Analyse et mise en œuvre de nouveaux algorithmes en méthodes spectrales

Driss Yakoubi

Thèse de Doctorat de l'Université Pierre et Marie Curie sous la direction de **Christine Bernardi** et la co-direction de **Stéphane Del Pino**.

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

19/12/2007 1 / 1

Plan

<ロ> (日) (日) (日) (日) (日)

Le modèle : Lions-Temam-Wang, Lewandowski, Mohammadi-Pironneau

Modèle de turbulence : Reynolds Averaged Navier-Stokes (RANS)

• Dans Ω_i , $i \in \{1, 2\}$

$$\begin{split} & \text{Équation de Stokes} \quad -\nabla \cdot (\alpha_i(k_i) \nabla \mathbf{u}_i) + \text{ grad } p_i = \mathbf{f}_i, \\ & \text{Incompressibilité} \quad \nabla \cdot \mathbf{u}_i = 0, \\ & \text{Équation d'ECT} \quad -\nabla \cdot (\gamma_i(k_i) \nabla k_i) = \alpha_i(k_i) |\nabla \mathbf{u}_i|^2. \end{split}$$

• Sur la frontière Γ_i , $\mathbf{u}_i = \mathbf{0}$, et $k_i = 0$.

• Sur l'interface air-mer Γ : $k_i = \lambda |\mathbf{u}_i - \mathbf{u}_j|^2$, et $\alpha_i(k_i)\partial_{\mathbf{n}_i}\mathbf{u}_i - p_i\mathbf{n}_i + \kappa_i(\mathbf{u}_i - \mathbf{u}_i)|\mathbf{u}_i - \mathbf{u}_i| = \mathbf{0}$.

Données du problème

- Ω_i borné, convexe ou $C^{1,1}$, et $\partial \Omega_i = \Gamma_i \cup \Gamma$
- Les coefficients de diffusion et viscosité turbulente α_i, γ_i ≥ ν > 0 ∈ W^{1,∞}.
- λ , $\kappa_i > 0$: coefficient de friction.
- $\mathbf{f}_i \in L^2(\Omega_i)^d$: terme source.

- Espace des vitesses : $\mathbf{X}_i = {\mathbf{v}_i \in H^1(\Omega_i)^d ; \mathbf{v}_i|_{\Gamma_i} = \mathbf{0}},$
- Espace des pressions : $L_0^2(\Omega_i) = \{q_i \in L^2(\Omega_i), \text{ telle que } \int_{\Omega_i} q_i = 0\},$
- Espace des ECT : $Y_i = \{k_i \in W^{1,r'}(\Omega_i); k_i | r_i = 0\},$ où

$$\frac{1}{r}+\frac{1}{r'}=1, \quad \text{et} \quad r>d.$$

$$\begin{aligned} \forall (\mathbf{v}_i, q_i, \varphi_i) \in \mathbf{X}_i \times L_0^2(\Omega_i) \times W_0^{1, r}(\Omega_i), \text{ où } \frac{1}{r} + \frac{1}{r'} &= 1, \text{ et } r > d. \\ \int_{\Omega_i} \alpha_i(k_i) \nabla \mathbf{u}_i \cdot \nabla \mathbf{v}_i - \int_{\Omega_i} \nabla \cdot \mathbf{v}_i \ p_i + \kappa_i \int_{\Gamma} |\mathbf{u}_i - \mathbf{u}_j| (\mathbf{u}_i - \mathbf{u}_j) \mathbf{v}_i &= \int_{\Omega_i} \mathbf{f}_i \mathbf{v}_i, \\ \text{et} \quad \int_{\Omega_i} \nabla \cdot \mathbf{u}_i \ q_i &= 0. \\ \kappa_i |_{\Gamma_i} &= 0, \text{ et } \kappa_i |_{\Gamma} = \lambda |\mathbf{u}_1 - \mathbf{u}_2|^2, \text{ et} \qquad \int_{\Omega_i} \gamma_i(k_i) \nabla k_i \ \nabla \varphi_i &= \int_{\Omega_i} \alpha_i(k_i) |\nabla \mathbf{u}_i|^2 \ \varphi_i. \end{aligned}$$

Difficultés

- $|\nabla \mathbf{u}_i|^2 \in L^1(\Omega_i)^d$
- Couplage des 2 fluides par $\int_{\Gamma} |\mathbf{u}_i \mathbf{u}_j| (\mathbf{u}_i \mathbf{u}_j) \mathbf{v}_i$, $k_i |_{\Gamma} = \lambda |\mathbf{u}_1 \mathbf{u}_2|^2$.
- Couplage des équations par $|\nabla \mathbf{u}_i|^2$, α_i et γ_i .

