N

N
N

HAL

open science

Conductivity Coherence Factors in Superconductors

Olivier Klein

» To cite this version:

Olivier Klein. Conductivity Coherence Factors in Superconductors.

mat.supr-con]. University of California, Los Angeles, 1993. English. NNT: . tel-00357898

HAL Id: tel-00357898
https://theses.hal.science/tel-00357898
Submitted on 2 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Superconductivity [cond-


https://theses.hal.science/tel-00357898
https://hal.archives-ouvertes.fr

UNIVERSITY OF CALIFORNIA

Los Angeles

Conductivity Coherence Factors in Superconductors

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Physics

by

Olivier Klein

1993






‘The dissertation of Olivier Klein is approved.

Sudio Cladbonrals

Sudip Chakravarty

f

Tatsuo Itoh &7 7

gl

George Gu ner, Committee Chair

University of California, Los Angeles

1993

1t



Et s’ll 0’y avait pas la science?

Malheureux cloportes, bousouflés d’ingratitude aveugle et d’ignorance crasse, si y avait pas la science, combien
d’entre nous pourraient profiter de leur cancer pendant plus de cing ans? Et n’est-ce pas le triomphe absolu de la
science que d’avoir permis qu’aujourd’hui, sur la seule decision d’un vieillard californien impuissant, ou d’un fossile

ukrainien encore plus gateux que I’autre, ’homme puisse en une seconde faire sauter quarante fois sa planéte, sans

bouger les oreilles!

Pierre Desproges, tezies de scénes.
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ABSTRACT

Conductivity Coherence Factors in Superconductors

Olivier Klein
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In all textbooks, the microscopic mechanism of superconductivity is described as an attractive interaction
between pairs of electrons which are bound together by lattice polarization forces. The recent discovery
of materials which superconduct at unexpectedly high temperatures, raised some doubts on the general
validity of this picture. Our prospect was to study their electrodynamic excitation spectrum in the mi-
crowave frequency range (0.1 to 10 cm™1), where the photon energy is of the same scale as the attractive
interaction responsible for the pairing mechanism. In particular we were interested by coherence effeet,
a characteristic peak that appears in the temperature dependence of the optical conductivity and is a
consequence of the peculiar pairing symmetry. By developing a novel detection scheme, we have measured
for the first time the conductivity coherence peak on conventional superconductors: Nb and Pb. Then,
we have broaden our study to new classes of two-dimensional compounds including organic metals and
the cuprates. For all those materials, the inferred pair symmetry was found to be invariant under time

reversal, in full agreement with that proposed in the original model.
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Chapter 1

Introduction

In principle an ideal Fermi-gas cannot undergo a phase transition, but if one allows a weak interaction to
exist between the fermions, then it can condense when cooled below a sufficiently low temperature, T;.
Remarkable examples of such systems can be found in the electron gas of some metals and various types of
condensed phases have been observed: superconductivity, Charge-Density-Wave (CDW) or Spin-Density-
Wave (SDW) states. The former one is certainly the most well-known because of its super-properties
(e.g. zero dc-electrical resistance, perfect diamagnetism, etc...). All those ground-state share the same
microscopic mechanism, pair of electrons at the fermi surface form bound states which effectively behave
as bosons and thus undergo Bose condensation leading to a macroscopic quantum state.

‘The physical properties of those condensed phases are related to their particular excitation spectrum.
Remarkably, the qualitative response behavior to any external perturbation can be inferred from the sym-
metry of the pairing solely: those are the so-called coherence factors. The external probe used in this
research is a transverse electromagnetic wave and the measured response function is the optical conduc-
tivity. Results in Nuclear Magnetic Resonance (NMR) will be mentioned too.

1.1 Pairing theory of superconductivity

1.1.1 Experimental evidence

Several experimental observations have indeed shown that the microscopic mechanism of superconductivity
involves electron-pairs. The skeptical reader will find below a review of the most relevant ones.

Flux quantization

One consequence of the long range phase coherence in a superconductor is the quantization of the magnetic
flux in a macroscopic superconducting ring. The phenomenon is analogous to the Aharonov-Bohm effect,
but involves an electron pair (2e) rather than a single particle (as in mesoscopic systems). The value of
the quantum fluxoid ®¢ (inferred from the contour integral of the potential vector A around the ring) in
a superconductor is half smaller that expected for unpaired electrons

QC—efAdl = 2rnhn, (1.1.1a)
he,
B, = n(2€), (1.1.1b)

where e is the electron charge, & the Planck constant and ¢, the speed of light.
Later experiments by B.S. Daever [52] confirmed the result and gave the first experimental evidence of

the pairing mechanism.



Tunneling experiment

D.B. Josephson suggested in 1962 [101], that it should be possible for an electron pair to tunnel between
two superconductors separated by a thin isolating junction. The effect was confirmed experimentally a year
later by J.M. Rowell [15]. The pair-tunneling current depends only on the phase difference between the
two ground-state wave-functions on both sides of the junction, and this phase oscillates at a rf-frequency
2e/h [76] when the junction is biased by a dc-potential V. It leads to an oscillating tunneling current of
the form:

Z2e

I = 1I,si
sm(h

Vi+ @0) . (1.1.2)

Mesoscopic grains

A recent experiment by M. Tinkham [191] has shown an even-odd parity effect of transport properties
through tunnelling junctions in a mesoscopic superconducting grain of Al. In this case, they observe a
2¢-periodicity in the I-V characteristic with respect to the gate-induced charge.

1.1.2 BCS theory

The general microscopic theory of superconductivity was developed by Bardeen, Cooper and Schrieffer
(BCS) in 1957 [19, 20]. The fundamental aspect of the model was to state that, in the presence of an
attractive interaction, electrons in the neighborhood of the fermi surface condense into a new ground-state
formed of electron-pairs with equal and opposite momentum and opposite spin components called Cooper
pair: (k,T) and (=k, |) Bloch states. The attraction between the electrons in a pair can in principle be
due to any suitable kind of interaction that overcomes the Coulomb repulsion. The energy required to
break a pair is A(0). The discovery that for many superconductors 7, depends on the isotopic mass [165],
showed that for those compounds the attractive interaction is mediated by lattice distortions {(phonons) .
In this case, the transition temperature scales as the Debye temperature (Tp). Early, it was anticipated
that other mechanism could also lead to the same pairing, but so far conclusive examples have not been
found. Although the BCS theory was developed for superconductivity, its principle is general enough to
apply for every type of pairing (for example CDW and SDW order).

It is assumed that the reader is already familiar with the microscopic BCS theory, later the discussion
will be centered around the consequences of the pairing mechanism solely, For further details, there are
several well-known textbooks that review the subjects, in part written by Schrieffer [178], de Gennes (51)
or Tinkham [188], the later will be the referenced introduction and in particular the notation convention
adopted throughout this report is identical: all the equations will be given in cgs units and the experimental
values will be quoted in ST units (as it is the adopted custom among experimentalists), the conversion from
one system to another is explained in Jackson [97].

The remaining of the section will be devoted to review the principal results of the original theory, the
purpose is to define all the fundamental parameters that will be used extensively later.

One of the main characteristics of the condensed phase is that the quasiparticle excitation spectrum
has an energy gap 2A(0) at zero temperature. In the BCS model, this gap is isotropic and independent of
the k direction. The model also simplifies the interaction between the fermions to a simple two-square-well
form. A cut-off energy (hw. = kgTp) fixes the neighborhood of the fermi-level affected by the attractive
interaction. N(0) is defined as the single-spin electron density at the fermi energy and V represents the
interaction energy between the electrons. In the weak coupling limit or V. N(0) — 0, the amplitude of the
gap takes the limiting form:

A(0) ~ 2hw e N OV, (1.1.3)
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The transition temperature can be then estimated from the gap value:
2A(0) = 3.528%k5T .. (1.1.4}

The temperature dependence of A(T) is inferred from the gap equation

hwe tanh («/ug + AZ(T)/QkBT)

1= VN((})/O du T AT , (1.1.5)

and the corresponding variation is represented in Fig. [1.1].

The optical properties (the penetration depth A and the electromagnetic coherence-length £) are in
general interdependent quantities and both vary with temperature and impurity concentration. To avoid
confusion, the adopted custom is to express all variables in terms of a few simple constants that are defined
simply {rom the intrinsic properties. Those are the zero temperature values of A and £ in the London

limit:

Co
AL = &-;, (1.1.6)
and:
hop
gD - ﬂ'A(O)' (1.1.7)

vr is the fermi velocity and wp is the plasma frequency

4 2
wp? = 210 (1.1.8)
m

n. is the electron density and m the electron mass.



1.1.3 Super-complete BCS Hamiltonian

The model discussed in this section, illustrates the general ground-state properties of a superconductor.
As discussed earlier, in this model fermions have a weak attraction to form Cooper pairs, if their kinetic
energy lies in an interval fiw; on either side of the fermi surface. Tn the mean field approximation, the
hamiltonian simplifies to the following form:

i-y
ke

h2k2
2

b - ot st
— ak,oa‘k,(f + % Vk,l < ayppé_y) > a’kTa—kl + h.c (1.1.9)

The <> brackets represents the thermal average:
< &IT&_” > = Tr [3&”&_11, (1.1.10)
where g is the density operator:

o—BUH -l
A= — (1.1.11)
Tr e—ﬁ(H—ﬂN)

N the number operator, i the chemical potential and 3 = 1/kgT. 1t is useful to rewrite the hamiitonian
in the more concise form:

A= —pN =Y A& Ay, (1.1.12)
k
with
. a1
A = | T, (1.1.13)
and
z SAANR )
& = . (1.1.14)
K ( Ay
AL is the hermitian conjugate. The matrix elements are simply
h2k2
e = ( o —;L) s (1.1.15a)
Ay = Y Vi<apag > (1.1.15b)
1

The hamiltonian in Eq. (1.1.12) can be diagonalized by means of a unitary transformation, suggested by
Bogoliubov in 1958 [28]

*

Yk ) , (1.1.16)

f’k = l:jk[\k where b:’k = ( *
-y, U
k “k

with the constraint |uy | + [op|? = 1.



The new vector Fk represents the single particle excitation of the ground-state (the quasiparticles) and
they obey Fermi anti-commutation rules:

. ’?k,
Iy = ( ’?LU ) . (1.1.17)

The eigenvalues are:

Ek = \/Ak2-|—§k2, (1118)

and they define the quasiparticle energies.

The symmetry of the ground-state is defined by the operation that interchanges the components of
the quasiparticle vectorial notation (f‘ k). The resulting degeneracy of the complete base-set is reflected
in the dimensionality of the vector. In this case, the ground-state is time-reversal invariant and doubly
degenerate (Kramers degeneracy).

[t can be shown that the excitation-state density for the condensed phase is of the form:

E
Ny(Ey) = N(O)R (ﬁ) . (1.1.19)

In the BCS theory the V), | interaction takes the two-square-well form:

_ =V if |‘Ek| and |{:]' < hwca .
Vk!l - { 0 otherwise. (1.1.20)

‘Then the single-particle gap is a scalar, A(D). The zero temperature quasiparticle density of states follows
the curve sketched in Fig. [1.2]: there are no states below a gap edge A(0) at which point there is a
singularity.

1.2 Coherence effects in a BCS superconductor

One striking feature of superconductors is that the absorption rate of such external probes as sound or
rl-electromagnetic waves, have a very different qualitative behavior in spite of the fact they couple to the
same excitations. In all cases the probe-energy is well below the gap value and the momentum transfer is
small compared to kg: the absorption processes are dominated by the unpaired electrons (quastparticles)
that scatter to higher kinetic energy states.

1.2.1 Experimental results

This section gives a partial list of some few external probes that satisfy the constraint sketched above. The
temperature dependence of their respective absorption rate is reported.

Ultrasonic attenuation

An acoustic wave modulates the position of the ions in the lattice creating a longitudinal electric field
D(q,w) = E + 47 P that couples to the charged carriers. In the case of longitudinal acoustic waves, only
the normal electrons participate in the absorption process. The rate is given by D?/2S(e), where €(q,w)
is the complex dielectric constant. The sound wave velocity in a metal is of the order of u = 10% cm sec™ 1,
much smaller than the fermi velocity vp = 107 cm sec™ hence the wave vector q of the acoustic wave is
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small and given by:
hug = hw. (1.2.1)

where f = w/2x is the frequency of the wave, typically 100 MHz (or 5x 104 meV), much smaller than a
typical pair breaking energy 1 meV.

Fig. [1.3] displays the acoustic attenuation of longitudinal sound waves in tin and indium [144]. The
rapid decrease in the attenuation coeflicient as the temperature is lowered is due in part to the decreasing
number of excitations available to absorb the phonons, but another effect must come to play and outweigh
the increasing density of states.

Nuclear magnetic resonance

The longitudinal nuclear magnetization of a solid relaxes along its equilibrium axis with a characteristic
time constant, T3 called the spin-lattice relaxation time (the relaxation rate is defined as the inverse of 1y).
This relaxation process is dissipative and for metals, the released energy goes to the electronic degree of
freedom through the contact interaction (usually the dominant term}. The electronic excitation is of the
order of the electronic Zeeman energy because it involves an electron spin 1lip. For a superconductor in a
2 Tesla magnetic field, the dissipation quanta is typically 2x10~! meV.

Fig. [1.4] shows the temperature dependence of the nuclear spin relaxation rate as measured by Hebel
and Slichter on aluminium [85]. One striking feature is that the relaxation rate increases below T. before
decreasing at low temperature. In this case the increasing density of states dominates near T, while at low
temperature the statistical factor (decrease in the number of quasiparticles) outweighs the former effect.

Electromagnetic absorption

If one conducts optical experiments in a similar energy window as the previous experiments and follows the
double constraints that the photon energy be much smaller than the gap but larger than thermal processes
(otherwise thermal noise screens the optical effect), then the spectral range implied are mm-waves. To
our knowledge there are no experiments that have yet measured 01(T') of superconductors at microwave
frequencies because of technical difficulties,
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Conclusion

Obviously a factor has been left out in the derivation to account for the discrepancy between those ex-
periments. Next, one will see that the left out term (the coherence factor) is intimately related to the

symmetry of the pairing.

1.2.2 Coherence factors

The differences between those previous experimental results find a natural explanation in the pairing mech-
anism. In calculating the matrix elements between the quasiparticles in a superconductors, one has to take
into account that the ground-state is occupied by pairs. There is not a one to one correspondence between
a given quasiparticle scattering and its associated Bloch-state process, but rather all the different channels
that belong to the same symmetry-class (symmetry of the pairing) factorize to the same quasiparticle
scatter. Now, when the matrix elements are squared, those degenerate events will interact coherently if the
different matrix elements of the probe differ at most by a phase factor for the particnlar pairing symmetry,
in which case the effect gives rise to interference effects which would be completely absent in the normal-
state (independent summation). For the particular case of (BCS) superconductors, the ground-state is
invariant under time-reversal and {wo (original and its time-reversed) Bloch-state processes interact. The
sign of the interference (whether they add constructively or destructively) depends only on the interaction
symmetry. The situation is best seen by means of a little bit of algebra.
Lets assume that the external probe is of the form

A= Y <¥,o|liko> &L',a'&k,o' (1.2.2)
kk' o0

The constraints imposed on the probe are |k — &'| < kp and |k%/2m — k"/2m| < hw.. Using simple
linear algebra argument, it can be shown from Eq. (1.1.16) that al, 18] o and its time-reversal symmetric
k' o' KT



_yr _g:&f_k _ connects the same quasiparticle states. In the particular case where o’ = ¢ then:

1

&L,Tam- = i, + ui‘{,ukﬁfL,‘O’?k!o

Ve Uk T 1 Vo — “fc’”kﬂc’ o:yirc,l’ (1:2.3)
~ T n _ * 2 -1 * -1 ¥
k%KL T THMK KA Tk T KV T o Tk

Ut Tk ~ Wk e, Ty (1.2.30)

Notice that the last two terms in the two equations are irrelevant for probing energies below the gap,
as they refer to pair breaking process. After summing all the independent possibilities, the coefficients in

front of the 4;%; (with ¢ = 0,1) are proportional to:

(ui"{,uk + nvi‘{,vk) . (1.2.4)

with n = 41 depending on the probe symmetry. Those coefficients are the so-called coherence factors and
two cases appears:

1. 7= ~1, the interference is destructive (case 1).

2. 7= +1, the interference is constructive (case 2).

When the spin is a conserved quantity of the interaction (the case above), 5 is defined by the equality:
<-k,—o|H;|-K,~c> = —p< K, o|fliik,o> . (1.2.5)
If the absorption process involves an electron-spin flip, then the interference sign has to be defined by:
< -k, —o|lH]|~-K,0> = +n <K, —o|Hk,o > . (1.2.6)

For the case where the probe energy is above the gap, the absorption is dominated by the ?HITFII (with
¢ = 0,1) and the coeflicient in front are:

(ui‘{,’uk - nvi“{,uk) , (1.2.7)

with 7 defined by Eqs. {1.2.5) and (1.2.6). Notice that the middle-sign is inverted.
In Schrieffer’s notation [178] the different coherence factors are labeled as:

Lk, k) = uf upr + vyl or hee, (1.2.8a)
mo(k, k') = uf{uk; - Ukvi‘{, or h.c., (1.2.8b)
no(k k') = uf vy + vy, or hc., (1.2.8¢)
po(k, k') = ujmps - gty Oor hec (1.2.8d)

The factors that apply to the probes mentioned above are derived next.

Ultrasonic attenuation
For sound waves, the ultrasonic attenuation has the form:

Hi=a ¥ aL,’Jak,g, (1.2.9)
kk' o



with @ a scalar. The spin is conserved, therefore the sign is given by Eq. (1.2.5). Because o is constant,
n = —1 and case 1 applies. A word of caution: in the case of transverse waves, several mechanisms for
absorption are important, some of which are case ! and some case 2,

Electromagnetic absorption

Yor electromagnetic waves, the absorption hamiltonian is:

N —eh
H;, = <
2me

> Ak K)(k+K)al, iy, (1.2.10)
kKo ’

Here again, the spin is conserved, thus Eq. {1.2.5) gives the relevant sign. The interaction depends on the
momentum direction of the electron (odd for time reversal symmetry) # = +1: case 2 applies.
Nuclear magnetic resonance
For nuclear spin relaxation, the absorption hamiltonian is of the form:
. t A
H; =« Z 0y _plk o (1.2.11)
kk' o
with «, the contact interaction (a scalar). NMR relaxation flips the spin of the electron (¢’=—¢) and
Eq. (1.2.6) defines the phase sign # = +1, case 2 applies.
1.2.3 Absorption rate

Temperature dependence

"The coherence factors can be expressed in terms of quasiparticle energies and gap value; using Tinkham’s
results [188]:

1 SR, A?
* * oy
(vfuyps + ML) = 5 (1 + By By + nEkEk, . (1.2.12)

When summed over the k values, the middle term disappears:

2 : —
F(E,E’):E(l—i-nﬂ )N{O ify=-1, (1.2.13)

2 EE 1 ifnp=+1.

To derive an expression for the absorption rate, one starts from the Fermi golden rule:
&y = f \M2F(E, E + bw)Ny(EYN(E + heo) { f(E) — f(E + hw)} dE (1.2.14)

where |M|? is the matrix transition, Aw the probing energy and:

N(E) =1/VE?—A? isthe density of states, (1.2.15a)
F(E)Y =1/[1 +exp(BE)] is the Fermi distribution. (1.2.15b)

Defining ay, as the value of o, at T,

as 1 /OO |E(E+ hw) + nA?|[f(E) — f(E + fw)]

= dE. 1.2.16
a, hw/ o VE? - A2/(E + hw)? — A? ( )

9
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applies for ultrasonic attenuation while case 2 describes elec-

tromagnetic absorption or nuclear relaxation.

It is understood that the regions |E| or |E+%w| < A are excluded from the integration. Using Eq. (1.2.16),
the temperature dependence of the absorption rate is plotted in Fig. [1.6] for both case 1 and 2.

¢ Case 1: One observes a rapid decrease of the simple functional form:

== = 2f(A). (1.2.17)

o Case 2: The integral diverges logarithmically and a cut-off energy of (A, = 0.02A in the figure) has to
be introduced in order to prevent the integral from diverging. This cut-off was interpreted originally
as a level broadening in the density of states due to some anisotropy of the gap (later on it will be
shown that A, = Aw). One often uses the approximate form given below to fit the experimental
results:

%o = 2f(4) 1+E-IZ;—T(1—f(A))1n (i—‘l)] (1.2.18)

In summary, the interference is constructive for nuclear spin relaxation and optical conductivity and leads
to a peak in the temperature dependence of their absorption rate, below T.. The interference is destructive
for ultrasonic attenuation and leads to an exponential decrease.

Spectrum

The excitation spectrum is of primordial interest as it gives all the physical properties of the condensed
phase. At zero temperature there are no thermally excited quasiparticles, and the absorption rate is null
at probing energy below 2A. At hw > 2A, pair breaking processes are allowed and the absorption rate is
non-zero, Notice that in this last case, the n, and p, coherence factors are introduced. It can be shown

that the normalized rate takes the form:
o, 1 f-f—‘ |E(E + hw) + nA?|
a-hw VE? - AL /(F + hw)? — AZ

dE. (1.2.19)

o,  hw

10



Ultrasonic  Electromagnetic Nuclear spin

Pairing attenuation absorption relaxation

SS 1 2 2
ChW 2 mr X
SDW 2 ”1” 2
TS 2 2 X

A 1 1 2

B 2 2 2

Pairing:

5S: (k,T)e < (=kil)e
CDW: (kaT)e o (_kaT)h
SDW: (k,1)e = (—k.{)n
TS: (k,1)e < (—k,T)e
Case A: (k,1)e < (ky])e
Case B: (k:T)s A (kal)h

Table 1.1: Coherence factors for various pairing at hw < 2A(0). Case 1 (destructive interference} induces a rapid decrease in
the temperature dependence of the absorption rate and no Goldstone mode in the spectrum. Case 2 (constructive interference)
creates a peak in the temperature dependence of the absorption rate and a collective mode in the spectrum.

Fig. [1.7] displays the spectrum of the absorption relaxation rate for both case 1 and 2 coherence factors.

Any first order (linear) approximation on the response-function of a physical system (causal) is con-
straint to the sum-rule. This theorem stipules that the total integral of the response-function over the full
spectrum is a conserved quantity and proportional to the total number of particles:

f @) g o N, (1.2.20)
0 Oy

It has been shown that the absorption rate vanishes at frequencies below 2A, while being finite in the
normal state. To satisfy the sum rule principle, the ‘missing area’ must be displaced to some other range
of the T=0 spectrum. The fundamental difference between the two coherence factors is that for case 1,
this ‘missing area’ is shifted above 22 while for case 2 it disappears in the superfluid response (goldstone
mode). For electromagnetism the missing spectral weight goes in a dirac peak that builds up at w = 0: it is
this collective mode that is responsible for the Meisner effect (the infinite dc-conductivity is a consequence
of the missing spectral weight scenario). In remark, the mode can very well be shifted to finite frequency
as it is the observed case in other examples. In conclusion, the condensed phase does not couple to the
external perturbation for case 1.

1.3 Other pairing symmetry

The work shown in the previous section can be extended to any other type of pairing mechanism. For
example one can used the same tools to grind through the CDW ground state. The author is not aware of
any similar analogy in the literature. The CDW state couples an electron and an hole of opposite spin at
the antipode of the fermi surface: (k,1). and (—k,7)s. Other pairing symmetry include:

1. SDW, coupling an electron (k,1). to a hole (—k,|)s of same spin.

11



2. TS (triplet superconductivity), coupling two electrons of same spin but opposite momentum (k,T)e
and {—k,1). {never observed).

3. Other exotic combinations are two electrons of same momentum and opposite spin (k,T). and (k,|).
(case A),

4. or an electron and a hole of same spin and momentum (k,T), and (k,|)), that interact (case B).

N.B: The notation used, follows the long tradition of physicists fruitful imaginations, that have lead to the
labeling of the difference coherence cases.

1.3.1 Charge Density Waves

In the CDW phase the electrons and holes pair, if their momentum difference is equal to Q the ordering
wave vector. The orientation of Q indicates a preferential crystallographic axis, consistent with the fact
that those trausitions are usually observed in one-dimensional metals (very anisotropic already in their
normal-state). It will be assumed that Q@ = 2kp. The starting point of the discussion is again the mean-
field Hamiltonian:

H = Z 5 aklaakg~IZ<GITal Q1 >aklak Q| + he. (1.3.1)

It is convenient to define right and left-going electrons:

(1.3.2)

3 — A RS B .
®ko = Ohikp |t Gy = U kpts

A careful reader will notice that our definition does not conserve the total number of particles, the difficulty
was omitted intentionally as it does not affect the end result, but complicate greatly the discussion. An
exact definition can be found in Schrieffer’s textbook page 52 [178]. Defining a vector:

i k.0
A = (Ckl)’ (1.3.3)

one note that the system is invariant under Galilean boost of Q momentum.
In the discussion, we will neglect umklapp scattering, where a right- gomg electron scatters to a left-going
one. For probing energies below the gap, the coefficient in front of the 7 ¥; (with ¢ = 1,0) is:

(u’l"{,uk + nvi"{,vk) , (1.3.4)

where 7 is defined by:
<K, 1Ak, 1> = 45<¥,0/H]k0>. (1.3.5)
Notice that the sign in front of 5 in Eq. (1.3.5) differs from the earlier result derived for superconductors,

Eq. (1.2.5).

Ultrasonic attenuation

The coupling term is a scalar, the 5 factor in Eq. (1.3.5) is equal to +1, or case 2 coherence factor. The
result is in agreement with neutrons experiment, where the goldstone mode [66] appears in the phonon
spectrum (Kohn anomaly [47]) predicted only for case 2.
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Electromagnetic absorption

The electromagnetic hamiltonian is not symmetric under Galilean boost of momentum Q.
. —eh
K,o|lfik,o> = ﬁ;Mk—MMk+HiQ) (1.3.6)

But the ground-state condensation occurs only in the neighborhood of the fermi surface, and the electrons
affected have a momentum distribution 6k of the order A(0)/vr around kp. As a first approximation one
can only retain the leading term in the expansion in powers of (A/ep):

<K 1|Hik 1> ~ 5;;;7 > Ak -K).(-Q), (1.3.7a)
kko
- h
<K, 0 [k,0> ~ —e—"- Y Ak -K).(+Q). (1.3.7h)
kk’

The 5 factor in Eq. (1.3.4) is —1 and one recognizes case 1 coherence factor or a zero de-conductivity. The
approximation above can lead to the presence of a re-normalized collective mode in the spectrum whose
dressed mass depends on the ratio A/ep.

Conclusion

One can play a similar game, with other types of pairing. The reader will not be bored by repeating the
analysis once more. The coherence factors corresponding to other pairing under various external probes
are just listed in Table [1.1]. For SDW, the mean field hamiltonian is of the form:

kgaka IZ < al[al Q> aklak Q1 + h.c. (1.3.8)

For TS, the mean field hamiltoniaa is of the form:

K22
1.
H kz o kO’akC’ IZ<&1T(L 1[>aJ l + h.e (1.3.9)
a

1.3.2 TUnconventional pairing

In the BCS model, the gap value A(T') depends on one parameter: the temperature. Several variations
from this simple assumption have been attempted: for example, the gap can depend on the quasiparticle
energy too A(T,E) and the consequences are referred as strong coupling effects (the problem will be
studied in the next chapter). Also, the broken symmetry of the condensed phase can change: for a BCS
superconductor, the gap is isotropic and the broken symmetry is the U(1) local gauge (in group theory
notation), but the gap can also be k-dependent and follow some non-trivial representation, like ‘d-wave’
pairing:

Ay = A0)Ya(k), (1.3.10)

where Ygil(fC) = 21’52()’::1 + ifcy) are the orbital harmonics. The ‘d-wave’ pairing symmetry (a candidate
for the cuprates) posses two lines of nodes around the fermi surface, Fig. [1.8]. In order to understand
the consequences of such an assumption, it is necessary to go back to the Landau description of phase
transitions. (If the reader is unfamiliar with this formalism, a good introduction can be found in the
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anisotropic s-wave

d-wave
Ak T) = ¥y (k)b (T)

Fig. [1.8]:’ Schematic illustration of various gap symmetry, the shaded area is the single particle gap that enclosed the fermi
sphere. The ‘d-wave’ pairing has a gap-symmetry in the k-momentum space described by the spherical harmonics Ye—zm:
notice the alternating sign of each lob and the two line of nodes that crosses in the perpendicular direction.

