoked signalsthat are generated unconsciously by the subject when he perceives a
specific external stimulus. Those signals are also knovEvaked Potentials(EP).

» Spontaneaous signalthat are voluntarily generated by the user, without external stim-
ulation, following an internal cognitive process.

In the following of this manuscript we will also denote a neurophysiologiaiad as a
mental state or as a brain activity pattern. These three names will denotertbestty.

1.3.2.1 Evoked potentials

In this first category, the main signals are the Steady State Evoked Pote®&&®) and the
P300 [WBM"02, CS03]. These two potentials are described further in this sectionmahe
advantage of EP is that, contrary to spontaneous signals, evoked gsténtiaot require a
specific training for the user, as they are automatically generated by tinebrasponse to a
stimulus. As such, they can be used efficiently to drive a BCI since theufissfWBM™02,



Measurements of brain activity 25

CS03]. Nevertheless, as these signals are evoked, they requireexsmgal stimulations,
which can be uncomfortable, cumbersome or tiring for the user.

Steady State Evoked Potentials: SSEP are brain potentials that appear when the subject
perceives a periodic stimulus such as a flickering picture or a sound nbeduifaamplitude.
SSEP are defined by an increase of the EEG signals power in the fregsideing equal to
the stimulation frequency or being equal to its harmonics and/or sub-harsnfui{&*05a,
GPAR"07b, MPSNPO06]. Various kinds of SSEP are used for BClI, such asittate Visual
Evoked Potentials (SSVEP) [LKP5a, MCM™95, THO7b, SEGYSO07], which are by far the
most used, somatosensory SSEP [MPSNPO06] or auditory SSEP [GHARGPAR 07a] (see
Figure 1.4 for an example of SSVEP). These SSEP appear in the bragmaneesponding to
the sense which is being stimulated, such as the visual areas when a SSMER. is
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Figure 1.4. EEG spectrum showing SSVEP for stimulation frequenciesldzXplain line) or
20 Hz (dotted line). We can clearly notice the peak of power at the stimulaggnéncies and
their sub-harmonic (pictures from [LK5a]).

An advantage of this kind of signals is that they can be used within a BCI witreining.
Moreover, as stimuli with different stimulation frequencies will lead to SSEP diilerent
frequencies, it is possible to use a large number of stimuli in order to obtdimsma large
number of mental states for the BCI (e.g., see [GXCGO03] were 48 stimuli used). As
such, it enables the user to have a large number of commands which makésthesystem
more convenient. This explains the increasing interest of the BCl commumi§S&P, and
more especially for SSVEP. [MMCJ00, CGGX02, GXCG03, TRM06, NCANAPP08]. For
instance, a BCI application based on SSVEP can use several flickeritognd displayed on
screen, each button having a unique flickering frequency. In sudipplication, the user
should draw his attention on the button he wants to activate. Indeed, it isnktieat the
SSVEP corresponding to a given button are enhanced when the agertis attention on this
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button. Detecting, within EEG signals, an SSVEP with a frequeihayill then activate the
button with a flickering frequency off as this button is very likely to be the one the user was
focusing on [CGGX02].

P300: The P300 consists of a Positive waveform appearing approximately 3@@iens rare
and relevant stimulus (see Figure 1.5) [FD88]. It is typically generateditir the “odd-ball”
paradigm, in which the user is requested to attend to a random sequenagsednoptwo kind
of stimuli with one of these stimuli being less frequent than the other. If theestmulus is
relevant to the user, its actual appearance triggers a P300 observéideuser's EEG. This
potential is mainly located in the parietal areas.
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Figure 1.5: A P300 (enhanced by signal averaging) occuring whethetsieed choice appears
(picture from [WBM"™02]).

Generally, a P300-based BCI uses the fact that the P300 is preseissaorg from the input
EEG signals in order to send, or not, a command to the application. Similarly to S®%¥&ed
BCI applications, in P300-based BCI applications, several buttonsjectstare displayed on
the user’s screen. These buttons or objects are randomly higlightethender is instructed
to count, over a finite time period, the number of times that the button he wantsuatags
highlighted. This aims at making the highlight of the desired button a rare @t stimu-
lus in order to trigger the appearance of the P300. Thus, when a P38teiteat] in the EEG
signals, the system identifies the button desired by the user as the buttonvalsibighlighted
300 ms earlier, as this button is most likely to be the one for which the user wasing the
number of highlights. The P300 is mostly used in a kind of “virtual keyboafilication
known as the P300 speller [FD88, RS07b, K®6, SD06, PGT06]. This application is de-
scribed in more details in section 1.7.1.2. As other EP, the P300 has the agvahtaquiring
no training for the subject in order to be used. On the other hand, P88 CI applications
require the user to constantly focus on fast and repetitive visual stimuichvdan be tiring
and inconvenient.
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1.3.2.2 Spontaneous signals

Within the category of spontaneous signals, the most used signals angbtigdeensorimotor
rhythms. However, other neurophysiological signals are used, suslow cortical potentials
or non-motor cognitive signals.

Motor and sensorimotor rhythms:  sensorimotor rhythms are brain rhythms related to mo-
tor actions, such as arm movements, for instance. These rhythms, whiotaarly located in
theu (~ 8-13 Hz) andB (~ 13-30 Hz) frequency bands, over the motor cortex, can be volun-
tarily controlled in amplitude by a user. When it comes to BCI, two differentegjias have
been proposed in order to make the user control these sensorimotanghyth

» Operant conditioning: A subject can learn to modify voluntarily the amplitude of his
sensorimotor rhythms through a (very) long training known as “operamditoning”
[WMO04, WMNF91, VMS"06, Wol07] (see Figure 1.6).
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Figure 1.6: sensorimotor rhythm variations performed voluntarily by th@gestibetween two
conditions: “top target” and “bottom target” (picture from [WBNA2)).

In order to reach this goal, the user is free to select the mental strategghkemsst com-
fortable with. Motor imagery (see below) is one possible strategy which is oed.
When using operant conditioning, the role of the feedback is essentitikrables the
user to understand how he should modify his brain activity in order to ddh&egystem.
Generally, in BCI based on operant conditioning, the power ofioed rhythms in dif-
ferent electrode locations are linearily combined in order to build a congafbwhich
will be used to perform 1D, 2D or 3D cursor control [WMO04, Wol07]. €Timain draw-
back of this method is the very long training time which is necessary. Indeettaihing
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of a given user can last several weeks or even several months AMMEINF91]. How-
ever, once this training is completed, very good performances (in term$oofiation
transfer rate) can be obtained.

» Motor imagery: For a user, performing motor imagery consists in imagining move-
ments of his own limbs (hands or feet for instance) [PN01, PBSdS06, FISM The
signals resulting from performing or imagining a limb movement have very spéeifi-
poral, frequential and spatial features, which makes them relativelyteagcognize
automatically [PBSdS06, PNFP97, PNSL98]. For instance, imagining adeit move-
ment is known to trigger a decrease of power (Event Related Desymishtion (ERD))
in thep and rhythms, over the right motor cortex [PdS99] (see Figures 1.7 and 1.8).
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Figure 1.7: Time course of ERD following left hand and right hand motor imagdée imag-
ination starts at second 3 (picture from [PN@D]).

A symmetric phenomenon appears when the user imagines a right hand mavémen
motor imagery based BCI, the motor imagery task that has been identified (e gjnéoha

left hand movement, imagined tongue movement, etc.) will be associated to a command
so as to control the movement of a cursor or the opening/closure of thescts for
instance [PNM 03, SMN"04, GHHP99]. Using a motor imagery-based BCI generally
requires a few sessions of training before being efficient [PGNO6jvever, using ad-
vanced signal processing and machine learning algorithms enables thfesust a BCI

with almost no training [BDK 07, BDK"06a].

Slow cortical potentials: Slow Cortical Potentials (SCP) are very slow variations of the corti-
cal activity, which can last from hundreds of milliseconds to severalrsis[BKG"00, KBO5].
It is possible to learn to make these variations positive or negative usimgra®nditioning
(see Figure 1.9).

Thus, SCP can be used in a BCI to generate a binary command, accorthegiusitivity
or negativity of the potential [BKG00, KB05]. As the control of SCP is achieved by operant
conditioning, mastering such a signal requires generally a very long tgdime. This training
by operant conditioning is even longer for SCP than for motor rhythms @RirBlowever, it
seems that SCP would be a more stable signal [Bir06].
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Left motor imagery

Figure 1.8: Spatial localization
(picture from [PNG 00]).
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Figure 1.9: Voluntary variations of slow cortical potentials, between twdalitimms (reach the
top target or reach the bottom target). (picture from [WE02])

Non-motor cognitive tasks: A relatively large number of non-motor cognitive processing
tasks are also used in order to drive a BCI. These tasks are, fordrstarental mathemati-
cal computations, mental rotation of geometric figures, visual counting, hrgamaration of
words, music imagination, etc. [CS03, dRMM@0, BGM07b, CB04, KA90, ASS98]. All
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these mental tasks generate specific EEG signal variations, in spedifi@crgions and fre-
guency bands, which makes them relatively easy to identify.

1.3.3 Conclusion

The neurophysiological signals presented in this section have all beehsuscessfully in
various applications. However, almost no comparisons of these sigvaldban performed so
far. As such, it appears as difficult to select objectively the bestAlhsignals have their pros
and cons. Evoked potentials can be used without subject training luitedlge use of external
stimuli and can be tiring for the user. Spontaneous signals are more ratdrabmfortable
to use, as they do not rely on external stimuli, but they generally requigettaming time.
However, it seems that advanced machine learning and signal praressihods can reduce
the need to train the subjects or even remove this training need {BB&]. This is the reason
why we focused on spontaneous signals in this thesis work. More spédlgjfiwe focused
on motor imagery signals which are signals largely described in the literatdrestatively
natural to use for the subjects.

The three following sections are dedicated to the preprocessing, featuaetion and classifi-
cation of EEG signals. These three BCl components could be gatheredsimgl@and more
general, higher level component, which could be denoted as “EEGg®io¢g. This compo-
nent is a key element in the design of a BCI as it aims at transforming the irgintsignals
into a command for a given application. As such, the “EEG processing” coemni can be
seen as the core of the BCI. Consequently, a wide majority of BCI rdsearss at improving
this component to make the whole system more efficient.

It is important to note that the boundaries between the “preprocessifegitufe extrac-
tion” and “classification” components are not hard boundaries, ance: thesndaries may
even appear as fuzzy. Furthermore, all these components are essagly used in all BCI
[MBF'07]. Thus, the preprocessing and feature extraction componentsnaetises merged
into a single algorithm, whereas the classification algorithm can be missingwreedo its
simplest form, i.e., a decision threshold on the feature values. Howevelintergsting to
distinguish these components, as they have different inputs and outpwtdlass different
goals.

1.4 Preprocessing

Once the data have been acquired, they are generally preprocessddrito clean (de-noise)
the signals and/or to enhance relevant information embedded in these siged, EEG
signals are known to be very noisy, as they can be easily affected byettdcaal activity of
the eyes (EOG: ElectroOcculoGram) or of the muscles (EMG: ElectroMym§re.g., face
or jaw muscles [FBWBO07]. These muscle artifacts are especially annogitigest have an
amplitude which is much larger than the one of EEG signals. As such, it apaedifficult to
remove these artifacts without accidentaly removing relevant informationdaeben these
EEG signals. Moreover, it is interesting to remove the background braivitaavhich is
not related to the neurophysiological signals of interest. Overall, thequegsing step can
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be defined as a method which transforms a set of signals into a new senalssighich are
supposedly denoised. In other words, the preprocessing step aintseztsimg the signal-to-
noise ratio of the input signals.

In order to perform this preprocessing, various spatio-spectro-texhfilters are used
[MMDW97, RMGP00, BGMO07a]. These filters can be simple frequency $iltermore ad-
vanced filters such as independant component analysis [ZL06;"RBLMEJS00, KASCO08]
or common spatial patterns [RMGP00, CLL06, BB04, WGG05, DBCMO04aiich spatial
filters are inscreasingly used in the BCI field as they were shown to be dhidier®. The
remaining of this section describes the main preprocessing methods ugl fdesign.

1.4.1 Simple spatial and temporal filters

Most BCI systems use simple spatial or temporal filters as preprocessimdento increase
the signal-to-noise ratio of EEG signals.

1.4.1.1 Temporal filters

Temporal filters such as low-pass or band-pass filters are generatlyirusrder to restrict the
analysis to frequency bands in which we know that the neurophysiologjgreals are. For

instance, BCI based on sensorimotor rhythms generally band-pass ftdath in the 8-30

Hz frequency band, as this band contains bothpttend 3 rhythms, i.e., the sensorimotor
rhythms [RMGPO0O0]. This temporal filter can also remove various undesifedts such as

slow variations of the EEG signal (which can be due, for instance, to etkctrolarization) or

power-line interference (50 Hz in France). Hence, temporal filters ritgdassible to reduce

the influence of frequencies that are lying outside of the frequentiere@f interest. Such a
filtering is generally achieved using Discrete Fourier Transform (DFTisong Finite Impulse

Response (FIR) or Infinite Impulse Response (IIR) filters.

Direct Fourier Transform filtering:  DFT makes it possible to visualize a signal into the
frequency domain, i.e., to see a signal as a sum of oscillations at diffeegunencies. Thus,
the DFTS(f) of a signals(n), which is composed dfl samples, can be defined as follows:

N-1 —2imtfn

S(f) = n;s(n)e N

(1.1)

Thus, filtering a signal using DFT simply consists in setting to 0 all coefficigfftswhich
do not correspond to targeted frequencies, and then to transforrigtted Back into the time
domain, by using the inverse DFT:

sn)=—=39 Sken (1.2)

When performing DFT filtering, a windowing step should be performedrieedpplying
DFT [Smi97]. DFT filtering can be used online and in real-time, thanks to theieitiand
popular DFT implementation known as the Fast Fourier Transform (FFTj9H. As an
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exemple, DFT filtering has been used for the classification of finger moweimention in
several BCI [BCM02, KBCMO7].

Filtering with Finite Impulse Response filters: FIR filters are linear filters which make use
of theM last samples of a raw signs(n) in order to determine the filtered signgh) :

M
y(n) = k;)aks(n—k) 1.3)

where theay are the filter coefficients, which values depend on the desired filter toduk us
[Smi97]. FIR filters are know to have excellent performances in the é&etigl domain. For
instance, FIR filters have been used for BCI based on motor imagery {DBKor on SSEP
[GPAR'07b].

Filtering with Infinite Impulse Response filters: As FIR filters, IR filters are linear filters.
On the other hand, IIR filters are recursive filters, which means that,ditiaa to theM last
samples, they make use of the outputs ofRHast filterings:

M P
y(n) = k;)akS(n—k)Jrk;bky(n—k) (1.4)

In this way, IR filters can perform filtering with a much smaller number of ficiehts than
FIR filters. However, their performances in the frequential domain is sligatyced [Smi97].
Among the IIR filters employed for EEG preprocessing in BCI, we can gBotéerworth,
Tchebychev or elliptic filters [Smi97, MBCO07, DBCMO04a].

1.4.1.2 Spatial filters

Similarly to temporal filters, various simple spatial filters are used in order taéstiia rele-
vant spatial information embedded in the signals. This is achieved by selectimgighting
the contributions from the different electrodes (and as such from tferetift spatial regions)
[MMDW97]. The most simple spatial filter consists in selecting the electrodewlitcch we
know they are measuring the relevant brain signals, and ignoring otlotnogles. Indeed, these
latter electrodes are likely to measure mostly noise or background activitgleeaint for the
targeted BCI. As an example, when using a BCl based on hand motor imagekynown that
the neurophysiological signals of interest are mainly located over the mos@nsorimotor
cortex areas [PNO1, PK92]. Thus, itis interesting to focus on eledr68eand C4, which are
located over the left and right motor cortex respectively (see Figure dr.2ven to use only
these electrodes [PNM3]. Similarly, for BCI based on SSVEP, the most relevant electrodes
are the electrodes O1 and O2, which are located over the visual akas(ba].

Other simple and popular spatial filters are the Common Average Refef@A&) and the
Surface Laplacian (SL) filters [MMDW97]. These two filters make it possibleeduce the
background activity [MMDW97]. The CAR filter is obtained as follows:
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N 1 N
Vi=Vi—— SV (15)
Ne =
whereV; andV; are theit" electrode potential, after and before filtering respectively, lsnd
is the number of electrodes used. Thus, with the CAR filter, each electrodaederenced
according the average potential over all electrodes. The SL filter cabta@ed as follows:

~ 1
Vi=Vi-7 ¥V, (1.6)
je
whereQ} is the set of the 4 neighboring electrodes of electriodghus, this filter can reduce

localy the background activity. It should be noted that more advanasibws of this filter can
be used, notably versions based on spline approximations [PBP87].

Naturally, numerous other preprocessing methods, which are more comulemare ad-
vanced, have been proposed and used. In the following, we desaobef the most popu-
lar methods, namely, independant component analysis and common spidiaigparhen we
evoke some other existing methods and notably methods known as inveitsesolu

1.4.2 Independant component analysis and blind source sefadion

Blind Source Separation (BSS) is a family of methods which are used to smiektail party”
like problems [Sto05, JH91]. Independent Component Analysis (ICArabably the best
known member of this BSS family [HOOQ]. In a cocktail party problem, the nreaksignals
m (recorded using several sensors) are resulting from an unknoear Imixing of several
sourcess. In a mathematical form, it reads:

m=As 1.7)

wheremis the matrix of measurements, with a sensor per row and a time sample per celumn;
is the source matrix, with a source per row and a time sample per columA;iatioe unknown
mixing matrix which represents the linear mixing. Performing BSS consists inndigiieg an
estimates 0f swithout knowingA [JH91]:

§=Wm (1.8)

whereW is the demixing matrix. Typically we haw/ = A~%, the problem being thaA

is unknown. To tackle this probem, ICA assumes that the sow¢akso known as com-
ponents) are statistically independent, which has been revealed as betagomable hy-
pothesis for numerous problems [HOO0O, Sto05]. Numerous ICA algorittave heen pro-
posed and proved to be useful, especially for EEG signal proced3Mg4] and BCI design
[ZLO6, NBLT06, MEJS00, KASC08, HHB03, QLC05, HdS07, EEO4]. Indeed, EEG signals
are resulting from the mixing of different signals coming from differemtibregions. As such,
ICA may unmix these signals and isolate the signals coming from different kegions, rep-
resenting different brain rhythms, or even separate artifacts frorbraia signals. In this way,
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it becomes possible to keep only the components corresponding to sigivgksre$t and/or to
remove components that are very likely to represent noise and/or artifénes, the EEG sig-
nals can be reconstructed using only the selected components. Thishashbern to increase
the signal-to-noise ratio and as such the performances of the whole BCIOg).

1.4.3 Common Spatial Patterns

Another spatial filtering method which is increasingly used for prepraogés BCI, and has
proved to be very efficient is the Common Spatial Patterns (CSP) method FRRIGVGGO5,
BB04, CLL06, MGPF99, PFB07, BMK ™06, BDK"07, DBCMO04b]. This method is based on
the decomposition of the EEG signals into spatial patterns [RMGP00, DBCMY&505].
These patterns are selected in order to maximize the differences betwesdaiskes involved
once the data have been projected onto these patterns. Determining tieses imperformed
using a joint diagonalization of the covariance matrices of the EEG signais daxh class
[RMGPO0O, DBCMO04b]. These filters have proved to be very efficiespeeially during BCI
competitions [SGM 03, BMC'04, BMK*06]. During these competitions, various data sets
were proposed to the participants, with the aim of evaluating the differdtatrpaecognition
algorithms for BCI. The goal of the participants was first to calibrate thearalgns using a
data set known as the training set, in which EEG signals were labelled with ¢hetsponding
class. Then, the participants had to use their tuned algorithms in order tomaetdhe classes
of signals contained in a data set known as the testing set, in which the sigmalsmiabelled.
The use of CSP have grown quickly during the different competitions, thetflenabled several
groups to win during the last competition, in 2005, on several data sets [BMK Currently,
CSP are used in the design of numerous BCI [RMGP00, WGG05, BBOUOELMGPF99,
PFB"07, BMK*06, BDK"07, DBCMO04b].

1.4.4 Inverse solutions

Relevant but much less used preprocessing methods for BCI arears@ltgions. Inverse
solutions are methods that attempt to reconstruct the activity in the brain volosrig only
scalp measurements and a head model [Mig, BMLO1]. When using EEG, the signals
m(t) (m e ONed with Ne being the number of electrodes used) recorded at tiorethe scalp
can be modeled by a linear combination of brain dipole actis(ty (c € 03! with N, being
the number of dipoles considered). This is calledftvevard problemBMLO1]:

m(t) = Kc(t) (1.9)

whereK is a Ne* (3% N,) matrix called theleadfield matrix which represents the physical
properties (conduction) of the head. More precisely, this matrix is a hedélritowhich each

of one theN, dipoles is modeled by a volume element callexkel (typically thousands of
voxels are considered). Thet) vector holds the orientation and amplitude of each dipole,
according to the three dimensions of the head model space. Inversersphitivat estimating
the brain dipole activitg(t) by using only the scalp measurememts) and the leadfield matrix
(head modelK:
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¢(t) =Tm(t) (1.10)
whereT is the generalized inverse Kf AsN, >> Ng, this problem has no unigue solution and
additional constraints must be added to solve it. Depending on the constregatsdifferent
inverse solutions are obtained which leads to diffefemtatrices [MML"04]. Inverse solutions
estimate the amplitude and/or the orientation of the dipoles.

There are two main kinds of inverse solutions: distributed solutions ansgaeni dipole
solutions [MML"04, BMLO1]. Distributed solutions estimate the amplitudes and orientations
of a large number of voxels distributed in all the cortex or in all the brain edequivalent
dipole solutions estimate the position, amplitude and orientation of a few souypéasal(ly
one or two), each one modeled by an equivalent dipole.

From the point of view of BCI, inverse solutions give access to new mé&pion, i.e.,
to the activity in the brain volume. As this information has a strong physiologiasisbit
appears as a new and attractive method. Recently, a few studies haed &iagvaluate the
efficiency of inverse solutions for BCl and have obtained promising figstilts [LLAO7b,
NKMO08, KLHO5]. In order to design BCI, inverse solutions are getrtesed in two different
ways:

» As apreprocessing method which precedes feature extraction. Img@stbe inverse so-
lution is used to estimatgt) from which the features are extracted [GG@B, BCM'07,
NKMO8].

» As a direct feature extraction technique. In this case, either the braientudensity
values, reconstructed in a number of Regions Of Interest (ROI) [6LaBthe positions
of the sources [QDHO04, KLHO5] are used directly as features so asmdifigthe mental
tasks performed.

These methods have obtained very satisfying results, generally as geegindbetter than
those in the literature. Moreover, it has been observed that extracahgds fromc(t) (the
source domain) would be more efficient than extracting them directly frgty (the sensor
domain) [GGP 05, NKMO08]. A possible interpretation is that the inverse solution acts as a
spatial filter that removes the background activity and the noise notatadevith the targeted
mental tasks.

1.45 Other methods

Numerous other preprocessing methods have been proposed aridnB€#ldesign. Among
these methods, we can quote various spatial filters such as invarianBB$P (8], Principal
Component Analysis (PCA) [Smi02, LC03, TGWO06] or Common Subspaetigbipecom-
position (CSSD) [WZL 04, ZWG'07] as well as numerous spectro-spatial filters [DEBI§,
LBCMO05, TDAMO6]. In addition to filtering methods, other relatively simple methare used
as preprocessing, such as moving average filtering, subsampling ¢intoné:duce the dimen-
sionality of the problem) [KMG 04, RGMAO5b] or baseline correction [KCVPQ7]. Baseline
correction consists in subtracting to the signals, or to their spectrum, aagavamplitude
level, estimated on a reference period. This aims at reducing the effebis wdn-stationarity
of EEG signals.
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1.4.6 Conclusion

As higlighted in this section, numerous preprocessing methods have legfou8CIl. How-
ever, no preprocessing method or combination of preprocessing métaeeldeen identified
as the best, due to a lack of comparisons. Nevertheless, studies perfeoniar have all
highlighted the need to do preprocessing in order to improve the perfoentdirice resulting
BCI [HdSO7]. More particularly, spatial filters and related methods haemishown to reduce
the noise and dramatically improve the performance [BNK]. As such, if working with a
sufficiently high number of electrodes, the use of spatial filters is now higltgmmended.

1.5 Feature extraction

Measuring brain activity through EEG leads to the acquisition of a large anodfwaata. In-
deed, EEG signals are generally recorded with a number of electrodésgvrom 1 to 256
and with a sampling frequency varying from 100 Hz to 1000 Hz. In ordebtain the best
possible performances, it is necessary to work with a smaller number @svatich describe
some relevant properties of the signals. These values are knownaaisrefg’. Such features
can be, for instance, the power of the EEG signals in different frexyueands. Features are
generally aggregated into a vector known as “feature vector”. Teasyife extraction can be
defined as an operation which transforms one or several signals iratuafeector.

Identifying and extracting good features from signals is a crucial steidébkign of BCI.
Indeed, if the features extracted from EEG are not relevant andtdtesoribe well the neuro-
physiological signals employed, the classification algorithm which will ush fettures will
have trouble identifying the class of these features, i.e., the mental state useheConse-
guently, the correct recognition rates of mental states will be very low,hwhit make the
use of the interface not convenient or even impossible for the usess, Ban if it is some-
times possible to use raw signals as the input of the classification algorithregsten 1.6),
it is recommended to select and extract good features in order to maximizertbenpances
of the system by making easier the task of the subsequent classificatioithagoAccording
to some researchers, it seems that the choice of a good preprocessifepture extraction
method have more impact on the final performances than the choice of eclg@sdication
algorithm [PFK93, HdSO07].

Numerous feature extraction techniques have been studied and pidpoBE| [BFWBO07,
MAM *06]. These techniques can be divided in three main groups, which athe ineth-
ods that exploit the temporal information embedded in the signals [SLP9RERESIS,
KMG 04, RGMAO5b], 2) the methods that exploit the frequential information [BNF&I05,
dRMMC'00, RTNS06, BGMO07a] and 3) hybrid methods, based on time-frequespme-
sentations, which exploit both the temporal and frequential information [BB4#Y/ Bos04,
WDHO04]. A fourth category could have been added here, the catefomgthods that exploit
the spatial information. However, this category would be limited to the use ofsewlutions
which have already been described in the previous section. Indeeshdtial information is
generally used to perform a spatial filtering before extracting featuaesdoon the temporal
and/or frequential information [BGMO07a, MMDW97]. Thus, we only d#se here the first
three kinds of methods, as well as some marginal methods which do not fit age thain
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categories.

1.5.1 Temporal methods

Temporal methods use as features the temporal variations of the signalse methods are
particularly adapted to describe neurophysiological signals with a pracidespecific time
signature, such as the P300 [KMG4, RGMAO5b, RS07a] or ERD, notably those triggered
by motor imagery [OGNPO01, SLP97]. Among these temporal feature extnackshods, we
can find the amplitude of raw EEG signals, auto-regressive parametdjgrdr parameters.

1.5.1.1 Signal amplitude

The most simple (but still efficient) temporal information that could be extrastéae time
course of the EEG signal amplitude. Thus, the raw amplitudes of the sigoaigtie different
electrodes, possibly preprocessed, are simply concatenated into 1 feattor before being
passed as input to a classification algorithm. In such a case, the amoaté afsgd is gener-
ally reduced by preprocessing methods such as spatial filtering ormsplasg. This kind of
feature extraction is one of the most used for the classification of P300 5k HGV05,
KMG 04, RS07b].

1.5.1.2 Autoregressive parameters

AutoRegressive (AR) methods assume that a sidiil, measured at time can be modeled
as a weighted sum of the values of this signal at previous time steps, to whicawadd a
noise ternmk; (generally a Gaussian white noise):

X(t) =arX(t—1)+aX(t—2)+...+apX(t—p)+ E (1.12)

where the weightg; are the autoregressive parameters which are generally used asddatur
BCI [AS96, GPATO03] andb is the model order. Several variants of autoregressive parameters
have also been used such as multivariate AR parameters [ASS98], ARg@rs with exoge-
nous input [BKd 05] or Adaptive AR (AAR) parameters [HP04a, HP0O4b, SLP97, PN&L9
AAR parameters assume that the weightsan vary over time, and are the most used variant
of AR parameters. It seems that AAR parameters would give better resutt&\iR parameters

for motor imagery classification [SLP97, PNSL98], whereas they wouwe \gorse results for

the classification of cognitive tasks such as mental computations, mentalmathtiqgeomet-

ric figure, etc. [HPO4a, HPO4b]. It should be noted that it is possiblestivel a frequential
information from theg; coefficients [MWO05].

1.5.1.3 Hjorth parameters

Hjorth parameters describe the temporal dynamics of a si(ta) by using three measures
that are the activity, the mobility and the complexity [OGNPO1]:

Activity(X(t)) = VARX(t)) (1.12)
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Mobility(X(t)) = \/W (1.13)

Mobility (2X(t))
Mobility(x(tt)) (1.14)

Such features are mainly used for the classification of motor imagery [OGNENI04,
LCO03, PNO1].

Complexity=

1.5.2 Frequential methods

As mentioned in section 1.3.1.3, EEG signals are composed by a set of specifiations
known as rhythms. Performing a given mental task (such as motor imageamother cog-
nitive task) makes the amplitude of these different rhythms vary. Moresigrrals such as
steady state evoked potentials are defined by oscillations with frequegoEssnized with
the stimulus frequency. Consequently, it appears as natural or esemtiasto exploit the fre-
guential information embedded in the EEG signals. To this end, two main tecknigbih
are closely related, are used: band power features and poweradjplectsity features.

1.5.2.1 Band power features

Computing a band power feature consists in band-pass filtering a signgiverafrequency

band, then in squaring the filtered signal and finally in averaging the obtsaieds over a

given time window [PNO1, BGMPOQ7]. Itis also possible to log-transformvhise in order to

have features with a distribution close to the normal distribution [PNO1]. Bangpfeatures

are generally computed for several frequency bands previouslyndatel according to the
mental states to be recognized. Such features have been notably ussedagitls for motor
imagery classification [PNO1, SI'®8, ZLGL08, LLLAQO7] but also for the classification of
cognitive processing tasks [Pal05].

1.5.2.2 Power spectral density features

Power Spectral Density (PSD) features, sometimes simply called spectronm iof the dis-
tribution of the power of a signal between the different frequencieb. fe&tures can be com-
puted, for instance, by squaring the Fourier transform of a signaF{ld6a] or by computing
the Fourier transform of the autocorrelation function of this signal [KASED features are
probably the most used features for BCI, and have proved to be efffoierecognizing a large
number of neurophysiological signals [BFdM04, KA90, LK#5a, BGM07b, dRMFNM02,
MMO3].

1.5.3 Time-frequency representations

Feature extraction methods that have been presented so far in this nigtrarecprobably the
most used. However, and considering that neurophysiological sigsetsin a BCIl have gen-
erally specific properties in both the temporal and frequential domain, othdrods, which
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can be seen as hybrid, have also been used to design BCI. These snathdhsed on vari-
ous time-frequency representations such as the short-time Fourieotransf wavelets, and
extract from the signals information that are both frequential and tempbha.main advan-
tage of these time-frequency representations is that they can catchelglatidden temporal
variations of the signals, while still keeping frequential informations. On trdrary, pure

frequential methods are assuming that the signal is in a stationary state.

1.5.3.1 Short-time Fourier transform

Short-Time Fourier Transform (STFT) simply consists in first multiplying theutrgagnal by
a given windowing functiorw which is non-zero only over a short time period, and then
computing the Fourier transform of this windowed signal. In discrete time, TR X (n, w)
of a signalx(n) is as follows:

+o0
X(nw) = 3 x(mw(ne " (1.15)
N=—o00

The Time-Frequency (TF) representation is obtained by computing thiseFdansform
along a sliding window, i.e., for different segments with a given level oflapping. This
method has been successfully used in several BCI studies [CPMO505|PMs main draw-
back is the use of an analysis window with a fixed size, which leads to a sin@tpréntial and
temporal resolution in all frequency bands. For instance, it would be mteeesting to have
a high temporal resolution for high frequencies which describe a fine. Sd#eclet analysis

aims at overcoming this drawback.

1.5.3.2 Wavelets

Similarly to Fourier transform, wavelet transform decomposes a signabdrasis of functions

n

[SBRS99]. This basis of functions is a set of wavel®s,, each one being a scaled and

translated version of the same waveafeknown as the mother wavelet:

! ot=b (1.16)

Vi oa

The wavelet transforik(s, u) of a signalx can be written as follows:

(Da,b(t) =

400

V(s U) = / X(t) Py s(t)dt (1.17)

—00

wheres andu are respectively the scaling and translating factor. The advantagevefeisis
that they make it possible to analyze the signal at different scales simul&ynedoreover, the
resolution depends on the scale. As such, high frequencies, whigspond to a fine scale,
can be analyzed with a high temporal resolution whereas low frequendigs) vorrespond to
a coarse scale, can be analyzed with a high frequential resolutiore pbieds make wavelets a
very interesting tool for analyzing EEG signals [SBRS99]. Various kafdgavelets have been
used for BCI, such as Daubechies wavelets [VHMMO00, HdS07], Goifeerelets [YHSO05],



40 chapter 1

Morlet wavelets [LSCO04], bi-scale wavelets [MB0O] or Mexican hat &lats [Bos04]. They
all made it possible to reach very promising results.

1.5.3.3 Other time-frequency representations

In addition to STFT and wavelet transform, a number of TF representdtanesbeen used for
BCI. Such representations are generally based on different bdsisations and use different
levels of adaptivity with respect to time and frequency. Among these metivedsan mention
TF representations based on Wigner-Ville distributions [GEV03b], ada@iaussian repre-
sentations [CJOOQ] or TF representations with Q-constant frequeroygmsition [WDHO04].

1.5.4 Other feature extraction methods

Other feature extraction methods have been used to design BCI, in a maymahavay.
Among these methods, it is worth mentioning methods based on interactions hetigee
nals. Thus, measuring the coherency or phase synchronization nesersors has proved
to be efficient for EEG feature extraction in BCI [GC04]. Similarly, desogithe EEG sig-
nals thanks to brain connection graphs made it possible to discriminate diffaan states
[GPART07b, GPAR 07a]. Still exploiting the interactions between sensors, the fractal dimen-
sion of signals [BM04, BGMPQ7] or their multi-fractal spectrum [BroO8h been used as
features for BCI. Finally, several works have shown that using tegé#iatures extracted using
different methods could lead to increased performances [DBCM0484GEBGMPO7]. It is
also interesting and efficient to create novel kinds of features, fomriosthy mixing existing
features using genetic algorithms [BGMPO7].

1.5.5 Feature selection and dimensionality reduction

BCI feature vectors are often of very high dimensionality (see for instfiRGMAOQO5b]). In-
deed, several features are generally extracted from several BB els (electrodes) and from
several time segments, before being concatenated into a single featime Mareovoer, the
training sets, i.e., the example data for each class, are generally small, asrtingytprocess
is time consuming and relatively uncomfortable for subjects. Consequef@hai® often af-
fected by a problem known as “curse-of-dimensionality”. This problemes from the fact
that the amount of data required to describe properly the differentedlassreases exponen-
tially with the dimensionality of the feature vector. [JDMOO, Fri97]. If the numtifetraining
data is small relatively to the number of features, the classification algorithohwiill use
these features and data will very likely give bad results. It is recommetiodese at least 5 to
10 times more training data per class than the number of features [RJ9], JC82

In order to tackle this problem, it is often necessary to use dimensionalitgtredumeth-
ods such as principal component analysis [BMBBO04], or to use vafgatare selection meth-
ods [dRMFM"02], among which genetic algorithms are the most popularly employed [GRAT03
PKK™05, ETI02]. These different methods make it possible to work with a sedfires with
a much smaller size than the original set which generally leads to better penfmema
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1.5.6 Conclusion

Again, although numerous feature extraction methods have been pdofood2Cl, it is very
difficult to identify the most efficient ones due to a lack of comparisons.eédnss also im-
portant to extract a small number of features which represents supgafis information, in
order to reach good performances. As such, it seems interesting teatseek that can be
tuned (e.g., band power features for which the frequency bandsecadapted to the subject)
as well as dimensionality reduction or feature selection techniques in ordacilitate the
subsequent work of the classifier. It is important to note that, even if tvedialarge number
of feature extraction technigues have been proposed, it is admitted byCirmBimunity that
it is necessary to explore and study new feature extraction methods acejpte [MAM™06].
More precisely, it is important to find features which will lead to more effic@t, in terms
of correct recognition rates, and to more interpretable BCI in order te hawre insights on
the mental processes employed by the BCI users to control the system {iagJM

1.6 Classification

The third key step for identifying neurophysiological signals in a BCI isdiating the features
into commands [MAM 06, MBO03]. In order to achieve this step, one can use either regression
algorithms [MWO05, DHSO01] or classification algorithms [PRCSO00, LOE], the classification
algorithms being by far the most used in the BCI community [BFWBO07, tC1]. As such,
in this section, we focus only on the classification algorithms.

The goal of the classification step is to assign automatically a class to the feattioe
previously extracted. This class represents the kind of mental taskipeddy the BCI user.
Classification is achieved using algorithms known as “classifiers”. Classé#ie able to learn
how to identify the class of a feature vector, thanks to training sets. Te¢sare composed
of feature vectors labeled with their class of belonging.

In this section, we first present a taxonomy of the different classificatigorithms, and
then the main classifier families that are used in the BCI field. These classdietse divided
into five main categories which are: linear classifiers, neural networks linear bayesian
classifiers, nearest neighbor classifiers and classifier combinations.

1.6.1 Classifier taxonomy

Several properties are commonly used to describe the different kindsitdlzle classifiers:

Generative-discriminative:
Generative (also known as informative) classifiers, e.g., Bayes ai;dearn the class
models. To classify a feature vector, generative classifiers computedhidiéd of each
class and choose the most likely. Discriminative ones, e.g., Support \Ideititines,
only learn the way of discriminating the classes or the class membership intorder
classify a feature vector directly [NJO2] [RH97];

Static-dynamic:
Static classifiers, e.g., MultiLayer Perceptrons, cannot take into actempbral infor-
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mation during classification as they classify a single feature vector. On titeacy
dynamic classifiers, e.g., Hidden Markov Model, can classify a sequsrieature vec-
tors and thus, catch temporal dynamics [Rab89].

Stable-unstable:
Stable classifiers, e.g., Linear Discriminant Analysis, have a low complexityafzac-
ity [Vap99]). They are said stable as small variations in the training set taffext
considerably their performances. On the contrary, unstable classéigrsMultiLayer
Perceptron, have a high complexity. As for them, small variations of the tppggtmay
lead to important changes in performances [Bre98].

