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Increase of subsea wellheads and highly
deviated wells
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optical fiber sensors

Temperature measurements continuous in
time and all along the well

Possible applications

Estimate virgin reservoir temperature

Predict flow profiles and the flow rate of each layer
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Motivations

Motivations

Optical fiber sensors

Increase of subsea wellheads and highly
deviated wells
↪→Production log are less easy to be

performed

Emerging of new technologies such as
optical fiber sensors

Temperature measurements continuous in
time and all along the well

Interpretation of temperature profiles

↪→ Need for an EXHAUSTIVE ENERGY EQUATION
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Equation considered in Denel’s thesis

Multi-component multi-phase flow :∑
p

(
∂
∂t

(φ Sp ρp Up) + ∇ · (φ Sp ρpUpup) + pp ∇ · up − ∇ ·
(
λp∇T

)
− Φµ,p

)
= 0

Equivalent conductivity : λ = (λs)(1−φ)
× (λw)Sw×φ × (λo)So×φ ×

(
λg

)Sg×φ

∑
p

(
∂
∂t

(φSpρpUp) + ∇ · (φ SpρpUpup) + pp∇ · up

)
− ∇ · (λ∇T) +

∑
p

up · ∇pp = 0
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∗ Part I: Coupling of single phase reservoir and wellbore models

Coupling of the two models/Transmission conditions

Analysis of the continuous global problem

Finite element discretization

Numerical results

∗ Part II: Multi-component multi-phase model in reservoir

Physical modeling

Finite volume discretization

Numerical scheme

Numerical results
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Coupling of single phase reservoir and wellbore models

Porous media Ω divided into N
geological layers Ωi

Layers characterized by their own
physical and thermodynamic
properties

Layers saturated with a formation
water and a monophasic
compressible fluid

Only the monophasic fluid is mobile

2D axisymmetric hypothesis

Couple Denel’s reservoir and wellbore models

B. Denel, Simulation numérique et couplage de modèles thermomécaniques puits-milieux poreux, Thèse de doc-
torat, Université de Pau, 2004
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Coupling of single phase reservoir and wellbore models

Reservoir and Wellbore problems

Semi-discretized reservoir model(Darcy-Forchheimer):

1
r MG1 + ∇p1 = −ρn−1

1 g

1
rλq1 − ∇T1 = 0

r a
∆tp1 − r b

∆tT1 + divG1 = r a
∆tp

n−1
1 − r b

∆tT
n−1
1

r d
∆tT1 + κG

n−1
1 .∇T1 − r f

∆tp1 + lGn−1
1 .∇p1 − divq1 = r d

∆tT
n−1
1 − r f

∆tp
n−1
1

Semi-discretized wellbore model(Compressible Navier-Stokes):

div(rG2) = −r
ρ2−ρn

2
∆t

div(ru2) = 1
ρ (div(rG2) − rG2 · ∇ρ2)

rρu2
∆t + rG2 · ∇u2 + r∇p2 − div(rτ) + τθθer + rF |G2|u2 = rρ2g + rρ2

un
2
∆t

1
λq2 − ∇T2 = 0

rcv(ρT2
∆t +G2 · ∇T2) − div(rq2) = rρcv

Tn
2
∆t −

1
2 (ρ

|u2|
2
−|un

2 |
2

∆t +G2.∇(|u2|
2)) − div(rp2u2) + div(rτ2u2) + rgG2

G = rρu : mass flux
q = rλ∇T : heat flux
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Coupling of single phase reservoir and wellbore models

Transmission conditions

Mathematical difficulties related to the coupling

A multiscale problem (stiff coupling):
1 2D axisymetric reservoir model
2 1.5D wellbore model

Flow has a privileged direction
⇒ Derive a 1.5D model

Explicit dependency on r :

u =
r
R

u1(z) +
R − r

R
u0(z)

G =
( r

R G1(z)
G2(z)