Landau and Lifshitz Vol. 5 [120].) It has been shown by Gor’kov [69) that the order parameter is equal
to the superfluid fraction, related to the gap value (x A for T < T; but o< A? for T ~ T.). Depending
on the broken-symmetry the order parameter can have multiple components: in the BCS model, the
order parameter is a complex number (two components: an amplitude and a phase). Each degree of
{reedom has a collective excitation associated (or a Goldstone mode [67]) and one of those mode couples
to electromagnetism. Superconductors are charged fluids with long range order: among the two goldstone
modes of the BCS model, one is massive and corresponds to the amplitude modulation of the order
parameter. This mode responds at the plasma frequency (for clean metals) because of its coupling with
the charge density [28]. It can couple to non-massive modes of an external probe (like transverse fields
in electromagnetism) and make those fields become massive (Anderson-Higgs mechanism [13, 86]). In
this case, the mode is responsible for the Meisner effect. For lower pairing symmetry, the complex order
parameter has other components: it can be as rich as 18 with the five components of the ‘d-wave’ (87]
leading to a complicated phase-diagram.

In the literature several authors have treated the problem of the temperature dependence of the ab-
sorption rate for various pairing symmetry. The findings are that the size of the coherence peak decreases
with decreasing symmetry as it increases the number of nodes (line or point) in the gap (the nuclear
spin relaxation was computed by Hasegawa for anisotropic pairing [81]). Concerning the absorption spec-
trum, some of the new components of the order parameter couple to the interaction and lead to collective
modes [88, 90, 89] that appear as new resonance lines in the spectrum. Those ideas have been principally
developed for heavy-fermions superconductors [180].
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Chapter 2

Electrodynamics of the
Superconducting State

Nothing original is presented in this chapter, the theory was developed more than a decade ago and a
complete introduction can be found in Tinkham [188]. In most textbooks however, the presentation of this
madterial is fairly confusing because of the many limiting cases that lead to simplified expressions. Qur aim
is to write a concise guide (not a complete review) on the area of applicability of several models and focus
on the characteristics of the coherence peak.

2.1 Kernel

This chapter studies the current response J,, of a superconductor irradiated by a transverse electromagnetic
field of the form exp(igr — iwt). The field, defined by its potential vector AY, is viewed as a weak
perturbation of the system and only the first order term (linear) in the expansion is retained. We define
the Kernel K, as the impulse-response in the momentum space:

; Co ..

Ju(@yw) = = = Ku(q,w) 4. (2.1.1)
The metric convention used is z* = {29, 2!, 2%, 23} = {1, x,y, 2} where 2, = g, ,2" with 1 = ggo = —g11 =
—g22 = —ga3. The ¢-dependence of K allows responses which are non-localized (the current at one position

may be determined by the field elsewhere). Equivalently the propagator describes the current-current
correlation function (fluctuation-dissipation theorem).

2.1.1 Transverse field

As a first step, we found it useful to recall the formulas that describe electromagnetism in solids. One is
the current density operator in a superconductor [178]:

. eh N
Jlaw) = 5oy kz e okt q,0 (2K + )
¥

62

4 .
eV A, (q,w) kz e 0k ,0 (2.1.2)
a

where V; is the sample volume. The expression is derived from the momentum operator (—thV — eA/c).
The current density divides in two parts, the paramagnetic (first term), and diamagnetic current (second
term). For the normal fraction of electrons both terms cancel out, while for the superfluid part, the
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diamagnetic current dominates (as long as the transverse part of A is used) and this gives the London
formula. For longitudinal excitations (V.A # 0) the paramagnetic current cancels the gauge potential
{‘diamagnetic’} as required by invariance.

The hamiltonian for light absorption is given by Eq. (1.2.10):

Bi=—vo % A(k—k').(mk')a;{,ﬂak,a. (2.1.3)

The aim is to compute the expectation value of J as a function of A. The bold font indicates a vector in
cartesian coordinates (i = 1,2,3), while the operator and the expectation value differ by the hat symbol:

Jq,w) =< J(q,w) > . (2.1.4)

The <> brackets denotes thermal average, as in Eq. (1.1.10).
The expression for J is given by the fluctuation-dissipation theorem:

.=t [t <(H) o Wwi—t/r
J(q,w) = lim — di { |J (1), H;| Ye , (2.1.5)

r=eo by
where 7 is artificially introduced in the computation to eliminate any non-vanishing contributions to the
integrand at large time scales. Physically it represents the time decay of the transport properties due
to scattering mechanisms. This expression has the analytical properties of a causal function (Cauchy’s
theorem [97]) and the Kernel expression follows from the solution of Eq. (2.1.5). The observable O(#)(¢)
is the Heisenberg representation of the Schrédinger operator O:

Oty = et 2, (2.1.6)

If one splits the hamiltonian # of the system in two parts: I, the hamiltonian of the unperturbed
superconductor (that does not contain time explicitly) and the additional part due to the electromagnetic
excitation H;:

A =H,+ Hexp™ v, (2.1.7)

then it is tempting to replace H, by the known effective Hamiltonian that accounts for the thermodynamic
properties:

Ho= 3" By ko (2.1.8)
ko

H, is determined solely by the (temperature dependent) fraction of normal electrons and E), is their
respective energy as defined in Eq. (1.1.18). The difference H, - H, is negligible for all phenomena,
however H, is inappropriate for longitudinal excitations as the operator does not conserve the charge
quantity and the substitution leads to the more general problem of gauge invariance.

For transverse waves:

H,~H,, (2.1.9)

and the computation of the current density Eq. (2.1.5) can be performed [169].
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After some algebra, one obtains the expression:

Haw) = (%)Z%[A(q,wmk]
st0 k

1 1
* [(Ek+Ek+q “hw —ih/T | B ¥ Bipq +ﬁw+ih/r)

1 1
* (—Ek F Epepq — 0 — b7 | By ¥ Bpgpq + R+ iﬁ/r)
X [f(Ey) - f(Ek+q)](”k“f{+q + vi’(vk_l_q)z]

A(q,w). (2.1.10)

One recognizes the two coherence factors pZ(k,k + q) and I?(k,k + q) (case 2) defined in Eq. (1.2.8d).
When the limit q tends to zero, Eq. (2.1.10) simplifies to:

J = —(positive constant)A, (2.1.11)

which is precisely the criterion for the Meissner effect.

2.1.2 Longitudinal field

Similarly, one computes the interaction of a longitudinal electric field (defined by its scalar potential &)
on a charge density p(q,w) and the result is:

6‘2
plaw) = -7 2 ®(qe)
sk

1 1
* [(Ek T Biyq — o —ih]7 " Byt By + o + ih/T)
X[ = fE) = F(Ey g ok, q + ’Uk’tti‘p,q)2

1 1
t (_Ek + Ek+q — hw — k)T * ~Ep + Ek+q + fiw + ih/r)
% [f(Ey) = By )N oictiey g — "hvkaq)’] - (2.1.12)

It is the same expression as Eq. (2.1.10) but with the m2 and n2 coherence factors. This expression is not
gauge invariant and the approximation used in Eq. (2.1.9) is not always good. The domain of validity of
Eq. (2.1.12) is when the following inequality is satisfied:

hw <€ hvpg € 2A. (2.1.13)
That corresponds to the already encountered case of longitudinal acoustic waves attenuation.

2.1.3 Gauge invariance

So far, the derivation has been based solely on the quasiparticle response, but this simplification leads to
unphysical results such as non-conservation of the charge guantity. This problem is linked to the early
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criticism of the BCS theory: for longitudinal fields, the current density carried by a quasiparticle is no
longer equal to the charge carried by the wave-packet multiplied by the velocity. A complete derivation
based on a gauge invariant Hamiltonian was first performed by G. Rickayzen in 1958 [168].

2.2 Microwave properties

The remaining discussion reviews the electrodynamic properties of a superconductor under a transverse
wave excitation.

2.2.1 Complex conductivity

The complex conductivity in the Fourier space is defined as the ratio of the current density to the electric
driving field:

J(q,w)
E

== (28] + 2‘0'2. (221)

It includes both an chmic and eddy current term.
In the London gange (¢ = 0}, there is a simple relation between the Kernel, defined in Eq. (2.1.1), and

the conductivity:

2

6(q,w) = K(q,w). (2.2.2)

47rw

Light probes, in general, average electrodynamic response over several lattice sites (the wavelength is
larger than the lattice constant), thus for most metals, the local (q = 0) response is dominant. However,
in very clean conductors, the length scale can be regulated by some other intrinsic parameter such as the
mean-free-path, £, or the coherence length, £(0). A careful treatment of those various cases will be done
in what follows.

2.2.2 Mattis-Bardeen

A first limit of Eq. (2.1.10) was investigated by Mattis and Bardeen in 1958 [135]. When 7 — oo the
equation simplifies to:

a o0 A |
on 3/ F(w) = f(u+ w)g(u)du + '1'/ [1 = 2f(u+ w)lg(u)du, (2.2.3)
22} wJa w Ja_w

where

= sgn{u)vu? — A% |u| > A

g(u) = (u?+ A? +wu)fugu,, where = —iVAZ — 2 lu] < A
Uy = (utw)?— A2
f(u) = 1/[1+exp(u/T)],
w = hw, T'=kpT and A = BCS gap.

From this expression, one derives the corresponding spectrum of the conductivity at zero temperature:

Z_l = [1+2A(0)]E() 4A(0)I’(L) (2.2.4a)
R O O
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Fig. [2.1]: Temperature and frequency dependence of the Fig. [2.2]: 62(T,w) as evaluated from the Mattis-Bardeen
conductivity o1(T,w) as evaluated from the Mattis-Bardeen  expression, Eq. (2.2.3). o2 diverges as 1/w below the gap and
expression, Eq. (2.2.3). The coherence peak exists only at low  saturates in temperature to mA(0)/hw.

frequencies hw/2A{0} < .1. The local minimum is the energy

Bap.

where ' and K are the complete elliptic integrals and:

Eo= V1-k2, (2.2.5a)

20(0) — hw
‘QA_(O) — (2.2.5b)

Figs. [2.1] and [2.2) summarize the temperature and frequency dependence of ¢; and oy respectively
as derived from Eq. (2.2.3). It reproduces the behavior predicted for case 2 coherence factors (Figs. [1.6]
and [1.7]) inferred from symmetry argument only. o1(T") shows a peak just below T, at low frequency. The

height of the peak goes as:

ot 2A(0)>
p log ( — (2.2.6)

where 01*/0, = (01/0n)max. The peak has completely disappeared for Aw > A/5 (well before 2A).
In conclusion, a photon energy below the single particle gap is not a sufficient condition to observe the
coherence peak. The width of the peak is slightly frequency dependent and its qualitative behavior will be
discussed later (the dependence is shown in Fig. [2.10] for £/7£(0) = 0.1). 61(T)/0, can be approximated
by the following algebraic formula:

A(T)

20 anaen {1+ 280 - saeonm 2] (2.27)

This expression is identical to Eq. (1.2.18), where A, = fiw.
On the other hand, o;/0, is related to the gap parameter through the expression:

oo T) 7AYo [A(T)] _ (2.2.8)

Tr hw

2pT

As mentioned at the beginning, Mattis-Bardeen uses the approximation that (7 > h/A > A/vp) to
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simplify the algebra. S.B. Nam [145] however, showed that the definition domain of those equations is
more general and the formulas are also valid for dirty superconductors when 7 — 0 (all those different
regimes are defined later).

2.2.3 Surface impedance

In the microwave range, one measures the surface impedance. This parameter is meaningful only in the
limit where the field decays to zero well inside the sample. The field is screened from the interior if the
light penetrates on a length scale smaller than the sample dimensions. This length scale is defined by
wavevector inside the material:

1
&= ) 2.2.9
() (2.2.9)
and an expression for [ is derived from the eddy-current equation (Ampére’s law):
- Yibids
‘2 _ 4T oW (2.2.10)

2
<5

The length scale ¢ is the skin-depth for a metal and the penetration depth for a superconductor. It is
assumed that the surface is flat at the scale of 4.
The surface impedance is a complex number:

Z, = R, —iX,, (2.2.11)
where R; is the surface resistance and X, is the surface reactance. The surface impedance is defined [119]
as the ratio of the electric and magnetic strength at the surface of the metal:
ZS = "':E'}“‘l“l"‘ = #, (2.2.12)
i Jor Iydz

where E| and H|| are the electric and magnetic fields respectively, in the plane of the surface, and z is
measured normal to the surface. For an isotropic media the two fields are orthogonal. We use a definition
that is unitless and normalized by the impedance of the vacuum Z, = 47 /¢, = 3774

2.2.4 Specular and diffuse scattering

In order to relate Z, to the Kernel defined in Eq. {2.1.1), one has to deal with another difficulty, that is
the behavior of the electrons at the boundary of the metal. There are two cases that have been studied:

o Diffuse scattering, where it is assumed that the electrons lose their drift velocity when they reach the
surface (the charged-particle q vanishes at the boundary) and

Zo(w) = 4ntiv ( /0 “ [t + K(q,w)/qZ]dq) - (2.2.13a)

o Specular scattering, where it is assumed that the electron is reflected at the surface, this limit is
equivalent to the assumption of periodic boundary conditions in the Fourier space:
o0 dq
Zw) = Siwf - .
o o 7+ K(a,0)/im

(2.2.13b)
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Despite the fact that the two expressions have very different forms, the end results only differ slightly by a
constant prefactor in the anomalous regime (defined later), where the gradient of the field is so small that
one has to correct for effects within the ¢ length-scale. It is important to note that the relation between the
surface immpedance and complex conductivity is not a constant one, but is dependent on several parameters
to be discussed shortly.

2.3 Various regimes

The electrodynamic response has different form depending how the three length scales (£,&,, A1) compare
to each other.

2.3.1 local and anomalous regime

For classical metals the relation between the current and the field is a local one, i.e. that the current density
at one point in the conductor depends on the field at that position only (Ohm’s law). This condition
presupposes that the electron mean-free-path (£) is small compared with the distances over which the field
varies (the skin-depth ). In this case the field decays exponentially as it penetrates in the sample. Then,
the surface impedance is simply equal to the complex refractive index v/& where ¢ = 4dwid fw:

{ W
Zs = m, (231)

This definition is independent of the surface geometry. A development of the previous expression gives:

w 1 —03 + V01?2 4 ay?
Ry = /— R (2.3.2a)
47 /01?2 + 02 2

Sl 2
\/“2 + ;l toz (2.3.2b)

and

Ry
T Vdr Vo Tt 02

It is assumed that the permeability p ~ 1, usually the case for metals [119]. For a good metal ¢, > a3 in
the mm-wave range, the classical skin-depth of Eq. (2.2.10) is defined:

Co

0o = —. 2.3.
C TV 2rwo (2.3.3)
In this regime the surface impedance has the simple form:
. wé
=X, = ——=. 2.3.4
R, =X, =25 (234)
In the superconducting phase a2 > oy and 1/3(k) is called the penetration depth:
A= (2.3.5)
- Virtwe, e
in this regime, the surface impedance tends to the value:
Ry~ 0and X, = —A, (2.3.6)

Co
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The former equation assumes that the frequency is low enough that electromagnetic oscillations within
the mean-free-path can be neglected. The simplest model that accounts for scattering time is the Drude
model:

neelr 1

(2.3.7)

a= —.
m 1 — wer

The model studied above corresponds to the regime where w7 < 1 (Hagen-Rubens), and o, = o(w = 0).
Another limit is when w7 > 1, the relaxation regime. Using Eq. (2.3.2a) one computes the surface
resistance:

1 1
R e (2.3.8)
and X; ~ 2wt R;. The skin-depth, defined by Eq. (2.2.10), has the form:
§ =48, “;—T (2.3.9)

A complete list of all the correction factors for a Drude metal is in Table [2.1].
The opposite limiting case is when 6« £ and the classical theory is no longer valid [162] (the wave
propagation is not exponential). This limit is called the anomalous regime and all the equations derived
above have to be modified. The exact solution is elaborate [164] and a simplified picture is to suppose that
only a fraction ad /€ of the electrons are effective in the conductivity (o7 = @g,6/€). If we solve Eq. (2.3.3)

self-consistently the skin-depth is:
3 _ c3!

The factor & was computed by Reuter and Sondheimer in 1948 [164]. For specular scattering, a =
31/2r /128 ~ 10 and for diffuse scattering @ = 4w /\/3 ~ 7. The expression for the surface resistance
follows:

1/3
2w 2l
JRS = Cg (m) . (2311&)
and
X, = V3R,. (2.3.11b)

In summary the relation between the conductivity and the surface impedance is not universal, in the
local regime (w7 < 1):

oy —1/2
}EZ—S =2 (3) : (2.3.12a)

Tn

while in the anomalous regime:

- s\ —1/3
% _ g (—i) . (2.3.12b)
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Hagen-Rubens regime Relaxation regime
z <1 z>1

& r? 1 1 _
Re= %% (=345 1 0B (Fhe— gy + Ole )

2
Xo=2%x (14545 +01%)  (VE + gpam + Ol"72)
2
o= (14245 +00%) (o4 =—5k+0[)

b=t (1-5+3 10l (/F + gy + Ol 7/)

Drude metal:
_neer 1
T om  1l—iwT

T =WwT

0, =0o(w=10)

b, = co/(27rwao)1/2

"able 2.1: Correction factor for the electrodynamic properties of a Drude metal in the local regime.

The subscript n, indicates the normal-state value, or the value just above the transition temperature
T,. The dc-value of the conductivity differs between the two regimes. In the local limit o, is given by:

2

w
o = ==, (2.3.13)
while in the anomalous regime:
3
d (2.3.14)

T, = .
7 dqupT

In the superconducting phase g9 3» gy, the local expression above simplifies to:

Z 2a, ( o1 )

>~y ls=-1). 2.3.15

Rn 05 20’2 : ( a)
Using Eqgs. (2.2.7) and (2.2.8), we derive the important relation that R, o w? below T.. In contrast, in the
anomalous regime the surface impedance of a superconductor is approximately:

Zs - 1/3
2 (3-) ("—1 _ i) . (2.3.15b)

2.3.2 London limit and Pippard limit

The electromagnetic response of a superconductor is dictated by three parameters: the mean-free-path, £,
the coherence lenght, £, and the pentration depth, A. The expressions for £ and A differs depending on the
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particular regime. The coherence length £(7") is defined by

qK{g,0) 3w

1% (0,00 — 4E(T) (2:3.16a)

it represents the mean distance between electrons of a Cooper pair. In the normal-state, the former
equation defines also the mean-free-path. The penetration depth gives the length-scale of the magnetic
field decay in a superconductor, it was defined by Eq. (2.2.9) or for specular scattering;

2 fe= dg
MT) = = / . 2.3.16b
(T) TJo ¢+ K(q,w)/4r ( )
The values of £ and A will be expressed in terms of two material dependent quantities, that were defined
on page 3, it was £, the BCS coherence length of Eq. (1.1.7) and Ar, the London penetration depth.
A superconductor may be classified as being in one of the three domains:

o The local regime is characterized by the condition £ < £(0). The limit in which £/£(0) — 0 is called
the dirty limit.

When non-local effects are important, £/£(0} — oo (or clean limit), it is necessary to introduce:

o The Pippard regime or anomalous regime, is that in which £ > £(0) and £(0) > A. This is the regime
of type I superconductors.

o The London regime is that in which £ > £(0) and £(0) < A. This is the regime of type II supercon-
ductors.

In Fig. [2.3] one can fird a schematic definition of those limits, expressed with the three length-scales
(€s,€,Ar). The figure would have looked different if drawn in terms of £(0) and A: two shares of the pie
would have disappeared. It is now worth pointing out that among the six domains that define all the
permutations possible, only three regimes need to be distinguished for the analysis (local, Pippard and
London).

S.B. Nam showed that /0, was equal both in the Pippard and local limits [145] (but the surface
impedance value is different as the relation between Z; and & changes, Fig. [2.4]). The domain of validity
for the Mattis-Bardeen expression is then all of the shaded area in Fig. [2.4].

283 K(a)lss

The zero-frequency limit of the Kernel describes the penetration depth. The ¢-dependence of the Kernel is
represented in Fig. [2.5] for different regimes. At zero-temperature, £{0) — 0 in both the local and London
limits: for both cases the g-dependence of the Kernel is negligible (scales as 1/£(0)) and K is dominated
by the q = 0 part:

K(q,w =0) ~ K(0,0}. (2.3.17)

Notice however that the (0, 0) value differs between the two limits, but the surface impedance expression

(specular and diffuse) is identical.
On the other hand, in the Pippard limit £(0) — oo; the ¢ = co behavior of the Kernel determines the

integrand of Eq. (2.2.13a). At large q, the Kernel K(q) varies as 1/¢:

37 1 1

K(q)=
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Fig. [2.3]: Schematic representation of the definition domain ~ Fig. [2.4]: Schematic representation of the validity domain
for the local, London and Pippard limit. of the Mattis Bardeen expression.

As mentioned above, the conductivity value is identical in the Pippard and local regime but the
penetration-depth value differs as it depends on the g-integrated value of the conductivity. The tem-
perature dependence of the penetration depth A(T') is regulated by the parameter S defined as:

_ AT A(T)
S(T)= A00) tanh TnT (2.3.19)
Using Eq. (2.3.5) in the local limit [145):
AL £
= /=5(T), 2.3.20
i~ e (2:5:20)
or can be expressed equivalently [178]:
gy TA(T) A(T}
— = tant . 3.
p " anlngT (2.3.21)
In the anomalous regime (diffuse scattering):
: /3
A 3r2 Ap !
= | —=—5(T . 2.3.22
Ap(T) [ g )} ( )

The different results are represented in Fig. [2.6].

Only the London limit has not been covered yet by the discussion. In this regime, the temperature
dependence of the penetration-depth is given by the Yosida function [199], with behavior similar to that
observed in spin-susceptibility. The purpose of the next part is then to study the crossover from the local
to the London limit, where by definition:

MTY? &)
[AL(T)] = (2.3.23)
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2.3.4 K(w)|g=o> impurity effect
The temperature dependence of the coherence length follows from the expression:

1 1 N a(T)
§r)y ¢ &
where the value of a(T'} is derived from the Far-Grover sum-rule [188]. The function a(T") decreases
monotonically from (T = T,) = 1.33 to o(T' = 0) = 1.
As we know already, the spectrum of oy (w} is a conserved quantity and its weight is fixed by the plasma
frequency:

(2.3.24)

o] w2
/ o1{w)dw = -83. (2.3.25)
0

The conductivity obeys case 2 coherence factors and the missing area A in the spectrum of a supercon-
ductor at zero-temperature, creates a Dirac é function (the goldstone mode) at w = 0 that represents the
electromagnetic response of the superfiuid fraction (Meisner effect). The Kramers-Kronig relation implies
that:

2A 2 1

= = —= . 2.3.2
77w dmw MT)? (2:3.26)

The formula for the penetration depth is then simply related to this missing spectral weight:
CO
VBA~

It is clear from the Fig. [2.7] that A depends on the value of the scattering rate 1/7. The figure uses the
Drude model to explain the impurity dependence of the electrodynamics.

MT) = (2.3.27)
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shown in the inset. perconducting state (7" = 0) for a Drude metal, the electro-
dynamics properties of the condensate are determined by the
missing spectral weight A that depends on how 1/r compares
with A.

1. For £/w&(0) > 1 or h/7 < A(0), the London limit:

2
[
A= EE and AL{0)=Ap, (2.3.28)
2
1
oy= o 2201 (2.3.29)
4rw T wT

2. For £/n£(0) < 1 or h/T < A(0), the local limit:

72 A(0)ey, o
A= ?_EH_ and )\[(0) = /\L ?, (2330)
0‘2(0) _ TI'A(O)
e (2.3.31)

A complete mapping of the height and width of the coherence peak, going from the local to London
limit was done through computer simulations and the result is plotted in Figs. [2.9] and [2.10]. The Mattis-
Bardeen result is recovered for small mean-free-path. The obtained values are identical to the predicted
results of Chang and Scalapino [43].

Another question then rises: how does the shape (width and height) of the coherence peak change if
the scattering rate 1/ varies with temperature? The dominant effect is the temperature dependence of
the normalization parameter (o, o« ) and in general 0,(7' < T.) is not easily accessible (one can drive the
sample normal by applying a magnetic field above H,2, but then one has to solve other associated problems,
like magnetoresistance effects etc...). The experimental data is usually only divided by the measured value
of oy just above T, without taking account of the change of the o, value below T.. The theoretical fit
however can include any arbitrary 7(T) function and some examples are shown in Figs. [2.11] and [2.12].
In the two figures the change of 7(7') in Eq. (2.1.10) was also taken into account as a second order effect.
The main conclusion is that the shape (width and height) is not very seusitive to the temperature variation
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Fig. [2.8]: Characterisation of the coherence peak height ¢1* and width T in reduced units.

of 7{T") and a linear temperature dependence, 7(T,)/7(T) = (T/T.)* with a=1, has almost the same shape
as the direct BCS result {(@=0). One need some drastic variation {& > 3) to change the shape apreciably,

and this affects primarily the width of the peak.

2.4 Strong coupling

One of the fundamental assumptions of the BCS model is that the attractive pseudo-potential between
electrons can be approximated by a two-square-well form. More elaborate solution have been attempted
by taking into account the retarded nature of the interaction between the electrons (life-time effect are
introduced through an imaginary component in the gap, A = Ay 4+ iA;). Those effects are important for
materials with large coupling constants. In the model, the gap depends on the quasiparticle energy (w)
and the form of A(w,T') fits the exact electron-boson (phonon) spectral density a?F(w) of the element.
The Coulomb coupling constant x is:

K= 2] doa? T (2.4.1)
0 w
The equivalent of the cut-off frequency introduced by BCS, is the average boson {phonon) frequency:

Wiy = exp (% /Doo ln(w)azi(w)dw) . (2.4.2)

In this case the Eq. (1.2.18) developed by BCS is replaced by

2A00) _ 4 5 [1 +12.5 ( L. )2111 ( L. )] , (2.4.3)

kT, Win Win

which is a simplified form of the Allen-Dynes equation [6). Strong coupling modified the density of states
divergence:

Ny(w) w
Na(w) i (\m) (2.4.4)
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London and local regime. The quantity ;* is defined in

Fig. {2.8].

‘The gap edge is defined by the equation A; = A(w = A,T). The important conclusion is that strong
coupling attenuates the singularity in the excitation density of states [7] and thus decreases the size of the
coherence peak [62, 133]. An evaluation of the effect can be obtained by replacing A; = Apcs(T) and
Az = A, in Eq. (1.2.18). For completeness, it is useful to recall Fibich’s result [60] for Al:

M) s [gg%]l’f" (" (245)

In the London limit, the effect is more subtle and requires a knowledge of the renormalization factor
Z{w):

(2.4.6)

T w
Zltwy,) =14 — wliw,, — iw e
(#n) Wy ; (fwm n)\/uﬂm + A2 (iwn, )’
which depends on the impurity and coupling constants. The notation used the nth Matsubara frequency
wy, = tkgT(2n — 1) that simplifies thermally averaged expressions:

= o F(w)
Z Fiwn) = 2nkgT Jo exp(w/kgT) + 1"

n=—00

(2.4.7)

The end result was derived by 5.B. Nam [146] in 1967, in the London limit the surface impedance of strong
coupling superconductors is

. -1/2
w 4 i Aiw,)
—Zs = | =z N{0)e*op?T = ) 4.
= GO T L g S A P (245
to compare with the local limit expression:
. —1/2

w ., . 8 2 Aiw,) ! .

—Z,(T) = | =aN(0)e®vp2rT —_ 4.

. (T) 37 (0)e“vg T Z o7+ A (i) (2.4.9)

n=1
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Fig. [2.11]: Change of the coherence peak shape for a tem-  Fig. [2.12]: Change of the g2(T") using the same parameters
perature dependent scattering rate that follows various power  as in Fig. [2.11].
laws, with A/7(T:) = A or {/nf. = 1.

Strong coupling also affects the width of the coherence peak. As the gap value gets larger, the opening
of the single particle gap gets faster, JA/0T increases near 7. It implies that as the coupling constant
increases, the temperature scale shrinks near T, and this decreases the width of the peak in oy. This

situation is best seen in Figs. [2.13] and [2.14], where the coupling value is changed while keeping BCS
formalism intact.