Schéma Numérique

$$\begin{split} k_i^n \operatorname{donn\acute{e}} & \Longrightarrow \ \mathbf{u}_i^{n+1}, \ \text{et} \ \boldsymbol{\rho}_i^{n+1}, \qquad \forall \boldsymbol{v} \in \mathbf{X}_i, \\ & \int_{\Omega_i} \alpha_i(k_i^n) \nabla \mathbf{u}_i^{n+1} \cdot \nabla \mathbf{v}_i - \int_{\Omega_i} \nabla \cdot \mathbf{v}_i \ \boldsymbol{\rho}_i^{n+1} + \kappa_i \int_{\Gamma} |\mathbf{u}_i^{n+1} - \mathbf{u}_j^{n+1}| (\mathbf{u}_i^{n+1} - \mathbf{u}_j^{n+1}) \mathbf{v}_i = \int_{\Omega_i} \mathbf{f}_i \ \mathbf{v}_i, \\ & \text{et} \qquad \int_{\Omega_i} \nabla \cdot \mathbf{u}_i^{n+1} \ q_i = 0, \qquad \forall q \in L_0^2(\Omega_i). \\ & \mathbf{u}_i^{n+1}, \ \boldsymbol{\rho}_i^{n+1} \ \text{donn\acute{e}s}, \implies k_i^{n+1}? \qquad k_i^{n+1}|_{\Gamma_i} = 0, \quad k_i^{n+1}|_{\Gamma} = \lambda |\mathbf{u}_1^{n+1} - \mathbf{u}_2^{n+1}|^2, \\ & \text{et} \qquad \int_{\Omega_i} \gamma_i(k_i^n) \nabla k_i^{n+1} \ \nabla \varphi_i = \int_{\Omega_i} \alpha_i(k_i^n) |\nabla \mathbf{u}_i^{n+1}|^2 \ \varphi_i, \qquad \forall \varphi_i \in W_0^{1,r}(\Omega_i). \end{split}$$

Difficultés

- couplage à l'interface par le terme $\int_{\Gamma} |\mathbf{u}_i^{n+1} \mathbf{u}_j^{n+1}| (\mathbf{u}_i^{n+1} \mathbf{u}_j^{n+1}) \mathbf{v}_i$,
- la fonction test φ est nulle sur tout $\partial \Omega_i$,
- production de l'énergie cinétique turbulente : $|\mathbf{u}_1^{n+1} \mathbf{u}_2^{n+1}|^2$ sur Γ .

Convergence des suites $(\mathbf{u}_i^n)_n$ et $(k_i^n)_n$

Théorème

Si la suite $(\mathbf{u}_i^n, k_i^n)_n$ est bornée dans $W^{1,3+\varepsilon}(\Omega_i)^d \times W^{1,3}(\Omega_i)$ par M, alors il existe une constante $C(\Omega_i, \alpha_i, \gamma_i, \kappa_i, M, \mathbf{f}_i)$, telle que si $K = \frac{C}{\nu} < 1$, le schéma est contractant, dans le sens suivant

$$\sum_{i}^{2} ||
abla(\mathbf{u}_{i}^{n+1} - \mathbf{u}_{i}^{n})||_{0,\Omega_{i}} \leq K \sum_{i=1}^{2} ||
abla(k_{i}^{n} - k_{i}^{n-1})||_{0,\Omega_{i}}, \quad et \ \sum_{i}^{2} ||
abla(k_{i}^{n+1} - k_{i}^{n})||_{0,\Omega_{i}} \leq K \sum_{i=1}^{2} ||
abla(k_{i}^{n} - k_{i}^{n-1})||_{0,\Omega_{i}}.$$

