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Résumé

Le pavage de Penrose est une structure quasipériodique bidimensionnelle, utilisée dans la de-

scription des composés quasicristallins. Cette structure est parfaitement ordonnée, avec une

symétrie de rotation cinq et elle est invariante sous un changement d’échelle par un facteur

τ (le nombre d’or). On s’attend à ce que les propriétés d’un modèle d’antiferromagnétisme

dans un tel système diffèrent nettement de celles des antiferromagnétiques périodiques.

Nous avons étudié les propriétés d’un modèle d’Heisenberg sur le pavage de Penrose con-

struit à partir de losanges, en utilisant une méthode de développement en ondes de spin. Les

énergies et fonctions d’ondes des magnons (quantum d’une onde des spins) ont été étudiées

dans le cadre d’une théorie linéarisée. A basse énergie, on trouve une loi de dispersion

linéaire, comme dans d’autres antiferromagnetiques bipartites, avec une vitesse effective de

l’onde de spin inférieure à celle d’un réseau carré équivalent. Les propriétés spatiales des

modes propres ont été étudiées en détail. A basse énergie, nous trouvons que les états

propres sont relativement étendus. Une analyse multifractale montre qu’ils sont de type

“critique”, ayant une distribution d’exposants multifractaux. Aux énergies plus élevées, les

états deviennent plus localisés, et, en fonction de l’énergie, l’amplitude de la fonction d’onde

est non-nulle autour d’un sous-ensemble de sites d’une valeur de coordinence donnée.

L’énergie de l’état fondamental de cette antiferromagnetique, et la distribution des

aimantations locales dans cet état ont été calculés. Des projections dans l’espace per-

pendiculaire montrent la simplicité sous-jacente de ce état ”complexe”. Un simple modèle

analytique, l’étoile de Heisenberg à deux niveaux, a été présenté pour expliquer de la dis-

tribution d’aimantation locales dans ce système antiferromagnétique.

Dans une dernière partie, les effets de désordre de type “phason” sont considérés. Nous

avons progressivement augmenté le désordre géometrique de la structure originale. Nous

avons trouvé que l’etat fondamental conserve son ordre de Néel, mais que la forme de la dis-

tribution ainsi que la norme des aimantations sont modifiés. Nous montrons, à l’aide d’un

développement en ondes des spin ainsi que par Quantum Monte Carlo, que l’aimantation

alternée diminue exponentiellement vers une valeur asymptote en fonction du désordre. La

ix



distribution spatiale de magnetizations locales devient plus homogène par rapport à pavage

parfait. La vitesse des ondes des spin augmente avec le désordre, et les singularités dans le

spectre et les functions d’onde sont en partie lissées. Ces résultats sont comparés avec des

résultats connus dans des systèmes désordonnés.

Mots clés: quasicrystaux, le pavage de Penrose, model d’Heisenberg, ondes de spin
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Chapter 1

Introduction

Crystals, or periodic solids, show a large variety of structural forms. Their physical proper-

ties, phases under different environmental circumstances and depending on their constituent

elements and their relations are extremely diverse. Much of modern technology is based

on crystalline materials including semiconductors, liquid crystals and superconductors to

name a few. It is well-known that periodic solids have symmetry properties restricted to

invariance under 2-, 3-, 4-, and 6 -fold point rotations because of physical space is 3 dimen-

sional. Quasicrystals, however, are less restricted due to the relaxation of the condition of

strict translational invariance. The physical properties of quasicrystals can be expected to

be as diverse, and probably more complex, than those of periodic crystals.

The notion of quasiperiodicity has existed in the mathematical community from 1933

due to work on quasiperiodic functions, introduced by Harald Bohr as a subset of almost

periodic functions. The quasiperiodic functions show long range order without periodic-

ity. As regards tilings, the simplest and oldest example of a one-dimensional tiling is the

Fibonacci chain. Quasi-crystalline tilings were possibly also known to medieval islamic sci-

entists five centuries before their discovery in the West [1]. The mathematician R. Penrose

discovered the five-fold symmetric tiling that bears his name [2], more than a decade before

the discovery of axes of five-fold symmetry in a metallic alloy.

In this thesis we will be concerned with quantum magnetism in a quasiperiodic envi-

ronment, more specifically, with the Heisenberg antiferromagnet in different types of two-

dimensional quasiperiodic tilings. The main model studied is the Penrose rhombus tiling,

which occupies an important place in the history of quasicrystals and has been studied ex-

tensively. To set the context, we begin by describing some simple examples of quasicrystals

in increasing spatial dimensions: d=1, d=2, and d=3.

1



1.1. QUASIPERIODIC TILINGS

1.1 Quasiperiodic tilings

1.1.1 (1D) The Fibonacci sequence

First of all we are presenting a well known example of the quasiperiodic structure, the Fi-

bonacci sequence, to introduce some main ideas concerning the quasiperiodic structures.

The Fibonacci sequence is a one dimensional aperiodic sequence. It is built up from two

segments: a ”long” and a ”short” one, hereafter denoted L and S respectively. The sequence

could be built iteratively due to this substitution rule:

σ =

{

L→ LS

S → L
(1.1)

where the zeroth element is F0 = S and the first element is F1 = L. The generated sequence

has several nice properties. The sequence itself is self similar in the sense that the sequence

after n+1 iteration could be built up due to putting together the sequences after n and n-1

iteration:

Fn+1 = Fn + Fn−1 (1.2)

In this way the last #(Fn−1) elements will be similar to the first #(Fn) one and the first

#(Fn) one to the whole sequence, and so on; where #(Fn) is the number of elements of the

Fn sequence. During iteration the ratio between the number of L elements and the number of

S elements is quickly converge to the Golden Ratio: τ = 1+
√

5
2 that is a root of the x2−x−1 =

0 algebraic equation and approximately 1.618034. If one use the substitution S = 0 and

L = 1, and generate the Fibonacci sequence, the sum of the elements after n iteration will

be equal with the nth number of the Fibonacci Series: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . . . The

Fibonacci sequence is often appears in the nature: branching in trees, arrangement of leaves

on a stem, the fruitlets of a pineapple, the flowering of artichoke, an uncurling fern and

the arrangement of a pine cone. The Fibonacci sequence is quasiperiodic because there is

no any finite periodic sequence that could cover the whole infinite sequence but as we have

seen the sequence is deteministic due to the substitution rule and has self similarity also.

1.1.2 (2D) The Penrose tiling

In 1974 Roger Penrose showed that it is possible to cover the whole plane with one contin-

uous layer in a non periodic way using just two elements of the rhombuses say: ”kite” and

”dart” [2]. There is an equivalent covering using ”thin” and ”thick” rhombuses (Fig. 1.1)

where the ”thin” rhombus has the angles of 2π
10 and 8π

10 radians and the ”thick” one has

the angles of 4π
10 and 6π

10 radians. To cover the whole plane using these two basic elements

2



CHAPTER 1. INTRODUCTION

Figure 1.1: In the left there are the two basic rhombuses of the Penrose tiling: the ”thin”
(in the top left of the picture) and the ”thick” one (in the left bottom of the picture). In
the right there is a finite element of the Penrose tiling.

the rhombuses have to arrange in such a way that they obey certain matching rules (See

Fig. 1.1).

Matching rules:

• Each vertices is either fully black or fully blank.

• Two adjacent edges either have both arrows or they are both blank.

The matching rule gives rise to infinitely many Penrose tilings. In this thesis, the term

’Penrose-tiling’ refers to one of these. The Penrose tiling has 5-fold rotational invariant but

in a ”weak” sense. It means that for any given pattern, its equivalent under rotation by a

multiple of 2π
5 can be found elsewhere on the tiling. The Penrose tiling is self similar under a

scale change by a factor of the golden mean τ . More precisely, this means that the structure

transforms under so-called inflation (deflation) transformations in such a way as to yield

an equivalent tiling of larger (smaller) edge length. Inflation is a reversible operation which

can be thought of as a set of decimations of vertices, followed by a re-connection of the new

vertices. The equivalence of the old and new structures means here that no environments

are created or destroyed in the process of inflation or deflation, and that one can find an

exact match between any of the two structures. The structure of the Penrose tiling is

closely related to the Fibonacci sequence and to the τ . The ratio of the thick to the thin

rhombuses is converge to τ . The sequences of neighbouring rhombuses with parallel sides,

are Fibonacci ordered appearances of thick to the thin rhombuses. These are the Conway

worms.

3



1.2. DIFFRACTION PROPERTIES OF THE QUASIPERIODIC STRUCTURES

1.1.3 (2D) Octagonal tiling

Figure 1.2: The Ammann-Beenker tiling. (The figure was taken from the ’Tilings Encyclo-
pedia’ webpage: http://tilings.math.uni-bielefeld.de/).

In 1977 R. Ammann found several sets of aperiodic tiles. One of that was the octagonal

or Ammann-Beenker tiling (See Fig. 1.2). The octagonal tiling has perfect 8-fold symmetry.

It is self similar under a scale change by the factor of the ’silver mean’: λ = 1 +
√

2 [3],

another example of a quadratic irrational.

1.1.4 (3D) Icosahedral tiling

The icosahedral tiling is one of the most extensively studied tilings in three dimensions.

Many of the quasicrystals discovered have icosahedral symmetry, including the very first

alloy based on Al and Mn, and can be described using the icosahedral tiling. The icosahedral

tiling has the same symmetry properties like the regular icosahedron. The tiling is filling

the space with two kinds of polyhedrons, the prolate and oblate rhomboedras, the facets of

which have the same rhombic shape. The Penrose tiling is closely related to the icosahedral

because of their symmetry properties. The symmetry group of the Penrose tiling is an

irreducible subgroup of the symmerty group of the icosahedral tiling. Because of this

similarity the icosahedral tiling has the name also 3D Penrose tiling.

1.2 Diffraction properties of the quasiperiodic structures

1.2.1 Diffraction studies

Quasicrystals can be studied by diffraction of electrons, X-rays, or neutrons. All these

techniques are based on the interference effects produced by the phase differences between

scattered waves of the particles mentioned above. Each atom in the sample may be consid-

4



CHAPTER 1. INTRODUCTION

Figure 1.3: Electron diffraction patterns taken along the tenfold symmetry axis of the
Al72Ni20Co8 decagonal quasicrystal, one of the best quasiperiodic ordered materials avail-
able today. (The figure was taken from [4])

ered to be a source of secondary spherical waves with a scattering power, peculiar to the

atom considered. The diffraction experiment provides the structure factor, which is related

to the Fourier transform of the real space distribution of the atoms (See Fig. 1.3). The

symmetry properties of the structure factor are thus related to those of the atoms.

1.2.2 Discovery of the quasicrystals

Although for long time tilings were simply a mathematical curiosity, till Dan Shechtman

and his group in April observed a metallic solid (AlMn) with long range orientational order

but with icosahedral point group symmetry [5] in 1982. They rapidly cooled down AlMn

alloys from the melt. During first order phase transition 1 µm grains solidified out, of a

different phase than the other crystalline Al-alloys. The electron diffraction patterns clearly

displayed the six fivefold, ten threefold and fifteen twofold axes of the icosahedral symmetry

that is inconsistent with translational invariance of the lattice. But the diffraction peaks

were sharp, δ-function like, similar like in periodic crystals. This discovery of Shechtman,

Blech, Gratias and Cahn influenced a series of theoretical and experimental studies about

quasiperiodicity and quasi-crystalline materials. Since then, many new quasi-crystalline

compounds have been and are still being discovered. Most of them are transition metal

compounds (Al, V, Mn, Cu, Fe, Co, Ni -based) that show 5, 8, 10, 12 -fold rotational

5



1.3. PUZZLES ABOUT THE STRUCTURE

symmetry, respectively. Most are metastable, although they appear to be stable around

room temperature.

1.2.3 Diffraction properties of the quasicrystals

The main properties of the quasicrystals are a point like diffraction pattern as in periodic

crystals, but with rotational symmetries inconsistent with translational invariance in three

dimensions:

• The diffraction pattern shows fine peaks that appear everywhere in the whole recip-

rocal space without restricted region like the Brillouin zone for periodic crystals. It

means that there’s no shortest wavelength in real space that is equivalent with the

lack of translation invariance.

• The diffraction peaks ~q are possible to indexed unambiguously with N indices where

N is finite and bigger than 3 (1.3). It means that the quasiperiodic structure is a

projection of a periodic structure in a hyperspace with dimension bigger than 3.

~q =
N
∑

i=1

ni~ei, ni ∈ Z (1.3)

More precisely, the quasiperiodic structure forms a Z -module. The Z -module with rang N

in a d-dimensional space can be considered to be an irrational projection of a periodic lattice

in N dimensions. This is the property on which the ’cut and project method for obtaining

tilings is based on. The real space quasiperiodic structure has an another property that is

important in non-periodic structures: self similarity under the scale change by a factor of

an irrational number (also called hierarchical symmetry).

1.2.4 The new definition of the crystals

Quasicrystals are now treated on an equal footing as crystals, and in 1991 the International

Union of Crystallography amended the definition of crystal, reducing it to the ability to

produce a clear-cut diffraction pattern and acknowledging the possibility of the ordering to

be either periodic or aperiodic.

1.3 Puzzles about the structure

The real structures of quasi-crystalline materials remains a puzzle. At the time of the dis-

covery of the quasicrystals it was debated whether quasi-crystalline material really were a

6



CHAPTER 1. INTRODUCTION

new state of matter. Linus Pauling one of the greatest crystallographer of the 20th cen-

tury argued that quasicrystals are not different than periodic crystals but ”just” twinned

(periodic) crystals [6]. This twinned periodic crystal hypothesis was answered due to the

careful analysis of the electron and X-ray diffraction experiments. Most models proposed

for quasicrystals are based on tilings and assume that the atoms (or clusters of atoms) are

situated on the vertexes of a quasiperodic tiling. But why the atoms and molecules do form

a complex, quasiperiodic pattern rather than a regularly-repeating, crystal arrangement?

For example, in the Penrose tiling, the notion has been that atoms arrange themselves into

two types of clusters analogous to rhombic Penrose tiles and have interactions which force

connections between clusters analogous to the Penrose matching rules for tiles [7, 8]. An

another possible model for quasicrystals was the random tiling model when one suggest the

same building blocks like for Penrose tiling but without matching rules. (Elser [9], Henley

[10]). In contrast to the perfect tiling, the random tiling has a lower free energy due to

the associated entropy, explaining why materials might choose to condense with this type

of long range order. Careful X-ray diffraction experiments must be done to distinguish the

random tiling from the perfect tiling, as Bragg peaks occur in the same positions - this

shows that the geometrical constraints are locally strong enough to ensure that even in

random tilings the structure retains long range order with an infinite correlation length.

Also for the random tiling model the atoms should arrange themselves into two types of

clusters analogous to rhombic Penrose tiles. These models suggest that the conditions nec-

essary to form quasicrystals are significantly more complex than the conditions for forming

crystals. Both of these models include the requirement of two types of cluster appears to

be necessary to obtain quasiperiodicity. The energetics should be very special that permit

two clusters in the just the right proportion in density (and exclude any other clusters), es-

pecially considering that most known quasicrystals are composed of metallic elements with

central force potentials rather than rigid covalent bonding [11]. In the case of the Penrose

picture, there is the additional problem of finding energetics that impose the matching rules.

Solving these problems it was suggested to use for model the single repeating cluster. The

repeating cluster is analogous to the unit cell in periodic crystals. The novel feature is that

the neighboring clusters “overlap.” Atoms in the overlap region are shared by the two clus-

ters enabling the hypothetical surfaces that bound the clusters to interpenetrate [11, 12].

Petra Gummelt have found that the decagonal tiles with appropriately chosen overlap rules

can force a perfect quasiperiodic tiling [13]. Jeong and Steinhardt [11] provided a simple,

alternative proof which makes clear the isomorphism to two-tile Penrose tilings. A cluster

aggregate model has also been suggested [4], but the problem remains open at this time.

