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Je tiens à remercier le Professeur Pierre Turq pour sa chaleur humaine, sa bonne

humeur et ses encouragements au cours de ce travail. Je veux lui exprimer toute mon

admiration d’avoir constitué une équipe si dynamique et néanmoins soudée. Je suis
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Chapter 1

Introduction

Lots of processes in chemical engineering require the precise knowledge of thermo-

dynamical properties of liquids. Typically, it may be crucial to anticipate the phase

diagram and the heat capacity of a solvent. When the latter is a mixture of several

molecules, it is also important to determine the activity coefficients of the various

components. This point, together with economical constraints, prompts industrials

to invest in research in chemical engineering. In that case, it may be useful to re-

sort to an organism that aims at building links between the academic research and

firms. This is for example the role of the AIF in Germany. More precisely, this

organism finances the development of the modelling of thermodynamical properties

of mixtures of electrolyte solutions.

The AiF is the German Federation of Industrial Research Associations ”Otto

von Guericke” (Arbeitsgemeinschaft industrieller Forschungsvereinigungen ”Otto

von Guericke” e.V.). The central concern of this registered non-profit association is

the promotion of applied Research and Development (R&D) for the benefit of small

and medium-sized enterprises (SME). Organized by industry, the AiF supports the

efficient usage and advancement of R&D-programmes in order to increase the com-

petitive strength of SMES. To this end, the AiF has created a unique infrastructure,

comprising an industry-based innovations network covering over 100 industrial re-

search associations, with approximately 50,000 SMES, and about 700 associated

research institutions. Within this structure, the AiF’s two offices in Cologne and

Berlin provide practice-driven innovation consultancy promoting R&D on a national

and, increasingly, an international scale. Since its foundation in 1954 the AiF has

been a competent partner to the federal government - currently the Federal Min-

istries of Economics and Labour (BMWA) and of Education and Research (BMBF)

- functioning as a bridge between industry and academy within the framework of

various R&D-programmes. The AiF acts as an agency for the promotion of R&D

for small and medium-sized enterprises in two ways: on the one hand, it lays the

1



foundations for industrial collective research for the benefit of entire industrial sec-

tors; and on the other hand, the AiF acts as a programme managing executive for

governmental R&D-support-measures for the benefit of individual companies and

Universities of Applied Sciences (Fachhochschulen). Overall, the AiF has an annual

budget of nearly 250 million Euros of public funds.

The investigation of thermodynamical properties of liquids is actually a difficult

task which has attracted much interest in the academic research for a long time.

The most simple modelling assumes that solution behaves like an ideal gas where

all interactions are neglected. This model is not able to account for the experimen-

tal behaviour of mixtures containing molecules of very different nature. Moreover,

in the case of electrolyte solutions, both the long-ranged electrostatic interactions

between ions and the short-ranged interactions with solvent molecules have a huge

influence on the properties of the whole fluid. The Debye-Hückel model [1] that

treats ions as point charges allows one to describe the main features of structural

and dynamical properties of very dilute electrolyte solutions. This model, whose

main advantage is its simplicity, fails to describe ionic solutions at moderate and

high concentration that may be used for practical applications. The Mean Spherical

Approximation (MSA) [2] is used as a closure equation of the integral equations of

statistical mechanics. It permits to better account for the experimental behaviour

of such solutions. This model considers the solution in the framework of the con-

tinuous solvent model and regards ions as charged hard spheres. Moreover, it has

the huge advantage to be anallytically solvable. Very recently, Papaiconomou et al.

[3] have introduced MSA calculations in the Chen model [4]. The latter describes

long-ranged electrostatic interactions by the Pitzer-Debye-Hückel equation and the

short-ranged interactions in the framework of the (Nonrandom Two-Liquid) model.

The aim of the PhD thesis of Papaiconomou, that was financed by AIF as is the

present work, was to replace the Pitzer-Debye-Hückel equation [5] by the MSA and

to better adapt the NRTL model to the case of electrolyte solutions. He obtained

interesting results. However the model did not account for the solvation of ions.

In this context, the aim of the present thesis is to better model these short-ranged

effects and also to implement the calculation of some specific thermodynamical quan-

tities like the heat capacities and the heats of dilution. Latter calculations required

to take into account the effect of the variation of temperature.

This manuscript is organized as follows. The first chapters (I to III) recall some

general thermodynamical notions that are required to develop our model. More-

over, the various models for mixtures commonly used in chemical engineering are

presented. Chapter IV is devoted to the model that we have developped to take into

account solvation effects and possible association between ions of opposite charges

2



in solutions. Next, in chapter V we study temperature effects on properties such as

heat molal enthalpies and heat capacities. Then, the sixth chapter is devoted to the

presentation of the stepwise solvation-equilibrium model.
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Chapter 2

Thermodynamic properties of

ionic solutions

2.1 Basic thermodynamics

2.1.1 Intensive and extensive variables:

Extensive variables depend on the size of the system, i.e. of the quantity of matter.

Intensive variables do not depend on the size of the system. An intensive variable

is a zero degree homogeneous function of the quantity of matter. An extensive

variable is an homogeneous function of degree 1 of quantity of matter. By definition,

f(x1, ..., xk) is a homogeneous function of degree k of variables x1, ..., xk if:

f(λx1, ..., λxk) = λkf(x1, ..., xk) (2.1)

Euler theorem reads:

kf(x1, ..., xi, ...xl) =
∑

i

xi

(

∂f

∂xi

)

xj 6=i

(2.2)

For a system of N components, where Ni is the number of particles i, one gets, for

X an extensive variable:

X =
∑

Ni

(

∂X

∂Ni

)

Nj 6=i

(2.3)

with
(

∂X
∂Ni

)

T,P,Nj 6=i

the partial molar quantity.

2.1.2 The chemical potential

The function µi is an intensive quantity which depends on temperature T , pressure

P and mole fraction xi of the system.
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The chemical potential reads:

µi = µ⊗i + kT ln ai (2.4)

where ai is called the activity by Lewis designated by the symbol a. The activity of

a substance gives an indication of how active a substance is relative to its standard

state because it provides a measure of the difference between the substance’s chem-

ical potential at the state of interest and that at its standard state. It depends on

the composition. The standard state is indicated by a superscript ⊗. The activity

coefficient fi is defined from:

ai = fixi (2.5)

So that

µi = µ⊗i + kT ln fixi (2.6)

On the molality scale (the molality mi is the number of moles of species i per

kilogram of solvent). The activity reads:

ai = γimi (2.7)

where γi is equal to one and ai = mi for an ideal solution. γi is dimensionless.

2.1.3 The Gibbs-Duhem relation

The Gibbs free enthalpy G is extensive:

G(T, P, λNi) = λG(T, P, Ni) (2.8)

G is a homogeneous function of degree one of the Ni’s, so that

G =
∑

i

Ni

(

∂G

∂Ni

)

Nj 6=i,T,P

=
∑

i

Niµi (2.9)

Then, we have

dG =
∑

i

µidNi +
∑

i

Nidµi (2.10)

Hence

V dP − SdT =
∑

i

Nidµi (2.11)

This equation is the so-called Gibbs-Duhem (GD) relation which expresses the

extensivity of G. A model for µi is self consistent if this necessary condition is

satisfied. We will use this relation to check the validity of our models during this

work. The GD relation is always satisfied if G has the form:

G = G(T, P, Ni) = NtotGN(T, P, x1, ..., xn) (2.12)
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where GN(T, P, x1, ..., xn) is the mean Gibbs energy per particule, with

xi = Ni/Ntot (2.13)

and

Ntot = N1 + N2 + ... + Nn (2.14)

We have by definition of the chemical potential:

µi =
∂G

∂Ni

= GN + Ntot

(

∂GN

∂Ni

)

(2.15)

This yields
∂GN

∂Ni

=
∂GN

∂xi

∂xi

∂Ni

+
∑

j 6=i

∂GN

∂xj

∂xj

∂Ni

(2.16)

=
∂GN

∂xi

Ntot −Ni

N2
tot

+
∑

j 6=i

∂GN

∂xj

(

− Nj

N2
tot

)

(2.17)

Hence

µi = GN + (1− xi)
∂GN

∂xi
+
∑

j 6=i

∂GN

∂xj
(−xj) (2.18)

µi = GN + (1− xi)
∂GN

∂xi
−
∑

j 6=i

xj
∂GN

∂xj
(2.19)

= GN +
∂GN

∂xi

−
∑

j

xj
∂GN

∂xj

(2.20)

The GD relation
∑

i

Nidµi = V dP − SdT (2.21)

is automatically satisfied if G =
∑

i Niµi, which can be verified:

∑

i

Niµi =
∑

i

NiGN +
∑

i

Ni
∂GN

∂xi
−
∑

j,i

xj
∂GN

∂xj
Ni (2.22)

=
∑

i

NiGN +
∑

i

Ni
∂GN

∂xi
−
∑

i

∑

j

xi
∂GN

∂xi
Nj (2.23)

=
∑

i

NiGN +
∑

i

Ni
∂GN

∂xi
−
∑

i

Ni

∑

j Nj

Ntot

∂GN

∂xi
(2.24)

=
∑

i

NiGN +
∑

i

Ni
∂GN

∂xi
−
∑

i

Ni
∂GN

∂xi
(2.25)

=
∑

i

NiGN = NtotGN (2.26)
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2.1.4 Relation between activity coefficients on different

scales

In this work, we have used the mole fraction scale to express the composition because

this scale was adopted to the thermodynamical models such as NRTL. The relation

between activity coefficients on the molal and the mole fraction scales are:

µi = µ⊗i (x) + RT ln ai(x) (2.27)

µi = µ⊗i (m) + RT ln ai(m) (2.28)

where µ⊗i (x) and µ⊗i (m) are, respectively, the standard chemical potential of species

i, where i is the solvent or the solute, on mole fraction and molal scales. Similarly,

ai(x) and ai(m) are the activities, respectively on the mole fraction scale and on the

molal scale:

ai(x) = (xf±)ν (2.29)

ai(m) = (mγ±)ν (2.30)

where m is the molality, f± and γ± are, respectively, the mean rational activity

coefficient and the mean molal activity coefficient. Then one gets:

ln γ± =
µ⊗i (x)− µ⊗i (m)

νRT
+ ln

xs

m
+ ln f± (2.31)

With xs is the mole fraction of the salt, ν is the total number of moles of ions

given by one mole of electrolyte. With the standard state conditions xs and m tend

towards zero, γ± and f± towards one. Thus:

µ⊗i (x)− µ⊗i (m)

νRT
= − ln

1

1/Mw + νm
(2.32)

lim
x→0

µ⊗i (x)− µ⊗i (m)

νRT
= Mw (2.33)

Hence

γ± =
f±

1 + νmMw
(2.34)

where Mw is the molar mass of water.
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Chapter 3

Common models used in chemical

engineering for the

thermodynamics of electrolytes in

solvent mixtures

The aim of the following chapter is not to make an exhaustive review of thermody-

namics but to summarise the main concepts and models used in chemical engineering

thermodynamics for electrolyte solutions. We follow the book written by Prausnitz,

Lichtenthaler and de Azevedo [1].

3.1 Models and theories of solutions

Most solutions are not ideal because of the interactions between the particles.

Raoult’s law Pi = Pxi where Pi is the partial pressure, and xi the mole fraction

of i, is applicable when the components of the mixture become undistinguishable

and it fails to represent the behavior of real solutions at high concentration. That

is due to differences in molecular size, shape, and intermolecular forces of the com-

ponents. However, Raoult’s law may be regarded as a reference law in the study of

real solutions.

3.1.1 Random mixture or not random mixture

A very important assumption is the following: when the molecules of two compo-

nents are mixed, the arrangement of molecules is completely random, i.e. there is

no preference in the choice of its neighbours. This assumption was made by Van

Laar, Scatchard and Hildebrand [2]. In these conditions, when we have a mixture
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of two liquids, there is no volume change (vE = 0) and entropy of mixing (sE = 0)

corresponds to an ideal solution.

But generally the mixture is not completely random contrary to an ideal solution.

In order to make a model which takes into account the fact that the solution is non-

random, Guggenheim [3] constructed a lattice theory for molecules of equal size

that form mixtures which are not necessarily random. No specific interaction like H

bound and solvation is taken into account. There are three assumptions: consider

that every NA molecules of type A and every NB molecules of type B has z nearest

neighbours, (z is the coordination number). Suppose each molecule has z nearest

neighbors.

For pure A

UA =
1

2
NAzwAA (3.1)

with UA is the potential energy of A, NA the number of molecules of type A, wAA

the mean interaction potentiel between A molecules. Similarly for B

UB =
1

2
NBzwBB (3.2)

with UB is the potential energy of B, NB the number of molecules of type B, wBB

the mean interaction potentiel between B molecules. And if we have a mixture of

NA molecules of type A and NB molecules of type B

U = NAAwAA + NBBwBB + NABwAB (3.3)

with

zNA = NAB + 2NAA (3.4)

zNB = NAB + 2NBB (3.5)

where U is the total potentiel energy of the lattice. Thus

U = wAA

(

zNA −NAB

2

)

+ wBB

(

zNB −NAB

2

)

+ NABwAB (3.6)

U =
1

2
zNAwAA +

1

2
zNBwBB + NAB

(

wAB −
1

2
wAA −

1

2
wBB

)

(3.7)

Hence

∆Umixt = NABw (3.8)

where w = wAB− 1
2
wAA− 1

2
wBB is the interchange energy. Eq. 3.7 gives the potential

energy of a binary mixture and also that of a pure liquid: NAB and either NA or

NB are set equal zero. If w = 0 one speaks of the random mixtures and if w 6= 0

the mixtures are not random.
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3.1.2 The Two-Liquid Theory

Several workers have derived thermodyanmic models to describe the excess proper-

ties of mixtures. Wilson and Abrams(1975) [4, 5] have developed, respectively, Wil-

son’s equation and UNIQUAC. Both are based on the Two-Liquid Theory. Renon

(1969) [6], used the derivation of the three parameters Wilson’s equation. Maurer [7]

adopted the local compositions related to overall compositions through Boltzmann

factors. The notion of local composition results from The Two-Liquid Theory. We

briefly expose in this paragraph the Two-Liquid Theory.

We consider a binary mixture of molecules of components 1 and 2, where

molecules 1 and 2 have arbitrary size and shape. Each molecule is closely sur-

rounded by other molecules of 1 and 2. We have two types of cells: one contains

molecule 1 at its center and the other contains molecule 2 at its center. Suppose

M (1) is an extensive property M of a fluid consisting only of cells of 1; in the same

way, M (2) for a fluid of cells of 2. The Two-Liquid Theory assumes that the extensive

property Mmixt of the mixture reads:

Mmixt = x1M
(1) + x2M

(2) (3.9)

If we take the molar excess energy uE as the extensive property, one has [4]:

uE = x1q1θ21∆u21 + x2q2θ12∆u12 (3.10)

with

θ21 =
θ2 exp

(

−∆u21

RT

)

θ1 + θ2 exp
(

−∆u21

RT

) (3.11)

θ12 =
θ1 exp

(

−∆u12

RT

)

θ2 + θ1 exp
(

−∆u12

RT

) (3.12)

and with

θ1 =
x1q1

x1q1 + x2q2
(3.13)

θ2 =
x2q2

x1q1 + x2q2
(3.14)

where

∆u21 =
1

2
z (U21 − U11) NAv (3.15)

∆u12 =
1

2
z (U12 − U22) NAv (3.16)

with θ is the surface fraction, Uij is the potentiel energy of two nearest neighbors i

and j, q is the external surface area, NAv is the Avogadro number, and x the mole

fraction. Eq.(3.10) is the fundamental relation based on two-fluid theory using the

notion of local composition.
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Wilson’s equation

The Wilson’s equation gives not only an expression for the activity coefficients as a

function of composition but also the variation of the activity coefficient with tem-

perature. It provides a good representation of excess Gibbs energies gE for miscible

mixtures, such as solutions of polar and associating components (alcohols) in non-

polar solvents. Orye showed [8] that Wilson’s equation is adapted to describe very

well the activity coefficients of 100 binary mixtures. For a solution of m components,

Wilson’s equation is:

gE

RT
= −

∑

i

xi ln

(

∑

j

xjΛij

)

(3.17)

where

Λij ≡
vj

vi
exp

(

−λij − λii

RT

)

(3.18)

Λji ≡
vi

vj
exp

(

−λji − λjj

RT

)

(3.19)

with λij is the energy of interaction between the molecules i and j. The activity

coefficient for a component k is given by:

ln γk = − ln

(

∑

j

xjΛkj

)

+ 1−
∑

i

xiΛik
∑

j xjΛij
(3.20)

Therefore for a binary system, if we use indices 1 and 2, respectively, for the solvent

and for the solute:

gE

RT
= −x1 ln (x1 + Λ12x2)− x2 ln (x2 + Λ21x1) (3.21)

and the activity coefficients derived from this equation are:

ln γ1 = − ln (x1 + Λ12x2) + x2

(

Λ12

x1 + Λ12x2
− Λ21

Λ21x1 + x2

)

(3.22)

ln γ2 = − ln (x2 + Λ21x1) + x1

(

Λ12

x1 + Λ12x2

− Λ21

Λ21x1 + x2

)

(3.23)

In Eq. 3.21 the excess Gibbs energy is defined by reference to an ideal solution in

the sense of Raoult’s law. This excess Gibbs energy obeys the boundary condition

that gE equals zero as either x1 or x2 is zero. Wilson’s equation has two adjustable

parameters

Λ12 =
v2

v1
exp

(

−λ12 − λ11

RT

)

(3.24)

Λ21 =
v1

v2
exp

(

−λ21 − λ22

RT

)

(3.25)
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where vi is the molar liquid volume of pure component i and the λij is interaction

energy between molecules i and j.

However, Wilson’s equation has two disadvantages: first, Eqs (3.22-3.23) are not

useful because they exhibit maxima or minima. Second, Wilson’s equation is not

able to predict limited miscibility. The liquid systems must be completely miscible

or partially miscible with one liquid phase present.

The UNIQUAC equation

Abrams(1975) and Maurer(1978) attempted to derive a two parameters equation

for gE that retains the advantage of the Wilson’s equation without restriction to

completely miscible mixture. Abrams derived an equation that extends the qua-

sichemical theory of Guggenheim for nonrandom mixtures to solutions containing

molecules of different sizes. UNIQUAC (the Universal Quasi-Chemical theory) for

gE consists of two parts: on the one hand, a combinatorial part which describes the

entropic contribution, and on the other hand a residual part which accounts for the

intermolecular forces that are responsable for the enthalpy of mixing. The combi-

natorial part depends on the composition, the size and the shape of the molecules.

The residual part depends on intermolecular forces.

gE

RT
=

(

gE

RT

)

combinatorial

+

(

gE

RT

)

residual

(3.26)

For a solution of m components, the UNIQUAC equation for the molar excess Gibbs

energy is the sum of two terms. The combinatorial part is

gE

RT
=
∑

i

ln
Φ∗

i

xi
+

z

2

∑

i

qixi ln
θi

Φ∗
i

(3.27)

the residual part is:

gE

RT
= −

∑

i

q
′

xi ln

(

∑

j

θ
′

jτji

)

(3.28)

where Φ∗
i , θ and θ

′
are, respectively, the segment fraction and the areas fractions:

Φ∗
i =

rixi
∑

j rjxj
(3.29)

θi =
qixi

∑

j qjxj
(3.30)

θ
′

i =
q
′

ixi
∑

j q
′

jxj

(3.31)

τij, τji are adjustable parameters:

τij = exp
(

−aij

T

)

(3.32)
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τji = exp
(

−aji

T

)

(3.33)

where aij and aji are the binary energy parameters. r, q, and q′ are pure-component

molecular structure constants which depend on the molecular size and on the exter-

nal surface areas. qi and q′i are the surface interactions and the geometric external

surface. Except for water and lower alcohols, q = q ′. The resulting activity coeffi-

cient of species i requires only pure-component and binary parameters. The activity

coefficient of species i reads:

ln γi = ln
Φ∗

i

xi

+
z

2
qi ln

θi

Φ∗
i

+ li−
Φ∗

i

xi

∑

j

xjlj − q
′

i ln

(

∑

j

θ
′

jτji

)

+ q
′

i − q
′

i

∑

j

θ
′

jτij
∑

k θ
′

kτkj

(3.34)

where

lj =
z

2
(rj − qj)− (rj − 1) (3.35)

Eq.(3.34) requires only pure-component and binary parameters. UNIQUAC is

widely used in the chemical industry in order to predict the thermodynamic be-

haviour of chemical mixtures. It is applicable to a wide variety of non-electrolyte

mixtures. Polar or non-polar solvents, such as alcohols, ketones, hydrocarbons, or

nitriles can be accurately described with the UNIQUAC model, including partially

miscible mixtures, which can’t be described by the Wilson model for instance. For

example the VLE curve of the n-hexane and nitroethane system at 45◦C [9] is shown

in Figure 3.1. The pressure of the vapor phase is plotted as a function of the mole

fraction of acetonitrile in the liquid phase. We observe a strong positive deviation

from ideality in the sense of Raoul’t law. Despite this deviation the experimental

points are very well described within the UNIQUAC model.

NRTL equation

Renon and Prausnitz[6] used the concept of local composition in the derivation of

NRTL (Nonrandom Two-Liquid) equation. This equation is applicable to partially

miscible as well as completely miscible systems.

gE

RT
=
∑

i

xi

∑

j τjiGjixj
∑

k Gkixk
(3.36)

where

τji =
gji − gii

RT
(3.37)

Gji = exp (−αjiτji) (3.38)

αji = αij (3.39)
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Figure 3.1: Strong positive deviations from ideality. Vapor-liquid equilibria for n-

hexane (1)/nitroethane (2) system at 45◦C. Taken from ref. [1].

The activity coefficient for any component i is given by:

ln γi =

∑

j τjiGjixj
∑

k Gkixk

+
∑

j

xjGij
∑

k Gkjxk

(

τij −
∑

l xlτljGlj
∑

k Gkjxk

)

(3.40)

Eqs.(3.36) and (3.40) only contain parameters which can be obtained from binary

data. The significance of gij is similar to that of λij in Wilson’s equation: gij is an

energy parameter which is characteristic of the i− j interaction. The NRTL model

likewise the Wilson model describes multi-component systems only with the help of

binary parameters.

3.1.3 Chen model: Electrolyte-NRTL model( Pitzer-Debye-

Hückel NRTL model )

In 1982 Chen [10] proposed a model with local composition which described the ex-

cess Gibbs energy of single-solvent, single completely dissociated electrolyte systems

over the entire range of temperature and concentration.

Chen made two assumptions about electrolyte systems which are critical to the

local composition model development: first the local composition of cations around

cations is zero. In other words the repulsive forces between ions of like charge

are relatively large. Second the local electroneutrality assumption states that the
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distribution of cations and anions around a central molecule is such that the local

ionic charge is zero. It is these realistic assumptions, in conjunction with the local

composition concept, that enable the new model to represent all kind of electrolyte

systems. The excess Gibbs energy is the sum of two contributions: the long-range

electrostatic forces between ions, and the short-range forces between all the species.

For the long-range contribution Chen took the Pitzer-Debye-Hückel equation [11],

and for the short-range contribution the NRTL (Nonrandom Two-Liquid) model

[6]. Thus at infinite dilute solution for the electrolyte systems the model is reduced

to the Debye-Hückel model. At higher concentrations the model reduces to the

NRTL model. The short-range interaction contribution model is developed from

a symmetric convention based on reference states of pure solvents.The long-range

contribution is based on a asymmetric convention whose frame of reference is the

infinite dilution. We have:

gE

RT
=

gE,LR

RT
+

gE,SR

RT
+

gE,Born

RT
(3.41)

where the superscript LR, SR and Born are, respectively, long-range, short-range

and the Born’s term.

Long-range interaction contribution

The Pitzer Debye-Hückel equation normalized to mole fractions of unity and zero

for electrolytes is used to represent the long-range interaction contribution.

gE,LR = −
(

1

Ms

)1/2

4AΦ
Ix

ρ
ln
(

1 + ρI1/2
x

)

(3.42)

where Ms is the molar mass of salt, ρ = bM
−1/2
m , Mm the molar mass of solvent, b

being related to the closest approach distance between ions. Ix is the ionic strength

on mole fraction basis:

Ix =
1

2

∑

i

z2
i xi (3.43)

where zi is the charge of ion i, and AΦ is the Debye-Hückel parameter

Aφ =
1

3

√

2πNAvdm

(

βe2

4πε0εm

)3/2

(3.44)

where dm is the solvent density, NAv is the Avogadro’s number, e is the elementary

charge, ε0 is the permittivity of a vacuum and εm is the relative permittivity of

water. By differentiating with respect to Ni we obtain for the activity coefficient of

species i:

ln f ∗LR
i = −

(

1000

Ms

)

AΦ[
2Z2

i

ρ
ln(1 + ρI1/2

x ) +
Z2

i I
1/2
x − 2I

3/2
x

1 + ρI
1/2
x

] (3.45)
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Short-range interaction contribution

As we have seen previously NRTL is based on the Two-Liquid Theory. The deriva-

tion that follows may be generalized to handle all types of electrolyte systems, in this

work the derivation will be based on a system of single completely dissociated liquid

electrolyte, cation, anion, and single solvent. In this type of mixture, it is assumed

that there are three types of cells as shown in Figure 3.2. One type consists of a

central solvent molecule with solvent molecules, anions, and cations in the immedi-

ate neighborhood. The local electroneutrality assumption is applied to cells of this

type. The other two are based on the like-ion repulsion assumption and have either

an anion or cation as the central species, and an immediate neighborhood consisting

of solvent molecules and oppositely-charged ions, but no ions of like charge.

Figure 3.2: Three types of cells according to like-ion repulsion assumption and local

electroneutrality assumption

The central particle may be either 1 or 2. 1 or 2 could be cation, anion or solvent

respectively. The interaction parameter τij is the interaction energy between two

particles i and j.

τji = β(gji − gii) (3.46)

with gij=gji For our exemple where the particle central is 1 or 2 we have:

τ12 = β(g12 − g22) (3.47)

τ21 = β(g21 − g11) (3.48)

The probability Pji [12] is used here in place of Gji [6, 10]. Pji describes the proba-

bility of finding a particle of species j in the immediate vicinity of a central particle

of species i. Pji follows the Boltzmann distribution as

Pji = exp (−ατji) (3.49)
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and

Pji,ki = exp (−ατji,ki) (3.50)

Pji,ki is the relative probability of finding a particle of species j near i compared to

that of finding k near i. α is the so-called non-randomness parameter.