2.5 Nuclear Magnetic Resonance

We shall review very briefly the basic properties of NMR in superconductors. Full details of this subject
can be found in varions references [181, 196]. Nuclear moments are extremely weak compared to any other
energy scales in a metal. For example, the nuclear dipole interaction is of the order of 14K at I Tesla and
the nuclear Zeeman spliting is three orders of magnitude smaller than the electronic splitting. The aim is
to measure the nuclear susceptibility by the use of resonant technique. In a metal, the nuclear moment

is coupled to the electronic degrees of {reedom through the hyperfine interaction, that has three different
terms:

1. the contact term of purely quantic origin; it represents the finite probability for an electron to be
located at the nucleus position. The contact term is non-zero for s-electrons solely. Usually electrons
in complete shells do not contribute to this effect (unless there is core polarization). Also, for most
metals, the contact term is the dominant interaction between the nucleus and its electrons.

2. the dipolar term, that is the interaction between the nuclear dipole and the electronic one. This term
vanishes for any nucleus with a cubically symmetric electron cloud.

3. the orbital term; that is, the finite magnetic field at the nucleus created by the motion of the electrons

around it. This term vanishes for most transition elements, as the orbital moment is quenched (or
averaged to zero) through crystal distortion (Jahn-Teller or crystal field effects).

To investigate the electronic degrees of freedom, one can measure three different parameters:
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particle gap opens with decreasing temperature.

2.5.1 Frequency shift

The resonarnce line position depends on the local magnetic field at the nucleus. A shift in the resonance
implies that, at the nucleus position, the externally applied field is partially enhanced (or screened) by
the static field created by the electrons. In metals, the resonance frequency is usually shifted to a higher
value, independently of the temperature: the dominant effect is then the contact interaction and the shift
is called the Knight shift, ;. The magnitude of K, is proportional to the spin susceptibility.

It can be shown that the spin susceptibility of a superconductor is given by the expression:

Xs(qyw) = —‘2”62 Z
k

1 1
N [(Ek+Ek+q Tho —ihj7 | By F Bppq + Pt m/r)

1 1
* (—Ek + By q— - ih/T * —Ey+ By g +he+ ih/r)
X [f(Ey) = F(Byey g Nugug o + vikarq)z] : (2.5.1)

where we recognize the same expression as for the complex conductivity, with the usual coherence factors
(cf. Eq. (2.1.10)). The qualitative q dependence of this function is shown in Fig. [2.15] at low temperatures.
The temperature dependence of the spin susceptibility for a uniform field was calculated by Yosida in 1958
[199] (cf. Fig. [2.16]).

d
xs(a=0)=—2p") ﬁ. (2.5.2)
k

The theory predicts that the shift decreases to zero at T=0K, while experimental results have always
observed a finite susceptibility at low temperature. The reason for this discrepancy is still unclear today
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practice x:(0,T) (Yosida function) saturates to a finite value

at T =0, in disagreement with the model.

[1] and several mechanism like orbital paramagnetism, surfacic spin-orbit coupling have been suggested.
A good discussion on this matter can been found in Schrieffer’s book [178] between pages 245-248. Notice
also that performing nuclear magnetic resonance in bulk samples, whose dimensions are larger than the
penetration depth, leads to spurious effects caused by the screening of the magnetic field from the inside
of the sample and contribute, in particular, to a shift of the resonance.

2.5.2 Linewidth

The resonance line has a characteristic width, T, because usually a given nucleus at various crystal sites
is effected by a slightly different magnetic field. An obvious cause of this distribution is inhomogeneities
in the crystal: it then represents the intrinsic resolution threshold. Also, a type I superconductor, in an
applied magnetic field whose magnitude lies between the lower and upper critical field, developes a mixed
state formed by an array of magnetic vortices, causing an increase in the linewidth. Another common cause
of the line broadening is that the nuclear energy levels have a finite width, proportional to the life time
of the nucleus (or relaxation time, 7y). This result is a direct consequence of the Heisenberg uncertainty
theorem:

h

(2.5.3)

The last main contribution for line broadening is the dipolar interaction between nuclei. This effect cancels
out for sites of cubic symmetry. For other sites of lower symmetry, the effect can be averaged out by spinning
the sample at a particular angle 8, (the magic angle) from the static fleld where:

1~ 3cos® 8, = 0. (2.5.4)

2.5.3 Nuclear spin relaxation time

An introduction was already given page 6. As mentioned, for most metals the dominant term in the
hyperfine coupling is the contact interaction. In this case, there is a simple relation between the nuclear
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spin relaxation time (73) and the frequency shift K, and it is called the Korringa law:

h e\ 2
-2 fe
BTK? = (%) . (2.5.5)

The expression for the interaction is:

e = 3 1O [Lafyying - i)
kK

+ I+f”;<’1,f‘k1‘ + I‘&L’T&kl] , (2.5.6)

where [$(0)[? is the probability of the Bloch function at the nuclear site, and I, is the nuclear spin
(Iy = I, +iL,).

The height of the peak depends on the magnetic field. The equivalent of the photon energy is the
electronic Zeeman energy and the cut-off energy of Eq. (1.2.18) is hw.. Another effect is the finite lifetime
of elementary excitations. A last possibility, is a distribution in the magnitude of the gap [12]. This
suggestion was advanced as an explanation accounting for the experimental findings on Al [85]. However,
an experiment on indium with different degrees of purity showed later unambiguously that this is negligible
[39].

A type Il superconductor (£ < A) in an external field falling between the lower and upper critical field
limits, is in a mixed state made of vortices that are arranged in a two dimensional array of triangular
symmetry. The inside of the filament is normal on a length scale £(7'), while the surrounding superfluid
screens out the magnetic field on a length scale A(T"). As mentioned before, this mixed phase broadens
the resonance line (the shape depends on the array structure). The excitation spectrum depends strongly
on the value of the mean-free-path £ and how it compares with the coherence length £(7). Again the net
effect is to change the shape of the density of state spectrum and, in particular, to remove the singularity
at the gap value. Also, because there are normal electrons inside the vortex core, the relaxation is not
homogeneous: at low temperature normal electrons relax faster than the few remaining quasiparticles in
the superfluid region. A non-exponential behavior is then observed, and people use a stretch exponential fit
to extract 7. Some other tricks are used to homogenize the relaxation, the principle being to move around
the vortices array and obtain a spatial average. The techniques include rotating the sample with respect
to the applied field or adding a large low frequency magnetic field modulation to the static field. Other
methods are field cycling techniques, that are suitable for very slow relaxation process. The principle is to
magnetize the sample with a strong static field and then remove the sample at a constant temperature and
study the decay in the absence of any externally applied field. The size of the coherence peak is directly
affected by the value of the magnitude of the static field, the higher the field, the bigger the cut-off Zeeman
energy and the smaller the height of the peak; the sensitivity of the technique goes as the square of the
magnetization. Field cycling techniques are the best compromise of sensitivity vs. signal.
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Chapter 3

Experimental Techniques

The techniques used to measure the electrodynamic response of solids divide in different categories de-
pending on how the wavelength compares to the sample size. In the short and long wavelength limit,
a same device can cover a wide frequency range, but spectroscopy in the intermediate regime (1 cm™!
to 10 cm™!) practically necessitates a set of instruments for each frequency as light diffracts with most
laboratory sized objects. This incomplete frequency coverage can be partially compensated by the use of
resonant techniques and narrow band detection schemes to achieve a higher relative sensitivity.

3.1 Resonant cavities

3.1.1 Bandwidth and characteristic frequency

Above a lower cut-off frequency, a cavity can sustain many standing-wave modes and near each resonant
frequency, the power absorption spectrum has a Lorentzian shape [97):

1
4w — wo )2 + (27T)2’

Alw) = (3.1.1)
where f, = w, /27 is the center frequency and I is the bandwidth or full frequency width at half-maximum.
Both f, and T' are the two characteristics of the resonator. We often refer to another redundant parameter,
the quality factor  of the cavity, define as:

fo _ wo V>

Q=2

2= (3.1.2)

where <3V is the time-averaged energy stored in the cavity and L the energy loss per cycle. The Lorentzian
shape spectrum can be simply formulated by the use of a complex resonance frequency:

W

- 155, (3.1.3)

W= Wy

where all fields have a time dependence of the form e=**,
3.1.2 Quality factor
There are two main loss mechanisms in the cavity: ohmic and radiative (losses through the coupling holes),
and they both contribute in an additive way:
1 1 1

@ - % + E’ (3.1.4)
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fo Q d h Ve
GHz @300K mm mm mmd
7.5 20,000 57.28 38.19 98411
9.2 25,000  43.90 39.20 59,334
12 15,000 358 23.87 24,027
35 13,000 12.44 7.90  960.2
60 7,500 7.5 477 191.5
100 7,000 4.21 2.81 39.1

150 4,000 2.86 1.91 i2.3

Table 3.1: The resonant frequency f., quality factor 2, diameter d, height h and volume V. for each of our cavities in the
micro and millimeter wave spectral range.

where () represents the total loss (loaded cavity), @q the Ohmic loss in the walls of the resonator (sample
included), @, represents the radiative losses.

(g is proportional to the ratio of the volume occupied by the fields to the volume of the conductor
into which the fields penetrate [97] :

_ Y
- 25,

The sensitivity of a measurement is proportional to the resonator ¢, so the highest possible quality
factor is desired. As indicated by Eq. (3.1.5), maximizing the volume to surface area ratio, generally
increases the cavity ¢. This fact together with some other mechanical constraints (a sphere is difficult
to tool) has led to the widespread use of both cylindrical and rectangular cavities. The sensitivity is also
proportional to the sample to cavity volume ratio, the sample filling factor. A simpler analysis requires
the fields to be constant over the length of the sample and lower order modes are generally used.

All our cavities are made of Oxygen Free Copper (OFC), with walls anneal for 48h at 200°C, acid etch
and then manually polished down to 0.3 pm, and the obtained € has a typical value of approximately 10*
in transmission.

Qu (3.1.5)

3.1.3 TEOH mode

These cavities are made of copper and consist of an annular cavity body on which two flat endplates can
be mechanically attached with screws. The field distributions within the cavity are shown in Figs. [3.1,3.2].
In this mode only circumferential currents flow, both in the cylindrical walls and endplates, making both
the field distribution and €} virtually independent of the quality of the contact between the body-walls and
the removable endplate, as no current flows between them. This allows one to open the cavity to introduce
the sample without a subsequent degradation of the (). Unfortunately, this mode is also degenerate with
the T'M;3; mode. As the two modes have different field distributions, the degeneracy can be removed by
slightly modifying the shape of the resonator at a position of an anti-node of the undesired mode. In our
case, the mode splitting is accomplished by cutting small grooves at both the top and bottom edges of
the cavity body as shown in Fig. [3.3]. The grooves are at an anti-node position for the T'M mode but
at a node for the TE mode. The net effect is that the TM mode sees an effectively larger cavity and its
resonance is shifted to lower frequencies.

The diameter, d, to height, A, ratio of the cavity should be chosen carefully in order to both optimize
the @ of the T Ep11 mode (maximum with d/h near 1) while also minimizing the density of modes near the
desired resonance frequency. We have chosen a ratio d/h ~ 1.50 for most of our cavities, as it represents
a good compromise, In Table [3.1] we present the cavity sizes we use at each frequency.
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Fig. [3.1]: Magaetic field lines inside a cylindrical cavity Fig. [3.2]: Electric field lines inside a cylindrical cavity res
resonating in the TEpi; mode. Both the maximum mag- onating in the TEp;; mode. The position of the maximum
netic field in the cavity Hmaz, position 1, and on the endplate  electric field Eonag, position 3, is also indicated on the Figure.
Hend | position 2, are indicated on the Figure.

3.1.4 Coupling holes

The excitation of a particular mode is done through a coupling device that connects a similar field pattern
in both the waveguide and the cavity. It has been found experimentally that coupling through a small hole
in the cavity wall (at the magnetic field anti-node) is much less temperature dependent than coupling to
the cavity with a wire antenna. For the T'Eqy; mode, we use a coupling through the top plate (for practical
purpose) and the hole is located at 48% of the radius of the cavity (from the cavity center) and at the
center of the connecting waveguide as shown on Fig. [3.4]. We use a 0.010” thick OFC copper coupling
plate. Care must be taken not to bend it, and the plate is flush against the waveguide in order to avoid
cross-talk that will distort the resonance.

As mentioned earlier the highest @ is desired, that implies that one coupling hole with the minimum
diameter (undercoupled) should be favored. Unfortunately working with one coupling hole (i.e. in the
reflection mode) gives rise to an undesirable effect: as the frequency is changed, some large distortions in
the base-line occurs, due to the formation of standing waves in the wave-guide. In practice, the use of
reflection cavities is limited to frequencies less than 20 GHz. Above this threshold, we are forced to use
the resonator in the transmission mode, where two coupling holes are drill. The main advantage is that an
uni-directional isolator can be inserted in the output wave-guide to prevent the formation of interference.
This improvement is paid by lowering the total @ of the cavity.

3.2 Amplitude technique

3.2.1 Principles

Conventional techniques measure f, and I' by sweeping the source frequency over a sufficiently wide
frequency window to cover the full absorption spectrum of the resonator and fit the transmitted power
with a Lorentzian. A more precise way of measuring both of them is to use a narrow bandwidth source
(bandwidth smaller than T') that operates at the central frequency of the cavity: f, is then the frequency
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cies while leaving the TEg1) mode undisturbed areillustrated.  coupling holes are also at the maximum magnetic field of the
waveguide.

of the emitter and the bandwidth of the cavity is related to the power transmitted through the resonator.
The coupling of the source frequency F to f, is achieved by modulating the source frequency around F (a
schematic is displayed in Fig. [3.5]); a detection of the in-phase amplitude of the transmitted signal at the
modulation frequency, will measure the derivative of the cavity absorption spectrum, and be proportional
to the error ¢ = (F-f,) at first order. € is then fed-back into the source to create an automatic restoring
signal that assure the stability of the system. This type of feed-back automatism is similar to the AFC
(Automatic Frequency Control) used in ESR.

3.2.2 Bandwidth evaluation

In the amplitude method one measures both f, and the transmitted power at f,, A(f,). From Eq. (3.1.1),
A( f,) is simply related to the bandwidth by the following relation:

A(f,) = ol %, (3.2.1)

Notice that for narrow bandwidth resonator, it is more appropriate to measure A(f,) than I'. To measure
the amplitude, we chop the power emitted by the source and use an other phase-sensitive detection to
analyze the signal transmitted. The chopping frequency is 3 orders of magaitude higher than the frequency
of modulation to avoid mixing contributions induced by higher order non-linearities.

In Fig. [3.7] we show the measured width together with 1/+/A over a broad temperature range. This
good overall agreement implies that the absorption line has a Lorentzian shape. As shown earlier, the
quantity of interest is AT' which, using Eq. (3.2.1), is related to the measured values of 4, by

Al = T, =T, =( (3.2.2)

05.9 aG )
VA, VAT
where o, and a, are the proportionality constants with the sample in and out of the cavity respectively.
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diflerence is fed back to the source in order to lock F at fo.

By measnring accurately F (with a {frequency counter) and

the amplitude of the signal at f.: A(f;), we can deduce both

Joand I,

We have found that both o, and a, are virtually temperature independent over a broad temperature
range and they are also unchanged by the introduction of the sample into the cavity. Thus, within the
experimental accuracy, a; = @,, and Eq. (3.2.2) can be rewritten in the form

1 1

VAT

where o is the proportionality constant. « is determined by measuring both the width and the amplitude
at one temperature. The fact that o is independent of both time and temperature has been checked
experimentally on the scales needed for the experimental studies (7 < 100 K and ¢ < 48 hours). The
independence of o implies the following:

AT = Ty —T, =«

(3.2.3)

1. The coupling of the cavity is essentially unchanged over a broad temperature range.

2. The power of the source is constant over the time scale of days and that it is independent of frequency
over a frequency range of approximately 10 MHz.

3. The coupling constant is independent of the introduction of the sample into the cavity. This implies
that the field distribution is not drastically changed once the sample is introduced.

These experimental facts are only true over a limited range of sample size.

It should be noted that the amplitude of the transmitted signal is very sensitive to any absorption or
radiative process and care must be used to ensure the reproducibility of the measurement. In particular,
when the cavity is opened to remove the sample one must consider the reproducibility of the following
factors: quantity of exchange gas, liquid He levels, and the waveguide flange connections.
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3.2.3 Experimental set-up

In this setup (shown in ¥ig. [3.6] the microwave power is directed toward the cavity in a rectangular
waveguide through a ferrite isolator. A 10 dB coupler is attached to a broad band mixer, which in turn
is connected to a microwave frequency counter EIP 578B. The counter is capable of reading frequencies
up to 110 GHz. By averaging the measurement a 100 times, we can evaluate the central frequency of the
source with an accuracy better than 10 ppm. Next we put a modulator, that chops the microwave power
at a frequency of 100 kHz. After the cavity, the microwave pass through another ferrite isolator before
reaching the Schottky barrier diode detector, sensitive to the micro-wave power transmitted.

Typically the source is either a Gunn diode (35, 100 GHz) or an Impatt source (60, 100, 150 GHz).
These are low noise and low power devices (less than 100 mW) that are readily available. In either case,
the central frequency of the source is assigned by a dc voltage V linearly related to F up to a very good
degree of accuracy, enabling us to change F by step lower than 1ppm. The total frequency of the source
F} is the sum of the central frequency ¥, modulated by a time dependent signal f(t):

F,=F+ f(t) (3.2.4)

The modulation of the frequency f(t) about F has a sawtooth form with a period of typically 10 ms
(100 Hz) and an amplitude less than 1% of the resonator bandwidth. The detected signal is amplified
and analyzed with a phase-sensitive detector PAR 5204 whose reference arm is the 100 Hz sweep signal.
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The de-output of the lock-in is then added (with a variable gain} to V. A computer aided program correct
constantly F' as to minimize the fed back voltage. The microwave source that we have used in the present
report is wether an Impatt source at 60 GHz driven by an HP 8350B sweep oscillator or a Gunn diode at
35 and 100 GHz. In the case of the Impatt source, the driving voltage (dc 4+ modulation) is already built
1 the HP sweep oscillator. Tor other frequencies, the 35 and 110 GHz, a Wavetek power supply generates
the saw-tooth medulation, the dc being controlled by an IEEE interfaced dc power supply (HP 66324).
Another phase-sensitive detector PAR 5204 is used to measure the amplitude of the power transmitted at
fo and its reference is the chopping frequency of the modulator.

3.3 Perturbation of boundary conditions

Most techniques using resonant cavities, measure the influence of a foreign body on the characteristics of
the resonator. The idea is that the boundary conditions at the walls (partially fixed by the specimen)
decides the field structure in the resonator, on which depends f, and T. A direct evaluation of the complex
conductivity & = oy + ¢y necessitates the measurement of two independent variables. In fact, the second
parameter is also conjugate of the first through the Kramers-Kronig relations, and its evaluation is possible
if one variable has been measured on a wide spectrum. The technique described, measure at the same time
to a high accuracy the both characteristics f, and I, enabling a direct evalunation of 4.

3.3.1 Definitions

There are many ways to equivalently express the response function of the system to an electromagnetic
probe. Since they ease analogies with the static case, they will be used extensively in the following and it
is therefore useful to review them briefly. The complex permittivity is defined as:

E=¢€1 4 16y = €5, + 47ri%, (3.3.1)

where €, is the permittivity due to the high frequency response (preferentially single out). It defines a
complex refractive index /¢ and a complex wavevector inside the medium:

k=< (3.3.2)

The skin-depth § is the characteristic wavelength inside the compound & = 1/S(k). The complex suscep-
tibility is related to the dielectric constant through the relation:
é—1

dr -

Xe = (3.3.3)

In the case of magnetic materials, a complex permeability 2 is used. The magnetic sasceptibility is defined
as:

fi—1
X = (3.3.4)

I}

The susceptibility represents the generalized {first order) response of the system to an external perturbation,
and both [120] the real and imaginary part are related through the Kramers-Kronig relation [97].

3.3.2 Depolarization factor

It is important to separate effects of independent origin: the properties of the compound from the sample
dimension or its geometry. A trivial factor is the volume of the sample (assuming that the material is
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isotropic and homogenous [137]). The remaining term can be factored by a subtle use of the linearity of
Maxweil’s equations: a sample in an externally applied field (the field far from the sample surface, denoted
by calligraphic letters) possesses a local field (or field in the sample, written in capital letters) that can
be expressed as the sum of the applied field plus a correction field (the depolarization field) proportional
to the former. The correction factor is both proportional to the susceptibility x of the compound and a
geometrical part, n, the depolarization factor, a 3 x 3 matrix and rank one tensor defined as follows:

E =& —4rnP in the electric field, (3.3.5a)
H =H-4rnM in the magnetic field. (3.3.5b)

P and M are the polarization or magnetization of the sample, respectively; they are both the product of
the susceptibility times the local field:

P = XEE'.' (336&)
M =y, H. (3.3.6b)

This definition of the susceptibility must not be confused with the polarizability & defined by:

P =&k, (3.3.7a)
M = anH. (3.3.7b)

Both are related through the Clausius-Mosotti relations [97]. In general the depolarization field is spatially
dependent. However for ellipsoidal shaped samples a uniform external field produces a uniform depolar-
ization field inside the specimen [97] (the demagnetizing field for non-ellipsoidal bodies was studied by R.I.
Joseph and E. Schldmann [100]).

A useful relationship exist among the matrix elements of the depolarization tensor: in its principal
basis the trace is equal to the unity: (n, 4+ n,+n, = 1}. Osborn [155] calculated in 1945 the depolarization
factor of a general ellipsoid. Let a, b and ¢ be the sample dimension along the three cartesian axes z,y and
z respectively, with the assumption @ > & > ¢ > 0. The formulas for the different factors are:

cos ¢ cos
- ——— [F'(k,6) — E(k,0)], 3.
ne = 200 1p(k,0)  E(,0) (3.3.82)
cos ¢ cos 2
Ek G {1 k)P (k8
o E Ty PO - (- K0
k?sin 6 cos @
- .3.8b
— } (3.3.8b)
cos¢cost  [sindcos¢ ]
S (1—k2)sin®4 [ cosf E(k’g)}’ (3.3.8¢)
where
cos$ = bla, (0<$< g), (3.3.92)
cosf = e¢fa, (0<6< g), (3.3.9b)
k = sing/siné. (3.3.9¢)

F(k,0) and E(k,8) are the elliptic integrals of the first and second kind: & the modulus and 8 the
amplitude. The values obtained for degenerate shapes are listed in appendix A.
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3.3.3 Polarizability

The principle of the technique is to measure separately the characteristics of a cavity, first empty (o) and
then after loading it with a small sample (s). The variation induced is

AG = Gy — By, (3.3.10)

If the change A is adiabatic, then the product of the period and the time averaged energy stored is
invariant [160] (Boltzmann- Ehrenfest theorem [33]):

W
2 = constant. (3.3.11)
@
This implies that
AGV> Ao fi—f, 1‘(1 1)
77 —-——fo s\ "o,/ (3.3.12a)
1 .
- m_f (EDI? + [HE))dv, (3.3.12b)
167 Jv,
1
A V> = —4—/ (P-€* 4 M-H*)de. (3.3.12¢)
. VS

In our definition, A is the variation caused by the introduction of a foreign body in the resonating structure:
Af is the frequency shift and AT is the sample absorption. By convention, when the (r) dependence is
omitted, then the implied value is the sample position.

If we put the sample in the antinode of the electric field {H = 0), then

P = degg (3313)
Ao Ge . |E?
— = -V = —dnvé,. 3.

” Ve s 4dryév (3.3.14)

where &, is the polarizability of the sample and v is a constant that depends only on the resonance mode
of the cavity:

IR, v P
7T Teravs ° T V. 24E€5
4En = %fv 18 () Pdv. (3.3.15D)

(3.3.15a)

The values of the constant v are given in the appendix B for the TEg;; mode. We define ¥, the mode
constant. For the electric field configuartion (position 3):

€17

= e (3.3.16)

If the sample is in the antinode of the magnetic field, Eqs.(3.3.13)- (3.3.15b) will be identical except £ will

be replaced with H and P with M.
In conclusion, the absorption of electromagnetic waves by small particles is proportional to the polar-
izability of the sample:
A .
- = ~AT Y G (3.3.17)
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3.3.4 Limiting cases

In this section, the polarizability will be derived in a few limiting cases. The general solution for a sphere
will be given later.

ka < 1
For low conductivity compound, we have a < &, the so-called depolarization regime (2a is the sample

dimension). In the regime where ¢; < (1~ n)/n + €, the magnetic polarizability is negligible compared to
the electric. In the electric field anti-node, the field inside the sample is:

&

F ——u—
14+n(e—1)

(3.3.18)

where 7 is the depolarization factor along the external field direction. Replacing the value in Eq. (3.3.7a),
one get an expression for the polarizability:

1 é—1

T ETE e (3:3.19)

The measured parameters are thus:

1 (L _ i) _ €2 (3.3.20a)

5 Qs Qo K [1 + n(€1 - 1)]2 + (n€2)2 ’
fi=fo _ __(a=1+n(a—1)]+ne?
T, = — Ttn(o - DE+(ne)? (3.3.20b)

This relation was pointed out by Buranov and Shchegolev in 1971 [37].
Il e > (1 — n)/n+ 1, the electric part of the absorption becomes small and the magnetic absorption

may be important. In the limit |&| > 1:

Lo 1 1 1-n 113
= 4 (1 Tw T T 0 H ) : (3.3.21)
Implying:
(-3 - ol
2 (Qs Qo) B Fyl'néf2 +0 € ’ (3322&)
fs=fo _ =¥ €1 [1]2
T PR TOE (3.3.22b)

For ka < 1 the magnetic polarizability is computed from the same expression as Eq. (3.3.19), where the
permittivity constant € is replaced by its permeability £. A non-magnetic metal has a dc-permeability
ttdc = 1, and the high-frequency correction value goes as (ka)*:

Lo (1), (3.3.29

Hdc «

where o is a geometrical constant: @ = 10 for a sphere or &,, = 1/4077(!"60,)2.
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fca>>1

When the conductivity increase further, the skin-depth § becomes smaller than the sample dimension 2a
(the skin-depth regime). Then the absorption is given by the time averaged energy flux of the Poynting
vector through the surface of the metal:

Co S Co + (2 -
<S> = g?FEli X H” = _S_TFZS|HI|| n, (3.3.24)

where Ey and H)| are the electric and magnetic field respectively, in the plane of the surface and # is a unit
vector along the outward normal to the surface. For a good conductor, E and H; — 0, while E, or Hj,
are proportional to the external electric and magnetic field respectively (the factor depends solely on the
sample geometry). In both cases, the loss is caused by the induced eddy-currents of an effective surface
current density:

Co

The current is proportional to the external field, independently of the sample conductivity (current-driven
excitation) and the loss is thus proportional to Z; in all cases. As shown in Eq. (3.3.12a), the energy
dissipated in the sample is responsible for the variation of the complex frequency of the resonator. If we
refer to the perturbation Ad (the variation caused by the introduction of the sample in the empty cavity),
we have to include a real additive constant, lim| Flo oo D@ /Wy, that represents the shift of the resonance
frequency caused by the excluded volume of the field when the body tends to the perfect conductor limit.
This offset is called the metallic shift and depends on the volume of the sample, its geometry and its
position in the resonator. For a sample in the skin-depth regime, A® is thus simply related to the surface

impedance:

80 _ g7, 4 lim L2, (3.3.26)

!
{Gl—oo ~°

The proportionality constant £, depends on the geometry of the surface and its dimension: it is called the
resonator constant. For easier handling, we define a new variation:

A ¢z, (3.3.27)

where A’®/w, is the theoretical change in @ measured from the notional perfect conducting state of the
sample, where the penetration depth is zero (i.e. the same body is a loss-free object in the skin-depth
regime: Z; = Q or |6 — oo ).
This implies that:
AT = AT, (3.3.28a}
A'f = Af- lim Af. (3.3.28b)

|T]—e0

A’ f will be called the perfect conductor frequency shift.

3.3.5 Endplate technique

If the sample dimensions exceed the cavity diameter, the endplate can be replaced by the sample, as
illustrated in Fig. [3.8]. This is the so-called endplate technique and certain other restrictions apply:

¢ The conductivity of the sample should be large enough that the cavity € is not significantly altered
by radiation losses through the endplate. This requires the skin depth to be less than the sample
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Fig. [3.8]: Diagram of the setup used for the end-plate measurement of the surface impedance. The end-plate has been
replaced by the sample under investigation.

thickness. It should be noted that some corrections for radiation leakage are possible, but one must
include the effects of a substrate or any other material near the cavity endplate [54].