7



1.4. ELECTRONIC PROPERTIES OF THE QUASICRYSTALS

1.4 Electronic properties of the quasicrystals

1.4.1 Experimental measurements of electronic properties

Most systems studied show a gap or pseudogap in the electronic density of states close

to the Fermi level. One of the most striking properties observed in quasiperiodic metallic

alloys are the remarkably low values of the electrical conductivity, which is lower than one

would expect, from the pseudogap in the density of states. In the case of Al−Cu−Fe and

Al−Cu−Ru alloys, in which stable, virtually defect-free icosahedral phases can be formed,

the resistivity is enormous, and increases to over 100 µΩm as the degree of structural order

increases [14, 15, 16, 17]. This is very unusual for metallic alloys. The resistivity decreases

at high temperature, contrarily to the usual metallic behavior. Anomalies also appear in

thermopower and in the low temperature specific heat [18]. Furthermore, quasicrystals with

higher structural perfection show lower conductance [19, 20]. Disorder appears to facilitate

transport in the quasicrystal, contrarily to its effect in disordered metals. Finally, studies of

complex alloy system for the AlPdMn with very large unit cells show that the conductivity

was higher for these than for a single grain quasicrystal of similar composition, although

both alloys had comparable structural quality. This could indicate that the transport is

not just determined by local properties, but also by the long range quasiperiodic structural

order [21].

1.4.2 Theoretical approaches to describe the electronic properties

As regards theory, it is interesting to consider the possibility of Anderson localization, or

strong localization, [22] which is known to occur for strongly disorder and/or low dimension.

“Localization” refers to the wave function which is modified with respect to the wave-like

solutions present in a periodic solid. It can also refer to other types of waves in the solids

like acoustic and spin waves, for example. In one dimension the quantum fluctuations

is so strong that any kind of randomness could make the system to be localized. Work

in disordered crystals has shown that in three dimensions and above, there can occur a

transition between localized-delocalized states, called the metal-insulator transition (MIT).

This phenomenon exist also in the case of the aperiodic systems, when the aperiodicity was

shown to localize the wavefunctions.

In low dimensional systems (mostly in 2D films) also the weak localization is an impor-

tant effect which occurs in disordered electronic systems at very low temperatures. The

effect manifests itself as a positive correction to the resistivity of a metal or semiconduc-

tor. The origin of the effect is that the disordered electronic system, the electron motion
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is diffusive rather than ballistic. The resistivity of the system is related to the proba-

bility of an electron to propagate between two given points in space. This probability

due to quantum mechanics is a sum of the quantum-mechanical amplitudes of the paths.

The weak localization correction can be shown to come mostly from quantum interfer-

ence between self-crossing paths in which an electron can propagate in the clock-wise and

counter-clockwise direction around a loop. Due to the identical length of the two paths

along a loop, the quantum phases cancel each other exactly and these (otherwise random in

sign) quantum interference terms survive disorder averaging. Since it is much more likely

to find a self-crossing trajectory in low dimensions, the weak localization effect manifests

itself much stronger in low-dimensional systems (films and wires).

In quasicrystals, in the perfect structure, without disorder, the transport is either bal-

listic at sufficiently long time (in approximants) or follows a power law also at sufficiently

long time. D. Mayou and G. Trambly De Laissardière developed a theory for quantum

transport in quasicrystals [23].

A number of standard techniques used in crystals are ruled out in quasicrystals since

one cannot use the Bloch-theorem. One does not have exact rotational symmetries for

quasiperiodic tilings either, which have rotational invariance just in the weak sense. Two

properties that can be exploited in quasicrystals derive from their representation in higher-

dimensional space (the cut-and-project method described in Ch.2) and these are the hierar-

chical structure, and the perpendicular (or internal) space representation. These properties

and the properties of the basic blocks (rhombi in general case) like bipartiteness that any

calculations could use on quasiperiodic tilings to perform that. The scale invariance of

quasiperiodic structures, and in consequence, the potential seen by the electrons, must play

an important role in determining the spatial dependence and the energy of the eigenstates.

The characteristic singular features in the density of states and other electronic properties

are in fact a result of this symmetry.

Calculations for one dimensional quasiperiodic chains

Many methods exist in the 1D case: bosonization technique, renormalization group, DMRG,

for example. M. Kohmoto and his coworkers made one of the first contributions to under-

standing the physics of quasiperiodic chains [24], where they investigated the localization

problem on a one dimensional electron model. They have concluded that in the case of

quasiperiodic chain the wavefunction won’t be localized nor delocalized but always in an

intermediate regime between the two. Julien Vidal and his coworkers studied analytically

one dimensional interacting spinless fermions in a Fibonacci potential [25]. They showed

9
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that the effects of the quasiperiodic modulation are intermediate between those of a com-

mensurate potential and a disordered one. The system exhibits a metal-insulator transition

whose position depends both on the strength of the correlations and on the position of the

Fermi level. Consequently, the conductivity displays a power law like size and frequency

behaviour characterized by a non trivial exponent. Kazuo Hida calculated the low-energy

properties of the half-filled Fibonacci Hubbard models using weak-coupling renormalization

group and density matrix renormalization group methods [26]. He concluded that in the

case of diagonal modulation, weak Coulomb repulsion is irrelevant and the system behaves

as a free Fibonacci chain, while for strong Coulomb repulsion the charge sector becomes

a Mott insulator and the spin sector behaves as a uniform Heisenberg antiferromagnetic

chain. The off-diagonal modulation always drives the charge sector to a Mott insulator and

the spin sector to a Fibonacci antiferromagnetic Heisenberg chain.

Calculations in two dimensional tilings

For the electron problem of the two dimensional quasiperiodic tilings many attempts have

been made at solving them. V. E. Korepin derived a completely integrable models for

quasicrystals. For illustration he calculated the bulk free energy of the Penrose and the

icosahedral tiling [27]. C. Sire and J. Bellissard studied a renormalization group attempt

for a tight-binding Hamiltonian on the octagonal tiling. In the limit of large potentials

compared to the hopping parameters, they found numerical evidences that the spectrum is a

Cantor set with zero Lebesgue measure. F. Piechon and A. Jagannathan calculated spectral

properties on the octagonal tiling [28, 21, 29]. They find similarities and universal behavior,

but also significant differences between quasiperiodic models and models with disorder. Like

weakly disordered metals, the quasicrystal can be described by the universal level statistics

that can be derived from random matrix theory. Their analysis of spectral rigidity shows

that electrons diffuse with a bigger exponent (super-diffusion) than in a disordered metal.

Adding disorder attenuates the singular properties of the perfect quasicrystal, and leads to

improved transport. Using hierarchical, i.e. self similar properties it is possible to introduce

approximative real space renormalization group methods as performed A. Jagannathan on

octagonal tiling [30]. She has used an approximative block substitution on the octagonal

tiling. The available blocks of spins have reduced and the Hamiltonian of the block was

calculated exactly treating like a Heisenberg star cluster [31]. This procedure is possible

to redone in the case of another self similar tilings but the exact procedure is not at all

obvious. Each tiling is different and her method needs modifications in the case of different

tilings.
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1.5 Magnetic properties of the quasicrystals

1.5.1 Experimental measurements of the magnetic properties

Figure 1.4: Magnetic susceptibility as a function of temperature of Zn60MgHo10. Solid
curve indicates a least squares fit to Curie–Weiss law. Inset is an enlarged plot of the inverse
magnetic susceptibility as a function of temperature. Solid line in the inset indicates a least
squares fit to Curie–Weiss law. (This figure was taken from [32].)

Amongst the Al-based quasicrystals, just a few of them are magnetic [33, 34, 35]. In these

systems, the magnetic moment originate from the itinerant d electrons of the transition-

metal elements. The magnetic moment per transition metal atom is typically very small,

and there appears to be no magnetic long range order in these compounds. In 1993, an

icosahedral quasicrystalline phase were discovered in the Zn-Mg-R compound (R = rare

earth elements: R = Gd, Tb, Dy, Ho, Er) [36, 37, 38]. These quasicrystals have well

localized 4f electrons and have sizeable moments. X-ray structural studies suggest that the

rare earth elements are situated quasiperiodically at definite sites of the quasicrystals [39].

The ZnMgHo compound obeys the Curie-Weiss law at high temperatures [40, 41, 42, 32].

The estimated effective moment is almost equal to that of a Ho3+ free ion. This indicates

that all Ho atoms in the quasiperiodic lattice sites in the sample have local magnetic moment

[32]. The magnetic susceptibility starts to deviate from the Curie-Weiss law below about 6

K [32] (See Fig. 1.4). Then, it abruptly shows spin-glass-like freezing at Tf ≈ 2K. The spin-

glass-like freezing was also detected in the temperature dependence of the ac susceptibility
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[42, 43] and muon spin-relaxation µSR rate [44].

Charrier, Ouladdiaf, and Schmitt performed neutron diffraction experiment in powder

pattern [45]. They reported coexisting magnetic Bragg reflections and diffuse scattering,

which simultaneously developed below TN , where TN ≈ 7 K. They concluded that magnetic

long-range order is established below TN . However, long-range order is consistent neither

with the susceptibility, nor with the µSR result. Indeed, two later studies revealed that

high quality icosahedral samples exhibit only the diffuse scattering part of the first work

[46, 47]. Therefore, from the neutron powder diffraction and the susceptibility, one may

conclude that the spins in the Zn-Mg-Ho icosahedral quasicrystal freeze below Tf with the

static short-range spin correlations resulting in the magnetic diffuse scattering.

In diffuse neutron scattering experiments, T. J. Sato and his collaborators have found

magnetic short range order in the Zn60Mg31Ho9 compound [48, 47, 49]. The measuring

temperature was 1.6 K for polarized neutron scattering. This was the first quasiperiodic

magnetic compound that showed at least short range order. Later also Sato and his col-

laborators found the Zn-Mg-Tb to have short range order at 1.4 K [50]. From the neutron

scattering intensity maps (Fig. 1.5 for ZnMgHo) both of the two cases (ZnMgHo, ZnMgTe)

the magnetic structure of the compound show icosahedral symmetry.

Figure 1.5: Magnetic-scattering intensity maps for ZnMgHo at T = 1.6 K for the (a) 2F,
(b) 3F, and (c) 5F planes obtained from the spin-flip scattering of polarized neutrons. (from
[49])
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1.5.2 Theoretical approaches to describe magnetism

Quantum magnetism in a quasiperiodic environment

The discovery of the magnetic order in the Zn-Mg-RE (rare earth) compounds [48, 47, 49, 50]

poses the question of magnetic ordering in such systems. As we have mentioned earlier the

magnetism in the rare earth compounds is connected to the localized 4f electrons. This

suggests using a simple Heisenberg model to describe magnetic properties in these qua-

sicrystals. Very little is known about the long range ordered state, when one exists, in such

materials. The experimental compounds have frustration and disorder, which complicate

the analysis, and can lead to spin glass phase at low temperature. We have chosen to

consider a simpler class of models, which are unfrustrated and do allow for long range Neel

antiferromagnetic order.

We consider the usual description of the quasicrystals based on tilings, in two dimen-

sions. The reduced dimensionality makes it easier to visualize and allows us to consider

larger systems. Due to thermal fluctuations, long range order is only present at zero tem-

perature. We have extensively studied the two dimensional Penrose tiling, taking nearest

neighbor couplings which act along the edges of the rhombus.

We (A. Jagannathan and A. Szallas) have performed a linear spin wave analysis (LSWT)

on S=1/2 Heisenberg antiferromagnet on the 2D Penrose approximants and its disordered

counterparts. Stefan Wessel (Stuttgart University) made the Quantum Monte Carlo (QMC)

analysis on the same systems. Before presenting our studies we summarize briefly the earlier

achievements in this field.

One dimensional aperiodic spin chains

The aperiodic tiling is a deterministic, non-periodic tiling that could built up from two

basic elements and they include the quasiperiodic tilings. There have been many studies

of aperiodic spin chains, and many of these use renormalization group (RG) method. The

model that is most frequently considered is the classical or quantum Ising model. In general,

the (d+1)-dimensional classical and d-dimensional quantum systems have related critical

properties [51]. In the presence of a marginal perturbation which leads to non-universal

exponents are the corresponding quantum exponents obtained by taking an appropriate

limit of the classical expressions. The fluctuations around the average coupling scale with

Lω, where ω is the wandering exponent of the aperiodic sequence [51, 52]. The relevance of
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the aperiodic fluctuations is determined by the Harris-Luck criterion.

ωc = 1 − 1

dmν0
(1.4)

where ωc is the critical fluctuation, dm is the dimensionality of the fluctuations, ν0 is the

correlation exponent of the physical model. If ω > ωc the fluctuations are relevant, ω = ωc

marginal, ω < ωc irrelevant, respectively (Uwe Grimm in [53] pp. 199.). Igloi et al.

considered layered Ising model [54] where the layers follow hierarchical sequences. They

calculated several bulk and surface critical exponent and concluded that the system is

isotropic till the structural fluctuations are less than critical, otherwise anisotropic when

the structural fluctuations are critical. In [51] Igloi et al. calculated the critical properties of

several aperiodic and the hierarchical chain using exact RG method due to the observation

that the spectrum of the zero field Ising model is included by the spectrum of the transfer

matrix of the directed walk. J. Hermisson et al. [55] derived the Harris-Luck criterion

using exact renomalization scheme for Ising model with coupling that ordered due to an

aperiodic tiling generated by substitutions. Igloi et al. [56] compare the aperiodic spin

chains with random one. They found the same critical properties at the critical point but

differences at the off-critical region. J. Hermisson generalized the exact renormalization

group method for XY model and investigate arbitrary aperiodic spin chains [57]. He found

that the relevance criteria in general for XY model is different than for Ising model for a

given aperiodic chain. T. Tokihiro calculated on the 1D Fibonacci and 2D triadic Penrose

tilings, using Heisenberg model with long range hierarchical interactions [58]. To our best

knowledge Kazuo Hida has performed the first time calculations on quasiperiodic tiling

using Heisenberg Hamiltonian with short range, nearest neighbor interaction [59] using

DMRG method. He has developed also a real space renormalization group method for

S=1/2 Heisenberg antiferromagnet with couplings ordered by the Fibonacci sequence. He

has found that the ground state of this model belongs to a new universality class with a

logarithmically divergent dynamical exponent which is neither like Fibonacci XY chains nor

like XY chains with relevant aperiodicity. This result was obtained by DMRG calculations

and further supported by calculations with renomalization group method. A. Szallas has

worked out a block substitution method for the hierarchical quantum Ising, Potts and

Heisenberg chain and using the Ma-Dasgupta-Hu renormalization group technique [60, 61]

he had calculated the scaling properties of the ground state energy [62]. He found the same

scaling exponent in both of the three models. For XXZ model Andre P. Vieira made an

important contribution to understand the aperiodic quantum spin chains [63, 64]. He has

used the Ma-Dasgupta-Hu renormalization group technique using block substitutions on
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several aperiodic chains with relevant and marginal aperiodicity.

Ising, XY and classical spin models

For Penrose tiling, real space configurations have been thus far primarily studied in the

context of classical spins. Godreche et al. [65] showed an approximative renormalization

group method for Ising spins on the Penrose tiling that is closely follows the inflation rules

of the tiling, which are easily described in terms of Robinson triangles. They are also able

to obtain a phase diagram consisting of a variety of ordered phases. H. Aoyama and T.

Odagaki presented a renormalization group analysis of the two-dimensional Ising model on

both the Kite-Dart and Rhombi Penrose tilings [66]. They demonstrated the existence of

the phase transition and obtain the critical temperature and the thermal critical index.

The thermal critical index is found to be close to unity. T. Dotera and R. Abe [67] have

performed a high temperature expansion for ln Z of the Ising model on the dual Penrose

tiling, where Z is the partition function in the absence of the magnetic field. The critical

compressibility factor and the average correlation function are calculated in terms of duality

relation. Y. Okabe and K. Niizeki have performed Monte Carlo simulations on Ising model

on the Penrose tiling and it dual [68]. They investigated both ferro and antiferromagnetic

couplings. They concluded that the duality relation between the critical temperatures with

the ferromagnetic coupling holds. And the antiferromagnetic system on the dual Penrose

lattice shows no long-range order due to a frustration. Sorensen et al. [69] studied the

ferromagnetic Ising model with zero field on Penrose related lattices also with Monte Carlo

simulations. They investigated different type of boundary conditions. They conclude that

despite its quasiperiodicity, the Ising model on the Penrose tiling belongs to the same

universality class as Ising model on the periodic lattices. But the boundary conditions

could change the critical behavior. Ledue et al. [70] investigated classical XY model on

the Penrose tiling. In their model they consider three type of interactions considering

the three type of possible length between sites of the Penrose rhombi. At low frustration

their model have antiferromagnetic ground state. They found an evidence for a Kosterlitz-

Thouless transition also, like in periodic lattices, in the thermal variation of the specific heat.

