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CHAPTER|

INTRODUCTION

1.1 Dissertation objectives

In the design-analysis cycle of complex structural systems such as rotorcraft, aircraft,
and ground vehicles, it is necessary to understand their vibratory response thoroughly. If
the vibration of interest is restricted to small neighborhoods of the static equilibrium po-
sitions, then the assumption of alinear system can be made. The corresponding analysis
procedure is then greatly simplified, through the use of modern tools such as Finite Ele-
ment Analysis and Modal Analysis. In contrast, when the amplitudes of oscillations are
large, beyond the scale of linearization, or when a system behaves inherently nonlinearly
with respect to its equilibrium configurations, then nonlinear equations of motion must be
used in the model.

It is well known that nonlinear systems exhibit much richer and more complex be-
havior than their linear counterparts (i.e., bifurcations, internal resonances, sensitivity to
initial conditions, etc.). Moreover, for anonlinear system linear superposition isno longer
valid, and the internal nonlinear coupling present between the linear normal modes of the
system may necessitate the use of models with a relatively large number of degrees of
freedom (DOF) in order to capture the system dynamics accurately. As aresult, studies of

nonlinear systems often sacrifice either time (through alarge, expensive computer model)



or accuracy (through the elimination of possibly significant mechanisms).

This research is aimed at the development and implementation of model reduction
methods for certain classes of nonlinear structural systems, based on the invariant mani-
fold approach initially developed by Shaw and Pierre [1-4], and further developed and
implemented by Boivin [5, 6] and Pesheck [7]. The primary goal of this dissertation isto
extend the nonlinear modal analysis methodol ogy to large-scale structural systems (partic-
ularly those modeled with the finite element method) with various types of nonlinearities
(e.g., polynomial and piecewise linear), including systems subject to external excitation
and those with internal resonances. Another objective of thiswork isto apply the invariant
manifold approach to an industrial structure with a complex, intrinsic nonlinearity. The
nonlinear dynamics of an important class of engineering rotating structures are investi-

gated, namely rotorcraft blades.

1.2 Background

In the area of nonlinear vibrations, much research work has been donefor systemswith
a few DOFs, such as lumped-mass models [8-11], and models obtained via a Galerkin
discretization of the governing partial differential equations (PDE) for continuous sys-
tems [12-15]. These low-order models are useful for understanding general behaviors.
However, many of the methods developed are applicable only to relatively smple sys-
tems, and become unwieldy when used for systems with complex PDES or large numbers
of DOFs.

In order to obtain accurate reduced order models for nonlinear systems, “nonlinear
modal analysis’ has been proposed as an analogy to itslinear counterpart. The concept of
nonlinear normal modes (NNM) was first developed by Rosenberg [16] for conservative

systems with symmetric nonlinearities. In his definition, NNMs are motions where (a)



all masses have periodic (not necessarily harmonic) motions with the same period, (b) all
masses pass through the static equilibrium positions at the same time, (c) and all masses
achieve the maximum displacements at the same time. Thisis clearly an extension of the
linear normal mode idea, but the relationships among all DOFs no longer need be smply
linear. Since then, the existence [17, 18], stability [8, 10, 19-21], and construction [9, 22,
23] of NNM s have been topics of considerable investigation in thisfield. Detailed reviews
were written by Vakakis et al. [24, 25], which summarize much of the research in thisarea
to date. Here, we give a brief overview of the relevant literature, focusing on the methods
of constructing NNMs, but the reader is referred to references [24, 25] for a complete
bibliography.

For weakly nonlinear systems, perturbation methods can be used to determine the non-
linear normal mode shapes and associated natural frequencies. King and Vakakis[26] used
an energy-based approach to compute NNMsfor aclass of one-dimensional, conservative,
continuous systems. This approach has been extended to cases with internal resonances
[27]. It has been shown that under some circumstances, NNMs cannot be constructed
using physical coordinates and that a transformation to linear modal coordinates is neces-
sary in order to define NNMs. Nayfeh and Nayfeh [28] constructed NNMs based on the
method of multiple scales. They proposed a decomposition of the system state variables
into complex quantities, hence simplifying the construction of NNMs[29].

Shaw and Pierre [1-4] introduced the definition of NNMs based on the concept of in-
variant manifolds. The invariant manifold is a hypersurface spanned by the linear modal
coordinatesin the phase space and is tangent to the corresponding linear mode at the equi-
librium position. Here, the term “invariant” indicates that any motion initiated on the
manifold will remain on it for al time. This new definition of NNMs is more general

than the previous one, as it alows for a rigorous analysis of damped nonlinear systems,



as well gyroscopic systems and those with non-symmetric nonlinearities. A framework
for constructing NNMs was proposed by Boivin [5, 6] and Pesheck [7] for conservative
systems and for non-conservative systems with linear proportional damping. According
to the definition of invariant manifolds, a single pair of state variablesin linear modal co-
ordinates is chosen as master coordinates for an individual NNM, then all the remaining
DOFs, the slave coordinates, are constrained to the master coordinates. Time-independent
PDEs describing the geometry of the manifold are produced using this approach, but they
are generally not solvable in closed form. Through a polynomial series expansion in the
manifold coordinates, the constraint functions for the slave coordinates can be approxi-
mated numerically in a systematic fashion [7]. Once the NNM is obtained, motions on it
are governed by the corresponding master coordinates and are described by two first-order
ordinary differential equations, hence yielding a one-DOF reduced order model.

Unlike linear modes, the NNMs will interact during a general motion. Moreover, the
invariant manifold approach based on a single mode expansion will break down in the
presence of internal resonances between master and slave coordinates[7]. Hence, amulti-
mode expansion methodology is required to study the true multi-mode motions of non-
linear systems. In the case of A/ modes involved in an internal resonance, the manifold
is approximated with a polynomial series expansion in the 20/ master coordinates. The
results are determined in a somewhat complicated, but still systematic fashion [7]. Aswith
the single mode case, this systematic approach enables the reduction of nonlinear systems
with many DOFsto 20 first-order differential equations when motionsin M modes are
of interest.

Although the asymptotic series expansion approximation is a systematic and efficient
approach to solve the PDEs that govern the manifold geometry, its application is limited

to weakly nonlinear regions because (a) the polynomia expansionisonly valid in asmall



amplitude range, (b) the domain in which the expansion is accurate cannot be determined
apriori. A more general approach was developed by Pesheck et al. [7, 30], who applied
a polar coordinate transformation to a single pair of state variables so that the constraint
functionsfor slave coordinates are expressed in new master coordinates, namely amplitude
a and phase ¢. Fourier serieswere then used to expand functionsin the ¢ coordinate, while
orthogonal polynomialswere used to expand functionsin the a coordinate. Moreover, the
amplitude domain was discretized into small segments, so that simple piecewise linear
functions were utilized as expansion functions, with each such function corresponding
to one segment. Using the Galerkin projection method [7, 30], invariant manifolds were
constructed over strongly nonlinear regions in the ¢ and ¢ coordinates, and motions on
individual NNMs were reduced to two differential equations in the a and ¢ coordinates.
This powerful method was applied successfully to a two-DOF lumped mass system with
cubic nonlinear springs and to a 18-DOF rotating beam system with quadratic and cubic
nonlinearities.

Finally, the concept of invariant manifolds has been used by others to derive the one-
dimensional beam theories[31], to decouple the in-plane motions of a nonlinear isotropic
plate from its transverse motions [32], and to obtain slow and fast invariant manifolds for
a 2-DOF nonlinear oscillator [33]. Nayfeh et al. extended the complex invariant mani-
fold approach [29] and utilized the method of multiple scales [34] to construct the NNMs
of weakly nonlinear systems with internal resonances. Other authors have extended the
formulation of Shaw and Pierre to construct the invariant manifold for nonlinear beam
models [35, 36], to construct nonlinear normal modes for piecewise linear system [37],
and to investigate the potential applications of the invariant manifold approach in the field

of control [38, 39].



1.3 Dissertation outline

The remaining chapters of this dissertation are compiled from a collection of four
manuscripts that have been or are destined to be published in refereed technical journals.
Note that some repetition, in particular for background material, does occur. An outline of
the subsequent chaptersis as follows. In Chapter |1, a numerical method for constructing
nonlinear normal modes for piecewise linear autonomous systems is presented. These
NNMs are obtained using a Galerkin-based solution of the invariant manifold’'s nonlinear
partial differential equations. The accuracy of the constructed nonlinear modesis checked
by comparing the motion on the invariant manifold to the exact solution, in both the time
and frequency domains. It isfound that this construction approach can accurately capture
the NNMs over awide range of amplitudes, including those with strong nonlinear effects.
Several interesting dynamic characteristics of nonlinear modal motions are observed and
compared to those of linear modes. A two-DOF exampleisused toillustrate the technique.
The existence, stability and bifurcations of the NNMs for this example are investigated.

In Chapter 111, a numerical method for constructing nonlinear normal modes for sys-
tems with internal resonances is presented, based on the invariant manifold approach. In
order to parameterize the nonlinear norma modes, multiple pairs of system state vari-
ables involved in the internal resonance are kept as “seeds’ for the construction of the
multi-mode invariant manifold. All the remaining DOFs are constrained to these “seed”
variables, resulting in a system of nonlinear partial differential equations governing the
constraint relationships. The numerical solution procedure uses a combination of finite
difference schemes and Galerkin-based expansion and projection methods. It isillustrated
for two examples, both of which focus on the construction of two-mode models. The

first exampleis based on the analysis of a simple three-DOF example system, and is used



to demonstrate the approach. An invariant manifold that captures two nonlinear normal
modes is constructed, resulting in a reduced order model that accurately captures the sys-
tem dynamics. The methodology is then applied to a larger system, namely an 18-DOF
rotating beam model that features a three-to-one internal resonance between the first two
flapping modes. The accuracy of the nonlinear two-mode reduced order mode! is verified
by time-domain simulations.

Chapter IV considers the use of numerically constructed invariant manifolds to deter-
mine the response of nonlinear vibratory systemsthat are subjected to periodic excitation.
The approach is an extension of the nonlinear normal mode formulation previously devel-
oped for free oscillations, wherein an auxiliary system that models the excitation is used
to augment the equations of motion. In this manner, the excitation is simply treated as
an additional system state, yielding a system with an extra degree of freedom, whose re-
sponseis known. A reduced order model for the forced system is then determined by the
usual nonlinear normal mode procedure, and an efficient Galerkin-based solution method
isused to numerically construct the attendant invariant manifolds. Each ‘forced” manifold
is essentially amodal manifold that varies periodically in time with a period equal to that
of the excitation. The technique isillustrated by determining the frequency response for a
simple two-DOF mass-spring system with cubic nonlinearities, and for a discretized beam
model with 12 DOFs. The results show that this method provides very accurate responses
over arange of frequencies near resonances.

Chapter V extends the invariant manifold approach to a model of an industrial struc-
tural system, namely a rotating active twist rotor (ATR) blade. The blade model is con-
structed using the finite el ement method with atwo-field (Reissner-Hellinger type) mixed
variational principle. Thelinearized blade model isfirst obtained with respect to the quasi-

static equilibrium position. The nonlinear restoring force is then projected to the linear



modal coordinates. Based on the invariant manifold approach, the nonlinear normal mode
corresponding to the lowest bending linear mode (i.e., the first flapping mode) of the rotat-
ing blade is constructed numerically. A reduced-order model is obtained, which is shown
to capture accurately the nonlinear dynamics on the invariant manifold. The nonlinear
interactions of various physical blade motions, including lead-1ag deflection, axial elonga-
tion, and torsion, with the first flapping bending motion of the blade are investigated by
numerical simulations of time responses on the manifold.

Finally, in Chapter VI, conclusions are drawn and the contributions of this dissertation

are summarized. |deas for future work are also discussed.



CHAPTER I

LARGE-AMPLITUDE NONLINEAR NORMAL
MODES OF PIECEWISE LINEAR SYSTEMS

2.1 Introduction

The concept of nonlinear norma modes was originated by Rosenberg [16, 40, 41],
based on the analysis of discrete, symmetric systems with smooth nonlinearities. Since
then, the existence[17, 18], stability [8, 10, 19-21], and construction [9, 22, 23, 38] of non-
linear normal modes have been among the topics of investigation in this field. More
recently, an alternative definition for NNMs was introduced by Shaw and Pierre [1-3],
based on invariant manifolds. With asymptotic expansions, the NNMs can be constructed
symbolically [2, 3], but are accurate only in a neighborhood of the original equilibrium
position. A more recent approach [42] extends the construction aspects of the invariant
manifold approach to strongly nonlinear regions by using a Galerkin projection method
to solve the invariant manifold equations. This makes the accurate construction of NNMs
possible for awide range of nonlinear dynamical systems.

Previous work on nonlinear normal modes dealt primarily with systems with smooth
nonlinearities. However, many engineering systems involve components with contact,
clearance, or different elastic materials. Such systems are often conveniently modeled by

equations of motion with piecewiselinear (PWL) terms. Dueto their practical importance,
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the dynamic behavior of piecewise linear systems has been the subject of many investiga-
tions, which mainly focus on forced response under periodic excitation [43-45], including
dynamic behaviors such as bifurcations and chaos [46-48].

The nonlinear modal behavior of PWL systemswasfirst considered by Zuo and Curnier [49],
based on autonomous, piecewise linear, multi-degree of freedom (DOF), gyroscopic and
non-gyroscopic systems, which are the simplest models of cracked rotating shafts and
cracked beams. However, the nonlinear moda motions were found by a direct approach
and a more general construction method for NNMs was not pursued. Moreover, in ref-
erence [49] the switching hyperplane of the PWL systems considered passes through the
origin, so that it is a special class of genera PWL systems. Chen and Shaw [37] investi-
gated a construction method of NNM for PWL systems based on asymptotic expansions.
Since the switching hyperplane is not at the origin, the class of PWL systemsin [37] is
more general, but the asymptotic expansion can no longer be initiated at the static equi-
librium position. The NNM is expanded in a series form in a neighborhood of an invari-
ant disk, which makes it applicable near the switching hyperplane, but it is not valid at
large amplitudes beyond the switching plane. Chati et al. [14] constructed the NNMs of
a two-DOF PWL system using perturbation methods. The system they considered is a
simplified model of the vibrations of a cantilever beam with a transverse edge crack. The
NNMs obtained are only accurate for PWL systemswith asmall clearance spring located
at the switching hyperplane, due to the approximations of perturbation methods. They
also untilized the idea of bilinear frequency to compute the natural frequencies of nonlin-
ear normal mode motions. The frequencies obtained with the bilinear formula are good
approximations when the difference between the linear regionsis small.

In this paper, we focus on a construction method of NNMs for the class of systems

considered in reference [37]. The general dynamic behavior of the nonlinear modal mo-
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tions is also discussed using the NNM results. Since asymptotic series expansions are
not naturally suited for this type of nonlinearity, the Galerkin-based approach developed
in reference [42] is extended to PWL systems and applied to a sample problem. The
NNMs constructed in this manner are accurate over alarge amplitude range. Also, no spe-
cific analysis is needed to account for the switching hyperplane, along which the system
changes form, thereby making the approach much less cumbersome than the expansions
used in reference [37]. Once the NNMs are constructed, the nonlinear modal dynamicsfor
the individual NNMs can be determined.

The paper is organized as follows. The class of PWL systems studied is described
in section 2.2. In section 2.3, the Galerkin-based approach for the construction of large-
amplitude NNMs is briefly reviewed and adapted to PWL systems. A two-DOF example
system is illustrated in section 2.4, which demonstrates the individual NNMs and their
general dynamic behavior (including stability calculations). Finally, some conclusions are

drawn.

2.2 Piecewise linear systems

Following the definition of Chen and Shaw [37], the dynamic system considered here

is an unforced, undamped, autonomous N-DOF system of the form

;

MZ+K, Z=0 for hiTZ<d
(2.1)

MZ+Ky,Z=0b for hTZ>d

\

whered > 0 isaread scalar constant, Z, h, b € RV, and M, K,, K, arerea symmetric
positive definite N x N matrices. Obviously, this system has two distinct linear regions
separated by a hyperplane, {Z € RY : h'Z = d}. We denote the first region as {Z ¢

RN : h'Z < d} andthesecond regionas {Z € RY : h"Z > d}. For small amplitudes,
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solutions remain in the first region and the response is simply linear and well understood.
As the amplitude increases, the motions begin to pass through the switching hyperplane
and enter the second region, in which case the response is nonlinear and no longer ssmple
[46,49].

System (2.1) represents a large variety of vibration systems with clearance or impact,
which can be modeled by piecewise linear springs. However, thereis only a single switch-
ing hyperplane in system (2.1). For PWL systemswith more than one surface of disconti-
nuity, the general behavior is much more complicated [50], and thisis not considered here.
Moreover, system (2.1) is conservative and non-gyroscopic.

In equation (2.1), linear modal analysis can be applied to the first region, {Z €
RN . nW'Z < d}, containing the static equilibrium point. The eigenvector matrix, @,
can be found and normalized with respect to the mass matrix M. For simplicity, it is as-
sumed that al the eigenfrequencies of the subsystem in the first region are distinct. After

alinear modal transformation, Z = (Jn, system (2.1) takes the standard form

i+ A = f(n) (22)

wheren € RY isthe vector of modal coordinates, and the N x N diagonal matrix A; has
entries that are the squares of the small-amplitude (first region) natural frequencies. The

piecewise linear force vector, f(n) € RY, isgiven by
f(n) = H(h"Qn —d) [(A1 — QTK2Q)n + Q"b] (2.3)
where H( . ) isthe heaviside function that stands for the switching hyperplane.

2.3 Nonlinear normal modes and the invariant manifold approach

Following the concept of invariant manifolds[1], anonlinear normal modeis*“a family

of motionswhich lies on a two-dimensional invariant manifold in the system phase space”.
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Here, the term invariant indicates that any motion initiated on the manifold will remain
on it for al time. In this formulation, a single pair of displacement-velocity coordinates
is chosen as the master coordinates, which characterize the individual nonlinear modal
motion that occurs on the manifold. The remaining DOFs are represented by slave coor-
dinates, composed of displacement-velocity pairs for those DOFs, which are functionally
dependent on the master coordinates. The dynamics of the master coordinates dictates
the response of the slave coordinates through these relationships. The bulk of the work
for determining NNMs lies in the determination of these constraint functions, which de-
scribe the geometry of the NNM invariant manifold in the system state space. In previous
work, asymptotic series have been used to obtain approximate solutions of the manifolds,
whereas here we employ a numerical solution that provides better accuracy over a much
larger amplitude range.

In order to construct accurate nonlinear normal modes for this class of piecewise lin-
ear systems, the Galerkin-based approach [42] is utilized to solve for the invariant mani-
fold. Considering system (2.2), for the k-th NNM the master coordinates are taken to be

(e, 1x). These are transformed to amplitude and phase coordinates, (a, ¢), asfollows:

e

k() = a(t) cos ¢(t)
(2.4)

Nk (t) = —wia(t) sin ()

\

where w;, isthe k-th natural frequency of the linear system in the first region. The master
coordinates are defined as (a, ¢), and have bounded domains for amplitude and phase,
a € [0, amaz] @nd ¢ € [0, 27|, respectively, which makes a Galerkin-based approach feasi-

ble[42]. On theinvariant manifold, all of the slave coordinates are expressed as functions
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of the master coordinates as follows,

;

n; = f)i(aa ¢)
i=1,2, .. N, ik (2.5)

\ ni = Qia, P)

These functions describe constraint relationships between the master and slave coordi-
nates, thereby providing a functional form for the NNM invariant manifold. If the system
is globally linear, f(n) is zero in equation (2.2), and the constraint functions, P; and @,
are also zero. For the piecewise linear system, the constraint functions are no longer zero
when the master amplitude coordinate a is sufficiently large such that the system enters
the second linear region. In other words, the constraint functions, P, and ;, capture
the geometry of the invariant manifold as the system passes between the first and second
regions.

The invariant manifold equations are formulated as follows. A first-order, state-space
formulation of the equations of motion (2.2) are used, into which equations (2.4) and (2.5)
are substituted for the dynamic variables. The use of the chain rule on the constraint
functions P; and (Q; results in partial differential equations (PDE) which govern the P;’s

and (Q;’s. These are given by [42],

4
Qi = % (;—J:“) sin ¢ + %—Zj (wk - —f’“ww)

awy,

{ for i=1,2,...,.N, 1 # k.

