

Numerical modeling of anisothermal multi-phase flows in petroleum wellbore and reservoir

Layal LIZAIK

Ph. D. Thesis advisors:

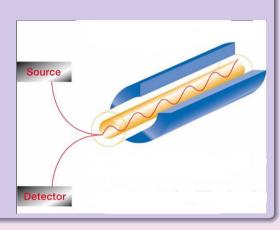
M. AMARAD. CAPATINAP. TERPOLILLITOTAL

18th of December 2008

Motivations

Optical fiber sensors

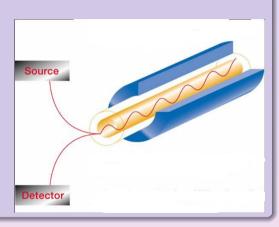
- Increase of subsea wellheads and highly deviated wells
 - \hookrightarrow Production log are less easy to be performed
- Emerging of new technologies such as optical fiber sensors
- Temperature measurements continuous in time and all along the well



Motivations

Optical fiber sensors

- Increase of subsea wellheads and highly deviated wells
 - →Production log are less easy to be performed
- Emerging of new technologies such as optical fiber sensors
- Temperature measurements continuous in time and all along the well



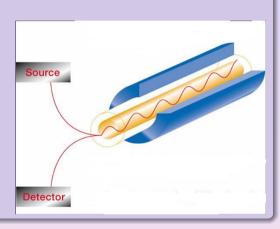
Possible applications

- Estimate virgin reservoir temperature
- Predict flow profiles and the flow rate of each layer

Motivations

Optical fiber sensors

- Increase of subsea wellheads and highly deviated wells
 - →Production log are less easy to be performed
- Emerging of new technologies such as optical fiber sensors
- Temperature measurements continuous in time and all along the well



Interpretation of temperature profiles

→ Need for an EXHAUSTIVE ENERGY EQUATION

$$\frac{\partial(\phi\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Physical modeling

Mass conservation law

Single phase flow:

$$\frac{\partial(\phi\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Multi-component multi-phase flow:

$$\sum_{p=1}^{n_p} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p y_{c,p} \mathbf{u}_p) \right) = 0, \quad c = 1, \dots, n_c$$

 n_c is the number of components n_v is the number of phases

Single phase flow:

$$\frac{\partial(\phi\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Darcy's law:
$$\mathbf{u} = -\mu^{-1}\mathbf{\underline{K}}(\nabla p - \rho \mathbf{g})$$

Multi-component multi-phase flow:

$$\sum_{p=1}^{n_p} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p y_{c,p} \mathbf{u}_p) \right) = 0, \quad c = 1, \dots, n_c$$

 n_c is the number of components n_p is the number of phases

Single phase flow:

$$\frac{\partial(\phi\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Darcy's law:
$$\mathbf{u} = -\mu^{-1}\mathbf{\underline{K}}(\nabla p - \rho \mathbf{g})$$

Multi-component multi-phase flow:

$$\sum_{p=1}^{n_p} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p y_{c,p} \mathbf{u}_p) \right) = 0, \quad c = 1, \dots, n_c$$

 n_c is the number of components n_p is the number of phases

Generalized Darcy's law :
$$\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$$

Single phase flow:

$$\frac{\partial(\phi\rho)}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$$

Darcy's law:
$$\mathbf{u} = -\mu^{-1}\mathbf{\underline{K}}(\nabla p - \rho \mathbf{g})$$

Darcy-Forchheimer law:
$$\mu \mathbf{K}^{-1}\mathbf{u} + F\rho |\mathbf{u}|\mathbf{u} = -(\nabla p - \rho \mathbf{g})$$

Multi-component multi-phase flow:

$$\sum_{p=1}^{n_p} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p y_{c,p} \mathbf{u}_p) \right) = 0, \quad c = 1, \dots, n_c$$

 n_c is the number of components n_v is the number of phases

Generalized Darcy's law:
$$\mathbf{u}_p = -k_{rp}\mu_p^{-1}\mathbf{\underline{K}}(\nabla p_p - \rho_p \mathbf{g})$$

Single phase flow:

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

• Total energy : $E = E_c + E_p + \mathcal{U}$

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

• Kinetic energy :
$$\frac{\partial}{\partial t}(\frac{1}{2}\rho \mathbf{u}^2) + \nabla \cdot (\frac{1}{2}\rho \mathbf{u}^2 \mathbf{u}) = \rho \mathbf{g} \mathbf{u} - \mathbf{u} \cdot \nabla p + \mathbf{u} \cdot (\nabla : \underline{\tau})$$

$$\begin{split} \frac{\partial(\rho E)}{\partial t} &= -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot \left(\underline{\tau} \mathbf{u}\right) \\ & \hookrightarrow & \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0 \end{split}$$

• Kinetic energy :
$$\frac{\partial}{\partial t}(\frac{1}{2}\rho \mathbf{u}^2) + \nabla \cdot (\frac{1}{2}\rho \mathbf{u}^2 \mathbf{u}) = \rho \mathbf{g} \mathbf{u} - \mathbf{u} \cdot \nabla p + \mathbf{u} \cdot (\nabla : \underline{\tau})$$

$$\begin{split} \frac{\partial(\rho E)}{\partial t} &= -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot \left(\underline{\tau} \mathbf{u}\right) \\ & \hookrightarrow \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0 \end{split}$$

- Kinetic energy : $\frac{\partial}{\partial t}(\frac{1}{2}\rho \mathbf{u}^2) + \nabla \cdot (\frac{1}{2}\rho \mathbf{u}^2 \mathbf{u}) = \rho \mathbf{g} \mathbf{u} \mathbf{u} \cdot \nabla p + \mathbf{u} \cdot (\nabla : \underline{\tau})$
- Mass conservation : $\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0$
- Enthalpy expression : $\rho \mathcal{U} = \rho \mathcal{H} p$

$$\hookrightarrow \rho \frac{\partial \mathcal{H}}{\partial t} - \frac{\partial p}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathcal{H} - \mathbf{u} \cdot \nabla p - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

$$\begin{split} \frac{\partial(\rho E)}{\partial t} &= -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot \left(\underline{\tau} \mathbf{u}\right) \\ & \hookrightarrow \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0 \end{split}$$

$$\rho \frac{\partial \mathcal{H}}{\partial t} - \frac{\partial p}{\partial t} + \rho \mathbf{u} \cdot \nabla \mathcal{H} - \mathbf{u} \cdot \nabla p - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

$$\bullet \left\{ \begin{array}{l} \frac{\partial \mathcal{H}}{\partial T} = \frac{1 - \beta T}{\rho} & \beta \text{ coefficient of thermal expansion} \\ \frac{\partial \mathcal{H}}{\partial p} = \frac{(\rho c)_f}{\rho} & (\rho c)_f \text{ specific heat capacity of the fluid} \end{array} \right.$$

$$\hookrightarrow (\rho c)_* \frac{\partial T}{\partial t} + (\rho c)_f \mathbf{u} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u} \cdot \nabla p - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

$$\rightarrow \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

$$\rightarrow (\rho c)_* \frac{\partial T}{\partial t} + (\rho c)_f \mathbf{u} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u} \cdot \nabla p - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

$$\hookrightarrow \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \Phi_{\mu} = 0$$

$$\hookrightarrow (\rho c)_* \frac{\partial T}{\partial t} + (\rho c)_f \mathbf{u} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u} \cdot \nabla p - \underline{\tau} : \nabla \cdot \mathbf{u} = 0$$

Single phase flow:

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

$$\rightarrow \frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \Phi_{\mu} = 0$$

$$\rightarrow (\rho c)_* \frac{\partial T}{\partial t} + (\rho c)_f \mathbf{u} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u} \cdot \nabla p + \mathbf{u} \cdot \nabla p = 0$$

Equation considered in Denel's thesis

Single phase flow:

$$\frac{\partial(\rho E)}{\partial t} = -\nabla \cdot (\rho E \mathbf{u}) + \nabla \cdot (\lambda \nabla T) - \nabla \cdot (p \mathbf{u}) + \nabla \cdot (\underline{\tau} \mathbf{u})$$

$$\frac{\partial(\rho \mathcal{U})}{\partial t} + \nabla \cdot (\rho \mathcal{U} \mathbf{u}) + p \nabla \cdot \mathbf{u} - \nabla \cdot (\lambda \nabla T) - \Phi_{u} = 0$$

$$\hookrightarrow (\rho c)_* \frac{\partial T}{\partial t} + (\rho c)_* \mathbf{u} \cdot \nabla T - \nabla \cdot (\lambda \nabla T) - \phi \beta T \frac{\partial p}{\partial t} - \beta T \mathbf{u} \cdot \nabla p + \mathbf{u} \cdot \nabla p = 0$$

Equation considered in Denel's thesis

Multi-component multi-phase flow:

$$\sum_{p} \left(\frac{\partial}{\partial t} (\phi \ S_p \ \rho_p \ \mathcal{U}_p) + \nabla \cdot (\phi \ S_p \ \rho_p \mathcal{U}_p \mathbf{u}_p) + p_p \ \nabla \cdot \mathbf{u}_p - \nabla \cdot \left(\lambda_p \nabla T \right) - \Phi_{\mu,p} \right) = 0$$

• Equivalent conductivity :
$$\lambda = (\lambda_s)^{(1-\phi)} \times (\lambda_w)^{S_w \times \phi} \times (\lambda_o)^{S_o \times \phi} \times (\lambda_g)^{S_g \times \phi}$$

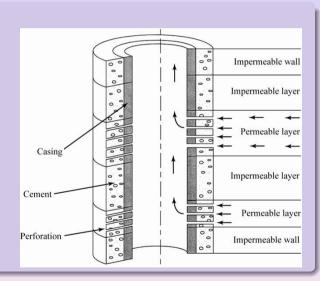
$$\sum_{p} \left(\frac{\partial}{\partial t} (\phi S_{p} \rho_{p} \mathcal{U}_{p}) + \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{U}_{p} \mathbf{u}_{p}) + p_{p} \nabla \cdot \mathbf{u}_{p} \right) - \nabla \cdot (\lambda \nabla T) + \sum_{p} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

