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premières années. À Nydia et Laia, mes soeurs adoptives, avec qui j’ai partagé des moments en
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Introduction

Nella vita accadono cose che sono come domande,
passa un attimo, o pure anni, e la vita risponde.

Alessandro Baricco,
Castelli di rabbia.

Dans ce travail, nous nous intéressons à deux questions. La première est de savoir si la conjec-
ture de Herbert Seifert est valable pour les champs de vecteurs géodésibles. La seconde étudie les
relations entre les feuilletages moyennables et les feuilletages dont toutes les feuilles sont Følner.
Chacun des deux chapitres de ce texte est consacré à l’une des questions.

Le point en commun entre les deux sujets est l’utilisation des pièges. Un piège est une variété
à bord P munie d’un feuilletage non singulier. La propriété importante est que l’on peut utiliser
les pièges pour changer localement, c’est-à-dire à l’intérieur d’une carte feuilletée, le feuilletage.
Il y au moins une feuille qui intercepte le piège de telle façon que dans le nouveau feuilletage, la
feuille correspondante ne soit pas compacte et qu’un de ses bouts soit contenu dans le piège. On
dit que la feuille est piégée par P .

Dans la recherche de champs de vecteurs sans orbites périodiques, les pièges ont été largement
utilisés pour construire des exemples ayant un nombre fini d’orbites périodiques, ou même sans
orbite périodique. Dans ce cas, le feuilletage, défini par les orbites du champ de vecteurs, est de
dimension un. On peut citer les constructions de F. Wesley Wilson [81], Paul A. Schweitzer [67],
Jenny Harrison [38], Krystyna Kuperberg [52] et Greg Kuperberg [51], entre autres. Cependant,
on va montrer que les pièges ne peuvent pas être utilisés dans la catégorie des champs de vecteurs
géodésibles.

En 1983, Robert Brooks avait annoncé qu’un feuilletage dont presque toutes les feuilles sont
Følner est moyennable. À l’aide d’un piège, on va construire un contre-exemple à cette affirma-
tion, c’est-à-dire un feuilletage non moyennable dont toutes les feuilles sont Følner.

vii
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La conjecture de Seifert pour les champs de vecteurs géodésibles

Préliminaires

En 1950, H. Seifert a montré que tout champ de vecteurs de classe C 1 et C0 proche du champ
de vecteurs de Hopf a une orbite périodique, voir [69]. On appelle champ de vecteurs de Hopf
un champ de vecteurs non singulier qui est tangent au feuilletage de Hopf. Suite à ce résultat, H.
Seifert pose la question suivante :

est-ce-que tout champ de vecteurs non singulier sur S3 a au moins une orbite périodique ?

La réponse affirmative à cette question est devenue la conjecture de Seifert. On sait, mainte-
nant, que cette conjecture est fausse : on connaı̂t des exemples de champs de vecteurs non sin-
guliers et sans orbites périodiques sur toute variété fermée de dimension trois. Dans le reste de
cette introduction, on écrira simplement champ de vecteurs à la place de champ de vecteurs non
singulier.

Commençons par quelques rappels concernant la construction des contre-exemples à la conjec-
ture. En 1966, F. W. Wilson a montré qu’il existe des champs de vecteurs ayant un nombre fini
d’orbites périodiques sur toute variété fermée de dimension trois, voir [81]. Pour cela, il modifie
localement un champ de vecteurs donné en y insérant des pièges. Toutes les orbites sont alors
piégées : elles rentrent dans un des pièges et n’en sortent pas. En fait, elles s’accumulent sur une
orbite périodique contenue dans le piège. Toutes les orbites périodiques des champs de vecteurs
construits par F. W. Wilson sont contenues dans les pièges insérés. On va construire le piège de F.
W. Wilson dans la section 1.1. En dimension plus grande, il s’avère que la construction de F. W.
Wilson peut être faite sans orbites périodiques. Cela lui permet d’établir le résultat suivant : toute
variété fermée de dimension a au mois quatre et admettant un champ de vecteurs non singulier admet un
champ de vecteurs sans orbite périodique, voir [81].

En dimension trois, les premiers exemples de champs de vecteurs sans orbites périodiques
ont été construits par P. A. Schweitzer. Cependant, ces exemples sont seulement de classe C1,
voir [67]. J. Harrison a amélioré la construction en obtenant un champ de vecteurs de classe C2

[38]. Finalement, K. Kuperberg a construit un piège muni d’un champ de vecteurs de classe C∞,
et même analytique réelle, sans orbites périodiques. Ceci implique que sur toute variété fermée de
dimension trois il existe un champ de vecteurs dont aucune orbite n’est périodique, voir [52].

On peut désormais se demander si la conjecture de Seifert est vraie pour des familles plus
restrictives de champs de vecteurs. On peut, par exemple, imposer que le champ préserve un
volume ou qu’il soit géodésible. Le sujet principal du premier chapitre de ce texte, est la conjecture
de Seifert pour les champs de vecteurs géodésibles.

Avant de passer aux champs de vecteurs géodésibles, nous allons rappeler les résultats de
G. Kuperberg autour de la conjecture de Seifert pour les champs de vecteurs qui préservent un
volume, voir [51]. Premièrement, il a construit des champs de vecteurs préservant un volume avec
un nombre fini d’orbites périodiques. Ces exemples sont de classe C∞. La construction est basée
sur l’existence d’un piège dont le champ de vecteurs préserve un volume, qu’il utilise pour faire
des chirurgies de Dehn. Ce piège a deux orbites périodiques. Rappelons nous que toute variété
fermée peut être obtenue à partir de T3 par un nombre fini de chirurgies de Dehn. Donc, partant
du tore T3 muni d’un champ de vecteurs linéaire à pente irrationnelle, il réalise les chirurgies de
Dehn avec son piège, pour construire sur toute variété fermée de dimension trois un champ de
vecteurs qui préserve le volume et qui n’a qu’un nombre fini d’orbites périodiques.
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G. Kuperberg a aussi construit une version du piège de P. A. Schweitzer dont le champ préserve
le volume. Donc sur toute variété fermée de dimension trois, il existe un champ de vecteurs de
classe C1 qui préserve le volume sans orbites périodiques.

Retournons aux champs de vecteurs géodésibles. On dit qu’un champ de vecteurs, sur une
variété fermée M , est géodésible s’il existe une métrique riemannienne g pour laquelle toutes
les orbites sont des géodésiques. Donc, être géodésible est une propriété du 1-feuilletage défini
par les orbites du champ. Soit X un champ de vecteurs géodésible sur M . Considérons la forme
différentielle α = ιXg. Elle va jouer un rôle important dans l’étude du champ X . Nous allons voir
queX est contenu dans le noyau de la 2-forme dα. De plus, modulo un reparamétrage qui rendX
unitaire on peut supposer que α(X) = 1. Ceci assure que α est invariante par X . Le noyau de la
forme α définit un champ d’hyperplans ξ, orthogonal à X . Ce champ d’hyperplans est invariant
par X .

En dimension trois, ce champ de plans peut être une structure de contact. C’est le cas lorsque
α ∧ dα �= 0. On obtient que X est le champ de vecteurs de Reeb asssocié, et par le théorème suivant
il a des orbites périodiques.

Théorème (Hofer, Taubes) Soit X le champ de Reeb défini par une forme de contact α sur une variété
fermée orientable de dimension trois. Alors X possède une orbite périodique.

Le théorème a été prouvé par Helmut Hofer lorsque la variété est diffeomorphe à S3 ou
encore lorsque son second groupe d’homotopie n’est pas trivial, voir [41]. La généralisation à
toute variété a été prouvée, récemment, par Clifford H. Taubes, voir [75]. Les champs de Reeb
préservent le volume donné par la forme α ∧ dα. Donc les exemples de G. Kuperberg ne sont pas
des champs de Reeb. La méthode de H. Hofer est basée sur l’utilisation des courbes pseudoholo-
morphes dans une symplectisation de la variété ambiante. Dans ce texte nous allons utiliser cette
méthode pour montrer l’existence d’orbites périodiques de champs de Reeb sur certaines variétés
à bord.

Par ailleurs, si la forme α est fermée, le champ de plans ξ est tangent à un feuilletage transverse
à X . En particulier, X a une section globale : il existe une surface fermée transverse à X qui
intersecte toutes les orbites. Nous affirmons que les champs de Reeb n’ont pas de section globale.
En fait, supposons que X soit un champ de Reeb d’une forme de contact α, ayant une section
globale S. Alors, la restriction à S de dα est une forme d’aire. Mais, le théorème d’Arnold P. Stokes
implique que l’intégrale de dα sur S est égale à zéro. Ceci prouve l’affirmation : les champs de
Reeb n’ont pas de section globale.

Reciproquement, un champ de vecteurs qui admet une section globale est géodésible, ainsi que
les champs de Reeb. Pour ces derniers on peut construire une métrique riemannienne telle que le
champ de vecteurs est unitaire et la structure de contact est orthogonal au champ. Il s’avère que
pour une telle métrique les orbites du champ sont des géodésiques. Donc, la famille des champs
géodésibles est plus vaste que celle des champs de Reeb.

Présentation des résultats

Nous souhaitons donc savoir si les champs de vecteurs géodésibles sur une variété fermée
M de dimension trois ont des orbites périodiques. Commençons d’abord par établir une relation
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entre les champs de vecteurs géodésibles et certaines solutions de l’équation d’Euler, en dimen-
sion trois. Dans une variété munie d’une métrique riemannienne g et d’une forme volume µ (pas
nécessairement le volume riemannien), on défini le rotationel d’un champ de vecteurs X comme
l’unique champ de vecteurs rot(X) tel que

ιrot(X)µ = dα,

où α est la forme différentielle ιXg. On en déduit qu’un champ de vecteurs est géodésible si et
seulement s’il est colinéaire à son rotationnel, c’est-à-dire

rot(X) = fX, (1)

pour une fonction f : M → R. Dans le cas où µ est invariante, f est constante le long des orbites.
Nous allons voir que ces champs de vecteurs sont des solutions de l’équation d’Euler pour les
fluides non visqueux et pour lesquels le champ de vitesses est indépendant du temps. En fait,
dans une variété de dimension trois on peut mettre l’équation d’Euler sous la forme :

X ∧ rot(X) = grad(b),

où b est la fonction de Bernoulli deX . Les solutions de cette équation avec b constante sont connues
comme des champs de vecteurs de Beltrami.

Ceci établit un lien entre les champs de vecteurs géodésibles et les champs de vecteurs de
Beltrami : les résultats présentés dans ce texte sont donc valables pour les champs de vecteurs de
Beltrami.

On montrera que la méthode des pièges, introduite par F. W. Wilson, ne peut pas être utilisée
pour les champs de vecteurs géodésibles. Cette affirmation est une conséquence du théorème
suivant de Dennis Sullivan, qui caractérise les champs géodésibles, voir [74] : un champ de vecteurs
est géodésible si et seulement s’il n’existe pas de suite de 2-chaı̂nes tangentes au champ, dont les bords
approchent un cycle feuilleté. Dans le chapitre 1, on étudiera cette caractérisation plus en détail.

Les résultats principaux de cette partie du texte établissent l’existence d’orbites périodiques
pour certains champs de vecteurs géodésibles. Supposons d’abord que le champ de vecteurs X
est géodésible et analytique réel. Dans ce cas-ci on supposera aussi que la métrique riemannienne
est analytique réelle.

Théorème A Soit X un champ de vecteurs géodésible analytique réel sur une variété fermée orientable
de dimension trois M . Si X préserve un volume analytique réel, alors ou bien X a une orbite périodique ou
la variété M est un fibré en tores sur le cercle.

On suppose aussi que le volume préservé est donné par une forme analytique réelle. Remar-
quons qu’il y a trois cas à considérer : X est un champ de Reeb ; X a une section globale ; X est
un champ de Reeb dans un ouvert non vide de M , distinct de M . Ces trois cas se traduisent par
les propriétés suivantes de la forme différentielle α :

(I) α ∧ dα �= 0, ceci équivaut à dire que la fonction f ne s’annule pas ;
(II) α ∧ dα = 0, ceci équivaut à dire que f est identiquement nulle ;
(III) f est non constante et égale à zéro dans un ensemble fermé non vide.

Comme on suppose que X préserve un volume, la fonction f est constante le long des orbites,
autrement dit, les niveaux de f sont invariants sous X .

Dans le premier cas on a toujours une orbite périodique, comme conséquence du théorème de
H. Hofer et C. H. Taubes. Pour le deuxième cas, on va utiliser un théorème de David Tischler : si
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une variété admet une 1-forme fermée non singulière, elle est un fibré sur le cercle, voir [76]. En fait, la
condition α ∧ dα = 0 est équivalente à dα = 0. Jusqu’à ce point nous n’avons pas utilisé le fait
que X est analytique réel. Plaçons nous dans le cas où f n’est pas constante et où elle s’annule
dans un ensemble fermé non vide distinct de M . On va se servir de la théorie des singularités
de Hassler Whitney pour les ensembles analytiques réels [80]. Sous l’hypothèse que X n’a pas
d’orbites périodiques on montrera, à l’aide de cette théorie, que chaque niveau de f est formé
d’une collection finie de tores invariants. Ceci va nous permettre de conclure que M est un fibré
en tores sur le cercle.

Lorsque l’on ne suppose plus que le flot de X préserve le volume, nous pouvons établir le
résultat suivant :

Théorème B Soit X un champ de vecteurs géodésible sur une variété M orientable fermée de dimension
trois. Supposons que M est difféomorphe à S3 ou que M a un second groupe d’homotopie non trivial. Si X
est analytique réel, il possède une orbite périodique.

Sous les hypothèses de ce théorème, f n’est plus constante le long des orbites de X , mais
f−1(0) est un ensemble compact et invariant. Dans les cas (I) et (II) la preuve du théorème précédent
peut être adaptée sans modifications significatives. Comme avant, c’est dans le cas (III) que nous
utiliserons le fait que X est analytique réel. Avec la théorie de H. Whitney, on montrera que si X
n’a pas d’orbites périodiques dans f−1(0), cet ensemble est formé d’une collection de tores tan-
gents à X . En découpant la variété le long de ces tores, on obtiendra une composante connexe
dont la fermeture est une variété compacte à bord B qui vérifie l’une des deux hypothèses sui-
vantes :

– B est difféomorphe au tore plein (B � S1 × D2) ;
– B a son second groupe d’homotopie non trivial.
Rappelons nous que ξ = {ker(α)} est un champ de plans invariant. Dans l’intérieur de la

variété B, ce champ de plans est une structure de contact. Ici, on va trouver une structure de
contact dans B telle que son champ de vecteurs de Reeb est X et elle est C∞-proche de ξ. Le
théorème suivant permet donc d’achever la preuve du théorème B.

Théorème 1.27 SoitX un champ de Reeb sur une variété compacte à bord de dimension trois B, tel que
X est tangent aux composantes de bord. Si B est un tore plein ou s’il a un second groupe d’homotopie non
trivial, X possède une orbite périodique.

John Etnyre et Robert Ghrist avaient montré le théorème pour le cas du tore plein, voir [23].
On utilise la même méthode pour le généraliser aux variétés dont le π2 n’est pas trivial.

Finalement, en ne supposant plus le champ de vecteurs analytique réel, mais en supposant à
nouveau qu’il préserve le volume, on montrera :

Théorème C Soit X un champ de vecteurs géodésible sur une variété orientable fermée de dimension
trois M . Supposons que M est difféomorphe à S3 ou que M a un second groupe d’homotopie non trivial.
Alors si X est de classe C∞ et préserve un volume, il a une orbite périodique.

Comme précédemment, le cas difficile est le cas (III). On ne peut plus conclure que les niveaux
de f , qui sont tous invariants sous X , sont des tores. En fait, on a que les niveaux correspondant
aux valeurs régulières de f sont des tores, mais on ne peut rien dire sur la topologie des niveaux
singuliers. Si zéro est une valeur régulière, la preuve suit les lignes de la preuve du théorème B.
Sinon, on va considérer une valeur régulière a assez petite, et telle que −a est aussi une valeur
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régulière. En découpant M le long des tores dans l’ensemble f−1(±a), on obtiendra une variété
à bord B, qui est un tore plein ou bien a un second groupe d’homotopie non trivial. Le pre-
mier cas à considérer est le cas où B ne rencontre pas le niveau f−1(0). Alors, l’existence d’une
orbite périodique est une conséquence du théorème 1.27. Si maintenant on se place dans le cas
{f−1(0)} ∩ B �= ∅, on va trouver une 1-forme dans M telle que dans B elle est transverse à X et
fermée. En appliquant le théorème du point fixe de Brouwer on montrera l’existence d’une orbite
périodique.

À la fin de la préparation de ce travail, Michael Hutchings et C. H. Taubes ont annoncé le
résultat suivant, voir [46].

Théorème (Hutchings, Taubes) Soit M un variété fermée orientable de dimension trois avec une
structure Hamiltonienne stable. Si M n’est pas un fibré en tores sur le cercle, le champ de vecteurs de Reeb
associé à la structure Hamiltonienne stable a une orbite périodique.

Ceci généralise le théorème C. En effet, une structure Hamiltonienne stable sur une variété
fermée de dimension trois est définie comme la donnée d’une 1-forme α et d’une 2-forme fermée
ω, non singulières et satisfaisant

α ∧ ω > 0 et ker(ω) ⊂ ker(dα).

Le champ de Reeb associé est défini par les équations

α(X) = 1 et X ∈ ker(ω).

Ceci implique que le champ de Reeb d’une structure Hamiltonienne stable est un champ de vec-
teurs géodésible qui préserve un volume car X ∈ ker(dα) et LX(α ∧ ω) = dω = 0. Inversement,
un champ de vecteurs géodésible qui préserve un volume µ est le champ de Reeb d’une structure
Hamiltonienne stable car ω = ιXµ satisfait les conditions précédentes.

Feuilletages moyennables et feuilles Følner

Définitions

Dans le deuxième chapitre de ce texte on s’intéressera à la relation entre les feuilletages moyen-
nables et les feuilletages dont toutes les feuilles sont Følner. Comme on l’expliquera, la moyennabi-
lité d’un feuilletage est définie par rapport à une mesure transverse invariante. Ces deux notions
sont motivées par les notions correspondantes pour les groupes de type fini. Un groupe de type
fini est moyennable si et seulement s’il est Følner. Nous verrons que ce n’est plus le cas pour les
feuilletages.

Nous rappelons maintenant les définitions de ces notions, pour les groupes d’abord, pour les
feuilletages ensuite. On dit qu’un groupe de type fini G est moyennable s’il existe une moyenne
invariante par translations. Une moyenne est une fonctionnelle linéaire sur l’espace de Banach
L∞(G) qui envoie la fonction constante égale à un sur un, et les fonctions positives sur les nombres
positifs. Par ailleurs, on dit que G est Følner si

inf
E

|∂E|
|E| = 0,
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où | · | est le cardinal d’un ensemble et E décrit tous les sous-ensembles finis de G. L’ensemble
∂E est formé des éléments g ∈ E tels qu’il existe un générateur γ de G pour lequel γg /∈ E.
L’équivalence de ces deux notions a été établie par Erling Følner, voir [25].

Nous passons maintenant aux définitions correspondantes pour les feuilletages. Soit F un
feuilletage d’une variété fermée M . Notons d sa dimension et q sa codimension. Il définit une
relation d’équivalence sur une transversale totale. Pour expliquer cette affirmation, considérons
un atlas feuilleté fini {Ui, φi} tel que

φi(Ui) � D
d × D

q,

où Dd est un disque ouvert de dimension d dans Rd. On dit que
– φ−1

i (Dd × {·}) sont les plaques de F dans Ui ;
– Ti = φ−1

i ({0} × Dq) sont les transversales locales et T = 	iTi est une transversale totale.
Nous utiliserons toujours des atlas vérifiant les conditions suivantes. Premièrement, si l’inter-
section Ui ∩ Uj est non vide, chaque plaque dans Ui rencontre au plus une plaque dans Uj .
Deuxièmement, on va supposer que le volume (de dimension d) des plaques et le volume (de
dimension (d− 1)) de leurs bords, sont uniformément bornés.

On a une relation d’équivalence R naturelle sur T : deux points sont équivalents si et seule-
ment s’ils appartient à la même feuille de F . Comme on suppose que la variété ambiante est
compacte, cette relation peut être engendrée par l’action d’un pseudo-groupe Γ de type fini
d’homéomorphismes locaux de T . Les classes d’équivalence peuvent être munies d’une struc-
ture de graphe : les sommets sont les points de la classe d’équivalence, qu’on note R[x], et il y
a une arête entre deux sommets x et y si la plaque de F qui contient x intersecte la plaque qui
contient y. En fait, les arêtes représentent les générateurs du pseudo-groupe Γ. La structure de
graphe dépend donc de l’atlas. Si on munit la variété ambiante M d’une métrique riemannienne,
on obtient par restriction une métrique sur les feuilles. Les graphes, munis de la métrique des
mots relative à un système de générateurs, sont quasi-isométriques aux feuilles de F .

On dit que le feuilletage F , qui a une mesure transverse invariante µ, est moyennable si la
relation d’équivalence R est moyennable, par rapport à la mesure µ. La propriété d’être moyennable ne
dépend pas du choix de la transversale T .

Pour définir ce qu’est une relation d’équivalence moyennable, rappelons d’abord quelques
définitions. Un espace mesurable standard (X,B) est un espace mesurable où X est polonais : un es-
pace topologique séparable admettant une métrique complète. Soient (X,B) un espace mesurable
standard et R une relation d’équivalence sur X . On dit que

– R est une relation d’équivalence discrète standard si, le graphe de R est mesurable dans X ×X
et que la classe d’équivalence de tout point x ∈ X est dénombrable ;

– dans une telle situation, une mesure ν sur (X,B) est quasi-invariante si le saturé parR de tout
élément de B de mesure nulle est aussi de mesure nulle. On dit alors que R est une relation
d’équivalence discrète mesurée sur (X,B, ν) ;

– une telle relation est ergodique si pour tout ensemble B ∈ B, saturé par R, on a ν(B) = 0 ou
ν(X \B) = 0.

On dit qu’une relation d’équivalence discrète mesurée R sur (X,B, ν) est moyennable s’il est
possible d’associer à ν-presque tout point x ∈ X une moyenne mx sur R[x], de sorte que les deux
propriétés suivantes soient satisfaites :

– pour ν-presque tout x on a mx = my , pour tout y ∈ R[x] ;
– si f̃ est une fonction mesurable définie sur le graphe de R ⊂ X ×X , la fonction f : X → R

définie par f(x) = mx(f̃(x, ·)) est aussi mesurable.
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Si, par exemple, une relation d’équivalence discrète mesurée R est engendrée par l’action d’un
groupe dénombrable G, alors la moyennabilité du groupe entraı̂ne la moyennablilté de R. La
réciproque est fausse. Cependant, elle est valable dans le cas d’une action qui préserve une mesure
de probabilité et qui est essentiellement libre, c’est-à-dire si la mesure de l’ensemble de points fixes
de l’action de tout élément g ∈ G est nulle, voir [84].

Passons à la définition de feuille Følner. Une feuille L est une variété riemannienne de dimen-
sion d. Elle est Følner si

inf
V

volume(d−1)(∂V )
volumed(V )

= 0,

où V décrit l’ensemble des sous-variétés de dimension d compactes à bord de L. La notion cor-
respondante pour les graphes des classes d’équivalence est la suivante :

inf
E

|∂ΓE|
|E| = 0,

ou E décrit les sous-ensembles finis de sommets, et

∂ΓE = {x ∈ E | ∃γ ∈ Γ générateur, γ(x) /∈ E}.

Un résultat classique, qu’on démontrera plus tard (voir proposition 2.5), est que l’existence d’une
feuille Følner L entraı̂ne l’existence d’une mesure transverse invariante pour F , dont le support
est contenu dans L, voir par exemple [33].

Présentation des résultats

Rappelons d’abord un peu les résultats autour des relations entre les feuilletages moyennables
et les feuilletages dont toutes les feuilles sont Følner. Remarquons qu’une feuille à croissance sous-
exponentielle est Følner. Comme premier résultat, on peut citer le théorème suivant, dû à Caroline
Series [70], et indépendamment à Manuel Samuélidès [64], dans le cas des feuilletages dont les
feuilles sont à croissance polynomiale. V. A. Kaimanovich a donné une preuve à l’énoncé suivant.

Théorème 2.8 Soient F un feuilletage et µ une mesure transverse invariante. Si µ-presque toute feuille
est à croissance sous-exponentielle, (F , µ) est moyennable.

Dans [7], R. Brooks a affirmé que si F est un feuilletage, avec une mesure transverse invariante
µ et que µ-presque toute feuille est Følner, F est moyennable. L’unique indication donnée par R.
Brooks pour établir ce fait est de suivre les arguments donnés par C. Series.

L’affirmation de R. Brooks est fausse, Vadim A. Kaimanovich a construit un contre-exemple :
un feuilletage avec une mesure transverse invariante, qui est non moyennable et dont les feuilles
sont Følner, [49]. Un défaut de la construction de V. A. Kaimanovich est que la mesure obtenue
lors de la construction n’est pas localement finie. Dans ce texte on va construire un feuilletage
avec un volume transverse invariant, qui est non moyennable et dont les feuilles sont Følner.

Théorème D Il existe un feuilletage F analytique réel non moyennable, possédant un volume transverse
invariant et ergodique, dont toutes les feuilles sont Følner.



Introduction xv

L’idée est construire un feuilletage F1, de dimension deux et codimension deux, non moyen-
nable en utilisant la suspension de l’action d’un groupe non moyennable sur la sphère de dimen-
sion deux. Les feuilles de F1 ne sont pas Følner. À l’aide d’un piège feuilleté, dont le feuilletage a
un volume transverse invariant, on va modifier localement F1 pour rendre les feuilles Følner. La
construction du piège est une adaptation de celle de F. W. Wilson [81], pour satisfaire la condition
de l’existence d’un volume transverse invariant.

En 1985, Yves Carrière et Étienne Ghys (voir [11]), en réponse à une question posée par R.
Brooks, ont montré

Théorème 2.9 Soit F un feuilletage possédant une mesure transverse invariante µ, dont µ presque
toutes les feuilles sont sans holonomie. Si F est moyennable pour µ, toutes ses feuilles sont Følner.

Dans [49], V. A. Kaimanovich demande si l’affirmation de R. Brooks est vraie pour les feuille-
tages minimaux, c’est-à-dire pour les feuilletages dont toutes les feuilles sont denses. Ici on va
montrer que ceci est une condition suffisante.

Théorème E Soit F un feuilletage minimal d’une variété compacte M . Si µ est une mesure transverse
invariante et µ-presque toutes les feuilles sont Følner, F est moyennable par rapport à µ.

Pour la preuve on utilisera le critère suivant, dû à V. A. Kaimanovich [49] : une relation
d’équivalence R sur un espace mesurable standard (X,B, ν) est moyennable s’il existe des suites
de mesures de probabilité {λnx}x∈X,n∈N sur R[x], avec x ∈ supp(λnx) pour tout n, et telles que

‖λnx − λny‖ → 0 quand n→ ∞
pour ν-presque tout couple (x, y) ∈ R. On note ‖ · ‖ la norme dans l’espace des mesures de
probabilité sur R[x]. L’application x 
→ λnx doit être mesurable pour tout n, c’est-à-dire si f̃ est
une fonction mesurable défini sur le graphe de R ⊂ X × X , la fonction fn : X → R définie par
fn(x) = λnx(f̃(x, ·)) est aussi mesurable pour tout n.

Prenons une suite de Følner, c’est-à-dire une suite d’ensembles finis En ⊂ R[x] telle que

|∂ΓEn|
|En| → 0.

Cette suite définit une suite de mesures {λnx}n∈N qui converge faiblement vers une mesure trans-
verse invariante pour F .

Pour pouvoir appliquer le résultat de V. A. Kaimanovich, il nous faut donc construire des
suites de Følner autour de chaque point d’une feuille. Pour ceci on va utiliser un théorème dû
à Daniel Cass, voir [12], qui établit l’existence des certaines applications entre des ouverts dans
une feuille minimale. Comme on verra, ces applications vont nous permettre de construire des
suites de Følner partout, puis de montrer que les suites de mesures correspondantes convergent
fortement.

On remarque que le théorème est valide sous l’hypothèse que le feuilletage est uniquement
ergodique. On dit qu’un feuilletage est uniquement ergodique s’il possède une unique mesure
harmonique de probabilité. Un feuilletage uniquement ergodique est minimal.

Les feuilletages possédant des mesures transverses invariantes sont plutôt rares. Cependant,
Lucy Garnett a introduit un autre type de mesures pour les feuilletages : les mesures dites har-
moniques. On va définir ces mesures dans la section 2.4. Contrairement aux mesures transverses
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invariantes, les mesures harmoniques ont l’avantage de toujours exister. Un fait important pour
nous est qu’une mesure harmonique admet localement une décomposition comme produit d’une
mesure sur une transversale locale et d’une mesure sur les feuilles. De plus, ces mesures trans-
verses invariantes, quand elles existent, donnent naissance à des mesures harmoniques. On ob-
tient localement la mesure harmonique correspondante en effectuant le produit de la mesure
transversale avec la densité du volume dans les feuilles. Ces mesures sont parfois appelées me-
sures complètement invariantes.



Chapter 1

Periodic orbits of non singular vector
fields on 3-manifolds

The research on the existence of vector fields without periodic orbits on 3-manifolds began in 1950
as a consequence of Herbert Seifert’s result: a C1 vector field on S3 which is C0 close to the Hopf vector
field has at least one periodic orbit. The Hopf vector field is tangent to the Hopf fibration of S3 by
circles. H. Seifert then asked if every non singular vector field on S3 has periodic orbits [69]. The
positive answer to this question became Seifert’s conjecture. As we will discuss, the conjecture is
false. Nevertheless, it is still open in more restrictive families of vector fields.

In the way to disprove the conjecture, F. Wesley Wilson proved in 1966 the existence of non
singular vector fields with a finite number of periodic orbits on any closed 3-manifold. His proof
is based on the use of plugs. Plugs are 3-manifolds with boundary endowed with a non singular
vector field that is either transverse or parallel to the boundary. They are used to modify a vector
field inside a flow box, trapping periodic orbits: there are orbits, in the modified vector field, that
enter the plug and stay in it. We will give a precise definition of plugs and explain how they are
used in section 1.1.

Almost 30 years later, Krystyna Kuperberg showed that Seifert’s conjecture is false. In fact,
she constructed a plug that allows us to find on any closed 3-manifold a non singular vector
field without periodic orbits [52]. Nowadays, we can study the validity of Seifert’s conjecture
for different categories of vector fields: for example volume preserving or geodesible. This last
category will be the main subject of this chapter.

Definition 1.6 A vector field X on a closed manifold M is geodesible if there exists a Riemannian metric
g on M making the orbits of X geodesics.

Modulo a reparameterization of X , a geodesible vector field leaves invariant the differential
1-form α(·) = g(X, ·). Since X is non singular we can assume α(X) = 1 and, as we will explain,

1
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X ∈ ker(dα). The kernel of α defines an invariant plane field, orthogonal to X . Conversely, the
existence of a non singular differential 1-form α satisfying α(X) > 0 and X ∈ ker(dα), implies
that X is geodesible.

The set of geodesible vector fields contains vector fields with a global section, and Reeb vector
fields associated to a contact form. The second case arises when the 1-form α above is a contact
form. Theorems by Helmut Hofer and Clifford H. Taubes guarantee the existence of a periodic
orbit for Reeb vector fields on any orientable closed 3-manifold. The question we deal with in this
chapter is

do geodesible vector fields on closed 3-manifolds have periodic orbits?

As a first approach, we will show that K. Kuperberg’s examples are not geodesible. In general,
the technique of plugs does not apply to geodesible vector fields. We will give a positive answer
to the question assuming some extra hypothesis: either when the vector field and the metric are
real analytic, or when the vector field preserves a volume. We will also restrain ourselves to
3-manifolds that are either diffeomorphic to S3 or have non trivial second homotopy group. We
will say that a geodesible vector field is real analytic, if the vector field and the Riemannian metric
are real analytic. We will prove the following theorems.