The last (closure) equation relates the local mole fractions of species j and k

around central species i, Xji and Xki to the probabilities as

Xji

Xki
=

xjPji

xkPki
(3.51)

where j and i are ions or solvent. This relation was first proposed by Chen and

Evans [10]. Later, it was modified with the introduction of the valence zi [13]. We

have
∑

j

Xji = 1 (3.52)

The assumption ”no ions around an ion of like charge” must be present, thus

Xii = Xjj = 0 (3.53)

Pii = Pjj = 0 (3.54)

From 3.51 and 3.52 one gets

Xji =
xjPji

∑

j xjPji

(3.55)

with xj the mole fraction of species j in solution.

The Excess Gibbs energy per molecule of species i, GNRTL
i is:

Ḡi
NRTL

=
∑

j

Xjigji (3.56)

finally we have from 3.55

Ḡi
NRTL

=
xjPjigji
∑

j xjPji
(3.57)

The reference state Gref
i is the pure solvent for the solvent and it is the central ion

only surrounded by counter-ions for the ions, as defined by Chen and Evans [10].

Ḡm
ref,NRTL

= gmm (3.58)

Ḡc
ref,NRTL

= Ḡa
ref,NRTL

= gca (3.59)

and

Ḡref,NRTL =
∑

k

xkḠk
ref,NRTL

(3.60)
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The NRTL deviation of excess Gibbs energy of the system

∆ḠNRTL =
∑

k

xk∆Ḡk
NRTL

(3.61)

and the total deviation of the excess Gibbs energy of the system is

∆GNRTL = Ntot∆ḠNRTL (3.62)

where Ntot = Nc + Na + Nm is the total number of particles in solution. In the case

of a mixture of one salt and several solvents that will be considered below, one gets,

using Eqs. 3.55-6.14 the following equation [12]

β∆GNRTL =
∑

i

[xcXmcτmc,ac + xaXmaτma,ca + xm

∑

i

Xjmτjm] (3.63)

Born term

The Born term in Eq. 3.41 is used to account for the Gibbs energy of transfer of

ionic species from the infinite dilution state in a mixed-solvent to the infinite dilution

state in aqueous phase.

ln fBorn
i =

βe2

8πε0

(

1

ε′m
− 1

εm

)

∑

i

xiz
2
i

ri
(3.64)

where ε
′

m, εm are the relative permittivity of the solvent mixture and the relative

permittivity of water, respectively, ri is the Born ionic radius. For purely aqueous

systems ln fBorn
i = 0.

3.1.4 MSA-NRTL model

Papaiconomou et al. [12] developed a model which describes the electrolyte solutions

with MSA (Mean Spherical Approximation) and NRTL models. It differs from the

Chen et al. model (3.1.3) in the following aspects:

• They replaced the Pitzer DH term by the MSA expression for the long-range

interaction. MSA is a well-based theoretical model which provided expres-

sions for the free energy and the activity coefficients in the Mac Millan-Mayer

framework where the solvent is regarded as a continuum. The MSA model is

similar to the Debye-Hückel theory. However it differs from the latter in the

fact that it better takes into account the sizes of the ions (excluded volume

effect).
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• First the interaction parameters τij for the cations are the same as those for the

anions in Chen’s work [10]. In Papaiconomou’s work τij are different for cations

and anions, thus τcm is different from τam. There were three independent

parameters τcm, τam and τmc,ac. We have the relation:

τma,ca = τmc,ac + τam − τcm (3.65)

Second, τmc,ac was varied with composition of solution [18].

τmc,ac = τ (1)
mc,ac + τ (2)

mc,acxm (3.66)

The τji are adjustable parameters.

• The Born term is not taken into account because it is not relevant.

To sum up, what does MSA-NRTL describe ? Figure 3.3 provides an overall

picture which makes it possible to visualize the two kinds of interactions: the long-

range and the short-range interactions.

Figure 3.3: Long-range and short-range interactions in the MSA-NRTL model

Moreover, Papaiconomou et al. described the osmotic and activity coefficients

of electrolyte solutions at 25◦C. Nevertheless, in their work they studied the mean

activity coefficient of salt in the solvent mixtures, but they did not take into account

the effect of the temperature and the solvation.

Finally, the liquid vapor equilibria (L-V) were not described.

These are some remarks that show that the MSA-NRTL model can be improved

and extended. In the next chapter, we will see how to improve MSA-NRTL model.
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List of symbols
ai activity of species i

aij binary energy parameters in UNIQUAC

A anion

AΦ Debye-Hückel coefficient for the osmotic function

b The closest approach distance between ions

C cation

di density of solvent i

e charge of proton

fi activity coefficient of i on stoichiometric mole fraction scale

gij Energy parameter in NRTL

G Gibbs energy of solution

Ḡ partial molal excess Gibbs energy

G specific Gibbs energy

Ḡi Gibbs energy per particle of i

I ionic strength

kB Boltzmann constant

lij pair i-j interaction parameter

m molality

Mi molar mass of solvent i

n mole number

Nav Avogadro number

Ni number of particles of i

P Pression

Pik, Pik,jk defined by eqs 6.61 and 6.62

q External surface area

qi Constant parameters of Pitzer

r distance of molecules

Smodel set of particle numbers within the model (eq 6.19)

SLR set of particle numbers at LR level (eq 6.20)

T temperature

u Molar excess energy

U Potential energy

v molar volume

V volume of solution

W water

wij mean interaction potential

w Interchange energy

Xij local mole fraction of species i and j

xi stoichiometric mole fraction

yi “true” mole fraction scale

z Coordination number
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Greek letters
α NRTL random parameter

β = 1/kBT

θ Surface fraction

γ± mean salt activity coefficient on molal scale

εi relative permittivity of solvent i

ε0 permittivity of a vacuum

κ Debye screening parameter

Λ Binary parameter in Wilson model

λ Energy of parameter in Wilson equation

µi chemical potential of species i

ν = νC + νA

νi stoichiometric number of species i in salt

Φ segment fraction

ρi molar density of species i

τij, τji binary parameters in NRTL

σi diameter of species i

Subscripts

1 total water

2 total solvent

W free water

Z free solvent

born Born’s term

s salt

sol Solution

T Total

Superscripts

⊗ reference state

(0) value at T=298.15 K

el electrostatic contribution

E Excess

hyd contribution from hydration

id ideal contribution

MSA contribution within mean spherical approximation

SR contribution of short range forces
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Chapter 4

Inclusion of ionic hydration and

association in the MSA-NRTL

model for a description of the

thermodynamic properties of

aqueous ionic solutions.

Application to solutions of

associating acids.

The purpose of this chapter is to further improve the MSA-NRTL model of Pa-

paiconomou et al. [1], by introducing explicitly the solvation of ions.

Firt, we shortly discuss the importance of solvation through the behavior of

osmotic coefficient as a function of the temperature.

The evolution of the effective potential when the temperature increases allow us

to understand the evolution of LiCl and NaCl osmotic coefficients in Figure 4.1 [2].

4.1 Introduction

4.1.1 General considerations

The variation of φ as a function of temperature depends on the electrolyte. For HCl,

LiCl, φ decreases whereas for NaCl , KCl, RbCl and CSCl, for small temperature,
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Figure 4.1: Temperature dependence of osmotic coefficients of 1m alkali metal chlo-

rides and HCL. [2]
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φ increases but it decreases at higher temperature. The difference between these

curves may be understand in terms of hydrated ionic diameter which represents the

solvation of the ion.

Indeed, for these concentrated solutions, the bigger the size of the ion, the greater

φ. Thus for some electrolytes, the size always decreases as a function of T whereas

for for other electrolytes it increases for the small temperature.

The difference in the temperature dependence corresponds to different solvation

shells. In fact, the concept of the diameter simply expresses the short-range part of

the effective ion-ion potential averaged over the configuration of the solvent. The

latter can be calculated from MD (molecular dynamic) simulations (Figure 4.2).

Figure 4.2: Short-range part of the effective potential between ion-ion pairs in aque-

ous NaCl electrolyte. Coutinuous line, 0.5 M; separate symbols, 1 M. In substracting

Ewald potential. Dielectric constant of 79 and 78 for 0.5 M and 1 M solution, re-

spectively. [3]

The accessible configurations are roughly situated below kBT. If T increases,

some ions will increase their diameter by exploring configuration at higher distances

(penetration of on hydration shell) A → B. On the other hand, further ions will

explore smaller distances ( A → C). Thus, hydration is strongest for small ions. For

instance, Li+ is expected to be more hydrated than Na+, K+...

After we remark the relevant concept of solvation, we present the Stokes and

Robinson model with constant solvation number.
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4.1.2 Stokes and Robinson model for solvation

First of all we consider that any solute in aqueous solution is solvated i.e. cations

or anions are surrounded by water molecules. In order to describre the solvation

we use the mole fraction and molality scale because if we take the molarity scale

we do not take into account the effect of solvent. We calculate the total Gibbs free

energy in two ways : first the solute is not solvated, and second considering the

solute solvated by h moles of solvent, h is constant. Thus, we have on one hand, h1

moles of water combined with ν1 moles of cations and on the other hand, h2 moles

of water combinated with the ν2 moles of anions. The subscript 1 is for water, C

and A for cations and anions respectively.

G = N1µ1 + NAµA + NCµC (4.1)

and

G = NWµW + NAµA′ + NCµC′ (4.2)

in which NW = N1 − h, N1, NC , and NA, are the particle number of free water,

total water, of hydrated cations, of total cations, of anions, respectively, µi is the

chemical potential of species i. Only the terms of solute are different because in

one case it’s ion and another case it’s ion with water’s molecules. We introduce the

chemical potential in terms of the appropriate mole fraction and activity coefficient

:

µ1 = µ⊗1 + RT ln a1 (4.3)

µC = µ⊗C + RT ln
N1

N1 + NA + NC

+ RT ln fC (4.4)

µC′ = µ⊗C′ + RT ln
N1

NW + NA + NC
+ RT ln fC′ (4.5)

where µC′ is the chemical potential of species for the hydrated solute, fC , fA, fC′

and fA′ are, respectively, the activity coefficient of cations, of anions, of hydrated

cations and of hydrated anions on the mole fraction scale. Hence

hµ1 + NCµC −NCµC′ + NAµA −NAµA′ = 0 (4.6)

We have :

hµ⊗1 + NC∆µ⊗C + NA∆µ⊗A + hRT ln a1 + NCRT ln X + NART ln X + NCRT ln fC

+NART ln fA −NCRT ln f
′

C −NART ln f
′

A = 0

where X = NW +NC+NA

N1+NC+NA
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∆µ⊗C = µ⊗C − µ⊗C′

and

∆µ⊗A = µ⊗A − µ⊗A′

For N1 going to infinity (infinite dilution), a1, goes to unity. So, one gets:

hµ⊗1 + NC

(

µ⊗C − µ⊗C′

)

+ NA

(

µ⊗A − µ⊗A′
)

= 0 (4.7)

Hence

NC ln f
′

C + NA ln f
′

A = NC ln fC + NA ln fA + h ln a1 + (NC + NA) ln
NW + NC + NA

N1 + NC + NA
(4.8)

Let us set NC = νCN and NA = νAN with ν = νC + νA where N is the total

particle number.

νCN ln f
′

C+νAN ln f
′

A = νCN ln fC+νAN ln fA+h ln a1+(NC+NA) ln
NW + NC + NA

N1 + NC + NA
(4.9)

Hence

νCN ln f
′

C + νAN ln f
′

A = ν ln f
′

± = (νC + νA) f
′

± (4.10)

Similarly

νCN ln fC + νAN ln fA = ν ln f± = (νC + νA) f± (4.11)

where f± and f
′

± are, respectively, the mean activity coefficient of hydrated cations

and of not hydrated cations on the mole fraction scale. with

f ν
± = f νC

C f νA
A (4.12)

Hence

ln f
′

± = ln f± +
h

Nν
ln a1 + ln

NW + NC + NA

N1 + NC + NA

(4.13)

Stokes and Robinson assumed that the value of h in the actual solution is the

same as at infinite dilution.

We used this model while adapting it in order to improve the model of N. Pa-

paiconomou et al.
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4.2 Inclusion of ionic hydration and association

in the MSA-NRTL model for a description

of the thermodynamic properties of aqueous

ionic solutions. Application to solutions of

associating acids.
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Ionic hydration and association are included in the MSA-NRTL model for a descrip-

tion of the thermodynamic properties of aqueous ionic solutions. Hydration effects

are introduced using the classic model of Robinson and Stokes, in which hydration

numbers that are independent of salt concentration. Association is accounted for

through a mass action law. New compact conversion formulae are given expressing

the individual ionic, and mean salt, activity coefficients at the Lewis-Randall level.

The model is applied to the representation of strong and associating aqueous elec-

trolytes. In the case of solutions of associating acids, its ability to describe also the

speciation of the acid is examined.

Keywords: Thermodynamic properties; Ionic Solutions; Electrolytes; Hydration;

MSA; NRTL.
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4.2.1 Introduction

The representation of the thermodynamic properties of ionic solutions has been the

subject of numerous studies in the past decades. For many practical applications,

e.g. in physical chemistry, chemical engineering or atmospheric chemistry, it is useful

to have analytical working equations at hand, capable of being easily translated into

a software program running on a microcomputer [4].

A great number of such models has been devised that may roughly be classified

in two categories. Firstly, following the original idea of van’t Hoff [5] and the more

general MacMillan-Mayer (MM) theory [6] in which the solute is regarded as a gas

of particles, models have been developed based on a statistical mechanical treat-

ment of the system. This is the case of the mean spherical approximation (MSA)

[7, 8, 9, 10] in which ions are modeled as charged hard spheres. Secondly, more phe-

nomenological models have been proposed that generally led to an expression for

the Gibbs energy of solution, split into decoupled electrostatic (generally a Debye-

Hückel term) and non-electrostatic interactions. Examples of this type of model

are the well-known Pitzer model [11] in which the non-electrostatic contribution has

the form of a virial expansion, and models based on a local composition description

of the system as in the elec-NRTL [12, 13, 14, 15], with the nonrandom two liquid

(NRTL) contribution [12, 13, 1] to account for the effect of non-electrostatic forces.

In a previous article, we presented the MSA-NRTL model [1] in which the MSA

was used for the electrostatic contribution to the Gibbs energy, in place of the

Pitzer-Debye-Hückel term as used by Chen et al. [12, 13]. As is well known, elec-

trostatic forces govern the thermodynamic behaviour of an ionic solution at low salt

concentration. As salt concentration is increased, the effect of other forces becomes

comparatively more important because of the progressive screening of ion-ion in-

teractions. In the NRTL model, these other forces are assumed to be short-range

(SR) forces, occurring only between closest neighbors. In our model [1], the NRTL

expressions introduce parameters that are characteristic of the mean interaction en-

ergies between pairs of different species. So, 3 such parameters are required for an

aqueous ionic binary solution [1].

An effect that is missing in the first version of the MSA-NRTL model [1] is the

inclusion of hydration. The importance of this phenomenon in the representation of

departures from ideality has been known and described for a long time [16]. Recent

studies bring additional support to this principle. Zavitsas has shown [17] that a

pseudo-ideal behaviour can be obtained for some thermodynamic properties if a

certain number of water molecules is assumed to be bound to a solute (electrolyte

or nonelectrolyte). Besides, ab initio numerical simulations developed during the

past decade confirm the old picture of a well-defined hydration shell around small
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and/or plurivalent cations [18, 19, 20, 21, 22, 23]. By contrast, simple anions such

as Cl−, Br− and I− seem to have less defined hydration shells [24] and this type of

ion is believed to be weakly hydrated [25].

A second effect that was not included in our former work [1] was ion association.

The issue of association of acids has recently prompted renewed interest in the field

of atmospheric chemistry because of their presence in many aerosols. So, the case

of sulfuric acid has been addressed using a Pitzer-type model [26] for a description

of speciation of sulfuric acid as a function of temperature. The case of nitric acid,

which is believed to exhibit significant association in water [27, 28, 29], is also likely

to be of interest for such representations. Besides, it may be put forward that the

influence of the hydration of the two ions in acid solutions on the pairing process

has not received enough attention. Furthermore, to our knowledge, the issue of

developing solution models capable of representing the thermodynamic properties

together with the speciation in an associating acid solution has not been addressed

sufficiently in the literature.

In the present work, hydration is incorporated into the MSA-NRTL model by

following a route similar to the one proposed by Robinson and Stokes [16], which

consists of assuming that an ion bears a constant number of attached water molecules

(independent of salt concentration). The elec-NRTL was modified recently by using

this method [30]. The model of Robinson and Stokes has also been used in combi-

nation with UNIQUAC [31]. In the present paper, the new MSA-NRTL model is

applied to represent the basic thermodynamic properties of various aqueous strong

1-1 and 2-1 electrolytes (the case of salts containing plurivalent ions was not ap-

proached in our earlier work [1]). A description of the thermodynamic properties of

sulfuric acid and nitric acid solutions is developed by including association between

hydrated H+ cation and hydrated anion (SO2−
4 or NO−

3 ). For these solutions, the ca-

pability of the model to represent the thermodynamic properties and the speciation

of the acid is examined.

The next section presents the theoretical aspects of this work. The third section

is devoted to the presentation of the results and to their discussion.

Most calculations were performed using the symbolic calculation device MapleR.

4.2.2 Theoretical

Let us consider an aqueous solution containing an electrolyte, CνC
AνA

, C being the

cation and A the anion with stoichiometric numbers νC and νA, respectively. We

denote by zC the valence of the cation and by zA that of the anion. Furthermore,

we denote by hC and hA the hydration numbers of C and A, respectively. These

numbers are supposed not to vary with salt concentration.
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Hereafter we will use the subscripts W, C’ and A’ to designate the the free water

(not bound to an ion), the hydrated cation and the hydrated anion, respectively (Fig-

ure 4.3). Quantities referring to the total water (bound plus free) will be designated

by the subscript 1.

Figure 4.3: Hydration representation

We suppose that the hydrated cation and anion may associate to form the pair

P=CA, of valence zC + zA and hydration number hP , according to the reaction

C(H2O)hC
+ A(H2O)hA


 P(H2O)hP
+ (hC+hA-hP ) H2O

the charges on the species being omitted for convenience. The association equilib-

rium constant for this reaction is

K =
aP ahC+hA−hP

W

aC′aA′
(4.14)

Basic thermodynamic relations.

The relevant set of particle numbers to be used in any model is

Sm ≡ {NW , NC′ , NA′, NP} (4.15)

Correspondingly, one may define the “true” mole fraction of a species i as

yi ≡
Ni

NW + NC′ + NA′ + NP
(4.16)

Let us denote its activity coefficient at this level by gi.

Any such activity coefficient, calculated using a given model, will have to be

converted from the model level (with the set of variables Sm) to the Lewis-Randall
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(LR) level, that is the level of the experimentalist, for which the relevant set of

variables is

SLR ≡ {N1, NC , NA} (4.17)

to which correspond the stoichiometric mole fractions

xi ≡
Ni

N1 + NC + NA
(4.18)

We will denote by fi an activity coefficient on this mole fraction scale at the LR

level.

According to the above assumptions, one has

NC = NC′ + NP (4.19)

NA = NA′ + NP (4.20)

N1 = NW + hCNC′ + hANA′ + hP NP (4.21)

The derivation of the activity coefficients of the species 1, C and A at the LR

level from the activity coefficients of W, C’ and A’ at the model level may be deduced

as follows.

For small variations of the particle numbers, the variation of the Gibbs energy

of solution may be written as

dG = µWdNW + µC′dNC′ + µA′dNA′ + µPdNP (4.22)

for the set of variables Sm, at constant pressure and temperature. At the LR level,

it is given by

dG = µ1dN1 + µCdNC + µAdNA (4.23)

By replacing the LR variables by their expressions, eqs 4.19-4.21, in eq 4.23, one

arrives at

dG = µ1dNW +(µC +hCµ1)dNC′ +(µA +hAµ1)dNA′ +(µC +µA +hPµ1)dNP (4.24)

Upon identification of this relation with eq 4.22 and considering that this equality

holds for any small variation of Sm, one obtains

µC′ = µC + hCµ1 (4.25)

µA′ = µA + hAµ1 (4.26)

µW = µ1 (4.27)

µP = µC + µA + hPµ1
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Henceforth, the use of eq 4.27 in eqs 4.25 and 4.26 leads to

µX = µX′ − hXµW (4.28)

for X= C or A, so giving the relation for the mean chemical potential of C or A at

the LR level as a function of that for the hydrated ions and the free water, quantities

that may be calculated in the framework of a suitable model.

Besides, one may write

βµX = βµ⊗X + ln(xXfX) (4.29)

βµX′ = βµ⊗X′ + ln(yX′gX′) (4.30)

for X= C or A, and

βµW = βµ⊗W + ln aW (4.31)

with µ⊗i the standard chemical potential of species i and

β ≡ (kBT )−1

kB being the Boltzmann constant and T the temperature.

Eqs 4.29-4.31 may be inserted into eq 4.28. The quantity µ⊗X being independent

of composition, one finds that

µ⊗X = µ⊗X′ − hXµ⊗W (4.32)

by taking the limit of infinite dilution of salt. Then, by using eqs 4.29-4.32 in eq

4.28, we get

fX =
yX′

xXahX
W

gX′ (4.33)

for X= C or A, which is the desired relation connecting the mean activity coefficient

of X (X being in the form of X’ and P), fX , to the activity coefficient of the hydrated

species X’, gX′.

Eq 4.33 provides a compact expression for converting the activity coefficient of

an ion to the LR level. It is simpler than the usual two-step conversion method

accounting for hydration and association (as explained for instance on pages 37 and

238 of ref. [16]).

The mean activity coefficient of salt in the LR system is

ln f± ≡
νC

ν
ln fC +

νA

ν
ln fA (4.34)

where ν ≡ νC + νA.

Finally, the mean activity coefficient of salt on the molality scale, γ±, is obtained

using the classic conversion formula [1, 16]

γ± = x1 f± (4.35)
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By combining eqs 4.33-4.35 and after rearrangement of terms, we find the new result

ln γ± = ln g± −
h

ν
ln aW + ln y1 +

1

ν
(νC ln ξC + νA ln ξA) (4.36)

in which g± is the mean activity coefficient of the free ions C’ and A’, h is the total

hydration number of free ions per molecule of salt

h ≡ νChC + νAhA (4.37)

y1 is given formally by eq 4.16 applied to total water, and ξX is the fraction of free

(non-associated) ion X. By introducing the fraction of associated anion (fraction

of A forming the pair P), denoted by x, and the notation a ≡ mM1, with m the

molality of salt and M1 the molar mass of solvent, it may be shown easily that

y1 = {1 + a[ν − νAx− h + νA(hC + hA − hP )x]}−1 (4.38)

ξC ≡ 1− νA

νC
x (4.39)

ξA ≡ 1− x (4.40)

For a strong electrolyte (x = 0), eq 4.36 reduces to

ln γ± = ln g± −
h

ν
ln aW + ln y1 (4.41)

which is the result obtained by Robinson and Stokes (equation 9.17 of ref. [16])

since in that case (with x = 0 in eq 4.38)

y1 =
1

1 + (ν − h)a

As for the solvent activity, eq 4.27 entails that

aW = a1 (4.42)

because the two corresponding standard chemical potentials are equal.

By virtue of this equation, the osmotic coefficient can be calculated according to

φ ≡ − x1

1− x1
ln aW (4.43)

with

x1 = 1/(1 + νa)

and

aW = yWgW (4.44)
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The activity coefficients gX may be calculated using the relation

ln gX ≡ ∂G

∂NX

− ∂G

∂NX

(NC = NA = 0) (4.45)

with infinite dilution of salt as the reference state.

In this work, it is assumed that the Gibbs energy, G, may be split into decoupled

long-range electrostatic (“el”) and short-range contributions as

G = Gel + GSR (4.46)

Because of eq 4.45, it stems from this relation that

gX = gel
X gSR

X (4.47)

We now give the explicit forms taken for these contributions.

Electrostatic contribution to Gibbs energy.

Following our previous work [1], we take the restricted primitive MSA expression [7]

for the electrostatic part of G, and extend it to the case of associating electrolytes.

One then has

βGel = −λ
Γ

1 + Γσ

(

z2
CNC′ + z2

ANA′ + z2
P NP

)

+
Γ3

3π
V (4.48)

with V being the volume of solution, σ the mean ionic diameter in water, λ the

Bjerrum distance (ca. 0.7 nm for water at 25◦C) and Γ the MSA screening param-

eter,

Γ =
1

2σ

(√
1 + 2κσ − 1

)

(4.49)

with κ the Debye screening parameter

κ =
√

4πλ(ρC′z2
C + ρA′z2

A + ρP z2
P )

Using eqs 4.45 and 4.48 for Y= C’, A’ or W (with zW = 0), one finds

ln gel
Y = −λ

Γ

1 + Γσ
z2

Y +
Γ3

3π

∂V

∂NY

(4.50)

with the differentiation of eq 4.48 being performed at constant Γ [1]. In the second

term of the r.h.s. of this equation, application of the chain rule for partial derivatives

for the sets of variables Sm and SLR leads to

[

∂V

∂NC′

]

NW ,NA′ ,NP

=

[

∂V

∂NC

]

NA,N1

[

∂NC

∂NC′

]

NW ,NA′ ,NP

+

[

∂V

∂N1

]

NC ,NA

[

∂N1

∂NC′

]

NW ,NA′ ,NP
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and a similar result for the differentiation w.r.t. NA′, and

[

∂V

∂NW

]

NC′ ,NA′ ,NP

=

[

∂V

∂N1

]

NC ,NA

[

∂N1

∂NW

]

NC′ ,NA′ ,NP

By using these last two equations together with eqs 4.19-4.21, one gets in more

compact form (without mentioning the variables kept constant in the differentiation)

∂V

∂NX′

=
∂V

∂NX
+ hX

∂V

∂N1
(4.51)

for X= C or A, and
∂V

∂NW

=
∂V

∂N1

(4.52)

Following ref. [1], we make the simplification that

∂V

∂NC
=

∂V

∂NA
= 0 (4.53)

which avoids the knowledge of solution densities and constitutes a good approxima-

tion [1]. Thus,
∂V

∂N1
= M1/Nd1

with N the Avogadro number and d1 the density of water.

With this simplification, we obtain from eqs 4.50-4.53

ln gel
X′ = −λ

Γ

1 + Γσ
z2

X + hX
Γ3

3π

∂V

∂N1
(4.54)

ln gel
W =

Γ3

3π

∂V

∂N1
(4.55)

SR contribution to Gibbs energy.