Outline

- * Part I: Coupling of single phase reservoir and wellbore models
 - Coupling of the two models/Transmission conditions
 - Analysis of the continuous global problem
 - Finite element discretization
 - Numerical results
- * Part II: Multi-component multi-phase model in reservoir
 - Physical modeling
 - Finite volume discretization
 - Numerical scheme
 - Numerical results

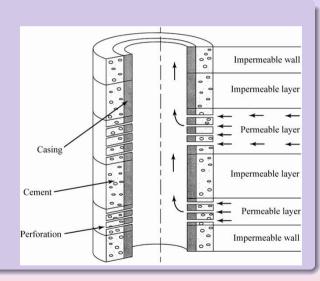
Coupling of single phase reservoir and wellbore models

- Porous media Ω divided into N geological layers Ω_i
- Layers characterized by their own physical and thermodynamic properties
- Layers saturated with a formation water and a monophasic compressible fluid
- Only the monophasic fluid is mobile
- 2D axisymmetric hypothesis



Coupling of single phase reservoir and wellbore models

- Porous media Ω divided into N geological layers Ω_i
- Layers characterized by their own physical and thermodynamic properties
- Layers saturated with a formation water and a monophasic compressible fluid
- Only the monophasic fluid is mobile
- 2D axisymmetric hypothesis



• Couple Denel's reservoir and wellbore models

B. Denel, Simulation numérique et couplage de modèles thermomécaniques puits-milieux poreux, Thèse de doctorat. Université de Pau. 2004

• Semi-discretized reservoir model (Darcy-Forchheimer):

$$\begin{pmatrix}
\frac{1}{r}\mathbf{M}\mathbf{G}_{1} + \nabla p_{1} = -\rho_{1}^{n-1}g \\
\frac{1}{r\lambda}\mathbf{q}_{1} - \nabla T_{1} = 0
\end{pmatrix}$$

$$r_{\Delta t}^{a}p_{1} - r_{\Delta t}^{b}T_{1} + div\mathbf{G}_{1} = r_{\Delta t}^{a}p_{1}^{n-1} - r_{\Delta t}^{b}T_{1}^{n-1}$$

$$r_{\Delta t}^{d}T_{1} + \kappa\mathbf{G}_{1}^{n-1}.\nabla T_{1} - r_{\Delta t}^{f}p_{1} + l\mathbf{G}_{1}^{n-1}.\nabla p_{1} - div\mathbf{q}_{1} = r_{\Delta t}^{d}T_{1}^{n-1} - r_{\Delta t}^{f}p_{1}^{n-1}$$

• Semi-discretized wellbore model (Compressible Navier-Stokes):

$$div(r\mathbf{G}_{2}) = -r\frac{\rho_{2} - \rho_{2}^{n}}{\Delta t}$$

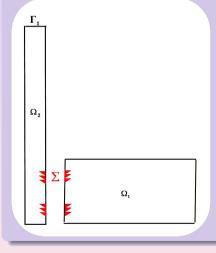
$$div(r\mathbf{u}_{2}) = \frac{1}{\rho}(div(r\mathbf{G}_{2}) - r\mathbf{G}_{2} \cdot \nabla \rho_{2})$$

$$r\rho\frac{\mathbf{u}_{2}}{\Delta t} + r\mathbf{G}_{2} \cdot \nabla \mathbf{u}_{2} + r\nabla p_{2} - div(r\underline{\tau}) + \tau_{\theta\theta}\mathbf{e}_{r} + rF|\mathbf{G}_{2}|\mathbf{u}_{2} = r\rho_{2}g + r\rho_{2}\frac{\mathbf{u}_{2}^{n}}{\Delta t}$$

$$\frac{1}{\lambda}\mathbf{q}_{2} - \nabla T_{2} = 0$$

$$rc_{v}(\rho\frac{T_{2}}{\Delta t} + \mathbf{G}_{2} \cdot \nabla T_{2}) - div(r\mathbf{q}_{2}) = r\rho c_{v}\frac{T_{2}^{n}}{\Delta t} - \frac{1}{2}(\rho\frac{|\mathbf{u}_{2}|^{2} - |\mathbf{u}_{2}^{n}|^{2}}{\Delta t} + \mathbf{G}_{2} \cdot \nabla(|\mathbf{u}_{2}|^{2})) - div(rp_{2}\mathbf{u}_{2}) + div(r\tau_{2}\mathbf{u}_{2}) + rg\mathbf{G}_{2}$$

 $G = r\rho \mathbf{u}$: mass flux $\mathbf{q} = r\lambda \nabla T$: heat flux



Coupling of single phase reservoir and wellbore models

L_Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model

Flow has a privileged direction

- \Rightarrow Derive a 1.5D model
 - Explicit dependency on r:

$$\mathbf{u} = \frac{r}{R}\mathbf{u}_1(z) + \frac{R-r}{R}\mathbf{u}_0(z)$$

$$\mathbf{G} = \begin{pmatrix} \frac{r}{R} \mathbf{G}_1(z) \\ \mathbf{G}_2(z) \end{pmatrix}$$

$$\mathbf{q} = \begin{pmatrix} \frac{r}{R} & \mathbf{q}_1(z) \\ \mathbf{q}_2(z) \end{pmatrix}$$

$$\rho = \rho(z)$$
, $p = p(z)$, $T = T(z)$

• Consider only one rectangular mesh in the radial direction

Coupling of single phase reservoir and wellbore models

L_Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Fixed point method with respect to ρ

Coupling of single phase reservoir and wellbore models

Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Fixed point method with respect to ρ

Evaluation of the specific flux

Use
$$div(r\mathbf{G}) = -r \frac{r\rho}{\partial t}$$
 and solve
$$\begin{cases} \operatorname{Find} \mathbf{G} \in \mathbb{W}^* \\ \int_{\Omega_2} div(r\mathbf{G})\chi dx = -\int_{\Omega_2} r \frac{\rho - \rho^n}{\Delta t} \chi dx, \quad \forall \chi \in M \end{cases}$$

_____Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Fixed point method with respect to ρ

Evaluation of the specific flux

Use
$$div(r\mathbf{G}) = -r \frac{r\rho}{\partial t}$$
 and solve
$$\begin{cases} \operatorname{Find} \mathbf{G} \in \mathbb{W}^* \\ \int_{\Omega_2} div(r\mathbf{G})\chi dx = -\int_{\Omega_2} r \frac{\rho - \rho^n}{\Delta t} \chi dx, \quad \forall \chi \in M \end{cases}$$

Evaluation of (\mathbf{u}, p)

$$\text{Use } \rho \mathbf{u} \cdot \nabla \mathbf{u} \ = \ \mathbf{G} \cdot \nabla \mathbf{u} \ \text{ and solve } \left\{ \begin{array}{l} \text{Find } \mathbf{u} \in \mathbb{V}^*, \ p \in M \\ \\ m(\mathbf{u}, \mathbf{v}) \ + \ n(p, \mathbf{v}) \ = \ l_1(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbb{V}^0 \\ \\ n(q, \mathbf{u}) \ = \ l_2(q) \quad \forall q \in M \end{array} \right.$$

Coupling of single phase reservoir and wellbore models

Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Fixed point method with respect to ρ

Evaluation of the specific flux

Use
$$div(r\mathbf{G}) = -r \frac{r\rho}{\partial t}$$
 and solve
$$\begin{cases} \operatorname{Find} \mathbf{G} \in \mathbb{W}^* \\ \int_{\Omega_2} div(r\mathbf{G})\chi dx = -\int_{\Omega_2} r \frac{\rho - \rho^n}{\Delta t} \chi dx, \quad \forall \chi \in M \end{cases}$$

Evaluation of (\mathbf{u}, p)

Use
$$\rho \mathbf{u} \cdot \nabla \mathbf{u} = \mathbf{G} \cdot \nabla \mathbf{u}$$
 and solve
$$\begin{cases} \text{Find } \mathbf{u} \in \mathbb{V}^*, \ p \in M \\ \\ m(\mathbf{u}, \mathbf{v}) + n(p, \mathbf{v}) = l_1(\mathbf{v}), \quad \forall \mathbf{v} \in \mathbb{V}^0 \\ \\ n(q, \mathbf{u}) = l_2(q) \quad \forall q \in M \end{cases}$$

Evaluation of (\mathbf{q}, T)

Find $\mathbf{q} \in \mathbb{H}$, $T \in M$

Use
$$\rho \mathbf{u} \cdot \nabla T = \mathbf{G} \cdot \nabla T$$
 and solve
$$\begin{cases} a(\mathbf{q}, \mathbf{w}) + b(T, \mathbf{w}) = f_1(\mathbf{w}) & \forall \mathbf{w} \in \mathbb{H} \\ b(S, \mathbf{q}) - c(T, S) = f_2(S) & \forall S \in M \end{cases}$$

Coupling of single phase reservoir and wellbore models

Transmission conditions

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Additional unknown in the wellbore: Velocity u₂
- Density is not constant in the two domains
- Energetic aspect taken into account

Mathematical difficulties related to the coupling

- A multiscale problem (stiff coupling):
 - 1 2D axisymetric reservoir model
 - 2 1.5D wellbore model
- Additional unknown in the wellbore: Velocity u₂
- Density is not constant in the two domains
- Energetic aspect taken into account

Transmission conditions at the interface

•
$$[\mathbf{G} \cdot \mathbf{n}] = 0 \Rightarrow \mathbf{G}_1 \cdot \mathbf{n} = R\mathbf{G}_2 \cdot \mathbf{n}$$

•
$$[\sigma \mathbf{n} \cdot \mathbf{n}] = 0 \Rightarrow -p_1 + \tau_{rr} = -p_2$$

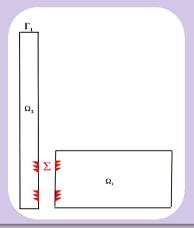
•
$$u_2 \cdot t = 0$$

or $u_2 \cdot t = -\frac{\sqrt{\kappa}}{\alpha} \underline{\sigma}_2 \mathbf{n} \cdot t$ Beavers-Joseph-Saffman