Theorem A Assume that X is a geodesible volume preserving vector field on an orientable closed
3-manifold M , that is not a torus bundle over the circle. Then if X is real analytic and preserves a real
analytic volume form, it possesses a periodic orbit.

Theorem B Assume that X is a geodesible vector field on an orientable closed 3-manifold M , that is
either diffeomorphic to S3 or has non trivial π2. Then if X is real analytic, it possesses a periodic orbit.

Theorem C Assume that X is a geodesible vector field on an orientable closed 3-manifold M , that is
either diffeomorphic to S3 or has non trivial π2. Then if X is C∞ and preserves a volume, it possesses a
periodic orbit.

When X is a Reeb vector field, the theorems are particular cases of H. Hofer and C. H. Taubes’
theorems. For the case where X has a cross section, we will use results as David Tischler’s theo-
rem: if a closed n-manifold admits a non singular closed 1-form, it is a fiber bundle over the circle, see [76].

The biggest difficulty in the proofs of the previous theorems is to deal with the invariant set A
where α is a closed form, and A is neither empty nor all of M . In the real analytic case, Hassler
Whitney’s singularity theory allows us to describe the topology of this set. We will prove that if
X has no periodic orbits on A, the set A is a finite union of invariant two dimensional tori. In
order to deal with A in the C∞ case, we will assume that X preserves a volume form. As we will
show, this hypothesis implies that there is a first integral of X : a function on M whose levels are
invariant under X . The regular levels of this function are formed by invariant tori.

The chapter is organized as follows. In section 1.1, we will review the definition of plugs, their
construction and the technique to use them. In particular, we will construct F. W. Wilson’s plug
from [81] and K. Kuperberg’s plug from [52]. The last one allows us to give examples of aperiodic
vector fields on any closed 3-manifold. We will also state the known results regarding Seifert’s
conjecture for volume preserving vector fields.

Examples of geodesible vector fields and a characterization theorem are presented in section
1.2. The characterization, due to D. Sullivan [74], allows us to prove that plugs cannot be used in
the category of geodesible vector fields. In section 1.3 we will establish an equivalence between
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geodesible vector fields and a class of hydrodynamical vector fields: these are Beltrami vector
fields, not necessarily volume preserving. Thus the theorems above are valid for Beltrami vector
fields.

The proofs of theorems A, B and C, are presented in section 1.4. The rest of the chapter is
devoted to the proof of two results used to establish the theorems above. The first one deals with
the study of the complement of families of two dimensional embedded tori in closed 3-manifolds.
Section 1.5 is devoted to this result. The second one asserts the existence of a periodic orbit of a
Reeb vector field on some compact 3-manifolds with boundary. In order to prove it we will have
to review the method used by H. Hofer. We will leave this discussion for section 1.6.

1.1 K. Kuperberg’s and H. Hofer’s results on periodic orbits

We will start by introducing plugs and the construction of F. W. Wilson [81], giving an exempli-
fication of the use of plugs. As we said, he proved that there are non singular vector fields on
any closed 3-manifold with a finite number of periodic orbits, namely two. From now on, if not
otherwise stated, we will always write flow for non singular flow and vector field for non singu-
lar vector field. As we are interested mainly in C∞ dynamical systems, we will talk of flows and
vector fields indistinctively. Let us define what a plug is.

Definition 1.1 A plug is a manifold P endowed with a vector field X satisfying the following character-
istics. The 3-manifold P is of the form D × [−1, 1], where D is a compact 2-manifold with boundary, and
the vector field X satisfies the conditions:

(i) X = ∂
∂z in a neighborhood of ∂P , where z is the coordinate of the interval [−1, 1]. We will call ∂

∂z
the vertical direction;

(ii) ∂P is divided in three different types regarding the relation with X :

– the transverse boundary composed by D × {−1} and D × {1}, that are the entry and exit
regions, respectively;

– the parallel boundary ∂D × [−1, 1];

– the corners, where the previous two meet, namely ∂D × {±1};

(iii) the entry-exit condition: if a point (x,−1) is in the same trajectory that (y, 1), then x = y. That is
an orbit that traverses P , exits just in front of its entry point;

(iv) there is at least one entry point whose entire positive orbit is contained in P , we will say that its orbit
is trapped by P ;

(v) there is an embedding i : P → R3 that preserves the vertical direction.

We will call the set of entry points whose orbits are trapped the trapped set. If a manifold P
endowed with a vector field X as above, satisfies all conditions except (iii), we will call it a semi-
plug. The concatenation of a semi-plug with an inverted copy of it, that is a copy where the
direction of the flow is inverted, is a plug. This is a very useful construction. Note that we can
generalize the previous definition to higher dimensions: just take the manifold D of dimension
n− 1, where n is the dimension of the ambient manifold of the flow.
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Figure 1.1: Vector field X1

To fix ideas, let us construct F. W. Wilson’s plug. Start considering the rectangle [1, 2] × [−1, 1]
with coordinates (r, s) and the vector field X1 whose orbits are as in figure 1.1. Take the manifold
P = S1× [1, 2]× [−1, 1] endowed with the vector fieldX = X1 + f ∂

∂θ , where θ is the S1 coordinate
and f is aC∞ bump function f : [1, 2]×[−1, 1] → R that assumes the value zero near the boundary
of the rectangle, is strictly positive in one of the singularities of X1, and strictly negative in the
other one. In order to satisfy the entry-exit condition, we will take f anti-symmetric with respect
to the line {z = 0}.

Observe that the vector field has two periodic orbits that correspond to the two singularities of
X1. Moreover, the set of points whose orbits are trapped is an annulus with non empty interior:
it is composed of the cross product of S1 with the set of points in the bottom boundary of the rect-
angle [1, 2] × [−1, 1] whose X1 orbits converge to the singularity p. Thus in the product manifold
P , there is an annulus in the entry region whose orbits converge to the periodic orbit described
by p.

To finish the construction of the plug we need to consider the embedding of P into the man-
ifold D2 × [−1, 1], where D2 is the closed two dimensional disc of radius two, that sends a point
(θ, r, z) to (r cos θ, r sin θ, z) and filling the exterior of the image of P with the vertical vector field
∂
∂z . We will call this plug P .

Let us describe how to use the plug to prove F. W. Wilson’s result: any closed 3-manifold admits
a non singular vector field with a finite number of periodic orbits. Start by considering a non singular
vector field on a closed 3-manifold M . The existence of a non singular vector field follows from
the fact that any compact 3-manifold has zero Euler characteristic. Observe that when we replace
the interior of one flow box with a copy of P , the entry-exit condition assures that we do not
change the type of a non trapped orbit: a periodic orbit will still be a periodic orbit after the
insertion of P , and the same for non periodic orbits. We can find a finite number of flow boxes
such that when we replace their interiors with copies of P , each orbit is trapped by at least one
of the inserted plugs. We get a new vector field on M with a finite number of periodic orbits: the
only periodic orbits are the ones in the plugs. Since we picked the flow boxes in such a way that
each orbit is trapped by at least one of the inserted plugs, the orbits that are not contained in the
plugs cannot be periodic.

In F. W. Wilson’s language the fact that there exists a finite collection of flow boxes such that
when we replace their interiors with copies of P , all the orbits of the initial vector field are trapped,
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γ × I

U1

U2

Figure 1.2: A transversal band between two flow boxes

is referred as a finite collection of flow boxes that saturates the original vector field. We can prove
that one flow box is enough to saturate a vector field. For this, consider two flow boxes U1 and
U2 in the finite collection and assume first that they are disjoint from each other. We will show
that there is one flow box that contains a segment of each orbit intersecting their union. There
exists an embedded arc γ : [0, 1] →M that goes from the boundary of the entry region of U1 to the
boundary of the entry region of U2 and such that the vector field associated to the flow is never
tangent to γ. We can expand γ to a transverse band γ × I in the complement of the flow boxes,
where I = [0, 1], and in such a way that γ(0)× [0, 1] ∈ ∂U1 and γ(1)× [0, 1] ∈ ∂U2, as in figure 1.2.
Then making a flow box with entry region γ × I , we get a new flow box that contains a segment
of the orbits intersecting

U1 ∪ U2 ∪ (γ × I × I).

Observe that if U1 ∩ U2 �= ∅, there is a flow box that contains their intersection and a segment of
each orbit in their union. We can then insert one plug that traps the orbits that were trapped by
the plugs inserted inside U1 and U2. These facts imply that it is enough to insert one plug to trap
all the orbits. We get a new vector field on M with only two periodic orbits.

It is worth mentioning that F. W. Wilson solved the periodic orbit problem in manifolds of di-
mension n strictly greater than three. His construction has generalizations to higher dimensions:
for the n dimensional plug we need to consider the product of the rectangle in figure 1.1 with a
torus of dimension n − 2. In analogy with the previous construction, this manifold is endowed
with the vector field X1 + fL, where L is an irrational flow in Tn−2. Then the minimal sets are
two n − 2 dimensional tori, in place of the two periodic orbits when n = 3. The vector field is
aperiodic. Thus, F. W. Wilson proved

Theorem 1.2 (Wilson) On any connected closed manifoldM with Euler characteristic zero and dimen-
sion greater or equal to four, there is a non singular vector field without periodic orbits.

Let us come back to Seifert’s conjecture in dimension three. In the way to disprove it, a next
possible step was to construct a plug without periodic orbits. The first one who achieved such a
construction was Paul A. Schweitzer in 1974, the flow in his plug being only of class C1 [67]. The
same construction was then improved for C2 flows by Jenny Harrison [38]. The breakthrough
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came with K. Kuperberg’s construction, the flow in her plug is C∞ or even real analytic. We will
describe briefly her construction in section 1.1.1.

The volume preserving version of Seifert’s conjecture is an open problem, nonetheless, Greg
Kuperberg showed that there are such flows on any 3-manifold with a finite number of periodic
orbits (theorem 2 of [51]). His technique is different from the one of F. W. Wilson, because in
the volume preserving category plugs cannot have a trapped set with non empty interior. This
last claim is a consequence of Henri Poincaré’s recurrence theorem: if a flow on a compact manifold
preserves volume, then on each non empty open set there exist orbits that intersect the set infinitely often.

To overcome this difficulty, G. Kuperberg uses the fact that an orientable compact 3-manifold
M can be obtained from the three torus T3 by a finite series of Dehn surgeries. Let us start with
T3 endowed with an irrational vector field, hence aperiodic. A Dehn surgery can be seen as the
insertion of a volume preserving plug into T3. The plugs he uses differ from the ones defined
above: the flow is not vertical on the boundary, it turns to allow us to perform the Dehn twist in
the surgery and change the topology of the manifold. Since the plug has two periodic orbits, the
construction gives a vector field with a finite number of periodic orbits on any closed 3-manifold.

One possible procedure to disprove the conjecture in this category, would be to construct a
volume preserving aperiodic plug. K. Kuperberg’s plug is not volume preserving because the
trapped set contains an open annulus, for a proof of this claim we refer to page 20 of Étienne Ghys’
paper [27]. G. Kuperberg also achieved the construction of a volume preserving version of P. A.
Schweitzer’s plug, showing that there are volume preserving C1 vector fields without periodic
orbits, see theorem 1 of [51]. The construction uses Denjoy’s vector field on a two dimensional
torus: a non singular vector field without periodic orbits that leaves invariant a closed set with
empty interior. This vector field is only of class C1.

Let us mention that a volume preserving non singular vector field on a compact manifold of
dimension greater or equal to four can be changed into one without periodic orbits. In fact, F.
W. Wilson’s plug can be chosen divergence free. In particular this yields to an aperiodic volume
preserving vector field on S2n+1, for n ≥ 2.

As a counterpart to these results we have the next theorem by H. Hofer and C. H. Taubes, that
assures the existence of a periodic orbit for Reeb vector fields on closed 3-manifolds [41], [75].
Reeb vector fields are associated with contact forms: a contact form is a 1-form α such that α∧ dα
is never zero. The Reeb vector field X associated to α is defined by the equations

α(X) = 1 and ιXdα = 0.

The kernel of α defines a contact structure ξ, a plane field in TM that is nowhere integrable. The
equation above implies that X and ξ are transverse to each other. Reeb vector fields are volume
preserving since the form α ∧ dα is an invariant volume form. We can now state the theorem.

Theorem 1.3 (Hofer, Taubes) The Reeb vector field associated to a contact form α on an orientable
closed 3-manifold M has a periodic orbit.

H. Hofer proved the theorem when M is diffeomorphic to S3 or if π2(M) �= 0. In section 1.6.2
we will present a sketch of his proof that uses pseudoholomorphic curves in a symplectisation of
M . The generalization to any closed 3-manifold is due C. H. Taubes, see [75].
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Figure 1.3: Vector field W1

1.1.1 Construction of K. Kuperberg’s plug

In this section we will sketch the construction of K. Kuperberg’s plug that, used as we used F. W.
Wilson’s plug, allows us to prove

Theorem 1.4 (K. Kuperberg) On every closed 3-manifold M there is a real analytic non singular
vector field without periodic orbits.

As we said the vector field in this plug is C∞, or even Cω . We will start the construction with a
modification of F. W. Wilson’s plug. Consider the rectangle [1, 2]× [−1, 1] with the vector field W1

described in figure 1.3. The vector field W1 is everywhere vertical and has two singularities p and
q. Take the manifold P = S1 × [1, 2] × [−1, 1] with the vector field W = W1 + f ∂

∂θ , where (θ, r, z)
are the coordinates of P . The C∞ function f : [1, 2]× [−1, 1] → R assumes the value zero near the
boundary of the rectangle, is strictly positive in one of the singularities of W1 and strictly negative
in the other one. In order to satisfy the entry-exit condition for plugs, described in definition 1.1,
we will ask f to be anti-symmetric with respect to the line {z = 0}.

Observe that the vector field W is vertical near the boundary of P and horizontal in the peri-
odic orbits, O1 and O2, described by the singularities of W1. Also, it is tangent to the cylinders
{r = const.} and the orbits described in each cylinder are as in figure 1.4. Clearly, the periodic
orbits are in the cylinder {r = 3

2}. In this way, we get a plug P naturally embedded in R3, whose
set of entry points with trapped orbits is the entry circle S1 × { 3

2} × {−1}.

Let us continue with K. Kuperberg’s construction: the difficult part comes now. The manifold
P can be embedded in R3 as a folded eight, as shown in figure 1.5. The embedding preserves the
vertical direction. We are going to insert parts of P in itself in such a way that the two periodic
orbits will be trapped by these auto-intersections. Consider in each annulus A = S1 × [1, 2] the
topological closed discs Li, for i = 1, 2, whose boundaries are composed by two arcs: α′

i in the
interior of A and αi in the boundary circle {r = 2} ⊂ ∂A, as shown in figure 1.6. We define the
tongues as the sets Li× [−1, 1] ⊂ P . We will choose the discs Li in such a way that the tongues are
disjoint and each one contains a rectangle of the cylinder {r = 3

2}.

We are going to insert the tongues in P . For this consider two disjoint arcs βi in the circle
{r = 1} ⊂ ∂A and two C∞ embeddings σi : Li × [−1, 1] → P , for i = 1, 2, such that

• σi(α′
i × [−1, 1]) = βi × [−1, 1];
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r ≈ 1, 2

r = 3
2

r ≈ 3
2

Figure 1.4: W orbits in the cylinders {r = const.}

Figure 1.5: Embedding of P

• (Li × [−1, 1]) ∩ σi(Li × [−1, 1]) = ∅;

• σi(Li×{·}) is transverse to the vector field W . Since W is vertical near ∂P and horizontal in
the two periodic orbits, this condition means that the surfaces σi(Li × {·}) make half a turn
as in figure 1.7. Also, we will require that σi(Li × {·}) intersects the periodic orbit Oi and
not the other one.

The vector field in σi(Li × [−1, 1]) is the image of the vector field W|Li×[−1,1]. The idea of the
embeddings is to trap the two periodic orbits of P with the same plug. We obtain K. Kuperberg’s
plug K , with the vector field K, shown in figure 1.8.

In order to make the vector field aperiodic, we need to impose the following two conditions:

K1 the disc Li contains a point (θi, 3
2 ) such that the image under σi of the vertical segment

(θi, 3
2 ) × [−1, 1] is an arc of the periodic orbit Oi of W ;

K2 if a point (θ̄, r̄) ∈ L1 ∪ L2 goes under σ1 or σ2 on a point (θ, r, z), then r̄ > r unless (θ̄, r̄) is
one of the points (θi, 3

2 ).
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Figure 1.7: The set σi(Li × [−1, 1])

For a proof of the aperiodicity of K and a description of the dynamics in the interior ofK we refer
the reader to section 6 of É. Ghys’ article [27].

Before ending the section, let us describe the reasons why plugs and plug insertions can be
made real analytic, implying the existence of real analytic non singular flows without periodic
orbits on every closed 3-manifold. Let us come back to the notation of definition 1.1. First observe
that the condition

(i) w = ∂
∂z in a neighborhood of ∂P ,

cannot be satisfied in the real analytic category. In fact, this will imply that the vector field is
vertical everywhere. So we will replace it by condition

(i’) w = ∂
∂z on ∂P .
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Figure 1.8: K. Kuperberg’s plug K

Let us take an open neighborhood U of the plug P = D × [−1, 1] in R3, such that

U � B × (−(1 + ε), 1 + ε)

and B is an open two dimensional ball containing D. We can extend the vector field w from the
plug to U in such a way that the vector field in U \P is almost vertical. By almost vertical we mean
that:

• the flow line passing through a point (x, 1), respectively (x,−1), contains the point (x, (1+ε))
in ∂U , respectively (x,−(1 + ε)), but it is not vertical all the way between these two points.
The reason for this condition is to maintain the entry-exit property satisfied;

• the points (x,±(1 + ε)) ∈ ∂U , belong to the same flow line for every x ∈ B \D.

Consider now a real analytic 3-manifold M endowed with a real analytic vector field X . The
flow box theorem is also valid in this category, so we can take one flow box F and an open
neighborhood F ⊂ V ⊂ M . We claim that there exists an analytic map h : U \ P → V \ F such
that the vector field in U \P is mapped to X in V \F . To proof the claim, consider an embedding
h̃ ofB into V \F , which is transverse to X . For any (x, z) ∈ U \P let h(x, z) = (h̃(O(x,z)), z) where
O(x,z) is the intersection point between the orbit through (x, z) and B×{1 + ε}. Then h is defined
on U \ P and is real analytic. Observe that it cannot be extended to the rest of U . Hence using h,
we can map w|U\P to X in V \ F . We can put P at the place of F , changing the vector field on the
manifold. We will call this new vector field X̄ .

The manifold M had a real analytic structure that we will call U1. When we insert the plug in
a chart, we produce a new analytic structure U2, that is equal to U1 away from V .

Theorem 1.5 Two real analytic manifolds which are diffeomorphic, are real analytically diffeomorphic.

In other words, if a manifold has a real analytic structure it is unique. The fact that the real an-
alytic structure is unique is a consequence of Hans Grauert’s result [34] that states that Cω(M,N)
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Figure 1.9: The real analytic map h.

is dense in Cr(M,N), for 0 ≤ r ≤ ∞, where M and N are real analytic manifolds. Coming back
to the insertion of plugs, the theorem implies that there is a real analytic diffeomorphism

Φ : (M,U2) → (M,U1),

that maps the new vector field X̄ to a vector field X̃ on (M,U1). These vector fields are conjugated,
thus they have the same orbit structure. This map is not the identity map. We conclude that plug
insertions can be made real analytic without changing the real analytic structure of the ambient
manifold.

Finally, we will mention some remarks. First, as we mentioned in the previous section the
construction of a C∞, or even C2, aperiodic volume preserving plug is an open problem. We can
construct a version of F. W. Wilson’s plug that is volume preserving (see section 2.3.1), but we do
not know how to make the auto-intersections. Secondly, the vector field K is homotopic to the
vertical vector field in the set of non singular vector fields. Thus we can find an aperiodic vector
field in each homotopy class of non singular vector fields on a closed 3-manifold.

The vector field of a plug defines a 1-foliation. So we can generalize the use of plugs to the
context of foliations of codimension two of a n-manifold. For example, we can use (foliated)
plugs K × Tn−3 to construct examples without compact leaves. Here Tn−3 stands for the torus
of dimension n − 3 and the foliation of the plug is defined by the product of the orbits of K with
Tn−3. For foliations of codimension q ≥ 2, P. A. Schweitzer introduced a way to use his plug: in a
trivially foliated open set that intersects a compact leaf, he inserts the product of his plug with a
q− 2 dimensional sphere [67]. Thus constructing a C1 foliation without compact leaves. Using K.
Kuperberg’s plug in the same way, we get that: every manifold that admits a C∞ (or Cω) foliation of
codimension q ≥ 2, admits a C∞ (or Cω) foliation without compact leaves.

For codimension one foliations P. A. Schweitzer showed that, when the dimension of the am-
bient manifold is greater or equal to four, a non singular foliation can be changed into one without
compact leaves of class C1, see [68].
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1.2 Geodesible vector fields

We mentioned that H. Hofer’s theorem 1.3 states the existence of periodic orbits for the Reeb
vector field associated to any contact structure on S3. A larger class of vector fields are geodesible
ones, that we will study in this chapter.

Definition 1.6 Let X be a vector field on a closed manifold M . We will say that it is geodesible, or that
the associated flow is geodesible, if there exists a Riemannian metric g on M such that the orbits of X are
geodesics. We can reparameterize X to make it of unit length.

These vector fields were first studied by Herman Gluck. He was interested in filling manifolds
with geodesics, in other words which manifolds can be foliated by geodesics. We owe him the
definition of geodesible vector fields, we refer to [32]. Later on, D. Sullivan gave a characterization
of such vector fields in terms of tangent homologies, see [74], that we will introduce in section 1.2.2.

We just claimed that Reeb vector fields are geodesible. In order to prove this, consider a Reeb
vector fieldX associated to a contact structure ξ = ker(α) on a closed 3-manifoldM . Observe that
since α(X) = 1 and ιXdα = 0, the contact structure is transverse to X . So we can choose on M a
Riemannian metric g, such that

• g(X,X) = 1;

• X is orthogonal to ξ.

The metric satisfying the conditions above is such that αx(Y ) = g(Xx, Y ) for any vector Y ∈ TxM .
Let now Y ∈ TM be a vector field. We have that

(LXα)(Y ) = LXg(X,Y ) − g(X,LXY )
= g(∇XX,Y ) + g(X,∇XY ) − g(X,∇XY ) + g(X,∇YX) (1.1)
= g(∇XX,Y ),

where ∇ stands for the Levi-Civita connection and L for the Lie derivative. Since X is the Reeb
vector field of α, we have that

LXα = dιXα+ ιXdα = 0,

thus ∇XX = 0 which means that the orbits of X are geodesics.

We claim that the set of geodesible vector fields is larger than the one of Reeb vector fields.
Observe that if a vector field X is geodesible for a Riemannian metric g on M , then there is an
invariant one form defined by α(·) = g(X, ·) which is non singular. We have that ιXdα = 0, but α
may not be a contact form. For example, if it is a closed form the plane field defined by its kernel
is integrable. Thus there is a codimension one foliation transverse to X .

Definition 1.7 A global cross section to a flow on a closed manifold M , is a closed submanifold S of
dimension one less than M , transverse to X and meeting every orbit in at least one point.

When α is a closed form, the vector field associated to X has a global cross section. The reason
for this is that we can perturb α in order that its periods are rational, and then multiply it in such
a way that the periods are integers. Thus α defines a submersion of M onto the circle, and any
fiber gives us a global cross section of X . This argument proves D. Tischler’s theorem (theorem 1
of [76]).
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Theorem 1.8 (Tischler) Let M be a closed n-manifold. Assume that M admits a non singular closed
1-form, then M is a fiber bundle over the circle.

A vector field with a cross section cannot be the Reeb vector field of a contact form α, because
dα restricted to the cross section is an exact area form. Using Arnold P. Stokes’ theorem we get
that the area of the cross section has to be zero. This proves our claim: geodesible vector fields
form a larger class than Reeb vector fields.

Observe that in the case of geodesible vector fields the form α ∧ dα is zero if and only if α is
closed. This follows from the fact that the kernel of α consists of the vectors that are perpendicular
to X . Then if α is not closed and α ∧ dα = 0 we get the contradiction ker(dα) ⊂ ker(α).

Proposition 1.9 Vector fields with section are geodesible. Hence any manifold which fibers over the circle
can be filled by geodesics for a suitable metric.

Proof. Let X be a vector field on a manifold M and S a section to the vector field. Cutting M
along S yields to S× [0, 1], with the orbits of X being the segments {·}× [0, 1]. We can reassemble
M identifying (x, 1) with (h(x), 0), for some diffeomorphism h of S induced by the flow associated
to X . Let g be a metric on S, and gt a metric path between g = g0 and the pullback h∗g = g1. We
will ask that gt = g0 for t near 0 and gt = g1 for t near 1. Then the metric gt + dt2 on S × [0, 1]
induces a Riemannian metric on M . Since the segments {·} × [0, 1] are geodesics, the orbits are
geodesics in M .

�

Summarizing, geodesible vector fields contain Reeb vector fields associated to a contact struc-
ture and vector fields with section. Let us mention some examples of geodesible vector fields.

1. Geodesic flow on a Riemannian surface M . We will explain that the geodesic flow is geodesible
in T 1M and does not admit cross sections.

Take the cotangent bundle, that is the symplectic manifold (T ∗M, ω̂). The word symplectic
means that the differential 2-form ω̂ is non degenerated and closed. Consider a chart that
trivializes the cotangent bundle

T ∗M |U � U × R
n

where U is an open subset of the manifold M . Denote the coordinates of the chart as
(p1, p2, x1, x2). In this coordinates the symplectic form ω̂ is the differential of the Liouville
1-form (or canonical 1-form) given locally by

λ̂ =
2∑
j=1

xjdpj .

Put

πM : TM → M

pM : T ∗M → M,
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the natural projections. From the Riemannian metric g we get a bundle isomorphism ψ,
such that the following diagram is commutative

TM
ψ−−−−→ T ∗M�πM

�pM

M
Id−−−−→ M

Here, ψ(X) = ιXg. By ω we denote the pull back of the symplectic form ω̂ to TM . The
geodesic vector field is the Hamiltonian vector field of the kinetic energy defined by

E(X) =
1
2
g(X,X),

on TM with respect to the form ω. That is, it is the unique vector field VE ∈ TTM satisfying
ιVEω = −dE. Denote by φt the associated geodesic flow, acting on TM . As we will explain,
the flow line φt(X) projects under πM to the geodesic γX(t) determined by γ̇X(0) = X and
φt(X) = γ̇X(t), for every X ∈ TM .

The tangent space TXTM of TM , splits into the horizontal and vertical subspaces TXhTM
and TXvTM with respect to the Levi-Civita connection ∇:

TXTM = TXhTM ⊕ TXvTM.

Each of these subspaces is canonically isomorphic to TpM , for p = πM (X) ∈M .

Lemma 1.10 The symplectic 2-form ω on TM can be described by the formula

ω(U, V ) = g(Uh, Vv) − g(Uv, Vh). (1.2)

Here, the U, V ∈ TXTM are decomposed into their horizontal and vertical components, and g
denotes the Riemannian metric on TpM , where p = πM (X).

For a proof we refer to section 1.3.2 of [60]. The horizontal lift at X ∈ TM is the map

HX : TpM → TXTM

where p = πM (X), defined as follows. Given Y ∈ TpM and λ : (−ε, ε) → M a curve such
that λ̇(0) = Y , let Z(t) be the parallel transport of X along λ. Take σ : (−ε, ε) → TM the
curve defined by σ(t) = (λ(t), Z(t)). Then

HX(Y ) = σ̇(0) ∈ TXTM.

We claim that the geodesic vector field VE is horizontal, that is VE ∈ TXhTM . TakeX ∈ TpM
and U ∈ TXTM . Let σ : (−ε, ε) → TM be a curve such that σ̇(0) = U and write σ(t) =
(λ(t), Z(t)) for a curve λ in M as above. Then

dEX(U) =
d

dt

∣∣∣
t=0

E(σ(t))

=
d

dt

∣∣∣
t=0

1
2
g(Z(t), Z(t))

= g((∇λ̇Z)(0), Z(0))
= g(Uv, VE(X)).
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Proving that VE(X) = (X, 0) ∈ TXhTM ⊕ TXvTM .

Let γ(t) be a geodesic in M , then the equation ∇γ̇(t)γ̇(t) = 0 now reads locally as

d

dt
γ̇(t) = (γ̇(t), 0) = VE(γ̇(t)).

Thus γ̇(t) = φt(γ̇(0)). This implies that πM (φt(X)) is a geodesic in M .

We can define a scalar product on TXTM by letting the horizontal and the vertical spaces be
orthogonal and taking on each one of these spaces the scalar product defined by the scalar
product of TpM , using the canonical identifications. This defines a Riemannian metric on
TM known as the Sasaki metric. Denote this metric by gS . Let J : TXTM → TXTM be the
almost complex structure (i.e. J2 = −Id) defined by

J(Uh, Uv) = (−Uv, Uh).
Then ω(U, V ) = gS(JU, V ).

Recall that for a Hamiltonian flow, the levels of the Hamiltonian function are invariant.
Moreover, the geodesic flow on a given level E = a > 0 is a reparameterization of the flow
in any other level E = b > 0. Thus, in order to study the geodesic flow we can restrain our
attention to φt|T 1M on the unit tangent bundle. Hence, the projected curves πM (φt(X)) are
parameterized by arc length.

On TM define the one form α by

αX(U) = gS(U, VE(X)) = g(Uh, X),

for U ∈ TXTM .

Proposition 1.11 We have that ω = −dα.

For a proof we refer the reader to proposition 1.24 of Gabriel P. Paternain’s book [60]. Then
we have that αX(VE(X)) = 1. Consider U ∈ TXT

1M , then

ιVE(X)dα(U) = −ω(VE(X), U) = dE(U) = 0

since E is constant on T 1M .

We conclude that the geodesic vector field is geodesible, its orbits are geodesics in T 1M for
the Sasaki metric. Moreover, it is the Reeb vector field of the 1-form α, and thus it does not
admit cross sections.

2. Killing vector fields. Let M be a Riemannian manifold, with metric g. A vector field X on
M which generates an isometric flow on M is a Killing vector field. In other words X is
Killing if LXg = 0. We claim that there exists a Riemannian metric g′ on M , conformal to g,
for which the trajectories of X are geodesics. To construct the new metric take f : M → R

defined by f(x) = g(Xx, Xx)−1, and define g′ = fg. Then

LXf = g(X,X)−2LX(g(X,X)) = g(X,X)−2(LXg)(X,X) = 0,

implying that LX(fg) = 0. Then, with respect to the metric g′, the flow generated by X is
isometric and it preserves the subspace of vectors orthogonal to X . Thus the trajectories of
X are geodesics for this metric, in other words X is geodesible.

For example, rotating the plane about the origin gives a non singular isometric flow of the
punctured plane whose orbits are concentric circles. Changing the metric, we can turn the
punctured plane into a cylinder and the orbits become geodesics.
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Figure 1.10: Reeb foliation of the annulus

3. Vector fields tangent to 1-foliations by closed curves. Consider a manifold M foliated by closed
curves. Andrew W. Wadsley showed that there is a Riemannian metric on M making these
curves geodesics if and only if their lengths are bounded, [78]. David B. A. Epstein had
previously showed that this bounded length condition is always satisfied in dimension
three, [20]. In [72], D. Sullivan showed that it can fail in dimension strictly greater than
four by constructing a foliation by closed leaves of S3 × S1 × S1 with unbounded length.
D. B. A. Epstein and Elmar Vogt constructed a vector field on a compact 4-manifold such
that all the orbits are circles with unbounded length [21]. Thus in dimension three a one
dimensional foliation by closed curves can be seen as the orbits of a geodesible vector field.

In dimension three, these examples are contained in the precedent ones. Observe that there
is a vector field tangent to the foliation by circles whose flow is given by a locally free action
of S1, see [20]. Such a vector field is Killing. The invariant metric is obtained as follows:
beginning with any metric on M , we take the mean of the transformations of the metric
under the S1 action, relatively to the Haar measure on S1.