¢ As a circumferential current is induced in the cavity endplate, the sample should be nearly isotropicin
the plane of the endplate (i.e at least a two-dimensional (2D) conductor). As the in-plane anisotropy
is increased, the field distribution inside the cavity is expected to change, which would also change the
cavity ¢ and all the corrections required are not well understood at. this point. However, materials
with a mild in-plane anisotropy, like the High T, Superconductors, where the in plane anisotropy is
2-5, have given results in the endplate technique which are consistent with measurements made in
other ways [108, 53].

¢ The sample has to be flat over a distance of the cavity diameter.

¢ In addition, the surface of the sample should be smooth down to the length scale of the skin-depth
(or penetration depth).

As can be seen in Fig. [3.1], only the radial component of the magnetic field is non-zero at the cavity
endplate and hence circumferential currents flow in the plane of the endplate (¢ direction). In this case, the
in-plane conductivity is measured and, unless the sample is large enough to polish several perpendicular
faces, the anisotropy cannot be extracted.

3.3.6 Perturbation technique

If the sample dimension is much smaller than the wavelength, one can introduce the sample inside the cavity
at the antinode of either the electric or magnetic field, The position of both the maximum magnetic, Hypaz,
and electric, En,;, fields are shown in Figs. [3.1,3.2] for a cavity in the T Ey; mode. There are several
important points to note:

o The direction of current flow within the sample differs at the electric or magnetic antinode, and this
permits a direct measurement of the loss along a selected direction. This is particularly important
in strongly anisotropic conductors, such as the quasi-one-dimensional (1d) charge and spin density
wave (CDW and SDW) compounds [74].
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o Unlike with the endplate technique, there are no inherent limitations on the range of sample conduc-
tivity which can be measured. Ultimately, the range of sample conductivity which can be extracted
depends only on the sensitivity of the measurement and is determined by such factors as: the sample
shape, size, location, the cavity ¢ and the resonance frequency. Typically, measurements can be
made over a range covering more than 6 orders of magnitude in conductivity.

With both the endplate and perturbation techniques, the cavity must be opened to introduce the
sample and this is usually accomplished by removing the endplate. To position the sample in either F, .
or Hyar, a small quartz rod (diameter 0.20 mm and height A/2) is glued to the endplate at the appropriate
location (see Figs. [3.1,3.2)]. The quartz rod does not significantly alter the cavity @ but does shift the
resonance frequency slightly. The resonant frequency is extremely sensitive to the cavity volume and it has
been found that the endplate cannot be removed and replaced in such a way that the resonance frequency
is not shifted. The shift is due to the mechanical nature with which the endplate is fastened to the bottom
of the cavity and in the 60 GHz cavity a non-reproducible shift of + 2 MHz is typical, corresponding to an
irreproduciblity in the cavity height of + 0.5um. We will come hack to this problem later, where we will
explain how in certain cases this frequency offset can be determined.

E field In the electric fleld anti-node, position 3 on Fig. [3.2], the current flow is only along the field
direction, in the ¢ direction. If the maximum sample dimension Is much less than the field radius of
curvature, one can directly measure the conductivity along any desired direction by properly orienting the
sample. It should be noted that the depolarization factor is generally different for each sample orientation
and thus the sensitivity is not the same for measurements made in each direction.

H field In the magnetic field anti-node, the inductive eddy current flows in a plane perpendicular to
the field and the in-plane conductivity is measured. However, unlike with the endplate technique, the
sample can be easily rotated to determine the conductivity in any desired plane. Depending on the sample
geometry and anisotropy ratio in the plane, one may be able to extract the conductivity along a particular
direction.

An additional drawback of this cavity perturbation technique stems from the difficulty to accurately
arient the sample atop a thin quartz rod. In the magnetic field this problem can be eased by placing the
sample in the position of the magnetic field maximum on the endplate HS¢  indicated as position 2 on
Fig. [3.1]. In this case the sample rests on the cavity endplate and can be easily manipulated. There are

: 3 H : end .
two important facts concerning measuring in HZ"2

e In a TFEp;; mode, the magnetic field at this position is smaller by a factor of 4.18 A/d, decreasing
the sensitivity of the measurement. With h/d = 0.67, the field is smaller by a factor of 2.8 and the
sensitivity is reduced by a factor of almost 8.

o A conducting sample on the endplate alters the field distribution in the vicinity of the sample. This
in turn changes the current distribution on the endplate and causing a slight change in the loaded
(), which does not originate from a loss in the sample.

Normally, we are well above the sensitivity limit and a big advantage is realized by the comparative ease
with which the sample can be manipulated on the endplate. Furthermore, experiments on superconducting
samples have given an upper bound on the loss due to the endplate current redistribution and for small
volume filling factors (typically 107* or less) this effect is negligible. It is for these reasons that the endplate
is the usual sample location for our magnetic field measurements.

We measure usually the perturbation in two separate runs, one with the sample and one without it
(in the case of the end-plate technique, we just replace the sample by a wall made of copper). But at
low frequency (10 GHz), it is possible to introduce a mechanism for rotating the sample in and out of the
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cavity, thus eliminating the need to disassemble the cavity in order to measure the change in parameters.
This is practically impossible above 35 GHz, due to the small size of the cavity.

3.4 Data analysis
3.4.1 Width

The analysis required to determine the width change when the sample is inserted inside the cavity is
trivial. In this case one simply takes the difference of the measured widths with the sample in and out.
However, for the endplate technique, one does not measure the perturbation due to the sample, but rather
the difference in the measured width between the sample and copper endplates. In order to extract the
surface resistance of the sample one of several procedures must be followed. The frequency of resonance f,
and the half-width I' are measured as a function of the temperature in two separate runs one before and
one after the replacement of the copper endplate by the sample.

1
AT = T, —Teow=0of 3.4.1
T T (3.4.1)
Af = fi— fou (3.4.2)
The difference is related to Z; the surface impedance of the sample through the relation:
A
L4 = 89 _ (7, - Zo), (3.4.3)
fo fo
where { Z¢, is the loss of the copper endplate only and € is the resonator constant, given by
—ic3m?
£= P {(3.4.4)

The loss due to the copper endplate can be determined with three different methods:

1. If the temperature is not too low then the surface impedance of copper can easily be obtained by
assuming a simple Drude metal in the Hagen-Rubens limit. However, at low temperatures, the mean-
free-path exceeds the skin depth (the anomalous regime) and this simple expression is no longer valid.
In this case, the mean-free-path is required in order to find Z,.

2. One can calculate the ratio of the losses due to the copper endplate compared with the total losses
at all the other surfaces in the cavity. This ratio is independent of the surface impedance. For a
cylindrical cavity operating in the T Ey;; mode with a d/h ratio of 1.5, 39% of the wall losses occur
on the endplate, If the assumption is made that all of the loses in the cavity occur at the walls of
the cavity (i.e. neglecting coupling and radiation losses) then using Eq.(3.4.3) together with:

£Zcu = 3900y, (3.4.52)
gives
ws ~ 6lwg, = £7,, (3.4.5b)
where the superscripts s and e refer to the sample in and empty measurements respectively.

3. If a superconducting endplate of Nb is used then at low temperatures no temperature dependence is
seen in the width. At this point one can assume that all the losses are coming from the copper walls.
A second measurement with the copper endplate gives the additional losses due to this endplate.
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From our experience, the third method is the most reliable. A typical value for copper at 100 GHz and
4.2 K is Ry ~ 30mQ/377Q ~ 7.96 x 10~°.

3.4.2 Frequency

As mentioned previously, if the endplate is removed the frequency shift f; - fo, can be measured only up
to a numerical additive constant f,. In other words, while AT can be evaluated (as reassembling does not
change the loss), only f; — fou + fo can be measured with f, unknown. f, can be determined in either of
the following two cases:

1. If the sample is a simple metal then it can be shown that

1/2
By _ (~a¢+\/1+$2) (3.4.6)

X, +a + V1 +a?

where x = wr. In the so-called Hagen-Rubens limit, z < 1 and R,= X,. Thus, from the measured
Ry, X can be determined and this is related to the frequency shift. Thus, in this limit the frequency
offset can be determined.

2. The sample is in a superconducting state of known penetration depth A. In this case 03 > o1, Ry~
0, and X; = wA/c, and again, from a known value of X, one can extract the frequency offset.

If none of these conditions can be fulfilled, it is not possible to isolate the part of the measured frequency
shift due to the sample.

3.4.3 Sensitivity

The electromagnetic response of the sample in the microwave cavity can be evaluated from four experi-
mentally accessible parameters: the frequency shift A f, the change in bandwidth AT, the measurement
frequency fp and the temperature 7.

Temperature

In all our experiments the temperature is measured with a calibrated silicon diode attached to the outside
of the copper cavity wall and is read with an error less than 0.05 K. During the data acquisition the
temperature is stabilized by a temperature controller driving a heater. The high heat capacity of the
copper cavity guarantees a large time constant and we usually observe a stability of 0.1 K per data point.
In order to stay close to equilibrium the temperature is changed very slowly (0.1 to 0.2 K per minute). The
sample always has the same temperature as the copper cavity, because either it is put directly on the cavity
endplate or, if the sample is placed on top of an insulating post or tray, radiation and exchange gas provide
sufficient thermal contact. For the endplate technique the direct thermal link additionally guarantees the
proper temperature. This has been checked with measurements of the transition temperature 7 in a wide
variety of superconducting materials. It has also been checked that the microwave power we used has no
heating effect.

The main error of the absolute value of the conductivity measured by microwave cavities lies in the
estimation of the geometrical factor n and . Furthermore there are additional errors due to the uncertainty
in measuring the frequency shift and the change in the quality factor. In the following paragraphs the
accuracy and sensitivity of the frequency and width measurement are both discussed.

Frequency

The main advantage of the amplitude method is that the frequency can be directly measured by a frequency
counter. The oscillator frequency is modulated around the peak at 100 Hz to detect the maximum by a
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T =300 K T=4K
width | amplitude width | amplitude
Afffo | 5x107¢ ] 5x 1077 1 x107% | 1x 1077
AL/2fo [ 1x1077 | 1x1077 ||[5x107% | 5x 1078

Table 3.2: The measurement errors of the frequency shift Af/fy and of the change in bandwidth AT'/2f; for the amplitude
and width method.

lock-in amplifier. This sweep amplitude depends on the sharpness of the resonance, i.e. the ¢ of the cavity,
and is typically less than 1 % of the width. Due to the microwave source the center frequency can not
be adjusted better than 10 kHz, except for 35 GHz where we reach a 1 kHz stability. The uncertainty,
however, is mainly governed by the noise of the source and the stability of the cavity. After averaging
the frequency typically one hundred times we achieve an overall accuracy in frequency measurement of 4+
10 kHz and better. The stability of the source and temperature drift of the cavity prevents the use of a
time constant larger than 30 s. As soon as the quality of the cavity decreases due to losses in the sample
the error of the frequency measurement increased; in order to lock on a broad maximum, the amplitude of
the sweep has to be enlarged. This reduces the frequency accuracy up to two orders of magnitude. On the
other hand, the higher @ at low temperatures allows more accurate measurements. The frequency shift A f
for the 60 GHz-cavity can be measured within 20 kHz and therefore §(Af/fo) = 5 x1077. This is almost
one order of magnitude better than the width method. As mentioned above, a temperature independent,
but unknown frequency offset (of up to £ 2 MHz) has to be added, because the cavity’s endplate must be
removed between measuring the loaded and unloaded cavity.

Bandwidth

In order to measure the amplitude of the transmitted signal with a larger sensitivity, we modulate the
microwave power with a frequency of 10 kHz, and the transmitted signal was phase sensitively amplified.
The sensitivity limit is reached with a cavity ) below 100. The major problem of broader resonances
is, that it was more and more difficult to control the center frequency. Increasing the frequency sweep
results in larger error of the amplitude measurement. The accuracy of the evaluation of AT is given by
the reproducibility of two consecutive runs. The endplate removal does not change the quality within the
sensitivity of our measurements. It turns out, that care has to be taken to keep the same experimental
procedure because the transmitted signal is sensitive to the cooling and warming rate, particularly the
attenuation of the waveguides inside the cryostat is temperature dependent. The temperature dependent
change of the coupling due to thermal expansion of the holes has a minor influence. We experimentally
estimate a sensitivity in the change of bandwidths AT'/2f; to 1 x1077 and better. This is comparable to
the width technique. The estimated uncertainties in our measurements at 300 K and at 4 K, respectively,
are compiled in Table [3.2] for both techniques, assuming small losses in the sample.

3.4.4 Sample orientation

The value of the loss can depend strongly on the orientation of the sample with respect to the field. In a
simplistic way, the enhancement of the depolarization filed {n) follows the radii of curvature of the surface.
Meaning that a needle edge will have a small n, while a flat surface will have a n approaching unity.

50



Restraining our study to cases where the local field is null (E = H = 0), the optimum orientation of the
sample depends on the type of field:

o In the £ field, the sample acquires a polarization Eq. (3.3.5a):

£
P = - R
e (3.4.7a)
in the limit |é] — oo, which corresponds whether to a good dielectric or a good conductor. An
optimum geometry is thus a needle-shaped sample pointing along the direction of the electric field

(n — 0), the so-called edge-effect.

o In the X field, the sample acquires a magnetization Eq. (3.3.5b):

H

= ST (3.4.7b)

in the limit |6] — oo or |fi.;f| — 0, corresponding to a perfect diamagnetic material. The best
geometry is a flat surface sample oriented perpendicularly to the magnetic field direction, such that
(1-n}—0.

3.5 Evaluation of the complex conductivity

Several authors have studied the problem previously: Champlin and Krongard [42] together with Brodwin
and Parsons {34] solved the problem exactly for a sphere placed in either the maximum of the magnetic
or electric field; Buranov and Shchegolev [37] for a prolate spheroid in the electric field maximum when
the electromagnetic radiation penetrates uniformly within the sample (depolarization regime); Cohen [45]
together with work by Ong [152] for a prolate spheroid in the electric field maximum, when the electromag-
netic wave penetrates within the sample a distance which is smaller than the minimum sample dimension
(skin-depth regime). To our knowledge, no general study has been made for a uniaxial spheroid in the
maximum of the magnetic field, nor for an oblate spheroid in the electric field maximum. We intend to
present a complete solution table for these geometries.

3.5.1 Helmholtz equation

The aim is to compute the polarizability of an arbitrary shaped sample. In order to get an analytical
formula, one has to solve a system of Helmholtz differential equations [97]:

V?E(r) = 0 r outside the sample, {(3.5.1a)
VIE(r) 4+ fczE(r) = 0 rinside the sample. (3.5.1b)

k is the wave vector defined in Eq. (3.3.2) (the same equations apply in the H field).

The lowest sample shape symmetry, that has a solution independent of r is the treatment of the per-
turbation caused by an ellipsoidal body; the ellipsoidal coordinates are the most general form of separable
coordinates for the Laplace equation (Eq. (3.5.1b)). In this system the differential equation is called the
Lamé equation, and the solutions are the ellipsoidal harmonics [144, 31]. The ellipsoidal coordinates are
related to the cartesian dimension through the elliptic function of the first and second kind [155]. Solving
the problem for an ellipsoid is appealing because of its generality, but the solution is elaborate (it cannot
be expressed in term of classical algebraic functions) and no new concepts are involved. Thus, for didactic
purpose, we will first look at the simplest case: a spherical sample [119, 42, 34] and later we will explain
how to extend the result to a spheroid (an ellipsoid with a symmetry axis).
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3.5.2 The Sphere

We are looking for a solution of the Helmholtz equation that depends only on the external field £ or H.

We will solve first the problem of a sphere in a magnetic field. Following Landau [119], for the field
inside the sample, we look for a solution of the form A = 8V x (sH), where A is the vector potential
(polar) and H = V x A is the magnetic field. s is the spherically symmetrical solution of the scalar
equation V2s + i's = 0 and B is a constant which depends on the boundary conditions. The only solution
(finite at » = 0) of this differential equation is the zeroth order spherical Bessel function, s = j,(kr). The
solution of the differential equation (Laplace) exterior to the sample gives an external field H sum of the
applied field H plus the induced dipole field 4. By matching the boundary conditions, we compute the
polarizability & of the specimen:

._ 1 m 3 zfi(x)
“= drn -1 (1 n@[le(m)]/am)xz;}a ’ (3.5.2)

where n = 1/3 is the depolarization factor of a sphere, —j1(z)/2 = j/(z) is the first derivative of the zeroth
order spherical Bessel function and « is the radius of the sphere.

In the case of the electric field excitation, inside the sample, we search for a solution of the form
¢ = —pV.(s€) where E = —V{¢) and ¢ is the electric potential.

Because the both cases (electric and magnetic field excitation) are related, it is useful to write the
solution in a more general way. This can be achieved by defining an effective permeability 2 or an effective
permittivity €:

fress = B, (3.5.3a)
éess = BE, (3.5.3b)

where /3 is given by the same expression for the two cases:

b= 3 ( i ~(ka) cos (ka) + sin (ka) i ) . (3.5.4)
—(ka) cos (ka) + sin (ka) — (ka)? sin (ka)

One can use the Clausius-Mosotti [97] equation to get the polarization and the magnetization from the
permittivity and permeability response with

Ae -1 -
Ll e s, (3.5.52)
4r Eopp + 2
and
3 fejp—1 .
M= ———H=da,H. 5.
P L (3.5.5b)

From the resulting value of & plugged into Eq. (3.3.14), we obtain the relation between & {(or &) and
Ad. An abstract is found in appendix C. Notice that a non-trivial result is obtained in the magnetic
field: a non-magnetic sample has a non-zero high-frequency magnetic polarizability that depends on the
conductivity of the material.

The value of 3 takes some simple limiting value when lka| < 1or > 1:

1

lim 8 = 1+ E(iza)z-}- 2

=00 (ka)* + O[kal®, (3.5.6a)
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Fig. [3.9]: o1 dependence of A& /w, for a sphere of radius a = 51 um in the electric field and magnetic field maxima (o3 is
held constant}. Af is the frequency shift, and A'f is the perfect conductor frequency shift (cf. page 45). The metallic shift
(limg| ., Ad/wo) is equal to v/n in the E field and v/(n — 1) in the B field.
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3.5.3 Sphere in the E

Following this procedure we have computed A'®/w, = A'f/f, + i A'T'/2f, for a sphere in the electric field
as a function of ne; (n = 1/3 for a sphere), with ¢ held constant. We have displayed on Fig. [3.9] the
results, and we observe that:

a. the absorption, AT, peaks when ¢; = €a 4+ 1 — 1/n.
b. the metallic shift (Iiln|5'|-—>oo Ab/w,) is equal to —y/n (note the sign).

c. the shift A'f/f, (cI. page 45) changes sign and becomes negative in the skin-depth regime.

On Fig. [3.10] we have plotted on a logarithmic scale the same figure, to highlight that in the skin-depth
regime AT" and A’ f are simply proportional to the surface impedance. We have also shown the dependence
of the absolute value of the perfect conductor frequency shift (A'f/fs): on this plot A’ f/ f, changes sign at
the position of the logarithmic divergence. We have normalized the parameters to the metallie shift (v/n).
In the electric field maxima, we observe three independent regimes, each characterized by a different power
law dependence of the loss AT versus o:

. €3 < €1/n, this is the insulator side of the depolarization regime {where n is the depolarization factor).
In this range, AT'/2f, x oy and the frequency shift saturates to a constant approximately zero in
the case of a metal (Af/f, ~ 0).

2. e1/n < €2 < 4r(c,/wa)?, this is the metallic side of the depolarization regime, where the skin-depth
(6 = co/w\/2/e2) is bigger than the radius of the sphere (a) but with the restriction o1 > (w/dn)e [n.
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In this regime AI'/2f, « 1/o; and the frequency shift goes asymptotically to the metallic shift from
helow.

4r(e,/wa)? < ¢, this is the skin-depth regime, where the fields do not penetrate throughout the
sample. In this regime, AT/2f, ~ —A'f/f, « 1/,/07 as shown on the Fig. 3.10, thus showing that in
this regime A'G/w, = £Z, as predicted by Eq. (3.3.27). In order to calculate the resonator constant,
£, we can use Fqgs. (3.3.14) and (3.5.5a)

Ag _ X Eegr—1 .
T N | (3.5.7)

where n = 1/3 for a sphere. Using the fact that as limeg, ..o 8 =2i/ka

. |
lim 22 —% (1 + u) ) (3.5.8)

g1 00 Wo 2né

Comparing this result to Eq. (3.3.27), we find the value of the resonator constant for a sphere in the
electric field maximum.

¢ = —

wa 9 . wa
(260) = —'5 Y ?O-. (359)

3.5.4 Sphere in the H

Using the same procedure as in the previous case, we have computed A’'®/w, induced by a sphere in
the maximum of the magnetic field, we observe from Fig. [3.9] several differences with the electric field

maximum result:

.

b.

C.

the absorption, AT, peaks when 6/a = v/2r.

the metailic shift (lim_&l_}OO A [w,) is positive and equal to —y/(n — 1) (the difference of sign can
be explained by noticing that for a metal in the electric field the finite frequency polarizahility is
positive while in the magnetic field it is negative).

the frequency shift Af/f, changes sign and becomes positive in the skin-depth regime.

As for the electric field, we have plotted the absolute value of the results on a logarithmic scale,
Fig. [3.11], and we show that in the magnetic maximum case there are only two independent regimes:

L.

4m(co/wa)? > €3, this is again the depolarization regime, where the magnetic field penetrates through-
out the sample. We observe that AT/2f, x oy and the frequency shift A f saturates to a constant
approximately zero for a metal (A f negative).

4m(e,/wa)? < €, this is again the skin-depth regime, where the magnetic field is expelled from the
sample (diamagnetism). As with the electric field in this regime, AT/2f, = —-A'f/f, x 1/,/77.
In this regime A'G/w, is proportional to the surface impedance, ¢f. Eq. (3.3.27). To compute the
proportionality constant (resonator constant) we follow the same procedure as for the electric field:

lim 82 __T_ (1 + L) . (3.5.10)

T1—oo Yo n—1 .@:a(n -1)

In the magnetic field, the resonator constant of a sphere is,

I B N )
5_(7?,—1)2 (wa>_ 2 " v (3.5.11)
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Fig. [3.1 1]: The o7 dependence of the absolute value of AT
and A'f for a sphere of radius a= 51pm in the magnetic field
maximum at { = 2em™! with €1 = 1. In the insert we show
the dependence of the frequency shifi Aflf.. We observe

2 distinct regimes, each characterized by a different power
law dependence of the loss AT. 1In the skin-depth regime
Al = —A'f x /1/e1 and A'@/w, is simply proportional
to the surface impedance. The perfect conductor frequency
shift A'f/f, is always negative, but the frequency shift Aflfs
= A'f/fo - v/(n — 1) changes sign for ne, > 20 {to become
positive} and equals zero at the point of negative divergence
on the insert.

dependence of the loss AT. In the skin-depth regime AT =
—A'f & \/1/oy and thus A'G/w, is simply proportional to
the surface impedance. The frequency shift Af/f, is always
negative, but the perfect conductor frequency shift AFflfo=
Af/fo+ v/n changes sign for ne2 > 20 (to become negative)
and equals zero at the point of negative divergence.

In the insert we have plotted A f/f, to show the change of sign of the frequency shift. We have assumed
that the permeability of the material is 1 (generally the case for a metal [119]).

3.5.5 Spherical approximation

A more insightful way to look at the problem, is to first remark that the Clausius-Mosotti expression was
conceived as a first order approximation of the polarizability for a spherically symmetric system. In an
attempt to define an expression relating the permittivity and the polarizability for an ellipsoid, we define
a generalized Clausius-Mosotti expression:
Go = —Cetf 01 (3.5.12)
drnéepy -+ g

where the effective values are defined by the same formulas as in Eq. (3.5.3b). A similar expression was
already encountered in the limit ka < 1 by Fq. (3.3.18). The previous definition is compatible with the
former result if:

(3.5.13a)
(3.5.13b)

1251
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We thus obtain the following expressions:

NP

be = n(ﬁ@ eI E (3.5.14a)
.1 Ba-1
Gm = = NZTEETIEL (3.5.14b)

§ is a priori given by the same expression for the two cases. Notice that for most metals in the magnetic
fleld g = 1.

In the other limit ka > 1, 8 « (l;'a)“'l and the effective permittivity €.s5 — co. Thus the induced
variation of the cavity characteristics in the electric field is:

Ao _ vy, v 1
Wo n ngéeff’

(3.5.15)

using a first order expansion in power of 1/&. ¢ of the previous expression. On the other hand flegr — 0,
and in the magnetic field:

Ag _ 7 v .
Wa l_n‘l'(l_n)z,uejf (3516)

The values of limg, o £ are computed in Table [3.3] for different spheroids in the limit a > b, The
results are expressed in terms of a normalized resonator constant, value expected for an imaginary sphere
inclosing the sample (radius @). More explicitly, in the case of the electric field, we obtain:

A _ Y Ywe, .
wC: = _E + mé?o _E)Zeffu (3-5.17&)
Zepr = fspiere L. (3.5.17b)
And in the magnetic field:
A ol Y 2¢,, . .
_ ol VZurs. 5.1
Yo 1—n+(1—n)2wa( VZess (3:5.18)

3.5.6 Ellipsoid in the E (skin-depth regime)

To our knowledge, the relationship between ¢ and A& /w, for a general shape has never been calculated.
Moreover, the resonator constant £ of a spheroid (ellipsoid with one symmetry axis) is known in one case
solely: a prolate spheroid in the electric field maximum, with the field along the symmetry axes. The
computation was performed by Cohen and Ong in 1975 [45, 152]. For a prolate spheroid (@ > b = ¢) of
eccentricity e = /1 -- (b/a)? with a > b they obtain

) (%) = S(£Zy), (3.5.19a)
where
O v [fwh
g: _Z_Q?E (Z) ’ (3519b)

and n is the depolarization factor along the field.
We have completed the work by computing the resonator constants of a prolate and oblate spheroid in
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| Resonator Constant f

] I £/Esphere Electric Field Magnetic Field I
Prolate | Field | 2 (3%x/2°} b/a (37/23) a/b
Spheroid | Field L 2 (373/2%) b/a (3m/2%) a/b
Oblate Field || 2 (3/2%) a/b (3/2) b/a In(a/b)
Spheroid | Field L 2 (3%/2%)b/a In(a/bd) (3/2%) a/b

Sphere Esphere —iy/n? [wa/2¢,]  —iy/{n—1)? [2¢,/wa]

Table 3.3: Resonator constant of a spheroid for different orientation in the E and H field, where 2a > 2b are the sample
dimensions (the values are computed in the limit a 3 b), ¢, is the speed of light, » is the depolarization factor, £cphere is the
resonator constant of the equivalent sphere inclosing the sample (radius a), # is the direction of the spheroid symmetry axis
and the field is either parallel or perpendicular to this axis.

both the electric and magnetic field for all possible orientations. The results are listed in Table [3.3]. The
details of the algebra are shown for one example in appendix D,

3.5.7 Ellipsoid in the H (skin-depth regime)

The exact resonator constant of a prolate spheroid placed at the anti-node of the magnetic field is derived
in the appendix. In the limit @ > b (i.e. needle shaped sample) one finds

—Jive,m

= m (3.5.20)

£

A comparison can be made of the loss obtained when the sample is placed at the maximum of the
electric field maximum to the loss for the magnetic field. For a prolate spheroid in the limit a > b where
the bulk of the currents run along the @ axis (E{|é@ and H L @) one finds

A 1 9 n 2 9 2
_ (%) -2 [ (&) , (3.5.21)

where n)| and n are the depolarization factors paraliel and perpendicular to & respectively. Typical values
are @ = 575 um, b = 50 pum, and f = w/27= 60 x 109sec™!. Using these values of a and b one finds [155]
ni = .0164, n, = 4918, and p = .71. As p depends on the geometry of the sample, one can increase the
relative sensitivity of the measurement by choosing the appropriate configuration.

In summary, we have described the experimental technique used in this study and established a re-
lationship between the intrinsic conductivity & = o7 + i, and the parameters experimentally accessible
with the cavity perturbation technique: the frequency shift A fand the bandwidth AT. We have computed
explicitly the result for a sphere and compared it with the calculation of the surface impedance. In the
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skin-depth regime, we have carried out the computation for both a prolate an oblate spheroid at the electric
and magnetic field maximum.
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Chapter 4

Experiments on conventional
superconductors

The motivation for a new measurement on the electrodynamics of a conventional superconductor was
two-fold. Tirst, it was necessary to test the sensitivity of our new amplitude technique and for that
we needed compounds that had optical properties already extensively studied. Second, nobody has ever
observed the conductivity coherence peak: although this feature was expected, its observation represented
a technological challenge. The materials selected were Nb and Pb, since they were readily available in the
lab with a T, large enough (~ 10 K) to be studied in their superconducting phase with an He cryogenic
system.