Vedmedenko et al. has investiagted Monte Carlo simulations [71, 72] on many quasiperiodic

tilings, and also Penrose tiling, with classical three dimensional spins. They investigated the

stable antiferromagnetic magnetization configurations. They found that the combination

of the geometric frustration and the quasiperiodic order of the atoms lead to complicated

noncollinear ground states. The structure of the magnetic ground state could be divided

into subtilings that are not correspond to the spatial order. In [73] Vedmedenko et al.

15



1.6. OUTLINE OF THE THESIS

investigated ferromagnetic coupling between classical three dimensional spins on the Penrose

tiling using Monte Carlo simulations. They found a quasiferromagnetic decagonal structure

at weak exchange interaction.

1.6 Outline of the thesis

This thesis is divided into seven chapters. The first three chapters summarize the earlier

results of the field, give a general introduction to the subject, and also introduce the main

concepts and methods. Chapters 4, 5, 6 present our results. The last chapter summarizes

the results and discusses some possible directions for future work. The Appendix shows

some technical details that could help clarify the notions mentioned in the main text, and

may be useful for those wishing to work in the area.

Chapter 2. The second chapter summarizes the geometrical properties of the quasiperi-

odic tilings and the methods that one uses for generating the tiling. We present the main

generating method, the cut and project method how one could generate quasiperiodic tiling

with a projection from a hyperlattice. The cut and project method is described due to the

example of the Fibonacci sequence and also the case of an arbitrary tiling where the periodic

hyperlattice is arbitrary N dimensional. We present also the oblique projection method that

is able to generate quasiperiodic approximants that are structurally very similar like the

quasuperiodic tiling but periodic. The second main part is the description of the Penrose

tiling. First of all the description of the cut and project method specially in the case of the

Penrose tiling. After this we summarize the main properties of the Penrose tiling and its

approximants.

Chapter 3. The third chapter describes the physics background of the topic of the thesis.

We present the possible ground states for Heisenberg antiferromagnets, their relevance and

their properties. We point out the particularity of the structure of the Penrose tiling, like

bipartiteness and generally high coordination numbers, concerning the ground state proper-

ties of the Heisenberg antiferromagnet. The properties of the ground state, the structure of

the Penrose tiling and the demand of relatively big system size, to figure out the quasiperi-

odicty of the model, suggest one of the possible method for the calculations, namely the

linear spin wave approximations (LSWT). We describe the background and the derivation

of this method. We describe how it is possible to transform the original Heisenberg Hamil-

tonian to bosonic operators that are the creation and annihilation operators for magnons.

Also we present the linearization of this new bosonic Hamiltonian. For the diagonalization
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of the Hamiltonian we describe a real space diagonalization method based on earlier works

[74, 75]. In the end of the chapter we figure out the requirements of the calculcations that

we’d like to perform and the possible methods with that one able to calculate ground state

energy at two dimensional quasiperiodic quantum spin system.

Chapter 4. The fourth chapter presents the results concerning the energy spectrum and

the properties of the magnon wavefunctions of the Heisenberg antiferromagnet on the Pen-

rose tiling. We describe the different energy regions of the spectrum and its particular

features like low energy regions, degenerate states, gaps, pseudo gaps, etc. The second

main part is devoted to the presentation of the properties of the magnon wave functions.

Firstly we are focusing on the question of the wave function localization. We figure out

our results about the dependence of the participation of the wave function on the sites

with different coordination numbers. We showed this in the context of the perpendicular

space representation, that representation comes directly from the generating method of the

quasiperiodic tilings, the cut and project method. In the end of the chapter we perform

an inverse participation ratio (IPR) anaysis of the wavefunction and a multifractal analysis

also.

Chapter 5. The fifth chapter is devoted to the ground state energy and the description of

the spatial distribution of the staggered magnetization on the tiling and an approximative

explanation of that. Firstly we present the scaling of the ground state energy and its expec-

tation value for the thermodynamic limit. The second part of the chapter is devoted to the

properties of the staggered magnetization. We describe firstly the real space distribution

of the staggered magnetization and the finite size scaling of the average staggered magneti-

zation. The coordination number dependence is very important because it is suggested by

earlier studies of magnetism on 2D tilings and also because one of the particularity of our

topic is the geometrical structure of the tiling on where the physical model based on. So we

present the coordination number dependence of the staggered magnetization. And also we

perform this analysis in the perpendicular space that show the highly ordered structure of

the magnetization on the this tiling. Also we point out an approximative model based on

the Heisenberg star clusters for the explanation of the observed distribution of the staggered

magnetization. At the end of the chapter we present a static structure factor calculation

that make some connections with our calculations and neutron diffraction experiments.

Chapter 6. In the sixth chapter we present our results about the randomization of the

quasiperiodic tiling and its consequences in the physical properties. Firstly we introduce
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the context of disorder in quasiperiodic tilings and a particular excitation that just exist

in quasicrystals, the phason excitation. We define a randomly distributed phason flip ex-

citation on our tilings. We present the changes in geometry due to phason flips. We point

out the effects of the phason flips on several physical properties like the energy spectrum

and wavefunctions, ground state energy, average staggered magnetization, staggered mag-

netization distribution. Also we make a comparison of the results on ground state energy

and average local staggered magnetization done by LSWT and QMC. We figure out some

possible explanation of the observed effects due to phason disorder.

Chapter 7. In the seventh chapter we summarize our results and outline some possible

research topics that could follow our research. These topics are the LSWT calculations on

the 3D icosahedral tiling and the calculations concerning the entanglement properties of

the quasiperiodic Penrose tiling.

Appendix In the Appendix we show some derivation and description that could inter-

ested by specialists or probably well known facts but necessary for make the thesis to be

complete.
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Chapter 2

The Penrose tiling and its

approximants

2.1 Introduction

The description of the structure of the perfect periodic crystal is mathematically simple,

in that all positions can be written in terms of a small set of primitive lattice vectors.

The structure of a quasiperiodic tiling is not as trivial: even though all vertices can be

expressed as linear combinations of integer multiples of a small set of basis vectors, the

allowed linear combinations are not given by a simple rule. In the case of the Penrose

tiling, more specifically, all vertices can be expressed in terms of integer multiples of five

unit vectors ((1, 0), (cos θ, sin θ), (cos 2θ, sin 2θ), (cos 2θ,− sin 2θ), (cos θ,− sin θ); θ = 2π/5)

which can be regarded as projections of the five basis vectors of a five-dimensional (5D)

cubic lattice (See Fig. 2.2). This tells us that the sites can be obtained by projecting

points of a 5D hyperlattice onto the physical (also called parallel) 2-dimensional space. The

2-dimensional physical space corresponds to an irrational plane of the hypercubic lattice,

and this rules out the possibility of a periodic repetition length in any direction of the

x − y plane. The projection matrices and the general formalism for obtaining this tiling

by the so-called ’cut and project’ method is described in [76]. We should mention that

other methods exist to obtain Penrose tilings, such as the multigrid method ([77] pp. 26),

inflation of elementary tiles [78, 79, 80], or growth from an intial seed using matching rules

[2]. In this chapter we will describe the cut and project method, which we chose for its

relative simplicity and adaptability.

For numerical calculations we use approximant tilings (or just in simple, approximants)

of the perfect infinite quasiperiodic Penrose tiling. The approximants are generated by the
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so-called oblique projection method (described in the Appendix). Briefly, the points lying

in the volume selected for projection in the 5D lattice are selected according to a rationally

oriented plane, and this gives rise to a periodic structure of a unit cell size that can be

arbitrarily large, approaching the infinite quasicrystal in the limit of infinite size.

2.2 The ’cut and project’ method

The ’cut and project’ method [81, 82, 76, 83, 84, 85, 86] as we mentioned in the introduction

was developed to obtain quasiperiodic tilings.

2.2.1 The cut and project method for the Fibonacci tiling

To illutrate the method we will begin by presenting the well-known 1D example: the gen-

eration of the Fibonacci tiling by the cut and project method.

One considers a two dimensional square lattice: Z
2 that has X and Y axis, respectively.

Consider the straight line E that has irrational orientation compare to X, Y: τ ′ = tanΘEX

and τ ′′ = tanΘEY where τ ′, τ ′′ are irrational numbers (Fig. 2.1). This is the line that will

be tiled. Moving a unit square C, parallelly to the plane of the square lattice and fixing

one of its point to E, we get a strip, S. S will contain a line that is broken in integer points.

This line is periodic if and only if τ ′ is rational number. The tiling on E is now obtained

by projecting orthogonally the broken points of this line to E. The projections on E will be

a quasiperiodic tiling of lengths A = sinΘEX and B = cosΘEX . If tanΘEX = τ , the golden

mean, the tiling on E will be the Fibonacci tiling. In particular if one take τ ′ through a

sequence of rational slope, τ ′n where the sequence is converging to the irrational τ , one get

a sequence of periodic tilings that have a periodic length converging to infinity. These are

the approximants of the Fibonacci tiling.

2.2.2 The cut and project method for arbitrary quasiperiodic tiling

Now we describe the cut and project method in arbitrary dimension. There exist several

equivalent description of the cut and project method. We have chosen the method described

below because it is easy to generalize to get the oblique projection method (described in

the Appendix).

One considers an N dimensional square lattice, Λ.

Λ = Z
N (2.1)
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Figure 2.1: Generating the Fibonacci tiling by the ’cut and project’ method. (The figure
was taken from the dissertation of [87])

We suppose that Λ has n-fold rotational invariance, represented by the discrete rotation

group Γn. Let C be the unit hypercube of R
N . One considers the irreducible subgroups of

the rotation group Γn. Consider one of them, called Γn
E‖

. Choosing Γn
E‖

depends on the

structural properties that the tiling should fulfill (e.g. the type of rotational invariance).

Consider E‖, an N‖ dimensional subspace of R
N that is invariant under Γn

E‖
. The basis of

E‖ will be a certain transformation of the basis of Λ:

E‖(j) =

N
∑

i=1

qji · Λi (2.2)

where E‖(j) is the basis vector of E‖, and Λi is the basis vector of Λ, respectively. One

considers E⊥, the N⊥ = N −N|| dimensional subspace of R
N that is perpendicular to E‖.

One considers the orthogonal projections Π|| to E‖, and Π⊥ to E⊥. One projects the unit

hypercube C, to E⊥:

W = Π⊥(C) (2.3)

The projected object, W, will be the so called “window”. One projects a point, X, of Λ,

to E‖, if Π⊥(X) will be included by W. The point set Λ|| = Π||(Λ) will be invariant under
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Γn
E‖

.

The orientation of E‖ is depends on qji-s. If qji-s are just rational numbers Λ|| will

be periodic. If qji-s are just irrational numbers Λ|| will be quasiperiodic. In the mixed

case when qji are partly rational and irrational the Λ|| will be periodic in some direction

but quasiperiodic in certain others. In general Λ|| will not have perfect n-fold rotational

invariance because Λ|| is invariant just under Γn
E‖

but not under Γn.

2.3 The Penrose tiling

2.3.1 The Penrose tiling by cut and project method

In 5 dimensions, the hypercubic lattice Λ = Z
5 is invariant under 5-fold rotations. One

could represent the 5-fold rotations in 5 dimension with γ̂:

γ̂ =



















0 0 0 0 1

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0



















(2.4)

One can check: γ̂5 = 1̂. The 5-fold rotation group Γ that have the orthogonal represen-

tation γ̂ is not irreducible, but decomposes into 3 irreducible subgroups: ΓE||
,ΓE⊥

,Γ∆,

respectively. The ΓE||
and ΓE⊥

are invariant in 2 dimensional subspaces: E|| and E⊥,

respectively. The ∆ is invariant in a 1 dimensional subspace: (1, 1, 1, 1, 1). All the 3 sub-

spaces are orthogonal to each other. The E|| is called the parallel subspace and the direct

sum of the E⊥ and ∆ is called the perpendicular subspace. The restriction of γ̂ to E|| is a
2π
5 rotation around the ∆ axis. The restriction of γ̂ to E⊥ is a 4π

5 rotation around the ∆ axis

too. The invariant subspaces are determined by their orthogonal projection operators also:

the projector operator that project from Λ to that subspace. The projectors in orthogonal

basis are the following.

The projector to E||:

M‖ =

√

2

5

(

1 cos θ cos 2θ cos 2θ cos θ

0 sin θ sin 2θ − sin 2θ − sin θ

)

(2.5)
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The projector to the perpendicular subspace, E⊥
⊕

∆:

M⊥ =

√

2

5









1 cos 2θ cos θ cos θ cos θ

0 sin 2θ − sin θ sin θ − sin 2θ
1√
2

1√
2

1√
2

1√
2

1√
2









(2.6)

where θ = 2π/5. The projected hyperlattice, M‖(Λ) is a Z - module that built up from 5

vectors that form a regular pentagon because of the 2π
5 rotations (See Fig. 2.2). In a similar

way also M⊥(Λ) is a Z - module that built up from 5 vectors that form a regular pentagon

but with permuted base vectors because of the 4π
5 rotations and the plane is shifted with

1√
5

to the direction of ∆ (See Fig. 2.2).

Figure 2.2: The basis vectors of the projected hyper lattice, Λ‖. The projections are the
M‖ and M⊥. In the case of M‖, the basis vectors form a regular pentagon on E‖ (in the left
hand side). In the case of M⊥ the basis vectors also form a regular pentagon but in a shifted
plane to the ∆ direction compare to E⊥ (in the right hand side). (The figure was taken from
the report of Michel Duneau and Denis Gratias, Introduction a la quasicristallographie)

The main steps of the Penrose tiling generating procedure is the following. One choose a

finite section of the Λ = Z
5: X. X includes finite number of vertexes, Xi, designated by five-

dimensional vectors: (n1, n2, n3, n4, n5). One projects the five dimensional unit hypercube,

C to the perpendicular subspace, E⊥
⊕

∆, and called the projected object, W like“window”

: W = M⊥(C). W has a form of rhombic icosahedron. The ni-s in C have the possible

values: 0 or 1. In this way the only possible values for the third component of M⊥(C) are:

[M⊥(n1, n2, n3, n4, n5)]3 =
1√
5
· z⊥ (2.7)

where

z⊥ =
5
∑

i=1

ni = 0, 1, 2, 3, 4, 5. (2.8)
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Figure 2.3: The four selection windows in perpendicular space. The selection windows
z⊥ = 1, 3 (red pentagons in the figure) are corresponding to the “A” sublattice. The
selection windows z⊥ = 2, 4 (blue pentagons in the figure) are corresponding to the “B”
sublattice, respectively.

0 and 5 values correspond to point like objects, so there are 4 planes that should take into

account: W1,W2,W3 and W4 (See Fig. 2.3). The Wi acceptance window in each of these

four planes in the perpendicular subspace is a pentagon. Two such pentagons are shown in

Fig.2.4 (corresponding to z⊥ = 1 and 2), the other two being the same upto an inversion.

Xi is selected for projection if its projection in the three dimensional perpendicular space,

E⊥
⊕

∆, belongs to the region W : if M⊥(Xi) ∈W then ∃ Pi = M‖(Xi). Finite samples of

arbitrarily large size can be readily generated using this selection criterion, by considering

large enough X volumes of Λ.

Technical note: in order to avoid ambiguities (when points fall on the edges of the

selection window) one shifts Z
5 by some arbitrary distance. This results, in particular, in

tilings without an artificial center of symmetry.

The parity of the vertex as given by z⊥ determines the sublattice to which it belongs.

Thus, the points that project into the planes z⊥ = 1, 3 correspond, say, to sublattice A ,

while the planes z⊥ = 2, 4 correspond to sublattice B (See Fig. 2.3). In the infinite tiling,

the two sublattices are equivalent, and the “even” and “odd” windows are the same upto an

inversion.

This approach to generating the quasiperiodic tiling allows one an alternative visual-

ization of the Penrose tiling in perpendicular space. Each family of sites of Fig.2.4 (upper)
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projects into a distinct domain, i.e. the perpendicular space representation allows us to

separate sites according to their coordination number. We will use this useful property of

the Penrose tiling in order to represent the complex antiferromagnetic ground state in a

simpler way in Ch.4.