As an example, consider S
3 as the unit sphere in C

2 with coordinates (z1, z2). The flow

φt(z1, z2) = (eiptz1, eiqtz2),

with p, q ∈ R+, is isometric for the standard metric on S3. If pq is a rational number, the orbits
are all circles, and φt can be defined by a locally free action of S1. We get one of the previous
examples. If p

q is irrational, the flow has exactly two periodic orbits given by the equation
zi = 0, for i = 1, 2. The other orbits are dense in the tori |z1| = k, for k ∈ (0, 1).

This yields, in particular, the Hopf fibration of S3. To describe it consider S3 ⊂ C2 as above.
Each complex line intersects the sphere in a great circle. These circles are called the Hopf
circles. Since exactly one Hopf circle passes through each point of S3, the circles fill up the
sphere. Observe that the circles are in one-to-one correspondence with the complex lines
of C2, they are thus in relation with the Riemann sphere CP1 � S2. We get a fiber bundle
S3 → S2 with fiber S1. This is the Hopf fibration of S3.

Finally, we will describe an obstruction for a vector field to be geodesible: the existence of a
tangent Reeb annulus in the associated 1-foliation. We will call a Reeb annulus an annulus foliated
as in the figure 1.10. Let us note R the foliation. In this foliation the two boundary circles are
leaves, and the interior leaves are all homeomorphic to R and asymptotic to both boundaries. A
vector field tangent to R is not geodesible. In fact, Poincaré-Bendixson’s theorem implies that any
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vector field transverse to the foliation R must have a limit cycle in the interior of the annulus.
But, if the curves of R can be made geodesics, for a Riemannian metric g, the orthogonality is
preserved: the images of the leaves of the orthogonal foliation, under the flow associated to the
unitary vector field X tangent to R, are orthogonal to R. The reason that justifies this last claim is
that the differential form given by α = ιXg is invariant under the action ofX . Thus, the associated
flow preserves its kernel, that defines the orthogonal foliation. When we push the limit cycle, we
will eventually cover the annulus with circle leaves orthogonal to R. This is a contradiction since
the foliation by circles cannot be orthogonal to the boundary leaves.

This obstruction is a special case of D. Sullivan’s characterization of geodesible vector fields
that we will describe in section 1.2.2. In the particular case of vector fields on surfaces, the exis-
tence of a Reeb annulus is actually the only obstruction to being geodesible, as was proved by H.
Gluck in section I.3 of [32].

1.2.1 Foliation cycles and transverse invariant measures

For this section we will place ourselves in the context of C∞ foliations, of any dimension and
codimension, of closed C∞ manifolds M . We will quickly review several concepts of currents
and foliation cycles that we will use throughout the text. The main references for this section are
Georges DeRham’s book [15], Herbert Federer’s book [24] and D. Sullivan’s paper [73]. Folia-
tion cycles are currents associated to a foliation. These were defined by D. Sullivan in [73], and
generalize the concept of asymptotic cycles of Sol Schwartzman, introduced in [66]. A relevance of
foliation cycles is that they are in one-to-one correspondence with transversal invariant measures
of the foliation.

We will begin the section with a review of the space of currents. Then we will define foliation
cycles and state some of the results in D. Sullivan’s article [73] that we will use later. In particular,
we will study a characterization of geodesible vector fields in terms of foliation cycles. Section
1.2.2 is devoted to this characterization.

Currents theory was first developed by G. DeRham in the 1950’s. This theory is an analogue
of distributions’ theory by Laurent Schwartz from the late 1940’s (we refer to his book [65]). Distri-
butions are continuous functionals on the space of compactly supported functions on a manifold.
Currents are continuous functionals on the space of compactly supported differential forms. In
this section we will restrain to C∞ differential forms, but the theory of currents exists for differ-
ential forms of class Cr, with r <∞. We will note Ωd the space of differential d-forms.

Let Dd denote the dual space of Ωd(M), this is the space of d-currents. Under the weak topol-
ogy, a sequence of d-currents Ci converges to a current C if Ci(α) → C(α) for every α ∈ Ωd(M).
For further details on the topology of this space we refer to section 4.1.7 of [24].

Definition 1.12 Let x ∈M and Xx ∈ ∧d(TxM). The current δx : Ωd(M) → R defined by

δx(α) = αx(Xx),

is the Dirac current of Xx.

Definitions for currents are by duality with differential forms. For example, the boundary of a
d-current C is the (d− 1)-current defined by

∂C(α) = C(dα).
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This allows us to define the subspaces of cycles

Zd = {C ∈ Dd|∂C = 0},

and boundaries
Bd = {C ∈ Dd|∃B ∈ Dd+1, ∂B = C}.

We say that a subset V ⊂ Dd is bounded if for every bounded set W ⊂ Ωd(M)

{C(α) |C ∈ V, α ∈ W} ⊂ R

is bounded. A linear operator is bounded if the image of a bounded set is itself bounded. A linear
bounded operator between two spaces of currents is continuous. The operator ∂ is bounded, and
thus continuous. Continuing with the analogy, define the support of a current C as the smallest
closed set S ⊂M such that

supp(α) ∩ S = ∅ ⇒ C(α) = 0,

for every differential d-form α.

Definition 1.13 Let µ be a probability measure on M . Consider a d-vector field X ∈ ∧d(TM) and define

CX,µ(α) =
∫
M

α(X)dµ

for every α ∈ Ωd(M). Currents of this form are known as integral currents.

Observe that the boundary of an integral current CX,µ over a manifold with boundary is, by
A. P. Stokes’ theorem, an integral current over the boundary of the manifold. Another class of
currents are normal ones. We will say that a current C is normal if C and ∂C are representable
as linear combinations of integral currents. Let us define two seminorms on the space of normal
currents. For more details on this definitions we refer to sections 4.1.7 and 4.1.12 of [24] and
section 4.5 of Frank Morgan’s book [58].

• The mass of a current:
M(C) = sup{C(α) | ‖α‖ ≤ 1},

where ‖α‖ = sup{|α(X)| |X is a unit d-vector}.

• The flat norm of a current:

F (C) = inf{M(A) +M(B) |C = A+ ∂B,A,B are normal currents}.

We will now give the definition of foliation currents. Consider a C∞ transversely oriented
d-foliation F of an n-manifold M . Assume that M is closed. For a point x ∈M , let L be the leaf of
F through x, then the space

∧d(TxL) has dimension one. Consider Xx ∈ ∧d(TxL), we can define
the (foliated) Dirac current as before.

Definition 1.14 The closure of the set of currents generated by the (foliated) Dirac currents, are the folia-
tion currents. The set CF ⊂ Dd of foliation currents that are closed (i.e. ∂c = 0, for a foliation current c)
is the set of foliation cycles.
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Figure 1.11: The possible intersections between CF and the spaces Zd, Bd

For non singular vector fields we can define foliation currents as the foliation currents of the
1-foliation defined by the orbits of the vector field. In this case we will simply denote the set of
foliation cycles by C.

The set CF is a compact convex cone. This means that there is a continuous linear functional
L : Dd → R such that L(c) > 0 for all non zero c ∈ CF and L−1(1) ∩ C is compact.

Definition 1.15 A 1-form α is transversal to a non singular vector field X if αx(Xx) > 0 for all x ∈M .
If c is a foliation current and α is a transversal form we have that c(α) > 0.

Equivalently, a d-form is transversal to a d-foliation if it is positive on the leaves.

The different intersections of the cone CF with the subspaces of cycles and boundaries are
illustrated in figure 1.11. Using the duality with differential forms, we can summarize them as
follows

• there is an exact d-form transverse to F if and only if zero is the only foliation cycle. This
corresponds to figure (a).

• there is a closed d-form transverse to F if and only if zero is the only foliation cycle that is a
boundary. This corresponds to (a) and (b).

• there are no closed d-forms transverse to F , thus we are in the situation sketched in (c).

The next theorem implies that for one dimensional foliations, the situation illustrated by (a)
does not exist.
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Theorem 1.16 (Sullivan) Let X be a non singular vector field on a closed manifoldM , thenX has non
zero foliation cycles.

Proof. Assume that there are no non zero foliation cycles, that is Z1 ∩ C = {0}. Then by the
Hahn-Banach theorem there exists a continuous linear functional L : D1 → R such that L(Z1) = 0
and L(c) > 0 for all 0 �= c ∈ C. As a consequence of the duality between Ω1 and D1, there is a
1-form α representing L: that is L(c) = c(α) for all c ∈ D1. Since c(α) = 0 when c ∈ Z1, the form
α is exact. But c(α) > 0 when c ∈ C, thus α(X) > 0 always. Thus α is transversal to X . This is a
contradiction because if α = df for a function f on M and x ∈ M is a local maximum for f , then
α is degenerated at x. Thus Z1 ∩ C �= {0}.

�

Let us come back to the context of a C∞ foliation F of a compact manifold M .

Definition 1.17 Let D1 and D2 be two q dimensional submanifolds, possibly with boundary, which are
everywhere transversal to F . Then F gives rise to a collection of homeomorphisms between open subsets
of D1 and D2 that preserve each leaf of the foliation. The collection of all such homeomorphisms between
subsets of all possible pairs of transversal submanifolds generates the holonomy pseudogroup.

A transverse invariant measure is a measure invariant under the action of the holonomy pseudogroup.

Theorem 1.18 (Sullivan) Given M and F as above, there is a canonical one-to-one correspondence
between foliation cycles and transverse invariant measures.

Beginning with a transverse invariant measure µ, we are going to construct a foliation cycle.
For this we need to introduce some notation. Let {Ui, φi}i∈I be a regular foliated atlas. This means
in particular that

φi(Ui) � D
d × D

q,

where q = n − d and Dd is a d dimensional disc. Let Ti = φ−1
i (Dq) be the local transversals and

πi : Ui → Ti the projection.

For each Ui we can integrate a differential d-form α over each plaque π−1
i (x), where x ∈ Ti.

We get a continuous function Ti → R that we can integrate with respect to the measure µ|Ti . To
define the integral we need to consider a partition of the unity {λi}i∈I associated to the foliated
atlas. We can define a current cµ as follows

cµ(α) =
∑
i∈I

∫
Ti

(∫
π−1

i (x)

λiα

)
dµ.

The definition of cµ is independent of the choice of the partition of the unity and the atlas. We
will call cµ the current associated to the measure µ. We claim that cµ is an example of a foliation
cycle. In fact, for a differential (d− 1)-form α we have that

∂cµ(α) =
∑
i∈I

∫
Ti

(∫
π−1

i (x)

dλiα

)
dµ.

Using A. P. Stokes’ theorem and the fact that supp(λi) ⊂ Ui, we get that ∂cµ = 0.

The current cµ that we constructed for a transverse invariant measure µ, proves one implica-
tion of the theorem. For the other one, the idea is to show that every foliation cycle is of the form
cµ for some transverse invariant measure µ. For a proof we refer to D. Sullivan’s paper, theorem
I.13 of [73], or to section 10.2.B of [9].
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1.2.2 D. Sullivan’s characterization of geodesible vector fields

As we previously said, if a non singular vector field X on a C∞ manifold M is geodesible then
there is a 1-form α such that

α(X) = 1 and ιXdα = 0.

Conversely, the existence of such a form implies that X is geodesible, this follows from equation
1.1. The characterization we want to introduce here is in terms of tangent homologies, using
foliation cycles. The next result is the main theorem from D. Sullivan’s paper [74].

Theorem 1.19 (Sullivan) Let X be a smooth non singular vector field on an oriented closed manifold
M . Then, X is geodesible if and only if no non zero foliation cycle can be arbitrarily well approximated by
the boundary of a 2-chain tangent to X .

Thus a vector field is geodesible if we have the situation illustrated in figure 1.11 (b). The cone
of foliation currents C has non trivial intersection with the subspace of cycles Z1. We now ask
whether C meets the closed subspace B1 ⊂ Z1 of boundaries. We have two possibilities: there are
non trivial foliation cycles that are boundaries (C ∩ B1 �= {0}) or the cone C does not intersect the
boundaries subspace.

Lemma 1.20 C ∩ B1 = {0} if and only if there exists a closed 1-form α transverse to X .

To prove this lemma one has to use the same arguments that we used in the proof of 1.16. The
next theorem due to S. Schwartzman is a consequence of the lemma and D. Tischler’s theorem
1.8, for a proof we refer the reader to section 7 of [66].

Theorem 1.21 (Schwartzman) A non singular vector field X on a closed manifold M admits a cross
section if and only if no non trivial foliation cycle bounds.

Let us now proceed with the proof of D. Sullivan’s theorem.

Proof of theorem 1.19. Let X be a non singular vector field on a smooth closed manifold M .
Assume first that X is geodesible for a Riemannian metric g and that there is a sequence {cn}n∈N

of 2-chains whose boundaries approach a foliation cycle z. Let α be as always the 1-form defined
by α = ιXg. Then ιXdα = 0 and α is transversal to X , thus z(α) > 0. This implies that

0 = cn(dα) = ∂cn(α) → z(α) > 0,

which is a contradiction.

For the other implication assume that no foliation cycle can be approximated by the boundary
of a 2-chain tangent to X . Consider the closed linear subspace of D1 generated by the boundaries
of all tangent 2-chains. Let us call it {∂b}. Again, using the Hahn-Banach theorem, we have a
linear functional L : D1 → R such that

L({∂b}) = 0 and L(c) > 0 ∀0 �= c ∈ C.
This functional corresponds to a 1-form α such that ∂b(α) = 0 for all tangent 2-chains and c(α) > 0
for all non zero foliation cycles. The first condition is equivalent to ιXdα = 0 and the second one
to α(X) > 0. Thus X is geodesible.
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Figure 1.12: Foliations of the annulus
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Before finishing the section we will give some examples where we can use the characterization
of D. Sullivan.

1. Foliations of the annulus. Let us analyze the two oriented foliations of the annulus in figure
1.12. The one on the left is the foliation that is the Reeb annulus that is not geodesible. Call
c1 and c2 the two border components with the orientations in each figure. The integration
over a1c1 + a2c2, for a1, a2 ≥ 0 are foliations cycles for both foliations. The whole annulus
is a tangent 2-chain for both. For the Reeb annulus the border of this 2-chain is c1 + c2: a
foliation cycle. For the other foliation the border is c1 − c2: not a foliation cycle. Theorem
1.19 implies that the foliation of the Reeb annulus is not geodesible.

Observe that in the second foliation a small transversal to c1 is mapped, under the Poincaré
first return map, to a proper subset of itself. This argument implies that the only (locally
finite) transverse invariant measures are the ones with non zero weight just at c1 and c2.
Hence, the one-to-one correspondence between foliation cycles and transverse invariant
measures, theorem 1.18, implies that the only foliations cycles are of the form a1c1 + a2c2,
for a1, a2 ≥ 0. Thus no foliation cycle bounds any tangent 2-chain, and the second foliation
is geodesible.

2. A theorem of D. Asimov and H. Gluck. They used the characterization to prove

Theorem 1.22 (Asimov, Gluck) A non singular Morse-Smale vector field on a closed manifold
is geodesible if and only if it is a suspension. In particular the manifold must fiber over the circle.

We refer to [4] for a proof.

3. Horocycle flows. We can use D. Sullivan’s characterization to show that on a compact hyper-
bolic surface S the horocycle flow is not geodesible.

Let D be the Poincaré disc and T 1D de unit tangent space. A horocycle is a circle in D that is
tangent to the boundary of the disc. The positive horocycle flow ht on D is the flow on T1D

which moves a unit tangent vector along the horocycle, in the positive direction and at unit
speed. A compact hyperbolic surface can be written as S = Λ \ D where Λ is a cocompact
torsion free discrete subgroup of the group of PSL(2,R). The positive horocycle vector field
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Figure 1.13: Tangent 2-chain to the horocycle flow

descends to a vector field on T 1S. We will call this vector field the positive horocycle vector
field of S and we will keep the notation ht.

Consider the positive horocycle vector field in the unit tangent bundle and the sequence of
tangent 2-chains e−tHt, that are the projection of the 2-chains in figure 1.13. These are the
two currents of integration over the surface Ht multiplied by e−t. Their boundaries are the
projections of the 1-currents

e−t∂Ht = e−t
(∫

et

−
∫
t

−
∫

1

+
∫
t

)
,

where we write
∫
t

for the integration current of a one form over the segment of length t in
the figure. These currents have bounded mass. Thus, using the mass topology in the space
of currents, we have that the next limit exists

C = lim
t→∞ e−t∂Ht = lim

t→∞ e−t
∫
et

.

Then C is a cycle and a foliation current: C is a foliation cycle. Thus ht is not geodesible.

Let us now describe the horocycle flow in a different way. Consider the group of isometries
of the Poincaré disc, PSL(2,R) and its Lie algebra psl(2,R) generated by the elements

A =
(

1 0
0 −1

)
, B =

(
0 1
0 0

)
and C =

(
0 0
1 0

)
.

Satisfying the relations

[A,B] = 2B, [A,C] = −2C and [B,C] = A,

where [A,B] = AB−BA. We can identify the unit tangent space of the Poincaré disc and the
Lie group PSL(2,R). The positive horocycle flow is generated by the action ofB: the action
of the exponential of B on PSL(2,R). This action is well defined on the unitary tangent
space of any hyperbolic surface. Using the identification above, the unit tangent space of a
hyperbolic surface is identified with PSL(2,R) modulo a lattice Λ.

Let us prove again that the horocycle flow is not geodesible. Assume that the flow generated
by the action of B is geodesible. Then there is a 1-form α on PSL(2,R) modulo Λ, such that
α(B) = 1 and B ∈ ker(dα). Using the relation dα(A,B) = A · α(B) − B · α(A) − α([A,B]),
we get that

B · α(A) = −α([A,B]) = −α(2B) = −2,
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since α(B) = 1. Let us take an invariant measure µ ofB. We claim that the integral ofB ·f is
zero for any C∞ function f . Recall that a measure is ergodic if any measurable invariant set
has zero or full measure. Since any invariant measure decomposes into ergodic measures,
it is enough to prove our claim under the assumption that µ is ergodic. For a proof of this
statements, we refer to chapter II of Ricardo Mañé’s book [55].

Let µ be an ergodic invariant measure. Denote by φt the induced flow and O(x, t) the orbit
segment of a point x that lies between x and φt(x). Since the measure is ergodic, there are
orbits such that the integral

1
t

∫
O(x,t)

B · fdµ

converges as t → ∞ to the integral of B · f on the ambient manifold, with respect to µ. The
integral above is equal to 1

t (f(x) − f(φt(x))), that converges to zero as t → ∞. This proves
our claim.

Hence B · α(A) cannot be constant, which is a contradiction. Then there is no differential
1-form such that α(B) = 1 and B ∈ ker(dα). We conclude that the horocycle flow is not
geodesible.

1.3 Geodesible vector fields on 3-manifolds

In this section we will consider geodesible vector fields on compact 3-manifolds. We will establish
a correspondence between geodesible vector fields and some solutions of the Euler equation of
an ideal stationary fluid. Our result generalizes theorem 2.1 of [22] by John Etnyre and Robert
Ghrist: the class of Reeb vector fields of a contact structure on a 3-manifold is identical to the class of vector
fields that have non zero curl and are colinear with it, for a suitable Riemannian metric.

Proposition 1.23 LetM be an orientable 3-manifold. Any C∞ vector field that is parallel to its curl, for
a Riemannian metric, is geodesible. Conversely, any geodesible vector field, modulo a reparameterization,
is parallel to its curl.

The definition of the curl of a vector field in R3 depends upon a Riemannian metric. We adopt
the following definition: the curl of a vector field X on a Riemannian 3-manifold M , with metric
g and arbitrary distinguished volume form µ, is the unique vector field curl(X) given by

ιcurl(X)
µ = dιXg.

The uniqueness comes from the fact that for a fixed volume form µ, contraction of µ is an isomor-
phism between vector fields and differential 2-forms. Taking the curl with respect to an arbitrary
volume form makes the subsequent results valid for a more general class of fluids: for exam-
ple basotropic flows, these are compressible for the Riemannian volume and incompressible for a
rescaled volume form. We refer the reader to section VI.2.A of Vladimir I. Arnold and Boris A.
Khesin’s book [3]. When µ is the Riemannian volume the curl assumes the more common form

curl(X) = ψ(∗dιXg),

where ∗ is the Hodge star operator, and ψ is the isomorphism between vector fields and differen-
tial 1-forms derived from g.
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Definition 1.24 The Euler equation of an ideal incompressible fluid on a Riemannian manifold M en-
dowed with a volume form µ, is given by

∂Xt

∂t
= −∇XtXt − grad(p)

LXtµ = 0,

where the velocity vector field Xt and the function p are time dependent. The second equation means that
Xt preserves the volume form µ.

We refer the reader to section I.7.A of [3] for more details on this equation. We will deal
with the Euler equation of an ideal steady fluid on M . That is, the vector field X will be time
independent and not necessarily volume preserving. We get

∇XX = −grad(p)

for a pressure function p. Using the identity ∇XX = X × curl(X) + 1
2grad‖X‖2, from page 474

of [1], where × is the cross product between vector fields; we can reduce the equation to the form

X × curl(X) = grad(b) (1.3)

where b = −p− 1
2‖X‖2. The function b is known as the Bernoulli function of X .

Proof of proposition 1.23. Assume first that X is a geodesible vector field. We know that there
exists a Riemannian metric g such that, modulo a reparameterization of the vector field, ιXg = α
is an invariant 1-form and that X is in ker(dα). Using the definition of the curl we have that
ιcurl(X)

µ = dα, thus X ∈ ker(ιcurl(X)
µ). Since µ is a volume form we have that

curl(X) = fX

for a function f : M → R. Observe that this function can be zero.

Conversely, if a vector field X is such that curl(X) = fX with respect to a Riemannian metric
g, then setting ιXg = α we have that

α(X) > 0 and ιXdα = ιXιfXµ = 0.

Since X is non singular, we can rescale X using a non zero function, so that ‖X‖ = 1. The vector
field X is geodesible.

�

Definition 1.25 A vector field such that curl(X) = fX for a function f on M is a Beltrami vector field
in hydrodynamics. In magnetodynamics these vector fields are known as force-free vector fields.

Before finishing this section let us analyze some properties of volume preserving geodesible
vector fields, for a given volume form µ. Let X be a volume preserving geodesible vector field.
An important consequence of the results above is that the function f is constant along the orbits
of X . This follows from

0 = Lcurl(X)
µ = LfXµ = fdιXµ+ df ∧ ιXµ.

Since dιXµ = 0, we have that f is a first integral of X . We can distinguish the following three
situations.
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1. Reeb vector fields. When f is different from zero, X is a Reeb vector field of the contact form
α. The reason for this is that dα = fιXµ �= 0, implying that α ∧ dα �= 0. This means that the
kernel of α defines a contact structure.

We can choose the volume form µ = α ∧ dα and thus f = 1. Examples coming from
hydrodynamics are the ABC vector fields on the three torus T3. Take the coordinates
{(x, y, z)|mod 2π}. An ABC vector field v = (vx, vy, vz) is defined by the equations

vx = A sin z + C cos y
vy = B sinx+A cos z
vz = C sin y +B cosx.

They preserve the unit volume form and have curl(v) = v. These vector fields where first
studied by I. S. Gromeka in 1881, rediscovered by E. Beltrami in 1889, and largely studied
in the context of hydrodynamics during the last century. When one of the parameters A, B
or C vanishes, the flow is integrable. By symmetry of the parameters, we may assume that
1 = A ≥ B ≥ C ≥ 0.

In 1986, T. Dombre, U. Frisch, J. Greene, M. Hénon, A. Mehr and A. Soward [16], showed
the absence of integrability when ABC �= 0. They also showed that under the precedent
convention, the flow is non singular if and only if B2 + C2 < 1. Though the list of publica-
tions concerning ABC vector fields is extensive, there is very little known about the global
features of these flows, apart from cases when C is zero or a perturbation thereof. The corre-
spondence between these vector fields and Reeb vector fields is a useful tool for their global
study.

2. Vector fields transverse to a 2-foliation. When f is identically zero D.Tischlers theorem implies
that the manifold is a fiber bundle over the circle. Then, in particular, there are no geodesible
vector fields with f = 0 on S3.

3. Combined case. When f is not constant and the set A = f−1(0) is non empty. The regular
levels of f are surfaces tangent to X . Assuming that M is orientable and X is non singular,
we get that the regular levels of f are finite collections of tori. Moreover in the components
of M \A, the vector field X is a Reeb vector field.

Let us make a final remark. If we forget the hypothesis that X preserves a volume form and
assume that the set A = f−1(0) �= ∅, we get that A is invariant and does not change when we
change the volume form. In fact, given two volume forms µ1 and µ2, we get two functions f1 and
f2 on M defined by the equation

ιfiXµi = dα,

for i = 1, 2. Clearly, if f1(x) = 0 the form dα is zero at x and thus f2(x) = 0.

1.4 Periodic orbits of geodesible vector fields on 3-manifolds

The set of geodesible vector fields contains Reeb vector fields, which have periodic orbits. We
can ask ourselves if geodesible vector fields on closed 3-manifolds have periodic orbits, or more
specifically on S3. In this section we will show that we cannot construct flow plugs whose vector
field is geodesible. This prevents us from constructing geodesible vector fields on 3-manifolds
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without periodic orbits using plugs, as in section 1.1. The main purpose of this section is to
prove the existence of periodic orbits for geodesible vector fields on closed orientable 3-manifolds,
assuming some extra hypothesis.

The section is organized as follows. We will begin, in section 1.4.1, by proving that the vector
field of a plug is not geodesible. In 1.4.2 we will prove that Cω geodesible vector fields have peri-
odic orbits if the ambient manifold M is diffeomorphic to S3 or has non trivial second homotopy
group (π2(M) �= 0). Moreover, if we assume that the vector field is also volume preserving, we
will show that it has a periodic orbit if M is not a torus bundle over the circle. In 1.4.4 we will
prove the existence of periodic orbits for volume preserving C∞ geodesible vector fields on S3 or
a manifold M such that π2(M) �= 0. Finally, in section 1.4.3 we will study volume preserving Cω

geodesible vector fields without periodic orbits on torus bundles over the circle.

There are two results we will use in sections 1.4.2 and 1.4.4, that we state here.

Proposition 1.26 Let S be a finite collection of disjoint embedded tori in S3 or a closed orientable 3-manifold
M with π2(M) �= 0. Then there is a connected componentB of S3 \S, respectively M \S, such that either
B is a solid torus or π2(B) �= 0.

We will give a proof of this proposition in section 1.5: proposition 1.42 for the S3 case and
proposition 1.43 for manifolds with non trivial second homotopy group.

The second result is a generalization of theorem 6.1 in [23] by J. Etnyre and R. Ghrist.

Theorem 1.27 Let X be a Reeb vector field on a compact 3-manifold B, with ∂B �= ∅ and X tangent to
the boundary. If either B is a solid torus or has non trivial second homotopy group, X possesses a periodic
orbit.

The proof is based on the method that H. Hofer used to prove theorem 1.3. As H. Hofer’s
theorem, it is valid for C2 contact forms. In section 1.6 we will review this method, and prove the
theorem above.

Before passing to the next section let us introduce some definitions.

Definition 1.28 Given an embedded surface S in a 3-manifold M , a contact structure ξ on M defines on
S a singular 1-foliation Sξ generated by the line field TS ∩ ξ, that is called the characteristic foliation of S.

Definition 1.29 A positive confoliation of a closed orientable 3-manifold M is a plane field ξ defined by a
differential 1-form α such that

α ∧ dα ≥ 0.

Thus contact structures and foliations are confoliations. We refer to Yakov Eliashberg and William P.
Thurston’s book [19] for more details.

1.4.1 Plugs are not geodesible

We will begin by a general result for geodesible vector fields, that is a consequence of D. Sullivan’s
characterization from section 1.2.2. As we will explain, the proposition below implies that there
are no plugs in the geodesible category.

Proposition 1.30 Let X be a geodesible vector field andD1, D2 two transversal discs satisfying that there
is a point x ∈ D1 such that its orbit hits D2 after a finite time. Let h be the holonomy homeomorphism
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σt

γσ(t)

D1

D2

Figure 1.14: The 2-chain At

between D1 and D2, and assume that there is a maximal connected open set D ⊂ D1 that contains x where
h is defined. Let σ : [0, 1] → D1 be a curve such that σ([0, 1)) ⊂ D and σ(1) ∈ ∂D, and assume that the
map h · σ is uniformly continuous.

Then either, σ(1) ∈ ∂D1 or limt→1 h(σ(t)) is in ∂D2.

Proof. Assume that σ(1) is not in ∂D1 and that limt→1 h(σ(t)) is not in ∂D2. Observe that by
the uniform continuity the map

h · σ : [0, 1) → D2,

can be extended so that h(σ(1)) is defined. Let τ(t) be the time that takes the point σ(t) ∈ D to
reach the disc D2 under the flow defined by X . Then, limt→1 τ(t) = +∞.

To find a contradiction we want to show that X is not geodesible. Using D. Sullivan’s theorem
1.19 we know that it is enough to find a tangent 2-chain such that its boundary is arbitrarily close
to a foliation cycle. Consider the curve σt = σ([0, t]), for t ∈ [0, 1]. For t < 1, the orbits of the
points in σt hit D2 after a finite time. Let At be the tangent surface (as in figure 1.14) defined by
the union of the flowlines γ of the points in σt, that lie between D1 and D2,

At = {γ(σt) | t ∈ [0, 1]}.

Consider now a sequence {tn}n∈N that converges to one and the sequence of 2-currents

1
|γσ(tn)|Atn(λ) =

1
|γσ(tn)|

∫
Atn

λ,

where λ is any 2-form, γσ(tn) is the orbit of the endpoint of σtn , and | · | denotes the length. Clearly,
the length of γσ(tn) goes to infinity as n→ ∞. The currents 1

|γσ(tn)|Atn form a sequence of tangent
2-chains, so we just need to prove that their boundaries approach a foliation cycle.

Lemma 1.31 limn→∞ 1
|γσ(tn)|∂Atn is a foliation cycle.

Consider D1 with the weak topology. In the subspace of normal currents the weak topology
coincides with the one defined by the flat norm

F (S) = min{M(A) +M(B)|S = A+ ∂B}

where M is the mass of a current and S, A and B are normal currents.
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Proof. Consider the sequence of foliation currents 1
|γσ(tn)|γσ(tn), we have that

M

(
1

|γσ(tn)|∂Atn − 1
|γσ(tn)|γσ(tn)

)
≤ 1

|γσ(tn)|
(|σ1| + |h(σ1)| + |γσ(1)|

)
,

hence, the difference converges to zero as n→ ∞. The flat norm of the currents 1
|γσ(tn)|γσ(tn) is less

or equal to one, because they have mass one. Since the space D1 is Montel, there is a convergent
subsequence 1

|γσ(tnk
)|γσ(tnk

). Hence, the limit defines the current

S = lim
k→∞

1
|γσ(tnk

)|∂Atnk
= lim

k→∞
1

|γσ(tnk
)|γσ(tnk

).

The operator ∂ is continuous which implies that S is a cycle. Since the space of foliation currents
is a compact convex cone C containing the sequence 1

|γσ(tnk
)|γσ(tnk

), it contains its limit. Then S is

a foliation cycle.

�

We get to the contradiction thatX is not geodesible. Hence the boundary of D is formed either
by arcs contained in ∂D1 or arcs such that their images under h are in ∂D2.

�

Corollary 1.32 The vector field of a plug is not geodesible.

Proof. Let P be a plug and assume that its vector field is geodesible. We can take as the disc
D1 in the proposition the entry region of the plug, and as D2 the exit region. The vector field of
the plug is vertical in an open neighborhood of the boundary (condition (i) of definition 1.1), thus
∂D1 is mapped to ∂D2 under the holonomy map h.

Let D be as in the proposition and such that ∂D1 ⊂ D. Let σ be an uniformly continuous
curve as above and such that σ(1) ∈ {∂D \ ∂D1}. We claim that h · σ is uniformly continuous.
This follows directly from the entry-exit condition of plugs (condition (iii) of definition 1.1). Then
the proposition implies that the maximal connected open set of definition of the holonomy is all
of D1. This contradicts the fact that the plug has trapped orbits.

�

1.4.2 Periodic orbits of real analytic geodesible vector fields

As we said in the introduction, a geodesible vector field is real analytic if the vector field is real
analytic and we can find a real analytic Riemannian metric making its orbits geodesics. In this
section we will prove the next two theorems.