—wiP + f; = % (;—f) sin ¢ + aa;%' (wk - —f’“ww)

awp

\

These are obviously valid when theforce, f € R, is smooth. However, one must be cau-
tious when dealing with non-smooth nonlinearities, since these may result in constraint
functions that are also non-smooth, in which case some of the terms in the PDES, equa-

tion (2.3), may not exist. It is found that for piecewise linear systems, these governing
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PDEs are dso valid, since al the derivatives, OP;/0a, OP;/0¢, 0Q;/0a, and 0Q); /D¢, ex-
ist in each of the two regions. At the switching hyperplane, the geometry of the invariant
manifold is continuous, since the force is continuous, but derivatives are not necessar-
ily continuous. Therefore, global expansion functions for a Galerkin approach may not
be well suited for the task, and a specia discretization is used to construct the invariant
manifold as described bel ow.

In order to solve the PDES, equation (2.3), aGalerkin projection is carried out over the
chosen domain, a € [0, anq.) @ad ¢ € [0, 27]. In the ¢ direction, the constraint equations
P; and (); are periodic, and thus Fourier series are the natural choice for the expansion.
Furthermore, ahalf Fourier basisis sufficient for system (2.2), dueto its conservative, non-
gyroscopic nature [42]. Specifically, cosine functions are used for the position constraints
P;, and sine functions are used for the velocity constraints ();. Because of the nature of
the manifold in the a direction, the domain a € [0, a,,,.] iSdivided into n equal segments,

defined by

a € laj, aj11], a; = , 7=0,1,...,n.

In each segment, piecewise linear functions are used as the expansion functions. Then,
the unknown position and velocity constraint relations are expanded over each segment as

follows,

(

Pia, ) = X1y Sop CE™ Ty yu(a, )
for i =1,2,...N, i £k (2.6)

| @ila.0) = X0 s D™ Utn(a, 9)
where the C"sand D’s are the unknown expansion coefficients, and 7; ,,, and U, ,,, are ten-

sor products of tent functions (defined below) in the a direction and trigonometric func-
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tionsin ¢. Hence, for a given segment,
Tim = Ai(a) cos[(m — 1)¢], U, = Ai(a) sin(me)

where

Ayfa)= U and Ay(a) = T

jt+1 — Qj Gj+1 — Qj
are the tent functions employed in the segment a € [a;, a;1].
The expansion functions given in equation (2.6) are substituted into the PDEs givenin

equation (2.3), and a Galerkin projection is carried out over the chosen segment, resulting

in

S i (4, — T£COS ¢)] da d¢ 2.7)

03 O T —afi+ Y DT i

o= [ i
a$

’

I,m I,m

1,m OULm frcos¢
%;D,. 5 (awg — " )] da d¢ (2.8)

fori =1..N, i #Fk, p=1,2andqg = 1..N,. Thisresultsin 2(N — 1)2N, nonlinear
algebraic equations in the C’s and D’s. Note that such a system of equations must be
solved for each a interval, resulting in atotal of n such systems of equations that must be
solved to obtain the entire manifold over the desired amplitude range.

In order to search numerically for these unknown coefficients, a local optimization
algorithm (the Hybrid Powell method embedded in the commercial algorithm package
NAG) is applied using an initial guess. Since the manifold geometry is continuous at the
switching hyperplane, zero is a good initial guess for a segment crossing the switching

plane. Results for subsequent amplitude intervals are obtained in a sequential manner,
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where the resultsfor the C’sand D’s of a preceding segment are used as theinitial values
for the following segment. In thismanner the procedure is self-starting and no complicated
initial guessing algorithms are necessary. Note that each segment on which solutions are
obtained is an annular strip in the state space. These strips are pieced together to form
the invariant manifold. It is important to note that a system with N degrees of freedom
will generally have N NNMs that are continuations of the modes of the linear system, and
that each manifold is solved for individually. Bifurcations of the NNMs can lead to more
NNMs than DOF [21], but these cases are not considered here.

The discretization in the a direction is analogous to the finite element method. In
order to ensure boundary conforming conditions at the interface between neighboring seg-
ments, one ought to run the optimization algorithm once again after the local optimization
results have been obtained for each of the individual segments. In other words, the re-
sults obtained from each segment are deemed as theinitial guess for the optimization over
the whole region. However, since the manifold geometry does not change rapidly, simple
term-by-term averaging over the interface of contiguous segments has acceptable accuracy
and is applied here.

Once the constraint functions (2.5) are obtained over the entire domain, the nonlinear
modal dynamics on the invariant manifold can be reduced to a pair of first-order ordinary
differential equations (ODES) expressed in terms of the master coordinates a and ¢ [42],

as follows:

a:_—fksinqﬁ, qﬁzwk—ﬁcosqﬁ (2.9

Wk aWy,
where f;. depends on a and ¢ only, since the remaining dynamic states have been replaced

by the constraint relations. Solutions of this relatively simple oscillator equation capture

the dynamics of the full system restricted to the NNM manifold of interest. There will be
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N such NNMs, each of which is obtained independently.

2.4 Atwo-DOF case study

An autonomous two-DOF piecewise linear system is studied here to illustrate the con-
struction procedures described in sections 2 and 3. The system shown in Figure 2.1 is
composed of two masses linked with linear springs, which is similar to the example sys-
tem considered in references [37] and [14].

Let z; and x5 represent the displacements of the first and second masses, m; and ms,

respectively, from their static equilibrium positions. The equations of motion are given by

(

mlil + ]{71.'171 - kQ(l‘Q - 1'1) =0 .
% if o < do
\ mzjﬁ‘g + ]{72(1’2 - 1‘1) =0

(2.10)

(

mlil + ]{71.'171 - kQ(l‘Q - 1'1) =0 .
% if o> dy

mgi’Q + kg(.’L‘g — 1'1) + k3(.’L‘2 — do) =0

\

where k1, ky, and k5 are the stiffnesses of the linear springs and dj isthe distance from the
static equilibrium position of m, to its contacting position with spring k5. System (2.10)
isobvioudly piecewise linear and of the form under consideration.

The system is nondimensionalized by introducing the following non-dimensional vari-
ables and parameters, z, = x1/dy, 22 = w3/dy, T = t/\/mi[ki, o = ko /k1, B = ks ]k,

and v = my/m;, yielding

B 7 4 r 4
1 0 le l1+a —a 21 0 .

> + { = if 2y < 1
_0 7 \22} | « | = 0

(2.12)

1 0 21 14+« —Q 21 0 .

S+ = if 29 > 1
_0 T2 | —a a+ﬂ_ 29 I’
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where the double derivative () now denotes d?( ) /d72.
Compared to the form of equation (2.1) in section 2, the mass matrix M, and the

stiffness matrices K, and K, are

10 B l+a —a l+a -«
0 ~ —a o« —a a+pf
The displacement vector is Z = [z, 2,]T, and the constant offset vector isb = [0 3]7.
The switching planeisdefined by {Z : hTZ = d}, whereh =[0 1]7 andd = 1.
Linear modal analysis can be performed on the sub-system M Z + K, Z = 0 in equa-
tion (2.11), where Z = 0 isthe static equilibrium position. For the generalized eigenvalue

problem K,q = w?Mgq, thetwo rea positive eigenvalues are found to be

|
Wiz =g |(@tay ) F Vie+ay+9)? - day (212)

and the eigenvector matrix isgiven by Q = [¢1 ¢2], Where ¢, and ¢, are the eigenvectors
corresponding to the non-dimensional natural frequencies w, and w,. After applying the
modal transformation Z = Qn and some manipulations, equation (2.11) is expressed in

the standard form of equation (2.2), and is thus ready for the construction of its NNMs.

2.4.1 Caseone

The non-dimensional stiffness ratios are taken to be «« = 8 = 1.5 and the mass ratio
isy = 1.0. The non-dimensional linear natural frequencies in equation (2.12) are w; =

0.6472 and w, = 1.8924, and the corresponding eigenvector matrix is given by

0.3419  0.6581

0.4743 —0.4743

which has not been normalized with respect to the mass matrix.
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The invariant manifold

The constraint equations that describe the two NNMs can be constructed following the
procedure described in section 3. For the first NNM, 7, and n; are chosen as master coor-
dinates, wheren; = a cos¢ and 7, = —aw; sing . The constraint equationsn, = P»(a, ¢)
and 7, = Q2 (a, ¢) are numerically constructed over thedomain a € [0, a,,4.], ¢ € [0, 27].
In order to show the first NNM over a large amplitude region, the parameter a,,,, 1S Set
equal to 40.5, and the domain [0, a,,..] is divided into 81 equally sized segments. In or-
der to ensure good numerical convergence, the number of harmonic terms is taken to be
N, = 64. For the second NNM, the master coordinates are (1, 12), and the constraint
equations are 1, = Pi(a,¢) and 7y = @ (a, ¢). The parameters set in the numerica
solution algorithm are: a,,,, = 60, with 120 segmentsin the  direction, and N, = 32.

The position constraints P»(a, ¢) and P;(a, ¢) for the two NNMs are shown in Fig-
ure 2.2. The geometry isflat and zero for small values of «, but is no longer planar after
a crosses the switching hyperplane. For the first nonlinear mode, the switching plane is
at a =~ 2.11, corresponding to a displacement of m, of z, = 1.0. Asthe maximum am-
plitude a,,,... iSreached, the displacement z, isabout 19. Hence, the Galerkin approach is
applicable into amplitude regions of strong nonlinearity, where asymptotic analyses [37]
are not applicable. For the second NNM, the switching amplitudeisalsoat a ~ 2.11, and
the maximum displacement z, is about 28 when a,,,,. iSreached.

It should be noted here that the switching position, a ~ 2.11, is represented by a cir-
cular line inside one of the strip segments used in the solution procedure. Therefore, the
precise manifold geometry near the transition plane is not caught by this coarse discretiza-
tion in o direction. However, it also shows that the Galerkin approach is robust, in the
sense that it is not necessary to know the switching condition in advance. For the reader

with an interest in further details about the manifold characteristics near this transition,
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two approaches can be taken. First, one could carry out an asymptotic analysis based on
the Poincaré map at the transition plane, as done in reference [37]. Or, one can refine the
manifold discretization near the switching hyperplane into smaller strip segments. The
first approach is complicated, but theoretically interesting. On the other hand, a small
mesh in the a direction is feasible and relatively simple to implement, and was carried
out here. The refined region for the first NNM is shown in Figure 2.3, where the region
a € [2.1082,2.5] is evenly divided into 100 segments with N, = 64. As described be-
low, the Galerkin approach correctly captures the details of the switching plane with this
refined mesh.

In order to better understand the nature of the invariant manifold, the manifold geom-
etry is aso shown in the original physical coordinate system (z;, Z;). Figure 2.4 displays
results based on the coarse segment discretization. The mesh shows the overall geome-
try of the manifold and the continuous solid curve depicts a representative motion on the
manifold for agiveninitial value. Since the example system, equation (2.11), is conserva
tive, al motions on the individual NNM manifolds must be periodic. Thus, the search for
periodic solutionsis essentially that of determining a set of initial conditionswhich ensure
periodic response. These initial conditions, which characterize individual NNMs, can be
found with numerical time integration and the search can be accelerated by the evaluation
of the Jacobian matrix [49,51]. This approach is an aternative method for determining
NNM invariant manifoldsfor this class of problems.

It isinteresting to note that the geometry of the first NNM shown in Figure 2.4(a) has
akink near the negative z; axis. This phenomenon can be explained by the time histories
shown in Figure 2.5. As can be seen, in each period of the first NNM response shown,
there exists atime interval over which the velocity 2, is nearly zero, the displacement z;

isamost constant, the velocity Z, changesits sign, and the displacement 2, changes quite
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rapidly. This behavior, which is reminiscent of sticking due to dry friction, leads to the
kink in the manifold geometry.

Figure 2.5 displays aset of time responses on the individual NNM manifolds, obtained
using two different approaches. The first category of responses is obtained from the time
integration of the reduced equations of motion in the master coordinates a and ¢, which
describe the dynamics on the manifold, equation (2.9). Initial conditions a(0) > 0 and
#(0) = 0 are used, and since the motion on the manifold is periodic, itsamplitude is equal
to a(0). Then, the modal responses »;(t) and 1;(t) are obtained from a(t) and ¢(t) based
on the master coordinate definition, equation (2.4), and the slave coordinate constraint
functions, equation (2.5). Finally, the displacements z;(¢) and velocities Z;(t) are reassem-
bled viathe linear modal transformation. The second category of responses consists of the
periodic responses simulated from the equations of motion of the original system, equa-
tion (2.11). The initia conditions for periodic motions are obtained using a numerical
direct search method. One can observe in Figure 2.5 that the simulations restricted to the
Galerkin-based manifold match very closely those of the original system with the same
energy level.

Another check of the Galerkin-based invariant manifold can be performed, and some
insight into the NNM dynamics can be gained by considering the response in the frequency
domain, as shown in Figure 2.6. The frequency f, of periodic motions on the manifoldis
defined as the fundamental frequency associated with the basic period 7y, fo = 27/7. In
Figure 2.6, the frequency f, increases rapidly after the amplitude a crosses the transition
hyperplane. Then f, tends to a limiting value as « increases. This limit is not equa to
any linear modal frequency of sub-systemsin equation (2.1), but is close to the bilinear
frequency defined in reference [14] for PWL systems with zero gap, where the transition

hyperplaneisat the equilibrium position. In the present system, the gap becomesirrel evant
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at large amplitudes, and the results approach those of Chati and Rand [14]. In Figure 2.6,
note the excellent agreement between response frequencies obtained from the ssimulation
of the system dynamics and that of the dynamics restricted to the manifold.

The comparisons carried out in both the time and frequency domains clearly demon-
strate that the Galerkin-based invariant manifolds accurately represent individual NNMs
over alarge range of amplitudes, and that the dynamics of the individual NNMs can be
accurately reduced to a single DOF, given by equation (2.9).

Some interesting features of the dynamic behavior of the NNMs of the system can
be observed by examining numerical responses for various initial energy levels in the
phase plane and in the configuration space. Figure 2.7 depicts phase plane diagrams,
closed curves correspond to periodic responses whose amplitude depends on the initia
energy level. These loops are symmetric with respect to the displacement axis (due to
the conservative nature of the system), but not with respect to the velocity axis (due to
the asymmetry of the restoring force). In the configuration space, shown in Figure 2.8,
the trgjectories of solutions are represented by curves, but not by straight lines as in the
linear case'. Moreover, the displacements z; and 2, do not vanish simultaneously?, but
they reach their maximum and minimum positions at the same time. Also, note that when
the amplitude isincreased, acompletely new modal curveisfollowed, which isnot simply
an extension of a curve from a lower amplitude. These deviations from linear system
dynamicsarise from the nonsymmetric, nonlinear nature of the exampl e system considered

here, and were also reported in reference [49].

! These are not tight loops, as can be shown from the symmetry of the manifold geometry, Figure 2.4, or
the Poincaré section in Figures 2.11 and 2.12.

2This is apparent in Figure 2.8 for the second NNM, and is also true for the first NNM, upon close
examination.
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Stability of nonlinear normal modes

It is well known that nonlinear systems can exhibit a wide range of behaviors, in-
cluding instabilities with bifurcations, chaos, etc. In order to investigate the bifurcation
characteristics of the NNMs of the example system, the stability of the periodic motions
on the NNM manifolds is examined as the amplitude a increases. Two methods, charac-
teristic multipliers and Poincaré map, are employed to explore the stability of the NNMs
and some additional features of the response.

The equation of motion of the two-DOF example system, equation (2.11), are ex-

pressed in standard state space form,
Y =F(Y) (2.13)

whereY = 21 %1 2, 2]" and theright hand sideis given by

0 0 1 0 0W
0 0 01 0
F(Y) = Y + > H(zo — 1).
—(1+a) o 00 0
a _a_ B _ B
L v v vH(Zz 1) 0 O_ L 7 )

The characteristic multipliers can be determined from the monodromy matrix M, defined
by M(a) = ®(r,), where 1, isthe period of the motion, « is the amplitude of the periodic

motion, and the matrix ®(7,) is determined from the matrix initial value problem,
b(1) = i (Y,)®, ®(0)=1 (2.14)

where Y, is the periodic solution with amplitude a, and the period 7, is obtained while
numerically searching for periodic solutions®. The matrix Fy-(Y,) is the Jacobian matrix

of the right hand side of the state equation (2.13), which can be calculated at each time

3Note that the period 7, depends on the amplitude a.
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step during a numerical integration. The stability of the periodic solution can be checked
by the eigenvalues, 1i(a), of the monodromy matrix A (a). For a given periodic response
of this conservative system, a necessary condition for stability isthat all these eigenvalues
lie on or inside the unit circle in the complex plane [51].

The monodromy matrix is typically used for systems with smooth restoring forces.
In this example system, the force F'(Y") is piecewise smooth on either side of transition
hyperplane. Since the solution intersects the surface of discontinuity without tangency
and the initial time does not correspond to a crossing of the surface of discontinuity, the
monodromy matrix can still be constructed from equation (2.14) [52]. For simplicity, an
explicit forward Euler method is applied here to approximate the resulting matrix, so that
it isnot necessary to know the switching timein advance. The accuracy of the monodromy
matrix is controlled by the time step in the numerical integration.

The movement of the eigenvalues of the monodromy matrix, p(a), in the complex
plane as the amplitude is varied is schematized in Figure 2.9 for both NNMs. The mul-
tipliers for both NNMs stay on the unit circle for small amplitudes. As a increases, a
pair of complex conjugate multipliers move on the circle towards —1. At acritical value,
a = 6.52 for thefirst mode, and a = 4.04 for the second mode, this pair mergesat —1 and
then one of those multipliers escapes the unit circle, yielding unstable behaviour. For the
second mode, the motion on the manifold remains unstable above the critical amplitude.
For the first mode, the pair of separated multipliers on the negative real axis merge again
at —1 asthe amplitude increases further, and stability isrecovered for a > 8.62.

The results from the characteristic multipliers indicate that the system loses stability
when the multipliers satisfy 1(a.) = —1, where a,. is the critical amplitude. This cor-
responds to a flip bifurcation, or a subharmonic bifurcation [51], or a period doubling

bifurcation. Thisperiod doublingisillustrated in Figure 2.10 by computing the FFT of the
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response at two amplitudes close to, and on either side of, the bifurcation point. Thisflip
bifurcation was also found in the piecewise linear system studied by Zuo and Curnier [49],
where the instability was parameterized by a stiffness parameter, similar to the stiffness
ratio 3 in equation (2.11).

In order to explore the dynamics in the unstable region, a Poincaré map is now em-
ployed [53]. Since thereis only asingle transition hyperplane in the system, it provides a

natural Poincaré section [37], defined by the two components'

Y={YeR'": n=1,and% >0}
(2.15)
Yr={VeR': 2p=1,and % <0}
where Y is the vector of state variables in equation (2.13). The dynamics in both sub-
regions are linear and analytical solutions can be locally obtained. Given the initial con-
ditions of the exact solution for each nonlinear mode, the Poincaré mapping can thus be
constructed numericaly [37].

From across sectional view of the Poincaré map, the motion on the first NNM is stable
until the critical amplitude, a. = 6.52, isreached, and isrepresented by the pair of pointsin
Figure 2.11(a). Asthe amplitude increases beyond the critical value, the motions become
guasi-periodic, represented by the loops in Figure 2.11(b, ¢), and then chaotic, as shown
in Figure 2.11(d). This sequence indicates that the period doubling at the critical point
is subcritical. Also, the period doubling implies that the post-bifurcation responses will
not exist in aNNM manifold, since period doubling cannot occur in a planar, autonomous
system. Therefore, all post-critical responses associated with flip bifurcations must include

both NNMs, asthey are defined here. At the second critical amplitude, the periodic motion

4The Poincaré section should be defined such that periodic motions pierceit only once during one period.
Inthe present case, either section X or section X* issufficient for this purpose, but solutionsfor both sections
are shown to evidence the symmetry of the periodic responses.
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regains stability, as shown in Figure 2.11(e). For the second mode, the periodic response
remainsunstable after theinitial bifurcation at a. = 4.04, asshownin Figure 2.12(b). Here
the bifurcation appears to be supercritical, and another period doubling occurs, resulting
in the transition from two to four points. At larger amplitudes the response becomes

quasiperiodic, as shown in Figure 2.12(c).
2.4.2 Casetwo

Here the non-dimensional parameters in equation (2.11) are set as follows: stiffness
ratiosa = 1.5 and § = 3.0, and massratio v = 1.0. Compared to thefirst case, the stiff-
ness of the clearance spring k3 has been doubled. Therefore, the nonlinearity islarger than
in the first case, and should result in more pronounced distortions of the NNM invariant
manifolds. Since the linear modal parameters in equation (2.12) are independent of the
parameter 3, they are the same asin thefirst case.

