High-order discontinuous Galerkin methods for solving the time-domain Maxwell equations on non-conforming simplicial meshes

Hassan Fahs

Ph.D. defense

Supervisor: Stéphane Lanteri Co-supervisor: Francesca Rapetti

> INRIA Sophia Antipolis December 19, 2008

#### Context

- Time-domain Maxwell's equations
  - Irregularly shaped geometries, heterogeneous media
  - Non-conforming, locally refined, triangular (2D)/tetrahedral (3D) meshes
- Discontinuous Galerkin (DG) methods: some generalities
  - Initially introduced to solve neutron transport problems (Reed and Hill, 1973)
  - Somewhere between finite element and finite volume methods, gathering many good features of both
  - Main properties
    - Can handle unstructured, non-conforming meshes
    - Can easily deal with discontinuous coefficients and solutions
    - Yield local finite element mass matrices
    - Naturally lead to discretization (h-) and interpolation order (p-) adaptivity
    - Can handle elements of various types and shapes
    - Amenable to efficient parallelization

#### Context

• Numerical ingredients (starting point to this study)

L. Fezoui, S. Lanteri, S. Lohrengel and S. Piperno: ESAIM, M2AN, 2005

- Conforming discontinuous Galerkin time-domain (DGTD) method
- Centered flux + explicit time integration
- Nodal (Lagrange type) polynomial interpolation
- Overall objectives of this study
  - Investigate strengthes and weaknesses of explicit DGTD methods using non-conforming simplicial meshes with arbitrary level hanging nodes
    - Theoretical and numerical aspects (stability, dispersion error, convergence)
    - Computational aspects

#### Context Non-conforming simplicial meshes



- Red (non-conforming) refinement
  - Each triangle is split into 4 similar triangles
  - Each tetrahedron is split into 8 non-similar tetrahedra
- Can be used for more flexibility in the discretization of :
  - complex domains,
  - heterogeneous media.
- Expected to reduce memory consumption and computing time

#### Context Non-conforming simplicial meshes



- Red (non-conforming) refinement
  - Each triangle is split into 4 similar triangles
  - Each tetrahedron is split into 8 non-similar tetrahedra
- Can be used for more flexibility in the discretization of :
  - complex domains,
  - heterogeneous media.
- Expected to reduce memory consumption and computing time

#### Content

- DGTD- $\mathbb{P}_{p_i}$  method
  - Formulation (space and time discretizations)
  - Properties (stability, numerical dispersion)
- **②** *hp*-like DGTD- $\mathbb{P}_{(p_1,p_2)}$  method
- Numerical results in 2D and 3D
  - Numerical convergence
  - The general non-conforming mesh
  - Comparison with the conforming DGTD method
- Arbitrary high-order leap-frog (LF<sub>N</sub>) scheme
  - Properties (stability, convergence)
  - Numerical validation
  - Olosure

## DGTD- $\mathbb{P}_{p_i}$ method

 $\bullet$  Time-domain Maxwell's equations in  $\Omega \subset \mathbb{R}^3$ 

$$\bar{\epsilon}\partial_t \vec{\mathbf{E}} - \operatorname{curl} \vec{\mathbf{H}} = 0$$
 and  $\bar{\mu}\partial_t \vec{\mathbf{H}} + \operatorname{curl} \vec{\mathbf{E}} = 0$ 

• Boundary conditions :  $\partial \Omega = \Gamma_a \cup \Gamma_m$ 

$$\begin{cases} \vec{\mathbf{n}} \times \vec{\mathbf{E}} = 0 & \text{on} \quad \Gamma_m \\ \vec{\mathbf{n}} \times \vec{\mathbf{E}} = -\sqrt{\frac{\mu}{\epsilon}} \vec{\mathbf{n}} \times (\vec{\mathbf{n}} \times \vec{\mathbf{H}}) & \text{on} \quad \Gamma_a \end{cases}$$

- Triangulation of  $\Omega$ :  $\Omega_h = \bigcup \overline{\tau_i}$ 
  - Hanging nodes are allowed
  - $a_{ik} = \tau_i \cap \tau_k$  (interface)
  - $p = \{p_i : \tau_i \in \Omega_h\}$ ,  $p_i$  is the local polynomial degree
  - Approximation space:  $V_p(\Omega_h) := \{ \mathbf{v} \in L^2(\Omega)^3 : \mathbf{v}_{|\tau_i} \in \mathbb{P}_{p_i}(\tau_i), \forall \tau_i \in \Omega_h \}$