Theorem A Assume thatX is a geodesible volume preserving vector field on an orientable closed 3-manifold
M , that is not a torus bundle over the circle. Then if X is real analytic and preserves a real analytic volume
form, it possesses a periodic orbit.
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Theorem B Assume that X is a geodesible vector field on an orientable closed 3-manifold M , that is
either diffeomorphic to S3 or has non trivial π2. Then if X is real analytic, it possesses a periodic orbit.

The methods we are going to use to prove the theorems are quite similar. We will give the
entire proof of the first theorem. For the second one we will concentrate on the difficult case.

Proof of theorem A We know, from section 1.3 that curl(X) = fX for a real analytic function
f : M → R. Further, since X preserves a volume given by a real analytic differential form that we
will call µ, the function f is a first integral of X . We can distinguish the next three cases:

(I) f is never zero. In this case the plane field ξ = ker(α) is a contact structure and X is the as-
sociated Reeb vector field. Thus H. Hofer’s and C. H. Taubes’ theorems, imply the existence
of a periodic orbit of the vector field X on any orientable closed 3-manifold.

(II) f is identically zero. As we previously said, this implies that the 1-form α is closed. Thus
the vector field has a section T . As we discussed, T is an oriented closed surface without
boundary. We claim that if X has no periodic orbits, T is a torus. Observe that the flow
associated to X defines a diffeomorphism, the first return map, h of T without periodic
points, in particular without fixed points. Thus T must be a torus by the Lefschetz fixed
point theorem, we refer to theorem 8.6.2 of [50].

The torus does not separate M . Cutting M along T yields T × [0, 1], with the orbits of X
being the segments {·} × [0, 1]. When we identify (x, 1) with (h(x), 0), we get that M is a
torus bundle over the circle.

We conclude that if M is not a torus bundle over the circle, the vector field X has a periodic
orbit.

(III) f is equal to zero on a compact invariant set f−1(0) = A ⊂ M . As we previously said A is
the set where α is closed. Observe that for a regular value a of f , the compact set f−1(a) is
a finite union of disjoint invariant tori. Here we used the fact that M is orientable, without
this hypothesis the levels could be Klein bottles.

Let us study the topology of the critical levels. Consider now a critical value c of f .

Lemma 1.33 If X does not have periodic orbits in f−1(c), then each connected component C of
f−1(c) is homeomorphic to a torus and X |C is topologically conjugate to a linear irrational vector
field.

Proof. Since f is a real analytic function, C is a real analytic set, thus it is a Whitney
stratified set: it can be decomposed into manifolds of dimension less or equal to two. Take
x ∈ C. The non singularity of the vector field X yields to the existence of a flow box
N � D × [−1, 1] with D a transverse disc. Assume that x ∈ D0 = D × {0}. Since C is
invariant under the flow induced by X we have that

N ∩ C � (D ∩C) × [−1, 1].

We know that the dimension of the strata manifolds that compose C is at most two. Using
H. Whitney’s theory, we get that D0 ∩ C is homeomorphic to a radial k-tree centered at x,
as in figure 1.15. This k-tree is invariant under the flow. We refer the reader to H. Whitney’s
book [80].
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� �x x

Figure 1.15: A 3-tree and a singular 2-tree centered at x

If k = 0, the set C is of dimension one and compact, thus it is a periodic orbit, a contra-
diction to the hypothesis of the lemma. If k > 2, the point x is contained in a dimension
one submanifold of C. This submanifold is a periodic orbit, again a contradiction to the
hypothesis of the lemma. In figure 1.15 we have the case of a 3-tree. Then for any x ∈ C,
the intersection D0(x) ∩ C is homeomorphic to an invariant 2-tree, thus C is an invariant
surface. The argument we used in the case k > 2, implies also that the 2-tree is a non sin-
gular Cω curve in the disc, and thus C is a non singular real analytic oriented surface that
admits a non singular vector field. Then C is a torus. Since X has no periodic orbits on C it
is topologically conjugate to a linear irrational vector field.

�

Let us come back to the ambient manifold M , that is foliated by invariant tori. Locally, that
is near a torus in the inverse image of a regular value, the function f works as a projection
to an interval of R. Near a torus in the inverse image of a critical value the set of nearby
tori has also the structure of an interval. This implies that the set of invariant tori has a
manifold structure, this manifold has dimension one and is compact. Since the only compact
1-manifold is the circle, we conclude that M is a torus bundle over the circle.

Then if M is not a torus bundle over the circle the vector field X possesses a periodic orbit.

�

Proof of theorem B Take a real analytic volume form on the ambient manifold, and let f be
the real analytic function satisfying curl(X) = fX . Observe that for the cases (I) and (II) in the
precedent proof we did not use the volume preserving hypothesis. Since a torus bundle over the
circle is irreducible, its universal cover is R3. Hence, for M diffeomorphic to S3 or M satisfying
π2(M) �= 0, the previous theorem implies the existence of a periodic orbit of X . We will analyze
case (III) below.

Denote by ξ the plane field defined by the kernel of the differential 1-form α = ιXg, where g is
the Riemannian metric making the orbits of X geodesics.

(III) The function f is equal to zero on a compact invariant set A ⊂ M . Moreover, A is real
analytic. Assume that X does not have any periodic orbit on A, by lemma 1.33 the set A is
a finite union of invariant tori. Using proposition 1.26 with A the finite collection of tori, we
obtain a connected component B ⊂M \A that satisfies one of the following conditions:

– B is diffeomorphic to a solid torus S1 ×D2, where D2 is a two dimensional closed disc;

– B is a manifold with boundary whose second homotopy group π2 is non trivial.
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Assume that α ∧ dα ≥ 0 in B. The case where α ∧ dα ≤ 0 being equivalent. Let us consider
B ⊂M .

The idea of the rest of the proof is to approximate the confoliation ξ on B by a contact
structure, that is transverse to X . The vector field X will be a Reeb vector field of the new
contact structure. Then by theorem 1.27 we conclude that X possesses a periodic orbit in B.

Observe that the one foliation ∂Bξ of ∂B, defined by the line field ∂B∩ξ has no Reeb annuli
(see figure 1.10). This follows from the assumption that X has no periodic orbits on ∂B,
because Poincaré-Bendixson’s theorem implies that a 1-foliation transverse to the foliation
of a Reeb annulus possesses a limit circle.

We will use the following proposition, similar to the main result of S. J. Altschuler’s ar-
ticle [2]. His proof uses partial differential equations. The proof below, without partial
differential equations, follows the proof of proposition 2.8.1 in [19].

Proposition 1.34 The C∞ confoliation ξ can be C∞ approximated by a contact structure η. More-
over, a Reeb vector field of η is X .

The class of smoothness of a confoliation is understood as the class of smoothness of the cor-
responding plane field. Observe that in foliations theory the class of smoothness is usually
understood as the class of smoothness of the transition maps. A foliation which is Ck in the
second sense is Ck in the first one, but possibly for a different but equivalent Ck structure of
the ambient manifold. Conversely, a foliation that is Ck in the first sense is Ck in the second
one.

To prove the proposition we will begin by a lemma. Consider R3 with coordinates (x, y, t).

Lemma 1.35 Let ξ be a positive Ck confoliation on

V = {|x| ≤ 1, |y| ≤ 1, 0 ≤ t ≤ 1} ⊂ R
3,

given by the 1-form β = dx − a(x, y, t)dy. Suppose that the confoliation is contact near {t = 1}.
Then ξ can be approximated by a confoliation ξ ′ which coincides with ξ together with all its deriva-
tives along ∂V and is contact inside V .

Proof. Observe that ξ is transversal to the x-curves and tangent to the t-curves. We have
that

β ∧ dβ =
∂a

∂t
(x, y, t)dx ∧ dy ∧ dt ≥ 0,

then ∂a
∂t (x, y, t) ≥ 0 in V and ∂a

∂t (x, y, 1) > 0. Then there exists a function ã(x, y, t) such that

∂ã

∂t
(x, y, t) > 0

in the interior of V and coincides with a along ∂V . Moreover, along ∂V all the derivatives
of a and ã coincide. Then the confoliation

ξ′ = {ker(dx− ã(x, y, t)dy)}

is the perturbation with the required properties.

�
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Proof of the proposition. Let ξ be the transitive positive confoliation of B of class C∞ and
C(ξ) = B its contact part. For every point p ∈ ∂B, choose a simple curve γp which is tangent
to ξ, begins at p and ends at a point p′ ∈ C(ξ). Let Sp : [0, 1] × [0, 1] → M be an embedding
such that the image of [0, 1] × { 1

2} is γp and gives us a surface in M that is transverse to
X , and such that Sp([0, 1] × {·}) is tangent to ξ. Moreover, we will ask that the image of
{0} × [0, 1] is contained in ∂B.

Observe that since the orbits of X are geodesics its flow φs preserves orthogonality. Then
the images under the flow of the curves Sp([0, 1] × {·}) are tangent to ξ. Pushing the above
surface with the flow we get a region

Vp = {φs · Sp([0, 1] × [0, 1]) | s ∈ [−ε, ε]},
for a given ε. Observe that part of the boundary of this region is in ∂B and the surface
φs · Sp([0, 1] × [0, 1]) is transverse to X for every s.

Denote V = [−1, 1]×[−1, 1]×[0, 1]with coordinates (x, y, t). Then, there exists an embedding

Fp : V → Vp ⊂ B

satisfying

(i) the line segment (0, 0, t), with t ∈ [0, 1], is mapped to γp;

(ii) the images of the t-curves are tangent to ξ;

(iii) the the vector field ∂
∂x is mapped to X ;

(iv) the image of (x, y, 1) is in C(ξ) for all pairs (x, y);
(v) the image of (x, y, 0) is in ∂B for all pairs (x, y).

LetW be the interior of [− 1
2 ,

1
2 ]×[− 1

2 ,
1
2 ]×[0, 1] andW ′ the interior of [−3

4 ,
3
4 ]×[− 3

4 ,
3
4 ]×[0, 1].

In the manifold B we can find a finite number of points p1, p2, . . . , pn and corresponding
paths, such that the open sets Wi = Fpi(W ) cover an open neighborhood of ∂B. Set

W ′
i = Fpi(W

′) and Vi = Fpi(V ).

Thus we have that Wi ⊂ W ′
i ⊂ Vi for every i. The pull back βi = (Fpi)∗α is a 1-form such

that ∂
∂t is in its kernel, βi( ∂∂x) = 1 and ∂

∂x is in the kernel of dβi. Thus we can write

βi = dx− ai(x, y, t)dy,

The condition ∂
∂x ∈ ker(dβi) implies that the function ai must be independent of x. Hence,

βi = dx − ai(y, t)dy and ∂ai

∂y = 0 only on the surface {t = 0}.

Applying the lemma, we can perturb ξ1 into a confoliation ξ′1 which is contact in W ′. Since
ξ′1 is defined by the kernel of the differential form dx− ã1(y, t)dy. The latter form coincides
with β′

i along the ∂V \ {t = 0}. The vector field X is in the kernel of ∂ã1
∂t (y, t)dy ∧ dt. The

push forward of ξ′1 defines a perturbation of ξ in B that is contact in W ′
1, and in W ′

1 a Reeb
vector field of the new plane field is X .

Unfortunately, we cannot simply continue the process because the perturbation inside V1

affects the properties of the rest of the embeddings. However, if the perturbation is small
enough, it is possible to modify the embeddings, for i = 2, 3, . . . , n, into F ′

pi
satisfying con-

ditions (ii) through (iv), and the condition

Wi ⊂ F ′
pi

(W ′) for i = 2, 3, . . . , n,
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at the place of (i). This is sufficient to continue with the process of perturbation. Since the
Wi cover a neighborhood of ∂B, we get a contact structure η in B such that one of its Reeb
vector fields is parallel to X .

�

Hence we have a contact structure η on B that has a Reeb vector field that is parallel to X .
Then by theorem 1.27 we have a periodic orbit of X in B. This finishes the proof of the
theorem.

�

1.4.3 Aperiodic volume preserving real analytic vector fields

We want to describe aperiodic geodesible vector fields that are real analytic and preserve a vol-
ume. Theorem A implies that the ambient manifold must be a torus bundle over the circle. A
torus bundle over the circle has the form of a quotient

MΦ = T × [0, 1]/(x, 0) ∼ (Φ(x), 1),

for some diffeomorphism Φ ∈ GL(2,Z) of the torus T . This follows because every diffeomor-
phism h : T → T is isotopic to a linear diffeomorphism Φ ∈ GL(2,Z). Moreover, Φ is uniquely
determinated by h, since it is essentially the map on H1(T,Z) � Z2 induced by h. We restrict our
attention to orientable 3-manifolds, this means restricting Φ to be in SL(2,Z).

Theorem 1.36 The manifoldMΦ is diffeomorphic toMΨ if and only if Φ is conjugate to Ψ± inGL(2,Z).

For a proof we refer the reader to theorem 2.6 of [39].

Let us begin by assuming that X is an aperiodic real analytic geodesible vector field that pre-
serves a volume on a torus bundle over the circle M . Let µ be the invariant volume form. Recall
that there is a function f that is a first integral of X . Theorem A yields f identically zero or f non
constant and equal to zero in a proper non empty set A ⊂M .

Assume that f is identically zero. Then X has a cross section that is a torus. Cutting M along
it, gives us T × [0, 1], since {·} × [0, 1] are segments of orbit. Moreover, X is transverse to the
product foliation by tori, i.e. to the torus Tt = T ×{t} for every t ∈ [0, 1]. By the discussion above,
the diffeomorphism type of the manifold M is given by the first return map h of X to T0. We can
define a function g : T0 → R that is the first return time: for a point x ∈ T0, the value of g(x) is the
time the orbit of x takes to return to T0. Reparameterizing the flow of X with g, we get that it is
Cω conjugated to the suspension of the diffeomorphism h.

Assume now that f is not constant and equal to zero in the compact set ∅ �= A �= M . Using
lemma 1.33, we have that all levels of f are invariant tori. Take one torus and cut M along it. We
distinguish two cases: when the torus is compressible and when it is not. Recall that an oriented
surface S embedded in an orientable 3-manifold is incompressible if for each disc D such that
D ∩ S = ∂D there is a disc D′ ⊂ S with ∂D′ = ∂D, see definition 1.41.

When the torus we took is incompressible, the manifold we obtain when cutting along the
torus, is diffeomorphic to T × [0, 1] (see for example lemma 2.7 of [39]). If on the contrary the
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torus is compressible we have that either it bounds a solid torus or it is contained in a three
dimensional ball embedded in the manifold M . But these cannot happen since all the levels of f
are tori.

Hence, we get T × [0, 1] and X tangent to the tori Tt = T × {t}. Moreover, X preserves the
area form defined in the tori by the invariant volume, and is aperiodic. Denote φs the flow of X .
As a consequence of Denjoy’s theorem on diffeomorphisms of the circle, we have

Proposition 1.37 Let ψs be a Ck flow of T2 preserving a Cr area form, and let n = min(k, r + 1). Then
ψs is Cn conjugate to a suspension of a rotation of the circle.

For a proof we refer the reader to proposition 14.2.5 of [50]. Thus in our case, on each torus Tt
the flow φs is C∞ conjugate to the suspension of a circle rotation. Moreover, the rotation has an
irrational rotation number ρt.

We claim that φs on T × [0, 1] is C∞ conjugate to the suspension of an annulus rotation, such
that each concentric circle is rotated by a constant ρ, that does not depend upon the circle. Thus we
need to prove that the function t 
→ ρt is constant in a neighborhood of t. Let γt be a transversal
to X on Tt. We can take a band Γ = γt × I , with I an interval, transverse to X . There is an
ε > 0 such that Γ ∩ Tt±ε is a closed curve and we can assume that it is transverse to X . Thus for
each |δ| < ε we have a rotation number ρt+δ defined by φs in the corresponding torus. Since the
function δ 
→ ρt+δ is continuous and X is aperiodic, we get that ρt+δ = ρt for every δ. This proves
our claim, that is φs is C∞ conjugate to the suspension of the annulus rotation that rotates each
concentric circle by a constant ρ = ρt.

If the number ρ is Diophantine, the conjugation above is real analytic, we refer to theorem 12.3.1
of [50]. The number ρ is Diophantine if there exist c > 0 and d > 1 such that for any p, q ∈ Z we
have |qρ− p| > cq−d.

We conclude that the real analytic volume preserving aperiodic geodesible vector fields on
torus bundles over the circle are trivial examples: their flows are C∞ conjugated to suspensions
either

• of a diffeomorphism of a torus without periodic points;

• or of a rotation of an annulus.

1.4.4 Periodic orbits of volume preserving geodesible vector fields

In this section we will change the hypothesis so that X is of class C∞ and preserves a volume.

Theorem C Assume that X is a geodesible vector field on an orientable closed 3-manifold M , that is
either diffeomorphic to S3 or has non trivial π2. Then if X is C∞ and volume preserving, it possesses a
periodic orbit.

Proof. Denote by µ the invariant volume form. We know from section 1.3 that curl(X) = fX
for a C∞ function f : M → R. Moreover, the function f is a first integral of the vector field X . We
can distinguish the three cases as in the proof of theorem A. When f �= 0 and when f is identically
zero, that is cases (I) and (II), the proof is the same. We will deal here with case (III).
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(III) f is equal to zero on a compact invariant set f−1(0) = A ⊂ M . As we previously said A
is the set where the differential form α = ιXg is closed. Here g is the Riemannian metric
making the orbits of X geodesics. Observe that for a regular value a of f , the compact set
f−1(a) is a finite union of disjoint invariant tori.

If zero is a regular value, A is a finite union of invariant tori. Let ε be small enough to guar-
antee that the values in [−ε, ε] are all regular. Then f−1([−ε, ε]) is composed by manifolds
diffeomorphic to T × [0, 1] where T is a two dimensional torus and the tori T × {s} are
tangent to X for every s ∈ [0, 1]. Using proposition 1.26, there is a connected component of
M \{f−1([−ε, ε])} such thatB is either a solid torus or a manifold with non trivial π2. In this
manifold B the vector field X is tangent to the boundary and is a Reeb vector field since the
restriction of α to B is a contact form. Thus using theorem 1.27 we conclude that X has a
periodic orbit.

Assume now that zero is a critical value of f . For ε > 0 small enough let

Sε = f−1(ε) ∪ f−1(−ε).
Assume that ±ε are regular values, then Sε is a finite collection of invariant tori. Consider
M \Sε. By proposition 1.26, there is a connected component B ofM \Sε, such that its closure
is of one of the following two types:

– a solid torus S1 × D2, where D2 is a two dimensional closed disc;

– a manifold with boundary whose second homotopy group π2 is non trivial.

As before, denote by ξ the plane field defined by the kernel of the 1-form α. If B∩A = ∅, we
have that ξ|B is a contact structure, and thus by theorem 1.27 we conclude that X possesses
a periodic orbit in B.

We have to consider the case B ∩ A �= ∅. The plane field ξ is contact in a neighborhood of
∂B. We will prove that for ε small enough there is a closed 1-form that is transverse to X in
B. Then by D. Tischler’s theorem (theorem 1.8) the vector field X |B has a section and B is a
fiber bundle over the circle. Hence B is a solid torus S

1 × D
2 (since a fiber bundle over the

circle cannot have non trivial π2), and X is transverse to the discs {·} ×D2. Then Brouwer’s
fixed point theorem implies that X must have a periodic orbit in B.

Let B ⊂ B = f−1([−ε, ε]). For ε small enough, we will construct a closed 1-form that is
transverse to X in B. We will divide the proof of the existence of the closed 1-form in two
parts: first we will give explicit expressions for X , the forms α and ιXµ near B, and then we
will construct the closed 1-form.

Let 0 ≤ δ < ε be small enough to guarantee that the values in the intervals [ε, ε + δ] and
[−ε− δ,−ε] are all regular. Let D = f−1([−ε− δ, ε+ δ]). Then D\B is foliated by tori that are
tangent to X . Consider a connected component D of D \ B where f is positive, and denote
each invariant torus in it by Tt, where the f equals ε+ t on this torus and t ∈ [0, δ]. We will
do the construction in D but it is analogous in the rest of D.

On each torus there is a non singular vector field Y defined by the equation α(Y ) = 0 and
ιY ιXµ = df . The reason why it is non singular is that the characteristic foliation of the torus
is non singular. Observe that Y is tangent to each torus and is in ξ.

Explicit expression for X in D

Assume that X has no periodic orbits in ∂B, then ∂Bξ has no Reeb annuli. The restriction
of X to ∂B has a closed transversal section on each torus (see theorem 14.2.1 of [50]): a circle
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that intersects every orbit. In D the vector fields X and Y are linearly independent and
commute.

Lemma 1.38 There are C∞ functions a1, a2, a3, a4 defined on [0, δ] such that the vector fields

a1(t)X + a2(t)Y and a3(t)X + a4(t)Y

are linearly independent on Tt and all their orbits are periodic of period one.

Proof. Fix t ∈ [0, δ]. Denote by φs the flow of X and ψs the flow of Y on Tt. For a fixed
point x ∈ Tt, consider the map

Φ : R
2 → Tt

(s1, s2) 
→ φs1ψs2(x)

SinceX and Y are linearly independent and commute, Φ is a covering map. Then for y ∈ Tt,
the inverse image Φ−1(y) is a lattice in R2.

Define the functions ai for i = 1, 2, 3, 4 such that (a1(t), a2(t)) and (a3(t), a4(t)) form a basis
for the lattice for each t. Then the vector fields

a1(t)X + a2(t)Y and a3(t)X + a4(t)Y

are linearly independent and have closed orbits of period one.

�

Hence in D we have a system of coordinates (x, y, t) such that f(x, y, t) = ε + t, and X is a
linear flow on each torus Tt that can be written as

X = τ1(t)
∂

∂x
+ τ2(t)

∂

∂y
.

Since X is aperiodic the ratio τ1(t)
τ2(t)

is constant and equal to an irrational number. We claim
that τ1 and τ2 are independent of t. Since LXα = 0 we have that

LX

(
α

(
∂

∂t

))
= −α

(
τ ′1(t)

∂

∂x
+ τ ′2(t)

∂

∂y

)
= −τ

′
1(t)
τ1(t)

.

The right side of the equation depends only on t and is constant on each torus Tt. It is a
coboundary, so it is zero on each torus. This implies that τ1 is constant, and since τ1

τ2(t)
is

constant, the function τ2 is constant. Thus,

X = τ1
∂

∂x
+ τ2

∂

∂y
.

Explicit expression for ιXµ in D

In this system of coordinates, we can write µ = β(x, y, t)dx ∧ dy ∧ dt for a positive function
β. Then in D we have that

ιXµ = τ1β(x, y, t)dy ∧ dt− τ2β(x, y, t)dx ∧ dt,
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is a closed form. Hence, LXβ = 0 and since X has dense orbits in each torus Tt, we get
τ1
∂β
∂x (x, y, t) = −τ2 ∂β∂y (x, y, t). Thus β is just a function of t and we have

ιXµ = β(t)dt ∧ (τ2dx− τ1dy).

Explicit expression for α in D

The 1-form α can be written as

α = A1dx+A2dy +A3dt,

where A1, A2 and A3 are functions of (x, y, t). Using the fact that α(X) = 1 we get that
A2 = 1−τ1A1

τ2
. Then,

dα =
(
∂A3

∂x
− ∂A1

∂t

)
dx ∧ dt+

(
∂A3

∂y
+
τ1
τ2

∂A1

∂t

)
dy ∧ dt−

(
τ1
τ2

∂A1

∂x
+
∂A1

∂y

)
dx ∧ dy.

Looking at the third term in the expression of ιXdα and using that X ∈ ker(dα), we get that

−τ
2
1

τ2

∂A1

∂x
= τ1

∂A1

∂y
.

Hence, A1 and A2 are functions of t. Moreover, we can put

A1(t) = γ(t)τ2 + c and A2(t) = −γ(t)τ1 +
1 − cτ1
τ2

,

where we added the second term in both expressions to satisfy the condition α(X) = 1 and
c is any non zero constant. Let us now look at the first two terms in the expression of ιXdα,
we obtain

τ1
∂A3

∂x
− τ1A

′
1 + τ2

∂A3

∂y
+ τ1A

′
1 = 0

τ1
∂A3

∂x
= −τ2 ∂A3

∂y
.

Then A3 is a function of t and

α = γ(t)(τ2dx− τ1dy) +A3(t)dt+
cτ2dx+ (1 − cτ1)dy

τ2
.

Using the fact that dα = fιXµ, we get that γ′(t) = (ε+ t)β(t).

The existence of a closed 1-form in B transverse to X

Now that we have local expressions for the forms α and ιXµ, we will begin the construction
of the closed 1-form. Take a C∞ function p : [0, 1] → [0, 1] such that p(s) = 1 for s < 1

3 , for
s > 2

3 we set p(s) = 0, and p′(s) ≤ 0. Define a 1-form α̃ in D as

α̃ =
[
γ(0) + p

(
t

δ

)
(γ(t) − γ(0))

]
(τ2dx− τ1dy) +

cτ2dx+ (1 − cτ1)dy
τ2

+ A3(t)dt,

for t ∈ [0, δ]. We can define this form in each component of D \ B and extended it by α in B,
since α = α̃ when t = 0. We have that

dα̃ =
[
1
δ
p′
(
t

δ

)
(γ(t) − γ(0)) + p

(
t

δ

)
γ′(t)

]
dt ∧ (τ2dx − τ1dy).
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In D \ B the function γ′ is never zero, and using the fact that β(t) = γ′(t)
ε+t there is a function

h(t) such that dα̃ = h(t)ιXµ. We have that

h(t) =
ε+ t

γ′(t)δ
p′
(
t

δ

)
(γ(t) − γ(0)) + (ε+ t)p

(
t

δ

)
, (1.4)

hence h(0) = ε and h(δ) = 0. Thus we get a 1-form α̃ in M such that dα̃ = h(t)ιXµ, where h
equals f in B and is equal to zero in M \ D. In particular, α̃ is closed outside D.

We claim that there is a positive constant C independent of ε such that |h| ≤ Cε. In the
region D we have that

p

(
t

δ

)
(ε+ t) < 2ε.

If we choose δ small enough we can assume that β(s) ≤ 2β(t) for every s ∈ [0, t] and t ≤ δ.
Then

|γ(t) − γ(0)| =
∣∣∣ ∫ t

0

(ε+ s)β(s)ds
∣∣∣

≤ 2
∣∣∣β(t)

(
εt+

t2

2

) ∣∣∣
≤ 3|β(t)|εδ.

Putting the inequalities in equation 1.4 we get that

|h(t)| ≤ 2ε
∣∣∣p′( t

δ

)
+ 1
∣∣∣ ≤ 2ε sup

t

∣∣∣p′( t
δ

)
+ 1
∣∣∣,

This proves our claim.

Recall that we are looking for a 1-form in M whose restriction to B is closed and transverse
to X . We will now study the cohomology class of hιXµ to find a 1-form different from α
and such that its derivative is equal to dα̃ in B.

The cohomology class of hιXµ on M

Consider the exact sequence of homologies with real coefficients

· · · → H1(M \A) → H1(M) → H1(M,M \A) → · · ·
Consider a finite collection of embedded curves σ1, σ2, . . . , σn in M \A such that they form
a basis for the kernel of the map H1(M) → H1(M,M \ A). These curves are at positive
distance from A, then for ε small enough we can assume that the σi are at positive distance
from B.

Using the duality of Poincaré (see for example chapter 26 of [36]) we have thatH1(M) � H2(M)
and hence for every i = 1, 2, . . . , n we can find a 2-form ωi that is the dual of σi and whose
support is contained in a tubular neighborhood of σi contained in M \ B.

Lemma 1.39 For ε small enough there are unique real numbers r1, r2, . . . , rn such that

[hιXµ] =
n∑
i=1

ri[ωi]

in H2(M). Moreover, there exists a constant C ′ independent of ε such that |ri| ≤ C′ε for every i.
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Proof. For ε small we can assume that B does not intersect the supports of the forms ωi.
Denote by

f1 : H1(M) → H1(M,M \ B)
f2 : H2(M) → H2(B).

Using the isomorphism given by the duality of Poincaré we have a map ker(f1) → ker(f2)
that is injective. Recall that hιXµ is exact in B. Then to prove the existence and uniqueness
of the numbers ri we need to prove that the precedent map is surjective.

Take an element ω in the kernel of f2. It can be represented by a form whose support is in
M \B, then [ω] ∈ H2

c (M \B) (since it has compact support). The dual of this class under the
duality of Poincaré is an homology class σ ∈ H1(M \ B) satisfying that for every element
S ∈ H2(M \ B, ∂B)

σ · S =
∫
S

σ.

Using the inclusion i : M \ B → M , we get

i∗σ · S =
∫
S

σ,

for all S ∈ H2(M). Then i∗σ ∈ H1(M) is the dual of [ω] ∈ H2(M), and f1(i∗σ) = 0. Then
the map is surjective.

We need to prove now that the ri are bounded. For i = 1, 2, . . . , n fix an oriented embedded
surface Si in M that intersects the σj . Then

ri =
∫
Si

n∑
j=1

rjωj =
∫
Si

hιXµ.

Using the bound on hwe get a constant C′ that is independent of ε and such that |ri| ≤ C′ε.

�

The differential 2-form given by γ = hιXµ −∑n
i=1 riωi is closed and exact in M . The next

step is to find a primitive of γ that is bounded by a constant multiplied by ε.

Recall that we can define a norm on the space of d-forms Ωd(M) as

‖β‖ = sup{|β(V )| |V is a unit d-vector}.

The bounds above imply that ‖γ‖ ≤ C′′ε for a positive constant C′′ independent of ε. We
need to find a primitive λ whose norm is bounded by the norm of γ. The existence of such
a primitive is given by combining the main result of François Laudenbach’s paper [53] and
theorem 1.1 of Jean-Claude Sikorav’s paper [71]. The first one gives a method to find a
primitive and the second one a bound for it. We get,

Lemma 1.40 There exists a 1-form λ such that dλ = γ and ‖λ‖ ≤ Ĉ‖γ‖, where Ĉ is a constant
independent of ε.
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The constant Ĉ depends on a fixed triangulation of the manifold M . Then, using the previ-
ous bounds we have ‖λ‖ ≤ ĈC′′ε. Thus the 1-form α− λ satisfies that

d(α− λ) = fιXµ− hιXµ+
n∑
i=1

riωi,

is equal to zero in B, and (α− λ)(X) > 0 as a consequence of the bounds we found and the
fact that they are independent of ε. Then this is the 1-form we were looking for: a closed
1-form in B that is transverse to X . This finishes the proof of the theorem.

�

Let us finish this section with a remark. We say that a vector field is minimal if all its orbits are
dense in the ambient manifold. The still open Walter H. Gottschalk conjecture asserts that there
are no minimal vector fields on S3. Observe that a geodesible vector field on S3 cannot be minimal,
in fact the only minimal geodesible vector fields on closed 3-manifolds are the suspensions of
minimal diffeomorphisms of a two dimensional torus. To prove this claim consider a minimal
geodesible vector field on a closed 3-manifold M . Then the invariant set A = f−1(0) must be
equal to M or empty. In the latter case the vector field is a Reeb vector field of a contact structure,
then it cannot be minimal since it possesses a periodic orbit. If A = M , the vector field admits a
global section that must be a torus since X is aperiodic. Then it is the suspension of a minimal
diffeomorphism of a two dimensional torus and M is a torus bundle over the circle.

1.5 Embedded tori

As announced, in this section we will prove proposition 1.26. We will consider a collection of tori
embedded in a 3-manifold, and study its complement. The three manifold will be either S

3 or will
have non trivial second homotopy group. Recall that in this latter situation the sphere theorem
implies the existence of an embedded sphere that is non homotopic to a point.

Let us start with the definition of an incompressible surface. We say that an embedded surface
S in a 3-manifold M is 2-sided if the normal bundle S × I is trivial. If M and S are oriented, S is
always a 2-sided surface.

Definition 1.41 A 2-sided surface without S2 or D2 components is incompressible if for each disc D ⊂M
with D ∩ S = ∂D there is a disc D′ ⊂ S with ∂D′ = ∂D, as in figure 1.16. A disc D with D ∩ S = ∂D
will be called a compressing disc for S, whether or not the disc D′ exists.

