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Motivations

Optical fiber sensors

o Increase of subsea wellheads and highly

deviated wells e
—Production log are less easy to be [
performed

o Emerging of new technologies such as
optical fiber sensors
o Temperature measurements continuous in /
time and all along the well [
etectorA
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Motivations

Optical fiber sensors

o Increase of subsea wellheads and highly
deviated wells
—Production log are less easy to be
performed

o Emerging of new technologies such as
optical fiber sensors

o Temperature measurements continuous in

time and all along the well [
eteCtOr‘

Possible applications

o Estimate virgin reservoir temperature

o Predict flow profiles and the flow rate of each layer




deling of thermomechanical multi-phase Vs, we orous medium

Motivations

Optical fiber sensors

o Increase of subsea wellheads and highly
deviated wells
—Production log are less easy to be
performed

o Emerging of new technologies such as
optical fiber sensors

o Temperature measurements continuous in /

time and all along the well [
eteCtOr‘

Interpretation of temperature profiles
— Need for an EXHAUSTIVE ENERGY EQUATION
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LPhysi('al modeling

Mass conservation law

Single phase flow :
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LPhysi(:al modeling

Mass conservation law

Single phase flow :

(pp)
ot

+V-(pu)=0

Multi-component multi-phase flow :

p

p=1

. is the number of components
1y is the number of phases

J
Z (§(¢SPPPVC,p) +V. (Ppyc,pup) =0, c=1, ---
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LPhysi(:al modeling

Mass conservation law

Single phase flow :
9(¢p)
ot

+V-(pu)=0

Darcy’s law :  u=-u"'K(Vp - pg)

A5

Multi-component multi-phase flow :

p

d
Z (E(QbSpPp]/c,p) + V- (ppYepuy)| =0, c=1, -, n
p=1

1. is the number of components
1y is the number of phases
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LPhysical modeling

Mass conservation law

Single phase flow :
9(¢p)
ot

+V-(pu)=0

u=-u"'K(Vp - pg)

A5

Multi-component multi-phase flow :

p

d
Z(E@Spppyc,pnv-(ppyc,p )|=0, c=1, -, n
p=1

1. is the number of components
1y is the number of phases

up = —kpp, "K(Vpp - ppg)

A\
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LPhysical modeling

Mass conservation law

Single phase flow :
I(¢p)
ot

+V-(pu)=0

u=-u"'K(Vp - pg)

Darcy-Forchheimer law : K lu+ Fplulu = —(Vp - pg)

Multi-component multi-phase flow :

p

J
Z (a((PSPPPyC,P) +V- (Ppyc,p )|=0, ¢=1, -, n,
p=1

. is the number of components
1y is the number of phases

u, = —kpp, "K(Vpp — pp8)

A\
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LPhysi('al modeling

Energy conservation law
Single phase flow :

= V. (pEw) + V-(AVT) = V- (pu) + V - (zu)

o Total energy : E=E.+E, + U
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LPhysi(:al modeling

Energy conservation law
Single phase flow :

= V. (pEw) + V-(AVT) = V- (pu) + V - (zu)

o Kinetic energy : %(%puz) -F V-(%puzu) =pgu —u-Vp + u.(V:1)
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LPhysi(:al modeling

Energy conservation law

Single phase flow :

I(pE
(5t) = —V-(pEu) + V- (AVT) -V (pu) +V - (zu)
— a(g;u)_'_ V-(pUu)+ pV-u — V-(AVT) = 7:V-u = 0

o Kinetic energy : %(%puZ) + V-(%puzu) =pgu —u-Vp + u.(V:1)
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LPhysi(:al modeling

Energy conservation law

Single phase flow :

J(pE
(gt) = —V-(pEu) + V- (AVT) -V (pu) +V - (zu)
— a(g;u)_'_ V-(pUu)+ pV-u — V-(AVT) = 7:V-u = 0

o Kinetic energy : %(%puZ) + V-(%puzu) =pgu —u-Vp + u.(V:1)

e Mass conservation : g—f +V-(pu)=0
o Enthalpy expression : pU = pH —p
OH  dp

pW - = + pu-VH —u-Vp— V-(AVT) = 7:V.-u = 0
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LPhysi(:al modeling

Energy conservation law

Single phase flow :
IpE) _ ~V-(pEu) + v.(AVT)—V-(Pu)W'(E“)

— a(g;u)_'_ V-(pUu)+ pV-u — V-(AVT) = 7:V-u = 0

P
IH _ Py pu-VH —u-Vp— V-(VT) = 1:V-u = 0

Par ~ o

‘93—7; = % B coefficient of thermal expansion
% = % (pc)s specific heat capacity of the fluid

d
— (pc)*g—z+(pc)fu~VT—V-(/\VT)—qbﬁTa—}Z—ﬁTu-Vp— 7:V-u =0
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LPhysi('al modeling

Energy conservation law

Single phase flow :

Jd(pE
(5t) = —V-(pEu) + V- (AVT) -V (pu) +V - (zu)
— a(g;u)_'_ V-(pUu)+ pV-u - V-(AVT) = 7:V-u = 0

= (pc). % +(pc);u-VT =V (AVT) - ppT% —fTu - Vp— 7:V-u = 0
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LPhysi('al modeling

Energy conservation law

Single phase flow :

J(oE
(5t) = V- (pEw) + V-(AVT) = V- (pu) + V- (zu)
— AL V. (pUu)+ pV-u - V-(AVT) -@, = 0

= (pc). % +(pc);u-VT =V (AVT) - ¢pT% —fTu - Vp— 7:V-u = 0
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LPhysi('al modeling

Energy conservation law

Single phase flow :

J(pE
(5t) = ~V-(pEw) + V-(AVT) =V - (pu) + V- (zu)
= V- (pUa)+ pVou ~ V-QVT) @, = 0