Idées de la preuve

Stokes

Fonction test $\mathbf{v}_{i} = \mathbf{u}_{i}^{n+1} - \mathbf{u}_{i}^{n}$, et on somme sur $i = 1, 2 \implies$ découplage des "deux fluides" grâce à la relation $\int_{\Gamma} \left[|\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1}| (\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1}) - |\mathbf{u}_{1}^{n} - \mathbf{u}_{2}^{n}| (\mathbf{u}_{1}^{n} - \mathbf{u}_{2}^{n}) \right] \left[\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1} - (\mathbf{u}_{1}^{n} - \mathbf{u}_{2}^{n}) \right] \ge 0.$ Et on obtient la relation $\sum_{i=1}^{2} ||\nabla(\mathbf{u}_{i}^{n+1} - \mathbf{u}_{i}^{n})||_{0} \le K \sum_{i=1}^{2} ||\nabla(k_{i}^{n} - k_{i}^{n-1})||_{0}.$

Énergie cinétique turbulente (ECT)

Introduction du relèvement harmonique

$$\begin{aligned} &R_i: \ H_{00}^{1/2}(\Gamma) \to \ H^1(\Omega_i), \quad \forall \eta \in H_{00}^{1/2}(\Gamma), \ R_i(\eta) \in H^1(\Omega_i), \\ &-\Delta R_i(\eta) = 0 \text{ dans } \Omega_i, \quad R_i(\eta)|_{\Gamma} = 0, \quad \text{et } R_i(\eta)|_{\Gamma_i} = \eta. \end{aligned}$$

• $\varphi_i = k_i^{n+1} - k_i^n - \mathbf{R}_i(k_i^{n+1} - k_i^n) = \text{ la fonction test choisie.}$

• La production d'ECT à l'interface \implies estimation de $|||\mathbf{u}_1^{n+1} - \mathbf{u}_2^{n+1}|^2 - |\mathbf{u}_1^n - \mathbf{u}_2^n|^2 ||_{H_{00}^{1/2}(\Gamma)}$ en fonction de $||k_i^n - k_i^{n-1}||_0$.

Estimation de $|||\mathbf{u}_1^{n+1} - \mathbf{u}_2^{n+1}|^2 - |\mathbf{u}_1^n - \mathbf{u}_2^n|^2 ||_{H_{00}^{1/2}(\Gamma)}$

• On écrit
$$|||\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1}|^{2} - |\mathbf{u}_{1}^{n} - \mathbf{u}_{2}^{n}|^{2}||_{H_{00}^{1/2}(\Gamma)} = \left\| \left[(\mathbf{u}_{1}^{n+1} - \mathbf{u}_{1}^{n}) - (\mathbf{u}_{2}^{n+1} - \mathbf{u}_{2}^{n}) \right] \left[(\mathbf{u}_{1}^{n+1} + \mathbf{u}_{1}^{n}) - (\mathbf{u}_{2}^{n+1} + \mathbf{u}_{2}^{n}) \right] \right\|_{H_{00}^{1/2}(\Gamma)}$$

En suite,

$$\left\| \left[\left(\mathbf{u}_{1}^{n+1} - \mathbf{u}_{1}^{n} \right) - \left(\mathbf{u}_{2}^{n+1} - \mathbf{u}_{2}^{n} \right) \right] \left[\left(\mathbf{u}_{1}^{n+1} + \mathbf{u}_{1}^{n} \right) - \left(\mathbf{u}_{2}^{n+1} + \mathbf{u}_{2}^{n} \right) \right] \right\|_{H_{00}^{1/2}(\Gamma)} \\ \leq C \left\| \left| \left(\mathbf{u}_{1}^{n+1} - \mathbf{u}_{1}^{n} \right) - \left(\mathbf{u}_{2}^{n+1} - \mathbf{u}_{2}^{n} \right) \right\|_{H_{00}^{1/2}(\Gamma)} \left\| \left(\mathbf{u}_{1}^{n+1} + \mathbf{u}_{1}^{n} \right) - \left(\mathbf{u}_{2}^{n+1} + \mathbf{u}_{2}^{n} \right) \right\|_{W^{1-\frac{1}{3+\varepsilon},3+\varepsilon}(\Gamma)} \right\|_{W^{1-\frac{1}{3+\varepsilon},3+\varepsilon}(\Gamma)}$$

• Enfin, on applique la continuité des opérateurs de trace.