4.1 Historical survey

Our discussion will start with a brief account of the extensive work done by our predecessors.

4,1.1 Optical properties

The first experiments on the electrodynamic properties of superconductors were done by M. Tinkham
twenty years ago [65]. He and Richards investigated extensively the far-infrared properties of several
metallic elements In, Sn, Hg, Ta, V, Pb and Nb [167]. His results were the first optical evidence that
a single particle gap exists in the excitation spectrum of a superconductor. The technology developed
was Temarkable for the time as the frequency window investigated was the lower end of the Far Infra-Red
spectrum (10 - 200 cm™). Even nowadays, very few experimental group still explore this difficult spectral
range. The observation by Palmer and Tinkham of the shallow increase of the conductivity at the gap
edge proved that gy was indeed governed by case 2 coherence factors [159] (Fig. [1.7]): the spectrum of
o1(w) was in good agreement with the Mattis-Bardeen expression [135]. The Pb in particular was the
center of a detailed study [65], some apparent structure in the spectrum at 17 cm™! was attracting much
of the attention [64] as it could indicate the presence of unpredicted goldstone modes. Later experiments
showed that the effect was in fact spurious [55]. In 1957, millimeter-wave experiments (2 — 200 cm™1) were
performed by Glover and Tinkham on thin-films of Pb using transmission techniques [96]. The extracted
complex frequency was compared with the new BCS theory (mentioned in the paper as a footnote) and the
two papers (experiment and theory) appeared within few months from one another. In those experiments
the lowest photon energy used was approximately fiw ~ A/3 where the coherence peak is not expected. The
microwave range of frequency was investigated in some details few years later by J.R. Waldram [194] and
M.S. Khaikin [104]. They measured the temperature dependence of the surface resistance and compared
their results with the BCS model, in those cases fiw ~ A/2. Subsequent studies by S.L. Lehoczky were
based on measurements of the microwave (24 — 70 GHz) transmission and reflection coefficients for thin
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superconducting films of Pb [126, 166]: the inferred o1(7) was interpreted in terms of fluctuation effects.

surface resistance of Pb and Nb. The aim was to evaluate more carefully the residual R, in those materials
and study mean-free-path effects. Again the results were in good agreement with the microscopic theory
developed by BCS [21]. In the last couple of years, with the apparition of new families of ‘unconventional’
superconductors, a renewal of interest has flourished for their electrodynamic properties. But between
those two periods, the experimental techniques have evolved greatly and the precision of the measurements
has been considerably enhanced.

4.1.2 Theoretical models

The microscopic theory of BCS was applied to compute the electrodynamic properties by Mattis and
Bardeen [135] and by Abrikosov [2, 3] whereby superconductors are near the weak coupling limit and in
small magnetic fields. These theories were developed for type I superconductors (Pb) in the clean limit,
where the penetration depth A(0) is small compared with the coherence length £{0) but the result applies
also for superconductors with a mean-free-path ¢ smaller than £(0). In both cases, the quasiparticles life-
time 7 is not taken into account. In the weak coupling case, numerical computations were performed by
P.B. Miller [139] in 1960. Later, Sang-Boo Nam extended the work for impure superconductors near the
strong coupling limit [145, 146]. Starting with the Eliashberg theory [56, 57] he extended the BCS model
and provided a well tested [40] model of dynamical properties. For Pb [179], one has to take into account
the retarded nature of the electron-phonon interaction [173, 60). In 1964, D.J. Scalapino [174] calculated
the density of states for Pb assuming that the phonon spectrum is Lorentzian and used strong coupling
effects to fit the data from tunneling experiments [63].

Our results on the Pb and Nb are compared with the Mattis-Bardeen model, with no corrections from
finite mean-free-path. The Nb conductivity is calculated from the surface impedance data with a local
formalism, while the anomalous regime is used to analyze the Pb. In the later element, some deviations
from the BCS result are reported and the differences are explained in terms of strong coupling effects.

4.2 Sensitivity optimization

The results presented in this chapter are restrained to a particular frequency, 60 GHz. It represents our
best measurement sensitivity.

4.2.1 60 GHz cavity

Oune can estimate retrospectively the feasibility of the experiment and the predicted magnitude of the effects.
It was shown in chapter 2 that the size of the peak decreases logarithmically as the photon energy increases
{Eq. {2.2.6)). The single particle gap value of Pb and Nb is around 20 cm~! from optical measurements
[167]. To detect at least a 10% effect, a frequency below 2 em™! or 60 GHz should be employed. Also, it
was shown on page 22 that R, increases as w? for a BCS superconductor. Therefore the highest frequency
is desirable to increase the semsitivity. However as the wavelength decreases it becomes more and more
difficult to avoid the formation of a spurious standing-wave. Practically, we cannot measure accurately
the frequency of the source above 100 GHz, making our 60 GHz cavity the best compromise. We display
in Fig. [4.1] the expected temperature dependence of the measured parameter for Pb. The curves were
computed from Mattis-Bardeen both in the local and anomalous regime (cf. Chapter 2). Decreasing the
frequency accentuates the drop of B,(T) around 7.

The resonator used in this study is a cylindrical copper cavity working in the TEgyq mode, its height
is 4.77 mm and its diameter is 7.15mm. It resonates at 60 GHz or 2 em™! on the TEq;; mode.
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Fig. [4.1]: Calculated temperature dependence of the surface impedance Z, = R, — iX. at 60 GHz in both the Pippard
and the London limit, for a BCS superconductor. We have used the parameters of Pb for the simulation (T. = 7.2K, A(0) =

15.5K).

4.2.2 [End-plate technique

The measurement of the surface impedance of the material was done by using an endplate technique, where
Zs is proportional to the variation of the resonator bandwidth I and resonance frequency f, when one
of the Cu endplates of the cavity is replaced by the sample. This scheme has the advantage over other
possible experimental configurations, that no assumption is needed on the sample size or geometry (no
depolarization factor is involved), which simplifies the analysis. We also worked in the most comfortable
position, by measuring the largest sample with the sensitivity of a high Q resonator. Qur experiments have
been performed with a bulk sample of Nb and Pb cut in a flat disk of 10mm diameter and 5 mm height,
with a polished face that replaced the copper endplate and form a wall of the cavity. For the TEg; mode,
the resonator constant is given by the expression:

3.',1.2

£=—iZ2 T _ 0.0458, (4.2.1)

o
F3.53

where £ is the height of the cavity and f = w/2r the frequency.

4.2.3 Calibration

The frequency of resonance f, and the half-width I" are measured as a function of the temperature in two
separate runs one before and one after the replacement of the copper (Cu) endplate by the sample (s).

1

1
AT = Is-Teoy = a(— - ——), 422
Y7 v (220
Af = fi— fou (4.2.2b)
The difference is related to Z,, the surface impedance of the sample, through the relation:
Af AT
7, + foo =&Zs — Zcw), (4.2.3)
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where £Z¢, is the loss of the copper endplate only and £ is the resonator constant.

In order to evaluate the surface impedance of the Cu endplate, we have calculated the ratio of the
ohmic losses in the endplate compared with the total losses at all the other surfaces of the resonator. This
ratio is independent of the Cu conductivity value. For a cylindrical cavity operating in the TEyq mode
with a radius of 7.15 mm, 39 % of the wall losses occur on one of the endplate. If the assumption is made
that all of the losses in the cavity are ohmic solely, then:

§Z¢y = 0.390¢, (4.2.4a)
G5 — 0.610¢, = £Z,. (4.2.4b)

This subtraction give a fair agreement with the experimental results (R, of a superconducting endplate
goes almost to zero) but some other phenomena are neglected from the above assumption, for example
radiative losses through the coupling hole. Those effects are small and contribute in an additive way. In the
analysis, after the subtraction of the Cu impedance, a small offset (less than 5%) is left as a free parameter
to account for this additive term such that K of the superconductor is adjusted to be zero at the lowest
temperature.

Also one cannot make an absolute measurement of Af, as the endplate must be removed between
the runs. Since the frequency is proportional to the volume of the cavity, it is extremely sensitive to the
precise position of the walls. Due to the mechanical uncertainties, it is not possible to put the endplate
on, in exactly the same position each time, and the frequency shift f; — fc,, can be measured only up to a
numerical additive constant f,. In other words, while AI' is known (as reassembling does not change the
loss), only fi — fou + fo can be measured with f, unknown.

Because of the unknown f;, some assumption had to be made for either the properties of the normal
or superconducting state. As will be discussed below, both cases lead to similar results. For example, the
zero temperature value of the penetration depth can be used to evaluate f,. Alternatively, the normal
state ratio X,/ R is known: for a metal in the local regime R, = X,, Eq. (2.3.4); il the anomalous regime
applies then X, = V3R,.

4.3 Experimental results

We discuss the results obtained in Nb and in Pb separately. The reason for this is that (as will be shown
later) those materials fall to different limits and the electrodynamics is somewhat different.

4.3.1 Nb

The Nb used in this study was a bulk piece of 99.9 % purity. The samples were provided and prepared
by B. Alavi at UCLA. The metal piece was etched with nitric acid, in order to remove the oxide layer
at the surface. One surface was polished using a diamond polishing cream down to 0.3 gm. When we
cooled down the sample we observed an abrupt drop of the bandwidth at 9.3K, defining the transition
temperature. The cusp at 7. is sharp and fluctuation effects are not detectable within our temperature
accuracy (fluctuations effects smear the transition). We display in Fig. [4.2] the temperature dependence of
both R; and X, both normalized to the normal state value (defined as value taken when the temperature
of the sample is slightly above T, i.e. ~ 10K). For the analysis, we have assumed that the specimen was in
the local regime, as supported by earlier measurements of Blaschke in 1982 [27]. In this case, we can use
the Hagen-Rubens condition (B, = X;) to evaluate the frequency offset f,. In the normal state we find
that R; and X; have the same temperature dependence, confirming the validity of the latter assumption
in the entire measured temperature range.

Using the measured value of the half-width in the normal state, we have calculated the normal state
surface resistance f,, = 0.0538 Q. This result leads to a resistivity o, = 0.85 x10% Q7 L.cm~'. The length
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L)

T K] R[] on[Q'em™'] §[A] A[A] op[emsec™] €[A] £(0)[4] A(0) [K]

Nb 9.3 (.0538 0.85 x 10° 2270 440 0.15 x 108 200 380 16.4

Pb 7.2 0.0421 1.40 x 108 1780 380 0.42 x 108 2000 830 15.5

Limiting cases:
Anomalous clean limit: A < £(0), ¢
Local dirty limit: £ < £(0), A

Table 4.1: Various electrodynamical properties of Nb and Pb measured at 60 GHz, the vp values are after Ref. [27, 96].

scale for the surface reactance is thus determined by the skin-depth in the normal state §= 2270 A. The
surface resistance R;(T) drops rapidly with decreasing temperature, the details are plotted on a logarithmic
scale in Fig. [3). The error bars diverge at low temperature and in this region (below 5K) the scatter of data
points fixes an upper bound at 0.05 m for the resolution. We have subtracted a positive offset of 2 mQ
to the K, data, the difference is attributed to an overestimation of the baseline position when evaluating
the loss in the Cu endplate, Zg,, from the empty cavity measurement. The offset reflects the systematic
uncertainty of Eq. (4.2.4a) that neglects radiation leakage through the coupling hole or the contact between
the endplate and the cavity body. Careful measurements of the residual surface resistance at this frequency
were obtained through a different method: instead of using the endplate technique we have placed a small
superconducting sample at the bottom of the same Cu cavity (antinode of the magnetic field). In this
configuration Zg, can be measured directly and it was found that R, far below 7. was inferior to 0.2 m}.
There is also an intrinsic uncertainty in the measurement of the absolute value of the loss, originating from
the dismantling of the cavity endplate after each run. We estimate also an upper bound of 0.1 m§ for this
effect.

The temperature dependence of the surface reactance, X, is directly proportional to the temperature
dependence of the penetration depth A{T). From the graph, we can deduce the zero temperature value of
the penetration depth.

Xs(0)  2X(0)

= (4.3.1)

On the same figure we can see that X,(T) saturates at low temperature to a threshold value at 38.5%
below the normal state value (6/2). This result gives a penetration depth A(0} = 440 A, a result in good
agreement with the value measured by B.W. Maxfield [136].

Using a fermi velocity value vy = 0.15 x10® cm sec™! we deduce a mean-free-path £ ~ 200 A just
above T, in agreement with the value that one would extrapolate from R. Blaschke measurements [27],
where they were using a sample with a conductivity three times higher than ours. We can also check that
the value for the penetration depth A(D) that we obtained is not in disagreement with their value of the
London penetration depth Az = 330 A. In the local limit, we can use the Pippard formula to evaluate the
penetration depth:

A= Ap 80 _ 4504, (4.3.2)
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Fig. [4.2]: Temperature dependence of the surface resistance Fig. [4.3]: Temperature dependence of the surface resistance
R, and the surface reactance X, of Nb. The surface resistance R, and the surface reactance X, of Pb. The surface resistance
is displayed on a logarithmic scale while the surface reactance  is displayed on a logarithmic scale while the surface reactance
is plotted on a linear scale. The solid line is the computed s plotted on a linear scale. The solid line is the computed
Z, from the Mattis-Bardeen conductivity [135] assuming that  Z, from the Mattis-Bardeen conductivity [135] assuming that
the measurement is in the local limit. the measurement is in the anomalous and clean limit.

in good agreement with our result. We have used the fermi velocity and the BCS gap A(0)= 1.57 kgT. to
evaluate the coherence length £(0) = hvp/wA(0) = 380A. Now that we have calculated the three relevant
length scales in the measurement, we should check for the self-consistency of our assumption (namely, that
we are in the local limit) the mean-free-path should be the lowest length scale: £ < A < £(0) and this is
indeed the case,

The solid line represents the computation of the temperature dependence of the surface impedance
obtained for a superconductor (Nb) in the local limit, whose conductivity follows the Mattis-Bardeen
expression. We notice that the agreement between the solid line and the experimental data points is
excellent on the whole temperature range.

4.3.2 Pb

Pb is a type I superconductor with £(0) > A(0). Critical magnetic field measurements [21] have given a
ratio £(0)/A(0) ~ 2, suggesting that the element is not strongly in the Pippard regime, nevertheless we
have used this limit to analyze the results: this approximation was also suggested by S.B. Nam [146]. The
analysis in the local limit was published in a previous paper by K. Holczer et al. [93]. In the normal state
of the anomalous regime X, /R, = /3.

The Pb used in this study was a bulk piece of 99.99% purity. The acid etched surface used as the wall
of the cavity was freshly polished down to 0.05 um, using an Alumina Permanent Suspension abrasive
cream (Pb being very malleable metal). We display on Fig. [3] the measurement of the surface impedance
in the superconducting phase. First we note, that the value observed for both the surface resistance and
the surface reactance are much higher than the one on the Nb, although the single particle gap and the
frequency are roughly similar. Our first step is to compute the normal state surface resistance. Here
again the procedure consists of using the measured value A(1/ 2¢)) and converting it to surface resistance
via the resonator constant. We find for B, a value somewhat similar to the one reported previously
for the Nb: R,(Pb) = 0.0421 €. The index n means again the normal state value, or the value at
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temperature slightly above the critical temperature, T = 8K in this particular case. This value of R, gives
an effective conductivity o/, = 1.6 x10% 2~ .cm~', where the term ”effective” means the figure that we
would have computed for a classical metal (local limit). The real conductivity is larger and is corrected by
the anomalous formula:

On ™~ ga;, (4.3.3)

where £ is the mean-free-path and § is the skin-depth, related to the effective conductivity through the
local formula:

CO
V2rwoe!

Using the measured value, we deduce that § = 1780 A. The same conclusion that we made on the Nb
behavior of R;(T") applies here. The inherent resolution of our B, measurement is of the order of 0.1 mQ.
We subtracted a spurious offset of 1.5 m$ in the baseline.

We cannot evaluate directly the value of the mean-free path £ of the Pb in our microwave measurement.
We have to refer to some other works done by Tinkham on the infra-red properties (65, 159, 55] to evaluate
the ration n./m in the normal state conductivity [167]. From those measurements we estimate £ ~ 2000
A just above T,. That will indicate that the sample is at the border line of the clean limit £/ 7£(0) ~ 1.
This will also mean that we are just entering into the anomalous regime and the effective conductivity is
approximately equal to the intrinsic one.

‘The surface reactance X,(T) is still proportional to the penetration depth A(T) in the Pippard limit,
although in the normal state X, is not simply related to the skin-depth anymore. We can show that the
equivalent of Eq. (4.3.1) in the anomalous regime is:

X,(0)  2.6A(0)
X, 3

§= (4.3.4)

: (4.3.5)

Irom the saturation value of the surface reactance at low temperature we estimate the ratio X,(0) /X, =
0.55 and then compute the value for the penetration depth at zero temperature AM0) = 380 A, very similar
to the value quoted earlier [51].

We have plotted on the same graph the Mattis-Bardeen prediction in the Pippard limit (solid line).
We observe a consistent underestimation of the surface impedance by the theoretical curve. The surface
reactance is almost 20% higher, which is equivalent to saying that the penetration depth observed is 20%
larger than the one predicted by BCS. This difference has repercussions on the evaluation of the surface
resistance too, as the BCS loss is computed on an underestimated thickness. The net effect can be crudely
modeled by a 20% translation of the whole curve on the semi-logarithmic scale. The measured values
compared well with the reported results of R. Blaschke [27], and a more detailed discussion can be found
in the next section.

J.P. Carbotte has computed the correction effects due to strong electron-phonon interaction [40] in the
framework of the Eliashberg theory [56]. On page 1125 of his article in Rev. Mod. Phys. [40], he predicts
a deviation of 20% for a coupling strength 7,/ wp, = 0.1, which is the value used for Pb.

4.4 Analysis

4.4.1 Nb

Using the measured value of £, and X, we have evaluated the temperature dependence of the complex
conductivity by inverting Eq. (2.3.12a). We display the results in Fig. [4.4]. Several features of the observed
behavior are of importance. First the real part of the conductivity oy displays a wide peak that we attribute

65



2.0 | ; n i T 20 20 T 1 L e ;
’, Nb
= . T,59.3K
: . A0} =16.4K
1.5F 115 150 T ]
Nb -
T =9.3K
f=2cm <
« O /a0 = _
‘“t‘f Lor | 0';/0': Fmpee 10 J—em % 10F .
e —— Mattis - Bardeen &
05+ 15 st |
O_ I . - Il I ) Iocnpoanauuu_i O O— I I I | “on
0 02 04 06 08 10 12 0 2 T TR
T/T, temperature (K)

Fig. [4.5): Temperature dependence of the superconducting
gap of Nb as evaluated using Eq. {2.3.21). The full line is the
BCS gap obtained from the Eq. (1.1.5).

Fig. [4.4]: Temperature dependence of the complex conduc-
tivity of Nb evaluated from the surface impedance measure-
ment. The solid line is the Mattis-Bardeen prediction [135].

to coherence effect. The temperature position of the maximum is too low compare to T, to be fooled by
fluctuation effects and this will be in contradiction with the temperature dependence of R,, where we
have seen a sharp drop, R, is already several orders of magnitude lower than its normal state value at
the peak maximum. The width of the peak at the normal state value is a signature of how fast the gap
opens, and an indication of the coupling constant. The size of the peak depends on the cut-off energy
scale of Tiq. (1.2.18). In his original paper, L.C. Hebel [84], was fitting the coherence peak by assuming
an anisotropy in the gap distribution. In the extreme dirty limit, the only relevant energy scale for the
cut-off energy is the probing frequency. As shown in Chapter 2, the size of the peak is proportional to
the logarithm of the ratio of the gap over the photon energy [188]. The size of the peak can thus indicate
the value of the gap. The solid curve again represents the Mattis-Bardeen results. As expected from Fig.
[4.3], the solid curve fits our data perfectly, which indicates already that the material closely follows the
BCS weak coupling approximation.

We have displayed on the same figure the temperature dependence of the imaginary part of the con-
ductivity. From those measurement one can evaluate the temperature dependence of the superconducting
gap. By inverting Eq. (2.3.21) derived by S.B. Nam results in the local limit [145], one can thus deduce
the temperature dependence of the BCS gap, using the result in Fig. [4.4]. We display the result on
Fig. [4.5], and compare it with the BCS self-consistent gap equation (solid line) Eq. (1.1.5): the agreement
is excellent.

4.4.2 Pb

In Fig. [4.6] we report the evaluated temperature dependence of the complex conductivity inferred from
the surface impedance measurement, still using the Pippard limit:
2y -9 (hi)mlﬁ_
Tn

"R'— (4.4.1)
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Fig. [4.6]: Temperature dependence of the complex conduc-  Fig. [4.7]: Temperature dependence of the superconducting
tivity of Pb evaluated from the surface impedance measure-  gap of Pb as evaluated using Eq. (4.4.3). The full line is the
ment. The solid line is the Mattis-Bardeen prediction [135].  BCS gap obtained from the Eq. (1.1.5).

The dashed line is the strong coupling correction of the BCS

simulation,

We clearly observe a peak in the temperature dependence of oy in the superconducting phase. We will
use the same argumentation to convince the reader that the effect is intrinsic and not due to fluctuation
effects, although fluctuations are expected to be higher in the Pb [55]. The temperature (Ti.,) at the
maximum of &y is well below 7}, and corresponds to a setpoint where Ro(Thaz) is an order of magnitude
lower than R,,. Some studies performed by S.1.. Lehoczky [126] on the microwave transmission and reflection
coefficients for thin films of superconducting Pb, estimate that at high frequency (2 cm™!) the real part of
the conductivity oy at 1. exceeds by 4% the normal state value and the effect is attributed to fluctuations.
Those details are within our error bars and much smaller than the height of our peak.

The solid line is the Mattis-Bardeen conductivity computed for the Pb. As expected we observe a big
discrepancy between the theoretical value and the measured value of 4;. More surprising, we observe that
the model works pretty well for oy (strong coupling effects should decrease the o value). Although it is not
very clear in the literature how much strong-coupling effects would lower the Mattis-Bardeen value of o,
one can estimate it for 3. Using the expression given by S.B. Nam [146] we calculate that in the Pippard
limit:

(4.4.2)

A4 g0

+ =
where § is given by the same expression as in Eq. (2.3.19). We know that in the Pippard limit we should
recover the local result, nevertheless, in the computation we recover a correction factor due to the strong
coupling. In a first approximation we have:

oz _ Bpes(O)7AT) . A(T)
Tn App(0)  Fw 2kpT’

AL [37# AL 5}1/3

(4.4.3)

We have plotted as the dashed line the temperature dependence of o in the strong coupling regime.
Using the previous equation, we have calculated the observed temperature dependence of the single
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Fig. [4.8]: Temperature dependence of the penetration depth. We have plotted the deviation from the Gorter-Casimir
prediction [70]. The solid line is the BCS Yosida function [199]. The dashed line is the correction obtained for strong coupling
between electron-phonons.

particle gap for the Pb. We have plotted the result in Fig. [4.7). The overall agreement is good, but we
still observe some discrepancy between the observed data and the theoretical prediction. We attribute it
to mean-free-path correction, or in other words that the limiting case used for the analysis might not apply
tightly.

Finally we wish to display in Fig. [4.8] the temperature dependence of the penetration depth of Pb
inferred from the surface reactance data. We display the result as a deviation from the phenomenological
two-fluid [70]. We observe that the experimental data are in disagreement again with the BCS weak-
coupling Yosida function, Eq. (2.5.2), and one need to introduce the electron-phonon interaction to account
for our findings. This is again an indication that, within the measurement accuracy we can measure the
departure from the weak-coupling limit.

We report the first results on the evaluation of the complex conductivity of Pb and Nb in the micro-
wave range (2 cm™!). The conductivity is inferred from the high accuracy measurement of the surface
impedance. We describe our result within the framework of the BCS theory and the electrodynamic
response calculated by Mattis and Bardeen gives a good description of our experimental results in the case
of Nb, when the data are analyzed in the London limit. In particular, within our experimental accuracy
we do 1ot need to introduce any mean-free-path correction to account for our findings. In the case of the
Pb, we found a good agreement with the BCS prediction for the real part of the conductivity oy, when the
data are evaluated in the Pippard limit. But we have used the Eliashbergh strong coupling correction to
fit the observed temperature dependence of a,.

In conclusion, our experiments are in full agreement with the BCS theory and confirm the existence of
a peak in the conductivity below 7.. While Nb is in the weak coupling local limit, for Pb strong coupling
corrections and noniocal effects are evident.
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Chapter 5

Electrodynamics of the cuprates

Until 1986, the highest T, known for a superconductor was around 25 K (NbsGe), the compound family were
metallic alloys known as the A15. The value was regarded as an upper threshold imposed by the magnitude
of the Debye temperature in crystals. In 1986 Bednorz and Miiller [26] made a breakthrough discovery: a
new class of oxide metals (known as charge transfer or mixed valence salts) were superconducting above
30 K. I'ive years later, the ground state properties of those new materials has not yet been resolved.

5.1 Theoretical models

This section is a short introduction to the current theories of superconductivity in the cuprates. A review
was written by P. Lederer [123] and more specific details can be found herein. The focus of our discussion
is to look at all the symmetry of the electron pair predicted by those various models. Again the details are
left to the references.

5.1.1 The Hubbard hamiiltonian

The Hubbard hamiltonian has been selected {14] to model the electron dynamics in the CuO, plane:

H= Z t,ij&:;o,&j,a» + UZni'Tni,l, (511)
<> t

where ng = &:r a;q is the number of electrons with a spin up (down) at site ¢. The first term sums the

indices on the nearest neighbors only. In this representation there are four different states at each site:
no occupancy |0>, single occupancy with spin up or down |{> and double occupancy |{]>. The first
term of the hamiltonian models the metallic properties of the crystal: it carries an electron from one site
to its adjacent (¢ is the hoping term proportional to the overlap integral) and thus is responsible for the
formation of a band {width 4t). The second term is the on-site Coulomb repulsion that makes the double
occupancy state less desirable, the repulsion range is short and vanishes for neighboring sites. For strongly
correlated metals the on-site interaction U tends to infinity, and we are left with a truncated space where
the double occupancy state is projected out. As I — oo, the hamiltonian transforms to the t-J model:

f:ftj =F (t Z a’j‘.,c&jﬂ + ]EStSJ) P, (5.1.2)
<o i,

where J = t2/U, P is the Gutzwiller projector parallel to the doubly occupied site and S; is the spin
operator. In two dimension and at half filling the tJ model has two competing ground states, one is the
long range order antiferromagnet, the second is the short range Resonance Valence Bound (RVB) with
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a singlet superconductor ground state and a transition temperature on the order of J. In this case the
symmetry of the pairing is a ‘s-+id’ singlet pairing, (meaning that the ground state is made from Cooper
pairs and two gap symmetries are competing: the isotropic ‘s-wave’ and anisotropic ‘d-wave’ with two lines
of nodes in the k-space). A definition of the terms ‘s- or d-wave’ pairing can be found at the end of Chapter
L.

5.1.2 The ‘d-wave’ pairing

At exactly half doping the ‘s and d-wave’ pairing are degenerate and the later is favored with doping. For
‘d-wave’ the gap parameter is given by [202]:

T
Ay = %) (cos kg — cosky), (5.1.3)

E, = \/COSQkx-l-COSZky, (5.1.4)

where Fp is the quasiparticle energy. The gap Ay vanishes at & = (47/2,F7/2) and the excitation
spectrum has two lines of nodes that delimits alternating signs of A. The terminology ‘d-wave’ refers to
the spherical harmonics Yi*(k) where { = 2: an illustration can been found in Fig. [1.8]. Other models,
such as the Commensurate Flux Phase (CFP) give similar results. The CFP describes each electron in the
strongly correlated medium as the carrier of one flux tube with one flux quantum, so that the electrons of
a given spin move in the effective average field due to the electrons of the other spin direction. It has been
demonstrated rigorously that there is a total equivalence between the RVB and CFP [5].

5.2 Experimental survey

It is impossible to give a complete review of this subject: the literature is too vast and many essential ques-
tion are still unresolved today. The main difficulty is that the physical properties are strongly dependent
of the compound stoichiometry (the oxygen content) and some early results are now known to be spurious
effects. We have preferred to give a succinct chronological account of the knowledge and concentrate on a
single compound the YBa;CuaO~.