= (pc). % +(pc);u-VT =V (AVT) - 9pT% — fTu-Vp +u-Vp = 0

Equation considered in Denel’s thesis
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LPhysical modeling

Energy conservation law
Single phase flow :
= —V-(pEu) + V-(AVT) -V (pu) + V- (u)

I(pU)
o

+ V-(pUu)+ pV-u — V-(AVT) —®, = 0

= (pc). % +(pc);u-VT =V (AVT) - 9pT% — fTu-Vp +u-Vp = 0

Multi-component multi-phase flow :
d
Z (g(CP Sp pp Up) +V - (¢ Sp pyUpuy) +pp V-1, =V - (APVT) - q)#rp) =0
P

S
o Equivalent conductivity : A = (/\S)(l_q)) X (M) %P X (A0)%%? x (/\g) 9

d
Z (§(¢Spp,fup) + V(¢ SpppUpuy) + ppV - up) -V-(AVT) + Z u, - Vp, =0
P p




Outline

+ Part I: Coupling of single phase reservoir and wellbore models

(]

Coupling of the two models/Transmission conditions

Analysis of the continuous global problem

Finite element discretization

o Numerical results

+ Part II: Multi-component multi-phase model in reservoir

(]

Physical modeling
o Finite volume discretization
o Numerical scheme

Numerical results
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e

oupling of single phase reservoir and wellbore models

o Porous media Q divided into N
geological layers ();

o Layers characterized by their own
physical and thermodynamic
properties

o Layers saturated with a formation
water and a monophasic
compressible fluid

@ Only the monophasic fluid is mobile

o 2D axisymmetric hypothesis

Casing

Cement

Perforation

I

—

Impermeable wall

Impermeable layer

- -
Permeable layer

-~ -

Impermeable layer

Permeable layer

Impermeable wall




well-porous medium

o Porous media Q divided into N

> Impermeable wall
geological layers ();

Impermeable layer

o Layers characterized by their own
physical and thermodynamic

= - - -
properties =] <= Permeable layer
. . o - - —-—
o Layers saturated with a formation Casing
water and a monophasic fmpermeable layer
compressible fluid Ceigte—""]
@ Only the monophasic fluid is mobile < Permedble layer
—
o 2D axisymmetric hypothesis Perforation — |

Impermeable wall

o Couple Denel’s reservoir and wellbore models

B. Denel, Simulation numérique et couplage de modeles thermomécaniques puits-milieux poreux, These de doc-
torat, Université de Pau, 2004




rell-porous medium

o Semi-discretized reservoir model(Darcy-Forchheimer):

IMG + Vpy = —pi~lg

1. _ G =rpu : mass flux
A~V =0 q=rAVT : heat flux
ripy — 2Ty + divGy = r&pi=t — r2 T

1—‘1
r%Tl + KG¥_1.VT1 - répl + lG;"l.Vpl —divq = rAitTT‘1 - r£p1 ]

o Semi-discretized wellbore model (Compressible Navier-Stokes):
dlU(T’Gz) = - pz Pz Q,
div(ruz) = %(dZU(TGz) — VGZ 0 sz)

n s z
rp% +1Gy - Vup + rVp, — div(rt) + tgee, + 1F |G| up = rpag + rpZ% {E &

%qz—VTz =0

rcv(p v+ Gy - VTy) — div(rqp) = rchE _ ‘(p uzf? |u2| + GZ,V(|u2|Z)) — div(rpoup) + div(rtoug) + rgGo
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servoir and wellbore models

LTra,nsn)ission conditions

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model




porous medium

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

Flow has a privileged direction
= Derive a 1.5D model

o Explicit dependency on r :

u= Eul(z) + TUO(Z)
z G1(2)
G ( RGz(Z) )
z (2
a ‘( " 02) )

p=p@),p=p2), T=T()

o Consider only one rectangular mesh in the radial direction
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servoir and wellbore models

LTra,nsn)ission conditions

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

o Fixed point method with respect to p
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eservoir and wellbore models

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

o Fixed point method with respect to p

Evaluation of the specific flux

Find G € W*
p

. _ _ A
Use div(rG) = -r 3; and solve f div(rG)ydx = — ruxdx, VYyeM
Q, o At

A5




well-porous medium

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

o Fixed point method with respect to p

Evaluation of the specific flux

Find G € W*

5 _ . -p"
Use div(rG) = —r 3; and solve f @ = _f L P xdx, YyeM
Q o, At

Evaluation of (u,p) |

FindueV*, peM

L(v), VYveV°

Use pu-Vu = G-Vu and solve m(u,v) + n(p,v)

n(q, u) h(q) YgeM

QN




mechanical multi-phas 11-porous medium

ervoir and wellbore models

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

o Fixed point method with respect to p

Evaluation of the specific flux
Find G € W*

Use div(rG) = —r % and solve f div(rG)xdx = _f rP P
Qz QZ At

n

xdx, VYxeM

v

Evaluation of (u,p)

FindueV', peM

L(v), VYveV’

Use pu-Vu = G-Vu and solve m(u,v) + n(p,v)

n(q, u) h(q) YgeM

Evaluation of (q,T) |

FindqeH, TeM

Use pu-VT = G-VT and solve a(qw) + b(T,w)

fiw) VweH

b(S,q) — c(T,S)

£(S) ¥SeM
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f single phase reservoir and wellbore models

on conditions

Mathematical difficulties related to the coupling

e A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

o Additional unknown in the wellbore: Velocity up

Density is not constant in the two domains

o Energetic aspect taken into account




Mathematical difficulties related to the coupling

A multiscale problem (stiff coupling):

