
HAL Id: tel-00361026
https://theses.hal.science/tel-00361026

Submitted on 12 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Reduced order modeling of nonlinear structural systems
using nonlinear normal modes and invariant manifolds

Eric Pesheck

To cite this version:
Eric Pesheck. Reduced order modeling of nonlinear structural systems using nonlinear normal modes
and invariant manifolds. Mechanics [physics.med-ph]. University of Michigan, 2000. English. �NNT :
�. �tel-00361026�

https://theses.hal.science/tel-00361026
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


REDUCED ORDER MODELING OF

NONLINEAR STRUCTURAL

SYSTEMS USING NONLINEAR

NORMAL MODES AND INVARIANT

MANIFOLDS

by

Eric Pesheck

A dissertation submitted in partial ful�llment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2000

Doctoral Committee:

Professor C. Pierre, Co-Chair
Professor S.W. Shaw, Co-Chair
Professor R. Scott
Assistant Professor Dawn Tilbury
Professor Armin Troesch





c

Eric Pesheck 2000
All Rights Reserved



For Ren�ee

ii



ACKNOWLEDGEMENTS

I wish to express thanks to Professor Christophe Pierre for his generous support

and guidance, to Professor Steve Shaw for his helpful insights, to Ren�ee for her

patience and motivational skills and, �nally, to my parents, for getting me here.

iii



TABLE OF CONTENTS

DEDICATION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ii

ACKNOWLEDGEMENTS : : : : : : : : : : : : : : : : : : : : : : : : : : iii

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : vii

LIST OF APPENDICES : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.1 Nonlinear Structural Vibration . . . . . . . . . . . . 2
1.1.2 The \Nonlinear Mode" . . . . . . . . . . . . . . . . 3
1.1.3 The Invariant Manifold . . . . . . . . . . . . . . . . 4

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II. MODAL ANALYSIS-BASEDREDUCED-ORDERMODELS

FORNONLINEAR STRUCTURES { AN INVARIANTMAN-

IFOLD APPROACH . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Background . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . 11

2.2 Individual Nonlinear Normal Modes . . . . . . . . . . . . . . 12
2.2.1 Invariant Manifolds . . . . . . . . . . . . . . . . . . 12
2.2.2 De�nition of a Nonlinear Normal Mode . . . . . . . 13
2.2.3 Construction of Nonlinear Normal Mode Manifolds . 13
2.2.4 Nonlinear Normal Modal Dynamics . . . . . . . . . 20
2.2.5 Example: A Simply Supported Euler-Bernoulli Beam

Constrained by a Non-Linear Spring . . . . . . . . . 21
2.2.6 Systematic Implementation . . . . . . . . . . . . . . 28
2.2.7 Example: Finite Element-Based Beam . . . . . . . . 28

iv



2.3 Reduced-Order Modeling Using Multi-Mode Models . . . . . 29
2.3.1 De�nition of a Nonlinear Multi-Mode Model . . . . 29
2.3.2 Construction of a Multi-Mode Manifold . . . . . . . 29
2.3.3 Some Computational Considerations . . . . . . . . . 37
2.3.4 Example: A Second Finite Element-Based Beam . . 38

2.4 The Case of Harmonic Excitation . . . . . . . . . . . . . . . . 41
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III. MODAL REDUCTION OF A NONLINEAR ROTATING

BEAM THROUGH NONLINEAR NORMAL MODES . . . 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.3 System Convergence . . . . . . . . . . . . . . . . . . . . . . . 59
3.4 Nonlinear Mode-Based Model Reduction . . . . . . . . . . . . 63
3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV. A NEW GALERKIN-BASED APPROACH FOR ACCU-

RATE NONLINEAR NORMAL MODES THROUGH IN-

VARIANT MANIFOLDS . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.2 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Application: A Nonlinear Two-mass System . . . . . . . . . . 88

4.3.1 The First Nonlinear Normal Mode . . . . . . . . . . 90
4.3.2 The Second Nonlinear Normal Mode . . . . . . . . . 93

4.4 Application: Nonlinear Finite Element Beam . . . . . . . . . 95
4.5 Further Considerations . . . . . . . . . . . . . . . . . . . . . 99
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.7 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

V. ACCURATE REDUCED ORDER MODELS FOR A SIM-

PLE ROTORBLADEMODEL USINGNONLINEARNOR-

MAL MODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Rotating Beam Formulation . . . . . . . . . . . . . . . . . . . 117
5.3 Galerkin-based ROM generation . . . . . . . . . . . . . . . . 121
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.6 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

v



VI. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.3.1 Theoretical Development . . . . . . . . . . . . . . . 140
6.3.2 Applications . . . . . . . . . . . . . . . . . . . . . . 143

APPENDICES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 146

BIBLIOGRAPHY : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 154

vi



LIST OF FIGURES

Figure

2.1 Simply-Supported Euler-Bernoulli (linear) beam connected to a purely
cubic spring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2 Beam displacement through a quarter-period of motion in the �rst
nonlinear normal mode, sampled at seven equal time intervals. u1(0) =
0; v1(0) = 6:93 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Beam velocity pro�le through a quarter-period of motion in the
�rst nonlinear normal mode, sampled at seven equal time intervals.
u1(0) = 0; v1(0) = 6:93 . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Modal manifold projected into the u1; v1; u3 subspace. The closed
curve corresponds to the initial conditions in Figures 2.2 and 2.3 . . 48

2.5 Linear phase space corresponding to a single mode truncation. The
solid curve lies on the manifold in Figure 2.4, while its projection
(dashed line) may only be approximated. . . . . . . . . . . . . . . . 48

2.6 Peak con�gurations (zero velocity) for equal intervals in u1. . . . . . 49

2.7 De
ection of the middle-point of the beam as obtained by various
linear modal analysis simulations initiated on the �rst nonlinear nor-
mal mode manifold. u1(0) = 0:15, v1(0) = 0. . . . . . . . . . . . . . 49

2.8 De
ection of the middle-point of the beam as obtained by various
simulations initiated on the �rst nonlinear normal mode manifold.
u1(0) = 0:15, v1(0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Schematic of �nite element model. 200 beam elements were used to
construct a beam with: L = 1 m, � = 7860kg=m3, E = 2�1011N=m2,
I = 5� 10�8m4, k = 105N=m, 
l = 1012N=m3, 
r = 5� 1011N=m3 . 50

vii



2.10 De
ection of the left end of a 200-element �nite element beam us-
ing several di�erent models initiated on the fourth-mode invariant
manifold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Schematic of �nite element model: 200 beam elements were used to
construct a beam with: L = 1 m, � = 7860kg=m3, E = 2�1011N=m2,
I = 5� 10�8m4. The parameters k and 
t vary by case. . . . . . . . 51

2.12 De
ection of node 50 (quarter span of beam) versus time using var-
ious methods. Here, k = 108, and the nonlinear spring strength is

t = 5000u0(0)2 + 20000u0(0)3, with initial conditions: u1(t = 0) =
�0:15; u2(t = 0) = 0:12; u3(t = 0) = 0:25; v1(t = 0) = v2(t = 0) =
v3(t = 0) = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.13 De
ection of node 100 (half span of beam) versus time using various
methods. Here, k = 1:185� 106, and the nonlinear spring strength
is 
t = 10000u0(0)2, with initial conditions:u2(t = 0) = 0:2; u3(t =
0) = �0:35; v2(t = 0) = v3(t = 0) = 0. . . . . . . . . . . . . . . . . . 52

3.1 Rotating beam system, 
 =Constant . . . . . . . . . . . . . . . . . 69

3.2 Axial de
ection, ud(x), due to a static transverse de
ection, w(x),
for various values of Na; (a) Na = 1, (b) Na = 3, (c) Na = 6, (d)
Na = 12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.3 Transverse dynamics initiated in the second transverse mode, shown
at the beam tip, for various values of Na. . . . . . . . . . . . . . . . 71

3.4 Axial dynamics due to initial conditions in the second transverse
mode, shown at the beam tip, for various values of Na. . . . . . . . 71

3.5 Transverse dynamics initiated in the second transverse mode, shown
at the beam tip, for various values of Nt. . . . . . . . . . . . . . . . 72

3.6 Mode 1 frequency versus number of modes. here, Na = Nt, and
c1(0) = 1:0, corresponding to an end de
ection of w(L) � 0:2m. . . 72

3.7 Transverse and axial de
ections, w(x; t) and u(x; t), for a quarter-
period of motion in the third nonlinear mode. The dashed line de-
notes the static de
ection, us(x). . . . . . . . . . . . . . . . . . . . . 73

3.8 Response frequency as a function of modal amplitude for several
one-mode models, as well as the exact solution, for the �rst three
transverse modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



3.9 Transverse de
ection, w(L; t), initiated on a two-mode (�rst and sec-
ond transverse) nonlinear manifold with 3!t;1� !t;2, for the \Exact"
and various reduced (2-DOF) models. . . . . . . . . . . . . . . . . . 75

3.10 Modal de
ection of the ninth transverse mode, c9(t), initiated on
a two-mode (�rst and second transverse) nonlinear manifold with
3!t;1� !t;2 as predicted by simulation, and reconstructed using the
constraint equations, Eq. (3.4). . . . . . . . . . . . . . . . . . . . . . 76

3.11 Transverse de
ection, w(L; t), initiated on a two-mode (fourth trans-
verse and �rst axial) nonlinear manifold with 2!t;4� !a;1, for the
\Exact" and various reduced (2-DOF) models. . . . . . . . . . . . . 77

4.1 Exact, Asymptotic and Galerkin Manifolds (at � = 0) for the second
nonlinear mode of the �nite element system pictured in Fig. 4.12.
The Asymptotic Manifold is of third order, while the Galerkin Man-
ifold uses 80 piecewise linear segments in the amplitude, a, and
N� = 8 harmonics in �. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.2 Two degree-of-freedom nonlinear system with hardening cubic springs
of strength 
1 = 2, and 
2 = 1. . . . . . . . . . . . . . . . . . . . . . 104

4.3 Orthogonal polynomials used for the a component of the manifold
expansion, shown for ao = 1. . . . . . . . . . . . . . . . . . . . . . . 104

4.4 Convergence of the �rst mode invariant manifold. The parenthetical
notation refers to the number of basis functions, (Na; N�), used in
the expansion. Plots (a) and (b) illustrate P2(a; 0), and P2(2:22; �)
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 The �rst mode invariant manifold: The position (a), and velocity
(b) of mode 2, as a function of the amplitude and phase of mode one
(shown for Na = 5, N� = 12). . . . . . . . . . . . . . . . . . . . . . 106

4.6 Response frequency for the �rst nonlinear normal mode versus the
mode 1 amplitude, a, at � = 0. The Galerkin Manifold corresponds
to the Na = 5, N� = 12 solution. . . . . . . . . . . . . . . . . . . . . 107

4.7 Response of the �rst mass, q1, for periodic �rst-mode motions, using
various reduced systems. The Exact and Galerkin Manifold (Na = 5,
N� = 12) solutions are indistinguishable. . . . . . . . . . . . . . . . 107

ix



4.8 Convergence of the mode 2 invariant manifold. The parenthetical
notation refers to the number of basis functions, (Na; N�), used in
the expansion. Plots (a) and (b) illustrate P1(a; 0) and P1(3:0; �),
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.9 The second mode manifold: The position (a), and velocity (b) of
mode 1, as a function of the amplitude and phase of mode 2 (shown
for Na = 4, N� = 6). . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.10 Response frequency for the second nonlinear normal mode versus the
mode 2 amplitude, a, at � = 0. The Galerkin Manifold corresponds
to the Na = 4, N� = 6 solution. . . . . . . . . . . . . . . . . . . . . 110

4.11 Response of the �rst mass, q1, for periodic second-mode motions,
using various reduced systems. The Exact and Galerkin Manifold
(Na = 4, N� = 6) solutions are indistinguishable. . . . . . . . . . . . 110

4.12 Schematic of �nite element model: 200 linear beam elements were
used to construct a beam with de
ection u(x; t), length L = 1 m,
density � = 7860kg=m3, Young's modulus E = 2 � 1011N=m2, mo-
ment of inertia I = 5 � 10�8m4, spring sti�ness k = 108N=m, and
nonlinear torsional sti�ness 
t = 5000u0(0; t)2 + 20000u0(0; t)3N. A 0

indicates a partial derivative with respect to x. . . . . . . . . . . . . 111

4.13 The asymptotic and Galerkin manifolds for the mode three displace-
ment contribution to the second NNM. The asymptotic solution is
of third order, while the Galerkin solution uses 80 piecewise linear
segments in a, and N� = 8 harmonics in �. . . . . . . . . . . . . . . 111

4.14 Time response for various second mode solutions. As before, the
Galerkin Manifold and Exact solutions are indistinguishable. . . . . 112

4.15 Phase space depiction of the periodic mode 6 contribution to the
second NNM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.16 Normalized mode shape for the �fth NNM at small (a = :01; � =
0) and large (a = 2:0; � = 0) amplitudes, obtained through the
Galerkin-based solution procedure. . . . . . . . . . . . . . . . . . . 113

4.17 Mode 1 contribution to the �fth NNM (at � = 0). The asymptotic
solution is third order, while the Galerkin solution uses N� = 8
harmonics, and 40 linear segments in a. . . . . . . . . . . . . . . . . 113

x



4.18 Response frequency versus amplitude for the �fth NNM, using vari-
ous periodic solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.19 Manifold anomaly for the second NNM, indicating a 6:1 interaction
with the �fth linear mode. . . . . . . . . . . . . . . . . . . . . . . . 114

5.1 Rotating beam system, for 
 =Constant . . . . . . . . . . . . . . . 133

5.2 The invariant manifold corresponding to the �rst 
apping mode, at
� = 0, indicating agreement between the Nonlinear Galerkin and
Reference Solution through a large amplitude. The manifold cor-
responding to the reference solution is obtained through numerical
simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Projection of the �rst-mode manifold depicting the contribution of
the second 
apping mode (c2), as a function of the �rst 
apping
mode's amplitude and phase. . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Projection of the �rst-mode manifold depicting the contribution of
the �rst axial mode (b1), as a function of the �rst 
apping mode's
amplitude and phase. . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.5 Transverse de
ection at the beam tip, w(L; t), for the Galerkin NNM
and the reference solution. The responses are nearly identical. . . . 135

5.6 Modal contribution of the eighth 
apping mode to the motion of
Fig. 5.5. Presumably, agreement would improve with the inclusion
of more harmonics in the Galerkin solution. . . . . . . . . . . . . . . 135

5.7 Transverse and axial de
ections, w(x; t) and u(x; t), for a quarter-
period of motion in the �rst nonlinear mode. The dashed line denotes
the static de
ection, us(x), and the top curve for w(x) corresponds
to the bottom u(x) curve. . . . . . . . . . . . . . . . . . . . . . . . 136

5.8 Response frequency as a function of modal amplitude for several
one-mode models, as well as the Reference Solution, for the �rst
nonlinear mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xi



LIST OF APPENDICES

Appendix

A. ALTERNATIVE FORMULATION FOR THE SECOND-ORDERMAN-
IFOLD EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B. ADDITIONAL FORMULAS FOR THE GENERATION OF MULTI-
MODE MANIFOLDS . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

C. MANIFOLD EXPANSION POLYNOMIALS . . . . . . . . . . . . . . 150

D. ESTIMATED COMPUTATIONAL EFFORT . . . . . . . . . . . . . . 151

xii



CHAPTER I

INTRODUCTION

In many applications, it is advantageous to achieve a thorough understanding

of the dynamics of a complex structure. These structures may take many forms,

including rotorcraft, buildings, bridges, vehicles, and aircraft. Modern design tools,

such as Finite Element Analysis, have greatly expanded the modeling detail available

for such structures. However, these techniques are limited in their abilities, especially

when the structure dynamics enter a nonlinear regime. This limitation is often

countered by sacri�cing either time | through a large, expensive computer model,

or accuracy | through the elimination of possibly signi�cant in
uences. As it is of

continual interest to expand the performance envelope of such structures, they are

becoming lighter, more 
exible and, consequently, more nonlinear. This trend points

out a need for e�cient, analytically rigorous, widely applicable analysis techniques

for nonlinear structural systems. The primary goal of this dissertation is to address

this need through the further development and implementation of model reduction

through nonlinear normal modes. This work extends the invariant manifold approach

developed by Shaw and Pierre [1{4], with the primary goal of obtaining accurate

reduced order models of nonlinear structural systems.

1
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1.1 Background

1.1.1 Nonlinear Structural Vibration

This work focuses on the intersection between structural dynamics and nonlinear

vibrations. Of course, there has been a great deal of previous work in both the areas

of nonlinear vibrations (see reference [5] for a thorough summary), and nonlinear

structural analysis [6{11]. However, the two �elds have typically dealt with problems

of entirely di�erent magnitudes.

Much of the literature regarding nonlinear vibrations is predicated upon simple

analytic models. Generally, these models are either based on a two- or three-degree of

freedom lumped mass formulation [12{15], or a Galerkin discretization of a governing

partial di�erential equation (PDE) to similar order [16{19]. These low-order models

are useful for predicting many general behaviors, and have been used with much

success for the modeling of systems with few active degrees of freedom. However,

many of these techniques are quite analytically involved, and not easily applicable

to systems with complex PDEs or large numbers of degrees of freedom (i.e., �nite

element models).

Much of the literature pertaining to nonlinear structural analysis is concerned

with the problem of model reduction [8, 10, 11], as modern computational techniques

yield structural systems which may contain many thousands of degrees of freedom.

Hence, full system analysis is both impractical and expensive. In linear systems, this

di�culty may be e�ectively eliminated through the use of modal analysis [20], which

allows motions of interest to be decoupled from the original system, and analyzed

separately. This coordinate transformation enables the practical vibration analysis

of most �nite element systems. In nonlinear structures, there is no simple transfor-

mation which produces decoupled motions, but model reduction is still necessary for
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e�cient analysis. Although there are many techniques for choosing discretization

functions (or vectors), some nonlinear e�ects are invariably ignored in the reduction

process. Hence, either the reduced order model must be relatively large, so as to min-

imize ignored e�ects, or the model accuracy may su�er through lost e�ects. These

missing e�ects may cause signi�cant model errors, such as overlooking an internal

resonance or ignoring critical modal interactions.

1.1.2 The \Nonlinear Mode"

The expense associated with obtaining accurate reduced-order nonlinear models

has led to a considerable desire for some sort of \nonlinear modal analysis" which

would be analogous to its linear counterpart. Initial work in this area was done by

Rosenberg [21], Rand [13, 22], and Atkinson and Taskett [12], among others. In these

works the de�nition of the nonlinear normal mode as a vibration in unison of the

system's degrees of freedom was developed. This de�nition allows all generalized

displacements to be expressed in terms of a single coordinate, and requires that all

coordinates reach a maximum simultaneously, as well as pass through the system

equilibrium position simultaneously. Furthermore, many of these results use energy

methods and symmetry arguments, and thus require that the system be conservative

and that the nonlinearities be of odd order. Further details may be found in reference

[21], which is quite thorough. A large number of subsequent works have developed

nonlinear normal modes for speci�c systems using these early de�nitions. These ef-

forts may be divided into two general categories, those which begin with discrete,

lumped mass, models [14, 23{25], and those which discretize continuous systems into

{ essentially { lumped mass models [17{19, 23, 26{28]. These reduced systems typ-

ically have no more than three degrees of freedom, and the nonlinear normal mode
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assumptions, together with some perturbation methods, are often used to determine

either the geometry of the normal mode, or the time response, or both. Often the

work is simpli�ed by either assuming that the normal mode exhibits similar motion

(constant mode shape), or that the response is harmonic.

1.1.3 The Invariant Manifold

The invariant manifold approach, developed by Shaw and Pierre [1{3], and fur-

ther developed in conjunction with Boivin [29{31], generalizes the previous de�nition

of the nonlinear normal mode. Shaw and Pierre de�ne the nonlinear normal mode as

a motion which lies on a two-dimensional invariant manifold in the systems phase

space. Here, \invariant" indicates that any motion initiated on the manifold will

remain on it for all time. The invariant manifolds formulated by Shaw and Pierre

were parameterized by a single position-velocity pair. This corresponds to describing

all system degrees of freedom in terms of the position and velocity of one degree of

freedom. This formulation lends itself naturally to the linear modal coordinates of

the nonlinear system, as the invariant manifold is naturally tangent to the modes of

the linearized system. This methodology is closely related to center manifold theory,

which is primarily used for bifurcation analysis [32], and inertial manifold theory,

in which the manifolds act as attractors for the system dynamics [33]. The invari-

ant manifold approach produces PDEs which govern the geometry of the manifold

independently of energy or symmetry considerations. This allows for the rigorous

analysis of a wide variety of nonlinear systems, including systems with linear and

nonlinear damping, non-symmetric nonlinearities and gyroscopic coupling. Further-

more, constraints on the velocity, such as energy conservation or harmonic motion,

conceptually reduce the manifold from a surface to a curved line within the phase
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space, a reduction which is consistent with the original de�nition of the nonlinear

normal mode.

The PDEs which describe the nonlinear manifold are generally not solvable in

closed form and have typically been approximated through a polynomial expansion

in the manifold coordinates. This expansion produces numerous coe�cients which

may be obtained in a systematic fashion. This approach was utilized by Boivin

for the analytical generation of the invariant manifold for a pinned-pinned beam

constrained at the center by a cubic spring. Considerable detail may be found in his

thesis [34].

Unlike linear modes, the nonlinear normal modes, while individually invariant,

will interact during a general motion. Hence, the study of multiple-mode responses

may not be achieved through the superposition of individual nonlinear normal modes.

Instead, the entire set of reduced coordinates must be assumed prior to the reduction

process, yielding a manifold of dimension 2M , for M chosen modes. This approach

allows for the study of true multi-mode motions of nonlinear systems, including

internal resonances, without assuming periodic behavior or restricting relative mag-

nitudes. As with the single mode case, the manifold may be approximated with a

polynomial in the 2M manifold coordinates, where the polynomial coe�cients may

be determined in a complex, but systematic fashion [29]. This systematic approach

enables the reduction and analysis of systems with many degrees of freedom, i.e.,

large structural systems.

Ultimately, the invariant manifold approach approximates all degrees of freedom,

or modes, as functions of several chosen coordinate pairs. These functions may be

substituted back into the original equations of motion to obtain a system which is

dependent only on the chosen coordinates, yet includes the low-order e�ects of all
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modes or degrees of freedom. The dynamics of the reduced order system may then be

investigated without the uncertainty associated with modal truncation. Furthermore,

all displacements and velocities may be reconstructed from the reduced dynamics.

The concept of the invariant manifold has been applied in a similar context by

others [35{37], and several additional authors [38{43] have extended, approximated,

and modi�ed the formulation of Shaw and Pierre.

1.2 Dissertation Outline

The remaining chapters of this dissertation have been or are destined to be pub-

lished in technical journals. Though they have been revised to achieve greater conti-

nuity, some repetition will occur. Hopefully, this repetition will underscore the main

points of the work without causing undue confusion or boredom.

In Chapter II, a general formulation is symbolically reduced to yield equations

which govern the free response of a set of chosen modes. The initial formulation was

chosen to be in modal coordinates, and allows for all possible cubic and quadratic

couplings in the modal displacements. This accounts for the most common structural

nonlinearities while decoupling the system to linear order. The reduced equations

and subsequent results are veri�ed against earlier work, and further investigations

on �nite-element based models are carried out.

Chapter III consists of a case study: the general reduction procedure from Chap-

ter II is employed for the study of a simple rotorcraft blade model. The equations

of motion governing the transverse (
apping) and axial (extensional) motions of a

rotating beam are developed and transformed into modal form. These equations are

then reduced using the polynomial-based invariant manifold. Simulation results are

used to evaluate the e�ectiveness and applicability of the reduction method.
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In Chapter IV a new approach is developed which utilizes a nonlinear Galerkin for-

mulation to overcome many of the weaknesses associated with the previous approach.