## $\begin{array}{c} \mathsf{DGTD}\text{-}\mathbb{P}_{p_i} \text{ method} \\ \text{Space discretization} \end{array}$

• Variational formulation:  $\forall \vec{\varphi} \in \mathcal{P}_i = \text{Span}\{\vec{\varphi_{ij}}, 1 \leq j \leq d_i\}$ 

$$\begin{cases} \int_{\tau_i} \vec{\varphi} \cdot \bar{\vec{e}}_i \partial_t \vec{\mathbf{E}} &= \int_{\tau_i} \operatorname{curl} \vec{\varphi} \cdot \vec{\mathbf{H}} - \int_{\partial \tau_i} \vec{\varphi} \cdot (\vec{\mathbf{H}} \times \vec{\mathbf{n}}) \\ \int_{\tau_i} \vec{\varphi} \cdot \bar{\mu}_i \partial_t \vec{\mathbf{H}} &= -\int_{\tau_i} \operatorname{curl} \vec{\varphi} \cdot \vec{\mathbf{E}} + \int_{\partial \tau_i} \vec{\varphi} \cdot (\vec{\mathbf{E}} \times \vec{\mathbf{n}}) \end{cases}$$

• Centered fluxes [M. Remaki: COMPEL, 2000]

$$\vec{\mathsf{E}}_{|\mathsf{a}_{ik}} = \frac{\vec{\mathsf{E}}_i + \vec{\mathsf{E}}_k}{2}, \quad \vec{\mathsf{H}}_{|\mathsf{a}_{ik}} = \frac{\vec{\mathsf{H}}_i + \vec{\mathsf{H}}_k}{2} \tag{1}$$

• Replacing surface integrals using (1), and re-integrating by parts

$$\begin{cases} \int_{\tau_i} \vec{\varphi} \cdot \bar{\vec{e}}_i \partial_t \vec{\mathbf{E}}_i &= \frac{1}{2} \int_{\tau_i} \left( \operatorname{curl} \vec{\varphi} \cdot \vec{\mathbf{H}}_i + \operatorname{curl} \vec{\mathbf{H}}_i \cdot \vec{\varphi} \right) - \frac{1}{2} \sum_{k \in \mathcal{V}_i} \int_{a_{ik}} \vec{\varphi} \cdot (\vec{\mathbf{H}}_k \times \vec{n}_{ik}) \\ \int_{\tau_i} \vec{\varphi} \cdot \bar{\vec{\mu}}_i \partial_t \vec{\mathbf{H}}_i &= -\frac{1}{2} \int_{\tau_i} \left( \operatorname{curl} \vec{\varphi} \cdot \vec{\mathbf{E}}_i + \operatorname{curl} \vec{\mathbf{E}}_i \cdot \vec{\varphi} \right) + \frac{1}{2} \sum_{k \in \mathcal{V}_i} \int_{a_{ik}} \vec{\varphi} \cdot (\vec{\mathbf{E}}_k \times \vec{n}_{ik}) \\ \end{cases}$$

H. Fahs (Ph.D. defense)

### DGTD- $\mathbb{P}_{p_i}$ method

• Matrix form of the space discretized DGTD- $\mathbb{P}_{p_i}$  scheme :

$$M_{i}^{\epsilon}\partial_{t}\mathbf{E}_{i} = K_{i}\mathbf{H}_{i} - \sum_{k\in\mathcal{V}_{i}}S_{ik}\mathbf{H}_{k}$$
$$M_{i}^{\mu}\partial_{t}\mathbf{H}_{i} = -K_{i}\mathbf{E}_{i} + \sum_{k\in\mathcal{V}_{i}}S_{ik}\mathbf{E}_{k}$$

- $M_i^{\epsilon}$  and  $M_i^{\mu}$  are the symmetric positive definite mass matrices of size  $d_i$
- K<sub>i</sub> is the symmetric stiffness matrix of size d<sub>i</sub>
- $S_{ik}$  is the interface matrix of size  $d_i \times d_k$ :

$$(S_{ik})_{jl} = \frac{1}{2} \int_{a_{ik}} \vec{\varphi}_{ij} \cdot (\vec{\varphi}_{kl} \times \vec{n}_{ik})$$

- If  $a_{ik}$  is a conforming interface  $\Rightarrow$  no problem
- If  $a_{ik}$  is a non-conforming interface  $\Rightarrow$  we calculate  $S_{ik}$  using cubature formulas
  - ✗ 2D : Gauss-Legendre quadrature
  - ✗ 3D : Dunavant cubature formula