Figure 2.4: (upper) Portion of the tiling showing vertices colored differently, according to
coordination number z (lower) The same tiling after projection into perpendicular space
(a) the plane z⊥ = 1, b) the plane z⊥ = 2 )

2.3.2 Properties of the Penrose tilings

Sublattice equivalence The Penrose tiling is bipartite. The bipartite tiling means that

we could distinguish two sublattices on the tiling when all the site on one sublattice just

have a kind of neighbors that are located on the another sublattice and vice versa. On

the infinite tiling, the two sublattices are equivalent. It means that all kind of geometrical

25



2.3. THE PENROSE TILING

Figure 2.5: Some local environments in the Penrose tiling.

properties like e.g. frequency distribution of the coordination numbers will be exactly the

same. On finite tiling the equivalence is just partially but at big system size the differencies

between the two sublattices are very small.

Local isomorphism One remarkable feature of the Penrose tiling is that despite the

absence of perfect translational invariance, patterns of arbitrarily large size in different

regions of the tiling can be made to overlap, “local isomorphism”. The mean repetition

distance of a pattern of linear size R is proportional to R. This is a property that replaces

the strict translational invariance of crystalline structures.

Rotational invariance Rotational invariance holds in the same “weak” sense. It means

that for any given pattern, its equivalent under rotation by a multiple of 2π
5 can be found

elsewhere on the tiling.

Hierarchical symmetry The Penrose tiling possesses a hierarchical symmetry, being

invariant under so-called inflation and deflation transformations (See Fig. 2.6). Inflation

is a reversible operation which can be thought of as a set of decimations of vertices of the

tiling, followed by a re-connection of the new vertices. The new tiling is defined on a length

scale that is bigger by the factor τ . The equivalence of the old and new tilings means here

that no environments are created or destroyed in the process of inflation or deflation, and

that one can find an exact match between any arbitrary (finite) regions of the two tilings.

Local environments

Strictyly speaking, the Penrose tiling, like all quasiperiodic tilings, has infinitely many

environments since each site is unique. However, when considering the local environments

at the level of the nearest neighbors there are just 7 possibilities (upto five-fold rotations).
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Figure 2.6: Hierarchical symmetry in the Penrose tiling. The tiling with thin light grey
edges and blue and green rhombuses is the original Penrose tiling. The tiling with thick
black edges is the inflated tiling by τ . The inflated tiling is also a Penrose tiling with
edges τ times bigger than the original one and the vertexes of the inflated tiling are
also vertexes of the original tiling. (The figure was taken from the following website:
http://www.ams.org/featurecolumn/archive/penrose.html)

For convenience, we will choose to classify vertices in terms of their coordination number,

z. This number will turn out to be the primary parameter in the study of local magnetic

order. One can also classify the local environments by including information about the

structure up to a bigger distance. For example in Ch.5. we will need to use also the

average “nearest neighbor coordination number”. Sites have coordination number values

3, 4, 5, 6, 7. The average coordination number must be exactly 4 for the Penrose tiling, as

can be shown easily using the Euler theorem. The frequencies of the coordination numbers

can be calculated exactly in terms of the golden ratio τ . Their values are shown in Fig. 2.7,

which was obtained for a finite sample of 11556 sites. This figure also shows the results

for the frequencies when a site with coordination number z have a nearest neighbor with

coordination number z2. The Fig.2.5 shows seven type of local environments are present

in the tiling. The first figure shows a five-fold symmetric site, which in fact comes in two

varieties, the F (for football cluster) and the S (for star cluster). The properties of these

sites under decimation are different. More will be said on these sites when we discuss the

results for the ground state staggered magnetization distribution.

2.3.3 Approximants of the Penrose tiling

To obtain periodic approximants, one uses the oblique projection method described briefly

in the Appendix. Details of the construction of the projection operators for the so-called

Taylor approximant can be found by M. Duneau and M. Audier in [88], where they only

considered the smallest approximant, having 36 sites. We have generalized the procedure,

27



2.3. THE PENROSE TILING

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 3  4  5  6  7

fr
eq

ue
nc

y 
of

 s
ite

s

z

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 3  4  5  6  7

z

z2=7
z2=6
z2=5
z2=4
z2=3

Figure 2.7: (LEFT) Frequency of the coordination number (z) for Taylor τ6 approximant.
(The system size is N=11556) (RIGHT) Frequencies of the coordination number (z2) for
the nearest neighbors that have coordination number z. (The system size is N=4414)

and obtained the following system sizes (See Fig. 2.8):

Inflations τ τ2 τ3 τ4 τ5 τ6

System size 96 246 644 1686 4414 11556

Figure 2.8: Taylor τ3 approximant (N=644 sites)

In order to ensure that the antiferromagnetic ground state has total spin S = 0, one

requires that sublattices A and B be of the same size. This was achieved for our finite

approximants by shifting each of the four selection windows in perpendicular space, until

the number of A and B sublattice points selected are equal.
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The coordination numbers and the average coordination number are exactly the same

like for perfect Penrose tiling. All coordination numbers are appearing with a frequency

close to that expected in the perfect Penrose tiling (See Fig. 2.7). The structure locally

resembles the perfect Penrose tiling. Due to the condition of periodic repetition in the

plane, the approximant must be “defected” with respect to the perfect tiling at a length

scale comparable to the periodic length of the approximant. As the system size increases,

differences due to the long range disparities of the two structures become negligible for the

physical properties that we are interested in.
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Chapter 3

The T=0 Heisenberg

antiferromagnet

3.1 The ground state of the 2D Heisenberg antiferromagnets

We consider the nearest-neighbor antiferromagnetic spin-1
2 Heisenberg model on bipartite

tilings,

H = J
∑

〈i,j〉
Si · Sj , J > 0, (3.1)

where 〈i, j〉 are pairs of linked vertices of the tiling. We will assume that the antiferromag-

netic coupling J is the same for all bonds. A tiling is bipartite when one can distinguish

two sublattices - that are distinct from each other and together cover all the original tiling.

The couplings J correspond to the case where all the nearest neighbors of each site are

sites of the other sublattice. This property ensures that there is no frustration, i.e., if one

considers classical spin variables, the ground state is one for which all bonds are ”satisfied”

– with all the spins on one of the sublattice are pointing in one direction and the spins on

the another sublattice pointing in the opposite direction. The Mermin–Wagner-Hohenberg

theorem (also known as Coleman theorem) [89, 90, 91] states that continuous symmetries

cannot be spontaneously broken at finite temperature in one and two dimension. In one

dimension, quantum fluctuations destroy order also at T=0. Although there is no long

range order at finite temperature for two dimensional magnetic system, it is probable that

the cases considered do have long range Néel order at T=0.

We recall some well-known facts: in the case of a ferromagnet (J < 0) the quantum

and classical ground states are the same: one in which all spins point in one direction,

breaking the rotational invariance of the Hamiltonian. The classical ground state for an
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antiferromagnet is a state when all spins point in one direction on one of the sublattices and

point to the opposite direction in the other sublattice. However, it is easy to see that such a

state is not an eigenstate of H, and therefore cannot be the ground state. The true ground

state is known for 1D periodic chains with uniform J, for which the solution was given

by Bethe in 1931 [92]. No exact result for the ground state for the 2D antiferromagnet

is known, even for simple lattices like square lattice. P.W. Anderson proposed that the

ground state of the square lattice could be a highly entangled ground state, referred to as

“resonating valence bond” (RVB) [93]. He suggested that this state, for a square lattice of

antiferromagnetically coupled copper ions might be the precursor of the high temperature

superconductivity found in the layered cuprate compounds. However, several experimental

[94] and numerical studies suggested that the ground state is in fact the symmetry broken

Néel type state. Many approximate methods can be used to study the problem: spin wave

expansion, high temperature expansion, renormalization group, Schwinger boson theory,

and other methods (See [95]). In this thesis we use linear spin wave theory (LSWT), to

determine the ground state and spectrum approximately. Unlike the case of lattices, here

one cannot solve the problem by Fourier transforming the Hamiltonian. However, using the

real space diagonalization method of White, Sparks and Ortenburger [74] Wessel and Milat

developped a method that is applicable for non-periodic tilings also [75]. We will describe

the main steps of this approach in this chapter.

Role of the dimension, spin quantum number and the structure

When we consider quantum spins, the ground state energy is lower than the classical value,

due to the quantum fluctuations or ”spin waves”in the case of periodic structures. As studies

using a variety of analytical and numerical methods have shown (see review [95]), the effects

of quantum fluctuations vary depending on the dimension, the spin quantum number S, and

the type of structure. Quantum fluctuations are expected to become smaller as S increases,

and as the dimension increases. The S = 1/2 is the most quantum system, and the system

with big S number is considered classical like.

In a given dimension, and for simple lattices, one can ask what the local quantum

fluctuations are when the coordination number is changed. In two dimensions, two examples

of unfrustrated systems are the square lattice with z = 4 and the honeycomb lattice with

z = 3 (see the review in [96]). Spin wave calculations, as well as Quantum Monte Carlo

calculations [97, 98, 99, 100, 101] have shown that the order parameter is smaller in the

z = 3 case. The values of the staggered magnetization, defined by the value of ms = |〈Sz
i 〉|

as obtained by QMC calculations are msq
s = 0.3173 and mhc

s = 0.2788 (with sq and hc
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standing for square lattice and honeycomb lattice respectively). This is in accord with the

already remarked tendency towards a less classical behavior for systems of lower dimension,

hence fewer nearest neighbors.

In contrast, as pointed out in [98], when the coordination number is not constant, the

local magnetization tends to be in fact larger when z is smaller. In the dice lattice, where

sites can have z = 3 and z = 6, spin wave theory and QMC calculations have shown

that it is the small z sites that have the larger value of the local staggered magnetization,

with mz=6
s = 0.3754 while mz=3

s = 0.4381. This result shows the “counter-intuitive” trend

towards a less classical behavior for sites of bigger z in structures having a distribution of

z values. Other systems showing this tendency including the quasiperiodic octagonal tiling

and, as shown in [102], the Penrose tiling.

3.2 The linear spin wave theory

3.2.1 Spin wave theory

Close to zero temperature the spin system coupled by exchange interaction has wavelike

states called spin waves. The energy of the spin wave is quantized, and the unit energy of

a spin wave called a magnon. Holstein and Primakoff introduced the spin wave theory first

time for ferromagnets at 1940 [103]. Anderson [104] and Kubo showed that results could

be expressed as an 1/S expansion (more references can be found here [95, 105, 106]).

We now describe spin wave theory, applied to Heisenberg antiferromagnet on finite,

bipartite tilings with NA site on the A- and NB site on the B- sublattice. We consider

the case where NA = NB, so that the ground state spin is expected to have S=0 (Lieb-

Mattis theorem, [106] ). Spin wave theory is based on the assumption that the ground state

has long range order and that quantum fluctuations around the classical ground state are

“small”. In this case the quantum system may found near to the classical ground state in

that sense that the states of the quantum system that is “closer” to classical ground state

has much higher probabilities than the other states. We will specify more this “distance”

later. Using this argument it seems reasonable to make a restriction in the Hilbert space

and neglect that part of the Hilbert space that is far from the classical ground state. The

classical ground state for antiferromagnets are “spin up” (|↑〉) in the A sublattice and “spin

down” (|↓〉) in the sublattice B (Fig. 3.1).

(the opposite configuration is equivalent under a symmetry operation). The distance

from the classical ground state can be expressed by introducing the “spin-deviation” oper-
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Figure 3.1: Schematic picture of the ground state in a 2D classical antiferromagnet.

ator:

ni ≡ Scl − Ŝz
i (3.2)

nj ≡ Scl + Ŝz
j (3.3)

In this representation the Hilbert space is spanned by

∏

r

|nr〉 (3.4)

The nr operators commute like the spin operators: [ni, nj] = δi,j because of the definition

of the nr and the spin commutation relation. The eigenvalues of the nr operator are

0, 1, . . . , 2S. It is useful to introduce the Holstein-Primakoff boson operators in this way:

a† | nr〉 ≡
√
nr + 1 | nr + 1〉 (3.5)

a | nr〉 ≡ √
nr | nr − 1〉 (3.6)

with a similar definition for b†, b in the B sublattice. nr will be the bosonic number operator

for a†, a if r is in the A sublattice

nr = a†rar (3.7)

and the same type of relation holds for the B sublattice. These Holstein-Primakoff boson

operators obey the usual bosonic commutation relations:

[ar, a
†
r′ ] = [br, b

†
r′ ] = δr,r′ (3.8)

All other pairs of a, b, a†, b† operators commute with each other. Using these equations one
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can substitute the spin operators with the Holstein Primakoff operators in the following

way:

Sz
i = S − a†iai,

S+
i =

√
2S

(

1 − a†iai

2S

)1/2

ai, (3.9)

S−
i =

√
2Sa†i

(

1 − a†iai

2S

)1/2

,

Sz
j = −S + b†jbj ,

S+
j =

√
2Sb†j

(

1 −
b†jbj
2S

)1/2

, (3.10)

S−
j =

√
2S

(

1 −
b†jbj
2S

)1/2

bj,

for j ∈ B.

3.2.2 Linearization

One could write the nonlinear term in (3.9, 3.10) using the series expansion of ni, nj re-

spectively (3.11).

fS(n̂r) =

(

1 − n̂r

2S

)1/2

= 1 − n̂r

4S
− n̂2

r

16S
− n̂3

r

32S
− . . . (3.11)

Assuming that the expectation value of n is small enough, one can linearize the above

expression, i.e. keep only the first term. This is consistent with the assumption that the

ground state is close to the classical one. Studies have shown that the expectation value of

the bosonic number operator are typically small when the two dimensional Heisenberg an-

tiferromagnet is totally unfrustrated. Our system, the S=1/2 Heisenberg antiferromagnet

on T=0 fulfills this requirement. The linearized Hamiltonian of the Heisenberg antiferro-

magnet, has now the following simple form:
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HAF = J
∑

〈i,j〉
SiSj =

J
∑

〈i,j〉
[Sz

i S
z
j + Sx

i S
x
j + Sy

i S
y
j ] = J

∑

〈i,j〉
[Sz

i S
z
j +

1

2
(S+

i S
−
j + S−

i S
+
j )] =

J
∑

〈i,j〉
[(S − a†iai)(−S + b†jbj)+

1

2
S(

(

1 − a†iai

2S

)1/2

ai

(

1 −
b†jbj
2S

)1/2

bj + a†i

(

1 − a†iai

2S

)1/2

b†j

(

1 −
b†jbj
2S

)1/2

)] =

H0 +H1 +H2

(3.12)

where

H0 = −JS(S + 1)Nb (3.13)

H1 = JS
∑

〈i,j〉

(

a†iai + bjb
†
j + a†ib

†
j + bjai

)

(3.14)

H2 regroups the higher order terms that we neglect in the linear approximation.

3.2.3 Real space diagonalization

The Hamiltonian in the terms of bosonic operators have the following form (non-constant

H1 term):

H = X†HX (3.15)

where H is H1/JS. H is a Hermitian complex number matrix and X including the N

independent bosonic operators:

X = (a1, . . . , aNA
, b†1, . . . , b

†
NB

) (3.16)

X normally includes all the 2N independent bosonic operators: ai, a
†
i , bj , b

†
j . However, after

diagonalization in this basis we will get N doubly degenerate eigenvalues because of the

equivalence of the two sublattices. We can see this in the form of the Hamiltonian (3.14)

where ai, b
†
j are always on the right hand side of the products and a†i , bj are always on the

left hand side. Changing the sublattices (a ↔ b) and considering the adjoint of the H1 we

will get the same expression. So we can reduce X to the size of N (3.16).

The method for this type of Hamiltonian is based on [74]. H is Hermitian, thus there exists
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a linear transformation, T, that diagonalizes H.

X = TX ′ (3.17)

where X’ is the vector of transformed bosonic operators in the case when H is diagonal.