•
$$\mathbf{G}_1 \cdot \mathbf{n} = \rho \ u_2 \cdot \mathbf{n}$$

•
$$[\mathbf{q} \cdot \mathbf{n}] = 0 \Rightarrow \mathbf{q}_1 \cdot \mathbf{n} = R\mathbf{q}_2 \cdot \mathbf{n}$$

•
$$[T] = 0 \Rightarrow T_1 = T_2$$



Variational formulation in the reservoir

- We denote : $x_1 = (G_1, q_1, p_1, T_1)$
- Functional framework:

$$\begin{split} X_1 &= \mathbb{H}(div,\Omega_1) \times \mathbb{H}(div,\Omega_1) \times L^2(\Omega_1) \times L^2(\Omega_1) \\ X_1^0 &= \{x_1 \in X_1 \ ; \ \mathbf{G}_1 \cdot \mathbf{n} = 0 \ \text{on} \ \Upsilon_{\mathbf{G}}, \ \mathbf{q}_1 \cdot \mathbf{n} = 0 \ \text{on} \ \Upsilon_{\mathbf{q}} \} \\ X_1^* &= \{x_1 \in X_1 \ ; \ \mathbf{G}_1 \cdot \mathbf{n} = G^* \ \text{on} \ \Upsilon_{\mathbf{G}}, \ \mathbf{q}_1 \cdot \mathbf{n} = q^* \ \text{on} \ \Upsilon_{\mathbf{q}} \} \end{split}$$

• Variational formulation:

$$\left\{ \begin{array}{ll} \text{Find } x_1 \in X_1^* \\ \\ \mathcal{A}_1(x_1,x_1') = \mathcal{F}_1(x_1') \end{array} \right. \quad \forall x_1' \in X_1^0 \label{eq:define_expansion}$$

Weak formulation in the wellbore

- We denote : $x_2 = (G_2, u_2, p_2, q_2, T_2)$
- Functional framework:

$$X_2 = \mathbb{W} \times \mathbb{V} \times M \times \mathbb{H} \times M$$

$$X_2^* = \mathbb{W}^* \times \mathbb{V}^* \times M \times \mathbb{H} \times M$$

$$Y_2 = M \times \mathbb{V}^0 \times M \times \mathbb{H} \times M$$

• Weak formulation:

$$\begin{cases} \text{ Find } x_2 \in X_2^* \\ \mathcal{H}_2(x_2, x_2') = \mathcal{F}_2(x_2') \end{cases} \quad \forall x_2' \in Y_2$$

• An integration by part in the reservoir yields the terms :

$$\int_{\Sigma} \boldsymbol{p}_1 \mathbf{G}_1' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} \boldsymbol{T}_1 \mathbf{q}_1' \cdot \mathbf{n} \ d\sigma$$

• An integration by part in the wellbore yields the terms :

$$\int_{\Sigma} R \left(p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n} \right) \mathbf{u}_2' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} R T_2 \mathbf{q}_2' \cdot \mathbf{n} \ d\sigma$$

• Dualization by Lagrange multipliers $\Lambda = (\theta, \mu)$

$$\theta = p_1 = p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n}$$
 $\mu = T_1 = T_2$

Multipliers' spaces:

$$\mathbb{L} = L^2(\Sigma) \times L^2(\Sigma) \quad \mathbb{K} = L^2(\Sigma) \times L^2(\Sigma) \times L^2(\Sigma)$$

Bilinear forms:

$$I(\Lambda, x') = \int_{\Sigma} (\mathbf{G}_1' \cdot \mathbf{n} - R\mathbf{u}_2' \cdot \mathbf{n}) \theta \ d\sigma - \int_{\Sigma} (\mathbf{q}_1' \cdot \mathbf{n} - R\mathbf{q}_2' \cdot \mathbf{n}) \mu \ d\sigma$$

$$\mathcal{J}(\Lambda', x) = \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\rho_2 \mathbf{u}_2 \cdot \mathbf{n}) \theta' \ d\sigma + \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\mathbf{G}_2 \cdot \mathbf{n}) \zeta' \ d\sigma - \int_{\Sigma} (\mathbf{q}_1 \cdot \mathbf{n} - R\mathbf{q}_2 \cdot \mathbf{n}) \mu' \ d\sigma$$

• An integration by part in the reservoir yields the terms :

$$\int_{\Sigma} \mathbf{p}_1 \mathbf{G}_1' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} \mathbf{T}_1 \mathbf{q}_1' \cdot \mathbf{n} \ d\sigma$$

• An integration by part in the wellbore yields the terms :

$$\int_{\Sigma} R(p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n}) \mathbf{u}_2' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} RT_2 \mathbf{q}_2' \cdot \mathbf{n} \ d\sigma$$

• Dualization by Lagrange multipliers $\Lambda = (\theta, \mu)$:

$$\theta = p_1 = p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n} \qquad \mu = T_1 = T_2$$

• Multipliers' spaces:

$$\mathbb{L} = L^{2}(\Sigma) \times L^{2}(\Sigma) \quad \mathbb{K} = L^{2}(\Sigma) \times L^{2}(\Sigma) \times L^{2}(\Sigma)$$

Bilinear forms:

$$I(\Lambda, x') = \int_{\Sigma} \left(\mathbf{G}_{1}' \cdot \mathbf{n} - R\mathbf{u}_{2}' \cdot \mathbf{n} \right) \theta \ d\sigma - \int_{\Sigma} (\mathbf{q}_{1}' \cdot \mathbf{n} - R\mathbf{q}_{2}' \cdot \mathbf{n}) \mu \ d\sigma$$

$$\mathcal{J}(\Lambda', x) = \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\rho_2 \mathbf{u}_2 \cdot \mathbf{n}) \theta' \ d\sigma + \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\mathbf{G}_2 \cdot \mathbf{n}) \zeta' \ d\sigma - \int_{\Sigma} (\mathbf{q}_1 \cdot \mathbf{n} - R\mathbf{q}_2 \cdot \mathbf{n}) \mu' \ d\sigma$$

U / 14 / 1 = / 1 = / 9 Q ()

• An integration by part in the reservoir yields the terms :

$$\int_{\Sigma} \boldsymbol{p}_1 \mathbf{G}_1' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} \boldsymbol{T}_1 \mathbf{q}_1' \cdot \mathbf{n} \ d\sigma$$

• An integration by part in the wellbore yields the terms :

$$\int_{\Sigma} R\left(p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n}\right) \mathbf{u}_2' \cdot \mathbf{n} \ d\sigma - \int_{\Sigma} R T_2 \mathbf{q}_2' \cdot \mathbf{n} \ d\sigma$$

• Dualization by Lagrange multipliers $\Lambda = (\theta, \mu)$:

$$\theta = p_1 = p_2 - \tau_2 \mathbf{n} \cdot \mathbf{n} \qquad \mu = T_1 = T_2$$

Multipliers' spaces:

$$\mathbb{L} = L^{2}(\Sigma) \times L^{2}(\Sigma) \quad \mathbb{K} = L^{2}(\Sigma) \times L^{2}(\Sigma) \times L^{2}(\Sigma)$$

• Bilinear forms:

$$I(\Lambda, x') = \int_{\Sigma} \left(\mathbf{G}_1' \cdot \mathbf{n} - R\mathbf{u}_2' \cdot \mathbf{n} \right) \theta \ d\sigma - \int_{\Sigma} (\mathbf{q}_1' \cdot \mathbf{n} - R\mathbf{q}_2' \cdot \mathbf{n}) \mu \ d\sigma$$

$$\mathcal{J}(\Lambda', x) = \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\rho_2 \mathbf{u}_2 \cdot \mathbf{n}) \theta' \ d\sigma + \int_{\Sigma} (\mathbf{G}_1 \cdot \mathbf{n} - R\mathbf{G}_2 \cdot \mathbf{n}) \zeta' \ d\sigma - \int_{\Sigma} (\mathbf{q}_1 \cdot \mathbf{n} - R\mathbf{q}_2 \cdot \mathbf{n}) \mu' \ d\sigma$$

1 U 7 1 U 7 7 E 7 7 E 7 9 Q (~

Weak formulation for the coupled problem

• Functional framework:

$$\mathbb{X} = \{x = (x_1, x_2) \in X_1 \times X_2 ; \mathbf{G}_1 \cdot \mathbf{n}, \mathbf{q}_1 \cdot \mathbf{n} \in L^2(\Sigma)\}$$

$$\mathbb{Y} = \{x' = (x'_1, x'_2) \in X_1 \times Y_{2\Sigma} ; \mathbf{G}_1 \cdot \mathbf{n}, \mathbf{q}_1 \cdot \mathbf{n} \in L^2(\Sigma)\}$$

$$\mathbb{X}^* = \{(x_1, x_2) \in \mathbb{X} ; \mathbf{G}_1 \cdot \mathbf{n} = G^* \text{ on } \Upsilon_{\mathbf{G}} \setminus \Sigma, \mathbf{q}_1 \cdot \mathbf{n} = q^* \text{ on } \Upsilon_{\mathbf{q}} \setminus \Sigma, \mathbf{u}_2 \cdot \mathbf{n} = Q \text{ on } \Gamma_s\}$$

$$\mathbb{Y}^0 = \{x' \in \mathbb{Y} ; \mathbf{G}'_1 \cdot \mathbf{n} = 0 \text{ on } \Upsilon_{\mathbf{G}} \setminus \Sigma, \mathbf{q}'_1 \cdot \mathbf{n} = 0 \text{ on } \Upsilon_{\mathbf{q}} \setminus \Sigma, \mathbf{u}'_2 \cdot \mathbf{n} = 0 \text{ on } \Gamma_s\}$$

• Weak formulation:

$$\begin{cases} \operatorname{Find} x \in \mathbb{X}^*, \Lambda \in \mathbb{L} \\ \mathcal{A}(x, x') + I(\Lambda, x') = \mathcal{F}(x') & \forall x' \in \mathbb{Y}^0 \\ \mathcal{J}(\Lambda', x) = 0 & \forall \Lambda' \in \mathbb{K} \end{cases}$$