Observe that if a surface has more than one connected component, it is incompressible if and
only if each component is incompressible. Let S be an embedded surface in a 3-manifold M ,
deleting a small tubular neighborhood of S from M , we obtain a 3-manifold that we will denote
by M \ S. Here are some preliminary remarks about incompressible surfaces:

(i) a connected 2-sided surface which is not a sphere nor a disc is incompressible if the map
π1(S) → π1(M) induced by inclusion is injective. In fact, if we consider D ⊂M a compress-
ing disc, then ∂D is nullhomotopic in M and by assumption also in S. Thus ∂D bounds a
disc in S. The converse of this claim is also true and is a consequence of the loop theorem,
we refer to chapter 3 of Allen Hatcher notes [39].
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D D′

Figure 1.16: Incompressible surface

(ii) a 2-sided torus T , in an irreducible 3-manifold M , is compressible if and only if either T
bounds a solid torus or T lies in a ball in M . Recall that a 3-manifold is irreducible if every
embedded two sphere bounds an embedded 3-ball. To prove the claim consider a compress-
ible torus T ⊂ M . There is a surgery of T along some disc D, such that ∂D is a meridian of
T , that turns T into a sphere. This sphere bounds a 3-ball B and there are two possible cases.
If B ∩ D = ∅, reversing the surgery glues two discs in the boundary of B to create a solid
torus bounded by T . If, on the contrary, B ∩D �= ∅ we have that D ⊂ B and then T ⊂ B.

Note that if M = S
3 we can choose B disjoint from D. Since π1(S3) = 0 there are no incom-

pressible surfaces (different from the sphere and from the disc) in S3, thus every embedded
two torus bounds a solid torus on one side or the other.

(iii) if S ⊂M is incompressible, thenM is irreducible if and only ifM \S is irreducible. Suppose
that M is irreducible, then a 2-sphere in M \S bounds a ball in M , which must be disjoint of
S. Thus M \ S is irreducible. Conversely, given a sphere S2 ⊂M , consider a circle of S ∩ S2

bounding a discD in the sphere withD∩S = ∂D. By the incompressibility of S, ∂D bounds
a disc D′ ⊂ S. The sphere D∪D′ bounds a ball B ⊂M . We have that B∩S = D′, otherwise
the component of S containing D′ would be contained in B. We can push D across B to D′

and beyond, by an isotopy that eliminates the circle ∂D from S ∩ S2. Repeating this step, if
necessary, we get S2 ⊂M \ S, so S2 bounds a ball and M is irreducible.

We are now able to prove one of the results contained in proposition 1.26.

Proposition 1.42 Let S be a finite collection of disjoint embedded tori in S3. Then there is a connected
component B of S3 \ S such that B is a solid torus or π2(B) �= 0.

Proof. Remark that in this case the tori are 2-sided. There are none incompressible surfaces in
S3, thus any torus T ∈ S is compressible and thus by the remark (ii) it bounds a solid torus in
one side or the other. Assume that none of the connected components of S3 \ S is a solid torus.
Since S is finite there is one torus T1 such that one of the connected components of S3 \ T1 does
not contain another torus of S. We will say that such a component is S-empty. Let us call this
component B1. By assumption B1 is not a solid torus, thus consider the solid torus W1 = S3 \B1.
There is a torus T2 ∈ S such that one of the components of W1 \ T2 is S-empty. Let us call it B2.
As before, by assumption we have that its closure is not a solid torus. If B2 has non trivial π2 we
are done, if not consider the manifold W2 = W1 \B2.
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Figure 1.17: Two embedded tori

We claim that π2(W2) �= 0. Observe that W1 is irreducible, since it is homeomorphic to a solid
torus. Thus using remark (ii) we have that T2 either bounds a solid torus or is contained in a ball
in W1. Since it does not bound a solid torus, it is contained in a ball B. This proves our claim.

The ball B ⊂ W1 that contains the torus T2 has the property that ∂B ⊂ W2 and it is not
compressible. If we take the connected component of S3 \ S that contains a not compressible
sphere homotopic to ∂B, we get the manifold we were looking for since it has non trivial second
homotopy group. The situation is as in figure 1.17: we illustrate the case where there are three
connected components. None of them is a solid torus, but one has non trivial π2.

�

We will now place ourselves in the case of a 3-manifold M with π2(M) �= 0. Let T be an
embedded torus in M , observe that M \ T can have one or two connected components. Let us
begin with some remarks:

(I) if T is incompressible, π2(M \ T ) �= 0. In fact, remark (iii) above implies that in M \ T there
is an embedded two sphere non homotopic to a point. Thus there is at least one connected
component with non trivial π2.

(II) if T is compressible, then either π2(M \ T ) �= 0 or there is a connected component that is
a solid torus. By definition, there exists a disc D ⊂ M with D ∩ T = ∂D such that D is
homotopic to a point in M and there is not D′ ⊂ T such that ∂D′ = ∂D. Thus we can cut T
along D and get a two sphere S embedded in M . If S bounds a ball, T is the boundary of a
solid torus. If not, there is one connected component in M \ T that contains S and thus has
non trivial π2.

Note that in this case we cannot assure that a component of M \ T has non trivial second
homotopy group. Think in S2×S1 and the torus defined by T = C×S1 with C an embedded
circle in S2. Then M \ T is formed by two solid tori.

We can prove the second part of proposition 1.26.
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Proposition 1.43 Assume that M is an orientable closed three manifold with π2(M) �= 0. Let S be a
finite collection of disjoint embedded 2-sided tori in M . Then there is a connected component B of M \ S
such that either B is a solid torus or π2(B) �= 0.

Proof. If S consists of just one torus, we are done by the two remarks above. If not, let
T1, T2, . . . , Tk be the compressible tori in S and P1, P2, . . . , Pk the incompressible ones. Denote
W1 = M \T1, if one of its components (there can be just one component) is a solid torus, call it B1.
As before, we will say that B1 is S-empty if it does not contain tori of S. So if B1 is S-empty we
are done, if not let S1 ⊂ S the set of tori contained in B1. Each torus in S1 separates B1, meaning
that B1 \ T has two connected components. One of the components is a solid torus or has non
trivial π2. This last claim follows from remarks (I) and (II). Following the same procedure as in
proposition 1.42 we can find a connected component of B1 \ S1 such that it is either a solid torus
of has non trivial π2.

The case we have to consider now is when none of the components of W1 is a solid torus, in
this case we have a non S-empty component U1 with non trivial π2. In fact if U1 was S-empty,
setting B = U1 will finish the proof of the lemma. Denote by R1 the collection of tori contained
in U1. Assume there is T2 ∈ R1 compressible. Consider W2 = U1 \ T2, that has one or two
components. Remark (II) above implies that at least one of them is either a solid torus or has non
trivial π2. In the first case we are done: we can follow the proof of proposition 1.26 to get the
connected component B we are looking for. In the second one, we can continue the procedure of
taking the complement of the compressible tori until we get to one of the following situations

(a) a solid torus;

(b) a S-empty component with non trivial π2;

(c) a component U with non trivial π2, and such that any tori embedded in U is incompressible.

For (a) we need to proceed as in proposition 1.26. In (b) we are done. Let us analyze case (c). Take
P1 an incompressible torus in U . Then one component of U \P1 has non trivial π2. If it is S-empty
we are done, if not we can continue to take away the tori. With this procedure we will eventually
get to an S-empty component of M \ S with non trivial π2. The last argument applies to the case
where all the tori in S are incompressible, thus it finishes the proof of the proposition.

�

1.6 Pseudoholomorphic curves and dynamics

The aim of this section is to study the proof of J. Etnyre and R. Ghrist theorem regarding the
existence of periodic orbits for Reeb vector fields on solid tori (theorem 6.1 from [23]), and adapt
it for 3-manifolds with boundary B satisfying that π2(B) �= 0. We will prove

Theorem 1.27 Let X be a Reeb vector field on a compact 3-manifold B, with ∂B �= ∅ and X tangent to
the boundary. If either B is a solid torus or has non trivial second homotopy group, X possesses a periodic
orbit.
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We will begin by an historical review of the quest for periodic orbits of Reeb vector fields, that
will take us to describe the relation between Reeb vector fields and Hamiltonian vector fields.
In section 1.6.1 we will study some results about contact structures and in section 1.6.2 we will
sketch H. Hofer’s proof. We will use his technique to prove theorem 1.27.

H. Hofer’s theorem is a partial answer to Alan Weinstein’s conjecture. This conjecture was mo-
tivated by the results of Paul H. Rabinowitz and A. Weinstein, from 1978. The first result, proves
the existence of a periodic orbit on every smooth star shaped regular surface of a Hamiltonian
system on R2n with respect to the standard symplectic form defined below, see [62]. A. Weinstein
improved this result: he showed that it is valid on smooth regular energy surfaces bounding a
convex domain, see [79]. Both results are particular cases of a later theorem of Claude Viterbo
that we discuss below, see [77].

Before stating the conjecture we need to introduce some notions. As we previously said a
symplectic form is a closed non degenerated two form on an even dimensional manifold. Recall
that we say that a manifold W is symplectic if it is endowed with a symplectic form. As an
example, consider R2n equipped with the symplectic form ω0 defined by

ω0 =
n∑
i=1

dxi ∧ dyi,

where (x1, y1, ..., xn, yn) are the coordinates on R2n. We will call this form the standard symplectic
form. Take an autonomous Hamiltonian H : R2n → R. The associated Hamiltonian vector field
XH is defined by the equation

ιXHω0 = −dH.
We get the Hamiltonian system ẋ = XH(x). It is not difficult to see that every orbit of the system
stays in an energy level of H . Moreover, LXHω0 = 0, thus XH preserves the form ω0 and the
volume form given by the product of n times ω0: that is ωn0 = ω0 ∧ . . . ∧ ω0. The fact that this
2n-form is a volume follows from the fact that ω0 is non degenerated. In the same way, given
a Hamiltonian function H on a symplectic manifold (W,ω), we can define a Hamiltonian vector
field preserving ω and the energy levels of H .

We can now state A. Weinstein’s conjecture, that was finally proven for every closed 3-manifold
by C. H. Taubes [75] using Floer homology.

Conjecture (Weinstein) Assume that H is an autonomous Hamiltonian on a symplectic manifold
(W,ω). Let Σ = H−1(E) be a compact regular level. Assume that there exists a 1-form α on Σ such
that dα = ω|Σ and αx(XH) �= 0 for every x ∈ Σ. Then there exists a periodic orbit of XH on Σ.

We know that periodic orbits are abundant for autonomous Hamiltonian systems in (R2n, ω0),
as the next theorem by H. Hofer and Eduard J. Zehnder states. For a proof we refer to [45].

Theorem 1.44 (Hofer, Zehnder) Consider a HamiltonianH in (R2n, ω0) such thatH(x) → ∞ when
|x| → ∞. Then the Lebesgue measure of the values E of H such that on H−1(E) there are no periodic
orbits is zero.

Results by Viktor L. Ginzburg [28], [29] and Michel R. Herman [40] show that we cannot expect
to have a periodic orbit on every regular level of all Hamiltonians H .

Theorem 1.45 (Ginzburg, Herman) Let H be a proper Hamiltonian on (R2n, ω0). If n ≥ 3 there
exists a smooth compact regular energy level S in (R2n, ω0) admitting no periodic orbits.
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The techniques of V. L. Ginzburg are plug based. We would like to point out that there are
also examples of Hamiltonian systems having regular energy surfaces without periodic orbits
in (R4, ω0), but only of class C2. These were constructed by V. L. Ginzburg and Başak Z. Gürel
using plugs [30]. The question whether any smooth compact regular energy surface in R4 has a
closed characteristic is still open. Let us now state C. Viterbo’s theorem, that proves A. Weinstein’s
conjecture when the symplectic manifold is (R2n, ω0). For a proof see [77].

Theorem 1.46 (Viterbo) Let Σ = H−1(E) ⊂ (R2n, ω) be a compact smooth energy level for some
regular value E ∈ R of a Hamiltonian H . If there exists a 1-form α on Σ satisfying dα = ω|Σ and
αx(XH) �= 0 for every x ∈ Σ, then XH possesses a periodic orbit on Σ.

An interesting fact is that the orbits of a Hamiltonian system depend only on the symplectic
form ω that we consider and on the hypersurface Σ. To explain this claim, let us define the
characteristic line bundle of Σ. Let us place ourselves in the more general case of a symplectic
manifold (W,ω).

Definition 1.47 Let Σ ⊂ (W,ω) be a hypersurface. The 2-form ω restricted to the odd dimensional
subspace TxΣ ⊂ TxW is degenerate. The kernel of this restriction is of dimension one, because ω is non
degenerated on TxW . Thus ω defines the characteristic line bundle LΣ ⊂ TΣ

LΣ = {v ∈ TxΣ |ωx(v, w) = 0 ∀w ∈ TxΣ}.

The previous claim follows from the fact that the foliation defined by the orbits of XH on a
regular energy level Σ ⊂ (W,ω) coincides with the 1-foliation tangent to the characteristic line
bundle of the hypersurface. For further details we refer to section 4.2 of the book [45].

The relation between A. Weinstein’s conjecture and H. Hofer’s theorem follows from the ob-
servation that when ω|Σ = dα, the form α is a contact form and ιXHdα = ιXHω|Σ = −dH |Σ = 0.
Thus XH , restricted to Σ, is a reparameterization of the Reeb vector field associated to α. Con-
versely, a Reeb vector field on a closed 3-manifold M is a Hamiltonian vector field on the non
compact manifold W = R ×M with the Hamiltonian H(t, x) = t and a suitable symplectic form.
We identify M with M × {0}, the Hamiltonian vector field XH satisfies, at any point (0, x), that
it is a reparameterization of the Reeb vector field. We will describe this last construction in detail
below. Thus in dimension three we can reformulate A. Weinstein’s conjecture: every Reeb vector
field on a closed 3-manifold has a periodic orbit. H. Hofer’s theorem gives a positive answer to the
conjecture for some manifolds. As we said this result was generalized to every closed 3-manifold
by C. H. Taubes [75].

1.6.1 Contact structures and characteristic foliations

A contact structure ξ on a manifold M defines an orientation of M , given by the sign of the
non vanishing differential 3-form α ∧ dα, where α is a form whose kernel defines ξ. The sign
is independent of the choice of α. On the other hand, if the manifold is already oriented one
can distinguish between positive and negative contact structures depending on whether α ∧ dα
is positive or negative. Jean Martinet showed that there is a contact structure on every closed
oriented 3-manifold [56].

As an example of a contact structure, consider the standard contact structure on R
3 defined by
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the kernel of the contact form dz + xdy. This kernel consists of tangent planes in R3 which satisfy

dz

dy
= −x.

Along the (y, z)-plane, the contact plane field has slope zero meaning that they are horizontal. As
one moves in the x direction the planes twist counterclockwise.

Given an embedded surface S in M , a contact structure ξ defines on S a singular 1-foliation
Sξ, generated by the line field TS ∩ ξ, that is called the characteristic foliation of S. Observe that
generically S is tangent to ξ in a finite number of points that are the singularities of Sξ. This one
foliation is locally orientable, therefore, the index of a singular point is well defined. In the generic
case the index is equal to ±1. A singular point is elliptic if the index is equal to 1 and hyperbolic if
the index is equal to −1.

If S is oriented or cooriented, it is possible to induce an orientation on the characteristic folia-
tion Sξ. In this situation the singularities are endowed with a sign when we compare the orienta-
tion of ξ and TS, that coincide in the singularity as planes. This means that positive elliptic points
are sources and negative ones are sinks. For hyperbolic points the difference between positive
and negative is more subtle: it is a C1 rather than a topological invariant. We refer the reader to
section 1.2 of Y. Eliashberg’s article [18]. We will always assume that Sξ is oriented.

We will say that two contact structures are contactomorphic if there is a diffeomorphism of M
that takes one to the other.

Theorem 1.48 (Moser, Weinstein) Two contact structures that induce the same characteristic folia-
tion on a surface are contactomorphic in a neighborhood of the surface.

Locally all contact structures look the same, as a consequence of Gaston Darboux’s theorem:
all contact structures on a 3-manifold are locally contactomorphic to the standard contact structure on R3.
Another local result in contact topology is John W. Gray’s theorem, for a proof we refer to theorem
5.2.1 of [35].

Theorem 1.49 (Gray) If αt is a smooth family of contact forms, then there is a smooth family of diffeo-
morphisms φt of M such that αt = ft · φ∗t (α0), for some functions ft : M → (0,∞).

We will distinguish two classes of contact structures: a contact structure is overtwisted if there
is an embedded disc D ↪→ M whose characteristic foliation contains a limit cycle; otherwise, we
will say that the contact structure is tight. Note that J. W. Gray’s theorem implies that tight and
overtwisted contact structures are stable up to deformation: we cannot have a smooth family
of contact structures that changes from tight to overtwisted. The main tool for simplifying the
characteristic foliation of a surface is Emmanuel Giroux’s elimination lemma from [31]. Assume
that we have a surface with a characteristic foliation which contains an elliptic and a hyperbolic
singularities with the same sign and lying in the closure of the same leaf of the foliation. The
two singularities can be eliminated via a C0 small perturbation of the surface with support in a
neighborhood of such a leaf. Thus we get a new surface whose characteristic foliation has two
singularities less. As a non trivial corollary to the elimination lemma, in an overtwisted contact
structure we can assume that there exists an embedded disc D whose characteristic foliation Dξ

has a unique elliptic singularity and the boundary ∂D is the limit cycle, as in the figure 1.18. We
will call such a disc an overtwisted disc. For a visual proof of this corollary we refer to pages 28
and 29 of [42].
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Figure 1.18: Overtwisted disc

As an example, consider now the three sphere S3 = {(z1, z2) ∈ C2||z1|2 + |z2|2 = 1}, where
zj = xj + iyj , for j = 1, 2. The standard contact structure ξ0 is defined by the restriction to S3 of
the form

α0 =
1
2

2∑
j=1

(xjdyj − yjdxj). (1.5)

The contact structure ξ0 is formed by orthogonal planes to the Hopf fibration, where the orthog-
onality is taken with respect to the standard Riemannian metric. Daniel Bennequin showed that
this structure is tight. We refer to theorem 1 from [5].

Y. Eliashberg classified all contact structures on the three sphere up to isotopy, in particular, ξ0
is the only tight contact structure modulo isotopy. Fix now a trivialization of TS3. The homotopy
classes of the oriented plane fields can be identified with the homotopy classes

[S3, S2] = π3(S2) = Z.

Thus we can name the classes: A0, A±1, . . . with ξ0 ∈ A0, and where A±i are two classes de-
pending on the orientation. The following theorem is due to Y. Eliashberg, we refer the reader to
theorem 2.1.2 from [18].

Theorem 1.50 (Eliashberg) The classA0 contains exactly two non isotopic positive contact structures:
the standard one and one overtwisted. All other classes contain exactly one overtwisted contact structure.

Thus on S3 two overtwisted contact structures are isotopic through contact structures if and
only if they are homotopic as plane fields.

1.6.2 Pseudoholomorphic curves in H. Hofer’s theorem

The aim of this section is to sketch the proof of theorem 1.3. Let us begin by giving a more precise
statement.

Theorem 1.51 (Hofer) LetX be the Reeb flow associated to a contact form α on a closed 3-manifoldM .
Let ξ be the contact structure defined by the kernel of α, then X has a periodic orbit in any of the following
situations:

• M is diffeomorphic to S3;

• ξ is overtwisted;
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• π2(M) �= 0.

Observe that TM = ξ ⊕ X , and the restriction of dα to any plane of ξ is a non degenerated
2-form. This follows from the fact that α ∧ dα �= 0. Remark that in the family of vector fields
that preserve the contact structure ξ, Reeb ones are those who are transverse to ξ. In fact, if Y is
a vector field transverse to ξ and preserving it, we can find a Riemannian metric of the manifold
such that Y is of unit length and is orthogonal to ξ. The 1-form defined by the contraction of the
metric with Y is a contact form defining ξ.

The case of S3 equipped with a tight contact structure is treated separately using the fact that
all tight contact structures are isotopic. Let us sketch the proof of the theorem when M is diffeo-
morphic to S3 and ξ is tight. The classification result of Y. Eliashberg, implies that if α1 and α2 are
two tight contact forms on S

3 there exists a smooth function f : S
3 → R \ {0} and a diffeomor-

phism φ : S3 → S3 satisfying
φ∗α2 = fα1.

As before, represent S3 as the unit sphere in C2 with the standard contact form α0 defined by the
restriction of the form in equation 1.5. We know that it is tight. Observe that

dα0 = dx1 ∧ dy1 + dx2 ∧ dy2 = ω0,

the standard symplectic form on R4 � C2. So given any other tight contact form α on S3, we have
that

φ∗α = fα0|S3 .

Hence the Reeb flows of α and fα0|S3 are conjugated: it is enough to show that the Reeb vector
field Xfα0|S3 has a periodic orbit. Observe that Xfα0|S3 = −X−fα0|S3 , so we can assume that f is
positive. We claim that there is a smooth hypersurface S ⊂ C2 bounding a star shaped domain,
and a diffeomorphism ψ : S3 → S such that

Tψ(Lfα0|S3 ) = LS .
Here Lfα0|S3 is the line bundle defined by the Reeb vector field of fα0|S3 and LS is the character-
istic line field induced on S by the symplectic form ω0. Indeed, just define S by

S = {
√
f(z)z|z ∈ S

3} ⊂ C
2,

and ψ(z) =
√
f(z)z. Finally, observe that α0(Z) = 1

2ω0(Z, ·) for every Z ∈ C2. Thus, if we
consider z ∈ S3 and Y ∈ TzS

3, we have that

ψ∗(α0|S)z(Y ) =
1
2
ω0

(√
f(z)z, (d

√
f(z)Y )z +

√
f(z)Y

)
= f(z)

1
2
ω0(z, Y )

= f(z)(α0|S3)z(Y ).

This implies that the existence of a periodic orbit for S3 with a tight contact structure is a conse-
quence of the theorem of P. H. Rabinowitz. Recall that P. H. Rabinowitz’s result states that the
boundary of a star shaped domain in (R4, ω0) has a closed characteristic.

The proof in the other two cases, that is when ξ is overtwisted and when π2(M) �= 0, uses
pseudoholomorphic curves in a symplectisation of the manifold M . We are looking for periodic
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orbits, that we will denote by (x, T ) where x : S1 → M , of the vector field X . Here T is the
minimal period of the periodic orbit. Define the functional Φ : C∞(S1,M) → R by

Φ(x) =
∫

S1
x∗α.

Proposition 1.52 If x is a critical point of Φ and Φ(x) > 0, then there exists a closed integral curve P of
the Reeb vector field X so that x : S1 → P is a map of positive degree. Conversely, given a closed integral
curve P for X and a map x : S1 → P of positive degree, the loop x is a critical point of Φ satisfying
Φ(x) > 0.

As we said dα is a non degenerated closed 2-form on the plane field ξ, so we can choose a
compatible complex structure Jξ : ξ → ξ. The compatibility means that dα(v, Jξv) > 0 for every
vector v ∈ ξ. The set of such complex structures is an open non empty contractible set. The
manifold M is now equipped with the Riemannian metric gJξ defined by

gJξ(h, k) = dα(π(h), Jξπ(k)) + α(h)α(k),

where π : TM → ξ is the projection along the orbits of X and h, k ∈ TM .

Observe that the functional Φ and the equation dΦ(x) = 0 do not control the map x in theX di-
rection. Such a control will be desirable for using variational methods. Formally, the L2-gradient
of the functional Φ on the loop space C∞(S1,M) associated with dΦ is the vector field Jξ(x)πẋ.
The negative gradient solves the equation

x = y(s)
dy

ds
= −∇Φ(x),

where y : R → C∞(S1,M) is a smooth arc. We can define a map v : R × S
1 → M , where

v(s, t) = y(s)(t) = x(t), that satisfies the partial differential equation

∂sv + Jξ(v)π(∂tv) = 0. (1.6)

This is a first order elliptic system in the ξ direction. Remark that it lacks of ellipticity in the X
direction.

In order to control the X direction, we will construct the symplectisation of M . Consider the
non compact manifold W = R ×M equipped with the symplectic form

ω = d(etα) = et(dt ∧ α+ dα),

where t is the R coordinate. We will call (W,ω) the symplectisation of (M,α). Using Jξ we can
define an almost complex structure J on the symplectisation W by

J(a,h)(b, k) = (−αh(k), Jξhπ(k) + bXh), (1.7)

where (b, k) ∈ T(a,h)W , and Xh is the Reeb vector field on M at the point h. Consider the Hamil-
tonian H that is the projection from W to R. The restriction of the Hamiltonian flow of H to M
coincides with the flow of the Reeb vector field of the contact form α.

Consider now a closed Riemann surface (Σ, j), where j is a complex structure, and take Γ a
finite set of points of Σ. A map u : Σ \ Γ →W is called J-holomorphic if

du ◦ j = J ◦ du.
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Lemma 1.53 If Γ is empty the map u is constant.

Proof. Let p(u) be the function Σ \ Γ → R defined by u and the projection from W → R. Then
ep(u) is strictly subharmonic, that is its Laplacian is strictly positive outside the singularities of u. In
fact, denote J t the transposed of J . The differential 2-form

−d(J tdep) = d(epα)

is positive on the J-complex lines of TW . On the other hand, −∆ep(u) = u∗(d(J tdep)). Thus if
Γ = ∅, we get a subharmonic function on a closed surface, hence the function is constant. We
conclude that u∗α = 0 and π ◦ du = 0, implying that du = 0. Then u is constant.

�

Let u = (a, v) : R+ × S1 → W , where a : R+ × S1 → R is an auxiliary map. We can write
equation 1.6 as the next system

π(∂sv) + Jξ(v)π(∂tv) = 0 (1.8)
α(∂tv) = ∂sa

−α(∂sv) = ∂ta

We have a first order elliptic system that controls the X direction. Let us define the energy of the
map u as

E(u) = sup
f∈∆

∫
Σ\Γ

u∗d(fα),

where ∆ = {f : R → [0, 1]|f ′ ≥ 0}, and the one form fα on R ×M is defined by

(fα)(a,h)(b, k) = f(a)αh(k).

At this point, H. Hofer establishes, in [42], an equivalence between finding periodic orbits of
X on M and the existence of J-holomorphic maps that are solutions of equation 1.8 with finite
energy. More precisely

Theorem 1.54 (Hofer) Let Γ ⊂ Σ be a finite non empty set of points. There is a finite energy non
constant J-holomorphic map u : Σ \ Γ →W if and only if the Reeb vector field X has a periodic orbit.

If a map u = (a, v) as in the theorem exists, in the particular case where Σ = R × S
1, we have

as a consequence of the energy bound that the following limit exists

lim
s→∞

∫
S1
v(s, ·)∗α := T ∈ R.

If T �= 0, then there exists a |T |-periodic orbit x of the Reeb vector field X and there exists a
sequence sn → ∞, satisfying v(sn, t) → x(tmod T )as n→ ∞, where t ∈ S1 and with convergence
in C∞(S1,M). The solution x is then a periodic orbit of X with period T .

For the other implication of the theorem above, assume that X admits a T -periodic orbit x,
that is a periodic orbit of minimal period T . We have to find a J-holomorphic map with finite
energy. Define a map from the Riemann sphere minus two points to the symplectisation of M ,

u± = (a±, v±) : R × S
1 → W

u±(s, t) = (±Ts+ c, x(±T t+ d))
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for two constants c and d. These are J-holomorphic maps with zero energy, and thus solutions of
the first order elliptic system 1.8. Clearly,∫

S1
v±(s, ·)∗α = ±T

is constant in s ∈ R.

We conclude, that for proving the existence of periodic orbits we need to find a finite energy
non constant J-holomorphic map in the following two situations: when ξ is an overtwisted con-
tact structure and when ξ is tight on a manifold with π2(M) �= 0.

Overtwisted case.

Let us begin with the overtwisted case. Consider thus an overtwisted disc D in M , oriented
in such a way that the unique elliptic singularity e of Dξ is positive. We can explicitly construct
a one dimensional family of small J-holomorphic discs in W with their boundaries on {0} × D
that pop out the singularity (0, e). For a proof of the following theorem we refer to [6]. We will
call such a family a Bishop family. The detailed description of a Bishop family is described in the
theorem.

Theorem 1.55 There is a continuous map

Ψ : D
2 × [0, ε) →W,

ε > 0, so that for each ut(·) = Ψ(·, t) we have that

• ut : D2 →W is J-holomorphic;

• ut(∂D2) ⊂ (D \ {e}) ⊂ {0} ×M ;

• ut|∂D2 : ∂D2 → (D \ {e}) has winding number 1;

• Ψ|D2×(0,ε) is a smooth map;

• Ψ(z, 0) = e for all z ∈ D2.

It is important to notice that
ut|∂D2 : ∂D

2 → (D \ {e})
is an embedding transversal to the characteristic foliation of D. Following H. Hofer’s proof (see
[42]), we have that using the implicit function theorem we can find a maximal Bishop family

Ψmax : D
2 × [0, 1) →W.

The transversality between ut(∂D2) and Dξ , implies that Ψ(∂D2 × [0, 1)) cannot fill all of D. We
claim that the gradient of Ψmax has to blow, that is there exist sequences tk → 1 and zk → z0 ∈ D2

such that
|∇Ψmax(zk, tk)| → ∞.

If this was not the situation, the sequence Ψmax(·, tk) would converge to a J-holomorphic disc
which will allow us to extend the maximal family Ψmax. This is a contradiction. Thus

|∇Ψmax(zk, tk)| → ∞
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Figure 1.19: Foliation Fξ

and we can assume, modulo reparameterization, that the zk are bounded away from ∂D
2. Hence

the gradients are blowing up in the interior of D2. Let us assume that zk = 0 for all k and that the
norm of the gradient ∇Ψmax is maximal at the origin. Write

Ψmax(z, tk) = (ak(z), uk(z)) ∈ R ×M.

Define a sequence of maps vk : Dk → W , where Dk is a two dimensional disc of radius Rk equal
to |∇Ψmax(0, tk)|, as

vk(z) =
(
ak

(
z

Rk

)
− ak(0), uk

(
z

Rk

))
.

The gradient of vk does not blow up. H. Hofer then shows that the sequence {vk} converge to a
non constant J-holomorphic finite energy plane v : C = S

2 \ {∞} → W . We have constructed
a finite energy J-holomorphic map, thus X has a periodic orbit. This finishes the proof for the
overtwisted case.

The tight case where π2(M) �= 0.

The sphere theorem implies that there is an embedded non contractible 2-sphereF inM . Using
again E. Giroux’s elimination lemma, we have an embedded sphere F such that Fξ has only two
elliptic tangencies as in figure 1.19.

As before we can start a Bishop family of J-holomorphic discs at each one of the singularities.
Assume that we have a uniform bound for the gradient of the two families. Under this hypothesis,
we can show that the two families match up when they meet. Hence we get a continuous map
D× [−1, 1] →W such that D×{−1} is mapped to one singularity and D×{1} to the other. That is,
we get a map from the closed three dimensional ball D3 to W which induces an homeomorphism
from S2 = ∂D3 → F . This implies that F is contractible, which is clearly, a contradiction.

Hence we cannot have a uniform bound for the gradient of the two families, and thus, we
obtain a Bishop family of J-holomorphic discs such that the gradients blow up. As in the over-
twisted case, we can suppose that they blow up at the center of the disc and construct a J-holomorphic
non constant finite energy plane which yields to the existence of a periodic orbit of X .
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1.6.3 Finite energy foliations

In this section we will discuss briefly some results of H. Hofer, Krzusztof Wysocki and E. J. Zehn-
der from [43] and [44], concerning finite energy foliations. We will use them at the end of next
section when proving theorem 1.27. Let us start with the definition. As before, M is a closed
3-manifold, ξ = ker(α) is a contact structure, and J is the almost complex structure defined in
equation 1.7.

Definition 1.56 A finite energy foliation of M is a two dimensional foliation F of W = R ×M which
is invariant under the translation along R and whose leaves are J-holomorphic surfaces having uniformly
bounded energies.