Il reste à prouver la convergence de la pression

Convergence de $(p_i^n)_n$

Théorème (pression)

So it $\mathbf{f}_i \in L^2(\Omega_i)^d$, on suppose qu'il existe une constante M > 0, telle que $||\mathbf{u}_i^n||_{W^{1,3}(\Omega_i)^d} \leq M$, alors il existe une constante $C(\Omega_i, \alpha_i, \gamma_i, M)$, telle que si $K = \frac{C}{\nu} < 1$, la suite $(p_i^n)_n$ est de Cauchy dans $L^2(\Omega_i)$. De plus, on a

$$\begin{split} &\sum_{i=1}^{2} ||\boldsymbol{p}_{i}^{m+1} - \boldsymbol{p}_{i}^{n+1}||_{0}^{2} \leq C \bigg[\sum_{i=1}^{2} ||\nabla(k_{i}^{n+1} - k_{i}^{n})||_{0}^{2} + \\ & \bigg| |\mathbf{u}_{1}^{m+1} - \mathbf{u}_{2}^{m+1}| (\mathbf{u}_{1}^{m+1} - \mathbf{u}_{2}^{m+1}) - |\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1}| (\mathbf{u}_{1}^{n+1} - \mathbf{u}_{2}^{n+1}) \bigg| \bigg|_{L^{\frac{3}{2}}(\Gamma)^{d}}^{2} \bigg]. \end{split}$$

La preuve est basée sur

- la condition Inf-Sup suivante $\beta_i = \inf_{q_i \in L^2(\Omega_i)} \sup_{\mathbf{v}_i \in \mathbf{X}_i} \frac{\int_{\Omega_i} \nabla \cdot \mathbf{v}_i q_i}{||q_i||_{L^2} ||\mathbf{v}_i||_{H^1}},$
- la convergence de $(\mathbf{u}_i^n, k_i^n)_n$,
- et la continuité de l'injection canonique $\gamma : H^{\frac{1}{2}}(\Gamma) \longrightarrow L^{3}(\Gamma)$.

Conclusion : le schéma proposé est convergent.

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

Unicité de la solutior

Théorème (Unicité)

Sous les conditions du Théorème de convergence, si il existe deux solutions du problème du couplage océan-atmosphère

$$\mathbf{U}, \mathbf{\bar{U}} \in W^{1,3+\varepsilon}(\Omega_i)^d \times L^2(\Omega_i) \times W^{1,3}(\Omega_i), \quad \varepsilon > \mathbf{0},$$

 $o\dot{u}$ $\mathbf{U} = (\mathbf{u}_i, p_i, k_i)$ et $\bar{\mathbf{U}} = (\bar{\mathbf{u}}_i, \bar{p}_i, \bar{k}_i)$, alors $\mathbf{U}_i = \bar{\mathbf{U}}_i$.

Preuve

Mêmes techniques et étapes utilisées pour montrer la convergence \implies

$$\sum_{i=1}^{2} ||\nabla(k_i - \bar{k}_i)||_0 \le K \sum_{i=1}^{2} ||\nabla(k_i - \bar{k}_i)||_0, \qquad \sum_{i=1}^{2} ||\nabla(\mathbf{u}_i - \bar{\mathbf{u}}_i)||_0 \le K \sum_{i=1}^{2} ||\nabla(k_i - \bar{k}_i)||_0.$$
Comme $K < 1 \implies \mathbf{u}_i = \bar{\mathbf{u}}_i$, et $k_i = \bar{k}_i$, $i \in \{1, 2\}$.
Enfin, la condition Inf-sup $\implies \rho_i = \bar{\rho}_i$.

$(\mathbf{u}_i, \boldsymbol{p}_i, k_i)$ est une solution du modèle

Théorème (Limite)

Sous les conditions du Théorème de convergence, la suite $(\mathbf{u}_i^n, p_i^n, k_i^n)_n$ converge vers une solution (\mathbf{u}_i, p_i, k_i) du modèle du couplage océan-atmosphère.