For the SR part of G, we use the NRTL model for the system composed of the

species: the hydrated cation C’, the hydrated anion A’ and the free water W.

The NRTL model is a local composition model that was proposed by Renon and

Prausnitz [32]. It has relationship [33] with Guggenheim’s quasi-chemical lattice

theory [34]. The main features of its application to ionic solutions have been reported

in earlier work [12, 13, 1]. Below we recall the basic ingredients of the model. We also

discuss how it may be applied to solutions of plurivalent and associating electrolytes.

In the NRTL model, the excess SR Gibbs energy per particle i is given by

ḠNRTL
i =

∑

j

xjpjiwji/
∑

j

xjpji (4.56)

where

pji = exp(−αβwji) (4.57)
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is proportional to the “probability” of finding a particle of type j in the close vicinity

of particle i, with wji the i-j interaction energy (wij = wji) and α the non-random

parameter related to the mean coordination number, Z, appearing in the lattice

model of Guggenheim for nonrandom mixtures [34] as [32, 33]

α =
2

Z
(4.58)

In eq 4.56, the quantity pji is responsible for non-randomness in the distribution

of species around a given particle (randomness corresponding to α = 0 or β = 0,

pji = 1). Here we take α = 0.3, meaning that each species (hydrated ion or solvent

molecule) has ca. 6 closest neighbors according to eq 4.58.

If we set

τji ≡ β(wji − wii) (4.59)

then eq 4.56 may be rewritten as

ḠNRTL
i =

∑

j

xjPjiwji/
∑

j

xjPji (4.60)

with

Pji = exp(−ατji) (4.61)

The advantage of the transformation of Eq 4.56 into Eq. 4.60 is to reduce the number

of parameters, and becomes more obvious in Eq 4.68-4.74 (one fewer parameter). Eq

4.60 may be written more simply as a function of the τ parameters by introducing

suitable NRTL reference energies [12, 13]. By writing [1]

∆ḠNRTL
i ≡ ḠNRTL

i − ḠNRTL,ref
i (4.62)

it may be easily shown that the use of these quantities in eq 4.45 leads to the same

expressions for the activity coefficients as when using the true excess energies (eq

4.60).

If i is not charged, then Pii = 1 because τii = 0. Thus, taking ḠNRTL,ref
i = wii

yields

∆ḠNRTL
i =

∑

j 6=i xjPjiτji
∑

j 6=i xjPji + xi
(4.63)

If i is charged, we adopt the simplification [12] Pii = 0 because of electrostatic

mutual exclusion of like charged ions. In that case, one may take ḠNRTL,ref
i = wki

where k is a counterion for i (zkzi < 0), which gives

∆ḠNRTL
i =

∑

j 6=i xjPji,kiτji,ki
∑

j 6=i xjPji,ki
(4.64)
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with

τji,ki ≡ β(wji − wki) (4.65)

Pji,ki ≡ exp(−ατji,ki) = Pji/Pki (4.66)

One notices that Pji,ki = 0 if j and i have the same charge sign (zjzi > 0) and

Pji,ki = 1 if j = k.

Finally, activity coefficients arising from the SR interaction may be obtained by

differentiation of the SR Gibbs energy (according to eq 4.45), given by

GSR = NW ∆ḠNRTL
W + NC′∆ḠNRTL

C′ + NA′∆ḠNRTL
A′ + NP ∆ḠNRTL

P (4.67)

It is worth noting that, in the present work, we treat monovalent and plurivalent

electrolytes on an equal footing in the NRTL model framework. So, we do not

introduce the valences of the ions in the NRTL expressions as done elsewhere [12, 13],

for which we do not see any clear justification. On the other hand, the stoichiometric

numbers νi have a direct and obvious effect on the relative populations of C’, A’

and P and this effect is included in the above NRTL expressions (for instance,

xC′/xA′ = νC/νA for a strong electrolyte).

Negatively charged pair. In the case that the pair P is negatively charged (as

in the case of sulfuric acid), the application of eq 4.60 yields

ḠNRTL
W =

xC′PC′W wC′W + xA′PA′W wA′W + xP PPWwPW + xW wWW

xC′PC′W + xA′PA′W + xP PPW + xW
(4.68)

ḠNRTL
C′ =

xA′PA′C′wA′C′ + xP PPC′wPC′ + xW PWC′wWC′

xA′PA′C′ + xP PPC′ + xW PWC′

(4.69)

ḠNRTL
A′ =

xC′PC′A′wC′A′ + xW PWA′wWA′

xC′PC′A′ + xW PWA′
(4.70)

the expression for ḠNRTL
P being obtained by replacing A’ by P in eq 4.70. One

notices that, besides the mutual exclusion of cations C (PC′C′ = 0) and anions

(PA′A′ = 0), no PP or A’P term appears in these expressions (PPP = PA′P = 0)

because of electrostatic repulsion between these species.

As indicated by eq 4.62, the reference energies wWW , wPC , wC′A′ , wC′P may be

subtracted from ḠNRTL
W , ḠNRTL

C′ , ḠNRTL
A′ and ḠNRTL

P , respectively. Thus, after some

simple algebra, one gets

∆ḠNRTL
W =

xC′PC′W τC′W + xA′PA′W τA′W + xP PPW τPW

xC′PC′W + xA′PA′W + xP PPW + xW
(4.71)

∆ḠNRTL
C′ =

xA′PA′C′,PC′τA′C′,PC′ + xW PWC′,PC′τWC′,PC′

xA′PA′C′,PC′ + xP + xWPWC′,PC′

(4.72)

∆ḠNRTL
A′ =

xW PWA′,C′A′τWA′,C′A′

xC′ + xW PWA′,C′A′
(4.73)
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∆ḠNRTL
P =

xW PWP,C′P τWP,C′P

xC′ + xW PWP,C′P

(4.74)

The NRTL Gibbs energies (eqs 4.71-4.74) are expressed as a function of 5 inde-

pendent interaction parameters: τC′W , τA′W , τPW , τWC′,A′C′ and τWC′,PC′, that is 1

fewer parameter than the 6 independent wij parameters. The other parameters are

given by the following relations

τWX,C′X = τWC′,XC′ + τXW − τC′W (4.75)

for X= A’ or P, and

τA′C′,PC′ = τWC′,PC′ − τWC′,A′C′ (4.76)

Uncharged pair. In the case that the pair is not charged, as for nitric acid, eqs

4.73 and 4.74 must be modified to allow for the presence of P in the vicinity of A’

and P. Eqs 4.71 and 4.72 remain unchanged.

With the reference Gibbs energies wC′A′ and wPP for A and P, respectively, one

gets

∆ḠNRTL
A′ =

xP PPA′,C′A′τPA′,C′A′ + xW PWA′,C′A′τWA′,C′A′

xC′ + xP PPA′,C′A′ + xW PWA′,C′A′
(4.77)

∆ḠNRTL
P =

xC′PC′P τC′P + xA′PA′P τA′P + xW PWP τWP

xC′PC′P + xA′PA′P + xP + xWPWP

(4.78)

These relations involve 7 independent parameters: τC′W , τA′W , τPW , τC′P , τA′P ,

τWP and τWC′,A′C′ . The other parameters contained in eqs 4.71, 4.72, 4.77 and 4.78

are related to this set through the following relations. The parameter τWA′,C′A′ is

given by eq 4.75 and one has the relations

τWC′,PC′ = τWP − τC′P + τC′W − τPW (4.79)

and

τPA′,C′A′ = τA′P − τWP + τPW − τC′W + τWC′,A′C′ (4.80)

τA′C′,PC′ = −τPA′,C′A′ + τA′P − τC′P (4.81)

Strong electrolytes. The case of strong electrolytes may be approached by

using eqs 4.71-4.73 and setting xP = 0, involving 3 independent NRTL interaction

parameters: τC′W , τA′W , τWC′,A′C′ .

Solution of association equilibrium.

Eq 4.14 may be rewritten as follows

x−K
a(νC − νAx)(1− x)

1 + a[ν − νAx− h + νAx(hC + hA − hP )]

gC′gA′

gP ahC+hA−hP
W

= 0 (4.82)
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in which aW is given by eq 4.44 and the activity coefficients gi may be computed

according to eqs 4.45 and 4.47.

Eq 4.82 was solved numerically for x by using a Newton-Raphson algorithm.

The activity coefficients of the species C’, A’, P and W were computed as a function

of x, by utilizing eq 4.47. This procedure gives the composition of solution for given

values of K and of the model parameters.

4.2.3 Dependence of thermodynamic quantities vs. hydra-

tion numbers.

An important question that arises within the present framework is the following.

For a given binary aqueous solution, can a fit of the thermodynamic properties give

information on the individual ionic hydration numbers, hC and hA ?

Close examination of eqs 4.41 and 4.43 shows that, for a strong electrolyte, γ±

and φ are functions of h only (h is defined through eq 4.37). This may be seen by

developing eq 4.41 as

ln γ± =
1

ν

(

νC ln gel
C + νA ln gel

A − h ln gel
W

)

+ ln gSR
± − h

ν
ln(yWgSR

W )− ln[1 + (ν − h)a]

(4.83)

In the first term of the r.h.s. of this relation, the hydration numbers hC and hA

contained in ln gel
C and ln gel

A (see eq 4.54) turn out to be cancelled by the term

h ln gel
W . Note that the same result holds if the approximation expressed by eq 4.53

is relaxed. The other terms of this relation are functions of h, because hC and hA

only appear in

NW = N1 − hNsalt

according to eqs 4.21 and 4.37, with Nsalt the number of salt molecules introduced

in solution. For the same reason, φ is a function of h.

Therefore, for a strong electrolyte, the present model may allow the determina-

tion of the sole h, not hC or hA individually.

The situation for an associating electrolyte requires more scrutiny, showing that

the result depends on the stoichiometry of the salt.

In the case of symmetric electrolytes, that is for salts such that νC = νA = νi,

the conclusion is identical to that for a strong electrolyte, which may be understood

as follows. Besides the fact that the hydration numbers again cancel in the term

νC ln gel
C + νA ln gel

A − h ln gel
W , all terms turn out to be functions of hC + hA, as for

instance in y1 (eq 4.38). Since in that case hC + hA = h/νi, it stems that ln γ± is a

function of h, and so does φ.

On the other hand, in the case of asymmetric associating electrolytes (νC 6= νA),

the expressions of ln γ± and φ cannot be handled so as to become functions of h
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alone. Obviously, this result is due to the fact that the cation/anion molar ratio,

equal to (νC − νAx)/(νA − νAx), varies with the association rate x.

These conclusions should be independent of the model used for electrostatic and

SR interactions, provided the latter are expressed in terms of the variables contained

in Sm (definition 4.15).

4.2.4 Results and discussion

In the first place, it was verified numerically that the osmotic coefficient φ and the

mean salt activity coefficient γ±, given respectively by eqs 4.43 and 4.35, accurately

satisfy the Gibbs-Duhem relation. This was done for strong electrolytes and for

associating acids. This precaution gives strong support to the validity of the whole

procedure of calculating the thermodynamic quantities at the LR level.

Parameter values were adjusted by simultaneously fitting experimental osmotic

and activity coefficients data for strong electrolytes [35] at 25◦C, using a least-

square minimization algorithm of the Marquardt type. The numerical values for

these thermodynamic quantities were obtained from the NIST databank [36], in

which primary data for uni-univalent salts are taken from the compilation of Hamer

and Wu [37]. In the fits, the minimum salt concentration was 0.1 mol kg−1 and the

maximum salt concentration was limited to 6 mol kg−1 for 1-1 salts and acids, and

to 4 mol kg−1 for 2-1 salts, except for those salts whose saturation point is below

these values, as is the case for KCl (5 mol kg−1), KBr (5.5 mol kg−1), KI (4.5 mol

kg−1) and CaI2 (1.915 mol kg−1).

For a given fit, the average absolute relative deviation (AARD) was computed

and taken as an indicator of the quality of fit.

Strong electrolytes.

The advantage of introducing hydration numbers in the MSA-NRTL model is shown

in Table 1 in which results are given for fits with fixed hydration number value, in

the case of LiCl and MgCl2 aqueous solutions. It is seen that outside intervals of

3-5 for LiCl and 8-10 for MgCl2 the quality of fits is not satisfactory (Figure 4.4).

It is worth of note that these figures coincide with the order of magnitude that

may be expected for h if one adds a small chloride hydration number (of the order

of unity) to the likely hydration number values for these cations, namely hLi+ ' 4

[19, 25] and hMg2+ = 6 [22, 25].
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Figure 4.4: Value effect of hydration number as a function of the osmotic coefficient

Table 1. Results of fits for various values of the total hydration number,

h (eq 4.37), in the case of LiCl (range= 0.1-6 mol kg−1)and MgCl2

(range= 0.1-4 mol kg−1) aqueous solutions.

Salt h τC′W τA′W τWC′,A′C′ σa AARDφ
b (%) AARDγ±

c

LiCl 0 16.4 -3.70 -4.07 0.135 2.7 4.4

1 22.6 -3.19 -3.99 0.259 1.6 2.8

2 53.4 -2.68 -4.11 0.389 0.67 1.1

3 1.36 -2.21 -8.45 0.475 0.19 0.21

4 -1.57 -0.853 0.678 0.484 0.21 0.24

5 -2.37 -1.74 3.39 0.468 0.19 0.22

6 -1.50 -1.50 2.82 0.568 0.69 1.1

7 4.04 4.04 0.272 0.638 0.94 1.5

MgCl2 4 53.0 -2.86 -4.19 0.421 2.6 4.1

5 -0.113 -2.35 -3.04 0.468 1.6 2.3

6 194 -2.40 0.261 0.529 0.71 0.99

7 -2.92 -0.665 -0.529 0.529 0.68 0.95

8 -2.60 -1.17 0.993 0.537 0.57 0.78

9 -2.58 -1.38 1.91 0.545 0.45 0.60

10 -2.72 -1.54 2.70 0.559 0.40 0.64

11 -2.51 -1.32 2.50 0.613 0.85 2.2

12 -2.16 -1.02 2.16 0.663 1.6 3.6

13 2.58 3.08 -0.464 0.749 2.7 5.8

a the mean ionic size of the ion in nm; bAverage Absolute Relative Deviation (AARD)

for φ; cAARD for γ±.
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Table 2. Results for parameter values: 1-1 electrolytes (range= 0.1-6

mol kg−1) and 2-1 electrolytes (range= 0.1-4 mol kg−1).

Salt τC′W τA′W τWC′,A′C′ σa h AARDφ
b (%) AARDγ±

c

HCl -1.90 -1.40 1.82 0.473 4.15 0.10 0.14

HBr -1.90 -1.60 2.15 0.512 5.07 0.12 0.19

HI -1.90 -1.82 2.39 0.699 4.98 0.19 0.25

LiCl -1.60 -1.40 2.22 0.489 4.94 0.23 0.28

LiBr -1.60 -1.60 2.04 0.443 4.75 0.20 0.28

LiI -1.60 -1.82 3.05 0.755 6.49 0.43 0.48

NaCl -0.80 -1.40 2.97 0.440 5.61 0.15 0.20

NaBr -0.80 -1.60 2.62 0.446 4.39 0.16 0.20

NaI -0.80 -1.82 2.58 0.487 4.13 0.07 0.08

KCl 1.00 -1.40 2.45 0.407 3.27 0.05 0.05

KBr 1.00 -1.60 2.02 0.420 2.11 0.07 0.06

KI 1.00 -1.82 1.01 0.484 0.842 0.09 0.08

MgCl2 -2.71 -1.40 2.22 0.550 9.50 0.41 0.55

MgBr2 -2.71 -1.60 1.27 0.554 7.83 0.21 0.29

MgI2 -2.71 -1.82 0.908 0.565 7.76 0.31 0.57

CaCl2 -2.32 -1.40 2.37 0.522 9.25 0.17 0.21

CaBr2 -2.32 -1.60 2.43 0.585 9.53 0.13 0.16

CaI2 -2.32 -1.82 2.14 0.609 8.87 0.17 0.16

Li2SO4 -1.60 -2.25 4.67 0.434 9.56 0.30 0.19

aIn nm; bAverage Absolute Relative Deviation (AARD) for φ; cAARD for γ±.

Next, the hydration number h was also regressed. The results for some 1-1 and

2-1 salts in water are shown in Table 2. Common values were determined for the τ

parameters. So, the value obtained for τLi+′W is common for all salts containing the

lithium cation and similarly τCl−′W is the same for all chlorides. On the other hand,

the total hydration number h and the parameters τWC′,A′C′ and σ, are characteristic

of each salt.

The set of values of Table 2 was determined by first fitting the data for the

alkaline earth halides MgX2 and CaX2, X being an halide, with initial values for the

τ ’s and for h that were set to 0 and 8, respectively. The plots of experimental and

calculated osmotic coefficient are shown in the Figure 4.5 and 4.6. The fits of the

osmotic coefficient for 1-1 and 2-2 electrolytes are satisfactory.
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Figure 4.5: Osmotic coefficient as a function of molality for MgCl2 aqueous solution.

Symbols: experimental data. Solid line: result of fit.

Figure 4.6: Osmotic coefficient as a function of molality for 1-1 salt aqueous solution.

Symbols: experimental data. Solid line: result of fit.
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It was noticed that the resulting values for τC′W and τA′W were weakly dependent

on the nature of A and C, respectively. Moreover, the results of fits were found to

be relatively insensitive to the initial parameter values. Therefore it was felt that

these values for the τ ’s could constitute an “optimum” set, and the τA′W values

for the halides were used to fit the data for the alkali halides and the simple acids

HCl, HBr and HI. Thus, common τC′W values for the alkali cations and H+ were

determined. Let us mention that the latter are indicative values in the case of the

alkali cations because the fits for the 3 halides did not point to consistent common

values for τC′W for a given alkali cation. On the other hand, the value τH+′W = −1.9

may be regarded as an “optimum” one because fitting the 3 acids approximately

gave this common value.

The following comments may be made concerning the results of Table 2.

It is observed that the values found for h exhibit a clear gap between 1-1 and

2-1 salts, with values of 4.9 ± 0.7 for the former (without taking into account

potassium salts for which h is lower) and of 8.8 ± 0.8 for the latter. Again, and

somewhat surprisingly, these average values are reasonable orders of magnitude for

h, as may be inferred for these salts from experimental and simulation studies.

Indeed, one recovers these figures if one relies on typical hC values of 4 and 6 for

monovalent [18, 19, 20, 25] and divalent [22, 23, 25] cations, respectively, and if

one takes hA ' 1 for halide anions. The latter is plausible in view of experimental

[38, 39, 40] and simulation [24] studies suggesting that the halides Cl−, Br− and I−

be weakly hydrated as compared to small and/or plurivalent cations.

Despite the reservation made in the case of alkali cations and although the τ

parameters do not have a clear physical meaning, it is observed that the value of the

quantity −τC′W increases with the polarizing power of the cation C (in particular

for small and doubly charged ions). It increases in the order K< Na < Li < H < Ca

< Mg . Let us recall that, according to eq 4.59, a negative value of τC′W indicates

that the C’-W interaction (C’ representing the hydrated cation), wC′W , is stronger

than the WW interaction, wWW . The values of the parameter τA′W are of the same

order of magnitude for the halide anions, Cl−, Br− and I−. It is observed that they

are more negative for the more polarizable anions, the quantity −τA′W being in the

order I>Br>Cl. The parameter τWC′,A′C′ has an average value of the order of 2,

with values between ca. 0.9 and 3 for the halide salts. Besides, the value of the

mean ionic diameter, σ, has a reasonable magnitude and, as expected, it increases

when going from the smaller halide (Cl−) to the bigger one (I−) for a given cation,

except for LiBr.
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Let us mention that, as compared to our previously reported results [1], the

present values for τC′W and τWC′,A′C′ are significantly smaller in absolute value.

Thus, instead of τH+W = −8.5 in our former work [1], we now get τH+′W = −1.9.

This result is consistent with the expectation, mentioned in the Introduction sec-

tion, that the characteristic cation-water interaction should be weaker in a model

separately accounting for hydration. In our previous MSA-NRTL model, τCW was

supposed to account for the (bare) cation-water interaction in which the water be-

longed to the first and second hydration shells. In the present model, the cation-first

hydration shell water interaction is accounted for by attaching water molecules to

the cation and τC′W is supposed to describe the expected weaker C’-second hydration

shell water interaction.

The Li2SO4 solution was considered for a determination of the τSO4
2−′W param-

eter, for which the fit gave a value of ca. -2.25, to be used in the next section in the

case of sulfuric acid.

Aqueous sulfuric acid solutions.

The experimental values given by the NIST databank originate from the work of

Rard et al. [41]. The osmotic and activity coefficients for aqueous sulfuric acid

solutions were fitted in the range 0.1-6 mol kg−1.

The τ values determined in the previous section for the H+ and SO2−
4 ions,

τH+′W = −1.90 and τSO4
2−′W = −2.25, were utilized for this calculation. The re-

maining adjustable NRTL parameters are τPW , τWC′,A′C′ and τWC′,PC′. The other

parameters are K, σ, hC , hA and hP . This is a great number of adjustable parame-

ters. However, the thermodynamic quantities are very sensitive to the values of K

and of the hydration numbers, and to the size σ at low salt concentration, which

favors the determination of a unique set of “optimum” parameter values in the fit.

Fitting the proportion of association together with the thermodynamic quantities

further enhances this feature.

Let us notice that, in all the fits, the resulting value for hP was zero, indicating

an unhydrated bisulfate anion, which is not irrealistic for this big monovalent anion.

The association constant K is related to its equivalent Km, defined on the mo-

lality scale, according to the relation [16], K = Km/M1. Values of between ca. 83

and 97 kg mol−1 have been reported [42, 43, 44] for Km.

First, the value adopted by Pitzer et al. [44], Km = 95.2 kg mol−1, was adopted

and the parameters τPW , τWC′,A′C′, τWC′,PC′, σ, hC , hA (and hP ) were adjusted.

This led to the parameter set no. 1 presented in Table 3, with a good fit of both

thermodynamic quantities and plausible values for the hydration numbers hC and

hA. The value hC = 4.07 is of the same order as for HCl and the value hA = 7.1 is
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Table 3. Results for parameter values in the case of sulfuric acid, with

τH+′W = −1.9 and τSO4
2−′W = −2.25 (values taken from Table 2). In all

cases, hP = 0.

Set no.a Km
b τPW τWC′,A′C′ τWC′,PC′ σc hC hA AARDφ

d AARDγ±
e

1 95.2 -3.44 5.77 5.73 0.517 4.07 7.10 0.16 0.09

2 96.8 -3.53 5.78 5.95 0.559 3.95 7.98 0.13 0.08

3 85.5 -3.71 5.13 5.59 0.291 2.55 5.26 0.36 0.28

a See text for meaning; b In units of kg mol−1; c In nm; d Average Absolute Relative

Deviation (AARD) in % for φ; e (AARD) in % for γ±.

at the lower end of the range determined experimentally (7-12) for the number of

water molecules in the first hydration shell of SO2−
4 [25].

In a second step, it was chosen to also adjust Km, together with the other

parameters. This gave the results of set no. 2. The parameter values and the

quality of fit are not greatly modified as compared to the set no. 1.

Lastly, it was attempted to fit at the same time φ, γ± and the proportion of

associated sulfate (the bisulfate ion HSO−
4 ), x. In the least-square minimization

procedure, a smaller weight of 0.2 was given to the effect of the deviation of x

because the experimental values of x are quite scattered. The latter were taken from

the Raman data of Chen and Irish [45], Knopf et al. [26] and Lund Myrhe et al.

[46]. The fit led to the parameter values of set no. 3 in Table 3. The corresponding

plots of the experimental and calculated osmotic and activity coefficients are shown

in Figures 4.7 and 4.8, respectively. The plot of the proportion of bisulfate HSO−
4 ,

x, vs. molality is shown in Figure 4.9. It exhibits a sinuous profile, similar to the

experimental profile obtained by Young [47], plotted in ref. [45].

These satisfying results are obtained with parameter values that are appreciably

different from those of sets no. 1 and 2. In particular, Km is significantly smaller,

although in the admitted range of 83-97 [42, 43, 44], and the mean ionic size and

the hydration numbers hC and hA are greatly decreased. The parameters σ and hC

are much smaller than for the acids HCl, HBr and HI. The hydration number hA

is smaller than the reported lower bound of 7 [25]. We note that considering only

the higher x values of Chen and Irish (empty circles in (Figure 4.9) in the fit only

slightly modifies these values. Therefore, the model experiences some difficulties in
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Figure 4.7: Osmotic coefficient as a function of molality for aqueous sulfuric acid

solution. Symbols: experimental data. Solid line: result of fit.

Figure 4.8: Activity coefficient as a function of molality for aqueous sulfuric acid

solution. Symbols: experimental data. Solid line: result of fit.
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this double representation, which may originate from inadequacies in the model or

from experimental issues, as suggested by the large scatter of the data.
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Figure 4.9: Degree of association of sulfate ion (forming HSO−
4 ) as a function of

molality. Symbols: experimental data of Chen and Irish [45] (5), Knopf et al. [26]

(empty square), Lund Myrhe [46] (4) and Young [47] (◦). Solid line: result of fit.

Aqueous nitric acid solutions.

As shown above the adjustable NRTL parameters in this case are τC′W , τA′W , τPW ,

τC′P , τA′P , τWP and τWC′,A′C′. In order to reduce the number of parameters, it was

assumed that the HNO3 pair has the same NRTL interaction parameters as water,

which simplification amounts to

τPW = τWP = 0 τC′P = τC′W τA′P = τA′W

and leaves 3 NRTL adjustable parameters: τC′W , τA′W and τWC′,A′C′. This assump-

tion may be justified by the fact that H2O and HNO3 are neutral species, and have

comparable dipole moments (1.85 D and 2.22 D in vacuum respectively). However

it is clear that this simplification is appreciably arbitrary. Nevertheless any other

assumption would be as arbitrary.

The τ value of Table 2 for the H+’-W interaction was used, that is τH+′W = −1.90.

In contrast with the case of sulfuric acid, the parameter τA′W was fitted for HNO3

solution because it could not be assigned a clear value when considering the LiNO3

solution (non associating electrolyte). Therefore, one is left with 5 parameters,
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Table 4. Results for parameter values in the case of nitric acid, with

τH+′W = −1.9 and hP = 0.