Regularized:
Regularization consists in carefully controlling the complexity of a classifierdermto
prevent overtraining. A regularized classifier has good generalizadormances and
is more robust with respect to outliers [DHS01] [JDMOQ].

1.6.2 Linear classifiers

Linear classifiers are discriminant algorithms that use linear functions to glissim classes.
They are probably the most popular algorithms for BCI applications. Two kiadls of linear

classifiers have been used for BCI design, namely, Linear Discriminaalysis (LDA) and

Support Vector Machines (SVM).

1.6.2.1 Linear Discriminant Analysis

The aim of LDA (also known as Fisher's LDA) is to use hyperplanes tasgp the data
representing the different classes [DHS01] [Fuk90]. For a twosgteisblem, the class of a
feature vector depends on which side of the hyperplane the vectoeifigare 1.10).

Ty =0

wo + w

Figure 1.10: A hyperplane which separates two classes: the “circleshari'crosses”.



Classification 43

LDA assumes a normal distribution of the data, with equal covariance matdcésth
classes. The separating hyperplane is obtained by seeking the projbetionaximizes the
distance between the two classes means and minimizes the interclass varigt8®.[F o
solve an N-class problenN(> 2) several hyperplanes are used. The strategy generally used
for multiclass BCI is the “One Versus the Rest” (OVR) strategy which consisteparating
each class from all the others.

This technique has a very low computational requirement which makes it lsuitaton-
line BCI systems. Moreover this classifier is simple to use and generally pogimbd results.
Consequently, LDA has been used with success in a great number afyBE&ms such as mo-
tor imagery based BCI [Pfu99], P300 speller [Bos04], multiclass [GBADD asynchronous
[SMNT04] BCI. The main drawback of LDA is its linearity that can provide poouteson
complex nonlinear EEG data [GEV03a].

A Regularized Fisher's LDA (RFLDA) has also been used in the field of BCTMO02,
MKD *04]. This classifier introduces a regularization paramétérat can allow or penalize
classification errors on the training set. The resulting classifier can aczdenoutliers and
obtain better generalization capabilities. As outliers are common in EEG dateedhianized
version of LDA may give better results for BCI than the non-regularizedion [MKD" 04,
BCMO2]. Surprisingly, RFLDA is much less used than LDA for BCI applicasio

1.6.2.2 Support Vector Machine

An SVM also uses a discriminant hyperplane to identify classes [Bur9®0BCHowever,
concerning SVM, the selected hyperplane is the one that maximizes the mamgirtbe dis-
tance from the nearest training points (see Figure 1.11). Maximizing theimadasgknown

to increase the generalization capabilites [Bur98, BC00]. As RFLDA,\au 8ses a regu-
larization parameteC that enables accomodation to outliers and allows errors on the training
set.

Such an SVM enables classification using linear decision boundariess &mbwn as
linear SVM. This classifier has been applied, always with success, tatety large number
of synchronous BCI problems [BCM02, GPAT03, RGMAO5b, RG08pwdver, it is possible
to create nonlinear decision boundaries, with only a low increase of trefigdas complexity,
by using the “kernel trick”. It consists in implicitly mapping the data to anothacepgenerally
of much higher dimensionality, using a kernel functi§(x,y). The kernel generally used in
BCl research is the Gaussian or Radial Basis Function (RBF) kernel:

iy — |2
K(x,y) :ex;i'XZOZyH) (1.18)

The corresponding SVM is known as Gaussian SVM or RBF SVM [BuB3)0]. RBF
SVM have also given very good results for BCI applications [KMi@, GPATO03]. As LDA,
SVM have been applied to multiclass BCI problems by combining together multiplelags-
SVM [SLBPO05, GEV03a].

SVM have several advantages. Actually, thanks to the margin maximizatiothnamegu-
larization term, SVM are known to have good generalization properties(BIDMMO0], to be
insensitive to overtraining [JDMO0OQ] and to the curse-of-dimensionalityBuBCO00]. Finally,
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support vector

non-optimal
hyperplane

support vector

Figure 1.11: SVM find the optimal hyperplane for generalization.

SVM have a few hyperparameters that need to be defined by hand, néimeelggularization
parametefC and the RBF widtho if using the kernel of Equation 1.18. These advantages are
gained at the expense of a low speed of execution.

1.6.3 Neural Networks

Neural Networks (NN) are, together with linear classifiers, the categbcjassifiers mostly

used in BCl research (see, e.g., [HST90, AS96]). Let us recalathid is an assembly of sev-
eral artificial neurons which enables to produce nonlinear decisiondaoies [Bis96]. This

section first describes the most widely used NN for BCI, which is the Mulgtdgerceptron

(MLP). Then, we briefly present other architectures of neural nésvaosed for BCI applica-
tions.

1.6.3.1 MultiLayer Perceptron

An MLP is composed of several layers of neurons: an input layesiplysone or several
hidden layers, and an output layer [Bis96]. Each neuron’s inputigected with the output
of the previous layer’'s neurons whereas the neurons of the outprtdayermine the class of
the input feature vector (see Figure 1.12).

Neural Networks and thus MLP, are universal approximators, i.e.nhvdoenposed of
enough neurons and layers, they can approximate any continuoud®fun&dded to the fact
that they can classify any number of classes, this makes NN very flexildsiftdas that can
adapt to a great variety of problems. Consequently, MLP, which are tkepopular NN used
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Figure 1.12: The architecture of a MultiLayer Perceptron, composed fpaut layer of neu-
rons, a number of hidden layers and an output layer.

in classification, have been applied to almost all BCI problems such as jiRefb] or multi-
class [AS96], synchronous [HPOO] or asynchronous [CBO04].B{owever, the fact that MLP
are universal approximators makes these classifiers sensitive toaoviedr especially with
such noisy and non-stationary data as EEG (e.g., see [BP05]). ®hereéreful architecture
selection and regularization is required [JDMO0O].

A MultiLayer Perceptron without hidden layers is known as a percepttoterestingly
enough, a perceptron is equivalent to LDA and, as such, has besgtises used for BCI
applications [WZL04]

1.6.3.2 Other Neural Network architectures

Other types of NN architectures are used in the field of BCl. Among themdeserves a spe-
cific attention as it has been specifically created for BCI: the GaussiasifidafdRMMC 00,
dRMRMGO04]. Each unit of this NN is a Gaussian discriminant function regméng a class
prototype. According to its authors, this NN outperforms MLP on BCI datecam perform ef-
ficient rejection of uncertain samples [dRMMQQ]. As a consequence, this classifier has been
applied with success to motor imagery [SM04] and mental task classificatidiNtR"00],
particularly during asynchronous experiments [dRMMO, CST 03].

Besides the Gaussian classifier, several other NN have been appli€d pugposes, in a
more marginal way:

 Learning Vector Quantization (LVQ) Neural Network [Koh90, PFK93]
» Fuzzy ARTMAP Neural Network [CGN92, PPNS02];

» Dynamic Neural Networks such as the Finite Impulse Response NeurabNegFIRNN)
[HPOO], the Time-Delay Neural Network (TDNN) or the Gamma Dynamic NieN&d-
work (GDNN) [BTV96];
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RBF Neural Network [DHS01, HHB03];
» Bayesian Logistic Regression Neural Network (BLRNN) [PRCSO00];
» Adaptive Logic Network (ALN) [KPO0O];

Probability estimating Guarded Neural Classifier (PeGNC) [FF03].

1.6.4 Nonlinear Bayesian classifiers

This section introduces two Bayesian classifiers used for BCI. Bayadrgtic and Hidden
Markov Model (HMM). Although Bayesian Graphical Network (BGN)shaeen employed for
BCl, it is not described here as it is not common and, currently, noefastigh for real-time
BCI [TR04, RTNSO06].

All these classifiers produce nonlinear decision boundaries. Furthesithey are gener-
ative, which enables them to perform more efficient rejection of uncestaimples than dis-
criminative classifiers. However, these classifiers are not as widgbpeelinear classifiers or
Neural Networks in BCI applications.

1.6.4.1 Bayes quadratic

Bayesian classification aims at assigning to a feature vector the class igbdtowith the
highest probability [DHSO01, Fuk90]. The Bayes rule is used to computsdfealleda pos-
teriori probability that a feature vector has of belonging to a given class [Huk®§ing the
Maximum A Posteriori (MAP) rule and these probabilities, the class of thisifeavector can
be estimated. Bayes quadratic consists in assuming a different normalistribf data. This
leads to quadratic decision boundaries, which explains the hame of thiéietakven though
this classifier is not widely used for BCI, it has been applied with successtor imagery
[LSCO04, SM04] and mental task classification [KA90, BFAMO04].

1.6.4.2 Hidden Markov Model

Hidden Markov Models (HMM) are popular dynamic classifiers in the fielgpafech recogni-
tion [Rab89]. An HMM is a kind of probabilistic automaton that can provide tiubability of
observing a given sequence of feature vectors [Rab89]. Eachostifie automaton can mod-
elize the probability of observing a given feature vector. For BCI, tipesbabilities usually
are Gaussian Mixture Models (GMM) [OGNPO1].

HMM are perfectly suitable algorithms for the classification of time series [Bjab8s
EEG components used to drive BCI have specific time courses, HMM earedpplied to the
classification of temporal sequences of BCI features [OGNP01] {@STONGPO00] and even
to the classification of raw EEG [SNGO05]. HMM are not much widespreadinvithe BCI
community but these studies revealed that they were promising classifi@€Ffsystems.

Another kind of HMM which has been used to design BCI is the Input-Oulkptvi
(IOHMM) [CBO04]. Contrary to HMM, IOHMM is not generative but didorinative. The
main advantage of this classifier is that one IOHMM can discriminate sevessas, whereas
one HMM per class is heeded to achieve the same operation.
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1.6.5 Nearest Neighbor classifiers

The classifiers presented in this section are relatively simple. They comasstigning a feature
vector to a class according to its nearest neighbor(s). This neighbdrecarfeature vector
from the training set as in the case of k Nearest Neighbors (kNN), tass prototype as in
Mahalanobis distance.

1.6.5.1 k Nearest Neighbors

The aim of this technique is to assign to an unseen point the dominant clasg aslonearest
neighbors within the training set [DHS01]. For BCI designs, these seaggghbors are usually
obtained using a metric distance [BCM02]. With a sufficiently high value of & emough
training samples, kNN can approximate any function which enables it to peodonlinear
decision boundaries.

kNN algorithms are not very popular in the BClI community, probably bectusyge are
known to be very sensitive to the curse-of-dimensionality [Fri97], whicllentaem fail in
several BCI experiments [SLBP05, BCM02, MKD4]. However, when used in BCI systems
with low-dimensional feature vectors, KNN may prove to be efficient [BNBB

1.6.5.2 Mahalanobis distance

Mahalanobis distance based classifiers assume a Gaussian distitbtiol) for each pro-
totype of the class. Then, a feature vectoris assigned to the class that corresponds to the
nearest prototype, according to the so-called Mahalanobis distghgdCST"03, BBS"01]:

do(x) = /(¢ Bo)Mc X — 1) (1.19)

This leads to a simple yet robust classifier, which even proved to be suitalteilticlass
[SLBPO5] or asynchronous BCI systems [CHB]. Despite its good performances, it is still
scarcely found in the BClI literature.

1.6.6 Combinations of classifiers

In most papers related to BCI, the classification is achieved using a singkifida A re-
cent trend, however, is to use several classifiers, aggregatedeénediffivays. The classifier
combination strategies used in BCI applications are the following:

1.6.6.1 Voting

When using Voting, several classifiers are being used, each of treigmiag the input feature
vector to a class. The final class will be that of the majority [JDMO0O0]. Votintpésmost pop-
ular way of combining classifiers in BCI research, probably becaussiinigle and efficient.
For instance, Voting with LVQ NN [PFK93], MLP [QLCO05], regularized Istic regression
[HAS07], or SVM [RGMAO5b, RG08, HdS07] have been attempted.duhbe noted that the
vote could focus on the class labels but also on the classifier outputs RG405b, RGO08].
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1.6.6.2 Boosting

Boosting consists in using several classifiers in cascade, each ctdssifising on the errors
committed by the previous ones [DHSO01]. It can build up a powerful classifit of several
weak ones, and it is unlikely to overtrain. Unfortunalty, it is sensible to migdgd®MO00]
which may explain why it was not succesfull in one BCI study [BMO04]. &ted in the field
of BCI, boosting has been experimented with MLP [BM04, BGMPQ7], kI$Nrj07], or other
classifiers such as decision trees [Sun07] or Ordinary Least S¢Da8 [HGV'05].

1.6.6.3 Stacking

Stacking consists in using several classifiers, each of them classifgnght feature vector.
These classifier are called level-0 classifiers. The output of eachsef thesssifiers is then given
as input to a so-called meta-classifier (or level-1 classifier) which makeBntiledecision
[WoI92]. Stacking has been used in BCI research using HMM as levids3itiers, and an
SVM as the meta-classifier [LC03] or with SVM and regularized logistic regjomn as level 0
and level 1 classifiers respectively [HdS07].

1.6.6.4 Random subspaces

The random subspace technique consists in generating new trainingosethié original one
and in training a different classifier for each one of these new trainitsg Sen07]. The final
decision is made thanks to majority voting. When using random subspacegwhigaining

sets are generated by using only a subset of the features from theabtigining set, these
features being randomly selected. The main advantage of such a methodii®tiables to
reduce the dimensionality while still using all the available features, throughnaelassifiers.
This method has been used for BCI with decision trees and kNN [Sun07].

The main advantage of classifier combination techniques is that a combinasionilai clas-
sifiers is very likely to outperform one of the classifiers on its own. Actuatiynbining clas-
sifiers is known to reduce the Variance of the classification system andhiwesassification
error [Fri97, Bre98].

1.6.7 Conclusion

A great variety of classifiers has been tried in BCl research. Theirgpties are summarized in
Table 1.1. A crucial classifier property to obtain good results in a BCl is/mislier resistance
or noise/outlier accomodation. Indeed, regularized classifiers or alassfle to accomodate
outliers in the training data tend to give the best results in terms of corresifidason rates
[LCL*07]. It also seems that for synchronous BCI, exploiting the time informatjouasing
dynamic classifiers is rewarding [LCI07]. However, when it comes to asynchronous (self-
paced) BCI, dynamic classifiers are not better than other classifieisednas the start of the
mental task is unknown in asynchronous BCI, dynamic classifiers hawklérn exploiting
efficiently the time information. Finally, it also seems that combining multiple classiéads

to increased performance in comparison with using a single classifier [HdRER08, Sun07].
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In spite of all these studies on classifiers, it is admitted that new classifiengldbe explored
and studied for BCI design [MAMO6]. The goal of these explorations is to increase the correct
classification rates on one hand, and to enable researchers to intdnptéhe classifiers have
learnt on the other hand. It would also be interesting to be able to providerakmowledge

on the brain dynamics to the classifiers.

Table 1.1: Properties of classifiers used in BCI research

Linear Non Gene- Discri Dynamic Static Regu- Stable Un- High
Linear rative minant larized stable dikgnension
robust

FLDA X

RFLDA X

inear-SVM X
RBF-SVM
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BLR NN
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GDNN
Gaussian NN
LVQ NN
Perceptron X
RBF-NN
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fuzzy
ARTMAP
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Bayes
guadratic
Bayes
graphical
network
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1.7 Feedback and applications of BCI

Once the class of the signals have been identified, the system can assgpiatéic command
to this identified mental state and send this command to a given application. fiplisations
can be divided into two main categories. The first and most important cgtegibre medical
domain [WBM™02, KKKT01, KMHDO06, KPL"07]. Indeed, the main objective of BCI is
to provide severely disabled people with a new communication channel whiott isased
on the traditional motor output channels. The second category is the multinretidrtual
reality domain. Thus, even if BCl are mainly designed for disabled peopg,dan also be
of interest for healthy persons [AGGO07], for instance by proposidgovgames based on BCI
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[KBCMO7, MBBB04, MPSPOQ7], or by exploiting the amazing processiritisséf the brain to
perform image search in large data bases [PQ&}. Still in this category of BCI applications
is the virtual reality domain, which is becoming increasingly promising [L&F LLR" 06,
LLR*08]. Finally, BCI have also been used for controlling robots [LLAO7¢l0R], or for
artistic creations [MB04, KHFHO08]. We describe more in details some of thggkcations in
the remaining of this section.

During this step of interaction with the application, it is particularly essentialdgige a
feedback to the subject, concerning the mental state that has beenizeddgy the system.
Indeed, this feedback enables the user to know whether he hastlyopestormed the mental
task which enables him to learn how to control his brain activity. A carefiiysen feedback
can reduce the time required by the user to learn how to control the syst&w{\82].In
most BCI applications, this feedback is a visual feedback [WBE], but BCI that provide
an auditory feedback [HNPD4] or a haptic feedback [KPD6, CART07, CKAT07] have also
been proposed. Unfortunately, there is a relatively small number of B@éns dedicated
to feedback. Consequently, it is currently relatively difficult to selectrtiust appropriate
feedback for a given application.

1.7.1 Rehabilitation applications and applications for the disabled people

We describe here some of the main existing BCI applications in the field ofitidtédn and
handicap.

1.7.1.1 The "Thought Translation Device”

The “Thought Translation Device” (TTD) is one of the very first BCltthaas designed. It has
been developped at the university of Tuebingen in the team of Pr. Niddairer [BKG 00].
This BCI is based on the SCP signal. It aims at enabling paralyzed pexsapell words
by selecting letters in a binary tree, thanks to spontaneaous variations 8C@mplitude.
Indeed, in this application, the alphabet has been recursively dividedvwwo parts, and dis-
tributed on the leaves of a binary tree, according to these divisions.cAtremle of this binary
tree, the user (mentally) selects the left or right subtree, according te#ied letter and the
alphabet subset associated to each subtree. In order to do so, jgw shbuld trigger a posi-
tive or negative variation of its SCP. This user has previously learntrtsa@dis SCP through
operant conditioning. This TTD system enabled disabled people to comneiaicthe speed
of approximately one letter every 2 minutes [BK@0].

1.7.1.2 The P300 speller

The P300 speller is a BCI application which uses the P300 signal to spelbwas suggested
by its name. This application was initally designed in 1988 by Farwell and DorED88,
DSWOQ0]. In this application, the subject is seated in front of a screenhichva 6 by 6 matrix
is displayed. This matrix contains all the letters of the latin alphabet, as well dggitefrom
1to 9 and the space character (see Figure 1.13).

In this application, a row or a column of the matrix is highlighted every 125 ms.ufhe
is asked to look at and draw his attention on the letter he wants to select, andniptice
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Figure 1.13: The P300 speller interface, as displayed on the usex&nsigrD88].

number of times the desired letter is highlighted. The highlight of the desiredbeitey a rare
and expected event, this triggers a P300 in the user’'s EEG signals. Dgtinetiabsence or
presence of the P300 makes it possible to find which are the line and colutroothain the
desired letter, and as such to find this letter. The P300 speller propogaahiohin et al could
enable its users to spell up to 7.8 letters per minute [DSWO0O].

As this application is based on the P300, it does not require training fog lnsied, and
have the advantage to be useful for anyone who can control his azeich, this application
is very popular [KSC06, VMS"06] and is currently used in order to help paralyzed persons
such as persons suffering from Amyotrophic Lateral Sclerosis (ABB)6, VMS086].

It should also be mentioned that other BCI applications based on a similaipteihave
been developed and validated for ALS subjects. In these P300-bppkchtions, the letter
matrix was replaced by a matrix of directional arrows for controlling a auirs®D [PGT"06],

a 4-choice matrix (“yes”, “no”, “pass”, “end”) [SD06], or a matrix pfctures of electronic
devices [HVEDOS8]. By using various signal processing methods, tthese studies obtained
positive results showing that P300-based BCI applications could bebysgidabled people.

1.7.1.3 Cursor control through sensorimotor rhythms: the Wadsverth center BCI

The BCI of the Wadsworth center is based on the control of the sensorimnytbhmsu and
B, following a learning based on operant conditioning [WMNF91, WMVOQYi®d]. In the
standard application, a cursor displayed on a screen is moving horizofratyleft to right,
with a constant speed. The user can control the cursor vertically, binghétke amplitude
of his sensorimotor rhythms vary. On the right side of the screen, ddugtans (generally
between 2 and 4) are displayed and are arranged vertically. Theas&r hdjust the vertical
position of the cursor so as this cursor could hit the desired button, ones itelached the
right side of the screen. For instance, each of these buttons caseapeeset of letters that
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the user will select. By distributing the selected letters among the buttons asatirepthe
selection procedure, the user will be able to select a specific letter NS This whole
system has been shown to be useful and efficient for restoring comationiéor ALS persons
[KNM *05].

1.7.1.4 Functional electric stimulation controlled by thoughts: the Gra BCI

The BCI of the Graz University of Technology is a BCI based on motor imadetrthis BClI,

an imagined movement of the left hand, right hand, feet or tongue isiatsib¢o specific
commands [KFN96, PNG 00, PNM"03]. This BCl is used in numerous applications such
as controlling a prosthesis [GHHP99] or a virtual keyboard [SNX], or interacting with
virtual environments [LSFO7]. Here, we focus on an application of this BCI for controlling
a Functional Electric Stimulation (FES) [PMB3, PMPPRO5]. In this application, a subject,
with a complete paralysis of his left hand, is equiped with an FES system. Syslkeasuses
electrodes, placed on the forearm of the subject, in order to send hilacrical current which
forces his muscles to tense, a task that the subject is not able to perfiamtavidy. In order to
control this FES system, the subject is also equiped with an EEG cap whict &f flae Graz
BCI. The subject has to use foot motor imagery in order to activate the y&&ns for tensing
or relaxing his muscles, i.e., for closing or opening his hand. The BClhesedis a self-paced
BCIl and as such is able to detect the imagined foot movements at any time.

1.7.1.5 Power wheelchair control by thoughts: the IDIAP BCI

The IDIAP BCl is an asynchronous BCI that can recognize 3 diffemeental tasks [MMO3].
These mental tasks are, for instance, imagined left or right hand movepremtsntal cube
rotation. Using these three mental tasks enables the BCI user to use tfesentiicommands,
for controlling a power wheelchair for instance [VMD7]. In this wheelchair application,
the three mental tasks were associated to the commands “turn left”, “turn agbt®*move
forward”. As this BCI is asynchronous, the control of the wheelchais welatively natural
for the users. Moreover, the wheelchair is based on ambient intelligectu@dees in order to
assist the user in his control task, according to a principle of “shareshamy” [GGC07].
Indeed, the wheelchair is equiped with sensors in order to obtain a intemasentation
of the environment. This representation makes it possible to combine the elassitput
with the environment context, in order to compute the best possible movemeniastance,
this makes it possible to perform more optimal and smooth trajectories or to dystdctes
automatically [GGC 07, VML'07].

1.7.1.6 Hex-o-Spell: brain actuated spelling with the Berlin BCI

The last application that we present here is, as the P300 speller, a bihadtea spelling ap-
plication. This application is known as Hex-O-Spell and is developped bénkn group
[BDKT06b, BKD"07b, MBO6]. In this application, the user has to control the rotation and
length of an arrow by using motor imagery (right hand and foot motor imagergjder to
select a cell in a Hexagon (thus containing 6 cells), each cell containinoua of letters or a
letter. Thus, imagined right hand movements are used to make the arrow fotkigise (see
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Figure 1.14) whereas imagined foot movements are used to increase ttedetings arrow. If
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Figure 1.14: The interface of the “Hex-o-spell” application, as displayedhe BCI user's
screen (picture from [BKDO7b]).

the arrow reaches a cell, two possible events may happen:

« the cell contains a group of letters. In this case, these letters are digirdoating all the
cells, and the selection process is repeated once;

« the cell contains a single letter. In this case this letter is selected.

This application, which is based on an asynchronous BCI, makes it ppssielect a letter in
only two steps, and as such has a good information transfer rate (up tat&ré fger minute).

Thus, there are already several medical applications of BCI dedicatiégaoled people, and
especially to paralyzed people. These applications have proved twefutse persons, which
enhances the interest and potential of BCI. However, it should be twaéthe BCI currently
used in these applications may still be greatly improved, in order to reachrhigbemation
transfer rates, more robustness, more commands and comfort for thetas&loreover, only
a very small number of BCI are currently used outside laboratories ahéneir ultimate goal
for medical applications is to be used at the patient’s home. These pointsoalsere other
applications of BCI, such as BCI applications for multimedia and virtual realitych can be
potentially used by healthy persons.

1.7.2 BCI applications for multimedia and virtual reality

In addition to medical and rehabilitation applications, there is an increasingarunfiBClI
applications for multimedia [EVGO03], such as for simple 2D video games [KBCNBCO07,
MBBBO04] to more advanced 3D video games and virtual worlds [L&F LLR"08].

This section first presents the pioneer works related to the combinationtabMReality
(VR) and BCI. Then it describes the main applications in which BCI are asexth interaction
device for virtual environments. These works are divided into two mairgoatss, according
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to Bowman’s classification [BKJPO05]: systems used for navigating virtealds and systems
used for selecting and/or manipulating virtual objects. Finally, this sectisepte how VR
technology can be used to study and improve current BCI systems.

1.7.2.1 Pioneer works

Among the first works to use BCI for interacting with simulated environments,amegciote
the work of Nelsoret al, in the 90’s [NHC 97]. In their work, Nelsoret al have studied
new interfaces for controlling a flight simulator [NH@7]. To this end, they combined scalp
EEG signals with EMG (ElectroMyoGraphy) signals recorded on the si$erthead. With
this hybrid system, users were able to perform a 1-dimensional contiioé dlight simulator.

In 2000, Middendorget al have also studied the use of brain signals for controlling a flight
simulator [MMCJO00]. In this work, users can make a flight simulator (without insiie
3D rendering) roll towards the left or right by using SSVEP. Indeed fiickering lamps
were used to generate SSVEP in the user’'s EEG. The user had leaonttol the amplitude
of their SSVEP by operant conditioning and could make the simulator rollrdicgpto this
SSVEP amplitude.

Finally, still in 2000, Bayliss and Ballard specifically studied whether it wassjide to
combine BCI with VR [BB00]. To this end, subjects took part in a standaraiaiirdriving
stimulation. Subjects were asked to stop their car at red stop lights. Theiamdilye subjects’
EEG revealed that the appearance of a red stop light triggered a PBOD][BThis proved
that even when users are immersed in a complex virtual world, it is still possildedsod and
identify relevant brain signals to drive a BCI. These pioneer worke baen confirmed several
years later by works which used BCI as VR interaction devices, asideddn the following
sections.

1.7.2.2 Navigating virtual environments by thoughts

Most existing works related to BCI and VR focus on navigating Virtual Eswinents (VE).
The existing applications can be divided into two groups: 1) applicationg uka BCI to
rotate the virtual camera and 2) applications using the BCI to travel in the VE.

Rotating the virtual camera: In order to enable BCI users to perform camera rotation in VE,
two brain signals have been used: motor imageryjartythm (through operant conditioning).

The University College London and the Graz University of Technologyehused a syn-
chronous BCI based on left and right hand motor imagery to enable tosertate the virtual
camera towards the left or right in a virtual conference room [L&4], or in a virtual bar
[FLG'07] (see Figure 1.15). The subject’s performances lied between 86%0@% of ac-
curacy, this accuracy being defined as the percentage of correcbifidd mental states.

Touyamaet al have used SSVEP to control the camera rotation within a CAVRE
[TAHO8]. To this end, two flickering buttons, with different flickering dpgencies, were posi-
tioned on the left and right part of the VE. These buttons were used tetrig§VEP which
detection through a self-paced BCI made the camera rotate towards thethedtright. Their
system enabled an accuracy between 70 % and 80 % for three najeetsub
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Figure 1.15: Rotating the virtual camera in a virtual bar by motor imagery (gsttrom
[FSST04, FLGM07)).

Pinedeet alhave used a BCl based on ghehythm to interact with a “First Person Shooter”
(FPS) 3D video game [PSVHO03]. More precisely, a hjgkevel (higher than a threshold)
triggered left rotations of the camera whereas a |loevel (lower than a threshold) triggered
right rotations. A middleu did not triggered anything, thus enabling a self-paced mode of
operation. In this game, the other commands were classically issued usireyteakd.

Travelling and moving in a virtual environment:  Several studies have demonstrated the
possibility to travel a VE by using a BCI. The University College London gnedGraz Univer-
sity of Technology have designed a synchronous BCI which enablegrat@ move forward

in a virtual street by imagining foot movements and to stop moving by imagining hignd
movements [FLGO07, PLK"06].

The same groups have proposed an experiment in which a user colbdeesapvirtual
apartment using a synchronous BCI [LEER7]. In this experiment, at each junction, the user
had to select the next corridor (among two) he wanted to walk into. To aethéy, two arrows
were displayed on the ground, indicating the two possible corridors. 3éehad to select the
desired arrow by performing the associated motor imagery task duringaal pdr2 seconds.
Once the corridor was selected, the user was moved automatically in the VElsotive next
junction. The experiment showed that the users were able to exploretila ¥t and to reach
a given room, with a classification accuracy which ranged from 67 % to 9®©® subjects
with little BCI experience.

Ron-Angevinet al have also designed a synchronous BCI for moving in a VE (see Figure
1.16). In their system, the users, equipped with a Head Mounted DisplapjHiduld control
the left or right movement of a virtual car in order to avoid obstacles @hremmps to make the
car jump [RAERLO5]. The car was continuously going forward and riginid motor imagery
was used to steer towards the right and a relaxed mental state was used tovaieds the left.

More recently, the Graz group have performed several studies thatsedf-paced BCI to
move in virtual environments [LFMP07, LSF 07, SLS 08] (see Figure 1.17). Leedt al
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Figure 1.16: Steering of a virtual car through hand motor imagery (pictane RAERLO5]).

have shown that a paralyzed patient was able to move a wheelchair aldriged street by
using motor imagery of his paralyzed feet and a self-paced BCI basadimgle EEG elec-

trode [LFS 06, LFSP07, LFMP07]. To this end, when the system detected an imagined foot

movement, it triggered a forward movement in the VE whereas when no fowir imeagery
was detected no movement was triggered. The performance obtainedjuitergood, with
several sessions in which the patient reached an accuracy of 108Rtuld be noted that the
patient has been previously trained to motor imagery over several months.

Figure 1.17: Moving along a virtual street using a self-paced BCI basddot motor imagery
(pictures from: [LLK"07]).

Schereret al have designed a self-paced BCI for freely exploring a VE [S0E]. In this
application users should perform left or right hand motor imagery to turarisvthe left or
right respectively, and foot motor imagery to move forwards in the VE. $hstem proved
relatively natural for the subjects. As an evaluation, 3 subjects had tattilkee coins in the
VE, within a given time. The results showed that 2 subjects out of 3 sfatlgssompleted
the task. However, it should be mentioned that the performances of thesrsygere relatively
modest, with a relatively large false positive rate (i.e., the percentage of timieth¢hsystem
detected a mental command when no mental command was actually perform&8d)s b
average and a relatively small true positive rate (i.e., the percentage ofttiatehe system
detected a mental command when a mental command was actually performedys 28.4
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average.

Finally, Leebet al have proposed a self-paced BCI system for exploring a virtual sepre
tation of the national Austria library [LSFPO7]. This BCI used a single motogenatask to
trigger a movement along a predefined pathway (see Figure 1.18). Tisupgaticipated to
this experiment. Results were shown to be quite good with true positive ratesdmel4 %
and 50 % and false positive rates between 2 % and 7 %.

Figure 1.18: Exploring a virtual model of the national Austria library by thdadpictures
from [LSFT07)).

1.7.2.3 Selecting and manipulating virtual objects

Three main studies have focused on selecting and/or manipulating Virtuatt®§j¢O) by
using a BCI (see Figure 1.19). In the first study, Laddrl have developed a 3D video game
driven by a synchronous BCI [LKFO53a]. In this game, a monster went from platforms to
platforms by walking along a tight rope. From time to time, the monster lost its balande,
the user had to restore it by using the BCI. To do so, two flickering chiboked were placed
on each side of the VE, in order to elicit SSVEP at different frequendigken the system
detected that the user was focusing on the left checkboard, it regteredonster’s balance
towards the left. A symmetric operation was performed with the right cheokedb The users
who patrticipated in this study reached a classification accuracy of 89%eoage.

Figure 1.19: From left to right: manipulating electronic devices in a virtuaMiigt a P300-
based BCI (picture from [Bay03]), controlling a virtual avatar by motorderg (picture
from [FLD*"07]), controlling the balance of a virtual monster using SSVEP (pictura fro
[LKF*05a]).
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In a second study, Bayliss has designed a P300-based BCI applicafiterect with a
virtual flat. In this study, subjects were immersed in a virtual flat and had toQ@ur or Off
various VO such as a lamp, a Hi-Fi or a TV [Bay03]. To do so, 3D sgherere randomly
appearing over these VO, and users had to count the number of appesof a sphere over the
VO they wanted to use. After a while, the VO which was the most likely to haverigeatred
the P300 was turned On or Off.

Finally, Friedmaret al have proposed a system to control a virtual avatar using motor im-
agery [FLD"07]. This system used a synchronous BCI with which a foot motor imagedgma
the avatar walk, whereas a hand motor imagery made the avatar wave. FExpiisnent, the

classification accuracy reached 87 % on average.

Table 1.2: Summary of BCl-based VR applications

Number neuro- synchronous VE Reference
of physiological or or
commands signal self-paced context
Selecting- 2 SSVEP synchronous controlling a [LKFT05a]
virtual monster
manipulating 2 P300 synchronous| turning on/off VO [Bay03]
in a virtual apartment
VO 2 Mi synchronous controlling a [FLD*07]
virtual avatar
2 Ml synchronous walking a [PLKT06]
virtual street
2 Mi synchronous exploring a [LLK T07]
virtual apartment
Travelling 2 Ml synchronous virtual [RAERLO5]
car steering
the VE 1 Mi self-paced walking along [LFMPT07]
a virtual street
3 Ml self-paced exploring the [SLST08]
“free-space”
1 Ml self-paced exploring a [LSFPO7]
virtual library
Rotating 2 Ml synchronous exploring a [FSST04]
virtual bar
the virtual 2 Ml synchronous| exploring a virtual [LSLT04]
conference room
camera 2 p rhythm self-paced playing a [PSVHO03]
FPS game
2 SSVEP self-paced exploring a [TAHOS8]
virtual city

Interestingly, it seems that in current applications, selecting and manipul&@ing mostly
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achieved using evoked signals, whereas navigating VE is mostly achisireglapontaneous
signals. This suggests that interesting combinations between those kindsalt sould be
achieved to increase the number of available commands. It should alsteletimat no current
BCl application enables the user to select/manipulate VO and navigate VE ahtlkedime. As
such proposing a technique to perform both interaction tasks would ctgagly very interest-
ing possiblities for VR applications. Finally, it can be observed that the mgp@tween the
mental states and the commands is still relatively simple for VR applications base&0GI.
As such, it appears as essential to seek innovative ways of usingnfevédlable commands
in order to enlarge the number of actions available for the user.

1.7.2.4 Virtual reality for studying and improving brain-computer inte rfaces

So far, we have reported studies that have used BCI as a new interdetioce for VR applica-

tions. Conversely, VR can also prove very interesting for BCI applicatiordeed, VR makes
it possible to perform safe and carefully controlled BCI experiments wsvarreal-life use,
can increase the motivation of subjects, reduce the time necessary to deata hise a BCI,

and, finally, can be used to study brain dynamics and behavior.

Safe and carefully controlled experiments: One of the numerous advantages of VR, is that
it makes it possible to test and study various systems and tools in VE ratheimthaal-
life, which is safer, cheaper, more convenient and which enables mom@ted experiments.
Thus, by using BCI in VE, several researchers have shown thatrigioza use BCI systems
in complex and visually rich 3D environments [PSVHO03, LFMF]. Similarly, they have
shown in VR that relatively complex tasks commonly performed in real-life cailsd be
performed with a BCI despite the high mental workload generated by theltbBk'[07]. VR
also enabled Friedmaat al to study different mapping between mental states and commands
[FLD*07]. The results showed that, surprisingly, the most natural mapping (sigg foot
motor imagery to walk along the VE) does not give better results, in terms difotasion
accuracy, than non-natural mapping (e.g., walking into the VE by usind hmtor imagery)
[FLD*07]. To sum up, VR makes it possible to study BCl in close to real-life condition

Improving BCl learning and performances: A second interestin using VR and videogames
for BCl is related to the increased motivation it provides to users. Sestrdies have com-
pared feedback consisting of classical 2D displays with feedbaclstiogsof entertaining VR
applications [LLK"07, RAERLO05]. These studies have shown that users’ performanees
higher with a VR feedback than with a simple 2D feedback. Moreover, therevidences
that the more immersive the VR display, the higher the performances and tiostishusers
[FLG*07, LLK™07]. Even if some observations need to be confirmed, VR appears asta wa
shorten BCI learning and increase users’ performances by incgeh&im motivation.

Studying brain dynamics with VR: Finally, another advantage of VR for BCI, is that VR
can be seen as an ideal environment to study brain dynamics and behBeilomstance,
Pfurtschelleet alhave shown that visualizing a moving virtual object or a moving virtual hand
triggered ERD/ERS over the sensorimotor areas of the brain, i.e., pheopsamilar to what
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happened when a subject effectively performs a movement{BHL Another example is the
work of Arrouetet al which used inverse solutions to enable a subject to navigate in his own
brain, represented in 3D, and to visualize in real-time his own brain activiBMAO05]. To

this end multiple 3D objects were displayed on screen, each one cordi#spado a specific
brain region. The size and color of these objects represent the activitg icorresponding
brain region (see Figure 1.20). Such a tool could be used to study,litimea what is hap-
pening in the brain following a given stimulus or mental task, as with the Brainpplieation
[LIBT07]. Itis also expected that such an immersive neurofeedback wouttbbeengaging

and informative and would improve the user’s abilities to control his brainicti
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Figure 1.20: 3D visualization of brain activity in VR [ACM5]

1.7.2.5 Conclusion

To sum up, it appears that not only BCI can prove useful for VRatad VR can prove useful
for BCI. Thus, the coupling between VR and BCI appears as very piognisut a lot of things
still need to be done. For instance, it would be very interesting to study wnchof VR
feedback will lead to the best performances and to the shortest trainingdinteefsubjects.
Also, it would be interesting to study further the impact of motivation and piesas well as
to quantify their effects.

1.7.3 Other BCI applications

Besides the VR and medical applications, some other applications of BChkeawgproposed.
Among these applications, we can mention brain-actuated robots [LLAOII@3M For in-
stance, BCI have been used to control relatively simple mobile robots [T0KARMRMGO03]
or to control the dog robot AIBO from Sony [IKP06, CAB6, COM"07]. BCI have also
been used to control more advanced mobile robots such as robotic wdiezlEFVWOS5,
RBG07, VML'07] or even humanoid robots [BSCR07, BSCRO08]. A specificity shayed b
several of these robotic applications is that a lot of intelligence is placed iatootiot. As
such, the BCI user only uses a small number of commands (between 2,and #ese are
very high-level commands, which will correspond to complex tasks aathibyethe robots
[BSCR07, dRMRMGO03, RBGO07].