@ 2D axisymetric reservoir model
@ 1.5D wellbore model

Additional unknown in the wellbore: Velocity up

Density is not constant in the two domains

Energetic aspect taken into account

v

Transmission conditions at the interface

[G-n]=0=G;-n=RG;y-n
[Un'n]:O:>—P1+Trr:_p2
U -t=0

N

or uy-t= _TKan -t Beavers-Joseph-Saffman
Gi'n=pu-n

[a-n]=0=q; n=Rq, n

[T]=0=>T1=T>

Add

Add

Q,
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Variational formulation in the reservoir

e We denote : x1 = (Gy,qq,p1,T1)

e Functional framework :

X1 = H(dil), Ql) X ]H(div, Ql) X LZ(Ql) X Lz(Ql)
X(l) = {x1€X;; G;'rn=00n7Yg, q;-n=0o0n Yg}
X, = meX;; Girn=G onYg, q-n=q"onYg

o Variational formulation :
Find x; € X’i

Ay (x1,x]) = F1(x)) Vi) e X0

Weak formulation in the wellbore

o We denote : x; = (Gp,uz,p2,q,, 12)

o Functional framework :

Xo=WXxVXMxHxM
X;:W*XW*XMXH—IXM
Y, =MxVOxMxHxM

o Weak formulation :
Find x; € X

HAa(x2, X)) = Fa(x}) Vx, €Y




s medium

of single phase reservoir and wellbore models

of the continuous global problem

@ An integration by part in the reservoir yields the terms :

fplGi-nda—leqi-nda
b b

o An integration by part in the wellbore yields the terms :

fR(pz—Tzn-n)ué‘nda—fRTqunda
T )




@ An integration by part in the reservoir yields the terms :

fplGi-nda—leqi-nda
b b

o An integration by part in the wellbore yields the terms :

fR(pz—Tzn-n)ué~ndo—fRT2qé~nda
Y Xz

o Dualization by Lagrange multipliers A = (0,p) :
6:p1:p2—’r2n-n yZleTz

e Multipliers’ spaces:
L=L*X)xL*(X) K=L*Z)xL*X)xL*X)
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ervoir and wellbore models

the continuous global problem

@ An integration by part in the reservoir yields the terms :

fplGi-nda—leqi-nda
b b

o An integration by part in the wellbore yields the terms :

fR(pz—Tzn-n)ué~ndo—fRT2qé~nda
Y Xz

o Dualization by Lagrange multipliers A = (0,p) :
6:p1:p2—’r2n-n yZleTz

e Multipliers’ spaces:
L=L*X)xL*(X) K=L*Z)xL*X)xL*X)

o Bilinear forms:

I(A,x’):f(Gi-n—Ru’z-n)Gda—f(qi-n—Rqé-n)yda
T T

j(A’,x):f(Gl-n—szuz-n)Q' do+f(G1-n—RG2-n)C' da—f(ql-n—qu-n)y' do
T b b




rell-porous medium

Weak formulation for the coupled problem

o Functional framework :

X = {x=(x;,%) € X1 xX2; G1-n, q; -ne€L*(T))
Y = {x' = (*},x5) € X1 X Yox; Gi-n, q; -n € [X(D))
X' = {(x1,x2) €X; Gi1'n=G onYg\L, q'n=qg" on Yg\L, ua-n=0 on Iy
Y = (¥ eY; G;'n=00onYg\L q;'n=0 onYg\X u;-n=0 on Il
o Weak formulation :
Find x € X', A € L
A, x') + T(A X)) = F(X) Vx' € Y°

JN,x) =0 VA’ e K
Where :

Alx, x') = Ar(x1, x]) + Ax(x2,x5) VxeX, VX' €Y
F() = Fi(x) + Faley) Vo' €Y




well-porous medium

LAnalysis of the continuous global problem

Analysis of the continuous global problem

Babuska’s theorem :

o I and 9 satisfy an inf-sup condition

@ The coupled problem reduces to :

Find x € J*
Alx, x") = F(x') Vx' €l

Where :

—
*
Il

[xeX'; J(N,x)=0 VA" e K}
I={reY,;I(Ax)=0 VAeL)




rell-porous medium

Analysis of the continuous global problem

Babuska’s theorem :

o I and 9 satisfy an inf-sup condition

@ The coupled problem reduces to :

Find x € J*
Alx, x") = F(x') Vx' €l

Where :

—
*
Il

[xeX'; J(N,x)=0 VA" e K}
I={reY,;I(Ax)=0 VAeL)

Theorem : Vxe]°\ {0}, SUP ﬁgnx) >0

— UNIQUENESS OF THE SOLUTION

o Existence : Galerkin’s method (via finite element spaces)
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Proof of the uniqueness

° By pUtting : U= (Gll q1, GZ/ up, qZ) U = (Gi/ qi/ X ué/ qé) 5= (Plz T1,P2/ TZ)

o Non-standard Mixed formulation :

Find (U,s) e U" xS
A(U,U") +B(s,U’) = F1(U) vu’ e 1"

—B(s’,U) + C(s,s’") = Fa(s") Vs’ €8
Where :

AU, U) = le %MGl -Gldx + le %ql “qpdx + sz xdiv(rGp)dx + sz )\_rqu - qjdx +a(uz, uj) non symmetric

B(s,U’) = — le p1divG/dx + le T divq;dx — sz padiv(ra})dx + sz Todiv(rqy)

C(s,s’) = le rap1pyax — le rA%Tlpidx + le r%ﬂ T dx — le réplTidx + sz rC”AF;Z T>Tdx non symmetric
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The homogeneous problem admits only the trivial solution 7

AU, U) +B(s,U) = 0 YU €T°

e Let (U,s) a solution of :
0 Vs'e$S

—B(s’,U) + C(s,s)




well-porous medium

ous global problem

LAnalysis of the conti

The homogeneous problem admits only the trivial solution 7

AU, U) +B(s,U) = 0 YU €T°

e Let (U,s) a solution of :
0 Vs'e$S

—B(s’,U) + C(s,s)
+ There exists R : U —= T linear , continuous and satisfying :

A(U,RU) >0, U-U’ € KerB
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ingle phase reservoir and wellbore models

of the continuous global problem

The homogeneous problem admits only the trivial solution 77

A(U,U)+B(s,U) =0 YU €T
e Let (U,s) a solution of :

—B(s’,U) + C(s,s") 0 Vs’e$

+ There exists R : U —= T linear , continuous and satisfying :

A(U,RU) >0, U-U’ € KerB

o U=(Gy,q1,Gy u,q0) € UY define RU =U’ = (G}, 91, X, u2, q2) satisfying :

00, *+ Ixllo, < clUIL.