Proposition 1.57 Let F be a finite energy foliation of (M,α),

• if L is a leaf of F invariant under some translation along R, then L = R × O where O is a periodic
orbit of the Reeb vector field X associated to α.

• if a leaf L is not invariant under any translation then its projection L̃ to M is an embedded subman-
ifold of M transverse to X .

• if the projection of two leaves L̃ and G̃ intersect in M , then L is a translate of G and L̃ = G̃.

Thus the projection of F to M is a singular two dimensional foliation, transverse to X outside
the set of periodic orbits and singular along the periodic orbits. We will say that a periodic orbit is
non degenerated if the Poincaré first return map has no eigenvalue equal to one. A contact form
will be non degenerated if all the periodic orbits of the associated Reeb vector field X are non
degenerated. Such forms are abundant, as the following proposition from [43] indicates.

Proposition 1.58 Fix a contact formα on a closed 3-manifoldM . Consider the subset Θ ⊂ C∞(M, (0,∞))
consisting of those f for which fα is non degenerated, then Θ is a Baire subset.

Proof. Consider the manifold W = R ×M equipped with the symplectic form ω = d(etα) and
identify M with {0} ×M . Recall that the Hamiltonian flow associated to the Hamiltonian H that
is the projection from W to R, coincide on M with the flow of the Reeb vector field of the contact
form α.

LetN ⊂W be a hypersurface close toM . ThenN can be represented as the graph of a function
φ : M → R, and thus we have a diffeomorphism Φ : M → N defined by m 
→ (φ(m),m). We can
define a 1-form αN as

αN = Φ∗(etα|N ).

If N is C∞ close to M , the 1-form αN is also C∞ close to α. A deformation theorem of J. W. Gray
states, that in this situation there exists a diffeomorphism Ψ of M that is C∞ close to the identity
map such that Ψ∗αN = gα, for a function g : M → (0,∞) that is C∞ close to the constant map
equal to one. We refer the reader to [35]. Then the Hamiltonian dynamics on a hypersurface close
to M is conjugated to the dynamics of the Reeb vector field associated to the contact form gα. A
theorem of R. Clark Robinson states that non degenerated Hamiltonian vector fields are residual
among hypersurfaces, we refer to the main theorem from [63]. Thus close to M there is a non
degenerated level hypersurface of H , that is a hypersurface such that all its periodic orbits are
non degenerated. Therefore, we find smooth functions g : M → (0,∞) close to the constant equal
to one map, such that the periodic orbits of the contact forms gα are non degenerated.
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Given a function f : M → (0,∞), we can apply the arguments below to the manifold (M, fα)
at the place of (M,α). Thus the subset Θ is dense in C∞(M, (0,∞)).

�

Finally we can state the main result regarding finite energy foliations

Theorem 1.59 (Hofer, Wysocki, Zehnder) If α is a non degenerated tight contact form on S3, there
is a Baire set of admissible complex structures Jξ on ξ for which (S3, α, J) admits a finite energy foliation.

1.6.4 Reeb vector fields on manifolds with boundary

The aim of this section is to prove the theorem 1.27. In their article [23], J. Etnyre and R. Ghrist
proved that every Reeb vector field on a solid torus possesses a periodic orbit. We will generalize
their theorem to 3-manifolds with boundary and with non trivial homotopy group π2.

Theorem 1.27 Let X be a Reeb vector field on a compact 3-manifold B, with ∂B �= ∅ and X tangent to
the boundary. If either B is a solid torus or has non trivial second homotopy group, X possesses a periodic
orbit.

Assume that X |∂B has no periodic orbits. Note first that ∂B is the union of invariant 2-tori,
and the vector field X is topologically conjugated to a linear vector field with irrational slope
on them. Assume that α|B is a positive contact form. Consider as in the previous section the
manifold W = R ×B with the symplectic form

ω = d(etα) = et(dt ∧ α+ dα).

We will choose a complex structure Jξ on ξ = ker(α), such that dα(v, Jξv) > 0 on B, for every non
zero v ∈ ξ. We will use the almost complex structure J defined in equation 1.7. The next lemma
is immediate.

Lemma 1.60 The boundary of W is Levi flat with respect to J , in other words ∂W is foliated by the
J-complex surfaces R × γ, where γ is an orbit of X .

We will use the next result by Dusa McDuff from [57] that studies the intersection between
almost complex surfaces.

Theorem 1.61 (McDuff) Two closed distinct J-holomorphic curves C and C ′ in an almost complex
4-manifold (W,J) have only a finite number of intersection points. Each such a point contributes with a
positive number to the algebraic intersection number C · C′.

Proof of theorem 1.27 in the overtwisted case and when π2(B) �= 0. Assume first that ξ is
overtwisted. We begin by completing B to a closed 3-manifold M and extending the contact
structure α to M (see theorem 5.8 of [23]). Take an overtwisted disc D embedded in the interior
of B. Let W ⊂ W ′ be the symplectisation of M . There exists a maximal Bishop family of J-
holomorphic discs

Ψ : D
2 × [0, 1) →W ′

satisfying the conditions of theorem 1.55. Observe that Ψ(∂D2, t) ⊂ D ⊂ {0} × B. We claim that
Ψ(D2, t) ⊂ R × B. Assume that this is not the case, then one of the ut(D2) = Ψ(D2, t) touches the
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boundary of W tangentially. Since ∂W is foliated by J-holomorphic surfaces, ut(D2) intersects
one of the surfaces R × γ, where γ is an orbit of X . Since ut(D2) is homotopic to a point and its
boundary through the homotopy is in the interior ofB, the algebraic intersection number between
ut(D2) and R × γ is zero. Applying theorem 1.61 we get a contradiction. Thus the discs in the
Bishop family are inside W .

Recall that following the proof of H. Hofer we get a finite energy plane v : C → W . Since all
the Ψ(D2, t) are contained in the interior of W , so does v(C) and thus we obtain a periodic orbit
in B. Observe that we did not use the hypothesis on the topology of B, thus we have proved that
in a manifold with boundary a Reeb vector field, tangent to the boundary and associated to an
overtwisted contact structure has a periodic orbit.

The same arguments are valid when π2(B) �= 0. Consider a non contractible 2-sphere F em-
bedded inside B. Using again E. Giroux’s elimination lemma, we have an embedded sphere F
such that Fξ has only two elliptic tangencies as in figure 1.19. We can start a Bishop family of
J-holomorphic discs at each one of the singularities. Using D. McDuff’s theorem we can show
that such families are contained in the symplectic manifold R ×B.

Assuming that we have a uniform bound for the gradient of the two families, we have that the
two families match up when they meet. Hence we get a continuous map from D × [−1, 1] → W
such that D × {−1} is mapped to one singularity and D × {1} to the other one. That is, we get a
map from the closed three dimensional ball D3 to R×B which induces an homeomorphism from
S2 = ∂D3 → F . This implies that F is contractible, which is clearly a contradiction. Hence we
can construct a J-holomorphic non constant finite energy plane whose image is contained in the
interior of R ×B. Thus X possesses a periodic orbit.

�

We have not proved the theorem when B is a solid torus and ξ is a tight contact structure. We
will begin by studying tight contact structures on solid tori. We will introduce some results from
Sergei Makar Limanov’s article [54]. From now on, all the contact structures considered are tight,
unless otherwise stated.

In general, a curve Γ on a contact manifold (B, ξ) is called transversal if it is transversal to
ξ. Consider a transversal curve Γ spanned by an embedded surface S, this means that ∂S = Γ.
We can choose along Γ a non vanishing vector field Y ∈ ξ|S . Since Γ is transversal to ξ, it is
transversal to Y , and we can push Γ along Y and obtain a curve Γ′ disjoint from Γ. Define the self
linking number l(Γ) of Γ as the intersection number of Γ′ and S. The self linking number is well
defined and does not depend on the choice of S, we refer to [54]. It is important to notice that the
intersection number of Γ′ and S depends on their orientation, but there is a natural one. Transver-
sal curves come with a natural orientation given by the coorientation of the contact structure: a
non zero vector v tangent to Γ gives the correct orientation if α(v) > 0. The curve Γ′ inherits the
orientation from Γ. For S we will take the orientation for which the leaves of Sξ exit through the
boundary Γ.

D. Bennequin showed that in S3 with the standard contact structure l(Γ) ≤ χ(S), where χ(S)
is the Euler characteristic of S. See theorem 11 from [5]. Y. Eliashberg showed that this inequality
holds on all tight contact manifolds. He also proved that if the characteristic foliation of the
surface S has only elliptic and hyperbolic singularities, the self linking number is equal to

e− + h+ − (e+ + h−),
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where e± and h± denotes the number of positive, negative elliptic and hyperbolic singularities of
Sξ, respectively. We refer to section 3.1 of [18]. In particular, if S is a disc all negative elliptic and
positive hyperbolic singularities may be eliminated by a C0 small isotopy of the disc that fixes
a neighborhood of the boundary. Hence the self linking number of a curve that spans a disc is
negative and it is equal to −(e+ + h−).

From now on we will consider tight contact structures, we will denote T for a solid torus and T
for a 2-dimensional torus embedded in a tight contact manifold, eventually T = ∂T. A curve in T
is called a super-transversal if it is transversal to the characteristic foliation Tξ and intersects every
leaf at least once. Assume that Tξ is non singular and does not contain Reeb annuli. Consider
the homology group H1(T,Z), an homology class is called Legendrian if it can be represented by
a closed leaf of Tξ. Note that a transversal curve which represents a non Legendrian class is
homologous to a super-transversal, in fact in each non Legendrian class of curves there is at least
one super-transversal. Finally there is, at most, one Legendrian homology class up to orientation.
These reasons allows us to give the next definition. For the proofs of the claims above we refer to
section 4 of [54].

Definition 1.62 Let m ∈ ∂T be a super-transversal that is a meridian, then the self-linking number of T

is defined as l(T) = l(m).

Then the self linking number does not depend on m, it depends on the tight contact structure
in it. The self-linking number is a contact invariant: two contactomorphic solid tori have the same
self-linking number, see [54].

Definition 1.63 A tight contact structure ξ on a 3-manifold M is virtually overtwisted if there is a finite
cover of M such that ξ is overtwisted.

Theorem 1.64 (Makar-Limanov) Let ξ be a tight contact structure on a solid torus T for which Tξ is
non singular and has no Reeb annuli, T = ∂T. The contact structure is virtually overtwisted if and only if
the self-linking number of the torus is less than -1.

Observe that in the situation of theorem 1.27, X is tangent to the boundary torus T and thus
the 1-foliation Tξ is non singular. Also, it does not have Reeb annuli because we assume that X
does not posses periodic orbits on T ; and by tightness the foliation Tξ does not have circle leaves
that are homotopic to meridians. The latter theorem is theorem 9.1 from [54], we will prove below.
Observe that since l(T) = l(m), where m is a meridian on T ,

l(T) = −(e+ + h−), (1.9)

where the singularities are in the characteristic foliation of a disc D spanned by m. Note also
that since Tξ is non singular, it defines a return map Φ on m, to which we can associate a rotation
number r(Φ) ∈ [0, 1] as for homeomorphisms of the circle. To proof theorem 1.64 we need lemmas
1.65 and 1.67 below. Let T be a solid torus endowed with a tight contact structure ξ and T = ∂T.

Lemma 1.65 Assume that T has a deformation and retraction to a solid torus T ′ ⊂ T for which T ′
ξ is non

singular. If, for any such a T′, the return map Φ′ for the meridian m′ = D ∩ T ′ has an irrational rotation
number and the self linking number is strictly less than -1, then T has an overtwisted finite cover.

Proof. Since the self-linking number of m′ is strictly less than −1, equation 1.9 implies that
there is at least one hyperbolic point in the characteristic foliation of the disc D′ spanned by m′,
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Figure 1.20: Overtwisted finite cover

that is ∂D′ = m′. If there is only one such a singularity, m′ is divided into two open intervals
I1 and I2 by the ends of the unstable manifold of the hyperbolic point. Otherwise, we can find
two hyperbolic singularities, h1 and h2, such that for each one their unstable foliation Wu(hj),
for j = 1, 2, divides D′ in two discs and one of them contains just one singularity, that has to be
elliptic. Denote Ij the arc in m′ that is in the boundary of each one of these discs, as in figure 1.20.

We claim that some iterate of the map Φ′ maps I1 to I2, or viceversa. This follows from the
fact that Φ′ is conjugated to the irrational rotation of the circle, thus the iterates of Φ′ map the
clockwise endpoint of I1 arbitrarily close to the clockwise endpoint of I2. So either I1 is mapped
into I2, or I2 is mapped into I1 for some iterated of Φ′, or the length of the two intervals is the
same. In the latter situation, we can shrink the torus in order to change the length of one of the
intervals. This proves our claim.

Let us assume now that (Φ′)n(I1) ⊂ I2. Then the n+ 1 fold cover of T contains an overtwisted
disc as in the figure 1.20. Let us describe the figure: the cover is composed of n copies of T cut
along the meridional disc D. Inside of these copies there are copies of T′ labeled T′

i , 1 ≤ i ≤ n ,
cut along D′. In T′

1 we have a disc Dh1 ⊂ D′ whose boundary is composed by I1 and the unstable
leaves of h1, that we will denote by Wu(h1). Let C be the disc that consists of all the leaves of the
characteristic foliation of ∪iT ′

i that begin in I1 and finish in I2 ⊂ T′
n. Recall that (Φ′)n is defined by

this characteristic foliation. Finally, in D′ ⊂ T′
n we take the disc De consisting of the leaves of the

foliation D′
ξ that emanate from the interval C ∩ I2 and have as limit point the elliptic singularity.

We will use lemma 2.9 from [54], stated below as lemma 1.66, that allows us to smooth the corners
of the disc Dh1 ∪ C ∪De without changing the characteristic foliation. We obtain a disc D0, such
that ∂D0 is tangent to the characteristic foliation and contains one hyperbolic and one elliptic
singularity. Using E. Giroux’s elimination lemma we may cancel these singularities leaving ∂D0

a closed leaf of the characteristic foliation. This disc is then an overtwisted disc.

�
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Lemma 1.66 (Makar Limanov) Let F ⊂ (M, ξ) be a piecewise smooth surface with transversal corner
singularities. Then there exists a C0 small piecewise smooth isotopy ht : M →M such that

(i) h0 is the identity;

(ii) ht is supported on a arbitrarily small tubular neighborhood U ⊂M of the singularities of F (that is
the corners of F );

(iii) h1(F ) is smooth;

(iv) any two points x, y ∈ F \ U which could be connected by a piecewise smooth Legendrian curve in
F , will lie in the same leaf of the characteristic foliation (h1(F ))ξ ;

(v) (h1(F ))ξ has no new singularities.

Lemma 1.67 Under the hypothesis of theorem 1.64, there is a near-identity deformation retraction T ′ of T

such that T ′
ξ is non-singular and Φ′ has an irrational rotation number.

Proof. Recall that the characteristic foliation of T has a closed transversal. Thus we can consider
a solid torus V ⊂ S1 × R2 with polar coordinates (φ, r, θ), which is endowed with the contact
structure ξ0 = ker(r2dθ+dφ). This is the restriction of the standard contact structure of R3 defined
in equation 1.5. Let s < 0 be the slope of the foliation Tξ (up to topological conjugacy), choose V
to be the torus defined by {r ≤ √

s}. Then ∂Vξ0 and Tξ agree, and thus by theorem 1.48 they are
contactomorphic in a neighborhood of their boundaries.

Shrinking ∂V radially gives us a 1-parameter family of nearby 2-tori with linear characteristic
foliations varying non trivially and continuously. Hence near ∂V there are tori with irrational
linear characteristic foliations. Thus we can retract V and then use the contactomorphism to
obtain the desired retraction of T.

�

Proof of theorem 1.64. Given a solid torus T with l(T) < −1 we may deform it by a retraction to
obtain a solid torus T′ such that T ′

ξ is linear with irrational slope. The restriction of D to T′ is also
a meridional disc with transverse boundary and the same self-linking number. Then by lemma
1.65 it has an overtwisted finite cover.

Now assume that the self-linking number of T is −1. The lemma 4.4 of S. Makar-Limanov’s
article [54] states that (T, ξ) is contactomorphic to

V = {(φ, r, θ) ∈ S
1 × R

2|r ≤ f(φ, θ)},
for some function f : S1 × S1 → R. The manifold V is equipped with the tight contact structure
ξ0 = ker(r2dθ + dφ). By lifting along the coordinate φ, one obtains an infinite cylinder Ṽ in
(R1 ×R2, r2dθ+ dφ̃). The kernel of this contact form defines the standard contact structure on R3

in polar coordinates. This contact structure is tight, see [5]. Thus any finite cover of V yields to a
tight contact structure, and (T, ξ) is not virtually overtwisted.

�

Proof of theorem 1.27 on a solid torus with a tight contact structure. We will suppose that X
does not posses periodic orbits on the boundary of the solid torus and that the contact structure
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is tight. Let T be the boundary of the torus. By tightness the characteristic foliation of every
embedded torus S near T has no meridians and thus we can find a meridian curve transverse to
Tξ defining the self-linking number of T.

If l(T) < −1, theorem 1.64 implies that there is an overtwisted finite cover. Using the first
part of theorem 1.27 the associated Reeb vector field possesses a periodic orbit in this finite cover.
Under the covering map flowlines are mapped into flowlines, and hence X must have a periodic
orbit.

If l(T) = −1 assume that X does not posses a periodic orbit. By theorem 5.4 of [54] there exists
a map h from T into a tubular neighborhood V of an unknot transversal to the standard contact
structure ξ0 of the sphere S3 such that

h∗(ξ|T) = ξ0.

Thus, we can push forward the 1-form α|T to V and extend it to a contact form λ on S
3, such that

its contact structure is tight. Thus we have a Reeb vector field Xλ associated to the tight contact
structure on S3. The vector fieldXλ coincides with X on h(T) ⊂ V and all its periodic orbits must,
by assumption, lie outside V . Recall that a contact form is non degenerated if the Poincaré first
return map, associated to the periodic orbits of the Reeb vector field, has no eigenvalue equal to
one.

Lemma 1.68 There exists a perturbation of λ fixing V that is a non degenerated contact form.

The proof of this lemma is the same as the one of proposition 1.58. The only extra observation
we need is that R. C. Robinson’s theorem holds for open manifolds in the strong C∞ topology.
Thus we can perturb S3 on the complement of V , to get a hypersurface close to S3 where the
periodic orbits are non degenerated.

Let us call λ the non degenerated contact form. Thus theorem 1.59 guarantees the existence of a
finite energy foliation F of (S3, λ). The projection of the foliation F to S3 is a foliation transversal
to the vector field Xλ on the complement of the periodic orbits. Since the periodic orbits are
in S3 \ V , the finite energy foliation F|V is transversal to X and non singular. Then F|∂h(T) is
a 1-foliation by circles, and since X |V does not have periodic orbits, it must be a foliation by
meridional circles. We get a contradiction, a vector field on a solid torus transverse to such a
foliation has a periodic orbit by L. Brouwer’s fixed point theorem.

�



Chapter 2

Følner leaves and amenable
foliations

In the context of finitely generated groups, an amenable group is Følner, and viceversa. We will
study the relation between these two notions in the context of compact foliated manifolds. Both
definitions, for foliations, are motivated by the corresponding ones on groups. Let us start by
defining the two notions for finitely generated group. A finitely generated group G is said to be
amenable if there is a translation invariant mean. A mean is a linear functional on the Banach
space L∞(G) which maps the constant function equal to one to one, and non negative functions
to non negative numbers. On the other hand, we say that the group G is Følner if

inf
E

|∂E|
|E| = 0,

where | · | denotes the cardinality of a set, and E ⊂ G describes the finite subsets. The set ∂E is
the boundary of E with respect to a given set of generators of G. Erling Følner showed that if
G is a finitely generated group, G is amenable if and only if it is Følner. We refer to E. Følner’s
paper [25] or to Frederick P. Greenleaf’s book [37].

Consider now a foliation of a compact manifold. Assume that the ambient manifold is en-
dowed with a Riemannian metric, this metric defines a metric on the leaves. Given a foliated
atlas, a foliation defines an equivalence relation on a total transversal: two points are equivalent if
they belong to the same leaf. As we will explain, the equivalence classes have a graph structure.
These graphs, endowed with the natural metric, are roughly quasi-isometrically equivalent to the
corresponding leaves of F .

Amenable foliations and Følner leaves can be defined in terms of the equivalence relation and are
independent of the choice of the foliated atlas. Roughly, amenability is the property of having a
mean on almost all the equivalence classes, with respect to a transverse invariant measure of F .
We will explain this definition in section 2.2. On the other hand, a leaf is Følner if there are finite
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subsets A of vertices in the graph of an equivalence class, with arbitrary small isoperimetric ratio

|∂A|
|A| ,

where ∂A is the boundary of A.

In 1983, Robert Brooks stated, without proving: let F be a foliation with a transverse invariant
measure µ. If µ-almost all leaves are Følner, F is amenable with respect to µ. (example-theorem 4.3
from [7]). Some years later, Yves Carrière and Étienne Ghys proved that an amenable foliation has
almost all its leaves Følner (theorem 4 from [11]), asserting the equivalence of the two notions.

One of the aims of the present chapter is to show that amenability cannot be deduced from the
condition of having Følner leaves, thus disproving R. Brooks statement. We will prove

Theorem D There exists a non-amenable real analytic foliation F of a compact manifold M with a
transverse invariant ergodic volume, and such that all the leaves are Følner.

In 2001, Vadim A. Kaimanovich had already constructed an example of a non-amenable foli-
ation with Følner leaves. The foliation has Reeb components, and thus the invariant measure is
not locally finite. We refer the reader to theorem 3 of [49]. An improvement, in our example, is
the transverse invariant measure.

The construction in the proof of the theorem uses the plug technique, introduced in the previ-
ous chapter, this time for two dimensional foliations. Actually, we will use a volume preserving
version of F. W. Wilson’s plug to make the leaves of a non-amenable foliation Følner.

The other aim of the chapter is to give a sufficient condition to guarantee that a foliation with
Følner leaves is amenable. In [49], V. A. Kaimanovich asked if the minimality of the foliation
guarantees the equivalence between the two notions. We will show that this is indeed the case.

Theorem E Let F be a minimal foliation of a compact manifoldM . If µ is a transverse invariant measure
and µ-almost all the leaves are Følner, F is amenable for µ.

A stronger hypothesis will be to ask for a uniquely ergodic foliation. A foliation is uniquely er-
godic if it has a unique harmonic measure. Such foliations are minimal. Harmonic measures were
introduced by Lucy Garnett in [26]. In contrast with transverse invariant measures, harmonic
measures always exist and thus they give a framework to develop an ergodic theory. An impor-
tant fact for us, regarding harmonic measures, is that a transverse invariant measure of a foliation
combined with the density volume on the leaves, defines a harmonic measure. Thus if a uniquely
ergodic foliation has a transverse invariant measure, the latter measure is unique.

The chapter is organized as follows. In the first section we will define the notion of Følner leaf
as well as other invariants associated to the Riemannian geometry of leaves, like the type of growth
and Jeff Cheeger’s isoperimetric constant [13]. As we will see, some are related to the existence of
transverse invariant measures. In the second section we will define amenability, and study the
relation between this notion and the previous invariants of the leaves.

The example proving theorem D is constructed in section 2.3. We will review the theory of
harmonic measures, and some aspects of their ergodic theory, in section 2.4. In section 2.5 we will
prove a theorem by Daniel Cass from [12], that studies minimal leaves of foliations. We will use
this result to prove theorem E. The proof is given in section 2.6.
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2.1 Foliations with Følner leaves

In this section we will introduce a reduction of a foliation to the measure theoretical category,
consisting in choosing a foliated atlas and considering the induced equivalence relation on the
union of transversals. The obtained equivalence relation can be given a graph structure. The
resulting leafwise graphs are roughly quasi-isometric to the leaves.

The section is organized as follows. We will start by describing the equivalence relation and
its graph structure. We will continue by introducing some invariants of the leaves of a foliation:
J. Cheeger’s isoperimetric constant and the type of growth. The first invariant will allow us to
define what a Følner leaf is. Finally, we will state some results relating these notions with the
existence of transverse invariant measures for the foliation.

Consider a smooth foliation F of a compact n-manifoldM . We will call q the codimension and
d the dimension of F , so that n = q+ d. Let us give a definition that we will use frequently in this
chapter.

Definition 2.1 Let L and L′ be Riemannian manifolds whose metrics are g and g′, respectively. We say
that L and L′ are quasi-isometrically equivalent if there exists a diffeomorphism φ : L→ L′ and a constant
k ≥ 1 such that

1
k
g1(V ) ≤ g2(φ∗(V )) ≤ kg1(V ),

for every tangent vector V ∈ TL′. The constant k is the dilatation bound.

Two metrics on a Riemannian manifold are quasi-isometrically equivalent if there is an automorphism
of the manifold satisfying the corresponding inequalities above.

Note that a leaf L of F carries a natural quasi-isometric class of metrics: those which are restric-
tions of Riemannian metrics on M .

The foliation defines a natural equivalence relation on a total transversal. Let us describe this in
detail: take an atlas of foliated charts {Ui, φi}i∈I

φi(Ui) � D
d × D

q,

where Dd is the d-dimensional open disc in Rd. We say that

• φ−1
i (Dd × {·}) are the plaques of F in Ui;

• Ti = φ−1
i ({0} × Dq) are the local transversals and T = 	iTi is a total transversal.

We will require the atlas to have some nice properties. First, if the intersection Ui∩Uj is not empty
then each plaque in Ui should meet at most one plaque in Uj . Secondly, we will assume that the
d-volume of the plaques and the (d− 1)-volume of their boundaries are uniformly bounded. For
a proof of the existence of an atlas satisfying the conditions above we refer to section 1.2 of A.
Candel and L. Conlon book [9].

An equivalence relation R is naturally defined on T : two points x, y ∈ T are equivalent if and
only if they are in the same leaf of F .

From another point of view, we can see the equivalence relation R as the orbit equivalence
relation of the pseudogroup Γ of (F , {Ui, φi}). This pseudogroup is generated by the local diffeo-
morphisms γij such that for x ∈ Ti we have γij(x) = y ∈ Tj , if the plaque through x meets the
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plaque through y, whenever Ui∩Uj �= ∅. We will choose the γij to have maximal domain. Clearly,
this domain needs not be all Ti. It is important to emphasize that {γij} forms a finite symmetric
set of generators of Γ, that we will call Γ1. The equivalence relation R is then generated by Γ: two
points are equivalent if they belong to the same Γ orbit.

A leaf of the foliation corresponds to an equivalence class. Notice that we can visualize the
equivalence class R[x], of a point x ∈ T , as a graph: the vertices are the points in R[x] and there is
an edge between x and y if there is an element γ ∈ Γ1 such that γ(x) = y. We will note R̃[x] = Γ̃(x)
the graph. We can define a metric dΓ, the graph metric, on R̃[x] by

dΓ(x, y) = min
n

{∃g ∈ Γn|g(x) = y},

where Γn ⊂ Γ are the elements that can be expressed like words of length at most n in terms of the
generating set. This metric is not quasi-isometric to a metric on the leaves induced by a Rieman-
nian metric on the compact ambient manifoldM , because two points in a leaf are identified to one
point in the graph if they belong to the same plaque. But we will say that they are roughly quasi-
isometric to any metric on the leaves induced by a Riemannian metric on the compact ambient
manifold M , because we can find a dilatation bound k and a positive constant C such that

1
k
dΓ − C ≤ d ≤ kdΓ + C,

where d a distance in the leaves. Abusing of the notation we will say that a leaf L through a point
x ∈ T is roughly quasi-isometric to the corresponding graph L̃[x].

We will now give some invariants of the leaves. If the leaves of F are endowed with a Rie-
mannian metric, we define J. Cheeger’s isoperimetric constant for a leaf L by

h(L) = inf
V

area(∂V )
volume(V )

,

where V ranges over compact d-submanifolds of Lwith smooth boundary. Here, area denotes the
(d− 1)-volume and volume the d-volume. This invariant was introduced by J. Cheeger’s in [13].
Note that if we consider two metrics g1, g2 on L that are quasi-isometrically equivalent, h(L)
changes by a multiplicative factor between 1

k and k. Thus the condition h(L) = 0 is independent
of the metric on L. Using A. P. Stokes’ theorem it is possible to prove the following proposition.

Proposition 2.2 Let V be a compact domain in a complete simply connected n-manifold with sectional
curvature bounded from above by −K , with K > 0. Then

area(∂V )
volume(V )

≥ (n− 1)
√
K.

For a proof we refer to proposition 3 of Shing Tung Yau’s paper [82]. This implies, in particular,
that for the n dimensional hyperbolic space, h(Hn) > 0. We can easily verify that h(Rn) = 0:
consider Rn with the euclidean metric and the sequence of discs centered at the origin and radius
r → ∞.

We can define another isoperimetric constant for the leaves, this time in terms of the pseu-
dogroup Γ. Let

hΓ(L) = inf
E

|∂ΓE|
|E|
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where E ⊂ L ∩ T are finite subsets, | · | stands for the cardinality and

∂ΓE = {y ∈ E|γijy /∈ E for some γij ∈ Γ1}.

This constant is motivated by the definition of Følner finitely generated groups. We have that

Definition 2.3 A leaf L is said to be Følner if hΓ(L) = 0.

Observe that hΓ(L) = 0 if and only if h(L) = 0. Even better, there exist positive constants a
and b, depending on Γ and the choice of metric on M , such that

ahΓ(L) ≤ h(L) ≤ bhΓ(L),

for every leaf L. We refer to lemma 2.4 in [8].

Continuing with the invariants we want to introduce in this section, we get to the type of
growth of a leaf. For a leaf L of the foliation consider the limits

α(L) = lim sup
r→∞

1
r

log[volume(B(x, r))]

α(L) = lim inf
r→∞

1
r

log[volume(B(x, r))]

where B(x, r) is the closed ball centered at x of radius r in L. It is easy to check that α and α are
independent of the point x. Furthermore, if the metric on L is changed to a quasi-isometrically
equivalent metric, α (respectively, α) will lie between 1

kα and kα (respectively, between 1
kα and

kα), where k is the dilatation bound. We say that L has sub-exponential growth if α(L) = 0. If
α(L) = α(L) = 0, we will say that L has quasi-polynomial growth. Observe that for a leaf being
Følner is a weaker condition than having sub-exponential growth: i.e. the condition α(L) = 0
implies that h(L) = 0.

We will now give some results relating the previous definitions with transverse invariant mea-
sures. Recall that a transverse invariant measure is a measure invariant under the action of the
holonomy pseudogroup. We will start with Joseph F. Plante’s theorem, for a proof we refer to
theorem 6.3 of [61].

Theorem 2.4 (Plante) The support of any transverse invariant measure of a codimension one C 0 folia-
tion consists of leaves with polynomial growth.

For foliations of any codimension, J. F. Plante also proved: the existence of a leaf with sub-
exponential growth, implies the existence of a transverse invariant measure whose support is contained
in the closure of the leaf (theorem 4.1 of [61]). The following proposition is due to Sue Goodman
and J. F. Plante (corollary 2.2 of [33]).

Proposition 2.5 (Goodman, Plante) A Følner leaf gives rise to a transverse invariant measure µ whose
support is contained in the leaf closure.

Proof. Let L be a Følner leaf and Ei ⊂ L ∩ T be a sequence of finite subsets such that

|∂ΓEi|
|Ei| → 0.
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Consider the sequence of foliation currents given by

ξi(α) =
1

volume(Vi)

∫
Vi

α,

where Vi is the closure of the union of the plaques through the points of Ei and α is a differential
d-form. Note that the mass of ξi is one and the mass of ∂ξi is equal to area(∂Vi)

volume(Vi)
which converges

to zero. Then there is a convergent subsequence in the mass topology (see section 1.2.1). Thus the
limit current ξ = limi→∞ ξi is a foliation cycle and we have an invariant measure by D. Sullivan’s
theorem (theorem 1.18 of the first chapter): foliations cycles are in one-to-one correspondence with
transverse invariant measures. For a proof we refer to theorem I.13 of [73]. The support of the
transverse invariant measure is contained in limi→∞ Vi ⊂ L.