Other BCI applications include musical applications, in which a BCI is usedive dr
musical composition. In such applications, some mental states, such as ftiiegroe of a



Conclusion 61

given brain rhythm, are associated to a change of the musical style or emgecin the music
tempo [MBO04]. These signhals can also be combined with other biologicallsigneh as EMG
[ABC'06]. Recently, a BCI has also been used to make paintings thanks to abBSE€0-
application [KHFHO08].

Naturally, the range of possible BCI applications is relatively large [Mo@3d there is
no doubt that the number of applications of such a technology will rapidhease.

1.8 Conclusion

This chapter aimed at reviewing the current methods used to design B@élleass the exist-
ing BCI applications. In this regard, we have first seen that, althougiralanvasive or non-
invasive methods were available to measure brain activity, EEG was byefardhkt convenient
and the most popular one. Second, we have seen that EEG signals daed s8oBCI could be
divided into 2 categories, namely, evoked potentials, such a P300 or3avi# spontaneous
signals, such as slow cortical potentials or motor imagery. Then, we hawsvesl prepro-
cessing techniques used in BCI. These techniques are generally téfiifgosa such as direct
Fourier transform filtering or spatial filters such as common spatial patéerthsndependant
component analysis. We have also reviewed feature extraction techrégqueoyed for BCI.
These techniques could be divided in 3 categories, namely, temporalefeatch as Hjorth
parameters, frequential features such as band power and timeffoygq@presentation-based
features such as wavelets. Then, we reviewed classification algoritet$ruBCl. These al-
gorithms can be gathered into 5 different categories. These categarigslmear classifiers,
with, e.g., support vector machines, 2) neural networks, with, e.g., multireeptrons, 3)
nonlinear Bayesian classifiers, with, e.g., Bayes quadratic, 4) neaighbor classifiers, with,
e.g., k nearest neighbors and 5) combination of classifiers with, e.gtjtmpdsinally, we sur-
veyed BCI applications, and we have seen that BCl were mostly used thcahapplications
such as spellers or prosthesis, but also for multimedia and virtual realitigagns such as
3D video games.

This first chapter has highlighted that there have already been a rijdaixge number of
studies related to BCI research that aimed at exploring and proposingsaignal processing
and classification algorithms for designing a BCI. Despite this large numbéudies, the most
appropriate algorithms, if any, have not been identified yet. Moreov@B@i community has
highlighted the need to explore and/or design more efficient algorithms (in tdratsuracy),
from which it could be possible to gain insights about the brain dynamics [M@&]. These
two points are specifically addressed in this manuscript and more particinahlg four next
chapters, gathered within Part 1: EEG signal processing and clatisifica

Similarly, several prototypes of applications based on BCI have begroged, mainly in
the medical and rehabilitation field but also in the multimedia and virtual reality fietth- C
cerning this last field, the interest and potential of VR for BCI have beeticoilarly stressed.
However, there is still a lot to study regarding BCl-based VR applicatismsh as the pref-
erences of the BCI user, the impact of the feedback provided to this arstére design of
appropriate interaction paradigms. These points are addressed in &fattti2 manuscript:
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virtual reality applications based on BCI technology.



Part 1.
EEG signal processing and
classification
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Chapter 2

Preprocessing and Feature Extraction:
FURIA, an Inverse Solution-based
Algorithm using Fuzzy Set Theory

2.1 Introduction

One objective of this PhD thesis is to study methods which could lead to 1) nimierfBCI
in terms of information transfer rate and 2) interpretable BCI. To fulfill thelsiectives, we
can focus at the level of preprocessing and feature extraction,te &tvel of classification.
In this chapter, we address the problem of preprocessing and featuaetion.

In this chapter, we propose a trainable feature extraction algorithm fomBdch relies
on inverse solutions as well as on the fuzzy set theory. This algorithmiésldauRIA which
stands foiFuzzy Region ofl nterestActivity. FURIA can automatically identify what are, for a
given subject, the relevant Regions Of Interest (ROI) and frequlkands for the discrimina-
tion of mental tasks, even for multiclass BCI. The activity in these ROI arguéecy bands
can be used as features for any classifier.

The chapter is organized as follows: Section 2.2 provides additional deteiltee concept
of inverse solution and on its current uses for BCI design. Section 2@&ites in details the
FuRIA algorithm we propose. Section 2.4 describes the evaluations ofAFaétiieved on
binary and multiclass EEG data sets. Finally, Section 2.5 discusses the ragutanaludes.

2.2 Inverse solutions and BCI

This section begins with a brief recall about what are inverse solutiotigegsents a way
of formulating inverse solutions as quadratic forms, i.e., as computationatyeaffiforms.

Then, this section focuses on inverse solution-based BCI and highligtinseim limitations of
current systems.

65
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2.2.1 Inverse solutions as a quadratic form

As mentioned in Chapter 1, inverse solutions aim at estimating the brain dipaoligyatfi) by
using only the scalp measurementd) and the leadfield matrix (head mod&l)(see section
1.4.4):

¢(t) =Tm(t) (2.1)
whereT is the generalized inverse Kkf Congedo has shown that any linear and discrete inverse
solution could be formulated as a quadratic form [Con06]:

Vu(t) = mt)TQum(t) (2.2)

whereQy is anNg * Ne matrix (Ng being the number of electrodes used) denoted amtteese
operatorfor voxelv [Con06] andy, is the current density in voxel The superscript denotes
transpose. Typicalld, = T, T, with T, being thev'" row of T. The current density in a given
ROI Q, i.e., in a set of voxels, can be computed as follows:

Ya(t) = EQyV(U =mt)' Qam(t)  with Qq= %Qv (2.3)

This notation is very convenient as it allows very fast computations, wiiatee number
of voxels in the ROK). Actually theQq matrix can be computed offline, and the size of this
matrix depends only on the number of electrodes used.

2.2.2 Inverse solution-based BCI

As mentioned in section 1.4.4, a few recent studies have started to evaluafédieacy of
inverse solutions as feature extractors for BCI [LLAO7b, NKMO08, KAl Indeed, there are
increasing evidences that the use of inverse solutions would improve itioerpances of the
system, in terms of correct recognition rates. Inverse solutions suchEGTRA [GGP"05],
equivalent dipole analysis [QDH04, KLHO5] or minimum norm estimates [BOV, BMGO08]
have been applied to non-invasive BCI designs. All these methods otbtegmg promising
results. These good results can be explained if we consider inverdmsslas spatial filters
based on physiological a priori. Hence, they make it possible to focuslevant information
while removing the noise coming from other brain regions and not related veittnéimtal tasks
performed by the subject.

In spite of these promising results, some limitations remain. Indeed, currertasette ei-
ther general-purpose, i.e., they have the ability to deal with any kind of ntestalor generator
of few features but rarely both at the same time. Several methods retjaimg a priori knowl-
edge on the neurophysiological mechanisms involved by the mental tasksansehence, are
not general-purpose at all [QDH04, KLHO5, BCM7]. With these methods, the ROI to be
used must be defined beforehand and by hand. These methodsrarglglimited to the use
of mental tasks that involve the motor and sensorimotor areas of the braimg predefined
ROI also raises the problem of specialization. Indeed, it is well knownehel subject has
his own specificities, in terms of spatial (involved brain regions) or fratjak(involved fre-
guency bands) features [WB\2]. Hence, a non-general-purpose method, exclusively based
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on a priori knowledge, will not be able to adapt to each subject’s spigeisicand will have,
most probably, non-optimal performances.

A few general-purpose methods, based on distributed inverse solutavesbeen proposed
[GGP05, NKM08, BMGO08]. The main limitation of these methods is that they must extract
one or several features per voxel, which generates a very largeamafrfieatures. Actually, the
head models generally used are composed of hundreds or thousarw®Ist VT his requires
the use of feature selection techniques [GGP, NKM08, BMGO08]. Even though this solution
gives good results, the number of features used remains generallyalglaigh, particularly in
comparison with the number of features extracted by non-general-gumpethods [QDHO04,
KLHO5]. A high number of features also reduces the interpretability of éiselting model.
Moreover, in these methods, all voxels are processed independaméiseas a number of them
are dependant of each other and as such should be gathered irelgiairsr

Congedoet al have proposed a method which is both general-purpose and gendrator o
few features as voxels are gathered into ROI [CLLO6]. This method, wtnohbines data-
driven spatial filters and an inverse solution, has obtained results cabigao those of the
winner of the BCI competition 2003. However, this method still needs improvisraenit is
not completely automatic and limited to the use of two ROl whose spatial extensiardisch
define [CLLOG6].

2.3 The FuRIA feature extraction algorithm

FuRIA is a trainable feature extraction algorithm based on an inverse sofatioon invasive
BCI. It can learn and use subject specific features even from multiditassets. It uses the
concept of ROI in order to generate a relatively small number of featérésature extracted
with FURIA is related to a clear physiological information as it correspondlsea@ctivity in

a given brain region and its associated frequency band. Moreawgrc@ntrary to existing
methods, FURIA can automatically identify these relevant ROI, as well asahedncy bands
in which these ROI current densities are discriminant. Finally, FURIA alsodotres the
concepts of fuzzy ROI and fuzzy frequency bands, which con@ptased to obtain increased
classification performances.

FuRIA aims at being modular in the sense that various kinds of inverse swwauld be
used within it. This section briefly describes the inverse solutions that ceuldséd within
FuRIA and the specific one that we used in our implementation. It then desénildletails the
FuRIA feature extraction algorithm.

2.3.1 Inverse solutions for FURIA

FuRIA aims at being used with any kind of linear and distributed inverse solufiatually,
distributed solutions enable the use of a large number of dipoles rather fhaneguivalent
dipoles. As such they provide more information and are more flexible. Onthez band,
the use of linear inverse solutions appears as essential for BCl appisalimleed, the strong
real-time constraints that are imposed when using a BCI online preventdhef nen-linear
inverse solutions as they are computationally demanding. Several linealisriduted in-
verse solutions have been used for BCI, such as ELECTRA [®GR LORETA/SLORETA
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[LNMO06, CLLO6] or the depth-weighted minimum norm technique [BCOF]. FURIA can be
used with any of these inverse solutions.

2.3.2 The sLORETA inverse solution

In our implementation of FURIA, we used sLORETA (standardized low résalielectro-
magnetic tomography) which is an instantaneous, discrete and linear isedusen proposed
by Pascual-Marqui [PM02]. sLORETA is known to have very good liaation properties
[PMO02] including no localization bias in the presence of measurement atablzial noise
[PMO7]. Moreover, it has been proved experimentally that SLORETA wuitable for the
design of EEG-based BCI [CLLO6].

To solve the inverse problem, SLORETA relies on a regularized least ngeanessolution
to equation 2.1:

T=K'(KKT +arX)" (2.4)

wherear is a positive regularization parameter ads the centering matrix which is used
to re-reference the data to common average reference. The exppruariotes the Moore-
Penrose matrix pseudo-inverse. In order to reach a high localizati@bidiy SLORETA is
based on a standardization of this solution. As such, the activity (cutesisity)y, of a voxel
Vv is obtained as follows with SLORETA:

w=&S"% (2.5)

whereS= TK is the resolution matrix, witls, being thevih 3*3 block of S. Similarly, ¢, is
thevt" triplet of €. Consequently, to express the current density with SLORETA as aaficdr
form (see equation 2.2), one should @e= T,)S,'T,. The interested reader can find more
details about SLORETA in [PM02, PMO7]. However, it should be remintthed the principle
of the FURIA algorithm is not dependent on the inverse solution chosenseguently, any
other distributed and linear inverse solution could be used instead of SLORE

2.3.3 Overview of the FURIA algorithm
2.3.3.1 Training of FURIA

In order to be used, FUuRIA has first to be trained using @®set{(m(t),C)1 n,} of labelled
training data, withC being the class om(t), i.e., the mental task performed by the subject
while m(t) was recorded. The goal of this training phase is to find subject-spe&ii€Rand
frequency band®, that contain the most relevant information for mental task discrimination.
This training phase is accomplished offline, in three main steps:

« |dentification of statistically discriminant voxels and frequencies: The goal of this
step is to identify the ordered paing = (fi,vj) (k € [1,Ny]), with f; being a frequency
andv;j being a voxel, with the largest discriminative power. In order to do so,ele r
on a statistical analysis for comparing, between the different classesygae current
density in each frequend (i € [1,N¢]) and in each voxel; (j € [1,N]).
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+ Creation of ROI and frequency bands: This step aims at gathering the voxe|sse-
lected at the previous step into several R)] as well as at gathering the selected fre-
guenciesf; into several frequency bands. In order to do so, we rely on a clustering
algorithm for finding clusters of voxels and frequencies and for taanshg these clus-
ters into ROI and frequency bands. Thus, by the end of this step, veecheated a set of
Ny ordered pairsM = (®;,Q) (I € [1,Ny]) (one pair per cluster) in which each ROl is
associated to a single frequency band. This frequency band shalét gz frequencies
in which the activity of the ROI voxels is discriminant.

 Fuzzification of ROI and frequency bands: The previously found ROQ,; are turned
into fuzzy ROIQ, and the frequency bandy are turned into fuzzy frequency bandis
This aims at giving more importance to the more discriminant voxels and fremsen
while still using the information contained in the less discriminant ones. Thelbver
objective is to increase the discriminative power of\ttigairs.

2.3.3.2 Use of FURIA for feature extraction

Once the fuzzy pairsy = (®;,Q;) have been identified, FURIA can be used for feature ex-
traction. The features extracted are the current densities in the fuzzf2R&fter band-pass
filtering EEG signals in the associated fuzzy frequency bands

All these steps are detailled hereafter. In the following, the descriptioadf gaining step is
divided into two parts: 1) a section “algorithm” which describes the geradgakithm we pro-
pose and 2) a section “implementation” which describes the specific implemerdbEaRIA
that we evaluate in this chapter. In this regard, it is worth noting that other imgpitations
could be used (e.g., different clustering algorithms, different statististd,te..) as long as
they are consistent with the algorithms proposed.

2.3.4 First training step: identification of statistically discriminant voxels and
frequencies

2.3.4.1 Algorithm

The first step of the training of FURIA aims at identifying the paigsof voxelsv; and fre-
qguenciesf; which are the most discriminant, i.e., the pairs of voxels and frequenciesewho
current density is the most different between classes. In order to, deeguerform a statistical
analysis that compares the mean current densities between classeshfpagay = (fi,v;).

To this end, each training EEG recamgt) passes through the following procedure (see Fig.
2.1):

1. m(t) is decomposed into frequency bands by using a set of fitter&ach filterh; is
a 2-Hz wide band-pass filter centered on frequeficyWe denote asy(t) the signal
resulting from the filtering om(t) by h.

2. the current density; j(t) in voxel vj, for frequencyf; is computed using the inverse
solution:
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¥ij (1) = m(t)TQym(t) (2.6)

3. finally,y; j(t) is averaged over a time window of interest, which starts at sampled is
Ns samples long. The obtained value is then log-transformed:

to+Ns
i >=log(— i (t 2.7
< >=log(Ty tgovm) (2.7)
EEG  Filter Inverse Time average Average

signals bank operators  and log-transform current
densities
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Figure 2.1: Computation of the average current densitiag; > in all frequenciesf; and
voxelsvj, from a training EEG record m(t).

Then, the< y; ; > are gathered into statistical samples according to the label of their cor-
responding training recorah(t). As such, we obtain one statistical sample per class. These
samples are then compared using the statistical analysis. In other worddattgscal analy-
sis compares the meany; j > between classes and hence gives the discriminative power of
each paiw. Pairswy which obtained a p-value higher than a given thresho{this threshold
is a hyperparameter of FURIA) are not considered anymore in the remahitie training
process. The other pairs are denoted as “significant”. This proeetiould remove numerous
voxels and frequencies and should only keep the ones which are spedifie mental tasks
performed by the subject and to the physiology of this subject.

2.3.4.2 Implementation

In our implementation of FURIA, thi; filters were either Finite Impulse Response (FIR) or
Infinite Impulse Response (IIR) filters. We used windowed sinc filterslBdfifers [Smi97]
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and Yule-Walker filters as IIR filters [FP84]. These filters were cha@sethey enable the de-
sign of custom filters, which is needed for the fuzzification of frequerydb step (see section
2.3.6). Concerning the statistical test used, we employed Multiple Compafardomiza-
tion (MCR) tests as described by Holmes [HBWF96]. More precisely, 10t 8ith only 2
classes, we used MCR t-tests whereas for multiclass BCI (with 3 or moreesjass used
MCR ANOVA (ANalysis Of VAriance), as ANOVA can compare multiple conditiorand as
such, can deal with more than 2 classes. Naturally, depending on the@tied-uRIA user,
different kinds of band-pass filters or statistical analysis could be inseshd.

2.3.5 Second training step: creation of ROI and frequency bads
2.3.5.1 Algorithm

This step aims at gathering significant voxels and frequencies intdRQl € [1,N,]) asso-
ciated with frequency bands,, each ROI being associated to a single frequency band. Basi-
cally, a given ROI would gather significant voxels, and the frequenoyl lassociated to this
ROI would gather the frequencies in which these voxels activity is discrirhi@eating such
ROI and frequency bands aims at obtaining a compact feature retatgen Indeed, using
the activity in a few ROI and frequency bands as features should leaddb lass features
than when considering voxels and frequencies alone, as done 1itggl@&GP" 05, NKMO08].
Moreover, the activity in neighboring voxels and frequencies tends stetistically correlated
[MML T04]. As such it should be more appropriate to use these voxels anefreigs together
rather than independently.

Ideally, we would like to gather voxels belonging to the same neural sou¢ha same
ROI. We would like, at the same time, to gather into a single frequency bandeitpecincies
at which a similar ROI appears. This means it is desirable to find clusters igathmeth
voxels and frequencies. In order to find these clusters, we associasehosignificant pair
wi = (fi,vj) the feature vectox;,y;, z;, fi] in which x;,y;, z; are the spatial coordinates gf
in the head model used. The vector elements are normalized to zero meanitaratiance in
order to deal with the different ranges between space and fregseiitien, we apply a given
clustering algorithm to all these vectors. Finally, for each obtained clugtegather all voxels
whose associated vector belongs to this cluster into the sam@R&id we associate to this
ROI the frequency ban® = [fmin, fmay. Here, fmin and fmax are respectively the minimal
and maximal value of the coordinafeamong all the vectors belonging to this cluster. This
clustering gives a set of ordered pais= (¥}, Q) which are expected to be discriminant.

2.3.5.2 Implementation

When using sSLORETA, the neural sources tend to appear as local maxiofitheurrent den-
sity [PM02] and hence as local maximums of the statistics obtained in output sfatistical
analysis. Consequently, we used Mean Shift as the clustering algoritheisgathers vectors
attracted by the same local maximum of the underlying density function [CMO&}ever, as
the voxels coordinates and frequencies considered are regulackydspéthin their numerical
domain, the underlying density function for the vectpsy;, z;, fi] will be relatively flat and
thus will prevent a proper use of Mean Shift. To cope with this problem, sesl @ slightly
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modified version of the Mean Shift algorithm for clustering. This slight modificasimply
consists in replacin®, the standard density estimate at pdinised in Mean Shift:

Nk
5(P) = g0 > Xl (P~ PO} 28)

by D, a weighted density estimate at point P :

1 N 1
D(P) = Wk;a(*x{ﬁ(P—H()} (2.9)

with H being the smoothing parametgra kernel, here the Epanechnikov kernel (the optimal
kernel for Mean Shift, see [CMO2]R, the current vectorr, the kth vector from the data set,
andd the dimensionality. Finally, = 1 — pk, with px being the p-value obtained by the
pair, during the statistical analysis performed in the previous step. This tedtde following
form for thesample mean shiftector :

1

Mu (P) > sx(AR—P) (2.10)

P o cSip)

Here,S4(P) is thed-dimensional sphere of raditiscentered al, with np vectors inside. This
weighted version of Mean Shift will gather into the same cluster all the veattrected by the
same local maximum of the statistics. As such, this version of Mean Shift i@t gather
altogether the vectors corresponding to the same neural source,@asdheses should be local
maximums of the statistics (see above).

It should be noted that making clusters according to the local maximums of tigticta
is essential when dealing with multiclass BCI based on sSLORETA. Actuallyntreenumber
of mental tasks performed increases, the number of brain regions idviolggeases as well.
Added to the fact that SLORETA is low resolution, this may lead to a high ovgirigpof
these regions, making classical clustering fail to recover the diffemntses. We observed
this problem experimentally, which led to the conception of this clustering sytateg

2.3.6 Third training step: fuzzification of ROl and frequency bands

The last training step of FURIA consists in fuzzifying the previously obthR@®1Q, and fre-

quency bandsp,. Actually, a ROI can be seen as a conventional (or “crisp”) set oklox
whereas a frequency band can be seen as a crisp set of frequeroigever, it is clear that
in a ROI or in a frequency band, not all the voxels or frequencies the/eame discriminative
power. Nevertheless, all these elements still carry more or less informaéiboaild be used,
making it hard to choose which of them should be kept. Moreover, eldotsigogically, the

brain regions related to specific brain functions are not well defined &pecific user: their
boundaries are naturally “fuzzy”. Consequently, rather than seleatifegv voxels and fre-
guencies within a ROI, we believe that all significant voxels and freqasrshould be used,
but the voxels and frequencies that are less discriminant should bd&sgj to their ROI and

frequency band than the others. Thus, we propose to consider Rdfeaqquency bands as
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fuzzy sets [Zad96a] of voxels and frequencies, in which all voxelsfeeguencies are given a
degree of membership into the ROI or frequency band to which they beWwagienote such
kinds of ROI and frequency bands as fuzzy ROl and fuzzy frequéands. Thus, a fuzzy
membership functiom is associated to each ROI and each frequency band. To sum up, two
fuzzifications are performed: the fuzzification of space and the fuatiific of frequency.

2.3.6.1 Design of fuzzy ROI and fuzzy frequency bands from a giverutzy membership
function

Algorithm:  As mentionned above, a crisp RQ)J is a set of voxels which current density
is computed according to Eq. 2.3. A fuzzy RQ| is not defined by a set of voxels anymore
but by a fuzzy membership functiqg;. This function provides the degree of membership, in
[0,1], of any existing voxel to the fuzzy RAY,. Contrary to crisp ROI for which all its voxels
are used equally (see Eq. 2.3), we define the current degsity in a fuzzy ROI as follows:

Z

Ya,(t) = ) Hs (Vj)w,(t) (2.11)
1

This leads to:
Ny
Vo, () =mt)TQam(t)  with Qg =Y Ks(v))Qy (2.12)
=1

Similarly, we associate a fuzzy membership functignto each frequency bard,. The
function pg, provides the degree of membership,[@1], of any existing frequency to the
fuzzy frequency band@;. We can note that this function has exactly the same form as the
magnitude response of a digital filter. This means that to band-pass filtena Biga given
fuzzy frequency band we have to design a custom digital filter that haveldkired fuzzy
membership functiops as magnitude response.

Implementation: We used the window technique to automatically design FIR filters from the
desired magnitude response, i.e., from a fuzzy membership functioriatesiao a frequency
band [Smi97]. To automatically design the IIR filters, we used the Yule-Watlethod [FP84].
This explains why we used a windowed-sinc FIR filter or a Yule-Walkefrfill8r for the first
training step of FURIA (see section 2.3.4).

2.3.6.2 Setup of the fuzzy membership functions

Algorithm: In order to determine the kind of fuzzy membership functions to be usedlbs we
as their parameters, we first compute the discrimination schresidds, of each voxel; and
frequencyf; respectively, for each paiff = (P}, Q):

1

1
dy, = — Svi.f and o= Sv..f; (2.13)
! Nf ficd, ! NVVjEZh J
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wheres,, 1, = 1— pj i with p; ; the p-value obtained during the statistical analysis step, for voxel
v; at frequencyf;. In order to highly emphasize the contribution of the most discriminative
voxels and frequencies we chose exponential fuzzy membership fasictio

1 dv; —vmax 2 )
s (vj) = { SXK—Q( o)) Vi €Q with 0\,:,\1'\, (2.14)

otherwise
exq_l(dfi—dfmaX)Z) f c CD| 1
g (i) = 2% o ! _ with  of= (2.15)
0 otherwise N

wheredymaxanddsmax are the maximal scores among voxels and frequencies respectively.
This means that the voxel and frequency with the highest discriminatioesattain the
highest degree of membership, i.e, 1.0, while other voxels and freqgestuigin a score that
decreases exponentially with their discrimination score. However, the obthe o parameter
given above is only an initial value which may not be the optimal value to maximizdishe
criminative power of the paitdf = (ﬁm Neo] ). Consequently, we then optimize togarameters
of each paitM by using the adaptive gradient ascent procedure described in Algotith

HereA; andA, are positive learning rates, apgande; are small positive increments used
to estimate the derivatives of the functién This functionF is the fitness function that we
want to maximize and that evaluates the discriminative power of a givei\paifhis fitness
function is equal to the statistics obtained with a statistical test that comparesitetcdensity
in Q; and®, between the different classes. More precisely, for each trainingdeao), this
record is first band-pass filtered in tde frequency band by using the corresponding IIR or
FIR filter. Then, the current density i@, is computed using Eq. 2.11, and averaged over
a given time window and log-transformed as in Eq. 2.7. One should note thatthined
values<yg g > depend on the values of, andos which are used to compute the band-pass
filter and the ROI current density. Theseys 4 > are then arranged by class label. The
statistical analysis finally compares the mean value of tkegg 5 > between the different
classes, the null hypothedis being “the mean value of the yg, 3 > is not different between
the classes”. The obtained statistics is used as the value of the fithess rHunctidhus,
algorithm 1 selects the values of ando, that maximize the discriminative power of a given
W. Naturally, this procedure is performed for each pHir It is worth noting that a gradient
ascent optimization seems appropriate as we experimentally observed tfigtebe function
F was not monotonic. Rather, this fithess function generally had an optimusmfaii values
of theo parameter.

Implementation: For the fitness functior, we used as the statistical analysis a t-test for
binary BCI and an ANOVA for multiclass BCI. These tests are the same antsae used
during the first training step (see 2.3.4). Concerning the values,ef,A; andA,, we per-
formed extensive experimental tests and foundghat &, = 0.0001 and\; = Ay, = 10> were
appropriate values. We used these values in all our experiments.
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Algorithm 1 Adaptive gradient ascent algorithrex (€y,At,Ay)
1: newF«+ F(oy,0¢)
2: repeat
3: {dealing with the frequency domain}

4:  oldF < newF

5. AF; — F(oy,0¢) — F(0y,0¢ +€¢) {estimating the partial derivative with respectde}
6: Of « Of —Ag AS—Fff {gradient ascent}

7. newF— F(oy,0¢)

8: {Adaptation of the learning rat®;}

9: if newF< oldF then
10: A — %f
11: else
12: Af —As+0.20¢
13:  endif

14:  {dealing with the space domain}

15:  oldF «— newF

16: AR, < F(oy,0¢) —F(0oy+¢y,0¢) {estimating the partial derivative with respectdg}
17: Oy« Oy — )\\,As—fv {gradient ascent}

18: newF« F(oy,0¢)

19: {Adaptation of the learning ratk}

20: if newF < oldF then

21: Ay — %

22: else

23: Av — Ay + 010
24: endif

25: until || < 0.001 and 4| < 0.001

At the end of this offline training, a set of fuzzy RQ, associated to fuzzy frequency
bands®, has been identified. They can now be used for feature extractioribjyoasline.

2.3.7 Feature Extraction with FURIA

Once the training is achieved, feature extraction with FURIA consists in cimgthhe current
density in each fuzzy ROI and fuzzy frequency band and in using thesent density values

as features. More formally, it consists in filtering the EEG sigmals), once for each one

of the Ny, fuzzy ROI Q; obtained, using the FIR or IIR filter corresponding@®p. Then,

< Vg, > the current density if, is computed using Eq. 2.11 and averaged over a given
time window and log-transformed as in Eq. 2.7. Mgcurrent densities< yg g > are then
concatenated into iy dimensional feature Vector ys, ¢, >, < Vs, d, >:---» < Yoy, .0y, -
Such a feature vector can then be used as an input of any classifiera &gpport Vector
Machine, this classifier being in charge of estimating the class(Df Figure 2.2 summarizes
the principle of feature extraction using FURIA.
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Figure 2.2: Feature extraction with FURIA.

2.3.8 Model selection

The presented implementation of FURIA has two hyperparameters: thedltreshsed for
the statistical analysis and the smoothing paramétef the Mean Shift clustering algorithm.
The values of these hyperparameters have an impact on the numbetuoé$&g, and on the
extension and shape of the ROI and frequency bands. As this impactsrtbenance of the
recognition algorithm, we must select the most appropriate hyperparam&tgoiition could
be to test several values faranda and select the couple that enables the best classification on
a training set, estimated using a given classifier and cross validation. ldowevnoticed that
this method favors models with numerous features, which is not desirabftheFuaore, we
observed experimentally that there were generally models with a classificatiaraay only
slightly lower than the best one, but with much less features. Indeed, ifov¢ghe number of
features versus the classification accuracy, the resulting curve telnelsdlatively flat for large
numbers of features, and suddendly decreases for a smaller nunféetuoés (see Figure 2.3).

Ideally, we would like to use the model corresponding to the point of theecsituated
just before this sudden decrease of classification accuracy (point#ue, on Figure 2.3),
as it would be the best tradeoff between a high classification accurdcg amall number of
features. Indeed, we believe that such a model with few features sheyddefered as it is
probably more robust, less computationally demanding, more easily intefratabit should
ease the training of the classifier. Consequently, we propose a simple sebefgion criterion
Cyp:

Cp = 2% ACCy — Ny (2.16)

whereAcc,y is the accuracy (in percent) obtained using cross validation on a trainingjree
model with the highedE, is the one that should be prefered. Thus, this criterion is still based
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Cross validation accuracy of different models
depending on the number of features
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Figure 2.3: Example of a plot of the number of features versus the 1@td@foss validation
accuracy of several models obtained with FURIA. The point A cormedpd®o the model we
would like to automatically select, as this model has the best tradeoff betweeallansmber
of features and a good classification accuracy. This plot corresporttie data of subject S1
from the BCI competition 2005 (see Section 2.4.1.2).

on cross validation but it penalizes models with many features. We also eotis&d models
with a number of features lower than the number of mental states shouldidedvActually,
we consider that a mental state is generated by at least one brain régioould be noted that
we also tested model selection criterions such as the Akaike Informationi@ri{&iC) or the
Bayesian Information Criterion (BIC) [Zuc00]. Unfortunatly, they werd able to select the
desired model as described above. If needed, the terms @ytheterion could be weighted
in a different way so as to favor either models with a high cross-validatioaracy or sparse
models. However, we observed that, as such, this criterion gave satigfesults in practice.
This is shown in the next section which is devoted to the evaluation of FURIA.

2.4 Evaluations of FURIA

These evaluations have two objectives. First we want to assess the ohfpectifferent hyper-
parameters as well as the contribution of the fuzzification processes parfoemances. Then
we also want to globally assess the efficiency of FURIA, by comparinglébB&:d on FURIA
with other state-of-the-art BCI systems used during BCI competitions.

In order to assess FURIA, we evaluated it on four different subjegts|able from two
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data sets of the BCI competitions 2003 and 2005. For all these evaluatiengonked with a
standard head model, composed of three concentric spheres andiogni28®4 voxels. This
head model has been obtained using LORETA-Key, a software dedicaiieeerse solutions
which has been developed by Pascual-Marqui (see [PM] for mordsietethis software). For
the training of FURIA, we considered the frequencies located in the 3z4fdquency band
with a step of 1 Hz between two consecutive frequencies. Concerning@ifietests, we used
a value of 1000 for the number of random permutations. The features slassified using
a gaussian Support Vector Machine (SVM), as SVM is one of the mosilaopnd efficient
classifiers used for BCI [LCLO7] (see also section 1.6.2.2). When dealing with multiclass
problems, several SVM were combined using the One-Versus-thg‘®éR) scheme in order
to design a multi-class classifier. The optimal SVM hyperparameters weotesklesing 10*10
fold stratified cross validation. The description of the data sets and thisrestained are
presented in the following sections.

2.4.1 EEG data sets
2.4.1.1 BCI competition 2003 - data set IV

The first data set used was the EEG data set IV of the BCI competition Bd@304], pro-
vided by the Berlin group [BCMO02]. These data contain EEG signals decbwhile a subject
was performing self-paced left and right finger tapping tasks. EEGasigmere sampled at
100 Hz, recorded using 28 electrodes and comprised the 500 ms bef@ettial movement.
314 trials were available for training and 100 for testing. The goal of tiepetitors was to
forecast, for each trial, the hand that was used. For this data set, dé&uR#A to learn and
extract features on the last 250 ms time window of the data, i.e., wetgise®5 andNs = 25
in Eq. 2.7. According to several studies, this time window should be the mastiafive
[BCMO02, WZL*04, CLLO6]. According to a previous study on the same data set [CLM0$]
chose a sSLORETA regularization parametgr= 1000. Here, we used FIR and IIR filters with
24 points and an order 8 respectively.

2.4.1.2 BCI competition 2005 - data set llla

The second data set used was the EEG data set llla of the BClI compelisr{RMK™06],
provided by the Graz group [SLBPO5]. These data were recorddié whee subjects S1,
S2 and S3, were performing a 4-class motor imagery task. They werecitestrio imagine
left hand, right hand, foot or tongue movements. For both training atidge$0 trials were
available per class. Trials were sampled a 256 Hz and were recordgdb@satectrodes. Each
trial lasted 7 seconds, without taking into account the inter trial periodanofom lengths. The
subjects were instructed to perform the motor imagery tasks during the lasbBds of each
trial. For all subjects, we subsampled the data at 128 Hz, and used as tinmwiord-uRIA
these last 3 seconds, i.e., we usged 512 andNs = 384 in Eq. 2.7. For training FURIA, we
ignored all trials contaminated by artifacts, leaving approximatly between@8%itrials per
class, depending on the subject. We uggd= 100 as the sSLORETA regularization parameter.
Here, we used FIR and IIR filters with 50 points and an order 10 respécti
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2.4.2 Evaluation of the influence of hyperparameters and fuzfication processes

In our implementation of FURIA, two hyperparameters should be definedeystr: 1) the
significance threshold used in the statistical analysis of the first trainingsste[section 2.3.4)
and 2)H, the smoothing parameters used in Mean Shift during the second traininfsseep
Section 2.3.5). In this section, we evaluated FuRIA for different valfidisechyperparameter
a, among {0.01, 0.05, 0.1, 0.25, 0.5}, and different values of the hygrarpeteH, among
{0.75, 1, 1.25, 1.5, 1.75, 2}. The goal was to assess the impact of tlypsedarameters on
the classification performances and on the number of generated featateally, we wanted
to assess how FURIA would behave and how it would accomodate voxkefseguencies with
a very low discriminative power and how the fuzzification concept coukdl the available
information. For all these data sets we also compared the results obtainedisihg FURIA
without the fuzzification process (i.e., using only crisp ROl and frequéands), with only
the spatial fuzzification, with only the frequential fuzzification and with tHe(&patial and
frequential) fuzzification. In the following, these four conditions will bendied as “Raw”,
“Freq”, “Space” and “All” respectively. We also computed the resultsifoth FIR and IIR
filters. For a matter of consiceness, only the results for the kind of filtegtha the best results
are presented in this chapter. However, the complete and detailled resudt icethods,
subjects, conditions and filter types are displayed in Annex C. For edahsdf the SVM
classifier was trained on the features learnt and extracted by FuRIAeomaining set, and
used to classify the available test set using these features.

2.4.2.1 BCI competition 2003 - data set IV

Tables 2.1 and 2.2 display the mean classification accuracies obtained osttketterhen
using FURIA with FIR filters, for different values of andH respectively. The mean number
of features (denoted as “NbFeat”) is also displayed. In each table cfebion, the best result
for each condition and each subject is displayed in bold figures. Trereliites between the
Raw condition and the fuzzy conditions, as revealed by a paired t-testedttbat all the fuzzy
conditions performed better than the raw condition on average. HowRigedjfference is only
significant for the “All” (p < 0.05) and “Space”|§ << 0.01) conditions.

Table 2.1: Data set IV, BCI competition 2003, test set: classification aog(¥8) and number
of features for different values of, averaged over the different valuestbf

Average number
a of features Raw Freq Space All
0.01 10.17 80.5 81 82 80.33
0.05 10.17 79.5 80.67 82.67 82.5
0.1 9.17 77  78.17 84.67 81.83
0.25 9.67 76.67 77.17 83.17 76.17
0.5 8.83 72.17 7483 78 77.33
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Table 2.2: Data set IV, BCI competition 2003, test set: classification acg(¥&) and number
of features for different values &f, averaged over the different valuesocof

Average number
H of features Raw Freq Space All
0.75 31.8 83.6 82 834 826
1 12.6 80.2 79.6 826 80.8
1.25 6.4 782 79 826 79.2
15 2.8 744 768 80 784
1.75 2 732 766 82 782
2 2 734 762 82 786

2.4.2.2 BCI competition 2005 - data set llla

Tables 2.3 and 2.4 display the mean classification accuracies obtainedtifoofethe three
subjects on the test set, for different valuesoofndH respectively. Please note that, for
subject S2, no results are presentedder 0.01 as no paing was found significant with this
threshold. Here again, only the results obtained with the best filter are yhshlthat is IIR
filters for S1 and S2 and FIR filters for S3. The complete results can b fiouAnnex C.
The statistical differences between the Raw condition and the fuzzy cargjitbtained using
a paired t-test, are displayed in Table 2.5.