1
G)-n= ~Gemen s divG} = divG in Oy, ||G]
2
U eT?, |[U||<c|Ull, B(s,U) = B(s,U)
2 2 )
A(U,U) > c(”ql”()ﬂ1 + ||q2||0,02) + m(up, up) + le %MGl - Gldx + sz xdio(rGo)dx

e Bound m(uy, up) by means of Young’s inequality
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The homogeneous problem admits only the trivial solution 7

A(U,U)+B(s,U) =0 YU €T
e Let (U,s) a solution of :
—B(s’,U)+C(s,s’) = 0 Vs'e$
+ There exists R : WY — T linear , continuous and satisfying :

A(U,RU) >0, U-U’ € KerB

2
« Vs €S, C(s,8) 2 y(||pilly o, + TG, +IT2I30,)
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The homogeneous problem admits only the trivial solution 77

A(U,U)+B(s,U) =0 YU €T
e Let (U,s) a solution of :
—B(s’,U)+C(s,s’) = 0 Vs'e$
+ There exists R : WY — T linear , continuous and satisfying :

A(U,RU) >0, U-U’ € KerB

2
« Vs €S, C(s,8) 2 y(||pilly o, + TG, +IT2I30,)

N — ’ b ’ d ’ f ’ Cop ’
e C(s,s') = le rA%plpldx - le roqT1pydx + le ragl1Tydx — le rap1Tidx + sz r Atz T, T dx

o If 4ad—(b+ f)>>c a.e. in Q, we have:

a b d f c 2 ’
f(;l rEplpldx - Ll rETlpldx + Ll rETlTldx - Ll rﬂplTldx > E(”m”o,(zl +IT1llg,0,)
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The homogeneous problem admits only the trivial solution 7

AU, U) +B(s,U) = 0 YU €T°

e Let (U,s) a solution of :
—B(s’,U)+C(s,s’) = 0 Vs'e$

+ There exists R : WY — T linear , continuous and satisfying :
A(U,RU) >0, U-U’ € KerB
2 2 2
« Vs €S, C(s,8) 2 y(||pilly o, + TG, +IT2I30,)

then U =0 and (Plr Tl,Tz) =0




Numerical modeli well-porous medium

ir and wellbore models

LCouplin 3
LAnalysis of the continuous global problem

The homogeneous problem admits only the trivial solution 77

A(U,U)+B(s,U) =0 YU €T
e Let (U,s) a solution of :

—B(s’,U) + C(s,s") 0 Vs’e$

+ There exists R : U —= T linear , continuous and satisfying :
A(U,RU) >0, U-U’ € KerB
2 2 2
« Vs €S, C(s,8) 2 y(||pilly o, + TG, +IT2I30,)

then U =0 and (Pll Tl,Tz) =0

* There exists B> 0 such that : B2 ||s|| < supy, o %

e Fortin’s trick : 2
. B(s,U’) > c1]s
S = (ph Tll PZ, TZ) S S > U, = (Gal qlr X, Uy, qZ) € TO SatISfy1ng { “EJ,” <)C2||Sh” ”




Numerical modeli well-porous medium

LAnalysis of the continuous global problem

The homogeneous problem admits only the trivial solution 7

A(U,U)+B(s,U) =0 YU €T
e Let (U,s) a solution of :

—B(s’,U) + C(s,s") 0 Vs’e$

+ There exists R : U —= T linear , continuous and satisfying :

A(U,RU) >0, U-U’ €KerB
2
« Vs €S, C(s,8) 2 y(||pilly o, + TG, +IT2I30,)

then U =0 and (Plr Tl,Tz) =0

* There exists B> 0 such that : B2 ||s|| < supy, o %

then p, =0
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Dziscrete problem

@ Suppose that the two meshes match on the perforations ’

o Denote by &, the set of edges situated on the interface

Finite dimensional spaces

o Conservative variables (specific flux, heat flux) :

RTO:{( “Hb) a, b, ce]R}
az + ¢

V= {G € H(di’(),Q); G/K e RTy VKe 771}

o Scalar variables (pressure, temperature, density) :
Ly={pel*(Q); pxe€Po VKeT})

e Fluid’s velocity :
Xp={ue H(Q); vxe Q VKeT

o Lagrange multipliers on the interface :

Ky, = {u € LA(X); u € Pole) Ve € &}




Numerical modeling of thermomechanical multi-phase flows, well-porous medium
> of single phase reservoir and wellbore models

LFinite element discretization

screte formulation
Find x;, € X;, Ay, €Ly,

Ap(xn, x) + T(Ap,x") = Fu(x’) VX' €Y,

TN, xp) 0 VAN EeK,

VEK' 1
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L Coup

1 multi-phase flows, well-porous medium

r and wellbore models

Discrete formulation
Find x;, € X;, Ay, €Ly,

Ap(xn, x) + T(Ap,x") = Fu(x’) VX' €Y,

0 VYA €K,

j(A,/ xh)