Where:

$$\mathcal{A}(x, x') = \mathcal{A}_1(x_1, x'_1) + \mathcal{A}_2(x_2, x'_2) \quad \forall x \in \mathbb{X}, \ \forall x' \in \mathbb{Y}$$
$$\mathcal{F}(x') = \mathcal{F}_1(x'_1) + \mathcal{F}_2(x'_2) \quad \forall x' \in \mathbb{Y}$$

Analysis of the continuous global problem

Babuška's theorem:

- ullet I and ${\mathcal J}$ satisfy an inf-sup condition
- The coupled problem reduces to:

$$\left\{ \begin{array}{l} \text{Find } x \in \mathbb{J}^* \\ \mathcal{A}(x,x') = \mathcal{F}(x') \end{array} \right. \quad \forall x' \in \mathbb{I}$$

Where:

$$\mathbb{J}^* = \{ x \in \mathbb{X}^* : \mathcal{J}(\Lambda', x) = 0 \qquad \forall \Lambda' \in \mathbb{K} \}$$

$$\mathbb{I} = \{ x' \in \mathbb{Y}^0 : \mathcal{I}(\Lambda, x') = 0 \qquad \forall \Lambda \in \mathbb{L} \}$$

Theorem:
$$\forall x \in \mathbb{J}^0 \setminus \{0\}, \quad \sup_{x' \in \mathbb{J}} \frac{\mathcal{A}(x,x')}{\|x'\|_Y} > 0$$

→ UNIQUENESS OF THE SOLUTION

• Existence: Galerkin's method (via finite element spaces)

LAnalysis of the continuous global problem

Analysis of the continuous global problem

Babuška's theorem:

- ullet I and ${\mathcal J}$ satisfy an inf-sup condition
- The coupled problem reduces to:

$$\left\{ \begin{array}{l} \text{Find } x \in \mathbb{J}^* \\ \mathcal{A}(x,x') = \mathcal{F}(x') \end{array} \right. \quad \forall x' \in \mathbb{I}$$

Where:

$$\mathbb{J}^* = \{ x \in \mathbb{X}^* : \mathcal{J}(\Lambda', x) = 0 \qquad \forall \Lambda' \in \mathbb{K} \}$$

$$\mathbb{I} = \{ x' \in \mathbb{Y}^0 : \mathcal{I}(\Lambda, x') = 0 \qquad \forall \Lambda \in \mathbb{L} \}$$

Theorem:
$$\forall x \in \mathbb{J}^0 \setminus \{0\}, \quad \sup_{x' \in \mathbb{J}} \frac{\mathcal{A}(x,x')}{\|x'\|_Y} > 0$$

- → UNIQUENESS OF THE SOLUTION
- Existence : Galerkin's method (via finite element spaces)

Analysis of the continuous global problem

Proof of the uniqueness

- By putting: $U = (G_1, q_1, G_2, u_2, q_2)$ $U' = (G'_1, q'_1, \chi, u'_2, q'_2)$ $s = (p_1, T_1, p_2, T_2)$
- Non-standard Mixed formulation:

$$\begin{cases} & \text{Find } (\mathbf{U}, s) \in \mathbb{U}^* \times \mathbb{S} \\ & \\ & \mathbf{A}(\mathbf{U}, \mathbf{U}') + \mathbf{B}(s, \mathbf{U}') = \mathbf{F}_1(\mathbf{U}') \end{cases} & \forall \mathbf{U}' \in \mathbb{T}^0 \\ & - \mathbf{B}(s', \mathbf{U}) + \mathbf{C}(s, s') = \mathbf{F}_2(s') \end{cases} & \forall s' \in \mathbb{S}$$

Where:

$$\texttt{A}(\textbf{U},\textbf{U}') = \int_{\Omega_1} \frac{1}{r} M \textbf{G}_1 \cdot \textbf{G}_1' dx + \int_{\Omega_1} \frac{1}{r\lambda_1} \textbf{q}_1 \cdot \textbf{q}_1' dx + \int_{\Omega_2} \chi div(r \textbf{G}_2) dx + \int_{\Omega_2} \frac{r}{\lambda_1} \textbf{q}_2 \cdot \textbf{q}_2' dx + a(\textbf{u}_2,\textbf{u}_2') \text{ non symmetric }$$

$$\mathbf{B}(s,\mathbf{U'}) = -\int_{\Omega_1} p_1 div \mathbf{G'}_1 dx + \int_{\Omega_1} T_1 div \mathbf{q'}_1 dx - \int_{\Omega_2} p_2 div (r\mathbf{u'}_2) dx + \int_{\Omega_2} T_2 div (r\mathbf{q'}_2)$$

$$\mathsf{C}(s,s') = \int_{\Omega_1} r \tfrac{a}{\Delta t} p_1 p_1' dx - \int_{\Omega_1} r \tfrac{b}{\Delta t} T_1 p_1' dx + \int_{\Omega_1} r \tfrac{d}{\Delta t} T_1 T_1' dx - \int_{\Omega_1} r \tfrac{f}{\Delta t} p_1 T_1' dx + \int_{\Omega_2} r \tfrac{c_v \rho_2}{\Delta t} T_2 T_2' dx \text{ non symmetric}$$

LAnalysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 & \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 & \forall s' \in \mathbb{S} \end{array} \right.$$

LAnalysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

• Let
$$(\mathbf{U},s)$$
 a solution of :
$$\begin{cases} A(\mathbf{U},\mathbf{U}') + B(s,\mathbf{U}') &= 0 \quad \forall \mathbf{U}' \in \mathbb{T}^0 \\ -B(s',\mathbf{U}) + C(s,s') &= 0 \quad \forall s' \in \mathbb{S} \end{cases}$$
 * There exists \mathcal{R} : $\mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:
$$A(\mathbf{U},\mathcal{R}\mathbf{U}) > 0, \quad \mathbf{U} - \mathbf{U}' \in KerB$$

The homogeneous problem admits only the trivial solution ??

- Let (\mathbf{U},s) a solution of : $\begin{cases} A(\mathbf{U},\mathbf{U}') + B(s,\mathbf{U}') &= 0 \quad \forall \mathbf{U}' \in \mathbb{T}^0 \\ -B(s',\mathbf{U}) + C(s,s') &= 0 \quad \forall s' \in \mathbb{S} \end{cases}$ * There exists \mathcal{R} : $\mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:
 - $A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$, $\mathbf{U} \mathbf{U}' \in Ker\mathbf{B}$

•
$$U = (G_1, q_1, G_2, u_2, q_2) \in \mathbb{U}^0$$
 define $\mathcal{R}U = U' = (G'_1, q_1, \chi, u_2, q_2)$ satisfying :

$$\mathbf{G}_{1}' \cdot \mathbf{n} = \frac{1}{\rho_{2}} \mathbf{G}_{1} \cdot \mathbf{n} \text{ on } \Sigma, \quad div \mathbf{G}_{1}' = div \mathbf{G}_{1} \text{ in } \Omega_{1}, \quad \left\| \mathbf{G}_{1}' \right\|_{0,\Omega_{1}} + \left\| \chi \right\|_{0,\Omega_{2}} \leq c \left\| \mathbf{U} \right\|.$$

$$\longleftrightarrow \begin{cases} \mathbf{U}' \in \mathbb{T}^0, \ \|\mathbf{U}'\| \le c \|\mathbf{U}\|, \ \mathbf{B}(s, \mathbf{U}) = \mathbf{B}(s, \mathbf{U}') \\ \mathbf{A}(\mathbf{U}, \mathbf{U}') \ge c \left(\left\| \mathbf{q}_1 \right\|_{0,\Omega_1}^2 + \left\| \mathbf{q}_2 \right\|_{0,\Omega_2}^2 \right) + m(\mathbf{u}_2, \mathbf{u}_2) + \int_{\Omega_1} \frac{1}{r} \underline{\mathbf{M}} \mathbf{G}_1 \cdot \mathbf{G}_1' dx + \int_{\Omega_2} \chi div(r\mathbf{G}_2) dx \end{cases}$$

• Bound $m(\mathbf{u}_2, \mathbf{u}_2)$ by means of Young's inequality

└Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 & \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 & \forall s' \in \mathbb{S} \end{array} \right.$$

* There exists $\mathcal{R}: \mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:

$$A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$$
, $\mathbf{U} - \mathbf{U}' \in KerB$

*
$$\forall s \in \mathbb{S}$$
, $C(s,s) \ge \gamma(\|p_1\|_{0,\Omega_1}^2 + \|T_1\|_{0,\Omega_1}^2 + \|T_2\|_{0,\Omega_2}^2)$

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 \quad \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 \quad \forall s' \in \mathbb{S} \end{array} \right.$$

* There exists $\mathcal{R} : \mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:

$$A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$$
, $\mathbf{U} - \mathbf{U}' \in KerB$

*
$$\forall s \in \mathbb{S}$$
, $C(s,s) \ge \gamma(\|p_1\|_{0,\Omega_1}^2 + \|T_1\|_{0,\Omega_1}^2 + \|T_2\|_{0,\Omega_2}^2)$

$$\bullet \ \mathsf{C}(s,s') = \int_{\Omega_1} r \tfrac{a}{\Delta t} p_1 p_1' dx - \int_{\Omega_1} r \tfrac{b}{\Delta t} T_1 p_1' dx + \int_{\Omega_1} r \tfrac{d}{\Delta t} T_1 T_1' dx - \int_{\Omega_1} r \tfrac{f}{\Delta t} p_1 T_1' dx + \int_{\Omega_2} r \tfrac{c_v \rho_2}{\Delta t} T_2 T_2' dx$$

• If $4ad - (b + f)^2 \ge c$ a.e. in Ω_1 , we have:

$$\int_{\Omega_{1}} r \frac{a}{\Delta t} p_{1} p_{1} dx - \int_{\Omega_{1}} r \frac{b}{\Delta t} T_{1} p_{1} dx + \int_{\Omega_{1}} r \frac{d}{\Delta t} T_{1} T_{1} dx - \int_{\Omega_{1}} r \frac{f}{\Delta t} p_{1} T_{1} dx \geq \frac{c}{\Delta t} (\left\| p_{1} \right\|_{0,\Omega_{1}}^{2} + \left\| T_{1} \right\|_{0,\Omega_{1}}^{2})$$

└Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 & \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 & \forall s' \in \mathbb{S} \end{array} \right.$$

* There exists $\mathcal{R}: \mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:

$$A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$$
, $\mathbf{U} - \mathbf{U}' \in Ker\mathbf{B}$

*
$$\forall s \in \$$$
, $C(s,s) \ge \gamma(\|p_1\|_{0,\Omega_1}^2 + \|T_1\|_{0,\Omega_1}^2 + \|T_2\|_{0,\Omega_2}^2)$

then
$$U = 0$$
 and $(p_1, T_1, T_2) = 0$

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 \quad \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 \quad \forall s' \in \mathbb{S} \end{array} \right.$$

* There exists $\mathcal{R}: \mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:

$$A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$$
, $\mathbf{U} - \mathbf{U}' \in KerB$

$$* \ \forall s \in \$, \ \ \mathsf{C}(s,s) \geq \gamma(\left\|p_1\right\|_{0,\Omega_1}^2 + \|T_1\|_{0,\Omega_1}^2 + \|T_2\|_{0,\Omega_2}^2)$$

then
$$U = 0$$
 and $(p_1, T_1, T_2) = 0$

* There exists
$$\beta > 0$$
 such that : $\beta_2 \|s\| \le \sup_{\mathbf{U}' \in \mathbb{T}^0} \frac{B(s,\mathbf{U}')}{\|\mathbf{U}'\|}$

• Fortin's trick:

$$s = (p_1, T_1, p_2, T_2) \in \mathbb{S} \longmapsto \mathbf{U}' = (\mathbf{G}'_1, \mathbf{q}_1, \chi, \mathbf{u}_2, \mathbf{q}_2) \in \mathbb{T}^0 \text{ satisfying } \begin{cases} \mathbf{B}(s, \mathbf{U}') \ge c_1 ||s||^2 \\ ||\mathbf{U}'|| \le c_2 ||s|| \end{cases}$$

The homogeneous problem admits only the trivial solution ??

$$\bullet \text{ Let } (\mathbf{U},s) \text{ a solution of : } \left\{ \begin{array}{ll} \mathtt{A}(\mathbf{U},\mathbf{U}') + \mathtt{B}(s,\mathbf{U}') &= 0 \quad \forall \mathbf{U}' \in \mathbb{T}^0 \\ \\ -\mathtt{B}(s',\mathbf{U}) + \mathtt{C}(s,s') &= 0 \quad \forall s' \in \mathbb{S} \end{array} \right.$$

* There exists $\mathcal{R}: \mathbb{U}^0 \to \mathbb{T}^0$ linear, continuous and satisfying:

$$A(\mathbf{U}, \mathcal{R}\mathbf{U}) > 0$$
, $\mathbf{U} - \mathbf{U}' \in Ker\mathbf{B}$

*
$$\forall s \in \mathbb{S}$$
, $C(s,s) \ge \gamma(\left\|p_1\right\|_{0,\Omega_1}^2 + \|T_1\|_{0,\Omega_1}^2 + \|T_2\|_{0,\Omega_2}^2)$

then
$$U = 0$$
 and $(p_1, T_1, T_2) = 0$

* There exists
$$\beta > 0$$
 such that : $\beta_2 \|s\| \le \sup_{\mathbf{U}' \in \mathbb{T}^0} \frac{B(s,\mathbf{U}')}{\|\mathbf{U}'\|}$

then
$$p_2 = \mathbf{0}$$

Discrete problem

- Suppose that the two meshes match on the perforations
- Denote by \mathcal{E}_h the set of edges situated on the interface Σ

Finite dimensional spaces

• Conservative variables (specific flux, heat flux):

$$RT_0 = \left\{ \left(\begin{array}{c} ar + b \\ az + c \end{array} \right) \quad a, \ b, \ c \in \mathbb{R} \right\}$$

$$V_h = \{ \mathbf{G} \in H(div, \Omega) : \mathbf{G}_{/K} \in RT_0 \quad \forall K \in \mathcal{T}_h \}$$

• Scalar variables (pressure, temperature, density):

$$L_h = \{ p \in L^2(\Omega) ; \ p_{/K} \in P_0 \quad \forall K \in \mathcal{T}_h \}$$

• Fluid's velocity:

$$X_h = \{u \in H^1(\Omega) ; v_{/K} \in Q_1 \quad \forall K \in \mathcal{T}_h\}$$

• Lagrange multipliers on the interface:

$$K_h = \{ \mu \in L^2(\Sigma) ; \mu \in P_0(e) \ \forall e \in \mathcal{E}_h \}$$

Finite element discretization

Discrete formulation

$$\begin{cases} \text{Find } x_h \in \mathbb{X}_h^*, \Lambda_h \in \mathbb{L}_h \\ \\ \mathcal{A}_h(x_h, x') + I(\Lambda_h, x') = \mathcal{F}_h(x') \quad \forall x' \in \mathbb{Y}_h \\ \\ \mathcal{J}(\Lambda', x_h) = 0 \quad \forall \Lambda' \in \mathbb{K}_h \end{cases}$$

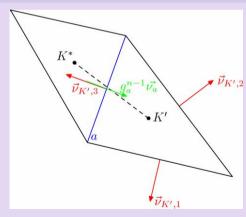
Upwind sheme for convective terms

• For any P_0 functions T

$$\int_{K} \kappa \, \mathbf{G}_{h}^{n-1} \cdot \nabla T \, dx = \sum_{e \in \partial K^{-}} \kappa \, (T^{*} - T_{/K}) \int_{e} \mathbf{G}_{h}^{n-1} \cdot \mathbf{n} d\sigma \quad \forall T \in L_{h}$$

• For any Q_1 -continuous functions ϕ and v:

$$\int_{K} r \, \mathbf{G}_{h}^{n-1} \cdot \nabla \phi \, v \, dx = \sum_{e \in \partial K^{-}} (\phi^{*} - P_{K}(\phi)) \int_{e} r \, \mathbf{G}_{h}^{n-1} \cdot \mathbf{n} \, v \, d\sigma \quad \forall K \in \mathcal{T}_{h}$$



Finite element discretization

Discrete formulation

$$\begin{cases} \operatorname{Find} x_h \in \mathbb{X}_h^*, \Lambda_h \in \mathbb{L}_h \\ \mathcal{A}_h(x_h, x') + I(\Lambda_h, x') = \mathcal{F}_h(x') \quad \forall x' \in \mathbb{Y}_h \\ \mathcal{J}(\Lambda', x_h) = 0 \quad \forall \Lambda' \in \mathbb{K}_h \end{cases}$$

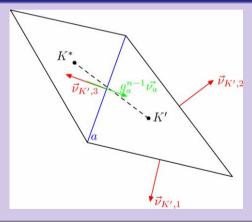
Upwind sheme for convective terms

- $\partial K^- = \{e \in \partial K \ / \ \mathbf{G}_h^{n-1} \cdot \ \mathbf{n} < 0\}$
- For any P_0 functions T:

$$\int_{K} \kappa \mathbf{G}_{h}^{n-1} \cdot \nabla T \, dx = \sum_{e \in \partial K^{-}} \kappa \left(T^{*} - T_{/K} \right) \int_{e} \mathbf{G}_{h}^{n-1} \cdot \mathbf{n} d\sigma \quad \forall T \in L_{h}$$

• For any Q_1 -continuous functions ϕ and v:

$$\int_K r \, \mathbf{G}_h^{n-1} \cdot \nabla \phi \, v \, dx = \sum_{e \in \partial K^-} (\phi^* - P_K(\phi)) \int_e r \, \mathbf{G}_h^{n-1} \cdot \mathbf{n} \, v \, d\sigma \quad \forall K \in \mathcal{T}_h$$



Theorem: The discrete problem has a unique solution for Δt small enough

Sketch of the proof

- Follow the proof of the continuous case, with constants independent of h
- Use Fortin's trick and interpolate continuous functions
- Need an auxiliary result:

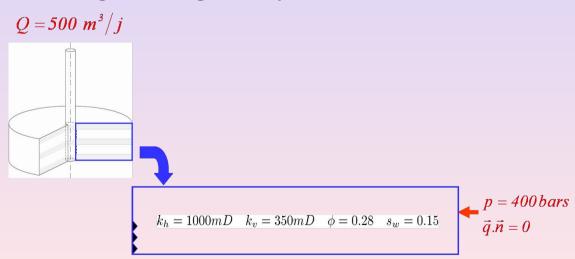
For any $(p, \theta) \in M_h \times K_h$, there exists $G \in V_h$ satisfying:

$$\begin{cases} \mathbf{G} \cdot \mathbf{n} = \theta \text{ on } \Sigma, & \mathbf{G} \cdot \mathbf{n} = 0 \text{ on } \Upsilon_{\mathbf{G}} \setminus \Sigma \\ div\mathbf{G} = p & \text{in } \Omega_{1} \\ \|\mathbf{G}\|_{H(div,\Omega_{1})} + \|\mathbf{G} \cdot \mathbf{n}\|_{0,\Sigma} \le c(\|p\|_{0,\Omega_{1}} + \|\theta\|_{0,\Sigma}) \end{cases}$$

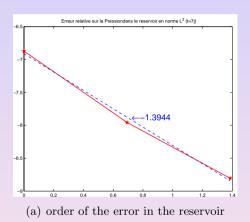
Mesh convergence

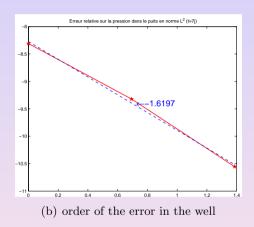
Test 1: two-layered reservoir

- Two layers with the same properties
- Only the lower one is perforated
- Production of light oil during seven days