H. Fahs (Ph.D. defense)



- Second-order leap-frog (LF<sub>2</sub>) time scheme
  - Unknowns related to **E** are approximated at  $t^n = n\Delta t$
  - Unknowns related to **H** are approximated at  $t^{n+\frac{1}{2}} = (n+\frac{1}{2})\Delta t$

• Matrix form of the space-time discretized DGTD- $\mathbb{P}_{p_i}$  scheme :

$$\begin{cases} \mathbf{M}_{i}^{\epsilon} \frac{\mathbf{E}_{i}^{n+1} - \mathbf{E}_{i}^{n}}{\Delta t} = \mathbf{K}_{i} \mathbf{H}_{i} - \sum_{k \in \mathcal{V}_{i}} \mathbf{S}_{ik} \mathbf{H}_{k} \\ \mathbf{M}_{i}^{\mu} \frac{\mathbf{H}_{i}^{n+3/2} - \mathbf{H}_{i}^{n+1/2}}{\Delta t} = -\mathbf{K}_{i} \mathbf{E}_{i} + \sum_{k \in \mathcal{V}_{i}} \mathbf{S}_{ik} \mathbf{E}_{k} \end{cases}$$

# Properties of the DGTD- $\mathbb{P}_{p_i}$ method stability

Local discrete electromagnetic energy

$$\mathcal{E}_i^n = \frac{1}{2} ({}^t \mathbf{E}_i^n M_i^{\epsilon} \mathbf{E}_i^n + {}^t \mathbf{H}_i^{n-\frac{1}{2}} M_i^{\mu} \mathbf{H}_i^{n+\frac{1}{2}})$$

- The energy  $\mathcal{E}_i^n$  is exactly conserved (when  $\Gamma_a = \emptyset$ )
- The DGTD- $\mathbb{P}_{p_i}$  method is stable if

$$\forall i, \forall k \in \mathcal{V}_i, \ c_i \Delta t [2\alpha_i + \beta_{ik}] < \frac{4V_i}{P_i}$$

• The dimensionless constants  $\pmb{lpha_i}$  and  $\pmb{eta_{ik}}$   $(k\in\mathcal{V}_i)$  verify

$$\forall \vec{\mathbf{X}} \in \mathcal{P}_i, \ \|\mathsf{curl}\, \vec{\mathbf{X}}\|_{\tau_i} \leq \frac{\boldsymbol{\alpha}_i \mathcal{P}_i}{V_i} \|\vec{\mathbf{X}}\|_{\tau_i} \quad \text{ and } \quad \|\vec{\mathbf{X}}\|_{\boldsymbol{a}_{ik}}^2 \leq \frac{\boldsymbol{\beta}_{ik} \mathsf{S}_{ik}}{V_i} \|\vec{\mathbf{X}}\|_{\tau_i}^2$$

• Numerical CFL values for the DGTD- $\mathbb{P}_p$  method

| р                     | 0   | 1   | 2   | 3   | 4    | 5    | 6     | 7     | 8    | 9     | 10   |
|-----------------------|-----|-----|-----|-----|------|------|-------|-------|------|-------|------|
| CFL(LF <sub>2</sub> ) | 1.0 | 0.3 | 0.2 | 0.1 | 0.08 | 0.06 | 0.045 | 0.035 | 0.03 | 0.025 | 0.02 |

# Properties of the DGTD- $\mathbb{P}_{p_i}$ method Numerical dispersion

D. Sármány, M. Botchev and J. van der Vegt : J. Sci. Comput., 2007

• Two-dimensional Maxwell's equation (TMz)

 $\begin{cases} \epsilon \partial_t E_z - \partial_x H_y + \partial_y H_x = 0 \\ \\ \mu \partial_t H_x + \partial_y E_z = 0 \\ \\ \mu \partial_t H_y - \partial_x E_z = 0 \end{cases}$ 

- Eigenmode in a unitary PEC square cavity
  - Frequency=212 MHz
  - *p<sub>i</sub>* = *p* is uniform
  - Simulations are carried out for time t = 60 (43 periods)
- 7-irregular non-conforming meshes (a centered zone is refined 3 times)
  - For  $p = 0, 1 \Rightarrow 10$  points per wavelength
  - For  $p = 2, 3, 4 \Rightarrow 6$  points per wavelength