)

q =
( r

R q1(z)
q2(z)

)
ρ = ρ(z) , p = p(z) , T = T(z)

Consider only one rectangular mesh in the radial direction
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Coupling of single phase reservoir and wellbore models

Transmission conditions

Mathematical difficulties related to the coupling

A multiscale problem (stiff coupling):
1 2D axisymetric reservoir model
2 1.5D wellbore model

Additional unknown in the wellbore: Velocity u2

Density is not constant in the two domains

Energetic aspect taken into account

Transmission conditions at the interface

[G · n] = 0⇒ G1 · n = RG2 · n

[σn · n] = 0⇒ −p1 + τrr = −p2

u2 · t = 0
or u2 · t = −

√
κ
α σ2n · t Beavers-Joseph-Saffman

G1 · n = ρ u2 · n

[q · n] = 0⇒ q1 · n = Rq2 · n

[T] = 0⇒ T1 = T2
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

Variational formulation in the reservoir
We denote : x1 = (G1,q1, p1,T1)
Functional framework :

X1 =H(div,Ω1) ×H(div,Ω1) × L2(Ω1) × L2(Ω1)
X0

1 = {x1 ∈ X1 ; G1 · n = 0 on ΥG, q1 · n = 0 on Υq}

X∗1 = {x1 ∈ X1 ; G1 · n = G∗ on ΥG, q1 · n = q∗ on Υq}

Variational formulation : 
Find x1 ∈ X∗1

A1(x1, x′1) = F1(x′1) ∀x′1 ∈ X0
1

Weak formulation in the wellbore
We denote : x2 = (G2,u2, p2,q2,T2)
Functional framework :

X2 =W ×V ×M ×H ×M
X∗2 =W

∗
×V∗ ×M ×H ×M

Y2 =M ×V0
×M ×H ×M

Weak formulation : 
Find x2 ∈ X∗2

A2(x2, x′2) = F2(x′2) ∀x′2 ∈ Y2
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

An integration by part in the reservoir yields the terms :∫
Σ

p1G′1 · n dσ −
∫
Σ

T1q′1 · n dσ

An integration by part in the wellbore yields the terms :∫
Σ

R
(
p2 − τ2n · n

)
u′2 · n dσ −

∫
Σ

RT2q′2 · n dσ

Dualization by Lagrange multipliers Λ = (θ, µ) :

θ = p1 = p2 − τ2n · n µ = T1 = T2

Multipliers’ spaces:
L = L2(Σ) × L2(Σ) K = L2(Σ) × L2(Σ) × L2(Σ)

Bilinear forms:

I(Λ, x′) =
∫
Σ

(
G′1 · n − Ru′2 · n

)
θ dσ −

∫
Σ

(q′1 · n − Rq′2 · n)µ dσ

J(Λ′, x) =
∫
Σ

(G1 · n − Rρ2u2 · n)θ′ dσ +
∫
Σ

(G1 · n − RG2 · n)ζ′ dσ −
∫
Σ

(q1 · n − Rq2 · n)µ′ dσ
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

Weak formulation for the coupled problem
Functional framework :

X = {x = (x1, x2) ∈ X1 × X2 ; G1 · n, q1 · n ∈ L2(Σ)}

Y = {x′ = (x′1, x
′

2) ∈ X1 × Y2Σ ; G1 · n, q1 · n ∈ L2(Σ)}

X∗ = {(x1, x2) ∈ X ; G1 · n = G∗ on ΥG \ Σ, q1 · n = q∗ on Υq \ Σ, u2 · n = Q on Γs}

Y0 = {x′ ∈ Y ; G′1 · n = 0 on ΥG \ Σ, q′1 · n = 0 on Υq \ Σ, u′2 · n = 0 on Γs}

Weak formulation : 
Find x ∈ X∗,Λ ∈ L

A(x, x′) + I(Λ, x′) = F (x′) ∀x′ ∈ Y0

J(Λ′, x) = 0 ∀Λ′ ∈ K

Where :