A\

Upwind sheme for convective terms

0 K~ ={e€dK /G n<0)

o For any Pj functions T :
f xk G}l VT dx = Z x (T"=T/x) f G/l ndo VT € I,
K ecdK~ €
e For any Q-continuous functions ¢ and v :

fKrGZ-l.Vqsvdx: Z(qb*—PK((p))ferGZ-l.nvda VK € T},

e€dK~

VK' 1
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LCoupling of si voir and wellbore models

L Finite element d

Theorem : The discrete problem has a unique solution for At small enough ’

Sketch of the proof

o Follow the proof of the continuous case, with constants independent of h

@ Use Fortin’s trick and interpolate continuous functions

o Need an auxiliary result :
For any (p,0) € M}, X K}, , there exists G € V), satisfying :

G-n=0onX, G-n=0onYg\X

divG =p iny

IG ltio ) +1IG - 1llgz < c(||plly, o, + 161lo.£)

\ \
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mechanical

eservoir and wellbore models

Numerical results

Mesh convergence

Test 1: two-layered reservoir

e Two layers with the same properties

e Only the lower one is perforated

e Production of light oil during seven days

Q=500m’/

)

v

kyp =1000mD k, =350mD ¢=0.28 s, =0.15

<_p =400bars

—- —

gn=>0




Numerical modeling of thermomechanical multi-phase flows, well-porous medium

LCm,lpling of single phase reservoir and wellbore models

L Numerical results

Convergence rate for the pressure at t=7 days

Erreur relative sur la Pressiondans le reservoir en norme L (t=7j) Erreur relative sur la pression dans le puits en norme L? (t=7j)

-105}

0 0.2 0.4 0.6 0.8 1 12 14 0 0.2 0.4 0.6 0.8 1 12 14

(a) order of the error in the reservoir (b) order of the error in the well

Numerically, [|p — pulloo < Clh|*, with a = 1.39 in the reservoir and a ~ 1.61 in the well



Numerical modeling of thermomec ical multi-phase flows, well-porous medium

LC

oupling of sing se reservoir and wellbore models

L Numerical results

Realistic reservoar

Test 2: realistic reservoir
e Seven layers with different properties
e Production of oil during 28 days

Conditions of the simulation for the coupled problem

Q - 6500m3/j

kp = 2000mD  k, = 3!

9

0mD ¢ = 0.20 s, = 0.15 o

-
< kp = 2000mD ko, = 350mD & = 0.28 8, = 0.15 «
b N
: = = = - P=400 bars
\ #,=10mD K ~=10mD @=08 Sw=0.00 <
4 Ey = 1000m.D ky = 15mD & = 0.24 S = 0.42 «
> ‘ gq.n=0
kp = 1000m.D ky = 15mD & = 0.26 S, = 0.30

—

kp = 1000m D ky = 15m D @ = 0.22 s = 0.38

KAV

kp = 1000m.D ko, = 15mD @ = 0.24 S = 0.40 «
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L Numerical results

se flows, well-porous medium

r and wellbore models

Specific flux at the end of the production

.

saa

wF pTeThIatg

T = =
e U

(c) Same scale in the 2 domains

Py
1,

Ttead

T
1+

(d) Different scales (ratio equal to 10)



well-porous medium

Behaviour of the pressure during one month production

Pressure at t=0 days x10" Pressure at t=2 days

-2770

2770
4
2780 2780
3.98
2790 -2790
396
2800 2800
2810 3.94 2810
2820 202
2830 =
39
2840
388
2850
o 1 2 3 4 5 & 71 8 )
(e) Pressure at t=0 day (f) Pressure at t=2 days
Pressure at t=7 days Pressure at t=28 days
2770
2780

(g) Pressure at t=7 days (h) Pressure at t=28 days



se flows, well-porous medium

ellbore models

Behaviour of the temperature during one month production

Temperature at t=0 days

-2770
-2780
2790 3355
—-2800 335
-2810
3345
-2820
334
3335
—2850
0 1 2 3 4 5 6 7 8
(i) Temperature at t=0 day
Temperature at t=7 days
-2770
336
-2780
2790 3355
-2800 335
-2810
3345
-2820
334
3335

(k) Temperature at t=7 days

Temperature at t=2 days

-2770
-2780
2790 3355
-2800 335
-2810
3345
-2820
334
333.5
-2850
1 2 3 4 5 6 7 8
(j) Temperature at t=2 days
Temperature at t=28 days
-2770

(1) Temperature at t=28 days



ore models

Comparison with the separate reservoir and wellbore codes

e Previous simulation conditions for the coupled code
o Conditions of the simulation for the sole reservoir model :

ki = 2000mD  k, =350mD ¢ =020 s, =0.15 e
_’i kn = 2000mD  k, = 350mD ¢ =028 s, =0.15 B b
P=390 bars [ k=10mD K =10mD 7=08 Sw=0.30 affme P=400 bars
)}> ' = 1000m e = 157171 ¢ = 0.24 S = 0.42
. k Dk D 0
> q.n=
q. n=0 kyp = 1000mD  k, = 15mD ¢ =0.26 s, = 0.30 Ry —
— > kp = 1000mD  k, =15mD ¢ =10.22 s, = 0.38 <
ki = 1000mD  k, = 15mD ¢ =0.24 s, = 0.40 i
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servoir and wellbore models

L Numerical r

Pressure maps in

Pression a I'instant t=28 jours
-2815

-2820

-2830

hase flows, well-porous medium

the reservoir at t = 28 days

-2815

-2820

—-2845

-2850

5 10 15 20 25 30 35 40 45

(m) Pressure given by reservoir code

Pression a l'instant t=28 jours

5 10 15 20 25 30 35 40 45 50

(n) Pressure given by coupled code
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L Numerical results