�

2.2 Amenable foliations

In this section we will define amenable foliations, using the fact that we previously described: a
foliation F of a compact manifoldM defines an equivalence relationR on a total transversal. After
enunciating some notions equivalent to amenability for a foliation, we will study the relation
between this concept and the condition of having Følner leaves.

A Borel measure space (X,B, ν), is a set X where B is a σ-algebra of subsets of X and ν is a
finite measure that is positive on (X,B). A standard Borel measure space is a Borel measure space
associated to a Polish spaceX : a topological metric space such that the metric defines the topology
of X and makes it a complete separable metric space.

Definition 2.6 Consider a standard Borel measure space (X,B, ν). Let R be an equivalence relation on
X . We have the following definitions:

• R is discrete if every equivalence class R[x] is at most countable.

• R is measurable if its graph in X ×X is measurable.

• for a measurable equivalence relation R, the measure ν on (X,B) is quasi-invariant if for every Borel
set B ∈ B with ν(B) = 0, the saturation of B

S(B) =
⋃
x∈B

R[x]

is also of measure zero.

• if R is as above and discrete, we say thatR is a discrete measurable equivalence relation on (X,B, ν).
Such an equivalence relation R is ergodic if for every set B ∈ B that is saturated by R, either
ν(B) = 0 or ν(X \B) = 0.

• a discrete measurable equivalence relation R on (X,B, ν) is amenable if for ν-almost all x ∈ X there
is a mean. A mean is a linear map

mx : L∞(R[x]) → R,

such that
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– mx(f) ≥ 0 for f ≥ 0 and for ν-almost all x ∈ X ;

– mx(1) = 1;

– for ν-almost all x ∈ X , mx = my for all y ∈ R[x];

– the function x 
→ mx on R is measurable, in the sense that for a measurable function f̃ defined
on the couples of equivalent points in X × X , the function defined by f(x) = mx(f̃(x, ·)) is
measurable.

A transverse invariant measure of F gives us an invariant measure for the induced equiv-
alence relation R. If a foliation is ergodic with respect to a transverse invariant measure, the
corresponding equivalence relation is a discrete measurable ergodic equivalence relation. We will
say that a foliation F with a transverse invariant measure of a compact manifold is amenable if
the equivalence relation R is amenable with respect to the corresponding measure. This defini-
tion is independent of the choices we made to define the equivalence relation. The notion was
introduced by Robert J. Zimmer [83].

For the purposes of this chapter we will focus on equivalence relations that have invariant
measures, since we are interested in foliations with transverse invariant measures. Nonetheless,
let us discuss briefly quasi-invariant measures. Consider as above a discrete measurable equiva-
lence relation R on a standard Borel measure space (X,B, ν). Integrating the counting measures
on the fibers of the left projection (x, y) 
→ x from R to X with respect to ν, gives the left count-
ing measure dν̃(x, y) = dν(x). The same is valid for the right projection, we get the right counting
measure dν̃−1(x, y) = dν̃(y, x) = dν(y). Then ν is quasi-invariant if and only if ν̃ and ν̃−1 are
equivalent; in which case the Radon-Nikodym derivative

δ(x, y) =
dν

dν̃
(x, y)

is called the Radon-Nikodym cocycle of ν with respect to R. If δ = 1 always, ν is invariant. For any
measurable set A ⊂ R, we define the cross sections by

Ax = {y | (x, y) ∈ A}
Ay = {x | (x, y) ∈ A},

Let | · |x be the measure on the equivalence class of x defined as |y|x = δ(x, y). In other words, the
weights |y|x of the measure | · |x are proportional to dν(x). We have that

ν̃(A) =
∫

|Ax|xdν(x)

=
∫
χA(x, y)dν̃(x, y)

=
∫
χA(x, y)δ(x, y)dν̃(y, x)

=
∫

|Ay|ydν(y).

We can define, in this context, a δ-Følner equivalence class as an equivalence class for which

inf
E

|∂ΓE|x
|E|x = 0,
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where E describes the finite sets in the equivalence class. Theorems 2.8 and 2.9 below are valid in
this more general setting.

Let us study some equivalent definitions for amenability of an equivalence relation and thus
of a foliation.

Theorem 2.7 Let R be a discrete measurable equivalence relation on a standard Borel measure space
(X,B, ν), where ν is an invariant or quasi-invariant measure. The following are equivalent:

(i) R is amenable;

(ii) there exist sequences of probability measures {λnx}x∈X,n∈N on R[x], with x ∈ supp(λnx) for all n,
and such that

‖λnx − λny‖ → 0

for ν-almost all (x, y) ∈ R. Here ‖ · ‖ is the norm in the space of probability measures on R[x]. The
map x 
→ λnx is measurable for all n, in the same sense as in definition 2.6. We will call this the
sequences of measures criterion;

(iii) R is hyperfinite: there exists an increasing sequence of finite measurable equivalence relations Rn on
(X,B, ν) such that R[x] =

⋃
nRn[x].

The equivalence between (i) and (iii) is a theorem of Alain Connes, Joel Feldman and Ben-
jamin Weiss [14]. They proved also that an amenable equivalence relation is generated by an
action of Z. More precisely, if R ⊂ X ×X is a discrete amenable equivalence relation there exists
a borelian isomorphism f of the space X , preserving the measure ν, such that up to a null set

R = {(x, fn(x))|x ∈ X,n ∈ Z},

where fn = f · f · · · f · f︸ ︷︷ ︸
n−times

. That is the equivalence class of x consists of x and its images under all

the iterates of f .

The sequences of measures criterion is due, at least in this form, to V. A. Kaimanovich. We
refer to page 154 of his article [49]. In the case of finitely generated groups, the analogue to this
criterion is Reiter’s condition, see section 3.2 of [37].

As an example of an amenable equivalence relation, consider a countable group that acts freely
on a standard Borel measure space (X,B, ν). If such an action preserves a measure, the orbits
define a discrete measurable equivalence relation R. For an equivalence relation like this, the
amenability of the group implies the amenability of the equivalence relation. This follows from
the fact that any Følner sequence on the group determines a sequence of measures as in the se-
quences of measures criterion in the theorem. Observe that for foliations this implies that when
the pseudogroup Γ is actually a group, the amenability of Γ implies the amenability of the folia-
tion.

The converse of the last claim is not true: the action of a non-amenable group may define an
amenable equivalence relation. The simplest example of a non-amenable group is the free group
with two generators F2, and the action of this group may be amenable. Thus the orbit equivalence
relation can be amenable. If the action of a non-amenable group preserves a probability measure
and it is essentially free, i.e. the fixed point set is of measure zero, the corresponding equivalence
relation is non-amenable (for a proof we refer to section 4.3 of [84]). In particular, theorem 1 of
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Y. Carrière and É. Ghys’ paper [11], gives necessary conditions for an action of F2 to induce a
non-amenable equivalence relation.

We will now describe an action of F2 that is amenable with respect to a quasi-invariant mea-
sure. Denote by ∂F2 the space of ends of F2: the space of infinite words in the two generators. Let
ν be the equidistributed probability measure on ∂F2, meaning that the measures of the cylinders
consisting of infinite words with fixed first n letters are equal. This is a quasi-invariant measure.
Then the orbit equivalence relation of the free action of F2 on ∂F2 coincides with the orbit equiv-
alence relation of the unilateral shift in the space of infinite words. Hence, it can be seen as an
action of Z and thus it is amenable.

Almost all equivalence classes are δ-Følner with respect to the quasi-invariant measure. Let us
find δ-Følner sequences of sets. Let x ∈ ∂F2 be an element with trivial stabilizer in F2. We identify
the classes R[x] with F2 by the map g 
→ g−1x, and endow them with the Cayley graph structure.
Denote by bx the Busemann function on F2 with respect to x defined as

bx(g) = lim
n→∞

(
dF2(g, x[n]) − dF2(Id, x[n])

)
,

where (Id, x[1], x[2], . . .) is the geodesic ray joining the identity and x. Then x[n] consists of the n
initial letters of the infinite word x. The level sets

Bk(x) = {g ∈ F2 | bx(g) = k}
are the horospheres in F2 with center point x. The previous definition of the Busemann function
implies that bx goes to −∞ along geodesic rays that converge to x. Thus the larger the index k of
the horosphere is, the farther the horosphere is from x.

The Radon-Nikodym cocycle of the measure ν is given by

δ(g−1x, x) =
dgν

dν
(x) = 3−bx(g).

Using the identification between R[x] and F2, we define on F2 the measure

|g|x = |g−1x|x = δ(g−1x, x) = 3−bx(g).

We can then exhibit the δ-Følner sequence with respect to the measure (although the Cayley graph
of F2 does not have a usual Følner sequence). Let

En = {g ∈ F2 | 0 ≤ bx(g) = dF2(Id, g) ≤ n},
i.e. the set of all words g of length at most equal to n, such that their first letter is not x[1]. Then

|En ∩ Bk(x)|x = 1,

for all 0 ≤ k ≤ n and hence |En|x = n+ 1. On the other hand,

∂En = {Id} ∪ {En ∩ Bn(x)},
implying that |∂En|x = 2. Proving that the equivalence classes are δ-Følner, with respect to the
measures | · |x.

Let us come back to the context of foliations. From now on, µ will be a transverse invariant
measure for the foliation F . The following theorem states a relation between the growth of the
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leaves and the amenability of the foliation. This theorem is, in one sense, a particular case of C.
Series’ theorem (we refer to theorem 2.2 in [70]): an equivalence relation R generated by the action of
a pseudogroup Γ of polynomial growth, that possesses an invariant measure µ, is hyperfinite with respect
to µ. We know now that hyperfinite equivalence relations are amenable. Her proof is similar
to Rohlin’s lemma that approximates every measure preserving borelian isomorphism without
periodic points by periodic transformations. C. Series’ theorem was improved for quasi-invariant
measures by M. Samuélidès [64]. Both theorems where generalized by several authors to sub-
exponential growth instead of polynomial growth.

Theorem 2.8 (Series, Kaimanovich) A foliation such thatµ-almost all its leaves have sub-exponential
growth is amenable.

We will give a proof, due to V. A. Kaimanovich, using the sequences of measures criterion
from theorem 2.7. We will denote by Γn(x) the set composed by the translates of x by elements in
Γ that are words of length at most n in terms of a fixed generating set Γ1.

Proof. Take x ∈ T ∩ L and consider Γn(x). Since µ-almost all the leaves have sub-exponential
growth, for µ-almost all x ∈ T ∩ L we have that

lim inf
n→∞

1
n

log |Γn(x)| = 0.

Observe that we are using the fact that the leaves and the graphs R̃[x] are roughly quasi-isometric.
Let πnx be the uniform distribution on the ball Γn(x). Take two points x, y in T ∩L, with dΓ(x, y) =
r, where dΓ is the graph distance. We have that

‖πnx − πny ‖ ≤ ‖πnx − πn−rx ‖ + ‖πny − πn−rx ‖

= 2
(

1 − |Γn−r(x)|
|Γn(x)|

)
+ 2
(

1 − |Γn−r(x)|
|Γn(y)|

)
≤ 4

(
1 − |Γn−r(x)|

|Γn+r(x)|
)
.

Finally, consider the sequence of measures λnx = (π1
x+π2

x+···+πn
x )

n . Then

‖λnx − λny‖ ≤ 4 − 4
n

n∑
j=r+1

|Γj−r(x)|
|Γj+r(x)|

≤ 4 − 4(n− r)
n

 n∏
j=r+1

|Γj−r(x)|
|Γj+r(x)|


1

n−r

≤ 4 − 4(n− r)
n

|Γn+r(x)|− 2r
n+r

→ 0.

So the equivalence relation generated by Γ is amenable, in other words F is amenable.

�

Some years later Y. Carrière and É. Ghys proved the following theorem, we refer theorem 4
of [11].
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Theorem 2.9 (Carrière, Ghys) Let F be a foliation of a compact manifold M with a transverse invari-
ant measure µ and such that µ-almost all its leaves do not have holonomy. If F is amenable, all the leaves
are Følner.

Proof. Assume that µ is a probability measure on a total transversal T . We know that the
equivalence relation R on T , associated to F , is amenable and thus hyperfinite. Let Rn be an
increasing sequence of measurable finite equivalence relations on (T, µ) such thatR[x] =

⋃
nRn[x]

for µ-almost all x ∈ T . Let f : T → R be a measurable function and

fn(x) =
1

|Rn[x]|
∑

y∈Rn[x]

f(y).

Then
∫
T
fndµ =

∫
T
fdµ. Consider now the sequence of integrable functions

gn(x) =
|∂ΓRn[x]|
|Rn[x]| ,

and let ∂ΓRn be the union of ∂ΓRn[x] over the x ∈ T . We have that∫
T

gndµ =
∫
T

χ∂ΓRn[x]dµ = µ(∂ΓRn),

where χ denotes the characteristic function. Since the sequence of equivalence relations is increas-
ing with R[x] =

⋃
nRn[x], we get that µ(∂ΓRn) goes to zero as n → ∞. Then by Pierre Fatou’s

lemma
0 = lim inf

n→∞ µ(∂ΓRn) = lim inf
n→∞

∫
T

gndµ ≥
∫
T

(lim inf
n→∞ gn)dµ

and thus lim infn→∞ gn is zero µ-almost always. This implies that µ-almost all the leaves of the
foliation are Følner.

�

For equivalence relations, an important difference between amenability and being Følner is
that the first one is inherited when passing to the restriction to a smaller subset, contrary to the
second one that may not pass to a subset. The next theorem, due to V. A. Kaimanovich, shows
that this is the only reason of discrepancy between the two notions. We refer to theorem 2 of his
paper [48]. In the theorem below we will consider that ν is a quasi-invariant probability measure
and we will use the measures | · |x defined above with the Radon-Nikodym cocycle.

Theorem 2.10 (Kaimanovich) Let (T, ν,R) be a discrete ergodic equivalence relation. Then R is
amenable if and only if for any non trivial measurable set T0 ⊂ T with ν(T0) �= 0 and for ν-almost
every x ∈ T , there exists a family of finite subsets En ⊂ R[x] ∩ T0 such that

|∂T0En|x
|En|x → 0,

where ∂T0En is the restriction of the boundary of En to T0.

In 1983, Robert Brooks claimed: let F be a foliation with an invariant measure µ. If µ-almost all
leaves are Følner, F is amenable with respect to µ (example-theorem 4.3 of his paper [7]). His paper
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. . .

Figure 2.1: The space X ′

does not contain a proof. We will give a counterexample to his example-theorem in the next
section: a non-amenable real analytic foliation of a compact manifold, possessing a transverse
invariant volume and having Følner leaves.

In 2001, V. A. Kaimanovich constructed a smooth non-amenable foliation with almost all its
leaves Følner. The foliation has Reeb components, this implies that any transverse invariant mea-
sure is not locally finite. The reason for this is that if we take a small open set in a transversal that
intersects the compact leaf, it is mapped under the holonomy to a proper subset of itself. We refer
the reader to theorem 3 in [49]. The counterexample we present in this text, has the nice prop-
erty that the transverse invariant measure is a finite volume. Remark that when looking for such
counterexamples we have to think in at least codimension two and dimension two foliations. The
reason is that, for codimension one foliations J. F. Plante’s theorem 2.4 implies that the leaves in
the support of an invariant measure have sub-exponential growth and thus, by theorem 2.8, the
foliation is amenable. If the dimension of F is one the leaves have also sub-exponential growth.

Before passing to the next section, let us construct a non-amenable equivalence relation with
a Følner equivalence class in the measured category. Consider a standard Borel measure space
(X,B, µ) with an equivalence relation S ⊂ X×X . In an equivalence class we can take a sequence
{Vn}n∈N for n bigger than a certain N , of Borel subsets such that µ(Vn) = 1

2n . We want to find a
new standard Borel measure space (X ′,B′, µ′), with X ⊂ X ′ and an equivalence relation R with
an equivalence class that is Følner.

To construct X ′ put over n copies of Vn over it, so that

X ′ = X
⋃
n

(
n⋃
k=1

V kn

)
.

For defining the additive measure let µ′(B) = µ(B) if B ∈ B and µ′(V kn ) = µ(Vn), for every k. Put
V 0
n = Vn. Since

∞∑
i=1

i∑
k=0

µ(V ki ) =
∞∑
i=1

i

2i
<∞,

the measure µ′ is finite. For the equivalence relation on X′ set S on X and the points we added
are equivalent to their copies: for 1 ≤ k ≤ n− 1 a point xk ∈ V kn is equivalent to xk−1 ∈ V k−1

n and
to xk+1 ∈ V k+1

n , and xn is equivalent only to xn−1. This defines an equivalence relation R on X ′.

We claim that R has an equivalence class that is Følner. Denote by R̃ the graph of R and Ekn
the set of vertices that corresponds to V kn . We have that the graph S̃ is a subgraph of R̃. The sets
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we added to X form in R̃ antennas of length n over each point in the sets En = E0
n. The sets

Fn =
n⋃
k=0

Ekn.

form the Følner sequence we need since

|∂Fn|
|Fn| =

|∂En|
n|En| → 0, as n→ ∞.

Thus R has a Følner equivalence class.

2.3 A Følner foliation that is non-amenable and has a transverse
invariant volume

In this section we are going to construct a non-amenable real analytic foliation F of a compact
manifold M , of dimension and codimension two, whose leaves are Følner. We will start by con-
structing a non-amenable foliation F1 of a closed manifold M and then we will perform a local
modification to make its leaves Følner. For the local modification we will use a volume preserving
version of F. W. Wilson’s plug. The original construction was described in section 1.1.

The section is organized as follows. We will begin by constructing the foliation F1 and the
manifold M . In section 2.3.1, we will describe the plug and the plug insertion in M . Finally, in
section 2.3.2 we will analyze the foliation F . Thus, we will prove

Theorem D There exists a non-amenable real analytic foliation F of a compact manifold M with a
transverse invariant ergodic volume µ, such that all the leaves are Følner.

Proof. To construct the non-amenable foliation F1 we will use the suspension of an essentially
free action of a non-amenable group on the sphere.

Let us begin by considering an oriented surface Σ2 of genus two. The fundamental group
π1(Σ2, x0), with base point x0, is generated by four loops σ1, σ2, σ3, σ4, as in figure 2.2, satisfying
the relation [σ1, σ4] = [σ2, σ3]. Take now a homomorphism φ : π1(Σ2, x0) → SO(3) such that
φ(σ4) = Id. The last condition implies that [φ(σ2), φ(σ3)] = Id. Recall that SO(3) can be seen as
the group of rotations of the two dimensional sphere.

Observe that SO(3) is a non-amenable group since it contains a subgroup isomorphic to the
free group on two generators. For a proof of this claim we refer to example 1.2.8 of F. P. Green-
leaf’s book [37]. We choose φ(σ1) and φ(σ2) in such a way that they generate a subgroup isomor-
phic to the free group with two generators, and such that their action on S2 is minimal. Thus,
φ(π1(Σ2, x0)) is a non-amenable group. The normalized area form Ω of S2 is invariant under the
action of φ(π1(Σ2, x0)).

Denote by H the hyperbolic plane. We know that H is the universal covering space of Σ2:
in other words Σ2 = H/π1(Σ2, x0). Consider the product manifold H × S2 and the equivalence
relation given by the action of π1(Σ2, x0) via φ. Hence (z, y) ∼ (z′, y′) if and only if z′ = γ · z and
y′ = φ(γ) · y for some γ ∈ π1(Σ2, x0). So we can consider the compact 4-manifold

M = H × S
2/π1(Σ2, x0).
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Figure 2.2: Σ2 with the generators of π1

On H×S
2 take the trivial two dimensional foliation H×{·}, which is transverse to {x0}×S

2. Taking
the quotient we obtain a non singular real analytic foliation F1 ofM . Since φ(π1(Σ2, x0)) ⊂ SO(3),
the action preserves Ω. Thus Ω is a transverse invariant volume for the foliation F1. Moreover,
since the orbits of the action of φ(π1(Σ2, x0)) are everywhere dense, F1 is uniquely ergodic. The
group φ(π1(Σ2, x0)) is the holonomy group of F1.

Observe that a generic leaf of F1 is not Følner. This follows because the leaves of F1 are
quotients of the hyperbolic plane and the projection of M → Σ2 restricted to a leaf is a covering
map. Then there is a Riemannian metric on the leaves such that the curvature is negative, and
proposition 2.2 implies that they are not Følner.

Lemma 2.11 The foliation F1 is non-amenable.

Proof. Consider the submanifold T = p({x0}× S2), where p is the projection from H× S2 to M .
Then T is a transversal to F1 diffeomorphic to S2. Since the corresponding equivalence relation
on T coincides with the orbit equivalence relation on T of the Ω preserving essentially free action
of the non-amenable group φ(π1(Σ2, x0)), it is non-amenable. Therefore, F1 is a non-amenable
foliation.

�

Summarizing, we have a non-amenable foliation F1 of M , whose leaves are not Følner, it has
a transverse invariant volume and it is uniquely ergodic.

Before beginning the construction of the plug, we are going to find a place in M to insert it.
We are looking for a submanifold U diffeomorphic to D × I × S1 where I is a closed interval, D
is a two dimensional disc transverse to F1 and U is foliated by the cylinders {·} × I × S1. For this
consider a small disc D in the transversal T = p({x0} × S2). There is a tubular neighborhood of
D diffeomorphic to D × D

2 by a diffeomorphism preserving the foliation structure.

The group φ(π1(Σ2, x0)) is the holonomy group of the foliation F1. Consider in M the inverse
images under the projection p : M → Σ2 of a loop representing σ4, such that it intersects D
transversally. Since φ(σ4) = Id, the holonomy near this loop is trivial. This implies that locally
the leaves are cylinders with trivial holonomy. Thus we can find a small neighborhood U of the
disc D that is diffeomorphic to D× (I × S1), via a diffeomorphism that preserves the foliation by
cylinders {·} × I × S

1.
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�

Figure 2.3: Poincaré’s map near a periodic orbit.

2.3.1 Construction of the plug

The foliated plug Q will be a manifold with boundary of dimension four endowed with a two
dimensional foliation G. To construct it, we will use the direct product of a modification of F. W.
Wilson’s plug with S1. We will call this modification P : a 3-manifold with boundary endowed
with a one dimensional foliation. To prove theorem D, we need a transverse invariant volume
for the foliation G. Since the foliation will be the product of the 1-foliation of P with S1, we need
a transverse invariant volume for this 1-foliation. The 1-foliation will be given by the orbits of a
real analytic vector field, thus we are asking the vector field to be volume preserving.

Let us begin by explaining the reason why F. W. Wilson’s plug, and even the modification we
used in section 1.1.1, are not volume preserving. For the explanation we will adopt the notation
we used in sections 1.1 and 1.1.1. F. W. Wilson’s plug is not volume preserving because it stops an
open set: the trapped set of the plug is an annulus with non empty interior. This open set is then
an open set of non recurrent points. The existence of such a set is a contradiction to H. Poincaré’s
recurrence theorem.

Recall that the version of F. W. Wilson’s plug that we used to construct K. Kuperberg’s plug
does not stop an open set: the trapped set is a circle. The reason why it is not volume preserving is
more subtle. Consider H. Poincaré’s map near one of the periodic orbits. We get a diffeomorphism
of a two dimensional disc with a fixed point and such that the rest of the points move vertically
in the same direction, as in figure 2.3. We claim that such a diffeomorphism cannot preserve an
area form. This follows from the fact that an area preserving homeomorphism ψ of the plane
endowed with a system of coordinates (x, y), that moves the points vertically must be of the form
ψ(x, y) = (x, y + g(x)) for a function g. Then, it cannot have an isolated fixed point. Thus the
vector field in the plug cannot preserve a volume.

1. A volume preserving version of F. W. Wilson’s plug.

We will start the construction in the 3-manifold P = S
1 × [1, 2] × [−1, 1] with coordinates

(θ, r, z). We will construct a non singular vector field that preserves a volume making P a
semi-plug. Note that we want the plug to be real analytic. As we said at the end of section
1.1.1, the vector field of a real analytic plug has to be vertical only on the boundary.

Consider the rectangle [1, 2]× [−1, 1] with an area form µ. We need a vector field on the rect-
angle such that it has a singularity, it is transverse to [1, 2]×{±1} and parallel to {1} × [−1, 1]
and {2}× [−1, 1]. Moreover, the orbit through a point (r,−1) passes through the point (r, 1),
for all r ∈ [1, 2] except for the orbit that converges to the singularity. An area preserv-
ing vector field satisfying this conditions is given by the Hamiltonian vector field H1 on
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[1, 2] × [−1, 1] of the function

h(r, z) =
(
r − 3

2

)3

+
(
z2 − 1

2
z4

)
g(r),

where g : [1, 2] → R+ is a Cω function such that:

• g(1) = g(2) = 0;

• 3
(
r − 3

2

)2
+
(
z2 − 1

2z
4
)
g′(r) is positive for all (r, z) non equal to (3

2 , 0).

To be precise, H1 is the vector field satisfying the equation ιH1µ = −dh, thus the conditions
above guarantee that H1 is vertical on the boundary of the rectangle and its only singularity
is (3

2 , 0). The curves where h is constant are illustrated in figure 2.4. The vector field H1 is
tangent to these curves.

-1

r

21.81.6

z

1.4

1

1.2

0.5

0

1

-0.5

•

Figure 2.4: Flow lines of H1.

Take on the manifold P the vector field tangent to each {·} × [1, 2]× [−1, 1] and equal to H1

on this rectangles. This vector field has a circle of singularities. Finally, consider

H2 = H1 + f
∂

∂θ
,

where f : [1, 2]× [−1, 1] → R+ is a Cω function that assumes the value zero on the boundary
of the rectangle and is strictly positive on the singularity. Thus H2 is non singular in P and
the circle of singularities in H1 becomes a periodic orbit. The reason why H2 preserves the
volume form dθ ∧ µ is that both terms in the previous sum preserve it.

Then we have endowed the manifold P with the vector field H2, making a semi-plug. We
can use the mirror-image construction to get a plug: take another copy of P with the vector
field −H2, so we exchange the entry and the exit regions. Consider the concatenation of
these two semi-plugs and their vector fields. We can rescale them to make them fit in P ,
getting a plug that we will still denote P , with a vector field H .

Observe that H is vertical on the boundary of P , satisfies the entry-exit condition of defini-
tion 1.1, and has two periodic orbits O1 and O2. There is a two foliation of P that is tangent
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Figure 2.5: The singular cylinder in P

h ≈ ± 1
8

h = 0

h ≈ 0

Figure 2.6: Orbits of H in the cylinders {h = const.}

to H : it is given by the product of the curves in figure 2.4 and S1. This leaves are defined by
the equation h = const. It is convenient to use the system of coordinates (θ, h, z), where h is
constant in the leaves of the 2-foliation. The singular leaf of this foliation, that contains the
periodic orbits, is illustrated in figure 2.5. Let H be the 1-foliation defined by the orbits of
H . Summarizing, we have that:

• the 1-foliation H of P has a transverse invariant volume, given by the differential
2-form ω = ιH(dθ ∧ µ);

• H satisfies the entry-exit condition: the points (θ, h,±1) belong to the same leaf if and
only if h �= 0;

• H has infinite and semi-infinite leaves. The leaves through the points in (θ, 0, z) are
infinite or semi-infinite, except for the two circles O1 and O2;

• there is an embedding j : P → R3 that preserves the vertical direction ∂
∂z .

2. Construction of the foliated plug.

We want to construct a foliation G of the manifold Q = (S1 × [1, 2]× [−1, 1])× S
1, such that:
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(i) there is an embedding i : Q→ R3 × S1 that preserves the vertical cylinders

{·} × [−1, 1]× S
1,

i.e. the product of a vertical line in R3 with S1;

(ii) G has a transverse invariant volume.

Let Q = P × S1 foliated by the product foliation G = H× S1. This plug satisfies conditions
(i) and (ii) above, the volume is given by the 2-form ω. Observe that the entry region is
S1 × [1, 2]×{−1}× S1, the cross product of an annulus with a circle, foliated by circles. The
circles (θ, h,±1, β), for β ∈ S1 belong to the same leaf of the foliation G when h �= 0.

3. Insertion of the plug.

An insertion map for the plug (Q,G) into the foliated manifold (M,F1) is an embedding
of the entry region of P , into D ⊂ T ⊂ M which is transverse to the foliation. Here D is
the disc considered at the end of section 2.3. Such an insertion map can be extended to an
embedding η : Q → U ⊂ M . The image of a fiber {x} × [−1, 1] × S1, with x in the entry
region of P , is contained in a leaf of F1. The plugQ is insertible since it admits an embedding
i : Q→ R3 × S1 that maps the cylinders {x}× [−1, 1]× S1 to the product of the vertical lines
and the circle.

Repeating the procedure we described in section 1.1.1, we can make the plug insertion in
the real analytic category. In the submanifold U above, we can take a region of the form
A× [−1, 1]× S1 where A is an annulus transverse to F1. Let N be a neighborhood of

A× [−1, 1]× S
1 ⊂ U.

The next step in the plug insertion is to remove N from M , and glue the open circular band
N \ (A × [−1, 1] × S1) to Q by a leaf preserving map φ : N → NQ, where NQ is an open
neighborhood of ∂Q outside of Q in R3 × S1. We fill NQ with a foliation of almost vertical
cylinders, as we did in section 1.1.1. Moreover, φ should satisfy that φ(a,−1, β) (respectively
φ(a, 1, β)) is the entry point (respectively, the exit point) of the leaf through {a}×S1, for every
β ∈ S

1. We can then put Q at the place of A× [−1, 1] × S
1. This allows us to make the plug

insertion real analytic. Since every manifold has a unique analytic structure (theorem 1.5),
we have not changed the structure of the ambient manifold.

The entry region R of a plug with an invariant measure is measured. By Jürgen Moser’s
theorem from [59], the only relevance of this structure is that the embedding of R with large
volume into a disc of small volume is inconvenient, although not impossible. One way to
overcome this inconvenience is to rescale the transverse invariant measure of the plug to
make the measure of R small enough.

The differential form ω gives us a transverse invariant volume for the foliation G of Q. The
kernel of ω defines a plane field that is tangent to the foliation. We want to make the in-
sertion of the plug in such a way that the resulting foliation F has a transverse invariant
volume. Using φ we get that the pull back of ω is a positive multiple of the volume form Ω,
the latter is the transverse invariant volume of F1. The kernel of both forms define the same
plane field. Thus, we can insert the plug in such a way that the resulting foliation has a
transverse invariant volume that matches Ω outside U . We will call this transverse invariant
volume Ω̂.
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2.3.2 The foliation F
After the insertion of the plug Q, we have a real analytic foliation F of M with a transverse
invariant volume Ω̂. We need to show that F is non-amenable and that all its leaves are Følner.
To check the first characteristic notice that the equivalence relation on any transversal, that does
not intersect the inserted plug, has not changed, this is the reason why we needed the entry-exit
condition. Thus F is non-amenable.

For the second point, let us analyze the leaves of the foliation F . The leaves that entry Q in
points of the form η(θ, h, 1, β) for θ, β ∈ S1 and h ≈ ± 1

8 do not change: we just remove a cylinder
and put the same back in its place. As h → 0 the cylinder we glue back becomes longer, it turns
inside Q as the flow lines of H in P (see figure 2.6). For each leaf of F that meets points of the
form η(θ, 0,±1, β) we remove a cylinder and glue back two semi-infinite cylinders, [0,∞) × S1,
contained in the interior of the inserted plug. We have also created new leaves: two compact tori
Oi×S1, for i = 1, 2, and infinite cylinders that correspond to the flow lines in the singular cylinder
of P that lie between the two periodic orbits, see figure 2.6. Clearly, all the leaves that meet this
singular cylinder become Følner and the new compact and non-compact leaves are Følner. Since
we took the action of φ(π1(Σ2, x0)) on the transverse T = p({x0} × S2) minimal, every leaf gets
arbitrarily close to the sets η(θ, 0,±1, β). Thus we are gluing to every leaf either an arbitrarily
long cylinder or two semi-infinite cylinders, contained in the plug Q. In the latter situation the
leaves become Følner. We claim that also in the first situation the leaves become Følner. Lets think
of the long cylinders as S

1 × [−l, l], where l is arbitrarily big. Then taking a sequence of annuli
S1 × [−an, an] with an < an+1 for every n, we get that a leaf having such a cylinder is Følner
since the length of the boundary of the annuli divided by their area goes to zero. Thus, every leaf
becomes Følner.