Set no.a Km
b τA′W τWC′,A′C′ σc h AARDφ

d (%) AARDγ±
e (%)

1 0 -1.68 2.92 0.527 2.93 0.08 0.08

2 0.0378 -1.41 3.17 0.586 5.85 0.25 0.31

aSee text for meaning; bIn units of kg mol−1; cIn nm; dAverage Absolute Relative

Deviation (AARD) for φ; eAARD for γ±.

namely τA′W , τWC′,A′C′ , σ, h and K. The hydration number for the HNO3 pair was

assigned the value hP = 0 because it is a neutral species.

As for sulfuric acid, the association constant K is related to Km, as K = Km/M1.

An empirical value of 0.045 kg mol−1 for Km, proposed by Hood et al. [48], may be

corrected [49] to give Km ' 0.1 kg mol−1.

First, the thermodynamic data φ and γ± were fitted together by least-square

adjustment of the 5 model parameters. This gives the set no. 1 in Table 4. This

procedure yields a good fit with an adjusted value of zero for K (no association).

Next, the thermodynamic data φ and γ± were fitted together with the association

fraction x, with a weight of 0.2 being given to the latter in the fit. Experimental

data for x were taken from the work of Krawetz [27]. These results, obtained in 1955

using Raman spectroscopy, have been confirmed in recent studies [28, 29]. This new

fit led to the results of set no. 2 in Table 4. For this set, the osmotic and activity

coefficients are plotted in Figure 4.10 and the association fraction x is shown in

Figure 4.11.

As compared to the set no. 1, the fact of also fitting x increases the total

hydration number value to 5.85, only a little larger than in the case of halide acids,

which is reasonable since the nitrate ion is also believed to be weakly hydrated

[50, 51]. The Km value of 0.0378 kg mol−1, is coincidentally [49] close to the old

value of Hood et al. [48] of 0.045 kg mol−1. The AARDs of fit are clearly larger

than for the set no. 1 but are quite acceptable.

The main conclusion of this part is that both types of quantities can be accurately

described by the model.
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Figure 4.10: Osmotic and activity coefficient as a function of molality for aqueous

nitric acid solution. Symbols: experimental data. Solid lines: result of fit.

Figure 4.11: Degree of association of nitrate ion (forming HNO3) as a function of

molality. Symbols: experimental data of Krawetz [27]. Solid line: result of fit.
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4.2.5 Conclusion

The model of Robinson and Stokes, in which constant hydration numbers are at-

tributed to ions in solution, has been combined with the MSA-NRTL model and

applied to aqueous solutions of alkali and alkaline earth halides and to acids. The

formulae of Robinson and Stokes, converting the individual and mean salt activ-

ity coefficients to the LR level, have been compacted and extended to the case of

associating electrolytes.

Good representations of the osmotic and activity coefficients for strong elec-

trolytes are obtained. A consistent set of values is proposed for the individual NRTL

parameters τC′W and τA′W . The adjusted total hydration numbers have reasonable

orders of magnitude.

In the case of associating acids, the model can be adjusted to represent the

thermodynamic properties and the speciation of the acid. However, it seems to

perform better for nitric acid than for sulfuric acid.

These representations will be used in subsequent work for thermodynamic de-

scriptions of mixed aqueous solvent electrolytes.
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List of symbols

ai activity of species i

A anion

C cation

C
′

cation hydrated

di density of solvent i

e charge of proton

fi activity coefficient of i on stoichiometric mole fraction scale

gi activity coefficient of i on “true” mole fraction scale

G Gibbs energy of solution

Ḡ partial molal excess Gibbs energy

G specific Gibbs energy

Ḡi Gibbs energy per particle of i

hi hydration number of cation by solvent i

kB Boltzmann constant

m molality

Mi molar mass of solvent i

n mole number

Nav Avogadro number

Ni number of particles of i

Pik, Pik,jk defined by eqs 6.61 and 6.62

Smodel set of particle numbers within the model (eq 6.19)

SLR set of particle numbers at LR level (eq 6.20)

T temperature

V volume of solution

W water

xi stoichiometric mole fraction

yi “true” mole fraction scale

z Electronic charge

zi valence of ion i

Z coordination number
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Greek letters
α NRTL random parameter

β = 1/kBT

γ± mean salt activity coefficient on molal scale

Γ MSA screening parameter

εi relative permittivity of solvent i

ε0 permittivity of a vacuum

κ Debye screening parameter

λ Bjerrum length

µi chemical potential of species i

ν = νC + νA

νi stoichiometric number of species i in salt

φ osmotic coefficient

ρi number density of species i

σi diameter of species i

Subscripts

1 total water

2 total solvent

W free water

Z free solvent

Superscripts

⊗ reference state

(0) value at T=298.15 K

el electrostatic contribution

hyd contribution from hydration

id ideal contribution

MSA contribution within mean spherical approximation

SR contribution of short range forces
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Lösungen und Gasen. Z. Phys. Chem. 1887, 1, 481.

[6] McMillan, W.G.; Mayer, J.E. The Statistical Thermodynamics of Multicompo-

nent Systems. J. Chem. Phys. 1945, 13, 276.

[7] Blum, L.; Høye, J.S. Mean Spherical Model for Asymmetric Electrolytes 2. Ther-

modynamic Properties and the Pair Correlation Function. J. Phys. Chem. 1977,

81, 1311.

[8] Triolo, R.; Blum, L.; Floriano, M.A. Simple Electrolytes in the Mean Spherical

Approximation. 2. Study of a Refined Model. J. Phys. Chem. 1978, 82, 1368.

[9] Simonin, J.P.; Blum, L.; Turq, P. Real Ionic Solutions in the Mean Spherical

Approximation. 1. Simple Salts in the Primitive Model. J. Phys. Chem. 1996,

100, 7704.

[10] Simonin, J.P. Real Ionic Solutions in the Mean Spherical Approximation. 2.

Pure Strong Electrolytes up to Very High Concentrations, and Mixtures, in the

Primitive Model. J. Phys. Chem. 1997, 101, 4313.

[11] Pitzer, K.S.; Mayorga, G. Thermodynamics of Electrolytes. II. Activity and

Osmotic Coefficients for Strong Electrolytes with One or Both Ions Univalent. J.

Phys. Chem. 1973, 77, 2300.

61



[12] Chen, C.C.; Britt, H.I.; Boston, J.F.; Evans, L.B. Local Composition Model

for Excess Gibbs Energy of Electrolyte Systems. AIChE J. 1982, 28, 588.

[13] Chen, C.C.; Evans, L.B. A Local Composition Model for the Excess Gibbs

Energy of Aqueous Electrolyte Systems.AIChE J. 1986, 32, 444.

[14] Kolker, A.; de Pablo, J.J. Thermodynamic Modeling of Concentrated Aqueous

Electrolyte and Nonelectrolyte Solutions. AIChE J. 1995, 41, 1563.

[15] Abovsky, V.; Liu, Y.; Watanasiri, S. Representation of Nonideality in

Concentrated Electrolyte Solutions using the Electrolyte NRTL model with

Concentration-Dependent Parameters. Fluid Phase Equilibria 1998, 150-151, 277.

[16] Robinson, R.A.; Stokes, R.H. Electrolyte Solutions; Butterworths: London,

1959.

[17] Zavitsas, A.A. Properties of Water Solutions of Electrolytes and Nonelec-

trolytes. J. Phys. Chem. B 2001, 105, 7805.

[18] Botti, A.; Bruni, F.; Imberti, S.; Ricci, M.A.; Soper, A.K. Ions in Water: The

Microscopic Structure of a Concentrated HCl Solution. J. Chem. Phys. 2004, 121,

7840.

[19] Lyubartsev, A.P.; Laasonen, K.; Laaksonen, A. Hydration of Li+ Ion. An Ab

Initio Molecular Dynamics Simulation. J. Chem. Phys. 2001, 114, 3120.

[20] Rempe, S.R.; Pratt, L.R. The Hydration Number of Na+ in Liquid Water. Fluid

Phase Equilibria 2001, 183-184, 121.

[21] Ramaniah, L.M.; Bernasconi, M.; Parrinello, M. Ab Initio Molecular-Dynamics

Simulation of K+ Solvation in Water. J. Chem. Phys. 1999, 111, 1587.

[22] Lightstone, F.C.; Schwegler, E.; Hood, R.Q.; Gygi, F.; Galli, G. A First Prin-

ciples Molecular Dynamics Simulation of the Hydrated Magnesium Ion. Chem.

Phys. Lett. 2001, 343, 549.

[23] Naor, M.N.; van Nostrand, K.; Dellago, C. Car-Parrinello Molecular Dynamics

Simulation of the Calcium Ion in Liquid Water. Chem. Phys. Lett. 2003, 369,

159.

[24] Grossfield, A. Dependence of Ion Hydration on the Sign of the Ion’s Charge. J.

Chem. Phys. 2005, 122, 024506.

[25] Ohtaki, H.; Radnai, T. Structure and Dynamics of Hydrated Ions. Chem. Rev.

1993, 93, 1157.

62



[26] Knopf, D.A.; Luo, B.P.; Krieger, U.K.; Koop, T. Thermodynamic Dissociation

Constant of the Bisulfate Ion from Raman and Ion Interaction Modeling Studies

of Aqueous Sulfuric Acid at Low Temperature. J. Phys. Chem. A 2003, 107,

4322.

[27] Krawetz, A.A. A Raman Spectral Study of Equilibria in Aqueous Solutions of

Nitric Acid. Ph. D. Thesis, University of Chicago, 1955.

[28] Lund Myrhe, C.A.; Grothe, H.; Gola, A.A.; Nielsen, C.J. Optical Constants of

HNO3/H2O and H2SO4/HNO3/H2O at Low Temperatures in the Infrared Region.

J. Phys. Chem. A 2005, 109, 7166.

[29] Moisy, P. Unpublished results.

[30] Chen, C.C.; Matjias, P.M.; Orbey, H. Use of Hydration and Dissociation

Chemistries with the Electrolyte-NRTL Model. AIChE J. 1999, 45, 1576.

[31] Lu, X.; Zhang, L.; Wang, Y.; Shi, J.; Maurer, G. Prediction of Activity Co-

efficients of Electrolytes in Aqueous Solutions at High Temperatures. Ind. Eng.

Chem. Res. 1996, 35, 1777.

[32] Renon, H.; Prausnitz, J.M. Local Composition in Thermodynamic Excess Func-

tions for Liquid Mixtures. AIChE J., 1968, 14, 135.

[33] Renon, H.; Prausnitz, J.M. Derivation of the Three-Parameter Wilson Equation

for the Excess Gibbs Energy of Liquid Mixtures. AIChE J. 1969, 15, 785.

[34] Guggenheim, E.A. Mixtures; Clarendon Press: Oxford, 1952.

[35] Sillen, L.G.; Martell, A.E. Stability Constants of Metal-Ion Complexes and Sup-

plement no. 1; The Chemical Society: London, 1964.

[36] Goldberg, R.N.; Manley, J.L.; Nuttal, R.L. Program Gamphi for Calculating

Activity and Osmotic Coefficients of Aqueous Electrolyte Solutions at 298.15 K,

National Bureau of Standards, Chemical Thermodynamics Division, U.S.A., 1984.

[37] Hamer, W.J.; Wu, Y.C. Osmotic Coefficients and Mean Activity Coefficients

of Uni-univalent Electrolytes in Water at 25 ◦C. J. Phys. Chem. Ref. Data 1972,

1, 1047.

[38] Hertz, H.G. in Water: A Comprehensive Treatment, vol. 3, F. Franks, Plenum:

New York, 1973.

[39] Hewish, N.A.; Neilson, G.W.; Enderby, J.E. Environment of Ca2+ ions in aque-

ous solvent. Nature 1982, 297, 138.

63



[40] Copestake, A.P.; Neilson, G.W.; Enderby, J.E. The Structure of a Highly Con-

centrated Aqueous Solution of Lithium Chloride. J. Phys. C Solid State Phys.

1985, 18, 4211.

[41] Rard, J.A.; Habenschuss, A.; Spedding, F.H. A Review of the Osmotic Coeffi-

cients of Aqueous H2SO4 at 25 ◦C. J. Chem. Eng. Data 1976, 21, 374.

[42] Nair, V.S.K.; Nancollas, G.H. Thermodynamics of Ion Association. Part V.

Dissociation of the Bisulphate Ion. J. Chem. Soc. 1958, 4144.

[43] Dunsmore, H.S.; Nancollas, G.H. Dissociation of the Bisulfate Ion. J. Phys.

Chem. 1964, 68, 1579.

[44] Pitzer, K.S.; Roy, R.N.; Silvester, L.F. Thermodynamics of Electrolytes. 7.

Sulfuric Acid. J. Am. Chem. Soc. 1977, 99, 4930.

[45] Chen, H.; Irish, D.E. A Raman Spectral Study of Bisulfate-Sulfate Systems. II.

Constitution, Equilibria, and Ultrafast Proton Transfer in Sulfuric Acid. J. Phys.

Chem. 1971, 75, 2672.

[46] Lund Myrhe, C.E.; Christensen, D.H.; Nicolaisen, F.M.; Nielsen, C.J. Spec-

troscopic Study of Aqueous H2SO4 at Different Temperaures and Compositions:

Variations in Dissociation and Optical Properties. J. Phys. Chem. A 2003, 107,

1979.

[47] Young, T.F. Recent Developments in the Study of Interactions between

Molecules and Ions, and of Equilibria in Solutions. Rec. Chem. Prog. 1951, 12,

81.

[48] Hood, G.C.; Redlich, O.; Reilly, C.A. Ionization of Strong Electrolytes. III. Pro-

ton Magnetic Resonance in Nitric, Perchloric, and Hydrochloric Acids. J. Chem.

Phys. 1954, 22, 2067.

[49] Vilariño, T.; Bernard, O.; Simonin, J.P. Ionic Solutions in the Bindind Mean

Spherical Approximation. Thermodynamics of Associating Electrolytes up to Very

High Concentrations. J. Phys. Chem. B 2004, 108, 5763.

[50] Gonzalez Lebrero, M.C.; Bikiel, D.E.; Elola, M.D.; Estrin, D.A.; Roitberg,

A.E. Solvent-induced Symmetry Breaking of Nitrate Ion in Aqueous Clusters: A

Quantum-Classical Simulation Study. J. Chem. Phys. 2002, 117, 2718.

[51] Neilson, G.W.; Enderby, J.E. The Structure around Nitrate Ions in Concen-

trated Aqueous Solutions. J. Phys. C Solid State Phys. 1982, 15, 2347.

64



Chapter 5

Enthalpy effects in electrolyte

solutions described using the

MSA-NRTL model (including ion

solvation)

5.1 Introduction

The modeling of the thermodynamic properties of ionic solutions is the subject

of continuing fundamental investigations [4]. Generally, this type of study concerns

aqueous solutions at ambient temperature. While they may be useful in atmospheric

chemistry and geochemistry after suitable extension to a wide range of temperatures,

these models are of limited interest for industrial applications in which aqueous

solvent mixtures are often involved. Such systems still require the use of more or

less empirical models to tackle many issues in chemical engineering thermodynamics

[5, 6, 7].

There is indeed a significant demand from the industry for software programs

running on microcomputers, capable of predicting the thermodynamic behavior of

“complex” solutions. These solutions may contain several salts and several solvents,

at temperatures different from 25◦C. The modeling of these systems is not an easy

task, in particular because the structure of this type of solution is still poorly known,

especially as a function of temperature. In this context, the development of more or

less empirical or phenomenological models, based on a reasonable picture of solution,

seems a good means of providing efficient tools for the chemical industry. The

present paper is a part of our continuing effort in that direction.

An important process occurring in ionic solutions is solvation. Here, by solvation,
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we mean the event in which a number of solvent molecules remain in the close vicinity

of an ion for a time significantly larger than the corresponding time in bulk solvent.

In most models, this process is modeled by assuming that a definite number of

solvent molecules are “firmly” bound to an ion. It may be noticed that, while a

large body of experimental data has been gathered about the hydration of common

ions at 25◦C [8], ionic solvation in solvent mixtures (and the notion of “preferential

solvation”) is much more uncertain [9, 10, 11, 12, 13, 14].

Recently, we presented a model [15] combining the Mean Spherical Approxima-

tion (MSA) and the Non-Random Two-Liquid (NRTL) expressions for the electro-

static and short-range (SR) contributions to the Gibbs energy, respectively. The

model was applied to strong and associated aqueous ionic solutions at 25◦C. As

compared to our previous work [16], the hydration of the ions was accounted for by

introducing a constant hydration number, as in the classic model of Robinson and

Stokes [17], already used by Chen et al. [18]. In a recent study [19], we used the

stepwise solvation-equilibrium model of Stokes and Robinson [17] to account for the

variation of solvation with salt concentration.

The purpose of the present work is to extend our previous model [15], with sol-

vation number independent of salt concentration, to the case of strong electrolytes

in water and in solvent mixtures at temperatures higher than 25◦C. The thermody-

namic properties represented include: the osmotic coefficient, the dilution enthalpy,

the solute partial entropy at infinite dilution and the solution heat capacity in the

case of purely aqueous solutions; the activity coefficients of solute and solvents in

the case of aqueous solvent mixtures, all of these properties being studied in the

temperature range 25◦C-100◦C. The partial salt heat capacity at infinite dilution is

discussed in terms of influence of the ion on the water structure.

The next section presents the theoretical aspects of this work. The third section

is devoted to the presentation of the results and to their discussion. Finally the

conclusion will present the perspectives of our future work.

Most calculations were performed using the symbolic calculation device MapleR.

5.2 Basic relations

Pitzer has extended his equations to treat enthalpies and heat capacities.

The basic equations for enthalpy and heat capacity are derived in general form

for an electrolyte with ionic charges zC and zA for the positive and negative ions.

The total excess Gibbs energy is [1]:

Gex = nwνmRT (1− φ + ln γ±) (5.1)
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where nw is the number of kilograms of solvent, m is the molality, ν is the number

of the ions of each type ν = νC + νA, R is the gas constant, T designates the

temperature in K, φ is the osmotic coefficient, and γ± is the activity coefficient.

One gets:

Gex = n1Ḡ
ex
1 + n2Ḡ

ex
2 (5.2)

where n1 and n2 are the number of moles of solvent and solute, respectively, and

Ḡex
1 is the partial molal excess Gibbs energy of the solvent, Ḡex

2 is the partial molal

excess Gibbs energy of the solute.

Hence

Ḡex
1 =

(

ν
n2

n1

)

RT (1− φ) (5.3)

Ḡex
2 = (νRT ln γ±) (5.4)

In the Chap 3 we have seen the Pitzer’s equations for the aqueous electrolytes which

lead to the following equations for φ and ln γ± of a pure electrolyte:

φ− 1 = −|zCzA|AΦ
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1 + bI1/2

+m
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2 (νCνA)3/2

ν

)

CΦ
CA

where I is the ionic strength

I =
1

2

∑

i

mizi (5.5)

and AΦ is the Debye-Hückel coefficient for the osmotic function given as

AΦ =
1

3

(

2πNavρw

1000

)1/2
(

e2

DkT

3/2
)

=
Aγ

3
(5.6)

where Nav is Avogadro’s number, ρw is the density of the solvent, and D the static

dielectric constant of pure water, k is Boltzmann’s constant, and e is the absolute

electronic charge. The first terms in equations of φ and ln γ± arises from the long

range electrostatic interactions. The coefficients β
(0)
CA and β

(1)
CA account for various

types of short-range interactions betweeen C and A, and for indirect forces arising
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from the solvent. CΦ
CA is for the triple ion interactions and is important only at

high concentrations. The parameter b was given the value 1.2 for all electrolytes

and α is 2 for all 1-1 and most other solutes. b and α are taken as temperature

independent. β
(0)
CA,β

(1)
CA, and CΦ

CA are adjusted for a given salt at fixed temperature

by a fit of osmotic and activity coefficient data. The standard state are the pure

solvent for the solvent and the infinite dilution for the solute.

The relative enthalpy L of an electrolyte solution is defined:

L = H −H⊗ (5.7)

where H is the total enthalpy of solution and H⊗ that at infinite dilution. L is

related to Gex by:

L = −T 2

(

∂
(

Gex

T

)

∂T

)

p,m

(5.8)

Eq. 5.1 and 5.8 yield for L:

L = νmRT 2[

(

∂φ

∂T

)

P,m

−
(

∂ ln γ±
∂T

)

P,m

] (5.9)

The apparent relative molal enthalpy, ΦL is defined as:

ΦL =
L− n1L̄1

⊗

n2

=
L

n2

(5.10)

Hence

ΦL = ν|zCzA|
(

AH

3.6

)

ln
(

1 + 1.2I1/2
)

− 2νCνART 2
(

mB
′

CA + m2C
′

CA

)

(5.11)

where

B
′

CA =

(

∂BCA

∂T I,P

)

(5.12)

BCA = β
(0)
CA +

(

2β
(1)
CA

α2I

)

[1−
(

1 + αI1/2
)

exp
(

−αI1/2
)

] (5.13)

C
′

CA =
1

2
(νCνA)1/2

(

∂CΦ
CA

∂T

)

I,P

(5.14)

The quantity AH is the Debye-Hückel coefficient for enthalpy:

AH = −9AΦRT 2[T−1 +

(

∂D

∂T

)

P

+
αw

3
] (5.15)

where αw =
(

∂ ln V
∂T

)

P
is the coefficient of thermal expansion of water.

The total relative heat capacity J is defined as:

J = CP − C⊗
P = CP −

(

n1C
◦
P1

+ n2C̄
⊗
Ps

)

(5.16)
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where C̄⊗
Ps

is the partial molal heat capacity of the solute at infinite dilution and

C◦
P1

is the molal heat capacity of pure water.

J =
∂L

∂T
(5.17)

The apparent molal heat capacity ΦCP
is defined as:

ΦCP
=

CP − n1C
◦
P1

n2

(5.18)

From Eq. 5.10 and 5.17 we find that:

ΦCP
− C̄⊗

Ps
=

(

∂ΦL

∂T

)

P,m

(5.19)

The temperature derivative of Eq. 5.11 yields:

ΦCP
= C̄⊗

Ps
+ |zCzA|

(

AH

3.6

)

ln
(

1 + 1.2I1/2
)

− 2νCνART 2
(

mB”
CA + m2C”

CA

)

(5.20)

where

B”
CA =

(

∂2BCA

∂T 2

)

+
2

T

(

∂BCA

∂T

)

P,m

(5.21)

and

C”
CA =

1

2
(νCνA)1/2 [

(

∂2CΦ
CA

∂T 2

)

P,m

+
2

T

(

∂CΦ
CA

∂T

)

P,m

] (5.22)

with

AJ =

(

∂CΦ
CA

∂T

)

P

(5.23)

The parameters AΦ, AH , and AJ depend only on the thermodynamic and electro-

static properties of water.

Application to NaCl aqueous solution:

The temperature dependence of β(0), β(1), and CΦ are the following general forms:

β(0) = q1 +q2

(

1

T
− 1

T (0)

)

+q3 ln

(

T

T (0)

)

+q4

(

T − T (0)
)

+q5

(

T 2 − (T (0))2
)

(5.24)

β(1) = q6 + q9

(

T − T (0)
)

+ q10

(

T 2 − (T (0))2
)

(5.25)

CΦ = q11 + q12

(

1

T
− 1

T (0)

)

+ q13 ln

(

T

T (0)

)

+ q14

(

T − T (0)
)

(5.26)

where Tr is the temperature at 298.15 K, the values of q1, q6, and q11 for NaCl at

25◦ C are given by Pitzer and Mayorga [2].

The heat capacity data at each experimental temperature were fitted to Eq. 5.20

and one gets C̄⊗
Ps

by:
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C̄⊗
Ps

= C̄⊗
Psol

(T ) + q17 + 2q18T + 3q19T
2 (5.27)

where C̄⊗
Psol

(T ) is the heat capacity of the solid reported by Kelley [3]

C̄⊗
Psol

(T ) = 10.98 + 0.0039T (5.28)

with T ≥ 298.15K.

Pitzer has 19 parameters for the description of NaCl electrolyte solution.

5.3 Theoretical

We consider a solvent mixture, composed of two solvents denoted by symbols 1

and 2, containing a strong electrolyte CνC
AνA

, C being the cation and A the anion

with stoichiometric numbers νC and νA, respectively. We denote by hCi and hAi

the solvation numbers of C and A in solvent i, respectively. These numbers are

supposed not to vary with salt concentration. The symbols zC and zA stand for the

valences of C and A, respectively.

Hereafter we will use the subscripts W, Z, C’ and A’ to designate the free solvents

1 and 2 (not bound to an ion), the solvated cation and the solvated anion, respec-

tively. In this work, the symbols 1 and W will refer to water, but the treatment

below is general as long as the electrolyte is completely dissociated in the solvent

mixture. For commodity, the subscripts 1 and 2 will be used to designate quantities

for the total solvents (bound plus free).

5.3.1 Basic thermodynamic relations.

In this section, the framework presented in previous work [15] for binary aqueous

electrolyte solutions is extended (straightforwardly) to the case of ternary (one salt

+ two solvents) mixtures.

The relevant set of particle numbers to be used in any model is

Sm ≡ {NW , NZ , NC′, NA′} (5.29)

with the corresponding so-called “true” mole fraction of a species i defined by

yi ≡
Ni

NW + NZ + NC′ + NA′
(5.30)

Any activity coefficient, gi calculated using a model in terms of the set of variables

Sm, must be converted to the experimental, Lewis-Randall (LR), level at which the

relevant set of variables is

SLR ≡ {N1, N2, NC , NA} (5.31)
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In this reference system, the stoichiometric mole fractions are defined as

xi ≡
Ni

N1 + N2 + NC + NA

(5.32)

We will denote by fi the activity coefficient on this mole fraction scale at the LR

level.

According to the above assumptions, one has

N1 = NW + hC1NC′ + hA1NA′ (5.33)

N2 = NZ + hC2NC′ + hA2NA′ (5.34)

where hXn is the solvation number of species X (=C or A) by solvent n (=1 or 2).

The relation between the activity coefficients fi and gi is derived as follows.

For small variations of the number of particles, the variation of the Gibbs energy

of solution may be written as

dG = µWdNW + µZdNZ + µC′dNC′ + µA′dNA′ (5.35)

when using the set of variables Sm, at constant pressure and temperature. In terms

of the set SLR at the LR level, it is given by

dG = µ1dN1 + µ2dN2 + µCdNC + µAdNA (5.36)

The LR variables may be replaced by their expressions (Eqs. 5.33,5.34) in Eq. 5.36.