Temperature maps in

Température a l'instant t=28 jours
-2815F

-2820

2835

-2840 Eﬂ'j E

—-2845

—-2850 -

5 10 15 20 25 30 35 40 45 50

(o) Temperature given by reservoir code

the reservoir at t = 28 days

336.4

336.2

-1335.8

~335.6

335.4

335.2

—-2815

—-2820

-2835

—2840

-2845

-2850

Température a l'instant t=28 jours

,
5 10 15 20 25 30 35 40 45 50

(p) Temperature given by coupled code

336.4

336.2

1335.8

+335.6

335.4

335.2
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ellbore models

L Numerical results

Vertical mass fluxes in the wellbore at t = 28 days

-2770 -2770
-2780 -2780
-2790 —2790
-2800 -2800
T B
c c
< <
~ —2810 ~ —2810
@ @
3 -1
o o
-2820 -2820
-2830[" 7 -2830[
-2840|- ] -2840[ ]
-2850 —-2850
0 10 20 30 40 50 60 70 80 90 100 -10 0 10 20 30 40 50 60 70 80 90
Composante verticale G, Composante verticale G,

(q) G; given by wellbore code (r) G, given by coupled code
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Ll\Iulti—Cumponent multi-phase model in reservoir

Multi-component multi-phase model in reservoir




Numerical modeling of thermomechanical multi-phase rell-porous medium

Ll\Iulti—Cumponent multi-phase model in reservoir

Multi-component multi-phase model in reservoir

o Three phases (p) : water(w), oil(o) and gas (g)

IS

ny (ny | ... | ... | ny

@ n, components: water, heavy hydrocarbons, w | X
light hydrocarbons, methan.... 0 X | x| x| x| x

e 1y hydrocarbon components (n, =n.—1)
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Ll\Iulti—Cumponent multi-phase model in reservoir

Multi-component multi-phase model in reservoir

o Three phases (p) : water(w), oil(o) and gas (g)

IS

ny (ny | ... | ... | ny

@ n, components: water, heavy hydrocarbons, w | X
light hydrocarbons, methan.... 0 X | x| x| x| x

e 1y hydrocarbon components (n, =n.—1)

e 3D / Porous medium Q with ny wells



Governing equations

o Mass conservation equation for each component c :

d
Fe = Z (E(QL)SPPP]/C/P) + V'(ppup}/c,p) =0

p=0,9,w

u, is given by the generalized Darcy law : u, = —k,,py}le(Vpp - Pp8)



Numerical modeling of thermomechanical rell-porous medium

Ll\Iulti—Cumponent multi-phase model in reservoir

Governing equations

o Mass conservation equation for each component c :
d
Feo = Z (5((/5510.0;7%47) i V'(Pp“pyc,P)) =0
p=0,8,w

u, is given by the generalized Darcy law : u, = —krp‘u];lK(Vpp ~ Ppg)
o Energy equation :

+ Y V-(@SpppHyu) —V-(AVT)+ Y uy-Vp, = 0

p=0,w,g p=0,8,w

Fr :% Z (¢ Sp pp (]_(P_pp)+(1_¢)ps7_{s

p=0,8,Ww
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Ll\Iulti—Cumponent multi-phase model in reservoir

Governing equations

o Mass conservation equation for each component c :

d
Fe = p:OZgw (5((/5510.0;7%47) + V'(Pp“pyc,P)) =0

u, is given by the generalized Darcy law : u, = —krp‘u];lK(Vpp ~ Ppg)
o Energy equation :

2]
Fr = p:oZgw((P Sp oo Ho—1p) + (1 - 9) Ps(Hs} +p=;}gv (PSppyHpup) =V - (AVT) +p=;;w up-Vpp =0

o Capillary pressure constraints :
Peow = Po— Pw  (0il-water capillary pressure)
Pego =Pg —Po  (gas-oil capillary pressure)

Capillary pressures are measured in laboratories
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Ll\Iulti—Cumponent multi-phase model in reservoir

Governing equations

o Mass conservation equation for each component c :

0
F. = Z (E((PSpPpyc,p) + V- (Pp“pyc,P)) =0
p=o.gw
u, is given by the generalized Darcy law : u, = —ky 1, 'K(Vp, — ppg)
o Energy equation :

2]
Fr = pzoz;‘w(cP Sp oo Ho—1p) + (1 - 9) Ps(Hs} +p=;]gv (PSppyHpup) =V - (AVT) +p=;;w up-Vpp =0

e Capillary pressure constraints :
Peow = Po— Pw  (0il-water capillary pressure)
Pego = Pg —Po (gas-oil capillary pressure)
Capillary pressures are measured in laboratories

ny
S, =1

@ Saturation constraint : Zp:l
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Ll\Iulti—Cumponent multi-phase model in reservoir

Governing equations

o Mass conservation equation for each component c :

d
Fe = p:oZgw (E((PSPPP]/C/P) + V'(Pp“pyc,P)) =0

u, is given by the generalized Darcy law : u, = —krp‘u];lK(Vpp ~ Ppg)
o Energy equation :

2]
Fr = pzoz;‘w(cP Sp oo Ho—1p) + (1 - 9) Ps(Hs} +p=;]gv (PSppyHpup) =V - (AVT) +p=;;w up-Vpp =0

e Capillary pressure constraints :

Peow = Po— Pw  (0il-water capillary pressure)
Pego = Pg —Po (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

e Saturation constraint : Zzpzl Sy=1
e Component mole fraction constraints : y e

1 Yp=1 VYp=w,o0,g
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Ll\Iulti—Cumponent multi-phase model in reservoir

Governing equations

o Mass conservation equation for each component c :

0
F. = Z (E((PSpPpyc,p) + V- (Pp“pyc,P)) =0
p=0,g,w
u, is given by the generalized Darcy law : u, = —ky 1, 'K(Vp, — ppg)
o Energy equation :