Table 2.3: Data set llla, BCI competition 2005, test set: classificatiorracg(?) and number
of features for different values of, averaged over the different valuestbf

Average number

Subject| a of features Raw Freq Space All
0.01 9.17 75.28 76.02 74.26 73.15

0.05 9.33 77.96 79.63 76.76 78.46

S1 0.1 10.67 75.93 77.22 79.17 77.78
0.25 7.83 60.93 67.96 72.31 68.98
0.5 9 62.13 66.76 75.19 71.39

0.05 7.83 5458 44.31 58.19 55.278

0.1 11.17 53.33 50.97 57.78 56.11
S2 0.25 11.67 50.97 43.89 47.22 45.69
0.5 14.67 50.83 47.92 50.69 51.39
0.01 6.17 71.67 69.72 7194 68.75

0.05 9.83 73.06 76.94 70.42 77.78

S3 0.1 9.17 70.42 72.08 7292 725
0.25 11.83 66.39 75 67.92 68.75
0.5 12.5 64.17 71.39 68.47 67.08
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Table 2.4: Data set llla, BCl competition 2005, test set: classificatiorracg(%6) and number
of features for different values &f, averaged over the different valuesoof

Average number

Subject| H of features Raw Freq Space All
0.75 254 86.22 88.67 87.44 89.33
1 12.2 84.22 85.67 86.56 85.89
S1 1.25 7.2 77.44 79.33 79.11 77.66
15 5 70.89 73.67 76.11 72.66
1.75 3.2 58.56 62.33 68.11 63.56
2 2.2 4533 51.44 55.89 54.56

0.75 23.6 61.39 49.44 60.83 56.94
1 13 58.96 51.46 58.33 56.25

S2 1.25 8.6 57.50 55.28 56.67 55.83
15 5.2 54.44 53.06 55.56 55

1.75 2.6 55.56 53.89 56.67 55

2 1.4 56.11 45.83 54.44 50

0.75 26 81.67 80.17 835 81

1 13.4 78.33 80 80 80.17

S3 1.25 7.6 76 785 78.17 795
1.5 5.6 7433 785 77.83 79.83

1.75 4 55,5 63.83 51.83 58.33

2 2.8 49 57.17 50.67 47

2.4.2.3 Discussion

We performed a paired t-test to investigate the overall statistical diffesemewveen all the
conditions, across all subjects and all hyperperparameter valuesretvkaled that globally,
all fuzzy conditions performed better than the “Raw” one, and that thieréiffce was signif-
icant (p < 0.001). This suggests that for a given set of ROI and frequencysydngrzifying
them is likely to increase their classification performances. However, bethSjpace” and
“All” conditions performed significantly better than the “Freq” one< 0.05). There was no
significant difference between these two conditiops-(0.05), even though the “Space” con-
dition gave slightly better results than the “All” one, on average. An interpoetds that the
spatial and full fuzzifications are quite robust, as they increase peafuzes on all subjects
tested (except subject S2 for the “All” condition), even though this ire@esas sometimes
not significant. On the contrary, the frequential fuzzification incretisegperformances on
some subjects, sometimes more than the “Space” and “All” conditions (e.g.cs@Jeand
decreases them on other subjects. As such, the frequential fuzziiieaiears as less ro-
bust. We then suggest to use, by default, the spatial fuzzification onty, toy the different
fuzzifications and select the most appropriate one for a given subject.

Concerning the effects of the threshald it can be noticed that the “Raw” condition
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Table 2.5: Data set llla, BCl competition 2005: comparison of the rawugettse fuzzy con-
ditions. A negative t-value indicates that the fuzzy condition is more effi¢teant the raw
one.

subject| value Freq Space All
S1 t-value  -3.56 -2.81  -2.20
p-value <0001 <001 <0.05
S2 t-value 4.15 -0.69 0.20
p-value <0001 >0.05 >0.05
S3 t-value  -2.82 -1.03 -1.61
p-value <001 >0.05 >0.05

reached its best performances using the traditional vatue<.01 ora = 0.05 whereas the
fuzzy conditions generally reached their best results for the value$.05 ora = 0.1. This
suggests that the fuzzification process enables to use efficiently thenatfon contained in
less discriminant voxels and frequencies in order to improve the perfeaesaRegarding the
results for the hyperparametdlr, the best accuracy is almost always obtained for the lowest
value ofH. However, accuracies very close to these ones can be obtained witr hiaghe
of H and hence, much less features. This supports the use of the previonysbsed model
selection criterion which penalizes models with a large number of featureséston 2.3.8).

We noticed that, depending on the subject, either FIR or IIR filters gavedsierbsults.
This highlights the well known inter-subject variability in the BCI field. Hengesliminary
tests must be performed in order to find the best filter for a given subject.

2.4.3 Comparison with BCI competition results

In the previous section, we have assessed the effects of the diffarzification processes.

In this section, we assess the global efficiency of the FURIA featuresinparing a BCI
based on FuRIA features with BCI used by the BCI competition participantspefform

this comparison, we needed to select some parameters without the knowfeatigeest set.
Consequently, we only relied on cross validation scores on the availalimgraets. Thus,

we selected the kind of filter (FIR or IIR) and the kind of fuzzification (sdafrequential or
both) according to their average cross validation score on the trainingosgtlect the optimal
hyperparametend anda, we relied on the model selection criterion proposed in section 2.3.8,
Equation 2.16.

2.4.3.1 BCI competition 2003 - data set IV

Based only on the training set, the parameter selection procedure ddsaiitne found that

H = 1.75, a = 0.05, FIR filters and only the spatial fuzzification was the most appropriate
configuration. This resulted in only 2 features. These parameters ledaocanacy of 84%

on the test set, that is, exactly the same score as the winner of the competifar PA].



Evaluations of FURIA 83

This suggests that the method is efficient, especially when consideringcthibdia only two
features were used.

Fig. 2.4 displays the two ROI and frequency bands learnt by FuRIAtdstiagly, these
ROI lie in the left and right motor areas, and the frequency bands lie if8 {re 13-30 Hz)
band, which is consistent with the literature on the subject [W&4, CLL06, PdS99]. This
suggests that the FURIA features are interpretable features, whidhecased to check what
has been learnt or even to extract knowledge about the brain dynamics.
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Figure 2.4: The fuzzy ROI (in red) and their corresponding frequdrands that were auto-
matically obtained by using FURIA for data set IV of BCI competition 2003. Bighter the
red color of the voxel, the higher the voxel degree of memberng§(v;). The brain is seen
from the top, nose up. These pictures were obtained with the LORETAs&iyare [PM].

2.4.3.2 BCI competition 2005 - data set llla

Table 2.6 sums up the parameters used for each subject and selectezhilysthg training set.
The resulting number of features is also displayed. Concerning this datheegoal of the

Table 2.6: Parameters used for data set llla from BCI competition 2095 (%

\ H a filterkind fuzzification feature number

S1| 1 0.5 IR fuzzy space 11
S2| 1 0.05 IIR fuzzy space 12
S3|125 01 FIR all fuzzy 5

participants was to provide a continuous classification, i.e., a class labehd¢brtime point.
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However, this was still a synchronous BCI classification task, as the motgeinéasks were
performed during known time periods, here from second 4 to seconde&abf trial. Hence,
the FURIA features were first learnt on the time window from second 4donsk7 of each
trial. Concerning the classification of the test set trials, we classified eachptimefrom
second 4 to second 7 of each trial, as requested by the competition ruledadsfied each
point by using the FURIA features extracted from the 1 second windegeping this point.
Classification outputs were also aggregated across time, which is known tovirgercuracy
[LCLT07, LSCO06]. In order to do so we used a different multiclass Gaussian @vade
of several binary SVM combined using the one-versus-the-restreghior each single time
point of the trial period from second 4 to second 7. These SVM wereetlaim the FURIA
features extracted on the 1 second window preceding their correggdide point. Then, to
classify a given time point, the final outpDk (t) at timet was estimated by using the individual
outputsO;(t) of the SVM corresponding to the previous time points situated from second 4 to
the present time point:

O¢(t) = ki)wkoi (k) (2.17)

where the output®; are vectors containing the output of each SVM used in the one-versus-
the-rest scheme (i.e., one output per class). HeteP corresponds to the second 4 of the
trial. We definedw, = Acc,y — 25 with Acgy being the 10*10 fold cross validation accuracy
(in percent) on the training set. Hence, this method is a weighted combinatitassification
outputs across time. These weights were chosen so as to ignore contsijutimrandomly
performing classifiers (with a cross validation error of 25 %, as theré el&sses) and empha-
size contributions of well performing classifiers. The final classittributed to a given poirit

was the one for whicls = argmaxOsx (t)).

As continuous classification was used, a classification accuracy coatiryguted for each
time point. The performance measure used was the maximal classificatioa@ccBerfor-
mances obtained using our methods as well as performances obtained dynBietition 2005
participants on data set llla [Sch05] are reported for comparisondli@ 2a7. All these par-
ticipants also used SVM as classifiers (combined with other classifiers fanthearticipant).
For feature extraction, they all used a frequential information (baisd-fikers or amplitude
spectra) combined with spatial filters such as common spatial patterns, mudepeomponent
analysis, principal component analysis and/or surface Laplacian [BMK Results obtained
by Schlbglet al when using an SVM as classifier and adaptive autoregressive pararaste
features on the same data sets are also displayed [SLBP05]. Howess,rdsults are the
leave-one-out cross validation accuracy over all the data, and noethefication accuracy on
the test set. As such they should just be used for information, and ncdrfigparison.

As shown by table 2.7, our method outperformed the one of the winner obthpatition
on 2 subjects out of 3 and even reached the best score among all patsaym subject 3. How-
ever, the winner reached a really impressive score on subject 2 (thvst'vgubject according
to the general performances), leading him to the best overall resulthad/éo withdraw a
large part of the EEG data from subject 2, as they were contamined bactstifThis small
amount of training data used may explain why FURIA has been outperfdrynid winner on
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Table 2.7: Maximal classification accuracy for the test sets of data adtaiin BCI competi-
tion 2005 (%)

S1 S2 S3 | Mean

Winner 86.67 81.67 85.00| 84.44
2nd 92.78 57.50 78.33 76.20
3rd 96.11 55.83 64.17| 72.04
FUuRIA 90.56 69.17 88.33| 82.68

Schidglet al[SLBPO5] | 77.2 52.4 53.9] 61.17

this subject. Globally, our method reached the second position, with a sdgr&ightly lower
than the one of the winner. This shows the efficiency of FURIA, espeaidiBn considering
the small number of features used.

Fig. 2.5 displays the fuzzy ROI and corresponding fuzzy frequenagdautomatically
learnt by FURIA for subject 3. What can be noticed here is that theyfR&2l identified as
relevant are located in the left and right motor areas, for frequenegsbelearly within theu
(8-13 Hz) andB (13-30 Hz) rhythms. This is consistent with the literature on motor imagery
[PdS99, PBSdS06, EGNO3] which, again, enhances the interpretalfilitye @xtracted fea-
tures. It should be noted that we have used, within SLORETA, a starmhaldhon-realistic
head model. Indeed, this model represents the head as three congamness In order to
reach a more accurate and more exact source localization, and, as $gtter interpretabil-
ity, it would be interesting to use a realistic head model which correspondsctoseibject’s
anatomy. More precisely, it would be interesting to work with a head modedrgead from
MRI (Magnetic Resonance Imaging) scans of each subject’s headrtuUnétely, such scans
were not available for these data.

2.5 Conclusion

This chapter has presented FURIA (Fuzzy Region of Interest Actpatyjainable feature ex-
traction algorithm for Brain-Computer Interfaces which is based on iev&stutions. This al-
gorithm can be trained to automatically identify relevant regions of intereistresir associated
frequency bands for the discrimination of mental tasks, in binary as weill@msilticlass BCI.
To our best knowledge, FuRIA is currently the only method which can autoatlst identify
relevant brain ROI and frequency bands for mental state classificatiaminvasive BCI. This
chapter also introduced the concepts of fuzzy ROI and fuzzy fregusarmds which enabled to
use efficiently the available information and, thus, to increase the classifigaitormances.
The evaluation of the proposed method, using SLORETA as the invers@osadund an
SVM as classifier, showed its efficiency. Actually, the obtained resulte w@mparable with
those of BCI competition winners. A possible interpretation is that the invetaéen, com-
bined with the FURIA training, acts as a spatial filter that removes the baokgmactivity and
the noise not correlated with the targeted mental tasks. As such it focusekewvant, subject-
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Figure 2.5: The fuzzy ROI (in red) and their corresponding fuzzguemcy band (which is
equivalent to the filter magnitude response) that were automatically obtaynesiny FURIA,

on subject 3 from data set llla of BCI competition 2005. The brighter theMred color, the
higher the voxel degree of membershig(v;). The brain is seen from the top, nose up. These
pictures were obtained with the LORETA-Key software [PM].

specific, brain activity features. An additionnal advantage of FuRIAagrtterpretability of the
learnt and extracted features, which simply correspond to the activityeitifgpbrain regions
and frequency bands. As such FuRIA is a possible solution to a prolalisedrby the BCI
community, namely, the lack of insights and interpretation that can be gainedcfrarently
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employed features [MAMOG6]. The main drawback of FURIA is its long training process. In-
deed, the discriminative power of several voxels and frequenciesdshe investigated, which
can be long if the number of voxels, electrodes or training data is largef eingk consum-
ing statistical analysis such as the ones based on permutation tests areloseter, as this
training is performed offline, this point does not seem critical. It should ladsmentioned that
in order to use an inverse-solution based method such as FURIA, aeblddirxge number of
electrodes is necessary.

By designing FURIA, we have proposed a solution for building more efficed inter-
pretable BCI systems by working at the preprocessing and featuretextréevel. In order
to build a fully interpretable BCI system and possibly an even more efficiemt ibiis also
necessary to work at the classification level. The next chapter of thissoaptis dedicated
to this point.
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Chapter 3

Classification: Studying the Use of
Fuzzy Inference Systems for Motor
Imagery-based BCI

3.1 Introduction

The BCI community has stressed the need to explore signal processingtezhwhich could
lead to more efficient BCI from which we can extract knowledge [MADS]. The previous
chapter of this manuscript tackled the problem at the preprocessingatuie extraction lev-
els. In this chapter we focus on the classification part. More preciselychiaigter focuses
on a classifier known as a Fuzzy Inference System (FIS) and studseit®uclassification in
EEG-based BCI. Indeed, as mentioned in the introduction of this manugai@have several
advantages which make them promising classifiers for BCI design. In thigteth we study
FIS for classifying popular EEG signals: motor imagery. More precisety,study FIS on
four points: (1) the performances of FIS (Section 3.4), for which wedooted a comparative
analysis with other popular classifiers, (2) the interpretability of FIS (Se&ib), (3) the pos-
sibility to add a priori knowledge to the FIS (Section 3.6), and (4) the abilitylSftb reject
outliers (Section 3.7). The next two sections of this chapter describeatasgly the specific
FIS that we used in these studies as well as the data (EEG signals andgeatuployed. The
four studies mentioned above are described in the four remaining sections.

3.2 Fuzzy Inference System employed: the FIS of Chiu

In the literature, numerous kinds of Fuzzy Inference Systems are deajlabiol, Nau97].

Among them, we chose the Chiu’s FIS (CFIS) [Chi97a, Chi97b]. Ind€&dS is robust to
noise, which is fundamental when dealing with such noisy data as EEG siffmisover, ac-
cording to Chiu, the CFIS is generally more efficient than neural netweklsh are classifiers
that have been succesfully used in numerous BCI studies {I0CL. Finally, it is a clustering-
based FIS, making it suitable for dealing with small training sets [Gui01], wisiethso very

relevant for BCI design [LCLO7].

89
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3.2.1 Extraction of fuzzy rules

The fuzzy rules of a FIS are generally designed by hand or automatisatbceed from data
(or both). With the CFIS, three steps are required to automatically extratiizhe “if-then”
rules from data: clustering of training data, generation of initial fuzzysraled optimization
of fuzzy rules.

3.2.1.1 Clustering of training data

A clustering algorithm known as “substractive clustering” [Chi97b] isligplto the training
data of each class separately. The training data must be normalized in@bdebounded by
a unit hypercube. The first step of the clustering algorithm consists in etmgpthe potential
P, of each data poinX', using the following equation:

n 4 i i2
— 5 |[X'=XJ]|
P=YYe ® (3.1)
le

wheren is the number of training data for the considered cl&ggepresents the normalized
radius of the clusters and must be specified by the usel| 4nd the euclidean distance.

Then, the poinX* with the highest potentidd; is defined as the center of the first cluster.
This computation ensures that the center (i.e., a point with a high potential) intahpt has
many close neighbors. As such, it prevents outliers from being a camdésramodifying the
position of the center.

The second step consists in revising the potential of all the data pointdaggdo the
cluster centeX obtained previously:

~ ama X XK P

R I 3.2)

The point with the highest revised potential is then selected to be the netdrotesiter.
The revising of the potentials prevents centers of clusters from beindase. cThis process of
revision/selection is repeated until the potentials of all the data points are bgjwen thresh-
old. Such a method enables to find automatically the number of clusters andasigimns.

3.2.1.2 Generation of the fuzzy rules

A fuzzy “if-then” rule is generated for each cluster found previoustgr a given clustei,
belonging to clas€l;, the generated fuzzy rule is:

if X1 is Ajp and. .. and Xy is Ajy then class is Gl

whereN is the dimensionality of the dat is thek" element of a feature vector andAj is
a Gaussian membership function:

%) = o HCGE
Ak(X) =e = ik

(3.3)
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wherexi is thek!" element of the vector representing the center of the clusterganis a
positive constant which is initially the same for Ali. To increase accuracy, the membership
functions can be “two-sided” Gaussians with a plateau and a differemiaté deviation on
each side (see Fig. 3.1).

1

Figure 3.1: A two-sided Gaussian function, with meanandx, and standard deviatior
ando;,.

The degree of fulfillmenfy; (X) of a rule j is computed as follows:

N
00 = [ AR (3.4)

Thus, the standard multiplication is used here astittoperator.

3.2.1.3 Optimization of the fuzzy rules

Last, each membership functiény is tuned according to gradient descent formulas [Chi97a]:

(1- He,max+ Hﬂc,max) (X — Xjk)
o2
jk

Xjk < Xjk :i:)\l.lj (3.5)

(l — |Jc7max+ I-lﬁc,max) (Xk - Xjk)z
o3
jk

Ojk <:O'jk:|:)\uj' (3.6)
wherel is a positive learning rate which must be defined by the assthe class of the feature
vectorX, Hc maxis the highest degree of fulfillment among the rules that assida the clasg,
andp-¢ max the highest degree of fulfillment among the rules that do not as&igm the class
c. Only the fuzzy rules corresponding f@max and ¢ max are optimized. In Equations 3.5
and 3.6, the “+” sign is used for the rule correspondingidpax and the “-” sign for the one
corresponding t@Lc max
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3.2.2 Classification

Once trained, the FIS can use its set of fuzzy rules to classify any raduréevectotX. The
class assigned t& corresponds to the class associated with the juier which p;(X) of
Equation 3.4 is the highest.

3.3 Motor imagery EEG data

In order to evaluate the use of Fuzzy Inference Systems for BCI, eepmpular EEG signals:
motor imagery data. This section describes both the data sets of EEG motoryrtizgere
used and the features that we extracted from them.

3.3.1 EEGdata

The data used for this study correspond to the EEG data set IlIb of thedpetition 2005
[BMK *06]. This data set gathers the EEG signals recorded from three subjestsad to
imagine left or right hand movements. Hence, the two classes to be identifiedlvedt” and
“Right”.

The EEG signals were recorded by the Graz group [PNO1, SNPORL bgoolar elec-
trodes at positions C3 and C4, and were filtered between 0.5 Hz and 30d+#d not perform
additionnal preprocessing before feature extraction. Subject 1 tabkpa virtual reality ex-
periment [LSL"04] in which the detection of left or right imagined hand movements triggered
a camera rotation towards the left or right respectively, in a virtual roarjeSts 2 and 3 took
part in a “basket” experiment in which the detection of left or right hand enments made a
falling ball displayed on the screen, move towards the left or the right. Thenvas to reach
one of the two baskets located at the bottom left and bottom right of thenspr&€P04].

For subject 1, 320 trials were available in the training set, whereas thetesiscomposed
of 159 trials. For subjects 2 and 3, both the training and the test sets waposed of 540
trials. Each trial was 8 seconds long, and was divided as follows: dtivefiyst two seconds, a
blank screen was presented to the subject. At second 3, a visual speaganted to the subject
in order to tell him which imagined hand movement he should start performing inategd
Finally, the data from second 4 to 8, for subject 1, or from second 4 to $ubjects 2 and
3, were used to provide feedback to the subject, according to the imagamednmovement
detected. This feedback was either the rotation of the virtual environnoerstibject 1, or the
movement of the ball for subjects 2 and 3. More details about this datarsdtectound in
[BMK *086].

3.3.2 Feature extraction method

For further classification, it is first necessary to extract featuras fieese EEG signals. In
order to do so, we chose to use Band Power (BP) features sinceeatahels are known to be
efficient for motor imagery classification (see section 1.5.2.1) [PNO1].

The main drawback of such features is that subject-specific frequemgys, in which the
BP is to be computed, must be identified before use. Actually, the optimaleinetps for



Motor imagery EEG data 93

discriminating between left and right hand movements vary from subjectbjecty{PNO1].

Moreover, and independently from the features used, it is necessatgntify, for each sub-
ject, the optimal time window in which to extract the features in order to achievénmhx
discrimination. This time window is located, for each trial, after the start of tedlfack pre-
sentation, i.e., after second 4. It is indeed the period in which the subjestfming motor

imagery.

3.3.2.1 Selection of optimal time window and frequency bands

In order to find the relevant time window and frequency bands, we useétiaod based on
statistical analysis. It should be noted that these calibration steps wévenped before enter-
ing the classification procedures with the aim of identifying the frequencgsand the time
window to be used. Once identified, these frequency bands and the timewvinere used
without modification in the classification procedure.

To identify the subject-specific frequency bands, we used a pairetwiésh compared
the BP means between both classes, for every 2 Hz wide frequencybamelen 1 Hz and 30
Hz, with a step of 1 Hz. As expected from the litterature [PNO1], the freqigs for which the
BP achieved the best discrimination were found ingtend 3 bands, which supports the use
of such features (see Figures 3.2 and 3.3).

10

statistics for subjeét 1, electrode c3 —
statistic for o = 0.01 --------

t statistic

1
0 5 10 15 20 25
frequency (Hz)

0

Figure 3.2: T statistics obtained with the BP features extracted for eaalefrey from elec-
trode C3 with Subject 1, in the optimal time window (see below for the determinatittiso
time window). The dashed line represents the significance threshalo=d0.01.

Adjacent significant frequencies (with probability of type | error belew- 0.01) were
gathered into a single frequency band. Then, for every frequesiegt,kashrinking step was
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10

statistics for subject 1, electrode C4 ——
statistic for a = 0.01 --------

t statistic
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frequency (Hz)

Figure 3.3: T statistics obtained with the BP features extracted for eaalefiey from elec-
trode C4 with Subject 1, in the optimal time window (see below for the determinatititiso
time window). The dashed line represents the significance threshald=fdp.01.

performed which consisted in reducing the frequency band (making itdhbizer) and com-
puting a new statistics for this band. If the new statistics was higher than thieysene, the
shrunk frequency band was selected. The shrinking process weateel until the statistics
could not be increased any further.

To identify the optimal time window in which to extract the BP features, we peréorthe
statistical analysis mentioned above for several time windows, and seleetedehwith the
highest mean value of significant statistics.

3.3.2.2 Features extracted

The parameters used for BP feature extraction are summed up in Table 3hls fable, the
window start value is given in seconds after the start of the feedbacleptation.

Thus, this BP feature extraction method represents each trial by a founslonal feature
vector:[C3,,C3g,C4,,C4g] in whichCp, is the BP value for electrodepin they band. These
feature vectors will be used as input data for the following classificatigm ste

3.4 First study: Performances

In this section we study the performance of the CFIS for motor-imageryiftason. In
order to do so, we compared the performance of CFIS with that of thresifidas widely
used in the BCI community. Two performance measures were computedcudraay, i.e.,
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Table 3.1: Parameters of band power feature extraction for each subjec

Subject C3 C3 C4 Cc4 window window
pband B band pband B band start length

(Hz) (Hz) (Hz) (Hz) () ()
1 11 2129 11-13 2127 0.4 25
2 8-13 20-24 11-14 2029 14 1.5
3 9-12 21-22 11-12 1825 14 1.5

the percentage of correctly classified feature vectors and 2) the mufaahation, which
compares the amount of information carried by the classifier output anc:tisudhclass labels
[SNPO2, SKSPO03].

3.4.1 Classifiers used for comparison

To assess the performance of the CFIS algorithm, we selected threempdpasifiers widely
used in the BClI community and which were shown to be the most accurate elassifseveral
BCl experiments (see Section 1.6) [LEQ7]. The first classifier was a non-linear SVM using a
Gaussian kernel [Bur98]. The second classifier was a MLP with orgehithyer and sigmoid
activation functions [Bis96]. The third classifier was a Perceptron, Lenear Classifier (LC)
equivalent to LDA [DHSO01].

The implementation of these three classifiers was achieved using the To#chbCary
[CBMO02]. The optimal values for the hyperparameters (radRgdor the CFIS, regulariza-
tion paramete€ for the SVM, etc.) of MLP, LC, SVM and FIS were chosen using 10-fold
Cross Validation (CV). Two-sided Gaussians were used as membersbipfis for the CFIS.
These functions were found to give the best generalization perfoer@mehe training data.
This generalization was also estimated using 10-fold CV. The four classiiere trained on
the training sets of the motor imagery data described in Section 3.3, using theegeafore-
mentioned.

3.4.2 Accuracy and Mutual Information

Table 3.2 displays the average accuracy and Mutual Information (MNP[®] obtained by
each classifier on each subject’s test set.

In terms of accuracy, the results showed that CFIS outperformed LCeaatied similar
results as SVM and MLP. Concerning M, the results showed that CHISrpeed better than
SVM and LC and was outperformed by MLP.

3.4.3 Conclusion

The accuracy reached by the CFIS algorithm makes it suitable for motor iyabgsed BCI
applications. Indeed, concerning accuracy, the CFIS reachedrtieelsgel of performance as



Table 3.2: Accuracy (%) and Mutual Information (MI) of classifiers

Subject CFIS SVM MLP LC
1 86.4+1.6 86.8£0.0 86.6:0.3 84.10.9
Acc. 2 74.7+15 759405 75.5+0.1 71.8:1.8
3 757106 75405 74.6:0.1 72.'&£2.0
Mean 79+1.2 79.40.3 78.9:0.2 76.2t1.6
1 0.49+0.07 0.3#0.12 0.63+0.03 0.45+0.03
Ml 2 0.17+£0.00 0.2@-0.00 0.29£0.02 0.19+0.00
3 0.26:0.01 0.24£0.03 0.29+0.04 0.20+0.03
Mean | 0.30+0.03 0.270.05 0.4@:0.03 0.28:0.02
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the most popular classifiers used for BCI design. It should also be tiwgdiue to its relative
computational simplicity, the CFIS is suitable for real-time use.

3.5 Second study: Interpretability

As seen previously, FIS are classifiers that are known to be interfgetah, the rules they
automatically learn to classify data can be read and interpreted by the usigis $ection, we
study this interpretability in to order to assess if it can be of practical udgGbipurposes. In
order to do so, we will focus on the fuzzy rules extracted by the CFISuommtor imagery
data.

3.5.1 Extracted fuzzy rules

The rules automatically extracted by the CFIS from the EEG data of subjeetdisplayed in
Figure 3.4. In this Table, each row represents a fuzzy rule and eaghrcoepresents a feature.
As such, the function displayed in ropand columrk is the fuzzy membership functioh,
i.e., the membership function for rufjeand featureX. Interestingly enough, only two fuzzy
rules were extracted for each subject.

3.5.2 Interpretation

The interpretation of the extracted rules displayed on Figure 3.4 is that ter por electrode

C3 in thep and B bands during imagined right hand movements is smaller than that during
imagined left hand movements. A symmetric behaviour can be observed ¢tnodie C4. In
EEG research, this phenomenon is known as contralateral Event RBlasgdchronisation
(ERD) [PK92]. Actually, it is known that when a subject imagines a moveroéohe of his
hands, there is a decrease of energy in his motor cortex from the opgidsitef the hand used
[PK92].
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then
if C3yis andC3g is andC4, is andC4g is class
is

Rule 1 /\ / \ Right

05 1 05 105 10
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Figure 3.4: Fuzzy rules automatically extracted by CFIS for subject 1.

Left

3.5.3 Conclusion

The interpretability of the CFIS has been studied here on properties iof dyaamics that
have been known for a long time. Even thougharpriori knowledge was used for the training
phase, the CFIS was still able to automatically extract relevant informatiant &RD and to
display it in an understandable way. Such a possibility could be used to didaltyaextract
novel knowledge about the brain dynamics in BCI experiments. As the tsratill far from
being fully understood, this property appears to be very interesting [MO].

3.6 Third study: Adding a priori knowledge

As mentioned earlier, an interesting property of FIS is the possibility they tffdesign and
use Hand-Made Fuzzy Rules (HMFR) [Men95]. Indeed, as FIS itgos are made of a set
of fuzzy rules, it is possible to add any kind of supplementary fuzzy ‘#rthrule to them.
For instance, hand-made rules designed by experts in the field candeassse@riori infor-
mation and added to the set of rules extracted automatically. This sectiotsrdpostudy we
conducted on this point.

3.6.1 Conception of “hand-made” fuzzy rules

Onea priori knowledge concerning hand motor imagery EEG data concerns the peesin
contralateral ERD in thgand bands [PK92]. Specific hand-made rules that reflect the mean-
ing of ERD could state that if the activity in theand3 bands is higher in one electrode (C3
or C4) than in the other, then it means that the subject is imagining a movemeasthant of

the same side. Such rules could be formalized by a human expert as follows:

Rule 1: ifC4,, > C3, andC4g > C3g then class is Right
Rule 2: ifC3,, > C4;, andC3g > C4g then class is Left
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To describgCp, —Caqy) > 0 (i.e.,Cp, > Cq) using membership functions, we could use
the following functionh:

h(x):{ 2 iig 3.7)

Howeverhis a crisp function, i.e., it is not a fuzzy function. To use a fuzzy functibiciv
range isin [0,1] and not in {0,1} it is possible to introduce the well-known sighfionctiong:

1

g(x) = m

(3.8)

This function describes the same relationshifhasut in a “fuzzier” way. Besides, when
A — to theng — +h. Finally, two HMFR usingg as membership functions can be designed
to discriminate left or right imagined hand movements as displayed on Fig. 3.5.

then
if (C3,-C4y)is and C3g - C4p) is class

el & l o
1 1

Rule 2 j j Left
0 0

Figure 3.5: Hand-made fuzzy rules to classify motor imagery data

Using schemes of trials and errors on the training sets, the optimal valderas chosen
to be+21500 in the four membership functions. It should be noted that suchcate®t be
learnt by the CFIS as they describe relationships between featurestahe properties of the
features.

3.6.2 Performance

We computed the accuracy of the proposed HMFR, as well as the avamageacy of a CFIS
that contains both automatically extracted rules and HMFR (see Table 3i8)lagshclassifier
is denoted as CFIS+HMFR in the following. One should note that the agcotdained with

HMR is not an average value. There is no need to train the classifier vaireg HMR. Con-

sequently, the FIS classifier with hand made rules will always reach the aecneacy on a
given data set.
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Table 3.3: Accuracy (%) of trained CFIS versus FIS made of HMFR

Subject 1 2 3
HMFR 87.4% 66.5% 72.6%
CFIS 86.#41.6 74415 75.4#0.6

CFIS+HMFR 88.1+0.4 72.441.0 75.6£0.6

These results first show that the HMFR accuracy is much higher thasehahich means
that efficient HFMR using a priori knowledge on motor imagery can be desigand can
classify imagined hand movements.

The performance of the CFIS+HMFR classifier are contrasted. Indeedched a higher
accuracy than CFIS on Subject 1. This score is even higher than aey d#ssifier used
in Section 3.4.2 such as MLP or SVM. The result is opposite on Subject 2 @sacy of
CFIS+HMR is smaller than that of CFIS. No significant difference candseosed on Subject
3. These results can be related to the accuracy obtained by the HMFR Alduoally, it seems
that the HMFR giving good results alone can lead to an even better clasgiker combined
with automatically extracted rules, as seen with Subject 1 for instance. Orthéel@and,
the HMR giving relatively poor results alone, would probably reduce #réopmance of the
classifier when combined with automatically extracted rules, e.g., for Subject 2

3.6.3 Conclusion

This study suggested that it was possible to design HMFR that repregeiorisknowledge
on motor imagery and use them within a BCI. It also seems that if the designdeRHive
efficient, they may increase the performance of a FIS by being addedamatically learnt
rules. This result should be relevant to BCI research as it means Fl$enale to exploit
knowledge that is present in the vast literature about EEG [MAB.

3.7 Fourth study: rejection of outliers

Outliers are feature vectors that do not correspond to any of the tdngetetal tasks. They are
commonly recorded during a BCl experiment. These outliers should nta$sfeed since they
are likely to be associated with a wrong class label. To reduce the errpoudliers should be
rejected, i.e., identified as not belonging to any one of the targeted cl&&sjesting outliers
can also be particularly important in asynchronous BCI experiments in wihéchubject can
think about anything but the targeted mental tasks during the so-calleecordrol” state (also
known as “idle” state) [TGP04, MKHO06].

In this section, we study the outlier rejection capabilities of the CFIS algorittoorapared

to other classifiers used in previous BCI experiments: SVM, MLP and L€3iflars described
in Section 3.4.1.
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3.7.1 Method

To evaluate the CFIS outlier rejection capabilities, we generated artificial sutyerandomly
placing new feature vectors at a large distance from the feature vexdttrs test sets. This
distance was selected randomly from 2 to 4 times the standard deviation citalieectors.
This technique ensures that outliers lied outside the pattern of each dassefarence to the
definition of an outlier given by Mooret al [MM99]. We added 25% of such outliers to each
test set. A third class label was assigned to the outliers to ensure their ctgsifiwould
increase the error rate.

For the CFIS, a feature vector was rejected if the highest degree dfrielfit was smaller
than a given threshold. For both SVM and LC, rejection occured if thelatesvalue of their
output was smaller than the given threshold. For the MLP, rejection wisperd if the largest
output value was smaller than the threshold. All classifiers were trainededraihing set of
each subject. Then, we computed the error-reject curves for thessifieless [JDMO0O] on each
subject’s test set with added outliers. These curves were computeddyadly increasing the
value of the rejection thresholds and computing the error and reject ra#dl these values.
The classification error rate was defined as being the percentagaafs/assigned to a wrong
class.

3.7.2 Results

The error-reject curves for each subject are displayed on Figuées3.7 and 3.8. On these
curves, the X-absciss corresponds to the reject rate and the Y-@rthrthe classification error
rate.

error-reject curve for Subject 1
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Figure 3.6: The error-reject curves for each classifier, on datalgpést 1.
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Figure 3.7: The error-reject curves for each classifier, on dataljést 2.
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Figure 3.8: The error-reject curves for each classifier, on dataljést 3.

The error-reject curves for MLP, LC and SVM suggest that thessiflars must reject a
lot of feature vectors before reaching a low error rate which meansctayot make a clear
distinction between outliers and regular vectors. On the contrary, thebatea the CFIS
curves is much smaller than the one of any other classifier. As an examp&cafreach an
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error rate of about 7% when rejecting 28% of the data of Subject 1. achrthe same error
rate, MLP, Perceptron and SVM have to reject nearly 93% of the data.shbws that CFIS is
able to identify and reject efficiently the ouliers, which makes its error rate dramatically.

These differences can be explained by the fact that CFIS is a gererkassifier whereas
MLP, LC and SVM are discriminative classifiers (see section 1.6.1). bhddiscriminant
classifiers can only identify to which of the targeted classes the featutervmost likely
belongs to, and not if it actually belongs to one of these classes or not.

3.7.3 Conclusion

The results of the rejection tests suggest that the CFIS algorithm was akdetifyithe outliers
more efficiently than the MLP, LC and SVM classifiers. In presence of ostli@FIS could
reach a small error rate when rejecting only few feature vectors. Tthetewere performed
on artificial outliers, and as such, should be further confirmed on e¢al tHowever, the clear
difference between the error-reject curves of CFIS and that ofttter olassifiers makes CFIS
a very promising classifier for outlier rejection in motor imagery-based BCI.

3.8 Conclusion

In this chapter we have studied the use of a Fuzzy Inference Syst&nf@ffimotor imagery
classification in BCI. We first studied the performance, in terms of clasificaccuracy and
mutual information, of the Chiu’'s FIS (CFIS) [Chi97a]. It reached simiksults than the
most popular classifiers used in BCI. It should be mentioned that the inGrEES in terms
of classification performance for BCI has been noticed simultaneouslyibgroup [Lot06]
and another group [HPMO06]. Second, we stressed the interpretabithie 6fFIS, which could
be used for brain knowledge discovery. Third, we studied the possibfliadding a priori
knowledge to the CFIS under the form of Hand-Made Fuzzy Rules (HMS&table HMFR
were shown to improve the performance of a trained CFIS in some casedly,Rine CFIS
capabilities of rejecting outliers were assessed on artificial data, showisgpiesiority over
classifiers commonly used for BCI. Taken together, our results sutigastlS classifiers are
promising for BCI as they address several issues raised in the commuugltyas the need for
interpretable classifiers to which a priori knowledge could be added [MB&].

The fact that FIS are interpretable classifiers, providing that their ifgautires are also
interpretable, makes such a classifier a very promising companion for Rid Features. In-
deed, combining interpretable features, such as FURIA features, witteapretable classifier,
such as CFIS, may lead to an efficient and fully interpretable BCI systeah &system would
be able to recognize the different mental states while, at the same time, infadheiBg| de-
signer about the brain regions and brain rhythms (frequency bandsyéa. This system
could also inform the BCI designer about which activity in these regiodsraythms corre-
sponds to which mental state. These points will be highlighted in the next ci{@ftapter
4).
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Towards a Fully Interpretable BCI
System: Combining Inverse Solutions
with Fuzzy Logic

4.1 Introduction

In Chapters 2 and 3, we have proposed and studied feature extraatied dn inverse solutions
and classification based on fuzzy inference systems. We have shavothanethods could
provide insights on how the brain works, and as such we suggesteddfatatld be used to
design an interpretable BCI system. In this chapter we propose an algonittiah, is based on
inverse solutions and fuzzy inference systems, to design fully interpeddli systems. The
proposed algorithm goes beyond a combination between FURIA and ifufezgnce systems.
Indeed, this algorithm also makes it possible to express the knowledge aigalma&xtracted
by the BCI using simple words. As such, it should enable people not famiiibralassifiers
or fuzzy inference systems to understand what has been automaticatitybgahe BCI. This
chapter is organized as follows: Section 4.2 investigates the limitations of methoéstly
proposed to extract knowledge from BCI. Section 4.3 describes theitalgove propose in
order to design a fully interpretable BCI. Finally, Section 4.4 reports orvaluation of our
method on two kinds of EEG data.

4.2 Extracting knowledge from current BCI systems

Despite the promising possibilities offered by an interpretable BCI [MA, KFP93], very
little has been done in the literature to design such a BCI. A few works halered the pos-
sibility to extract knowledge about the brain from what the classifiers kemat. Typically,
this has been achieved by studying the weights of a trained neural ngiw®@6], the nodes
of a decision tree [KFP93] or the weights of a trained support vector ma¢BJL"08]. This
could give insights on what were the most relevant features, and itigirex what were the
most relevant channels and/or frequency bands. Although this informegtioears as interest-
ing, it requires the analysis of tens or hundreds (sometimes thousan@situfes, and does
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not provide a concise, straightforward and easy to understand exiplarof what has been
learnt by the BCI. Moreover, such methods can report on the mostrgléatures, but may
not explain which values for these features correspond to which meatal s

Similarly, feature selection techniques have been applied to interpretablie&Gies and
analyzed in order to gain some knowledge from the data analysis method]BGRMFM"02].
As in works previously mentioned, such methods can identify the most re¢lfaatmres and,
as such, the most relevant channels and/or frequency bands. elpwmse methods cannot
explain the relationship between these feature values and the mental stiaesge. In other
words, such methods may not be used to give insights about what isttiagpethese relevant
channels or frequency bands.