A(x, x′) = A1(x1, x′1) +A2(x2, x′2) ∀x ∈ X, ∀x′ ∈ Y

F (x′) = F1(x′1) + F2(x′2) ∀x′ ∈ Y
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

Analysis of the continuous global problem

Babuška’s theorem :

I and J satisfy an inf-sup condition

The coupled problem reduces to :{
Find x ∈ J∗

A(x, x′) = F (x′) ∀x′ ∈ I

Where :
J∗ =

{
x ∈ X∗ ; J(Λ′, x) = 0 ∀Λ′ ∈ K

}
I =

{
x′ ∈ Y0 ; I(Λ, x′) = 0 ∀Λ ∈ L

}

Theorem : ∀x ∈ J0 \ {0} , sup
x′∈I

A(x,x′)
‖x′‖Y

> 0

↪→ UNIQUENESS OF THE SOLUTION

Existence : Galerkin’s method (via finite element spaces)
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

Analysis of the continuous global problem

Babuška’s theorem :

I and J satisfy an inf-sup condition

The coupled problem reduces to :{
Find x ∈ J∗

A(x, x′) = F (x′) ∀x′ ∈ I

Where :
J∗ =

{
x ∈ X∗ ; J(Λ′, x) = 0 ∀Λ′ ∈ K

}
I =

{
x′ ∈ Y0 ; I(Λ, x′) = 0 ∀Λ ∈ L

}

Theorem : ∀x ∈ J0 \ {0} , sup
x′∈I

A(x,x′)
‖x′‖Y

> 0

↪→ UNIQUENESS OF THE SOLUTION

Existence : Galerkin’s method (via finite element spaces)
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

Proof of the uniqueness

By putting : U = (G1,q1,G2,u2,q2) U′ = (G′1,q
′

1, χ,u
′

2,q
′

2) s = (p1,T1, p2,T2)

Non-standard Mixed formulation :
Find (U, s) ∈ U∗ × S

A(U,U′) + B(s,U′) = F1(U′) ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = F2(s′) ∀s′ ∈ S

Where :

A(U,U′) =
∫
Ω1

1
r MG1 ·G′1dx+

∫
Ω1

1
rλ1

q1 ·q′1dx+
∫
Ω2
χdiv(rG2)dx+

∫
Ω2

r
λ1

q2 ·q′2dx+ a(u2,u′2) non symmetric

B(s,U′) = −
∫
Ω1

p1divG′1dx +
∫
Ω1

T1divq′1dx −
∫
Ω2

p2div(ru′2)dx +
∫
Ω2

T2div(rq′2)

C(s, s′) =
∫
Ω1

r a
∆t p1p′1dx −

∫
Ω1

r b
∆t T1p′1dx +

∫
Ω1

r d
∆t T1T′1dx −

∫
Ω1

r f
∆t p1T′1dx +

∫
Ω2

r cvρ2
∆t T2T′2dx non symmetric
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

U = (G1,q1,G2,u2,q2) ∈ U0 define RU = U′ = (G′1,q1, χ,u2,q2) satisfying :

G′1 · n =
1
ρ2

G1 · n on Σ, divG′1 = divG1 in Ω1,
∥∥∥G′1

∥∥∥
0,Ω1
+ ‖χ‖0,Ω2

≤ c ‖U‖ .