Idées de la preuve

- inégalités de Cauchy-Schwarz, Hölder, Poincaré, Poincaré-Friedrichs...,
- injections de Sobolev,
- la densité de l'espace $\mathcal{D}(\Omega)$ dans $W_0^{1,r}(\Omega)$,
- la continuité des opérateurs de trace : γ : $W^{1,p}(\Omega) \longrightarrow W^{1-\frac{1}{p},p}(\partial \Omega)$,
- pour $k_i|_{\Gamma} = \lambda |\mathbf{u}_1 \mathbf{u}_2|^2$: on écrit $= \lambda |(\mathbf{u}_1 \mathbf{u}_2) \cdot (\mathbf{u}_1 + \mathbf{u}_2)|,...$

- Approximation de la solution par des polynômes de haut degré
- Utilisation de base tensorisée de polynômes orthogonaux, (Legendre)
- On a choisi l'approche Galerkin, avec intégration numérique (quadrature de Gauss-Lobatto :) trouver u_δ ∈ H_δ, t.g ∀v ∈ H_δ, a(u_δ, v_δ) = ℓ(v_δ),

•
$$H_{\delta} = \mathbb{P}_{N_x} \otimes \mathbb{P}_{N_y} \otimes \mathbb{P}_{N_z}, \quad u_{\delta} = \sum_{i,j,k=0}^{N_x,N_y,N_z} u_{ijk}L_i(x)L_j(y)L_k(z),$$

- Les matrices obtenues ne sont pas creuses ⇒ résolution par des méthodes itératives (gc, bigc...) : calcul direct du produit matrice×vecteur
 - complexité algorithmique réduite à O(N^{d+1}),
 - économie de stockage mémoire.

< 日 > < 同 > < 回 > < 回 > < □ > <

Quelques méthodes spectrales dans des domaines complexes

- Décomposition de domaine en sous-domaines : Éléments spectraux : BERNARDI-MADAY,...
- Utilisation d'éléments courbes :
 - les transformations de GORDON-HALL,
 - utilisation en méthodes spectrales MADAY-RØNQUIST,
- CANUTO-HUSSAINI-QUARTERONI-ZANG.

Description de la nouvelle méthode

Espace discret

Espace discret : $H_{\delta} = \mathbb{P}_{N_x} \otimes \mathbb{P}_{N_y} \otimes \mathbb{P}_{N_z}$ = Ensemble des polynômes de degré $\leq N_{x,y,z}$ dans chaque direction .

Notre méthode repose sur deux idées

• traitement des CL de Dirichlet par pénalisation (méthode de Nitsche) :

remplacer la condition au limite de **Dirichlet** sur $\partial \Omega$,

$$u = g$$
 par $\frac{1}{\varepsilon}u + \frac{\partial u}{\partial n} = \frac{1}{\varepsilon}g$,

• et approximation de la géométrie :

 $\Omega = \bigcup_{i=0}^{+\infty} D_i$, où D_i sont des pavés, (par exemple : *octree*) Donc, **approcher** Ω par : $\Omega_m = \bigcup_{i=0}^m D_i$.

- coût dépend du niveau de l'octree m, et
- Perte d'orthogonalité de la base (pb de conditionnement).

 \implies

Volumiques

Exemple : le problème
$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} fv$$

 \implies évaluer les $\int_{D_i} \nabla u \cdot \nabla v = \int_{D_i} fv$, $0 \le i \le m$, avec la formule de
Gauss-Lobatto-Legendre,

Surfaciques

Création d'un maillage de triangles $(T_i)_i$ de $\partial\Omega$, ensuite, évaluation des $\int_{T_i} f$ grâce à une formule de quadrature.

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

19/12/2007 16 / 1

Théorème (Projection)

Soit Ω un ouvert connexe de \mathbb{R}^d , t.q $\partial \Omega$ est de $C^{m-1,1}$, et soit $u \in H^m(\Omega)$, alors il existe une constante $c(\Omega, m) > 0$, telle que

$$|u - \Pi_N^{\Omega} u||_{L^2(\Omega)} \le c N^{-m} ||u||_{H^m(\Omega)}, \quad et$$
(1)

$$||u - \Pi_N^{1,\Omega} u||_{H^1(\Omega)} \le c N^{1-m} ||u||_{H^m(\Omega)}.$$
(2)