## Eigenmode in a PEC cavity

Non-conforming mesh



#### The centered zone is locally refined 3 times 7-irregular mesh

#### Numerical dispersion



DGTD- $\mathbb{P}_p$  method : time evolution of the  $H_x$  component Zoom on the last 5 periods

## *hp*-like DGTD- $\mathbb{P}_{(p_1,p_2)}$ method

- 🖙 H. Fahs et al. : IEEE Trans. Magn., 2008
- 🌃 H. Fahs : Int. J. Numer. Anal. Model., 2008, to appear
  - The DGTD- $\mathbb{P}_{(p_1,p_2)}$  method involves:
    - high polynomial degrees "p1" in the coarse elements,
    - low polynomial degrees "p<sub>2</sub>" in the refined elements.
  - The DGTD- $\mathbb{P}_{(p_1,p_2)}$  method is stable under a CFL-like condition

$$CFL(DGTD-\mathbb{P}_{(p_1,p_2)}) = CFL(DGTD-\mathbb{P}_{p_2})$$

•  $CFL(DGTD-\mathbb{P}_{(2,1)}) = CFL(DGTD-\mathbb{P}_1) = 0.3$ 



#### DGTD- $\mathbb{P}_{(p_1,p_2)}$ method Eigenmode in a PEC cavity



Zoom on the last 5 periods

- Homogeneous media
  - eigenmode in a PEC cavity (in 2D & 3D)
  - e concentric PEC cylinders resonator
  - eircular PEC resonator
  - wedge-shaped PEC resonator
- Heterogeneous media
  - rectangular PEC resonator with one material interface
  - 2 dielectric in a PEC cavity with two material interfaces
  - **(3)** dielectric cylinder illuminated by a plane wave
  - scattering by multilayered dielectric cylinder
  - oppropagation in a heterogeneous human head model

### Concentric PEC cylinders resonator

Convergence study: homogeneous case



Numerical convergence of the DGTD- $\mathbb{P}_p$  method Global (space and time)  $L^2$  error versus the square root of # DOF Slopes: 1.0 (DGTD- $\mathbb{P}_0$  method) and 2.0 (DGTD- $\mathbb{P}_p$ ,  $p \ge 1$  method)

### Concentric PEC cylinders resonator

Convergence study: homogeneous case



Numerical convergence of the DGTD- $\mathbb{P}_{(p_1,p_2)}$  method Global (space and time)  $L^2$  error versus the square root of # DOF

Slopes: 1.5 (for  $p_2 = 0$ ) and 2.0 (for  $p_2 \neq 0$ )

## Rectangular PEC resonator with one material interface

Convergence study: heterogeneous case



Numerical convergence of the DGTD- $\mathbb{P}_p$  method Global (space and time)  $L^2$  error versus the square root of # DOF

Slopes: 1.0  $\forall p$ 

#### Rectangular PEC resonator with one material interface Convergence study: heterogeneous case



Numerical convergence of the DGTD- $\mathbb{P}_{(p_1,p_2)}$  method Global (space and time)  $L^2$  error versus the square root of # DOF

Slopes: 1.2  $\forall p_1, \forall p_2$ 

## Eigenmode in a PEC cavity : the 2D case General non-conforming mesh

Regular conforming mesh 81 nodes & 128 triangles & 208 faces



General non-conforming mesh 76 nodes (32 hanging nodes) & 94 triangles & 169 faces



|          | $\mathbb{P}_2$ | $\mathbb{P}_3$ | $\mathbb{P}_4$ |          | $\mathbb{P}_2$ | $\mathbb{P}_3$ | $\mathbb{P}_4$ |
|----------|----------------|----------------|----------------|----------|----------------|----------------|----------------|
| Error    | 3.7E-02        | 8.6E-03        | 5.5E-03        | Error    | 3.5E-02        | 8.1E-03        | 5.2E-03        |
| # DOF    | 768            | 1280           | 1920           | # DOF    | 564            | 940            | 1410           |
| CPU time | 5.5            | 18             | 37             | CPU time | 5              | 15             | 31             |

0/3

## Eigenmode in a PEC cavity : the 2D case General non-conforming mesh

Time evolution of  $E_z$ Zoom on the last 4/43 periods DGTD- $\mathbb{P}_2$ /DGTD- $\mathbb{P}_3$ /exact