↪→


U′ ∈ T0, ‖U′‖ ≤ c ‖U‖ , B(s,U) = B(s,U′)

A(U,U′) ≥ c
(∥∥∥q1

∥∥∥2
0,Ω1
+

∥∥∥q2
∥∥∥2

0,Ω2

)
+m(u2,u2) +

∫
Ω1

1
r MG1 ·G′1dx +

∫
Ω2
χdiv(rG2)dx

Bound m(u2,u2) by means of Young’s inequality
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

∗ ∀s ∈ S, C(s, s) ≥ γ(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1
+ ‖T2‖

2
0,Ω2

)
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

∗ ∀s ∈ S, C(s, s) ≥ γ(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1
+ ‖T2‖

2
0,Ω2

)

C(s, s′) =
∫
Ω1

r a
∆t p1p′1dx −

∫
Ω1

r b
∆t T1p′1dx +

∫
Ω1

r d
∆t T1T′1dx −

∫
Ω1

r f
∆t p1T′1dx +

∫
Ω2

r cvρ2
∆t T2T′2dx

If 4ad − (b + f )2
≥ c a.e. in Ω1, we have:∫

Ω1

r
a
∆t

p1p1dx −
∫
Ω1

r
b
∆t

T1p1dx +
∫
Ω1

r
d
∆t

T1T1dx −
∫
Ω1

r
f
∆t

p1T1dx ≥
c
∆t

(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1

)
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

∗ ∀s ∈ S, C(s, s) ≥ γ(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1
+ ‖T2‖

2
0,Ω2

)

then U = 0 and (p1,T1,T2) = 0
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

∗ ∀s ∈ S, C(s, s) ≥ γ(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1
+ ‖T2‖

2
0,Ω2

)

then U = 0 and (p1,T1,T2) = 0

∗ There exists β > 0 such that : β2 ‖s‖ ≤ supU′∈T0
B(s,U′)
‖U′‖

Fortin’s trick :

s = (p1,T1, p2,T2) ∈ S 7−→ U′ = (G′1,q1, χ,u2,q2) ∈ T0 satisfying
{
B(s,U′) ≥ c1‖s‖2

‖U′‖ ≤ c2‖s‖
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Coupling of single phase reservoir and wellbore models

Analysis of the continuous global problem

The homogeneous problem admits only the trivial solution ??

Let (U, s) a solution of :


A(U,U′) + B(s,U′) = 0 ∀U′ ∈ T0

−B(s′,U) + C(s, s′) = 0 ∀s′ ∈ S

∗ There exists R : U0
→ T0 linear , continuous and satisfying :

A(U,RU) > 0, U −U′ ∈ KerB

∗ ∀s ∈ S, C(s, s) ≥ γ(
∥∥∥p1

∥∥∥2
0,Ω1
+ ‖T1‖

2
0,Ω1
+ ‖T2‖

2
0,Ω2

)

then U = 0 and (p1,T1,T2) = 0

∗ There exists β > 0 such that : β2 ‖s‖ ≤ supU′∈T0
B(s,U′)
‖U′‖

then p2 = 0
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Coupling of single phase reservoir and wellbore models

Finite element discretization

Discrete problem

Suppose that the two meshes match on the perforations

Denote by Eh the set of edges situated on the interface Σ

Finite dimensional spaces
Conservative variables (specific flux, heat flux) :

RT0 =

{(
ar + b
az + c

)
a, b, c ∈ R

}
Vh = {G ∈ H (div,Ω) ; G/K ∈ RT0 ∀K ∈ Th}

Scalar variables (pressure, temperature, density) :

Lh = {p ∈ L2 (Ω) ; p/K ∈ P0 ∀K ∈ Th}

Fluid’s velocity :
Xh = {u ∈ H1 (Ω) ; v/K ∈ Q1 ∀K ∈ Th}

Lagrange multipliers on the interface :

Kh = {µ ∈ L2(Σ) ; µ ∈ P0(e) ∀e ∈ Eh}
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Coupling of single phase reservoir and wellbore models

Finite element discretization

Discrete formulation
Find xh ∈ X

∗

h,Λh ∈ Lh

Ah(xh, x′) + I(Λh, x′) = Fh(x′) ∀x′ ∈ Yh

J(Λ′, xh) = 0 ∀Λ′ ∈ Kh

Upwind sheme for convective terms

∂K− = {e ∈ ∂K / Gn−1
h · n < 0}

For any P0 functions T :∫
K
κGn−1

h · ∇T dx =
∑

e∈∂K−
κ (T∗−T/K)