The two NNM manifolds are constructed numerically following the same procedures
as the first case: (1) For the first NNM, the maximum amplitude is a,,., = 15, which
is evenly divided into 30 segments, and N, = 64 harmonic terms are used; (2) For the
second NNM, the maximum amplitude is a,,,,; = 60 with 120 segments, and N, = 32
harmonic terms. The switching hyperplane is located at the amplitude a ~ 2.11 for both
modes.

The NNM manifolds are shown in Figure 2.13 in the coordinate system (z;, ;). For
the second NNM, the manifold looks similar to that for the first case. However, the kink
inthefirst NNM is so pronounced in this case that the manifold is no longer single valued
beyond a certain amplitude. This results from the stronger nonlinearity.

The time history of the motion on the first NNM is shown in Figure 2.14. Time inte-

grations of the system equations of motion and of the dynamics restricted to the Galerkin-
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based manifold are compared. In all cases the periodic motions match very precisely. In
the kink region of the manifold, the motion of mass m; has a dlight oscillation super-
posed to the overall motion, instead of the near-stick phenomenon observed in the first
case. Thisresultsin the multiple valued region, or loop, shown in the invariant manifold
in Figure 2.13.

The accuracy of the NNMs is further verified in the frequency domain, as shown in
Figure 2.15. The frequency-amplitude relationship is similar to that in thefirst case. Com-
parison of the Galerkin-based manifold simulation results and solutions from simulations
of the system equations of motion demonstrate the excellent accuracy of the numerically
computed NNMs.

The stability and large amplitude dynamics of these NNMs were also checked using
characteristic multipliers and Poincaré maps. Similar results for the NNM bifurcations
are found, as follows: (1) For the first NNM, the manifold is stable until a critical am-
plitude a.=3.82, where a pair of complex conjugate characteristic multipliers merge at -1,
solutions on the manifold remain unstable as the amplitude increases up to another crit-
ical amplitude, a. = 5.62, where the multipliers merge again at -1, and solutions on the
manifold regain stability. (2) For the second NNM, solutions on the manifold are unsta-
ble above the critical amplitude of a. = 2.30. Sample Poincaré sections are shown in

Figure 2.16 to illustrate the bifurcation of the first NNM.

2.5 Conclusions

From this study of NNMs for piecewise linear autonomous systems, and the exam-
ple system studied in detail, the following conclusions are drawn. (i) The Galerkin-based
method, originally developed for dynamic systems with smooth nonlinearities, can be ex-

tended to piecewise linear systems and used to accurately construct NNM invariant man-
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ifolds. The transformation of the master coordinates to polar form and the discretization
in the amplitude make the Galerkin-based approach applicable in strongly nonlinear re-
gions, as well as in the transition region between linear and nonlinear motions. (ii) The
dynamic response on individual NNM manifolds can be reduced to a single-DOF system
described in terms of the master coordinates. The dynamic response of al slave coor-
dinates can be recovered from the simulation results of the master coordinates using the
constraint relations. (iii) Although numerical results were obtained for atwo-DOF system,
the Gal erkin-based approach can be easily applied to multi-DOF piecewise linear systems,
so long as the single switching hyperplane condition is satisfied. (iv) For response ampli-
tudes beyond the transition hyperplane, the dynamic behavior of piecewise linear systems
can be quite complicated. Thisincludes nontrivial aspects of the periodic response, such as
loopsin the manifolds, as well asinstabilitiesleading to avariety of system responses. (V)
The stability and post-critical dynamics of the nonlinear normal modes were investigated
using characteristic multipliers and Poincaré maps. Flip bifurcations were found to occur
for both modes, as well as transitions to quasiperiodic responses. For the first nonlinear

mode, the NNM motions regained stability beyond a second bifurcation amplitude.

2.6 Figures

kl k2
™ A s

Figure 2.1: A two-degree of freedom piecewise linear system.
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CHAPTER I

THE CONSTRUCTION OF NONLINEAR NORMAL
MODES FOR SYSTEMS WITH INTERNAL
RESONANCE

3.1 Introduction

In order to obtain accurate reduced order models for nonlinear systems, “nonlinear
modal analysis’ has been proposed as an analogy to its linear counterpart. Initiated by
Rosenberg [16], the concept of nonlinear normal modes (NNM) has been generalized by
Shaw and Pierre [2, 3] through the introduction of invariant manifolds. A NNM invariant
manifold is a two-dimensional surface in the system phase space that is tangent to the
corresponding linear modal eigenspace at the equilibrium point. In order to parameterize
these manifolds for vibratory systems, a single pair of state variables in linear modal co-
ordinates (typically a modal displacement-velocity pair, or amodal amplitude and phase)
are chosen as master coordinates for an individual NNM. Then, all the remaining degrees
of freedom (DOF), the so-called slave coordinates, are constrained to these master coor-
dinates in a particular manner, dictated by the equations of motion. The nonlinear partial
differential equations (PDESs) describing the geometry of the manifold are produced using
an approach that follows center manifold construction. Based on this methodology, a nu-

merical framework for constructing NNMs, namely a Gal erkin projection method [42], has

45
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been proposed and effectively applied to avariety of nonlinear systems, including systems
with non-smooth restoring forces [54], as well as systems with non-proportional damping
forces, non-symmetric nonlinearities, and gyroscopic terms [55]. Once the NNM invari-
ant manifold is obtained, motionson it are governed by the dynamics of the corresponding
master coordinates, which are described by two first-order ordinary differential equations.
Note that these equations of motion are valid only for initial conditions on the invariant
manifold.

Unlike linear modes, NNMs will interact during a general motion that is initiated by
genera initial conditions. Moreover, an invariant manifold approach that is based on a
single mode reduction will break down in the presence of internal resonances between the
master and any slave coordinates [56]. Hence, a nonlinear normal multi-mode method-
ology is required if one is interested in the multi-mode responses of nonlinear systems.
Previous studies of NNMs with internal resonances were primarily based on perturba-
tion methods [27,34] or polynomial series expansions with the invariant manifold ap-
proach [29,56]. These are applicable only in the weakly nonlinear regime. In order to
obtain accurate reduced-order models for nonlinear systems with internal resonances in
strongly nonlinear amplitude regimes, a new method for constructing invariant manifolds
is proposed in this paper, as follows.

For an n-DOF nonlinear system with A/ modes involved in an internal resonance (or,
more generally, with A/ modes to be retained for any reason), the multi-mode invariant
manifold can be defined and obtained numerically in terms of 2)/ master coordinates (M
displacement-velocity pairs or M amplitudes and phases). The procedure is outlined as
follows. First, atransformation to polar coordinates is applied, as in the single-mode ex-
pansion case proposed by Pesheck et al. [42], to each pair of master coordinates. Then,

the constraint functions for the slave coordinates are expressed in terms of these master
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coordinates, which are M/ amplitudes @ and M phases ¢. Since the master coordinates are
represented by more than one amplitude-phase pair, the computation of the manifoldsis
much more complicated than in the single-mode case. To address this problem, acomputa-
tional approach is proposed, which combines Gal erkin projectionsin the phase coordinates
and finite difference discretizationsin the amplitude coordinates. Using this methodol ogy,
a2M-dimensional invariant manifold can, in principle, be constructed for the system, and
motions on this manifold are governed by a set of 2 first-order differential equationsin
the master coordinates.

The multi-NNM approach is applied herein to a simple three-DOF system, as well as
to arotating blade model in which transverse motions are nonlinearly coupled with axial
extensions of the blade. For the latter system, an 18-DOF discretized model derived from
linear modal analysis is examined, which features an internal resonance between the first
and second flapping modes. Using the multi-NNM procedure, the internally resonant four-
dimensional invariant manifold is constructed and the resonant dynamics are shown to be
accurately captured by the two-DOF (four state) reduced-order model.

The paper is organized as follows. The class of nonlinear systems under consideration
and the formulation of the multi-mode invariant manifold equations are described in sec-
tion 3.2. In section 3.3, the solution procedure for the invariant manifold is demonstrated
on a 3-DOF example system. In section 3.4, the methodology is applied to an 18-DOF ro-
tating beam system featuring an internal resonance between the first two flapping modes.

Finally, some conclusions are drawn in section 3.5.

3.2 Multi-mode invariant manifolds

The vibratory system considered is an n-DOF autonomous nonlinear system, which

can be obtained directly from Newton’s laws, Lagrange's equations, finite el ement meth-
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ods (FEM), or through any assumed-mode method. In order to simplify the construction
procedure for the invariant manifolds, systems without damping or gyroscopic terms are
considered (the method can be generalized to include these effects, but it is much more
computationally intensive). For these systems, one can transform to linear modal coordi-

nates, and the original nonlinear system can be expressed in the following standard form:

i+ win = filn;), i, j=1ton (3.1)

wherethen;’sarethelinear modal coordinates, thew;’s are the corresponding linear modal
frequencies, and f;(n;) isthei-th nonlinear force, which generally dependson all thelinear
modal coordinates, expressed in terms of the linear modal coordinates. It should be noted
that the nonlinear forces, the f;(n;)’s, are assumed to be independent of the linear modal
velocities, 7;. With this assumption, the computational cost for the construction of the
invariant manifolds can be significantly reduced.

In order to obtain accurate reduced-order models for nonlinear systems with internal
resonances, multi-mode invariant manifolds must be constructed [56]. Here, an invariant
manifold is defined as a multi-dimensional surface spanned by all the linear modal dis-
placements and velocities involved in the internal resonance, such that any motion initi-
ated on the manifold will remain onit for all times. Following this definition, the invariant
manifold can be constructed in the following manner.

Let us assume that there are atotal of A/ modes involved in an internal resonance for
the nonlinear system defined in equation (3.1). These modes are described by a set of
indices, denoted as S),. According to the definition of invariant manifolds, each pair of
state variables involved in the internal resonance, (1, nx) k € Sy, are chosen as master
coordinates. Then al the remaining DOFs, namely the slave coordinates, are constrained

such that they are dependent on the 2M/ master coordinates. A straightforward expression
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for the dave constraint functionsis

=) g S k€ S (32)

1 = Yi (s k)
Thisform has been utilized by Pesheck et al. [56] to carry out an asymptotic procedure for
the construction of the invariant manifolds. In this approach, the constraint relationships,
equation (3.2), are approximated by polynomia expansions in the master coordinates.
Using this method, the domain of validity of the resulting solution is limited to some
neighborhood of the system'’s equilibrium position. In addition, this approach does not
allow one to systematically control the accuracy of the approximate solution. Hence, a
new form for the master coordinates and the slave constraints is used here in order to
overcome some of the inherent deficiencies of the polynomial expansion method.

For each pair of master coordinates, (1, nx) k € Sy, apolar coordinate transforma-

tion isapplied,

Nk = aCOS(¢p

k= 0xC0S() . for ke Sy (33)
M = —apwiSIN(Py,)

where wy, is the k-th linear modal frequency, and (ay, ¢x) are the master coordinates in

amplitude-phase form. Then, al the slave coordinates are expressed as functions of these

amplitude-phase master coordinates,

n; = Py(ak, )

i = Qilak, dr)

, for i ¢ SM, ke Sy (34)

wherethe slave coordinates are restricted to the domain defined by the M pairsof amplitude-
phase variables. Thisdomain is easily bounded, since the phase coordinate is periodic and
the positive amplitude region can be dictated to arange of interest during the construction

of the invariant manifold, as described below.



50

With the above polar form for the master coordinates and the slave constraint relation-
ships, the partial differential equations governing the invariant manifold can be obtained

asfollows. For each pair of slave coordinates, (7;, 7;), we have

,
Qi = Pi= Yies, (S + 1)
, forid¢ Sy

| Q= res,, (Bin+ 52) = —w?Pi+ f;

where w; and f; are the i-th linear modal frequency and the nonlinear force defined in
equation (3.1), respectively. In order to eiminate the explicit time dependence, a, and
¢, in equation (3.2) are replaced using the governing equation of motion for each pair of

master coordinates, which are;

;

Gy = *le(fﬂj)singﬁk

, for ke Sy, j=1ton (3.5)

. fln
\ Pk = Wk — —Lf:Z]k) COSpy,

Substituting equation (3.5) into equation (3.2), the governing PDESs for the invariant man-

ifold are found to be

(

3Pi — 1 3Pi 3
Qi = ZkESM |:(9ak (w_{fanbk) + Db, (wk - wiZkCOSQSk)]

\ D kesu [gfg (;—{’%m@) + gg}: (wk — wf’;k COSgbk)] = —wW?P + fi
for i ¢ Sy (3.6)

In equation (3.6), there are a total (n — M) pairs of equations governing the invariant
manifold, in terms of the constraint equations. These equations are nonlinear and have
to be solved in some approximate manner; here this is done numerically. Once they are
solved, the resultsfor al of the slave congtraints, P; and @); for i ¢ S, can be substituted

into the M pairs of ordinary differential equations governing the dynamics of the master
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coordinates, equation (3.5). As aresult, the response of the origina system restricted to
the invariant manifold is captured by this 2)/-DOF reduced-order model. The procedure
for obtaining the numerical solution for the invariant manifoldsis described in the context

of asimple example, and then applied to a more substantial problem.

3.3 Athree-DOF example system

Figure 3.1 depicts athree-DOF mass-spring system with two cubic nonlinear springs of
coefficients v, and +,, attached to masses M; and M3, respectively. The system parameters
are tuned so that the second linear modal frequency is approximately three times the first
one, that is, wy =~ 3w;. Consequently, a three-to-one internal resonance occurs between
the first and second linear modes.

Using linear modal coordinates, the system can be transformed to the standard form

shown in equation (3.1),
i +win = fi(n;) for i,j=1,2,3 (3.7)

where the modal coordinates r); are defined by the linear modal transformation:

( 3 B T ( 3\

1 0.5870 —0.5147  0.6249 N
Ty ¢ = | 0.6039 —0.2357 —0.7614 Ny (

T3 0.5392  0.8243  0.1725 73

\ / L . \ /

The linear modal frequencies are w; = 0.5972 radls, w, = 1.792 radls, and w3 =
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3.405 rad/s, and the nonlinear forces are
4

fi = 0.587 (—=0.587 ;; + 0.5147 1o — 0.6249 1)3)?

— 0.8088 (0.5392 1, + 0.8243 15 + 0.1725 13)3

f2 = —0.5147 (—0.587 1y + 0.5147 1o — 0.6249 13> (38)

— 1.2365 (0.5392 1y + 0.8243 15 + 0.1725 )3

f3 = 0.6249 (—0.587 1, + 0.5147 15 — 0.6249 13)?

— 0.2588 (0.5392 1y + 0.8243 15 + 0.1725 )3

\

In the presence of an internal resonance between the first two modes, the master co-
ordinates are chosen as the state variable pairs (1;,7;) and (72, 7,). The corresponding
master coordinate index set is Sy; = {1,2}. The polar coordinate transformation is ap-
plied to these state variable pairs according to the definition in equation (3.3). Asaresult,
the transformed master coordinates are expressed in terms of the amplitude-phase pairs,
(a1, ¢1) and (az, ¢2).

As defined in equation (3.4), the constraint relationships for the slave coordinates are

N3 = P3(a1,a2, ¢1, ¢2)

N3 = Q3(a1,a2,¢17¢2)

Thegoverning PDEsfor theinvariant manifold are given in equation (3.6) and are rewritten

here as

OF

day w1 (olo3] w101

OP; <—f23m¢2> " OP; <w2 B f2005¢2>

Oay W2 [0)05 Wa @2

0Qs (—flsindﬂ) 0Qs ( f1COS¢>1)
+ W1 —

day w1 ol w101

0Qs (—fzsin¢>2> 0Qs ( szOS¢>z)
+ Wy —

3(12 [0%)) 3(1)2 Woly

OP; <—f13m¢1) i oP; <w1 B f1C03¢1)

+ (3.9)
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Equations (3.9) and (3.10) are defined in the four-dimensional space spanned by the
amplitude-phase pairs (a, ¢1) and (as, ¢2). A numerical solution schemeis given hereto
approximate the unknown constraint relationships, Ps (a1, as, ¢1, ¢2) and Qs (a1, as, ¢1, d2),
which define the geometry of thefour-dimensional invariant manifold. In the two-dimensional

phase region, defined by

{(91,02) | ¢1 €[0,2], d € [0,27] }

the constraint relationships, P; and @3, are periodic in both ¢; and ¢,. Hence, they can
be efficiently approximated by two-dimensional Fourier series. In the two-dimensional

amplitude domain, defined by
{ (a17a2) | 0< a1 < Aimaz, 0< a2 < U2maz } )

where the upper limits ay,,4,; and as,.,., are set during the numerical construction pro-
cedure, finite difference discretization methods can be used to approximate the unknown
constraint equations by a sequence of overlapping polynomialsthat interpolate P; and ()3
at aset of grid points. It should be noticed that the region of two lines, { (a1, az) | a1 =
0 ora, = 0 }, isexcluded from the two-dimensional amplitude domain in the finite differ-
ence scheme, since thisregionis not defined in the governing partial differential equations
for the invariant manifold. With the combination of finite difference methods and two-
dimensional Fourier series expansions, the unknown constraint equations, P; and ()3, can

be approximated at each grid point as

N¢1 N¢z

P3(a§aa‘§a¢1;¢2) ~ Z ZC b Fi(¢1)Fin(¢2) (3.11)
]lvdi r]nvml

Qs(ai, ab, 61, ¢2) =~ ZZD Fl (¢1) Fin(02) (312)

I=1 m=1

where (a!, al) isthe grid point determined by the finite difference schemein the amplitude

region; indices i and j denote the location of the grid point along the a; and a, directions,
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respectively; the Fourier terms, Fi(¢;) and F,,(¢-), are defined as:

cos'5lp, lisodd
Fi(¢) = (3.13)
sinkg, liseven;
and N,, and N,, are the number of terms of the Fourier expansionsin ¢, and ¢,, respec-
tively. Ascan be seenin equations (3.11-3.13), the total number of the unknown quantities
are determined by N,, and N,,, as well as the number of grid points. Once the unknown
coefficients, the C’s and D’s in expressions (3.11) and (3.12), have been obtained at all
grid points, the invariant manifold is completely determined in this approximate manner.
Given the expression of P; and ()3 at each grid point, the derivatives of the local
interpolant are used to approximate the derivatives of P; and ()3 with respect to a; or as.

Simple two-point backward interpolation gives

oP. . . 1 .
ﬁ(aiaaéa ¢la ¢2) ~ h_l |:P3(a7iaa%a ¢la ¢2)

— Py(a}", ), 1, 9752)] +O(h1)

(3.14)

oP;, . 1 o
yg(ai7aé7¢lﬂ¢2) ~ h_2|:P3(a7i;a‘;’¢1,¢2)

- PS(a'Zia aéila ¢17 ¢2):| + O(hQ)

whereh; = ai —a'™!, hy = a) — ol ™" arethe distances between adjacent grid points along
the a; and a, directions, respectively. The function O(-) denotes that the errors in these
approximations are orders-of-magnitude h; and h,, respectively. If more grid points are
used in the approximation for a given amplitude range, higher accuracy is obtained. The
approximation of the derivatives, 0Q;/0a; and 0Q)3/0as, is determined using a similar
scheme. Along the ¢; or ¢, directions, the derivatives of the unknown functions P; and
(3 can be easily obtained using the two-dimensional Fourier series expansions given in

expressions (3.11) and (3.12).
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The computational time associated with the construction of the invariant manifold de-
pends on the number of unknown coefficients, which depends on the number of grid points
selected for the amplitude variables and the number of harmonics employed in the Fourier
series. For this example system, the total number of unknown coefficients, C’sand D’s,
can be reduced to one-fourth its original number by exploiting the inherent relationship
between Q5 and P;, along with the symmetric nature of the nonlinear forces, which are
cubic and depend only on the displacement variables. The details of these simplifications
are now described.

For agiven set of valuesfor the C’s, the expression of the velocity constraint, ()3, can

be explicitly determined from the following relationship:

0P

Q3(aiaaga¢la¢2;c) ~ 8—04( iaaga¢17¢2;c)

i o sin oP; , . .