Then, identification of the obtained relation with Eq. 5.35, and since this equality

holds for any small variation of Sm, one gets

µX′ = µX + hX1µ1 + hX2µ2 (5.37)

µW = µ1 (5.38)

µZ = µ2 (5.39)

Then, inserting Eqs. 5.38 and 5.39 in Eq. 5.40 leads to

µX = µX′ − hX1µW − hX2µZ (5.40)

which expresses the relation for the mean chemical potential of C and A at the LR

level as a function of that for the hydrated ions and the free water, quantities that

may be calculated in the framework of a suitable model.

Besides, one may write

βµX = βµ⊗X + ln(xXfX) (5.41)
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βµX′ = βµ⊗X′ + ln(yX′gX′) (5.42)

for X= C or A, and

βµW = βµ⊗W + ln aW (5.43)

βµZ = βµ⊗Z + ln aZ (5.44)

with µ⊗i the standard chemical potential of species i and

β ≡ (kBT )−1

kB being Boltzmann constant and T the temperature.

Eqs 5.41, 5.44 may be inserted into Eq. 5.40. The quantity µ⊗X being independent

of composition, one finds by taking the limit of infinite dilution of salt

β(µ⊗X − µ⊗X′ − hX1µ
⊗
W − hX2µ

⊗
Z) = − ln

(

(a◦1)
hX1(a◦2)

hX2
)

(5.45)

where the superscript ◦ denotes a quantity in the salt-free mixture. It results from

Eqs. 5.41-5.45 that

fX = gX′

yX′

xX

(

a◦1
aW

)hX1
(

a◦2
aZ

)hX2

(5.46)

which gives the desired relation between the LR activity coefficient of X (=C or A),

fX , and the activity coefficient of the solvated species X’, gX′.

The mean activity coefficient of salt at the LR level is

ln f± ≡
νC

ν
ln fC +

νA

ν
ln fA (5.47)

where ν ≡ νC + νA.

Finally, the mean activity coefficient of salt on the molal scale, γ±, is obtained

using the conversion formula [17, 16]

γ± = (x1 + x2) f± (5.48)

By combining Eqs. 5.46-6.42 and rearranging terms, we obtain

ln γ± = ln g± +
h1

ν
ln

a◦1
aW

+
h2

ν
ln

a◦2
aZ

+ ln(y1 + y2) (5.49)

where

hi ≡ νChCi + νAhAi

is the total solvation number of salt by solvent i, m is the molality of salt, Mi is

the molar mass of solvent i, and y1 and y2 are given formally by Eq. 5.30 applied

to total amounts of solvents 1 and 2. If the proportion of solvent i is given as mass

fraction in the salt-free solvent mixture, denoted by w◦
i , one has

y1 + y2 =

w◦1
M1

+
w◦2
M2

(ν − h1 − h2)m +
w◦1
M1

+
w◦2
M2
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As for the solvent activities, Eqs. 5.38 and 5.39 entail that

a1 = aW (5.50)

a2 = aZ (5.51)

with ai = xifi (i = 1, 2), aY = yY gY (Y=W,Z).

An activity coefficient gX may be calculated using the relation

ln gX ≡ ∂G

∂NX
− ∂G

∂NX
(NC = NA = 0) (5.52)

with infinite dilution of salt as the reference state.

In this work, it is assumed that the Gibbs energy, G, may be split into long-range

electrostatic (el) and short-range (SR) contributions as

G = Gel + GSR (5.53)

Because of Eq. 5.52, it stems from this relation that

gX = gel
X gSR

X (5.54)

The explicit forms taken for these contributions are now given explicitly.

5.3.2 Electrostatic and SR contributions to Gibbs energy.

It is proposed to express the electrostatic contribution, Gel, by simply regarding

the solvent mixture as a continuum of relative permittivity ε, whose value is known

from experiment.

As in our previous work [16, 15], we take the restricted primitive MSA expression

[20]

βGel = −λ
Γ

1 + Γσ

(

z2
CNC′ + z2

ANA

)

+
Γ3

3π
V (5.55)

where V is the volume of solution, σ is the mean ionic size, λ is the Bjerrum distance

λ =
1

4πε0

βe2

ε
(5.56)

where ε0 is the permittivity of a vacuum, ε is the relative permittivity of the solvent

mixture, Γ is the MSA screening parameter,

Γ =
1

2σ

(√
1 + 2κσ − 1

)

(5.57)

with κ the Debye screening parameter

κ =
√

4πλ(ρCz2
C + ρAz2

A)
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in which ρi stands for the number density of species i.

Using Eqs. 5.52 and 5.55 for Y= C’, A’, W or Z (with zW = 0 and zZ = 0), one

finds

ln gel
Y = −λ

Γ

1 + Γσ
z2

Y +
Γ3

3π

∂V

∂NY
(5.58)

with the differentiation of Eq. 5.55 being performed at constant Γ [16].

In Eq. 5.58, the term ∂V/∂NY (Y being a species of Sm) can be expressed at the

LR level (SLR system) by using the chain rule for partial derivatives, which leads to

[15]
[

∂V

∂NC′

]

NW ,NZ ,NA′

=

[

∂V

∂NC

]

N1,N2,NA

[

∂NC

∂NC′

]

NW ,NZ ,NA′

+

[

∂V

∂N1

]

N2,NC ,NA

[

∂N1

∂NC′

]

NW ,NZ ,NA′

+

[

∂V

∂N2

]

N1,NC ,NA

[

∂N2

∂NC′

]

NW ,NZ ,NA′

(5.59)

and a similar relation for A’. Moreover,

[

∂V

∂NW

]

NZ ,NC′ ,NA′

=

[

∂V

∂N1

]

N2,NC ,NA

[

∂N1

∂NW

]

NZ ,NC′ ,NA′

[

∂V

∂NZ

]

NW ,NC′ ,NA

=

[

∂V

∂N2

]

N1,NC ,NA

[

∂N2

∂NZ

]

NW ,NC′ ,NA

By using these last two equations together with Eqs. 5.33, 5.34, one gets in more

compact form (without mentioning the variables kept constant in the differentiation)

∂V

∂NX′

=
∂V

∂NX

+ hX1
∂V

∂N1

+ hX2
∂V

∂N2

(5.60)

for X= C or A, and
∂V

∂NW
=

∂V

∂N1
(5.61)

∂V

∂NZ
=

∂V

∂N2
(5.62)

Following references [16, 15], we make the simplification that

∂V

∂NC
=

∂V

∂NA
= 0 (5.63)

which avoids the knowledge of solution densities and constitutes a good approxima-

tion [16]. This approximation amounts to neglecting the effect of salt on the volume

of solution, which is therefore given by

V = (x◦1M1 + x◦2M2)/dmNav (5.64)

where Nav is Avogadro number and dm is the density of the salt-free solvent mixture.
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With this simplification, we obtain from Eqs. 5.58-5.63

ln gel
X′ = −λ

Γ

1 + Γσ
z2

X + hX1
Γ3

3π

∂V

∂N1
+ hX2

Γ3

3π

∂V

∂N2
(5.65)

ln gel
W =

Γ3

3π

∂V

∂N1
(5.66)

ln gel
Z =

Γ3

3π

∂V

∂N2

(5.67)

For the SR part of G, we take the NRTL expression for the system composed

of the species: the solvated cation C’, the solvated anion A’, the free water W, and

the free solvent Z. For one salt in a solvent mixture it is given by [16]

β∆GSR =
∑

m=W,Z

(

yC′XmC′τmC′,A′C′ + yA′XmA′τmA′,C′A′ + ym

∑

j=W,Z,C′,A′

Xjmτjm

)

(5.68)

in which

Xji = yj exp(−ατji)/
∑

k

yk exp(−ατki)

In these formulas, α is the NRTL nonrandom parameter (hereafter we take the

common value α = 0.3) and τji = β(wji−wii), with wji the i− j interaction energy.

Finally, we note that Eq. 5.49 may be rearranged by using Eqs. 5.65-5.67 to

yield

ln γ± = −λ
z2

CνC + z2
AνA

ν

Γ

1 + Γσ
+ ln gSR

± +
h1

ν
ln

a◦1
ywgSR

w

+
h2

ν
ln

a◦2
yzgSR

z

+ ln(y1 + y2)

(5.69)

where a◦i = x◦i f
◦SR
i for i = 1or2 (salt-free solvent mixture), because the hydration

numbers h1 and h2 contained in the expressions of ln gel
C and ln gel

A (see Eq. 5.65)

turn out to be cancelled by the term h1 ln gel
W and h2 ln gel

Z (Eqs. 5.66 and 5.67).

5.3.3 Liquid-vapor equilibrium

The experimental values for the activity coefficients of solvents were computed as

follows.

The vapor-liquid equilibrium may be cast into the equation [21]

xG
i PϕG

i = xL
i fiP

sat
i ϕG

i,pure exp[vL
i (P − P sat

i )/RT ] (5.70)

where xG
i and xL

i are, respectively, the mole fractions of component i in vapor and

liquid phase, P is total pressure, P sat
i is saturation pressure of pure solvent i, ϕG

i is
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the fugacity coefficient of component i in the vapor phase, ϕG
i,pure is that for pure

solvent i (at the same temperature T ), fi is the experimental activity coefficient of

i in the liquid phase. The last (exponential) term is the Poynting correction, with

vL
i the molar volume of solvent i and R is the gas constant.

The fugacity coefficient ϕG
i was estimated using the virial equation, truncated

at the second virial coefficient, which gives

ϕG
i = exp[

(

2
∑

j

xG
i Bij −B

)

P/RT ] (5.71)

where B is the second virial coefficient for the mixture

B = (xG
1 )2B11 + 2xG

1 xG
2 B12 + (xG

2 )2B22 (5.72)

with Bij the second virial coefficient characterizing interactions between i and j

molecules. Bii may be obtained from experiment. For B12 we used the classic

approximation [21]

B12 = (B11 + B22)/2

5.3.4 Description of the effect of temperature

The temperature was introduced into the various model parameters as follows.

As concerns the solvation numbers, it was assumed that the total solvation num-

ber hi(T ) by solvent i in the solvent mixture was proportional to the fraction of

solvent i on a salt-free basis, and that it varied linearly with T , that is

hi = x◦i [h
(0)
i + h

(1)
i

(

T − T (0)
)

] (5.73)

with h
(0)
i the solvation number by pure solvent i at the reference temperature T (0)

(here we took T (0) = 298.15 K) and h
(1)
i a parameter accounting for temperature

dependency.

For the MSA mean ionic size in solvent i, we took

σi(T ) = σ
(0)
i + σ

(1)
i

(

T − T (0)
)

(5.74)

For the τji(T ) interaction parameters, it was found that the following dependen-

cies

τji(T ) = τ
(0)
ji + τ

(1)
ji

(

1/T − 1/T (0)
)

(5.75)

and a similar relation for τji,ki were sufficient for a description of the thermodynamic

properties in the temperature range investigated here (25◦C-100◦C).
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Besides, experimental values for the physical quantities, namely the relative per-

mittivity and the density of a solvent i, were fitted according to the following func-

tions.

εi(T ) = ε
(0)
i + ε

(1)
i

(

T − T (0)
)

+ ε
(2)
i

(

T − (T (0))
)2

(5.76)

di(T ) = d
(0)
i + d

(1)
i

(

T − T (0)
)

+ d
(2)
i

(

T − (T (0))
)2

(5.77)

The values of σ, ε and d for the solvent mixture at a temperature T were esti-

mated by using the simple mixing relation

Π = x◦1Π1 + x◦2Π2 (5.78)

for Π = σ, ε, d.

5.3.5 Dilution enthalpy and heat capacity.

This section is restricted to the case of purely aqueous solutions.

We have verified that NaCl at 100◦C does not present any association.

Figure 5.1 [22] shows a surface in 3 dimensions which represents the negative

logarithm of the equilibrium constant for the dissociation of NaCl into Na+ and

Cl− solution as a function of the temperature between 400◦C and 800◦C and of the

logarithm of the density of water.(-0.52 to -0.12 i.e. 0.01 to 0.1 molal)

Figure 5.1: The negative logarithm of the equilibrium constant for the dissociation

of NaCl at 0.1 to 0.01 molal as a function of the temperature and the logarithm of

the density log d (gcm−3)
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We used the data to obtain by extrapolation the equilibrium constant for the

dissociation at 100◦C: We plot on Figure 5.2 -log K as a function of the temperature

for each density value. Fitting each curve we obtain a straight line.

Figure 5.2: The curves of negative logarithm of the equilibrium constant for the

dissociation of NaCl at 0.01 to 0.1 molal as a function of the temperature for one

density d (gcm−3)

For each density value d we obtain, a relation -log K=a+bT, a, b and r (regression

coefficients). Coefficients are reported in Table 1. Then, we evaluate K as a function

of d at T=100◦C. We obtain a straight line in Figure 5.3.

We find for the equilibrium constant a value of 26.91 by taking a density of 0.96

for water at 100◦C in replacing this value in the following equation

− log K = 5.51− 7.22 ∗ 0.96 (5.79)
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d (g.cm−3) a b (K−1) r

0.3 3.2676 0.0031133 0.98888

0.35 2.6973 0.0027267 0.98262

0.4 2.3456 0.0023 0.9878

0.45 2.1022 0.00185 0.9973

0.5 1.7473 0.0016933 0.99688

0.55 1.4142 0.00158 0.99987

0.6 1.0516 0.0015733 0.9985

0.65 0.65533 0.0016633 0.9976

0.7 0.21536 0.00185 0.99882

0.75 0.22107 0.0020357 0.99521

Table 5.1: Fitting parameters for -logK= a+bT as a function of T and d.

Figure 5.3: The curves of negative logarithm of the equilibrium constant for the

dissociation of NaCl at 0.01 to 0.1 molal as a function of the density d (gcm−3)
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thus

K = 101.43 = 26.91 (5.80)

The dissociation constant writes

K =
[Na+][Cl−]

[NaCl]
(5.81)

and with α the dissociated fraction of NaCl we have

K =
α2m

1− α
(5.82)

where m is the molality of salt.

Let us now discuss the validity of this constant value:

Taking a molality of 0.1 molal we obtain resolving Eq. 5.81, a dissociated frac-

tion:

α =
−K ±

√

(K(K + 4m))

2m
(5.83)

α =
−26.91±

√

(26.91(26.91 + 4 ∗ 0.1))

0.2
(5.84)

We find a dissociated fraction of 0.996. We can thus consider that NaCl is nearly

totally dissociated in a solution of 0.1 molal. As K is high it means there is not

association at 6 molal.

As knowing this, we can express the excess Gibbs energy of solution per kilogram

of water, denoted by GE , which is given by [1, 23]

GE = νmRT (1− φ + ln γ±) (5.85)

which is equivalent to
∑

i Niµ
E
i . In this equation, m is the molality of salt, γ± is

given by Eq. 5.69 and φ is the osmotic coefficient

φ ≡ − x1

1− x1
ln a1 (5.86)

in which a1 = aW (Eq. 5.50)

The relative enthalpy per kilogram of water, L, is expressed as [23]

L = −T 2 ∂GE/T
∂T

(5.87)

Then the apparent relative molal enthalpy [23] reads

ΦL = L/m (5.88)

The apparent molal heat capacity, defined as

ΦCp =

(

Cp −
1

M1
C◦

p1

)

/m (5.89)
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where Cp is the heat capacity of solution (for 1 kg of water) and C◦
p1

is the heat

capacity of pure water, is also given by [23]

ΦCp = C̄⊗
ps

+
∂ΦL

∂T
(5.90)

in which C̄⊗
ps

is the partial molal heat capacity of salt at infinite dilution.

We now give below a few relations showing the connections between the above

Eqs. 5.87-5.90.

The total relative heat capacity, J , is defined as [24]

J = Cp − C⊗
p = Cp −

(

n1C
◦
p1

+ nsC̄
⊗
ps

)

(5.91)

where C◦
p1

is the molal heat capacity of pure water, and n1 and ns are the mole

numbers of water and solute, respectively. For 1 kg of water, one has

n1 = 1/M1 ns = m

In Eq. 5.91, C⊗
p is the (hypothetical) heat capacity of a solution of the same

composition, in which the components would have the same properties (same partial

heat capacities) as at infinite dilution.

If we divide the total relative heat capacity by the mole number of solute one

gets
J

ns
=

Cp

ns
− n1

ns
C◦

p1
− C̄⊗

ps
(5.92)

The total heat capacity reads:

Cp = C⊗
p + CE

p (5.93)

where CE
p is the excess molal heat capacity

J

ns
=

n1C
◦
p1

+ nsC̄
⊗
ps

+ CE
p

ns
− n1

ns
C◦

p1
− C̄⊗

ps
=

CE
p

ns
(5.94)

It may be shown using Eqs. 5.89, 5.90 and 5.87 that

J

ns
=

CE
p

ns
=

∂ΦL

∂T
(5.95)

Thus,
∂ΦL

∂T
=

Cp

ns

− n1C
◦
p1

+ nsC̄
⊗
ps

ns

(5.96)

=
Cp(m)− Cp(∞)

ns
(5.97)
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By definition Cp = ∂H(m)
∂T

at constant pressure.

Hence
∂ΦL

∂T
=

∂H(m)
∂T

− ∂H(∞)
∂T

ns
(5.98)

where ∂H(m)
∂T

and ∂H(∞)
∂T

are, respectively, the molal heat capacity at molality m

calculated from the enthalpy, and that at infinite dilution from the enthalpy at

infinite dilution.

Hence,

ΦL =
H(m)−H(∞)

ns
=

HE

ns
(5.99)

where HE is the enthalpy.

One gets

∂ΦL

∂T
=

∂
(

HE

ns

)

∂T
(5.100)

=
Cp

ns
− n1C

◦
p1

+ nsC̄
⊗
ps

ns
(5.101)

∂ΦL

∂T
= ΦCp − C̄⊗

ps
(5.102)

with

ΦCp =
Cp − n1C

◦
p1

ns
(5.103)

where ΦCp is the apparent molal heat capacity.

Unlike Cp and C◦
p1

, C̄⊗
ps

is not an experimentally measurable quantity.

C̄⊗
ps

= Φcp −
∂ΦL

∂T
(5.104)

C̄⊗
ps

is the heat capacity of solute at infinite dilution.

It should be noted that ΦCp , Cp and ∂ΦL

∂T
depend on the concentration.

∂ΦL

∂T
=

Cp − n1C
◦
p1
− nsC̄

⊗
ps

ns

(5.105)

But C̄⊗
ps

does not depend on the concentration because it is defined at the reference

state.

5.3.6 Relation between partial heat capacity, entropy and

chemical potential at infinite dilution

The partial heat capacity of an ion i (= C or A), C̄p,i, is related to its partial entropy,

S̄⊗
i , through

C̄⊗
p,i = T

∂S̄⊗
i

∂T
(5.106)
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This relation can be easily demonstrated from the relations H = G + TS and

S = −∂G/∂T , and the definition

Cp =
∂H

∂T

The partial entropy S̄⊗
i is

S̄⊗
i =

(

∂S⊗

∂Ni

)

(5.107)

where i=A,C.

Besides,

S = −
(

∂G

∂T

)

P,Nj

(5.108)

Hence, using Eqs. 5.107,5.108

S̄⊗
i = −

(

∂2G⊗

∂Ni∂T

)

P,Nj 6=i

(5.109)

The solvation entropy of solute at infinite dilution is defined as

S̄⊗
s = νC S̄⊗

C′ + νAS̄⊗
A′ (5.110)

Using Eq. 5.107, one has that

S̄⊗
i =

∂S⊗

∂Ni
= −

∂
(

∂G⊗

∂T

)

∂Ni
= − ∂2G⊗

∂T∂Ni

from which it stems that

S̄⊗
i = −∂µ⊗i

∂T
(5.111)

In the framework of our model, the chemical potential of i at infinite dilution,

µ⊗i , may be decomposed as

µ⊗i = µ⊗,id
i + µ⊗,SR

i (5.112)

because it is clear that the excess electrostatic part, µ⊗,el
i , vanishes at infinite dilution

of salt.

It results from Eqs. 5.111 and 5.112 that the partial entropy at infinite dilution

is

S̄⊗
i = S̄⊗,id

i + S̄⊗,SR
i (5.113)

The chemical potential of solute at infinite dilution reads

µ⊗s ≡ νCµ⊗C + νAµ⊗A (5.114)

The partial molal heat capacity of solute at infinite dilution, defined by

C̄⊗
p,s ≡ νCC̄⊗

p,C + νAC̄⊗
p,A
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is related to the entropy of solute at infinite dilution by [25]

C̄⊗
p,s = −T

∂2µ⊗s
∂T 2

(5.115)

which can be shown by using Eqs. 5.106, 5.111 and 5.114.

5.4 Results and Discussion

5.4.1 Case of aqueous solutions

We have represented the following thermodynamic properties: the osmotic coeffi-

cient, φ, the molal heat enthalpy, ΦL, and the apparent molal heat capacity, ΦCp ,

for some “simple” binary aqueous electrolytes (water + one salt) as a function of

the temperature.

These quantities could be fitted simultaneously in the case of LiCl and KCl

solutions.

Our MSA-NRTL model with hydration was used to compute the various thermo-

dynamic quantities under consideration. The osmotic coefficient, φ, was calculated

using Eqs. 5.50 and 6.43. The molal heat enthalpy, ΦL, was computed from Eqs.

5.85, 5.87 and 5.88. The apparent molal heat capacity, ΦCp , was deduced from Eq.

5.90. These tedious algebraic calculations were performed using the Maple software.

First, as usual, we performed the test consisting of verifying numerically that the

osmotic coefficient, φ, and the mean salt activity coefficient, γ±, accurately satisfy

the Gibbs-Duhem relation. Then, the parameter values of our model were adjusted

by simultaneously fitting experimental values for φ, ΦL and ΦCp .

Experimental data were taken from the following sources.

For LiCl solutions, data for φ are given at 25◦C by Hamer and Wu [26]. For

temperatures between 25◦C and 100◦C, Gibbard [27] gives values up to 6 M for φ

and for ΦL. Values for ΦCp were taken from Rüterjans et al. [28].

For NaCl solutions, Gibbard and Scatchard [29] reported values for φ and ΦL

between 25◦C and 100◦C up to 6 molal.

For KCl solutions, Snipes and Ensor [30] reported values for φ and ΦL between

25◦C and 100◦C. Tanner and Lamb [31] measured molal heat capacities up to 4 mol

kg−1.

For LiBr solutions, data for φ are given by Hamer and Wu [26] at 25◦C. Values

for ΦL are available from Harned and Owen [24] at 25◦C.

For NaBr solutions, Hamer and Wu [26] reported values of φ at 25◦C and for ΦL

from Harned and Owen’s values [24].
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Table 2. Results of fits for various salts as a function of the temperature

(range= 0.1-6

mol kg−1)(except KCl for which range= 0.1-4 mol kg−1) aqueous solutions.

Salt τ
(0)
WC,AC τ

(0)
CW τ

(0)
AW τ

(1)
WC,AC

a τ
(1)
CW τ

(1)
AW σ

(0)
1 σ

(1)
1

b h
(0)
1 h

(1)
1

c

LiCl 2.07 -1.36 -1.47 52.8 -36.5 9.98 0.49 -0.005 4.8 -0.0100

NaCl -90.8 -2.63 91.72 -25646 -612 27764 0.469 0 2.39 -0.01

KCl 3.46 1.69 -1.43 1026 -904 9.56 0.403 0.003 4.85 -0.022

NaBr 3.23 -2.5 -1.25 1166 -2376 258 0.446 3.9210−3 4.39 0.016

LiBr 4.44 -3.18 -2.06 102 -470 -876 0.443 7.9210−2 4.75 0.08

a in K, b in nm, c in K−1.

Table 3. Results of fits of osmotic coefficient, dilution enthalpies and

heat capacities.

Ref. Salt T (/K) AARDφ
b AARDΦL

c AARDΦCp

d

[27, 28] LiCl 298-373 0.176 11.15 3.52

[29] NaCl 298-373 0.07 9.68

[30, 31] KCl 298-358 0.06 7.88 6.19

[26, 24] NaBr 298 0.247 5.82

[26, 24, 32] LiBr 298 1.15 23.3

bAverage Absolute Relative Deviation (AARD) in % for φ; c(AARD) in % for ΦL;
d(AARD) in % for ΦCp .

Results for some aqueous 1-1 electrolyte solutions between 25◦C and 100◦C are

collected in Tables 2 and 3. Plots of φ are shown in Figures 5.4-5.7 in the case of

LiCl, NaCl, KCl and NaBr, respectively. Plots of ΦL are shown in Figures 5.8-5.11

for the same electrolytes. The ΦCp is represented for LiCl and KCl in Figures 5.13

and 5.14.

The LiCl and KCl systems were represented with the use of a total of 10 ad-

justable model parameters for the simultaneous representation of φ, ΦL and ΦCp .

Namely, these parameters were p(0) and p(1) with p = τCW , τAW , τWC,AC , σ1 and h1.

For comparison, Silvester and Pitzer [23] introduced 19 parameters to describe the

same properties for NaCl solutions in the (wider) range 0-300◦C. We are not aware

of similar results for LiCl or KCl solutions. As seen in Figures 5.4,5.8,5.13 for LiCl,
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Figure 5.4: Osmotic coefficient as a function of molality for aqueous LiCl solution.

Symbols are experimental data [26, 27]: (•) 273 K, (◦) 298 K, (H) 323 K, (O) 348

K, (�) 373 K
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Figure 5.5: Osmotic coefficient as a function of molality for aqueous NaCl solution.

Symbols are experimental data [29]: (•) 298 K, (◦) 323 K, (H) 348 K, (O) 373 K
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and 5.6,5.10,5.14 for KCl, and in Table 3 giving the average absolute relative devia-

tion (AARD) of fits, the representations of the 3 properties for these two solutions

are quite satifactory.

Figure 5.6: Osmotic coefficient as a function of molality for aqueous KCl solution.

Symbols are experimental data [30]: (•) 298 K, (◦) 313 K, (H) 323 K, (O) 333 K,

(�) 343 K, (�) 353 K

We notice in Figure 5.4 that φ decreases with temperature for all molalities.

It is opposite for KCl, as seen in Figures 5.6. For NaCl in Figure 5.5 φ does not

exhibit a monotonous behavior as a function of T contrary of LiCl. The quality

of fit is satisfactory. However the magnitude of the parameters in Table 1 is large.

The behavior of NaCl is intermediate between that of LiCl and KCl with an initial

increase followed by a decrease, for moderate molalities. It is similar to LiCl at 6

mol kg−1. We notice that this peculiarity makes NaCl solutions difficult to model as

compared to other solutions. In Figure 5.7 the quality of fit of NaBr is satisfactory.
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Figure 5.7: Osmotic coefficient as a function of molality for aqueous NaBr solution.