The new formulation utilizes a coordinate transformation to produce modi�ed PDEs

governing the invariant manifold geometry. The new PDEs are then solved over a

chosen domain using an expansion in the new manifold coordinates. This procedure

requires more computational e�ort for each system reduction, but is both more ac-

curate and more adaptable. Results are shown for both a simple discrete system,

and a more complex �nite element model.

Chapter V revisits the rotating beam case study, now applying the nonlinear

Galerkin methods to produce more accurate results. The reduction procedure is

modi�ed by discretizing one dimension of the manifold domain, making the PDE

solution procedure considerably more e�cient. This analytical modi�cation, and its

e�ects on the e�ciency of the method are discussed. Results are presented which

build on those of both chapters III and IV.

Finally, the results are summarized in Chapter VI, and conclusions are drawn

regarding the completed research, and the associated contributions to the �eld. Fol-

lowing this is a discussion of the ways in which this work may be extended. Rec-

ommendations are made regarding both theoretical and applied extensions of this

work.

1.3 Contributions

The primary contributions of this work are as follows:

� The analytic solution for the asymptotic invariant manifold of a subset of struc-

tural vibrations problems. These solutions have been implemented to allow for the

automatic generation of high-dimensional invariant manifolds and the corresponding
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reduced-order equations of motion.

� The formulation of a transformation procedure which allows the previous ana-

lytic solutions to be applied to systems undergoing harmonic (and, in a generalized

form, periodic) forcing. The practical use of this approach is also evaluated.

� An analytic formulation for the coupled 
apping and extensional motions of a

rotating beam with both quadratic and cubic nonlinearities. This model is placed

in modal form, and reduced-order models are generated through the aforementioned

analytic solutions.

� A new solution method for the manifold-governing partial di�erential equations

is formulated. This novel approach uses a nonlinear Galerkin method to achieve

reduced-order models of greater accuracy, utility and adaptability. This approach

largely dispenses with the signi�cant analytical work associated with the previous

methods, allowing it to be easily applied to a vast array of nonlinear structural

systems.



CHAPTER II

MODAL ANALYSIS-BASED

REDUCED-ORDER MODELS FOR

NONLINEAR STRUCTURES { AN

INVARIANT MANIFOLD APPROACH

2.1 Introduction

2.1.1 Motivation

The vibratory response of mechanical systems in the low frequency range is typi-

cally dominated by a relatively small number of active modes. In linear systems, the

reduction of a large-scale dynamic model to a smaller model consisting of these dom-

inant modes is made mathematically precise by using the standard tools of modal

analysis and superposition [20]. The use of these tools is made possible by the dy-

namic independence of the linear modes. However, for nonlinear systems, these tools

are not directly applicable and one must use a di�erent framework to conduct anal-

ysis and achieve insight into the dynamics. It has been known for some time that

one can de�ne individual normal modes for special classes of nonlinear systems [21],

but these modes represent very special, periodic responses of conservative systems.

A repeated criticism of this approach is that it considers only these special fam-

ilies of solutions and, while these may be of mathematical interest, their utility is

questionable, as particular initial conditions are needed in order to observe such mo-

9
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tions in the full model. However, one can put the same criticism to linear vibration

systems, the main di�erence being that one can cleanly separate modal dynamics in

linear systems. This separability allows one to build reduced-order models by modal

projection and superposition, whereby the number of modes kept is a function of the

frequency range of interest. Accurate reduced-order models (ROM) can be made by

ignoring modes which are known to contain only a small amount of energy, and to

which energy will not 
ow. One goal in the present line of work has been to develop

a parallel approach for a class of nonlinear systems.

Conventionally, nonlinear systems have been analyzed through projection of the

governing equations onto the modes of the linearized system. This method often

requires the concurrent simulation of many modes to achieve accuracy, and results in

a model which is both bulky and computationally expensive. The approach presented

herein allows the minor a�ects of many modes to be incorporated into the dynamics of

a chosen subset through the addition of higher order nonlinear terms. This reduced-

order model may allow for much more e�cient analysis of the original system. Unlike

many other methods within nonlinear dynamics, the invariant manifold approach is

easily applicable for systems of arbitrary size, making it ideally suited for the analysis

of real structural systems, including those described by �nite element models (FEM).

2.1.2 Background

The work of Rosenberg [21] laid out the fundamental concepts for normal modes

of discrete, conservative, nonlinear systems. Results on the stability and bifurcation

of these modes have been the subject of many subsequent investigations; see, for

example, the results and citations in [44], as well as [45]. Recent work has gener-

alized the concept of nonlinear normal modes to a wide class of systems, including
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continuous systems, systems with dissipation, gyroscopic terms, etc., as described in

the works of Shaw and Pierre [2, 3]. This approach utilizes invariant manifold theory

as a systematic means of generating reduced-order models. Initially, the existence

and dynamics of individual nonlinear modes were investigated. Subsequently, exten-

sions for studying the dynamics of internally resonant modes were also considered

[31, 39, 44]. The introduction of multi-mode invariant manifolds that capture the

dynamics of several modes and their essential interactions has allowed for a general-

ization of mode-based model-order reduction for nonlinear systems.

It should be noted that the approach used herein di�ers in some signi�cant ways

from the modes obtained by proper orthogonal decomposition, in which one uses the

steady-state response of a dissipative system in order to generate a reduced-order

model that is optimal in the sense that it captures the most energy possible using a

predetermined number of modes. This requires that one �x the system parameters

and obtain the response before generating the modes, and it uses a linear subspace

as the underlying manifold ([46], and [47], describe some examples for mechanical

structures). In contrast, the method described herein allows one to generate ap-

proximate manifolds directly from the equations of motion (e.g., from �nite element

models) in terms of the system parameters, before solving them. The method is

computationally practical for large-scale, weakly nonlinear structural systems.

2.1.3 Chapter Outline

The remainder of this chapter is organized as follows. First, the de�nition and

construction method for individual nonlinear normal modes are discussed. The ex-

tension to multi-mode manifolds is then described. Illustrative results are provided

throughout the chapter, which closes with a summary of the results and the associ-
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ated conclusions.

2.2 Individual Nonlinear Normal Modes

2.2.1 Invariant Manifolds

Roughly speaking, an invariant manifold for a dynamical system is a subset of

the phase space on which the system behaves like a lower-dimensional dynamical

system. The term invariant indicates that for motions initiated on the manifold, the

corresponding solution remains on that manifold for all time. For example, in a linear,

N-degree-of-freedom, undamped, non-gyroscopic, vibratory system, a single-mode

motion is one in which the system behaves in a synchronous manner, essentially like

a linear single degree of freedom system, and this motion is restricted to a plane in the

phase space of the system (in the �rst-order, state-space formulation), corresponding

to a given eigenvector. For systems with gyroscopic and/or dissipative terms, single

mode responses also exist and correspond to motions on a single plane in the state

space, but they are generally manifested by non-synchronous motions of the system

components. A similar notion works for nonlinear systems as well, only the single

degree of freedom response is that of a particular nonlinear di�erential equation,

and the manifold in the state space is generally not planar. For smooth nonlinear

systems, under some quite general circumstances, the manifolds are simply curved

surfaces which are tangent to the manifolds of the linearized system. These geometric

ideas have been put into mathematical expressions and a constructive methodology

has been derived for a wide class of systems [2, 3]. This procedure, described below,

is straightforward and requires only that one be able to solve the linear eigenvalue

problem, followed by a series of linear equations for the coe�cients that describe the

nonlinear manifolds and their attendant dynamics.
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2.2.2 De�nition of a Nonlinear Normal Mode

A normal mode for a nonlinear system is a motion which takes place on a two-

dimensional invariant manifold in the system's phase space. This manifold passes

through the stable equilibrium point of interest and, at that point, is tangent to a

two-dimensional eigenspace of the system linearized about that equilibrium. On this

manifold the system dynamics are governed by an equation of motion involving a

pair of state variables, that is, it behaves like a single degree of freedom system.

2.2.3 Construction of Nonlinear Normal Mode Manifolds

In order to determine the equations for such a nonlinear manifold and the dy-

namics of its associated mode, several steps are necessary. For the purposes of this

derivation, it is assumed that the dynamics of an N -degree of freedom system may

be expressed in the following �rst-order form:8><
>:

_x = y

_y = f(x;y)

(2.1)

where xT = [x1; :::; xN ]
T and yT = [y1; :::; yN ]

T represent generalized positions and

velocities (either modal or physical coordinates) and fT = [f1; :::; fN ]
T represents

the position- and velocity-dependent forces acting on the system. (Note that the

inversion of an inertia operator may be required in order to express the equations in

this form.) In order to search for a particular nonlinear mode, it is assumed that the

manifold is parameterized by a single position-velocity pair of state variables. That

is, if the dynamics of a particular position-velocity pair are known, then all other

positions and velocities may be determined from them. In other words, the system

degrees of freedom are \slaved" to a pair of \master" degrees of freedom. For the

kth nonlinear mode, uk = xk, and vk = yk are chosen as the \master" states and
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express the remaining \slave" states as:8>>>>><
>>>>>:

xi = Xi(uk; vk)

i = 1; : : : ; N i 6= k

yi = Yi(uk; vk)

(2.2)

These are, essentially, a set of constraint equations which are to be determined.

For a linear system, these relationships are linear, resulting in planar manifolds

| precisely the eigenspaces. The process for obtaining solutions for the functions

(Xi(uk; vk); Yi(uk; vk)) begins by taking a time derivative of the constraint equations,

yielding 8>>>>><
>>>>>:

_xi =
@Xi

@uk
_uk +

@Xi

@vk
_vk

i = 1; : : : ; N i 6= k

_yi =
@Yi
@uk

_uk +
@Yi
@vk

_vk

(2.3)

These equations relate the rates of change of all the state variables to those of

uk and vk, through the constraints. They are modi�ed by using the equations of

motion, (2.1), to eliminate _xi and _yi, including the case that _uk = vk and _vk =

fk(x;y). This eliminates all time derivatives from the equation. Next, one substitutes

the constraints, equation (2.2), everywhere the state variables appear, leaving a set

of partial di�erential equations for the functions (Xi(uk; vk); Yi(uk; vk)) in terms of

(uk; vk). These 2N � 2, time-independent, partial di�erential equations govern the

geometry of the kth manifold and are given by:8>>>>><
>>>>>:

@Xi

@uk
vk +

@Xi

@vk
fk = Yi

i = 1; : : : ; N i 6= k

@Yi
@uk

vk +
@Yi
@vk

fk = fi

(2.4)

In general, it is not possible to determine an exact solution for the Xi's and Yi's, since

doing so is equivalent to obtaining a family of solutions to the original equations of



15

motion. (They can be solved exactly in some special cases involving symmetries,

and these exceptional cases have received lots of attention; see similar modes in

[44]). However, one can obtain approximate solutions in terms of series expansions

for a wide class of problems. This limits the practical application of analytical

techniques to weakly nonlinear systems with smooth nonlinearities. However, the

development of an automated numerical scheme to solve these equations may allow

for more general application. These issues have been the subject of several papers

including [4, 23, 40]. Also, it should be noted that Eq. (2.4) may be collapsed into

a set of N � 1 second order partial di�erential equations in the Xi. These second

order equations may also be produced by starting with a second order dynamic

formulation, and eliminating time through similar use of the chain rule. This is

detailed in Appendix A.

In order to develop approximate solutions for Eq. (2.4) which may be applied to a

wide variety of nonlinear structural systems, yet remain somewhat tractable, several

assumptions are necessary. In this formulation, the following assumptions are made:

� The original equations of motion (2.1)are decoupled to linear order using the N

linear system modes. The system states are therefore the linear modal amplitudes

and velocities. This form may be easily obtained for large structural systems, for

example using modal analysis in conjunction with a �nite element representation.

� Damping is not considered. However, small damping may be added to the re-

duced set of dynamic equations, as is commonly done in structural dynamic analysis.

For large damping, one needs to include it from the outset, resulting in additional

terms not encountered below.

� The nonlinearities are of second and third order only in displacement.

� The manifold is single-valued and analytic for the amplitudes under consider-
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ation.

This can be generalized to include velocity-dependent linear and nonlinear terms,

but again the results are more complicated.

These assumptions allow the equations of motion to be written in the following

second-order form:

[I]�x + [
]x+ fnl(x) = 0 (2.5)

where

[
] =

2
666664
!2
1 0 0

0
. . . 0

0 0 !2
N

3
777775

and !i is the ith natural frequency of the linearized system. The nonlinear forces

acting on the system, fnl, may be expressed as:

fnl = [�]x2� + [�]x3�

where x2� contains all unique second order combinations, and x3� contains all unique

third order combinations within the vector x. Consequently, the non-square matrices

[�] and [�] contain the coe�cients for every possible quadratic or cubic coupling in

the displacement x. The individual elements in [�] and [�] are denoted as:

�i
j;l �ij;l;m

where i indicates the row in [�] or [�]; and j; l;m indicate the coupled degrees of

freedom. In this notation, the order of the subscripts is incidental, that is, �3
1;2 = �3

2;1,

and both refer to the same element in [�]. Note that in order to obtain these

elements, one must transform the nonlinear terms in the original equations of motion,
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as expressed in terms of the physical coordinates, into the linear modal coordinates.

This task, though messy, is feasible for large systems through automated procedures.

Now fi, from equation (2.4), may be written as:

fi = �!2
iXi �

NX
j=1

NX
l=j

�i
j;lXjXl �

NX
j=1

NX
l=j

NX
m=l

�ij;l;mXjXlXm (2.6)

A local solution for the Xi's and Yi's is sought in terms of uk and vk. This will

yield all modal positions and velocities as a function of the kth modal position and

velocity. An approximate local solution may be found using a polynomial expansion

of Xi and Yi in terms of uk and vk as:8>>>>>>>>>>>><
>>>>>>>>>>>>:

Xi = ak1;iuk + ak2;ivk + ak3;iu
2
k + ak4;iukvk + ak5;iv

2
k

+ak6;iu
3
k + ak7;iu

2
kvk + ak8;iukv

2
k + ak9;iv

3
k + : : :

Yi = bk1;iuk + bk2;ivk + bk3;iu
2
k + bk4;iukvk + bk5;iv

2
k

+bk6;iu
3
k + bk7;iu

2
kvk + bk8;iukv

2
k + bk9;iv

3
k + : : :

(2.7)

Thus, the expansion coe�cients, akj;i and b
k
j;i, dictate the relation between the \slave"

(i) and \master" (k) coordinates, and the problem now becomes that of obtaining

these new unknowns.

These coe�cients can be determined by substituting equations (2.6) and (2.7)

into equation (2.4) and collecting like powers in uk and vk. This task is handled

most easily by using a symbolic processor such as MathematicaTM , and it yields a

set of linear equations for the unknown coe�cients. If this process is carried out

symbolically for a small system, the results may be analyzed to extend the solution

to systems if arbitrary size. Using this approach, the solution for the �rst order
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coe�cients is 8>>>>>>>><
>>>>>>>>:

ak1;i = �ik

ak2;i = 0

bk1;i = 0

bk2;i = �ik

(2.8)

Where �ik is the Kronecker delta. This implies that the linear coe�cients are zero

for all i 6= k, while for i = k one has simply Xk = xk = uk and Yk = yk = vk, as

expected since the modes are linearly decoupled through the choice of coordinates.

(If this choice is not made, the solution for the linear terms in these functions results

in an alternative formulation of the eigenvalue problem [34].) The solution for the

second order coe�cients is:

ak3;i =
�i
k;k(2!

2
k � !2

i )

!2
i (!

2
i � 4!2

k)

ak5;i =
2�i

k;k

!2
i (!

2
i � 4!2

k)
i 6= k (2.9)

bk4;i =
�2�i

k;k

!2
i � 4!2

k

In addition, ak4;i = bk3;i = bk5;i = 0. At third order one obtains, ak7;i = ak9;i = bk6;i =

bk8;i = 0, and,

ak6;i =
�C1;k

1;i � �ik;k;k + �k
k;kb

k
4;i

!2
i

� !2
k[C

1;k
2;i � C1;k

3;i (3!
2
k � !2

i )]

!2
iD

1;k
i

ak8;i =
C1;k
3;i

2!2
i !

2
k

� (3!2
k � !2

i )[C
1;k
2;i � C1;k

3;i (3!
2
k � !2

i )]

2!2
i!

2
kD

1;k
i

(2.10)

bk7;i =
�[C1;k

2;i � C1;k
3;i (3!

2
k � !2

i )]

D1;k
i

i 6= k

bk9;i = ak8;i
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Where the constants C1;k
p;i , and D

1;k
i are de�ned as:

C1;k
1;i =

NX
m=1

ak3;m�
i
k;m

C1;k
2;i = 2!2

i !
2
k

NX
m=1

ak5;m�
i
k;m (2.11)

C1;k
3;i = �3(C1;k

1;i + �ik;k;k � �k
k;kb

k
4;i)� 2!2

i�
k
k;ka

k
5;i

D1;k
i = (!2

k � !2
i )(!

2
i � 9!2

k)

Note that the third-order coe�cients depend on the second-order results, as is typical

in perturbation expansions.

Once the expansion coe�cients are calculated, all degrees of freedom are known

in terms of the dynamics of a single mode, through the approximate functions Xi

and Yi.

It bears noting that this polynomial description of the manifold is only accurate

in the immediate vicinity of the chosen equilibrium position, and diverges from the

\exact" manifold quite rapidly beyond some critical amplitude. This amplitude

depends crucially on how near the system is to an internal resonance, since this

a�ects the magnitude of the coe�cients. Currently, this amplitude is an unknown

function of the system parameters, but it may be possible to determine numerically

through comparison of the original and reduced equations of motion.

Also note that the coe�cients of the nonlinear terms in the above expansions

become singular in the cases for which 1:1, 2:1 and/or 3:1 resonances exist between

the linearized frequencies of the mode of interest and one of the contributing modes.

In such a case (and even near such cases) an essential modal coupling exists, and

the method fails, precisely because the modes cannot be separated in the manner

prescribed by the formulation. This is due to the fact that these internal resonances

foster dynamic energy exchange between modes, a condition that can be handled by
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using the techniques described in Section 2.3.

2.2.4 Nonlinear Normal Modal Dynamics

The expressions obtained for Xi(uk; vk) and Yi(uk; vk) may be substituted into

the kth equation of motion to produce a single, second order, nonlinear oscillator in

uk and vk:

_uk = vk (2.12)

_vk = fk(X;Y) (2.13)

This oscillator governs the local dynamics on the kth nonlinear modal manifold.

Due to the third-order expansion of the Xi's and Yi's an oscillator is generated which

contains terms up to ninth order in uk and vk. However, in the general case, all

terms above fourth order (or, �fth order if [�] = 0) would be altered by subsequent

(higher order) terms in the manifold expansion, and are therefore not complete and

should not be retained in a strict formulation. It should be noted, however, that the

primary contributions of the \slave" coordinates to the oscillator are at third order

for quadratic nonlinearities, and �fth order for cubic nonlinearities. Hence, if both

quadratic and cubic nonlinearities are present, the �fth order terms, although not

precise, contain vital information and should not be neglected. Similar arguments

may be applied for manifold expansions of any order.

Through this process it is possible to isolate the dynamics of a single nonlinear,

non-resonant mode from an N -degree of freedom, nonlinearly coupled system of

equations. However, unlike linear modes, nonlinear modes are dynamically coupled,

and the dynamics of the individual nonlinear modes do not form a basis for generating

the response of the overall structure; that is, they cannot be superimposed.

It is highly desirable to develop a method that allows one to build accurate multi-
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mode models, in order to obtain more general reduced-order models of nonlinear

structural systems. These are crucial if one has internal resonances, or if it is known

that several modes play a signi�cant role in the system response of interest. This

issue is tackled in Section 2.3, following the single-mode examples and discussion

below.

2.2.5 Example: A Simply Supported Euler-Bernoulli Beam Constrained

by a Non-Linear Spring

In order to demonstrate the ideas presented above, the method is applied to a

simple problem for which the calculations can be explicitly carried out. The system

is a uniform, simply supported Euler-Bernoulli beam of length 1 with a non-linear

cubic spring attached at a point ~s along its length |see Figure 2.1. The beam is

assumed to deform in its linear range, so that the linearized system's normal modes

are those of the simply supported beam alone (i.e., pure sine waves). The spring is

chosen as purely cubic so that it comes into play as amplitudes grow, a�ecting the

modal dynamics. With this choice, the in
uence of the individual linear modes on the

non-linear modes can be computed and easily visualized. For this example ~s = 1=2

is chosen and, as this is a nodal point for all antisymmetric (that is, even numbered)

normal modes, they remain una�ected (linear). Therefore, only the symmetric (odd

numbered) normal modes are in
uenced by the non-linear spring and, furthermore,

they feature only contributions from the other symmetric linear modes.

The beam has the following equation for transverse motion, in non-dimensional

form:

�u+ �u;ssss + �u3�(s� ~s) = 0 s 2]0; 1[ (2.14)

where � = EI=m, � = 
=m, E is Young's modulus, I is the second moment of area,
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m is its mass per unit length, 
 is the non-linear sti�ness of the spring, s represents

the spatial coordinate along the beam, u(s; t) is the transverse de
ection of the beam,

(�);s denotes a derivative with respect to s, an overdot represents a derivative with

respect to time and �(�) is the Dirac function. The associated boundary conditions

are u(0) = u(1) = 0, and u;ss(0) = u;ss(1) = 0. For this example, the values � = 1,

and � = 104 are used when numerical results are shown.

The beam de
ection, u(s; t), is �rst discretized using the natural modes of the

linearized system, �j(s) = sin(j�s),

u(s; t) �=
NX
j=1

xj(t)�j(s) (2.15)

where N is the number of terms in the expansion, i.e., the number of terms that

would be retained for a linear modal analysis of the non-linear system. Projection

of equation of motion onto the ith linear mode yields

�xi + �(i�)4xi + 2�

"
NX
j=1

xj sin(j
�

2
)

#3
sin(i

�

2
) = 0 (2.16)

for i = 1; : : : ; N , which can be written in �rst-order form as8>>>>><
>>>>>:

_xi = yi

i = 1; : : : ; N

_yi = fi(x1; : : : ; xN ; y1; : : : ; yN)

(2.17)

where

fi = ��(i�)4xi � 2�

"
NX
j=1

xj sin(j
�

2
)

#3
sin(i

�

2
)

captures the inter-modal coupling e�ects. This set of di�erential equations, (2.17),

is what is typically simulated in a study of this system's dynamics. If one wanted

to know, say, the leading order frequency corrections due to the nonlinearity, one
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could use a single mode (N = 1) and study the resulting equation of motion, using,

for example, a perturbation technique, or even brute-force simulations. However,

it is important to note that this approach implicitly assumes that the beam shape

remains una�ected by the nonlinearity, even for moderate amplitudes of vibration.

Alternatively, the procedure described above can be applied to equation (2.17) in

order to determine the third- or higher-order approximation of the non-linear normal

modes of the system. As will be seen, this approach provides the corrections to the

mode shapes, as well as more accurate approximations of the modal dynamics at

moderate amplitudes. In the present formulation only those expansion coe�cients

which are present for a conservative, non-gyroscopic system are included; this is

merely to simplify the presentation. If one formulates the problem by including all

terms out to third order, it will be found that the terms missing here will be zero.

In fact, they must be, if the modal response is to be synchronous in the sense that

all points on the beam reach their extreme values simultaneously. (Note that the

synchronicity condition is not imposed here, it is a consequence of the type of system

being considered.)

Of course, the solution to this problem may be obtained through the explicit

expressions developed earlier (Eqs. (2.9)-(2.10)), given the expressions for the indi-

vidual elements of �. This approach yields expressions identical in value to those

below, which were developed by Nicolas Boivin during the course of his doctoral work

[34]. This work is included here because, (a), it serves to verify the more general

formulation developed earlier, (b), the form of the results is relatively simple, making

it conceptually informative, and (c), the results below (from [34]) are expanded upon

to illustrate key concepts inherent to the invariant manifold approach.