One then has

HT = (T †)−1ΩH (3.18)

where ΩH is the diagonal matrix. The commutation relation for X,X† is the following:

[X,X†] = X(X∗)T − (X∗XT )T = g (3.19)

The values of g are coming from the bosonic commutation relations that’s why g is diagonal

and has a structure: 1 are the first N/2 elements and -1 are the second N/2. Using (3.17)

the same commutation relation is:

[TX ′,X ′†T †] = TX ′(X ′∗)T (T ∗)T − (T ∗X ′∗X ′TT T )T = g (3.20)

The commutation relation for X ′,X ′† is similarly:

[X ′,X ′†] = X ′(X ′∗)T − (X ′∗X ′T )T = g′ (3.21)

From (3.20) and (3.21):

Tg′T † = g (3.22)

From this with a simple reorganization we get:

(T †)−1 = g−1Tg′ (3.23)

This last formula give a notable simplification for the expression (3.18) because we get

an N × N eigensystem problem of gH in the place of a difficult operator equation. The

eigenvalues will be g′ΩH and the eigenvector matrix will be T where the columns of T are

eigenvectors of gH:

(gH)T = (g′ΩH)T (3.24)

The order of X ′
i and the order of the column vectors of T are related. The gH matrix will

have N+ positive eigenvalues, λ+
i and N− negative eigenvalues, λ−i . Obviously N+ +N− ≤

N . Because of the structure of the gH matrix: N+ = N−. More precisely for all λ+
i

exist a λ−i′ = −λ+
i . Because of this, (3.21) and (3.24), g’ should have a form ±δij with
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equal number of 1 and −1. To fulfill (3.24) T should include its eigenvector in the same

order as g′ΩH includes its eigenvalue. So in this way the order of +1 (−1) in g′ should be

the same as the eigenvectors in T that are connected to positive (negative) eigenvalue. To

consider the simplest case let’s order the eigenvalues in decreasing sequence. In this way

the positive eigenvalues come first and after the negative ones. The eigenvectors will have

the same order as the connected eigenvalues have. The g’ will be (1, . . . , 1,−1, . . . ,−1) and

X’, because of the bosonic commutation relations (3.8), will be the following:

X ′ = (β1, . . . , βN+ , β†
N++1

, . . . β†
N++N−) (3.25)

where βi, β
†
i′ are bosonic operators.

3.2.4 The ground state energy and the local staggered magnetization in

the linear spin wave theory

Now we derive two important quantities, the ground state energy and the local staggered

magnetization in the context of the linear spin wave theory.

Calculations of the ground state expectation values in the LSWT The expec-

tation values of β boson number are zero in the ground state. When multiplying odd

number of bosonic operators the expectation value is zero as well. From these and bosonic

commutation relations we get the following expressions:

ni = X ′†
i X

′
j = 0 X ′

iX
′†
j = δij (3.26)

These two expressions will be useful during the calculations of the ground state expec-

tation values.

Ground state energy Using (3.14) the expression of the ground state energy is:

E0 = −JS(S + 1)Nb + JS

N−
∑

k=1

|λ−k |. (3.27)

Local staggered magnetization The expression of the local staggered magnetization

is:
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sublattice A ms(i) = 〈Sz
i 〉 = S − 〈a†iai〉 = S −

N++N−
∑

k=N++1

T ∗
ikTki (3.28)

sublattice B ms(j) = 〈Sz
j 〉 = S − 〈b†jbj〉 = S −

N+

∑

k=1

TjkT
∗
kj (3.29)

for each of the sublattices A and B.

3.3 Remarks about the method

As we mentioned earlier, the diagonalization is done numerically for finite systems. Two

types of boundary conditions were considered – ’open boundary condition’ and the ’periodic

boundary condition’. For finite pieces of the infinite quasiperiodic tiling the open boundary

condition is the only possible choice. This is because such pieces cannot be fitted together

to tile all of space. We considered such finite pieces, and also approximants, in order to

compare the solutions found in these two situations. The open boundary condition makes

the boundary sites behave differently than the bulk. The LSW wavefunctions show strong

localization at the boundary that does not exist in the bulk. Only sites well within the

interior of the piece were found to have the same properties of those in the approximants

(which have no boundary sites). In sum, the finite size samples can give qualitatively correct

results for local properties, but we need to calculate on much bigger samples. Because of

this disadvantages we use periodic approximants of the perfect quasiperiodic tilings in a

place of the finite size pattern of the perfect tiling.

The main requirements about the methods that one would apply to physical models on

quasiperiodic tiling is that the method should be able to treat enough big system size in a

reasonable CPU time. Looking at the tiling, it is evident that the quasiperiodic features of

the structure will only start to appear for system sizes i.e. N > 200 at least, because the

self-similar properties of the geometry do not exist in very samples. These requirements

reduce the possible methods that we could use. The most precise numerical method for

any calculation for quantum system is the Exact Diagonalization method (ED) that provide

exact solution for the spectrum and wavefunction of a given Hamiltonian up to the numerical

accuracy. However the state of art for the system size for ED is around N ≤ 40, which is

by far not enough for quasiperiodic systems. The Density Matrix Renormalization Group

(DMRG) technique is an often used method for calculation on 1D system because of its

efficiency, but is hard to implement in higher than 1D. Also the currently possible sizes that
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can be studied by DMRG are still too small. The Quantum Monte Carlo (QMC) method is

a very powerful one for non-perturbative investigation of spin systems at finite temperature

[107]. It is possible to calculate S = 1/2 Heisenberg antiferromagnets at least up to several

thousand of sites in a reasonable amount of time. All the important physical observables

that have classical analogues are possible to calculate like the magnetic structure factor

and the ground state energy and get a relevant expectation values of them for T = 0.

However, wave functions and related quantities like the inverse particpation ratio (IPR) are

not possible to calculate with QMC. Therefore, to get a more complete picture, we found

it necessary to study the systems by both LSWT and QMC. For more about the QMC

method, the following literatures and references therein [108, 107, 109, 110].
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Chapter 4

Magnon energies and

wavefunctions of the Penrose tiling

4.1 Energy spectrum and density of states

The real space diagonalization procedure gives the energies Ω±
m as well as the T -matrix (See

Ch.3. and the Appendix) for each of the systems considered. The two sets of energies Ω+
m

and Ω−
m become identical in the infinite system size limit when the two sublattices become

strictly equivalent. In our case, at finite size, since the two sublattices are not identical, the

numerical values are slightly different (less than a percent for the larger systems and not

visible on the scale of our figures). The density of states (DOS) shows the distribution of

the energy levels. We used the following expression for the density of states:

N(E) =
1

N

N/2
∑

m=1

δ(E − Ω+
m) (4.1)

The energy E is expressed in units of J . Fig.4.1 shows the density of states figure for the

Taylor 6 approximant (N=11556 sites).

The integrated density of states figure is defined similarly by:

N(E) =
2

N

N/2
∑

m=1

θ(E − Ω+
m) (4.2)

Fig.4.2 shows the integrated density of states (IDOS) figure for the Penrose tiling approx-

imant. Data for three successive Taylor approximants has been plotted, with the points

in red corresponding to the largest system size, points in green to the medium size, and
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Figure 4.1: Density of states calculated for the Taylor 6 approximant (N=11556 sites).

points in blue to the smallest size. The DOS is only slightly size dependent, as seen by

the overlapping of the three sets of data points. The salient features of the figure are the

several groups of closely spaced energy levels, the main gaps, which are stable with increas-

ing system size, and a discrete jump at the energy E = 3, corresponding to a macroscopic

degeneracy, as discussed below. One sees the characteristic fluctuating form of the density

of states typical of quasiperiodic systems.

Low energy region

The lowest energies correspond to states of relatively extended character, as we will discuss

below. As shown in Fig.4.3 the low energy part of the IDOS can be fitted to a power law of

the energy, N(E) ∼ E2 reflecting a linear dispersion of the magnon modes in this region of

the spectrum. Fitting to a form N(E) = E2/(8πc2) gives a sound velocity on the Penrose

tiling of c = 1.08J . It is interesting to compare this result for c with the corresponding

values on the square lattice and the octagonal tiling, both having in common with the

Penrose tiling the same value of the classical energy per spin Ecl/N = −2JS2. This value

is csq = 2
√

2JSa ≈ 1.41J on the square lattice (for edge length a = 1 and S = 1/2).

On the octagonal tiling, our estimated value is cocta ≈ 1.3J , in agreement with Milat and
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Figure 4.2: Integrated density of states (IDOS) figures for three system sizes (N=1686
(blue), 4414 (green), 11556 (red)). From the high overlapping of the curves one suggest a
small size dependence for the IDOS.

Wessel’s IDOS data [75]. To resume, an acoustic-type dispersion relation is obeyed at long

wavelengths, with a spin wave velocity which is smaller than in the octagonal tiling, which

is in turn smaller than the value on the square lattice. This is presumably due to the fact

that the density of sites is largest in the Penrose systems, followed by the octagonal tiling,

and finally the square lattice.

Exactly degenerate states

E=3J is a degenerate eigenvalue caused by the special structure of the Penrose tiling.

The fraction of degenerate eigenvalues (degeneracy divided by the system size) scales with

N−1/2 (Fig. 4.4 (left)). The infinite system size limit from the fit is 0.0807. The degenerate

wavefunctions are localized on 3-fold sites and form closed loops. The smallest such loops

occur around ”star-like” five-fold star structures (Fig. 4.4 (right)).

Minibands at higher energy

At higher energy (3 < E(J) < 5) the wavefunctions are centered primarily on the 4 and

mostly on 5-fold sites. At highest energy one can distinguish several groups of energies

separated by gaps. The highest energy bands around the values E ≈ 5.4 and E ≈ 6.4,

correspond to wavefunctions that are localized on the 6- and 7-fold sites, as will be shown

shortly.
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Figure 4.3: Fit of the low energy part of the integrated density of states figure of the
Taylor 6 approximant (N=11556 sites). From the gradient of the curve the magnon speed
is determinable.

4.2 Weight fractions and partial densities of states

We now discuss the magnon wavefunctions and their spatial characteristics for the differ-

ent parts of the energy spectrum. We first show that the coordination number plays an

important role in determining the extent to which a site participates in the wavefunction

for a given eigenmode, ψ(E). This can be seen from Figs.4.5a) through e), which show the

weight fractions as a function of the energy, for each of the five values of the coordination

number z. The weight fractions were defined as

fn =
∑

i∈Fn

|ψ(E)
i |2/

∑

j

|ψ(E)
j |2 (4.3)

where the F3, F4, ... are the subsets of sites whose coordination numbers are z = 3, . . . , 7.

Only sites of sublattice A are considered (a similar calculation for sublattice B gives the

same results).

The plots of the weight fractions show a number of interesting properties of the magnon

modes. In particular, they show the preponderance of certain types of site in the different

energy bands. Thus it is clear from Fig.4.5 e) that the highest energies correspond to states

having a large amplitude on sites of z = 7. The highest energy band has a width of about

0.16 and is centred around E = 6.4. Fig.4.7a) represents one such state in real space,

with sites are shown with varying intensity depending on the square of the wavefunction

amplitude. The lightest spots are those on sites with z = 7. The group of states next

highest in energy are those involving z = 6 sites, and correspond to energies in the range
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Figure 4.4: (LEFT) Finite size scaling of the number of the degenerate eigenmodes (with
eigenvalues: +3, -3) per the system size. The values are seems to fit to the line ofN−1/2. The
extrapolated value to the thermodynamic limit is 0.0807. (RIGHT) Schematic wavefunction
intensity picture, with degenerate eigenvalue = 3. The wavefunction is localized around a
five-fold star.

5.43 < E < 5.49. These states have a smaller dispersion than the states in the topmost

group of energies, reflecting the fact that the six-fold sites are significantly fewer in number

than the seven-fold sites.

The middle band of energies, 3 < E < 5 arises for states involving sites of z = 5, which

account for about 30% of the sites. From Fig.4.5c) one sees that the four-fold sites are

particularly important in a narrow range of energy within this band. As seen by the large

step in N(E) at E = 3, a large number of degenerate states occur at this energy. This is

due to wavefunctions that have their entire support on the z = 3 sites. These are string-like

states forming closed loops – on length scales that range from a small ring (around the

footballs, for example) to being as large as the system size. A linear combination of such

degenerate states is shown in Fig.4.7b).

The lowest energy states , for E ≤ 1, are the closest to extended states. The wave-

function amplitudes depend less sensitively on the site coordination number. The fact that

all sites participate is best seen from Fig.4.6, where we have plotted for each of the five

z-values the average probability for a given site, fn/Nn, (where Nn is the number of sites

of the nth family), as a function of the energy E. Clearly, for the low energy states, the

probability amplitude is nonzero for all the values of z. On the other hand, not all of the

sites participate in a given wavefunction, and for a given energy the wavefunction is mainly

confined to a set of disconnected patches. The lower the energy, the larger the patches

where the wavefunction is non-zero. Figs.4.7c) and d) show the states corresponding to two

energies. For E = 0.8887 there are many closely spaced small patches. As the energy gets

smaller, the patches of non-zero amplitude get larger, along with the spacing between them,
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Figure 4.5: a) - e) Weight fractions fn (see text) as a function of E for z = n (n = 3, . . . , 7),
as computed for the Taylor 5 approximant (N=4414 sites).

and at energy E = 0.1692, for example, the wave function has two large patches (which are

of course repeated periodically, due to the boundary conditions). To resume, the dimension

of the support of eigenstates decreases as a function of the energy, from two at small E, to

one at E = 3, tending to zero at the highest energies.

4.3 Perpendicular space representation of the wavefunctions

In the preceding section we alluded to the fact that the perpendicular space representation

of the Penrose tiling is a useful way to see the environment-dependence of spatially varying

quantities. We now illustrate this in the case of the four wavefunctions shown in Figs.4.7

represented in perpendicular space by Figs.4.8. Each vertex of the Taylor approximant is

mapped (see the Appendix for more details) onto a point {x⊥, y⊥, z⊥}. We show the pro-

jection in the plane z⊥ = 2 of the Penrose tiling, with regions shaded according to the local
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TILING

Figure 4.6: The average value of ψi(E)2 per site for each z plotted against E for states in
the bottom of the spectrum.

value of the wavefunction. Specifically, the intensity of the spot at site i is proportional

to the value of |ψi(E)|2. Fig.4.8a) shows the perpendicular space projection for the wave-

function corresponding to the energy E = 6.469. The spots of maximum intensity are in

the region that corresponds to z = 7 . Fig.4.8b) shows, similarly, that the wavefunction for

E = 3 is non-zero for the region corresponding to z = 3. The last two figures show wave-

functions that are delocalized in perpendicular space (ie, all sites are involved, regardless

of the value of the coordination number).

4.4 Participation ratio and multifractal analysis.

We present the results for the inverse participation ratio (IPR), defined by

P−1(E) =

∑

j |ψj(E)|4

(
∑

j |ψj(E)|2)2

Recall that as N is increased, the inverse participation ratio decreases as 1/N for truly

extended states, tends to a constant for localized states, and has an intermediate behavior

scaling as N−β for the so-called critical states. This quantity has been much studied in the

case of tight-binding models for electrons in disordered systems, in particular, close to or

at the critical disorder for the metal-insulator transition (MIT) [111]. For electrons in the

Penrose and Ammann-Kramer-Neri tilings, Grimm et al [112] have found a distribution of

values of β ranging between 0.5 and 1. Turning now to our spin problem, Fig.4.9 shows

the results for log(P−1(E)) versus E for the Taylor approximants for three different sizes.

(Note: the values have been calculated separately for each sublattice, according to the

corresponding sector Ω± of the eigenvalue spectrum). The fluctuations in the IPR tend to
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Figure 4.7: Intensity plots representing the probability ψi(E)2 for different energies E (the
lighter shade corresponds to a higher probability): a) E = 6.469 b) E = 3.0000 c) E =
0.8887 d) E = 0.1692. The solutions have been obtained for the Taylor 5 approximant
(N=4414 sites).

be quite large from one energy to the next, (note that the figure is plotted on the logarithmic

scale), however, the smoothed IPR is an increasing function of E over most of the energy

spectrum. There is a noticeable dip in some of the IPR values as the energy approaches the

value E ≈ 3, and at E = 3 the value of the IPR does not reflect the spatial extent of the

eigenstates, because of the mixing of the macroscopically degenerate states at this energy.

Fig.4.9 shows the most marked size dependence in the region of small energies, in accord

with our earlier observation that states relatively delocalized at low energy. At high energies,

the states are more localized, and the size dependence is accordingly smaller.