Convergence rate for the pressure at t=7 days



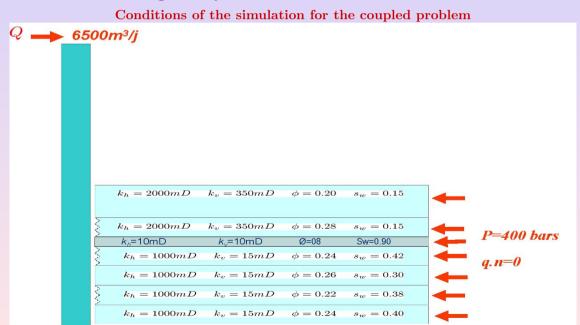


Numerically, $\|p - p_h\|_{0,\Omega} \le C|h|^{\alpha}$, with $\alpha \simeq 1.39$ in the reservoir and $\alpha \simeq 1.61$ in the well

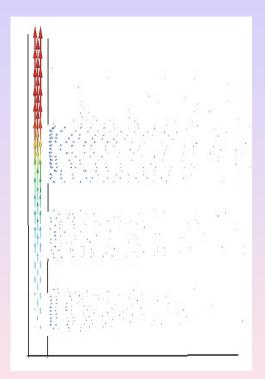
Realistic reservoir

Test 2: realistic reservoir

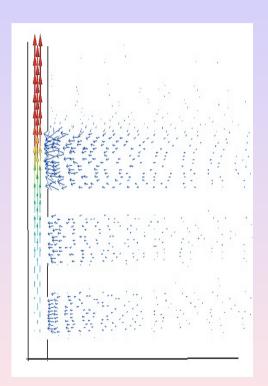
- Seven layers with different properties
- Production of oil during 28 days



Specific flux at the end of the production

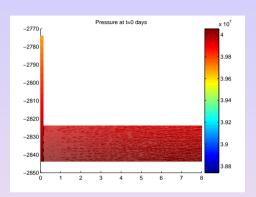


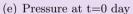
(c) Same scale in the 2 domains

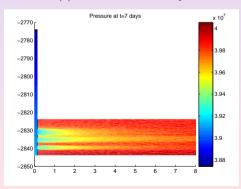


(d) Different scales (ratio equal to 10)

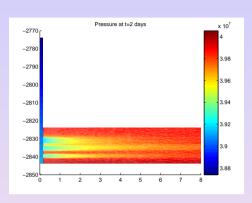
Behaviour of the pressure during one month production



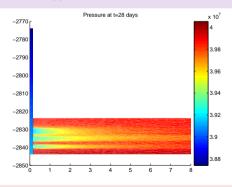




(g) Pressure at t=7 days

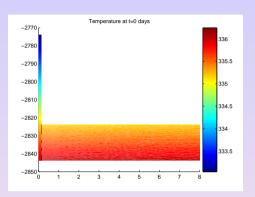


(f) Pressure at t=2 days

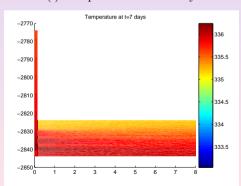


(h) Pressure at t=28 days

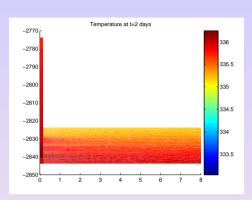
Behaviour of the temperature during one month production



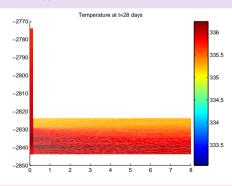
(i) Temperature at t=0 day



(k) Temperature at t=7 days



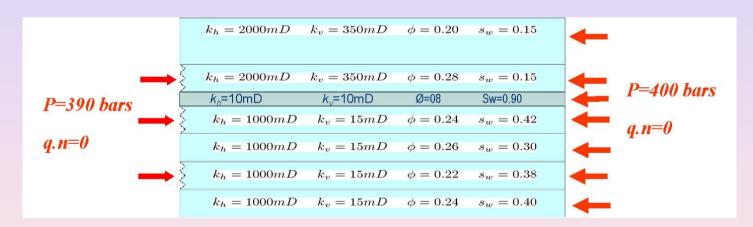
(j) Temperature at t=2 days



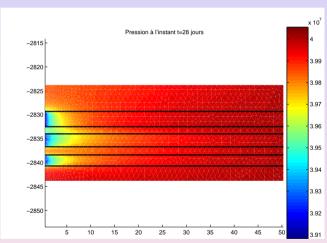
(l) Temperature at t=28 days

Comparison with the separate reservoir and wellbore codes

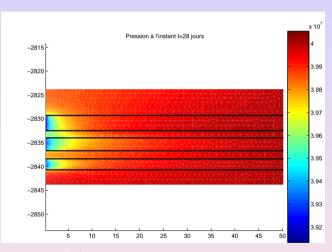
- Previous simulation conditions for the coupled code
- Conditions of the simulation for the sole reservoir model:



Pressure maps in the reservoir at t = 28 days

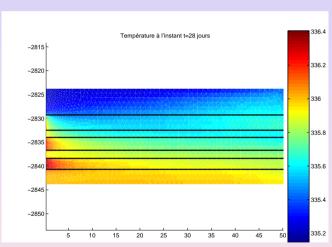


(m) Pressure given by reservoir code

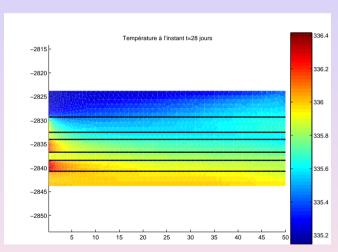


(n) Pressure given by coupled code

Temperature maps in the reservoir at t = 28 days

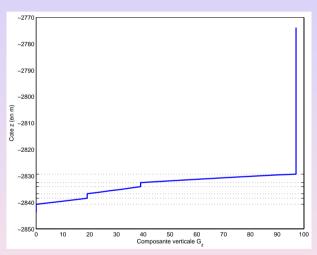


(o) Temperature given by reservoir code

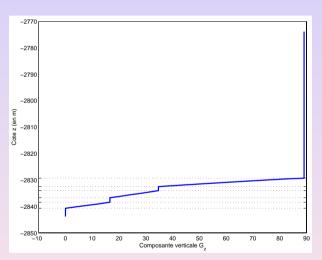


(p) Temperature given by coupled code

Vertical mass fluxes in the wellbore at t = 28 days



(q) G_z given by wellbore code



(r) G_z given by coupled code

Multi-component multi-phase model in reservoir

- Three phases (p): water(w), oil(o) and gas (g)
- n_c components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$

• 3D / Porous medium Ω with n_W wells

Multi-component multi-phase model in reservoir

- Three phases (p): water(w), oil(o) and gas (g)
- n_c components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$

	\bar{w}	n_1	n_2			n_h
w	×					
0		×	×	×	×	×
g		×	×	×	×	×

• 3D / Porous medium Ω with n_W wells

Multi-component multi-phase model in reservoir

- Three phases (p): water(w), oil(o) and gas (g)
- n_c components: water, heavy hydrocarbons, light hydrocarbons, methan....
- n_h hydrocarbon components $(n_h = n_c 1)$

	\bar{w}	n_1	n_2			n_h
w	×					
0		×	×	×	×	×
g		×	×	×	×	×

• 3D / Porous medium Ω with n_W wells

• Mass conservation equation for each component c:

$$\mathcal{F}_{c} = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_{p} \rho_{p} y_{c,p}) + \nabla \cdot (\rho_{p} \mathbf{u}_{p} y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law : $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

Capillary pressure constraints:

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints: $\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

• Mass conservation equation for each component c:

$$\mathcal{F}_c = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p \mathbf{u}_p y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law: $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation :

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

• Capillary pressure constraints :

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints : $\sum_{c=1}^{n_c} y_{c,v} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

• Mass conservation equation for each component c:

$$\mathcal{F}_c = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p \mathbf{u}_p y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law: $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation:

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

• Capillary pressure constraints :

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints : $\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

• Mass conservation equation for each component c:

$$\mathcal{F}_{c} = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_{p} \rho_{p} y_{c,p}) + \nabla \cdot (\rho_{p} \mathbf{u}_{p} y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law: $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation:

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

• Capillary pressure constraints:

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints : $\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

• Mass conservation equation for each component c:

$$\mathcal{F}_c = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_p \rho_p y_{c,p}) + \nabla \cdot (\rho_p \mathbf{u}_p y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law: $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation:

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

• Capillary pressure constraints:

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints : $\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

• Mass conservation equation for each component c:

$$\mathcal{F}_{c} = \sum_{p=o,g,w} \left(\frac{\partial}{\partial t} (\phi S_{p} \rho_{p} y_{c,p}) + \nabla \cdot (\rho_{p} \mathbf{u}_{p} y_{c,p}) \right) = 0$$

 \mathbf{u}_p is given by the generalized Darcy law: $\mathbf{u}_p = -k_{rp}\mu_p^{-1}\underline{\mathbf{K}}(\nabla p_p - \rho_p \mathbf{g})$

• Energy equation:

$$\mathcal{F}_{T} = \frac{\partial}{\partial t} \left[\sum_{p=o,g,w} (\phi \ S_{p} \ \rho_{p} \ \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s} \right] + \sum_{p=o,w,g} \nabla \cdot (\phi S_{p} \rho_{p} \mathcal{H}_{p} \mathbf{u}_{p}) - \nabla \cdot (\lambda \nabla T) + \sum_{p=o,g,w} \mathbf{u}_{p} \cdot \nabla p_{p} = 0$$

• Capillary pressure constraints:

$$p_{c,ow} = p_o - p_w$$
 (oil-water capillary pressure)
 $p_{c,go} = p_g - p_o$ (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

- Saturation constraint : $\sum_{p=1}^{n_p} S_p = 1$
- Component mole fraction constraints : $\sum_{c=1}^{n_c} y_{c,p} = 1 \quad \forall p = w, o, g$
- Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

$$\mathcal{F}_e = f_{c,o} - f_{c,g} = 0$$

└Primary and secondary variables

* Number of equations :