The details of the calculations are not presented here, but they involve the so-
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lution of a sequence of linear systems of equations. The kth non-linear mode is

expressed by, to third order:

xk = uk _xk = vk

and for i = 1; : : : ; N , i 6= k:8>>>>><
>>>>>:

xi = _xi = 0 (i even)

xi = ak6;iu
3
k + ak8;iukv

2
k + : : : (i odd)

_xi = bk7;iu
2
kvk + bk9;iv

3
k + : : : (i odd)

(2.18)

where, if k is even, ak6;i = ak8;i = 0, and if k is odd, for i = 1; : : : ; N; i 6= k,8>>>>>><
>>>>>>:

ak6;i = 2�(�1) k+i2 (i4 � 7k4)

��4(i4 � k4)(i4 � 9k4)

ak8;i = �12�(�1) k+i2 1

��4(i4 � k4)(i4 � 9k4)

and, for all k with i = 1; : : : ; N; i 6= k; i odd:8>>>>><
>>>>>:

bk7;i = �2�(�k)4ak8;i + 3ak6;i

bk9;i = ak8;i

(2.19)

As mentioned above, equivalent expressions may be obtained using Eqs. (2.9){(2.11).

Next, the de
ection and velocity of the beam in the kth non-linear mode, uk(s; t)

and vk(s; t), can be expressed in terms of the kth non-linear modal coordinate, uk(t),

and the associated modal velocity, vk(t), as

uk(s; t) = uk sin(k�s) +
X
i odd
i6=k

�
ak6;iu

3
k + ak8;iukv

2
k

�
sin(i�s) + : : : (2.20)
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vk(s; t) = vk sin(k�s) +
X
i odd
i6=k

�
bk7;iu

2
kvk + bk9;iv

3
k

�
sin(i�s) + : : : (2.21)

One can see that the nonlinear normal modes for this system are synchronous by

noting that when the modal velocity vk is zero, the entire velocity �eld is zero.

Similarly, since the nonlinearities are odd (that is, symmetric about the equilibrium),

all points along the beam pass through zero simultaneously | speci�cally, when

uk = 0 the entire beam has uk(s; t) = 0. (For an example of a synchronous motion

with even order nonlinearities present, in which case the latter observation does not

hold, see [4].) Here, uk(s; t) refers to the de
ection of a point located at coordinate

s at time t when the system undergoes a motion in the kth non-linear normal mode.

It should not to be confused with uk(t), which is the non-linear modal coordinate

and is not meant to represent the motion of any particular point.

The dynamics of the non-linear mode, up to �fth order, are governed by

�uk +�(k�)4uk + 2� sin2(k�=2)u3k

+6�u3k

0
BB@ X
i odd
i6=k

[ak6;iu
2
k + ak8;iv

2
k] sin(i�=2)

1
CCA sin(k�=2) = 0

(2.22)

for k = 1; : : : ; N . Note that each non-linear mode behaves like a single degree

of freedom nonlinear oscillator that is decoupled from all other system dynamics.

This is a very special system motion that is constructed using dynamic invariance;

only a special subset of all initial conditions can initiate such a response. These

initial conditions are precisely those that lie on the two-dimensional constraint surface

(manifold) in the full system phase space | that is, those which satisfy the \master-

slave" relationships between the dynamic variables.

Figures 2.2 and 2.3 show the position and velocity of the beam at 7 equal time in-

tervals during a purely �rst mode response, as generated by equations (2.20){(2.22).
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Note that the peak velocity distribution in Figure 2.3, and the zero displacement

�eld in Figure 2.2 correspond to the initial con�guration. Also note that as the

beam undergoes its oscillation, the shape does not remain �xed, and that the spring

in
uence increases with displacement amplitude. Figure 2.4 depicts the most impor-

tant projection of the modal manifold, showing how the third linear modal amplitude

(X3) depends on the amplitude and velocity of the �rst mode. (Note that there are

corresponding surfaces for all odd order linear modes, but they are less important in

this example; the even order modal surfaces lie exactly on the u1�v1 plane, con�rm-

ing that no even modes participate, due to the symmetry of the spring placement) A

nonlinear modal response is initiated by using a set of initial conditions that lie on

these surfaces, that is, by relating the linear modes in precisely the manner dictated

by the \master-slave" invariance constraints. This relation is, of course, amplitude

dependent. In particular, for this example, a periodic trajectory is traced out on the

manifold, corresponding to the initial conditions in Figures 2.2 and 2.3. Once such

a motion is initiated, it will persist for all time.

Figure 2.5 illustrates the error associated with modal truncation. If only the �rst

mode shape is used to discretize the system, all dynamics are constrained to the

plane shown. The three-dimensional closed curve (identical to that in Figure 2.4) is

not realizable, and its projection (dashed curve) may only be approximated. Both

solutions correspond to a single di�erential equation, but truncation overly constrains

the system.

Figure 2.6 shows the peak beam con�gurations for a set of beam motions with

distinct initial energies. (This is not the same as Figure 2.2, which shows a single

response at di�erent times.) These are obtained by considering equation (2.20) and

taking the zero velocity (vk = 0) con�guration for di�erent values of uk. For the
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low amplitude case, the beam shape is nearly that of the linear case, while the beam

distorts exactly as expected as the amplitude grows. Note that this is also consistent

with the nature of the manifold depicted in Figure 2.4 (at vk = 0).

Figures 2.7{2.8 (also from the thesis of Nicolas Boivin [34]) display simulation

results obtained using this procedure, along with results obtained with classical linear

modal analyses of the non-linear system performed with various numbers of modeled

linear modes. In both �gures, the \exact" solution was determined using a linear

modal analysis with 25 linear modes; that is, by simulating the 25 degree of freedom

system obtained by projecting the equations of motion onto 25 of the linear modes,

using initial conditions which lie on the third-order approximation of the nonlinear

normal mode manifold in the 50-dimensional phase space. In this particular case it

is seen that at least three to �ve linear modes are necessary to achieve an accuracy

comparable to that obtained with a single �fth-order non-linear mode as obtained

above. The nonlinear mode results are obtained by simulation of a single second-

order di�erential equation (equation (2.22)), which includes the in
uence of the other

linear modes. In the case where one uses a single linear mode through the entire

analysis, the in
uence of the other linear modes is completely missing, whereas it is

naturally embedded in the non-linear normal mode. See Figure 2.8 which compares

several simulations, all utilizing only one ODE, to the \exact" solution. It should

be noted that the initial displacements shown in these �gures include contributions

from the \master" mode (u1), as well as the \slave" modes. Consequently, the

initial displacement will vary as additional modes are included i.e., as the manifold

is projected into a larger con�guration space.



28

2.2.6 Systematic Implementation

The above example is presented here due to its analytic simplicity. It should

be noted that the analytic solutions presented in equations (2.9) and (2.10) are

much more general, allowing generation of the manifold and modal equations for

any mode given [�], [�], and the linear natural frequencies (!'s). This process has

been computationally implemented such that no analytic work is necessary once the

necessary parameters are known, allowing the analysis of very general structural

systems including �nite element models and complex analytic systems.

2.2.7 Example: Finite Element-Based Beam

The computer program mentioned above was used for the analysis of the system

shown in Figure 2.9. PATRAN was used to create a 200 element beam with free

ends and discrete linear springs at nodes 57 and 117. Once the linear modes of

this model were known, discrete nonlinear springs were added (analytically) to the

endpoints. The characteristics of the springs (purely cubic) and the eigenvectors were

then used to construct the [�] matrix (here [�] = 0). Using these, the general analytic

solutions, Eqs. (2.9)-(2.10), may be used to easily generate any individual nonlinear

normal mode of the system. Due to the number of coe�cients involved, this task

would be exceedingly tedious without the explicit solution provided. Figure 2.10

displays some results for the fourth nonlinear normal mode of the system. These

results indicate that a single nonlinear normal mode is more accurate than a model

which uses four linear modes. The \exact" results (25 linear modes) slowly diverge

from the nonlinear normal mode results due to higher-order e�ects which cannot

be captured by a third-order manifold. A more meaningful result would include

a comparison between the approximate manifold dynamics and the exact manifold
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(currently unknown) dynamics. Further work is underway in this area.

2.3 Reduced-Order Modeling Using Multi-Mode Models

2.3.1 De�nition of a Nonlinear Multi-Mode Model

In order to generalize the ideas developed above to the case of multi-mode invari-

ant manifolds, one must make a further departure from the linear case. For a linear

system, a multi-mode model is built simply by employing superposition of individual

modes. In the nonlinear case, the individual modes are coupled, sometimes in an

essential manner, and generally cannot be superimposed (especially in the case of

internal resonance). In terms of the phase space, this means that even if one could

select initial conditions that somehow contained only two nonlinear modes, the re-

sulting dynamics would not simply be a combination of the two individual modal

responses.

A nonlinearM -mode invariant motion of a system is a response which takes place

on a 2M -dimensional invariant manifold in the system's phase space; the manifold

passes through the stable equilibrium point of interest and, at that point, it is tan-

gent to a 2N -dimensional eigenspace of the system linearized about that equilibrium

(representing N linear modes). On this manifold the system dynamics are governed

byM pairs of state variables, that is, it behaves like anM -degree of freedom system.

2.3.2 Construction of a Multi-Mode Manifold

One must reformulate the problem for this case by starting with a multi-mode

form that contains the individual modes of interest as a \seed" upon which the

reduced-order model is built. The method proceeds by assuming that all system

degrees of freedom are slaved to a subset of the overall system degrees of freedom,

where the subset has the desired size of the reduced-order model and corresponds
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to a desired set of modes. This is expressed by a set of to-be-determined constraint

equations among the dynamic variables, just as is done in for individual nonlinear

modes. As before, these constraint equations are required to satisfy the di�erential

equations of motion. This again yields a set of partial di�erential equations that cap-

ture desired relationships, without involving any time derivatives, which are solved

using series expansions. If one includes all the resonant modes at a given order in the

\seed" modes, no singularities will arise in the equations for the coe�cients, at least

up to that order. Restriction of the equations of motion to the resulting manifold

yields a reduced-order dynamical system that systematically and correctly captures

the coupled dynamics of the included modes. By keeping only those modes that

play a signi�cant role in the system response, one obtains an accurate reduced-order

model, just as is done in linear vibration theory.

The modes of interest, or the modeled, or master, modes are described by a set of

indices denoted as SM . For example, if one is interested in a reduced-order model that

contains extensions of the second, third and �fth linear modes, SM = f2; 3; 5g. The

displacements and velocities of the modeled modes can be expressed by the vectors

uM and vM, which contain elements (ui; vi); i 2 SM . Consequently, the associated

manifold exists as a 2M -dimensional \surface" in the 2N -dimensional phase space.

The dynamics of the reducedM -degree of freedom system will be constrained to lie on

this surface, and all interactions with the non-modeled, or \slave", linear modes are

incorporated into the resultant dynamics. That is, motions that take place directly

on the multi-mode manifold correctly account for e�ects due to the non-modeled

linear modes, while still eliminating the dynamic coupling to them. (Again, this is

true only when the motion is initiated on the manifold.) This contrasts with the

conventional methodology of simply disregarding those linear modes which are not
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of interest or thought to be unimportant, or simulating a large number of additional

degrees of freedom in order to achieve accuracy within the modes of interest. In

other words, this approach allows one to work with only the number of modes of

direct interest without concern for dynamic contamination from any modes that are

not included. Further theoretical discussion of these topics may be found in [29].

The approach for determining the multi-mode manifold is similar to that de-

scribed in the previous section, except that the manifolds are now parameterized

by 2M variables. (Of course, the process reduces to the individual mode case for

M = 1.) This may be expressed as:8>>>>><
>>>>>:

xk = uk

for k 2 SM
yk = vk

(2.23)

8>>>>><
>>>>>:

xj = Xj(uM;vM)

for j =2 SM
yj = Yj(uM;vM)

(2.24)

As in the single mode case, equations (2.23) and (2.24) are substituted into the gov-

erning equation, (2.1), the equations of motion are employed, and all slave variables

are expressed in terms of the constraints, yielding:8>>>><
>>>>:

Yj = _Xj =
X
k2SM

@Xj

@uk
vk +

@Xj

@vk
fk

fj = _Yj =
X
k2SM

@Yj
@uk

vk +
@Yj
@vk

fk

(2.25)

Here, as in the previous case, exact solutions are not generally available and approx-

imate solutions are sought in the form of series expansions. Due to the additional

degrees of freedom, the number of terms in these expansions grows considerably with
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the number of modeled modes, M . The general form is given by,

Xj(uM;vM) =
X
k2SM

ak1;juk + ak2;jvk +
X
k2SM

X
l2SM

ak;l3;jukul + ak;l4;jukvl + ak;l5;jvkvl

+
X
k2SM

X
l2SM

X
q2SM

ak;l;q6;j ukuluq + ak;l;q7;j ukulvq

+ak;l;q8;j ukvlvq + ak;l;q9;j vkvlvq + : : :

(2.26)

Yj(uM;vM) =
X
k2SM

bk1;juk + bk2;jvk +
X
k2SM

X
l2SM

bk;l3;jukul + bk;l4;jukvl + bk;l5;jvkvl

+
X
k2SM

X
l2SM

X
q2SM

bk;l;q6;j ukuluq + bk;l;q7;j ukulvq

+bk;l;q8;j ukvlvq + bk;l;q9;j vkvlvq + : : :

(2.27)

Again, if ones uses linear modal coordinates to express the equations of motion, the

linear terms in the above expansions are zero for j =2 SM , and the higher order terms

vanish when j 2 SM . It should be noted that the terms in this expansion are not

unique. For example, there are two coe�cients for the term ukulvq when k and l are

di�erent. In order to produce a unique solution, it is assumed that these, non-unique,

coe�cients are equal. That is, because

ukulvq = ulukvq 6= ukuqvl

the relation

ak;l;q7;j = al;k;q7;j

is enforced, but

ak;l;q7;j 6= ak;q;l7;j
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is allowed. Also, as in the single mode case, these are local results, and their �delity

depends on the amplitude of motion as well as the proximity to internal resonances

between master and slave modes.

If equations (2.26) and (2.27) are substituted into equation (2.25), a large set of

linear equations is produced for the coe�cients. As in the single mode case, these

equations may be solved by equating the coe�cients of like powers in the u's and v's.

This process may be simpli�ed by dividing it into several subproblems according to

the number of distinct modes contained in the coe�cient superscripts. That is, one

�rst solves for terms like ak;k;k6;i , then the terms like ak;k;l6;i , where k 6= l, and �nally

those like ak;l;q6;i where k; l and q are all distinct. These are referred to as the one-

mode, two-mode, and three-mode coe�cients, respectively. The one-mode problem

is almost identical to that of the single mode manifold, and the same solutions may

be used. However, the numerical answers are not identical, as the inclusion of more

modes eliminates some of the expansion coe�cients (e.g., ak;k3;j = 0 if j 2 Sm), and

the values of the constants C1;k
p;i 's, as de�ned in Eq. (2.11) are consequently altered.

That is, certain constraints are eliminated when an additional mode is included in

Sm, and this change is re
ected in the reduced equations of motion.

The two-mode problem may be solved �rst for the second-order expansion co-

e�cients, and then for the appropriate third-order coe�cients. The problems are

both linear, but due to the size and complexity of the explicit solutions, they are

presented here in matrix form only. In addition, the coe�cients which are zero

have been eliminated from the matrix formulation. It is found that in the one-,

two- and three-mode problems the expansion coe�cients a4; a7; a9; b3; b5; b6; b8 are all

zero. Again, this is due to the fact that only conservative, non-gyroscopic systems
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are considered, which eliminates the possibility of such terms appearing (although

one cannot use a simple synchronicity argument in this case, since several modes are

present). The second-order coe�cients may be determined by solving:

2
666666664

�2 2!2
k 1 0

�2 2!2
l 0 1

�2!2
i 0 !2

l !2
k

0 2!2
i 1 1

3
777777775

2
666666664

ak;l3;i

ak;l5;i

bk;l4;i

bl;k4;i

3
777777775
=

2
666666664

0

0

�i
k;l

0

3
777777775

(2.28)

while the third-order coe�cients are obtained by solving:2
66666666666666664

�3 2!2
k 0 1 0 0

�6 2!2
l 2!2

k 0 2 0

0 �2 �1 0 0 3

�3!2
i 0 0 !2

l 2!2
k 0

0 �2!2
i 0 �2 �2 6!2

k

0 0 �!2
i 0 �2 3!2

l

3
77777777777777775

2
66666666666666664

ak;k;l6;i

ak;k;l8;i

al;k;k8;i

bk;k;l7;i

bl;k;k7;i

bk;k;l9;i

3
77777777777777775

=

2
66666666666666664

�C3;k;l
1;i

�C3;k;l
2;i

0

C3;k;l
7;i

C3;k;l
5;i

C3;k;l
6;i

3
77777777777777775

(2.29)

for the two-mode problem, and2
666666666666666666666664

�6 2!2
k 2!2

l 0 2 0 0 0

�6 0 2!2
m 2!2

k 0 2 0 0

�6 2!2
m 0 2!2

l 0 0 2 0

0 �1 �1 �1 0 0 0 3

�3!2
i 0 0 0 !2

m !2
l !2

k 0

0 �2!2
i 0 0 �2 0 �2 6!2

l

0 0 �2!2
i 0 �2 �2 0 6!2

k

0 0 0 �2!2
i 0 �2 �2 6!2

m

3
777777777777777777777775

2
666666666666666666666664

ak;l;m6;i

al;m;k
8;i

ak;l;m8;i

am;l;k
8;i

bk;l;m7;i

bk;m;l
7;i

bl;m;k
7;i

bk;l;m9;i

3
777777777777777777777775

=

2
666666666666666666666664

C3;k;l;m
8;i

C3;k;m;l
8;i

C3;l;m;k
8;i

0

C3;k;l;m
9;i

C3;l;m;k
10;i

C3;k;l;m
10;i

C3;m;l;k
10;i

3
777777777777777777777775

(2.30)
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for the three-mode problem. Each equation depends on a speci�c i =2 SM and k; l;m 2

SM . The constants C3;k;l
p;i depend on the �rst- and second-order results, and are

shown explicitly in Appendix B. These matrix expressions were initially formulated

by hand, and then checked using the symbolic processor MathematicaTM . Due to

the relatively sparse nature of these matrices, they may be symbolically inverted

to yield analytic expressions for the expansion coe�cients which depend only on

[�]; [�], the !'s and the lower-order expansion coe�cients. Though these expressions

are rather large and unwieldy, they may be implemented in a computer code and used

to systematically calculate all of the expansion coe�cients. It should be noted that

the symbolic approach used here allows k; l;m in equations (2.28){(2.30) to represent

any three modeled modes, and the corresponding (symbolic) solutions will be valid for

any three modeled modes. Alternatively, numbers may be used in equations (2.28){

(2.30), and inversion may be repeated for each combination of modeled modes. If

several modes are chosen, this may entail considerable work each time a solution is

sought. The symbolic approach avoids this by producing a single, explicit, general

purpose solution. However, due to its complexity, this approach may no longer be

practical if additional nonlinear terms or expansion coe�cients are included in the

formulation (for example, arising from gyroscopic terms).

While internal resonances between modeled modes are automatically accounted

for, internal resonances between modeled and unmodeled modes will cause singulari-

ties in the analytic solutions. There are many possible internal resonances. Through

third order, they are:

!i = !k !i = 3!k

!i = 2!k !i = j2!k � !lj

!i = j!k � !lj !i = j!k � !l � !mj

(2.31)
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where (i; k; l;m) 2 SM , if singularities are to be avoided in the manifold coe�cients.

Once the expansion coe�cients are known, the unmodeled (slave) degrees of free-

dom can be expressed as approximate functions of the modeled (master) coordinates.

These functions may be substituted back into the equations of motion correspond-

ing to the modeled modes. In this manner, the unmodeled modes are eliminated

from the original set of second order di�erential equations. This reduction process

may be automated, producing a set of equations with polynomial nonlinearities in

the master coordinates. As in the single-mode case, a third-order expansion of the

unmodeled coordinates produces equations which are precise through fourth order if

[�] is nonzero, and �fth order if [�] = 0. These �fth-order terms are retained in all

cases, even when they are incomplete at that order, as it is found that their inclusion

improves simulation accuracy.

As discussed in Section 2.2.6 for the single-mode case, a computer program has

been developed for the multi-mode case which { given [�]; [�], and the system's linear

natural frequencies { can reduce a system of N equations which are formulated in the

linear modal coordinates, down to a system of M equations of motion, in M chosen

modal coordinates i.e., a reduced-order model. This program generates the complete,

third-order, M -mode manifold via the analytic solutions to equations (2.28){(2.30),

enabling theM equations of motion to be expressed to �fth order. However, N third-

order equations have been \reduced" to M �fth-order equations and, as such, some

examination is necessary to determine when this approach will result in signi�cant

time savings; this matter is considered next.



37

2.3.3 Some Computational Considerations

Depending on the ratio of M=N , the simpli�cation obtained from this approach

may be signi�cant. One indication of the complexity of a given system is the total

number of nonlinear terms in the model. This is a measure of both the number of

computations necessary at a given time step in a numerical simulation, and the overall

size and complexity of the system. In the original system, there are N equations,

with

1

6
(N3 + 6N2 + 5N)

possible nonlinear terms in each equation (this and the following results are obtained

by counting the terms at each order). By comparison, in the reduced system there

are M equations with

M

30
(4M4 + 30M3 + 85M2 + 105M + 46)

terms each, when all generated �fth-order terms are retained (in order to be conser-

vative). At the highest order, this di�erence reduces to an M � (4=5)M5 versus an

N � N3 set of nonlinear terms. Consequently, there is not signi�cant reduction in

the number of terms if

M �� N2=3

in the limiting case of the �fth-order result. It can be shown that forN > 4, reduction

will always occur if M � p
N . This is not a distinct boundary, but it may be used

as a general guide when applying this technique. These criteria are indicative of the

most nonlinear cases. In simpler cases, when the [�] and [�] matrices are sparse, the

resulting reduced set may contain many terms which are also zero or of negligible
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magnitude. Due to these e�ects, an absolute description of the e�ciency of this

technique is not possible, and each case must be evaluated individually. For example,

if N = 20, and [�] and [�] are full, there will be 20�1750 = 35000 original nonlinear

terms. If this is reduced to M = 4 equations, there will be, at most, 4� 636 = 2544

nonlinear terms in the reduced set, a reduction of 93%!

In many structural systems, it is primarily the low frequency modes which are of

interest. However, when nonlinearities are present, it is often necessary to simulate

the high frequency modes as well in order to achieve the desired accuracy in the

modes of interest. This requires that the time steps of any integration scheme be

small enough to reproduce the high frequency dynamics accurately. When these

systems are reduced to their low frequency modes using a multi-mode manifold, the

e�ects of the high frequency modes are captured in the reduced equations, and it is no

longer necessary to simulate them explicitly, hence allowing for a time step governed

by the low frequency modes. When this time savings is compounded with that due

to the size reduction of the equations, the necessary computer time may be reduced

by several orders of magnitude. In addition, it should be noted that the size of the

reduced equations does not grow with N . Consequently, it is possible to produce

models which are reduced from many more modes than would have previously been

practical. Also, as N is increased, the convergence of the reduced equations (with

M held constant) may be studied to guarantee their accuracy.