DGTD-P2 DGTD-P3 0.3 exact -----0.2 0 0.5 -0.1 -0.2 -0.3 55 56 57 58 59 60 0.35 0.65  $\mathbb{P}_2$  $\mathbb{P}_3$  $\mathbb{P}_4$  $\mathbb{P}_4$  $\mathbb{P}_2$  $\mathbb{P}_3$ 37F-02 5 5F-03 5.2E-03 Frror 8 6F-03 Frror 3 5E-02 8 1F-03 # DOF 768 1920 # DOF 564 1410 1280 940 CPU time 55 18 37 CPU time 5 15 31

General non-conforming mesh

76 nodes (32 hanging nodes)

& 94 triangles & 169 faces

### Scattering by multilayered dielectric cylinder

Comparison conforming/non-conforming methods



#### (15-irregular) Non-conforming mesh



| Region                                     | Region 1   | Region 2   | Region 3   | Region 4   | Region 5   | Region 6   |
|--------------------------------------------|------------|------------|------------|------------|------------|------------|
| Interpolation order                        | <i>p</i> 1 | <b>p</b> 2 | <b>p</b> 3 | <i>p</i> 4 | <b>p</b> 5 | <b>p</b> 6 |
| Level of refinement                        | 0          | 1          | 2          | 3          | 4          | 0          |
| <pre># triangles non-conforming mesh</pre> | 40         | 320        | 1280       | 5120       | 20480      | 400        |

# Scattering by multilayered dielectric cylinders Reference solution



- $\Omega$  is a cylinder of radius one
- First order Silver-Müller ABC at the artificial boundary
- Reference solution is constructed in a very fine conforming mesh using DGTD- $\mathbb{P}_4$  method

| # nodes | # triangles | # DOF  |
|---------|-------------|--------|
| 25001   | 49750       | 746250 |

#### Scattering by multilayered dielectric cylinders

DGTD-P<sub>p</sub> CPU (min) # DOF Error on  $H_{v}$ DGTD- $\mathbb{P}_0$ 8.6 % 25 28560 DGTD-P<sub>1</sub> 7.6 % 137 85680 DGTD- $\mathbb{P}_2$  2.2 % 286 171360 DGTD-₽₃ 2.2 % 842 285600

DGTD- $\mathbb{P}_p$  method: conforming mesh

#### hp-like DGTD method: non-conforming mesh

| $DGTD-\mathbb{P}_{(p_1,p_2,p_3,p_4,p_5,p_6)}$ | Error on $H_y$ | CPU (min) | # DOF  |
|-----------------------------------------------|----------------|-----------|--------|
| DGTD-P <sub>(4,3,2,1,0,2)</sub>               | 5.0 %          | 12        | 49720  |
| DGTD-P <sub>(4,3,2,2,0,2)</sub>               | 4.8 %          | 13        | 65080  |
| DGTD- $\mathbb{P}_{(4,3,2,2,1,4)}$            | 3.5 %          | 17        | 109640 |
| DGTD- $\mathbb{P}_{(4,2,2,4,1,4)}$            | 3.2 %          | 21        | 154440 |
| DGTD-P <sub>(2,2,2,2,2,4)</sub>               | 2.5 %          | 20        | 169440 |

#### Scattering by multilayered dielectric cylinders

## DGTD- $\mathbb{P}_p$ method

Conforming mesh

#### hp-like DGTD method

Non-conforming mesh



1D distribution of  $H_y$  along y = 0.0 at time t = 5

#### Eigenmode in a PEC cavity : the 3D case

Comparison conforming/non-conforming methods

- Frequency = 256 MHz
- Unstructured mesh: 4406 tetrahedra, 962 nodes & 9235 faces
- Degree  $p_2$  is used in 1434 tetrahedra (1905 non-conforming interfaces)



#### Eigenmode in a PEC cavity : the 3D case

Comparison conforming/non-conforming methods



Figure: Contour lines of  $E_z$  in the plane y = 0.5

| $DGTD-\mathbb{P}_p$            | $DGTD-\mathbb{P}_0$       | $DGTD-\mathbb{P}_1$             | $DGTD-\mathbb{P}_2$             | $DGTD-\mathbb{P}_3$       |
|--------------------------------|---------------------------|---------------------------------|---------------------------------|---------------------------|
| L <sup>2</sup> error           | 7.2E-01                   | 2.0E-01                         | 1.4E-02                         | 8.0E-04                   |
| CPU time (min)                 | 4                         | 40                              | 213                             | 859                       |
|                                |                           |                                 |                                 |                           |
| DGTD- $\mathbb{P}_{(p_1,p_2)}$ | $DGTD-\mathbb{P}_{(2,0)}$ | $DGTD	ext{-}\mathbb{P}_{(2,1)}$ | $DGTD	ext{-}\mathbb{P}_{(3,1)}$ | $DGTD-\mathbb{P}_{(3,2)}$ |
| L <sup>2</sup> error           | 3.6E-02                   | 1.3E-02                         | 1.0E-03                         | 8.8E-04                   |
| CPU time (min)                 | 35                        | 106                             | 260                             | 499                       |