∫
e
Gn−1

h · ndσ ∀T ∈ Lh

For any Q1-continuous functions φ and v :∫
K

r Gn−1
h · ∇φ v dx =

∑
e∈∂K−

(φ∗−PK(φ))
∫

e
r Gn−1

h · n v dσ ∀K ∈ Th
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Finite element discretization

Discrete formulation
Find xh ∈ X

∗

h,Λh ∈ Lh
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Upwind sheme for convective terms

∂K− = {e ∈ ∂K / Gn−1
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For any P0 functions T :∫
K
κGn−1

h · ∇T dx =
∑

e∈∂K−
κ (T∗−T/K)

∫
e
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h · ndσ ∀T ∈ Lh

For any Q1-continuous functions φ and v :∫
K
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e∈∂K−

(φ∗−PK(φ))
∫

e
r Gn−1

h · n v dσ ∀K ∈ Th



Numerical modeling of thermomechanical multi-phase flows, well-porous medium

Coupling of single phase reservoir and wellbore models

Finite element discretization

Theorem : The discrete problem has a unique solution for ∆t small enough

Sketch of the proof

Follow the proof of the continuous case, with constants independent of h

Use Fortin’s trick and interpolate continuous functions

Need an auxiliary result :

For any (p, θ) ∈Mh × Kh , there exists G ∈ Vh satisfying :

G · n = θ on Σ, G · n = 0 on ΥG \ Σ

divG = p in Ω1

‖G‖H(div,Ω1) + ‖G · n‖0,Σ ≤ c(
∥∥∥p

∥∥∥
0,Ω1
+ ‖θ‖0,Σ)
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Coupling of single phase reservoir and wellbore models

Numerical results

Mesh convergence

Test 1: two-layered reservoir

Two layers with the same properties

Only the lower one is perforated

Production of light oil during seven days
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Coupling of single phase reservoir and wellbore models

Numerical results

Convergence rate for the pressure at t=7 days

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−9

−8.5

−8

−7.5

−7

−6.5
Erreur relative sur la Pressiondans le reservoir en norme L2 (t=7j)

  ←−1.3944

(a) order of the error in the reservoir

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−11

−10.5

−10

−9.5

−9

−8.5

−8
Erreur relative sur la pression dans le puits en norme L2 (t=7j)

  ←−1.6197

(b) order of the error in the well

Numerically, ‖p − ph‖0,Ω ≤ C|h|α, with α ' 1.39 in the reservoir and α ' 1.61 in the well
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Coupling of single phase reservoir and wellbore models

Numerical results

Realistic reservoir

Test 2: realistic reservoir

Seven layers with different properties

Production of oil during 28 days

Conditions of the simulation for the coupled problem
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Coupling of single phase reservoir and wellbore models

Numerical results

Specific flux at the end of the production

(c) Same scale in the 2 domains (d) Different scales (ratio equal to 10)
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Coupling of single phase reservoir and wellbore models

Numerical results

Behaviour of the pressure during one month production

0 1 2 3 4 5 6 7 8
−2850

−2840

−2830

−2820

−2810

−2800

−2790

−2780

−2770
Pressure at t=0 days

3.88

3.9

3.92

3.94

3.96

3.98

4

x 10
7

(e) Pressure at t=0 day
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(f) Pressure at t=2 days
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(g) Pressure at t=7 days
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(h) Pressure at t=28 days
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Coupling of single phase reservoir and wellbore models

Numerical results

Behaviour of the temperature during one month production
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(i) Temperature at t=0 day
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(j) Temperature at t=2 days
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(k) Temperature at t=7 days
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(l) Temperature at t=28 days
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Coupling of single phase reservoir and wellbore models

Numerical results

Comparison with the separate reservoir and wellbore codes

Previous simulation conditions for the coupled code

Conditions of the simulation for the sole reservoir model :
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Coupling of single phase reservoir and wellbore models