La preuve est basée sur

- Mettre Ω dans un pavé P
- les estimations d'erreurs d'approximation polynômiale sur des domaines tensoriels, Bernardi-Maday
- le Théorème d'extension linéaire Guilbarg-Trudinger,

Conditions aux limites naturelles

Considèrons le problème variationel suivant : $\forall v \in H^1(\Omega)$,

$$\begin{split} a(u,v) &= \int_{\Omega} a_0 \, uv + \sum_{i,j=1}^d \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_i} \frac{\partial v}{\partial x_i} + \int_{\partial \Omega} b_0 \, uv, \\ \ell(v) &= \int_{\Omega} fv + \int_{\partial \Omega} gv. \end{split}$$

Et soit le problème approché : $\forall q \in H_{\delta} = (\mathbb{P}_N)^3$, $a(u_{\delta}, q) = \ell(q)$.

Théorème

Soit Ω un ouvert connexe de \mathbb{R}^d , tel que $\partial \Omega$ est $C^{0,1}$. Si $u \in H^m(\Omega)$, il existe une constante $c(\Omega, m, a) > 0$, telle que

 $||u-u^{\delta}||_{H^1(\Omega)} \leq cN^{1-m}||u||_{H^m(\Omega)}.$

En outre si Ω est convexe ou $C^{1,1}$ alors $||u - u^{\delta}||_{L^2(\Omega)} \leq c N^{-m} ||u||_{H^m(\Omega)}.$

La preuve se base sur

- le Théorème de projection (Ω quelconque),
- Ie Lemme de Céa

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

19/12/2007 18 / 1

Conditions aux limites de **Dirichlet** : Pénalisation (Méthode de Nitsche)

 $u \in H_0^1(\Omega)$ et $u_{\varepsilon} \in H^1(\Omega)$, tels que,

 $\forall v \in H_0^1(\Omega), \quad a(u,v) = \ell(v), \qquad \text{et} \quad \forall w \in H^1(\Omega), \quad a(u_\varepsilon,w) + \frac{1}{\varepsilon} \int_{\partial \Omega} u_\varepsilon w = \ell(w)$

Théorème (Nitsche, Babuška)

On a les estimations d'erreur suivantes

$$\begin{aligned} ||u_{\varepsilon} - u||_{H^{1}(\Omega)} &\leq c\sqrt{\varepsilon} \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}, \quad ||u_{\varepsilon} - u||_{L^{2}(\partial\Omega)} \leq \varepsilon \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}, \\ \text{et} \qquad ||u_{\varepsilon} - u||_{L^{2}(\Omega)} \leq c\varepsilon \left| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial\Omega)}. \end{aligned}$$

La preuve est basée sur

- la convergence forte $u_{\varepsilon} \longrightarrow u$, dans $H^{1}(\Omega)$ (Aubin, Lions, Maury, etc....),
- écrire $\int_{\Omega} \nabla (u u_{\varepsilon}) \cdot \nabla v + \frac{1}{\varepsilon} \int_{\partial \Omega} (u u_{\varepsilon}) v = \int_{\Omega} f v + \int_{\partial \Omega} \frac{\partial u}{\partial n} v,...$
- l'argument de dualité d'Aubin-Nitsche, pour l'erreur L².

Driss Yakoubi (UPMC)

Estimations a priori

$$\begin{array}{ll} (P) \quad u \in H_0^1(\Omega) & \text{et} \quad (P_{\varepsilon}) \quad u_{\varepsilon}^{\delta} \in H_{\delta}, \ \text{tels que}, \\ \forall v \in H_0^1(\Omega), \quad a(u,v) = \int_{\Omega} fv, & \text{et} \quad \forall v^{\delta} \in H_{\delta}, \quad a(u_{\varepsilon}^{\delta}, v^{\delta}) + \frac{1}{\varepsilon} \int_{\partial \Omega} u_{\varepsilon}^{\delta} v^{\delta} = \int_{\Omega} fv^{\delta}. \end{array}$$