### Propagation in a heterogeneous human head model

Comparison conforming/non-conforming methods

• Dipole source type

$$J_z(\mathbf{x},t) = z_0 \delta(\mathbf{x} - \mathbf{x}_d) f(t)$$
 and  $f(t) = \sin \omega t$ 

- Source is localized near the right ear of the head
- Frequency = 1800 MHz

| Electromagnetic characteristics |           |           |        |  |  |  |
|---------------------------------|-----------|-----------|--------|--|--|--|
| of the s                        | elected h | nead tiss | sues   |  |  |  |
| Tissue                          | εr        | $\sigma$  | $\rho$ |  |  |  |
| Brain                           | 43.55     | 1.15      | 1050.0 |  |  |  |
| CSF                             | 67.20     | 2.92      | 1000.0 |  |  |  |
| Skull                           | 15.56     | 0.43      | 1200.0 |  |  |  |
| Skin (wet)                      | 43.85     | 1.23      | 1100.0 |  |  |  |



### Propagation in a heterogeneous human head model

Comparison conforming/non-conforming methods



#### Contour lines of the DFT of $E_{\tau}$

Table: CPU time in hours DGTD-₽₁  $\overline{\mathsf{DGTD}}$ - $\mathbb{P}_{(2,1)}$ Method DGTD-₽<sub>2</sub> DGTD-₽₃ CPU time 6 h 30 h 87 h 12 h

#### Arbitrary high-order time scheme

H. Spachmann, R. Schuhmann and T. Weiland : Int. J. Numer. Model., 2002
 J.L. Young : Radio Science, 2001

• High-order leap-frog  $(LF_N)$  time scheme

$$\begin{cases} \mathbf{T}_1 = \Delta t(M_i^{\epsilon})^{-1} \operatorname{curl}_h \vec{\mathbf{H}}_i^{n+\frac{1}{2}}, & \mathbf{T}_1^{\star} = -\Delta t(M_i^{\mu})^{-1} \operatorname{curl}_h \vec{\mathbf{E}}_i^{n+1} \\ \mathbf{T}_2 = -\Delta t(M_i^{\mu})^{-1} \operatorname{curl}_h \mathbf{T}_1, & \mathbf{T}_2^{\star} = \Delta t(M_i^{\epsilon})^{-1} \operatorname{curl}_h \mathbf{T}_1^{\star} \\ \mathbf{T}_3 = \Delta t(M_i^{\epsilon})^{-1} \operatorname{curl}_h \mathbf{T}_2, & \mathbf{T}_3^{\star} = -\Delta t(M_i^{\mu})^{-1} \operatorname{curl}_h \mathbf{T}_2^{\star} \end{cases}$$

$$\mathsf{LF}_{2}: \begin{cases} \mathbf{E}_{i}^{n+1} &= \mathbf{E}_{i}^{n} + \mathbf{T}_{1} \\ \mathbf{H}_{i}^{n+\frac{3}{2}} &= \mathbf{H}_{i}^{n+\frac{1}{2}} + \mathbf{T}_{1}^{\star} \end{cases}$$

$$\mathsf{LF}_4: \left\{ \begin{array}{rcl} \mathbf{E}_i^{n+1} &=& \mathbf{E}_i^n + \mathbf{T}_1 + \mathbf{T}_3/24 \\ \mathbf{H}_i^{n+\frac{3}{2}} &=& \mathbf{H}_i^{n+\frac{1}{2}} + \mathbf{T}_1^{\star} + \mathbf{T}_3^{\star}/24 \end{array} \right.$$

The LF<sub>4</sub> scheme requires twice more memory storage and 3 times more arithmetic operations than the LF<sub>2</sub> scheme