4.3 An algorithm to design interpretable BCI

In this chapter, we propose an algorithm to design an interpretable aci@mffBCI system.
The proposed method can report on what are the relevant brain segnohfrequency bands
involved in the mental states used in the BCI, and can also report on whighyain these
regions and frequency bands corresponds to which mental state.oWoreur method can
report on all this information in a synthetic way albg using simple worddn order to do so,
our method first combines efficient and interpretable features with areetfend interpretable
classifier. Then it relies on the “computing with words” framework of Zajdu96b] in order
to increase the interpretability of the system by using words instead of nambleis section
first proposes an overview of our method, then it details the 3 steps corgpbis algorithm,
namely, extracting interpretable features, using an interpretable classitiemproving the
interpretability.

4.3.1 Overview
Our method to design an interpretable BCI can be divided into three steps:

1. Feature extraction: To obtain an interpretable BCI, we first need to use interpretable
features. As interpretable and efficient features, we used inveig@aebased features
and more especially FURIA features (see Chapter 2).

2. Classification: Similarly, to obtain a fully interpretable BCI, the classifier should also
be interpretable and should not behave as a black box. We need a efagkitth can
report on which input feature values correspond to which output,classto which
mental state. Consequently, we used as classifier a Fuzzy InferestanS§FIS) and
more precisely, the Chiu's FIS (CFIS) (see Chapter 3).

3. Improving interpretability: Interpreting means reasonning, and humans are more used
to reason with words than with numbers. Consequently, the last step of dhodne
consists in performing linguistic approximation, i.e., in presenting what has lbaent
by the system using words rather than numbers.

These three steps are described in more details in the next sections auti@retized,
along with an artificial example, in Figure 4.1.
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Figure 4.1: Schematic representation of the proposed algorithm towardegiys of an inter-
pretable BCI. An artificial example is also provided to ease the understaridithe example
tables provided, each row corresponds to an “if-then” rule, and @alaimn to a feature. These
rules describe the feature values for the mental state they infer.

4.3.2 Feature extraction: FURIA features

As interpretable and efficient features, we selected features leateixénacted by the FURIA
algorithm. As mentioned in Chapter 2, features extracted with FURIA carnelje the activity
in a few brain regions and their associated frequency bands. Thisnafion corresponds to
a relevant physiological information which can already give insights anthe brain works.
Moreover, FURIA generally extracts a small number of relevant feative, a small number
of brain regions and frequency bands. This is also interesting as too featnyes would
mean too much information to be analyzed by the human, and as such, thesitatéoprwould
become difficult. However, on their own, such features cannot rgponthich values of these
features are related to which mental state. To obtain this information, it isssgeds input
these features into an interpretable classifier.

4.3.3 Classification: the Chiu’s Fuzzy Inference System

In order to classify the FURIA features we selected the CFIS classiBtud.recall that, as all
FIS classifiers, the CFIS can automatically extract fuzzy “if-then” rulesifdata and can use
these rules to classify new input data. With the CFIS the form ofttheizzy rule is as follows
(see Chapter 3 for details):

If XyisAjpand...and isAj and...andXy is Ajy Then Class i€
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In our BCI, theX; are the FURIA features i.e., the activity in a given brain region and a given
frequency band, an@; is a given mental state. This formalism based on rules makes it possi-
ble to interpret what has been learnt by the classifier. Indeed the &xtnades can report on
which activity in each relevant brain region and frequency band sporeds to which mental
state (see Chapter 3). Combining these FURIA features and this CFI8ietdeads to the
final BCl we used to classify the mental states. The resulting BCI coulddifeainterpreted

by any BCI researcher who is familiar with fuzzy membership functions. évew despite

the interpretability already attained, it should be recognized that thesgrfuamnbership func-
tionsAji do not provide the most simple and straightforward way to interpret the dnlésed,
these membership functions are mathematical functions and, as suclssdkpoerledge with
numbers. In order to ease the interpretability of the system, we performedt stdg in our
method: the linguistic approximation. This should enable us to display the autolyatica
tracted knowledge in a way understandable by persons who do notamghing about fuzzy
membership functions.

4.3.4 Improving interpretability: linguistic approximat ion

Zadeh, the creator of fuzzy sets and fuzzy logic, stated that “the mainitagion of fuzzy
logic is a methodology for computing with words. No other methodology seriegtinpose”
[Zad96b]. Interestingly enough, humans tend to reason with words hwiicds generally
correspond to a fuzzy definition. Fuzzy logic can express the fuzziokthese definitions
by using linguistic terms. A linguistic term is actually a fuzzy set that describgsrd. In
[Zad96b], Zadeh defined the process which consists in replacingad sdes based on non-
linguistic fuzzy sets (i.e., a set of rules based on numbers) by a set sftraged on linguistic
terms and their associated fuzzy sets. This process is known as a “linguaptiaximation”,
or, equivalently, as a “retranslation process”. The fuzzy sets usédearnt by the CFIS do
not correspond to linguistic terms. As such, performing a linguistic appraiomaf the learnt
rules would lead to a CFIS expressed with words, hence leading to a B@hsyvhich should
be more easily interpretable.

In order to perform this linguistic approximation process, we followed Yadgemework
[Yag04]. Following this framework, we should first define a vocabylagy, a set of fuzzy
setsLg (k € [1..N¢]). Each fuzzy seLy represents and describes the widd i.e., theLy are
linguistic terms. Then, we would like to express eaghi$ A;” by “X; isW". In other words,
we would like to replace each fuzzy set automatically learnt by an apptepviard, i.e., we
would like to express numbers by words. To do so, we first need to $edecthe vocabulary
the linguistic termLy that best matche&;i. Once this selection is done, we can replaxe “
is Aji” by “X is Wk” as Wk is the word described bly. The way we performed these steps
of vocabulary definition and linguistic terms selection is described in details ifollogving
section.
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4.3.4.1 Defining the vocabulary

The first step required to express the fuzzy rules using words is taedbérvocabulary of these
words (i.e., the linguistic terms) and their associated fuzzy sets. The CHSfidacan use
two kinds of membership functions for its fuzzy sets: simple Gaussian meniféusiations
or two-sided Gaussian membership functions (see Chapter 3). We chessettee same kind of
membership function for defining the linguistic terms. Our vocabulary is coatpoka set of
these fuzzy sets, regularly spaced in the [-1:1] interval and with the staméasd deviations
o for all membership functions. Naturally, different levels of granularitylddbe used, by
selecting a different numbe; of linguistic terms. Here, we used only odd valuesipr In
order to define a vocabulary witk linguistic terms, based on simple Gaussian membership
functions, we used the following equations to define the mgand the standard deviatian
of thek" membership function:

1
o= (4.2)
(N —1)y/2n(2)
In order to define a vocabulary with linguistic terms, based on two-sided Gaussian mem-
bership functions, we used the following equations to define the left mgathe right mean
Mrk and the standard deviatian(the left and right standard deviations are equal):

2k 1
S (Vi P (e )
2k 1
T R TN ) o
= (4.5)

o=
2(N — 1),/2In(2)

Once the fuzzy sets were defined, we associated the correspondiddgoneach of them.
For instance, foN; = 3, we used the words “Low”, “Medium” and “High”, whereas fisf =
5, we used the words “Very low”, “Low”, “Medium”, “High” and “Very igh”. Figure 4.2
displays an example of a vocabulary with= 5 linguistic terms, based on two-sided Gaussian
membership functions.

Once this vocabulary has been defined, the actual linguistic approximatioags can be
achieved. More particularly, this linguistic approximation consists in selectingaistic term
in order to replace each fuzzy set used in the fuzzy rules.

4.3.4.2 Selecting the appropriate linguistic terms

Various criteria can be used to select the appropriate fuzzy set fromotadulary with which
a fuzzy set from the CFIS will be replaced. Among the different criter@psed by Yager
[Yag04], we chose to use a single one, namely the “closeness”, wHielbtsehow close two
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Figure 4.2: A vocabulary of linguistic terms, with 5 terms (Very low, Low, MedjuHigh,
Very high). The fuzzy membership functions used are two-sided Gawufgsiations.

fuzzy sets are from each other. In our system, we defined closeitbsggpect to the distance
between two fuzzy sets A and B:

1
I AB)=—""—"—+ 4.6
closenes\ B) = 1 isiia B) (4.6)
As the vocabulary we used is based on Gaussian membership functions evisartie
standard deviation, we considered a simple definition for the distance retweduzzy sets,

which does not take into account the standard deviation of their membeusitpohn. When
using simple Gaussian membership functions, this distance is:

dist(A,B) = [La — s (4.7)
with pa andpg being the mean of the two Gaussian membership functions representing the

fuzzy setsA andB. When using two-sided Gaussian membership functions this distance is:

diSt(A, B) _ | (uLA+ IJRA) . (ULB+ IJRB)

5 5 | (4.8)

with W a, Ura Mg andprg being the left and right means of the two-sided Gaussian member-
ship functions representing the fuzzy satandB.

Once the closeness is defined, the remaining of the process consistaagX; is Aji”
by “X; is L¢" whereLy is the fuzzy set from the vocabulary for whictosenes@ji, L) is the
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highest. Finally, it becomes possible to expreXsis Aji” by “X; is W” whereW is the word
described by.

Before selecting these linguistic terms, a small normalization process is hovemassary.
Indeed, the fuzzy sets from the vocabulary are defined on the [-1etj/ad, but the fuzzy sets
learnt by the CFIS can be defined on a different interval. Consequéefiyre computing the
closeness between the fuzzy sets, the mgang ©r pr) of the fuzzy sets from all rules should
be normalized in [-1:1], independently for each input feature. This mishe term “Low”
may represent different values for the first and for the third featar@stance. In other words,
the labels used are relative to a given feature and not absolute.

This step of linguistic approximation is the last step of our method. After thissssyevhat has
been learnt automatically by the BCI system can be expressed by a gethefii” rules. These
rules can report on which activity in relevant brain regions and freqqubands corresponds
to which mental state, all of this using only words. As such, it could be azdeabat this
tool would provide some valuable information on the brain dynamics while degignBClI
system. This point is assessed in the next section of this chapter, dedictiedvaluation of
the proposed method.

4.4 Evaluation

In order to evaluate our algorithm, in terms of both performance and intelplity we worked

on two different kinds of EEG data. The first set of EEG data was thesddith/ of the BCI
competition 2003 [BMK 06], studied and described in Section 2.4.1.1. The second set of
data gathered brain signals related to visual spatial attention and eye moyaearation
[TLKO4, TAAO8]. The aim of this evaluation was first to assess if the raasomatically
extracted with the method were consistent with the physiological literature se gignals.
Additionally, we evaluated the performances of the designed BCI in termiasdification
accuracy.

This section first presents the two EEG data sets used. Then, it pregergsuhis obtained,
i.e., the classification accuracies obtained and the linguistic rules extragtedHe data.

4.4.1 EEG data used
4.4.1.1 BCI competition 2003, data set IV

EEG signals contained in this data set correspond to either left hand mavarterions
or right hand movement intentions, for one subject [BMI6]. They have previously been
described in more details (see Section 2.4.1.1). The parameters of FuRl8aeddor these
data are the ones presented in Chapter 2, and as such, the resultingdR@cuency bands
obtained are the ones displayed in Figure 2.4.



110 chapter 4

4.4.1.2 EEG signals related to Visual Spatial Attention

EEG signals from this data set were recorded by Dr. Areti Tzelepi frarinstitute of Com-
munication and Computer Systems in Greece, and Dr. Ricardo Ron Angewnhalaga
University in Spain [TAA08]. The aim of the experiment was to record Edighals corre-
sponding to visual spatial attention towards the left or the right. Hences there 2 classes
of signals, denoted as “left” and “right”. The data used were recootedne subject who
participated to 3 sessions, each containing 25 trials from each classgBhese sessions, the
subject was looking at a screen which displayed a virtual environmprésenting a road. The
timing and principle of a trial of these sessions is represented on Figurkldtd.precisely, at

t = 0 s (start of a trial), a fixation cross appeared as well as a virtual ndered in 3D. The
car was continuously moving along the road.tAt 2 s, a virtual wall appeared, either on the
left or on the right side of the virtual environment. The subject was aské&edep fixing the
fixation cross at that time. The cross disappeardd=a6 s. At that time, the subject had to
make an eye movement towards the wall.

time

Movement of the car

Offset of fization cross—
Saccade

wall appears

onset of fixation cross

Figure 4.3: Schematic representation of the timing of a trial (picture from OZJA

EEG signals were recorded using 64 electrodes placed according taeheed 10/20 in-
ternational system. The initial sampling frequency was 512 Hz, but sigreaks downsampled
to 128 Hz before analysis. Signals were also filtered in the 3-30 Hz fnregusand before
any analysis. More details about the experimental procedure fordiagathese EEG signals
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can be found in [TAA08]. For our analyses, the first two sessiong wsed as the training set
whereas the last session was used as the testing set.

For these data, we used FURIA based on IIR filters (butterworth filtear@gtdand a stan-
dard head model composed of 2394 voxels which models the head asahoemtic spheres.
In this BCI, we considered only spatial fuzzification, and not frequeflizgification as our
results presented in Chapter 2 suggested that spatial fuzzification was#taobust. We
investigated for relevant frequency bands in the 8-30 Hz interval. Asaviqgus experiments,
we used sSLORETA as the inverse solution [PM02], and used a reguianzmrameter of 100
for this inverse solution. Concerning the CFIS, we used two-sided Gaugsctions as the
membership functions.

As with any synchronous BClI, it is necessary to identify the most ap@tepime window in
which to extract the features and classify them. To do so, we extractedi Bamer (BP) fea-
tures for several time windows of different sizes and positions, and dstintize efficiency of
each time window by 10*10 fold cross validation using an LDA classifier. fiémguency bands
in which to extract the BP features were selected using a statistical anahgsg-method sim-
ilar to the one presented in Section 3.3.2.1. Using this method we analyzed tHe fDeélta
rhythm), 8-13 Hz (Mu rhythm) and 13-29 Hz (Beta rhythm) frequency baiithis method of
time window identification was similar to what has been done by Tzelepi et alrfolar data
[TAAO8]. Indeed, BP features and LDA classifiers are computationalty efficient, and as
such, very fast to train and to use. It appeared that the optimal time wind@aw.5 s time
window started approximatly at t=2.15 s (see Figure 4.3). This time windowesponds to a
few hundreds ms after the wall appearance, which is consistent with trsuite [ TAAOS].

In order to make the system more robust to small time shifts, we extractediksggr
ments in this optimal time window. From each 0.5 s time window we extracted 5 ovartgpp
segments, each segment being 40 samples long and starting 5 samples aftarttokthe
previous one. A feature vector was extracted from each segmentemdsied for training or
testing.

4.4.2 Results

For each data set, we trained the feature extractor and the classifieravatlable training set
and tested the resulting BCI on the testing set. In order to evaluate the iteifite of our
system we investigated the rules that it automatically extracted from datapafidrted them
with that knowledge from the literature. These rules, as well as the clagsifiperformances
of the system are presented below.

4.4.2.1 BCI competition 2003, data set IV

The raw rules (without linguistic approximation) extracted by our systendiaptayed in Fig-
ure 4.4, whereas Figures 4.5 and 4.6 display the rules after linguisticamatmon, forN; = 3
andN; = 5 respectively. Let us recall that in these figures, each row rapeaduzzy if-then
rule and each column represents a feature (i.e., the activity in the ROlequikficy displayed
on top). As such, the functions or words displayed in the tables descélvalile of the activity
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in a ROI and frequency band for the mental state infered by the comdpprule.
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Figure 4.4: Rules extracted automatically by the BCI system on data set v tiie BCI
competition 2003, without using any linguistic approximation.
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Figure 4.5: Linguistic rules extracted automatically by the BCI system on diale fem the
BCI competition 2003, using a coarse vocabulary (3 terms: Low, MediudriHigh).

First, it should be noticed that even if a BCI researcher could easilyrstaohel the raw
rules (Figure 4.4), the linguistic approximations are more comfortable to Mawckover, these
linguistic approximations are more accessible than the raw rules to perstmsslinical
employees who do not know what a fuzzy membership function is. Coimcetime interpre-
tation of the system, Rule 1 suggests that, during an intention of left hand movémental
state “left”), the Beta band (here 14-28 Hz or 14-31 Hz, the standatal lBand being 13-30
Hz) activity is lower (label “Medium” or “Low”) in the right motor cortex ar¢lan in the left
motor cortex area (label “High” or “Very High”). Rule 2 suggests a syminditehavior, i.e.,
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Figure 4.6: Linguistic rules extracted automatically by the BCI system on dale fiem the
BCI competition 2003, using a medium vocabulary (5 terms: Very low, Lowdihta, High
and Very high).

that, during an intention of right hand movement (mental state “right”), the Baatd activity
is lower (label “Medium”) in the left motor cortex than in the right motor corteb@EHigh”
or “Very High”). This behavior is consistent with the literature on movemetantion. In-
deed, hand movement intention is known to trigger an event related deswisdtion, i.e., a
decrease of activity, in the motor cortex contralateral to the hand coeieimthe Beta band
[WZL 04, CLLO6, PdS99]. The rules automatically learnt by our system actieflct such
a phenomemon.

Concerning the performance of the system, the resulting BCI (using theutesy reached
an accuracy of 85 % on the test set, i.e., a slightly better score than the thevdfiner of the
competition on these data, who reached a score of 84 % [VWZL

4.4.2.2 EEG signals related to Visual Spatial Attention

Figure 4.7 displays the raw rules extracted from the data, without linguigti®=aimnations,
whereas Figures 4.8 and 4.9 display the rules after linguistic approximadioN; £ 3 and
N; = 5 respectively.

In terms of performances, this BCI system reached an accuracy of@6the testing set.
By comparison, we also used a classical BCI design based on bandfeaivges and an LDA
classifier (as in [TAAO8] on similar data). This design reached an acgwf74.8 %. This
also suggests that our BCI design can be efficient.

Concerning the interpretability of the system, we presented these rulesAodiirT zelepi
who is a neuroscience expert in visual spatial attention. According fdHee are numerous
evidences in the literature that a visual spatial attention task triggers amsecod activity
in the occipital, temporal and parietal areas, contralaterally to the side wiherattention
is drawn. In addition to this contralateral activity, results from the literatuggsest that the
temporal and parietal areas from the right hemisphere are also actikatad spatial attention
tasks, independantly from the side of the stimulus (see also [LWVOO])ARti Tzelepi could
find this behavior in the rules we presented her. She could easily explsd thkes thanks to
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Figure 4.7: Rules extracted automatically by the BCI system on visual sptéatian data
without using any linguistic approximation.

If the activity in

and the activity in

and the activity in

and the activity in

and the activity in then

K s ; ’{ Ty R
‘:‘;: % : :: ;ﬁg,‘q*ﬁ. ) -fé’.}; i the mental
e %‘F i AL state
22-30Hz
821 Hz 810 Hz i
is iz is iz is is

Rule 1 Low High Low Low Low Right
Rule 2 High High Medium High Medivm Right
Rule 3 High Medium Low Low Low Left
Rule 4 Mediumn Low High High High Left
Rule 5 High Medium High Low High Left

Figure 4.8: Linguistic rules extracted automatically by the BCI system on viqaial atten-
tion data, using a coarse vocabulary (3 terms: Low, Medium and High).

the linguistic approximation, as she was not familiar with fuzzy inference mgstand fuzzy
membership functions. Indeed, the contralateral increase of activity iocttipital, temporal
and parietal areas was well reflected by the first two features and teeedifrules, whereas the
activation of temporal and parietal areas from the right hemisphereeflasted by the third
and fifth features and the rules. However, Dr. Areti Tzelepi couldexpiain the meaning
of the fourth feature and of the fourth rule. Consequently, we removsddhture and this
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Figure 4.9: Linguistic rules extracted automatically by the BCI system on vipetial at-
tention data, using a medium vocabulary (5 terms: Very low, Low, Medium, ldighVery
high).

rule from the fuzzy inference system, and tested it again on the test setanto assess the
contribution of this rule and of this feature (see Figure 4.10, for the regusii of rules).
Interestingly enough, we then obtained an accuracy of 87.2 % whereabtained previously
86 % with all rules and features. This seems to confirm that this rule and #tigdéevere not
necessary. Maore precisely, only removing the fourth rule left the acgurnchanged (86 %),
whereas removing only the fourth feature already leaded to an aconfr&@y2 %. This point
stresses that it is interesting to be able to interpret the learnt BCI, in oraddetk what has
been learnt, and, possibly, improve the system, as we have done ondtese d
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Figure 4.10: Linguistic rules used by the BCI system on visual spatial attedtta, after
the removal of the fourth rule and the fourth feature. The vocabulag tere is a medium
vocabulary (5 terms: Very low, Low, Medium, High and Very high).

4.5 Conclusion

In this chapter, we have presented an algorithm towards the designlof mferpretable BCI
system. This algorithm relies on the combination of an inverse-solution bastndextrac-
tion (here, FURIA), a fuzzy inference system as classifier, and a litigajgporoximation. This
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system can explain which activity in which brain regions and frequenog$aorresponds to
which mental state, thanks to if-then rules expressed using simple wor@s tiasm mathe-
matical functions. This algorithm aims at providing a tool for easily verifyingawhas been
learnt by the BCI and to compare it with the literature on the brain signals athlyzhe use
of linguistic approximations (employing words rather than numbers) aims popig a way
of displaying the knowledge automatically extracted by the BCI to personsdwhmt know
what a fuzzy membership function is, such as a medical doctor or anyadihieal employee.

The evaluation of our algorithm on two kinds of brain signals (hand movernnen-
tion and visual spatial attention signals) suggested that knowledge frolitetia¢ure actually
seemed to be reflected by the rules automatically learnt. Moreover, this tivalsaggested
that being able to interpret the BCI may help in improving it. Finally, the evaluatiss
suggested that the proposed BCI was efficient in terms of classificatiomaay.

Concerning the limitations of the proposed algorithm, we should admit that this thetho
worked relatively well because FURIA tends to extract few featureswender, it may not
always be the case, and with too many features, the whole system of rules beigpme
complex to read and interpret. Further validations would also be requiredén to validate
the approach on more subjects and more kinds of brain signals.

It would also be interesting to study other ways of representing the linguiskidsla For
instance, we could use color coding rather than words, and display leofexetivity using a
given color for the corresponding brain regions. It could also beestirg to gather, in a single
figure of the brain, the level of activity of the different regions andjfrencies for a given rule.
This would make it possible to quickly understand the whole brain state pormdsg to a
given mental task. Finally, it could be valuable to find methods to select é&satulependently
for each fuzzy rule and/or to merge fuzzy rules, in order to obtain a nwrgpact and simpler
set of rules, i.e., a more easily interpretable system.
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Self-Paced BCI Design: a Pattern
Rejection Approach

5.1 Introduction

In order to design a convenient BCI with a high information transfer ratehave already
stressed the need to conceive efficient Self-Paced BCI (SPBQIud eecall that a SPBCI
is a BCI which enables its users to send commands at any time [MI§H Designing a
SPBCI requires to continously analyse EEG signals [MK#]. Indeed, this analysis should
determine if the user is in an Intentional Control (IC) state, i.e., if he is piaduane of
the brain activity patterns used to control the BCI, or, conversely, if he & Non Control
(NC) state, i.e., in any mental state except the targeted mental states usettrabtberBCl
[MKH T06]. Finally, if the user is in an IC state, the system must also determine whidlokin
brain activity pattern is being produced by the user [MKI8].

In this chapter, we consider the design of a SPBCI as a pattern rejeabioiepr [MAO6b],
where NC states must be rejected by the BCI, whereas IC states musepésgcand properly
classified.

So far, despite the need to design efficient SPBCI, relatively few algasitiave been ex-
plored to deal with the NC state. Moreover, to our best knowledge, ny agisystematically
compared several reject options using several classifiers in the fiBldloT his lack of studies
prevents from identifying the desirable properties of reject options &ssifiers for SPBCI
design.

In this chapter, we first introduce two reject options that have not beed et in the
BCI field: the rejection class strategy, and thresholds on reliability functi@sed on the
automatic multiple thresholds learning algorithm. Second, we assess and eoseparal
reject options using several kinds of classifiers in order to study theavwer and identify the
most appropriate ones for SPBCI design.

This chapter is organized as follows: Section 5.2 focuses on a briefcfttte-art of
self-paced BCI design. Section 5.3 describes the algorithms we used irutiys ise., the
classifiers and the pattern rejection techniques as well as the evaluatiordoietyo Section
5.4 presents the data we used for evaluation (i.e., EEG signals and featndethe results
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obtained. Finally, Section 5.5 concludes this chapter.

5.2 Self-paced BCI design

Even though most present EEG-based BCI systems are synchraumis,BCI groups are
investing research efforts in the design of EEG-based SPBCI. Piovars have focused
on the design of 2-state SPBCI, that is, binary BCI which aim at distingugsbé@tween the
NC state and a single IC state [BLH93, MBO0O, YTIO3]. As this problem is stifl ffom
being resolved, current research works are still addressing this[E&MB08]. More recently,
multi-state SPBCI have been proposed [S8E, ZWG'07, dRMFBO07]. Such BCI aim at
distinguishing the NC state from 2 or more IC states. As such, their desigmésally more
complex and more advanced than those of 2-state SPBCI. The two folloeatigrss briefly
review these two kinds of design.

5.2.1 2-state self-paced BCI

Designing a 2-state SPBCI can be seen as the design of a binary B&d utheses are NC state
and IC state. A such, 2-state SPBCI have been designed using biresifieta, such as LDA,
SVM or kNN [FWB08, MB00, BMB06, LSFPO07, YTIO3] or a detection gche in which a
threshold on a feature value was used to determine the IC or the NC sta@8[X'AMP"07].
Such features could be a band power feature [LEFBIA or a matched filter feature [YTIO3]
for instance. Such SPBCI provide a kind of “brain switch”, i.e., a single@itmand, which
can be issued in a self-paced manner. Even if such BCI are self;ppdding a single
command to the user may appear as relatively limited or not convenient. Thiticsifzaly true
for applications such as virtual reality applications in which the number aéssery degrees
of freedom is generally much higher. Consequently, designing multi-st&€S®Rhich use
several IC states, appears as essential.

5.2.2 Multi-state self-paced BCI

Relatively recently, 3-state (1 NC state + 2 IC states) [TGP04, BWBO07, ZWGBKM ™ 07b]
and 4-state (1 NC state + 3 IC states) [MM03, S08, dRMFB07] SPBCI have been pro-
posed. As multi-state SPBCI deal with several IC states, their designragsemore complex
than the one of 2-state SPBCI. In the BCl literature, two main strategies ateyadpo design
multi-state SPBCI: the use of Thresholds on Reliability Functions (TRF rejgeirg or the
use of Specialized Classifiers (SC reject option). Algorithms of the fitsgoay use one or two
thresholds, generally manually defined, on reliability functions [MM03, TGRIRMFBO7].

If the reliability function, which is generally the classifier output, is higher than given
threshold, then the IC state is chosen. Otherwise, rejection is perfornleith@MNC state is
chosen. In the second category, specialized classifiers, knowjeasalssifiers, are used to
distinguish IC from NC states [SU®98, SSLT07, BWB07, ZWG 07, BKM*™07b]. Another
classifier, known as the recognition classifier, is then used to distinguiakede the targeted
patterns. Generally, a different set of features is used for the @gsdifier and for the recog-
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nition classifier.

As our work focuses on pratical BCI applications such as virtual regtipfieations, this
chapter focuses on multi-state SPBCI, which are more flexible and morermient for the
user. More precisely, the following sections present and evaluateaseattern rejection
strategies for the design of a 3-state SPBCI based on motor imagery.

5.3 Method

In this Section, we present the different classifiers and reject opti@iswth investigated,
including two reject options that have not been used so far in BCI, to estrkmowledge. We
also present the evaluation criteria that we used in order to assessiteedeSPBCI.

5.3.1 Classifiers

For this study we used four different classifiers, which exhibit difiepgroperties with regards
to classification performances and rejection. Two of these classifiegeagzative classifiers
and two are discriminant classifiers (see Section 1.6.1). The genenaiaifiers describe the
training data, which can be interesting to reject the NC state using reliabilityidmscand to
generalize using noisy training data. The discriminant classifiers haverfudwlassification
performances. The classifiers we used are a support vector maahiadial basis function
network, a fuzzy inference system and a linear discriminant analysist fain properties are
briefly described in the following.

5.3.1.1 Support Vector Machine

Support Vector Machines (SVM) are discriminant classifiers, veryufapand efficient for
BCI design [Bur98, LCL'07]. They use hyperplanes with maximal margins to discriminate
features from 2 classes (see Section 1.6.2.2 for more details). In thiswidged a nonlinear
SVM based on a Gaussian kernel.

5.3.1.2 Radial Basis Function Network

Radial Basis Function Networks (RBFN) are classical neural netwankgosed of three lay-
ers of neurons: an input layer, a single hidden layer and an output [Rig®6]. The ac-

tivation functions used in the neurons of the hidden layer are Radial Basistions (RBF)

[MAO6a, DHSO01]. The activation of these RBF is computed using the Mabhia distance
[DHSO01, Bis96]. For the RBFN used in this study, the RBF were learngusim supervised
clustering. The output layer neurons are a linear combination of the dictivisalue of hidden

neurons, learnt with the pseudo inverse method [Bis96]. Due to this artthide RBFN em-

bed generative knowledge through their hidden layer and discriminant&dge through their
output layer. Such an RBFN has been used successfully for handwaitegacter recognition
[MAO6a, MAO6D].
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5.3.1.3 Fuzzy Inference System

As seen in Chapter 3, Fuzzy Inference Systems (FIS) are a setaf filzhen" rules that
can be learnt from data in order to discriminate classes. FIS are nonéindagenerative
classifiers. The FIS used in this study is the one described and studiedpe€B: the Chiu’s
FIS [Chi97b].

5.3.1.4 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) classifiers are most probably the mestdiwclassifiers
for BCI design [LCL'07]. LDA classifiers are simple linear and discriminant classifiers that
use hyperplanes to separate classes [DHS01]. More details on thifieass be found in
Section 1.6.2.1.

All classifiers have been trained on the same training data set (see se8)ioft¥ hyperpa-
rameters of each classifier have been optimized for each data settslypdmasplitting the

training data into a training set and a validation set. For LDA and SVM, when ragsic
classifiers were needed, several LDA or SVM were combined usingritheversus-the-rest
scheme.

5.3.2 Reject options

In pattern rejection theory, two kinds of rejection tasks can be distingujsh&aéb]:

» Ambiguity rejection: In this kind of rejection, an input data is rejected if the classifier
does not have enough confidence in its decision. This input data coeleldrin assigned
to two or more target classes. Thus, it may be better to reject this input da¢a tiaan
misclassifying it.

» Outlier rejection:  With outlier rejection, an input data is rejected if this data is too
different from the classes learnt by the classifier. As such, this irgatid more likely
to be an outlier, i.e., a data from a class not learnt by the classifier. It isftimerbetter
to reject this data, as it cannot be properly classified.

As the NC state can be any existing mental state except the targeted mentalstatés
control the BCI, the NC rejection task is clearly an outlier rejection problenus;Ttata from
NC states are outliers and data from IC states are target class data.

In this study, we compared three reject options: specialized classifisrshdids on relia-
bility functions and rejection class. They are described below.

5.3.2.1 Specialized classifier (SC)

A specialized two-class classifier, known as a reject classifier, is traigegendently from
the recognition classifier to reject - or not - the input data. If this rejecsdiar decides to
reject the input data, the output class will be NC state. Otherwise, if the oifessifier accepts
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the input data, the recognition classifier will classify this input data in ordeytm ouput the
correct IC state.

Separating the recognition and the rejection classifier allows the rejecticifielas take
advantage of another family of classifiers or a different set of feature

5.3.2.2 Thresholds on reliability functions (TRF)

A reliability function is a function® in O which aims at quantifying the reliability that a
classifier has in its decisions [MA06b]. The reliability functions used ddpam both the
classifier and the rejection task targeted. The TRF reject option uses dldekige of the
recognition classifier through these reliability functions [MAO6b]. TRF tneeinterpretation
of reliability functions: the lower is the confidence (i.e., the reliability functiolugg the more
the pattern must be rejected. Thus, the TRF reject option is defined wittoANdhresholds
oi, each one associated with a reliability functidn Rejection is performed if all functions
are lower than their respective thresholds, i.e., if:

Vi=1...N,®; <0j (5.1)

The main problem is to set the threshold values which is increasingly diffietheenumber
of thresholds increases. Interestingly enough, most SPBCI baseRifonsk a single threshold,
manually defined.

In this chapter, we introduce in the BCI field the Automatic Multiple-Thresholdrhe
ing algorithm (AMTL) developed by Mouchere and Anquetil [MAO6a, M3X). AMTL is a
generic greedy algorithm based on empiric heuristics. It selects the tfotlestiues using a
training setDey Of data to be accepted (i.e., examples) and a trainindpggtof data to be
rejected (i.e., outliers). This algorithm has one param@teshich is the desired True Accep-
tance Rate (TAR) oDy, i.€., the percentage of examples that have been actually accepted.
Selecting the thresholds values with the AMTL algorithm is achieved as follows:

1. Compute the value of the reliability functioms for all examples and all outliers. Then,
set the value of the thresholdsso as to reject all examples and all outliers.

2. Repeat the next steps while the evaluated TARgyis lower than®.

3. Select the next thresholn to be decreased, according to the function “choose” (see
below).

4. Decrease the value of the selected threshold so as to accept onexaropes(and, as
such, probably more outliers)

We used two variants of AMTL with different aims. These two variants a@wvknas
AMTL1 and AMTL2 [MAO6a, MAO6b], and differ on the way they selecktthresholds; to
be decreased, i.e., they differ in their function “choose”. The functmobse” of AMTL1
finds the best trade-off between the rejection of the data from the tdegses and the rejec-
tion of outliers. The function “choose” of AMTL2 finds the best descriptid target classes
without using outliers. The AMTL algorithm has been successfully usedefect purposes
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in handwritten character recognition applications [MAO6a]. More detailthhemPAMTL algo-
rithm, and its variants AMTL1 and AMTL2 can be found in [MAO6a, MAOGD].

We can note that TRF include classical approaches which only use tigecdtioe best class
to make the reject decision. In the following, we denote as AMTL-MT, TRiRgi#ultiple
Thresholds, and as AMTL-ST, TRF using a Single Threshold on thectsesst score.

5.3.2.3 Rejection class (RC)

The Rejection Class reject option uses an additional class dedicated tgdbttoreprob-
lem [MAO6a]. Thus, for an\. class recognition problem, the RC reject option will use a
classifier withN; + 1 classes, the additional class representing all the outliers. As suchroutlie
are treated as the other target classes with this reject option. To oumoedekige, despite its
simplicity, this method has not been considered yet for BCI purposes.

5.3.2.4 Implementation

The SC and RC reject options should take advantage of discriminant eessiéicause they
consider the rejection problem as a simple classification task. ConverselJ/Rif architec-
ture should take advantage of reliability functions representing genetkainowledge for the
rejection of the NC state [MAO6a]. For the SC reject options, we usedréiftdeatures for
the rejection and recognition classifiers. However, the classifier familyttreasame for both
classifiers. For the TRF reject option, we used the classifier outplgsesrreliability func-
tions. More precisely, we used the distances to the separating hypefpieiéM and LDA,
the values of the output neurons for RBFN and the degree of fullfilmetiteofuzzy rules for
FIS. With AMTL2, for RBFN, we used the activation of radial basis funetias reliability
functions in order to have a better target class description.

5.3.3 Evaluation criteria

Assessing the performances of a SPBCI system requires using apfgayaluation criteria
[MKH T06]. In order to evaluate the rejection capabilities of the SPBCI, the mostlqmop
measures are the false positive rate and the true positive rate, as wedl asethunder the
receiver operating characteristic curve, which is a closely related meedsnally, in order to
evaluate the classification performances of the SPBCI, we used the@eagclihese measures
are described below.

5.3.3.1 Recall, precision, false positive rate and true positive rate

When evaluating the rejection performances of a given system, it is inteyeéstbuild what
is known as a confusion matrix [MKFD6]. Such a matrix contains the number of data from
a given class label that have been assigned to another given clalssAatsich, this matrix
contains the number of True Positive (TP, acceptance of an IC stafe@y®Negative (TN, re-
jection on an NC state), of False Positive (FP, acceptance of an NC stdte) Balse Negative
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(FN, rejection of an IC state). For a SPBCI problem, this confusion matrixbgiths in Table
5.1

Table 5.1: A confusion matrix for a given SPBCI.

Real labels

IC state | NC state
Estimated| IC state TP FP
labels NC state FN TN

From this matrix, we can derive two interesting pairs of performance mesisRecall/Precision

and False Positive Rate (FAR)/True Positive Rate (TAR). These meaastgalefined as fol-
lows:

TP
TAR=R = ——— 2
e TP EN ®-2)
FP
.. TP
Precision= TPIFP (5.4)

FAR and TAR represent the rejection performances of the evaluatéehsys they are
independent from the proportion between IC and NC states. Precisiokesl lio the comfort
of the final user, as it summarizes how often the BCI system will respomdatty. Precision
depends on the proportion between IC and NC states. We used all thesaresein our
evaluations.

5.3.3.2 Receiver Operating Characteristic (ROC) Analysis

An interesting tool related to TAR and FAR is the ROC analysis [Faw06]. Edren rejection
system and a given data set, we can obtain a couple (FAR, TAR) whichecdisplayed as
a 2D point. Performing a ROC analysis consists in repeatidely changing tameirs of
the rejection system (e.g., by changing the threshold values with TRF, ohdnging the
proportions between outliers and examples with RC and SC), in order to absainof points
(FAR, TAR). By arranging these points together, by increasing FAR grinking them, one
can obtain a ROC curve (see Figure 5.1 for examples). Such a curve sizesrthe rejection
capabilities of the system.

The Area Under the Curve (AUC) is of particular interest. The higher tH€ £or a given
classifier, the better the rejection capabilities of this classifier. As an exaompleigure 5.1,
the classifier A has a higher AUC than classifier B, and as such, it is betterctassifier B.
The AUC is a number between 0.0 and 1.0. An AUC of 0.5 corresponds taamacdlassifier
which cannot distinguish outliers from examples (see Figure 5.1). Ilév@auaions, we also
considered the AUC as an evaluation measure. However, we computed G iAFAR lower
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Examples of ROC curves
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Figure 5.1: Example of ROC curves for 3 different classifiers.

than or equal to 0.2. We chose indeed to use the AUC for EARZ rather than the total AUC,
because Masoat al highlighted that only the beginning of the ROC curves was relevant for
BCI [MKH T06]. Actually, a high FAR tends to cause high user frustration which makes th
corresponding BCI not convenient to use. It should be noted that the #r FAR < 0.2
would be 0.02 for a randomly performing classifier.