Numerical results

Pressure maps in the reservoir at t = 28 days

5 10 15 20 25 30 35 40 45 50

−2850

−2845

−2840

−2835

−2830

−2825

−2820

−2815

Pression à l’instant t=28 jours

3.91

3.92

3.93

3.94

3.95

3.96

3.97

3.98

3.99

4

x 10
7

(m) Pressure given by reservoir code
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(n) Pressure given by coupled code
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Coupling of single phase reservoir and wellbore models

Numerical results

Temperature maps in the reservoir at t = 28 days
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(o) Temperature given by reservoir code
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(p) Temperature given by coupled code
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Coupling of single phase reservoir and wellbore models

Numerical results

Vertical mass fluxes in the wellbore at t = 28 days
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Multi-component multi-phase model in reservoir

Multi-component multi-phase model in reservoir

Three phases (p) : water(w), oil(o) and gas (g)

nc components: water, heavy hydrocarbons,
light hydrocarbons, methan....

nh hydrocarbon components (nh = nc − 1)

w̄ n1 n2 . . . . . . nh
w ×

o × × × × ×

g × × × × ×

3D / Porous medium Ω with nW wells
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Multi-component multi-phase model in reservoir
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Multi-component multi-phase model in reservoir

Governing equations

Mass conservation equation for each component c :

Fc =
∑

p=o,g,w

(
∂
∂t

(φSpρpyc,p) + ∇ · (ρpupyc,p)
)
= 0

up is given by the generalized Darcy law : up = −krpµ−1
p K(∇pp − ρpg)

Energy equation :

FT =
∂
∂t

 ∑
p=o,g,w

(φ Sp ρp Hp − pp) +
(
1 − φ

)
ρsHs

+ ∑
p=o,w,g

∇ · (φSpρpHpup)−∇ · (λ∇T)+
∑

p=o,g,w
up · ∇pp = 0

Capillary pressure constraints :

pc,ow = po − pw (oil-water capillary pressure)
pc,go = pg − po (gas-oil capillary pressure)

Capillary pressures are measured in laboratories
Saturation constraint :

∑np

p=1 Sp = 1

Component mole fraction constraints :
∑nc

c=1 yc,p = 1 ∀p = w, o, g
Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:

Fe = fc,o − fc,g = 0

fc,o and fc,g are the fugacities of hydrocarbon component c in oil and gas phases
respectively, calculated from the Peng-Robinson equation of state
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Multi-component multi-phase model in reservoir

Primary and secondary variables

∗ Number of equations :
Type Number
Mass conservation nh + 1
Energy equation 1
Capillary pressure constraints 2
Saturation constraint 1
Component mole fraction constraints 2
Equilibrium relation equations nh
Total 2nh + 7

Primary and secondary variables

According to Gibb’s phase rule, the number of primary variables is equal to :

(nc + 2 − nphase) + (nphase − 1) = nc + 1

Use linear constraint equations to remove two pressures, one saturation and two
component mole fractions

−→ 2nh + 2 non-linear equations and variables left

Multiple choices for the selection of primary variables and equations leading to different
models
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Multi-component multi-phase model in reservoir

Primary and secondary variables

Coats Model

Primary equations are the nc + 1 mass and energy balance equations (Fp = {Fc,FT})
Equations left over are the secondary equations (Fs = {Fe})
Primary variables Xp are :

1 pg, T, Sg, So, yc,g; c=3...nh when both oil and gas phases are present
2 po, T, So, yc,o; c=1...nh when gas phase is not present
3 pg, T, Sg, yc,g; c=1...nh when oil phase is not present

Flash calculations are used to check the state of hydrocarbon phases in gridblocks

Phase disappearance for a gridblock with two hydrocarbon phases
If either So or Sg is negative, the corresponding hydrocarbon phase has disappeared
−→ set the negative saturation to zero and reassign saturations and mole fractions