As a general remark, results for the IPR should be treated with precaution, in the case

of quasiperiodic systems, as compared with disordered ones. In the latter case, away from

the MIT, the decay of the wavefunctions is typically exponential, and degenerate states are
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TILING

Figure 4.8: Intensity plots in perpendicular space representing the probability ψi(E)2 for
different energies E (a darker shade corresponds to a higher probability): a) E = 6.469 b)
E = 3.0000 c) E = 0.8887 d) E = 0.1692

unlikely. In the quasicrystal, exactly degenerate states do occur at special values of the

energy (E = 3 here), which leads to an IPR value equal to that of extended states, due to

linear combinations of localized states. Our results for the IPR, taken together with the

preceding analyses of the wavefunctions, indicate that wavefunctions can be considered to

be two dimensional, and power law extended in the lower end of the spectrum. The average

value of β , found by fitting the form P−1(E) ∝ N−β found in this region is β ≈ 0.9 ± 0.1.

4.4.1 Multifractal analysis.

The multifractal character of wavefunctions for quasiperiodic Hamiltonians can be consid-

ered to be established in a number of one dimensional models [113] and strongly indicated in

a number of two dimensional systems including the tight-binding model for electrons [112]

and the phonon problem [114], and even in three dimensional models [115]. The scaling

properties of the wavefunctions can be investigated by calculating the f(α) spectrum.

For computation of the multifractal spectrum, we use the standard box-counting proce-

49



4.4. PARTICIPATION RATIO AND MULTIFRACTAL ANALYSIS.

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8

I(
ω

)

E

246
1686

11556

Figure 4.9: Inverse participation ratio (IPR) plotted on a log scale as a function of the
energy for three successive Taylor approximants

dure, [116, 117] first dividing the system of Ld sites into Nl = (L/l)d boxes of linear size l

and determining the box probability of the wave function in the i box by µi(l) =
∑

n |ψkn|2,
where the summation is restricted to sites within that box and ψkn denotes the amplitude

of an eigenstate with energy Ek at site n. The normalized qth moments of this probability

µi(q, l) = µq
i (l)/

∑Nl

j=1 µ
q
j(l) constitute a measure. From this, the Lipschitz-Hölder exponent

or singularity strength can be obtained, [118]

αq(L) = lim
δ→0

∑Nl

i=1 µi(q, l) lnµi(1, l)

ln δ
, (4.4)

as well as the corresponding fractal dimension

f(αq(L)) = lim
δ→0

∑Nl

i=1 µi(q, l) lnµi(q, l)

ln δ
, (4.5)

which yields the characteristic singularity spectrum f(α) in a parametric representation. In

Eqs. (4.4) and (4.5), δ = l/L denotes the ratio of the box sizes and the system size. If the

qth moments of the measure counted in all boxes are proportional to a power τq of the box

size, 〈
∑Nl

i=1 µ
q
i (l)〉 ∝ l−τq , multifractal behavior may be derived. The f(α) spectrum and

the mass exponent τq are related by a symmetric Legendre transformation, f(α) = αq− τq,

with α = dτq/dq and q = df(α)/dα.

As f(α) depends on system size, and our system sizes are rather small, an extrapolation

to infinite size is not without risk. Nevertheless, we have investigated the multifractal
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Figure 4.10: Some examples of f(α) plots for small energy eigenstates in three Taylor ap-
proximants. The curves have a maximum at α(0) ∼ 4 with f [α(0)] = 2.0. The information
dimension for these wavefunctions is α1 ≈ 1.5. Probably because of finite size effects the
curves are not continuous.

scaling properties in the low energy end of the spectrum, where the states are extended,

and have an patchy structure, with peaks and valleys spaced farther and farther apart as

energy decreases – see Figs. 4.7c) and d). We find evidence for a nontrivial distribution

of exponents in the limit of large system sizes. Fig.4.10 shows the results of a multifractal

analysis of two representative low energy states for three system sizes. The shape is a

priori size dependent, and state dependent as well. One can nevertheless distinguish a

smooth functional form of the f(α) function in each case. The curves have a maximum at

α(0) ∼ 4 with f [α(0)] = 2.0, which is the dimension of the support – also called similarity

dimension – of the wavefunction of this system. The so-called information dimension for

these wavefunctions is given by f [α(1)] = α1 (also known as D1). It corresponds to the

intersection of the f(α) curve and a straight line of slope 1 and we find α1 ≈ 1.5. For

comparison, for a three dimensional system at the metal-insulator transition (MIT) the

critical values have been found to be [119] α(0) = 4 and α(1) = 2.
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Chapter 5

Ground state properties of the

local staggered magnetization on

the Penrose tiling

5.1 Ground state energy

The ground state energy per site has the following expression (see Ch.3.):

E0 ·N = −JS(S + 1)Nb + JS

N−
∑

k=1

|λ−k |. (5.1)

We considered the ground state energy (GSE) in the periodic approximants of size N

ranging from 246 to 11556 (Taylor τ2 ,. . . , τ6 approximants). The results of ground state

energy for each approximants are given below:

N 246 644 1686 4414 11556

GSE -0.643726 -0.643216 -0.643062 -0.643012 -0.642995

For periodic Heisenberg model, one expects based on general arguments that the ground

state energy will scale with N−3/2 [120, 98]. We found a good agreement for our quasiperi-

odic system to this scaling form also, and were able thus to obtain the ground state energy

for the thermodynamic limit. We find that it is obeyed on the average in the Taylor ap-

proximants, with deviations that get smaller as size increases. Our extrapolation to infinite
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Figure 5.1: Finite size scaling for ground state energy to the Taylor approximants (N=246,
. . . , 11556)

system size gives an asymptotic value:

E0 = −0.643(0) ± 0.0001

The possible causes of the deviations:

As can be seen in the figure, the deviations from the scaling form occur with positive and

with negative sign, depending on system size. This may be due to fact that successive

Taylor approximants are obtained by different shear projections. Since each approximant

was obtained by a different rational section in five dimensional space, the distribution of

local environments differ from sample to sample. The approximants seem to have local

environments and z-values first tending towards one distribution, and then another when

the size is increased. The ground state energy must of course depend on the distribution of

local environments. In [121] it was argued that the ground state energy of the tiling may

depend in a simple way on moments of the variable zS. It was proposed in [122, 121] that

the ground state energy may be expressed as an series in the moments of z−1:

E0 = −1

2
zS2[1 + 4ζ1(1/zS) + 4ζ2(1/zS)2] (5.2)

The first moment is just the average value of z = 4 in all cases. However 〈(zS)−1〉 varies from

sample to sample, and this possibly accounts for the sign and magnitude of the observed

deviations from the straight line power law behavior.
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MAGNETIZATION ON THE PENROSE TILING

5.2 Staggered local magnetizations

The absolute value of the local staggered magnetizations in the ground state are given

in linear spin wave theory by the following expressions for the sites of the A and the B

sublattices:

ms(i) = |〈Sz
i 〉| = S −

∑

k> N
2
−1

|Aik|2 (i ≤ N/2)

ms(j) = |〈Sz
j 〉| = S −

∑

k≤N
2
−1

|Bjk|2 (j > N/2) (5.3)

5.2.1 Spatial dependence of the staggered magnetization

Fig.5.2 represents how local magnetizations vary in space on a portion of the Penrose tiling.

The color of the circles around each vertex varies from red (small magnetization) to blue

(high magnetization). Next to this a grayscale figure shows the symmetries of the spatial

distribution of the local staggered magnetism. In the right hand side of the figure I black

lines are drawn to indicate a self similar structure formation where we can distinguish four

self similar levels. The defects of the Taylor approximants (with repsect to the perfect

tiling) give an upper limit for the size of self similar structure formation. At length scale

comparable to the system size, no self similar formation is possible because of the required

translational invariance of the Taylor approximants.

The scaling of the average staggered magnetizations may be seen in Fig.5.3(left), where

we show the values of the staggered magnetization in 5 different approximants and sizes

(N = 246 to N = 11556). The average magnetizations appears to scale with N−1/2, as

for periodic systems [120, 98]. In Fig.5.3, right hand side, the scaling of the average site

magnetization for sites with the same coordination number is presented. These values also

seem to scale with N−1/2. The fit give an expectation value for the average staggered

magnetization to the thermodynamic limit with the following value:

ms = 0.356(6)

The expectation values for the average local staggered magnetization for sites of a given

coordination number ”z”:

z 3 4 5 6 7

ms 0.382 0.329 0.326 0.340 0.335
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5.2. STAGGERED LOCAL MAGNETIZATIONS

Figure 5.2: (LEFT) A portion of a Taylor approximant with vertices colored according to the
value of the onsite magnetization (magnetization values : red (small), green (intermediate)
blue (highest)) (RIGHT) Real space distribution of the staggered magnetization on the
Taylor 6 (N=11556) approximant of the Penrose tiling. Linearly interpolated values where
the larger values shown lighter. The 4 pentagons show 4 levels of self-similar structure in
the magnetization values.

The lowest values of staggered magnetization are found on a certain subset of z = 5

sites. The largest values are found on the low coordination sites of z = 3.

5.2.2 Coordination number dependence and distribution

As the figure shows, the local staggered magnetization depends, to a first approximation,

on the coordination number, although the distribution is very wide for certain values of

z - the width arises because of differences in next-nearest neighbor environment. Fig.5.4

indicates the average values and the standard deviations of the staggered magnetization on

sites with a given coordination number. The dashed line are LSWT data, the continuous

line are QMC data. The figure shows that Quantum Monte Carlo gives a narrower spread

of the magnetization. Linear spin wave theory clearly overestimates the fluctuations from

average behavior, giving a too high value for z = 3 and too low values for higher values

of z. Finite Penrose samples gave the same results as the periodic approximants when the

sites on the free boundary layer were excluded from the analysis. In the Fig.5.5 we show

all the local staggered magnetization values depending from the coordination number. The

magnetization values are shifted depending on the approximant and on the system size (from

left to the right: Taylor τ2 ,. . . , τ6 approximants, N=246, 644, 1686, 4414, 11556). We

observe strong size dependence in the figure. The Fig.5.6 presents the separated staggered
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Figure 5.3: (left) Finite size scaling of the average local staggered magnetization (lines
indicate fit to power law N−1/2). (right) Finite size scaling of the average local staggered
magnetization for each coordination number z

magnetization distribution function for different coordination numbers. The figures use

the same scale to make comparisons easier. There is a continuum of values, as expected

for a quasiperiodic structure, but also some pronounced peaks, corresponding to specific

local configurations. Some of the main observations will be described further below in the

next section. The distribution function for 3-fold sites include three well separated peaks

that belongs to three different type of 3-fold sites. The 4-fold sites show low dispersion

and a high peak around staggered magnetization value 0.33. The magnetization values of

the 5-fold sites are distributed widely and it is possible to distinguish at least three main

peaks. The sites with the lowest magnetization values (peak is around 0.304) correspond to

the 5-fold sites at the center of a football shape cluster (called F-sites in [102] ). The well

separated highest magnetization values (peak is around 0.378) correspond to the 5-fold sites

that are at the centers of a star shape cluster (called S sites in [102]). The magnetization

values between these two that have the biggest population (with two peaks at 0.331 and

0.338) and they correspond to the non-regular 5-fold sites. The 6-fold sites show a much less

population and a relatively high peak (0.344) that show low dispersion for 6-fold sites. The

7-fold sites have bigger population than the six fold sites and show a much more dispersive

feature (the mean value is around 0.346).

5.2.3 Perpendicular space representation of the ground state staggered

magnetization

We show, in Fig.5.7, two sets of projections onto perpendicular space of the vertices of the

Taylor approximants. The corresponding onsite magnetizations, as calculated for the tiling

in real physical space, are colored according to their values as previously, in Fig.5.2. The
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function of z for N=1686 ( LSW theory (dashed line) QMC (continuous line))

figures show that, as expected, the domain corresponding to each coordination number has

a distinct color. The colors are not absolutely uniform since no two sites are identical.

Self-similar patterns can be investigated using this type of representation, however our

system sizes are not large enough to enable a quantitative analysis of self-similarity in

the ground state. Fig.5.7a shows the domain corresponding to the F sites, as a central

star-shaped region, which has the lowest msi values. The S sites project into a different

star-shaped domain shown in Fig. 5.7b, and can be seen to have a bigger value of the

staggered local magnetization. We mentioned that the Penrose tiling is invariant under the

inflation transformation where edge lengths are expanded by a factor τ . If there is any

self similarity of the ground state under an inflation operation, it can be perceived on the

perpendicular space magnetization map as pairs of similar patterns in regions which are

related via an inflation transformation.

5.3 Predictions using the Heisenberg star model

We first consider the effects of variation of the number of nearest neighbors using a simple

Heisenberg star model (Fig. 5.8), as first outlined in [123]. A central spin S0 is coupled to z

neighbors Sj. The exact set of eigenenergies and eigenstates of an isolated cluster are easy to

find. In particular, the ground state will be rotationally invariant in spin space. However,

we are interested in a situation where the cluster is embedded in an antiferromagnetic
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Figure 5.5: Local staggered magnetization dependence on the coordination number for
different Taylor approximants. The system sizes we considered are (from left to the right)
N=246, 644, 1686, 4414, 11556 (Taylor τ2 ,. . . , τ6 approximants).

background. Assuming therefore an initial symmetry broken state of the finite cluster, one

can apply the methods of spin wave theory to this case. The HamiltonianH =
∑z

j=1 JS0.Sj,

can be expanded in boson operators a (describing the center site spin fluctuations) and bj,

as described in [123]. The corresponding magnetizations are respectively m0 = S − δm0

and mj = S − δmj where (for z > 1)

δm0 = 1/(z − 1) (5.4)

δmj = 1/z(z − 1)

Quantum fluctuations of the center spin are thus larger than those of the outer spins. This

is a consequence of the fact that in such clusters, the classical term, which creates an onsite

potential V0 ∝ z, thereby discouraging boson formation on the center site, is dominated by

the transverse terms. These terms in a†b†j create and annihilate boson pairs on each link,

leading to quantum fluctuations being greater for sites with more neighbors.

This cluster model is a first approximation and contradictory to our results. In order

to explain the multiple peaks in the values of msi seen numerically for a given z, we must

take into account longer range structural details.

We consider therefore the two tier Heisenberg star shown in Fig.5.8, as described in
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Figure 5.6: Probability distribution of the local staggered magnetizations for the five differ-
ent values of the coordination number. The figures use the same scale for easier comparison.
System size considered is N=11556.

[102]. The Hamiltonian of this cluster is linearized after introducing Holstein-Primakoff

operators a0, ai, (i = 1, ..., zz′) and bj, (j = 1, .., z) The resulting expression for the center

site magnetization is

ms(z, z
′) =

1

2
− zf2

1 (z, z′)

f2
2 (z, z′) − zf2

1 (z, z′) − 4z′
, (5.5)

where f1(2) = −z′ ± (2 − z +
√

4 − 4z + (z + z′)2) (5.6)

The main new feature of ms(z, z
′) is its non-monotonicity. m is shown plotted against

z for various values of z′ in Fig.5.9. For each of the curves of fixed z′, a shallow minimum

is seen to occur for values z ∼ 1 + z′, that is, when the coordination numbers of the center
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Figure 5.7: (Color online) Fig.5.2 represented in perpendicular space. Two planes are shown
(corresponding to z⊥ = 1, 2) (magnetization values : red (small), green (intermediate) blue
(highest))

z

z’

Figure 5.8: (left) Heisenberg-star cluster: a central spin is coupled with z mutually uncou-
pled neighbors. (right) Two-tier Heisenberg star

site and the nearest neighbors are matched. Using numerical linear spin wave calculations

we get the following surfaces for the staggered magnetization in the case of different z and

z′ value: Fig. 5.9 right hand side.

z z′ (corresponding frequency) ms(z, z
′)

3 4 (31%),4.33 (27%), 4.67 (42%) 0.41, 0.42, 0.43

4 3 (100%) 0.36

5 2 (14%),2.4 - 3.2 (81%), 4 (5%) 0.26, 0.35, 0.41

6 3 (100%) 0.37

7 2.3 (100%) 0.33

Table 5.3: Values of z′ (and their frequencies) for each coordination z and the predicted

values of m(z, z′) using Eq.5.5
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Figure 5.9: (LEFT) ms(z, z
′) plotted as a function of z (see text) for selected values of z′ (as

given in Table 1). (RIGHT) ms(z, z
′) presented as a surface on the z, z’ plane (numerical

LSW calculation).