The memorable steps in the synthesis of those cuprates include the Lay_,Ba,CuQy, discovered by
Bednorz and Miiller in 1986 with a 7, = 36 K (z = 0.15), followed by the YBayCuz07 with a 7. = 92 K:
the first material superconducting in liquid nitrogen. Other variants synthesized are the Bi,Sr,CaCus0s
and T1;CayBaCuz Oy with transition temperatures above 100 K. They all share the same crystallographic
structure: a perovskite crystal. Their phase diagram is usually rich and varies from one family to the other.
They all posses CuO; planes that are believed to be responsible for superconductivity, and it appears that
the T, increases with the increased stacking number of those sheets per unit cell.

5.2.1 Crystal structure

‘The YBayCuzO7 has at room temperature an orthorhombic unit cell of dimensions @ = 3.82A4, b = 3.894
and ¢ = 11.68A4 [41]. The crystal undergoes a phase transition from orthorhombic to tetragonal at around
750 K. The orthorhombic structure is shown in Fig. [5.1], it consists of two CuQ, planes that are parallel
to the a, b direction, those planes are the dominant conducting pathways. They are weakly bound together
by the CuOjz linear chain that are along the b-axis. This interaction distorts slightly the CuQ, planes
and the Cu(2) is weakly attracted by the O(4) directly above. The Cu(2) is five-coordinate, the strongly
bound being the one with the four neighboring oxygens O(2) and O(3). The plane is thus displaced by
0.27A in the ¢ direction. Both the Ba and Y atom are linked to their (10 or 8 respectively) oxygen nearest
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neighbors. The valences of the chemical formula is such that:
Y3 BaltCuPt Cultol-, (5.2.1)

Notice the mixed valence state of the Cu, that is in its 3d® or 3d® configuration. Assuming one carrier per
unit cell gives a carrier concentration n = 6 x 102! cm?®. Hall effect measurement have indicated that the
transport properties are mediated by the holes and the carrier concentration is ~ 7 x 10?! ¢m® [153]. As
mentioned, the physical properties are strongly dependent on the oxygen concentration z in YBa;CuzO7_.
The oxygen content can be changed reversibly from z = 0 to 1 simiply by pumping oxygen in and out of the
chains. The superconducting ground state is next to a degenerate anti-ferromagnetic state that appears
at lower oxygen concentration (1= 0 for 2 = .36). The corresponding phase diagram is shown in Ref. [9].
As the oxygen concentration decreases the unit cell distorts ¢ ,/, b and ¢ / and becomes tetragonal for
z < 0.4 (isolating anti-ferromagnetic state).

5.2.2 Electronic properties

The particularity of those layer compound is the anisotropy of their electrical properties: the conductivity
is regarded as two dimensional and along the a, b plane. pgp is given by the simple functional form:

pas(T) = A + BT, (5.2.2)

where the zero-temperature intercept A is negligible for the best quality sample (z = 0). The proportion-
ality constant B is approximately 1 pf cm/K and the resistivity has a value of 100 g ¢m at 100 K. The
large anisotropy makes the measurement of p. difficult as defects can change the homogeneity of the current
density: p. is believed to be 100 times larger than p,s; at 100 K. Evaluation of the coherence length in the
superconducting state gives £,,(0) ~ 354 and £,(0) ~ 44, as extracted from critical field measurement
[195). The penetration depth is A, = 14004 and A, = 8000A from magnetization measurements [183].
The Debye temperature is not well defined, because of the complex electron-phonon spectrum: a common
used value is around 500 K. All those numbers are extracted from review papers of B. Batlogg in 1991
[24, 25! and the references cited therein.

5.3 Pairing state

A central aspect of understanding the ground-state properties is knowing its pairing symmetry as it might
help to rule out some of the suggested models. There are many experiments that have tried to ascertain
the pairing state but none is conclusive, First, we review the few experimental evidence that have shown
unambiguously that superconductivity in the cuprates originates from electron-pairing mechanism.

5.3.1 Singlet pairing

The earliest experiments on this sub ject were the measurement of the flux quantization in a superconducting
ring of YBayCu3zO7 [71, 111]. It was found that the flux was quantized in units of ¢ = (0.97 £ 0.04)h/2¢
consistent with a paired condensate (cf. Chapter 1). Other evidence include measurement of the size of
the Shapiro step in the I-V characteristic of a Josephson junction radiated with a rf-signal of frequency
w: the steps are quantized in Aw/2e [197]. The last evidence is the observation of the Andreev scattering
[91], that study the inelastic scattering of an electron at the interface of a metal-superconductor junction:
an electron in the metal can be absorbed by the condensate to form a pair (leaving a hole vacant). The
process is monitored by a point contact tip. The information extracted is a confirmation that the electrons
are formed into pairs with zero net momentum (singlet).
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5.3.2 Pairing symmetry

The results above imply that YBa;CuzO7 is a superconductor formed from Cooper pairs and other exotic
possibilities (like triplet superconductivity) are ruled out. Now, we turn the discussion to the various
experiments that have investigated the nature of the gap symmetry (k-dependence).

A Josephson current hetween a conventional superconductor (In) and YBayCuzO7 has been observed
[22]. Also, a persistent current was induced in a ring made of a half loop of YBayCu30+ and Nb in contact
[103]. Those experiments strongly suggest that the ground state is ‘s-wave’, but they are not conclusive as
other effects can also cause a non-zero Josephson coupling [59], for example spin-orbit coupling can induce
similar results with a ‘d-wave’ superconductor.

In principle the angular dependence of the upper critical field also probes the symmetry of the order
parameter. It is one of the strongest pieces of evidence that the superconductivity is unconventional in the
heavy-fermions family (UPt3) [185]. There are no reliable measurement for the YBa;Cu3O7, as the upper

critical field is too large.

Electrodynamic properties, theoretical predictions

1. The temperature dependence of the penetration depth at low temperature reflects the form of the
quasiparticle-density spectrum: nodes in the gap lead to power law dependence:

MT) ksT \®
o~ () (5:3.)

where Amax is the maximum value of the gap over the fermi surface and « is an integer. Some
calculations were performed by Hirschfeld et al. [89, 90] for heavy-fermions. Depending on the value
of @, one could distinguish among various pairing symmetries. Supposedly « = 2 is a signature of
‘d-wave’ pairing and if so, the specific heat should give identical result.

2. The shape (height and width) of the coherence peak (NMR relaxation rate or optical conductivity)
varies with the pairing states. Some calculations were performed by Hasegawa and Fukuyama [82]
for NMR.

3. The conductivity spectra can reveal the presence of low-lying excitations that will indicate a coupling
of the electromagnetic radiation with some exotic component of the order parameter (higher order
symmetry). Tunneling experiments also should probe the same excitations and confirm the optical
results. Theoretical predictions include the recent work of Hirshfeld et al. [88] and references herein.

4. Knowledge of anisotropy effects (c-axis transport) is essential for a complete understanding of the
electronic states involved and has implication for the theory [118]: this domain has been the least
explored because of technical difficulties.

Penetration depth results

The temperature dependence of the penetration depth A(T'), has been extensively studied and there are
numerous measurements that favored a ‘s-singlet’ [198]. However two recent data by Hardy et al. [78]
on ‘high-quality’ single crystal and Lee et al. [124)], using thin-films, claim a linear term (a = 1) at low
temperatures. It is then difficult to draw firm conclusions. Also the specific heat should be exponential
(for ‘s-wave’) at low temperature, instead it can be fitted by the functional form [184]:

C = AT + BT?. (5.3.2)

The linear term was explained by the presence of impurities and grain boundaries.
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NMR

A stronger evidence for the unconventional model is the absence of a Hebel-Slichter peak in the nuclear
relaxation of both the Cu(2) and 0(2,3) [77]. More puzzling, the decay of 1/7 goes as T3 at low tem-
perature, the same power law found for the UBe;3 [130)]. Furthermore the Knight shift anisotropy ratio is
temperature dependent [134] and can be well fitted by a ‘d-wave’ pairing [36]. The former result might not
constitute a conclusive proof as other effects might also decrease the height of the coherence peak, strong
coupling for example [149, 133, 7].

Low-lying excitations

There are many data that suggests the presence of low-lying excitation below the single-particle gap. The
most often cited are:

e Raman scattering, where various published data showed broad maxima at 350 cm™! and 550 cm™1,
but no evidence of a single particle gap. This suggests an anisotropic gap [50] although inconsistent
with other tests: for example, the positions of those ‘peaks’ are invariant with oxygen depletion
(decreasing T.) and alternative explanation have been proposed by Monien and Zawadowski [142].

e Infrared reflectivity data measured by the IBM group [177] have been interpreted in terms of a
large gap with many low-energy excitations, but the analysis is till controversial as inconsistencies
were pointed out by D.B. Tanner and T. Timusk [187]: the mid-infrared band, that should be
associated with single particle excitations, do not shift significantly at the superconducting transition

temperature.

e Tunneling experiments by Lee et al. [125] also suggests low-lying excitations and an anisotropic gap,
although those measurements are usually poorly reproducible as the results are strongly dependent
on the surface layer of the contact. The surface contamination problem is more critical than in
conventional superconductors because of the shortness of the coherence length (£, ~ 10A4).

In conclusion, there are two principal candidates for the pairing symmetry, one is a conventional ‘s-
wave’ with an isotropic gap, the second is a ‘d-wave’. Both have their own set of experimental support,
but no observation so far are conclusive. A review of the pairing symmetry of YBasCuszQ7 can be found
in the article Annett et al. [16] and the references cited therein.

5.3.3 Optical properties

The optical properties of the cuprates is still very controversial, and some recent results contradict earlier
findings. The far-infrared spectrum of the cuprates was measured as early as 1988 on oriented powders
[30], more precise data were taken on single crystal somewhat later [177, 46, 171]. The main conclusion
was the absence of any feature at the expected position of the BCS single-particle gap (100 cm™1), the
materials being very good conductor around this frequency range and the reflectivity is almost 100% in
the normal state. Several review papers cover the material [154, 193]. Some optical data suggest a large
single-particle gap [46] 2A(0)/kpTc ~ 8 and this interpretation is in agreement with other experiments
on the BigSryCaCuy0g like photoemission [127] or tunneling [131] where people have observed a large gap
that opens sharply at T.. At UCLA, Drabeck ef al. have performed extensive measurements on the surface
resistance of YBayCuzO7 (thin films) [53] and the temperature dependence of R, suggests also a large gap
value, well exceeding the weak coupling BCS Limit.

At the beginning of 1991, our group at UCLA observed for the first time an increase in the conductivity
below T¢ in the BiySryCaCuzOg compound, at frequencies well below the single-particle gap [92]. The
peak was sharp, with an extremely narrow width (~ 6 K): the published data are shown in Fig. [5.2]. We
suggested that the effect was the consequence of coherence effects. Two comments written by Olsson et
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Fig. [5.1]: Orthorombic structure of YBa;CuzOv, with the  Fig, [5.2]: Temperature dependence of the optical conduc-
two CuO2 plane separated by the fencelike CuO chains. The  tivity in the Bi2Sr2CaCuyOp compound, after Ref, [92]. The
Figure was obtained after Ref. [58]. measurements were done along the {ab)-plane.

al. [151] and Horbach et al. [95, 94} offered alternative explanation and suggested that the increase in
01(T') was due to fluctuation effects that modify the normal-state conductivity and consequently is not
a signature of the superconducting state. In this interpretation the transition temperature would be at
the peak maximum. Their explanation remained a possibility, as the phase transition is very broad for
the Bi;Sr;CaCuz03 (strongly two-dimensional) and in the article of Holczer et al. [92] the conductivity
oy also displayed a strong increase above T., that was attributed to fluctuation effects. In YBay;Cus07
however, two-dimensional fluctuation effects are less important, and fluctuations leading to a peak in oy are
most probably suppressed. Indeed it has been found that o, increases below 7. and the observations were
interpreted in terms of a marginal fermi liquid [148], the data of Nuss et al. are shown in Fig. [5.9]. We
have therefore measured the finite frequency conductivity in this material in order to gain further insight
in the electrodynamics of the superconducting state: the result is discussed in what follows.

5.4 oy, at 60 GHz

We have measured both the surface resistance R, and the surface reactance X, of a YBayCus0, single
crystal at millimeter wave frequencies and have evaluated the conductivity o;. All the experiments reported
in this Chapter were conducted at 60 GHz.

5.4.1 Introduction

Single crystal samples were provided by G.A. Emelchenko from the Academy of Sciences in Chernogolovka,
Moscow. They were prepared in the standard way, and dec-resistivity measurements lead to a sharp transi-
tion at 92 K, with a width less than 1 K. Above T, the dec-resistivity increases linearly with temperature
and has a small zero temperature intercept.

The finite {frequency conductivity cannot be measured directly (except on very thin films or powders)
due to the finite penetration of the electromagnetic radiation into the specimen investigated. The only
parameter experimentally accessible is the surface impedance Z, = R, — iX, where R, is the surface
resistance and X the surface reactance. To measure it, we have employed a cavity perturbation technique,
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where the sample is placed inside a resonant cavity at either the electric or magnetic field anti-node. We
found similar results for both configurations, however the data shown in the figures were all taken with
the specimen in the maximum of the H field, with the field direction along the crystallographic c-axis (i.e.
probing the electrodynamics in the (ab)-plane). Using the power of the source (100 mW) and the Q of
the cavity (~ 10%) we have estimated the magnitude of the ac-magnetic field at the surface of the sample
(neglecting all causes of loss from leakage or joule effect). The value found was below the earth magnetic
field (0.5 G).

During the experiment both the characteristic frequency f, (without the specimen) or f; (with the
specimen) and the bandwidth I', (and I';) are monitored during two separate experimental runs, one
without and one with the sample. Experimentally one cannot make an absolute measurement of the
frequency shift, as the endplate must be removed between the runs with the sample in the cavity and out
of the cavity. Because of the unknown f,, some assumptions have to be made about the properties of the
normal or superconducting state. The relevant length scale in the superconducting state is the penetration
depth A(T), and we can use the known zero temperature value of A(0) = 1500 £ 50 A [79] to evaluate f,.
Alternatively we can assume that in the normal state the so-called Hagen-Rubens limit, wr < 1 applies.
In this case o1 » o2 and consequently B, = X,. As will be discussed below, both assumptions lead to
similar results for oy below T..

5.4.2 Surface Impedance

In the superconducting phase, R, drops rapidly to zero with decreasing temperature Fig. [5.3], showing a
sharp cusp at 92 K, in agreement with the T, inferred from dc measurement. We have compared on Fig. [5.3]
our data below T, with earlier measurements of £,(7) on high quality laser ablated films and the surface
resistance of both the film and the crystal are identical, giving evidence for the high guality of the crystal
we have investigated. The experiments however were conducted at different frequencies {f = 100 GHz for
the film and f = 60 GHz for the crystal), and we have used the well confirmed w? frequency dependence
[53] of R, in the superconducting state to compare both measurements. The values obtained on those films
[53, 48] have been reproduced by other groups and the observed temperature dependence is thought to
represent the intrinsic surface resistance not influenced by defects or irregularities in the specimen. A word
of caution: this w? approximation is only valid well below T}, both data sets cannot be compared in the
narrow temperature range just below the transition (more complex manipulations are needed to account
for the response of the normal fluid). At low temperature, R, saturates around 2mf) , representing
the intrinsic resolution of our detection scheme. This value is imposed by the systematic errors of the
technique (limited by the mechanical necessity of removing a wall in order to access to the sample) but not
the intrinsic resolution. In the superconducting phase, the temperature dependence of R, is at odds with
recently published data of D.A. Bonn, et al. [29] (shown in the same Fig. [5.3]) at 3 GHz. In particular, we
do not observe any abnormal feature around 40K. Again we have corrected Bonn’s data by w? to compare
them on the same graph, the residual surface resistance value (normalized to the same frequency) is almost
five times larger. This effect has been observed on thin-films too and we refer to the work of Drabeck el
al. [53] for a more detailed description. In any case, we will come back to this point in the next section
when we compare our findings with other (optical and microwave) measurements.

In Fig. [5.4] we display the temperature dependence of R, and X;, both normalized to the surface
resistance measured just above the superconducting transition. We have used the Hagen-Rubens condition
(Rs=X;) to evaluate the frequency offset f,: this approximation is justified by optical data where the
measured scattering rate (1/7 ~ 200cm™') {170] is much larger than the electromagnetic wave frequency
(2 em~1). If we approximate the sample by an oblate spheroid of semi-major axis ¢ = 0.03 ¢m and semi-
minor axis b = 0.002 cm we can compute the resonator constant [105]. Using the measured value of the
bandwidth [I's — T,)(T=100 K) = 3 x107°, we calculate the normal state surface resistance R, = 0.5 Q
using Eq. (2.3.1), this results leads to a resistivity p, = 100 2 cm (the subscript n refers to the normal
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Fig. [5.3]: Temperature dependence of the surface resis- Fig. [5.4]: Temperature dependence of the surface
tance measured along the {ab)-plane. On the same figure is  impedance Z, = R, —iX, of the {ab)-plane.

displayed for comparison the measurements of Bonn et al. at

3 GHz after Ref. [29] and Drabeck et al. after Ref. [53]. We

have multiplied thaose results by w? to take in account the fre-

quency difference. In the insel is shown the actual raw data,

the temperature dependence of the cavity bandwidth before

and after loading the resonator with a sample in configuration

2 (cf. Fig. [3.1]).

state or T = 100 K value). The length scale is thus determined by the skin-depth in the normal state
6 = 1.8 pm. Using the temperature dependence of X,(T) = wp,MT") we can deduce the penetration
depth at zero temperature. On Fig. [6.4] we can see that X (T') saturates at low temperature to a value
corresponding to a penetration depth A(T = 0K) = 1500 A + 10% in agreement with uSR results by
Harshman ef al. [79]. The peak in X,(T) around 70 K is not reproducible and varies in height with
different temperature sweep (the error bars indicate the variations). We attribute the effect to slight
gas evaporation {nitrogen) at the cavity walls that changes the dielectric constant of the resonator. As
mentioned in Chapter 3 it is difficult to measure the frequency accurately on a wide temperature range.
For the analysis, we have chosen to normalized the data at 100 K and the low temperature part fluctuates
from one run to the other. The error bars in Fig. [5.4] indicates the typical difference between consecutive
measurements and the dashed line is the averaged value. From our data, the penetration depth is on the
average temperature independent up to 40 K.

5.4.3 Complex conductivity

Using the R; and X, measurements shown in Fig. [5.4] we have evaluated o1 and o;. Our results are
displayed in Figs. [5.5] and [5.6]. We normalized all the values of the conductivity with o, = o3(T = 100K).
In Fig. [5.5], several features of the observed behavior are of importance:

o First, the rise of gy above T, is small and comparable to the experimental accuracy, in contrast to
the behavior found for Bi.

o Second, the conductivity displays a clear sharp peak {width ~ 7K), with the peak temperature T, =
T(o1max) well below T, (difference ~ 3K). We note that at 7}, the surface resistance has dropped
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Fig. [5.5]: Temperature dependence of the optical conduc-  Fig. [5.6]: Temperature dependence of the imaginary part of
tivity o1 in the superconducting phase. The data are nor-  the complex conductivity oz in the superconducting phase.
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is obtained using a BCS ground state formalism with two fit

parameters the coupling constant 2A(0)/ksT. = 8 and the

mean-free-path £/7£(0) =1

by an order of magnritude from the normal state value, a signature that the material is well into the
superconducting state, as one can compare with Fig, [5.4].

Those two observations are at odds with alternative explanations from H.K. Olsson and R.H. Koch [150],
that have suggested that the peak in ¢; can be attributed to a broadening of the resistive transition,
where fluctuation effects lead to a peak strictly at 7.. Our measured increase of oy is entirely due to the
development of the superconducting state below 7.

Similarly to what has been observed in the Bi compound, the peak of ¢y is sharp in clear contrast
to what is predicted by Mattis-Bardeen for weak coupling BCS theory [135] (a comparison with Mattis-
Bardeen is illustrated in Fig. [2.13]).

We have shown in Fig. [5.6] the temperature dependence of o5(T). The strong feature at 70 K reflects
the jump in X, and we believe it is spurious. The error bars associated with the data are similar to the
one drawn for X, in Fig. [5.4] and the average value of &7 is independent of temperature below 40 K.
From the low temperature ratio 03(0)/a, we have evaluated the gap, using Eq. (2.3.31). We found that
the coupling ratio 2A(0}/kgT,; ~ 6 for the parallel direction, leading to a single particle gap 2A(0) ~ 380
em~L.

5.4.4 Fitting with ‘s-wave’

Recent calculations [43] using the finite mean-free-path effects ( €/7&, = 1 [53]) and the two-dimensionality,
lead to oy (1) similar to that shown in Eq. (2.1.10). To fit our data we have used the BCS formalism with
two adjustable parameters the coupling constant and the mean-free-path. The result of those calculations
are shown in Figs. [5.7] and [5.8]. The important point is that both parameters adjust almost independently
the width (coupling) or the height (mean-free-path) of the peak. One finds a gradual sharpening of the
conductivity peak with increasing 2A(0)/kpT: as in Fig. [2.13], and a decrease of the height with increasing
7. A large value of the 2A(0)/kpT, ~ 8 and {/7&, ~ 1 gives a good description of our results in the
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dirty limit, the bottom to the clean limit.

temperature range near 7.. Thus the sharpness of the coherence peak reflects the rapid increase of the gap
below the transition (faster than the BCS model). The mean-free-path value indicates that the sample is
at the cross-over between the clean and dirty limit. We have included the temperature dependence of the
relaxation rate in the fit by assuming that 7 « 1/T following the normal-state behavior. Notice that this
type of correction does not drastically change the shape of the peak, as shown in Fig. [2.13].

In summary, we observe a narrow increase in ¢; below T.. Whether it is due to coherence effects or to
a temperature dependent scattering rate remains to be seen as this information cannot be inferred from
conductivity measurements solely. Nevertheless our data can be fit within a BCS formalism adjusting both
the mean-free-path and the coupling constant value. The narrow width indicates a rapid opening of the
gap and the o3(0)/o,value suggest strong coupling ~ 6. The height of the peak indicates a sample in the
clean limit where /7€, ~ 1.

5.5 Comparison with other experiments

The suggestion that the peak in ¢1(T) arises as a consequence of coherence effects is still a controversial
issue in the physics community. We will review briefly the arguments against this interpretation, but note
that none of the experiments described below have ever been independently reproduced.

5.5.1 Fluctuation effects

Soon after the publication of the Bi data, Fig. [5.2], two comments suggested that an increase of (T
could be simply due to fluctuations effects: one comment was written by Horbach et al. [95] and the other
by Olsson et al. [151].

The ‘fluctuation-effects’ interpretation [151] can be ruled out unambiguously for the YBayCusz07, be-
cause Ty is well in the superconducting state as shown in Fig. [5.4]. The rise of o, is an intrinsic property
of the superconducting state and cannot be accounted for by fiuctuation effects. In particular, in the case
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insel we compare our results with the data of Bonn ef al. [29]
at 3 GHz.

of the YBazCuzO7, fluctuation effects can only account for a very narrow temperature range (below 1 K)
while the peak observed at 60 GHz has a width of 6 K. The experiment of Olsson et al. [150} measured
an extremely narrow peak (~ 1 K) at around 100 MHz. Another argument against this interpretation is
illustrated in Fig. [5.10], where we show the size of the peak at various frequencies: if the peak was due to
fluctuation effects the height would have increased as 1/w and the low frequency results should have been
an order of magnitude higher (if we believe our 60 GHz data). We will come back to this figure later.

5.5.2 Optical experiments

We list in this section all the experiments that have probed oy(7') in the optical range (above 10 em™1)
and a comparison is illustrated in Fig. [5.9]

Our findings are quantitatively different from the observations of M.C. Nuss et al. [148] as shown in
Fig. [5.9]. They reported a broad ‘coherence peak’in o1(T) at frequencies somewhat above our measurement
frequency (1 THz). We recall that the coherence peak should increase logarithmically with decreasing
frequency but the width should remain the same. The reason for this disagreement is not clear at present.
We note that performing the identical experiment with the same analysis to the one described above, led
in conventional superconductors to a behavior fully consistent with the BCS theory (Chapter 4). The
technique developed by M.C. Nuss is a novel spectroscopic detection scheme based on the analysis of the
transient response to an electromagnetic stimuli and it is difficult to ascertain the reliability of the data
from only this experiment.

The reported absence of a coherence peak in several optical experiments has been sometimes used as
evidence for unconventional pairing. The BCS coherence peak disappears at high frequencies (above 5
cm~! for the YBayCuz07 parameters). We compare in Fig. [5.9] our results with experiments conducted
at optical frequencies by Collins et al. [46] together with the calculated oy gcg at 2 cm™! (solid line) and
60 cm™! (dashed line) and both sets of data are in full agreement with ‘s-wave’ pairing.

Also shown on the figure are the results of Romero et al. [170] and both data sets are in crude agreement
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on the figure. It is difficult to further compare the meaning of this similarity, as it is unclear to label at
which frequency the optical data refers to. The data of Romero are an extrapolation to low frequencies of
their results at 100 cm~!. They interpreted the peak as an evidence of a temperature dependent scattering
rate and we will comment on it below.

5.5.3 Microwave results

A recent measurement by D. Bonn et al. [29] has found a peak in the conductivity centered around 40 K,
in disagreement with all the other results where the peak occurred just below the transition (7, = 89 K for
aT.= 92 K). A comparison with our data is shown in the inset of Fig. [5.9]. In this analysis, the extraction
of the conductivity was done indirectly: they used the temperature dependence of A(T) from another
dc-experiment. The results are non conclusive around 7T, where the screening of the normal fraction has to
be taken into account, and the effect is frequency dependent. Finally, their value of R, at low temperature
is substantially higher than any other reported data on any single crystals (an w? correction factor has to
be applied for comparison). They attribute it to the high quality of their sample, R, increases as one goes
to the clean limit.

To our defense, they are many other experiments that have reported a narrow peak (~ 6 K width) at
microwave frequencies. They include the experiments of Lunkenheimer ef al. at 1 GHz [129], Golubov et
al. at 3 GHz [68], Cheah et al. at 5 GHz [44], Nichols et al. at 9 GHz [147], Schaumburg et al. at 10
GHz [175, 176], Miranda et al. at 35 GHz [141], Kobrin ef al. at 60 GHz [110, 109] and Zhang et al. at
100 GHz [201, 200]. We have plotted a selection of these data on the same Fig. {5.10] for comparison. We
have also included on the same graph the ‘s-wave’ calculation extrapolated to lower frequencies but using
the same parameters as the one obtained in Fig. [5.5]. The overall agreement is excellent considering the
diversity in the techniques.

5.5.4 Temperature dependent scattering rate

Two recent electromagnetic absorption experiments by Romero et al. and Bonn et al. [29, 170] have
recently ascertained that the rate 1/7 at which electrons are scattered in the normal state undergoes a
dramatic decrease when superconductivity occurs. Those findings are of extreme importance as they are
used to support models based on unconventional pairing states [143]. In this comment, it will be shown
that the 1/7 mentioned above is not related to the quasiparticle scattering rate.

To support our argumentation, we use the measurement of the surface impedance of Nb at 60 GHz,
shown in Chapter 4. Following the same analysis as Bonn et al. [29], we define the superfluid fraction, n,:

_ X)) _ X.2(0)

=0 " XA (5.5.1)

ns(T)

where A(T) is the penetration depth. As shown in Fig. [2.7] the missing spectral weight in the conductivity
spectrum is transferred to the Goldstone mode at zero frequency responsible for the Meisner effect:

2 2

T e Co

EnS(T):;j:; = 8/\2(T) .

(5.5.2)

The normal fraction, n,, is determined from the value of the conductivity:

alT)y .| B | (T) 1+ wr,?
- 23 [H“—Zsz(T) = n,(T) 1 I (5.5.3)

where f = w/2x is the frequency and the subscript » indicates the value just above T.. For Nb, it was
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Fig. [5.11]: Temperature of the scattering rate evaluated  Fig. [5.12]: Frequency dependence of the optical conductiv-
from the Nb data using the analysis described in the text ity for a BCS superconductor. In the inset evaluation of the
Eq. (5.5.3). plasma frequency and scattering rate as defined in the text,

found that 1/7, ~ 250 cm™! (Chapter 4). If one assumes a two-fluid model [178],
ns(T)+ n,(T) = 1, (5.5.4)

like in Refs. [29, 170], then one can extract 1/7 from the microwave data and the result is plotted in
Fig. [5.11]. Therefore, the same analysis as Bonn et al. applied on a conventional superconductor leads to
a rapid decrease of 1/7 below T, and the drop follows approximately a (7°/7T.)° power law.