X - fl(azlaaéaqslaQS?;C)i} +—3(al17a‘;7¢17¢2;0)
L w1 5¢1
[ P COSp oP; , .

X _wl — filal, ad, d1, ¢2; C) wlaj + ?wj(aua%aﬁbb%;c)
[ . sin oP; .

X - fZ(azlaa‘;7¢la¢2;C) ¢2:| +—3(al17a‘;a¢17¢2;0)
I 2 [0)05
i o co

% |ws — folah, ady dn, 6:C) Sﬂ, (3.15)
L Walz

which isthe algebraic form of equation (3.9). Note that the nonlinear forces, f; and f, in
equation (3.15) are only dependent on the C’s, since al the nonlinear forces are defined
in terms of the displacement field only, equation (3.8). Otherwise, the relationship for
(3 would be implicit. The velocity constraint, ()3, would then have to be expanded as
given in expression (3.12). The unknown coefficients, D’s, would need to be solved for
simultaneously with the C’s, in an iterative manner.

From expression (3.15), the velocity constraint Q5 at each grid point (a, a}) is evalu-
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ated numerically at the following set of phase angles,

QE{ = Iﬂ'/N¢1

éZJ:Jﬂ—/Nd)za
forlzl...QNd,l, J:12N¢2

Q3 (aia a%a Q_S{a Q_SQJ) where

Then, atwo-dimensional Fast Fourier Transform (FFT) can be applied to these 2NV, x
2Ny, discrete grid point valuesin order to obtain the two-dimensional Fourier coefficients

corresponding to function Q)s:
N¢ N

_%1

Q (ala Cl2, ¢la ¢2 Z Z D \/jlmqﬁl eﬁn@ (316)

N¢1 N¢z

wherethe D’s are the complex version of the D coefficients, as defined in equation (3.12),
and N,,, Ny, are set to be even. Note that 2V, x 2N, grid points in phase domain are
used to evaluatethe Ny, x N4, complex Fourier coefficientsin equation (3.16), in order to
reduce aliasing errorsin the Fourier transform. Once the Fourier coefficients are obtained,
thefirst order derivatives, Q3 /04, and Q3 /¢, in equation (3.10) can be efficiently cal-
culated by the two-dimensional Inverse Fast Fourier Transform (IFFT). The derivatives of
(3 with respect to a; or a, can also be obtained by the backward finite difference scheme
defined in equation (3.14). By this method, the total number of unknown coefficients in
equation (3.11) and (3.12) can be cut in half. Specifically, only the C' coefficients need to
be obtained.

For this example system, the nonlinear forces in equation (3.8) are only cubic. Asa
result, half of the Fourier seriesin equation (3.11) can be eliminated. In particular, in the
two-dimensional Fourier series expansion of the constraint function P;, only the trigono-
metric basis functionswhose combination orders are odd need to beincluded. With respect

to each individual basis function, F;(¢;)F,,(¢2), in equation (3.11), the subscripts of the
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corresponding C' coefficient can be used as a guide to determine whether or not the associ-
ated basis function shall be retained. If int[//2] + int[m /2] is odd, the corresponding basis
function is retained in the expansion, otherwise it is removed (where the operator int|a]
denotes the maximum integer which is not larger than a). As aresult, the total number
unknown coefficientsin equation (3.11) is halved again.

At this stage, the constraint function P; at a grid point is approximated by the reduced

two-dimensional Fourier series and can be expressed in the following simplified form:

Ps(%ﬂ%: P1, P2) ~ ZC To(o1, ¢2) (3.17)

where (a?, ) isagrid point in the amplitude domain of interest, N,, isthe total number of
expansion functions, T, (¢1, ¢-) isasimplified notation for the individual basis functions
defined in equation (3.11), with odd harmonic combination order, and % is the corre-
sponding unknown coefficient. Given aninitial guess for the C,’s a al grid pointsin the
amplitude domain, the complex Fourier coefficients, D’s, for the velocity constraint Qs
are obtained from equations (3.15) and (3.16). Then, the value of ()3 and the correspond-
ing partial derivatives are substituted into equation (3.10) along with the value of P;. The
corresponding residual function, Rs, is defined at each grid point (%, a}) asfollows.

0Qs

R3(a§,a§,¢1,¢2;0 ) - ( i:a27¢17¢2, )

Jday
| = iladsad o0 C =2 |+ T2 i o)
><:wl—fl(ai,a%,d)l,@;ca)‘fil] gfj(i, @}, b1, b2; Co)
| - fatads a0 C =22 | 4 T8 i)
<o o 0 ) S22
WP )61, 025 Co) — ek a6, 6 ) (319)

In order to minimizetheresidual function R3, a“weighted residuals’ Galerkin method
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isused, in which the projection of the residual function onto the basis function isrequired

to vanish:

2m 2m )
/ / {Ta(qsl,@)ng(ai,a;,qsl,@;ca) doy dds =0, (319)
0 0

for Oé:l---Naa a V(ai,aé),

where T, is the basis function in equation (3.17). Equation (3.19) yields a set of nonlin-
ear algebraic equations in the unknown coefficients C,. These are solved using a non-
linear solver found in the subroutine package NAG, which is based on Powell’s hybrid
method [57]. The user must, (i) provide an initial guess for the unknown coefficients in
equation (3.17), and (ii) evaluate the “weighted residuals’, the left hand side of equa-
tion (3.19), by numerical integration.

Theresulting four-dimensional invariant manifold cannot be visualized in three-dimensional
gpace. However, we can show specific cross sections of the manifold. In figure 3.2, the
slave constraint relationship P; is depicted at the phase angles (¢4, ¢2) = (0, 0). The two-
dimensional amplitude domain (ay, as), in which the invariant manifold is numerically
constructed, is arbitrary set as a; € [0.01,0.35] and a, € [0.01,0.35]. Through conver-
gence study, an 11-by-11 grid finite difference scheme is chosen to discretize this domain.
The mesh size, hy and hs, isequal to 0.034 in both the a, and a, directions. In figure 3.2,
the invariant manifold looks smooth with this mesh scheme, which indicates this 11-by-11
discretization is sufficient to capture its geometry in the amplitude domain.

The domain defined by (¢1, ¢2), where ¢, € [0,27] and ¢, € [0,27], is a two-
dimensional torus. The invariant manifold at any grid point (a’,a}) can be visualized
in thistorus domain. In figure 3.3(a), the phase angle ¢, is defined by the angle from vec-
tor O_ro> to vector Or. At phase angle ¢, across section of theinvariant manifold along the

plane rOz is shown in figure 3.3(b). In this cross section, the shape of the invariant man-
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ifold is shown by the vector 77, which indicates the magnitude of the manifold at phase
angle ¢,. For comparison, the nominal torus domain is aso shown here as a circle with
adashed line, on which the magnitude of the invariant manifold is zero. For the solution
shown in figure 3.2, the number of termsfor the two-dimensional Fourier seriesin expres-
son (3.11) isset as N, = Ny, = 12 for each grid point. Since the nonlinear forces are
cubic for this example system, the total number of basis functions in the two-dimensional
phase space is reduced to N, = 72 in expression (3.17). Asaresult, the total number of
unknown coefficients, the C,,’sin expression (3.17) for all of the 11 x 11 grid pointsin the
two-dimensional amplitudedomain, isequal to 8, 712 for the construction of the constraint
relationship Ps. For each unknown coefficient C.,, zero isused astheinitial guessvalueto
start the Powell’s hybrid method.

Once the constraint relationship, P, is obtained for thisinternal resonance case, sys-
tem motions on the invariant manifold can be captured by the reduced-order model, which
involves the master coordinates only. As shown in equation (3.5), numerical time simu-
lations can be carried out for these four first-order differential equations for given initia
conditions, a;(0), ¢1(0), a2(0), and ¢2(0). In figure 3.4, time simulations for the mas-
ter coordinates are shown using the reduced-order model with two DOFs and the original
three-DOF model restricted to the invariant manifold. Based on the reduced-order model,
equation (3.5), the responses of the amplitude-phase pairs are smulated. Then, the re-
sponses of the modal coordinates are obtained using the definition of the polar coordinate
transformation. For comparison, the time responses for the master coordinates can also
be acquired by the direct time ssmulation of the original system, equation (3.7), since the
initial conditionsfor the slave coordinates 7;(0) and 773(0) can be obtained using the slave
constraint function P; and (5. According to the definition of the invariant manifold, any

motion initiated on the manifold will remain on it for al the time, indicating that the simu-



60

lation obtained from the original model should match the response from the reduced-order
model if the invariant manifold has been constructed accurately enough to capture the ac-
tual geometry. In figure 3.4, the two categories of time responses are undistinguishable,
indicating that the manifold geometry is accurate.

With the reduced-order model, time responses for the dave coordinates (7, 73) can
be obtained from the constraint relationships P; and 5. In figure 3.5(a) and (b), these
responses are compared to simulations based on the original system model. An excellent
match between these two results is observed, which is further evidence to the accuracy
of the invariant manifold. The time response of any physical coordinate, i.e., the dis-
placement or velocity of any massin figure 3.1, can be determined from the ssmulation of
the reduced-order model, since the responses of all modal coordinates, both masters and
slaves, are calculated. The displacement and velocity of mass M;, X5(t) and X5(t), are
shown in figure 3.5(c) and (d). Again, excellent agreement is found between the results

for the reduced-order and original system models.

3.4 The rotating beam system

Here the methodology is applied to a vibratory system of more practical interest, and
with more degrees of freedom. A uniform rotating Euler-Bernoulli beam, shown in fig-
ure 3.6, is considered. This system has been studied by Pesheck et al. [56], who approxi-
mated the invariant manifold in the case of an internal resonance using asymptotic meth-
ods. Apiwattanalunggarn et al. [58] aso studied the same system and obtained the single-
mode nonlinear invariant manifold for large amplitude motions. Thisrotating beam system
can be considered as a highly ssmplified model of a helicopter rotor blade, in which the
following effects are neglected: |lead-lag motion, torsional motion, aerodynamic loading,

and the weight of the blade. Even with this over-simplified model, it has been shown that
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typical discretization procedures for this system suffer from very slow modal convergence,
since a comparatively large number of axial modes must be included in order to capture
accurately the transverse bending motion [56,58]. Due to the nonlinear axial/bending
coupling effects, the resulting discrete models are computationally cumbersome, even for
direct time simulations. Hence, a practical model order reduction technique would be very
useful for the analysis of such systems.

A detailed derivation of the PDE’s governing the transverse bending, w(z, t), and the
axial elongation, u(x,t), of this beam can be found in reference [56]. The derivation
procedure is briefly described here. The potential energy, U, and kinetic energy, 7', may

be expressed as follows.

1 L
T = 3 / m (i 4+ 0?*) + mQ?*(h + z + u)?dx (3.20)
0
1t 2 1 212
U = 3 EI(w )" + EA(u, + §(wm) ) dx (3.22)
0

where w(zx,t) and u(x, t) are the transverse and axial displacement respectively, () , de-
notes a partial derivative with respect to the spatial variable z, and (') represents a time
derivative. It should be noted that the standard linear curvature assumption is made in the
energy expressions in order to evidence the slow modal convergence even with the sim-

plest model [56]. Hamilton's principle is used to develop the weak formulation for the

equation of motion.

to L 1
/ / {[—mw — FIw, 00, |0w — [FA(u,, +§(w,m )W, 0w,
t1 0
+ [=mii +mQ? (x + h + u) + EAu,,, |0u

_ [EA%(w,x 126, }dxdt —0 (322)

where §() denotes the variation of a quantity.

In order to obtain the discretized version of the equations of motion in the standard
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form (3.1), the linearized partia differential equations of the nonlinear rotating beam sys-

tem are given here.

miig — m§Qug — FAugzy = 0 (3.23)

mi + ETw, 500 —EA(Us 2 W 00 +Us gaW,p ) = 0 (3.24)
where u, is the dynamic component of the axial elongation, u(z, t), defined as
wa, 1) = u(a, 1) — uy(x) (3.25)

The static part, u,(z), is the static elongation of the beam due to rotation when the trans-
verse deflection is zero. Linear mode shapes corresponding to equation (3.23) and (3.24)
can be obtained using a Rayleigh-Ritz procedure. Once these modes are determined, the

solutions to the nonlinear system (3.22) are sought in the form of an expansion as

walat) = S mO0(a) et = Y &OWi@) (3.26)

where U; and W; are the linear modes corresponding to equations (3.23) and (3.24), and
the integers /V,, and N, denote the number of axial and transverse linear modes used,
respectively.

These expansions are substituted into the weak formulation, equation (3.22), and the

discretized nonlinear equations of motion are obtained as follows:

i+ wl i = fa(&)  fori=1toN,, j=1toN; (3.27)
& +wi & = fei(&me) for i,j=110N;, k=1toN, (3.28)
where w,,; and w, ; are the linear modal frequencies associated with the i-th modes in the

axial and transverse directions, respectively. These eguations of motion are nonlinearly

coupled because the quadratic nonlinear forces corresponding to the axial motion, f,;,
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depend on the transverse motion &, while the quadratic and cubic nonlinear forces in the
transverse direction, f ;, are dependent on both axial and transverse motions, &; and 7.
The convergence of this model has been thoroughly investigated in reference [56]. It
has been found that at least an 18-DOF model, with N;, = N, = 9, must be used to
accurately capture the periodic response in the vicinity of the first nonlinear mode for an
energy level corresponding to a transverse deflection amplitude of about 0.1m at the beam
tip, for a9.0m beam. This 18-DOF discretized model is used here as the reference model.
Based on this model, the invariant manifold is constructed. Consequently, areduced-order
model can be obtained for the representation of the dynamics on the invariant manifold.
As in the case studied in reference [56], the parameters of the uniform rotating beam
areset asfollows: L = 9m, m = 10kg/m, EI = 3.99 x 10°N - m?, EA = 2.23 x 108N,
) = 23.85rad/s, and h = 0.5 m. Under these conditions, athree-to-oneinternal resonance
occurs between the first two transverse modes, we 2 ~ 3 we,1. The master coordinates are
chosen as the state variable pairs, (¢, &) and (&, &,). Polar coordinate transformations,
defined in equation (3.3), are applied to these two pairs of state variables, resulting in two
amplitude-phase pairs as the transformed master coordinates, (a1, ¢1) and (asq, ¢2). All
the remaining DOF's, including 7 transverse deflection modes and 9 axial modes, form

the slave coordinates, which are constrained as follows,

& = Piar, as, ¢1,2), & = Qilar, ag, ¢1, ), i=3...9,

i = Piroar, az, ¢1,¢2), 1 = Qito(a1, 02,01, ¢2), i =1...9.

(3.29)

Thus, there are atotal of 16 pairs of constraint relationships, equation (3.29), that need to
be solved. The governing PDE’s for these constraint functions are given in equation (3.6).

The invariant manifold is solved for numericaly in the following four-dimensional
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domain:

{ (a1,a2,01,02) | a1 €0.01,0.75], ay € [0.01,0.4],

¢1 € [07 27T], ¢2 € [0’271—] }a

where the amplitude range is carefully chosen so that the nonlinear effect in the system
is sufficiently strong and the invariant manifold obtained from the asymptotic expansion
method in reference [56] is incorrect in this domain.

In the solution procedure, the constraint relationships for the velocities, Q;’s, in equa-
tion (3.29) are not solved for, due to the fact that the velocity constraint is the time deriva-
tive of the corresponding displacement constraint. The details of the reduction have been
givenin section 3.3, equations (3.15) and (3.16), for the construction of the invariant mani-
fold of the 3-DOF example system. Hence, only the displacement constraint relationships,
P;’s, need to be solved.

For the two-dimensional phase domain, (¢1, ¢»), the two-dimensional Fourier series,
defined in equation (3.11), is utilized for the expansion functions for the displacement
constraints. Because both quadratic and cubic nonlinear terms exist in this system, so that
the expansion cannot be further simplified. For the two-dimensional amplitude domain,
(a1, az), thefinite difference discretization scheme, which was used in the 3-DOF example
system, cannot be utilized here due to limitations in computational capacity. The numer-
ical difficulty is clearly shown by the following case: Lets us divide the two-dimensiona
amplitude domain into 8-by-8 grid points, and set the number of terms in the Fourier
expansion as N,, = N, = 8 at each grid point. Then, the total number of unknown
coefficients is 4,096 for each displacement constraint relationship, P;. With 16 slave con-
straintsin equation (3.29), thefinal number of unknownsis65,536. It isinefficient to solve

for the invariant manifold with such alarge number of unknowns.
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A strategy to overcome this numerical difficulty is to discretize the two-dimensional
amplitude domain into small elements, and then utilize low-order polynomials as expan-
sion functionsin the discretized el ements. For this exampl e system, the amplitude domain,
{(a1,a9) | a; € [0.01,0.75], ay € [0.01,0.4]}, is evenly divided into 7-by-7 equal-sized
patches. The width of each patch is0.1057 along the a; direction, and 0.05571 aong the
ay direction. The displacement constraint relationships, P;’s, in equation (3.29) are then

expanded in each discretized four-dimensional element,

{ (ar, a2, ¢1,02) | a1 € [alf)w at’], as € [alzowaaz ],
¢ € (0,27, ¢ € [0,27] }, (3.30)
as
2 2 Ny Ny,
Py(ar, a, ¢1,02) & > CijuimTi(a1)Ti(a2) Fy(¢1) Fin(¢2),
j=1 k=1 I=1 m=1
for i =3...18, (3.32)

where T);(a;) are the piecewise linear functions defined in the amplitude segment, a, €
[alw | a(?], asfollows,

a; — af” a’ —a;
Ti(a1) = a7 glow’ Tr(ar) = o glow (3.32)

The definition of the piecewise linear functions, 7}, (as), is the same as for T;(a,), while
the lower and upper limits of the amplitude segment are set as a, € [a¥?, a5?]. The Fourier
terms, F;(¢,) and F,,,(¢2), are defined in equation (3.13).

In each element, given by equation (3.30), the deduction of the velocity constraint (Q);)
from the corresponding displacement constraint (7;), and the evaluation of the residue
function, R;, are again given by equations (3.15), (3.16), and (3.18). It should be noted
that in the present example, the numerical values of the velocity constraints ((Q;) and the

residue functions (R;) are now evaluated at the Gaussian quadrature pointsfor polynomials
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in the discretized two-dimensional amplitude domain. A three-by-three-point Gaussian
quadrature formulais sufficient in theregion, {(ay, as) | a; € [a%¥, a}?], ay € [a¥™, a5P]},
using theinner product between theresidue functions (R;’s) and the basisfunctions defined

in equation (3.31). Thisyields,

// / [ [t me) Ea

X Ri(aq, az, 1, da; C)} doy dos day day = 0, (3.33)

for jk=1,2; I=1...Ny; m=1...Ny; i=3...18.

We set the number of the Fourier terms in expansion (3.31) to be Ny, = Ny, = 8. As
a result, the total number of the unknown coefficients, C’s, in expansion (3.31) is equal
to 4,096 for all 16 slave constraint relationships, in each element. Note that the total
number of unknown quantities resulting from the finite difference discretization scheme
in the whole amplitude domain is equal to 65, 536. Thus, it is seen that the computational
cost istremendously reduced for the nonlinear solver, since the invariant manifold, defined
by equation (3.29), is now solved for in each four-dimensional discretized element.

Theinitia valuesused in the numerical solution of the C”"sfor each discretized element
are determined as follows. For the first element, which has a two-dimensional amplitude

domain given by,
{(a1,as) | a; € [0.01,0.1157], ay € [0.01,0.06571]},

zeros are good initial values dueto the fact that the nonlinearities are weak near the origin.
Then, for subsequent elements, which have incremental valuesin the a; or a, directions,
the expansion coefficients obtained from the preceding element are used as the initial val-
ues. Once the results for all discretized elements are obtained, the expansion coefficients

from contiguous elements are averaged at their interface. The resulting solution for the
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invariant manifold is stitched together to cover the entire domain of interest. With the ob-
tained invariant manifold, the reference model with 36 states can be reduced to a 4-state
model for thisinternally resonant case.