Returning to the Penrose tiling and approximants thereof, we use the number of next

nearest neighbor bonds n(z) to classify sites of a given z. The z = 3 sites can be classified

in three subgroups, depending on z′, as shown in Table 5.3. To take the case of z = 3,

three values corresponding to three main local configurations are found, to be compared

with the three principal peaks of the z=3 curve in Fig.5.6. The substructures arise due to

differences in the third nearest and further neighbor configurations. The number of next

nearest neighbors also serves to distinguish between the different z = 5 sites, of which

there are three main types as we mentioned in the section before. There are two varieties

of five-fold symmetric sites: the football-shaped clusters (F) and the star-shaped clusters

(S). The former have z′ = 2, while the latter have z′ = 4. The F sites thus have the

smallest onsite magnetizations and the S-sites, on the contrary, have the largest onsite

magnetization. The remaining (most frequently occurring) z = 5 sites which do not have a

local five-fold symmetry have intermediate values of z′. These results agree well with the

staggered magnetization distribution shows in Fig.5.6. For other z values, like z=4, 6 and

7 the staggered magnetization distribution function have non zero values in a narrow range

of values. This is a consequence of the fact that there is only z’ value for these families of

sites.

5.4 Spin-spin correlation

The spin-spin correlation is defined by

Cij = 〈ŜiŜj〉 (5.7)
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where i, j are site indexes. We have investigated the spin-spin correlation in the Penrose

tiling versus the distance between the sites. In the Fig. 5.10 we show the spin-spin correla-

10 20 30 40
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Figure 5.10: Spin-spin correlation as a function of distance between a fixed z = 3 site placed
at the origin and all the other sites of the tiling. The red dots correspond to the correlation
function with other z=3 sites. The black dots are the correlations with all of the other sites.

tions of a given site, having z = 3 and placed at the origin, and the other 3-fold sites (red

dots) and the 4, 5, 6, 7 -fold sites (black dots).

The figure shows that the spin-spin correlation is not one but several inverse distance

laws, with asymptotic values that depend on the magnetization distribution. For a given

family of sites, the correlation decreases as (5.8).

C(r) ∼ 1

r
(5.8)

where r = |ri − rj |. The asymptotic values of each of the parallel curves is explained as fol-

lows. In linear spin wave theory the longitudinal spin-spin correlation is independent of the

distance between the spins. This is seen from the following equation between longitudinal

correlation and staggered local magnetism:

〈Sz
i S

z
j 〉 = 〈(S − a†iai)(−S + b†jbj)〉 =

−S2 + S〈a†iai〉 + S〈b†jbj〉 +O(2) =

〈S − a†iai〉〈−S + b†jbj〉 +O(2) =

〈Sz
i 〉〈Sz

j 〉 +O(2)

(5.9)

In spin wave theory, therefore, the longitudinal part of C(r) does not depend on the distance

r. The (5.8) dependence comes from the transverse part.
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5.5 Static Structure factor

Most of our knowledge of the structure of condensed matter comes from diffraction experi-

ments. An incident radiation such as X-rays, neutrons, electrons is scattered from the set

of atoms in the solid. Because of the long range ordered arrangement of the atoms, the

interference of waves scattered from different atoms can cause a distinct pattern of con-

structive and destructive interference to form. This is the diffraction pattern caused by

the crystal. Neutron scattering investigations of condensed matter have the advantage that

neutrons have no electric charge and can penetrate better in the bulk material. As neu-

trons have spin, they can also provide information on the distribution of magnetic moments

in the solid. In the elastic scattering of neutrons there is no energy transfer between the

scattering neutron and the atoms of the target, and all neutron energies are included in the

experiment. This experiment measures the integrated or static structure factor, defined by

:

Sα(k) =

∫ ∞

−∞
dωSα(k, ω) =

Ns
∑

i,j=1

eik·(ri−rj)〈Sα
i S

α
j 〉 (5.10)

where α is either x, y or z. In the nonmagnetic phase, the so-called nuclear structure

factor is given by a similar definition, without the spin components Sz. The static structure

factor is related to the observed Bragg peak intensities, by:

I(k) = S(k)S(k)∗ (5.11)

5.5.1 Static longitudinal structure factor

The static longitudinal (α = z) structure factor has the following form, using (5.9) in (5.10)

:
Ns
∑

i,j=1

eik·(ri−rj)〈Sz
i S

z
i 〉 = (

Ns
∑

i=1

eik·r(i)〈Sz
i 〉)(

Ns
∑

j=1

e−ik·r(j)〈Sz
j 〉) + C

that is equal to the square of the Fourier transform of the magnetization, (
∑Ns

i=1 e
ik·r(i)〈Sz

i 〉)2.
We have investigated the static longitudinal magnetic and nuclear structure factors numeri-

cally for a finite number of k vectors. The highest intensity peaks are shown in the Fig. 5.11.

One sees on comparing the nucelar and the magnetic structure factors, that they have

a similar appearance, with the peaks of one lying in between the peaks of the other, in

such a way that if the two patterns are overlapped, there are twice as many peaks as

in the original structure factor. This leads to our hypothesis that peaks can be indexed
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Figure 5.11: (left) Intensity plot of the static longitudinal magnetic structure factor S‖(k)
for the S = 1/2 Heisenberg antiferromagnet on the 4414 sites approximant of the Penrose
tiling. The relative intensity is denoted by a linear gray scale ranging between zero (white)
and one (black). (right) Intensity plot of the Fourier transform of the coordinates of the
sites (nuclear diffraction pattern) on the 4414 sites approximant of the Penrose tiling. The
relative intensity is denoted by a linear gray scale ranging between zero (white) and one
(black).

using four indices which are integers for non-magnetic peaks and integer or half-integer for

the magnetic peaks. A simple one-dimensional case was forst considered to explain this

effect by R. Lifshitz [124], and another example of this effect was also observed for the

octagonal tiling [75]. In the magnetic phase, the peaks at half integer indices arise due to

the doubling in size of the antiferromagnetic unit cell in five dimensions. This, coupled with

the extinctions in the structure factor due to the multiplicity of each unit cell, then leads

[124] to the observed ”shifting” or ”displacement” of the magnetic peaks with respect to the

nonmagnetic ones. To compare the magnetic and nuclear structure factor we made a figure

(Fig. 5.12) where the two structure factors are normalized with respect to their maximum

intensity.

Since large single quasicrystals are difficult to obtain, powder diffraction patterns are

more commonly measured in experiments. The crystallites within such a powder sample can

have arbitrary different orientations, one measures a structure factor where the intensities

are averaged over the solid angle, to obtain S(|k|). We calculated this powder pattern for

the approximants of the Penrose tiling (Fig. 5.13).
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Figure 5.12: Combination of the two intensity plots above in the same intensity plot. The
relative intensity is denoted by a linear gray scale ranging between zero (white) and one
(black).
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Figure 5.13: (left) Radial intensity plot of the static longitudinal magnetic structure factor
S‖(k) for the S = 1/2 Heisenberg antiferromagnet on the 4414 sites approximant of the
Penrose tiling. (right) Radial intensity plot of the Fourier transform of the coordinates of
sites on the N=4414 approximant. In both figures the x axes is | k | and y axes are the
intensities of the peaks of the static longitudinal structure factors: Sz(k).
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Chapter 6

Magnetic properties of the phason

disordered Penrose tiling

6.1 Introduction

In this chapter we discuss the effects of phason disorder in the ground state of the Penrose

tiling antiferromagnet. Phason disorder is of solely geometrical type. A single phason flip

operation is a purely local change of tiling geometry, involving a discrete jump of a single

site to a new position. The perfect tiling can be disordered by randomly choosing sites

for such phason flips, each of which reorganizes the structure locally, in the vicinity of the

flipped site. This type of disorder is strongly constrained, as one does not modify the basic

building blocks of the structure, but only the way they are put together.

In practice, most of the structurally refined quasicrystals are assumed to be basically

deterministic, with phonon and phason disorder at finite temperatures [125]. However, one

can also consider essentially random quasiperiodic structures, which could be preferred for

entropic reasons by the system [126]. Theoretical models for the Heisenberg Hamiltonian

[102, 127] make a number of simplifications in that they consider a) two dimensions, b) all

sites to be occupied by spins and c) interactions to be restricted to adjacent spins. Lastly,

earlier studies did not take into account disorder, which is almost certainly present in the

experimentally studied alloys. To describe the real systems it would be necessary to dilute

the lattice, introducing disorder and frustration, and this is outside the scope of the current

study, which focuses on disorder effects only. The question raised here would concern the

T=0 magnetic properties of such structures, in which the phason disorder is “frozen-in”.
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Figure 6.1: Samples of a perfect tiling (up) and a randomized tiling (down).

Figure 6.2: A single phason flip showing the original (r0) and final positions (r′0). The
original sites and bonds are shown in blue and the new site and new bonds in red.

6.1.1 Definition of the phason flip

We term ”phason flip” the process by which a 3-fold site hops to a new allowed – in terms

of the tile configurations – position. The old site disappears, as do the three bonds linking

it to its neighbors, while a new 3-fold site appears on a different sublattice (See Fig. 6.2 in

the left hand side). If ~r0 and ~rj (j = 1, 2, 3) are the position vectors of the central site and

its three neighbors, the new position of the central site is given by:

~r′0 =

3
∑

j=1

(~rj − ~r0) − ~r0. (6.1)
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Three new bonds appear linking to the new site to the sites at the positions ~rj (j = 4, 5, 6)

where j = 4, 5, 6 are the sites that has exactly two neighbors from the group of sites

of j = 1, 2, 3. The new coordination numbers of all of the seven sites are involved are

computed. The new connectivity matrix is determined and the set of sites available for the

next phason flip is determined. The locations of the phason flips are chosen randomly using

uniform distribution. This process is executed by a loop until a Nph number of flips. A

phason flip thus gives a local reshuffling of bonds involving the six sites surrounding a 3-fold

site, and it shifts the central site from sublattice A to sublattice B. To maintain a ground

state of total spin zero, our random selection of phason flip choose the sites alternately from

A and B sublattice and restricted Nph to be even. This method of disordering the sample

ensures that:

• The average coordination number is exactly 4

• The two sublattices remain equal in size

• The randomization generates samples of fixed phason strain. 1

Fig. 6.1 shows a portion of a perfect (deterministic) tiling on the left, and a typical

example of a disordered tiling on the right.

6.1.2 Definition of the phason disorder
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Figure 6.3: Dependence of the disorder (∆) from the phason flip normalized with the system
size (nph).

1In the ’cut and project’ scheme (See Ch.2.) the deviations from perfect order correspond to fluctuations
in which the orientation of the cut in the 5D hyperspace remains constant.

69



6.2. GEOMETRICAL PROPERTIES OF THE RANDOMIZED TILING

For a given total number of flipsNph, we calculate the degree of disorder ∆ by performing

an average over the overlap distance between the perfect sample and the disordered samples.

The overlap distance will be the number of shifted sites. This number normalized with the

system size will be the degree of disorder (∆) for a given number of phason flips (See

Fig. 6.3). The system sizes that we considered are N=644, 1686 and 4414 spins. The

number of realizations considered are 100 for N=644, 1686 and 10 for N=4414. The number

of realizations was chosen so as to ensure a reasonable standard deviation for the data in a

reachable CPU time. There is an upper limit to the number of phason flips we are able to

introduce in the tilings, which occurs due to the fact that our starting point is a periodic

approximant. Such tilings are necessarily defected with respect to a perfect Penrose tiling,

and as a result inacceptable configurations are observed to appear after a number of flips

slightly greater than N (≈ 3.1 N).

6.2 Geometrical properties of the randomized tiling
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Figure 6.4: Dependence of the coordination number distribution from the degree of disorder
(∆). On the y axis: the ratio of the number of the sites with a given coordination number
per the system size in the case of certain degree of disorder. (The system size we considered
is N=4414.)

Phason flips clearly lead to a modification of local environments on the tiling, and in

particular, the apparition of new local environments that were not present in the original

tiling such as 8-fold, 9-fold and 10-fold vertices. These vertices are also possible to appear

using the two building blocks of the Penrose tiling, the “thick” and the “thin” rhombuses

but in the Penrose tiling they are not appearing because of the matching rules of the

Penrose tiling. During randomization these constraints could not make effect so all the
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possible vertices will appear. Furthermore, finite-sized regions of perfect five-fold rotational

symmetry progressively disappear with increasing degree of disorder. We have made a

study of the evolution of the frequency of sites of each coordination number z = 3, ...., 10

as a function of the degree of disorder. As shown in Fig. 6.4, the disorder clearly increase

the number of 4-fold sites at the expense of the 3-fold and the 5-fold sites. The original

perfect structure has a large number of 3-fold and 5-fold sites, included by the most common

cluster found in the original perfect Penrose tiling, the“football”-shape five-fold stars. These

clusters are destroyed progressively by disorder. The evolution of coordination numbers

will be significant for the qualitative analysis that we will present below for the staggered

magnetization.

6.3 Energy spectrum and wavefunctions

We consider the antiferromagnetic spin-1
2 Heisenberg model:

H = J
∑

〈i,j〉
Si · Sj (6.2)

as in the earlier chapters, for spins situated on vertices of the tiling. Nearest-neighbor

interactions are antiferromagnetic, J > 0, and act between pairs of sites that are linked by

an edge. Since all the structures we consider are constructed from the same set of tiles –

the thick and the thin rhombus – these antiferromagnets are unfrustrated. Therefore we

are able to use the linear spin wave theory also for these tilings at T = 0. The LSWT

calculation is carried out in the same way as for perfect tiling and as we described at Ch.3.

Using the results of these calculations now we describe the energy spectrum and eigenmodes

for the randomized tilings. The density of states, defined by ρ(E) =
∑

µ δ(E−ωµ), is shown

in Fig. 6.5. The figure shows that the principal effects of the disorder on the density of

states are to progressively smoothen the fluctuations and fill in the gaps. The low energy

tail is linear, and can be fitted to give a spin wave velocity that increases with phason

disorder as shown in Fig. 6.6. This indicates that spin wave propagation is facilitated by

the phason disorder, in analogy with the problem of quantum diffusion of electrons in the

tight binding model in quasiperiodic tilings [88]. In addition, the localized states at E = 3

disappear progressively. These states arise, as shown in [127] on closed loops of 3-fold sites.

Such loops are eliminated when a phason flip occurs on the one of the participating sites.
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Figure 6.5: (left) Density of states ρ(E) plotted against the degree of disorder. (right)
Integrated density of states plotted against the degree of disorder. The system size we
considered in both cases is N=4414.
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Figure 6.6: Effective spin wave velocity as a function of disorder. The system sizes we
considered are N=644, 1686, 4414.

6.4 Local staggered magnetisation on the disordered Penrose

tiling

6.4.1 Ground state energy

The average ground state energy per site e0 = E0/N is shown as a function of disorder in

Fig. 6.7 for three different system sizes. e0 decreases exponentially with ∆. The smooth

curve shows a fit to the form e0 = edis + (eperf − edis)e
−a∆, with a = 11.16, edis = −0.6500

and eperf = −0.6429. The asymptotic value of the GS energy edis represents the average

value of the ground state energy of maximally randomized Penrose approximants, which

lies, clearly, somewhat below the GS energy of the perfect system. In other words, overall,
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Figure 6.7: Ground state energy as a function of increasing disorder ∆ at three different
system sizes (N=644, 1686, 4414). The horizontal lines are the ground state energy for the
perfect tiling at the same system sizes. The vertical bars indicate the standard deviation
for sample-to-sample fluctuations. The exponential curve is a fit of the data points of the
biggest system size to the function of e0 = edis + (eperf − edis)e

−a∆.

the nearest neighbor bond energy increases in absolute value. This indicates that the

introduction of phasons disorder tends to increase the quantum fluctuations in the tilings,

as compared to the perfect case.

6.4.2 Ground state staggered magnetization

Figure 6.8: Color representation of the local staggered magnetizations in a perfect tiling
(left) and a disordered tiling (right) showing sites of magnetizations ranging from high
(blue) to low (red) values.