Théorème

Soit Ω un ouvert connexe de \mathbb{R}^d , dont le bord $\partial \Omega$ est de $C^{0,1}$, et soit $f \in H^{m-2}(\Omega)$. Si $u \in H^m(\Omega)$, il existe $c(\Omega, m) > 0$, telle que

$$||u - u_{\varepsilon}^{\delta}||_{H^{1}(\Omega)} \leq c \left(N^{1-m} ||f||_{H^{m-2}(\Omega)} + \sqrt{\varepsilon} \left\| \left| \frac{\partial u}{\partial n} \right| \right|_{L^{2}(\partial \Omega)} \right)$$

en outre si Ω est convexe ou $C^{1,1}$ alors $||u - u_{\varepsilon}^{\delta}||_{0} \leq c \left(N^{-m} ||f||_{H^{m-2}(\Omega)} + \varepsilon \left\| \frac{\partial u}{\partial n} \right\|_{L^{2}(\partial\Omega)} \right).$

- $||u u_{\varepsilon}^{\delta}||_{H^{1},L^{2}} \leq ||u_{\varepsilon}^{\delta} u_{\varepsilon}||_{H^{1},L^{2}} + ||u_{\varepsilon} u||_{H^{1},L^{2}},$
- $u \in H^m \implies u_{\varepsilon} \in H^m$, et $||u_{\varepsilon}^{\delta} u_{\varepsilon}||_{H^1, L^2} \le cN^{\sigma-m}||u_{\varepsilon}||_{H^m}, \quad \sigma \in \{0, 1\},$
- $||u_{\varepsilon} u||_{H^{1},L^{2}} \leq c_{1}\varepsilon^{1-\gamma}||u_{\varepsilon}||_{H^{m}}, \quad \gamma = 0, \frac{1}{2}.$

FreeFEM3D

- Code C++ de la famille freefem
 - résolution par éléments finis de Pb 3D (scalaires, vectoriels, ...)
 - langage utilisateur proche des mathématiques permettant l'écriture facile d'algorithmes complexes
 - formulation faible ou forte dans le langage
- Géométrie
 - en non structuré : maillage fournit par l'utilisateur
 - par domaines fictifs (pénalisation pour Dirichlet) : utilisation de CSG

Objectifs (cahier des charges)

- Intégrer la méthode spectrale à FreeFEM3D :
 - passage de EF à Spectrale transparent pour l'utilisateur,
 - permettre le mélange de EF et Spectrale pour un même calcul
- Résolution dans des domaines tensoriels et non-tensoriels
- $\mathbb{P}_n \mathbb{P}_k$

Driss Yakoubi (UPMC)

Stratégies

- Écriture d'une maquette C++ 1D
 - aquisition d'expérience en vue du 3D,
 - premiers tests « non tensoriels »
- Diviser pour régner
 - implémentation d'opérateurs de base
 - mise en place de tests unitaires

Conception C++

- Factorisation du code tensoriel/non tensoriel,
- Interopérabilité EF et Spectrale :
 - interpolation « automatique » : SpectralFunction hérite de ScalarFunction

• • • • • • • • • • • •

Laplacien

Résolution de $-\Delta u = 1$ avec u = 0 sur le bord. On approche la condition limite par : $\frac{1}{\epsilon}u + \nabla u \cdot \mathbf{n} = 0$.

Éléments finis

```
vector a=(0,0,0); vector b=(1,1,1);
vector n=(10,10,10);
mesh m=tetrahedrize(structured(n,a,b));
femfunction u(m)=0;
solve(u) in m
{
   test(v)
        int[0,1,2,3,4,5](1E3*u*v)
        + int(grad(u)*grad(v))
        = int(v);
      }
save(vtk, "u",u,m);
```

Spectrale

```
vector a=(0,0,0) ; vector b=(1,1,1) ;
vector n=(10,10,10) ;
mesh m=spectral(n,a,b) ;
```

```
sfunction u(m)=0;
solve(u) in m
{
    test(v)
        int[0,1,2,3,4,5](1E3*u*v)
        + int(grad(u)*grad(v))
        = int(v);
}
save(vtk, "u".u.m);
```

イロト 不得 トイヨト イヨト 二日

Analyse et mise en œuvre de nouveaux ...