H. Fahs (Ph.D. defense)

• General form of the  $LF_N$  based DGTD- $\mathbb{P}_{p_i}$  method :

$$\begin{cases} \mathbb{M}^{\epsilon} \frac{\mathbb{E}^{n+1} - \mathbb{E}^{n}}{\Delta t} &= \mathbb{S}_{N} \mathbb{H}^{n+\frac{1}{2}} \\ \mathbb{M}^{\mu} \frac{\mathbb{H}^{n+\frac{3}{2}} - \mathbb{H}^{n+\frac{1}{2}}}{\Delta t} &= -^{t} \mathbb{S}_{N} \mathbb{E}^{n+1} \end{cases}$$

where the  $d \times d$  matrix  $\mathbb{S}_N$  verifies:

$$\mathbb{S}_{N} = \begin{cases} \mathbb{S} & \text{if } N = 2\\ \mathbb{S}(\mathbb{I} - \frac{\Delta t^{2}}{24} \mathbb{M}^{-\mu t} \mathbb{S} \mathbb{M}^{-\epsilon} \mathbb{S}) & \text{if } N = 4 \end{cases}$$

- $\mathbb{E}$  and  $\mathbb{H}$  are of size  $d = \sum_i d_i$
- $\mathbb{M}^{\epsilon}$  and  $\mathbb{M}^{\mu}$  are block diagonal mass matrices of size d with diagonal blocks equal to  $M_i^{\epsilon}$  and  $M_i^{\mu}$  respectively

# Properties of the $LF_N$ based DGTD- $\mathbb{P}_{p_i}$ method Stability

🖾 H. Fahs and S. Lanteri: J. Comput. Appl. Math., 2008, submitted

• Global discrete electromagnetic energy:

$$\mathcal{E}^{n} = \frac{1}{2} ( {}^{t} \mathbb{E}^{n} \mathbb{M}^{\epsilon} \mathbb{E}^{n} + {}^{t} \mathbb{H}^{n-\frac{1}{2}} \mathbb{M}^{\mu} \mathbb{H}^{n+\frac{1}{2}} )$$

- The energy  $\mathcal{E}^n$  is exactly conserved (when  $\Gamma_a = \emptyset$ )
- The LF<sub>N</sub> based DGTD- $\mathbb{P}_{p_i}$  method is stable if

$$\Delta t \leq \frac{2}{d_N}$$
 with  $d_N = \|\mathbb{M}^{\frac{-\mu}{2} t} \mathbb{S}_N \mathbb{M}^{\frac{-\epsilon}{2}}\|$ 

| Ν       | 2   | 4    | 6    | 8    | 10   | 12   | 14   | 16   | 18   | 20   |
|---------|-----|------|------|------|------|------|------|------|------|------|
| $\nu_N$ | 1.0 | 2.85 | 3.68 | 3.79 | 5.27 | 4.44 | 6.42 | 7.53 | 7.27 | 8.91 |

# Properties of the $LF_N$ based DGTD- $\mathbb{P}_{p_i}$ method Convergence

- J.S. Hesthaven and T. Warburton: J. Comput. Phys., 2002
  - **X** Exact solution :  $\vec{U}(t) = (\vec{E}(t), \vec{H}(t)) \in H^{s}(\tau_{i}) \times H^{s}(\tau_{i})$
  - × Numerical solution :  $\vec{U}_h(t) = (\vec{E}_h(t), \vec{H}_h(t)) \in V_p(\Omega_h) \times V_p(\Omega_h)$ 
    - Convergence:

$$\|ec{f U} - ec{f U}_h\|_{0,\Omega} \le C\Big(rac{h^
u}{p^s} + Trac{h^{
u-1}}{p^{s-rac{3}{2}}}\Big) \max_{t\in[0,T]} \|ec{f U}(t)\|_{s,\Omega}$$

• Convergence of the divergence error:

$$\|
abla \cdot (ec{f U} - ec{f U}_h)\|_{0,\Omega} \le C \Big(rac{h^{
u-1}}{p^{s-1}} + Trac{h^{
u-2}}{p^{s-rac{7}{2}}}\Big) \max_{t\in[0,T]} \|ec{f U}(t)\|_{s,\Omega}$$

- $\nu = \min\{s, p+1\}$
- $C(\epsilon,\mu)$  independent of h and p

#### Eigenmode in a PEC cavity: the 2D case

- Comparison between  $LF_2/LF_4$  based DGTD- $\mathbb{P}_{(p_1,p_2)}$  method
- Non-conforming mesh: 152 triangles (128 in the refined region) 97 nodes (24 hanging nodes)