Symbols are experimental data [26]: (•) 298 K
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Figure 5.8: Molal heat enthalpy as a function of molality for aqueous LiCl solution.

Symbols are experimental data [27]: (•) 273 K, (◦) 298 K, (H) 323 K, (O) 348 K,

(�) 373 K

The values of the deviations in the fit of molal heat enthalpies, shown in Table 3,

are rather satisfactory, except in the case of LiBr.

The molal heat enthalpies, ΦL, of LiCl, NaCl, KCl and NaBr solutions increase with

temperature (Figures 5.8-5.11). Figure 5.12 summarizes the results for the molal

heat enthalpies at different temperatures for several salts.
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Figure 5.9: Molal heat enthalpy as a function of molality for aqueous NaCl solution.

Symbols are experimental data [29]: (•) 298 K, (◦) 323 K, (H) 348 K, (O) 373 K

Figure 5.10: Molal heat enthalpy as a function of molality for aqueous KCl solution.

Symbols are experimental data [30]: (•) 313 K, (◦) 333 K, (H) 353 K
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Figure 5.11: Molal heat enthalpy as a function of molality for aqueous NaBr solution.

Symbols are experimental data [24]: (•) 298 K

Figure 5.12: Recapitulation of molal heat enthalpies as a function of molality for

aqueous solutions at different temperatures. Symbols are experimental data: For

LiCl: (�) 298 K, (�) 373 K, for KCl: (O) 313 K, (�) 353 K, for NaCl: (•) 298 K,

(◦) 373 K, for NaBr: (H) 298 K
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As regards the heat capacities, it is important to notice that the standard partial

molal heat capacity of a salt, C̄⊗
p,s, was taken as an adjustable parameter in the fit

of ΦCp (Eq. 5.90) because this quantity is not measurable experimentally.

Figure 5.13: Molal heat capacity as a function of molality for aqueous LiCl solution.

Symbols are experimental data [28]: (•) 303 K, (◦) 323 K, (H) 343 K, (O) 373 K

Our fitted values of C̄⊗
p,s are given in Table 4. They may be compared with the

results reported in references [28, 33]. It is seen in Figure 5.15 that our set of values

is in reasonable agreement with these previously published values.
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Figure 5.14: Molal heat capacity as a function of molality for aqueous KCl solution.

Symbols are experimental data [31]: (•) 298 K, (◦) 318 K, (H) 338 K, (O) 358 K

94



Figure 5.15: Partial heat capacity at infinite dilution C⊗
ps

. • LiCL and N KCl (our

work), ◦ LiCl and O KCl [28], 4 LiCl and KCl � [33].
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Table 4. Experimental values of C̄⊗
p,s calculated from Eq. 5.104 for LiCL

T (/K) C̄⊗exp
ps

C̄⊗fit
ps

303.15 -68.16 -58.17

323.15 -56.26 -52.46

343.15 -51.47 -54.94

373.15 -58.1 -76.78

One also notices that this quantity for Li+ is larger than for K+. This fact,

already observed by other authors [34, 35, 36] was interpreted by a stronger ionic

hydration in the case of Li+ as compared to K+. Zwicky [35, 36] suggests two effects:

(i) a physical effect of the ion on the solvent which is manifested as an internal

pressure varying from point to point in the solution, and (ii) a chemical effect of

the ion on the solvent which plays a part in determining the thermal properties of

solutions, and for dilute solutions, increases linearly with the concentration. Webb

[37] writes that the electrostriction effect is due to the pressures resulting from the

attraction of the solvent dipoles by the ion. Authors [28, 34, 38, 25, 39] suggest

that it might be interpreted in terms of structure breaking and structure making

effect. Lynden-Bell [40] uses the solvation entropy which we have seen in a previous

section, to describe the notion of structure breaking and structure making. This

author proposes two alternative interpretations for these phenomena. In Figure

5.16 the solvation entropy becomes more negative as the solvent molecules become

aligned in the electric field of the ion, this is the structure making effect. The

increase in solvation entropy with charge is the result of the structure breaking

by the ion. The double maximum occurs when the structure-making balances the

structure-breaking.

Another point of view is to consider the uncharged solute, and we can remark

a minimum for the solvation entropy. The low solvation entropy can be attributed

to hydrophobic ordering. This effect has been known as the iceberg effect [41]. We

can explain this effect with the micelle example and the monomers. Generally the

internal energy U1 for the micelle is higher that of the monomer. If we consider

the solvation entropy we have the same trend, Ssolv1 is higher than Ssolv2 . Only the

free energy F1 of the system of the micelle and F2 of the monomer has the opposite

trend. Indeed F = U − TS

hence:

F1 < F2 (5.116)
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Figure 5.16: Variation of the solvation entropies of spheres of the size of sodium and

chloride ions with ion charge at room temperature Solid line Na+q and dotted line

Cl+q. Taken from [40].

The hydrophobic effect is attributed to the organization of the water molecules

around ion. Water forms a cage around ion. If this manner is well-ordered we have

the lower solvation entropy. The energy is very small and the solvation entropy is

determined by the probability of finding a cavity in the liquid that is large enough to

insert the sphere of solute. Thus the solvation entropy is negative and becomes more

negative as the solute size increases. It has been shown [42] that the distribution

of cavities in the neat liquid is sharpened by the network structure lowering the

solvation entropy for larger solutes. The residence times of water molecules in the

primary hydration shells of discharged sodium Na◦, chloride Cl◦, and iodide I◦ in

SPC/E (water model) water are approximately 9, 18, and 24 picoseconds respectively

at 298 K. The lifetimes of these cages are relatively long and they increase with

the size of the non polar solute. The cage begins to break down when the solute is

charged and the solvation entropy rises to a maximum. We have a structure-breaking

effect. Further increases in the charge lower the entropy as the solvent molecules

are ordered by the electric field of the solute. The residence times of water in the

primary shells of the Na+, Cl−, I− ions in Simple Point Charge - Extended (SPC/E)

water are approximatively 20, 13, and 9 picoseconds at 298 K. They decrease with

the size of the solute which the opposite trend of the uncharged solute.

However, these notions have recently been shown to be relatively ambiguous [43].

Frank and Evans [39] classified the ions on the basis of their partial solvation

entropies because the entropy is an extensive property with a sound physical mean-
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ing. Unfortunately, the present MSA-NRTL model with ion hydration cannot be

used to compute values for the partial solvation entropy of ions at infinite dilution,

because this model takes the hydrated ion as a reference (the species involved in the

NRTL relation is the ion plus its hydration shell) and thus does not describe the

interaction of the bare ion with water, which is what would be needed here.

Besides, Eq. 5.104 can be used to determine values for the C̄⊗
p,s, by using ex-

perimental values for ΦL and ΦCp as a function of T . This was done by first fitting

the values for ΦL(T ) vs. T . This fit allowed us to calculate the derivative of ΦL

w.r.t. T , and introduce this value into Eq. 5.104. The calculation was made for two

salt concentrations in the case of LiCl (for which sufficient data are available as a

function of temperature, which is not the case of other salts), at 0.5 and 1 mol kg−1.

In principle, the resulting values for C̄⊗
p,s should not depend on the concentration

used to compute it, and it should be a function of T alone for given salt.

The are given in Table 4. Figure 5.15 shows that displays negative values of

C̄⊗
ps

over the entire temperature range of 10-80◦C. This result is in accordance with

Rüterjans et al. [28].

We also compared the “experimental” values of C̄⊗
ps

with our fitted values. Figure

5.17 shows that the “experimental” values at 0.5 and 1 mol kg−1 are quite close to

each other, and differ appreciably from the fitted values at 300 and 373 K.

In Figure 5.13, we observe that, in the case of LiCl, ΦCp varies in a non-

monotonous way as a function of T for any concentration. Initially, it increases

up to 343 K, and then it decreases. The model renders this behavior rather sat-

isfactorily in view of the difficulty of describing this second-order thermodynamic

quantity (second derivative of G w.r.t. T ). Figure 5.18 sums up the results for the

molal heat capacities at different temperatures for several salts.
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Figure 5.17: Molal heat capacity at infinite dilution C⊗
ps

. ◦ LiCL 0.5m experimental

values, • LiCl 1m experimental values, solid line fit values
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Figure 5.18: Recapitulation of molal heat capacities as a function of molality for

aqueous solution at different temperatures. For LiCl: (•) 303 K, (◦) 373 K, for KCl:

(O) 298 K, (�) 358 K, for LiBr: (H) 298 K.

Lastly, one notices that ΦCp(LiCl) > ΦCp(KCl) for given temperature. The same

trend is found for C̄⊗
p,s.

In Table 2 we also remark that the three τ
(0)
WC,AC , τ

(0)
CW , τ

(0)
AW have a little small

values for the five salts of the order of a few kT , except for NaBr and LiBr which

have τ
(0)
WC,AC ≈ 4. We also notice that τ

(0)
AW are close for the LiCl, KCl systems. The

values are satisfactory.

On the contrary, τ
(1)
WC,AC , τ

(1)
CW and τ

(1)
AW for NaCl are rather high and exhibit

a pathological behavior. NaCl presents a peculiar behavior which is difficult to

represent. The high values obtained reflect this difficulty.

If one looks at the mean ionic size we can see that it decreases by 69% for LiCl

when it passes from 25◦C to 100◦C. It remains constant for NaCl. In the case of

KCl, the mean ionic size increases by 56% for the same temperature variation. We

observe the same trend for NaBr which passes from 0.446 nm at 298 K to 0.74 nm

at 373 K, an increase of 60%. With regard to LiBr this size decreases a lot.

The third parameter which presents a good behavior as a function of the tem-

perature is the hydration number. It decreases for the first three salts LiCl, NaCl

and KCl, of 15%, 31% and 34% respectively.

For NaBr we observe an increase of the hydration number of 28% and finally for

LiBr an important gap.
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5.4.2 Mixed aqueous solvent electrolytes

We have studied the mixed aqueous solvent electrolytes (two solvents + one al-

kali salt) to calculate the activity coefficients of water and organic solvent at the

temperature between 52◦C and 72◦C.

We verified numerically that the activity coefficients f1 for water, f2 for solvent

and fs for the salt accurately satisfy the Gibbs-Duhem relation.

The NRTL binary interaction parameters τij obtained for the binary subsystems

[16, 44] were used for the ternary systems. Two sets of binary parameters were

determined earlier: those for the water/salt aqueous solution and those for the

binary water (solvent 1)/solvent 2 mixture. The first set was calculated in the

previous chapter [15].

As we have seen in the theoretical section, the activity coefficients of water and

solvent, f1 and f2, can be computed from the vapor-liquid equilibrium data.

Data for the density of the water/methanol and water/ethanol mixtures were

taken from refs. [45] and [46], respectively. Those for the virial coefficients were

found in ref. [47] for methanol, from ref. [48] for ethanol, and from ref. [49, 50, 51]

for water. The values of the dielectric constant of ethanol were taken from ref. [52]

and from ref. [53] for methanol. Finally, the saturation pressures were obtained

from refs. [54, 55] for water, ref. [56] for ethanol and from ref. [57] for methanol.

The values of molar volumes were calculated from density values [58, 59].

The results for the description of mixed aqueous solvent electrolytes at differ-

ent temperatures, are collected in Table 5. Plots of the different thermodynamic

properties are given in Figure 5.19-5.23.
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Figure 5.19: Results of fits for NaCl water-ethanol mixture at 25◦. (•) 0 % ethanol,

(◦) 20 % ethanol, (H) 40 % ethanol, (O) 60 % ethanol

These properties were represented using a total of 5 new adjustable parameters.

Namely, these parameters were p = τCZ , τAZ , τZC,AC , σ2 and h2.The AARD value

of 3.3% for the activity coefficient of water and ethanol in the salt-water-ethanol

system obtained is much smaller than the value for water and methanol in the LiCl-

water-methanol mixture. On the other hand, the AARD for NaBr-water-ethanol

and KCL-water-methanol are with teh top of 10%. It is seen when one adds a little

salt that the experimental activity coefficient of water changes much, this effect

cannot be predicted by the model. This model does not account for this effect: the

dramatic drop of experimental activity coefficient of water upon salt addition for

small quantity of salt.
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Figure 5.20: Results of fits for NaBr water-ethanol mixture at 25◦. (�) refers 0 %

ethanol, (�) 10 % ethanol, (O) 20 % ethanol, (◦) 40 % ethanol, (•) 60 % ethanol,

(H) 80 % ethanol
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Figure 5.21: Results of fits for NaBr water-methanol mixture at 25◦. (•) refers 10

% methanol, (◦) 20 % methanol, (H) 40 % methanol, (O) 60 % methanol, (�) 80 %

methanol
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Figure 5.22: Results of fits for KCl water-methanol mixture at 25◦. (•) 10 %

methanol, (◦) 20 % methanol, (H) 30 % methanol, (O) 40 % methanol, (�) 50

% methanol, (�) 60 % methanol
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Figure 5.23: Results of fits for HCl water-dioxane mixture at 25◦. (•) 0 % dioxane,

(◦) 20 % dioxane, (H) 45 % dioxane
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Table 5. Effective values of parameters for temperatures between

352-372 K.
Ref. Mixture T (/K) xLiCl x1 x2 AARDa

f1
AARDb

f2

[60] LiCl w-EtOH 352-366 0.005-0.034 0.282-0.936 0.03-0.713 4.4 2.2

[61, 62] KCl w-EtOH 343-360 0.029-0.144 0.463-0.862 0.083-0.487 6.8 3.6

[63] LiBr w-EtOH 352-356 0.029-0.144 0.463-0.862 0.083-0.487 2.1 1.1

[64] NaBr w-EtOH 355-360 0.061-0.154 0.336-0.781 0.065-0.603 10.8 4

[60] LiCl w-MeOH 342-372 0.005-0.065 0.281-0.499 0.032-0.714 3.4 9.5

[65] KCl w-MeOH 351-365 0.005-0.065 0.281-0.499 0.032-0.714 5.1 10.6

a Average Absolute Relative Deviation (AARD) in % for f1,
b (AARD) in % for f2

The results indicate that the LiCl-water ethanol system is more accurately de-

scribed than the LiCl-water methanol system. It must be underlined that, in prac-

tice, the proportion of organic solvent in the mixed aqueous solvent solutions was

limited to values allowing a satisfactory fit of the data. So, in the case of LiCl in

water-ethanol mixtures the proportion of alcohol was limited to 70 weight-%. On

the other hand, the treatment was applied to the maximum salt concentration to

which data are available (maximum concentration of ca. 5 mol kg−1 for 1-1 salts

in the water-ethanol mixture and ca. 2.5 mol kg−1 in the water-methanol mixture).

We remark in Table 6 that the values of the interaction parameters τ are so little

high but they remain of the order of a few kBT, in agreement with those of previous

work [19] presented in the next chapter.
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Table 6. Results of fits for salt water-alcohol mixture at the

temperature between 352 and 372 K: interaction parameters

Mixture T (/K) τZC,AC τCZ τAZ

LiCl w-EtOH 352-366 4.13 4.95 5.24

KCl w-EtOH 343-360 1.77 8.88 8.82

LiBr w-EtOH 343-360 0.85 13.9 15.56

NaBr w-EtOH 355-360 0.102 3.7 4.57

LiCl w-MeOH 342-372 6.37 6.67 5.33

KCl w-MeOH 342-372 3.31 4.67 4.66

The τZC,AC , τCZ , τAZ have a fine behavior. We find a high value of 13.9 for τCZ

and 15.56 for τAZ for the LiBr-water ethanol system. For the other systems the

interaction parameters τ have reasonable values.

All are positive. In particular τCZ and τAZ>0, indicating a ’repulsion’ between

the ions and the solvent 2, as compared to the interaction between molecules of

solvent 2.
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Table 7. Results of fits for salt water-alcohol mixture as a function of

the temperature : mean ionic size, hydration number

Mixture T (/K) σ2
a h2

LiCl-w-EtOH 352-366 0.526 0

KCl-w-EtOH 343-360 0.427 3.22

LiBr-w-EtOH 0.722 0

NaBr-w-EtOH 355-360 0.684 0

LiCl-w-MeOH 342-372 0.774 0

KCl-w-MeOH 0.421 0

a In nm.

In Table 7, the mean ionic size remains constant for the temperature interval.

We remark that the solvation number h2 is smaller than the hydration number

h1.

For electrolytes in solvent mixtures at 25◦C, the model involves only binary

system parameters. We took the binary parameters of Table 2. To describe the

system we have 5 new parameters: the 3 interaction parameters τ , the mean ionic

size and the hydration number, all as a function of temperature. The results of fits

are satisfactory. Furthermore the interaction parameters τ again are of the order of

a few kBT’s.
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Table 8. Results of fits for salt water-alcohol mixture at 25◦C
Ref. Mixture τ

(0)
ZC,AC τ

(0)
CZ τ

(0)
AZ h

(0)
1 h

(0)
2 σ

(0)
1

a σ
(0)
2 AARDγ

b

[66] NaCl w-EtOH 60c 2.35 11.97 11.98 2.39 5.2 0.469 0.208 1.4

[67] NaBr w-EtOH 80 0.16 -1.71 2.85 4.39 0 0.446 0.497 3.7

[67] NaBr w-MeOH 80 1.29 -3.23 0.48 4.39 0 0.446 0.471 3.4

[68] KCl w-MeOH 60 3.09 5.26 3.28 4.85 0 0.403 0.241 2.59

[69, 70] HCl w-C4H8O2 45 -1.02 -0.331 -2.15 4.32 0 0.439 0.0 0.96

a In nm, b AARD in %, c max w-% of solvent 2.

In Table 8, the interaction parameters have a satisfactory behavior.

If we compare the mean ionic size σ
(0)
2 =0.208 nm in the NaCl-water ethanol and

KCl water-methanol respect to NaCl and KCl in pure water we find smaller values.

We notice on the contrary a different behavior for NaBr-water-ethanol and

methanol.

For HCl the size in the mixture is of the order of HCl in water like [19], σ
(0)
1 =0.473

nm.

We have the solvation number h
(0)
2 = 0 for NaBr water-ethanol, NaBr and KCl

water-methanol and HCl water-dioxane except for NaCl water-ethanol. It was men-

tionned above that NaCl is a system which presents a difficult behavior.
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5.5 Conclusion

The above results show that the MSA-NRTL model is improved when taking into

account the process of solvation. It has been possible to fit the model so as to

describe the heats of dilution and the heat capacities of aqueous solutions. The

interpretation of the variations of these quantities in terms of entropy provides the

physical meaning of the models allowing the calculation of the partial molal heat

capacity at infinite dilution C̄⊗
p,s, namely the structure breaking/structure making

effect in the liquid. This can be compared to experimental results such as those of

Omta et al. [71] who showed by means of femtosecond pump-probe spectroscopy

that the structure of water around the ions is not really modified beyond the first

solvation shell. The presence of the ions would have no influence on the hydrogen-

bond network in liquid water. The ion plus its hydration sphere should be regarded

as a rigid spherical solute on a picosecond time scale. Pursuing future improvements,

hydration will be treated as a function of concentration of solute.
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List of symbols

ai activity of species i

A anion

AH Debye-Hückel coefficient for enthalpy

AΦ Debye-Hückel coefficient for the osmotic function

b Universal parameter equal to 1.2 kg1/2mol−1/2

C cation

C
′

cation hydrated

CΦ
CA The third virial coefficient

CP heat capacity

D The static dielectric constant

di density of solvent i

e charge of proton

fi activity coefficient of i on stoichiometric mole fraction scale

gi activity coefficient of i on “true” mole fraction scale

G Gibbs energy of solution

Ḡ partial molal excess Gibbs energy

G specific Gibbs energy

Ḡi Gibbs energy per particle of i

H Total enthalpy of the solution

hi hydration number of cation by solvent i

I ionic strength

J Total relative heat capacity

kB Boltzmann constant

L Relative enthalpy

m molality

Mi molar mass of solvent i

nw number of kilograms of solvent

n mole number

Nav Avogadro number

Ni number of particles of i

Pik, Pik,jk defined by eqs 6.61 and 6.62
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qi Constant parameters of Pitzer

S entropy

Smodel set of particle numbers within the model (eq 6.19)

SLR set of particle numbers at LR level (eq 6.20)

T temperature

V volume of solution

W water

xi stoichiometric mole fraction

yi “true” mole fraction scale

z Electronic charge

zi valence of ion i

Z coordination number

Greek letters
α NRTL random parameter, Universal parameter equal to 2.01/2mol−1/2

β = 1/kBT

β
(0)
CA, β

(1)
CA The second virial coefficients

γ± mean salt activity coefficient on molal scale

Γ MSA screening parameter

εi relative permittivity of solvent i

ε0 permittivity of a vacuum

κ Debye screening parameter

λ Bjerrum length

µi chemical potential of species i

ν = νC + νA

νi stoichiometric number of species i in salt

φ osmotic coefficient

ΦCp molal heat capacity

ΦL molal heat enthalpy

ρi number density of species i

σi diameter of species i

Subscripts

1 total water

2 total solvent

W free water

Z free solvent

sol Solution
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Superscripts

⊗ reference state

(0) value at T=298.15 K

el electrostatic contribution

ex Excess

hyd contribution from hydration

id ideal contribution

MSA contribution within mean spherical approximation

SR contribution of short range forces
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Chapter 6

Stepwise solvation-equilibrium

model associated to the

MSA-NRTL model

The previous model of assigning to the ions a fixed hydration number independent

of concentration is clearly an over simplification (though a convenient one). This

inevitably results in failure of the equations at high concentrations. For example,

if the lithium ion is assumed to exist as tetrahydrate, all the water in the solutions

is bound at a molality of 55.51/4, i.e., 13.9 m, and the water activity should then

be zero. In fact, lithium chloride is soluble beyond 20 m, and the water activity in

the 20 m solution is still 0.11. Clearly, one need a model in which the hydration

phenomenon is treated as an equilibrium of various stages of hydration. The essential

validity of this idea is strongly supported by impportant mass-spectrometric studies

of the enthalpy and free-energy changes for stepwise hydration processes in the gas

phase, reported in recent years by Kebarke [1] and associates.

We now present aa model accounting for the decrease of hydration number with

salt concentration, based on the work of Stokes and Robinson.
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6.1 Modelling of the thermodynamic properties

of ionic solutions using a stepwise solvation-

equilibrium model

This part has been published in Fluid Phase Equilibria vol. 242 (2006) p. 176-188.
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Abstract The stepwise solvation-equilibrium model of Stokes and Robinson is

used for a description of departures from ideality in ionic solutions. It is shown how

to construct a thermodynamically consistent model including solvation effects. Sim-

ple expressions are derived for the mean ion solvation number. The model is applied

to strong electrolyte solutions (pure water+salt and mixed aqueous solvent+salt) by

taking the mean spherical approximation (MSA) for the long-range contribution to

the Gibbs energy and a local composition model, the nonrandom two-liquid (NRTL)

model, for the short-range contribution.

6.1.1 Introduction

The modelling of the thermodynamic properties of ionic solutions can have various

applications in solution chemistry, in geochemistry and for the design and control of

industrial processes. In the latter domain, it may be useful for liquid-liquid extrac-

tion, distillation, hydrometallurgy, seawater desalination, absorption refrigeration,
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crystallisation and synthesis of drugs and chemicals, with not only water as the

solvent but also organic solvents and aqueous solvent mixtures.

Various models have been proposed in the literature, among which one may dis-

tinguish two types: (i) models based on a statistical mechanical treatment of the

system, pictured as a collection of objects of definite shape and size, interacting

through elementary known pair potentials, and (ii) semi-empirical or phenomeno-

logical models, comprising a contribution from electrostatic interactions (generally

a Debye-Hückel term) that is generally decoupled from other interactions.

Models of type (i) are constructed at the McMillan-Mayer (MM) level of solutions

[2] where the solvent is regarded as a continuum (primitive level), as in the primitive

mean spherical approximation (MSA) [3, 4, 5, 6, 7, 8], or at the Born-Oppenheimer

level where all species are considered on an equal footing, as in the nonprimitive ion-

dipole mixture MSA [9]. Examples of models of type (ii) include the Pitzer model

[10] and representations using a local composition term such as the nonrandom two

liquid (NRTL) model [11, 12, 13]. In principle, models of type (i) are appealing

because they are expressed in terms of basic microscopic interactions. However, the

equations are analytically tractable only for simplified systems, such as a collection

of charged hard spheres in a dielectric continuum. They rapidly become highly

complicated as more realistic systems and interactions are considered, requiring

the use of numerical techniques in order to solve them. Descriptions at the MM

level, which can give satisfactory descriptions of osmotic and activity coefficients

[4, 5, 6, 7, 8], do not seem to be well suited to the description of enthalpies and heat

capacities because they do not account explicitly for the properties of the solvent.

Therefore, this route seems difficult for practical applications in which analytical

working equations are desired. Such expressions can be obtained more easily within

models of type (ii). In this case however, each parameter may account for several

elementary phenomena. An unpleasant consequence of this fact is that the variations

of these lumped parameters cannot be correlated with the characteristics of the

salt. Nevertheless, since it is nearly hopeless to include all effects separately in the

equations, one has to distinguish which interactions are predominant and introduce

them in the formulation of the model. Other (minor) interactions may be hoped to

have only a small perturbative effect on the values of the main parameters.

For a strong electrolyte in water, ion-ion electrostatic interactions are one such

major effect. Their influence on departures from ideality can be expressed using

a suitable model such as the MSA. This effect is dominant at low salt concentra-

tion. As salt concentration becomes higher, ion-ion interactions become progres-

sively screened while the contribution of other forces becomes relatively increasingly

important. These other forces are short-ranged (SR) as opposed to long-ranged
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ion-ion electrostatic forces. SR forces between particles have various origins and

their effect is much more difficult to estimate than that of electrostatic forces. This

difficulty can be circumvented at the MM level where only the solvent-averaged

potentials between ions need be considered [2], without having to account for ion-

solvent and solvent-solvent interactions. Clearly, one needs to account for SR forces

if one wishes to construct a model including the solvent explicitly.

At this stage, it is necessary to distinguish between strong and weak attractive

SR forces. Strong SR attractions lead to association in solution, namely solvation,

chemical association and ion-pairing. Weak SR attractions may alternatively be

termed van der Waals forces.