Type	$\underline{\mathbf{Number}}$
Mass conservation	$n_h + 1$
Energy equation	1
Capillary pressure constraints	2
Saturation constraint	1
Component mole fraction constraints	2
Equilibrium relation equations	n_h
Total	$2n_h + 7$

Primary and secondary variables

According to Gibb's phase rule, the number of primary variables is equal to:

$$(n_c + 2 - n_{phase}) + (n_{phase} - 1) = n_c + 1$$

- Use linear constraint equations to remove two pressures, one saturation and two component mole fractions
 - \rightarrow 2 n_h + 2 non-linear equations and variables left
- Multiple choices for the selection of primary variables and equations leading to different models

└Primary and secondary variables

* Number of equations :

Type	$\underline{\text{Number}}$
Mass conservation	$n_h + 1$
Energy equation	1
Capillary pressure constraints	2
Saturation constraint	1
Component mole fraction constraints	2
Equilibrium relation equations	n_h
Total	$2n_h + 7$

Primary and secondary variables

• According to Gibb's phase rule, the number of primary variables is equal to:

$$(n_c + 2 - n_{phase}) + (n_{phase} - 1) = n_c + 1$$

- Use linear constraint equations to remove two pressures, one saturation and two component mole fractions
 - \rightarrow 2 n_h + 2 non-linear equations and variables left
- Multiple choices for the selection of primary variables and equations leading to different models

└Primary and secondary variables

* Number of equations :

Type	$\underline{\text{Number}}$
$\overline{\mathrm{Mass}}$ conservation	$n_h + 1$
Energy equation	1
Capillary pressure constraints	2
Saturation constraint	1
Component mole fraction constraints	2
Equilibrium relation equations	n_h
Total	$2n_h + 7$

Primary and secondary variables

• According to Gibb's phase rule, the number of primary variables is equal to:

$$(n_c + 2 - n_{phase}) + (n_{phase} - 1) = n_c + 1$$

- Use linear constraint equations to remove two pressures, one saturation and two component mole fractions
 - \longrightarrow $2n_h + 2$ non-linear equations and variables left
- Multiple choices for the selection of primary variables and equations leading to different models

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(F_s = \{\mathcal{F}_e\})$
- Primary variables X_p are

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase
 Do a flash and calculate the tangent plane distance for the current phase
 →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_v are:

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase

 Do a flash and calculate the tangent plane distance for the current phase

 →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are:
 - **1** p_g , T, S_g , S_o , $y_{c,g;\ c=3...n_h}$ when both oil and gas phases are present
 - 2 p_0 , T, S_0 , $y_{c,0}$; $c=1...n_b$ when gas phase is not present
 - 3 p_{α} , T, S_{α} , $y_{c,\alpha}$, $c=1...n_b$ when oil phase is not present

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase

 Do a flash and calculate the tangent plane distance for the current phase

 →if it is negative, a second hydrocarbon phase reappears and needs to reassign
 saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are:
 - \bullet p_g , T, S_g , S_o , $y_{c,g;\ c=3...n_h}$ when both oil and gas phases are present
 - 2 p_0 , T, S_0 , $y_{c,o; c=1...n_h}$ when gas phase is not present
 - 3 p_{σ} , T, S_{σ} , $y_{c,\sigma; c=1...n_b}$ when oil phase is not present

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase

 Do a flash and calculate the tangent plane distance for the current phase

 →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(F_s = \{\mathcal{F}_e\})$
- Primary variables X_p are:
 - $oldsymbol{0}$ p_g , T, S_g , S_o , $y_{c,g}$, $c=3...n_h$ when both oil and gas phases are present
 - 2 p_o , T, S_o , $y_{c,o}$, $c=1...n_h$ when gas phase is not present
 - **3** p_g , T, S_g , $y_{c,g}$, $c=1...n_h$ when oil phase is not present

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase

 Do a flash and calculate the tangent plane distance for the current phase

 →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_p = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are:
 - ① p_g , T, S_g , S_o , $y_{c,g}$, $c=3...n_h$ when both oil and gas phases are present
 - 2 p_o , T, S_o , $y_{c,o; c=1...n_h}$ when gas phase is not present
 - δp_g , T, S_g , $y_{c,g; c=1...n_h}$ when oil phase is not present

- Phase disappearance for a gridblock with two hydrocarbon phases
 If either S_o or S_g is negative, the corresponding hydrocarbon phase has disappeared

 set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase

 Do a flash and calculate the tangent plane distance for the current phase

 →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Coats Model

- Primary equations are the $n_c + 1$ mass and energy balance equations $(\mathbf{F}_v = \{\mathcal{F}_c, \mathcal{F}_T\})$
- Equations left over are the secondary equations $(\mathbf{F}_s = \{\mathcal{F}_e\})$
- Primary variables X_p are:
 - ① p_g , T, S_g , S_o , $y_{c,g;\ c=3...n_h}$ when both oil and gas phases are present ② p_o , T, S_o , $y_{c,o;\ c=1...n_h}$ when gas phase is not present

 - **3** p_g , T, S_g , $y_{c,g}$, $c=1...n_h$ when oil phase is not present

- Phase disappearance for a gridblock with two hydrocarbon phases If either S_0 or S_g is negative, the corresponding hydrocarbon phase has disappeared → set the negative saturation to zero and reassign saturations and mole fractions
- Phase reappearance for a gridblock with only one hydrocarbon phase Do a flash and calculate the tangent plane distance for the current phase →if it is negative, a second hydrocarbon phase reappears and needs to reassign saturations and mole fractions

Finite volume discretization

 \bullet Equations are integrated over each gridblock V

- ullet Equations are integrated over each gridblock V
- For diffusive terms:

$$\int_{K} div(\underline{\mathbf{K}} \nabla v) dx = \sum_{\sigma \in \varepsilon_{K}} \int_{\sigma} \underline{\mathbf{K}} \nabla v \cdot \mathbf{n}_{K,\sigma} d\sigma$$

$$= \sum_{\sigma \in \varepsilon_{K}} k_{K,\sigma} \frac{v_{\sigma} - v_{K}}{d_{K,\sigma}} mes(\sigma)$$

$$= -\sum_{\sigma \in \varepsilon_{K}} F_{K,\sigma}^{v}$$

- ullet Equations are integrated over each gridblock V
- For diffusive terms:

$$\int_{K} div(\underline{\mathbf{K}} \nabla v) dx = \sum_{\sigma \in \varepsilon_{K}} \int_{\sigma} \underline{\mathbf{K}} \nabla v \cdot \mathbf{n}_{K,\sigma} d\sigma$$

$$= \sum_{\sigma \in \varepsilon_{K}} k_{K,\sigma} \frac{v_{\sigma} - v_{K}}{d_{K,\sigma}} mes(\sigma)$$

$$= -\sum_{\sigma \in \varepsilon_{K}} F_{K,\sigma}^{v} = \sum_{\sigma \in \varepsilon_{K}} \tau_{\sigma}(v_{L} - v_{K})$$

- Conservation of fluxes over the face σ : $F_{K,\sigma}^v = -F_{L,\sigma}^v$
- τ_{σ} is the transmissibility: $\tau_{\sigma} = mes(\sigma) \frac{k_{K,\sigma} k_{L,\sigma}}{k_{K,\sigma} d_{L,\sigma} + k_{L,\sigma} d_{K,\sigma}}$.

Finite volume discretization

- ullet Equations are integrated over each gridblock V
- For diffusive terms:

$$\int_{K} div(\mathbf{K}\nabla v)dx = -\sum_{\sigma \in \varepsilon_{K}} \mathbf{F}_{K,\sigma}^{v} = \sum_{\sigma \in \varepsilon_{K}} \tau_{\sigma}(v_{L} - v_{K})$$

- ullet Equations are integrated over each gridblock V
- For diffusive terms:

$$\int_{K} div(\underline{\mathbf{K}} \nabla v) dx = -\sum_{\sigma \in \varepsilon_{K}} F_{K,\sigma}^{v} = \sum_{\sigma \in \varepsilon_{K}} \tau_{\sigma}(v_{L} - v_{K})$$

• For convective terms:

$$\int_{K} \mathbf{u} \cdot \nabla v \, dx = \int_{\partial K} v \, \mathbf{u} \cdot \mathbf{n} \, d\sigma - \int_{K} v_{K} \, div(\mathbf{u}) dx$$

$$\approx \int_{\partial K^{+}} v_{K} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma + \int_{\partial K^{-}} v_{ext} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma - \int_{\partial K} v_{K} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma$$

$$= \sum_{\sigma \in \partial K^{-}} (v_{ext} - v_{K}) \int_{\sigma} \mathbf{u} \cdot \mathbf{n}_{K,\sigma} \, d\sigma$$

- \bullet Equations are integrated over each gridblock V
- For diffusive terms:

$$\int_{K} div(\underline{\mathbf{K}} \nabla v) dx = -\sum_{\sigma \in \varepsilon_{K}} F_{K,\sigma}^{v} = \sum_{\sigma \in \varepsilon_{K}} \tau_{\sigma}(v_{L} - v_{K})$$

• For convective terms:

$$\int_{K} \mathbf{u} \cdot \nabla v \, dx = \int_{\partial K} v \, \mathbf{u} \cdot \mathbf{n} \, d\sigma - \int_{K} v_{K} \, div(\mathbf{u}) dx$$

$$\approx \int_{\partial K^{+}} v_{K} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma + \int_{\partial K^{-}} v_{ext} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma - \int_{\partial K} v_{K} \, \mathbf{u} \cdot \mathbf{n} \, d\sigma$$

$$= \sum_{\sigma \in \partial K^{-}} (v_{ext} - v_{K}) \int_{\sigma} \mathbf{u} \cdot \mathbf{n}_{K,\sigma} \, d\sigma$$

• In our equation, **u** is equal to $\underline{\mathbf{K}}\nabla p$:

$$\int_{K} \mathbf{\underline{K}} \nabla p \cdot \nabla v \, dx = -\sum_{\sigma \in \partial K^{-}} (v_{ext} - v_{K}) \, F_{K,\sigma}^{p}$$