## Eigenmode in a PEC cavity: the 2D case

Comparison between  $LF_2/LF_4$  based DGTD- $\mathbb{P}_{(p_1,p_2)}$  method



Table:  $L^2$ -error, CPU time in seconds and # DOF to reach time t = 90

|                               |       | LF <sub>2</sub> | scheme   | LF <sub>4</sub> scheme |          |  |
|-------------------------------|-------|-----------------|----------|------------------------|----------|--|
| $DGTD-\mathbb{P}_{(p_1,p_2)}$ | # DOF | Error           | CPU time | Error                  | CPU time |  |
| DGTD- $\mathbb{P}_{(3,2)}$    | 1008  | 1.3E-02         | 29 s     | 8.6E-04                | 20 s     |  |
| DGTD- $\mathbb{P}_{(4,3)}$    | 1640  | 3.2E-03         | 86 s     | 9.6E-05                | 60 s     |  |
| $DGTD-\mathbb{P}_{(5,4)}$     | 2424  | 2.0E-03         | 183 s    | 9.4E-06                | 125 s    |  |

## *h*-convergence of the DGTD- $\mathbb{P}_{(p_1,p_2)}$ method

LF<sub>2</sub> scheme LF<sub>4</sub> scheme 100 10 10 10 10 10 10 10 L<sup>2</sup> error L<sup>2</sup> error 10 10 10 10 DGTD-P(1.0), LI DGTD-P(2.1), LF2 DGTD-P(2 DGTD-P(3.2), LF2 DGTD-P(3.2) 10 10 DGTD-P(4.3), LF2 DGTD-P(4.3) DGTD-P(5,4), LF4 DGTD-P(5.4), LF2 DGTD-P(6.5), LE4 DGTD-P(6.5), LF2 10 10 10<sup>1</sup> 10<sup>1</sup> 10 10 10 (DOF)1/2 (DOF)1/2

#### Table: Asymptotic *h*-convergence orders

| $(p_1, p_2)$ | (1,0) | (2,1) | (3,2) | (4,3) | (5,4) | (6,5) |
|--------------|-------|-------|-------|-------|-------|-------|
| $LF_2$       | 1.30  | 2.23  | 2.08  | 2.27  | 2.13  | 2.17  |
| $LF_4$       | 1.05  | 2.20  | 3.01  | 4.21  | 4.50  | 4.48  |

## *p*-convergence of the DGTD- $\mathbb{P}_{(p_1,p_2)}$ method



Table: *p*-convergence for h = 1/3

| $(p_1, p_2)$ | (1,0)   | (2,1)   | (3,2)   | (4,3)   | (5,4)   | (6,5)   | (7,6)   |
|--------------|---------|---------|---------|---------|---------|---------|---------|
| $LF_2$       | 1.3E-01 | 3.9E-02 | 3.2E-03 | 5.6E-04 | 3.2E-04 | 1.8E-04 | 1.0E-04 |
| $LF_4$       | 1.9E-01 | 3.9E-02 | 2.7E-03 | 2.5E-04 | 1.7E-05 | 1.9E-06 | 2.6E-07 |

### Concluding remarks

- Discontinuous Galerkin time-domain
  - can handle non-conforming meshes with arbitrary level hanging nodes,
  - the interpolation order may vary from element to element in the mesh,
  - stability is proved theoretically and the dispersion error is studied numerically.
- Numerical experiments
  - the convergence order is bounded by 2 (homogeneous media) and by 1 (heterogeneous media),
  - the general non-conforming mesh does not affect on the quality of the solution,
  - compared with the conforming DGTD method, the *hp*-like method can lead to notable reductions in the CPU time and memory consumption.
- High-order leap-frog  $(LF_N)$  based DGTD method
  - properties (stability, hp a priori estimates),
  - $\bullet\,$  the LF\_4 scheme is more accurate and requires less CPU than the LF\_2 scheme,
  - ${\scriptstyle \bullet} \,$  spectral convergence with the  ${\sf LF}_4$  scheme.

#### Future works

- Design of a *hp*-adaptive DGTD method:
  - a posteriori error estimator,
  - hierarchical basis functions.
- Improvement of the efficiency of the *hp*-like method:
  - local time stepping,
    - S. Piperno: *M2AN*, 2006
  - hybrid explicit/implicit scheme.
    - Research activities of Nachos project-team
- Convergence properties for irregular solution (heterogeneous media):
  - regularization techniques,

🖾 E. Kashdan and E. Turkel: J. Comput. Phys., 2006

• hybrid centered/upwinding scheme.

₩ W. Cai and S. Deng: J. Comput. Phys., 2003

• High-order absorbing boundary conditions