Phase reappearance for a gridblock with only one hydrocarbon phase
Do a flash and calculate the tangent plane distance for the current phase
−→if it is negative, a second hydrocarbon phase reappears and needs to reassign
saturations and mole fractions
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Finite volume discretization

Equations are integrated over each gridblock V

For diffusive terms : ∫
K div(K∇v)dx =

∑
σ∈εK

∫
σ

K∇v · nK,σ dσ

=
∑
σ∈εK

kK,σ
vσ − vK

dK,σ
mes(σ)

= −

∑
σ∈εK

Fv
K,σ
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Finite volume discretization

Equations are integrated over each gridblock V

For diffusive terms : ∫
K div(K∇v)dx =

∑
σ∈εK

∫
σ

K∇v · nK,σ dσ

=
∑
σ∈εK

kK,σ
vσ − vK

dK,σ
mes(σ)

= −

∑
σ∈εK

Fv
K,σ =

∑
σ∈εK

τσ(vL − vK)

Conservation of fluxes over the face σ : Fv
K,σ = −Fv

L,σ

τσ is the transmissibility : τσ = mes(σ) kK,σkL,σ
kK,σdL,σ+kL,σdK,σ

.
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K

div(K∇v)dx = −
∑
σ∈εK

Fv
K,σ =

∑
σ∈εK

τσ(vL − vK)

For convective terms:∫
K u · ∇v dx =

∫
∂K

v u · n dσ −
∫

K
vK div(u)dx

≈

∫
∂K+

vK u · n dσ +
∫
∂K−

vext u · n dσ −
∫
∂K

vK u · n dσ

=
∑
σ∈∂K−

(vext − vK)
∫
σ

u · nK,σ dσ
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vK u · n dσ
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∑
σ∈∂K−

(vext − vK)
∫
σ

u · nK,σ dσ

In our equation, u is equal to K∇p :∫
K

K∇p · ∇v dx = −
∑
σ∈∂K−

(vext − vK) Fp
K,σ
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Finite volume discretization

Discretized system

∀ K ∈ Th,

Ec
K = VK

(φ
∑
p

Spρp yc,p)K−(φ
∑
p

Spρp yc,p)n−1
K

∆t + Qc
lim,K

−
∑
p

(
∑

{σ}=K̄∩L̄
τσ (Λpyc,p)K/L(pp,L − pp,K − γ(ZL − ZK))) = 0, c = 1, · · · , nc

ET
K = VK

(
∑
p
(φSpρpHp−pp)+(1−φ)ρsHs)K−(

∑
p
(φSpρpHp−pp)+(1−φ)ρsHs)n−1

K

∆t

−
∑
p

(
∑

{σ}=K̄∩L̄
τσ (ΛpHp)K/L(pp,L − pp,K − γ(ZL − ZK))) + QT

lim,K

−
∑
p

∑
{σ} = K̄ ∩ L̄
σ ∈ ∂K−

τσ (φ−1S−1
p µ

−1
p krp)K/L(pp,L − pp,K − γ(ZL − ZK))(pp,L − pp,K)

−
∑

{σ}=K̄∩L̄
τ
′

σ λK/L(TL − TK) + Qλlim,K = 0
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Multi-component multi-phase model in reservoir

Numerical scheme

Numerical scheme

Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

Iterative Newton Raphson method :

J∆X = −F(Xn) with J =
∂F
∂X

(Xn)

Jacobian JPRS
    Extended Jacobian        

equation 

J 
J 

T∂∂

               

J 
J 

T∂∂

Energie
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Numerical scheme

Numerical scheme

Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

The jacobian matrix of the full system can be written as :

J =


∂Fp

∂Xp

∂Fp

∂Xs
∂Fs
∂Xp

∂Fs
∂Xs

 =
[

A B
C D

]
and −F =

[
−Fp
−Fs

]
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Numerical scheme

Numerical scheme

Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

The jacobian matrix of the full system can be written as :