2]
Fr = pzoz;w(CP Sp oo Ho—1p) + (1 - 9) Ps(Hs} +p=;}gv (PSppyHpup) =V - (AVT) +p=;;w up-Vpp =0

e Capillary pressure constraints :
Peow = Po— Pw  (0il-water capillary pressure)
Pego = Pg —Po (gas-oil capillary pressure)

Capillary pressures are measured in laboratories

e Saturation constraint : Zzpzl Spy=1
e Component mole fraction constraints : Y Yep=1 Vp=w,o,g

o Phase equilibrium relation for each hydrocarbon component c in oil and gas phases:
7:0 = fc,o _fc,g =0

feo and f. o are the fugacities of hydrocarbon component c in oil and gas phases
respectively, calculated from the Peng-Robinson equation of state
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LI\Iulti—cumponent multi-phase model in reservoir

LPrimary and secondary variables

* Number of equations :
Type
Mass conservation
Energy equation
Capillary pressure constraints
Saturation constraint
Component mole fraction constraints
Equilibrium relation equations

ny

Total

2ny, + 7




porous medium

LPrimary and secondary variables

* Number of equations :

Type Number
Mass conservation np+1
Energy equation 1
Capillary pressure constraints 2
Saturation constraint 1
Component mole fraction constraints 2
Equilibrium relation equations ny,

Total 2ny, + 7

Primary and secondary variables

@ According to Gibb’s phase rule, the number of primary variables is equal to :

(nc+2- nphase) + (nphase -1) = n.+1

o Use linear constraint equations to remove two pressures, one saturation and two
component mole fractions

—>  2n;, + 2 non-linear equations and variables left
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Ll\lul mponent multi-phase model in

LPrimary and secondary variables

* Number of equations :
Type Number
Mass conservation np+1
Energy equation 1
Capillary pressure constraints 2
Saturation constraint 1
Component mole fraction constraints 2
Equilibrium relation equations ny,
Total 2ny, + 7

Primary and secondary variables

@ According to Gibb’s phase rule, the number of primary variables is equal to :
(nc+2- nphase) + (nphase -1) = n.+1

o Use linear constraint equations to remove two pressures, one saturation and two
component mole fractions
—>  2n;, + 2 non-linear equations and variables left

@ Multiple choices for the selection of primary variables and equations leading to different
models



Numerical modeling of thermomechanical multi- se flows, well-porous medium
Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})
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Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
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Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
o Primary variables X, are :

O p,, T, Sg, Sy Ye,g; =3, when both oil and gas phases are present
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Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
o Primary variables X, are :

O v, T, Sgy Sos Yeg; c=3..,, when both oil and gas phases are present
O v, T, So, Yeo; c=1..n, when gas phase is not present
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Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
o Primary variables X, are :

O v, T, Sgy Sos Yeg; c=3..,, when both oil and gas phases are present
D po, T, So, Yeo; c=1..n, Wwhen gas phase is not present
O po, T, Sg, Yeg c=1.n, When oil phase is not present
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Ll\Iulti—Cumponent multi-phase model in reservoir

LF‘rimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
o Primary variables X, are :

O v, T, Sgy Sos Yeg; c=3..,, when both oil and gas phases are present
D po, T, So, Yeo; c=1..n, Wwhen gas phase is not present
O pe, T, Sg, Yeg; c=1..n, when oil phase is not present




Numerical modeling of thermomechanical i-phase flows, well-porous medium
Ll\Iulti—Cumponent multi-phase model i

LPrimary and secondary variables

Coats Model

o Primary equations are the 7. + 1 mass and energy balance equations (F, = {¥, ¥r})

o Equations left over are the secondary equations (F; = {7.})
o Primary variables X, are :

O v, T, Sgy Sos Yeg; c=3..,, when both oil and gas phases are present
D po, T, So, Yeo; c=1..n, Wwhen gas phase is not present
O pe, T, Sg, Yeg; c=1..n, when oil phase is not present

Flash calculations are used to check the state of hydrocarbon phases in gridblocks

o Phase disappearance for a gridblock with two hydrocarbon phases
If either S, or S, is negative, the corresponding hydrocarbon phase has disappeared
—> set the negative saturation to zero and reassign saturations and mole fractions

o Phase reappearance for a gridblock with only one hydrocarbon phase
Do a flash and calculate the tangent plane distance for the current phase
—>if it is negative, a second hydrocarbon phase reappears and needs to reassign
saturations and mole fractions
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Ll\Iulti—Cumponent multi-phase model in reservoir

L Finite volume discretization

Finite volume discretization

e Equations are integrated over each gridblock V
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Ll\Iulti—Cumponent multi-phase model in reservoir

L Finite volume discretization

Finite volume discretization

e Equations are integrated over each gridblock V

o For diffusive terms :

deiv(KVv)dx — Z KVou - ng, do
o€ex VO
= Z kK o 9o ~ K d_ IK 1es(0)
OEEK Ko

= -2 F

OEEK




Finite volume discretization

e Equations are integrated over each gridblock V

o For diffusive terms :

deiv(KVv)dx — Z KVv - ng, do
ogeg Y9
)

= Z k.o Gd K mes(o)
OEEK Ko

= - Z Fy, = Z (0L = k)

OEEK OEEK
o Comnservation of fluxes over the face o : on = —FTL}J

k Ko kL,tT

@ T, is the transmissibility : 7, = mes(c)m.
olL,0 ,04K o
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Ll\Iulti—Cumponent multi-phase model in reservoir

L Finite volume discretization

Finite volume discretization

e Equations are integrated over each gridblock V

o For diffusive terms :

fK div(KVo)dx = — Z F¢, = Z To(vL — UK)

OE€EK O€EK




porous medium

Finite volume discretization

e Equations are integrated over each gridblock V

o For diffusive terms :

fK div(KVo)dx = — Z F¢, = Z To(vL — UK)