In summary, the quasiparticle scattering rate cannot be inferred from optical absorption experiments
solely: the conductivity is a mixture of n,(T) and 7(T'). Extracting the later parameter necessitates some
assumptions on the behavior of the former (two-fluid model of Refs. [29, 170]) and then the 1/7 value has
no further significance than its own definition.

As an exercise, we have computed the frequency (f =w/27) and temperature (T} dependence of
the BCS conductivity [135] and the results are shown in Fig. [5.12], where oy is normalized to the dc
normal state value 6, = oy(w = 0,7 = T.*). The parameters chosen for this simulation were a transition
temperature T, = 90K, a single particle gap 2A(0) = 3.5k5T, and a temperature independent relaxation
rate 1/7 = A(0)/h.

Following the analysis described by Romero et al. [170], we define a new variable ¢;(T") = 01(T") — o1(T = 30K)
and fit the low-frequency part (10ecm™! < f < 1000cm™1) of 1/d; versus w? with a straight line using the
functional form y = @ + bxz. From the fitting parameters, we define a relaxation rate 1/7 = \/a/b and a
plasma frequency cbg =4dmy/1/ab at different reduced temperatures T/T,. The results are plotted in the
inset of the figure (the parameters have been normalized to their 7, values) and both 1/F and &2 drop
sharply below T, in qualitative agreement with the results reported in their paper. Note that due to the
particular definition of &1, 7(7%.) # 7.

The comment is then two-fold: a subtraction of the 30 K spectrum to eliminate the MIR contribution
just arbitrarily fixes the temperature dependence of the superfluid fraction (it forces n, to vanish at 30 K)
and assuming a two-fluid models forces again a temperature dependence of the scattering rate. We believe
that the measurement by Romero et al. {170] does not rule out the interpretation that the observed sharp
increase in the microwave conductivity (92, 106, 108] is due to coherence effects.
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5.5.5 Absence of peak in NMR

One of the strongest argument against the ‘coherence peak’ interpretation are the reported results in NMR
of the Cu(2) and 0(2,3) sites in Y BayCuzO» [77] where no coherence peak is found. The reasons for this
difference are not clear because in principle 1/73 and oy should couple to the same degrees of freedom for a
metal. But there are several important distinctions between the information provided by the conductivity
and by the nuclear relaxation rate and we would like to enumerate them:

1. The temperature dependence of the NMR relaxation rate is identical to the optical absorption if
the dominant term in the hyperfine interaction is the contact term. In the case of the 0(2,3) or
Cu(2) site, the dipolar term is also non-negligible as the CuQ, plane is not-symmetric. In the case
where the dipolar interaction dominates the relaxation process, 1/7; is a mixture of case 1 and case
2 coherence factors and the drop should be substantially faster.

2. NMR and optics do not probe the same response function in the q space. Optics measure the average
response over several lattice constants, and therefore probes the q = 0. NMR in contrast is a local
probe and therefore measure the g-integrated contribution:

1T Slx(a,w)]

— = =Y |A(g)P = : 5.5.5

7= v 2 A==, (5.5.5)
q W=Ww,

where [A{q)|? is the hyperfine form factor and its value depends on the chemical constituents and

its position in the crystal, numerical estimation were performed by Mila and Rice [138]. This is

a non-negligible difference with optics, in particular for the Cu(2) site which is subjected to anti-

ferromagnetic fluctuations which gives rise to an enhanced susceptibility at (7,7).

3. In the case of the O(2,3) site, experiments are usually performed in high magnetic field. The dominant
absorption process involved in the relaxation of the O nuclear spin, is the electron spin flip [178]
(the contact term of the hyperfine interaction is dominant) which implies that the quasi-particle
spectral density function is probed at the electronic Larmor {frequency (instead of the nuclear Larmor
frequency). This difference is insignificant for a metal, where the density of states N (w) is constant
around the Fermi energy, but not for a superconductor where Ny (w) is singular at the gap value.
In consequence, high magnetic field NMR (typically 7 Tesla) is probing the BCS response function
at higher energy (8 cm™') than the present conductivity measurement (2 ¢cm™!) and as mentioned
earlier, an increase in the probing frequency smears out the height of the coherence peak.

4. NMR is sensitive to the local spin fluctuation while optics measures the charge excitation, and those
two degrees of freedom can be, in principle, completely uncorrelated.

Conductivity experiments in high magnetic field are published elsewhere [158].

5.6 Complementary measurements

5.6.1 Conductivity along the c-axis

We have measured the electrodynamic properties along the c-axis by placing the sample at the antinode of
the electric field, configuration 3 of Fig. [3.2]. The results are shown in Fig, [5.13]. Due to the particular
sample shape, geometrical factors (depolarization) do not enhance the signal as much as for the parallel
direction and the data are of poorer resolution than those obtained for the (ab)-plane. In the inset the
normal state surface resistance is shown and we observe a ‘semi-conductor’ like behavior below 100 K. These
features have also been observed in the dc-resistivity [161, 32] and have been interpreted recently [73] as
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the c-axis is shown in the inset,

the signature of a series stack of Josephson tunnel junctions. The model requires in addition unusually
large fluctuations to extend the behavior well above T..

Approximating the sample as oblate spheroid of semi-major axis ¢ = 0.036 cm and semi-minor axis
b = 0.0012 c¢m, we have evaluated the resonator constant. From the measured value of the bandwidth
[Ts — T,](T=100 K) = 2 x107°, we have calculated the normal state surface resistance R, = 11.2 Q using
Eq. (2.3.1), this results leads to a resistivity p, = 50 m{) cm (the subscript n refers to the normal state or
T = 100 K value). The anisotropy factor is approximately p./pqs ~ 500 just above T,. With the resistivity
value one can estimate the skin-depth of the material in the normal state § = 40 gm. Using the temperature
dependence of X,(T') = wp,A(1") we can deduce the penetration depth at zero temperature, On Fig. [5.13]
we can see that X(T') saturates at low temperature to a value corresponding to a penetration depth
AT = 0K) = 3.7um. From our data, the perpendicular penetration depth is on the average temperature

independent up to 40 K.
The temperature dependence of R, and X, suggest the presence of a peak. In fact the condition sanae

pu[Qcm] &[] AAL L[4 gO)[A] 7 [em™Y 2A(0) [K]
| 100 x 107% 1.8 x 10* 1500 100 35 200 550
I 50 x 1073 4.0 x 10° 3.7 x 101 ? 4 ? > 550

Table 5.1 Electrodynamics properties of ¥YBazCuzO7 measured at 60 GHz, with the current flowing whether in the (ab)-plane
{|| configuration) or along the c-axis ().
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assuming that R, = X (T > 7). On the graph, R, and X, drops with the same slope at 7, implying
that o, should display a strong increase below T,. This simple argument is indeed confirmed in Fig. [5.14]
where we display the temperature dependence of o, below T, as evaluated from the impedance data. If
the increase of oy is caused by coherence effects for the a-direction then the height of the peak suggests a
large gap value, well exceeding the one quoted for the {(ab)-plane.

5.6.2 %Y NMR

In this section we discuss new NMR studies on the 3¥Y nuclear spin, the experiments were performed in
the superconducting state of oriented powders. The Y is a spin-1/2 nucleus and has no electric guadrupole
moment. Its isotope is 100% abundant but has a small gyromagnetic ratio. The Y is nested between
adjacent CuO; plane and its indirect coupling to the superconducting layer has provided many interesting
results. The first measurements of the Y NMR were made by Markert ef al. [132] and Balakrishnan et al.
[18] but the most extensive study of the normal state has been performed by Alloul et al. [10]. He has
shown that the Y nucleus follows a fermi-liquid picture and in particular the nuclear spin relaxation rate
follows the Korringa relation above T,, contrary to the Cu(2) site affected by the 2D antiferromagnetic
fluctuations [140].

Small crystallites of YBa;Cus(O7 were mixed with Stycast and during the hardening period aligned in
a magnetic field of 7.5 T. From X-ray scattering, the misorientation is less than 3°. The data were taken in
a double channel setup. The echoes obtained in a 7/2 (10us) - m pulse sequence were Fourier transformed.
The experiments were performed in a field of 7.5 T, and the measuring frequency was ~15.64 MHz. From
zero field shielding diamagnetism measurements, the onset of superconductivity is at T.(0)~92 K. In the
NMR magnetic field, T,(B) ~89 K, defined as the onset of the diamagnetism in the rf-coil.

Linewidth

The temperature dependence of the linewidth for /7 || ¢ and H L ¢ is shown in Fig. [5.15]. The narrow
linewidth (0.6 kHz) in the normal state is a signature of the good stoichiometry of the compound, z = 1.
It has been shown recently that below 100 K, underdoped (2 < 1) samples have a second resonance line
[35] (note that the 8%Y NMR. shift varies also drastically as soon as z departs from unity [8]). Below T,
the lineshape depends on the flux phase (array or liquid).

The main feature of Fig. [5.15] is that the linewidth broadens only below 7™ ~ 83 K for the H || ¢
configuration, while for /I | ¢ the linewidth increases already below 89 K, T.(B). In the high-T, compounds
there are numerous experiments that have shown the existence of a vortex liquid phase between T,(B) and
T*, where T defines the onset of magnetic irreversibilities in the sample [158] (below which flux pinning
occurs) and T.(B), is the onset of diamagnetism (or the start of the resistivity drop). For H | ¢, the
absence of line broadening between T.(B) and ™ is probably due to motional narrowing as suggested by
Brom et al. [35]. For I L ¢, there is no liquid vortex phase and the start of the line broadening coincides
with the apparition of the superfluid fraction in the sample (as expected for conventional superconductors).
It has been shown in a previous report that the temperature dependence of the linewidth could be well fit
by a two-fluid formula if T is scaled by the melting temperature 7™ for the H || ¢ configuration, or T,(B)
for the other configuration, # L c¢. This empirical law is the appropriate form of A(7T') if the material is
governed by strong-coupling effects. The anisotropy of the linewidth is related to the anisotropy of the
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The ratio is ~ 4 from our data, somewhat smaller than the one extracted from conductivity but larger
compare to other measurements {163]. It is difficult to ascertain firm conclusion, as the effect might be
dominated by misorientations of the grains.

Knight shift

It was shown in Chapter 2, that the NMR shift is related to the magnetic susceptibility at the nucleus site.
It can be divided in two distinct parts, the spin susceptibility (Knight shift) and an orbital contribution
(chemical shift),

KJ(T)= K", + K5,(1), (5.6.3)

where K, is the total shift, k', is the T-independent chemical shift and K%, is the T-dependent Knight
shift. It was shown by Alloul et al. 8] that above T, the dominant contribution to K is the hyperfine
coupling with the O2po orbital of the eight neighbor oxygens. Using the Mila-Rice [138] hyperfine form
factors A, K7 is related to the spin susceptibility by the following formula:

K5,(T) ~ 4,19, (5.6.4)

where A is negative for the Y site. The normal state anisotropy is shown in Fig. [5.16], the magnitude of
the Y shift was evaluated carefully in Ref. [8]: it was found that Ky ~ 150 ppm at room temperature,
while K%, — K&, ~ 15 ppm; for the Knight shift K8 ~ =240 ppm and K%, — K5, ~ 72 ppm. Above
T., the anisotropy of the NMR shift is interpreted as an anisotropy of the spin susceptibility at the oxygen
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sites X£O)/X£?) ~ 1.2.

In the superconducting phase, the temperature dependence of K, is rather peculiar, as shown in
Fig. [5.16]. For the H L1 ¢ configuration, one observe the expected decrease of the spin susceptibility
below T.(B) (the shift increases because the hyperfine coupling is negative). The onset of the drop is not
sharp, and seems to scale with the nuclear spin relaxation. This result is in contrast with the temperature
dependence of the Yosida function shown in Fig. [2.16]. On the inset of Fig. [5.16], we have compared
the NMR shift versus the nuclear spin relaxation rate for the same orientation, the plot is limited to the
temperature range I" > 81 K. The significance of this plot will be analyzed later. A sharp cusp is observed
at 81 K, and below the NMR shift decreases with increasing temperature. The abruptness suggests a
regime change; a possible explanation is that the penetration depth becomes comparable to the dimension
of the powder and the increase fraction of the superfluid screens the magnetic field at the Y site. Further
work needs to be done before drawing firm conclusion, and in particular a study of the intensity of the
signal.

For the H || ¢ configuration the shift seems constant in the same temperature window where K,
increases. Later, below 85 K, K. decreases with decreasing temperature. The onset of the change is
slightly higher than the irreversibility temperature 7*. We note that similar behavior have been observed
for the Cu(2) sites in the temperature range 7*-T.( B) [23].

Nuclear spin relaxation

The temperature dependence of the 3°Y nuclear spin relaxation rate W is shown on Fig. [5.17]. Below
T.(B), we observe a shoulder of approximately 3K width that can be interpreted as the remaining of the
coherence peak. We recall that the excitation spectrum is probed at Larmor frequency, or 8 cm™! for the
7.5 T NMR magnetic field.

By fitting the observed temperature dependence with the BCS response function where only the ¢=0
contribution of the susceptibility [10] was included, we find parameters that are very close to the conduc-
tivity results: a strong coupling (2A(0)/kpT ~ 5) and a sample in the clean limit (£/7£(0) ~ 5). We also
observe that the results for the #?Y surprisingly differs from the 70 that decreases substantially faster.
This might be an indication that at low temperature the relaxation of the Y is dominated by other pro-
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cesses, which then will indicate that the quoted value of the coupling constant represents a lower bound.
However, there is a strong argument against the coherence peak interpretation suggested by the inset of
Fig. [5.16). If the plateau in Wy is a remaining of the coherence peak then we should see a sirong departure
of the ratio Wab/be from the Korringa law below T.(B). Quite the opposite, we observe that the nuclear
spin relaxation rate of the Y follows the same Korringa relation in the superconducting phase up to 81 K
(the solid line in the inset is a continuation of the normal state behavior). This observation will then seems
to rule out the simple explanation mentioned above. Below 81 K, the NMR shift changes regime and we
haven’t included the data point in the figures.

For the H || ¢ configuration, we find a behavior that is very similar to the perpendicular direction. It is
not very clear from our data wether 7.(B) or T* should be used as the transition temperature to compare
with the BCS formula and thus we haven’t attempted to compare the data point with the BCS predictions.
A fit similar to the H L ¢ configuration (same fitting parameters) could have been obtained if we would
have neglected the presence of the flux melting zone.

Finally we show in the inset of Fig. [5.17], the anisotropy of the Y nuclear spin relaxation. The dashed
line is the normal state mean value. The anisotropy decreases below 120 K, to recover the former value in
the superconducting phase. The change is small and slightly larger than our measurement accuracy. The
significance of this anisotropy is not clear but seems a characteristic of the normal state rather than of the
superconducting compound. We could not go further lower in temperature due to technical difficulties.
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Chapter 6

Organic superconductors

The field of organic superconductivity started a decade ago, long after the prophetic ideas of W.A. Little
(1964) [128]. The first superconducting compound was discovered by D. Jérome in 1980, it was the quasi-
one dimensional (TMTSF),PFs salt, that has a T,= 0.9 K under a pressure of 12 kbar [99]. Although
the T, was small, the advance received a lot of attention because the chemistry of those molecules is well
controlled and thus is perfectly suited for a systematic study. A tremendous effort has been spent in the
past decade, but still very ‘little’ is known about those materials. The compound that we have studied, is
the x-(ET)oCu(NCS); salt, it was the first 10-kelvin organic superconductor synthesized in 1988,

6.1 Experimental survey

Like the cuprates, the organic superconductors are charge-transfer salts, where the cation part comes from
an organic molecule and the anion is usually an inorganic complex. In our case the organic building
block is BEDT-TTF (bis{ethylenedithia)tetrathiafulvalene) which for simplicity is written ET. The anion
is Cu(SCN)7, but can be replaced by Cu[N(CN);]Br~ and Cu[N(CN)]Cl~ for an increase of the critical
temperature (~ 13 K). The delocalized electrons that are responsible for the conducting properties of these
materials come from the overlap of the 7 orbitals between the cations (the 3p orbitals of the sulfur atom).
The syntheses of the new salts follow from electrolysis. This procedure uses two glass cell connected by a
frit, which allows the ion migration but prevents the mixing of the cell’s content. The platinum electrodes
inject a small current (a few pA) that oxides the ET molecule, and crystals form on the anode through
a slow diffusion process. The crystals formed have a characteristic flat hexagonal shape. The solvent is
usually an organic polar molecule (trichloroethylene). The samples used in this study were provided by F.
Wudl from the Department of Physics at the University of California, Santa Barbara.

6.1.1 Crystal structure

The salts produced split in two distinct phases called the 8- and s-crystals. The x-phase is made of a
combination of dimers couple almost facing each other (dihedral angle between planes is 2.1°, interplanar
spacing is 3.3 A), but that are oriented at nearly right angles with respect to their neighbors (88°); a
schematic representation can be found in Fig. [6.1]. In contrast the 3-phase is a two-dimensional parallel
stacking of those dimers.

The k-crystals only are superconductors, their space group is P2; (non centro-symmetric), it has a
monoclinic unit cell of dimensions @ = 16.254, b = 8.444 and ¢ = 13.12A [192] at room temperature; a
drawing of the crystallographic structure can be found in Fig. {6.1]. As mentioned earlier, each organic
molecule is linked by inter-dimer sulfur contact (3.51 A) the bounding forms the two-dimensional conducting
layer and the donor sheet lays in the (bc)-plane. The (be)-plane is usually parallel to the largest crystal
surface and has a typical hexagonal boundary. Every conducting layer is sandwiched by the insulating
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Cu(NCS), along the a-axis. The anion posses a permanent dipole, that is not screened by the crystal.
Notice that there are no distinct structural phase transition which occurs as lowering the temperature.

6.1.2 Electronic properties

The electronic properties of organic superconductors are very similar to the one observed in the cuprates.
They are very anisotropicin the normal-state, the highly conducting pathways are parallel to the (b¢)-plane
and the poorly conducting direction is along the a-axis. We have used different symbols to distinguish
the two cases where the currents flow along (||) or perpendicular (L) to the (bc)-plane. The temperature
dependence of the electrical resistivity along the (be)-plane has an oscillating shape and the result is shown
in Fig. [6.2], the curve was reproduced after Ref. [38]. The room temperature dec-resistivity is around
p = 0.05Q cm. The temperature dependence goes through a minima at 250 K and then a maxima at 100
K. It drops sharply below 100 K, and in range 10-30 K it can be fitted by the functional form:

py = A+ BT?, (6.1.1)

where A ~ 50p€ cm and B ~ 2u) cm K=%. The resistivity at 10 K (slightly above the transition) is
P = 250p cm. The anisotropy is large but has never been estimated accurately: Buravov et al. [38]
estimated a ratio py /p) = 10° — —10" at low temperature, while Urayamaet al. gave a more conservative
figure ~ 600 [192, 156], regarded as a lower limit. The carrier density (holes [112]) is low (n = 2x10%° cm?®)
[190], and an order of magnitude smaller than the number ~ 1.2 x 102! cm® expected if one carrier exists
per unit formula. Consequently, there is less screening and the dynamics is dominated by the Coulomb
repulsion between the carriers, the system is strongly correlated (represented by a large Hubbard U) and
the conduction band is narrow (4#; ~ 0.5 eV, where 4t is the tight-binding bandwidth), leading to a large
renormalized mass of the carriers (m* = 4m, in the (bc)-plane). Those materials have an important
difference with their HTC counterparts, there is no maguetic ground state nearby in the phase diagram:
however some of those molecules have a degenerate SDW ordering.

The parameters describing the superconducting state are the coherence lengths £ ~ 70A and £, ~ 5A,
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as extracted from critical field measurement {172]. The penetration depth evaluated from uSR {80] is
Al = 9800A and there is no reliable evaluation of A; in the literature. A complete review of those
electronic properties can be found in the book edited by V. Kresin and W. Litttle [116] and references
therein.

Shubnikov de-Haas (SdH) experiments by Toyota et al. [190] and Oshima et al. [157] gave a value
for the scattering time I~ 2cm~!, the fermi momentum kzr ~ 1.4 x 107cm™!, which implies that the
mean-free-path £ = 7 x hkp/m* ~ 5004, placing the compound well into the clean limit LimE, > 1.

6.1.3 Pairing symmetry

The nature of the pairing state in those materials is still a matter of speculation, and there is no consensus in
the community on this matter. Contrary to the cuprates, the investigation was not as diverse and complete
(but as confusing): almost all the experiments on the subject are measurements on the temperature
dependence of the penetration depth at low temperature [89] and looked if A(T") obeys some power law
(cf. Chapter 5). In the last three years, there are been at least five conflicting papers on the subject,
where even the same experiment at the same facility, found different results. One uSR experiment claims
a conventional ‘s-wave’ pairing [80] while another claims a linear behavior at low temperature and ‘d-
wave’ pairing [122] (a schematic drawing of various gap symmetry was shown in Fig. [1.8]). Shielding
diamagnetism measurement in contrast found a T? dependence {*p-wave’ pairing) [102) and other support
the ‘s-wave’ [121} model. The only clear message out of this cacophony, is that measurements of A(T’) are
not conclusive and there may be some other effects that have to be taken into account: like the sample
quality. A hint might be given by the results of Sridhar et al. on the rf-penetration depth under various
magnetic fields [182]. They suggested that the zero-field state might not simply obey a London relation:
the measured A might turn out to be the flux-flow skin-depth.

Specific-heat experiments [72] have shown good agreement with ‘s-wave’ pairing with a single transition;
if nodes would have been present in the gap, some split transition would have been observed like in the
heavy fermion compound UPt3 [61, 83]. The data showed a shallow drop of the specific heat at T, (width
of 1 K} that was interpreted as the signature of a rather broad distribution of T..’s in the sample.

NMR experiments on these materials have displayed some rather strange feature. Measurement of
the temperature dependence of the proton relaxation rate by Takahashi et al. exhibited a strong peak
around 5 K [186]. This enhancement was interpreted as a signature of triplet pairing (all the models
mentioned so far were singlet). A more recent study however, done at Orsay, showed that a careful and
systematic characterization of the ‘peak’ {features are in full agreement with flux-motion models [98]. The
conclusion is: although NMR data show an enhancement of the relaxation rate, there is no direct evidence
of ‘coherence-peak like’ behavior, that could infirm or support any pairing model.

6.1.4 Optical properties

The optical properties of the x-(ET )2 Cu(NCS); [114, 113] share several similarities with the cuprates. The
important conclusion is that, like for the oxides, optical experiments were not successful in determining the
single-particle gap [115], although the position of the BCS gap is near 20 cm™1, slightly above the threshold
of detection sensibility of most FIR spectrometer (but great care was taken to measure the spectrum down
to 5 wave-numbers). Those unsuccessful attempts could be well explained by the clean-limit argument
sketched in the previous section, where the reflectivity in the normal-state is almost 100 % and thus too
high to allow any detectable variation at the gap edge. Also, as for the cuprates, a large temperature-
independent feature appears in the mid-infrared region, and certain data are suggestive of states below the
gap [113]. No attempt has been made to extract the temperature dependence of quasiparticle life-time, as
the data resolution is poor below 20 cm™1.

Excluding our work, there are very few published microwave data on the s-(ET);Cu(NCS)s,, in fact we
are only aware of a recent preprint of Achkir et al. [4] that studied the electrodynamics at 17 GHz. They
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measured a broad peak in the temperature dependence of the conductivity o1(T') that was attributed to a
strongly temperature dependent scattering rate. The analysis was identical in the form as the one used in
Ref. [29] and thus we refer to the discussion page 81 in Chapter 5 for a critic review of the method: we
believe that the temperature dependence of 7 is spurious and impeded by the assumptions in the analysis.
They claimed also a linear term in the temperature dependence of the penetration depth in good agreement
with the one observed by Le et al. [122], although inconsistent with their raw data as shown in Fig. [6.5].
Finally, they measured also the normal state properties down to 1.2 K by applying a dc-magnetic field
above H; and later we will use extensively their result to infer 7y/(T") below T..

In conclusion, the nature of the pairing symmetry has not been solved by the previous experiments and
there is no agreement on the results. Again, the two principal candidates are a conventional ‘s-wave’ or a
‘d-wave’ pairing. The following will review the microwave properties of x-{ET),Cu(NCS); as evaluated by
cavity perturbation technique at 60 GHz.

6.2 In-plane properties

We have measured the surface impedance Z;, = R, — i X, of k-(ET);Cu(NCS)z in the millimeter-wave
spectral range at both the magnetic and electric field antinode for various crystallographic orientation.
Again, only the data at 60 GHz will be mentioned although we have performed some measurements at
other frequencies. We first discuss the in-plane (be-plane) electrodynamics properties,

In terms of the complex conductivity & = oy + i0g, the surface impedance is given by Eq. (2.3.1):

_— w
Zs =\ 1= (6.2.1)

where B, and X, are the surface resistance and surface reactance, In the normal state, o1 3> o3 and

Ry(T) = X,(T) = ;@ (6.2.2a)

where & is the skin-depth defined as § = ¢,/v/2nwe;. In the superconducting state, the surface reactance
is proportional to the penetration depth (at temperature where o, > o)

X,(T) = E";A(T) and R, ~ 0, (6.2.2b)

and R, is determined by the losses due to thermally excited carriers within the penetration depth (cf.
Chapter 2 for more details).

6.2.1 Normal state

Our experiments were conducted by employing ‘cavity perturbation’ techniques, where a small specimen is
placed inside a resonant cavity at various positions (see below). The signal is detected by the ‘amplitude
configuration’ analogous to the one used in ESR (Chapter 3). The measured parameters are the resonant
frequency, f, and the resonance bandwidth, I'' The changes due to the specimen normally represent a
small perturbation of the resonance, and are linearly related to the changes of the surface impedance of
the specimen:

LAT  Af
= —1
2/ fo

where a, the resonator constant, is a geometrical factor reflecting the dimensions of the sample and cavity,
and can be calculated by using Table (3.3).

= o R, — iX,), (6.2.3)
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For the specimens we have investigated, two different configurations have been implemented to explore
the anisotropy of the normal- and superconducting state properties. In one configuration the sample
is at the antinode of the ac-magnetic field and the ac-electric field is zero at the surface of the specimen
(configuration 2). In the other configuration Eu¢ is maximum and Hag is zero at the surface (configuration
3): a schematic diagram of the two positions can found in Figs. [3.1] and [3.2]. In the experiments where
Eqac is parallel or Hye perpendicular to the highly conducting (be)-plane, the currents flow in the plane
and we refer to the surface impedance as 7| = By —1.X,.

In our experiments where the specimen is subjected to electromagnetic fields, demagnetization effects
and misalignment of the field with respect to the crystallographic axes may play a role. The former
may lead to vortex contributions to the electrodynamic response, the latter to a mixture of in-plane
and perpendicular to the plane properties. We have obtained identical results for both configurations
(electric and magnetic anti-node) where the induced ac-currents flow in the (be)-plane, and we conclude
that demagnetization effects (which could be relevant for configuration 2, but not for configuration 3) do
not play a significant role.

Using the measured value for the quality factor, one can estimate the conductivity in the normal state
just above T, Using cavity perturbation theory in the skin depth regime (cf. Chapter 3) and approximating
the sample shape with an oblate spheroid, we obtain a value for o, (T =9 K) = 3.7 x10* @' cm ~1 in
good agreement with both the de [38] {o, (T = 12 K) = 5.0 x10° Q! ¢m ~!] and far infrared values [113]
[en (T = 10 K) = 2.0 x10% Q7! cm ~1]. Thus, we conclude that misalignment effects are negligible.

The superconducting transition temperatures observed were typically 8.3 K. Shielding diamagnetism
measurements indicate a typical width of the transition AT = 1K. Such a significant width is evident from
magnetization, dc resistivity, and specific heat {72] studies conducted by other groups.

In Fig. [6.3] we display the dc resistivity together with 87 R,2/w measured along the conducting (bc)-
plane. All quantities are normalized to their T = 30 K value. For a metal pg. = 87 R,?/w, for wr < 1
and consequently, Fig. [6.3] suggests that in the normal state &-(ET)2Cu(NCS); is a simple metal with a
relaxation rate which exceeds w/27 = 2 cm™! (60 GHz), in agreement with optical studies which lead to
a relaxation time 1/7 = 1000 cm™! [113]. This figure differs greatly from the quoted value above (SdH
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bulk piece of pure Nb (Chapter 4).

face resistance of the sample under a de-magnetic field of 10
Tesla (well above H.z).

experiments). The reasons for this difference are not clear at the present and several explanations will be
suggested below. In this limit, B; = X, = \/w/870¢; and both components of the impedance R, and X,
have the same value. Just above T, our high frequency results are somewhat different from o4, available in
the literature. Experiments on several specimen indicate that this is due to the difference in sample quality.
We have also observed differences in the transition temperature, as it is also evident from Fig. [6.3].