The importance of association has long been recognised [14] and it has been

the subject of many studies in the literature. Association has been introduced

using chemical models (e.g. that of Dolezalek [14]), or physical models based on

the thermodynamic perturbation theory (e.g. the sticky point interaction model of

Wertheim [15] or the therefrom derived SAFT formalism [16]). The effect of weak SR

interactions has been described by a van der Waals perturbation term [17, 18, 19],

a virial expansion term in the Pitzer model [10] or a contribution corresponding to

interactions with nearest neighbours, as in Guggenheim lattice model [20] or local

composition models like NRTL [21] or UNIQUAC [14].

Although hydration is known to be a crucial process in aqueous ionic solutions,

the thermodynamic models taking it explicitly into account are rather scarce. The

simplest way of accounting for this effect is to suppose a constant salt hydration

number, independent of salt concentration. This simplification was introduced by

Robinson and Stokes [22], and subsequently utilised in the literature, e.g. in com-

bination with NRTL by Chen et al. [23]. However, if a more realistic picture is

desired, it must be noticed that it is not possible to impose an arbitrary, empirical,

dependence for the hydration number vs. salt concentration. On the other hand,

such a variation may be obtained by using the stepwise hydration-equilibrium model

of Stokes and Robinson [24] in which a cation can possess various discrete degrees

of hydration, related by stepwise hydration/dehydration equilibria.

In the present paper, hydration effects are introduced by utilising the basic as-

sumptions of the latter model [24], which was used subsequently by Schönert [25]

for nonelectrolytes and by Zerres and Prausnitz [26] for mixed-solvent electrolytes.

We make here the approximation that simple anions are not solvated, meaning

that no solvent molecules are firmly attached to this type of anion on a sufficiently

long time scale (this notion is distinguished from the notion of coordination, the

former having a more dynamical meaning than the latter [27]). The reason for this

simplification is twofold. Firstly, various experimental [28] and theoretical [29] stud-
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ies point to weak hydration for simple anions, such as halides (except F−). A water

molecule is known to interact with a halide anion in much the same way as it in-

teracts with another water molecule, i.e. through hydrogen bonding. Consequently,

the mean residence time of a water molecule in the vicinity of such an anion is be-

lieved to be comparable with the its residence time in the vicinity of a bulk water

molecule (a few ps) [27]. Secondly, calculations were made in this work in which

the anion was also supposed to be hydrated. Because the stepwise hydration model

certainly is not adapted to this type of ion, a constant hydration number [22], hA,

was ascribed to a given anion. It was found that the best results with this procedure

were obtained for hA = 0.

This simplification is besides very common. It was used in the original work of

Stokes and Robinson [24], as well as in many models at the MM level [7, 8, 26].

In contrast, some water molecules are tightly bound to small and/or plurivalent

cations. This view is confirmed by recent ab initio molecular dynamics simulations,

for Li+ [30], Na+ [31], K+ [32], Mg2+ [33] and Ca2+ [34]. It is known that cation

hydration may be conveniently modelled as a process in which water can bind to a

finite number of sites [25, 26, 35]. We use this model below in section 6.1.2.

In the present work, it is shown how the various hydration equilibria can be

handled in a thermodynamically consistent way, for a given Gibbs energy that is

assumed to be split into short-range and long-range (electrostatic) contributions.

The further assumption of independent hydration sites on cation allows one to ac-

count for all stepwise hydration equilibria in a compact way. Finally, the method is

applied by taking particular forms for the electrostatic and SR contributions to the

Gibbs energy of solution, namely the MSA and NRTL expressions, respectively.

The theoretical aspects of this work are developed in the next section of this

paper. The third section is devoted to the presentation of the results and to their

discussion.

Most of the calculations of this work were done using the symbolic calculation

device MapleR.

6.1.2 Theoretical

Model for stepwise hydration.

We first consider an aqueous solution containing one strong electrolyte, CνC
AνA

,

with C the cation of stoichiometric number νC and valence zC , and A the anion of

stoichiometric number νA and valence zA.

Hereafter we use the subscripts 1 and W to distinguish the total water and the

free water (not bound to a cation), respectively. We adopt the basic view of Stokes
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and Robinson [24], who proposed that hydration may be modelled as a succession

of the following equilibria

C(i− 1) + W 
 C(i)

with C(i) the hydrate containing i water molecules. The number of hydration water

molecules per cation is assumed to be bound by an integer n, representing the

number of “sites” on a cation: i ≤ n.

These equilibria imply the following relation between the chemical potentials of

the species

µC(i−1) + µW = µC(i) (6.1)

defining the equilibrium constants

Ki ≡
aC(i)

aC(i−1)

a−1
W (6.2)

with aC(i) being the activity of C(i) and aW that of free water.

Then, considering the various hydrates C(i) as independent species with chemical

potentials µC(i), the total Gibbs energy of solution may be written as

G = NWµW +

n
∑

i=0

NC(i)µC(i) + NAµA (6.3)

where Nk is the number of particles of species k. Now, one gets from eq 6.1

µC(i) = µC(0) + i µW (6.4)

Inserting this equation into eq 6.3 leads to

G = N1µW + NCµC(0) + NAµA (6.5)

because the total number of water molecules is

N1 = NW +

n
∑

i=0

iNC(i) (6.6)

each cation C(i) possessing i bound water molecules and the total number of cations

is

NC =
n
∑

i=0

NC(i) (6.7)

Besides, the Gibbs energy written at the Lewis-Randall (LR) level (the level of the

experimentalist)

G = N1µ1 + NCµC + NAµA (6.8)
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It follows from eqs 6.5 and 6.8 that

µ1 = µW (6.9)

and

µC = µC(0) (6.10)

Eq 6.10 indicates that the deviation from ideality for the cation C is related to that

for the unhydrated cation, C(0). Eq 6.9 entails that

a1 = aW (6.11)

because the standard chemical potentials of 1 and W are identical.

Relations similar to eqs 6.9 and 6.10 for associating solutions have been known

for a long time [36]. They were previously used by Schönert [25] for nonelectrolytes.

We now present a new method to treat hydration equilibria and departures from

ideality in closed form as follows.

For each hydrated cation C(i) one has

aC(i) ≡ yC(i) gC(i) (6.12)

with yk the so-called ‘true’ mole fraction of species k defined as

yk ≡
Nk

NW + NC + NA
(6.13)

because the total number of independent species in solution is NW + NC + NA, as

opposed to the stoichiometric mole fraction, xk, defined for the experimentalist (at

the LR level) as

xk ≡
Nk

N1 + NC + NA
(6.14)

In eq 6.12, gC(i) is the activity coefficient of C(i) on the ‘true’ mole fraction scale.

Therefore by using eqs 6.12-6.14 in eq 6.2 one gets

Ki ≡
xC(i)

xC(i−1)

gC(i)

gC(i−1)

a−1
W (6.15)

We now make the common assumption that the Gibbs energy of the system may

be split into two parts [14] as

G = Gel + GSR (6.16)

in which Gel is the long-range electrostatic contribution for ion-ion interactions and

GSR is the short-range contribution. This (convenient) assumption may be expected

to be less satisfactory mainly at intermediate salt concentrations, because at low

concentration the behaviour of the system is governed by electrostatic interactions
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and, at high concentration, it is dominated by SR interactions (when electrostatic

forces are screened). Eq 6.16 implies that any activity coefficient gi, defined by

ln gi ≡ ∂βG/∂Ni (6.17)

may be decomposed as

gi = gel
i gSR

i (6.18)

At constant pressure and temperature, the relevant set of variables for the present

model is

Smodel = {NW , NC(0), NC(1), ..., NC(n), NA} (6.19)

leading to the definition of ‘true’ mole fractions (eq 6.13) while the relevant set for

the experimentalist (at the LR level) is

SLR = {N1, NC , NA} (6.20)

to which stoichiometric mole fractions (eq 6.14) are associated. We will denote by

f an activity coefficient on this LR mole fraction scale.

We now turn to the calculation of the electrostatic and SR activity coefficients

appearing in eq 6.18, which are required for solving the hydration equilibria (eq

6.15) and assessing the deviations from ideality (eqs 6.9 and 6.10).

In this paper, we make the simplification that the different forms of the hydrated

cation, the C(i)’s, are energetically equivalent (identical SR and electrostatic interac-

tions for all hydrates). This hypothesis permits the development of a first reference

model with a minimum number of parameters. In future work, it will be possible

to relax this hypothesis by introducing suitable phenomenological dependencies for

the parameters.

Simplification of hydration equilibrium constants.

The electrostatic contribution to the Gibbs energy of solution, Gel, provided by any

reasonable model (at least at the primitive level where the solvent is regarded as a

continuum, which entails that Gel is not a function of NW explicitly) is expected to

have an expression of the form

Gel = Gel({NC(j), 0 ≤ j ≤ n}, NA, V ) (6.21)

as it is the case for the the Debye-Hückel [37], or for the MSA expression (the latter is

given in section 6.1.2). In this equation, V is the volume of solution, which is known

from experiment at the LR level, as a function of SLR, that is V = V (N1, NC , NA).

Therefore, if we assume that all cation hydrates are eneregetically equivalent,

one obtains from eq 6.21

Gel = Gel(N1, NC , NA) (6.22)
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The electrostatic contribution to the activity coefficients of C(j) is defined as

ln gel
C(j) ≡

[

∂βGel

∂NC(j)

]

NW ,{NC(k),k 6=j},NA

(6.23)

a partial derivative performed in particular at constant NW .

The form of Gel given in eq 6.22 leads one to use the chain rule to pass from the

set of variables Smodel to SLR. Using eqs 6.6 and 6.7, one gets

[

∂Gel

∂NC(j)

]

NW ,{NC(k),k 6=j},NA

=

[

∂Gel

∂NC

]

N1,NA

+ j

[

∂Gel

∂N1

]

NC ,NA

(6.24)

Furthermore, by using the chain rule and eq 6.6, one finds

ln gel
W ≡

[

∂βGel

∂NW

]

{NC(k)},NA

=

[

∂Gel

∂N1

]

NC ,NA

(6.25)

Therefore, by combining eqs 6.23-6.25 and taking eq 6.24 for j = 0, we obtain

ln gel
C(j) = ln gel

C(0) + j ln gel
W (6.26)

from which it results that
gel

C(j)

gel
C(j−1)

= gel
W (6.27)

Besides, the SR contribution to the Gibbs energy is naturally constructed in

terms of the variables contained in Smodel. Assuming that the various cation hydrates

have identical SR interaction parameters it stems that GSR must have the form

GSR = GSR(NW , NC , NA)

It is noticed that this contribution is a function of NW instead of N1 for Gel in eq

6.22.

By applying eq 6.23, in which differentiation is made at constant NW , one thus

arrives at the relation

gSR
C(j) = gSR

C(j−1) (6.28)

Therefore, the combination of eqs 6.18, 6.27 and 6.28 leads to

gC(j)

gC(j−1)

= gel
W (6.29)

which, by insertion into eq 6.15 and using the relation aW ≡ yWgW , gives

Ki ≡
xC(i)

xC(i−1)

(

yW gSR
W

)−1
(6.30)
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Hydration sites on cation.

We assume that the cation possesses n independent similar sites for solvent binding.

This model is well known in inorganic chemistry [35, 38]. It has been used previously

by Schönert [25] and Zerres and Prausnitz [26] for cation hydration.

It can be shown using statistical considerations at infinite dilution that the equi-

librium constants Ki of eq 6.2 satisfy the following relation [35]

Ki =
Ci

n

Ci−1
n

k1 (6.31)

with

C
i
n ≡

n!

i! (n− i)!

being the number of arrangements of i water molecules on the n independent sites.

In particular, for i = 1, eq 6.31 gives

K1 = nk1

meaning that k1 represents the equilibrium constant for the attachment of a water

molecule to an individual site.

Thus, it stems from eqs 6.30 and 6.31 that

xC(i) = xC(0) C
i
n

(

k1yW gSR
W

)i
(6.32)

By using this equation into eq 6.7 (written for xC), we get from the binomial formula

xC = xC(0)

(

1 + k1yW gSR
W

)n
(6.33)

Moreover, for each solution composition, the average hydration number of cation

is given by

h1 ≡
n
∑

j=1

jxC(j)/xC (6.34)

By using eqs 6.32 and 6.33 into eq 6.34, we obtain after simplification the remarkably

simple result

h1 = n
k1yW gSR

W

1 + k1yW gSR
W

(6.35)

This equation extends a relation given by Schönert [39] for semi-ideal nonelectrolyte

solutions.

At infinite dilution of salt (yW = 1 and gSR
W = 1 in eq 6.35) the value of h1 is

h
(⊗)
1 = n

k1

1 + k1
(6.36)

showing that h
(⊗)
1 ≤ n, and h

(⊗)
1 ' n if k1 � 1.
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The amount of free water is determined by calculating the mole fraction xW

which satisfies the relation

xW + h1xC = x1 (6.37)

as deduced from eqs 6.6 and 6.34, in which h1 is given by eq 6.35. In eq 6.37, xC

and x1 are known for a given composition of solution. Moreover, h1 is a function

of xW , xC and xA because of eqs 6.13, 6.14 and 6.35. This equation may be solved

numerically for xW , by using a simple iterative procedure of the form xW (j + 1) =

x1 − h1(j)xC and iterating on j, or by using a Newton-Raphson algorithm.

Calculation of the thermodynamic quantities.

The mean activity coefficient of salt in the LR system is

ln f± ≡
νC

ν
ln fC +

νA

ν
ln fA (6.38)

where ν ≡ νC + νA. In this equation, the activity coefficient of cation, fC , is

calculated using eq 6.10, from which we have

βµ⊗C + ln(fCxC) = βµ⊗C(0) + ln(gC(0)yC(0))

in which µ⊗X designates the standard chemical potential of X.

This conversion from the set of variables Smodel to the set SLR can be handled

according to the classic procedure [22] by calculating the quantity µ
(⊗)
C(0) − µ

(⊗)
C at

infinite dilution, which by virtue of eq 6.33 leads to

β
(

µ⊗C(0) − µ⊗C

)

= n ln(1 + k1)

and hence

fC =
yC

xC

(

1 + k1

1 + k1yW gSR
W

)n

gC(0) (6.39)

For the anion, one has

fA =
yA

xA

gA (6.40)

In these relations, the activity coefficients gC(0) and gA are obtained using eq 6.18,

the SR parts being computed with infinite dilution as the reference state, according

to

ln gSR
i ≡ ∂β∆GSR

∂Ni

− ∂β∆GSR

∂Ni

(NC → 0, NA → 0) (6.41)

Finally, the mean activity coefficient of salt on the molality scale, γ±, is obtained

using the classic conversion formula [22]

γ± = x1 f± (6.42)
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By virtue of eq 6.11, the osmotic coefficient is calculated according to

φ ≡ − x1

1− x1
ln aW (6.43)

with

x1 = 1/(1 + νmM1)

m being the molality of salt and M1 the molar mass of solvent, and

aW = yWgW (6.44)

in which gW is obtained from eqs 6.17 and 6.18.

In eq 6.43, by virtue of eq 6.44, we may decompose ln aW as

ln aW = lnx1 + ln

(

yW

x1

)

+ ln gel
W + ln gSR

W

and therefore we may write

φ = φid + φhyd + φel + φSR (6.45)

with the contributions

φX ≡ − x1

1− x1
ln HX

and H id = x1 for the ideal contribution, Hhyd = yW/x1, Hel = gel
W and HSR = gSR

W .

In eq 6.45, φhyd may be regarded as the first contribution to φ resulting from

hydration (φhyd = 0 in the absence of hydration).

In the present model, all solvation equilibria are accounted for consistently, with

all intermediate activity coefficients calculated from the Gibbs energy of the system.

This guarantees that the mean salt activity coefficient γ± and the osmotic coefficient

φ automatically satisfy the Gibbs-Duhem relation.

Case of solutions of acids.

In the case of strong acids (such as HCl) in water, it may be preferable to consider

that the state of minimum hydration for the proton is the hydronium ion, H3O
+,

not H+.

In that case, one may utilise eq 6.30 for the reaction

H+ + W 
 H3O
+

with the equilibrium constant K0, and eq 6.33 with n the number of sites on the

H3O
+ ion. Then, the use of the same conversion procedure as in the preceding

subsection and taking the limit K0 →∞ leads to

fH+ =
yH+

xH+

(

1 + k1

1 + k1yW gSR
W

)n
(

yW gSR
W

)−1
gH3O+ (6.46)
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The average hydration number (eq 6.35) is modified as

hH = 1 + n
k1yW gSR

W

1 + k1yW gSR
W

(6.47)

Contributions to Gibbs energy of solution.

For the practical calculation of activity coefficients used in the Results section, the

particular forms taken for the contributions to the Gibbs energy of solution were as

follows.

Expression for Gel

For the electrostatic contribution, we adopted the restricted primitive MSA expres-

sion [3], as in our previous work [13], which reads

Gel = AMSA
v V (6.48)

with V the volume of solution and AMSA
v the Helmholtz energy per unit volume,

expressed as

βAMSA
v = −λ

Γ

1 + Γσ1

(

ρCz2
C + ρAz2

A

)

+
Γ3

3π
(6.49)

in which σ1 is the mean ionic diameter in water, taken to be the same for the various

hydrates and the anion,

ρk = Nk/V

is the number density of species k, λ is the Bjerrum distance,

λ = βe2/4πε0ε (6.50)

with β = 1/kBT , e the charge of the proton, ε0 the permittivity of a vacuum and ε

the relative permittivity of solution. The value of λ is ca. 7× 10−10 m for water at

25◦C.

In eq 6.49, Γ is the MSA screening parameter, which satisfies the relation [40]

∂AMSA
v

∂Γ
= 0 (6.51)

so giving

Γ =
1

2σ1

(√
1 + 2κσ1 − 1

)

(6.52)

with κ the Debye screening parameter

κ =
√

4πλ(ρCz2
C + ρAz2

A)
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Thus it results from eqs 6.48 and 6.49 that

βGel = −λ
Γ

1 + Γσ1

(

NCz2
C + NAz2

A

)

+
Γ3

3π
V (6.53)

which has the form of eq 6.21.

Using eq 6.51 in the chain rule for partial derivatives, which allows to differentiate

Gel at constant Γ, and eq 6.7, differentiation of Gel w.r.t. NC(0) leads to

ln gel
C(0) = −λ

Γ

1 + Γσ1

z2
C +

Γ3

3π

[

∂V

∂NC(0)

]

NW ,{NC(k),k 6=0}

(6.54)

By applying eq 6.24 to V instead of Gel, and taking it for j = 0, one finds that eq

6.54 may be rewritten as

ln gel
C(0) = −λ

Γ

1 + Γσ1
z2

C +
Γ3

3π

[

∂V

∂NC

]

N1,NA

(6.55)

Moreover, differentiating eq 6.53 w.r.t. NA yields

ln gel
A = −λ

Γ

1 + Γσ1
z2

A +
Γ3

3π

[

∂V

∂NA

]

N1,NC

(6.56)

Lastly, by applying eq 6.25 to Gel of eq 6.53 at constant Γ, one has that

ln gel
W =

Γ3

3π

[

∂V

∂N1

]

NC ,NA

(6.57)

These expressions can easily be extended to the case of a solvent mixture by

taking the relative permittivity of the mixture in eq 6.50. Then, the MSA activity

coefficients of the solvents are given by expressions similar to eq 6.57.

Expression for GSR

For the SR contribution, we took the NRTL expression for the system composed of

the species: the free water W, the “dressed” cations C(i) and the anion A.

The NRTL model, proposed by Renon and Prausnitz [21], is a local composition

model that is related [41] to Guggenheim’s quasi-chemical lattice theory [20]. Its

use in the case of electrolyte solutions has been described elsewhere [11, 12, 13], so

that we will only give the main results here.

In this framework and assuming that all cations are characterised by the same

NRTL parameters, the Gibbs energies per particle for one salt in water are respec-

tively given by [11, 12, 13]

ḠSR
W =

NCPCW

NW + NCPCW + NAPAW
τCW +

NAPAW

NW + NCPCW + NAPAW
τAW (6.58)
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ḠSR
C =

NW PWC,AC

NW PWC,AC + NA

τWC,AC (6.59)

ḠSR
A =

NW PWA,CA

NWPWA,CA + NC

τWA,CA (6.60)

in which no CC or AA term is present because of electrostatic exclusion effects (ions

of the same charge sign cannot be close to each other).

In the above formulae, the P ’s, responsible for nonrandom local distributions,

are defined by

Pik = pik/pkk (6.61)

and

Pik,jk = pik/pjk (6.62)

where pik is proportional to the “probability” of finding a particle of type i in the

close vicinity of a particle of type k,

pik ≡ exp(−αβwik) (6.63)

where wik is the i− k interaction energy and β ≡ 1/kBT (kB being the Boltzmann

constant and T the temperature). The lattice model of Guggenheim for the descrip-

tion of nonrandom mixtures [20] suggests that the parameter α be related to the

mean coordination number, Z, as [21, 41]

α =
2

Z
(6.64)

Here we take α = 0.3, corresponding to ca. 6 closest neighbours for each species.

Moreover, one has in eqs 6.58-6.60

τik ≡ β(wik − wkk) (6.65)

τik,jk ≡ β(wik − wjk) (6.66)

Using eq 6.63, eqs 6.61 and 6.62 may therefore be rewritten as

Pik = exp(−ατik) (6.67)

Pik,jk = exp(−ατik,jk) (6.68)

The SR Gibbs energies (eqs 6.58-6.60) are thus expressed as a function of the

three interaction parameters: τCW , τAW and τWC,AC . Because of eqs 6.65 and 6.66

and the relation wik = wki, the parameter τWA,CA is related to the other parameters

by

τWA,CA = τWC,AC + τAW − τCW (6.69)
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The total SR Gibbs energy is given by

GSR = NW ḠSR
W + NCḠSR

C + NAḠSR
A (6.70)

These NRTL relations can be easily generalised to the case of multisolvent elec-

trolyte mixtures [11, 12, 13], as needed in the next section for binary solvent mix-

tures.

Salt in a two-solvent mixture.

This model can be applied to the case of salts in solvent mixtures [26]. The gener-

alisation of eq 6.32 for a mixture of solvents 1 and 2 is

xC(i,j) = xC(0,0)

[

C
i
n

(

k1yW gSR
W

)i
] [

C
j
n−i

(

k2yZ gSR
Z

)j
]

(6.71)

with Z designating free solvent 2, i and j being the numbers of molecules of W and

Z, respectively, on the cation and k2 being the analogue of k1 for solvent 2. This

relation can be shown by successively taking off j molecules of 2 (n− i sites available

for molecules of type Z) and then i molecules of 1, from C(i, j), and using eq 6.32.

In eq 6.71, it is supposed that n is the maximum number of binding sites accessible

to both solvents 1 and 2.

Because

xC =
n
∑

i=0

n−i
∑

j=0

xC(i,j)

one finds

xC = xC(0,0)

(

1 + k1yW gSR
W + k2yZ gSR

Z

)n
(6.72)

The two mean solvation numbers h1 and h2 of C by the two solvents W and Z,

respectively, are

h1 ≡
n
∑

i=1

i
n−i
∑

j=0

xC(i,j)/xC

h2 ≡
n
∑

j=1

j

n−j
∑

i=0

xC(i,j)/xC

for which we get from eq 6.71 the following simple relations after simplification

h1 = n
k1yW gSR

W

1 + k1yWgSR
W + k2yZgSR

Z

(6.73)

h2 = n
k2yZgSR

Z

1 + k1yWgSR
W + k2yZgSR

Z

(6.74)
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with the analogues of eq 6.37 for the conservation of molecules of solvents 1 and 2,

xW + h1xC = x1 (6.75)

xZ + h2xC = x2 (6.76)

Eq 6.39 becomes

fC =
yC

xC

(

1 + k1x
(◦)
1 g

SR,(◦))
1 + k2x

(◦))
2 g

SR,(◦))
2

1 + k1yWgSR
W + yZgSR

Z

)n

gC(◦)) (6.77)

for the reference state being infinite dilution of salt in the solvent mixture, which is

the usual convention in the literature. In eq 6.77, x
(◦))
k and g

SR,(◦))
k (k = 1, 2) refer to

quantities in the salt-free solvent mixture, containing the same amounts of solvents

as in the ionic solution (salt-free basis).

It may be shown that the expression for the mean activity coefficient of salt (eq

6.38) is

γ± = (x1 + x2) f± (6.78)

which replaces eq 6.42 in the case of solvent mixtures.

In eqs 6.39 and 6.40, the activity coefficients gC(0) and gA were computed by using

eqs 6.55 and 6.56 for the electrostatic part (with a mean ionic diameter σ in the

mixture instead of σ1 in water and with ε in eq 6.50 being the relative permittivity

of the solvent mixture), and the analogue of eq 6.70 for ions in solvent mixtures as

given elsewhere [13].

6.1.3 Results and discussion

Binary aqueous ionic solutions.

First, it was verified numerically that, as stated above at the end of Section 6.1.2,

the osmotic and mean activity coefficients, φ and γ± given by eqs 6.43 and 6.42,

respectively, accurately satisfy the Gibbs-Duhem relation. The free water mole

fraction, xW , was computed numerically by solving eq 6.37, using a simple iterative

and rapidly converging algorithm with the initial value yW = x1.

In this work, parameter values were adjusted by simultaneously fitting the ex-

perimental osmotic and activity coefficients for strong electrolytes [42] at 25◦C. The

numerical values for these thermodynamic quantities were obtained from the NIST

databank [43], in which primary data for uni-univalent salts are taken from the com-

pilation of Hamer and Wu [44]. In the fits, the maximum concentration of solution

was limited to 6 mol kg−1 for 1-1 salts and to 4 mol kg−1 for 2-1 salts, because of

the simplifying assumptions made in the model that all cation hydrates are energet-

ically equivalent (same sizes and same SR parameters for all cations C(k)). The fits
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of γ± and φ were performed by using a least-square minimisation algorithm of the

Marquardt type.

In the calculation of the osmotic and activity coefficients, it was noted that the

terms containing derivatives of volume V , in eqs 6.55 and 6.56, were much smaller

than the other MSA term. Therefore, as previously [13], it was assumed that the

volume of solution does not vary when salt is added, that is

∂V

∂NC
=

∂V

∂NA
= 0 (6.79)

and, therefore
∂V

∂N1

=
M1

NAvd1

where NAv is Avogadro’s number and d1 the density of pure water. This simplifica-

tion was found to have a very small effect on the parameter values as compared to

fits in which the variation of V with added salt is accounted for. It offers the clear

advantage of not requiring solution density data.