A cross section of the invariant manifold is shown in figure 3.7. The slave constraint
relationship for the third transverse deflection mode, P; in equation (3.29), is depicted
at the phase angles (¢, ¢2) = (0,0). The amplitude domain, a; € [0.01,0.75] and
ay € [0.01,0.4], is evenly divided into 7-by-7 patches, and the invariant manifold ap-
pears smooth with this mesh. Note that the invariant manifold defined in equation (3.29)
is the ensemble of the displacement and velocity constraint relationships for all 16 slave
coordinates, and Figure 3.7 represents simply the cross section of one slave coordinate
among the 16.

Time responses for the displacements of the master and slave coordinates are shown
and compared in figures 3.8 and 3.9 using three different simulation approaches: (i) direct
time simulations based on the 36-state reference model, with initial conditionsthat satisfy
the constraint relationships; (ii) time simulations for the master coordinates using the 4-
state reduced-order model, along with the reconstruction of the slave coordinate responses
using the constraint functions,; and (iii) simulations based on the reduced-order model
obtained by the asymptotic expansion method described in Pesheck et al. [56], wherein
the invariant manifold and the corresponding reduced-order model were generated using
asymptotic series expansions. It is seen that simulations obtained from the reduced-order
model match the reference model results precisely, while the results from the asymptotic
method depart from the reference response rather quickly as time progresses. Thisis not
surprising, because the combination orders of the multi-dimensional polynomialsused in
the asymptotic expansion method are limited to three [56]. Here, the combination order

of the trigonometric functions in equation (3.31) can be as large as eight. Consequently,
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the invariant manifolds constructed here are more accurate than the manifolds obtained
in [56], and the smulations will match more closely, especially at larger amplitudes. The
better accuracy of the reduced-order model can aso be verified by observing simulations
of the transverse displacement of the tip of the beam, as shown in figure 3.10.

In figures 3.8-3.10, the accuracy of the reduced-order model has been verified by com-
parisons of the simulated time responses. The 4-state reduced-order model can then be uti-
lized to investigate the dynamic behavior of this system, which arises from the existence
of theinternal resonance. Amplitude modulation of the responsesfor the two master coor-
dinates, a;(t) and a»(t). isdemonstrated in figure 3.11, Note that there exists a continuous
exchange of energy between the two modes. Within thefirst second, the time period of the
energy exchange can be approximately determined as 0.12 second. Similar properties can
also be found in figure 3.12, where motions are simulated over a long time period. The
energy exchange shown in figure 3.12 occurs at a much slower time scale, with a period

of about 9 seconds.

3.5 Conclusions

Thefollowing conclusions can be drawn from thisstudy: (i) Multi-NNMs can be effec-
tively generated by the invariant manifold approach. A systematic solution methodology
for the invariant manifold has been proposed, which uses the polar form of the master
coordinates. Four-dimensional invariant manifolds have been successfully constructed for
the 3-DOF example system and for the rotating beam system, using a combination of
finite difference or finite element discretization schemesin the amplitude domain and two-
dimensional Fourier series expansions in the phase domain. (ii) A reduced-order model
can be generated once the multi-NNM is obtained, and motions on the invariant manifold

can be accurately captured by this model. The precision of the reduced-order model is
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controlled by the numerical parameters used in the solution procedure. (iii) Although only
guadratic and cubic order nonlinear forces were considered in the systems considered, the
construction method can be extended to systems with more complicated nonlinear forces,
and this is relatively straightforward if the nonlinear forces do not depend on velocities.
Otherwise, the numerical solution algorithm will need to simultaneously solve for the dis-
placement (P;) and velocity (Q);) constraint functions, which will involve many more un-
known coefficients. (iv) For complicated dynamic systems, such as more redlistic rotating
blade models that include lead-lag and torsional motions, gyroscopic effects and damping
forces must be considered in the linear order model. The multi-mode invariant manifold
approach can be extended to such systems. However, complex linear modal analysis must

be used to obtain arevised form of the master and slave coordinates [55].

3.6 Figures

Figure 3.1: Schematic diagram of the mass-spring system: masses M, = My, = M3 =
1 kg; spring stiffnesses K1 = 0.5 N/m, K5 = 5 N/m, K5 = 2.03 N/m, K, =
0.6 N/m; nonlinear springforces~; = 1.0x X (¢)> N, 7o = 1.5x X3(¢)* N. X,
X5, and X3 denote the displacements of masses M, M,, and M; respectively.
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P,(a,.a,0,0)

Figure3.2: A section of one component of the invariant manifold for the system shown
in figure 3.1. The modal displacement 7 is shown at phase angles (¢, ¢») =

(0,0).

Figure 3.3: Diagram of another section of a component of the invariant manifold for the
system shown in figure 3.1. The modal displacement 75 is shown at amplitude
(a1,a2) = (0.35, 0.35). (a) anillustration for theinvariant manifold defined in
the torusdomain { (¢1, ¢2) | ¢1 € [0,27], @2 € [0, 27] }; (b) across sectiona
view of the invariant manifold at phase angle ¢, = 2/3 .
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Figure 3.4: Comparison of the time responses of the master coordinates for the system
shown in figure 3.1, for initial conditions a; (0) = 0.28, ¢1(0) = 0.0, ax(0) =
0.28, ¢2(0) = 0.0 : (—) time simulation of the origina system modél; (- - -)
simulation of the reduced-order model. Plot (a) shows the time response of 7,
versust; (b) 7 (t); (€) m2(t); (d) 72(2)-
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Figure 3.5: Comparison of the time responses of the slave coordinates and mass M5 for
the system shown in figure 3.1, for initial conditions deduced from the initial
values of the master coordinates a,(0) = 0.28, ¢1(0) = 0.0, a2(0) = 0.28,
¢2(0) = 0.0 : (—) time simulation of the original system modédl; (- - -) simu-
lation based on the reduced-order model. Plot (a) shows the time response of
ns versust; (b) 73(t); (€) Xs(t); (d) Xs3(t).
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Figure 3.6: Schematic diagram of the rotating beam system. Rotating speed € is con-
stant. The uniform beam has the following material and geometrical param-
eters: Young's modulus F, cross sectional area A, second moment of cross
sectional area I, length L, and mass per unit length m. The hub radius is h.
(Abridged from reference [56].)

Eg(al,aZ,O,O)

Figure3.7: A section of one component of the invariant manifold for the system shown
in figure 3.6. The displacement constraint relationship for the third transverse
deflection mode, &3, is shown at phase angle (¢4, ¢2) = (0,0).
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Figure 3.8: Comparison of the time histories of the master coordinates &, (¢) and &,(t) for
the system shown in figure 3.6, with initial conditionsa;(0) = 0.63, ¢,(0) =
0.0, az(0) = 0.38, ¢2(0) = 0.0 . (—) time simulation of the full reference
model; (- - -) simulation of the reduced-order model; (— - — - — ) results from
the asymptotic expansion method. Plot (&) shows the first transverse modal
displacement, &, (¢); (b) second transverse modal displacement &,(t).
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Figure 3.9: Time histories of the slave coordinates &y () and 73() for the system shownin
figure 3.6, for initial conditions deduced from the initial values of the master
coordinates a;(0) = 0.63, ¢1(0) = 0.0, ax(0) = 0.38, ¢2(0) = 0.0 . (—)
time ssimulation of the full reference model; (- - -) simulation of the reduced-
order moddl; (— - — - — ) results from the asymptotic expansion method. Plot
(8) shows the ninth transverse modal displacement, & (t); (b) first axial modal
displacement 1, (¢).
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Figure3.10: Time history of the transverse displacement at the tip of the beam for the
system shown in figure 3.6, for initial conditions deduced from the initial

values of the master coordinates a,(0) = 0.63, ¢1(0) = 0.0, ay(0) = 0.38,
$2(0) = 0.0. (—) time simulation of the reference model; (- - -) simulation

of the reduced-order model; (—-—- — ) results from the asymptotic expansion
method.
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Figure 3.11: Time histories of the master coordinates a,(t) and a(t) for system shown
in figure 3.6 for 1 second, under initial conditions a,(0) = 0.63, ¢1(0) =
0.0, a2(0) = 0.38, ¢2(0) = 0.0 . Plot (a) shows the amplitude of the first
transverse modal displacement, a, (¢); (b) amplitude of the second transverse
modal displacement ay(t).



78

0.4

0.39

0.36

6
t/sec

Figure 3.12: Time histories of the master coordinates a, (¢) and a(t) for the system shown
in figure 3.6 for 12 seconds, under initial conditions a;(0) = 0.63, ¢1(0) =
0.0, az(0) = 0.38, ¢2(0) = 0.0 . Plot (a) shows the amplitude of the first
transverse modal displacement, a, (¢); (b) amplitude of the second transverse
modal displacement ay(t).



CHAPTER IV

NONLINEAR NORMAL MODES FOR VIBRATORY
SYSTEMS UNDER PERIODIC EXCITATION

4.1 Introduction

Many techniques exist for determining the response of nonlinear systemsthat are sub-
jected to periodic excitation. In addition to brute-force simulations, there are a variety of
approximate analytical methods, such as the method of multiple scales, harmonic balance,
and averaging. When the system is responding in a periodic manner, it is behaving like a
low order system, and the question arises as to whether or not a reduced order model can
be found that captures the system response. In fact, the above analytical techniques do
precisely this, by imposing various types of approximations.

For free vibration problems one uses system modes to construct reduced order mod-
els, and these techniques have been well developed for both linear and nonlinear sys-
tems [24,25]. One such technique, introduced by Shaw and Pierre [1-3], defines the
normal mode of anonlinear oscillatory system in terms of invariant manifoldsin the phase
space that are tangent to the linear (eigen-)modes at the equilibrium point. In such afor-
mulation, a master mode is selected (the mode of interest), and the normal mode is con-
structed by aformulation in which the remaining linear modes of the system, i.e., the slave

modes, depend on the master mode. This dependence defines the invariant manifold for

79
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the nonlinear normal mode. The construction of the nonlinear normal mode invariant man-
ifold is equivalent to the determination of the constraint relationships for al of the slave
coordinates. Once these constraint relationships are obtained, the system dynamics can be
restricted to the invariant manifold, resulting in a minimal-sized model that isin terms of
only the master coordinates. By studying the dynamics of the reduced-order model, it is
possible to recover the associated modal dynamics of the original nonlinear system. This
model reduction approach is similar to the center manifold technique that allows one to
study bifurcation problems using reduced order models of nonlinear systems[53].

Based on the invariant manifold approach, Boivin et al. [6] were able to construct
nonlinear normal modes for weakly nonlinear systems using polynomial expansion func-
tions to approximate the constraint relationships for the slave coordinates. The polyno-
mial expansion has also been used by Nayfeh et al. [29] to construct invariant manifolds
for systems with cubic nonlinearities. They found that a complex variable expression
for the master coordinates is very convenient for the construction procedure. King and
Vakakis [26] used an energy-based approach to compute nonlinear normal modes for a
class of one-dimensional, conservative, continuous systems. They showed that under some
circumstances, nonlinear normal modes cannot be constructed using physical coordinates
and that a transformation to linear modal coordinates is necessary in order to define non-
linear normal modes. Vakakis and co-workers have carried out extensive investigations
of nonlinear normal modes, including the consideration of stability and bifurcations [25].
Pesheck et al. [42] used numerical solutions of the invariant manifold equations to ex-
tend the invariant manifold approach to more general, strongly nonlinear systems. In this
approach, the master coordinates were expressed in polar coordinate form, and aGalerkin-
based solution technique was introduced to solve the invariant manifold equations. This

methodology has been applied to a 45-degree-of-freedom rotating beam system [58] over
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a strongly nonlinear amplitude range in which significant coupling occurs between the
linear modes, due to strong nonlinear effects. The invariant manifold based approach has
also proved effective for systems with non-smooth characteristics (Jiang et al. [54]), and
for gyroscopic and damped systems (Legrand et al. [59]).

In order to apply the invariant manifold-based model reduction method to nonlinear
systems with harmonic excitation, Shaw et al. [59] introduced a new variable to represent
the time-varying term, whichisgoverned by asecond-order differential equation. Withthis
new variable, the invariant manifold-based approach can be extended to systems subjected
to periodic excitation. Similarly, Agnes and Inman [60] treated forcing as an additional
degree of freedom and applied the multiple scales method to solve for the nonlinear nor-
mal modes of a two-degree-of-freedom example system. Since the multiple scales method
is based on perturbation ideas, their results are valid in the weakly nonlinear amplitude
range. In the present study, model reduction of nonlinear systems under harmonic exci-
tation is carried out by the inclusion of one additional dynamic state variable, the phase
of the harmonic excitation, as a master coordinate in the invariant manifold. The con-
straint relationshipsfor the slave coordinates are then defined in the augmented space, and
they depend on the usual modal master coordinates as well as on the phase of the exci-
tation. The resulting “forced” invariant manifold thus features one additional dimension
compared to the free vibration manifold, and it can be solved for numerically over large
amplitude regions using the Galerkin-based solution procedure [42]. This manifold is es-
sentially amodal manifold that variesin time with a period equal to that of the excitation.
By thismeans, it is possibleto obtain accurate reduced-order modelsfor strongly nonlinear
systems subjected to periodic excitation.

The paper is organized as follows. In section 4.2, the class of nonlinear systems to

be considered is defined, the invariant manifold formulation is reviewed, and the par-
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tial differential equations governing the invariant manifold are derived. In section 4.3, the
Galerkin-based solution methodology is introduced and applied to the forced response of a
simpl e two-degree-of-freedom system. The methodology is then applied to amore compli-
cated system, a 12-degree-of-freedom beam model, in section 4.4, to further demonstrate

the power and utility of the technique. Finally, some conclusions are drawn in section 4.5.

4.2 The invariant manifold approach

We consider an N-degree of freedom (DOF) nonlinear vibratory system wherein the
nonlinearities depend only on displacements. In this case, a transformation of the equa-

tions of motion to linear modal coordinates yields the
i+ 26w +wing = Ai(n;) + ficosdy, i,j=1,...,n (4.1)

where n); isthe i-th linear modal coordinate and w; is the corresponding natural frequency
of free vibrations of the associated linerized system. Damping is assumed to be small, and
thus linear proportional damping can be employed, represented by the linear moda damp-
ing ratios, &;. The nonlinear forces in the system (4.1) are included in the terms A4;(n;),
which couple the linear modes to one another. In order to simplify the construction for the
invariant manifold, the nonlinear forces, A;, have been assumed to be independent of the
linear modal velocities, ;. (This can be relaxed, but the solution is more cumbersome.)
The external harmonic excitation has been projected onto the ¢-th linear modal coordinate,
and isthus represented by theterm f;cos¢, where f; is the linear modal force amplitude,
andthephase, ¢, hastheform: ¢, = wst+ ¢y, Wherew, isthe excitation frequency, and
¢ o isaninitial phase angle. Note that in some applications (e.g., parametric excitation), f;
may depend on the modal coordinates, and this could be easily incorporated in the present
formulation. Also, gyroscopic effects are not included in the formulation (4.1); again, this

could be relaxed, but would complicate the solution procedure. Finaly, it is assumed that
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the linear modal frequencies, w;, are not commensurable; thisis a necessary restriction for
the present formulation, since otherwise the nonlinear system response cannot be reduced
to asingle mode.

In order to obtain the reduced-order model for system (4.1), an extension of theinvari-

ant manifold approach [42,58] isused. Consider the following (2/V+1)-state augmented

system:
)
Yi = 1j;
Ui + 26wy +win; = Ai(n;) + ficospy 5 LI=1...n (4.2)
Q‘Sf = Wy
\

where the state variables y; are introduced as the modal velocities, and the phase variable
¢ is considered as an additional state, corresponding to an oscillatory degree of freedom
with constant amplitude. By this means, the phase variable, ¢, which represents the dy-
namics of the excitation, can be included in the expressions for the invariant manifold. As
aresult, the reduced-order model based on the invariant manifold can capture the dynamic
behavior of system (4.1) with periodic excitation. This approach is analogous to bifurca-
tion analyses using center manifolds, wherein the bifurcation parameter is deemed as the
augmented variable, using the so-called “suspension trick” [53].

The next step is to divide the N pairs of state variables in system (4.2), (n;, vy;) i €
[1,n], into two separate groups, denoted as the master coordinates and the slave coordi-
nates. The master coordinates, (1., yx) k € Sy, are the modal coordinates (in state
variable form) that are to be kept in the final reduced-order model, where S, is the set
of indices that includes the master modes. The slave coordinates, (n;, y;) i ¢ Sy, ae
all the remaining modal degrees of freedom, which are taken to depend on the master co-
ordinates in a manner that satisfies the equations of motion. In this paper, we focus on

the case where a single pair of state variables, whose modal frequency wy. is close to the
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excitation frequency wy, are retained as the master coordinates. These master coordinates
are supplemented by the forcing phase, ¢, which aso plays the role of a master coor-
dinate. Thus, our investigation is limited to the primary resonance of a nonlinear system
under harmonic excitation. Investigating super- or sub-resonances, or nonlinear systems
with internal resonances, requires the selection of multiple pairs of state variables as the
master coordinates [29, 61].

Before deriving the partial differential equations (PDE) governing the invariant mani-

fold, the master coordinates, (7., i), are transformed to polar coordinates, as follows:

Nk = aCOSp
' (4.3)
Yp = —awSiNg
where a and ¢ are the amplitude and phase of the master coordinates, respectively, and
wy 1S the k-th linear modal frequency. Substituting equation (4.3) into the differential

equations governing (n, 1) in system (4.2), yields

;

a = —2§kawksin2gz5 - (Ak + kaOSQSf)SinQS/wk

¢ = wy — EwpSiN2¢ — (A, + [0S ;)COSP/ (awy) (4.4)

\ ¢5f =wr

In equation (4.4), the nonlinear forceterm, A, dependson all thelinear modal coordinates,
n; j € [1,n], in system (4.2). In order to obtain the reduced-order model governing only
on the master coordinates, a, ¢, and ¢, in the form of equation (4.4), the slave coordinates

are assumed to depend on the master coordinatesin the following form:

(

i = Pi(a’a ¢7 ¢f)

fori=1...n, i#k (4.5)

\ 777, - Q’i(aa ¢a ¢f)

where the (n — 1) pairs of P;’sand );’s are the constraint relationships that represent the
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invariant manifold. The solution procedurefor the P;’sand ();’sfollowsthe usual invariant

manifold formulation.

Substituting expression (4.5) into system (4.2), yields

e

8P¢+

¢ ¢f Qz
(4.6)

ana + and) + an d)f + 26w Qi + WZP Ai + szOSQSf
fori=1...n, z;ék

Then, combining equation (4.4) and equation (4.6), the PDE’s governing the invariant

manifold are obtained. These are given by:

e

Qi = St [—2&,awpSiN° ¢ — (Ay, + [,COSPy)SING/wy,|
+ G lwr — &uwisin2g — (Ag + frC08pf)cosp/ (awy)]
+ 2wy
(4.7)
—26w;Q; — wiP; + A; + ficospy =
%: [—2¢pawi SN’ — (A, + f1,.COSp)SING/wy]

+ 29 [y, — EopSin2e — (A + f10086,)C086/ (awy)]

3Ql
[ T

fori=1...n, 1#£k

Once equation (4.7) has been solved, the constraint relationshipsfor the slave coordinates,
the P;’s and ();’s, are known and can be substituted into equation (4.4). The result is the
desired reduced-order model, which has dynamic variables a, ¢, and ¢;. The forced dy-
namics of the full system near the primary resonance are captured by thismodel, whichisa
single-DOF system with periodic excitation. It isinteresting to note that parametric excita-

tion terms are introduced during this process, in that the nonlinear force, A, now depends
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on the phase of the excitation, ¢;. Obviously, the governing equations for the invariant
manifold, equation (4.7), are inherently nonlinear, and are not analytically tractable.
Compared with the invariant manifold approach in the free vibration case [42], the
additional phase variable, ¢, is included in the present model to account for the har-
monic excitation. Consequently, the invariant manifold, defined by equation (4.5), is
three-dimensional (or, equivalently, two-dimensional and moving in a time-periodic man-
ner). The numerical construction procedure for the invariant manifold is therefore more
complicated than that for the free oscillation case, where the manifold istwo-dimensional .
However, some useful properties can be utilized to alleviate the computational effort re-
quired in the solution process. First, in expression (4.5), the constraint relationships for
the modal velocities, the ();’s, are the time derivative of the corresponding position con-
straints, the P;’s. Hence, it is possible to eliminate the @);’s from the unknowns during
the numerical solution procedure, and deduce them from the solution of the P;’s. Another
useful property is attributed to the polar form of the master coordinates, defined in equa-
tion (4.3). By this means, the three-dimensional space on which the invariant manifold is
defined can be divided into a one-dimensional amplitude region, a, and atwo-dimensional
phase region, (¢, ¢;). For the two-dimensional phase region, a two-dimensional Fourier
seriesisthe natural choice for the expansion functions in the Gal erkin-based solution pro-
cedure. As aresult, Fast Fourier Transforms can be applied to carry out the conversion
between the values at the discretized pointsin the two-dimensional phase region and their
Fourier coefficients in an efficient manner. These two simplifications are employed to

construct the invariant manifolds for the two example systems.
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4.3 A two-DOF mass-spring system

Thefirst example presented isquite simple; it isused simply to demonstrate the stepsin
the process. The two-DOF mass-spring system under consideration is shown infigure 4.1.