2.3.4 Example: A Second Finite Element-Based Beam

The computer program mentioned above was used for the analysis of the system

shown in Fig. 2.11. The �nite element code PATRAN was used to create a beam

model with 200 two-noded beam �nite elements. The beam in Fig. 2.11 is pinned
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at one end, with the other constrained by a linear spring. A nonlinear torsional

spring is located at the pinned end. As with the previous �nite element example,

the characteristics of the nonlinear spring and the linear eigenvectors were used to

construct the [�] and [�] matrices. Using these, reduced equations for any chosen

set of nonlinear normal modes may easily be generated. Once the reduced modal

dynamics have been determined (here, through fourth-order Runge-Kutta numerical

integration) the manifold coe�cients may be used to reconstruct the non-modeled

modal displacements, and the corresponding physical displacements. Two results are

shown: in the �rst, the system is not internally resonant and the torsional spring

contains both quadratic and cubic nonlinearities, and in the second, the linear spring

is tuned such that a 2:1 internal resonance in generated between the second and third

linear modes, and the torsional spring is purely quadratic.

The results for the �rst case, shown in Fig. 2.12, illustrate the displacements at

the beam's quarter span, predicted by an \exact" solution (25 linear modes), a three-

mode nonlinear manifold, and a three-linear-mode truncation. The �rst three modes

were used in both three-mode models. For this case it can be seen that the linearly

truncated model yields results which slowly diverge, while the other two match quite

well. However, these small errors hardly seem to justify the e�ort necessary to

generate the 6-dimensional manifold, and the reduced equations it yields. One must

keep in mind that the small errors shown here simply indicate that for this system,

at this amplitude, with these initial conditions, the contributions of the non-modeled

modes are not very signi�cant. Changes in any of these parameters may a�ect the

results in unexpected ways.

In the second case, Fig. 2.13, the displacements at half span predicted by the \ex-

act" solution, the two-mode manifold, and a two-linear-mode truncation are shown.
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Both two-mode solutions use the second and third (internally resonant) linear modes.

Here, a signi�cant error, in the form of a nearly constant o�set, is present from the

outset. Analysis shows that this o�set is due to contributions from the �rst mode, a

phenomenon which deserves some exploration.

The two-mode manifold solution explicitly simulates the second and third modes,

and then assembles the contributions of the remaining modes, including the �rst, to

obtain the dynamics of the entire system. Hence, the obtained o�set is a polynomial

function of u2; u3; v2; and v3. The \exact" solution is initiated on the manifold, so

the initial conditions in the second and third modes, together with the manifold

coe�cients, specify the initial conditions of all the modes, which are then simulated.

For this solution, all 25 modes interact dynamically to maintain the o�set. The two-

mode truncation simply assumes that all other modes remain quiescent and do not

contribute, an approach with no hope of yielding accurate results in this situation.

For this case it is apparent that modes two and three are not easily separable from the

system. That is, that mode one (at least!) must be accounted for or contamination is

ensured. Also, the manifold solution reproduces the \exact" one exceptionally well,

indicating considerable manifold accuracy.

The two examples above illustrate that, while exceptional results are not guaran-

teed, important (and unexpected) e�ects, when present, may be captured. Indeed,

it is these unpredictable modal interactions which prove the utility of this approach

for large scale systems. Due to its �nite element origin, and the systematic reduction

procedure, the above example could just as easily have been a plate, shell, or air-

craft frame, and the reduction procedure would remain unchanged. As such, though

the reduction process is analytically complex, its automation enables the generation

of rigorous, uncontaminated, reduced-order models of a large variety of nonlinear
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structural systems.

2.4 The Case of Harmonic Excitation

In linear systems, one typically ignores external forcing when generating the

reduced-order model, then applies the forcing through projection onto the retained

modes. In such cases, the other modes are also forced and active, but are simply

ignored. Similarly, in the nonlinear case, if one simply adds forcing to the reduced

equations produced by the multi-mode manifold method, the invariance of the man-

ifold is violated, and some e�ects may be lost. This has been attempted and has

met with moderate success, see [48], especially near primary resonances, where small

forces produce large responses.

Alternatively, the forcing can be incorporated directly into the formulation of the

manifold. This is accomplished through state space augmentation of the original sys-

tem, and it requires that the forcing can be expressed as a set of �rst or second order

di�erential equations. This approach, which makes the system appear autonomous,

is sometimes used in the study of control systems, but was originally suggested for

this application by Richard Rand [49]. Here, pure harmonic forcing is discussed in

detail, as it is both the simplest and most common type of time-dependent forcing,

and it can be exactly captured by a simple additional, arti�cially introduced \mode."

Consider the addition of harmonic excitation to equation (2.5), that is, the right

hand side is replaced by:

�F cos!f t

where FT = [F1; F2; : : : FN ]
T is the forcing amplitude vector, and !f is the forcing

frequency. A new \degree of freedom," xf is introduced to represent this time varying

term. Since this new coordinate is a known, harmonic function of time, it can be
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represented by a second order di�erential equation:

�xf + !2
fxf = 0

where xf (0) = 1, and _xf(0) = 0. Now, this information may be used to incorporate

the forcing into the matrix formulation, transforming equation (2.5) into:

[I]�x+ + [�]x+ + fnl(x) = 0 (2.32)

where

[�] =

2
666666664

!2
1 0 0 F1

0
. . . 0

...

0 0 !2
N FN

0 0 0 !2
f

3
777777775

and x+T = [x1; :::; xN ; xf ]
T . This system of equations may be diagonalized through

a linear transformation. If the de�nition x+ = [U ]� is applied, where � is a new

coordinate vector, and

[U ] =

2
6666666666664

1 0 � � � 0 
1

0 1 � � � 0 
2

...
...

. . .
...

...

0 0 � � � 1 
N

0 0 � � � 0 1

3
7777777777775

and


i =
Fi

!2
f � !2

i
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then premultiply equation (2.32), by the matrix:

[V ]T =

2
6666666666664

1 0 � � � 0 �
1
0 1 � � � 0 �
2
...

...
. . .

...
...

0 0 � � � 1 �
N
0 0 � � � 0 1

3
7777777777775

the equations are transformed to:

[I]�� + [
0]� + [�0]�2� + [� 0]�3� = 0 (2.33)

Here, [
0] is an (N+1)�(N+1) diagonal matrix where the �rst N diagonal elements

are the !2
i , and the (N + 1)th element is !2

f . Also, the (N + 1)th element of the

vector � is una�ected by the transformation, and remains as xf . Some manipulation

is necessary to produce the new [�0] and [� 0] matrices. This can be done using the

original [�] and [�] and substituting for xi as:

xi = �i + 
ixf i = 1 : : : N (2.34)

The new matrices will have several more columns, and one additional row at the

bottom. However, this last row represents a linear equation, so both [�0] and [� 0] will

have a �nal row of zeros. It should be noted that this transformation is not valid at

a (linear) resonance, as one or more of the 
i's will become unde�ned.

Equation (2.33) is now in exactly the same form as that used for the multi-mode

manifold formulation, equation (2.5). Consequently, manifolds may be sought in

terms of the modes of interest (�k; k 2 SM), as well as the forcing \coordinates,"

(xf ; _xf), using the solutions developed previously. This will produce a reduced set

of di�erential equations in �k; _�k; xf , and _xf where k 2 SM . Equation (2.34) may
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be used to re-express these equations in terms of the original coordinates (a non-

trivial process for high-order terms). Finally, xf may be replaced by its known,

time-dependent value | producing an equation which will generally include various

powers of cos!f t and sin!f t, in the form of both direct and parametric excitation.

Computational implementation of this method has been realized. This program

is able to reduce an N -mode structural system which is forced by a single harmonic,

to an M -mode model which is also forced. However, several factors complicate the

practical use of this approach. First, since the forcing is treated as an additional

degree-of-freedom, and the original approach required small displacements, the forc-

ing must be of the order of the displacements. To some degree, this may be accom-

plished through rescaling the original equations of motion, although this approach

is limited in scope. Furthermore signi�cant participation from the \slave" modes

typically requires light damping, and the light damping encourages multiple steady

state solutions. The existence of many solutions makes it di�cult to compare the

reduced and original equations of motion, as there is usually little or no known in-

formation about the number of solutions for either system. Hence a correspondence

between exact and approximate results often may not be reached, and the approach

may not be veri�ed. However, the transformation outlined above may be useful in

the event that additional (non-asymptotic) techniques are developed for solving the

manifold-governing partial di�erential equations.

2.5 Discussion

Some of the most interesting features and results of this approach are the fol-

lowing: (1) The individual modes do not correspond to motions with a �xed system

shape that obeys a nonlinear di�erential equation of motion; rather, the relative dis-
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placements and velocities of the system degrees of freedom vary during the response

in a manner that depends on the total energy in that mode. (2) This implies that

one cannot simply use a nonlinear displacement �eld in order to generate an invari-

ant nonlinear mode | a combined displacement/velocity �eld is required. In some

examples, such as the simple cantilevered beam (see [50]), the velocity �eld can be

ignored without much loss of accuracy, and the invariant manifold formulation al-

lows for a systematic evaluation of the importance of the terms associated with these

e�ects. (3) These shape distortions in the displacement and velocity �elds are one

of the keys to the utility of the reduced-order models, in that the e�ects of several

linear modes are captured by a single nonlinear mode, thereby reducing the number

of dynamic variables needed for an accurate system description. (4) As described in

the review by Nayfeh, [51], and the book by Vakakis et al., [44], results for nonlinear

normal modes can be obtained by a number of di�erent approaches, including per-

turbation and energy methods. (5) One main advantage of the invariant manifold

approach is that it uses coordinates that are naturally suited to computational im-

plementation. (6) The extensions to multi-mode manifolds and periodic excitation

are straightforward and easily implemented in an automated computational proce-

dure. (7) The method is analytically intensive in the formulation stage, but o�ers

savings in computational time for simulations, due to the small number of degrees

of freedom in the reduced-order model obtained. (8) A general theory for reducing

large-scale systems with periodic excitation to reduced-order invariant models has

been worked out and coded into an computer program that automatically generates

the required coe�cients for the manifolds and the dynamic model. (9) These results

e�ectively extend the reach of modal analysis to weakly nonlinear systems.

Ongoing e�orts by the author and others are directed along the following lines:
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(1) the automatic generation of reduced-order models from nonlinear �nite-element

based descriptions of a structure; some results along these lines have been produced

by the author as well as by Mazzilli and co-workers [52]; (2) the use of these reduced-

order models as component modes for substructures of large-scale systems; (3) test-

ing of these methods on simple, idealized structures; and, (4) application to more

complex structures such as systems of rotating beams and coupled-beam systems.

It is hoped that the results of these investigations will lead to more e�ective model

reduction techniques for large-scale engineering structures.

2.6 Figures

u(s,t)

γu(   )3

0
s

1s~

s~

Figure 2.1: Simply-Supported Euler-Bernoulli (linear) beam connected to a purely
cubic spring.
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Figure 2.2: Beam displacement through a quarter-period of motion in the �rst non-
linear normal mode, sampled at seven equal time intervals. u1(0) =
0; v1(0) = 6:93

Figure 2.3: Beam velocity pro�le through a quarter-period of motion in the �rst
nonlinear normal mode, sampled at seven equal time intervals. u1(0) =
0; v1(0) = 6:93
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Figure 2.4: Modal manifold projected into the u1; v1; u3 subspace. The closed curve
corresponds to the initial conditions in Figures 2.2 and 2.3
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curve lies on the manifold in Figure 2.4, while its projection (dashed line)
may only be approximated.
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Figure 2.6: Peak con�gurations (zero velocity) for equal intervals in u1.
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Figure 2.7: De
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Figure 2.9: Schematic of �nite element model. 200 beam elements were used to
construct a beam with: L = 1 m, � = 7860kg=m3, E = 2 � 1011N=m2,
I = 5� 10�8m4, k = 105N=m, 
l = 1012N=m3, 
r = 5� 1011N=m3
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Figure 2.11: Schematic of �nite element model: 200 beam elements were used to
construct a beam with: L = 1 m, � = 7860kg=m3, E = 2� 1011N=m2,
I = 5� 10�8m4. The parameters k and 
t vary by case.
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ious methods. Here, k = 108, and the nonlinear spring strength is
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Figure 2.13: De
ection of node 100 (half span of beam) versus time using various
methods. Here, k = 1:185 � 106, and the nonlinear spring strength is

t = 10000u0(0)2, with initial conditions:u2(t = 0) = 0:2; u3(t = 0) =
�0:35; v2(t = 0) = v3(t = 0) = 0.



CHAPTER III

MODAL REDUCTION OF A NONLINEAR

ROTATING BEAM THROUGH NONLINEAR

NORMAL MODES

3.1 Introduction

The determination of rotorcraft blade dynamics has been the subject of con-

siderable study. These dynamics are di�cult to obtain accurately, as the rotation,

together with the blade geometry, produces signi�cant nonlinear e�ects, including

multi-directional coupling and centrifugal sti�ening through bending-induced axial

foreshortening. Understanding these dynamics is critical in order to ensure stability

and achieve optimal designs.

Much work has been done to create nonlinear �nite element schemes which are

capable of accurate analysis [53{55]. However, this approach yields extremely large

models which often render complete nonlinear analysis impractical. Consequently, it

is typical to use the full model to determine the nonlinear equilibrium solution, and

then linearize about this solution. This approach ignores many nonlinear dynamic

terms, and may predict inaccurate results.

Alternatively, several general analytic formulations have been developed [56{58].

These formulations, though applicable for a wide variety of parameters and blade

53
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geometries, are di�cult to use, as they are quite complex. Ultimately, this approach

yields equations which are no more transparent than those from the �nite element

approach.

Consequently, many studies of these systems are done on highly idealized models

[59{62], as results are more easily obtained, and new strategies and methods may

be evaluated more e�ectively. The nonlinearities obtained in such cases are more

manageable, and the qualitative behavior may often be extrapolated to more realistic

systems.

In this study, such an idealized model is used. A uniform cantilevered Euler-

Bernoulli beam, rotating at constant velocity, and constrained to deform in the

transverse (
apping) and axial directions is considered. The resulting equations are

discretized using the linear modes of the rotating beam, and nonlinearities in slope

and displacement are retained through third order, yielding a set of modal equations

which are linearly uncoupled, but coupled at second and third order. The modal

convergence of this system is then evaluated to ensure a reference model of su�cient

accuracy.

This model is then reduced using several di�erent approaches, including the use

of multi-mode invariant manifolds [63], a direct extension of the manifold-based

nonlinear normal modes (NNMs) �rst developed by Shaw and Pierre [2, 3]. This

approach results in reduced-order models which include the most prominent e�ects

of all non-modeled modes, while allowing arbitrary sets of modes to be chosen as

the modeled subset. These reduced models are e�cient, and formulated such that

they may easily be extended to considerably more complex rotor blade models|both

analytic and �nite-element based.

The results indicate that, though the transverse dynamics are of primary interest,
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it is necessary to account for the in
uence of extensional motions. The NNM-based

reduction procedure embeds these axial-transverse interactions (and more) without

requiring the explicit simulation necessitated by the traditional (linear modal analy-

sis) approach. Consequently, the NNM-based reduced models are considerably more

accurate than other models of equivalent size.

3.2 Formulation

The uniform rotating Euler-Bernoulli beam shown in Fig. 3.1 is considered. Ro-

tatory inertia is neglected, motion is restricted to a rotating plane (thus eliminating

lead-lag motion), and nonlinear axial strain is allowed. Hence, the potential energy,

U , and kinetic energy, T , may be expressed as follows:

T =
1

2

Z L

0

m( _u2 + _w2) +m
2(h+ x + u)2dx (3.1)

U =
1

2

Z L

0

EI(w;xx )
2 + EA(u;x+

1

2
(w;x )

2)2dx (3.2)

where u(x; t) and w(x; t) are the axial and transverse displacements within the ro-

tating reference frame, (�);x is a derivative with respect to the spatial variable x, an

overdot represents a time derivative, h is the hub radius, 
 is the constant angular

velocity of the beam, m is the mass per unit length, and E, A, I, and L are the typ-

ical beam parameters | Young's modulus, cross sectional area, moment of inertia,

and length, respectively. These expressions, and Hamilton's principle, may be used

to develop the following weak formulation for the equations of motion:

Z t2

t1

Z L

0

�
[�m �w�w � EIw;xx �w;xx�EA(u;x+1

2
(w;x )

2)w;x �w;x ]+

[�m�u�u+m
2(x+ h+ u)�u�

EA(u;x+
1

2
(w;x )

2)�u;x ]

�
dxdt = 0 (3.3)
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where �(�) denotes the variation of a quantity.

With the foreknowledge that these equations will be discretized using the �xed-

free axial bar modes and �xed-free transverse modes of the nonrotating linear beam

(and their corresponding boundary conditions), these expressions may be reduced

through integration by parts to:

Z t2

t1

Z L

0

�
[�m �w � EIw;xxxx ]�w � [EA(u;x+

1

2
(w;x )

2)w;x ]�w;x+

[�m�u +m
2(x + h+ u) + EAu;xx ]�u�

[EA
1

2
(w;x )

2]�u;x

�
dxdt = 0 (3.4)

At this point it is convenient to separate u(x; t) into static and dynamic components,

as follows:

u(x; t) = us(x) + ud(x; t) (3.5)

where us(x) satis�es:

us;xx + �2u = ��2(h + x)

and �2 = m
2=EA. Using the appropriate boundary conditions, it is found that

us(x) =
1 + �h sin(�L)

� cos(�L)
sin(�x) + h cos(�x)� (h + x)

which represents the static elongation of the beam due to rotation. If Eq. (3.5) is

substituted into Eq. (3.4) and the nonlinear terms are neglected (for now), two linear

partial di�erential equations remain, whose modal solutions will decouple the fully

nonlinear equations of motion to linear order. These are:

m �ud �m
2ud � EAud;xx = 0 (3.6)

m �w + EIw;xxxx�EA(us;xw;xx+us;xxw;x ) = 0 (3.7)
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In the axial direction, the modes of the rotating beam, �i(x), are simply the well

known axial mode shapes for a uniform (�xed-free) nonrotating beam. However,

the transverse mode shapes of the rotating beam,  i(x), are approximated using a

Rayleigh-Ritz procedure [20], as:

 i(x) =
NcX
j=1

�(i;j)�j(x)

where the �j(x) are the familiar modes of a (nonrotating) �xed-free beam. Once

the modes of the linearized rotating beam are determined, modal solutions to the

nonlinear equations are sought in the form:

ud =
NaX
i=1

ai(t)�i(x) w =
NtX
i=1

ci(t) i(x): (3.8)

The integers Na, Nt, and Nc are used to denote the number of modes included in

each of the above expansions.

If these discretizations are substituted into the weak formulation, Eq. (3.4), pro-

jected onto the linear modes, and orthogonality is invoked, the resultant discretized

nonlinear equations are:

�aj + (!a;j )
2aj +

EA

2

NtX
k=1

NtX
l=k

ckcl

Z L

0


(k; l; x)�j;xdx = 0

(3.9)

for j = 1 : : :Na

�cj + (!t;j )
2cj + EA

� NaX
k=1

NtX
l=1

akcl

Z L

0

�k;x l;x j;xdx+

1

2

NtX
k=1

NtX
l=k

NtX
i=l

ckclci

Z L

0

�(k; l; i; x) j;xdx

�
= 0

(3.10)

for j = 1 : : :Nt
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Here, 
 and � are de�ned as


(i; j; x) =

8><
>:

 2
i;x i = j

2 i;x j;x i 6= j

(3.11)

�(k; l; i; x) =

8>>>>>>>><
>>>>>>>>:

 3
k;x k = l = i

3 2
k;x i;x k = l 6= i

3 2
l;x k;x k 6= l = i

6 k;x l;x i;x k 6= l 6= i

(3.12)

and !a;j and !t;j are the natural frequencies associated with the jth mode in the

axial and transverse directions, respectively. The transverse natural frequencies,

!t;j, were compared against those in [59] and found to be in good agreement. Small

di�erences (� :05%) were traced to di�erent extensibility assumptions. Note that

the nonlinearities dictate a particular form of nonlinear coupling between the two

sets of di�erential equations. It is this nonlinear interaction which produces axial

shortening as a consequence of transverse bending, as well as the cubic sti�ening due

to nonlinear strains.

The accuracy of this reduced system of equations depends primarily upon three

parameters: Nc, the number of component (nonrotating �xed-free beam) modes used

to assemble each transverse rotating mode; Nt, the number of transverse rotating

modes in w(x; t); andNa, the number of axial modes in ud(x; t). In order to e�ectively

evaluate the proposed model reduction methods, it is necessary to obtain an accurate

discretized reference model. As such, the convergence of the system properties and

dynamics must by investigated in order to determine acceptable values for Nc; Nt;

and Na.
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Often, in systems such as this, quasi-static assumptions are employed. In this

case, the accelerations in the axial direction, ( �aj in Eq. (3.9)), would be neglected,

allowing each aj to be determined as a quadratic function of the ck's. These expres-

sions would then be inserted into Eq. (3.10) to achieve a purely cubic system model,

which governs dynamics in the transverse direction. Though some results are shown

in which this approach was used, it is not emphasized here, as rotorcraft systems

contain coupling terms and inertial e�ects which may not be accounted for through

quasi-static assumptions.

3.3 System Convergence

Several properties of the system may be evaluated as the numbers of included

modes are varied, and the convergence of these properties will be used here as a

general guide in determining a minimal model size for accurate results. In this study,

the primary focus is on the dynamics of the lower frequency transverse modes of an

approximate helicopter rotor blade model. The nominal parameters used to study the

system convergence are as follows: L = 9m, m = 10kg/m, EI = 3:99� 105N �m2,

EA = 2:23 � 108N, 
 = 30 rad/s, and h = 0:5m. It is assumed that reasonable

deviations from these parameters will have little e�ect on the system convergence.

For the reader's reference, the �rst several transverse and axial natural frequencies

are shown in Table 3.1, using the nominal parameters above, with rotation rates of


 = 0 and 
 = 30 rad/s (nearly transonic blade tip velocity).

It is necessary to investigate the convergence behavior relative to Nc (the number

of stationary transverse component modes) �rst, as this will dictate both the accuracy

of the transverse modes, and the system dynamics as a whole. This convergence may

be evaluated through examination of the properties of the assembled rotating modes
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of the system for various values of Nc. The assembled mode shapes ( j(x)) converge

quite quickly, showing very little di�erence for Nc > 4. However, the associated

rotating beam natural frequencies (!t;j ) converge considerably slower. It has been

found that for Nc = 11 the �rst three natural frequencies are correct through four

decimal places. For higher modes, the e�ects of rotation are less prominent, and

 j(x) approaches the corresponding non-rotating component mode, �j(x). Therefore,

higher transverse modes (j > 10) may be well approximated by only including several

component modes above and below j. Based on these results, it was decided to use

the empirical formula: Nc = Nt+9 to determine Nc. Again, this guideline is tailored

to the model parameters and modes of interest considered herein.

Next, the e�ects of Na, the number of axial modes, are evaluated. This is done

two ways: �rst, through examination of the axial deformation, ud(x), due to a static

transverse de
ection, w(x); second, through numerical integration of the discretized

equations of motion, Eqs. (3.9) and (3.10), for a �xed Nt, and various values of Na.

Figure 3.2 depicts a particular static transverse de
ection, w(x), and the corre-

sponding axial deformation for various values of Na. These results are produced by

choosing a deformation, w(x), and the corresponding cj's, substituting into Eq. (3.9),

assuming a static solution, solving for the Na aj's, and reconstructing the �nal ax-

ial deformation shape. This illustrates the ability of the axial deformation to react

properly to deformations in the transverse direction. In Fig. 3.2, w(x) is the second

transverse mode,  2(x), and it is easily seen that the convergence of ux(x) is quite

slow, requiring at least six axial modes to capture the general character of the defor-

mation. It should be noted that convergence near x = L will be particularly slow,

due to the choice of axial modal functions, �j(x), which do not satisfy the actual

boundary conditions at the blade tip. However, this error is con�ned to the beam
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tip, and as such, its e�ects are expected to be small.