OE€EK O€EK

e For convective terms:

fKu~Vde = fvu~ndo—fv;<div(u)dx
9K K

f vKu-nda+f vextu-nda—vau-nda
JK+ oK~ JK
Z (Vext — UK) fu'nK,a do

o

o0€dK-

2




modeling of thermomecha

ponent multi-phase model in reservoir

rolume discretization

Finite volume discretization

e Equations are integrated over each gridblock V

o For diffusive terms :

fK div(KVo)dx = — Z F¢, = Z To(vL — UK)

OE€EK O€EK

e For convective terms:

fKu~Vde = fvu~ndo—fvl<div(u)dx
9K K

f vKu-nda+f vextu-nda—vau-nda
JK+ oK~ JK
Z (Vext — UK) fu'nK,o do

o

o0€dK-

2

o In our equation, u is equal to KVp :

— p
fK KVp-Vodx = = Y (v - i) Fy,

0€dK~
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Ll\Iulti—Cumponent multi-phase model in reservoir

L Finite volume discretization

Discretized system

YK €Ty,

(P X SpppYep)k—(P L Spppyw)lngl
E¢ = Vg—2L - +

~lim,K

- Z( Z _ To (Apyc,p)K/L(pp,L - pP,K - V(ZL - ZK))) = O/ c= ]-/ s, Ne
P {o}=KnNL

(%4 (q’SPPPWp_PP)+(1_¢)P5(H5)K_O; (¢SppyHy=pp)+(1-0)psHo)!

EIE = VK At
- Z ( Z N To (APHP)K/L(pPrL - Pp,K - V(ZL = ZK))) + Q/[iw,l\’
P {o}=KnL
-y Z_ T (qb‘lszjly;lkrp)K/L(pp,L = Ppk —Y(ZL = ZK))(Pp.L — PpK)
P {o}=KnL
o € dK™

- Z_ - T; /\K/L(TL - TK) u Qll}m K =0
{o}=KNL ’




Numerical modeling of thermomechanical mul se flows, we orous medium

Ll\Iulti—Cumponent multi-phase model in reservoir

LNumerical scheme

Numerical scheme

o Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

o Iterative Newton Raphson method :
JF
JAX = —-F(X") with J = ﬁ(X")

8/aT

) I
Energie

Jacobian JPRS - equation
Extended Jacobian




porous medium

L Numerical scheme

Numerical scheme

o Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

e The jacobian matrix of the full system can be written as :

JOF, OF,

lx x| _|A B | —F
J= &Ff JF, _[ C D ] and _F_[ —FZ ]
X, IXs
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Ll\Iulti—Cumponent multi-phase model in reservoir

L Numerical scheme

Numerical scheme

o Extend an existing isothermal simulator GPRS (General Purpose Reservoir Simulator),
developped at the University of Stanford

The jacobian matrix of the full system can be written as :

°
JF, OF, A B .
_| X, 99X |_ _| =
J= &Ff JF, _[ C D] and—F—[ —FZ]
X, X
e First, extract primary variables :
(A - BD'C)AX, = (-F,+ BD™Fy)
o Next, update secondary ones :

AX; = -D™'F, — (D! C) AX,



<7 ,.,.,.,_.,_,

thermal GPRS

bottom hole pressure of 300 psi

butan C4H;y and heptan C;H;4

Q vy )
0 o>
'~ Lo © ST,
A 20 \\%ﬁi
1 S =88
: B S &aF
S SE238
E Lo =
e x.gE
Q =
3 % 8
. z O
LO

Compar
imensions

e Three components: methan CH,,
e Production during 50 days by

o Reservoir of d

Ll\Iulti—cumponent multi-phase model in reservoir
L Numerical results
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Numerical modeling of thermomechanical multi-
LI\Iu]m—(,'()mpunent multi-phase model in reservoir

al results

se flows, well-porous medium

Behaviour of the pressurre during 50 days

production

(a) Pressure at t=0 day

(b) Pressure at t=2 days

Prassian 2 =sojours

| &
e
a74

(d) Pressure at t=20 days (e) Pressure at t=35 days

456

437




Behaviour of the temperature during 50 days production

Tempirse 412 o

. 533

532

531
529

528

(g) Temperature at t=0 day

532
531
520

-

528

(j) Temperature at t=20 days

. 533

832

831

529

528

(h) Temperature at t=2 days (i) Temperature at t=10 days

532

831

-

(k) Temperature at t=35 days (1) Temperature at t=50 days
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saturation during 50 days production

.TUO

0.750

0.500

0.250

0.000

(m) Saturation of gas phase at t=0 day

(n) Saturation of gas phase at t=2 days

(o) Saturation of gas phase at t=10 days

me - =

0.750

0.750

0.750
0.500

0.500 0.500

0.250

0.250 0.250

0.000 0.000

(p) Saturation of gas phase at t=20 days (q) Saturation of gas phase at t=35 (r) Saturation of gas phase at t=50 days
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L Numerical results

Comparison of production rates
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L Numerical results

Comparison of pressure and saturations in the well block
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t multi-phase model in

L Numerical results

Sensibility vs. boundary conditions

o Reservoir of dimensions 9000/t x 9000ft x 30t
e Two components: methan CH; and butan CyHy
e Production of gas during 90 days by imposing a constant flowrate



well-porous medium

Behaviour of the pressure : constant pressure on the exterior
boundary
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Behaviour of the pressure : no flow on the exterior boundary
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L Numerical results

Comparison of pressures in the well block and in the well
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porous medium

Perspectives

O Extend multi-phase simulator in order to treat steam injection
@ Develop a multi-phase anisothermal wellbore model and couple it with the reservoir

® Solve inverse problems

* Determine initial temperature
+ Determine flow profiles

@ Consider deviated wells



Numerical modeling of thermomechanical multi-g se flows, well-porous medium

L Remerciements

Thank you for your attention
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