The equations of motion for the system are:

myiy + kv + i + ke(x1 — x9) = fCOSwyt 48)
Moo + koTy — komy + k3xo + Boxs = 0
where m;=1.0 kg, m»=1.5 kg, £,=2.0 N/m, k,=3.5 N/m, k3=5.0 N/m, 3,=3,=1.0 N/m?,
and f=1.0 N. The excitation frequency w, varies within a certain range, and the invariant
manifold is solved for at each frequency over that range.

The physical displacement coordinates, {z1, x,}", arefirst transformed to modal co-

ordinates, {n;, 7.}, asfollows:

T 0.7173  0.6967 M
= (4.9)
To 0.5689 —0.5857 2
Asaresult, system (4.8) is transformed to the following standard form:
i+ 26w + win = Ay + ficoswyt (4.10)

Ty 4 2Eawaily 4+ wine = Ao + f2008wyt
where linear modal damping has been added to the system with damping ratios £;=£,=0.2.
The two linear modal frequencies are w;=1.6506 rad/s, and w,=2.9056 rad/s. Projecting
the external excitation onto the modal coordinates yields f;=0.1435 and f,=0.1393, and

the cubic nonlinear forces, A; and A,, are given by:

;

Ap = —0.7173(0.7173n; + 0.696215,)>

— 0.5689(0.5689m; — 0.58571,)?
( 1 2) (411)

Ay = —0.6967(0.7173n;, + 0.69621,)*

+0.5857(0.56897m; — 0.585712)>.
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In order to obtain the reduced-order model for system (4.10), the master coordinate,
which iskept in the reduced-order model, must be specified. We first consider the primary
resonance near the first linear mode, which occurs when the excitation frequency, wy, is
closeto thefirst linear modal frequency w,. Then, the state variables (1, y1), wherey, is
defined in equation (4.2), are the natural choice for the master coordinates.

The master coordinates, (7, y;), are transformed to the polar form defined in equa-
tion (4.3):

171 = aCOSp

(4.12)
Y1 =1 = —aw;SiNg.

The constraint relationships for the slave coordinates, defined in equation (4.5), are given
by:

2 = Pa(a, ¢, dy)

y2 =12 = Q2(a, ¢, ¢y),

and the partial differential equations governing the invariant manifold are as presented in

(4.13)

equation (4.7).

A Galerkin-based method is utilized to numerically solve the invariant manifold equa
tion. The three-dimensional space for which the invariant manifold is defined is spanned
by one amplitude, a € [0, amq,], and two phases, ¢ € [0,27] and ¢, € [0,27]. A
two-dimensional Fourier seriesisthe natural choice for the basis functions for the phases,
while a variety of functions can be used for the amplitude expansion. It has been shown
that the computational cost for the construction of the invariant manifold is significantly
reduced if the amplitude domain is discretized into small segments, so that simple piece-
wise linear functions can be used as the basis functions for each discretized segment in the

a direction [42,58]. Asaresult, in any three-dimensional region,

{(a,0,07) | a € lag, a], ¢ € [0, 2], ¢y € [0, 2]} (4.14)
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where ay and a; are the lower and upper limits of the amplitude segment, respectively, the

unknown constraint relationship, P,, can be expanded as follows:

2 Ny Noy

a,6.01) = > > > CimnT(a)Fi(6) Fn(dy) (4.15)

j=1 I=1 m=1

where T} (a)are the piecewise linear functions defined in the amplitude segment, a €
[ag, a1], asfollows,

a — Qg

Ty(a) = Ty(a) = , (4.16)

)
a1 — Qo a1 — Qo

and Fi(¢) and F,,,(¢) are Fourier terms defined as:

COS—gb, lisodd
Fi(¢) = (4.17)
sinlg, liseven,
and Ny and N, are the number of terms of the Fourier expansionsin ¢ and ¢, respec-
tively.

Asmentioned in section 4.2, the constraint relationship (), can be constructed from P.
Hence, the invariant manifold in this three-dimensional region is completely determined
(in this approximate form) once the unknown coefficients, the C’s in expression (4.15),
have been obtained. Note that each small amplitude segment has its own set of C’s.

In the Galerkin-based procedure, the expansion for P, is substituted into the governing
differential equations for the invariant manifold, equation (4.7). Then, a set of nonlin-
ear algebraic equations governing the unknown coefficients can be explicitly obtained by
requiring that the projection of the residuals of equation (4.7) onto each basis function,
defined in expansion (4.15), be equal to zero. The C' coefficients can then be solved for
numerically using an iterative technique. The method selected hereis the hybrid Powell’s
method, which simplifies the solution procedure in a manner such that the explicit form

of the set of nonlinear algebraic equationsin the C’sis not necessary during the iteration

process [57].
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For a given set of initial values for the C’s, the expression of the velocity constraint,

(2, can be explicitly determined from the following relationship:

2 N,

e ;.
Q d) d)f’ ZZZC]lm }?l ) m(d)f) X

j=1 1=1 m=1

[—251aw15in2¢ — (Ai(a, ¢, 055 C) + f1005¢f)5in¢/w1]

Ny Nog

£33 Cuni(a ‘“;l 8) Fun(d5) X

j=1 1=1 m=1

[wi — &uwisin2g — (Ai(a, ¢, ¢5; C) + f1C0Sps)COSp/ (aw )]

Ny Nog

32> CimTi(a)Fi(¢ dg (¢r)wy, (4.18)

j=1 1=1 m=1

which is the algebraic form of one of the differential equations governing the invariant
manifold, namely the first equation in system (4.7). It should be noted that the nonlinear
force, Ay, in equation (4.18) is only dependent on the C’s, since all the nonlinear forces
are independent of velocitiesin system (4.8). Otherwise, the relationship for 9, would be
implicit. The velocity constraint, (Q», would then have to be expanded in a similar manner
as P, in expression (4.15), and the unknown coefficients for (), would need to be solved
for simultaneoudly with the C’s, in an iterative manner.

Equation (4.18) is one of the differential equations governing the invariant manifold.

The other partial differential equation isthe second equation in system (4.7), and itisgiven

by:

—25264)2@2(0/, ¢ ¢f7 C) - WSPQ(GH ¢7 ¢f7 C) + AQ (aa ¢7 ¢f7 C)

+ foCospy = Q2 (a b, Pf; ){— 251Gw19n2¢
— (Au(ay b, 653 C) + f1c086) ”‘/’] a;jf( 6,65 0)
X |wy — &wiSIN2¢ — (Al(aa b, ¢r; ) + f1C03¢f) OS(Z)

+wy a%( , 0, 05;,C) (4.19)
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Once we have a method to determine the derivatives, 0Q2/0a, 0Q2/0¢, and 0Q)2/0¢;,
equation (4.19) can be evaluated numerically.

The derivative along the a direction, 9Q»/0a, can be accurately determined using a
finite difference scheme, since the three-dimensional domain given in equation (4.14) can
be taken to be arbitrarily small in the a direction during the discretization. Furthermore,
the discrete grid pointsin a are selected as Gaussian quadrature points for polynomials.
Since piecewise linear functions are used as the basis functions for «, the highest possible
polynomial order is three in equation (4.18). Thus, a three-point Gaussian quadrature
formulais sufficient in the region a € [ay, a1], considering the inner product between the
residue of equation (4.19) and the basis functions defined in equation (4.15).

The derivatives along the ¢ and ¢ directions, Q)2 /0¢ and 0Q)/0¢, are determined
by means of atwo-dimensional Fast Fourier Transform. At any Gaussian quadrature point

a = a*, the expression for (), is expanded as follows:

%
Z Dy €% €91 (4.20)
_N¢f

Yo
Qa(a", 6, 67) = Y
_Qn

where : = /—1, and N, and N, are set to be even. The complex Fourier coefficients,
D,.,., are efficiently obtained by taking the Fast Fourier Transform at the grid points for

@2, which is evaluated using equation (4.18):

o
Q2(a*,¢",¢7) where N
¢f = W)f

for T=1 ... 2N¢, J=1 ... 2N¢f

Note that 2Ny x 2Ny, grid points are used to evaluate the N, x N, complex Fourier
coefficients in equation (4.20), in order to reduce aiasing errors in the Fourier transform.

Oncethe complex Fourier coefficients, D,,,, are obtained, the determination of the deriva-
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tives, 0Q2/0¢ and 0Q)2/0¢ , istrivial by using the inverse Fourier transform, along with
the manipulation of the complex Fourier coefficients.
The final step is to project the residue of equation (4.19) onto each basis function

defined in expansion (4.15), shown as follows:

/ / / [@(am(@wﬁ

X Res(a, ¢, ¢r;C)| dp dps da =0 (4.21)

where, Res(a, ¢, ¢5; C) represents the residue of equation (4.19). The solution for the
invariant manifold is thus obtained by requiring the 2 x Ny x Ny, inner products between
the residue and the basis functions to be al zero. Numerical integration for the projec-
tions can be efficiently carried out, since the numerical values of the residue are evaluated
only at Gaussian quadrature points. In practice, we employ hybrid Powell’s method [57],
imbedded in the numerical package NAG, to search for the solution from theinitial guess.

Once the solution for the C’s is obtained, the original system (4.10) can be reduced to
two first-order ordinary differential equations with time periodic coefficients that govern
the master coordinates, as described in equation (4.4). As aresult, the periodic responses
of the original system can be captured using the reduced-order model.

As a specific example, we set the excitation frequency, w,=1.93 rad/s, and construct
the three-dimensional invariant manifold. The result is depicted in figure 4.2 using four
cross-sections corresponding to equally-spaced values of the excitation phase angle, ¢;.
Along theamplitudedirection a, the overall construction domain for the invariant manifold
isset as a € [0,3.0], which is evenly divided into 60 segments. For each discretized
element (as defined in expression (4.14) with aq and a; as the lower and upper bounds

of the amplitude segment, respectively), the number of Fourier terms in equation (4.15)
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aesetto N, = Ny, = 16. The initial guess values for the C's for each discretized
segment are determined as follows: For the first segment, a € [0, 0.05], the results for the
C’s obtained from the linearized system are good initial values due to the weak effects
of nonlinearities in the small amplitude region. Then, for the subsequent segments, the
expansion coefficients obtained from the proceeding segment are used as initial values,
since the increments in a are quite small. Once the results for all discretized segments
are obtained, the expansion coefficients from contiguous segments are averaged at their
interface. As aresult, the solution for the invariant manifold is stitched together to cover
the entire domain of interest.

Some interesting properties of the invariant manifold can be seen in figure 4.2. First,
the invariant manifold varies as the phase angle of the excitation force ¢, changes, and
therefore astime increases. The time dependence of the manifold can be easily understood
since one additional dimension corresponding to the external excitation, ¢, isincluded in
the definition of the manifold. The manifold can be thought of as a two-dimensional
surface that varies periodically in time, and figure 4.2 depicts it at four different instants.
Moreover, the manifold is not equal to zero as the amplitude « tends to zero, which is
different from what occurs in the free oscillation cases, where the invariant manifold is
tangent to the corresponding linear modal space at the static equilibrium position [2].

Time responses at the excitation frequency w; = 1.93 rad/s can be obtained from the
reduced-order model, equation (4.4). Results for two different setsof initial conditionsare
shown in figure 4.3 and 4.4, along with comparisons of the responses obtained from the
original system model, equation (4.10). With the reduced-order model governing a and ¢,
the time response for a(¢) and ¢(t) can be obtained for any initial conditions (a(0), ¢(0))
in the construction domain. The responses of the master and slave coordinates are then

reconstructed using the polar transformation definition (4.3) and the constraint relation-
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ships (4.5), respectively. For time ssimulations of the origina system, initial conditions
are taken to be those on which the reduced-order model isinitiated, that is, the constraint
relations are used to determine the starting conditionsfor the second mode. As can be seen
infigure 4.3 and 4.4, the forced response obtained from the reduced-order model precisely
matches the forced response from the original system model. Note that the responsesin
figure 4.3 and figure 4.4 converge to different steady-state responses, asistypical in such
anonlinear system.

The variation of the steady-state response amplitude of system (4.10) in terms of fre-
guency isshown infigure 4.5 near the first resonance frequency, w;. From the original sys-
tem model, the frequency response is obtained by sweeping the excitation frequency, wy,
from 1.5 rad/sto 2.2 rad/s. At each excitation frequency, the direct shooting method [62]
is used to search for the initial conditions corresponding to the steady-state response. As
aresult, multiple steady-state solutions are found near the resonance, where one branch of
the solutions is unstable. The steady-state responses can also be obtained using simula-
tions of the reduced-order models, constructed at a series of discrete excitation frequencies
within the frequency range of interest, w; € [1.5, 2.2]. At each samplefrequency wy, anin-
variant manifold-based reduced-order model is constructed following the Galerkin-based
procedure described above. As can be seen in figure 4.5, the frequency response obtained
from the reduced-order models matches the exact results extremely well, and even the un-
stable response branch is captured by the reduced-order models. In other words, at any
excitation frequency wy, the dynamics of the original system is captured by the invariant
manifold-based reduced-order model.

The steady-state frequency response near the second linear modal frequency, w,, is
shown in figure 4.6. In this case, the master coordinates are chosen as the second linear

modal coordinates in state variable form, (1., 1,). The corresponding invariant manifolds
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are constructed in the same manner. Again, excellent agreement is found between the full
model and the reduced-order model, as shown in figure 4.6.
We now turn to a more substantial example, where the power and utility of the tech-

nigue is more fully demonstrated.

4.4 An Euler-Bernoulli beam with nonlinear spring

The invariant manifold-based model reduction approach, elaborated in section 4.3, is
applied here to a more complicated example system, an Euler-Bernoulli beam attached to
ground at one end by a nonlinear torsional spring. As shown in figure 4.7, the beam has
the following geometric and material parameters: length [ = 1 m, cross sectional area
A = 0.0025 m?, second moment of area of the cross section I = 5.0 x 107% m?*, mass
density p = 7860 kg/m?, Young’'smodulus E = 2 x 10" N/m?, and linear spring stiffness

k = 10® N/m. The moment from the nonlinear torsional spring at = = 0 is given by

(t) = 5000 @(0 t) 2+20000 @(0 t) 3 N
Vi - at ) 3t )

where u(x, t) isthe transverse displacement of the beam. The amplitude of the harmonic
excitationat » = [ istakento be f, = 3 x 10° N.

The eguation of motion governing u(z, t) isgivenin weak form as follows:

2} l
/ { / (—pAidu — ETu 4,0u 4r) dz — ku(l, t)ou(l, t)
1 0

t
— %0u(0,8) + Fou(l,t) }dt =0, V ¢, <t <ty (4.22)

where () denotes the partial derivative with respect to time, and () . isthe partial deriva-
tive with respect to .
In order to obtain the discretized ordinary differential equations for system (4.22), the

Rayleigh-Ritz method is applied, wherein the transverse displacement, u(z, t), is expanded
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asfollows:
n—2
u(w, ) =Y Ui(x)ai(t) + oo (x)geo (£) + () ga(t). (4.23)
i=1
The basis functions in the above expansion are of two kinds. the fixed-interface normal
modes, U; () (that is, the modes of free vibration of the beam clamped at = = 0 and pinned
at x = [), and the static constraint modes, 1., (z) and ¢ (z), obtained by imposing a unit
slope at x = 0 and a unit deflection at = = [, as described below. The selection of these
basis functions is motivated by the Craig-Bampton technique, which is commonly used

for improved modal convergence in linear vibration problems. The fixed-interface normal

modes, U; (), are calculated from the following boundary-val ue problem:

e

—pAL2Ui(x) + BT — o for i=1...n—2

Boundary conditions: (4.24)

Ui(0) =0, Y0y =0, T;(1) =0, LL(1)=0
\

where ; isthe i-th eigenval ue corresponding to the eigenvector U;. Note that the rotation
at + = 0 and transverse displacement at - = [ are fixed in equation (4.24). These degrees
of freedom are captured by the static constraint modes, which are determined by solving

the following problems:

EI%bo(p) =0
wt' (1) (4.25)

Y (0) = 0, L0(0) = 1.0, whep(l) = L2(1) = 0

and

EILY(z) = 0

The expansion (4.23) is substituted into the weak formulation, equation (4.22), resulting
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t2 l
/ { / [ a pA(Z Usti; + Yeolieo + Verfier) X
t1 0 p

(Z Ujda; + 1heo0qeo + 1heider)

J

- EI(Z U; a; + Yogten + Vat) X

(Z U;l‘saj + 1/)'0'06(]00 + 1/);,;5(101)] dx

J

- kQCl5QCl — Ve (QCO)5QCO + Fégcl } dt =0 ) (427)

Vit <t<ty

where ()’ denotes d( )/dx. Equation (4.28) can be written in matrix form as follows:

I My a A O a 0
+

M:fq Mgq d 0 Ky q F

(4.28)

where I is the identity matrix, A is a diagonal matrix with elements \; = w2, the vectors
a=[aj,as,...,a, 2T axdq = [qco, qa]* contain the amplitudes of the basis functions
in the expansion of equation (4.23), and F = [—;, focoswet]T isthe force vector.

Linear modal analysis can be applied to the linear homogeneous part of equation (4.28),

i.e., by setting F = 0, asfollows:

I M, A O
—w? + i =0 (4.29)

M;rq Mgq 0 Kgq

=

For the i-th linear mode, the frequency and mode shape are denoted as w; and ¢;, re-
spectively. The coordinate transformation is defined as X = ®n where X = [aT qT]T,
® is the matrix of eigenvectors ¢;, and n is the n-dimensional modal coordinate vector.

Consequently, system (4.28) is transformed to the standard form (given in equation (4.1)):

B + 26wt + win; = Ai(n;) + ficoswst, i, j=1...n (4.30)
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where proportional damping effects have been added with linear modal damping ratios of
& =0.03.

By changing the number of the fixed-interface normal modes used in expansion (4.23),
the convergence of the response near the first linear modal frequency, w, = 222.43 rad/s,
is checked for system (4.30). It is found that a 12-DOF model is needed to capture the
first primary resonance accurately, including ten fixed-interface modes along with the two
static constraint modes.

A single pair of state variables, (1, 1), where y; = 7, in system (4.30), along with
the forcing phase, ¢, are chosen as the master coordinates in the construction procedure
for the reduced-order model near the first primary resonance. After employing the polar
coordinate transformation for the master mode, (n1,y1) — (a, ¢), the remaining slave

coordinates are constrained as:

Ni :P’L(a?¢a¢f)7 Yi :nz:Qz(aa¢a¢f); 1=2...12

where ¢ = wyt. The governing partial differential equations for the constraint relation-
ships, equation (4.7), are solved numerically using the Gal erkin-based procedure described
in section 4.2 and 4.3. In order to construct the invariant manifold at each excitation fre-
quency near the resonance, the amplitude region a € [0, 3.0] was evenly divided into 60
segments. For each discretized segment, the numbers of Fourier expansion terms were set
a Ny = Ny, = 8. From the constructed invariant manifold, the reduced-order model is
obtained at each excitation frequency, as shown in equation (4.4).

The steady-state response of master coordinate 7, is shown in figure 4.8. As can be
seen, both the stabl e branch and the unstabl e branch of the response are accurately captured
by the simulation based on the reduced-order model. Note that at the excitation frequency

wy = 242 rad/s, the amplitude of 7, reachesits peak at 1.0, which is physically equivalent
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to a0.3m displacement near the middle point of the one-meter-long beam. While at such
a large amplitude, the assumptions for an Euler-Bernoulli beam are violated, the exam-
ple clearly demonstrates the capability of accurately capturing the forced response over a
strongly nonlinear amplitude range.