6.2.2 Superconducting state

The temperature dependence of R; and X, below T.= 8.3 K, obtained from a configuration where the
electric field is parallel to the ¢ direction, is shown in Fig. [6.4]. For the data displayed, the electric
currents flow within the conducting plane, and consequently Z;)|| is measured. All the data shown in
Fig. [6.4] are normalized to the value of the surface impedance at 9 K (R, and X,,). It is important
to notice that, in the temperature region below 7., the ‘normal-state’ factor is defined by the value of
o, at a fixed temperature point (9 K) rather than the expected normal state conductivity ¢,(T) (and
consequently R,(T) and X,(T")) which would be recovered at the same temperature. Nevertheless, the
temperature dependence of 0,(T') below T, was measured by Achkir et al. [4] by applying a magnetic field
of 10 Tesla (well above H.y) while performing similar surface impedance measurements at 17 GHz, the
results are shown in Fig. [6.5]. It was found that the scattering rate 1/7(T) is temperature dependent
and in continuation of the above T, temperature range, the overall behavior in agreement with the 7'2
functional form discussed in Eq. (6.1.1). This temperature dependence has to be taken into account in
order to compare with the theoretical models developed in Chapter 2. The result of Achkir et al. [4]
rules out also models predicting any drastic deviation from a shallow monotonic decrease of 1/ 7)(7) in the
region 0-9 K.

Both the surface resistance and surface reactance depend on the parameters which determine the
superconducting state. For a BCS superconductor, in the dirty limit the theory worked out by Mattis-
Bardeen apply [135]. This limit, however, is not appropriate for #-(ET)2Cu(NCS),. The normal state dc
conductivity and optical relaxation time leads to a mean-free-path £ ~ 100A. This value differs from the
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quoted figure page 90, it uses a more conservative estimation of the dc-conductivity and provides a lower
limit. The coherence length [189] £ = 704, and the penetration depth Ajj = lum, all parameters referring
to the in-plane quantities. We have calculated R, and X, for various values of ¢/7§, (cf. Chapter 2),
assuming a two-dimensional BCS ground state [43], with a single particle gap given by the weak-coupling
limit 2A(0) = 3.5k5T.. The best fit of our data (Figs. [6.4] and [6.7]) leads to a value of £/7&) = 1,
and, consequently to wr =0.15 at f = 60 GHz, and this leads to a relaxation rate /=15 em~!, This
value for the scattering rate is shorter than 1/7) = 1000 cm~! obtained from optical studies and somewhat
larger than 1/7)) = 2 em™" which is evaluated using Shubnikov-de-Haas measurements [190]. Some of these
differences may reflect a frequency-dependent relaxation time and deviations from a single Drude response
in the metallic state. The fit value w7 was used to calculate the unknown offset that adds to the frequency
shift (Chapter 3, page 49). The ratio X,/ R, of a Drude metal in the relaxation regime depends only on the
wry value. Using table [2.1] we have obtained a self-consistent number. Again, the ‘normal-state’ values
refer to the 9 K temperature point for 7. We have included in the fit the temperature dependence of
the scattering rate, and the effect was obtained in the following way: we have fit p,(T) the normal-state
resistivity above T, by a second order polynomial, and used this to estimate 7)(7") in the temperature
region below T,. The validity of this type of analysis is based on the results of Achkir ef al. displayed in
Fig. [6.5]. It is important to note that due to the slow variation of 'r“(T) this analysis is purely formal
(cf. Fig. [2.11]) and ignoring the effect due the temperature variation of the relaxation rate will have given
equally good fit with very similar parameter values.

The relatively broad transition observed in s-(ET);Cu(NCS}), can crudely be modeled along the lines
which have been done for interpreting the specific heat [72] by assuming a distribution of local transition
temperatures in the specimen. Such a distribution is expected also to influence the temperature dependence
of the electrodynamics response. We have modeled this by assuming that:

Ry(T), Xo(T) = f [Ro(T), X:(DIP(T - w)du, (6.2.4)

where R (T) and X,(T) are the calculated surface impedance parameters described before and P(u) =1 for
|u[ < 0.5 K and P(u) = 0 outside this temperature range. The solid line in Fig. [6.4] are X,(T) and R4(T)
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resulting from such procedure. Although representing the broad transition with a simple distribution of
independent local transition temperatures and calculating X, and R, using Eq. (6.2.4) is certainly an
oversimplification, it is clear from Fig. [6.4] that one can account for the full in-plane electrodynamics with
a BCS ground-state and moderate sample quality.

In Fig. [6.6], we compare the drop of the surface resistance of the sample with a measurement on a piece
of bulk Nb (cf. Chapter 4). As mentioned, B,(T) of the organic is much broader than the typical behavior
observed for a three dimensional conventional superconductor. In the previous paragraph, we have used
a distribution of T’s to model the experimental findings, but we want to mention also that there exists
several fluctuation-based models that can fit the data equally well, fluctuation effects are expected to be
particularly dominant near T, for very anisotropic conductor.

The normal-state skin depth § = ¢,/v/27we; = 3.4 um at f = 60 GHz. With this value of é, using the
temperature dependence of X below T’ one gets a parallel penetration depth A)(0) = 1.4um in excellent
agreement with A values evaluated from muon-spin-resonance (uSR) studies which lead to Ay4(0) = 0.70
and 0.98 pm, respectively (80, 122]. The agreement with the uSR results also demonstirates again that
misalignment effects do not play an important role.

We also note that within experimental error X, displays only a weak temperature dependence at
temperature well below T... In this limit X, = w/ oA and consequently, our results are in full agreement
with (T} evaluated from pSR studies, and in clear disagreement with the temperature dependence of
A(T') evaluated from ac-magnetization measurements [102].

6.2.3 Coherence peak

We have also evaluated ¢; and o3 in the superconducting state by using Eq. (6.2.1) and the measured R,
and X; values. In Fig. [6.7] we display the conductivity ¢; normalized to the ‘normal-state’ conductivity
o, at 9 K. Also displayed in the figure are the calculations based on the BCS model that lead to a broad
maximum, reflecting case 2 coherence factors [178]. The solid line includes the temperature dependence
effects of m;('T). 1t is clear that our results are in full agreement with a BCS ground state. The broad
maximum below T is a reminiscence of the coherence peak: at 60 GHz the photon energy is large (compare
to the relatively modest T¢.) and gives a ratio hw/A(0) ~ 0.3 above the maximum threshold that allows
the observation of the coherence peak, as shown in Fig. [2.9].

We note that higher momentum pairing leads to the rapid disappearance of the coherence peak (cf.
Chapter 1) and is expected to give oy values significantly below the solid line of Fig. [6.7]. Qur experi-
ments, in contrast, lead to a conductivity which lies above the curve calculated for singlet pairing, and,
consequently, we regard Fig. [6.7] as important evidence for a singlet ground state.

Unfortunately very little information can be extracted from the zero-temperature value of g,. In the
relaxation regime wr > 1, the ratio 03(0) / ¢, tends to 1/w7 and not fiw /7T A(0), as shown in Eq. (2.3.29).
The measured valtue is then used as a check of the analysis consistency.

In conclusion, the temperature-independent surface reactance for T' < T, and the increase of o some-
what below T, rule out a superconducting ground state which is significantly different from singlet pairing.

We believe that observations which suggest an unconventional superconducting ground state (cf. pre-
vious section) are the consequence of non-ideal sample quality, of the strongly anisotropic nature of the
superconducting state and/or demagnetization effects. Spurious power-law temperature dependences of A
for T' < T, are also often obtained in oxide superconductors where it is believed that they may arise from
the presence of inhomogeneities weak links regions [49, 117].

6.3 Out-of-plane properties

We have also measured the conductivity of the &-(ET);Cu(NCS); along the e-axis, i.e. perpendicular to
the highly conducting plane that is along the (b¢)-directions. Those experiments are extremely important
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as they probe directly the anisotropy of the excitation density of states, and thus can give some important
hint on the gap symmetry. Moreover there are no precise measurements of the anisotropy from dc data: the
room temperature value oy /o was estimated to lie around 600 by Urayama ef al. [192, 156] while Buravov
et al. [38] estimated it to be between 10® — 10%. In both cases the accuracy is poor, as the end result is
hindered by the exact current density distribution in the sample (expected to be temperature dependent
too). In contrast, measurements of the high frequency response can be very precise as the technique is
contactless and independent of the current distribution: the only relevant parameter is the total loss, that
is dominated by the poorly conducting axis.

6.3.1 Normal state properties

Again, the g-axis conductivity was measured in two different configurations, in one the sample was sitting
at the antinode of the electric, while in the other it was at the antinode of the magnetic field. The results are
shown in the inset of Figs [6.8] and [6.9] respectively: the striking feature of the normal state properties is
that the raw data have a very different temperature behavior between the E and H field, although they are
supposed to probe the same parameters (for example the characteristic frequency fr drops sharply around
50 K while fy increases). This difference finds a natural explanation in the cavity perturbation theory
(Chapter 3), where a sample can induces a very different response between the E or H configuration, when
the conductivity crosses over from the depolarization to the skin-depth regime. The difficulty is then to
evaluate the complex conductivity in a consistent fashion, and it will be shown that the intrinsic properties
(the material conductivity) are in astonishing agreement between the two experiments despite the apparent
differences in the experimental results.

Electrie Field

In the inset of Fig. [6.8], we display the temperature dependence of the experimentally accessible parameters
(AT and Af), when the (BEDT-TTF)-sample was located at the antinode of the electric field. In this
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case, the crystal was placed on top of a tiny guartz rod and the electric field pointed in the direction of
the sample g-axis. The remarkable thing about this figure is that the sample response crosses four totally
different regimes in one temperature scan ranging from 1.2 to 300 K. On the same plot one can see both
the insulator and the metallic sides of the depolarization regime (the result of a relatively large anisotropy
combined with a modest sample dimension), separated by the depolarization peak visible in the AT-curve,
together with the metallic and the superconducting state of the skin-depth regime. The skin effect regime
is entered when the skin-depth becomes smaller than the sample radius. From the frequency change at
Te.= 8.2 K we see that the superconducting penetration depth A(0) soon gets smaller than the skin-depth
é. Using the methods described in Chapter 3, we can extract both the real and imaginary parts of the
conductivity in all those four different regimes. We assume that slightly above the transition temperature
we are in the metallic regime. Thus at this temperature the frequency shift Af/fo = —v/n — £€X,. The
frequency offset is settled by assuming that in the depolarization regime Af/fo ~ 0. The sample is
approximated by an oblate spheroid of dimensions ¢ = 30 pm and & = 200 gm. We can then compute
v/n = 1.4 x 107* using Eq. (3.3.8¢c). The measured value of AI'/2f; slightly above the transition is equal
to 2.5 x 10~°. The temperature dependence of o calculated from the data is shown on the figure. We can
see that ¢ (T=9 K) = 4.0 (€ cm)~". Comparing this number to the published {107 value of ay(7=9 K)
= 3.7 x 10% (Q cm)~! gives an anisotropy of ~ 1.1 x 10%. The temperature dependence of oy, is very
similar to the one observed for the parallel direction, (bc)-plane. For example on the figure, one recognizes
the semiconductor-like behavior at high-temperature. Using the data shown in the first section, we have
extracted the temperature dependence of the anisotropy coeflicient, and the ratio o /o) was found to be
almost temperature independent (within 10 %) between room temperature and 9 K.

Magnetic Field

In Fig. 6.9 we present the results for the same material at the antinode of the magnetic field. In this case,
the magnetic field was oscillating along the {bc)-plane of the crystal and the measured conductivity was a
combination of both the parallel and perpendicular values. However, due to the large anisotropy, we expect
that the losses in the perpendicular direction will dominate. Using a similar procedure as described above,
we fix the frequency offset by assuming that the minimum of A f/ fy ~ 0. The sample shape is approximated
by an oblate spheroid of dimensions @ = 400 pm and b = 60 um. The value of —y/(n— 1) = 6.5 x 10~
and we use our data to estimate AT'/2 fy slightly above T, to AT/2f3(9 K) = 2.2 x107%. Remarkably, we
recover the same temperature dependence of the intrinsic conductivity in both configurations, although
the raw data are strikingly different.

6.3.2 Penetration depth

We have shown in Chapter 3, that the cavity frequency is determined by the total volume of the cavity
which includes the skin-depth or the penetration depth of the materials forming the walls of the resonator.
In the normal state the surface reactance is proportional to §/2 and goes to A(0) in the superconducting
phase as in Eq. (6.2.2b). In principle by knowing & one can then deduce the value of A(0). The normal-state
resistance is highly anisotropic with p, /p| = 103, and this leads to the normal state R, and X, which are a
factor of v/10% ~ 30 times larger than the in-plane quantity. Using the skin-depth é, = \/¢,/27rwey, and
a procedure analogous to that described above leads to an approximate value for the penetration depth
in the superconducting state Ay = 30 gm. In the configuration where the sample is at the antinode of
H both the penetration depth along the layers A and perpendicular A} make a contribution to the total
frequency shift. The frequency shift due to the specimen is then given by:

Af L St A

7 v : (6.3.1)
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behavior of [A(T} — A{0)]/A(0) for both directions.

where S is the surface area of the sample and V is the volume of the cavity. Due to the pronounced
anisotropy AL 3» A, the former dominates the frequency shift. Using the calculated value of the resonator
constant one can estimate again A ~ 35 um.

Using this result one can display in Fig. [6.10] the temperature dependence of the penetration depth
and compare it with a BCS model: our results again can described well with a model which is based
on singlet pairing. PFurthermore, the T variation of A at low temperature does not show any power law
dependence and thus are in confiict with the reported results of unconventional pairing. For comparison
we have plotted on the same figure our experiment together with uSR experiments which measure Ajj-
Both this anisotropy and the magnitude of the penetration depth can be understood in terms of highly
anisotropic electronic structure.

Perpendicular to the planes £, < d, where d is the interplanar separation. Under such circumstances,
the situation is close to that of Josephson-coupled planes, with the resulting penetration depth [11]:

N, = [ fedrs
7V sr3A(0)

where p, is the resistivity perpendicular to the planes. Our surface resistance measurement gives an
approximate value p; = 0.25  cm just above the transition; this, together with A(0) = 1.76kgT, leads
to Ay = 32 pm in excellent agreement with the experimentally obtained value.

(6.3.2)

6.3.3 Coherence peak

In Fig. [6.11] we compare the temperature dependence of the surface resistance as measured with the E
field along the a-axis (R, ) together with the same measurement configuration but an E field oriented
along the c-axis (R;)). Although the normal state values are very different, the two sets of data maps
perfectly against one another. Again this observation tends toward an ‘s-wave’ pairing interpretation.
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on [0 lem™?] 6 [A] A 4] £[A] &0)[A] 7 [em™'] 2A(0) [K]

| 8.7x10%° 34x10" 1.4x10' 100 70 15 29.2

1 4.0 1.0 x 106 3.5x 10° 15 5 7 29,2

Table 6.1: Electrodynamics properties of &-(ET)2Cu(NCS); measured at 60 GHsz, with the current flowing wether the
(be)-plane (|| configuration) or along the a-axis (1).

The temperature dependence of R; and X, below T.= 8.2 K, obtained from a configuration where the
electric field is parallel to the a direction, is shown in Fig. [6.12]. As for the parallel direction, all the
data shown in Fig. [6.12] are normalized to the value of the surface impedance at 9 K (B, and X,). The
coherence length [189] £, = 5A4, and the penetration depth is Ay = 35um, all parameters referring to
the out-of-plane quantities. We have fit R, and X, for various values of £/7£, (cf. Chapter 2), assuming
a two-dimensional BCS ground state [43], with a single particle gap given by the weak-coupling limit
2A(0) = 3.52kpT .. The best fit of our data leads to a value of £/7{; = 2, and the mean-free-path is
of the order of the distance between the Cu(NCS), sheets. We have included in the fit the temperature
dependence of the scattering rate, to do so we have fitted p,(7") the normal-state resistivity above T, by a
second order polynomial fit, and used this to estimate 7, (T) in the temperature region below T.

Finally, Fig. [6.13] display an expand view of the temperature dependence of the perpendicular con-
ductivity in the superconducting phase, the measurement was done at the antinode of the electric field.
The first striking feature is that the normalized behavior is extremely analogous to the parallel (be-plane)
results shown in Fig. [6.7] despite the fact that the normalization factor (the ‘normal-state’ values) are
several order of magnitude different between the two configurations. Again we can fit very well the data
points by using a BCS model that include correction due to finite mean-free-path [43], the best fit is
obtained for a value of the mean-free-path £/7¢, = 2, where £; = 5A is the perpendicular ccherence
length. The BCS result is shown on the figure as a solid line, notice that we have kept the weak coupling
formalism 2A(0)/kgT = 3.52. We have used the same type of analysis as the one mentioned for the
parallel direction to account for the temperature dependence of the scattering rate. It is impossible to
assert from our data solely what are the electronic variables responsible for the ‘normal-state’ anisotropy
(scattering rate, band-mass etc...), the only experimentally accessible parameter is the conductivity and
o1 is a mixture of different contributions. However, the agreement between the normalized results for
the parallel and perpendicular configurations is a strong evidence that the pairing is isotropic, and the
reasoning is as follow: the size of the ‘coherence peak’ depends on the coherence factor {case 2 for singlet
pairing) plus the divergency of the excitation density of state at the gap edge. It is expected that this
singularity is removed for *d-wave’ pairing leading to a sharp decrease of the optical conductivity analogous
to the Yosida function in Eq. (2.5.2). For ‘s-wave’ pairing, the photon energy smooths out this singularity
as shown in Eq. (2.2.6) and is responsible for the reduced height of ‘peak’ feature for this relatively-small
T, compound (the size of the peak goes as Log[liw/A(0}]. As a consequence, since we observe the same
temperature dependence for o1(7T") we deduce that the divergency in the optical-response of the system is
identical at various orientation (as the photon energy is unchanged): we conclude that the ratio A(0)/Aw
is a fundamental constant of the superconducting phase and thus the gap is isotropic. and we believe that
this figure constitutes a conclusive evidence that the pairing is ‘s-wave’.

In conclusion, we have measured the surface impedance in the normal and superconducting state
of k-(ET);Cu(NCS),, and have evaluated the conductivity oy along different crystallographic axes. The
temperature-independent X, from T < T,, the weak maximum observed for o below T;. and the agreement
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between the different crystallographic orientation suggest an isotropic pairing. Our results are in good
agreement with calculations based on a BCS ground state.
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Chapter 7

Conclusion

We have presented in this report the electrodynamics of several family of superconductors. We have
emphasized that the gualitative behavior of the response function is governed by the pairing symmetry
through the so-called coherence factors (Chapter 1). The response function of the BCS ground state to
an clectromagnetic excitation displays a characteristic peak whose shape gives some important clues on
the gap symmetry, the magnitude of the coupling between electrons, and the elastic scattering of the
quasi-particles (Chapter 2).

7.1 Syntheses of the result

The experimental results shown in this report were all taken at 60 GHz as it represented the best compro-
mise signal/sensitivity for the scheme that we have developed.

7.1.1 Conventional superconductors

We have measured for the first time the conductivity coherence peak in a conventional superconductor.
Although predicted for 20 years this feature was never measured due to technical difficulties. This peak
can only be observed in the millimeter spectral range and a direct evaluation of the optical conductivity
at microwave frequencies necessitates the accurate measurement of both the surface resistance and surface
reactance of the sample as both parameters are interrelated to ¢y. We have developed a new detection
scheme which allows for an evaluation of o, and the principle of the set-up is closely related to an ESR
spectrometer (Chapter 3). The results on conventional superconductors, Nb and Pb are in good agreement
with the simplest model developed by Mattis-Bardeen (Chapter 4) and despite the fact that no new striking
features were observed, it represents an important confirmation of the BCS model.

7.1.2 Oxides and organic

We have measured the electrodynamics of new materials with unexpectedly high transition temperatures,
the cuprates (Chapter 5) and the organic superconductors (Chapter 6). The motivation was to measure
the gap symmetry as many other experiments were inconclusive or conflicting on this question. We have
used ‘cavity perturbation’ techniques to investigate their electromagnetic response. We have made an
extensive study of those two-dimensional materials and we have probed the different crystallographic axes
by using various orientations of the sample with respect to the field. Also we have used both the electric
and magnetic field antinode of the cavity to get a complete mapping of the electronic properties. The main
conclusion of our study are summarized below.
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Fig. [7.1]: In this figure we have plotted the frequency dependence of the width and height of the conductivity peak, at
various frequencies as extracted from various references.

High T. superconductors

We have observe a sharp increase below T, in the optical conductivity of the highly conducting plane. The
peak shape is at odds with weak-coupling models as the width is much smaller than the one expected for
a conventional BCS superconductor. The experimental results have been fit within the BCS formalism
using two free parameters, the coupling constant 2A(0)/kpT,. and the elastic scattering rate. The fitting
results suggest a strong coupling with a rapid opening of the single particle gap. The inferred scattering
rate indicates that the sample is in the clean limit £/, > 1 which would explain why the FIR optical
measurements were unsuccessful in determining the single-particle gap.

Organic superconductors

We have repeated the same measurements for the organic superconductors where conflicting results have
also been reported on the gap symmetry. In this particular case we have found that the experimental results
could be fit with a weak coupling BCS formalism allowing only one free parameter, the mean-free-path.
Again our results are suggestive that the material is in the clean-limit. The measurement of the anisotropic
properties in the superconducting phase were astonishing: despite the fact that the normal-state properties
differ by several order of magnitudes depending on whether the eddy-currents flow parallel or perpendicular
to the highly conducting planes, the normalized result show a nearly identical temperature dependence.
We regard this as a conclusive evidence that the gap is isotropic in those materials and thus that the
pairing symmetry is ‘s-wave’,

7.2 Future work

Those preliminary results were very promising but it will be still important to continue further the inves-
tigation at other frequencies. The next paragraph review the importance of this unachieved part of the
work.
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7.2.1 Frequency dependence of oy

In spite of the wealth of data so far collected, there remains several important shady points in the study.
In particular we have been unsuccessful in determining the temperature dependence of the scattering
rate solely from conductivity measurements, as o1(7T) is a combination of several parameters, and no
independent extraction can be made without assuming a model that will then imped the result. One way
to circumvent this difficulty would be to measure the complete spectrum of ¢y. The task will be tedious
and many experimental difficulties need still to be solved. But this study can be crucial in many respects:
first it will give a clear hint if the temperature dependent scattering rate models are valid, as the predicted
frequency dependence of the height of the coherence peak differs between theories, We have collected the
various data already measured and plotted them in Fig. [7.1]. The results suggest so far that the height of
the conductivity coherence peak follows a logarithmic law as predicted by the BCS model, and the width
is frequency independent. A second important aspect of a complete spectrum investigation will be to look
at other collective mode excitation at sub-millimeter (2 — 20 cm™!) wave frequencies. Any anomalous
absorption feature below the gap edge might indicate a coupling of some exotic components of the order
parameter {Goldstone mode) with the electromagnetic radiation.
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Chapter 8

Appendix

A Depolarization factors
Depolarization factor of simple degenerate ellipsoid:
1. A sphere (a=b=1¢c):ny;=n,=n,=1/3.
2. A cylinder in the x-direction (a — 00,b = ¢): ny = 0,0y, = n, = 1/2.
3. A flat plate (e&b — ox¢): ny=n, =0,n, = L.
4. A prolate spheroid (a > b = ¢) of eccentricity e = /1 — (b/a)?:

_1—62
T 2e3

Ry
1—e

5. An oblate spheroid (a = b > ¢) with e = \/(a/c)? — L:

_1-{-62

3 (e — arctane), n; =n, = (1 —n,).

n,
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B The TEOH mode

For a cavity of radius d/2 and height A, resonating at the 7' Egy1 mode, the fields inside the cavity varies
as follow:

H, J (k Tz ;
H.(r,z) = Jof T)COS(’;), (B1)
L+ ()
H kr)sin (2=
Hy(r,z) = o/ of T)Sm(h), (B2)
1+ (2£§h)
Ey(r,z) = - %HOJ;(kr)sin(%), (B3)
E.(r,z) = Hy = E, = 0, {B4)

where J,, represents the derivative of the zeroth order cylindrical Bessel function, and
k= 2&'01/({., with Qo] = 3.83171. (B5)

The frequency of the cavity is given by

wo = ca\/(2‘:l°1)2 + (%)2 = 21 /.. (B6)

The average of the electric field is

4EB = 0,0832982%H§. (BT)
The electric field anti-node is at
r = 0.480512a. (B8)
Tor a cavity of dimension d/h = 3/2, the mode constant is:
2.03226  atr = 0.48% and z = h/2,
Vc’y =¢ 0.67494 atr = 0.48‘-;— and z = 0, : {B9)
s 417731 atr=0and z = h/2

(The first position is the electric field antinode, the last two are different possibilities for the magnetic field
antinode).
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C The spherical solution

The measured parameters are related to the sample polarizability:

bk (g ) o

where @ is the sample polarizability and 7 is the mode constant (cf. P. 43). The polarizability is:

! Ge—1
CAmnp(Fe—1) 41
! B-1
Ammn(§ o141

Gre

a'ﬁl

where n is the depolarization factor, é = €y, + 4746 /@ is the permitivity and § defined by:

ﬁ _ 9 ( i —(l%a) €Oos (l::az + sin (Aﬁ'a) . ) ,
—(ka)cos (ka) + sin (ka) — (ka)?sin (ka)

with k = Vew/e,.
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D Resonator constant of a prolate spheroid in H

If the sample is in the magnetic field maximum, the total power dissipated in the sample is given by [97]

i ., 2
L= — K| d
57 [ IET s, (o)
with
1 47
m = ZRS. (D2)

The integral in Eq. (D1) is over the surface of the spheroid and K is the effective surface current given by
> RS Co .
R= / Ja¢ = £ (4 x H). (D3)
) 47

where { is in the direction of the outward normal vector # to the surface and H is the magnetic fleld at
the surface of the spheroid. In the skin-depth regime, we have seen Eq. (3.4.7b) that the magnetic field is
related to the external applied field through the relation

H,

H=- .
n—1

(D4)

The simplest way to solve this problem is to make use of prolate spheroidal coordinates [17]. In this
coordinate system the three independent coordinates are given by u, v, and ¢ and the usual cartesian
coordinates are related to these through the transformation

r = va?—b%sinhusinwvcos ¢, (D5)
= va? — b?sinh usinwvsin ¢, (D6)
= a2 —bicoshucose, (D7)

where a and b are the semi-major and semi-minor axes respectively. The three components of the metric
are given by

=

h, = Va2 -0b2 \/cosh2 u — cos? v, (D8)
Va2 — 62\/cosh2' % — cos? v, (DY)
hy = Va?—b%sinhusinwv. (D10)

el
[}
1

o 1 a7 coshusinvcos¢
A=f=—— = ;
h., Ou Veosh?u — cos? v

coshusinvsing

Vcosh? u — cos? v

sinh « cos v (D11)

ES
Veosh? u — cos? v
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Assuming the external field is in the Z direction leads to

2 2 2., a2
I:Q R ( cosh® usin® v ) (D12)

|K

"~ 167%(n— 1)? \ cosh®u — cos?v

Inserting Eq. (D12) into Eq. (D1) and using the fact that dS = h,hgsdvde gives

9 .
_ eYH,|” cosh® u, sinh u,d? 3

om a sin® v
L= /0 dqb/ﬂ dv\/ , (D13)

cosh? u, — cos? v

where coshu, = a/va? — b2, sinhu, = b/va? — 0?2, and d = v/a? — b?. From Eqs. (3.1.2) and (3.3.15a)

appropriate for the magnetic field, one finds

" 8ryL
Im% = ﬂz. . (D14)
°[H,| Vsw
The integral in Eq. (D13) can be easily solved, and the resulting expression is in Eq. (D14} is propor-
tional to the real part of the surface impedance. By analogy with Eq. (3.3.27) the resonator constant is

given by

£ = —3ic,vd? cosh? u, sinh u,
- 2b%aw(n — 1)?

} . (D15)

X {sinh g, + (2 — cosh? u,) arcsin
cosh u,
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