As the dynamics in the transverse direction are of primary interest, it is worth-

while to examine directly the transverse motions and the resulting axial de
ections

for various values of Na. Figures 3.3 and 3.4 depict the dynamics of the beam tip

in the transverse and axial directions, respectively, for Na = 1, 3, 6, and 9, with

an initial de
ection in the second transverse mode. All simulations are carried out

using a fourth order Runga-Kutta integration scheme, and six transverse (rotat-

ing) modes (Nt = 6). The results indicate that the primary e�ects of Na on the

transverse dynamics, w(x; t), are in the response frequency, with secondary e�ects

in amplitude. It may be seen that the transverse dynamics are well captured by

six axial modes, although nine axial modes yield an additional frequency correction.

Figure 3.4 highlights the nonlinear dynamics in the axial direction. Here, the dy-

namic participation of the additional axial modes is apparent, as increases in Na

clearly produce higher frequency components in the response. It should be noticed

that Figs. 3.3 and 3.4 show considerably di�erent time frames, with approximately

one period of the oscillations of Fig. 3.3 apparent as a slow harmonic component

of Fig. 3.4. The high frequency dynamics visible in Fig. 3.4 are largely a result of

the \ringing" of the axial modes due to nonlinear internal stresses which result from

the initial conditions. That is, the initial conditions assume de
ections in w(x) only,

without the corresponding (equilibrium producing) de
ections in u(x). However, the

high frequency content of these dynamics aids in the accurate evaluation of model

convergence. Once again, small di�erences may be observed between the dynamics

produced using six and nine axial modes. Hence nine axial modes (Na = 9) are used

for the �nal system model.

Next, it is necessary to determine the number of transverse rotating modes, Nt,
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to be used. As with the axial modes, this is done by comparing the dynamic beam

response for various values of Nt. Figure 3.5 shows the transverse response at the

beam tip, w(L; t), for an initial condition in the second transverse mode, with Nt = 3,

6, and 9. The last two responses are quite close, but as small di�erences may still

be observed between Nt = 6 and Nt = 9, and since the transverse dynamics are of

greatest interest, the higher value was chosen.

Through these procedures, the �nal model was chosen to contain Nc = 18 sta-

tionary �xed-free beam modes, which are used to generate Nt = 9 transverse rotating

modes. These transverse modes are then coupled to Na = 9 axial modes, for a �nal

model size of N = Nt + Na = 18 modes. It is recognized that, due to the limited

nature of this convergence study, and the well documented convergence di�culties

for similar rotating systems, this model is somewhat minimal. However, it is of

su�cient size to e�ectively demonstrate the nonlinear normal mode-based reduction

procedure, and it will henceforth be referred to as the \exact" model.

An additional check of this model is illustrated in Fig. 3.6, which shows the

periodic response frequency of the �rst mode as a function of the number of total

model modes for a given motion amplitude. For this example, equal numbers of

axial and transverse modes were used, so the abscissa corresponds to Na +Nt. One

can see that, at this amplitude, the response frequency is accurately determined

by an 18 mode model. The periodic solutions used for this �gure were obtained

computationally by locating initial conditions in the vicinity of the �rst mode which

yield a periodic solution. These solutions will, in fact, lie on the invariant manifold

which is the basis of our reduction technique.
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3.4 Nonlinear Mode-Based Model Reduction

The approach used here to generate reduced order models of Eqs. (3.9) and (3.10)

was originally developed by Shaw and Pierre [2]. It utilizes invariant manifolds in the

system's phase space to generate constraint equations which dynamically \enslave"

nonessential modal degrees of freedom (DOF) to those of interest. The resulting

reduced equations capture many of the nonlinear in
uences of the enslaved DOFs

without requiring explicit simulation. A general exposition of the procedure and

systematic implementation used here may be found in [64]. For this system, the

transverse motions are of primary interest. Therefore, one or more of the transverse

modal coordinates (c's), along with any internally resonant modal coordinates will

be chosen as \master" coordinates, and the remaining coordinates will be enslaved.

For example, if the set of \master" modal positions and velocities is denoted by

(uM;vM), the reduced di�erential equation for a chosen transverse mode is of the

following form:

�cj + !2
t ;j cj + fnl(uM;vM) = 0 where cj 2 uM (3.13)

with the associated constraint equations,

ck = Xt;k (uM;vM) _ck = Yt;k (uM;vM)

where k = 1 : : : Nt; ck =2 uM

ak = Xa;k (uM;vM) _ak = Ya;k (uM;vM)

where k = 1 : : : Na; ak =2 uM
Here, the function fnl depends on the properties of the original system and is up to

�fth order in the elements of (uM;vM), and the constraint equations (the X's and

Y 's) are third order polynomials in the elements of (uM;vM). The key to choosing
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these constraints properly is that they are forced to satisfy the equations of motion.

As an illustration, if (uM;vM) consists of only the position and velocity of the third

mode, (c3; _c3), the resulting NNM-reduced di�erential equation is of the form:

�c3 + !2
t ;3 c3 + A1 c

3
3 + A2 c3 _c3

2 + A3 c
5
3 + A4 c

3
3 _c3

2 + A5 c3 _c3
4 = 0 (3.14)

where the constants, Ai, are analytical functions of the system parameters. Hence,

only the coordinates in (uM;vM) need to be simulated (using equations such as

Eq.(3.13)), while the constraint equations are used to reconstruct the response of the

enslaved modes. This reduction procedure has been computationally automated for

a certain subclass of nonlinear structural systems|including Eqs. (3.9) and (3.10),

where the nonlinear coe�cients have been evaluated|such that one merely has to

choose the desired \master" coordinate set, and the reduced equations of motion and

constraint equations are automatically generated. In cases of internal resonance, non-

removable coupling between resonant modes requires augmenting the set of \master"

modes to include all modes which are internally resonant with the original set. That

is, internally resonant groups of modes must lie entirely in either the \master" or

\slave" subgroups. More complete expositions of this material may be found in

[63, 64]

The rotating beam system is particularly well suited for this reduction procedure

for two reasons. First, the axial nonlinearities|see Eq. (3.9)|are only functions of

the cj's. This improves the accuracy of the constraint equations, as several higher

order (error generating) e�ects are eliminated. Secondly, the nature of the nonlin-

earity results in nonlinear coe�cients (such as � and 
) which grow with the modal

wave number. Therefore, nonlinear e�ects from higher modes are likely to be impor-

tant for these systems. Nonlinearities which are \translational" (such as nonlinear
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springs between adjacent masses) do not share this property, and yield systems which

approach linearity as the mode number is increased.

3.5 Results

Results are given for several cases. First, the time-dependent shape of the de-

formed beam is illustrated for motions occurring in the third nonlinear mode, and

the relationship between modal amplitude and response frequency is discussed for

the �rst three modes. Second, the rotation rate, 
, is tuned to create a 3:1 inter-

nal resonance between the �rst two transverse modes. Results generated from the

reduced, 2-DOF models of this system are then compared to those of the \exact"

model. Lastly, system parameters are adjusted to create an internal resonance be-

tween an axial and transverse mode. As before, the proposed NNM approach is

compared with other reduction methods.

One feature of the nonlinear normal mode method is that, although only one mode

is simulated, the others can be reconstructed through the constraint equations. This

results in nonlinear modes which change shape with amplitude and velocity (also

known as non-similar NNMs [44]). This property is illustrated in Fig. 3.7, where

the functions w(x; t) and u(x; t) are reconstructed from a simulation time-history

and the relevant constraint equations. Mode shapes are shown for several instants

of time, spaced evenly within a quarter-period of motion. The non-similar nature

of w(x; t) is not especially noticeable, although the peak displacement of the �rst

lobe does move to the right as the amplitude decreases. Note that, for u(x), the

static solution is included (dashed line), and that all departures from this are non-

similar, as the axial and transverse motions are linearly uncoupled. Also, for u(x; t),

the shapes shown are representative of the entire periodic behavior. That is, while
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w(x; t) would become symmetric about the x-axis with further time sampling, the

corresponding axial motion, u(x; t), would simply repeat (at twice the frequency of

w(x; t)).

Further insight may be obtained through examination of Fig. 3.8, which illus-

trates the relation between the response frequency and amplitude for the �rst three

nonlinear modes, using various models. Here, the \Exact Model" indicates the fre-

quency of a periodic solution for the full (18-DOF) model, found through numerical

methods. This solution lies on the \exact" invariant manifold, and is successfully

approximated by our nonlinear mode approach over a range particular to each mode.

The quasi-static results shown here illustrate the e�ects of eliminating axial inde-

pendence through quasi-static assumptions. This approach relies on the distinct

separation between the axial and transverse modes. Hence, while e�ective here, it

is not readily extendible to realistic blade geometries, as the modes of these models

contain no such distinct categories. The \One Linear Mode: Nonlinear" result elim-

inates the in
uence of all other modes, and consequently diverges quite quickly. The

divergence observed between the nonlinear mode and exact solutions is due to higher

order e�ects which cannot be captured by the third-order manifold employed here.

Model �delity could be improved through the use of higher-order manifolds. As an

aid for physical interpretation, a tip displacement of .2m approximately corresponds

to a transverse modal amplitude of 1.0 (for all transverse modes).

A 3:1 internal resonance between the �rst two transverse modes was created by

adjusting the rotation rate, 
, from 30 to 23.85 rad/s. Conditions such as this may

easily occur during typical operations. As with the single-mode results above, Fig. 3.9

depicts results from various two-DOF reduced systems, and their comparison with

the \exact" results. Here, the \exact" (Eighteen Linear Modes) model dynamics
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are initiated on the approximate invariant manifold. That is, the initial conditions

in the mode(s) of interest are chosen, and then the remaining degrees of freedom

are assigned their initial values according to the constraint equations, Eq. (3.4).

For this case, the coupling between the two resonant modes is well captured by the

nonlinear normal mode approach, which requires the calculation of a two-mode (four-

dimensional) invariant manifold, and yields a fully coupled, two-DOF, reduced model.

The \Two Linear Modes: Nonlinear" response includes the two internally resonant

modes, and their nonlinear coupling terms, but fails to achieve the proper qualitative

or quantitative results. Under these circumstances, the proposed reduction procedure

is particularly attractive. Figure 3.10 illustrates the e�ectiveness of the manifold

constraint equations for predicting the motion of non-modeled modes. The two

curves shown depict the displacement of the ninth transverse mode for the motion

shown in Fig. 3.9, and compare the dynamics obtained through numerical integration

of the entire system, with those predicted by the manifold constraint equations.

That is, the \Simulated" curve is a product of the dynamic interactions of a 18-

DOF system, while the \Reconstructed" curve is a polynomial combination of the

positions and velocities of the �rst and second transverse modes. It is precisely this

motion which must occur if this mode is not to contaminate the reduced dynamics.

Lastly, a 2:1 internal resonance between the �rst axial mode and the fourth

transverse mode exists for following parameter values: m = 11:84 kg/m, EI = 4:73�

105N m2, EA = 1:89 � 108N, 
 = 30 rad/s, and h = 0m. As before, the results

in Fig. 3.11 show considerable error when additional modes are not accounted for.

The \Two Linear Modes: Nonlinear" results, though internally resonant, exhibit a

period of modulation which is entirely wrong. Of course, if more linear modes are

simply added, these results will improve, but in cases such as this it is di�cult to
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deduce which modes would yield the most improvement. That is, should one add

the third transverse, �fth transverse, or second axial modes to the model to achieve

the best three-mode model for the study of this internal resonance? These questions

are automatically resolved through the use of nonlinear normal modes by properly

accounting for all other modes, thus avoiding guesswork and oversized models.

3.6 Conclusions

The above results illustrate the utility of the invariant manifold-based approach

for generating nonlinear normal modes. For the rotating beam system considered,

there are critical nonlinear couplings between the system's linear modes which must

be accounted for if accurate results are to be obtained. Speci�cally, the coupling

between the transverse and axial modes, due to bending induced foreshortening

e�ects, is essential. The NNM approach accurately estimates the in
uence of this

coupling for moderate amplitude motions, generating minimal models which retain

considerable accuracy.

In addition, the systematic nature of the reduction process makes it applicable

to more complex blade models. In geometrically correct blade models, the system

modes no longer occur in easily separable categories. Likewise, the nonlinearities

do not share the ordered structure of our model. However, if the linear modes are

known, and the nonlinear coupling terms have been determined, the reduction process

remains unchanged. Hence, the methods proposed herein may readily be extended to

more realistic rotorcraft blade models|ultimately yielding optimal reduced models

with minimal guesswork.

With this goal in mind, there are some particular issues which require further

attention. The blade model must be shifted from analytical to �nite-element based,
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allowing the generation of models with complex geometry and material properties.

This generalization requires work at the element level, due to the nature of the

nonlinearities involved, but will enable the inclusion of more general motions, such

as torsion and lead-lag. In addition, with the goal of improving manifold accuracy,

some re�nements to the reduction procedure may be possible. Such re�nements will

signi�cantly extend the valid amplitude range of NNM-based models.

3.7 Figures

!t;1 !t;2 !t;3 !t;4 !a;1 !a;2


 = 0 8.672 54.35 152.2 298.2 824.7 2474.0


 = 30 34.03 95.84 200.5 351.5 824.1 2473.9

Table 3.1: The transverse and axial natural frequencies (in rad/s) for the �rst several
modes both at rest (
 = 0) and at the nominal rotation rate (
 = 30
rad/s).

Ω

x u(x,t)

w(x,t)

h
E,A,I,L,m

Figure 3.1: Rotating beam system, 
 =Constant
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CHAPTER IV

A NEW GALERKIN-BASED APPROACH FOR

ACCURATE NONLINEAR NORMAL MODES

THROUGH INVARIANT MANIFOLDS

4.1 Introduction

The generation of e�ective reduced order models for nonlinear dynamic systems is

di�cult, due to the complex interactions between system components. These nonlin-

ear interactions typically couple the system dynamics such that accurate results may

only be achieved through the inclusion of many modes or degrees of freedom (DOFs).

Such large models are cumbersome, making analysis both di�cult and slow, as well

as physically nonintuitive. Alternatively, smaller models often sacri�ce accuracy,

ultimately yielding questionable results. Ideally a minimal model is sought, which

accurately accounts for the nonlinear interactions between components, without re-

quiring their explicit simulation. In pursuit of this goal, there has been considerable

work on the development of reduced-order models (ROMs) of nonlinear dynamic

systems.

Some early work along these lines concentrated on the de�nition and existence of

nonlinear normal modes (NNMs), their properties, and illustrative examples [12, 21].

These concepts were further extended by Rand [13, 22], and more recently by King

78
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and Vakakis [23, 26] among others. The present work builds upon the invariant

manifold formulation developed by Shaw and Pierre [2, 3] and extended in reference

[63]. This nonlinear extension of modal analysis allows one to generate reduced-

order models by restricting non-essential modes (or DOFs) to an invariant manifold

parameterized by a set of retained modes (or DOFs). This invariant manifold al-

lows the corresponding ROM to account for the participation of all DOFs without

requiring their explicit simulation. Although some work has been done using period-

icity constraints to locate the invariant manifold numerically [40], most approaches

use asymptotic methods to generate polynomials which approximate the manifold

locally. This approach has been used successfully for the analysis of systems within

the local nonlinear regime [39, 64, 65]. However, as is typical of asymptotic methods,

the resultant dynamics are only accurate for small motions, and the upper bound for

these motions is not known a priori. In addition, due to the nature of the polyno-

mial approximation, the divergence of the asymptotic approximation and the actual

manifold may occur at small amplitudes | yielding entirely inaccurate results at

amplitudes only slightly beyond the domain of convergence. Hence, though the in-

variant manifold formulation of the NNM is sound, the asymptotic solution method

sometimes yields results with limited applicability.

If nonlinear modal analysis is to become a practical tool, it must be accurate,

reliable, and general. Earlier e�orts have not fully met these criteria. The various

asymptotic methods are locally accurate, but the unknown extent of this accuracy,

restrictions on the types of nonlinearities that can be handled, and the e�ort nec-

essary result in limited reliability and generality. Other analytical methods have

typically restricted either the temporal or spatial behavior of the model, ultimately

compromising both accuracy and generality. Lastly, numerical simulations may be
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used to locate the invariant manifold, and generate ROMs, but this requires exten-

sive simulation and relies upon the periodicity of the system response. Hence, this

approach is cumbersome and lacks generality.

The approach developed herein eliminates many of these problems. As with

the asymptotic approach, the nonlinear partial di�erential equations governing the

manifold are solved approximately. However, instead of the local polynomial ap-

proximation, a series approximation is employed over a chosen domain. Nonlinear

equations in the expansion coe�cients are obtained through a Galerkin projection

and then solved to achieve an approximation of the manifold which minimizes the

error for the selected set of basis functions, i.e., the error is minimized in the do-

main spanned by the chosen basis functions. Typical results are shown in Fig. 4.1,

which illustrates the di�erence between the asymptotic and Galerkin-based mani-

folds. The curves shown correspond to cross sections of the second-mode manifold

for the ten-mode �nite element beam model discussed in Section 4.4. This approach

allows one to determine the manifold geometry to a chosen accuracy through a given

(and possibly large) amplitude. Furthermore, the chosen formulation and computa-

tional nature of this approach allow it to be used for the analysis of a large variety of

nonlinear dynamic systems. Some similar work on the reduction of dynamic systems

using Galerkin methods has been conducted by Steindl et al. [46].

The application of the nonlinear Galerkin method, as well as the coordinate

transformation of the manifold-governing partial di�erential equations (PDEs) de-

veloped herein constitute unique contributions to the �eld. Their utility is illustrated

through the examination of two example systems. First, a two degree of freedom

system with cubic nonlinearities is analyzed. The convergence and geometry of the

two (numerically obtained) approximate invariant manifolds are discussed, and the
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Galerkin-based reduced model is shown to accurately predict the system response.

These results are compared against those from the asymptotic approach. Second, a

�nite element based beam model with a quadratic/cubic nonlinear torsional spring at

one end is examined. Results are presented which correspond to the second and �fth

nonlinear normal modes of the beam. As with the simpler system, these results indi-

cate that the Galerkin-based reduced-order model retains accuracy throughout the

chosen amplitude domain, without requiring the nonlinear e�ects to remain weak.

This accuracy enables one to use the reduced order model with con�dence in its

validity, even for amplitudes corresponding to large nonlinear e�ects.

These examples serve to illustrate the potential of this approach. The formulation

may be extended to determine manifolds of higher dimension, yielding reduced-order,

multi-DOF, models for motions occurring within multiple, interacting modes. In

addition, considerable insight may be obtained through the application of this process

to existing problems within the area of nonlinear dynamics. Ultimately, this approach

promises to be a valuable new tool for the analysis and understanding of nonlinear

dynamic systems.

4.2 Formulation

This approach assumes that a reduced-order model is sought for a set of nonlinear

coupled oscillators. Whether from a system of discrete masses, �nite element model,

or discretized continuous system, these may be expressed in the form:

�� + [Z] _� + [
]� = f(�; _�) (4.1)

where � is a vector of normalized modal coordinates, [Z] and [
] are diagonal damp-

ing and sti�ness matrices, respectively, f(�; _�) contains any additional linear or



82

nonlinear terms, and each overdot indicates a time derivative. The individual ele-

ments of [Z] and [
] are written as 2�i!i, and !
2
i , respectively, for the ith equation.

This form is selected for analytical convenience, and does not re
ect a necessary

restriction of the approach.

From this point, previous single-mode invariant manifold formulations [2] have

constrained all degrees of freedom to be functions of a chosen coordinate pair, as:

�i = Xi(�k; _�k)

for i = 1 : : :N; i 6= k (4.2)

_�i = Yi(�k; _�k)

for N original modal coordinates. Here, an alternative set of coordinates is de�ned

using the transformation:

�k = a cos�

(4.3)

_�k = �a!k sin�

and, the original constraints, Eq. (4.2) become:

�i = Pi(a; �)

for i = 1 : : :N; i 6= k (4.4)

_�i = Qi(a; �)

The resulting system uses this hybrid coordinate system. That is, all modal positions

and velocities are expressed in terms of a \master" amplitude and phase correspond-

ing to the motions of the kth mode. These constraint relations are dictated for the

kth mode (by Eq. (4.3)), and remain unknown for all others. Determining these
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unknown relations, that is, Pi and Qi, will ultimately yield reduced dynamic equa-

tions in a(t) and �(t) only. Unlike earlier methods, this approach is not conducive

to solutions through polynomial expansions. However, it does o�er the following

advantages:

� The dynamics in the transformed coordinates are elementary for f= 0.

� The new constraint equations, (Pi; Qi) must be periodic in �, and thus may be

expressed with harmonic functions in �.

� The bounding values for the manifold are reduced from four values (�uk;�vk)

to one | the upper bound of a.

As an alternative to modal positions and velocities, the entire system may be

transformed to an amplitude{phase representation. However, this approach is un-

necessarily complex, as it is more cumbersome to represent one set of amplitudes

and phases in terms a \master set," and such a system is further removed from the

original coordinates.

The original equation of motion governing �k may be transformed into two �rst

order equations in a and � [5]:

_a = (
�fk
!k

� 2�k!ka sin�) sin�

(4.5)

_� = !k � (
fk
a!k

+ 2�k!ka sin�) cos�

and the remaining di�erential equations may be written in �rst order form as:

_Pi(a; �) = Qi(a; �)

for i = 1 : : : N; i 6= k (4.6)

_Qi(a; �) = �2�i!iQi(a; �)� !2
i Pi(a; �) + fi
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The time derivatives on the left hand side of Eq. (4.6) may be expanded using the

chain rule to obtain

_Pi(a; �) =
@Pi

@a
_a+

@Pi

@�
_�

for i = 1 : : : N; i 6= k (4.7)

_Qi(a; �) =
@Qi

@a
_a +

@Qi

@�
_�

Equations (4.5{4.7) are combined to yield a set of partial di�erential equations

(PDEs) that are independent of time and govern the invariant manifold geometry:

Qi =
@Pi

@a
(
�fk
!k

� 2�k!ka sin�) sin�+
@Pi

@�
[!k � (

fk
a!k

+ 2�k!ka sin�) cos�] (4.8)

for i = 1 : : :N; i 6= k

�2�i!iQi � !2
i Pi + fi =

@Qi

@a
(
�fk
!k

� 2�k!ka sin�) sin�

+
@Qi

@�
[!k � (

fk
a!k

+ 2�k!ka sin�) cos�]

(4.9)

for i = 1 : : : N; i 6= k:

In previous works, a similar process is used to yield manifold-governing equations

in terms of a master position and velocity, (uk; vk). A polynomial expansion in uk

and vk is then used to asymptotically approximate the local solution to a given order.

Herein, the asymptotic approach is replaced by a Galerkin method. As before, the

solution is achieved through a function series with unknown coe�cients, but here the

functions of amplitude and phase (a and �), are de�ned over a preselected amplitude

domain. The solution of the resulting discretized equations minimizes the error over

the chosen domain, yielding manifolds of considerably greater accuracy and range.
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The unknown position and velocity constraint relations are expanded as a double

series in the amplitude and phase as:

Pi(a; �) =
NaX
l=1

N�X
m=1

C l;m
i Tl;m(a; �)

for i = 1 : : : N; i 6= k (4.10)

Qi(a; �) =
NaX
l=1

N�X
m=1

Dl;m
i Ul;m(a; �)

where the C's and D's are the unknown expansion coe�cients and the Tl;m and

Ul;m are known shape functions, typically composed of products of functions in a,

and �. For example, a given Tl;m might be a product of a harmonic function in �

and a polynomial function in a, de�ned over the domain a 2 [0; ao], � 2 [0; 2�].