The transient response at the excitation frequency, wy = 242 rad/s, is also shown in
figures 4.9 and 4.10 for two different initial conditions. As can be seen, the response from
the reduced-order model matches very closely that from the original system for a range
of initial conditions. This demonstrates that the dynamics near the primary resonance can
be very accurately captured by the invariant manifold approach. Similar results can be

obtained for other resonances, by choosing master modes accordingly.

4.5 Conclusions

Based on the results obtained from the mass-spring system studied in section 4.3, and
from the beam system examined in section 4.4, the following conclusions are drawn: (i)
With the additional phase variable representing the external harmonic excitation, the in-
variant manifold approach developed for free oscillations can be extended to nonlinear
vibration systems subjected to periodic excitation. (ii) Once the invariant manifold is con-
structed, the corresponding reduced-order model can be obtained to capture the forced
dynamics of the original system. (iii) The invariant manifold can be constructed numeri-
cally using a Gal erkin-based technique that employs piece-wise linear amplitude functions
and Fourier series for the phase variables. Using the Fast Fourier Transform, the solution
procedure is quite efficient. (iv) The domain in which theinvariant manifold is defined can
be taken out to large amplitudes, and is discretized into small amplitude segments. Conse-
guently, this methodology can be applied to systems with complex nonlinearities, such as

systems with non-smooth restoring forces, general types of damping, etc. (v) The present
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method works for any type of harmonic excitation, external and/or parametric. Further-
more, the approach can be extended to include any type of excitation that can be modeled

by afinite-state auxiliary dynamic system.

4.6 Figures

Figure 4.1: A two-degree-of-freedom mass-spring system
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Figure4.3: Comparison of the transient forced response of the modal coordinates, 7, (¢)
and n(t), with initial conditions a(0) = 0.5, ¢(0) = 0.0 . ——, response
obtained from the original system model; - - - , response from the reduced-
order model.
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Figure4.4: Comparison of the transient forced response of the modal coordinates, 7, (¢)
and n,(t), with initial conditions a(0) = 1.5, ¢(0) = 0.0 . ——, response
obtained from the original system model; - - - , response from the reduced-
order model.
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Figure4.5: The amplitude of the steady-state response of the modal coordinates, 7, (¢) and
1n2(t), versus the excitation frequency, wy. ——, stable steady-state response
obtained from the original system model; - - - , unstable steady-state response
fromtheoriginal systemmodel; * 0’ , steady-state response from the reduced-
order model.
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n:2(t), versus the excitation frequency, w,;. ——, steady-state response ob-
tained from the original system model; * o’ , steady-state response from the
reduced-order model.
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Figure 4.7: An Euler-Bernoulli beam with a nonlinear torsional spring, ;, a one end.
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Figure4.8: The amplitude of the steady-state response of the modal coordinates, 1, (t),
versus the excitation frequency, w;. ——, stable steady-state response ob-
tained from the original system model; - - - , unstable steady-state response
fromtheoriginal systemmodel; * 0’ , steady-state response from the reduced-
order model.
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and 7, (t), with initial conditions a(0) = 1.79, ¢(0) = 0.0 . ——, response
obtained from the original system model; - - - , response from the reduced-
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CHAPTER YV

APPLICATION OF NONLINEAR NORMAL MODES
TO A ROTATING BLADE SYSTEM

5.1 Introduction

In the preceding chapters, the theory of nonlinear normal modes has been devel oped
and applied to several example systems with various types of nonlinearities. The compan-
ion invariant manifold approach and Galerkin-based method have also been shown to be
effective and efficient in the construction of the attendant reduced order models. In this
chapter, the nonlinear normal mode theory is applied to a rotating rotorcraft blade, which
isinherently nonlinear due to the complexity of its structural model.

Rotor blade models are crucialy important to the accurate modeling of rotary-wing
aircraft. In general blades are made of composite materials, and they can exhibit geomet-
rically nonlinear behavior. It has been shown that nonlinearities arise primarily from the
initial stress effect due to the high-speed rotation of the blade, and from the deformation-
induced rotation of the cross sections of the blade[63]. In general, linear structural models
do not effectively capture the dynamics of rotorcraft blades, especialy for hingeless and
bearingless blades.

A number of beam theories are available to account for moderate and large blade de-

flections. A review of the extensive literature concerned with the development of these
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theoriesis beyond the scope of this dissertation. The reader isreferred to the excellent re-
view paper by Friedmann and Hodges [63], which gives a thorough survey of research on
beam kinematics during the past few decades. For moderate-deflection rotor blades, such
as hingelessrotor blades, the nonlinearities are basically accounted for in the beam models
by using ordering schemes. For rotor blades with large deflections, like bearingless rotors,
ordering schemes are no longer valid, and geometrically exact theories must be used.

In this chapter, a large-deflection beam theory developed by Hodges [64] is utilized
to formulate the nonlinear model of a rotating rotorcraft blade. The theory is based on a
two-field variationa principle of the Reissner-Hellinger type. A series of exact intrinsic
equations can be obtained by using a mixed finite element formulation [65]. The resulting
discretized finite element blade model is a complex model that is perfectly suited to illus-
trate the effectiveness of the model reduction technique based on nonlinear normal modes,
since (a) the model isinherently nonlinear; (b) the deformation of the blade can be geomet-
rically large and the corresponding nonlinear restoring forces can be strong; (c) different
types of beam deformations, such as bending, torsion, lead-lag, and axial elongation, are
present and are strongly coupled. As aresult, an accurate reduced-order model can prove
guite valuablein understanding the dynamic behavior of rotorcraft blades undergoing large
deformations.

This chapter is organized as follows. In section 5.2, the beam theory utilized is briefly
described, along with the companion mixed finite element discretization. In section 5.3,
the example rotating blade system, an active twist rotor (ATR) blade system, is intro-
duced. The ATR blade [66] has been used as a potential candidate for vibration and noise
reductions in helicopters through the use of individual blade control. Here, the structural
dynamics of the ATR blade are investigated. Linear modal analysisis applied to the linear

part of the finite element equations of motion, and the resulting modal equations are sub-
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sequently transformed to standard form viaa secondary modal analysis. In section 5.4, the
nonlinear normal mode theory is extended and applied to the nonlinear blade model, and
the construction method for the invariant manifoldsis described. In section 5.5, the invari-
ant manifolds are obtained for the nonlinear rotating blade, and the dynamics on them are
computed and validated with time domain simulations. Finally, conclusions are drawn in

section 5.6.

5.2 Large-deformation beam theory and finite element discretization

The large-deformation beam theory used here was devel oped by Hodges [64], and it is
originally based on the three-field variational principle of the Hu-Washizu type. The beam
configuration and base vectors are shown in figure 5.1, where x; denotes the length along
the curved reference line r in the undeformed, but initially curved and twisted beam. The
position vector r(z;) locates a particle on the beam reference line relative to a fixed point
in the reference frame A. According to the definition in reference [64], the frame A isan
absolute framein the sense that the orientation of thelocal undeformed beam cross-section
in A isafunction only of z; and not of time¢. The motion of frame A in aninertial frame
is known for al time. At each point along the reference line r, aframe b is defined with
orthogonal unit vectorsb; for i = 1,2, 3, where b istangent to », and by(x;) and bs(z1)
define the directions of local axes x5 and x3, respectively. Obvioudly, frame b gives the
orientation of the undeformed cross-section planein the frame A at any fixed point on the
reference line r. Frame b varies along the beam if the beam isinitially curved or twisted.

In the configuration of the deformed beam as shown in figure 5.1, a different curve R
showsthelocus of material pointsaong r, and the length along R isdenoted as s. A frame
B isintroduced at each point along R with orthogonal unit vectors B;(z;) fori = 1,2, 3.

The interpretation of the “intrinsic” frame B and the derivation of the beam formulation
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can be found in Hodges [64], and is not repeated here.

In order to facilitate the finite element formulation of the beam model, a two-field
(Reissner-Hellinger type) variational formulation is used instead of the three-field princi-
ple [65]. The formulation is also adapted to a global coordinate system representation in
the reference frame A. Asaresult, theinitial configuration of the beam can be embedded
conveniently in the formulation [65].

Another difficulty in the derivation of alarge-deformation beam model is the determi-
nation of the material and geometric properties at each cross-section along the deformed
reference curve R. These cross-sectional properties can be cal culated numerically by using

VABS, a code developed by Cesnik and Hodges [67], in matrix form as follows,

o CRERY (5.1)
Mp K
where v and « are the force and moment strain measures, respectively; Fz and My are
the components of force and moment at the beam reference line in the deformed beam
reference frame B; and the 6 x 6 coefficient matrix [S] gives the cross-sectional informa-
tion [65].

Thefinite element-based beam equations can be written in the following operator form,

asgivenin reference [65],
G(X,X,F)=0, (5.2)

where X isthe vector of unknowns and G is a set of nonlinear functions derived from the
finite element discretization!. The force vector F' contains the effective nodal loads. The

dimension of both X and G is18N + 12, where N isthe total number of beam elements.

1 The explicit form of each term in G islisted in reference [65], and it is not repeated here.
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In the case of a cantilevered beam, the vector X isexplicitly listed as follows,
X" =[FF m] ol 0] F' My Pl HT ...
uk 0% Fr MY Py OHY ik, On.], (5.3)

where u! and 0! are the displacement and rotation measures at the i-th node respectively,
FT and M are the corresponding internal force and moment at the node, and P! and H!
aretheunknown linear and angular momentum. For acantilevered beam, thereaction force
and moment at the root where rotor and blade are connected are F" and M7, while the
unknown displacement and rotation are @}, , and 0T ., at the blade tip. All the unknown
guantities are expressed in the reference frame A.

The steady-state response of the rotating beam (i.e., its quasi-static response, which
is constant in frame A) is solved from equation (5.2) by applying the Newton-Ral phson
method [65]. Once the steady-state solution is obtained, equation (5.2) can be linearized

about the equilibrium state, which resultsin a set of first-order differential equations,
[AHX} + [B{X} = {F}, (5.4)

where X isthe linearized dynamic response near the equilibrium state, [A] = g—)(;, [B] =

ggi , and F' containsthe dynamic part of the external load. In this chapter, the external load

on the beam is assumed to be static in the reference frame A. Consequently, the linear

vibration eigen-modes of the system can be obtained from equation (5.4).

5.3 Rotating blade system model and linear modal analysis

The system selected is an active twist rotor (ATR) blade [66] shown in figure 5.2.
The general properties of the ATR blade are listed in table 5.1. Note that a static load of
3800 N is applied to the blade tip in the axial direction due to the specified centrifugal

loading. The cross-sectional property matrix [S] used in equation (5.1) isnot listed for the
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sake of simplicity. The dynamic response of this ATR blade model bas been investigated
by Cesnik et al. [66]. Here, the aerodynamic coupling and the adaptive actuation are
removed from the model, since only the structural dynamics are studied at this stage. The
blade model is evenly divided into 11 beam elements in the reference frame A. The tota
number of DOF of the finite element model is210.

At a constant rotating speed 2 = 72 rad/s, the steady-state equilibrium position of
the blade is shown in figure 5.3 with respect to the reference frame A. The steady-state
position is a combination of the axial elongation, u4;, and the deflection in the lead-lag
direction, u 4,. The bending deflection u 43 and the torsion # 4, are zero at the equilibrium
position. The axial elongation can be attributed to the centrifugal load applied to the
rotating blade, while the lead-lag deflection results from the intrinsic coupling between
the axial elongation and the lead-lag motion for this ATR blade model. This coupling can
be evidenced by performing alinear modal analysis, as described below.

Linear modal analysis can be applied to the rotating blade model linearized about the
steady-state equilibrium position, which is given symbolicaly in equation (5.4). With
the assumption that the external dynamic load is zero in equation (5.4), the free vibration

eigen-modes can be obtained by seeking a solution in the form,
X = et (5.5)

where ¢; isthe i-th eigenvector and ); is the corresponding eigenvalue. The eigenvectors
and the eigenvalues are complex in general, sincethe matrices [A] and [ B] in equation (5.4)
are not symmetric. The Lanczos method is used here to extract the complex eigen-modes.

The first 25 eigen-modes ! are listed in table 5.2. The physical characteristics of the

various mode shapes are denoted by the letters A, B, L, and T, which stand for the axial

I'For each mode, there exists a complex conjugate counterpart, which is not listed for the sake of
simplicity.
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elongation, bending deflection, lead-lag deflection, and torsion of the blade, respectively.
It is found that for most modes, the vibration shape is a combination of two of these
characteristic motions. In particular, the bending deflection is always coupled with the
torsion, as depicted in figure 5.4, while the lead-lag motion is always coupled with the
axial elongation, as shown in figure 5.5.

In table 5.2, it is observed that each eigenvalue features a small, but nonzero rea part,
either negative or positive, corresponding to amplitude decay or growth in the correspond-
ing mode, respectively. Since structural damping is not included in the blade mode, it is
believed that these nonzero real parts originate from numerical approximations, both in the
algorithm used for the eigen-analysis and in the cumbersome cal cul ations of the elements
of the linear system matrices (this was confirmed after discussion with the provider of the
ATR blade model [66]). In addition, the real parts in table 5.2 are very small, at least
six orders of magnitude smaller than the corresponding imaginary parts. As aresult, the
equilibrium position of this ATR blade can be considered stable, since the actual structural
damping in the blade would be always be large enough to compensate for the positive rea
part of the eigenvalues.

Using the obtained 25 linear eigen-modes, the linearized ATR blade model, equa-
tion (5.4), can be reduced to an approximate subspace spanned by 25 vibration modes.

With the introduction of the coordinate transformation,
X =[o]Y, (5.6)
where

[(I)] = [ Re(¢1)7 Im(¢1)7 Re(QS?)v lm(QS?)v T Re(¢25)v lm(¢25) ] )

Yy = [y17y27"'7y50]T7
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equation (5.4) istransformed vialinear modal analysisto
(MY +[K,]Y =0, (5.7)

where

Inverting the matrix [, ], the reduced-order system, equation (5.7), can be rewritten as

Y 4+ [KplY =0, (5.8)

where [Kp] = [M,] '[K,].
Next, secondary linear modal analysis can be applied to the reduced-order blade sys-

tem, equation (5.8). These new eigen-modes are obtained in the form,
Y =t i=1,---,25, (5.9)

where); isthei-th eigenvector and \; isthei-th eigenvalue. Thei-th eigenvalueisequal to
the corresponding eigenval ue obtained in the first modal analysis, andisshownintable5.2.

The coordinate transformation for the secondary modal analysisis defined as

Y =[]y, (5.10)

[\I]] = [ Re(wl)a |m(77/)1), Re(wQ)a Im(¢2)v T Re(w%)v |m(¢25) ] )

T
n = [s1, t1, So, to, -+, Sa5, los |,

where (s;, t;) arethefirst-order modal coordinates associated with the i-th mode. Thefinal

linearized reduced-order system takes the form

n+[Apln=0, (5.11)
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where [Ap] = [¥]'[Kp][¥]. The matrix [Ap] is block diagonal [68], and it takes the

following form

—Re(A;) —Im(\)
Im(A;) —Re(\)
—Re()\z) —Im()\g)

[Ap] = Im(X2)  —Re(\,)

0 0 0 —Re(Xg5) —Im(Ags)

IMm(Ag5)  —Re(Ag5)

(5.12)

System (5.11) isdecoupled with respect to each pair of linear modal coordinates, s; and
t;. Since the two coordinate transformations used in the linear modal analysis procedure
are real, the final reduced-order system is expressed solely in terms of real quantities.
This two-step coordinate transformation is necessary to facilitate the construction of the

nonlinear normal modes for the ATR blade model, which is described next.

5.4 Nonlinear normal mode theory for the rotor-blade system
Thefinite element-based ATR blade model isexpressed in thefollowing symbolic form
[AIX + [B]X + Fu(X) =0, (5.13)

where the matrices [A4], [B], and the vector X are defined in equation (5.4), which repre-
sents the linearized system with respect to the equilibrium position. The nonlinear force
vector, F,;(X), can only be obtained numerically from the finite element code provided by
Cesnik et al. [66]. Thisisbecause no explicit expression of the nonlinear forceis available

due to the complexity of the ATR blade model. For the sake of simplicity, it is assumed
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that the nonlinear force isindependent of the time derivative of the dynamic response, X.
Furthermore, the dynamic external load is not included in equation (5.13).
With the two-step linear modal analysis defined in equations (5.6-5.11), system (5.13)

can be transformed to the following form

;

$i + Gwis; — witi + fs,(S1,+++, Sasi b1, -+ ,ta5) =0

, fori=1,.--,25 (5.14)

b + wis; + ity 4+ [ (51, Sas3t1, -+ ta5) =0
\
where the linear part is block-diagonal. For each linear vibration mode, the linear modal

frequency, w;, and the linear modal damping ratio, &;, are introduced with the definitions 2

wi=1m(), &=-——"2%. (5.15)

The nonlinear force expressed in finite element coordinates is projected onto the 25 pairs
of linear mode shapes, yielding the nonlinear force in the linear modal coordinates, as

follows

o = [ [M ) [ @] Fu((9][]n) - (5.16)

f825
ft25
\ ),

The transformation matrices [V], [M,], and [®], and the vector » are defined in equa-

tions (5.6-5.11).

2According to the conventional definitions of the linear modal frequency and the modal damping ra-

tio [68], it follows that
Re()\z) = —fiwi, |m(/\,) =w;i\/1— flz .

Here, an approximate version of this definition is utilized since the damping ratios are very small for the
ATR blade model.
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In order to initiate the construction of the nonlinear normal modes for the ATR blade
model, one pair of linear modal coordinates, (s, tx), iS chosen to be the master coordi-

nates. These are transformed to polar form as follows

s = 10080 Ck=1,-.-.25. (5.17)
tr = asing
The efficiency of the use of polar form master coordinates, (a, ¢), in nonlinear normal
mode construction has been justified for numerous applications [54, 56]. The selection of
the master coordinates is based on the frequency region in which the nonlinear dynamic
response of the ATR blade is of interest. For instance, the master coordinates can be
chosen as the first linear modal coordinates, £ = 1, if the dynamic response near the first
bending mode (flap blade motion) needs to be investigated.
According to the definition of the invariant manifold, all the remaining DOFs of the
system are constrained to the master coordinates. The remaining linear modal coordi-

nates are denoted as slave coordinates, and their constraint relationships with the master

coordinates are expressed symbolically as

S = Pi(aa ¢)

t; = Qz (aa ¢)

The essential part in the construction of the nonlinear normal mode is to determine the

L i=1,---,25 itk. (5.18)

constraint relationship, P;’sand );'s.

The derivation of the partial differential equations governing the slave constraint rela-
tionshipsisbriefly described asfollows. First, the constraint rel ationships, equation (5.18),
are substituted into the nonlinear system of equations of motion, equation (5.14). It follows

that

oP; | AP
Lo+ SEo+ GwiP —wiQi+ fs, =0
9 Br L i=1,---,25, i #k. (5.19)

8a%d + aa%é +wiP; + &wiQi + fi, =0
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Then, the polar form master coordinates, equation (5.17), are substituted into the system

of equations (5.14) to obtain the governing equations in the master coordinates,

a = —&pwia — f5,008p — fi, Sing
¢ = —wi + (f5, SN — fi,c080)/a

(5.20)

Equation (5.20) isthen substituted into equation (5.19), and the differential equations gov-

erning the slave constraints are finally obtained as

;

Gk (—Ewra — [, 008 — fi,Sing)+

O [—wn + (£, 86 — £,,€080)/a] + Ewi P — wiQi + f,, = 0

00: (g wpa — f,, 0080 — fr, SNg)+ (5-21)
| Bl + (fuSing — £,0086)/a] + wiPi + §wiQi + fi, = 0

for i =1,---,25, i #k.

Once equation (5.21) is solved, the constraint relationships can be substituted into equa-
tion (5.20). Consequently, the nonlinear dynamics on the invariant manifold are solely
governed by the master coordinates, (a, ¢).