The spatial variations of the staggered magnetization in the ground state are illustrated

in the right hand figure in Fig. 6.8, while the left hand figure corresponding to the data for
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TILING

the perfect tiling is shown for comparison. The figures show that the distribution is more

homogeneous in the disordered tiling, which furthermore lacks the hierarchical features of

the perfect tiling. The redder appearance of the right hand figure also illustrates that

globally the magnetizations are smaller for the disordered system.
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Figure 6.9: (left) Average staggered magnetizations for three different system sizes (N=644,
1686, 4414) plotted as a function of the disorder. The horizontal lines are the average
staggered magnetization for the perfect tiling at the same system sizes. The vertical bars
indicate the standard deviation for sample-to-sample fluctuations. (right) Finite size scaling
of the average staggered magnetization for different degree of phason disorder.

Now we show the results of the average ground state staggered magnetizations. Fig. 6.9

(left) shows the global average of the staggered magnetization, after averaging over all of

the sites, for three different system sizes as a function of disorder. The curve shows the

decrease in the global staggered magnetization with increasing disorder. As for the ground

state energy curve, the decrease is at first exponential and then levels off. We have carried

out a finite size scaling (Fig. 6.9 (right)) for different degrees of phason disorder, using the

fit to the N−1/2 function. As in the perfect tiling, average magnetizations seem to scale

with N−1/2 as for periodic systems [98]. The expectation values of the average staggered

magnetizations for the thermodynamic limit are presented in the Fig. 6.12. The average

staggered magnetization dependence show the same type of exponential dependence from

the degree of disorder as the ground state energy. A linear rescaling of the data for the

ground state energy and the average staggered magnetization (L(x) = (x− xmin)/(xmax −
xmin)) shows that these quantities have similar dependence from the degree of disorder, as

seen in Fig. 6.10. We have not so far found an explanation for this proportionality which

holds for all concentrations of phason disorder.

One can calculate the evolution of the distribution of staggered magnetizations with

increasing phason disorder. In the perfect tiling, this distribution has several peaks, each
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Figure 6.10: The ground state energy and average staggered magnetization transformed
linearly versus phason disorder (L(x) = (x − xmin)/(xmax − xmin)). The two quantity
seems to show approximately linear dependence from each other.

of which corresponds to a distinct coordination number. In the disordered tilings, the

differences between different coordination numbers is smoothed out. As Fig. 6.11 shows,

the distribution becomes smoother as disorder is increased. In addition, the average value

shifts to lower values. The smoothing occurs due to a greater number of local environments

created by the phason flips, and due to the loss of self similarity at large length scales. The

distribution of the staggered magnetizations seems to be more ”sensitive” (i.e. changing

more) to the increasing phason disorder than the average magnetizations.

The results for the staggered magnetizations can be qualitatively explained in terms

of a finite cluster model [102]. In this approximation, the local environment is retained

up to second neighbor level in the spin wave calculation. With this simple approximation

many of the results can be obtained, using data about nearest neighbor and next nearest

neighbor coordination number as input structural parameters. We conclude from this that

the local staggered magnetization values are dependent mainly on the local environments

for the perfect as well as the disordered Penrose tilings (Fig. 6.12 inset).
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Figure 6.12: Average local staggered magnetization in the case of different degree of disorder
(∆). The straight line is the average local staggered magnetization for the perfect Penrose
tiling approximant. We considered the expectation values for the thermodynamic limit. In
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cluster. We use the same coordination number distribution like the whole tiling has in
the case of different degree of disorder (∆). The straight line is the average local staggered
magnetization for the two level Heisenberg-star cluster using the same coordination number
distribution like the perfect Penrose tiling.
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Chapter 7

Discussion et perspectives

7.1 Summary

The Penrose tiling is a perfectly ordered two dimensional structure with fivefold symmetry

and scale invariance. Quantum spin models on such a system can be expected to differ

significantly from more conventional structures as a result of its special symmetries. We

considered a Heisenberg antiferromagnet on the Penrose rhombus tiling, and showed it

has an inhomogeneous Neel-ordered ground state. Spin wave energies and wavefunctions

were studied in the linear spin wave approximation. A linear dispersion law was found at

low energies, as in other bipartite antiferromagnets, with an effective spin wave velocity

lower than in the square lattice. Spatial properties of eigenmodes were characterized in

several different ways. At low energies, eigenstates were found to be relatively extended,

and appeared to show multifractal scaling. At higher energies, states were found to be more

localized, and, depending on the energy, confined to sites of a specified coordination number.

The ground state energy of this antiferromagnet, and local staggered magnetizations were

calculated. Perpendicular space projections were shown, showing the underlying simplicity

of this “complex” ground state. A simple analytical model, the two-tier Heisenberg star,

was presented to explain the staggered magnetization distribution in this antiferromagnetic

system.

The effects of a novel type of disorder in a two dimensional quantum antiferromagnet is

considered. The original bipartite structure is geometrically disordered in such a way that

no frustration is introduced, and the system retains a Néel ordered ground state. We show,

using a linear spin wave expansion and Quantum Monte Carlo, that the staggered moment

decreases exponentially as a function of increasing disorder. The spatial distribution of

staggered magnetizations becomes more homogeneous compared to the deterministic tiling,
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the effective spin wave velocity increases with disorder, and singularities in the magnon

spectrum and wavefunctions are partly smoothed. For large disorder, the ground state

energy as well as the average staggered magnetization appear to tend to a limiting value

characteristic of these randomized tilings. These results are discussed and compared with

the behavior found in disordered periodic lattices.

7.2 Discussion

Our work shows that linear spin wave theory agrees rather well with Quantum Monte Carlo

results for the Penrose tiling. The deviations of the LSWT data from the QMC one are less

than 4% in the case of local staggered magnetism and less than 2% in the case of ground

state energy.

Real compounds are not good realizations of the model we have considered, because

they are 1) three dimensional, 2) have essentially classical spins forming a sublattice of the

full structure and 3) have frustrated couplings, as well as, probably, substitutional disorder.

These features lead to a spin glass phase at very low temperatures, instead of a perfect

quasiperiodic antiferromagnetic phase. However, short range effects are observed and the

structure factor measured in neutron diffraction looks qualitatively similar to our theoretical

one. We hope however, that it will be possible to obtain a better experimental realization

of our model in the future.

The ground state of the quasiperiodic antiferromagnet has a rather complex structure in

real space. We have seen, interestingly, that it becomes far simpler when represented in per-

pendicular space. This suggests that it may be useful in future studies to carry out detailed

analyses in the perpendicular space representation to study also magnon eigenfunctions and

spin-spin correlation functions.

The real space dependence of eigenmodes shows that in different ranges of energies,

states have their support on sites of a different given coordination number. At very low

energies all sites participate, and the resulting eigenstates are relatively extended, as seen

by the absolute values and the size dependence of the participation ratio. We should stress

that one should not rely on the study of inverse participation ratio alone to give an accurate

idea of the spatial extent of wavefunctions. A multifractal scaling analysis was carried out

for a few low energy states, to estimate quantities such as the similarity dimension and

information dimension. In general, our studies seem to show that the dimensionality of the

states diminishes progressively as energy increases.

A simple analytical model, the two-tier Heisenberg star, allows us to explain qualita-
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tively the observed z dependence of the onsite staggered magnetizations. The role of next

neighbors is shown to be important in explaining the data.

Finally, we have studied the effects of phason disorder in this model for magnetism, as

real compounds will certainly have some degree of this type of disorder. Phason disorder is

particular characteristic of quasiperiodic structures, and does not destroy long range order

in 3D structures, although it does so in the 2D case. Random tilings can be considered to

be a new class of disordered antiferromagnets. We have shown in linear spin wave theory

that the global value of the staggered magnetization decreases, as does the ground state

energy, both tending towards a new limiting value characteristic of a maximally disordered

system. The effective low energy spin wave velocity increases with increasing disorder, and

eigenmodes tend to be more delocalized compared to the perfect tiling. In analogy with

electronic problem, it appears that the effect of disorder is to reduce the strong coherent

backscattering of the magnon wavefunctions due to a perfect quasiperiodic potential and

favor a diffusive dynamics. A Quantum Monte Carlo study of this model is under way.

7.3 Perspectives

There are several possible perspective of our works. We figure out two of them.

7.3.1 Linear spin wave study of the 3D icosahedral tiling

To understand better the magnetism in the quasiperiodic rare earth compounds it would

be definitely useful to extend our analysis to the 3 dimensional icosahedral tiling. Using the

same physical model and calculation tools it would be possible to perform spin wave analysis

in periodic approximants of the 3D Penrose or icosahedral tiling. These calculations would

be more precise because of the generally higher coordination numbers in 3D.

7.3.2 Entanglement properties of the 2D Penrose tiling

Recently the quantum entanglement properties of many body systems is a very intensively

studied topic. Most of the achievement has done in one dimension but there are many

works also in higher dimensional systems also [128, 129]. There are several work on study-

ing entanglement properties on 1D quasiperiodic systems [130, 131]. Both of these works

are agree in that the entanglement properties of quasiperiodic chains are different than for

periodic chains. It would be interesting to investigate the entanglement properties of spin

systems on quasiperiodic 2D tilings, namely on Penrose tiling. The main question in this

problem is the theoretical approach what one could use in this problem. There are just a
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few theoretical approach that could give the wave functions for 2D systems with at least

a reasonable fidelity (in a realistic CPU time). The magnon wavefunctions could be easily

calculated for enough big systems with a reasonable precision. The main question of this

approach is that this semiclassical approximation could keep the properties of quantum

correlations like entanglement or destroy them. Some part of the quantum correlations

surely will be destroyed e.g. higher order tangles, but it could remain some type of corre-

lation. This type of quantum correlation could be enough to give some phenomenological

description and/or approximative results.
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Appendix A

Forbidden rotational symmetries

for periodic crystals

Why is fivefold and the greater than six -fold rotational symmetries of the quasiperiodic

structure not allowed for periodic crystals? We discuss this here briefly: a lattice by defi-

nition always has translational invariance, and possibly rotational invariance as well. The

unit cell covers all of space without overlapping or leaving holes. If we consider a 3 di-

mensional lattice, all the rational 2 dimensional cuts of the 3 dimensional lattice will be

periodic also. If the lattice has rotational invariance according to a given direction in space

the planes of the cuts of the 3 dimensional lattice should include the rotational and trans-

lational symmetry also. Because of this the unit cell of this plane should be n-sided regular

polygon if the rotational symmetry is n-fold. The rotational symmetric (regular) polygons

that could cover the hole two dimensional plane like unit cell should are the three, four, and

six - sided regular polygons. The reason is that the internal angles of the n-sided regular

polygons (π − 2π
n ) should be the integral fractions of 2π. This means for regular n-sided

regular polygons:
2n

n− 2
:= integer (A.1)

This is true for n = 3, 4 and 6 but false for all other n value, showing that only 3, 4 and

6 -fold rotational symmetries must exist for periodic structures, while 5-fold symmetry for

example is ruled out.
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Appendix B

The oblique projection method

As we have mentioned the quasiperiodic approximants are useful for calculations with the

physical model, because of the possibility of applying periodic boundary conditions. For

generating the approximants one can use a generalized method of the ’cut and project’

method, the ’oblique projection’ method. Using this method one is able to generate periodic

tilings that are built up from the same building elements as the perfect quasiperiodic tiling.

Our description is a generalization of the oblique projection method described in [88] (M.

Duneau and M. Audier: Approximants of the Penrose tiling) to arbitrary dimensions and

tilings. Our description of the oblique projection method is based on the cut and project

method described in Ch. 2. and uses the same notation as was used there.

In the cut and project method the subspace E‖ is the same time the ”selection subspace”

and also the ”physical subspace”that will be tiled. E‖ is the selection subspace in that sense

that orthogonal to the perpendicular subspace E⊥. This equivalence is not mandatory: the

selection subspace and the physical subspace could be two different subspaces. One could

distinguish the physical subspace E‖ and the selection subspace Ẽ‖. The structural roles of

the two subspace are different. The selection subspace determines the long range structure

of the tiling. If the orientation of Ẽ‖ compare to Λ is irrational (rational) then the tiling

will be quasiperiodic (periodic). The orientation of E‖ determines the local geometry of the

structure: the shapes and dimensions of the building blocks. To have the same building

blocks for the approximant tiling one should use the same E‖ subspace for physical space

like E‖ for the cut and project method. However, one should redefine the orientation of Ẽ‖

to have a rational orientation to get a periodic lattice. One could define the new orientation

of Ẽ‖ with ~A:

~A = (~a1,~a2, . . . ,~aN‖
) (B.1)

The orientation of ~A should be close to the irrational orientation of E‖. The closer the
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orientation of ~A to the irrational orientation, the longer are the periodic lengths of the

rational approximant. One can get the periodic lengths from the parallel projection:

~A‖ = Π‖( ~A) (B.2)

where the component of ~A‖ are the periodic lengths of the periodic approximant.

One should redefine also the perpendicular subspace and projection. The redefined

perpendicular projection, Π̃⊥, should fulfill the following equations:

Π̃⊥( ~A) = ~0 (B.3)

because the perpendicular subspace Ẽ⊥ is always orthogonal to the Ẽ‖ parallel one. The

Π̃⊥ will have the following form:

Π̃⊥ = Π⊥ + ǫ · Π‖ (B.4)

One can define also the original perpendicular projection of ~A : ~A⊥ = Π⊥( ~A). Using (B.3)

one determines ǫ:

ǫ = − ~A⊥( ~A‖)
−1 (B.5)

Using ǫ one can define Π̃⊥. Changing Π⊥ to Π̃⊥ the tiling generation method will be the

same as in the cut and project method. One projects all the X ∈ Λ = Z
N points to E‖

using Π‖ that fulfill

Π̃⊥(X) ∈ Π̃⊥(C) (B.6)

where C is again the unit hypercube of R
N .

As an example, in the case of our Taylor τ3 approximant, we have

~a1 = {10, 3,−8,−8, 3} (B.7)

~a2 = {0, 8, 5,−5,−8} (B.8)

with the resulting rectangular shape of sides Lx = 24.7984 and Ly = 21.0948 (see Fig.2.8

in Ch. 2.).
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Appendix C

Numerical diagonalization

Here we describe the numerical implementation of the real space diagonalization method

described in Ch.3. This description is based on the article [75] where one can find also an

another numerical implementation for the same problem.

The main steps of the diagonalization method are the following:

• All the N sites should be ordered according to sublattice. The order of the sites

that has S=1/2 (S=-1/2) classical spin expectation values has to be the same as

the diagonal elements of the g, g’ matrixes have the values 1 (-1), respectively. For

example the simplest order when all the sites on the A sublattice should have an

ordinal number: 1, . . . , N/2 and all the sites on the B sublattice should have an

ordinal number: N/2 + 1, . . . , N and the diagonals of the g, g’ matrixes are the first

half is 1, the second half is -1.

• Preparation of the gH matrix. Using (3.14) the matrix should have the following form:

Hii = z(i) (the coordination number of the i site)

Hij = 1 if the sites i and j are connected, otherwise 0

All the other elements are 0.

• Solving the eigenvalue equation numerically. One of the most suited numerical linear

algebra package for large matrices is the LAPACK numerical package [132]. One can

use this to calculate the λi eigenvalues and the Zi eigenvectors, in the same order,

respectively.

• The eigenvectors, Zi, should fulfill the (3.22) equation. Eigenvectors connected to

zero eigenvalue (zero modes) are not included in this this equation. These vectors
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arise due to a global rotation of all the spins. Because of this all the zero modes

have the following structure: the first half is a, the second half is -a, where a is a

real number. The norm of these vectors is exactly 0 for our symmetric NA = NB

case. The remaining eigenmodes have non-nul norm and their number determines the

dimensionality of g’ : (N − 2) · (N − 2).

• Non-degenerate eigenvectors fulfill (3.22), if one sets:

Ti =
Zi√
ZigZi

(C.1)

For the degenerate eigenvectors one can use the Gram-Schmidt orthogonalization

respect to g and g’ in all degenerate subspace, respectively. One proceeds in two

steps:

a. Normalization of an eigenvector of the given subspace

T1 =
Z1√
Z1gZ1

(C.2)

b. A loop that contain an iterative orthogonalization of the other eigenvectors in the

given subspace.

FOR i = 2, N-2 {
1. Subtraction of the orthonormalized eigenvectors:

Ui = Zi −
∑

i>j

(TjgTj)(ZigTj)Tj (C.3)

2. and again normalization of all eigenvectors:

Ti =
Ui√
UigUi

(C.4)

}

• At the end, we have the eigenvalues λi and the T matrix that contains all the infor-

mation about the magnon wavefunctions.
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