Discretized system

$$\begin{cases} \forall K \in \mathcal{T}_{h}, \\ E_{K}^{c} = V_{K} \frac{(\phi \sum_{p} S_{p} \rho_{p} y_{c,p})_{K}^{-} (\phi \sum_{p} S_{p} \rho_{p} y_{c,p})_{K}^{n-1}}{\Delta t} + Q_{lim,K}^{c} \\ -\sum_{p} (\sum_{\{\sigma\} = \bar{K} \cap \bar{L}} \tau_{\sigma} (\Lambda_{p} y_{c,p})_{K/L} (p_{p,L} - p_{p,K} - \gamma (Z_{L} - Z_{K}))) = 0, c = 1, \cdots, n_{c} \end{cases}$$

$$E_{K}^{T} = V_{K} \frac{(\sum_{p} (\phi S_{p} \rho_{p} \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s})_{K}^{-} (\sum_{p} (\phi S_{p} \rho_{p} \mathcal{H}_{p} - p_{p}) + (1 - \phi) \rho_{s} \mathcal{H}_{s})_{K}^{n-1}}{\Delta t}$$

$$-\sum_{p} (\sum_{\{\sigma\} = \bar{K} \cap \bar{L}} \tau_{\sigma} (\Lambda_{p} \mathcal{H}_{p})_{K/L} (p_{p,L} - p_{p,K} - \gamma (Z_{L} - Z_{K}))) + Q_{lim,K}^{T}$$

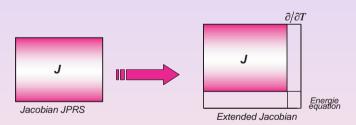
$$-\sum_{p} \sum_{\{\sigma\} = \bar{K} \cap \bar{L}} \tau_{\sigma} (\phi^{-1} S_{p}^{-1} \mu_{p}^{-1} k_{rp})_{K/L} (p_{p,L} - p_{p,K} - \gamma (Z_{L} - Z_{K})) (p_{p,L} - p_{p,K})$$

$$-\sum_{\{\sigma\} = \bar{K} \cap \bar{L}} \tau_{\sigma} (\Lambda_{p} \mathcal{H}_{p})_{K/L} (T_{L} - T_{K}) + Q_{lim,K}^{\Lambda} = 0$$

Numerical scheme

- Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator), developed at the University of Stanford
- Iterative Newton Raphson method:

$$J\Delta X = -F(X^n) \text{ with } J = \frac{\partial F}{\partial X}(X^n)$$



Numerical scheme

- Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator), developed at the University of Stanford
- The jacobian matrix of the full system can be written as:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_s} \\ \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_s} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \mathbf{and} \quad -\mathbf{F} = \begin{bmatrix} -\mathbf{F}_p \\ -\mathbf{F}_s \end{bmatrix}$$

Numerical scheme

- Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator), developed at the University of Stanford
- The jacobian matrix of the full system can be written as:

$$\mathbf{J} = \begin{bmatrix} \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_p}{\partial \mathbf{X}_s} \\ \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_p} & \frac{\partial \mathbf{F}_s}{\partial \mathbf{X}_s} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \mathbf{and} \quad -\mathbf{F} = \begin{bmatrix} -\mathbf{F}_p \\ -\mathbf{F}_s \end{bmatrix}$$

• First, extract primary variables:

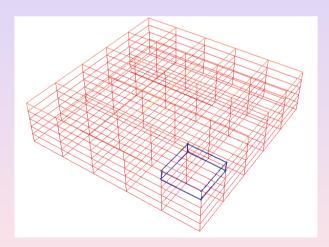
$$(A - B D^{-1} C) \Delta \mathbf{X}_p = (-\mathbf{F}_p + B D^{-1} \mathbf{F}_s)$$

Next, update secondary ones :

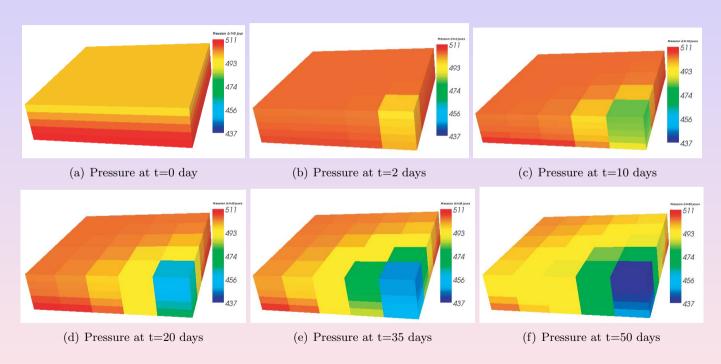
$$\Delta \mathbf{X}_s = -D^{-1} \mathbf{F}_s - (D^{-1} C) \Delta \mathbf{X}_p$$

Comparison with isothermal GPRS

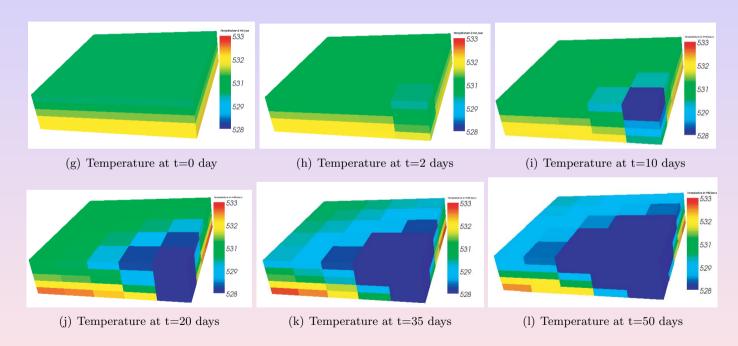
- Reservoir of dimensions $5000ft \times 5000ft \times 50ft$
- Three components: methan CH_4 , butan C_4H_{10} and heptan C_7H_{16}
- Production during 50 days by imposing a bottom hole pressure of 300 psi



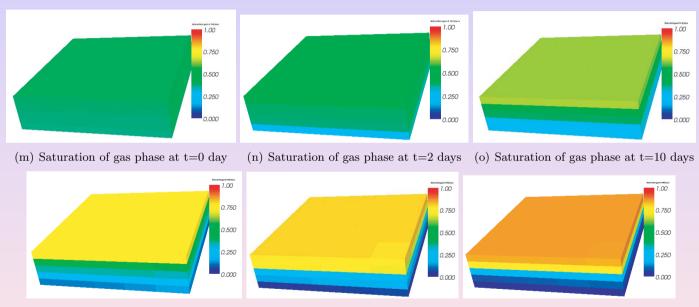
Behaviour of the pressurre during 50 days production



Behaviour of the temperature during 50 days production

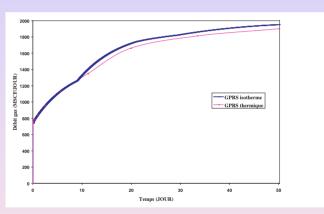


Behaviour of the gas saturation during 50 days production

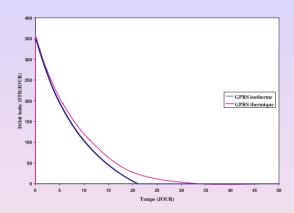


(p) Saturation of gas phase at t=20 days (q) Saturation of gas phase at t=35 (r) Saturation of gas phase at t=50 days

Comparison of production rates

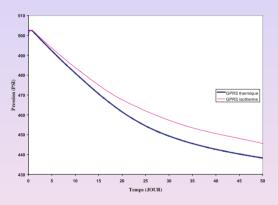


(s) Gas production rate (MSCF/DAY)

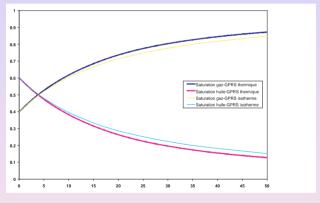


(t) Oil production rate (STB/DAY)

Comparison of pressure and saturations in the well block



(u) Pressure in psia

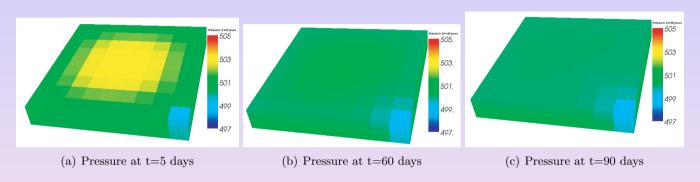


(v) Saturations of oil and gas phases

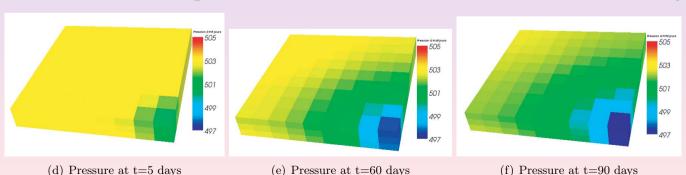
Sensibility vs. boundary conditions

- Reservoir of dimensions $9000ft \times 9000ft \times 30ft$
- Two components: methan CH_4 and butan C_4H_{10}
- Production of gas during 90 days by imposing a constant flowrate

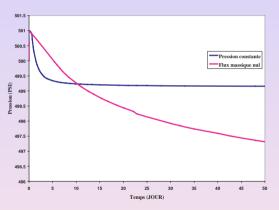
Behaviour of the pressure : constant pressure on the exterior boundary



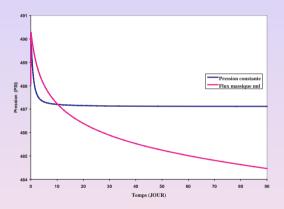
Behaviour of the pressure: no flow on the exterior boundary



Comparison of pressures in the well block and in the well



(g) Pressures in the well block



(h) Pressures in the well

Perspectives

- 1 Extend multi-phase simulator in order to treat steam injection
- 2 Develop a multi-phase anisothermal wellbore model and couple it with the reservoir
- **3** Solve inverse problems
 - * Determine initial temperature
 - * Determine flow profiles
- 4 Consider deviated wells

Remerciements

Thank you for your attention