The differential equations for the invariant manifold, equation (5.21), has to be solved
numerically, and here a Galerkin method is used. First, the two-dimensional solution

domain
{ (a,9) | a € (0,amal, ¢ €[0,27] }, (5.22)
isevenly discretized into n stripe-shaped segments,
{(a,9) | a€lda,(I+1)Ad], p€[0,27] }, 0<I<n—1, (5.23)

where a,,,, 1S the upper limit of the construction domain for the invariant manifold, and

Aa = apme/n is the width of each segment in the « direction. In each segment, the
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constraint relationships, P;’sand ();'s, are then expanded as

Pi(a,¢) = X2, 20, CL T (a) Hg(¢
(0.0) = Zia T CoTal@Hod) L e
N, i
Qi(a, ) = 22:1 Zﬁil DaﬁTa(a)Hﬁ(¢)
where C, 5, D}, ; are the unknown coefficients, and the expansion functions are defined as

a—lAa [+1D)Aa—a
Ty = “20 () = LED2e e

, for a € [lAa, (I+1)Ad], (5.25)

and

Hy(¢) = C?S?Qﬁ’ ’ IISOdd . (5.26)
sing¢, G iseven
Using this approach, the accuracy of the slave constraints, P;’s and @);’s, is controlled by
the segment width Aa and the total number of terms, N, in the Fourier expansion.

The expansions (5.24) are substituted into the invariant manifold equation (5.21). Us-
ing a Galerkin projection, a series of algebraic equations can be obtained in the unknown
coefficients, C"sand D’s. The Galerkin projection is expressed as

(141

YAa 27
/ To(a)Hy(¢) Rsds(a, &, C, D) do da = 0 , (5.27)
[Aa 0

for ¢=1,2, f=1,--- Ny, i=1,---,25 andi#k,

where C and D are the vectors of the unknown coefficients C; ; and D ;. The residual
functions Rsd;(a, ¢, C, D) represent the left hand side of the invariant manifold equation,
which are projected onto each expansion function defined in equation (5.24). The Hybrid
Powell’s method [57] is used to solve the resulting algebraic equations numerically. Once
the invariant manifold has been constructed in each discretized segment, the various pieces
can be assembled [54] and the invariant manifold can be obtained over the whole solution

domain (5.22).
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5.5 Invariant manifold results

The motion of the nonlinear rotating ATR blade in its first (lowest frequency) mode
of vibration is investigated. In order to construct the nonlinear normal mode, the linear
modal coordinates corresponding to thefirst linear mode, (si,t1) in system (5.14), are se-
lected as the master coordinates. Note that in thisfirst linear mode the motion is primarily
first-order bending (flap) along with asmall first-order torsion component. The slave coor-
dinates are chosen as the 10 pairs of linear modal coordinates, (s;,t;),i = 2,3,---,11,1in
system (5.14). According to table 5.2, this selection of slave coordinates includes the fol-
lowing ATR blade modes: the bending (flap) modes up to thefifth order, the torsion modes
up to the second order, the lead-lag modes up to the third order, and the axial elongation
modes up to the second order. It is believed that this selection of the slave coordinates
is sufficient for the determination of the first bending nonlinear mode. All the remaining
DOFs for high-order modes, (s;,t;), i = 12,13,---,25, in system (5.14), are neglected
in the construction of the invariant manifold. In other words, the constraint relationships,
P;’sand Q;’s, are set equal to zero for these high-order modes.

Linear modal damping is added to system (5.14) to increase numerical stability in the
construction of the nonlinear normal mode. As shown in table 5.3, the moda damping
ratio added to the master and slave modes ranges from 0.01 for the low modesto 0.1 for
the high modes. The latter value is not small in the sense of structural damping, but may
be reasonable if aerodynamic damping is considered.

In the numerical construction of the nonlinear normal mode corresponding to the first-
order bending motion, the upper limit of the solution domain, a,,,., in equation (5.22),
is taken as 1200, and the amplitude domain is evenly discretized into 60 segments. The

total number of harmonic terms in the Galerkin expansion (5.24) in the phase coordinate
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isset as N, = 18. The unknown coefficients in equation (5.24) are solved for using the
Hybrid Powell method, and the resulting constraint rel ationships for the slave coordinates
are depicted in figures 5.6-5.9 for four out of the ten dlave modes. These constraints
define the geometry of the invariant manifold for the first nonlinear normal mode. One
conclusion that can immediately be drawn is that, among all slave modes (those shown,
but also al others), thefirst axial elongation mode, which is shownin figure 5.9, makesthe
largest contribution to the motion of the blade system in its first nonlinear normal mode.
Moreover, the contribution from the first lead-lag mode, figure 5.6, is much larger than the
contributions from the second bending mode, figure 5.7, and from the first torsion mode,
figure 5.8. Thus, the constraint relationships clearly demonstrate that the axial elongation
modes and the lead-lag modes are crucial in the analysis of the bending motion of the ATR
blade model.

Once the invariant manifold for the first nonlinear norma mode has been determined,
the dynamics on the manifold can be reduced to those of the master coordinates, (a, ¢),
which are governed by the reduced-order model, equation (5.20). Figures 5.10-5.13 depict
the time responses corresponding to a motion on the first mode invariant manifold. The
results shown are obtained from three different procedures. In the first procedure, the
blade system responseis obtained from the single-DOF, invariant manifol d-based reduced-
order model, equation (5.20). The master coordinates are first computed by numerical
integration. The responses of the slave coordinates are then recovered using the slave
constraint relationships, equation (5.18). In the second procedure, the response of the
original nonlinear equations of motion in the linear modal coordinates, equation (5.14),
is obtained directly by numerical integration (with 11 retained linear modes rather than
25). Theinitial conditions for the 11 pairs of modal coordinates, (s;,¢;) fori =1---11,

are the same asin the first procedure. The third procedure consists of a single-mode time
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simulation of the equations of motion, namely equation (5.14) in which only the modal
coordinates (s, ;) of thefirst linear mode are retained, with all other modal coordinates,
(si,t;) fori > 1, being set to zero for all time. In all three time simulation procedures, the
initial conditions for the master coordinates are set as (s1(0),¢1(0)) = (1190, 0).

In figure 5.10, the simulation obtained from the invariant manifold-based reduced-
order model matches the time response obtained from the original 11-DOF model pre-
cisely, while the single-mode simulation deviates significantly from the origina system
response as time marches. In the comparisons of the time responses for the slave co-
ordinates, figures 5.11-5.13, the responses from the reduced-order model are very good
representations of the origina system responses. The one-mode simulations are not plot-
ted since they are al zero. It is observed that the effect of damping in the reduced-order
model is dlightly larger than in the original system. The reason for this “over-damping” in
the invariant manifold is not understood yet.

These results show that the efficient single-DOF reduced-order model based on the
invariant manifold provides an accurate approximation of the blade response, while the
nonlinear model truncated to a single linear blade mode does not. In fact, a model that
includes 11 linear modes is needed to achieve the accuracy of the single-DOF nonlinear
normal mode model. This means that the blade’s higher vibration modes, and particularly
the first axial elongation mode, have a significant effect on the first-order bending mode
response through nonlinear coupling effects.

The comparisons of the responses of the master and slave coordinates, figures 5.10—
5.13, evidence the accuracy of the constructed nonlinear normal mode for the first-order
bending motion. Based on the time responses obtained from the invariant manifol d-based
reduced-order model, the motion of the ATR blade model in the physical coordinates, X

in equation (5.13), isshown in figures 5.14 and 5.15. The peak-to-peak bending deflection
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at the blade tip is about 16 ¢m, which is considerable for a blade of length 1.397 m. The
torsional motion of the blade is also large, with the peak-to-peak twist angle at the blade
tip being above 0.2 radians (11.4 degrees). Although the lead-lag and the axial elonga-
tion vibrational motion amplitudes are very small compared to the steady-state position
of the ATR blade model (see figure 5.3), the nonlinear interactions contributed from these
motions are important to the accuracy of the nonlinear normal mode, because the blade
stiffnessin these directionsis designed to be much larger than the stiffnessin the bending

and torsion directions.

5.6 Conclusions

For atypical rotating blade model, namely an active twist rotor (ATR) blade, the non-
linear normal mode corresponding to the first-order bending motion has been successfully
constructed. A single-DOF reduced-order model has been obtained from the correspond-
ing invariant manifold. This reduced-order model accurately and efficiently represents the
nonlinear dynamics of the blade in its first-order bending mode. Numerical time simu-
lations on the invariant manifold have shown that the lead-lag and the axial elongation
motions are essentia in capturing the bending-dominated blade motion accurately.

Nonlinearities in the rotating blade are much more intricate than those in the exam-
ple systems of the preceding chapters, and the finite element method had to be utilized to
obtain the blade's equations of motion. Also, in general the eigenvalues and eigenvectors
of the linearized system are complex. A numerical methodology has been proposed for
the construction of the invariant manifold for such complicated nonlinear systems. This
methodology can be conveniently extended to more complete rotating blade models, in-
cluding those with structural damping and aerodynamic coupling.

In this study, a single pair of linear modal coordinates is selected as the master co-
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ordinates. In practice, additional linear modes can be included as master modes, and the
current numerical methodology can be extended to the construction of multi-mode invari-

ant manifoldsfor rotating blade systems.

5.7 Tablesand Figures

Blade chord, ¢ 10.77 em
Blade length 1.397 m
Blade pretwist Orad
Hinge offset 7.62 cm
Root cutoff 31.75cm
Pitch axis 25% chord
Elastic axis 25% chord
Center of gravity 25% chord

Centrifugal loading attip 738.5¢g
Rotor speed 72.0rad/s
Mass per unit span 0.6960 kg/m

Section torsiona inertia  3.307 x 10~* kg m? m™!

Table 5.1: General properties of the ATR blade model [66].
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U nide formed S4ale

Figure5.1: Schematic of the undeformed and deformed beam reference lines and cross-
sections [64—66].
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Mode # Eigenvalue Moda || Mode# Eigenvalue Modal

i i shape i i shape

1 1.011E-6 +; 1.336E2 | 1B-1T 14 1.856E-5 + ¢ 3.085E3 | 4L-3A
2 6.857E-6 +; 1.605E2 | 1L-1A 15 -4.512E-4 + 1 4.237E3 | 4T-7B
3 1.447E-6 + 1 3.747E2 | 2B-1T 16 -3.662E-4 + 1 4.569E3 | 4T-7B
4 -1.386E-4 + 1 5.463E2 | 1T 17 -1.187E-3 + : 5.769E3 | 5L-4A
5 1.109E-4 + ; 6.308E2 | 3B-1T 18 3.702E-4 + ; 5.781E3 | 7B-5T
6 1.874E-5+ 1 6.898E2 | 2L-2A 19 8.918E-4 +; 7.161E3 | 2A-6L
7 -1.462E-4 + ; 1.016E3 | 4B-2T 20 3.601E-4 + ¢ 7.244E3 | 8B-6T
8 1.767E-5+ 7 1.604E3 | 3L-2A 21 -2.952E-3 + 1 7.869E3 | 8B-6T
9 -3.690E-3 + 7 1.652E3 | 2T-5B 22 3.093E-3+:9.447E3 | 7T

10 3.483E-3 + i 1.662E3 | 5B-2T 23 5.520E-3 + i 1.025E4 | 6L-5A
11 -2.643E-5+7 2403E3 | 1A 24 -1.526E-2 +; 1.081E4 | 3A

12 -1.367E-3 + ¢ 2.729E3 | 6B-3T 25 -1.375E-2+ 1 1.372E4 | 8B

13 9.730E-4 + 7 2.862E3 | 6B-3T

Table5.2: Thefirst 25 linear eigen-modes of the ATR blade. In the modal shape column,
B denotes the bending deflection, T the torsion, L the lead-lag deflection, and
A the axial elongation.
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Mode number, i | Modal damping ratio, &;

1,23 0.01
4,5 ---,9 0.05
10,11 0.10

Table5.3: Modal damping ratios added to system (5.14) for the construction of the first
nonlinear normal mode.

Figure5.2: The prototype of the active twist rotor (ATR) blade [66]. AFC denotes the
active fiber composites.
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Figure5.4: The first linear mode shape of the ATR blade model: (a) Bending deflection,
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Second mode shape, Axial elongation

J - 1 1 1 1 1
1

0.2 0.4 0.6 0.8 1.2 14
Blade length (m)
@
x10°
3.5
sk g
8
I
e}
8 25F R
—
g
ok ]
5
©
o
o
£ 15f B
©
c
S
§ ]
051 N
0 1 L L
0.2 0.4 1.2 1.4

0.6 0.‘8
Blade length (m)

(b)

Figure5.5: The second linear mode shape of the ATR blade model: (a) Axial elongation,
(b) Lead-lag deflection.
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Figure5.10: Time response on the invariant manifold of the first nonlinear normal mode
— the master coordinate: (@) s;(t), (b) ¢1(¢). ‘*——', simulation based on the
original 11-linear mode system; ‘- - -’, simulation based on the nonlinear
mode reduced-order model; ‘------", one-linear mode simulation.
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Figure5.11: Time response on the invariant manifold of the first nonlinear normal mode
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Figure5.14: Time response on the invariant manifold of the first nonlinear normal mode
—the physical displacements of the ATR blade: (a) Axia elongation u 41, (b)
Lead-lag motion w 45. Initia time ¢, = 0; ¢; = 0.0039 s; £, = 0.0078 s;
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‘- - -7, which is approximately one half period of the motion in the master
coordinates (see figure 5.10).
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Figure5.15: Time response on the invariant manifold of the first nonlinear normal mode —
the physical displacements of the ATR blade: (a) Bending deflection w 43, (b)
torsion 6 4;. Initid timety, = 0; t; = 0.0039 s; t, = 0.0078 s; t3 = 0.0117 s,
‘- --"inFigure (b); t,y = 0.0157 s, *-----" in Figure (b); t5 = 0.0196 s; end
timetg = 0.0235 s, which is approximately one half period of the motionin
the master coordinates (see figure 5.10).



CHAPTER VI

CONCLUSIONS

The essence of nonlinear modal analysisisto generate aminimal reduced order model
that can capture the dynamics of the original system accurately. An effective normal-
mode-based model order reduction methodology must satisfy two basic criteria. First, the
method must be systematic, which meansit can deal with various kinds of nonlinear forces
and it can handle various structural models such asfinite element models. Second, the con-
struction of the nonlinear normal modes must be numerically efficient, in the sense that
the solution can be obtained from a computer code in areasonable time, regardless of the
size of the actual nonlinear system. The results obtained in this dissertation demonstrate
that the invariant-manifold-based approach is general enough to account for various types
of nonlinear forces, such as non-smooth restoring forces, conventional quadratic and cubic
nonlinear forces, and complex intrinsic nonlinear effects such as those in the model of a
rotating rotorcraft blade. Also, the Galerkin-based solution technique devel oped has been
shown to alow for the efficient generation of the invariant manifolds, for large nonlin-
ear systems and up to large amplitudes. Therefore, this approach allows for the practical
application of the invariant manifold formulation for a wide variety of engineering struc-
tures. Asaresult, thework presented in this dissertation has achieved significant advances

for strongly nonlinear systems on two critical fronts — the accuracy of the reduced-order

143



144

model and the efficiency of the attendant computations.

6.1 Contributions

The original contributions of this dissertation are described by re-examining the results
obtained in the preceding chapters, as follows.

¢ In Chapter 11, the Galerkin-based method for the construction of the invariant man-
ifolds, originally developed for dynamic systems with smooth nonlinearities, has been
extended to piecewise linear systems. The transformation of the master coordinates to po-
lar form and the discretization in the amplitude domain make the Gal erkin-based approach
applicablein strongly nonlinear regions, as well asin the transition region between linear
and nonlinear motions, with little additional analytical work. Previous to this work, no
general method existed for the construction of nonlinear normal modes for systems with
non-smooth restoring forces.

e In Chapter 111, multi-nonlinear normal modes have been effectively generated by
the invariant manifold approach. A systematic and efficient solution methodology for the
invariant manifolds has been proposed, which uses the polar form of the master coor-
dinates. Four-dimensional invariant manifolds have been successfully constructed for a
rotating beam system, using a combination of finite difference or finite element discretiza-
tion schemes in the amplitude domain and two-dimensional Fourier series expansions in
the phase domain. This two-DOF reduced order model captures accurately the nonlinear
internal resonance between two beam modes, which traditional nonlinear mode models
derived using asymptotic methods are unable to describe.

e In Chapter |V, the invariant manifold approach has been generalized to nonlinear
vibratory systems subjected to periodic excitation. One additional phase variable has been

introduced to represent the external harmonic excitation. The reduced order model cor-
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responding to the augmented invariant manifold has been shown to capture the forced
dynamics of the original system accurately. Furthermore, this approach is general and
can be extended to any type of excitation that can be modeled by a finite-state auxiliary
dynamic system, including any type of external and/or parametric periodic excitation.

¢ In Chapter V, invariant-manifol d-based nonlinear modal analysis has been applied to
a complete nonlinear rotorcraft blade model. Contrary to the example systems studied in
the preceding chapters, the rotating blade features complex, intrinsic nonlinearities. The
invariant manifold approach has been successfully used for this complex system, produc-
ing an accurate single-DOF reduced order model that imbeds all significant physical blade
motions. It is the first time that the nonlinear normal modes of a practical rotating blade

model have been constructed.

6.2 Futureresearch

Some thoughts for the future research in this field are discussed here.

e A stability analysis of the invariant manifolds for forced nonlinear systemswould be
of interest; thisisrelated to the bifurcation work done by Rand [19-21], Vakakis[10, 25],
etc. For autonomous systems, the invariant manifold approach can be considered as the
direct extension of the center manifold theorem. For nonlinear systemswith external exci-
tation, the physical meaning of the invariant manifold needs to be justified by a thorough
investigation of the nonlinear dynamics near the limit cycle with respect to the external
excitation.

e The construction of multi-mode invariant manifolds is computationally expensive,
and it represents a bottleneck for obtaining high-precision reduced order models effi-
ciently. One difficulty is that the number of terms in the Fourier series expansions in-

creases geometrically with the order ofthe manifold. This could possibly be overcome



146

by using finite difference or finite element discretizations in the multi-dimensional phase
domain.

e Systems with non-smooth restoring forces are another interesting topic of nonlinear
modal analysisresearch. Composite materials are widely used in air vehicles, and in some
cases the evaluation of their response can be difficult due to the asymmetry in material
properties. For example, carbon-fiber reinforced materials feature different Young's mod-
ulusin traction and in compression. This means that the dynamic response of a structure
made of carbon-fiber reinforced material cannot be obtained from linear vibration theory.
Developing nonlinear reduced-order models for such advanced composite material would
be valuable since their dynamics can be captured on the invariant manifolds.

e For the rotating ATR blade in Chapter V, structural damping, gravity, and aerody-
namic coupling need to be included in the model, and the invariant manifold approach
needs to be adjusted to account for these effects. This is deemed numerically feasible
since the aerodynamic coupling can be expressed in terms of real numbers. It would also
be of interest to embed the excitation from the smart material in the invariant manifold.
Then, the resulting reduced order model could be utilized to carry out studies of active

control.
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ABSTRACT

NONLINEAR MODAL ANALY SISBASED ON INVARIANT MANIFOLDS —

APPLICATION TO ROTATING BLADE SYSTEMS

by
Dongying Jiang

Co-Chairs: Christophe Pierre, Steven W. Shaw

This research aims at the development and implementation of new model reduction
methods for nonlinear structural systems, based on a nonlinear modal analysis method-
ology. Invariant manifolds in the system’s phase space are used to define and construct
nonlinear normal modes of motion for awide class of nonlinear vibratory systems. A nu-
merical Galerkin technique is utilized to solve for the invariant manifolds, which allows
oneto construct nonlinear normal modesand carry out nonlinear mode-based model reduc-
tion for motionsin strongly nonlinear regions of the phase space. This method seamlessly
interfaces with finite element models of engineering structures, and it allows the user to
specify the vibration amplitude range and the accuracy of the model over that range. Inthis
dissertation, the nonlinear modal analysis methodology is generalized to multi-nonlinear
normal mode systems, including those with internal resonances. The approach is also suc-

cessfully extended to systems with piecewise linear restoring forces, which model struc-



tural components with clearance, pre-load, or different elastic materials. Furthermore,
nonlinear modal analysis is developed for systems that are subjected to periodic forces,
thereby providing a useful tool for attacking the important problem of obtaining the fre-
guency response of complex nonlinear structures. Finally, the invariant-manifold-based
model reduction methodology is applied to a complex engineering structure, namely the
model for a prototype of an active twist rotor blade. Rotorcraft blades feature significant
nonlinear behavior, due to rotation, large deformation, and complex blade geometries and
materials. While discretized blade models typically feature large numbers of degrees of

freedom, the proposed approach is shown to yield an efficient reduced order model.