5.3.3.3 Accuracy

In addition to the rejection performances of the system, it is also interestingatoa¢w the
classification capabilities of the designed SPBCI. To do so we consideredtaracy of clas-
sification [MKH*06] for a fixed FAR. The accuracy is defined as the percentage optacte
IC states that have been correctly classified.

5.4 Evaluation

This section deals with the evaluation of the previously mentioned classificatibregection
algorithms on motor imagery EEG data sets. This section first describes thel&B@Gsed
and the features extracted from these data. Then, it presents thetievalnaasures obtained
on these data.
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5.4.1 Motor imagery EEG data used

Evaluations were achieved on 4 EEG data sets of Motor Imagery (Ml)ractjmom 2 healthy
subjects (males, 24 and 23 year old). Subjects had very few or no psesiperience in BCI.
During the experiments, subjects were asked to perform MI and mors@ketnagination of
left or right hand movements [PNO1].

For each subject, data were collected over 2 days during which 3 to breesgere
recorded each day. A session was composed of 20 trials of each of aheasses (LEFT
or RIGHT), arranged in a random order. The timing of the sessions wasiaed according
to the Graz BCI protocol [PNO1]. In this protocol, a trial lasted 8 secoddsng which the
subject received instructions the first 3 seconds and had to perferraquired MI task during
the last 5 seconds (see Figure 5.2). Trials were seperated by pefictsdom length. We
specifically asked subjects not to perform MI nor real movements outsdedkcond periods
dedicated to MI. From second 4.125 to second 8, subjects were prawitteé continuous
feedback under the form of a bar with a changing length. This bar inditathe subject what
was the mental state recognized by the BCI.

+| = + ||

0 1 2 3 & 5 6 7 8
|
izsom Classification

Figure 5.2: Timing of a trial. Trials are separated by rest periods of raridogth.

EEG signals were sampled at 512 Hz, and were recorded using eleckG8e FC4, C5,
C3, C1, C2, C4, C6, CP3, CP4, with the reference electrode placed oode. The EEG data
acquisition machine used was a Nexus 32b from the Mind Media compange Ehectrodes
cover the motor cortex area, and correspond to standard electratlerqmlaced according
to the international 10-10 system [AES91] (see Figure 5.3). For edajactiand each day, the
first half of the sessions was used to build a training set whereas the meghs@ssions were
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used to build a test set. Hence, we used a total of 4 data sets, each ogpedrejposed of
a training set and a test set. EEG signals from the training sets were visiusgcted and
periods of MI polluted by artifacts were removed. No artifact was remdnaed the test sets.

Figure 5.3: Placement of electrodes in the 10-10 international system.|&dimdes we used
in the experiment are displayed in red.

5.4.2 Data labelling

We labelled as belonging to the LEFT or RIGHT class the samples that were i theriod
of each trial, according to the imagined movement the subject was askeddmpeBamples
from the first 0.5 s of each MI period were labelled as NC in order to takeaotount the
user’s reaction time. All other samples were also labelled as belonging to tistalC Then,
EEG signals were segmented into 1 s segments with 93.75 % (15/16) of ovetvegeln con-
secutive segments. Each segment was labelled according to the mosendgddabel among
the samples composing it. Then, a feature vector was extracted fromespobrst and labelled
with this segment label. As such, 16 feature vectors were extracteddioiseaond.

5.4.3 Preprocessing

As the preprocessing step, we applied temporal and spatial filters to EE@ssiylore specif-
ically, EEG signals were band-pass filtered in 3-45 Hz, using a butteritigthof order 4,
in order to attenuate slow variations of EEG as well as 50 Hz power line iede. Then,
from the 10 initial EEG channels, 2 new channels were designed by aglyiscrete surface
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Laplacian spatial filter over channel C3 and C4 [WB02, MMDW97] (see Section 1.4.1.2).
More precisely, these 2 new chann€l¥ andC4’ were obtained as follows (see [MMDW97]
for details):

C3 =4C3-FC3-C5-C1-CP3 (5.5)

C4 =4C4—-FC4-C6—-C2—-CP4 (5.6)

Features were extracted from these two virtual char@@&lendC4’.

5.4.4 Feature extraction

In order to build the classifier inputs, we extracted logarithmic BP featuoestine two Lapla-
cian channels [PNO1] (see Section 1.5.2.1). As already mentioned, Bipefeare popular and
efficient features for Ml classification [PNO1].

Two sets of BP features were generated: features for rejection anatde for recognition.
The features from the first set aimed at discriminating the IC state from N€sstahereas
the features from the second set aimed at discriminating the two IC states t.er, tgfht
MI. The first set was obtained by extracting BP features in the frequieacgls that best dif-
ferentiated IC from NC, whereas the second set was obtained usmgefrey bands that best
differentiated left MI from right MI. For each subject, these frequebands were identified
using a statistical analysis-based method similar to what has been preseasatiom 3.3.2.1.
The only differences are that 1) we used here a multi-comparison ranakionipaired t-test
instead of a simple paired t-test, i.e., we used a more powerful test, and tat &y not
perform any “shrinking” step as we realized this step did not alwaysase the performances
and sometimes even decreased them. The statistical analysis compared tharBfalmes
for the two corresponding conditions (NC versus IC or left Ml versghktrMI) for different
frequencies in the 4-35 Hz frequency band, with the aim of selecting thedisasiminative
frequency bands. We performed this analysis for the 4-7 Hz (Deltamiytt3-15 Hz, 15-18
Hz, 18-30 Hz (low, middle and high Beta rhythm) and 30-35 Hz (Gamma rhytregquéncy
bands. Features for rejection were used as input of the reject clessifiereas features for
recognition were used for the recognition classifiers.

5.4.5 Results and discussion

This section presents the results obtained for all reject options and @esshiable 5.2 displays
the Area Under the ROC Curve (AUC), for FAR lower than or equal to 62ained by all
methods. Table 5.3 displays the accuracy, precision and TAR obtaineathyctassifier and
reject option, averaged over the four data sets, for a fixed FAR of IMis FAR is similar
to the FAR used in the work of Scheretrral [SLST08]. For the complete details of accuracy,
precision and TAR for each data set, please refer to Annex D.

Results showed that using a nonlinear classifier within the RC reject optido ted most
efficient SPBCI. Independently from the reject option used, nonlictssifiers, i.e., FIS,
RBFN or SVM, provided the best rejection results. Using TRF, LDA presidhe highest
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Table 5.2: Rejection capabilities: area under the ROC curves for €AR2, for all data sets
and methods. The best result for each data set is displayed in bolaigrara

reject | Classifier| Subject 1 Subject 2

option Dayl | Day2 | Day 1| Day 2
SVM 0.105| 0.077 | 0.057 | 0.046
SC FIS 0.102| 0.075| 0.052 | 0.039
RBFN | 0.103| 0.074 | 0.055| 0.044
LDA 0.102| 0.071 | 0.041 | 0.035

SVM 0.102| 0.077 | 0.056 | 0.062
RC FIS 0.102| 0.072 | 0.055| 0.052
RBFN | 0.095| 0.075| 0.054 | 0.058
LDA 0.095| 0.072 | 0.053 | 0.048

SVM 0.025| 0.040 | 0.028 | 0.033
TRF FIS 0.057| 0.039| 0.04 | 0.036
AMTL1| RBFN | 0.053| 0.043 | 0.033 | 0.026
ST LDA 0.02 | 0.036 | 0.047 | 0.036

SVM 0.025| 0.041 | 0.028 | 0.032
TRF FIS 0.082| 0.06 | 0.037 | 0.042
AMTL1| RBFN | 0.066| 0.047 | 0.030 | 0.028
MT LDA 0.038| 0.039| 0.038 | 0.037

SVM 0.025| 0.040 | 0.028 | 0.032
TRF FIS 0.058| 0.044 | 0.041 | 0.042
AMTL2| RBFN | 0.065| 0.050 | 0.030 | 0.028
MT LDA 0.021| 0.027 | 0.039| 0.035

accuracy, but this has to be moderated by the low TAR it provided. Actugibyvery likely
that LDA was in fact performing ambiguity rejection [MAO6b] and not outligjerction, which
could explain the results.

Concerning the reject options, the obtained AUC and TAR may appear asstmbdit it
should be noted that they are in line with results found in the literature. Fonoestéhe 3-
class SPBCI presented in the work of Scheeal obtained an averaged FAR of 16.9 % and
an average TAR of 28.4 % [SL'$8].

The most efficient methods in terms of rejection capabilities are RC and SGaudgviRC
outperformed SC in terms of accuracy for a fixed FAR of 10 %. TRF hatbthest rejection
capabilities, even if with a low resource cost the use of multiple thresholds wegbtbe results
as compared to a single threshold, especially for generative classlifideed, regarding the
AUC in Table 5.2, it can be noticed that discriminant classifiers, i.e., SVM @ lobtained
scores that are close to random classification scores with TRF. Hqutésénteresting to note
that TRF provided the highest accuracy. This suggests that, implicitely,al$Fperformed
ambiguity rejection in addition to outlier rejection. It is also interesting to note thanwh
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Table 5.3: Classification capabilities: average Accuracy (Acc), TARRmedison (Prec), in
percent, for a fixed FAR of 10%. The best results are displayed in talchcters.

SVM FIS RBFN LDA
SC Acc | 74.1+£8 73.245.2 | 73,949 72.0+4.7
TAR | 38.2+15.2 | 34.3+16.6 | 37.0+15 | 33.1+17.7
Prec| 69.14-8.3 | 65.7411.6 | 68.3:8.8 | 64.6+12.1
RC Acc | 83.4+7.7 | 79.4+7.3 | 80.28.3 | 81.14+7.3
TAR | 40.0+12.2 | 38.7+15.2 | 38.2+10.5 | 36.1+12.3
Prec| 70.8:6.2 | 69.5+7.8 | 70.0+5.8 | 68.4-7.4
AMTL1 | Acc | 84.145.7 | 92.6+7.1 | 82.749.1 | 94.5+5
ST TAR | 16.3:3.6 | 22.8t4.9 | 20.1+-6.4 | 17.2+8.8
Prec | 50.5£5.5 | 58.7+5 55.0£8.3 | 48.9+16.5
AMTL1 | Acc | 84.1458 | 77.6+8.1 | 83.5+8.1 | 93.2+4.8
MT TAR | 16.2:3.4 | 28.5+11.1 | 22.2+6.5 | 19.3+2.2
Prec| 50.4:5.3 | 62.8:8.8 | 57.6-7.4 | 55.0+:3.2
AMTL2 | Acc | 83.8+5.8 | 92.146.4 | 75.9+6.6 | 94.1+3.9
MT TAR | 16.2:3.6 | 24.1+4.7 | 22.5+9.8 | 13.6+6.3
Prec| 50.4:5.5 | 60.1+4.7 | 56.8+11.1 | 44.3+12.9

considering only TRF, FIS reached the best rejection performancessuéh, this confirms
results obtained in Section 3.7, where FIS showed very good outlier rejecabilities when
using TRF, as compared to other classifiers. However, it seems thad|lpV&F may not be
the most appropriate method for SPBCI design.

The fact that non-linear classifiers perform the best on this problenbeastressed. In-
deed, linear classifiers, and especially LDA, are widely used in the B@huamity, and they
are considered as the most efficient for a number of BCI problems [NeABMK*06]. Cur-
rently, most BCI are synchronous, and linear classifiers actually sedma &ppropriate for
this problem [LCL'07]. However, when it comes to SPBCI design, things seem to be dif-
ferent, and non-linear classifiers seem to be the most efficient. Indédd, linear methods
could be appropriate for discriminating two or three classes, they areundikgly to be able
to discriminate the IC states from all the possible mental states that compose giatBlC

5.5 Conclusion

This chapter proposed to consider self-paced BCI design as a patjectian problem. As
such, it aimed at introducing new rejection techniques in the BCI field as wédlemtifying

the most appropriate ones for self-paced BCI design. More precthédychapter first intro-
duced two pattern rejection strategies for self-paced BCI design: thetR&mss (RC) and
the Thresholds on Reliability Functions (TRF) based on the Automatic Multiplesholds
Learning (AMTL) algorithm. Then, it compared the Specialized Classife® (RC and TRF
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reject options using a Gaussian Support Vector Machine (SVM), ayFuderence System
(FIS), a Radial Basis Function Networks (RBFN) and a Linear DiscrimiAalysis (LDA)
classifiers, on left and right hand motor imagery data.

Our results first showed that using non linear classifiers such as i@Ga®¢M, FIS and
RBFN reached the best rejection performances. Our results also ghbateusing multiple
thresholds with TRF led to better performances than when using a singlbdldeas done in
most current self-paced BCI based on TRF [dRMFBO07]. Finally, thygest that generative
classifiers give the best performances when using TRF. Concerrengejict options, RC
outperformed SC which outperformed TRF. To conclude, we could traesmsmend using the
RC reject option with nonlinear classifiers for efficient self-paced B£Sigh. Future works on
this topic could consist in combining efficiently these different reject optitngould be also
interesting to study confusion rejection techniques in order to reduce thberwf erroneous
classifications in BCI, and as such possibly increase the informationdraasé of the system.



Part 2:
Virtual reality applications based on
BCI technology
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Chapter 6

Brain-Computer Interaction with
Entertaining Virtual Worlds: A
Quantitative and Qualitative Study
“out of the lab”

6.1 Introduction

Currently, a lot of Brain-Computer Interfaces studies are conductedeirigboratories, in
highly controlled conditions, and with relatively few subjects trained oveuraber of ses-
sions which may be large. A notable exception is the work of Geget which evaluated a
BCI with 99 naive subjects during an exposition [GE}B]. This work focused on the per-
formances of subjects who had to control a synchronous, 2-clasb&€H on 2 bipolar EEG
channels and a trained classifier. Subjects were asked to imagine movehtketsright-hand
or their feet and were provided with a simple 2D visual feedback. Theulteshowed that
93% of the subjects were able to reach an accuracy equal or greaidd0%a Besides, most
current studies are focused on the BCI performances and not onlijezts’ preferences.

In the work presented in this chapter, we studied both the performandéiseapreferences
of 21 naive subjects during an exhibition. These subjects used a self-Cl, based on a
single EEG channel, which does not use machine learning of the mental sketel&tected.
The subjects could interact with an entertaining virtual reality application edgnom the
“Star wars M” movie.

This Chapter is organized as follows: Section 6.2 describes the method eudlmy
this study. It presents the BCI system used (Section 6.2.1), the entert&Riragpplication
employed (Section 6.2.4) and the experiments conducted (Section 6.2.6), Séeion 6.3
presents the results obtained, i.e., the subjects’ performances (Sectibnabi@ preferences
(Section 6.3.2). A concluding section ends this chapter.

133
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6.2 Method

During our experiments, subjects had to interact with a virtual reality applicasing a BCI.
This section describes the BCI we used, the virtual reality application anarglaaization of
the experiments.

6.2.1 The BCI system

We have designed a simple self-paced BCI system based on real or ichéginhenovements.
This BCIl is based on a single EEG channel, located at position Cz and aireseating a
Beta Event Related Synchronisation (ERS), appearing posterior toaherranagined foot
movement [Pfu99].

6.2.2 Preprocessing and feature extraction

In order to detect the post-movement Beta ERS, the EEG signal was firdtpzess filtered
in the 3-45 Hz band. Then, a single Band Power (BP) feature was tdracthe Beta band
(16-24 Hz) for the last second of data. This feature was extractegt 0@ ms and the last
four consecutive features were averaged (with a moving averaggjeén i produce a smooth
Control Signal (CS).

6.2.3 Classification

To detect the Beta ERS, and hence, the foot movement, we used a simpl®ithies. If

the computed CS was higher than this thresAdida foot movement was detected (intentional
control state) and a command was sent to the application. If the CS was lamd¢h#ithreshold

T h, the non-control state was detected and no command was sent to the applithisodesign
enables the user to control the BCI in a self-paced way. The vallibwfs simply determined
according to the megmand standard deviatiamof a CS epoch obtained while the subject was
relaxed, according to Equation 1.

Th=p+30 (6.1)

This threshold determination procedure is similar to the one used in anothexl vadlity
application based on BCI [LFMR)7]. It should be noted thathis determined without using
any example of real or imagined foot movement. A such, this BCI does nut {ea mental
state to be detected.

6.2.4 The Virtual Reality application: “Use the force!”

We have developed an entertaining Virtual Reality (VR) application, in adi@@rovide the
subjects with an engaging and motivating experiment. Our virtual environcogrésponds
to the inside of a “Star Waf$"” mother ship, in which the subject could see a virtual space-
ship (a Tie-Fighter) and a static character (Darth Vader) (see Figure g purpose of the
application was to lift the Tie-Fighter up by using the BCI. This task establisineghalogy
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between the use of the BCI and the use of “the force” in the Star Warsovie. As such, the
application was named “Use the force!”. More precisely, the Tie-Fightes kfted-up when
the VR application received the corresponding command from the BCITigiEighter was
lifted-up at a speed proportional to the value of the CS. When no commasdeseived, the
Tie-Fighter went down.

Figure 6.1: View of the virtual environment of the “Use the force!” applma

6.2.5 Implementation

The VR application was developed with the OpenMASK VR platform [MAR, LCAAO08]
and the BCI was developed with the OpenVIiBE BCI platform [R®C, Ope06b]. This BCI
platform enables a fast and flexible design of BCI scenarii by assenddiregal modules. The
VR application and the BCI system were easily connected using the VRRbdEpiothanks to
dedicated modules of OpenVIBE.

6.2.6 The experiment

Subjects participated in an experiment with a duration of approximately 45 minLhesex-
periment was divided into seven successive steps: electrode montagg, \ggyalization,
baseline, free interaction, real movement game, imagined movement ganséipijigre.
These steps are described in the following sections.

6.2.6.1 Electrode montage

The first step of the experiment consisted in fixing the electrodes on tlecsathead. For
this experiment, only three electrodes were used: a ground electrodteflam the forehead),
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a reference electrode (located on the nose) and the Cz electrode, iwhicated over the
foot motor representation area of the brain (see Figure 1.2). Electrmeea€fixed using an
adhesive paste instead of a cap, for a faster setup. The EEG daisitsmgmachine used was
a Nexus 32b from the Mind Media company. A view of the setup of the whgbemxent is
displayed on Figure 6.2.

Figure 6.2: Experimental setup.

6.2.6.2 Signal visualization

During the second step, subjects were shown their own EEG signatiestat Cz (band-pass
filtered in 3-45 Hz) while they were clenching their teeth or blinking. This ainteshawing
them the need to be as relaxed as possible during the experiment anddle ae®d blinking.
During the next steps, subjects were regularly reminded to stay as relaxesible.

6.2.6.3 Baseline

During this step, subjects were only asked to stay relaxed. Once theyelaxed, 20 seconds
of EEG signal were recorded and converted into a CS which was usenhputeT h using
Equation 6.1.

6.2.6.4 Free interaction

During this step, subjects could interact freely with the VR application by usialdoot move-
ments. When the BCI detected a Beta ERS, the Tie-Fighter was lifted-up. atitesty, the
CS was shown to the subjects so that they could see the impacts of real faherds on the
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Beta power. This step aimed at making subjects familiar with the application and witask
If a subject seemed unable to lift the spaceship, the baseline step wasrtfagain, in order
to obtain a new Threshol@h. Then, the next steps followed.

6.2.6.5 Real movement game

Subjects were invited to participate in a video-game-like experiment. During dhie gsub-
jects had to lift the Tie-Fighter up, by performing real foot movements dwspegific periods
instructed by the application. These instructions were used to evaluatesthendyut were not
used by the BCI for classifying the input data. Actually, the user could EffTile-Fighter up at
any time and all the game long, independently from the instructions. In othesywe used a
"paced test environment" to evaluate this self-paced BCI [MK6].

The game was composed of 10 trials. Each trial lasted 10 s, and was dimidé&phases
(see Figure 6.3): 1) A resting phase lasting 4 seconds during whichedfisgask was given
to the subject. 2) A “move” phase, lasting 3 seconds, during which thecwige instructed to
perform real foot movements. The instruction was given using a greefmeve” appearing
on the screen. 3) A “stop” phase lasting 3 seconds, during which thecswias instructed to
stop performing the movement in order to lift the Tie-Fighter up. The instruatias given
using a red text “stop moving” appearing on the screen. If the subjecagealto lift the Tie-
Fighter up during this third phase, his score was increased and displayepa yellow gauge
located on the left corner down the screen.

Time (s)

Figure 6.3: Temporal structure of a trial of the VR game.

6.2.6.6 Imagined movement game

This game was identical to the previous one except that subjects wereciadtto perform
imagined foot movements instead of real foot movements. We instructed sutgjgaerform
kinaesthetic motor imagery rather than visual motor imagery [NSRPO5]. dindteleas been
shown that kinaesthetic motor imagery triggered higher ERS/ERD than vistial mmagery,
over the sensori-motor areas. As such, it leads to better classificationmances [NSRP05].
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6.2.6.7 Questionnaire

After the experiment, subjects were asked to fill in a subjective questi@nHmis question-
naire gathered various questions related to their feelings during the BEliment. They were
also encouraged to give free comments and remarks regarding the wbbgy&em and the
VR application. An excerpt of the questionnaire can be found in Annex E.

6.3 Results

The experiments took place during the Laval Virtual 2008 VR exhibition, droath. As
such, the environment was a noisy environment with people moving and talkingd. 21
naive subjects (mean age: 33#4814), 18 males and 3 females, participated voluntarily to the
experiment. No selection was performed and all volunteers were accegteibjects gave
their written informed consent before the experiment. Detailed informationtadhdjects
can be found in Annex F. This section describes the subjects’ perfeenas well as the
gualitative and quantitative data extracted from the questionnaires fillecetsutijects.

6.3.1 Subjects’ performances

We assessed the subjects’ performances by computing the number d?asttiees (TP) and
False Positives (FP) they obtained during the games [M8®&]. We counted a single TP when
the CS value became higher than the threshididnce or more times during the “stop moving”
phase (see section 6.2.6). We counted a single FP when the CS value lkghenehan the
thresholdT honce or more times during the “move” phase, during which a Beta Event Relate
Desynchronisation (ERD) should be observed and not a Beta ERS.RAfbened during the
resting phase was not taken into account in the performance analysis\ the FP and TP,
we computed the Hit-False (HF) difference, which corresponds to the ewuofbTP minus
the number of FP [MKF06]. Performances obtained by subjects are summarized in Figures
6.4, 6.5 and 6.6, under the form of absolute frequency diagrams fomd@RH& difference.
They show the number of subjects who obtained a given performarncesdioand imagined
movement games separately. The detailed performance results are dath&neex F.

These diagrams show that about half of the subjects (12 subjects olit @faZzhed an HF
difference> 3 using real movements, and that about a quarter (5 subjects out c&tjed
an HF difference> 3 using imagined movements. According to simulations performed as
described in [MPPO08], a system which reach an HF differea@with 10 trials per class, is
better than a randomly performing system (one-tailed test) with a probabilitypefItgrror
< 0.054. This suggests that roughly half of the subjects had at least a smé#iblcover
the Tie-Fighter using real movements and that a quarter had at least a smiadll ising
imagined movements. The mean HF difference waéd-2 2.24 for real movements and33+
2.03 for imagined movements while the mean TP we8b4 2.18 for real movements and
2.67+ 2.08 for imagined movements. These results may appear as modest but ofee sho
consider the fact that subjects were naive and untrained and thay siugsle BCI design
was used. Actually, we used a single EEG channel, placed at a standatidno(i.e., a non-
optimized location) and we used a single feature, based on a standardrfogcband (i.e., a
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Figure 6.4: Absolute frequency diagrams for True Positives (TP)ealror imagined move-
ments.

FP absolute frequencies

Oimagined movements

B Ereal movements

absolute frequency (number of subjects with such FP)

Figure 6.5: Absolute frequency diagrams for False Positives (FP)eébror imagined move-
ments.

non-optimized frequency band), with a simple threshold. This enhances#ugo use feature
extraction and classification algorithms that can learn subject specifigriafam (such as
FuRIA or FIS) in order to design a more optimal and efficient BCI.
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Figure 6.6: Absolute frequency diagrams for HF difference, foreeahagined movements.

6.3.2 Subjective questionnaires

The structured questionnaire filled by the subjects enabled us to extrakinugof data (see
Annex E for more details):

 quantitative data as subjects were asked to grade questions related to their feelings.
* qualitative data as subjects were also asked to answer several open questions.

The data gathered and their analysis are described in the following sectiomsaw data can
be found in Annex F.

6.3.2.1 Quantitative data

Subjects were asked to grade questions by giving a mark between 1 afablé 6.1 dis-
plays the average marks given by the subjects for the two conditionsriee@ment game and
imagined movement game) according to various criteria.

Our results first showed that the experiments did not ge@rg for the subjects. The exper-
iments with imagined movements seemed however riing than that with real movements.
However, this difference is not statistically significant (Wilcoxon Wst —28, p > 0.1). De-
spite the use of paste and gel to fix the electrodes, subjects found thénsxpecomfortable
(global mean for question 2: .8+ 1.23). According to oral discussions with subjects, it
seemed that their curiosity and will to test a BCl was stronger than their lzgms®n to have
gel in their hair.
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Answer for Answer for
Question real movements imagined
movements
Q1- Did you get tired because of the experiment? .76%1.04 205+1.40
(1: not tired at all, 7: very tired)
Q2- Did you find the experiment comfortable? .16+1.26 529+1.23

(1: not comfortable at all, 7: very comfortable)

Q3- Did you feel that you could control the spaceship

(that is, that you could lift it voluntarily?) 85+1.80 281+1.86
(1: you didn’t feel you could control it at all,

7: you controlled it perfectly)

Q4- Did you feel frustration or annoyance during the

experiment?

(1: neither frustration nor annoyance, .33+ 1.56 329+1.65
7: alot of both frustration and annoyance)

Table 6.1: Average marks given by the subjects in the questionnaire gftwithconditions.

Concerning thecontrol, it seems that subjects felt to have an averagetrol over the
spaceship using real movements whereas they felt to have a tmwénol using imagined
movements. As expected, subjects had significantly more tradsigolling the spaceship
using imagined movement than using real movemaffts=(79, p < 0.01). Globally, subjects
were able to assess properly their performances, as the marks thdégrgavestion 3, related to
their feeling ofcontrol, are significantly correlated with the HF differences obtained (Spearman
correlationrs = 0.63, p < 0.00001). Concerning only imagined movement games, the marks
given by subjects to question 3 are significantly correlated with both the Héretice and
the TP rate they obtaineg  0.05). Interestingly enough, this correlation is slightly higher
between the marks and the TP rate=€ 0.56, p < 0.01) than between the marks and the HF
difference (s = 0.51, p < 0.05). This is not the case for real movement games for which
there is no correlation between the marks and the TP obtamed @.31, p > 0.05). This
might suggest that for a difficult task such as lifting the spaceship usingriedgiovements,
subjects paid more attention to the fact that the spaceship went up whenld $tave (TP)
than when it should not have (FP).

Finally, questionnaire answers showed that subjects found real movgaraes not really
frustrating or annoyingwhereas imagined movement games where mrugrating and an-
noying The difference between the two conditions is significait=f —64, p < 0.05). This
frustration might be due to the increased difficulty to lift the spaceship with imagined move-
ment. However and surprisingly, there is no correlation betweefrub&ationfelt by subjects
during the imagined movement games and their performance, i.e., the HF ntiffeieey ob-
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tained, (s = —0.11, p > 0.05) nor between th&ustrationfelt and the subject impression of
control (rs = 0.26, p > 0.05). One explanation could be related to the absence or lack of visual
feedback. Indeed, during imagined movement games, subjects haalgelesis feedback as
the spaceship was lifted up less often or it was lifted up less high and statfexlair a shorter
time. This may suggest that less feedback leads to more frustration, whiieyperformance.
This seemed to be confirmed by oral discussions with subjects.

6.3.2.2 Qualitative data

Thanks to the use of open questions, the questionnaire enabled us tmateashich kinds of
imagined movements the subjects performed, as well as to obtain their remadanaments
concerning the application itself.

Regarding the kinds of movement imagined by the subjects, it is interesting tahadte
a large variety of strategies where employed. For instance, subjectsectptloat they imag-
ined themselves swimming, running, taping their feet, braking and acceleraiatiing or
using stairs. A subject even reported that he was “imagining putting hiséed the head”.
Unfortunately, this strategy did not enable him to control the spaceshipd(ff#ffence = -
2). 33 % of the subjects (7/21) reported they imagined the same foot movasméme one
they did in the real movement game, whereas 48 % (10/21) reported they adamifferent
movement. On average, subjects for whom the real and imagined movemeathesame
obtained better results (mean HF£2.67) than the others (mean HF8G: 1.75). However,
this difference is not statistically significant (Mann-Whitney téstio = 20, p = 0.16), but
it would be interesting to study this point further in the future, by using a aelicexperi-
ment. The questionnaires also revealed that 33 % of the subjects (7/21) icht#uyneselves
as performing a sports movement. Interestingly, 62 % of the subjects (1&{dijted they
used a single strategy during the experiments whereas 33 % (7/21) ceffmyeused several
strategies. However, there is no difference between these two grotgrsnis of performances
(U13¢7 =41,p= 0.75).

Concerning the free remarks of subjects, it is interesting to note that tsib@mplained
about the difficulty to concentrate considering the environment they weieeinan exhibi-
tion. They would have prefered to be in a more isolated place. This poiebapps a strong
problem which is independent from algorithms and it would have to be redoin a way or
another, in order to use BCI in public places. Most subjects reportedhiyatound the ap-
plication and the interface well designed, enjoyable and motivating. Tlkeesarks are in line
with previous studies that showed that VR could increase the motivatiorbgcts for BCI
[LSFT07]. Finally, another valuable comment made by 2 subjects concerneduteafion
they felt due to the absence or lack of feedback when they did noteditadift the spaceship.
They suggested that an additional or more complete feedback could thénusler to give
them more information and, possibly, improve their learning.

6.4 Conclusion

This chapter reported on an evaluation of a self-paced BCI applicatimucted with 21 naive
subjects. We studied both performances and preferences of suldgs poluntarily in a
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challenging situation: first-time session, no human learning, no machine lgafrime mental
state to be detected, “out of the lab”, use of a single EEG channel. Suinjertscted with an
entertaining Virtual Reality application and were asked to control the tdikandfheight of a
virtual spaceship by using real or imagined foot movements.

Results showed first that, without training, roughly half of the subjects abkle to control
the application by using real foot movements, and a quarter were able tiolcoty using
imagined foot movements. These relatively modest performances enth@nceed for algo-
rithms that can learn and use subject specific information, such as FURHESpin order to
increase performances. It should also be recalled that the contexhatesnging for the sub-
jects, as it was their first BCI use, they were in a noisy environment agdiesl a BCI based
on a single channel and a single feature.

Taken together, the results of the subjective questionnaire stressed thrtainge of the
mental strategies and the visual feedback. More precisely, resultestadghat a lack or an
absence of feedback during the detection of the non-control state leaddo an increased
frustration for the subjects. Results also suggested that subjects ceelthgie attention to
true positives than to false positives during games based on imagined masefrtars, when
designing a self-paced BCI, we recommend to provide subjects with a contifeedback,
and to provide feedback (possibly a different one) even when theaoimol state is detected.
For instance, we could imagine a feedback indicating the subject how atogeffom the
intentional control state. This may be likely to reduce the subject frustratiamprove his
motivation and possibly accelerate his learning. In addition, results of thlsaion showed
that subjects enjoyed their BCI experience with the VR application, thusroon§ that VR
could indeed increase the motivation of BCI users [{.8F].

This first study of brain-computer interaction with virtual worlds has erthbketo gather
some relevant information for further designs. First, concerning thei3€lf, it is clear that
we should use trainable algorithms in order to obtain better performancesn&eoncern-
ing the VR application, we should pay a particular attention to the feedbaeidpmbto the
user. Indeed, this feedback should be continuous, provided at anatichas informative as
possible. These guidelines have enabled us to design a second BCatapplibat enables a
user to visit a virtual museum by thoughts. The related BCI, VR applicatidrit@nassociated
experiment are described in the next and last chapter of this manuscript.
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Chapter 7

Exploring a Virtual Museum by
Thoughts with Assisted Navigation:
First Steps

7.1 Introduction

In the field of BCl-based interaction with VR, the works achieved so & &ection 1.7.2) have
shown that brain-computer interfaces could be used as promising interdetiiwes for explor-
ing virtual environments. However, current interaction techniques fsathvigating Virtual
Environments (VE) by thoughts remain relatively basic and do not comfeefmathe small
number of commands available for the subject. Indeed, interaction teckrpgesented so far
are mostly based on very low-level commands, with generally a directiaisodetween Mo-
tor Imagery (MI) tasks and turning left or right, or moving forward in the. Wi believe that
high-level commands should be more exploited in order to provide a morel#egdnvenient
and efficient system (in terms of speed of task execution). In suchtensysiost of the com-
plex tasks would be carried out by the system whereas the user wouldav@yo provide a few
and very high-level commands to accomplish the desired tasks. Such a lerisafpirrently
being applied to brain-computer interactions with robots [{RMRMGO04, VBIL, RBG"07].
We believe that appropriate interaction techniques in VR should be desigreder to use
more efficiently the few commands provided by a BCI.

In this chapter, we present a BCl-based application of Virtual Reality) (Witch enables
a user to visit a virtual museum by using thoughts only. In order to expliiesitly the
small number of commands provided by a BCI, we propose here a nouwadhtm technique
for BCl-based VR applications. This interaction technique enables thi¢ausend high-level
commands, leaving the application in charge of most of the complex and teditails @f the
interaction task. Indeed, our interaction technique proposes the usepltryeethe museum
by selecting points of interest such as artworks or navigation points (i.ess coads, room
entrance, etc). The user can select these points thanks to sucdssaiyechoices. Once a
given point of interest is selected, the application will be in charge obpmihg the interaction
task such as navigating from the current point to the selected pointenahg a given artwork.
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In addition, we present a self-paced BCI system which can provide éts wgth 3 different
commands. This BCl is used as the interaction device of our VR application.

A first evaluation of our system is achieved in order to assess if a sulgaatavigate in
the museum by using our interaction technique and in order to comparemarfces with the
state-of-the-art techniques.

This chapter is organized as follows: Section 7.2 presents the interactiomdee we
proposed in order to explore a virtual museum. Then, Section 7.3 préisewissign of the self-
paced BCI used to interact with this VR application. Section 7.4 describegshevaluation
achieved and the obtained results. Finally, Section 7.5 discusses the aesuttsncludes.

7.2 The VR application and the interaction technique

The aim of our VR application is to enable a user to visit a virtual museum by tisoughts
only. This application should enable this user to navigate in the virtual musedrtodook

at the artworks displayed in this museum. This VR application should be codtinila self-

paced BCI system which can provide its user with 3 commands, respecssdgiated to left
hand, right hand and foot Motor Imagery (MI). In order to provide tiser with a flexible
interface and several possible choices of tasks though using only 3lngemenands, we
propose a new interaction technique which relies on a binary tree approhis technique is
described in the following.

7.2.1 Selection of interaction tasks

In our application, the tasks available to the user at a given instant axeipegl according to a
binary tree structure. This means that the possible tasks are recudsindd into two subsets
of tasks and are placed at the node and leaves of a binary tree. mmegdect a specific task,
the user should first select one of the two subsets of tasks displayedirgyeither left hand
motor imagery (to select the first subset) or right hand motor imagery (tot sbkesecond
subset). This choice done, the selected subset of tasks is again dividdéa/o subsets and
displayed to the user who shoud make another choice. This means thatret cuwde of
the binary tree has been changed to the root node of the left or rigliesull his process is
repeated until the selected subset contains only a single task (i.e., untilod teafbinary tree
is reached), which task is then carried out by the system.

BCI systems are not perfect mental state recognizers and they tend tomsikkes by
recognizing a mental state instead of another one. Moreover, the usatstamake human
mistakes and select the wrong task or subset of tasks. The user mahatg®dis mind, and
may finally want to do another task. Thus, we also provided the user withirmo” option.
At any time, the user can perform foot motor imagery in order to cancel shehaice he took.
As a consequence, the current choice will be changed to a choice wtiiddsponds to the
previous node in the binary tree.

Based on this task selection principle, two navigation modes are provided tsdhethe
free navigation mode and the assisted navigation mode. The user can sofitchrfe mode
to the other by using the task selection principle described above. In etbeds, at the top
of the binary tree, the user can select the free navigation mode by ushicghegd MlI, and
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the assisted navigation mode by using left hand MI. When the user leavesrangode by
using the undo option (foot Ml), the other mode is automatically selected im twdave time.
Figure 7.1 displays the architecture of this binary tree.

Start
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\
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— Left hand Ml
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Figure 7.1: Architecture of the binary tree used for task selection. lildize noted that the
architecture of the subtree surrounded by a red line is dynamic. Intteedumber of nodes
in this subtree and their arrangement depend on the user’s view poinSésztion 7.2.2 for
details).

Point of
interest on
the left

It is worth noting that, thanks to the binary tree selection principle, any nuibeew
modes or tasks can be easily added to the interface. The section hedeaftdébes the two
modes implemented in our current application, the core of our contributio ieenassisted
navigation mode which provides high-level commands to the user.

7.2.2 Assisted navigation mode

In the assisted navigation mode, the user can select points of interesnigythes binary tree
selection mechanism presented before. The points of interest that theansselect at a given
instant depend on his position and field of view, as the user can only s&die points of
interest. The points of interest located the farthest on the left of thesuseld of view are
placed on the left leaves of the binary tree whereas the points locatedtthestaon the right
are placed on the right leaves. As such, the user can naturally usaneffvii to select the set
of points on the left, and right hand MI to select the set of points on the rig. points of
interest could be either artworks or navigation points.
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Artworks represent any object exposed in the museum that is worthytesest, such as
a painting, a picture or a statue. To be identified by our application as agwihese objects
have to be listed in an XML file. This file should contain the name, position, otientand
3D model of each of these objects. It should also contain the kind of &teach object
is. Indeed, different kinds of interaction can be proposed to the wserding to the kind
of artwork. For instance, concerning a painting, the user could neestts fand zoom on
some parts of the painting in a 2D manner (a painting being generally 2D). (athtbehand,
concerning a statue, the user could need to turn around the statue teeoiv$eym various
points of view. As such, a different kind of interaction is needed for tustar for a painting,
for instance.