Na and N� are used to denote the number of expansion functions used in a and �,

respectively. This expansion is substituted into the manifold-governing equations

(Eqs. (4.8) and (4.9)), which are multiplied through by a to remove the singularity

at a = 0. Finally, all terms are moved to the right side of the equation, and a

Galerkin projection [5] is carried out using the individual shape functions over the

chosen domain. This leaves:

0 =

Z
a;�

Up;q

"
�a
X
l;m

Dl;m
i Ul;m +

X
l;m

C l;m
i

@Tl;m
@a

(
�fk
!k

� 2�k!ka sin�)a sin�

+
X
l;m

C l;m
i

@Tl;m
@�

[a!k � (
fk
!k

+ 2�k!ka
2 sin�) cos�]

#
da d�

(4.11)
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0 =

Z
a;�

Tp;q

"
2�i!ia

X
l;m

Dl;m
i Ul;m + !2

i a
X
l;m

C l;m
i Tl;m � afi

+
X
l;m

Dl;m
i

@Ul;m

@a
(
�fk
!k

� 2�k!ka sin�)a sin�

+
X
l;m

Dl;m
i

@Ul;m

@�
[a!k � (

fk
!k

+ 2�k!ka
2 sin�) cos�]

#
da d�

(4.12)

for i = 1 : : : N; i 6= k; p = 1 : : : Na, and q = 1 : : :N�. This represents a set of

2(N � 1)NaN� nonlinear equations in the C's and D's, the solution of which will be

optimal (in a least squares sense) for the chosen basis functions and domain.

In principle, this integration could be completed analytically, leaving a set of

explicit nonlinear equations. However, as the system size and number of expansion

functions increase, this quickly becomes impractical. The alternative is to use numer-

ical integration for each function evaluation. Though it is considerably slower than

an explicit formulation, this approach requires very little additional analytic work,

and the generality of f makes it applicable to a wide variety of nonlinear systems.

Regardless of the evaluation method, Eqs. (4.11) and (4.12) may be solved using

an algorithm for the solution of multi-variable nonlinear systems of equations. This

solution yields the series coe�cients for each Pi(a; �); Qi(a; �) pair over the chosen

domain, e.g., � 2 [0; 2�]; a 2 [0; ao].

Unlike the asymptotic approach, here the expansion order may be increased to

produce more accurate results without requiring additional analytical work. Hence

manifold accuracy is reduced to an issue of computational e�ort. Also, the domain of

convergence is known a priori, and the results obtained may be used with con�dence

throughout that region, once the desired convergence is achieved.

Once the Pi and Qi have reached the desired accuracy, fk, in Eq. (4.5), may be
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evaluated for any given (a; �), and the dynamics within the chosen mode may be

determined. The resultant time histories, a(t) and �(t), allow the evaluation of all

linear modal positions and velocities (through the P 's and Q's | Eq. (4.10)), and

the global system response may be assembled.

It should be noted that there are other solution methods which may be applied

to obtain the coe�cients. For example, an incremental approach which separates

each C and D as Ci = Co
i + �Ci, and Di = Do

i + �Di could be linearized locally (in

the �C's and �D's) and used iteratively until a solution was reached. However, as

above, the integration for each step must be done either analytically (using a general

formulation) or numerically, and the resulting solution will apply over the chosen

domain.

Thus the nonlinear Galerkin method described above allows one to generate ac-

curate reduced-order models for many types of nonlinear structures, without restric-

tions on the form or magnitude of the nonlinearity, and these models are expected

to maintain �delity throughout a predetermined domain.

In the next two sections, this formulation is applied to generate reduced-order

models of two example systems. The �rst, a two-mass system with purely cubic non-

linearities, serves to solidify the concepts developed above and uses a single function

set to represent the amplitude dependence of the manifold. The second system is

intended to showcase the power and bene�ts associated with the nonlinear Galerkin

approach. A nonlinear �nite element beam model is used to generate a set of equa-

tions which are then reduced to a single-mode ROM. Due to the model size, this

reduction is carried out by solving the manifold equations over several local domains.

This composite manifold is then used for the ensuing analysis.
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4.3 Application: A Nonlinear Two-mass System

As an illustrative example, the nonlinear undamped two-mass system shown in

Fig. 4.2 is used. The corresponding equations of motion in q1 and q2 are:

�q1 + q1 + 5(q1 � q2) = �2q31 � (q1 � q2)
3

(4.13)

�q2 + 5(q2 � q1) = �(q2 � q1)
3

A linear eigenanalysis is carried out, and the natural frequencies are found to be:

!1 = 0:689 !2 = 3:244

and a transformation matrix of the form:8><
>:

q1

q2

9>=
>; =

2
64 0:671 0:741

0:741 �0:671

3
75
8><
>:

�1

�2

9>=
>;

may be used to decouple the two equations to linear order. The resulting modal

equations are:

��1 + !2
1�1 = f1(�1; �2)

(4.14)

��2 + !2
2�2 = f2(�1; �2)

where the nonlinear terms may be written as:

f1 = �0:405 �31 � 1:34 �21�2 � 1:51 �1�
2
2 � 0:349 �32

(4.15)

f2 = �0:448 �31 � 1:51 �21�2 � 1:05 �1�
2
2 � 4:58 �32
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The equations are now of the form assumed in Eq. (4.1) and, given a set of

expansion functions, Eqs. (4.11) and (4.12) may be employed to yield the system

of nonlinear equations whose solution will produce the manifold coe�cients. Many

di�erent sets of basis functions may be used to describe the manifold geometry. Here

we use the following double expansion in a and �:

Tl;m(a; �) = Ll(a) cos((m� 1)�)

Ul;m(a; �) = Ll(a) sin((m)�)

The harmonic functions are a natural choice for expanding the � dependence over

[0; 2�], and the use of cosine functions for T (corresponding to a modal position),

and sine functions for U (corresponding to a modal velocity) is predicated upon the

synchronous motions expected for a conservative non-gyroscopic system. That is,

in a periodic motion, all degrees of freedom must simultaneously reach zero velocity

(at a corresponding maximum or minimum displacement). In other systems, this

property may not be present, and a more general expansion in � may be necessary.

The functions Ll(a) were chosen to be a set of polynomials de�ned over the domain

[0; ao], with zero slope at a = 0, and which satisfy the orthogonality property:

Z ao

0

aLi(a)Lj(a) =

8><
>:

1 for i = j

0 for i 6= j

The analytical expressions for the �rst seven Li(a) are shown in Appendix C, and

are illustrated in Figure 4.3. The restriction of the slope at a = 0 is a re
ection of

the modal form of the original equations of motion. That is, the independence of the

governing equations at linear order precludes linear contributions to the manifold at

a = 0. If the equations of motion were in another coordinate system, e.g., physical
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coordinates or non-orthogonal component modes, the Li(a) should allow for linear

contributions to the invariant manifold at a = 0.

The orthogonality property above, along with the orthogonal properties of the

harmonic functions and the absence of velocity-dependent forces, allows Eq. (4.11)

to be reduced to:

Dp;q
i = F (C)

where C represents a vector containing all the C l;m
i . Hence, given a guess for the C's,

the D's may be determined, and Eq. (4.12) may be evaluated. As a consequence,

only the C's need to be considered as independent variables.

The resulting set of nonlinear equations can be solved computationally. Here,

the Galerkin projection was carried out numerically at each iteration, and Powell's

Hybrid method [66] was implemented via the NAG (Numerical Algorithms Group)

routines to achieve a solution. This numerical algorithm uses successive function

evaluations to approximate the Jacobian and progress toward a solution.

4.3.1 The First Nonlinear Normal Mode

The �rst nonlinear normal mode of this system may be examined by solving

Eqs. (4.11) and (4.12) using the above expansions, for k = 1, to determine P2(a; �)

and Q2(a; �). Two cross sections of P2, � = 0, and a = ao = 2:22, are illustrated

in Figure 4.4 (a) and (b), respectively, for a number of di�erent expansion orders,

depicted in the form (Na; N�), as well as the asymptotic solution and the exact

solution. The asymptotic solution corresponds to a third order manifold in (�1; _�1),

generated according to the analytical formulas presented in reference [63], and then

transformed into the (a; �) coordinates. The conservative nature of this problem

requires that the individual nonlinear normal modes be periodic, and this may be
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exploited to obtain the exact solution by searching the con�guration space for initial

conditions which yield a periodic response, and consequently must lie on the invariant

manifold. This search is carried out within the plane depicted in Fig. 4.4(a) and the

exact results are shown. However, these results are not shown in Fig. 4.4(b), as the

amplitude does not remain constant through a given motion, and the exact solution

is not easily transferred to the plane of constant amplitude. The results indicate

that three polynomial functions and eight harmonics are necessary to out-perform

the asymptotic results, and that even with �ve polynomials and twelve harmonics,

there is still some small error near ao. This error appears to be con�ned to a few

regions of �, as plot (b) indicates convergence over most of the domain. It should be

noted that, due to the symmetric nature of the manifold, the � expansion only yields

contributions from the odd harmonics. Note that further increases in the number

of harmonics or polynomials would result in improved convergence, albeit at higher

computational cost.

The invariant manifolds for P2(a; �) and Q2(a; �) are shown in Fig. 4.5, for the

solution corresponding to Na = 5, and N� = 12. These surfaces represent an approx-

imate solution to Eqs. (4.8) and (4.9), and allow the accurate extension of the �rst

linear mode into the nonlinear realm. Given these constraint relations, f1(�1; �2)

in Eq. (4.15) becomes f1(a; �), and the amplitude-phase di�erential equations |

Eq. (4.5) | may be integrated to �nd the correct single-mode motion. These mani-

folds go well beyond the domain of \small motions" and \�rst order e�ects," allowing

one to generate results which may be limited by the �delity of the mathematical

model, rather than that of the reduction technique. Here, at a = 2:22 and � = 0 the

calculated nonlinear force, f1(a; �), is slightly greater in magnitude than the linear

force, !2
1a, corresponding to a large nonlinear e�ect.
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The degree of nonlinearity is easily observed in Figure 4.6, wherein the response

frequency can be seen to change signi�cantly with amplitude. Though not initially

apparent, the known manifold does not allow this curve to be extended to an am-

plitude of ao(= 2:22), as the peak amplitude for a given motion is not at � = 0, but

at � = �=2. Motions with initial amplitudes greater than 1.5 will eventually exceed

ao = 2:22, thereby leaving the known invariant manifold. The plot indicates that

both the asymptotic and Galerkin-based manifolds accurately capture the response

frequency, while ignoring the e�ects of the second mode (shown as the \One Mode

Solution") leads to considerable error at the larger amplitudes. The asymptotic and

Galerkin-based manifolds yield nearly equivalent response frequencies through an

initial amplitude of 1.0, after which some divergence of the asymptotic result may

be seen.

Time histories for these four periodic solutions are shown in Fig. 4.7. Each tra-

jectory is produced through a di�erent analytical route. The \Galerkin Manifold"

results are produced by simulating Eq. (4.5), using the (Na = 5; N� = 12) manifold

to evaluate f1, then using the manifold equations to compute the modal displa-

ments for each (a; �), and �nally using the eigenvectors to compute the physical

displacement. The \Asymptotic Manifold" uses the analytical solutions from refer-

ence [63] to determine �2 = g(�1; _�1), simulates Eq. (4.14) (retaining terms of the

proper order), determines the modal de
ections and, �nally, the physical de
ections.

The \One Mode Solution" simply assumes �2(t) = 0, simulates Eq. (4.14), and uses

only the �rst mode shape to determine physical motion. Lastly, the \Exact" so-

lution corresponds to the numerically determined initial conditions which result in

periodic behavior of both degrees of freedom. Hence, although each simulation has

an initial condition corresponding to �1 = 1:5 and _�1 = 0, the di�erent mode-two
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constraints yield di�erent initial conditions. The results indicate that, at this am-

plitude, the Galerkin-based results are indistinguishable from the \Exact," whereas

the asymptotic manifold results are nearly correct, and the \One Mode Solution"

has considerable errors in both amplitude and frequency. These results clearly show

that the nonlinear Galerkin approach has produced a model which utilizes the full

potential of the invariant manifold to reduce the system to a single oscillator whose

motions would not incite contamination from the rest of the system. Of course, as

this �rst NNM is simply an extension of the �rst linear mode into the nonlinear

realm, a corresponding extension must exist for the system's second linear mode.

4.3.2 The Second Nonlinear Normal Mode

The convergence of manifold corresponding to the second nonlinear normal mode

is illustrated in Figure 4.8, for the cross sections � = 0 (a), and a = ao = 3:0 (b). For

this mode the asymptotic manifold diverges quite quickly from the exact solution,

making even the Na = 1; N� = 2 solution a considerable improvement. Plot (b)

illustrates that the harmonic content of the manifold is simpler than that of the

�rst normal mode, and this observation is consistent with the fact that only half as

many harmonics are necessary to reach convergence. As with the �rst mode, the

convergence appears to be the slowest near ao. However, as was discussed above, the

motions which begin at � = 0, and near ao, will exceed ao during the course of their

motion (this is characteristic of systems which sti�en with increased amplitude).

Consequently, convergence near the points (a; �) = (ao; 0); (ao; �) and (ao; 2�) is not

necessary for practical use of the manifold. Unfortunately, the question of \how

near?," must be evaluated for any given problem.

The invariant manifolds corresponding to P1(a; �) and Q1(a; �) are shown in
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plots (a) and (b) of Fig. 4.9, for an expansion with Na = 4 polynomials, and N� = 6

harmonics. As before, the expansions which describe these surfaces may be used to

eliminate �1 from the system, leaving equations of motion in only the amplitude and

phase of the second linear mode. As was apparent from the cross sections shown in

Fig. 4.8, the qualitative shape of these surfaces is considerably di�erent than those

in Fig. 4.5. The presence of fewer (and lower) harmonics in the surface indicates

a closer tie between the phases of the two modes. That is, for motions occurring

on this invariant manifold, the two modes are closer to moving in unison than for

motions on the mode-one invariant manifold.

As with the �rst nonlinear normal mode, simulations may be carried out using

this invariant manifold, as well as the other reduction techniques, and the amplitude-

frequency relation may be determined. For the second mode, as Fig. 4.10 illustrates,

all approaches yield nearly the correct response frequency, indicating that the par-

ticipation of the �rst mode has little e�ect. However, an accurate response frequency

does not guarantee an accurate description of the system motion. Figure 4.11 illus-

trates that, though the frequencies are all close, both the \One Mode Solution," and

the \Asymptotic Manifold" contain errors in the response magnitude stemming from

their treatment of the �rst mode. As is apparent in Fig. 4.8, the asymptotic solution

over-predicts the mode-one participation, while the \One Mode Solution" assumes

no mode-one participation at all. Once again, the \Exact" solution is indistinguish-

able from the nonlinear Galerkin results, highlighting the exceptional accuracy of the

approach.
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4.4 Application: Nonlinear Finite Element Beam

In order to illustrate the general applicability of this approach for the generation

of reduced-order models, a more realistic structural model is examined. The �nite

element code PATRAN was used to create a linear model of a beam with transverse

de
ection u(x; t) using 200 two-noded beam �nite elements. The beam, shown in

Fig. 4.12, is pinned at one end, while the other is constrained by a linear spring.

A nonlinear torsional spring with quadratic and cubic components is located at the

pinned end. Given the characteristics of the nonlinear spring and the eigenvectors

of the linearized system, one may determine the coupled nonlinear forces for each

mode due to the torsional spring. For illustration purposes, the lowest 10 (of 400

possible) linear modes are chosen to represent the \complete" model, from which a

NNM-based reduced-order model will be generated. Note that this 10-DOF model

contains nonlinear coupling between all linear modes through the nonlinear spring.

The increase in example system size from two modes to 10 modes requires a shift

in tactics. For the previous example, each nonlinear mode was associated with a

single (P;Q) pair | representing the contributions of the other linear mode. For the

�nite element system, each nonlinear mode is associated with nine (P;Q) pairs. Con-

sequently, a manifold with expansions of order Na = 5, and N� = 12, now requires a

solution of 540 coupled nonlinear equations for 540 coe�cients. The computational

e�ort necessary for the solution scales approximately with (NaN�(N � 1))2, indi-

cating that, for a shift from two to ten DOF, the solution time would increase by

approximately a factor of 81.

In order to achieve a more e�cient solution, the domain in a may be discretized

into several smaller intervals. These intervals may then be described as linear in a
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(�xing Na at two | one coe�cient for each segment endpoint) and solved as individ-

ual sub-problems. The harmonic dependence is retained, so that each expansion now

contains 2N� coe�cients, and corresponds to a thin annular strip of the manifold

(a 2 [ai; ai+1] while � 2 [0; 2�]). As with the polynomial approach, the velocity coe�-

cients (the D's) may be condensed out, leaving only the C's as variables. This is only

slightly more complex without the orthogonal properties of the previous polynomial

functions.

Besides the reduction of problem size, there are several other bene�ts to this

piecewise amplitude approach. The linear dependence on a simpli�es the evaluation

of each sub-problem by eliminating the higher order polynomials, and the smaller

domain allows fewer points to be used in the numerical integration. In addition,

discrete linear segments may capture details or features which would require an

impractical number of polynomials. Finally, in the event that numerical di�culties

are encountered (e.g. from a bifurcation in the manifold, or a nonremovable modal

interaction), the anomaly is localized to the sub-problem level, whereas the global

solutions used for the �rst example simply may not converge at all.

This piecewise strategy was used to examine the second and �fth NNMs of trans-

verse vibration for the �nite element beam system shown in Fig. 4.12. Both solutions

used N� = 8 harmonics and the second NNM solution used 80 piecewise segments in

a, while the �fth NNM solution used 40. Both manifolds were obtained for modal am-

plitudes of a 2 [0; 2], which corresponds to a maximum de
ection of approximately

0.65 meters. If these amplitudes seem unreasonably large for the 1 meter long beam

model, it should be realized that entirely equivalent results may be obtained through

a simple rescaling of parameters. That is, if the slope/moment relationship from

the nonlinear torsional spring, 
t, is adjusted from [5000u0(0)2 + (2 � 104)u0(0)3] to
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[(5�104)u0(0)2+(2�106)u0(0)3], (where a 0 indicates a spatial derivative with respect

to x) the results from a 2 [0; 2] are mapped onto the domain a 2 [0; 0:2].

The sections of the second-mode invariant manifold which correspond to the

slaved displacements of the �rst and third linear modes, at � = 0, are displayed

in Fig. 4.1. As with the �rst example, the asymptotic manifolds used here are cal-

culated to third order according to the analytical solutions presented in reference

[63]. Here, the de�ciency of the asymptotic approach is quite apparent. Though the

initial behavior is captured by both methods, the polynomial basis of the asymptotic

approach inevitably leads to a rapid departure from the correct solution as the am-

plitude increases. This tendency is magni�ed by the fact that for strong nonlinear

e�ects the exact invariant manifold often approaches linearity in a (the behavior

seen in Fig. 4.1(a) is typical, and similar results may be seen in reference [12]). The

asymptotic approximation in Fig. 4.1(b) does seem to capture some basic properties

of the manifold. However, at the intermediate amplitudes, the relative error is con-

siderable. In addition, the asymptotic solution is considerably worse at other values

of �. Figure 4.13 shows both the calculated Galerkin invariant manifold and the

corresponding asymptotic solution. The curve shown in Fig. 4.1(b) corresponds to

the � = 0 edge of Fig. 4.13, although there is some di�erence in scale. Clearly, the

asymptotic solution is quite limited in its applicability, although it is qualitatively

consistent with the Galerkin solution.

In systems such as this, with many DOFs, a poor asymptotic approximation of

a single mode's contribution (as in Fig. 4.1(a)) is likely. Even when the remaining

modes are accurately approximated, this type of error may quickly dominate the

associated reduced-order model. The Galerkin-based approach avoids this error by

allowing one to ensure the accuracy of each mode's constraint relations throughout
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the full domain.

Figure 4.14 illustrates the time response of the various periodic second-mode so-

lutions. The Galerkin Manifold and Exact solutions are indistinguishable, while the

One Mode Solution and Asymptotic Manifold yield inaccurate results. The de
ec-

tions shown illustrate both the power of this approach, and the inadequacy of the

other methods. The ability to accurately account for the dynamic contribution of

the other system modes allows the corresponding reduced-order model to be nearly

exact. Of course, the Galerkin manifold only approaches the exact, and small errors

are likely to remain. The degree of these errors (for the present solution) may be

seen in Fig. 4.15, which illustrates the periodic mode-six contribution to the motions

seen in Fig. 4.14. It is apparent that although the exact solution is quite well ap-

proximated, some higher order e�ects are still not entirely accounted for. This could

be remedied by increasing the number of harmonics and piecewise linear segments.

In Fig. 4.16, the �fth NNM is depicted to highlight the non-similar nature of the

mode shape predicted by the Galerkin approach. The two curves show the small and

large amplitude displacement con�gurations for motions within the normal mode (at

� = 0). They are normalized for plotting purposes by the amplitude of the �rst lobe

of the mode shape. One should note that this shape not only changes with amplitude,

but also will change dynamically throughout the course of a periodic motion. This

information may be useful in a number of contexts, such as control algorithms or

sensor location. Of particular interest here is the increased participation of the end

spring at larger amplitudes.

Figure 4.17 depicts a worst-case scenario for the asymptotic approach. Not only

is the domain of convergence small but, slightly outside this domain, the error grows

extremely rapidly. For this case (the mode-one contribution to the �fth NNM), these
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errors quickly overwhelm any bene�ts of the asymptotic approach. In addition, this

type of amplitude dependence is quite di�cult to capture using the orthogonal basis

functions from the �rst example (as seen in Fig. 4.3). The piecewise linear amplitude

approach, however, performs very well, yielding an accurate reduced-order model.

The amplitude-frequency relation for the �fth NNM is shown in Fig. 4.18. Several

features of this plot are worth discussing. First, the asymptotic results obviously

su�er greatly from the aforementioned errors. Second, the exact periodic response

frequency appears to be approaching a limit with increased amplitude. This is to be

expected as, for larger amplitudes, the nonlinear torsional spring begins to resemble

a clamped boundary condition, and the NNM should document this transition from

pinned to clamped-like conditions at the left end for increased amplitudes. Third,

this transition requires modal interaction and, consequently, may not be captured

through a single-mode truncation. Here, unlike the �rst example, the one-mode

model leads to frequency predictions which are qualitatively wrong.

4.5 Further Considerations

The model �delity which can be attained using this approach is compelling. How-

ever, as with all methods, there are limitations to its application. In particular, fur-

ther study is necessary to determine what occurs when NNMs become unstable and

bifurcate. Some work has been done in this area [45], and further development is

necessary to ensure that the reduced-order models developed herein represent unique

and stable motions of the original system. Another limitation of this technique is

that it relies on accurate modeling of the nonlinearities within the original system.

That is, if cubic nonlinearities were included in the original model as a means of

capturing the leading-order nonlinear e�ects, but higher order terms were neglected,
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the reduced-order model may only be accurate to leading order. An exact reduction

of an approximate system is limited in its applicability. This is in contrast to the

asymptotic approaches, where the domain of validity for the reduced model generally

does not exceed that of the original model. The consequence of this may be that rel-

atively simple, low-order manifold solutions are su�cient for most real systems due

to the uncertainties involved in the measurement and modeling of nonlinear e�ects.

The individual NNMs discussed here are only useful when used independently.