Convergence

erreur L^2

Convergence vers la solution analytique d'un problème vectoriel de la forme :

$$-\Delta \mathbf{u} = \mathbf{f}, \text{ dans } \Omega$$
$$\mathbf{u} = \mathbf{g} \text{ sur } \partial \Omega.$$
(3)

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

Élasticité linéaire

Résolution en déplacement

$$\int_{\Omega} \mu \sum_{ij} \partial_{x_i} \mathbf{u}_j \partial_{x_i} \mathbf{v}_j + \int_{\Omega} \mu \sum_{ij} \partial_{x_j} \mathbf{u}_j \partial_{x_j} \mathbf{v}_i + \int_{\Omega} \lambda \sum_{ij} \partial_{x_i} \mathbf{u}_j \partial_{x_j} \mathbf{v}_j = \int_{\Omega} \mathbf{f} \cdot \mathbf{v},$$

$$\Omega =]0, \mathbf{5}[\times] - \frac{1}{2}, \frac{1}{2}[\times] - \frac{1}{2}, \frac{1}{2}[, \mu = 500, \lambda = 1000 \text{ et } \mathbf{f} = (0, 0, -1)$$

Stokes

 $-\Delta \mathbf{u} + \operatorname{grad} p = \mathbf{0}, \quad \operatorname{dans} \Omega$ $\nabla \cdot \mathbf{u} = \mathbf{0} \quad \operatorname{dans} \Omega,$

Paramètres de discrétisation et pénalisation : N = 15, $\varepsilon = 10^{-5}$.

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...

Laplace

On considère le problème aux limites suivant

$$\begin{split} -\Delta u &= 3\pi^2 \sin(\pi(x+y+z)) \quad \text{dans } \Omega = \Omega_1 \cup \Omega_2 \cup \Omega_3 \quad \text{et} \\ & u &= \sin(\pi(x+y+z)) \quad \text{sur } \partial \Omega, \\ \Omega_1 &=]-1, 0[\times]-1, 1[\times]-1, 1[, \ \Omega_2 =]0, 1[\times]-1, 0[\times]-1, 1[, \\ & \text{et} \ \Omega_3 =]0, 1[\times]0, 1[\times]-1, 0[. \end{split}$$

1/2

(4) (5) (4) (5)

Énergie cinétique turbulente atmosphérique : valeur de l'isosurface est 10⁻² 1/2

Driss Yakoubi	(UPMC)
---------------	--------

Analyse et mise en œuvre de nouveaux ...

19/12/2007 31 / 1

< 6 b

Énergie cinétique turbulente océanique : valeur de l'isosurface est 2.10^{-3} 2/2

Driss Yakoubi (L	PMC)	1
------------------	------	---

Analyse et mise en œuvre de nouveaux ...

19/12/2007 32 / 1

< 6 b

Courbes de convergence

Spectrale

A b

Couplage océan/atmosphère

Conclusion

- Schéma tridimensionnel, et aussi bidimensionnel
- Convergence exponentielle du schéma vers la solution désirée
- Indépendant de la méthode utilisée (EF, Spectrale)
- Hypothèses supplémentaires de régularité en 3D, mais pas en 2D
- Algorithme semblable pour un modèle d'un seul fluide turbulent

Perspectives

- Étude de la convergence du schéma dans le cas des viscosités non bornées, de la forme ν + √τ + k,
- Cas d'une solution localement unique ⇒ Théorème de Brezzi-Rappaz-Raviart
- Ajout du terme de transport : $\mathbf{u} \cdot \nabla k \nabla \cdot (\gamma(k) \nabla k) = \alpha(k) |\nabla \mathbf{u}|^2$
- Réduire les hypothèses de régularité en dimension 3 ?

Méthode Spectrale

Conclusion

- Code 3D Tensoriel/ Non Tensoriel (Legendre) intégré à FreeFEM3D
- Respect du cahier des charges :
 - Problèmes scalaires ou vectoriels, P_n − P_k, elliptiques, non symétriques, non linéaires
 - Prise en main facile, couplage avec EF possible,...
- Nouvelle méthode Spectrale dans des domaines à géométrie complexes
 - Analyse numérique de la méthode
 - Problème de coût
 - Pavage de Ω
 - Perte d'orthogonalité

 mauvais conditionnement

Perspectives

- Analyse : prise en compte des erreurs de quadrature
- Mise en place de préconditionneurs pour rendre la méthode compétitive

• Lagrange, Eléments spectraux,...

Driss Yakoubi (UPMC)

Analyse et mise en œuvre de nouveaux ...