Navigation points are points that the user can navigate to. More preciselgento walk
in the virtual museum, the user just needs to select the next navigation foimttfe available
navigation points, using the binary tree selection technique. The applicatiomaitically
drives the walk from the current point to the selected one. This relieesgdér from all the
cumbersome details of the trajectory to go from one point to the other. Durisigdkisted
walk, the user can perform foot Ml at any time (i.e., undo) in order to stepuéking where
he is. This could be useful if the user changes his mind or if, during the wedluser spots an
interesting artwork, not visible previously. Interestingly enough, thas@ation points can be
generated automatically by our application, by extracting topographicahiafiion from the
geometry of the virtual museum (see Section 7.2.5).

7.2.3 Free navigation mode

This navigation mode is a simple mode which provides low-level commands to theluser
enables the user to rotate the camera towards the left or towards the righinigyleft hand

or right hand MI respectively. As such, this navigation mode is equivatewhat has been
proposed in [FLG07, LSL"04, FTHO8]. In our application, this mode enables the user to look
around its current position, in order to localize his next destination or to fimo& given art-
work. Once this destination or artwork is localized, the user can employ sieesnavigation
mode in order to reach quickly the corresponding point.

7.2.4 Graphical representation and visual feedback

Providing relevant feedback to any VR user is essential (e.g., seeABBN! This is partic-
ularly important for BCl-based applications as the user can only rely ofeduback to know
whether he correcly performed a given mental task [WH&I]. Moreover, our results from
Chapter 6 have suggested that, for self-paced BCl-based VR appiggpimviding a contin-
uous and informative feedback at any time may reduce the user’s frustattbimprove his
learning.

In our application, various colored icons are displayed dynamically aesdisee Figure
7.2). Among these icons, 3 are continuously displayed: these icons erfmadback on the
mental states identified by the classifier. These 3 icons represent ardf{ihalue), a right
hand (in yellow) and feet (in green) and are naturally associated tcdeét NI, right hand Ml
and foot MI, respectively. When the VR application receives a givemtatstate from the BCI



The VR application and the interaction technique 149

classifier, the size of the corresponding icon increases. As long aatteersental state is being
received, the size of the icon keeps increasing until the number of caihsestates required
is reached. Indeed, to make the control of our VR application more robestequire that
the same mental state is received several times in a row in order to executerdmponding
command. In other words, we used a dwell time (see Section 7.3 for detaysaniically
changing the icon size depending on the classifier output enables uyidepi®edback to the
user even when the non-control state (any mental state except the dawfjetates) is finally
detected, as our results from Chapter 6 suggest. When the icon rescheximum size,
the corresponding command is executed. This command is also represergecten under
the form of an icon placed next to the corresponding mental state icondigpldyed with
the same color. This aims at informing the user of what will happen if he pasgf@ given
mental command. As the available commands depend on the mode used (etgd asdiee
navigation mode), the icons representing the commands are also dynamieaijech

Navigation point

Figure 7.2: Graphical representation of the BCl-based virtual musgpiication.

The visible points of interest are displayed in the museum using coloredgaas—gure
7.2). When using the assisted navigation mode, the user can select thdséggo automat-
ically from point to point. In this mode, the point or the set of points that casebected using
left hand MI are displayed in blue (the left hand icon is also displayed in) bitiereas the
point or the set of points that can be selected using right hand MI arkagéspin yellow (the
right hand icon is displayed in yellow). The other points, which cannoetected anymore,
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are displayed in red and black. Figure 7.3 displays an example of selettiavigation points,
on which we can see these colored pins. When selecting these points e$inter command
icon is displayed on screen, as the points of interest are colored themaeb@rding to the
mental command needed to select them.

Figure 7.3: Example of use of the assisted navigation mode, with navigatiots pbi@re, the
user first selects the assisted navigation mode by using left hand Ml f@stdhting node of
the binary tree. Then, he selects the set of two navigation points locate@ ¢efitby using
again left hand MI. From these two points, he finally selects the one on thdogigusing right
hand MI. The application automatically drives the walk to this point. Picture 4lalis the
user’s view during this walk.

7.2.5 Implementation

Various tools have been used in order to design this application. In thisrsesgdirst present
the tool and the algorithm used to generate the navigation points and to comjmuntetcally
trajectories between these points, i.e., to perform path planning. Thenesernprthe general
software architecture of our VR application.
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7.2.5.1 Generation of navigation points and path planning

In order to generate the navigation points, and to automatically compute thddrasde-
tween two of these points, our application relies on the TopoPlan (Topoldgjizaner) al-
gorithm, developped by Dr. Fabrice Lamarche. TopoPlan is a computevasefdedicated
to the automatic processing of 3D virtual environments in order to enable emitiewigate
automatically in these environments. Using the non-organized 3D geomepyPTEm first
computes an exact 3D spatial subdivision of the corresponding enviain From this subdi-
vision, and using various morphological information on the navigating entiy, @ze, width,
...), Topoplan can extract a 3D topology of the environment. This togaledines the areas
that can be navigated and their accessibility. From this 3D topology, diffeanstraints are
extracted, such as the boundaries of the obstacles or the bordeiis-sfegta. These constraints
are used to compute a set of 2D topologic maps. Such 2D topologic mapsatieg spbdivi-
sions of the environment plane (in 2D). For 3D environments with multiple leselsral 2D
maps are extracted so as to cover the whole environment. These topologiamamputed
using a slightly modified version of the constrained Delaunay triangulatio®4].DTwo kinds
of constraints are used in this triangulation: obstacles or steps. Theaggharangulation is a
partition, in triangles, of the convex hull of the environment. This partitiortaios three kinds
of segments: obstacle, step and free segments. As an example, Figusplajsthe result of
the subdivision of the building of the museum used in Section 7.4.1 (see Hidufer a view
of the 3D model of this museum).

TS

2

I

|j_n_ =
Figure 7.4: Example of the subdivision map of the building of a museum. Theotdsi{here

walls) are displayed in red lines whereas the results of the subdivisiatisplayed in green
lines.
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Each segment with the type “step” or “free” can be crossed in ordenigaiz between
the triangles. In order to automatically compute a path within the environmentdenagais
generated for each topological map. Such aroadmap is composed of paietts representing
good configurations for the navigating entity. We denote as a configua#brpoint on which
an entity can be located without colliding with the environment. As such, a aoafign takes
into account the size of the entity. In the roadmap, these configurationsoarected by
straight line paths along which the entity can navigate. Each configuratimnerated on a
segment with the type “step” or “free”. The configurations are gengisiexs to maximize the
distance to the surrounding obstacles. Then, a path is generated bétgemmfigurations if
and only if these two configurations are generated on two different segmich delineate
the same triangle, and only if the path which connects them is free of collisigure~7.5
displays, as an example, the roadmap extracted from the museum buildisggylopoPlan.

Figure 7.5: Example of a roadmap, in black lines, extracted using Topofland museum
building.

By using these different data structures, it is possible to plan and to folluathain order
to navigate automatically from one configuration of the environment to the. other

Concerning the assisted navigation mode of our application, the challerggtoiiad a
small number of significant navigation points that enable the user to navigaiBtoy se-
lecting these points. To this end, we propose to filter the roadmap in ordetréetex subset
of relevant configurations. To do so, all the configurations from tlaelmap are first given a
mark. This mark corresponds to the distance between the configuratidghexndarest obsta-
cle. In other words, the highest a configuration mark, the more this coafign maximizes
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the coverage of the environment. The different configurations areatha&ysed by decreasing
order of their associated mark. Let us def{@), a function which associates to each con-
figuration p its successors in the graph representing the roadmap. A configusati&p) is
removed from the roadmap if and only if for all configurations S(s), the path(x, p) is valid.

If a configurations is removed, the path, p) such thatp € §(s) are added to the roadmap.
This process is repeated until the algorithm converges. This algorithbiesnas to filter the
roadmap by keeping, in priority, the configurations which maximize the visibilitthenVE.
As such, it can greatly simplify the roadmap while ensuring that there is dtdaather visi-
ble configuration which can be selected to navigate the VE. The navigatiots psed in our
virtual museum application correspond to the configurations that havededected after the
filtering.

However, even if these points appeared as functional, some of themtdidvean optimal
position. For instance, some navigation points were located in the cornes mfoms, which
made it inconvenient to go from one room to the other or to observe the rAsrauch, after
this automatic generation of points, we can perform a manual optimization ofptb&itions
and eventually remove/add some points. However, it is worth noting thatplapaan still
generate automatic trajectories from point to point, be the points generabedadically or by
hand.

7.2.5.2 General software architecture

In order to use our BCl-based VR application, some offline operati@eguired beforehand.
The main requirement is to have a 3D model of the virtual environment. Feavalmations,
we used the Google Sketchtmodeling tool in order to create the 3D model of the virtual
museum. In addition, an XML file, which contains the pathname of the artworkn8bels
and the positions and orientations of these models in the museum, should be. Wwritterthe
museum 3D model and the XML file, our application uses Topoplan to automatigaigrate
the topology, the roadmap(s) and the points of interest of the virtual musé&ystionally,
these points of interest can be manually optimized. Concerning the BCI systeosed the
OpenVIiBE platform [RGC 07]. OpenVIBE is indeed used to generate the self-paced BCI
using a set of training EEG signals recorded previously from the suffjeetgeneral software
architecture of these offline operations is displayed in Figure 7.6.

Concerning the online use of our VR application, the corresponding seftarahitecture
is displayed in Figure 7.7. Within this architecture, OpenVIiBE is used to implemer@,
here used as an interaction device for the VR application. Indeed, GREs¢nds commands
to the VR application via VRPN (Virtual Reality Peripheral Network) [THR]. The kernel
of our VR application is the interaction engine. This software module preseke commands
received from the BCI in order to perform the corresponding interadisks. It is also in
charge of automatically generating the dynamic part of the binary treerdiegdo the user’s

Ihttp://sketchup.google.com/
2http://www.irisa.fr/bunraku/OpenViBE



154 chapter 7
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Figure 7.6: Software architecture for offline operations.

view point in the museum. The interaction engine uses the {@fPeengine to render the
museum and to display the visual feedback. Finally, the interaction engiseTopoplan in
order to perform the automatic navigation between two points of interest.

It is worth noting that any virtual museum could be used within our applicatimateed, gen-
erating the navigation points can be done completely automatically using only dheetrg
of the VE, thanks to Topoplan. Alternatively, the points can be generatddhitd simply by
providing their coordinates. Moreover, the generation of the trajectsoespoint to point is
done completely automatically, still thanks to the analysis of the VE geometry byplamp
In this chapter, we focused on interaction tasks in a virtual museum. Howas/eur appli-
cation has been designed in a generic way, it should enable users totimiheother virtual
environments such as virtual apartments for instance.

7.3 The Self-Paced BCI

As mentioned earlier, our VR application is controlled by a self-paced B€ddan Ml which
can provide its user with 3 mental commands. As such, this BCl is a 4-stafeeselél BCI. It
can indeed recognize the 3 mental states associated to each command ntienkdt€ontrol
(IC) states - plus the Non-Control (NC) state, i.e., any mental state thatndvesrrespond

Shttp://www.ogre3d.org/
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Figure 7.7: Software architecture for online operations.

to a control command. In this chapter, we describe the design of a 4-siapmaced BCI
based on MI. The following sections describe the electrodes used in©ua8well as the
preprocessing, feature extraction and classification methods we usesigo d.

7.3.1 Electrodes used

In order to record the Ml brain signals, we used 13 EEG electrodegehbawer the motor
cortex areas. These electrodes were FC3, FCz, FC4, C5, C3, CC2CZ4, C6, CP3, CPz
and CP4 according to the 10-10 system [AES91] (see Figure 7.8).

7.3.2 Preprocessing

As the preprocessing step, we first band-pass filtered the raw EE@Issignthe 4-45 Hz
frequency band as this frequency band is known to contain most of tmepig/siological
signals generated by MI [PNO1]. Moreover, performing such afilteramgreduce the influence
of various undesired effects such as slow variations of the EEG sigmhidt{ can be due, for
instance, to electrode polarization) or power-line interference (50 Hzande). To achieve
this filtering, we used a Butterworth filter of order 4. In order to enhaneéthin signals of
interest, we also used a Surface Laplacian (SL) spatial filter  MMDW9&t €3, C4 and Cz,
leading to three Laplacian channels C3’, C4’ and Cz’ obtained as follows:

C3 =4C3-FC3-C5-C1-CP3 (7.1)

C4 =4C4—-FC4-C6-C2—-CP4 (7.2)
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Figure 7.8: Placement of electrodes in the 10-10 international system. 3rékedtrodes we
used in our BCI are displayed in red.

CZ = 4Cz—Cl-C2—FCz-CPz (7.3)

Indeed, channel C3’, Cz’ and C4’ are respectively located ovetigh¢ hand, foot and left
hand motor cortices. Features were extracted from these three nemetdhan

7.3.3 Feature extraction

For feature extraction we used Band Power (BP) features. To obtaimeagfiizient BCI, we
extracted several band power features for different frequeaongdbfor the different Laplacian
channels and selected the most relevant ones using the Sequentiaid=Bteating Search
(SFFS) feature selection algorithm [PFK94]. This algorithm is indeed btleeanost popular
and efficient feature selection techniques [JZ97]. More preciselynveastigated BP features
extracted in 2 Hz wide frequency bands between 4 and 34 Hz, with a 1 plzastd selected
the 12 most efficient features using the SFFS algorithm. We indeed otgbateusing more
than 12 features did not increase significantly the performance whi¢ieeseased the com-
putational burden. As our BCl is a self-paced BCI, it requires contiswtassification of EEG
signals. Consequently, we extracted a BP feature vector 16 times pedsewer the last 1 s
time window (i.e., using a sliding window scheme).
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7.3.4 Classification

For classification we used the Fuzzy Inference System (FIS) presenhapter 3, i.e., the
Chiu’s FIS [Chi97b]. Indeed, as presented in Chapter 5, non-linkasifiers such as FIS
have been shown to be the most efficient ones for self-paced BCinddrigrder to design a
self-paced BCI we relied on a pattern rejection approach (see Chaptdio& precisely, we
used the reject class technique, as this seemed to be the most efficient atbiating to our
results from Chapter 5. With this technique, our FIS classifier will have abwih 4 classes:
one for each mental state used for control (IC states), and one ctaasdther mental states
(NC state).

In order to make our self-paced BCI more robust, we also used a dwell tidh& iefractory
period [TGP04]. When using a dwell time, a given control command is gégetionly if the
classification identifies the same cldgs times in a row. Similarly, when using a refractory
period, theNg classifications which immediatly follow the identification of an IC state will
be forced to the NC state. These two techniques lead to less False Po&iBYeBd., to less
identifications of an IC state instead of an NC state. In our system weNgsed\r = 7 (these
values were defined experimentally).

7.4 Evaluation

We performed a first evaluation of our application in order to know wheteiinteraction
technique we proposed was usable and efficient. To do so, we studiparioemances of
one subject who used our interaction technique to navigate from roonoto irothe virtual
museum. As a comparison, the subject also had to perform the same tashdthescurrent
state-of-the-art navigation technique in VR when using a BCI: the techrofj$chereet al
[SLS"08], i.e., turning left, turning right or moving forward by using left haright hand and
foot MI, respectively (see [SL8] or Section 1.7.2 for more details about this work). This
enabled us to compare our high-level approach to a low-level oneoliicglbe noted that we
used the same BCI design (the BCI presented in Section 7.3) for both tiwergechniques.
Consequently, this BCI design is different from the one used by Sckeeéi [SLST08], as
we used a different classification algorithm, different electrodes, rdiftesignal processing
techniques, etc. Moreover, in this chapter we aim at comparing the interaetioniques, but
not the BCI designs. It should also be mentioned that we did not useagt@fy period with
the interaction technique of Schemdral. Indeed, this enabled the user to maintain the Ml task
in order to maintain the movement in the museum (rotation or forward translatidrgsasuch
to move continuously rather than by periods. During such continuousfdrtkanslations, the
user moved by about 25 cm for each corresponding classifier outputiassifier providing an
output 16 times per second.

As a measure of performance, we evaluated the time needed by the subjecfaion
different navigation tasks. As this evaluation was dedicated to navigatike, sworks were
not considered during this experiment, which means they could not beexkleyg the user.
However, artworks were still displayed in order to provide an engagige next sections
describe the virtual museum used, the population and apparatus, thegtasiojibct had to do,
the experimental procedure and finally the results obtained.
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7.4.1 Virtual museum

As the virtual environment used in our evaluation, we developed a fictiortabl museum.
This museum contains several pictures of landmarks from various tesial well as some
statues (see Figure 7.2). This museum is composed of 8 different ro@m®ea containing
either several pictures or a statue. The architecture of this museum isyddlia Figure 7.9.

Figure 7.9: 3D model of the virtual museum used in our experiment.

7.4.2 Population and apparatus

For the experiment, EEG signals were recorded using a Nexus 32b EH@Gw&om the Mind
Media company, at a sampling frequency of 512 Hz. One subject patédipathis experiment
(male, 25 years old), who had a previous Ml-based BCI experiertoe eXperimental setup is
displayed on Figure 7.10.

7.4.3 Task

For this evaluation, the subject had to navigate from one room to anotli@stass he could.
The navigation tasks were categorized into three groups according tistaead between the
starting room and the finishing room: short, medium or long. A short navigédik consisted
in passing through 3 rooms, e.g., going from Room A to Room D (pleasetoefégure 7.9
for the room names and positions) ; a medium navigation task consisted ingpts®ugh 4
rooms, e.g., going from Room A to Room H ; and finally a long navigation taskisted in
passing through 5 rooms, e.g., going from Room A to Room E, i.e., by pasmggh Room
G.
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Figure 7.10: Setup of the experiment.

7.4.4 Procedure

Before participating to the virtual museum experiment, the subject participetteee sessions
following the protocol of the 3 class Graz BCI (see [KFPDE]), in order to record training data
for selecting the features and training the FIS classifier. These sesswagecorded on a
different day than the virtual museum experiment. During a session, bjecshad to perform
10 trials for each class (left hand, right hand and foot MI). As nosil@s was available, the
subject was not provided with any feedback. Once the three sessemescampleted, the
features were selected using SFFS and the FIS classifier was trainessertdtta (see Section
7.3).

The subject had to perform each kind of navigation task twice for eaehobthe two
interaction techniques. The order of the tasks was arranged in blockkin\& block, the
subject used a single interaction technique and had to perform onceiedcbf navigation
task (short, medium or long - the actual order being randomized within the)blbbk subject
performed first a block using Scherer’'s method, then 2 blocks usingnetinod and finally
another block using Scherer’'s method. These blocks were achiegethose different days as
the tasks were too tiring for the subject to be carried out in a single daj d&ag the duration
of the experiment was approximately between 2 and 2.5 hours, including thestijuiead for
electrode montage. At the beginning of each day, the subject participatieeténsessions of
the protocol of the 3 class Graz BCI (see above). During these ses#ieruser was provided
with a feedback thanks to the classifier trained during the beginning of tvops day of
experiment, or trained using the initial training data if it was the first day oéaspent with
feedback. It should be noted that the BCI used for these sessionsywelsronous, which
means that the NC state was not recognized by the BCI. However, thetswhie instructed
not to perform any MI nor real movement during the inter trial periods asdtta in these
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periods would be used as examples of the NC state for training the finglesti BCI. Once
the three sessions were completed, the FIS classifier was re-trainedsemtve data, in order
to adapt to the user’s current EEG signals and in order to design thpased@t BCI. Then the
experiment with the virtual museum could begin.

7.45 Results

First, it should be mentioned that the user managed to reach all the rooms hestvacted by
using any of the two interaction techniques. This suggests that the uddrambually control
the application and explore the virtual museum by using the proposed By As the
BCl is self-paced and as the user sends commands at his free will, it i®ssibfe to report
on the online classification performances of the BCI. Indeed, we caamopare the mental
state recognized by the BCI with the mental state performed by the subjeetdid wot know
what the user intented to do at a given instant. However, in order to ¢sallnether our BCI
system works better than a randomly performing BCI (i.e., a BCI which islartatproperly
identify any mental state), we simulated a random BCI. More precisely, weraadomly
selected mental states to the application as if it was the mental state identified kas8ifer.
We performed these simulations twice for each interaction technique, thectiobjeof the
random classifier being to perform a short navigation task. For eachetzen after 30 minutes
of simulation (i.e., 1800 seconds), the random BCI was not able to reatirgfsted room. By
comparison, the average time required to go from one room to anothetdditatan distance of
3 rooms or more) with our BCI, independently from the interaction technigtieemavigation
task, was 331.5 seconds, i.e., approximatly 5.5 minutes (see tables belasviugbests that
our BCl indeed provided control to the user.

Table 7.1 displays the time needed by the user to accomplish the differenati@nitasks
(short, medium or long), according to the interaction technique.

Table 7.1: Time (in seconds) needed by the user to accomplish the diffexreigaation tasks
using the two interaction techniques.

interaction technique navigation task 15 block | 2"9 block | mean| overall mean
long 176 140 158

Proposed technique medium 174 235 204.5| 165.8+ 35.5
short 130 140 135
long 574 830 702

Scherer’s technique medium 486 623 554.5| 497.24+ 228.4
[SLS™08] short 364 106 235

These results show that, for our subject, navigating from one room themay using the
interaction technique we proposed is about three time faster, on avérageyhen using the
interaction technique of Scheret al. This difference is however smaller for short navigation
tasks. A paired t-test comparing the time needed to navigate using our technijtiee one of
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Schereet al, over all blocks and navigation tasks, revealed that our techniquegvacantly
faster (p < 0.05).

It is also interesting to note that our technique has a small variance for the ¢ieded to
accomplish the task, contrary to the method of Schetral This suggests that the time needed
to go from one place to another with our technique may not vary too much witigtence to
cover. Indeed, it takes approximatly the same time to select a point of intenast is close
and a point of interest which is far, providing that they are both visible.

The time needed to navigate was of course related to the number of commaritle trser
had to send. Table 7.2 displays the number of commands needed by theasmrtplish the
different navigation tasks, according to the interaction technique.

Table 7.2: Number of commands needed by the user to accomplish the diffierggation
tasks using the two interaction techniques.

interaction technique navigation task 15 block | 2" block | mean| overall mean
long 36 29 325
Proposed technique medium 33 33 33 28.5+8.2
short 13 27 20
long missing data] 142 142
Scherer’s technique medium missing data] 131 131 | 97.3+68.1
[SLS08] short missing data 19 19

This table shows that the user sent on average 97.3 commands to go framoomé¢o
another (situated at a distance of three rooms or more) using Scheteraciion technique,
and only 28.5 commands to do the same thing using our interaction techniqus, ashwe
expected, navigating using points of interest enables the user to send &y high-level
commands while leaving most of the work to the application itself. In addition, thenes
ported that navigating using points of interest was less tiring than with Stherehnique, as
he could relax and rest during the automatic navigation periods from dnegdanterest to
the other.

7.5 Conclusion and discussion

In this chapter we presented a VR application which enables a user toegplotual museum
by thoughts only. In order to design this application, we proposed a neradatiten technique
based on points of interest. This technique enables the user to send awyragh-level
commands to the application in order to navigate from one point of interest wttike The
actual navigation between two points of interest is carried out by the applideself, leaving
the user free to rest or to observe the museum. Interestingly enouglyrtipeiation of these
points and the navigation between these points can be achieved completatathcatly using
an algorithm called TopoPlan. In order to select these points of interestséinean employ a
selection mechanism which relies on a binary tree and depends on thewserpoint. This
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binary tree mechanism provides a unified framework for BCl-basedaictien in VR. Indeed,

it enables, for instance, to select navigation commands or object maniputatiemands in

the same way. In addition, we also proposed a design of a self-pacedtBei can issue three
different commands, these commands being associated to left hand,aighahd foot motor
imagery, respectively.

Afirst evaluation of our application, using one subject, has been céedluthe first results
suggest that our method was efficient as it was faster to navigate usimjeraction technique
than using the state-of-the-art navigation technique in BCl-based itieragith VR. Natu-
rally, these results should be moderated by the fact that the evaluatioaperformed with
only one subject. It is indeed necessary to further validate our resuttsdbyating the appli-
cation on more subjects. However, the results presented here seemipgoriey also stress
the importance of designing interaction techniques for BCl-based intanagtib VR.

Future works could deal with evaluating this application with disabled peoptedir to
assess if the application can enable them to visit virtually various museumesroother build-
ings, which they might not be able to do for real. It should also be interestifugther improve
the self-paced BCI. Indeed, even if this BClI seemed much better thamlamariassifier, the
time needed to perform a navigation task by using it was also far from wlatan do by
using classical interaction devices such as keyboards or mice. To thigsvermbuld study, in
this online context, other feature extraction or classification techniquessamgl, for instance,
the FURIA algorithm presented in Chapter 2. It could also be valuable torexpew filtering
techniques to select the relevant points of interest provided by TopoPiaally, it could be
interesting to explore and add various interaction commands to our binaryngeleanism.
For instance, interaction techniques such as Navidget [HDKGO08] cauladapted for BCI
purposes in order to easily observe the museum virtual statues.



Conclusion

In this manuscript, we have studied EEG signal processing and classifitatibniques in
order to design BCI systems and to use them in virtual reality applications, wih thain
objectives: 1) increasing the information transfer rate of current B&esigning interpretable
BCI systems, and 3) developing BCI systems for VR applications.

In order to reach these objectives, we have first proposed contrisuéipthe EEG sig-
nal processing and classification level. Concerning feature extragti®mave proposed an
algorithm named FuRIA, which is based on inverse solutions and fuzzyssssChapter 2).
This algorithm can learn and extract a small number of interpretable andndisant fea-
tures, these features corresponding to the activity in Regions Of Ih{&@$) and frequency
bands. We also proposed the concept of fuzzy ROI and fuzzydregubands which revealed
to improve the classification performances of the features extracted lAFORr evaluations
suggested that the learnt FURIA features reflected knowledge cansiste the literature on
the analyzed signals. They also revealed that FURIA features coukkldegaidesign BCI with
performances comparable to the ones of BCl competition winners.

Concerning classification, we have studied Fuzzy Inference Systel®} f(i¥ BCI de-
sign (see Chapter 3). More particularly, we studied FIS for classifyingpmimagery signals.
The results of our studies have first shown that FIS classifiers cotddhotiassification per-
formances similar to the state-of-the-art classifiers used in BCI reseach support vector
machines. Our studies have also shown that FIS were interpretable etas$itm which we
can extract knowledge on the signals used for training. FIS also offgpdksibility to use a
priori knowledge for classification. Finally, our studies have shownRlatcan reject outliers
efficiently.

We have combined the FUuRIA feature extraction and the FIS classificatibnitges,
along with linguistic approximation methods, in order to build a fully interpretablé 86-
tem which can express what it has learnt from data using words ordyGhapter 4). Our
evaluations suggested that the designed BCI actually reflected knowdzggeted from the
literature when used on movement intention or visual spatial attention EEGssi{ine anal-
ysis of these last signals has been possible thanks to a collaboration withr@&i. Tzelepi
from the Institute of Communication and Computer Systems in Greece, and RrdRiRon
Angevin from Malaga University in Spain. Our results suggest that tbpgsed algorithm
could be used to check the BCI system learnt from data, to presenttthraatically extracted
knowledge to persons without knowledge on classifiers or fuzzy sdtspassibly, to extract
knowledge about the brain dynamics.

Finally, we proposed to design self-paced BCI based on a pattern rejegjwoach (see
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Chapter 5). To this end, we first introduced and studied two pattern rejdetbiniques that
have not been used before for BCI research: the reject classharnlresholds on reliability
functions based on the multiple threshold learning algorithm. This has besibleatanks to
a collaboration with Dr. Harold Mouchére, from INSA Rennes, in FraWle also compared
various classifiers and rejection techniques. Our results showed thgtaiseject class with
non-linear classifiers led to the most efficient self-paced BCI. Comrseiyithis study provided
guidelines to increase the information transfer rate of current selidBCée

In order to put these results in relation with our initial objectives, we couldtimehat
objective 1) (increasing the information transfer rate of current B&$)heen addressed by the
proposition of FURIA and the FIS which both reached state-of-thesattts in terms of clas-
sification performances. Moreover, both methods can deal with multiple metatak, hence
possibly improving the information transfer rate. Our study on pattern rejetdichniques
finally made it possible to design self-paced BCI with improved classificaticionpeances,
by using a reject class and non-linear classifiers instead of curreetiyrethods. Concerning
objective 2) (designing interpretable BCI systems), it has also beeess#d by FURIA and
the FIS, these two methods being also interpretable. Moreover, the refsthiesevaluation of
the method based on FURIA and FIS that we proposed suggested thastitieng BCl was
indeed interpretable.

In a second part, we have proposed contributions for the design ebB€dd VR applica-
tions, which addressed our third and last objective, i.e., developpingiems for concrete
VR applications.

For this purpose, we first studied the performances and preferen@isnaive subjects
who used a BCI to interact with an entertaining VR application in close to reatdifielitions
(see Chapter 6). Our results first highlighted the need to use subjaifisBC| thanks to
machine learning techniques. They also highlighted the increase in motivatgered by
VR. Moreover, this study stressed that when using a self-paced Bljeas should be pro-
vided with a complete and continuous feedback at any time, even when tfentol state is
detected by the BCI, in order to reduce the user’s frustration and impisvearning.

Finally, we have developed a VR application which enables a user to vistuaMinuseum
by using only a BCI (see Chapter 7). To this end, we proposed a ndeghation technique
which provides high-level commands to the user, leaving the low-level a@iholute aspects of
the interaction task to the application itself. The development of this VR applidasisieen
possible thanks to the considerable engineering work of Thomas Erme¥aan Renard from
INRIA Rennes. We also proposed a self-paced BCI design which maside three different
commands, based on motor imagery. A first evaluation of our applicationeshiiwat a subject
was able to explore a virtual museum by using our BCI. This first evaluatsmnsaggested
that the proposed interaction technique seems to enable the user to nazigatamé room of
the museum to the other faster than with the current state-of-the-art fiamiggchniques used
in BCl-based VR application.

Taken together, these results suggest that BCI can actually be usddrastion devices
for complex VR applications despite the few commands they can provide. dviemethese
results also highlight that BCI are promising tools also for the general pwiblcccan enjoy
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entertaining VR applications based on a BCI.

Most of the algorithms used and studied in this PhD manuscript have been inmpéshire the

BLiFF++ library (see Annex A), which will be soon available with an openrse license.
Some of these algorithms (e.g., LDA, FIS, band power features, ...¢ &lao been imple-
mented for real-time operation within the OpenVIiBE BCI platform [R@®C], which will also

be released soon with an open source license. Please refer to the wettstproject for more
details:www. i ri sa. f r/ bunraku/ OpenVi BE.

Future work

The work presented in this manuscript left some questions unanswede@dsasuch, some
future works.

Concerning the FURIA algorithm, it would be interesting to study the influehbeth the
spatial resolution (number of electrodes used, number of voxels in teci®ad model) and
the frequential resolution (number of frequencies investigated) on tiierpances, in order
to possibly reduce the training times and/or improve the quality of the featuracastr. It
would also be interesting to take into account the temporal information in FURI&is end,
an attractive possibility would be to replace the classical band-pass filtevavelets, which
have proven to be particularly adpated for neuroelectric signals aediaip EEG [SBRS99].

Concerning our work on fuzzy inference systems, future work coeld with the ex-
ploration of different FIS such as NEFCLASS [Nau97], on differEEG data and with the
comparison of FIS with other interpretable classifiers such as decisi@n tree

Concerning our study of rejection techniques, we focused so far tandisrejection (also
known as outlier rejection). It could also be interesting to study confugjeation, in order to
increase the fiability of BCI systems by not outputing a command if this command lig tike
be erroneous.

Finally, concerning the virtual museum application, future works are dégticto more
evaluations. Similarly, assessing the application with disabled people coultbléasldesign
of entertaining and/or engaging VR applications adapted to their needsefadances.

Perspectives

In addition to the future works mentioned above, the PhD thesis work alsxpghe way to
further long-term research. Some of these aspects are described belo

Towards a unified approach using implicit surfaces

Implicit surfaces [Blo00, OM95, CG06] are powerful tools designed taipwate and design
complex geometric shapes. In this manuscript we have proposed to usseigedutions and
Fuzzy Inference Systems (FIS) for BCI design. It appears thaettves methods could be
represented using the same formalism, namely, the implicit surface formaliseednfiizzy
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membersip functions used in FIS can be exactly seen as implicit surfacesashiverse so-
lutions use brain Region Of Interest (ROI), which regions, being gearsttapes, can also be
modelized using implicit surfaces. We believe that such a modeling could leatktesting
results and may enable us to use new and efficient algorithms from the geometteling
community in order to design efficient BCI or to design new and insightfuhtaetivity visu-
alization technigues. We invite the interested reader to refer to annex Brfag Bints on how
to perform this modeling.

Combining rather than selecting

Concerning the signal processing and classification part of BCI desi@ghelieve that an inter-
esting path to follow could be denoted as the “combining rather than selecatiy” @urrently,
numerous preprocessing, feature extraction and classification metialbéden proposed and
explored for BCI design. Even if some of them sometimes proved more eaffitian others,
no method has been identified as the best. Consequently, we believe teathathtrying to
find a single best method, we should go towards combining together existingasethdeed,
the different methods proposed so far exploit different aspects mmegies of the EEG data,
and/or rely on different processing and classification schemes. As these methods could
be used together in a complementary way, and would probably lead to betikts rghen used
together, than when using “the best” method alone.

Recent results in the literature have highlighted that combining differensldhfeatures
together could lead to better performances [DBCMO04a]. Similarly, seyaiaérs have re-
ported that combining several classifiers leads to better BCI performanae when using a
single classifier [RG08, Sun07, HASO07]. Thus, it would be interestingptoee which kinds
of preprocessing, feature extraction and classification methods are gtecoroplementary
when used together, in order to design more efficient and stable BClrallgtstudying how
efficiently combining these methods should also prove valuable. In this mgstuse studied
pattern rejection techniques for self-paced BCI designs, and we shibaethe reject class
reject option with non-linear classifiers was the most efficient. Howevegniains an open
guestion whether better results could be obtained by properly combiningatimus reject
options studied.

Combinations of models could also be a solution towards the design of Ladi&Ts,
i.e., BCI that can be used by anybody without requiring the use of sufypedific features,
classifiers, etc. Indeed, recent results have suggested that comtedsgiers [RGMAOS5D,
RGO08] or spatial filters [KTBMO08] trained on EEG signals recorded deriht days could
be a solution to the problem of non-stationarities of EEG signals. By extenbisddea,
combining classifiers and/or features learnt on different subjects maghtdea universal BCI.
It could also be imagined that categories of users with similar EEG signalemiespcould
be identified, and that a BCI model could be learnt for each categorgn,Thy combining
these models together, we might obtain a universal model. Possibly, if thidmgsnodel is
not efficient enough, it would be possible to incrementaly adapt this giobdkl to a specific
user, as it is sometimes done for handwritten character recognition [MARO7

Still following the moto “combining rather than selecting”, it should prove vetgriesting
to combine different kinds of brain signals within the same BCI application. dadeur-
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rent BCI applications are based on a single kind of brain signal sucthiokee potentials or
spontaneous signals, but never use both at the same time. Howeverféhendiproperties
of these signals make them suitable for being used together. For instandR fapplica-
tions, spontaneous signals (e.g., motor imagery) could be used for nagitdaiwmirtual world
whereas evoked potentials could be used to select virtual objects. Intthisclase, the virtual
objects that can be selected would be responsible for sending the stimokssagy to use
evoked potentials. For instance, these objects would be randomly flaghingifig the P300)
or flickering (for using SSVEP), and would be selected when the usevsdhis attention on
them. Moreover this mode of operation may prove more natural than caypelfitations, as
navigation with evoked potentials is not really natural for instance. Natulybining dif-
ferent signals would also lead to interesting signal processing and aassifi challenges, as
different detectors or classifiers would have to be used in parallel.

BCl-based VR applications for disabled subjects

In this PhD manuscript, we proposed entertaining VR applications (the thusérce” appli-
cation and the “virtual museum”) controlled using a BCI, and evaluated trséng Unealthy
subjects. These BCl-based VR applications hold great promises forusees, for instance
concerning video game applications for the general public. Howevéitid not be forgotten
that BCI systems are also a promising communication channel for severalyze persons.
We believe that VR applications could also prove really useful for thesdbidid people.

First, as anyone, disabled people need entertainment, and unfortualglyew video
games are available for them. As such, BCl-based video games in VR ceydposed to
these persons. Second, paralyzed persons may not be able to trdeesame sightseeing.
As such, BCl-based VR application can be seen as a very promisingotdegliping them in
having access to numerous cultural experiences. For instance, (Singddnology, paralyzed
persons could be able to visit, in VR, various cities, museums or parks. Tenthjshe interac-
tion technique we proposed in Chapter 7 may prove useful. We indeedt ogegltoy museum,
but it could be used as well with a virtual representation of any real nmus&uwoposing VR
applications to paralyzed persons would probably require to adapt thhadnbte techniques
and the feedback to their situation and needs.

An advantage of VR, not specific to BCI, is that it allows to perform testgaie and care-
fully controlled conditions. Concerning BCI and paralyzed personsc¥id be very useful
to test any rehabilitation device controlled using a BCI, such as a wheelmhaiprosthesis.
Recently, the Graz group has performed a simple wheelchair simulation inAéRétraplegic
patient [LFMP07]. This was a preliminary step, as the wheelchair simulated was very simple
and far from being like a real one. However, we believe that such k iweery promising and
that such advantages of VR should be more exploited.

Finally comes the issue of using BCI in real-life applications for disabled Ipedpould
we transfer the interaction techniques proposed in VR to the real worigi'thtleed a difficult
problem, as numerous stimuli or feedback information are displayed in thah&ruironment
and used for interaction. To translate them into real-life, the patient wod ae additional
screen to display these feedbacks. This may be inconvenient and, maneantly, this pre-
vents the user from focusing his attention on the real world as he wouttitodeok at this
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screen. Consequently, in the long term, we will have to find solutions in éodstill provide
feedback and stimuli to the user without this user needing to constantly itcagtention on
a computer screen. A possible solution could be to use non-visual stimuii,asuaudio or
haptic stimuli.

Naturally, a lot of work needs to be done in order to achieve the applicatiensioned above.
As BCl is still a young research field, there is no doubt that the nexsye@irwitness tremen-
dous advances in the field and, at the same time, will open the way to newatidgresearch
challenges.



Appendix A

The BLIFF++ library: A BCI Library
For Free in C++

A.1 Introduction

The work presented in this PhD manuscript has lead to a considerable whpromgramming,
mainly in C++. In order to produce reusable programs, most of the camtkiped has been
gathered and organised as a C++ library. This library is known as BlLiF®hich stands for
“A BCI Library For Free in C++". With the aim of having this library being tiskfor the BCI
community, BLiIFF++ will be soon provided for free under the terms of then@mirce license
GPL. This annex briefly describes the library and some of its functionalities.