As with the asymptotic nonlinear normal modes developed earlier, and unlike lin-

ear modes, simultaneous motions within two or more nonlinear normal modes are

bound to interact. The two primary consequences of this are that (a) larger reduced-

order models may not be assembled from the individual NNMs, and (b) sometimes

these interactions are not removable (e.g., due to an internal resonance) and certain

individual NNMs may not be generated individually. The ability to approximate

the invariant manifold for a range of di�erent amplitudes also raises a host of is-

sues. Internal resonances which are present at very low amplitudes may be avoided

at higher amplitudes (due to amplitude-dependent frequency changes). Conversely,

systems which have no internal resonances at low amplitudes may have signi�cant

interactions at greater amplitudes. An instance of this e�ect was observed during the

study of the second linear mode for the �nite element beam system. These results

are illustrated in Fig. 4.19, which depicts the mode �ve contribution to the second

NNM manifold (at � = 0). The anomaly occurs close to a 6:1 frequency relation

between the second and �fth modes, and the Galerkin manifold contains signi�cant

contributions from the sixth harmonic in �. Though a complete study of this inter-

action is beyond the scope of this work, it should be noted that the Galerkin solution

indicates its presence, while the asymptotic solution does not, and that the overall
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e�ect is quite weak. These issues may be addressed through a generalization of the

present formulation, to develop multi-mode invariant manifolds using the nonlinear

Galerkin methodology where several pairs of modal amplitudes and phases are chosen

as \master" coordinates. For the case above, this would entail adding the amplitude

and phase of the �fth mode to those of the second, and conducting an expansion in

four variables. Of course, this requires considerably more expansion coe�cients, and

the computational e�ort will become correspondingly more larger. However, this is

the next logical step for this line of work.

4.6 Conclusion

This work expands upon the invariant manifold formulation of Shaw and Pierre

[2], utilizing a coordinate transformation and nonlinear Galerkin solution to produce

reduced order models for nonlinear systems which are accurate, reliable, general, and

analytically rigorous. The use of the Galerkin projection enables an unprecedented

solution accuracy for the manifold-governing equations. This accuracy allows the

corresponding reduced-order models to take full advantage of the potential inherent in

the original invariant manifold formulation. The examples discussed clearly illustrate

the accuracy attainable through this approach, with nearly all results showing little

or no discrepancy from the numerically determined exact solution. As indicated by

the �nite-element beam example, the method is not restricted to simple mass/spring

systems. In addition, the computational foundation of the solution procedure allows

the system nonlinearities to take on a wide variety of forms with little or no additional

analytic work. Furthermore, the formulation may be extended to produce reduced-

order models which contain several modes or DOFs, allowing the study of more

general, multi-mode motions, as well as internal resonances. The method shows
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great promise for the development and understanding of reduced-order models for

nonlinear dynamic systems.
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4.7 Figures
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Figure 4.1: Exact, Asymptotic and Galerkin Manifolds (at � = 0) for the second
nonlinear mode of the �nite element system pictured in Fig. 4.12. The
Asymptotic Manifold is of third order, while the Galerkin Manifold uses
80 piecewise linear segments in the amplitude, a, and N� = 8 harmonics
in �.
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Figure 4.2: Two degree-of-freedom nonlinear system with hardening cubic springs of
strength 
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Figure 4.4: Convergence of the �rst mode invariant manifold. The parenthetical
notation refers to the number of basis functions, (Na; N�), used in the
expansion. Plots (a) and (b) illustrate P2(a; 0), and P2(2:22; �) respec-
tively.
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Figure 4.8: Convergence of the mode 2 invariant manifold. The parenthetical nota-
tion refers to the number of basis functions, (Na; N�), used in the expan-
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Figure 4.12: Schematic of �nite element model: 200 linear beam elements were used
to construct a beam with de
ection u(x; t), length L = 1 m, density
� = 7860kg=m3, Young's modulus E = 2�1011N=m2, moment of inertia
I = 5 � 10�8m4, spring sti�ness k = 108N=m, and nonlinear torsional
sti�ness 
t = 5000u0(0; t)2 + 20000u0(0; t)3N. A 0 indicates a partial
derivative with respect to x.
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periodic solutions.
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CHAPTER V

ACCURATE REDUCED ORDER MODELS FOR

A SIMPLE ROTOR BLADE MODEL USING

NONLINEAR NORMAL MODES

5.1 Introduction

The complex nature of rotorcraft dynamics and control has contributed to a

design process which is often both slow and cumbersome. One of the sources of this

complexity is the modeling and simulation of the rotor blade dynamics. Typically,

accurate results have required models which are very complex, whether �nite-element

based [53{55], or analytic [56{58, 67], due to kinematic nonlinear e�ects which are

ampli�ed by blade rotation. However, the practical utility of such models has been

limited by their large size and the corresponding computational e�ort required to

achieve results. Some promising work has been done on the application of a mixed

�nite element method which is expected to reduce the blade model size necessary

to achieve accurate simulation [68]. However, a need will remain for reduced order

models (ROMs) which retain the accuracy of the original models, and allow for a

more accurate and e�cient design cycle.

Recently, some progress has been made toward meeting this need. The invariant

manifold based nonlinear normal modes (NNMs) developed by Shaw and Pierre
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[2, 3] were employed to reduce a simpli�ed blade model from 18 nonlinearly coupled

linear modes to a one or two degree of freedom (DOF) reduced order model [65]

(there was no theoretical limitation to the number of linear modes in the original

model). This work used automated procedures developed in reference [63] to generate

asymptotic invariant manifolds to third order. Though these results were quite good,

especially for internal resonances, they were restricted to modest amplitudes (peak

to peak blade tip de
ection of 2.5% blade length) due to the asymptotic nature of

the manifolds. In addition, as is often true for asymptotic methods, it was di�cult

to ascertain the domain of validity of the ROM a priori. This compromises the

e�ectiveness of the ROM, as extensive simulations are necessary to determine its

applicable domain.

Herein, a new approach to generating NNMs is applied to the simpli�ed blade

model from reference [65]. This approach, recently developed by Pesheck et al.

[69], produces a much more accurate and reliable invariant manifold, allowing the

nonlinear e�ects of many coupled DOFs to be precisely captured within a minimal

ROM over a selected amplitude range. This is accomplished through a procedure

wherein the partial di�erential equations (PDEs) which govern the invariant manifold

geometry are solved using a nonlinear Galerkin approach over a chosen domain.

Though signi�cant computational e�ort is necessary, the resultant ROM is shown

to have extremely high integrity | even for large de
ections and strong nonlinear

e�ects. This reduction method is not speci�c to the simpli�ed blade model employed

here, and may easily be extended to more complex blade models. Further work

is underway on the development of a �nite element analog to the current model,

which may then be extended to more realistic blade models. The application of this

novel reduction method is shown to produce a single degree of freedom ROM which
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successfully captures the critical nonlinear coupling between the linear modes of the

blade model. This ROM is shown to be both more accurate and applicable than

the previous asymptotic approach, while allowing analysis at much greater motion

amplitudes.

5.2 Rotating Beam Formulation

The system under consideration, shown in Fig. 5.1, and much of the following

formulation follow that in reference [65] | in which asymptotic manifold approxima-

tions for this system are generated and applied. In the formulation of this uniform

rotating Euler-Bernoulli beam, we neglect rotatory inertia, restrict motion to a ro-

tating plane (thus eliminating twist and lead-lag motion), and allow nonlinear axial

strain. Hence, the potential energy, U , and kinetic energy, T , may be expressed as

follows:

T =
1

2

Z L

0

m( _u2 + _w2) +m
2(h+ x + u)2dx (5.1)

U =
1

2

Z L

0

EI(w;xx )
2 + EA(u;x+

1

2
(w;x )

2)2dx (5.2)

where u(x; t) and w(x; t) are the axial and transverse displacements respectively, (�);x
is a derivative with respect to the spatial variable x, an overdot represents a time

derivative, h is the hub radius, 
 is the constant angular velocity of the beam, m

is the mass per unit length, and E, A, I, and L are the usual beam parameters|

Young's modulus, cross sectional area, moment of inertia, and length, respectively.

These expressions, and Hamilton's principle, may be used to develop the following
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weak formulation for the equations of motion:

Z t2

t1

Z L

0

�
[�m �w�w � EIw;xx �w;xx�EA(u;x+1

2
(w;x )

2)w;x �w;x ]+

[�m�u�u+m
2(x+ h+ u)�u�

EA(u;x+
1

2
(w;x )

2)�u;x ]

�
dxdt = 0 (5.3)

where �(�) denotes the variation of a quantity.

With the foreknowledge that these equations will be discretized using the �xed-

free axial bar modes and �xed-free transverse modes of the nonrotating linear beam

(and their corresponding boundary conditions), these expressions may be reduced

through integration by parts to:

Z t2

t1

Z L

0

�
[�m �w � EIw;xxxx ]�w � [EA(u;x+

1

2
(w;x )

2)w;x ]�w;x+

[�m�u +m
2(x + h+ u) + EAu;xx ]�u�

[EA
1

2
(w;x )

2]�u;x

�
dxdt = 0 (5.4)

At this point it is convenient to separate u(x; t) into static and dynamic components,

as follows:

u(x; t) = us(x) + ud(x; t) (5.5)

where us(x) satis�es the equations of motion for w(x; t) � 0 and u(x; t) = us(x) as

follows:

us;xx + �2u = ��2(h + x)

Here, �2 = m
2=EA. Using the appropriate boundary conditions, it is found that

us(x) =
1 + �h sin(�L)

� cos(�L)
sin(�x) + h cos(�x)� (h + x)
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which represents the static elongation of the beam due to rotation (for w(x; t) � 0).

If Eq. (5.5) is substituted into Eq. (5.4) and the nonlinear terms are neglected (for

now), we are left with two linear partial di�erential equations for the rotating beam,

whose modal solutions will decouple the fully nonlinear equations of motion to linear

order. These are:

m �ud �m
2ud � EAud;xx = 0 (5.6)

m �w + EIw;xxxx�EA(us;xw;xx+us;xxw;x ) = 0 : (5.7)

In the axial direction, the modes of the rotating beam, �i(x), are simply the well

known axial mode shapes for a uniform (�xed-free) nonrotating beam. However,

the transverse mode shapes of the rotating beam, 	i(x), are approximated using a

Rayleigh-Ritz procedure [20], as:

	i(x) =
NcX
j=1

�i;j�j(x)

where the �j(x) are the familiar modes of a (nonrotating) �xed-free beam. These

modes are used for convenience, an alternative analytical formulation may be found

in reference [59]. Once the modes of the linearized rotating beam are determined,

modal solutions to the nonlinear equations are sought in the form:

ud =
NaX
i=1

bi(t)�i(x) w =
NtX
i=1

ci(t)	i(x): (5.8)

The integers Na, Nt, and Nc are used to denote the number of modes included in

each of the above expansions.

If these discretizations are substituted into the weak formulation, Eq. (5.4), pro-

jected onto the linear modes, and orthogonality is invoked, the resultant discretized
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nonlinear equations are:

�bj + (!a;j )
2bj = �EA

2

NtX
k=1

NtX
l=k

ckcl

Z L

0


(k; l; x)�j;xdx

(5.9)

for j = 1 : : :Na

�cj + (!t;j )
2cj = �EA

� NaX
k=1

NtX
l=1

bkcl

Z L

0

�k;x	l;x	j;xdx�

1

2

NtX
k=1

NtX
l=k

NtX
i=l

ckclci

Z L

0

�(k; l; i; x)	j;xdx

�

(5.10)

for j = 1 : : :Nt

Here, 
 and � are de�ned as


(i; j; x) =

8><
>:

	2
i;x i = j

2	i;x	j;x i 6= j

(5.11)

�(k; l; i; x) =

8>>>>>>>><
>>>>>>>>:

	3
k;x k = l = i

3	2
k;x	i;x k = l 6= i

3	2
l;x	k;x k 6= l = i

6	k;x	l;x	i;x k 6= l 6= i

(5.12)

and !a;j and !t;j are the natural frequencies associated with the jth mode in the

axial and transverse directions, respectively. The transverse natural frequencies, !t;j,

were compared against those in reference [59] and found to be in good agreement.

Small di�erences (� :05%) were traced to di�erent extensibility assumptions. Note

that the nonlinearities dictate a particular form of nonlinear coupling between the

two sets of di�erential equations. It is this nonlinear interaction which produces axial
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shortening as a consequence of transverse bending, as well as the cubic sti�ening due

to nonlinear strains.

The accuracy of this system of equations depends primarily upon three param-

eters: Nc, the number of component (nonrotating �xed-free beam) modes used to

assemble each transverse rotating mode; Nt, the number of transverse rotating modes

in w(x; t); and Na, the number of axial modes in ud(x; t). In previous work [65], a

convergence study was conducted to determine that the values Nc = 18, Nt = 9 and

Na = 9, were su�cient to produce a model which would accurately predict motions

occurring primarily in the lower axial and transverse modes. This will be referred to

as the reference model.

One should note that Eq. (5.9) may be (approximately) eliminated by employing

a quasi-static assumption for the axial modes. That is, if the axial accelerations ( �bj

in Eq. (5.9)) are neglected, each bj may be determined as a quadratic function of

the ck's, and the bj's may be eliminated from Eq. (5.10). Some results are shown

where this procedure has been applied (labeled \quasi-static"). However, for more

realistic geometries, more general nonlinear coupling will be present which makes

this procedure much more di�cult, if not impossible.

5.3 Galerkin-based ROM generation

In general, one is not particularly interested in the motions of all system modes,

but only those that exhibit a large response or lie within a speci�c frequency range.

However, in systems such as this, the linear modes are coupled to a degree which

requires that their interactions be accounted for [63]. One way of including these

e�ects in the ROM is the invariant manifold based nonlinear normal mode (NNM).

Each NNM may be viewed as an extension of some corresponding linear mode and,
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as with linear modes, motions initiated within an individual NNM must remain in

that NNM for all time | a property known as invariance. A given NNM may be

described as a nonlinear oscillator whose trajectory lies on a known surface within

the state space of the original system. This surface, the invariant manifold, allows all

linear modes to contribute to the motions of a given NNM. These contributions are

incorporated into the dynamics of the NNM, allowing it to correctly account for the

nonlinear interactions between linear modes, without requiring explicit simulation. In

addition, the invariant manifold dictates the dynamic participation of the the various

linear modes within a given NNM, allowing the corresponding nonlinear mode shape

to vary with time. In e�ect, this manifold allows all system modes to contribute to

the dynamics of a select few. An accurate determination of the invariant manifold

produces an accurate ROM governing the mode (or modes) of choice.

The nonlinear Galerkin-based method used here was recently developed in ref-

erence [69], which also includes some illustrative examples. It expands the range of

applicability considerably (to the large amplitude realm) over that available using

the traditional asymptotic methods for invariant manifold generation. Currently, it is

limited to the generation of single-mode, free-response, ROMs. However, no signi�-

cant barrier has been found which limits its expansion into a multi-mode formulation,

possibly including some type of external forcing in a rigorous manner.

Each single-mode invariant manifold exists as a surface within the (2(Na + Nt)

dimensional) state space of the original model. This surface must be parameterized

by a pair of variables and, in this work, a \master" amplitude, a, and phase, �, are

chosen. Given the formulation of our blade model, this amplitude and phase logically
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correspond to a given \master" mode, here taken to be the kth mode, according to:

�k = a cos�

(5.13)

_�k = �a!k sin�

where �k, and _�k are a generalized modal position and velocity { corresponding to

one of the b's and c's, and !k is the associated linear natural frequency. Given this

de�nition, the \master" mode's equation of motion (from Eqs. (5.9) or (5.10)) may

be recast as two �rst order ordinary di�erential equations (ODEs) in a and �:

_a =
�fk sin�

!k

(5.14)

_� = !k � fk cos�

a!k

where fk corresponds to the nonlinear portion (the right-hand side) of the kth equa-

tion of motion.

The remaining modal positions and velocities are required to depend on, or be

\slaved" to a and � as:

�i = Pi(a; �)

for i = 1 : : : (Na +Nt); i 6= k (5.15)

_�i = Qi(a; �)

This constraint may be met barring certain nonremovable modal interactions, such

as internal resonances.

The relations above and the equations of motion may expanded through the

chain rule and combined to produce nonlinear, time-independent, partial di�erential
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equations which govern the geometry of the manifold:

Qi =
@Pi

@a
(
�fk sin�

!k
) +

@Pi

@�
(!k � fk cos �

a!k
) (5.16)

for i = 1 : : : (Na +Nt); i 6= k

�!2
i Pi + fi =

@Qi

@a
(
�fk sin�

!k
) +

@Qi

@�
(!k � fk cos �

a!k
) (5.17)

for i = 1 : : : (Na +Nt); i 6= k

Solving these for the P 's and Q's results in the master/slave relations that satisfy the

equations of motion. Note that these will represent an entire one-parameter family

of solutions that are restricted to a two-dimensional surface (manifold) in the phase

space.

Given these constraint relations (the P 's and Q's), the c's and b's become known

functions of (a; �) and may be eliminated from the equations of motion. In particular,

as these relations are used to evaluate the nonlinear coupling terms, fk, Eq. (5.14)

becomes a function of a and � only. This pair of ODEs becomes the reduced-order

model which governs the chosen nonlinear normal mode of the system. Numerical

integration may be used to obtain time histories for both a and �, from which the

contributions of the linear modes may be determined. These modal motions may

then be combined (using the known manifold coe�cients) to determine the physical

de
ections of the system as a function of time.

In most previous work, similar manifold-governing equations have been solved

through a polynomial expansion in (�k; _�k) whose coe�cients are obtained through

an order-matching routine, ultimately yielding an asymptotically-accurate ROM.

Alternatively, the PDEs may be solved for the P 's and Q's using an expansion which
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is satis�ed in an integral sense over a chosen domain, via a Galerkin projection. This

yields a ROM with optimal accuracy for the chosen expansion, over a known domain.

Reduced order models generated through this Galerkin-based procedure do not su�er

from the uncertainties and convergence issues associated with the polynomial-based

approach.

Here, this nonlinear Galerkin-based solution process is repeated over several ad-

jacent subdomains to obtain a composite representation of the manifold for use over

a larger domain. The periodic nature of � (of period 2�) allows Pi(a; �) and Qi(a; �)

to be well represented in the � direction by harmonic functions, but there is no

such convenient basis for the a-dependence. Hence, the amplitude coordinate is di-

vided into small sections, producing subdomains consisting of annular strips where

� 2 [0; 2�] and a 2 [aj; aj + �a]. It has proven su�cient to represent each P and

Q as locally linear in a, and with N� harmonics in � [69]. This corresponds to the

expansion:

Pi(a; �) =
X
l;m

C l;m
i Tl;m(a; �)

=

N�X
m=1

h
C1;m
i (

a� aj
�a

) + C2;m
i (1� a� aj

�a
)
i
cos((m� 1)�)

Qi(a; �) =
X
l;m

Dl;m
i Ul;m(a; �)

=

N�X
m=1

h
D1;m

i (
a� aj
�a

) +D2;m
i (1� a� aj

�a
)
i
sin(m�)

for i = 1 : : : (Na +Nt); i 6= k (5.18)

for a given subdomain. This allows the expansion coe�cients (the C's and D's)

to govern the manifold geometry, and their determination de�nes the corresponding

ROM.
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This expansion is substituted into the manifold-governing equations (Eqs. (5.16)

and (5.17)), which are multiplied through by a to remove the singularity at a =

0. Finally, all terms are moved to the right side of the equation, and a Galerkin

projection is carried out using the individual shape functions over the chosen domain.

This leaves:

0 =

Z
a;�

Up;q

"
�a
X
l;m

Dl;m
i Ul;m +

X
l;m

C l;m
i

@Tl;m
@a

(
�fka sin�

!k
)

+
X
l;m

C l;m
i

@Tl;m
@�

[a!k � fk cos�

!k
]

#
da d�

(5.19)

0 =

Z
a;�

Tp;q

"
!2a

X
l;m

C l;m
i Tl;m � afi +

X
l;m

Dl;m
i

@Ul;m

@a
(
�fka sin�

!k
)

+
X
l;m

Dl;m
i

@Ul;m

@�
[a!k � fk cos�

!k
]

#
da d�

(5.20)

for i = 1 : : : (Na +Nt); i 6= k; p = 1; 2, and q = 1 : : : N�: a set of 68�N� nonlinear

equations in the C's and D's for Na +Nt = 18. However, the fact that there are no

velocity-dependent nonlinearities allows Eq. (5.19) to be reduced to the form:

Dp;q
i = F (C)

where C represents a vector containing all the C l;m
i . As a consequence, for this

application, only the C's need to be considered as independent variables, and 34�N�

independent nonlinear equations remain. One should note that the independent

solution of neighboring subdomains (in a) generally yields a slight discontinuity at

the subdomain intersection. In practice, this discrepancy has been found to be quite

small, and slight modi�cations to the manifold coe�cients may be made to re
ect

the mean value at these locations | producing a continuous composite manifold.
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For the results presented here, Eqs. (5.19) and (5.20) are solved numerically

using Powell's Hybrid method [66]. This approach simply evaluates the expressions

for various sets of C's to develop an approximate Jacobian, which is then used

and updated iteratively to make progress toward a solution. At each iteration, the

evaluation requires that the entire set of equations be numerically integrated. This

computational expense could be avoided by completing the integration analytically

for a general set of coe�cients. However, the e�ort necessary to achieve such a

specialized set of equations is not warranted here. The most likely way to improve

the e�ciency of the approach is by eliminating the harmonic functions from the

expansions of P and Q, and using a locally linear approximation in � as well as a.

This would retain the generality of the formulation, while reducing the number of

coe�cients required to represent each local section of the manifold.

Once the manifold coe�cients are determined, the P 's and Q's may be assembled

to obtain expressions for all the modal positions and velocities in term of the variables

(a; �). These may then be used to evaluate fk in Eq. 5.14, which represents a single

degree of freedom oscillator. Numerical integration produces values for a(t) and �(t),

from which the corresponding modal dynamics may be determined.

5.4 Results

The results presented here correspond to a rotating beam with the following prop-

erties: L = 9m, m = 10kg/m, EI = 3:99� 105N �m2, EA = 2:23� 108N, 
 = 30

rad/s, and h = 0:5m. These values are chosen to correspond roughly to a rotorcraft

blade with nearly transonic blade tip velocity. The procedure outlined above was

applied to generate an invariant manifold for the �rst 
apping mode (c1(t)) which

is piecewise linear in a, and uses N� = 8 harmonics in �. For the results shown, 48
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piecewise linear manifold segments of width �a = 0:05 are used to achieve a total

manifold domain of a 2 [0; 2:4], � 2 [0; 2�]. This corresponds to a peak-to-peak am-

plitude of nearly one meter at the beam tip | a considerable de
ection. At greater

amplitudes the manifold solution fails to converge. This could indicate that a mani-

fold bifurcation or modal interaction is present, that more harmonics are necessary in

the solution, or that more modes are necessary in the original reference model. How-

ever, at this large amplitude, additional questions arise regarding the precision of the

original beam formulation and the magnitude of higher-order (previously neglected)

e�ects.

Figure 5.2 shows the contribution of the second 
apping mode, c2, to the manifold

(for � = 0), and illustrates the agreement between the Galerkin-based manifold

solution and a numerical solution produced using the reference model. This numerical

solution is obtained through an extensive simulation of the original equations of

motion, which searches for initial conditions that yield periodic responses in the

vicinity of the �rst 
apping mode. The two solutions agree quite well, with almost

no discrepancies throughout the domain. However, as all the modes are represented

in terms of the �rst, there are 16 more sets of results to compare. Not all agree as

well as those seen here but, in general, there are only minor discrepancies toward the

high amplitude portion of the domain. Although more segments in a, and harmonics

in � could be used to improve these results, it will be seen that those used here are

su�cient to produce an accurate reduced-order model for the �rst nonlinear 
apping

mode.

Figure 5.2 is simply a \slice" of the manifold, corresponding to � = 0, projected

into a plane. A more complete projection of the manifold is shown in Fig. 5.3 for

the entire solution domain. This surface dictates the contribution of the second
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linear 
apping mode required to achieve the correct periodic response of the chosen

nonlinear normal mode. A similar surface governing the participation of the �rst

linear axial mode is shown in Fig. 5.4. Note that the two surfaces indicate di�erent

harmonic content: c2 is primarily third order in �, while b1 is primarily second (and

zeroth) order. This even-order dependence for b1 (as well as the rest of the b's)

corresponds to an axial response which is identical for both positive and negative

transverse de
ections.