The values for the number of sites on a given cation, n, were chosen on the basis

of recent works using classic [45, 46] and ab initio [30, 31, 32, 33, 34] numerical

simulations together with a six-parameter adjustment of n, k1, τCW , τAW , τWC,AC

and σ1. The latter was found to result in average values that were in reasonable

agreement with the former. Namely, a value of 4 was taken for monovalent cations

Li+, Na+ and K+, and of 8 for divalent cations Mg2+, Ca2+ and Sr2+. In the

case of H+, the maximum number of bound water molecules was taken to be of 4

[47, 48], the minimum number being either 0 or 1 (depending on whether n = 4 or

3, respectively) as explained in section 6.1.2. In the case of the uranyle ion, the fit

yielded a value of n = 10.

Next, an ‘optimum’ value for k1 was determined for Li+ by fitting the thermody-

namic quantities, γ± and φ, for LiCl, LiBr and LiI at the same time. This resulted in

the value k1(Li+) ' 14.3. Let us notice that the uncertainty upon the determination

of the optimum value of k1 is not small, on the order of ±20%, because of the high

flexibility of the NRTL formulae that can accommodate values in a relatively wide

range. Then, a common value for the parameter τLi+W was obtained by averaging

the values for the 3 salts and 3-parameter adjustments of τAW , τWC,AC and σ1 were

made separately for each salt. The so obtained values for τAW , with A= Cl−, Br−

and I−, were taken as optimum values and they were used for other salts comprising

these anions. For other cations, the remaining parameters were determined by fit-

ting the experimental data for the three corresponding halides. The best value for

τClO−
4 W was computed by considering lithium and sodium perchlorates. This value

was then used for uranyle perchlorate together with n = 10.
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The procedure of determining common parameter values for the alkali halides

decreases the effective number of adjusted parameters to a mean value of 3 per salt.

The results for the parameters are presented in Table 1. The values for τCW and

k1 are identical for all salts containing the cation C and, similarly, τAW is the same

for all salts containing the anion A. On the other hand, the parameters τWC,AC and

σ1 are characteristic of the salt.

The results of Table 1 exhibit a few noteworthy features and trends as follows.

For alkali cations, the value of k1 decreases in the series Li+ >Na+ >K+, as expected.

In contrast, k1 is nearly identical for the three alkali earth cations studied here. All

τ values are of the order of unity, corresponding to interaction energies of the order

of a few kBT ’s, as for interactions between solvent molecules (see for instance values

given in Table 3). This satisfying result contrasts with a previous work [13] in which

hydration was not included. Besides, it is seen in Table 1 that generally, for a given

cation C, the average diameter σ1 satisfies the relation σ1(CCl)< σ1(CBr)< σ1(CI),

as expected since the anion sizes are in this order. However, this is not the case for

acids and lithium salts for which the diameters for the chloride and the bromide are

inverted.

Other comments about the τ ’s are that (i) the more negative values of τCW

(=wCW − wWW ) are for Li+ and Mg2+, suggesting a stronger interaction for small

and/or divalent (hydrated) cations with the surrounding water in the second hydra-

tion shell, and (ii) the τAW ’s are such that τI−W < τBr−W < τCl−W < 0. However,

the τ parameters involved in the NRTL model do not have a sufficiently precise

microscopic physical meaning allowing direct interpretation of their dependencies

upon cation and anion identities.

Typical plots of the osmotic coefficient are shown in Figures 6.1 and 6.2, for 1-1

and 2-1 salts, respectively. In Figure 6.2, results for CaBr2 are not shown because

they are very close to those for MgCl2.

Figure 6.3 presents the plots of the quantity h1/n for the electrolytes LiCl and

NaCl (n = 4), and MgCl2 and CaCl2 (n = 8). The value of h1/n in the case of KCl

varies from 0.645 at infinite dilution to 0.597 at 5 mol kg−1 (plot not shown). One

observes that h1(Li+) > h1(Na+) > h1(K
+), in agreement with common notions

about ion hydration. Besides, h1 decreases faster for 2-1 salts than for 1-1 salts,

with variations of the order of 2 % for the latter and 7% for the former in the

concentration range 0-4 mol kg−1.
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Table 1

Results for parameters with n = 4 for 1-1 electrolytes and n = 8 for 2-1 electrolytes.

Salt m rangea k1 τCW τAW τWC,AC σ1
b AARDφ

c (%) σφ
d

LiCl 0.001-6 14.3 -0.820 -1.29 0.337 0.489 0.23 0.003

LiBr 0.1-6 14.3 -0.820 -1.64 0.159 0.443 0.19 0.003

LiI 0.1-3 14.3 -0.820 -1.80 0.316 0.668 0.43 0.007

LiNO3 0.001-6 14.3 -0.820 -2.22 3.30 0.527 0.35 0.006

LiClO4 0.001-4.5 14.3 -0.820 -2.05 1.53 0.615 0.05 0.001

NaCl 0.001-6.14 8.00 0.75 -1.29 1.56 0.437 0.08 0.001

NaBr 0.005-6 8.00 0.75 -1.64 1.73 0.460 0.10 0.002

NaI 0.1-6 8.00 0.75 -1.80 1.49 0.519 0.22 0.003

NaClO4 0.2-6 8.00 0.75 -2.05 3.58 0.496 0.26 0.003

KCl 0.001-5 1.82 1.47 -1.29 1.71 0.392 0.09 0.001

KBr 0.001-5.5 1.82 1.47 -1.64 2.24 0.418 0.05 0.0006

KI 0.002-4.5 1.82 1.47 -1.80 2.40 0.477 0.18 0.002

HCl 0.001-6 11.4 -1.20 -1.29 0.321 0.520 0.18 0.003

HBr 0.001-6 11.4 -1.20 -1.64 -0.589 0.472 0.18 0.004

HI 0.02-6 11.4 -1.20 -1.80 -0.243 0.656 0.24 0.005

MgCl2 0.1-4 10.0 -2.10 -1.29 -0.231 0.505 0.50 0.006

MgBr2 0.1-4 10.0 -2.10 -1.64 -0.355 0.562 0.17 0.003

MgI2 0.1-4 10.0 -2.10 -1.80 -3.79 0.610 0.28 0.008

CaCl2 0.1-4 8.89 -1.20 -1.29 0.175 0.526 0.20 0.005

CaBr2 0.1-4 8.89 -1.20 -1.64 -0.272 0.561 0.44 0.008

CaI2 0.1-4 8.89 -1.20 -1.80 -3.21 0.626 0.37 0.005

SrCl2 0.1-4 13.3 -1.00 -1.29 1.13 0.520 0.38 0.006

SrBr2 0.1-4 13.3 -1.00 -1.64 1.14 0.560 0.45 0.006

SrI2 0.1-4 13.3 -1.00 -1.80 -0.159 0.626 0.22 0.003

UO2(ClO4)2 0.1-4 10.3 -2.80 -2.05 0.285 0.651 0.24 0.005
aIn mol kg−1, bin nm, cAverage Absolute Relative Deviation for φ, dStandard devi-

ation for fit of φ.
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Table 2

Results for parameters in the case of acids, with 3 sites (n = 3) on the H3O
+ ion

(section 6.1.2).

Salt m rangea k1 τCW τAW τWC,AC σ1
b AARDφ (%) σφ

HCl 0.001-6 6.00 -1.1 -1.289 -0.0346 0.522 0.19 0.004

HBr 0.001-6 6.00 -1.1 -1.64 -1.50 0.477 0.16 0.003

HI 0.02-6 6.00 -1.10 -1.80 -0.993 0.662 0.24 0.004

aIn

mol kg−1, bin nm, cAverage Absolute Relative Deviation for φ, dStandard deviation

of fit of φ.

Table 3

Values of parameters for mixed aqueous solvent mixtures.

Solvent mixture (W-Z) τWZ τZW

Water-Methanol 0.711 -0.139

Water-Ethanol 1.47 0.0542

Water-Dioxane 0.818 1.16

Figure 6.1: Osmotic coefficient as a function of molality. Symbols: experimental

data for LiCl (◦), LiBr (•), NaCl (2) and NaBr (black square). Solid lines: results

of least-square fit.
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Figure 6.2: Osmotic coefficient as a function of molality. Symbols: experimental

data for aqueous solutions of MgCl2 (4), MgBr2 (black triangle) and CaCl2 (3).

Solid lines: results of least-square fit.

Figure 6.3: Quantity h1/n as a function of molality, for LiCl, NaCl, MgCl2 and

CaCl2 aqueous solutions.
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Lastly, the contributions to the osmotic coefficient, defined by eq 6.45, are studied

by plotting the quantity

RX ≡ φX/φid (6.80)

for X = hyd, el or SR (Rid = 1) and where φid is the ideal osmotic coefficient. In

Figure 6.4 are plotted these functions for LiCl, and in Figure 6.5 for KCl. In the case

of LiCl, the hydration and SR contributions are nearly equal and amount to more

than half the ideal contribution at 6 mol kg−1; the MSA contribution is negative

(-RMSA is plotted in the figure) and rapidly reaches a plateau value of ca. 0.1. In

contrast, in the case of KCl, the SR contribution is very small (with a value of ca.

-0.005 at 5 mol kg−1) and −RMSA is larger than in the case of LiCl because the

average diameter is smaller (see Table 1); Rhyd increases almost linearly to a value

of ca. 0.25 at 5 mol kg−1. In the case of MgCl2 (plot not shown), the maximum

values of Rhyd and RSR (at 4 mol kg−1) are ca. 0.8 and 1.2, and the plateau value

of −Rel is 0.2.

Thus, an important conclusion that can be drawn from these results is that the

influence of hydration on the osmotic coefficient is important at moderate and high

concentration, even though the variation of h1 is rather slow (less than 7 % in the

range 0-4 mol kg−1, as mentioned above).

Mixed aqueous solvent electrolytes.

Mean activity coefficients of salts in binary water-organic solvent mixtures at 25◦C

were fitted by using eqs 6.38, 6.40, 6.77 and 6.78. Experimental data were taken

from the literature [49, 50, 51, 52, 53, 54], for alkali halides in water-alcohol mixtures

and HCl in the water-dioxane mixture, with maximum salt concentrations between

2 and 4.9 mol kg−1.

In all cases, the present description (for strong electrolytes) could not be applied

to the case of high proportions of organic solvent because of important ion pairing

in such media. Therefore, in practice, the proportion of organic solvent in the mixed

aqueous solvent solutions was limited to values allowing a satisfactory fit of the data

or to values known to ensure complete dissociation of salt, as in the case of NaCl

in water-ethanol mixtures containing less than 70 weight-% of ethanol [51, 55]. On

the other hand, the treatment was applied to the maximum salt concentrations to

which data are available.
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Figure 6.4: Functions −Rel (solid line), Rhyd (dashed line) and RSR (dotted line) in

the case of LiCl aqueous solution.

Figure 6.5: Functions −Rel (solid line), Rhyd (dashed line) and RSR (dotted line) in

the case of KCl aqueous solution.
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Figure 6.3 presents the plots of the quantity h1/n for the electrolytes LiCl and

NaCl (n = 4), and MgCl2 and CaCl2 (n = 8). The value of h1/n in the case of KCl

varies from 0.645 at infinite dilution to 0.597 at 5 mol kg−1 (plot not shown). One

observes that h1(Li+) > h1(Na+) > h1(K
+), in agreement with common notions

about ion hydration. Besides, h1 decreases faster for 2-1 salts than for 1-1 salts,

with variations of the order of 2 % for the latter and 7% for the former in the

concentration range 0-4 mol kg−1.

Lastly, the contributions to the osmotic coefficient, defined by eq 6.45, are studied

by plotting the quantity

RX ≡ φX/φid (6.81)

for X = hyd, el or SR (Rid = 1) and where φid is the ideal osmotic coefficient. In

Figure 6.4 are plotted these functions for LiCl, and in Figure 6.5 for KCl. In the case

of LiCl, the hydration and SR contributions are nearly equal and amount to more

than half the ideal contribution at 6 mol kg−1; the MSA contribution is negative

(-RMSA is plotted in the figure) and rapidly reaches a plateau value of ca. 0.1. In

contrast, in the case of KCl, the SR contribution is very small (with a value of ca.

-0.005 at 5 mol kg−1) and −RMSA is larger than in the case of LiCl because the

average diameter is smaller (see Table 1); Rhyd increases almost linearly to a value

of ca. 0.25 at 5 mol kg−1. In the case of MgCl2 (plot not shown), the maximum

values of Rhyd and RSR (at 4 mol kg−1) are ca. 0.8 and 1.2, and the plateau value

of −Rel is 0.2.

Thus, an important conclusion that can be drawn from these results is that the

influence of hydration on the osmotic coefficient is important at moderate and high

concentration, even though the variation of h1 is rather slow (less than 7 % in the

range 0-4 mol kg−1, as mentioned above).

Mixed aqueous solvent electrolytes.

Mean activity coefficients of salts in binary water-organic solvent mixtures at 25◦C

were fitted by using eqs 6.38, 6.40, 6.77 and 6.78. Experimental data were taken

from the literature [49, 50, 51, 52, 53, 54], for alkali halides in water-alcohol mixtures

and HCl in the water-dioxane mixture, with maximum salt concentrations between

2 and 4.9 mol kg−1.

In all cases, the present description (for strong electrolytes) could not be applied

to the case of high proportions of organic solvent because of important ion pairing

in such media. Therefore, in practice, the proportion of organic solvent in the mixed

aqueous solvent solutions was limited to values allowing a satisfactory fit of the data

or to values known to ensure complete dissociation of salt, as in the case of NaCl

in water-ethanol mixtures containing less than 70 weight-% of ethanol [51, 55]. On
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the other hand, the treatment was applied to the maximum salt concentrations to

which data are available.

Values for the parameters τWZ and τZW in the case of water-methanol and water-

ethanol mixtures can be found in the literature [56]. However, they were recalculated

here by fitting vapour pressure experimental data [57, 58]. The corresponding results

and the values for the water-dioxane mixture [56] are given in Table 3.

For computing the electrostatic contributions to the activity coefficients, it was

assumed that the mean ionic diameter is given by the following relation

σ = x
(◦))
1 σ1 + x

(◦))
2 σ2 (6.82)

with x
(◦))
k being the mole fraction of solvent k on a salt-free basis and σ2 an average

ion size for solvent 2. Moreover, for use in eq 6.50, the relative permittivities of the

solvent mixtures were found to be well reproduced by the relation

ε = x
(w,0)
1 ε1 + x

(w,0)
2 ε2

where x
(w,0)
k is the weight mole fraction of solvent k on a salt-free basis and εk is the

relative permittivity of solvent k. Experimental values for the εk’s of the various

solvents were found in the literature [59, 60]. The approximation expressed by eq

6.79 was used and the derivatives of V with respect to N1 and N2 were calculated

by assuming that the density of solution is the average of the two solvent densities.

The number of additional unknown parameters is of five, namely k2, τCZ , τAZ ,

τZC,AC and σ2 (the parameters for aqueous solutions being taken from the preceding

section). The data for water-methanol electrolytes were described by assuming that

k2 = k1, thus following NMR experimental observations for the K+ cation [61] and

recent simulation results for the Na+ cation [62], where no preferential solvation

was found for these ions. In contrast, data for other solvent mixtures were fitted

by taking k2 = 0, in accordance with the principle of preferential hydration in these

solvent mixtures [63, 64, 65, 66]. However, we note that the precise physical cause

for the seemingly different behaviour between methanol and ethanol in the solvation

of cations is not clearly established.

With these assumptions about the values of k2, and assuming that the parameters

τCW and τWC,AC for water-methanol solutions are identical to those determined for

purely aqueous solutions (although methanol is now also attached to the cation since

k2 = k1), the four remaining parameters τCZ , τAZ , τZC,AC and σ2 were regressed for

each system. The results of parameter fits are collected in Table 4 and three typical

plots of the mean salt activity coefficient vs. salt concentration are shown in Figures

6.6, 6.7 and 6.8.

In the case of NaBr in water-methanol and water-ethanol mixtures, recommended

experimental data [44] for the binary aqueous solutions (indicated by empty squares
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Table 4

Results for parameters for salts in mixed aqueous solvent: water + solvent Z.

Z Salt mmax
a x

(w,0)
2,max

b k2 τCZ τAZ τZC,AC σ2
c AARDγ±

d (%) σγ±
e

MeOH NaBr 3.05 0.4 8.00 5.05 -1.55 0.851 0.105 0.76 0.006

MeOH KCl 3.9 0.6 1.82 3.47 -1.20 0.531 0.174 1.9 0.02

EtOH NaCl 2 0.7 0 -0.213 -1.96 -2.10 0.0592 1.1 0.009

EtOH NaBr 4.9 0.4 0 -0.213 -1.98 -1.55 0.0290 1.2 0.01

C4H8O2 HCl 3 0.45 0 -2.83 -2.92 -3.65 0.103 0.76 0.007
aMaximum molality in mol kg−1, bmaximum weight fraction of solvent 2 on a salt-

free basis, cin nm, dAverage Absolute Relative Deviation for γ±, eStandard deviation

of fit of γ±.

in Figures 6.6 and 8) suggest appreciable experimental errors of the order of 2-3 %

for the measurements in the water-alcohol mixtures.
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Figure 6.6: Mean activity coefficient of NaBr in water-methanol mixtures for various

methanol weight fractions, x
(w,0)
2 (on a salt-free basis). Symbols are experimental

data. The symbol (◦) refers to data from ref. [44] for NaBr in pure water. Other

data are from ref. [49]: NaBr in pure water (2), x
(w,0)
2 =0.1 (black square), x

(w,0)
2 =0.2

(black triangle), x
(w,0)
2 =0.4 (•). Lines are the results of fits.
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Figure 6.7: Mean activity coefficient of NaCl in water-ethanol mixtures for various

ethanol weight fractions, x
(w,0)
2 (on a salt-free basis). Symbols are experimental data.

The symbol (◦) refers to data from ref. [44] for NaCl in pure water. Other data are

from ref. [51]: x
(w,0)
2 =0.2 (black square), x

(w,0)
2 =0.4 (black triangle), x

(w,0)
2 =0.6 (•),

x
(w,0)
2 =0.7 (black diamond). Lines are the results of fits.

As shown by the AARD’s of fits in Table 4 and Figures 6.6-6.8, the representa-

tion of the mean salt activity coefficient γ± is satisfactory. The small values found

for the closest approach distance σ2 mean that σ, expressed by eq 6.82, needs to

decrease appreciably with the organic solvent mole fraction in order to reproduce

the behaviour of γ± at low salt concentration where the electrostatic contribution

dominates. The minimum values of σ obtained in the fits are between 2.6×10−10 m

and 3.7× 10−10 m for the salts in the water-alcohol mixtures, and it is 4.7× 10−10

m for HCl in the water-dioxane mixture. The values of the parameters τCZ and τAZ

for the alkali halides in the alcohols show opposite trends as compared to water:

for NaBr and KCl in the water-methanol mixture, τCZ > τCW and τAZ > τAW ,

while τCZ < τCW and τAZ < τAW for NaCl and NaBr in the water-ethanol mixture.

The latter systems were described with a common value of -0.213 for the parameter

τNa+Z (Z=ethanol). The HCl-water-dioxane system was treated by taking 4 sites

on the H+ ion (n = 4) and the parameter values of Table 1 for HCl in water.
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Figure 6.8: Mean activity coefficient of NaBr in water-ethanol mixtures for various

ethanol weight fractions, x
(w,0)
2 (on a salt-free basis). Symbols are experimental data.

The symbol (◦) refers to data from ref. [44] for NaBr in pure water. Other data are

from ref. [49]: NaBr in pure water (2), x
(w,0)
2 =0.1 (black square), x

(w,0)
2 =0.2 (black

triangle), x
(w,0)
2 =0.4 (•). Lines are the results of fits.

6.1.4 Conclusion

The formalism developed in this work provides a compact and thermodynamically

consistent framework to account for stepwise hydration effects on the departures

from ideality in ionic solutions. It may be used with other expressions for the

contributions to the Gibbs energy, Gel and GSR.

In future work, the present model will be extended to the case of highly concen-

trated ionic solutions and associating electrolytes.
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List of symbols
ai activity of species i

A anion

Av Helmholtz energy per volume unit

C cation

C
′

cation hydrated

C(k) cation hydrated with k water molecules

C(k, p) cation solvated with k water molecules and p solvent molecules

di density of solvent i

e charge of proton

fi activity coefficient of i on stoichiometric mole fraction scale

gi activity coefficient of i on “true” mole fraction scale

G Gibbs energy of solution

Ḡi Gibbs energy per particle of i

hi hydration number of cation by solvent i

kB Boltzmann constant

ki equilibrium constant for attachment of a molecule of i

Ki equilibrium constant

L Relative enthalpy

m molality

Mi molar mass of solvent i

n number of sites on cation

NAv Avogadro number

Ni number of particles of i

Pik, Pik,jk defined by eqs 6.61 and 6.62

Smodel set of particle numbers within the model (eq 6.19)

SLR set of particle numbers at LR level (eq 6.20)

T temperature

V volume of solution

wij i− j interaction energy

W water

xi stoichiometric mole fraction

yi “true” mole fraction scale

zi valence of ion i

Z coordination number
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Greek letters
α NRTL random parameter

β = 1/kBT

γ± mean salt activity coefficient on molal scale

Γ MSA screening parameter

εi relative permittivity of solvent i

ε0 permittivity of a vacuum

κ Debye screening parameter

λ Bjerrum length

µi chemical potential of species i

ν = νC + νA

νi stoichiometric number of species i in salt

φ osmotic coefficient

ρi number density of species i

σi diameter of species i

Subscripts

1 total water

2 total solvent

W free water

Z free solvent

Superscripts

(⊗) reference state

el electrostatic contribution

hyd contribution from hydration

id ideal contribution

MSA contribution within mean spherical approximation

SR contribution of short range forces
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Chapter 7

Conclusion

This PhD thesis was conducted in the context of a collaboration between two labora-

tories belonging to the universities of Regensburg (Germany) and Paris VI (France).

It was supported by a grant from the AiF (Germany). The orientations of the work

and the results were discussed periodically with the DECHEMA (Germany). The

final aim of this research is the development of a software program for the assessment

of departures from ideality observed in mixed solvent electrolytes.

The present work constitutes a stage on that way, with the inclusion of solvation

effects in chemical engineering thermodynamic models. Here, this method has been

used in conjunction with the MSA-NRTL model of Papaiconomou et al. (2002). If

necessary, it will be possible to introduce it into other models for the short range

part of the Gibbs energy.

In this thesis, solvation has been described in two ways as follows.

• By using the classic simple model of Robinson and Stokes, in which a constant

solvation number (i.e., constant w.r.t. salt concentration) is attributed to each

ion.

It has been shown that the introduction of a hydration number on the ions

improves the capability of the MSA-NRTL model to fit experimental osmotic

and activity coefficients of aqueous ionic solutions (Table 1 of Chapter 4). A

consistent set of NRTL parameter values has been proposed for simple 1-1 and

1-2 salts in water. The case of associating electrolytes (e.g., associating acids

HNO3 and H2SO4) has been approached.

• By using the more complex, and more realistic, stepwise solvation-equilibrium

model of Stokes and Robinson, which assumes that ions have various discrete

degrees of solvation that are connected through elementary chemical reactions

involving one solvent molecule at each step. It has been shown here how to
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combine this effect with those of other interactions in a thermodynamically

consistent way.

A consistent set of NRTL parameter values has also been proposed for this

model.

Both methods have been applied to the representation of activity coefficients in

two-solvent mixtures at 25◦C. However only in the first case has the model been used

for a description of “real world” electrolyte solutions, that is to say to solutions in

a wide range of temperatures, between 25 and 100◦C.

It is well known that it is much more difficult to describe thermodynamic quan-

tities of the “first kind” (enthalpy and entropy), that are first derivatives of the

Gibbs energy w.r.t. temperature, and quantities of the “second kind” (heat capac-

ities), that are second derivatives of the Gibbs energy w.r.t. temperature, than to

represent activity coefficients.

The capability of the MSA-NRTL model including constant hydration numbers

to represent dilution enthalpies and heat capacities has been investigated in the case

of binary aqueous solutions. Values for the hydration, MSA and NRTL temperature-

dependent parameters have been optimised. Generally, satisfactory representations

of the quantities could be obtained. It must be underlined that, when the cor-

responding data were available, the quantities of the various kinds were refined

simultaneously. This was the case for LiCl and KCl in water between 25 and 100◦C.

The model has also been used in the case of ternary mixed aqueous solvent

electrolytes. It was possible to describe the activity coefficients of the solvents in

a narrower temperature range (typically 70-100◦C) and, separately, the mean salt

activity coefficient in the mixture at 25◦C. It was not possible to fit the two types

of quantities simultaneously in these two different temperature ranges. The origin

of this result has not been elucidated.

The prospects for this work are as follows.

• The effect of temperature and ion association could be introduced in the

stepwise solvation-equilibrium model. This could be done by introducing a

temperature-dependent equilibrium constant. Ion association could be mod-

elled at the same level than the hydration reaction. For electrolytes that are

known to be strong in aqueous solution, cation-anion pairing is expected to

be relevant in the case of solvent mixtures containing a high proportion of

nonaqueous solvent(s).
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As stated in the second paragraph below eq 6.20, it would be possible to

relax the hypothesis of hydrated cations, the C(i)s, being energetically equiv-

alent. This would introduce additional parameters (which in principle is not

desirable) but this would lead to a more realistic picture of cation hydrates

interactions with other species in solution.

• For the model with constant solvation numbers, it would also be interesting to

study the case of solvent mixtures containing a high proportion of nonaqueous

solvent. This would then allow representations in the whole range of solvent

compositions.

• Here, only aqueous solutions of sulfuric acid have been treated. It will be

important to also consider solutions of this acid in mixed solvents, which is a

system of great importance for the industry.

• Finally, it might be desirable to try to replace the NRTL model by another

more satisfactory model to account for short-range interactions. Actually, the

NRTL model of Renon and Prausnitz is a very popular tool in the field of

chemical engineering thermodynamics. However, some of its theoretical weak-

nesses have been reported in the literature 30 years ago (e.g., V. Flemr, Coll.

Czech. Chem. Comm. 41 (1976) 3347-9). Moreover, there is a continuous

effort for finding better models, as shown by the work of Aranovich and Dono-

hue (e.g., J. Chem. Phys. 105 (1996) 7059-63, for binary systems on a lattice)

and that of a Chinese group (J. Hu and Z. Duan, J. Chem. Phys. 123 (2005)

244505). The application of such alternative tracks have not been explored in

the literature.

This discussion shows that this topic, which lies at the frontier between funda-

mental and applied thermodynamics, will require appreciable further work for the

development of a “complete model”.
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