A.2 Library features

BLiFF++ aims at providing to the BClI community a set of tools, implemented unddothe
of C++ classes, in order to design, test and evaluate BCI systems, maiwiflifoe analysis.
These classes may be gathered into two main categories: classes fordeBighand classes
for analyzing brain data.

A.2.1 Classes for BCI design

Such classes enable the BLiFF++ user to process brain signals in oidientify mental states.
As such, BLiIFF++ provides the necessary tools to manipulate brain sigrthéspecially EEG
signals. It also makes it possible to apply signal processing techniqueshisignals, such as
frequency filtering (FIR, IR, FFT), inverse solutions or variougtdiea extraction techniques.
From these signals, BLiFF++ proposes to extract and manipulate featiniek features could
be used as input of a variety of classification algorithms provided by thayibdanong these
classification algorithms we can quote support vector machine (SVM), lifisaiminant anal-
ysis (LDA), neural networks such as multilayer perceptron (MLP)zyunference systems
(FIS), mahalanobis distance-based classifiers, etc. It is worth notihgathaus tools are also
provided in order to grant these classifiers with reject options or to consieiveral of these
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170 The BLIFF++ library: A BCI Library For Free in C++

classifiers together in order to build a meta-classifier. Finally, BLiFF++ aiseiged various
evaluation metrics such as classification accuracy, error rate, comfusitvix, mutual informa-
tion, ROC analysis, ... Figure A.1 displays some tools offered by BLiFF+order to design
a BCI, as well as the architecture of the corresponding classes, usitnitersal Modeling
Language (UML).

Signal Processing

/[FeatureExtractor] \ Classification
- N
(Classifier]
EEG Features
signals

[ Trial ] (InverseSolution) [FeatureYectorSet]
sLORETA [ FeatureVector }

Temporal Filter
Design

Butterworth

[WindowedSinc]
[CustomDesign]

\_ 4

Figure A.1: Classes provided by the BLiFF++ library for designing BCI

A.2.2 Classes for data analysis

In addition to these tools for BCI design, BLiFF++ proposes tools for anadybrain data.
Such tools aim at investigating recorded data and at finding patterns ottanyrelevant infor-
mation in them. For such a purpose, in addition to signal processing toolsFBtiprovides
classes that perform data clustering (fuzzy C means, mean shift, ariQus statistical anal-
ysis methods (ANOVA, t tests, ...), feature selection techniques suSle@sential Forward
Floating Search, ...Figure A.2 displays tools offered by BLiFF++ in ptdeanalyze brain
data, as well as the corresponding class architecture in UML.

This library has been used for most studies presented in this manuscript.
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l Clustering |

—[ SubstractiveClustering ]

FuzzyKMeans

—[ UnsupervisedOptimalFuzzyClustering ]

( statisticalAnalysis |

[ FeatureSelector ]

ANOVASelector |
T-TestSelector ]

Figure A.2: Classes provided by the BLiFF++ library for EEG data analysis

PairedT-Test

BootstrapT—Test]

A.3 Test case: designing a motor imagery based BCI

As an example of how this library works and how simple it is, this section desctite design
of a simple motor imagery based BCI. In order to design this BCI, the progpeow first

band-pass filters the data in the 3-35 Hz frequency band, then applig$aaesLaplacian
spatial filter as preprocessing. Then, it extracts band power fedtoraghe signals, in the
Mu and Beta bands. The resulting features are classified using a lineamignt analysis
(LDA) classifier.

[ Ireadi ng EEG signal s
//we assume that the read EEG are recorded using el ectrodes:
/I1FC3, C5, C3, Cl, CP3, Cp4, C2, C4, ©B, FCA
[/training data
vector<Trial > EEGsi gnal sTrain =
EEGReader : : readDat a( TRAI N_SI GNAL_FI LE, TRAI N_STI MULATI ON_FI LE, SAMPLI NG FREQ);
[Itesting data
vect or<Tri al > EEGsi gnal sTest =
EECReader : : readDat a( TEST_SI GNAL_FI LE, TEST_STI MULATI ON_FI LE, SAMPLI NG FREQ) ;

[lcreating the coefficients of a butterworth band pass filter of order 4 in 3-35 Hz
ButterworthFilter butter(bandPass, 3, 35, SAMPLING FREQ 4);

vec B = butter.get BCoeff();

vec A = butter. get ACoeff();

[lcreating the coefficients of a surface |aplacian spatial filter
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mat |aplacian="40-10-1-100-20; 040-1200-12-10-1";

/I preprocessing: applying the tenporal and spatial filter to the EEG signals
for(unsigned int i=0; i < EEGsignalsTrain.size(); i++)
{
EEGsi gnal sTrain[i].applylIRFilter(A B); //tenporal filter
EEGsi gnal sTrain[i].appl ySpatial Filter(laplacian); //spatial filter
}
for(unsigned int i=0; i < EEGsignal sTest.size(); i++)
{
EEGsi gnal sTest[i].applylIRFilter(A B); //tenporal filter
EEGsi gnal sTest[i].applySpatial Filter(laplacian); //spatial filter

}

[/ defining and extracting band power features
[/in the mu and beta bands

BandPower featureExtractor;

feat urekxtractor. addFreqBand(8, 13); //M band

f eatureExtractor. addFreqBand(16,24); //Beta band

[lcreation of the training set of FeatureVector for further classification
Feat VecSet trainFeatureSet = featureExtractor.createDataSet (EEGsi gnal sTrain);

[Idefining and training an LDA classifier
CLDAC assifier |da;
| da.train(trai nFeatureSet);

//testing the resulting BC

Feat VecSet testFeatureSet = featureExtractor. createDataSet (EEGsi gnal sTest);
| da. test (testFeatureSet);

cout << *‘accuracy on test set: '‘ << |da.getAccuracy() << ‘"%’ << endl;

This relatively small program makes it possible to design a BCI for offliradyais.

A.4 BLiFF++ dependencies

BLiFF++ is based on several well known and very useful C/C++ libsanibich are free and
open-source. Indeed, it is based on IT#er dealing with algebra (vector, matrix, matrix
decomposition, ...) and for some signal processing tools. BLiFF++ aks® Torch 3 which
notably provides an interesting implementation of Support Vector Machiresl\ BLIFF++

Lhttp://itpp.sourceforge.net/
2http://www.torch.ch/
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also uses some functionalities of GSIGNU Scientific Library) and Boo&t

A.5 Conclusion

BLiIFF++ is a C++ library that enables a fast and easy design of BCl.chiege this goal,
BLiFF++ builds BCI systems by combining several different kinds of dignacessing meth-
ods, feature extractors and classifiers. It also provides variousftoyodsalyzing brain data,
such as statistical analysis tools or clustering algorithms. This results in aldlgtéiform
which can be easily extended and manipulated. BLiFF++ will be soon avaftatfiee under
the terms of the GPL (GNU Public License) license. Our hope is that this libvéirprove
useful for the BClI community.

Shttp://www.gnu.org/software/gsl/
4http://www.boost.org/
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Appendix B

Towards a unified approach using
Implicit surfaces

B.1 Introduction

Implicit surfaces [Blo00, OM95, CGO06] are powerful tools designed toipwdate and create
complex geometric shapes. Formally, implicit surfaces are surfacestbabiznplicitely by an
equation of the following form:

F (X, Xo, ..., Xn) = 150 (B.1)

where theX; are the coordinates of a N-dimensional point, and Iso, a constant \Rifferent
values for Iso would lead to different surfaces.

In this manuscript we have proposed to use inverse solutions and Ffeegrice Systems
(FIS) for BCI design. It appears that these two methods could besemied using the same
formalism, namely, the implicit surface formalism. Indeed, fuzzy membersigiturscused in
FIS can be exactly seen as implicit surfaces whereas inverse solut®nsiag brain Region
Of Interest (ROI) which regions, being geometric shapes, can be implicitebjelized. In
this annex we only present some hints on how performing this unified modeiohguather
research is needed to achieve this goal. However, we believe that suetieding could lead
to interesting results and may enable us to use new and efficient algorithm#hie@eometric
modeling community in order to design efficient BCI or to design new and insightin
activity visualization techniques.

B.2 Modeling FURIA using implicit surfaces

First, let us propose some modeling of FURIA using implicit surfaces, andsletart this
modeling by the FUuRIA training phase. The first step of FURIA training ist& & performing
a statistical analysis for all voxels and frequencies, in order to identifiglwbnes are the
most discriminant. During this first step, each discriminant couple (voxeduiency) can be
modeled using a sphere-like implicit primitive such as a blob or a metaball [OMS&]the
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moment, as no fuzzification has been performed, each one of these psnhitive the same
weight i.e., the same influence radius. For a metaball, this leads to:

d(1-3L%) 0<r<?
fX)=q F@-F? 3<r<b (8.2)
0 b<r

wherer is the distance between a pokitand the center of this metabailjs the radius of this
metaball andl is its weight.

The next step is the clustering step, which aims at gathering voxels aneefreigs in
clusters. Thus, for each cluster, we would obtain an implicit surfa¢for a given level-set
value) resulting from the fusion (“blending”) of all implicit primitivelscorresponding to each
couple (voxel, frequency) belonging to this cluster:

FX)=Jf(X) (B.3)

It should be noted that this implicit surface lies in a 4-dimensional space (3diores for
the spatial coordinates - the voxels - and 1 dimension for the frequencglinate). We could
then project this 4D implicit surface in the spatial domain (3D) in order to obtaiimalicit
surface delimiting a ROI. We could also project the same 4D implicit surfacesoinguency
domain (1D) in order to obtain an implicit surface delimiting the frequency basdaated to
this ROI. These two elements (ROI and frequency band) can be visuabiggla rendering of
the corresponding implicit surface.

The last step is the fuzzification step, which associates a fuzzy membarsbijph to each
ROI and frequency band. These membership functions weigh the cditnilodithe voxels and
frequencies within a ROI or frequency band. As such, this amounts twotwthe influence
radius (or weightd of the primitives that compose the implicit surface of ROI and frequency
bands. This influence radious could be a function (possibly the identittjeomembership
degree of the voxels and frequencies in their ROI and frequencystrasgectively. It is still
possible to visualize these elements (fuzzy ROI and fuzzy frequena)) blayr rendering the
implicit surface for different values of the level-set. This enables usdodmn the core of a
ROI or on all its voxels, for instance.

This modeling using implicit surface could be useful from the point of viewead-time
visualization of brain activity and/or for neurofeedback. Indeedhsumodeling can be used
to show the user the ROI involved by a given mental task. Moreover, thdinee variation of
the activity in these ROI could be represented either by a color change ohfiicit surface,
or by a change of the level-set value (the higher the activity, the more ttesvdisplayed to
the user), or even both at the same time.
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B.3 Modeling FIS with implicit surfaces

Similarly its is possible to model the Chiu’s FIS (CFIS) by using implicit surfaeiéser during
the training of the FIS or during its use for classification. For matter of claeitys recall that
a CFIS uses fuzzy “if-then” rules of the following form:

If X1isA; andXoisAc and . ..andK, is A, then class i€

where theX; are features and;, are fuzzy membership functions.

B.3.1 Training

Training a CFIS consists in performing a clustering step on the training &egaators from
each class, and in associating a fuzzy rule to each cluster (i.e., to easlp@éastype). Each
one of these clusters could be represented by an implicit surface, bgiagsg an implicit
surface to each feature vector and in merging these implicit surfacese thiféerent implicit
surfaces would then represent each class prototypes. Howeveg, fihatotypes are not the
one used by CFIS for classification. Indeed, for each cluster, § fmeznbership function is
generated for each dimension (i.e., the prototype is projected on each axis)

B.3.2 Classification

It should be noticed that a fuzzy membership function, such as a fungti@an be seen as a
1D implicit function as it simply associates a value to any feature value. Theusaw define
the functionfr such that:

N

fR(X) = Br(X) = [ AX) (8.4)

k=1

As such,fris still an implicit function. Let us consider the following equation:

frR(X) =T (B.5)

This equation represents the implicit surface that delineate one of the slbstenging to
class C, and more particularly the cluster corresponding to the fuzzy ruléél constant
(which defines the isosurface), can here be seen as a rejectionoldrfiglA06b] (see also
Chapter 5). For this threshold value, we can consider that a featuter Yewhich is outside
of this isosurface does not belong to the corresponding cluster. Wadstadefine the following
function fc:

fo(X) = fry (X) U fir,(X) U... U fr, (X) (B.6)

Then, let us consider the following equation:

fo(X)=T (B.7)
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This equation defines the implicit surface that delineate the whole Clasg considering
a rejection threshold. This is due to the fact that in both the fuzzy set theory and the implicit
function theory, union can be achieved using the max operator. FinalbingaX is assigned
to the class for which it is “the most” in the associated implicit volume.

However, those definitions cannot be used to deal with multiple rejectiorhthidss as did
in [MAO6b] and in Chapter 5. As such, we associate to each fuzzyRthe following implicit
function:

N
fr(X) = IR(X) = Tr = rLAk(Xk) —Tr (B.8)
k=

whereTr is the rejection threshold of each ruke We then defined still definé:(X) as
follows:

fc(X) = le(X)U fRZ(X)U...U me(X) (89)

As such, if fc(X) > 0, thenX belongs to clas€ (it should be noted that, thanks to the
fuzzy formalism,X can belong to several classes at the same time), otherwise, it is rejected
from this class. The final cla§d of X is then:

CX = argma)&E{CL...,CNC}(fCl(X)7 RN} fCNC (X)) (BlO)

if this maximum is greater than 0, otherwiXds rejeted.

B.4 Conclusion

This annex has presented some evidences that implicit surfaces have a isiatli@matical
formulation as brains regions of interest and fuzzy logic. As such wgesigd that the FURIA
and FIS algorithms that we proposed might be modeled using a unified formpbsemtially
leading to interesting findings. The first steps of this modeling presentedaneronly hints
for starting using implicit surfaces for BCI, and a considerable furtherkvis necessary to
really achieve this. However, we believe that these formulations could lean itateresting
and unified theory which could enable us to apply algorithms from the geonmed@ling
field into BCI and potentially obtain interesting results.



Appendix C

Chapter 2 annex: Complete
classification results for the evaluation
of FURIA

In the tables presented hereafter, the column named “NbFeat” displaysriteenof features
extracted using the corresponding hyperparameters.
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Table C.1: Data set IV, BCI competition 2003, test set: classification aogusang FIR filters
(%)

H o | NbFeat| Raw Freq Space All
0.75 0.01| 28 80 82 80 84
0.05 33 86 85 82 84
0.1 31 84 79 84 80
0.25 33 85 84 87 85
0.5 34 83 80 84 80

1 0.01 16 83 82 83 84
0.05 14 81 82 85 82
0.1 12 77 80 82 80
0.25 12 78 78 83 83
0.5 9 82 76 80 75
1.25 0.01 8 81 83 83 85
0.05 7 82 81 83 77
0.1 6 77 81 85 81
0.25 7 78 76 79 79
0.5 4 73 74 83 74

15 0.01 5 81 81 81 78
0.05 3 81 80 79 83
0.1 2 74 74 86 82
0.25 2 73 74 83 71
0.5 2 63 75 71 78
1.75 0.01 2 79 80 83 72
0.05 2 77 77 83 84
0.1 2 73 77 85 85
0.25 2 73 76 84 70
0.5 2 64 73 75 80

2 001 2 79 78 82 79
0.05 2 70 79 84 85
0.1 2 77 78 86 83
0.25 2 73 75 83 69
0.5 2 68 71 75 77
mean | 77.17 7837 821 79.63
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Table C.2: Data set IV, BCI competition 2003, test set: classification aogusang IR filters
(%)

H o | NbFeat| Raw Freq Space All
0.75 0.01] 10 67 67 67 67
0.05 19 76 77 77 77
0.1 16 76 77 77 75
0.25 19 78 78 78 77
0.5 21 76 73 79 74
1 0.01 8 68 68 67 68
0.05 13 75 75 74 75
0.1 12 75 73 78 72
0.25 14 76 75 78 78
0.5 12 75 67 73 66
1.25 0.01 9 63 68 68 69
0.05 10 74 73 74 75
0.1 10 75 76 75 77
0.25 11 78 77 80 80

0.5 8 72 70 82 66

15 0.01 6 67 67 67 67
0.05 8 73 76 76 77

0.1 7 75 75 78 80

0.25 7 77 75 79 67

0.5 6 74 69 77 65

1.75 0.01 5 66 68 67 62
0.05 7 69 71 78 66

0.1 5 75 76 80 82

0.25 5 78 64 77 80

0.5 5 71 65 80 65

2 0.01 4 70 66 69 66
0.05 5 71 68 76 69

0.1 5 76 76 82 83

0.25 4 72 66 79 78

0.5 5 57 64 61 57

mean | 725 71.33 75.1 72
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Table C.3: Data set llla, BCI competition 2005, test set, S1: classificaticuracy using FIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.01| 40 85.56 8556 85 86.67
0.05 31 87.78 83.89 88.89 86.11
0.1 21 89.44 89.44 90 92.22
0.25 33 79.44 83.33 83.89 83.33
0.5 28 80.56 82.22 83.89 82.22

1 0.01 22 87.22 88.33 87.78 88.33
0.05 18 87.22 88.33 90.56 87.78
0.1 13 83.33 8444 90 8222
0.25 17 87.22 88.89 87.78 85.56
0.5 16 82.22 83.89 83.89 80.56
1.25 0.01 8 68.33 6833 70 68.89
0.05 10 83.89 8222 86.11 71.67
0.1 8 82.22 7833 76.11 80
0.25 4 56.11 67.78 77.22 72.78
0.5 6 60.56 77.78 80.56 69.44

15 0.01 4 65.56 66.67 71.11 65
0.05 4 72.78 73.33 66.67 66.67
0.1 6 73.89 81.11 78.33 80.56
0.25 6 56.67 74.44 78.89 69.44
0.5 3 52.78 5333 75 7111
1.75 0.01 2 69.44 65 68.89 62.78
0.05 4 76.11 73.33 66.11 62.22
0.1 3 4556 50 63.33 55.56
0.25 3 44.44 47.78 61.67 65
0.5 2 43.33 43.89 57.22 57.22

2 001 2 65.56 63.33 65.56 69.44
0.05 2 56.67 59.44 58.89 53.33
0.1 2 50 43.89 64.44 62.22
0.25 2 46.11 52.78 57.22 62.78
0.5 1 29.44 33.89 38.89 39.44
mean | 68.31 705 7446 72.02
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Table C.4: Data set llla, BCI competition 2005, test set, S1: classificaticuracy using IIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.01] 24 85 86.67 85.56 85
0.05 26 85.56 85.56 84.44 86.11
0.1 27 90 93.33 90.56 92.78
0.25 23 86.67 90.56 87.22 93.33
0.5 27 83.89 87.22 89.44 89.44

1 0.01 15 85 85 84.44 8222
0.05 11 80.56 87.22 85.56 85.56
0.1 12 86.11 86.11 90 90
0.25 12 84.44 86.11 83.89 81.67
0.5 11 85 83.89 8889 90
1.25 0.01 7 83.89 87.78 83.89 89.44
0.05 8 85 83.89 8556 86.11
0.1 9 81.11 77.78 78.89 82.22
0.25 5 68.33 80 7556 62.78
0.5 7 68.89 67.22 71.67 67.78

15 0.01 4 69.44 7111 7111 67.22
0.05 4 78.89 8222 81.67 86.11
0.1 8 81.67 81.67 8444 70
0.25 4 5722 65 6889 70
0.5 5 67.22 68.33 7444 70
1.75 0.01 3 71.67 7111 63.89 62.78
0.05 3 70.56 73.89 65.56 66.11
0.1 5 67.22 68.33 70.56 70.56
0.25 2 38.33 43.89 66.11 56.11
0.5 3 45 54.44 7444 62.22

2 0.01 2 56.67 54.44 56.67 52.22
0.05 4 67.22 65 57.78 60.56
0.1 3 49.44 56.11 60.56 61.11
0.25 1 30.56 42.22 5222 50
0.5 1 2278 39.44 52.22 48.89
mean | 70.44 73.52 75.54 73.94
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Table C.5: Data set llla, BCI competition 2005, test set, S2: classificaticuracy using FIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.01] 12 375 36.67 40.83 38.33
0.05 16 55.83 57.5 525 56.67
0.1 23 56.67 61.67 58.33 64.17
0.25 28 56.67 60 61.67 63.33
0.5 30 57.5 60 66.67 66.67

1 0.01 7 325 36.67 29.17 30.83
0.05 13 575 58.33 55.83 55.83
0.1 11 52.5 b5 5583 575
0.25 10 59.17 55 60.83 55.83
0.5 11 46.67 44.17 50 55.83
1.25 0.01 4 39.17 36.67 40 38.33
0.05 8 56.67 55 55  54.17
0.1 8 48.33 48.33 49.17 45.83
0.25 8 50.83 53.33 59.17 53.33
0.5 9 525 525 5583 55

15 0.01 4 31.67 44.17 35.83 35.83
0.05 6 525 51.67 49.17 51.67
0.1 6 425 46.67 58.33 53.33
0.25 5 50.83 475 53.33 55.83
0.5 6 425 36.67 55 51.67
1.75 0.01 3 375 3833 4083 31.67
0.05 6 55 5583 525 54.17
0.1 5 48.33 475 575 50
0.25 3 475 425 41.67 40.83
0.5 3 50.83 40.83 475 43.33

2 001 3 36.67 28.33 38.33 38.33
0.05 5 3583 375 43.33 40
0.1 2 375 4167 475 40.83
0.25 2 43.33 40 425 36.67
0.5 2 45 40.83 425 425
mean | 47.25 49.89 48.61 48.19
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Table C.6: Data set Illa, BCI competition 2005, test set, S2: classificaticuracy using IIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.05| 17 65 56.67 60.83 54.17
0.1 29 60.83 63.33 60 65
0.25 32 675 6167 60 61.67
0.5 40 62.5 625 6583 58.33
1 005 12 63.33 40 63.33 575
0.1 14 66.67 56.67 65 60
0.25 17 54.17 51.67 54.17 53.33
0.5 22 51.67 575 50.83 54.17
1.25 0.05 7 57.5 50 61.67 575
0.1 13 575 5417 575 53.33
0.25 10 53.33 33.33 44.17 39.17
0.5 13 53.33 45 525 55.83

15 0.05 4 525 43.33 4833 475
0.1 7 50.83 49.17 54.17 60

0.25 7 45 4417 525 39.17

0.5 8 49.17 40.83 53.33 475

1.75 0.05 4 4583 38.33 58.33 56.67

0.1 2 4417 43.33 53.33 425

0.25 3 48.33 475 425 49.17

0.5 4 47.5 40 53.33 56.67

2 0.05 3 43.33 37.5 56.67 58.33

0.1 2 40 39.17 56.67 55.83

0.25 1 37.5 25 30 31.67

0.5 1 40.83 41.67 28.33 35.83

mean | 52.43 46.77 53.47 52.11



186 Chapter 2 annex: Complete classification results for the evaluation of FURIA

Table C.7: Data set llla, BCI competition 2005, test set, S3: classificaticuracy using FIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.01] 16 80 79.17 84.17 775
0.05 26 80 7583 84.17 775

0.1 26 85 8333 85.83 83.33
0.25 29 84.17 80.83 80.83 83.33
0.5 33 79.17 81.67 825 8333

1 0.01 8 83.33 83.33 84.17 79.17
0.05 11 775 81.67 75.83 79.17
0.1 13 75.83 71.67 84.17 84.17
0.25 16 76.67 81.67 775 76.67
0.5 19 78.33 81.67 78.33 81.67
1.25 0.01 6 79.17 825 80 80
0.05 7 75.83 80.83 78.33 81.67
0.1 5 76.67 75 84.17 825
0.25 10 70.83 79.17 70 77.5
0.5 10 77.5 75 < 78.33 75.83

15 0.01 3 77.5 80 80 82.5
0.05 6 79.17 78.33 81.67 81.67
0.1 5 75 73.33 80.83 79.17
0.25 7 68.33 80.83 74.17 775
0.5 7 71.67 80 725 78.33
1.75 0.01 2 55 5167 50 59.17
0.05 5 64.17 70.83 60 68.33
0.1 3 575 70.83 46.67 55
0.25 6 55.83 725 55  58.33
0.5 4 45 53.33 475 50.83

2 001 2 55 41.67 53.33 34.17
0.05 4 61.67 74.17 425 78.33
0.1 3 52,5 58.33 55.83 50.83
0.25 3 42.5 55 50 39.17
0.5 2 33.33 56.67 51.67 325
mean | 69.14 73.02 70.33 70.97
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Table C.8: Data set llla, BCI competition 2005, test set, S3: classificaticuracy using IIR
filters (%)

H o | NbFeat| Raw Freq Space All
0.75 0.01| 16 79.17 7417 84.17 775
0.05 28 75 76.67 7417 74.17
0.1 30 80 725 79.17 725
0.25 32 79.17 78.33 80.83 80
0.5 37 76.67 71.67 79.17 70
1 0.01 11 81.67 725 79.17 83.33
0.05 16 725 7583 775 74.17
0.1 18 75 70.83 71.67 71.67
0.25 13 59.17 63.33 68.33 725
0.5 16 53.33 60 61.67 74.17
1.25 0.01 6 75.83 81.67 75.83 81.67
0.05 8 65.83 76.67 73.33 775

0.1 12 6583 7583 75 80.83
0.25 10 525 6333 70 70.83
0.5 8 40.83 65 55.83 67.5
15 0.01 4 76.67 825 76.67 80
0.05 8 65 75.83 65.83 76.67
0.1 8 60 67.5 65  76.67
0.25 7 57.5 60 55  60.83
0.5 9 46.67 68.33 69.17 725
1.75 0.01 3 70 77.5 70  78.33
0.05 6 51.67 65 375 5417
0.1 8 60.83 66.67 50.83 54.17
0.25 5 43.33 475 30.83 50
0.5 6 4417 54.17 425 48.33
2 0.01 2 50 55.83 59.17 56.67
0.05 5 475 6333 30 63.33
0.1 5 35.83 63.33 33.33 50.83
0.25 3 36.67 36.67 26.67 47.5
0.5 2 33.33 48.33 25.83 325

mean | 60.39 67.03 61.47 67.69
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Appendix D

Chapter 5 annex: Detalled
classification and rejection results for
each data set

Table D.1: Data set of subject 1, Day 1: average Accuracy (AcclR @Ad Precison (Prec), in
percent, for a fixed FAR of 10%.

SVM | FIS | RBFN | LDA

SC Acc | 63.82| 72.52| 64.99 | 69.26
TAR | 58.34 | 54.35| 56.54 | 56.15
Prec| 79.01| 77.81| 78.48 | 78.37

RC Acc | 73.36| 72.14| 70.95 | 71.84
TAR | 56.5 | 59.51| 52.04 | 51.68
Prec| 78.47| 79.37| 77.05 | 76.93

AMTL1 | Acc | 75.64| 82.03| 69.29 | 87.32
ST TAR | 12,5 | 29.96| 28.02 | 5.07
Prec| 44.64| 65.90| 64.38 | 24.67

AMTL1 | Acc | 75.64| 70.71| 72.78 | 87.31
MT TAR | 12.5 | 43.36| 30.08 | 20.72
Prec| 44.64| 73.67| 65.99 | 57.21

AMTL2 | Acc | 75.41| 825 | 66.22 | 89.11
MT TAR | 12.54| 30.8 | 3433 | 5.6
Prec| 44.72| 66.52| 68.89 | 26.54
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Table D.2: Data set of subject 1, Day 2: average Accuracy (AcclR @aAd Precison (Prec), in
percent, for a fixed FAR of 10%.

SVM | FIS | RBFN | LDA

SC Acc | 73.87| 75.22| 77.20 | 76.19
TAR | 40.89| 40.96| 39.9 | 37.81
Prec| 72.51| 72.55| 72.02 | 70.92

RC Acc | 81.97| 77.71| 77.56 | 79.66
TAR | 41.82| 40.47| 40.62 | 40.3
Prec| 72.96| 72.31| 72.38 | 72.22

AMTL1 | Acc | 86.68| 96.48| 87.92 | 98.95
ST TAR | 21.16| 20.6 | 22.14 | 18.69
Prec| 57.72| 57.06| 58.82 | 54.67

AMTL1 | Acc | 87.59| 71.43| 88.51 | 98.95
MT TAR | 20.59| 30.42| 24.82 | 21.45
Prec| 57.05| 66.25| 61.56 | 58.05

AMTL2 | Acc | 86.38| 94.28| 77.52 | 98.72
MT TAR | 21.06| 23.5 | 26.73 | 11.76
Prec| 57.60| 60.26| 63.30 | 43.14

Table D.3: Data set of subject 2, Day 1: average Accuracy (AcclR aAd Precison (Prec), in
percent, for a fixed FAR of 10%.

SVM | FIS | RBFN | LDA

SC Acc | 83.38| 78.78| 84.94 | 75.88
TAR | 29.24| 24.28| 29.21 | 20.79
Prec | 64.63| 60.28| 64.61 | 56.51

RC Acc | 91.36| 89.5 | 90.83 | 89.01
TAR | 28.94| 28.43| 29.54 | 27.09
Prec | 64.40| 63.99| 64.87 | 62.87

AMTL1 | Acc | 88.26| 97.05| 88.67 | 97.04
ST TAR | 15.08| 21.51| 16.93 | 26.01
Prec| 48.52| 57.34| 51.41 | 61.91

AMTL1 | Acc | 88.33| 87.65| 90.79 | 92.86
MT TAR | 14.84| 19.07| 16.31 | 16.7
Prec | 48.12| 54.37| 50.48 | 51.07

AMTL2 | Acc | 88.33| 96.32| 79.38 | 94.02
MT TAR | 14.84| 22.21| 15 18.81
Prec | 48.12| 58.13| 48.39 | 54.04
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Table D.4: Data set of subject 2, Day 2: average Accuracy (AcclR @Ad Precison (Prec), in
percent, for a fixed FAR of 10%.

SVM | FIS | RBFN | LDA

SC Acc | 75.46| 66.38| 68.51 | 66.81
TAR | 24.13| 17.45| 22.16 | 17.67
Prec| 60.28 | 52.32| 58.22 | 52.64

RC Acc | 86.73| 78.43| 81.36 | 83.95
TAR | 32.78 | 26.53| 30.47 | 25.51
Prec| 67.34| 62.53| 65.71 | 61.60

AMTL1 | Acc | 85.90| 94.81| 84.92 | 94.72
ST TAR | 16.64 | 19.05| 13.29 | 18.92
Prec| 51.14| 54.51| 45.53 | 54.34

AMTL1 | Acc | 84.63| 80.65| 82.06 | 93.51
MT TAR | 17.02| 21.17| 17.53 | 18.43
Prec| 51.70| 57.11| 52.44 | 53.68

AMTL2 | Acc | 85.23| 95.25| 80.63 | 94.38
MT TAR | 16.52| 19.83| 13.87 | 18.4
Prec| 50.96| 55.5 | 46.59 | 53.64




192 Chapter 5 annex: Detailed classification and rejection results for eachatata



Appendix E

Chapter 6 annex: Excerpt of the
guestionnaire filled by subjects
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Questionnaire
Age:
Gender:
Nationality:
Known perception problem (glasses, color blindness ...):
Left/Right handed:

Please answer the following questions (please tick only one cell per question):

112134

]
=)
-

Do vou define yourself as attracted by technology?

(1: no. not at all. 4: moderately, 7: yes. completely)

Have you ever heard of brain-computer interfaces before?
(1: never, 7: ves. I know the subject pretty well)

Please answer the following questions by writing a mark between 1 and 7 in the appropriate
cell:

Real Imagined
movements | movements

Did you get tired because of the experiment?

(1: not tired at all. 7: very tired)

Did you find the experiment comfortable?

(1: not comfortable at all. 7: very comfortable)

Did you feel that you could control the spaceship

(that 1s that you could lift 1t voluntarily)?

(1: you didn’t feel you could control 1t at all. 7: you controlled it
perfectly)

Did you feel frustration or annoyance during the experiment?
(1: neither frustration nor annoyance 7: a lot of both frustration and
annovance)

Figure E.1: Excerpt of the first page of the questionnaire filled by stspacthe end of the
“Use the force!” experiment (Chapitre 6).
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Please answer the following questions freely:

What strategies did you employ in order to control the spaceship during the experiment based
on imagined movements? What kind of foot movements did you imagine?

What did you think of the interface and the software vou have just used?

Do vou have any other comments or remarks concerning this experiment?

Figure E.2: Excerpt of the second page of the questionnaire filled hgatalat the end of the
“Use the force!” experiment (Chapitre 6).



196 Chapter 6 annex: Excerpt of the questionnaire filled by subjects



Appendix F

Chapter 6 annex: Detailed information
extracted from the questionnaires

Table F.1: General information about the 21 subjects who participated irkgegiment de-
scribed in Chapter 6.

Subject | Age | Gender | Nationality | Preception problem Hand
1 26 M Czech glasses right
2 23 M French right
3 44 M French right
4 26 M French right
5 38 M French left
6 42 M French right
7 30 M French glasses right
8 39 M French contact lens right
9 27 M French left
10 29 M French right
11 29 M French glasses right
12 27 F French right
13 39 F French right
14 31 M French right
15 43 M French right
16 34 M French right
17 24 M French glasses not specified
18 60 M French not specified not specified
19 27 M French glasses + lens right
20 40 M French weak myopia right
21 25 F French weak hypermetropig both
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Table F.2: Feelings of subjects as measured by the questionnaire. RfstaRdal movement
experiment and | stands for imagined movement experiment.

Q1: Tireness | Q2: Comfort | Q3: Control | Q4: Frustration
Subject | R R [ R I I

PP WRFRPRWONRPNRPNRPPOFRP OFPNPEPENEDN
WRDMNRPRPONPRPPRPORPRPRPRONBMRERERPNNERER—
NDOODMNONOOWOUIUTO WWOMOOOU MO
NOOUIOoOO~NODOODWOOOUTWwwWwoO hMOoaoubh o
OFRPUONUOONNDMNOORORMNDMOPFR,OOOW
P RPOUONONNWWWRWRPRPROONENODNPR
P DNOFRPOWERPRNNWRFR®OWRPOAOFRR®WERFEPEPRNDNND
EARMNOOPRPDMNOPFRPWOORUONPEPOAON®OWDARER, M~

NNRPRPRPRRPRPEPRPEPRPE
PO OWWOMNOURNWNRO©O©®®NOOA~WNE
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Table F.3: Performances of subjects (number of FP and TP, and HFedié&) during the real
and imagined movement experiments.

Real Imagined
Subject | TP | FP | HF diff | TP | FP | HF diff
1 3 1 2 3 1 2
2 8 | 5 3 715 2
3 6 1 5 6 | O 6
4 710 7 210 2
5 3 1 2 110 1
6 8 | 3 5 210 2
7 9 6 3 7| 6 1
8 51| 4 1 2|3 -1
9 5] 0 5 2 1 1
10 5] 0 5 2 1 1
11 2 2 0 3 1 2
12 4 | 2 2 1] 3 -2
13 4 | 2 2 4 1 3
14 4 1 3 4 |0 4
15 3]0 3 2|0 2
16 7 1 6 0| 2 -2
17 6 1 5 4 1 3
18 6 | 8 -2 1 1 0
19 2|0 2 3]0 3
20 1|0 1 0| 2 -2
21 6 | O 6 0| O 0
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Résumé

Une Interface Cerveau-Ordinateur (ICO) est un systéme de communicptigoermet a ses
utilisateurs d’envoyer des commandes a un ordinateur via leur activitéraé¥écette activité
étant mesurée, généralement par ElectroEncéphaloGraphie (EE@)éet par le systéme.

Dans la premiére partie de cette thése, dédiée au traitement et a la classitieatisig-
naux EEG, nous avons cherché a concevoir des ICOs interprétalphss eefficaces. Pour
ce faire, nous avons tout d’abord proposé FuURIA, un algorithmetrdietion de caractéris-
tiques utilisant les solutions inverses. Nous avons également propotddigt kutilisation
des Systemes d’'Inférences Flous (SIF) pour la classification. Ndsadéieens ont montré que
FuRIA et les SIF pouvaient obtenir de trés bonnes performances skfidation. De plus,
nous avons proposé une méthode utilisant ces deux algorithmes afin dev@iorune 1CO
complétement interprétable. Enfin, nous avons proposé de consid@mndaption d’ICOs
asynchrones comme un probléme de rejet de motifs. Notre étude a introdoitidelles tech-
nigues et a permis d’'identifier les classifieurs et les techniques de rephtisessppropriés pour
ce probléme.

Dans la deuxiéme partie de cette thése, nous avons cherché a conesagptications de
Réalité Virtuelle (RV) controlées par une ICO. Nous avons tout d’abmdiéles performances
et les préférences de participants qui interagissaient avec une éippllodique de RV a l'aide
d’'une ICO asynchrone. Nos résultats ont mis en évidence le besoin éutks ICO adap-
tées a l'utilisateur ainsi que I'importance du retour visuel. Enfin, noussadéneloppé une
application de RV permettant a un utilisateur d’explorer un musée virtuel pamisée. Dans
ce but, nous avons congu une ICO asynchrone et proposé unelledechnique d’interaction
permettant a I'utilisateur d’envoyer des commandes de haut niveau. rdnmegpe évaluation
semble montrer que l'utilisateur peut explorer le musée plus rapidement ettedechnique
gu'avec les techniques actuelles.

Abstract

A Brain-Computer Interface (BCI) is a communication system which enableséis to send
commands to a computer by using brain activity only, this brain activity beingumegsgen-
erally by ElectroEncephaloGraphy (EEG), and processed by thewsyste

In the first part of this thesis, dedicated to EEG signal processing assifatation tech-
nigues, we aimed at designing interpretable and more efficient BCI. Toritljsnee first pro-
posed FuRIA, a feature extraction algorithm based on inverse solutildris.algorithm can
automatically identify relevant brain regions and frequency bands fesi€jéng mental states.
We also proposed and studied the use of Fuzzy Inference Systemd$diFttassification. Our
evaluations showed that FURIA and FIS could reach state-of-thesarts in terms of classi-
fication performances. Moreover, we proposed an algorithm thathatbsof them in order
to design a fully interpretable BCI system. Finally, we proposed to consalepaced BCI
design as a pattern rejection problem. Our study introduced novel teesraual identified the
most appropriate classifiers and rejection techniques for self-pacedeB@n.

In the second part of this thesis, we focused on designing virtual resRy §pplications
controlled by a BCI. First, we studied the performances and prefesesfgearticipants who
interacted with an entertaining VR application, thanks to a self-paced BCredults stressed
the need to use subject-specific BCl as well as the importance of the vimdiddck. Then,
we developed a VR application which enables a user to explore a virtualumusg using
thoughts only. In order to do so, we designed a self-paced BCI amqpbged an interaction
technique which enables the user to send high-level commands. Ouvéihsaton suggested
that a user could explore the museum faster with this interaction techniquevithaourrent
techniques.