Given the manifold geometry, the equations of motion governing the ROM may

be evaluated and numerically integrated to yield time history results. Some such

results are shown in Figs. 5.5 and 5.6 for a motion occurring in the �rst nonlinear

normal mode of the system, which corresponds to the system's fundamental 
apping

mode. Figure 5.5 shows the predicted tip motion in the w-direction (
ap) for both the

reduced-order model (Galerkin NNM), and the original model (Reference Solution).

As with the results from Fig. 5.2, the reference results are obtained numerically

by searching for motions which must lie on the manifold of interest. The results

shown correspond to the initial condition a(0) = 2:375; �(0) = 0, which produces

an initial tip de
ection of about 0.47m. The two solutions are nearly identical,

indicating that the ROM accurately represents the fundamental 
apping motion of

the beam. Though the agreement is excellent, there are still slight discrepancies

present. Figure 5.6 illustrates the eighth linear 
apping mode's contribution to the

de
ections of Fig. 5.5, as predicted by both the reference solution and the Galerkin

NNM. The reference solution is simply a result of the original initial conditions and

the ensuing interactions between the modes, whereas the Galerkin NNM solution is a

reconstruction based on the values of a(t), �(t), and P8(a; �). The discrepancies may

largely be attributed to the restricted harmonic content of the Galerkin-based results.
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Though eight harmonics are used in the solution, the odd harmonics dominate the


apping mode results. Hence, only four harmonics contribute to the results shown.

It is assumed that additional harmonics would eliminate this (small) error. However,

this degree of precision is not necessary, as the ROM is already su�ciently accurate.

The transverse and axial de
ections associated with the motions in Figs. 5.5 and 5.6

are illustrated in Fig. 5.7. Here, the de
ections are shown for several instants of

time, spaced evenly within a quarter-period of motion. The dashed line for u(x)

corresponds to the static extension of the beam, us(x), due to the rotation, and the

departure from this line is a consequence of the axial shortening due to transverse

bending. Hence, the uppermost line for w(x) corresponds to the lowest line for u(x).

Note that, for u(x; t), the shapes shown are representative of the entire periodic be-

havior. That is, while w(x; t) would become symmetric about the x-axis with further

time sampling, the corresponding axial motion, u(x; t), would simply repeat, but at

twice the frequency of w(x; t). Also, the nonsimilar nature of the NNM is apparent

here, as the de
ection shapes obviously change through the course of the motion.

This key component of nonlinear structural vibrations is automatically embedded

within the invariant manifold formulation.

Lastly, Fig. 5.8 depicts the amplitude-frequency relationship for a number of

reduced-order models, as well as the reference solution. Here, the Galerkin NNM is

shown to be extremely accurate, while all other methods diverge from the correct

solution. The \One Linear Mode" results correspond to the assumption that only

the �rst linear 
apping mode participates, while all other modes remain quiescent.

This overly constrains the system (by not allowing shortening, or any other cou-

pling e�ects), and the corresponding nonlinear e�ects are entirely wrong. The \One

Quasi-Static Mode" curve is from a similar model, where the longitudinal inertia is
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neglected, and the axial modes are condensed out. The remaining transverse modes

are assumed to be quiescent. This approximates the nonlinear in
uence of the ax-

ial shortening, and produces results which are quite good at low amplitudes, but

increasingly less accurate as the amplitude grows. Furthermore, this approach be-

comes considerably more di�cult for more realistic rotorcraft models, as additional

nonlinear coupling terms are present. The two NNM-based models are both accu-

rate at low amplitude, but the \Asymptotic NNM", constructed from a third-order

manifold from reference [65], fails to maintain convergence due to its polynomial

nature. Only the \Galerkin NNM" accurately follows the reference solution and,

unlike the quasi-static results, it may easily be extended to more realistic rotorcraft

models. As a group, these results highlight the critical role of the modal interactions

in determining the proper system response.

5.5 Conclusion

The nonlinear behavior of rotorcraft blades has made it di�cult to produce low-

order models which are both accurate and e�cient. As a means of investigating this

fundamental issue, the nonlinear equations of motion for a simple rotating Euler-

Bernoulli beam model were reduced using a procedure based on the invariant mani-

fold formulation of nonlinear normal modes.

The approach used here allows accurate numerical computation of the invari-

ant manifolds associated with a particular nonlinear normal mode. This nonlinear

Galerkin method yields reduced-order models which account for the nonlinear inter-

actions between the linear modes in a manner which is both rigorous and precise.

Applied to the rotating beam, this approach accurately models the critical dynamic

coupling between the axial and transverse modes, as well as the coupling within the
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set of transverse modes through amplitudes of considerable magnitude.

The results shown for the nonlinear normal mode associated with the �rst 
apping

mode of the system illustrate the power and accuracy of the method. The invariant

manifold solution is shown to be quite accurate, and the corresponding single de-

gree of freedom reduced-order model yields results which agree nearly exactly with

those of the original system. The computational cost associated with generating the

manifold solution is not trivial, but the e�ciency of the resultant model justi�es this

investment. In addition, the reduced-order model allows one to focus on the motions

of interest, without devoting attention to the entire original model.

Furthermore, the nature of the reduction procedure outlined here does not restrict

it to problems with simple geometries or nonlinearities. It may easily be applied to

more accurate (and complex) rotorcraft blade models, including those based on �nite

elements, and work on such models is currently underway. Furthermore, the current

formulation may be expanded to produce reduced-order models which include sev-

eral modal degrees-of-freedom [63]. Such a generalization will allow the rigorous

treatment of internal resonances, as well as more practical low-order models. Addi-

tional work will focus on the optimal strategy for the application of forcing to these

reduced-order models.
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5.6 Figures
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Figure 5.1: Rotating beam system, for 
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CHAPTER VI

CONCLUSIONS

6.1 Introduction

The numerical and analytical results summarized within this work contain sev-

eral contributions to the �eld of nonlinear dynamics and rotating beam dynamics.

These contributions, as a whole, enable the systematic generation of reduced-order

models (ROMs) for a general class of nonlinear structural systems. This is accom-

plished through methodical, expansion-based solutions for the invariant manifolds

which govern the nonlinear normal modes of the structure. These solutions allow

the practical application of the invariant manifold formulation to a wide variety of

structures, including discrete, �nite element, and continuous dynamic systems. The

nonlinear Galerkin-based formulation developed in Chapters IV and V is particu-

larly promising, and may be expanded into a number of problem domains, such as

external forcing, sub-structuring, and multi-mode solutions. The generality and nu-

merical nature of this approach makes it ideal for producing high-�delity ROMs for

many types of nonlinear systems.

138
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6.2 Contributions

The contributions contained within this dissertation are most easily described by

examining each chapter individually:

� Chapter II utilizes a standard formulation to produce analytical solutions for

the invariant manifold coe�cients (through third order), based on the asymptotic,

polynomial-based, approach developed in earlier works. This general solution has

been computationally implemented, and allows the generation of ROMs of arbi-

trary size for a certain class of systems, with little or no additional analytical work.

Previous to this work, no general multi-mode solutions existed, and the existing

single-mode solutions were considerably more limited in scope.

� In Chapter III, these automated solutions are applied to a discretized model

of a rotating, Euler-Bernoulli beam. This beam model results in a unique modal

formulation, with critical nonlinear terms coupling the axial and transverse beam

motions. These critical coupling terms are shown to be well captured (within a

limited amplitude) by the asymptotic approach for both single-mode and internally

resonant multi-mode motions.

� A new procedure for determining accurate invariant manifolds is developed in

Chapter IV. This method uses a Galerkin projection to produce manifolds which are

locally accurate in an integral sense. This approach relies on a coordinate transfor-

mation to obtain new manifold-governing equations, which are then solved numeri-

cally. This solution, though computationally demanding, is shown to produce ROMs

which realize the full potential of the invariant manifold formulation | yielding mod-

els which remain precise, even for large-amplitude, strongly nonlinear motions. In

addition, the generality of the formulation makes it a good foundation for further
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research opportunities.

� The rotating beam formulation and Galerkin-based manifold solution method

are brought together in Chapter V. The results indicate that ROMs generated in this

manner are both practical and extremely accurate. These results encourage the use

of this approach for the analysis of more rigorous rotorcraft blade models, as well as

other complex nonlinear structural systems.

6.3 Future Work

As is mentioned above, the methods developed in this dissertation provide many

potential avenues for future work. Due to the e�ectiveness of the Galerkin-based

reduced-order models, this section focuses on the improvement, extension, and ap-

plication of this approach. The likely improvements to the current approach lie

primarily in the computational domain, whereas analytical re�nements will most

likely include substructure analysis, multi-mode ROMs, and time-dependent forcing.

The current capabilities, combined with these forthcoming developments will enable

the generation of sophisticated reduced-order models for a wide variety of nonlinear

systems.

6.3.1 Theoretical Development

There are several ways in which the current implementation of the Galerkin-based

solution may be improved. The most signi�cant of these is the addition of manifold

discretization in the � direction. It is expected that this change would improve

the solution speed by a factor of two (or so) without reducing the accuracy. Though

approximate, this calculation is detailed in Appendix D. Further improvements could

be achieved by simply improving the computational e�ciency of the code. Also, the

solution procedure could be made more robust by allowing the manifold \mesh" to
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become �ner in areas where convergence problems are encountered.

The analytical formulation may also be adjusted to improve the computational

e�ciency of the solution. The most promising adjustment is to move toward a com-

ponent mode formulation, where the nonlinear e�ects are concentrated entirely on a

set of constraint modes, using a formulation similar to that in reference [70]. Though

this is not possible for distributed nonlinearities (such as those in the rotating beam

problem), it is practical for many structures containing discrete nonlinearities. If such

a constraint mode is used as the \master" mode, the partial di�erential equations

governing the invariant manifolds for the remaining modes are simpli�ed consider-

ably. This change may make it practical to integrate the Galerkin projection ana-

lytically (or numerically) only once to produce an explicit set of nonlinear equations

for the manifold expansion coe�cients. Essentially, this approach allows a speci�c

type of linear modal coupling in exchange for isolating the e�ects of the nonlinearity.

Another advantage of this modi�cation is that it logically leads to a substructuring

implementation. That is, a manifold-based ROM for a nonlinear substructure may

be coupled to a linear substructure to produce similar equations of motion. These

may then be reduced to obtain a ROM for the combined structure. Similarly, it

may be advantageous to formulate the ROM for a given substructure in terms of the

amplitude and phase of one or more points lying on the substructure boundary.

The practical application of the methods developed within this dissertation would

be aided considerably by a rigorous understanding of the stability and bifurcation

conditions for the manifold. A system's ROM should represent a unique and stable

reduction of the original system, and with the current solution procedure there is

no guarantee of these properties. However, these properties are well understood for

the corresponding linearized systems, and it is primarily the unprecedented range of
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the Galerkin-based ROMs which make the issue signi�cant. Ideally, some analytical

measure of the manifold PDE could be monitored to indicate the presence of a

manifold bifurcation, and this information could be incorporated into the ROM.

Another useful addition to this work would be the addition of time-dependent

forcing. Some results have been achieved previously for the asymptotic approach,

with moderate success. In general, the manifold generation process may either ignore

or include the forcing. If the forcing is ignored in the manifold solution, it still may be

applied to the resulting ROM. Though this compromises the invariance of the system,

it is expected that some accuracy will be maintained. This should be especially true

when the forcing is small relative to the response | as when near resonance. Of

course, more accurate results could be obtained through including time-dependence

in the manifold itself. This would have the e�ect of changing the double expansion

in a and � into a triple expansion with t as well. The addition of forcing will, of

course, allow multiple solutions to exist. These solutions may correspond to a unique

ROM with several possible responses, but manifold bifurcations could also result in

multiple ROM's for some forcing conditions. Regardless of the approach, a method

for generating forced ROMs is necessary for the practical application of this method

in an industrial setting.

Furthermore, practical use of this method requires the ability to generate ROMs

which contain more than one nonlinear normal mode. As with the asymptotic so-

lutions, this simply involves using additional variables to parameterize the invariant

manifold. Though this will add analytical complexity and incur additional computa-

tional costs, it will greatly expand the applicability of the method. This approach is

necessary in the instance of internal resonance, but its utility extends much farther.

Often it is attractive to include all modes within a certain frequency range in a ROM,
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or allow particular modes to dynamically interact. As with linear systems, there are

many practical applications for an accurate, multi-mode, reduced-order model.

6.3.2 Applications

The general nature of the Galerkin-based, NNM reduction method allows it to

be applied to great e�ect for a wide variety of engineering systems. It is ideally

suited for the analysis of structural dynamic systems with nonlinearities which intro-

duce complex modal interactions. Such behavior is observed in the idealized rotating

beam problem examined in Chapters III and V, as well as in the analysis of actual

rotorcraft blades. In addition, as the model becomes more complex, the reduction

procedure remains largely unchanged. Consequently, the advantage over other an-

alytical approaches will only increase with model complexity. The basic analytical

foundation of this approach, and its computational solution procedure allow e�cient

application to complex systems with very little analytical work.

As the method has shown considerable promise on the rotating beam problem,

work will most likely continue toward the goal of ROM generation for more realistic

rotorcraft system models. The current rotating beam model must be re�ned to more

closely resemble a rotorcraft blade. Currently, work is underway on the development

of a �nite-element analog to the continuous blade model used previously. This dis-

cretized model will allow more general blade properties, and may eventually include

additional degrees-of-freedom (such as twist and lead-lag). Once such a model has

been obtained, the current theory would be su�cient to gain considerable insight

into the blade dynamics. However, with further theoretical work, the approach may

become much more applicable.

The development of accurate forced ROMs allows the individual blade models to
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be coupled to the driving forces as well as the aerodynamic loads. Given the proper

substructuring approach, these blade models may then be assembled to obtain a

composite nonlinear ROM for the entire rotor assembly. A model such as this would

be of considerable aid in the design cycle. Of course, achieving such an ambitious

goal is dependent on the development of additional theoretical techniques. These

techniques may be evaluated as the blade model advances, leading to a progression

such as:

� Generation and evaluation of forced ROMs for the analytic rotating beam model.

� Generation and evaluation of forced Multi-Mode ROMs for a simple �nite-element

rotating beam model.

� Application of substructure methods to ROM's corresponding to several blades

connected by a rigid hub.

� Forced analysis of a simple multi-blade hub assembly.

� In depth dynamic analysis of a detailed nonlinear rotor assembly model.

In parallel with this development there are topics which deserve exploration, but

are not convenient to study in the context of rotorcraft. These include systems with

nonsmooth nonlinearities, and those containing nonlinearities at discrete locations.

Though some examples of discrete nonlinearities were discussed in this dissertation,

they provide an ideal testbed for the component mode formulation discussed earlier.

Nonsmooth nonlinearities have been di�cult to study in this context previously,

as the asymptotic methods did not apply, and other approaches required extensive

analytical work. However, the Galerkin-based solution makes their study much more

accessible.

These topics could be combined to great e�ect using either a continuous or �nite
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element beam with a nonsmooth nonlinearity along its length, such as a clearance

or dry friction damper. A formulation such as that in reference [70], which uses a

continuous beam and a 
exible friction damper, could be used to obtain both free

response and forced response ROMs. Conceivably, this work could be extended to

several nonlinearly coupled subsystems (with or without nonsmooth nonlinearities)

for the development of substructure methods.

Of course, many more systems could be found which would bene�t from the appli-

cation of the methods developed within this work. The above systems are mentioned

only because they o�er ideal domains for the further conceptual development of the

approach. The limitations of this method lie primarily in the accuracy of the origi-

nal model, and the computational e�ort necessary to obtain a solution. Given these

resources and the need for accurate, e�cient reduced-order models, the potential

applicability of this approach is considerable.
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APPENDIX A

ALTERNATIVE FORMULATION FOR THE

SECOND-ORDER MANIFOLD EQUATIONS

If the original equations of motion are expressed in the following second order

form:

�x = f

where x is a vector of N displacements (modal or otherwise), and f is a vector con-

taining the linear and nonlinear forces on the system, the assumptions from Chapter

II may still be applied. That is,

xk = u; and _xk = v

and

xi = Xi(u; v) where i 6= k:

If these relations are applied to the above equations of motion, the kth equation

simply becomes:

_v = fk

while the chain rule may be used to expand the remaining equations as:

d

dt
(
@Xi

@u
v +

@Xi

@v
fk) = fi
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Further expansion results in a set of second order partial di�erential equations, which

are independant of time:

@2Xi

@u2
v2 + 2

@2Xi

@u@v
vfk +

@2Xi

@v2
f 2k +

@Xi

@u
fk +

@Xi

@v
(
@fk
@u

v +
@fk
@v

fk) = fi

Note that f is, in general, a function of all positions and velocities. Consequently, its

partial derivatives may require further expansion. As with the �rst order formulation,

all velocities may be expressed in terms of u; v; fk, and the Xi's. However, if fk

contains velocity terms, the velocities may never be entirely eliminated from the

above formulation. Further investigation is necessary to determine the consequences

of this limitation.
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APPENDIX B

ADDITIONAL FORMULAS FOR THE

GENERATION OF MULTI-MODE MANIFOLDS

The constants from the two and three mode problems are as follows:

C3;k;l
1;i = 2

X
q2SM

�q
k;ka

q;l
5;i

C3;k;l
2;i = 2

X
q2SM

�q
k;la

q;k
5;i

C3;k;l
5;i = 2

X
q=2SM

�i
k;qa

k;l
5;q

C3;k;l
6;i =

X
q=2SM

�i
l;qa

k;k
5;q

C3;k;l
7;i = �ik;k;l +

X
q=2SM

(2�i
k;qa

k;l
3;q + �i

l;qa
k;k
3;q )�

X
q2SM

(�q
k;kb

l;q
4;i + �q

k;lb
k;q
4;i )

C3;k;l;m
8;i = 2

X
q2SM

�q
k;la

q;m
5;i

C3;k;l;m
9;i =

X
q=2SM

(�i
k;qa

l;m
3;q + �i

m;qa
k;l
3;q + �i

l;qa
m;k
3;q )

+
1

2

X
q2SM

(�q
m;kb

l;q
4;i + �q

l;kb
m;q
4;i + �q

m;lb
k;q
4;i ) +

1

2
�im;l;k

C3;k;l;m
10;i = 2

X
q=2SM

�i
k;qa

l;m
5;q
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APPENDIX C

MANIFOLD EXPANSION POLYNOMIALS

The expansion polynomials used in the �rst example of Chapter IV are as follows:

L1(a) =
p
6(a=ao)

2

L2(a) =
p
2 [�12(a=ao)2 + 14(a=ao)

3]

L3(a) =
p
10 [�21(a=ao)2 + 56(a=ao)

3 � 36(a=ao)
4]

L4(a) =
p
3 [�112(a=ao)2 + 504(a=ao)

3 � 720(a=ao)
4 + 330(a=ao)

5]

L5(a) =
p
14 [�126(a=ao)2 + 840(a=ao)

3 � 1980(a=ao)
4 + 1980(a=ao)

5

�715(a=ao)6]

L6(a) = �1008(a=ao)2 + 9240(a=ao)
3 � 31680(a=ao)

4 + 51480(a=ao)
5

�40040(a=ao)6 + 12012(a=ao)
7

L7(a) =
p
2 [�1386(a=ao)2 + 16632(a=ao)

3 � 77220(a=ao)
4 + 180180(a=ao)

5

�225225(a=ao)6 + 144144(a=ao)
7 � 37128(a=ao)

8]
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APPENDIX D

ESTIMATED COMPUTATIONAL EFFORT

The approximate computational e�ort necessary to determine a manifold solution

may roughly be expressed as:

E = (# of iterations/subproblem)(# of operations/iteration)(# of subproblems)

The information on Powell's Hybrid method indicates that, for Nc coe�cients, the

number of iterations necessary may approach N2
c . However, in practice, this has

seldom been the case. On average, observations have indicated that about 1:25Nc

iterations are necessary to reach a solution. When polynomials are used to approxi-

mate the a-dependence of the manifold, it has been necessary to use 100Na points in

the a direction of the numerical integration (more for Na > 5). This is presumably

due to the large values of the polynomial coe�cients (seen in Appendix C). The

number of points necessary on the � direction is much more reasonable, and 10N�

has provided good results. This di�erence makes switching to local domains in a

much more crutical than the same transition in �.

If we represent the number of modes which need to be approximated by N (one

less than the number of DOF), the number of coe�cients, Nc, may be written as:

Nc = N �Na �N�:
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Hence, the e�ort, Eo, correponding to the original approach of using both polyno-

mials and harmonics, may be written as:

Eo = (1:25N �Na �N�)(100Na � 10N�)(1)

= 1250NN2
aN

2
�

When the a-dependence is discretized into locally linear domains, six points per

domain were found to give accurate results. Also, it is assumed that 30 segments

in a will accurately capture the manifold. Hence, the e�ort associated with this

approach, Ea, may be expressed as:

Ea = (1:25N � 2 �N�)(6 � 10N�)(30)

= 4500NN2
�

Lastly, it is expected that 30 sements, with 6 points in each will be su�cient in

the � direction. This allows the e�ort for a solution which is discretized in both a

and �, Ea;�, to be written as:

Ea;� = (1:25N � 2 � 2)(6 � 6)(30 � 30)

= 162000N

If a solution is sought which requires Na = 5 polynomials, and N� = 8 harmonics,

we �nd the following:

Ea

Eo
= 0:144;

indicating that a discretized solution in a reqires %14 of the e�ort associated with

the original approach. Furthermore, discretization in � produces:

Ea;�

Ea
= 0:5625;
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a solution which requires %56 of Ea. Consequently, shifting from the original ap-

proach to an entirely discretized solution should, for this case, yield a computational

savings of %92.

Of course, there are many assumptions embedded in these calculations, but they

are believed to represent the essential factors found in a typical problem.
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ABSTRACT

REDUCED ORDER MODELING OF NONLINEAR STRUCTURAL SYSTEMS

USING NONLINEAR NORMAL MODES AND INVARIANT MANIFOLDS

by

Eric Pesheck

Co-Chairs: Christophe Pierre, Steve Shaw

The generation of reduced-order models of nonlinear systems is particularly di�-

cult, due to the complex interactions of the system components. This work applies

the invariant manifold formulation for nonlinear normal modes to create rigorous

reduced-order models of a wide variety of nonlinear structures, including discrete,

�nite element, and continuous dynamic systems. This is accomplished through two

types of expansion-based solutions for the invariant manifolds which govern the non-

linear normal modes of the structure.

The �rst expansion is polynomial-based and produces analytic, third-order, in-

variant manifolds which are asymptotically accurate. The solution obtained is appli-

cable to a subclass of weakly nonlinear structural systems with quadratic and cubic

nonlinearities in displacement. The second method uses a Galerkin projection and

numerical solver to determine the invariant manifold over a chosen domain. This

approach is shown to be accurate for strong nonlinear e�ects as well as being more



1

adaptable than the polynomial-based approach. Both methods are applied to various

nonlinear structural systems, and the results indicate that, in general, the high ac-

curacy of the Galerkin-based solution compensates for the additional computational

e�ort.

One �eld in which nonlinear interactions play a critical role, and are di�cult to

capture, is rotorcraft dynamics. In particular, blade simulations are cumbersome due

to the large models which have been necessary to achieve accurate results. Equations

of motion are developed for a uniform nonlinear Euler-Bernoulli beam, rotating at

constant velocity, and constrained to move in only the transverse and axial directions.

In the interest of improving the rotorcraft design process, the above reduction meth-

ods were applied to this simpli�ed blade model. The results indicate that, although

both methods capture the critical nonlinear coupling terms at low amplitudes, the

Galerkin-based solution achieves excellent results, allowing accurate analysis for tip

de
ections as large as one meter (peak-to-peak), for a nine meter blade. However,

the polynomial-based solutions remain applicable, as they allow investigations of in-

ternal resonances which are currently not possible using the present Galerkin-based

formulation.