J =


∂Fp

∂Xp

∂Fp

∂Xs
∂Fs
∂Xp

∂Fs
∂Xs

 =
[

A B
C D

]
and −F =

[
−Fp
−Fs

]

First, extract primary variables :

(A − B D−1 C) ∆Xp = (−Fp + B D−1 Fs)

Next, update secondary ones :

∆Xs = −D−1 Fs − (D−1 C) ∆Xp
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Multi-component multi-phase model in reservoir

Numerical results

Comparison with isothermal GPRS

Reservoir of dimensions 5000 f t × 5000 f t × 50 f t
Three components: methan CH4, butan C4H10 and heptan C7H16

Production during 50 days by imposing a bottom hole pressure of 300 psi
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Multi-component multi-phase model in reservoir

Numerical results

Behaviour of the pressurre during 50 days production

(a) Pressure at t=0 day (b) Pressure at t=2 days (c) Pressure at t=10 days

(d) Pressure at t=20 days (e) Pressure at t=35 days (f) Pressure at t=50 days
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Multi-component multi-phase model in reservoir

Numerical results

Behaviour of the temperature during 50 days production

(g) Temperature at t=0 day (h) Temperature at t=2 days (i) Temperature at t=10 days

(j) Temperature at t=20 days (k) Temperature at t=35 days (l) Temperature at t=50 days
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Multi-component multi-phase model in reservoir

Numerical results

Behaviour of the gas saturation during 50 days production

(m) Saturation of gas phase at t=0 day (n) Saturation of gas phase at t=2 days (o) Saturation of gas phase at t=10 days

(p) Saturation of gas phase at t=20 days (q) Saturation of gas phase at t=35
days

(r) Saturation of gas phase at t=50 days
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Multi-component multi-phase model in reservoir

Numerical results

Comparison of production rates
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Multi-component multi-phase model in reservoir

Numerical results

Comparison of pressure and saturations in the well block

430

440

450

460

470

480

490

500

510

0 5 10 15 20 25 30 35 40 45 50

Temps (JOUR)

Pr
es

si
on

 (P
SI

)

GPRS thermique
GPRS isotherme

(u) Pressure in psia

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20 25 30 35 40 45 50

Saturation gaz-GPRS thermique
Saturation huile-GPRS thermique
Saturation gaz-GPRS isotherme
Saturation huile-GPRS isotherme

(v) Saturations of oil and gas phases



Numerical modeling of thermomechanical multi-phase flows, well-porous medium

Multi-component multi-phase model in reservoir

Numerical results

Sensibility vs. boundary conditions

Reservoir of dimensions 9000 f t × 9000 f t × 30 f t
Two components: methan CH4 and butan C4H10

Production of gas during 90 days by imposing a constant flowrate
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Multi-component multi-phase model in reservoir

Numerical results

Behaviour of the pressure : constant pressure on the exterior
boundary

(a) Pressure at t=5 days (b) Pressure at t=60 days (c) Pressure at t=90 days

Behaviour of the pressure : no flow on the exterior boundary

(d) Pressure at t=5 days (e) Pressure at t=60 days (f) Pressure at t=90 days
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Multi-component multi-phase model in reservoir

Numerical results

Comparison of pressures in the well block and in the well
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Perspectives

Perspectives

1 Extend multi-phase simulator in order to treat steam injection

2 Develop a multi-phase anisothermal wellbore model and couple it with the reservoir

3 Solve inverse problems

∗ Determine initial temperature
∗ Determine flow profiles

4 Consider deviated wells
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Perspectives

Perspectives

1 Extend multi-phase simulator in order to treat steam injection

2 Develop a multi-phase anisothermal wellbore model and couple it with the reservoir

3 Solve inverse problems

∗ Determine initial temperature
∗ Determine flow profiles

4 Consider deviated wells
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Remerciements

Thank you for your attention
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