Finally, observe that the transverse invariant volume given by Ω̂ is ergodic. Further, the folia-
tion F is not uniquely ergodic since it has two compact leaves, thus it possesses several transverse
invariant measures.

�

In [49], V. A. Kaimanovich asked if a minimal foliation with all its leaves Følner is amenable.
A foliation is minimal if every leaf is a minimal set. A stronger hypothesis will be to ask for
a uniquely ergodic foliation. A foliation is uniquely ergodic if it has a unique harmonic measure.
Such foliations are minimal. Harmonic measures were introduced by Lucy Garnett in [26]. In
contrast with transverse invariant measures, harmonic measures always exist and thus they give
a framework to develop an ergodic theory. An important fact, regarding harmonic measures,
is that a transverse invariant measure of a foliation combined with the density volume on the
leaves, defines a harmonic measure. Thus if a uniquely ergodic foliation has a transverse invariant
measure, the latter measure is unique. This is the case when the leaves are Følner.

2.4 Harmonic measures

We can now ask ourselves under which conditions a foliation of a compact manifold with a fi-
nite transverse invariant measure and with Følner leaves, is amenable. As suggested by V. A.
Kaimanovich, we can require the minimality of F : that is that the leaves of F are dense in the
support of the measure. In section 2.6 we will prove that this is indeed a good hypothesis. In



80 Chapter 2. Følner leaves and amenable foliations

particular, a sufficient condition is the unique ergodicity of the foliation. Uniquely ergodic folia-
tions are minimal. We will define uniquely ergodic foliations and show that such foliations have
minimal leaves.

The aim of the present paragraph is to introduce ergodic theory for foliations. In comparison
with the ergodic theory for flows, the ergodic theory for foliations is at a rather underdeveloped
stage. One reason for this is that foliations that have invariant measures are rather scarce. L.
Garnett in [26] introduced another type of measure for a foliation, proved that such measures
always exist, and exhibited facts of ergodic theory with respect to them. These measures, called
harmonic measures, will be studied in this section.

Let us begin by introducing harmonic measures and proving their existence. We will, in section
2.4.1, study the diffusion semigroup that will allow us to determine some characterizations of
harmonic measures. Section 2.4.2 deals with this characterizations. Finally, in section 2.4.3 we will
discuss some aspects of the ergodic theory for foliations and define uniquely ergodic foliations.
As before, we will consider foliated compact manifolds, but the theory of harmonic measures
applies also to foliated spaces, or laminations, where the leaves have bounded geometry. Having
bounded geometry means that the leaves, seen as Riemannian manifolds, have a lower bound
for the injectivity radius and that the sectional curvature belongs to an interval [a, b], with a, b
constants. Such bounds do not depend on the leaf.

Let (M,F) be a compact foliated manifold. It is always possible to endow M with a smooth
leafwise metric tensor. In a foliated chart U ⊂ M with coordinates (x, y) = (x1, x2, . . . , xd, y),
where d is the leaf dimension, such a metric tensor g has the local expression

g =
d∑

ij=1

gij(x1, x2, . . . , xd, y)dxi ⊗ dxj

where the matrix of smooth functions gij is symmetric and positive definite. If (gij) denotes the
inverse of the matrix (gij) and |g| its determinant, the leafwise Laplacian ∆ = div · grad has the
local expression,

∆f =
1√|g|

d∑
j=1

∂

∂xj

(
n∑
i=1

gij
√

|g| ∂
∂xi

f

)
,

in an exponential chart. Thus,

∆ =
d∑

i,j=1

∂2

∂xj∂xi
+ first order terms

and ∆, restricted to the leaves, is an elliptic operator that annihilates constants. We refer the
reader to definition B.1.1 of [10] and the discussion within. The metric tensor on M induces a
metric tensor on each leaf and thus a Laplacian on each leaf. If f is a continuous function on M
that is of class C2 on each leaf, ∆f is the union of the leaf Laplacians. Thus the leafwise Laplacian
∆ is defined (at least) on continuous functions that are of class C2 on each leaf.

Definition 2.12 Let M be a foliated compact manifold and ∆ a Laplacian. A measure m on M is said to
be harmonic ( with respect to ∆) if ∫

M

∆f(x)dm(x) = 0,

for every f ∈ C(M) that is of class C2 along each leaf.
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To prove the existence of harmonic measures, recall the following fact. Let f be a continuous
function on M which is of class C2 on each leaf. If f has a local maximum (respectively, a local
minimum) at x0, then ∆f(x0) ≤ 0 (respectively, ∆f(x0) ≥ 0). Using the ellipticity of the Laplacian
and the Hahn-Banach theorem we can prove the existence of a harmonic measure. We are follow-
ing the approach that A. Candel and L. Conlon present in their book [10]. The original proof by
L. Garnett uses a different method: she uses Markov-Kakutami fixed point theorem. We refer the
reader to her paper [26].

Theorem 2.13 (Garnett) LetM be a compact foliated manifold and ∆ a leafwise Laplacian onM . Then
there exists a probability measure m such that∫

M

∆f(x)dm(x) = 0

for continuous functions on M that are C2 along the leaves.

Proof. Since M is compact, C(M) the space of continuous functions on M equipped with the
uniform norm, is a Banach space. By the Riesz representation theorem, a probability measure
is the same as a continuous functional on C(M) of norm one and such that the value on the
constant function equal to one is one. Thus, a harmonic probability measure is a linear functional
on C(M) that vanishes on continuous functions of the form ∆f . By the Hahn-Banach theorem
such a functional exists if the closure of the range of the operator ∆ does not contain constant
functions. Thus the next lemma finishes the proof.

Lemma 2.14 The closure of the range of ∆ in C(M) does not contain constant functions.

Proof. The range of ∆ is, by definition, the collection of continuous functions on M that are
of the form ∆f , for f ∈ C(M) and of class C2 on each leaf. Assume that there is a sequence of
functions {fn} such that ∆fn converges to the constant function equal to one. Then there is an n0

such that ∆fn(x) ≥ 1
2 for all x ∈ M and for all n ≥ n0. This is a contradiction since ∆fn must

vanish at some point.

�

2.4.1 The diffusion semigroup

The diffusion semigroup is a semigroup of operators associated to the Laplacian, that will allow
us to analyze the structure of harmonic measures. If M is a compact foliated manifold with
metric tensor g, each leaf with the induced metric is a complete Riemannian manifold of bounded
geometry. On such a manifold L, the heat diffusion is introduced as follows. Let f be a bounded
continuous function on L, the heat equation with initial condition f asks for a bounded solution
u ∈ C2,1(L× (0,∞)) to the partial differential equation

∂

∂t
u(x, t) = ∆u(x, t),

such that uniformly on compact subsets limt→0 u(x, t) = f(x). The latter condition is abbreviated
by u(x, 0) = f(x). A fundamental theorem states that such a solution exists and is unique. We
refer to theorem B.6.8 in the appendix of [10].
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The heat equation on (L, g|L) admits a fundamental solution, called the heat kernel. The heat
kernel is a function p(x, y; t) that, for each y ∈ L, satisfies

∂

∂t
p(x, y; t) = ∆Lp(x, y; t),

and has the property that if f is bounded on L then

DL,tf(x) =
∫
L

f(y)p(x, y; t)dy

is the bounded solution to the heat equation on L with initial condition f . The operators DL,t
form the semigroup of diffusion operators of the manifold (L, g|L). For an introduction to the
heat diffusion we refer to the appendix B of [10]. The construction of the heat kernel is described
in section 5 of this appendix.

The union of the various semigroups for the different leaves L, defines a semigroup Dt of
operators on continuous functions on M . If f is a function on the foliated space M , then Dtf is
the function that at the point x ∈ M has the value of the diffusion of f on the leaf Lx through x.
Thus,

Dtf(x) =
∫
Lx

f(y)p(x, y; t)dy.

The smoothness class of Dtf is the same as the smoothness class of f , see proposition 2.17 below.

Let us define properly what a semigroup is.

Definition 2.15 A one parameter family {Tt| t ≥ 0} of bounded linear operators on the Banach space
C(M) endowed with the uniform norm, is called a contraction semigroup of operators if it satisfies the
following conditions:

(i) Tt+s = Tt · Ts for all s, t > 0;

(ii) limt→0 ‖Ttf − f‖ = 0 for every f ∈ C(M);

(iii) the operator norm ‖Tt‖ ≤ 1, for t ≥ 0.

The infinitesimal generator of a contraction semigroup Tt is defined by the formula

A(f) = lim
t→0

Ttf − f

t
.

Its domain DA consists of the elements in C(M) for which the limit exists in C(M).

The domain of the infinitesimal generator of a semigroup is dense in C(M). For a proof of
this fact we refer to theorem 2.2.8 of [10]. The idea now, is to show that if ∆ is the Laplacian on a
compact foliated manifold, then there is a contraction semigroup of operators on the Banach space
C(M) whose infinitesimal generator agrees with ∆ in a dense subspace of C(M). The semigroup
of operators we are looking for is the diffusion semigroup defined previously.

We will not give the proof of the following results, we will just refer to chapter 2 of A. Candel
and L. Conlon’s book [10] for a proof that uses an adaptation of the construction of the heat kernel
on a compact Riemannian manifold.
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Theorem 2.16 LetM be a compact foliated manifold with metric g and associated Laplacian ∆. The leaf-
wise diffusion operators {DL,t} define a semigroup of operatorsDt onC(M) whose infinitesimal generator
agrees with ∆ in a dense subset of C(M).

An important property is that Dt transforms continuous functions into continuous functions.

Proposition 2.17 Let f ∈ C(M), then there is a unique 1-parameter family of continuous functions Dtf
on M × (0,∞) of class C2 on each leaf, such that

∆Dtf(x) =
∂

∂t
Dtf(x)

for each x ∈M and t > 0.

Indeed, if f ∈ C(M) and L is a leaf, then Dtf |L is a bounded solution to the heat equation on
Lwith initial condition f . SinceM is compact, the leaves have bounded geometry: f |L andDtf |L
are bounded. Theorem B.6.8 of [10] states that Dtf is unique and is given by the equation

Dtf(x) =
∫
L

p(x, y; t)f(y)dy,

for every x ∈ L. Thus, we have that Dt is a semigroup of operators with the properties listed in
definition 2.15. Furthermore, if f ∈ C(M) is of class C2 on each leaf,

lim
t→0

Dtf(x) − f(x)
t

= ∆f(x)

for every x ∈ M . The convergence is uniform on each compact subset of the leaves of F . The
domain of the infinitesimal generator contains, but generally is not equal to, the space of all con-
tinuous functions that are C2 along the leaves and such that ∆f is in C(M).

2.4.2 Characterization of harmonic measures

We saw that by definition, a measure m on the foliated manifold M is harmonic if∫
M

∆fdm = 0,

for a suitable collection of continuous functions f . Two other characterizations of harmonic mea-
sures will be described in this section.

Observe that the diffusion semigroup Dt preserves positive functions as well as constants.
Then, by duality between continuous functions and measures, it acts on a measure by the adjoint
construction. That is, the measure Dtm is defined by∫

M

fd(Dtm) =
∫
M

Dtfdm.

This action preserves probability measures on M because Dt is a positive operator which leaves
invariant constant functions. The first characterization of harmonic measures is as fixed points of
Dt.
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Proposition 2.18 A measure m on M is harmonic if and only if Dtm = m.

Proof. Assume that m is harmonic, then there is a dense subspace A ⊂ C(M), contained
in the domain of the infinitesimal generator of Dt and consisting on the functions that are C2

along the leaves and such that ∆f is continuous on M . Since A is dense in C(M) we need to
show that

∫
M fdm =

∫
M Dtfdm for every f ∈ A and t ≥ 0. Observe that for these functions

∆Dtf(x) = ∂
∂tDtf(x), then the function

t ∈ [0,∞) 
→
∫
M

Dtfdm

is continuous and has continuous right derivative. Hence it is differentiable. The derivative with
respect to t is given by

d

dt

(
t 
→

∫
M

Dtfdm

)
=
∫
M

∆Dtfdm = 0.

Thus the function is constant, and hence m is diffusion invariant.

Suppose know that m is diffusion invariant. Using the fact that the leaves have bounded
geometry and the properties of Dt, we have that

lim
t→0

Dtf(x) − f(x)
t

= ∆f(x),

for each x ∈ M and for functions of class C2 on M . Integrating this identity, and using the
bounded convergence theorem, we get that m is harmonic.

�

We say that a measure m on M is absolutely continuous with respect to a measure m′, if for any
Borel set B ⊂M ,

m′(B) = 0 implies that m(B) = 0.

We denote this by m� m′. If m� m′ � m we say that they are equivalent, or that belong to the
same measure class. A measure class is denoted by [m]. A measure on (M,F , g) is leafwise smooth if
the Borel sets of zero measure are, precisely, those sets whose leaf slices have Riemannian measure
zero, for all but a null set of leaves. That is to say that, for a Borel set B, m(B) = 0 if

{y | dx(B ∩ Ly) > 0}
is a Borel set of measure zero. Here dx denotes the Riemannian measure on the leaf, and Ly is the
leaf through y.

Corollary 2.19 (lemma A of [26]) Every harmonic measure m on M is leafwise smooth. Furthermore,
the diffusion semigroup Dt, converts arbitrary measures into leafwise smooth measures. Finally,

[Dtm] = [m]

for t > 0, if and only if m is leafwise smooth.

The second characterization of harmonic measures is of local nature and exhibits their analogy
with transverse invariant measures.
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Proposition 2.20 A measurem onM is harmonic if and only if on any given foliated chart φ(U) � Dd × Dq ,
m admits a decomposition of the form

m = h(x, y)dx ⊗ ν(y)

where dx is the measure induced by the the metric tensor on the leaves, ν is a measure on the transversal
T , and h(·, y) is a positive harmonic function on the plaques for ν-almost all y ∈ T .

Proof. Assume first that m is a harmonic probability measure. Let z be a point in M . On
a foliated chart U around z, write z = (x, y) with y the coordinate on the transversal. Denote
φ(U) � D× T , where D is a d dimensional disc and T is the transversal. The local decomposition
of the measure m is provided by the disintegration of the measure with respect to the fibration
p : D × T → T , which is constant on the leaves. The projection p pushes m forward to a measure
ν = p∗(m|U) on T . There is a measurable way to assign a probability measure µy on D×{y} such
that ∫

M

f(z)dm(z) =
∫
T

(∫
D×{y}

f(x, y)dµy(x)

)
dν(y),

for ν-almost all y ∈ T , and for every smooth function f with compact support in U . Since the
support of ∆f is contained in the support of f , a partition of the unity argument implies that the
measure is harmonic if and only if∫

T

(∫
D×{y}

∆f(x, y)dµy(x)

)
dν(y) = 0, (2.1)

for all foliated charts and all f compactly supported in U .

Consider leafwise smooth functions of the form f(x, y) = f(x), that are constant in y and
compactly supported in a foliated chart. These are bounded onU and are limits in theC2 topology
of sequences of functions that are compactly supported in U . Hence equation 2.1 holds for these
functions also. Let A be a countable C2 dense subset of these functions, then for f ∈ A we have
that ∫

D×{y}
∆f(x)dµy(x) = 0, (2.2)

where y ranges over a subset Tf ⊂ T of full ν-measure. The set T∗ =
⋂
f∈A Tf has also full

measure. Thus equation 2.2 holds for all compactly supported smooth functions on D and for
ν-almost all y ∈ T . By regularity results for elliptic partial differential equations (we refer the
reader to theorem B.4.5 and its corollary B.4.6 of [10]), this is equivalent to the existence of a
measurable function h(x, y) on U , such that

• h(·, y) is harmonic on D × {y} for ν-almost every y ∈ T ;

• µy(x) = h(x, y)dx for ν-almost all y ∈ T .

The converse implication follows from the Green-Stokes theorem.

�

Since constant functions are harmonic we have the next corollary.

Corollary 2.21 A transverse invariant measure, when combined with the volume density along the leaves,
is a harmonic measure. Such a harmonic measure is said to be completely invariant.
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2.4.3 Ergodic theorems

In this section we will state the ergodic theorem for the diffusion semigroup. We will then define
uniquely ergodic foliations and study their leaves.

Theorem 2.22 Let (M,F) be a compact foliated manifold endowed with a harmonic measure m. If f is
an m-integrable function on M , then

f∗(x) = lim
n→∞

1
n

n−1∑
k=1

Dk
1f(x)

exists form-almost all x ∈M . Moreover, f∗ is a diffusion invariantm-integrable function, that is constant
along m-almost every leaf and such that∫

M

f(x)dm(x) =
∫
M

f∗(x)dm(x).

Remark an implicit fact of the theorem: the diffusion of m-integrable functions is defined an
yieldsm-integrable functions. The next two results give the precise statement, for a proof we refer
to propositions 2.5.2 and 2.5.4 of [10].

Proposition 2.23 If m is a harmonic probability measure on M and if f ∈ L1(M,m), then the diffusion
Dtf is defined. Moreover, Dtf ∈ L1(M,m) for all t ≥ 0 and ‖Dtf‖1 ≤ ‖f‖1.

In L1(M,m) we have that Dtf → f as t → 0, with the topology given by the L1 norm. Then
Dt is a semigroup of bounded linear operators on L1(M,m) with L1 norm bounded by one. Since
the measure m is finite, the space of essentially bounded functions L∞(M,m) is a subspace of
L1(M,m), and so Dt is defined on it.

Proposition 2.24 The diffusion operators Dt map essentially bounded functions to essentially bounded
functions, and ‖Dtf‖∞ ≤ ‖f‖∞ for every t ≥ 0.

We will now state the ergodic theorem for operators of the type of Dt on Banach spaces. For a
proof we refer to section VIII.5 of Nelson Dunford and Jacob T. Schwartz’s book [17].

Theorem 2.25 Let (X,µ) be a finite measure space. Let D be a linear operator acting on L1(X,µ), that
maps essentially bounded functions to essentially bounded functions, with ‖D‖1 ≤ 1 and ‖D‖∞ ≤ 1. Let
Dn denote the n composition and D0 the identity operator. Then, for every µ-integrable function the limit

f∗(x) = lim
n→∞

1
n

n−1∑
k=1

Dkf(x)

exists for µ-almost all x ∈ X . Moreover, f∗ is a D-invariant µ-integrable function and∫
X

f(x)dµ(x) =
∫
X

f∗(x)dµ(x).

The previous theorem can be applied to the diffusion operators at time t = 1, thus proving
the existence of a function f∗ that is invariant under Dn

1 . It remains to prove that this function
is actually constant on each leaf in a saturated set of full m-measure. The next result is due to L.
Garnett, see theorem 1(b) of [26].
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Proposition 2.26 Let f be a measurable function on M that is m-integrable and such that Dt0f = f for
a positive time t0. Then the class of f in L1(M,m) contains a function f ′ that is constant along each leaf
of F .

Proof. For each nonnegative rational number we can define fr = min{f, r}. Then |fr| ≤ |f |, so
fr ism-integrable. By proposition 2.23,Dtfr is alsom-integrable for all t ≥ 0. WriteD = Dt0 , for a
fixed t0. It can be shown that D preserves constant functions, that is Dr = r. Thus the inequalities
fr ≤ f and fr ≤ r imply that

Dfr ≤ Df = f,

Dfr ≤ Dr = r,

proving that Dfr ≤ fr. Observe that if fr < r on a set of positive Riemannian measure of a leaf
L, then Dfr(x) < r for every x ∈ L.

Since m is harmonic we have that∫
M

Dfr(x)dm(x) =
∫
M

fr(x)dm(x).

By corollary 2.19 we know that m is leafwise smooth, then there exists a saturated set Br of full
measure such that for each leaf L in Br, the set

{x ∈ L|Dfr(x) < fr(x)}

has Riemannian measure zero. Thus, Dfr = fr almost everywhere on each leaf L ⊂ Br, with
respect to the Riemannian measure on L. Furthermore, there is a point x ∈ L satisfying that
f(x) = Df(x) > r if and only if f > r on a set of positive Riemannian measure in L. In this case,
fr is equal to its maximum value r on that set. But since Dfr = fr almost everywhere on L, we
have that fr = r almost everywhere on L. Equivalently, f ≥ r almost everywhere on L. Thus, for
each leaf L ⊂ Br, either f ≤ r or f ≥ r almost everywhere on L.

We had assumed that r is a nonnegative rational number, but applying the same reasoning to
−f shows that r may be any rational number. The saturated set

B =
⋂
r∈Q

Br,

has full m-measure and, for each leaf L ⊂ B, the function f |L is almost everywhere constant.
Using the local characterization of m, we get that f agrees m-almost everywhere in M with a
function f ′ that is constant along each leaf in B.

�

Definition 2.27 A harmonic measure of a foliated manifold is ergodic if every saturated set of leaves has
zero or full measure.

Another way to write proposition 2.26 is the following: any bounded m-integrable function f
which is harmonic on each leaf must be constant on almost all leaves. Then a harmonic probability
measure is ergodic if and only if any bounded leaf harmonic function which is m-integrable is
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constant on a saturated set of full measure. As a corollary to theorem 2.22 we have that if m is an
ergodic harmonic probability measure for M and if f is m-integrable, then

f∗(x) =
∫
M

f(x)dm(x),

m-almost everywhere.

Definition 2.28 A foliation of a compact manifold is uniquely ergodic if there exists a unique ergodic
harmonic probability measure.

Theorem 2.29 A foliation is uniquely ergodic if and only if for all continuous functions f on M ,

1
n

n−1∑
k=1

Dk
1f(x)

converges uniformly to a constant.

Proof. Let us begin by assuming that F is a uniquely ergodic foliation of a compact manifold
M . Let m be the harmonic measure and take a continuous function f , and f∗(x) be as in theorem
2.22. Assume that the implication in the theorem is false. Then there exist ε > 0 and a sequence
of integers nk → ∞ such that

sup
x∈M

{∣∣∣∣∣ 1
nk + 1

nk∑
i=0

Di
1f(x) − f∗(x)

∣∣∣∣∣
}

≥ ε.

Then we have a sequence of points xk ∈M such that∣∣∣∣∣ 1
nk + 1

nk∑
i=0

Di
1f(xk) − f∗(xk)

∣∣∣∣∣ ≥ ε.

Using Riesz representation theorem, there exist probability measures νk such that

1
nk + 1

nk∑
i=0

Di
1f(xk) =

∫
M

fdνk.

Passing to a subsequence we can assume that the probability measures converge: νk → ν. Clearly,
ν �= m, since ∣∣∣∣∫

M

fdν −
∫
M

fdm

∣∣∣∣ = ∣∣∣∣∫
M

fdν − f∗
∣∣∣∣ ≥ ε.

Thus, if we show that ν is a harmonic measure we will get a contradiction. Using proposition 2.18
we need to prove that Dtν = ν, or in other words∫

M

Dtfdν =
∫
M

fdν.
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We have that∫
M

D1fdν = lim
nk→∞

∫
M

D1fdνk

= lim
nk→∞

1
nk + 1

nk∑
i=0

Di+1
1 f(xk)

= lim
nk→∞

∫
M

fdνk − lim
nk→∞

1
nk + 1

f(xk) + lim
nk→∞

1
nk + 1

Dnk+1
1 f(xk)

=
∫
M

fdν.

Since F is uniquely ergodic we get a contradiction, proving the forward implication in the theo-
rem.

Assume now that for all continuous function f on M ,

1
n

n−1∑
k=1

Dk
1f(x)

converges uniformly to a constant that we will call cf . The map f 
→ cf is a positive linear
functional on C(M). Then there exists a harmonic probability measurem such that cf =

∫
M fdm.

We will show that m is unique.

Let µ be a harmonic probability measure on M , and f a continuous function. By theorem 2.22
we have that for µ-almost all x ∈M

f∗(x) = lim
n→∞

1
n

n−1∑
k=0

Dk
1f(x),

and
∫
M
f∗(x)dµ(x) =

∫
M
f(x)dµ(x). Then f∗(x) = cf for µ-almost all x, and integrating we get

that ∫
M

f(x)dµ(x) =
∫
M

f∗(x)dµ(x) = cf =
∫
M

f(x)dm(x).

Showing that m = µ and thus that F is uniquely ergodic.

�

Definition 2.30 A minimal set in a foliation is a non empty saturated closed set that has no proper subsets
satisfying this conditions. A minimal leaf is a leaf whose closure is a minimal set. A foliation is minimal if
all its leaves are dense.

We want to prove that for uniquely ergodic foliations there is a unique minimal set of full
measure. In order to prove this we will need to introduce the concept of lamination, that is a
generalization of foliations to metric spaces.

Definition 2.31 Let N be a compact metric space. A d dimensional lamination L is a decomposition of N
into d-manifolds. More precisely, there is an open cover {Ui, φi} of N such that

φi(Ui) � D
d × Ti,

where Ti is some topological space. The maps φij = φj · φ−1
i are of the form

φij(x, t) = (hij(x, t), fij(t)).
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The theory of harmonic measures presented previously, generalizes without any substantial
changes to laminations. In particular, there exists a harmonic probability measure for any lami-
nation.

Proposition 2.32 Let F be a uniquely ergodic foliation, then every leaf is minimal.

Proof. Let L be a leaf of the foliation and m the harmonic measure. Assume that L is not
minimal. Then its closure L defines a lamination. A lamination has at least one harmonic measure
m′, such that its support is contained in L. Then m′ is invariant under the action of the diffusion
semigroup attached to the foliation, and m′ is also a harmonic measure for F . Since L is not
minimal, m′ �= m, a contradiction.

�

2.5 Minimal foliations

In this section, we will introduce a result of D. Cass [12] on minimal leaves of foliations. We
will use this theorem in section 2.6, for proving that minimal foliations with Følner leaves are
amenable. The idea is that the minimality of the leaves implies that there are Følner sequences
everywhere.

We will begin by a discussion on the topology of the leaves that will let us prove D. Cass’
theorem. As before, let F be a foliation of a compact manifold M . We will take a Riemannian
metric on M inducing a distance ρ along the leaves. We can see the manifold M as the zero
section of its tangent bundle TM , thus we have the exponential map exp : TM →M defined in a
neighborhood of M . The tangent bundle TF of the foliation is a subbundle of TM .

A key element in what follows is the existence of maps between nearby leaves. To define them
we need to fix in advance an ε̃ > 0 with a subbundle N ⊂ TM which is complementary to TF .
The bundle N satisfies the next condition

• for any leaf L of F and any point x ∈ L, there is a ρ-neighborhood V ⊂ L of x such that
exp : Neε(V ) →M is an embedding.

We denote by Neε(V ) the ε̃-neighborhood of V in N . If the leaves are of class C2, the bundle N
may be the normal bundle to the foliation. If K is a subset of L, we will write Neε(K) in place of
the embedded neighborhood exp(Neε(K)).

We would like to use the disc bundle Neε in order to construct maps via path lifting from discs
in a leaf to discs in nearby leaves. By path lifting we mean that a path in a leaf will be mapped
to a path in a nearby leaf. Let Lx be the leaf through x. Denote by BM (x, r) the ball of radius r
centered at x in M , and by B(x, r) the ball in the leaf through x.

We say that a diffeomorphism f , between two Riemannian manifolds (L1, g1) and (L2, g2), has
dilatation bound k ≥ 1 if

1
k
g1(V ) ≤ g2(f∗(V )) ≤ kg1(V ),

for every V ∈ TL2.
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Figure 2.7: The bundle Neε(Lx) and the path lifting map.
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Figure 2.8: σ1, σ2 are homotopic paths that represent different points in B̃(x,A).

Proposition 2.33 Given ε < ε̃ and A > 0, there exists δ > 0 such that for any x ∈ M and every
y ∈ Nδ(x), any path σx ⊂ Lx of length less or equal to A, will lift via the disc bundle Nε(B(x,A)) to a
path σy ⊂ Ly.

The situation in the proposition is illustrated in figure 2.7. The idea behind the proof is the
decomposition in plaques of the foliation, using a foliated atlas. Observe that on a leaf two paths
of length less than A may be homotopic only through longer paths, as in figure 2.8. In order to
make the path lifting map well defined we will consider the restricted homotopy classes defined
below.

Definition 2.34 The ball B̃(x,A) consists of the equivalence classes of paths in the leaf Lx, starting at x
and of length less or equal to A. The equivalence is the homotopy with fixed endpoints and through paths
of length less or equal to A.

Proposition 2.35 Given ε < ε̃ and A > 0, there exists δ > 0 such that for every x ∈ M and every
y ∈ Nδ(x) the path lifting map

f : B(x,A) → Ly
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taking σx 
→ σy is a local immersion with dilatation bound 2ε. The path σy has as starting point y.
Moreover, two paths in the same class in B̃(x,A) are mapped under f to paths with the same endpoint.

We say that a map f : B(x,A) → Ly is endpoint monic if whenever f(σ1) and f(σ2) have the
same endpoint, the two paths σ1 and σ2 have the same endpoint. Observe that such a map can
take two different classes in B̃(x,A) to paths with the same endpoint. The map in the previous
proposition is endpoint monic.

Definition 2.36 We say that a leaf L, of a foliation of a compact manifold, is

• recurrent, if for every ε > 0 there exists A > 0 such that

L ⊂ BM (B(x,A), ε),

where A depends only on ε, and BM (B(x,A), ε) is the ε-neighborhood of the ball B(x,A).

• quasi-homogeneous if there exists k ≥ 1 and

– for all a > 0, there exists A > 0, such that for every B(x, a) there exists an immersion
f : B(x, a) → B(y,A), for any y ∈ L with dilatation bound k.

– given B(x, a) there exists A′ > A and f : B(x, a) → B(y,A′) as before that is also endpoint
monic.

Moreover, we will ask the map f , in both cases, to satisfy that two paths representing the same class
in B̃(x, a) are mapped to paths with common endpoint.

We can now state and prove D. Cass’ theorem.

Theorem 2.37 (Cass) Let L be a leaf of the foliation F of a compact manifold M . Then L is minimal if
and only if one of the following conditions is satisfied:

(i) L is recurrent;

(ii) L is quasi-homogeneous.

Proof.

(i) Let us start with the forward implication: a minimal leaf must be recurrent. Let L be a
minimal leaf with closure L. Assume also that L is not recurrent. Then we can find ε > 0, a
sequence Tn going to ∞, and sequences of points pn, qn ∈ L such that: the distance between
qn and the ball B(pn, Tn) ⊂ L is bigger than ε. The distance is measured in M , not in the
leaf. Since L is compact we can pass to subsequences and suppose that pn → p, qn → q.
Consider the leaf Lp passing through p.

We claim that every point x of Lp is at least at distance ε/3 from the point q in M . This claim
implies a contradiction to minimality because Lp ⊂ L and its closure does not contain q.
Hence a proof of this will finish the proof that a minimal leaf must be recurrent.

To prove the claim let us pick a point on Lp, and connect it to p via a path σ with σ(0) = p. If
n is large enough, proposition 2.33 implies σ will lift via Neε to a path σ̄ in L, that is the leaf
through pn. The endpoint σ̄(1) will be in B(pn, Tn) as long as Tn is larger than two times the
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length of σ. Increasing n we can ensure that the distance between σ̄(1) and x is smaller than
ε/3. Then by the assumption that L is not recurrent, we get that the distance between σ̄(1)
and qn is bigger that ε.

Let us write d(·, ·) for the distance in M . Using the triangle inequality we have that

d(σ̄(1), qn) < d(σ̄(1), x) + d(x, q) + d(q, qn).

Then
d(x, q) > d(σ̄(1), qn) − d(σ̄(1), x) − d(q, qn) > ε− ε/3 − ε/3 = ε/3.

Thus, every point x ∈ Lp is at least at distance ε/3 from q. This finishes the proof of the
forward implication.

We need to prove the other implication in (i): a recurrent leaf is minimal. Assume that L is
recurrent with closure L and that is not minimal. Then some leaf K ∈ L has closure K �= L.
Then, L is not contained in K , so pick a point x ∈ L at a distance ε1 from the compact set K.
For a point y ∈ K we can pick a sequence yn ∈ Neε(y) ∩ L with yn → y.

The recurrence assumption produces T = T (ε1/3) large enough, and such that any ball
of radius T in L approximates the whole leaf within ε1/3. Now by proposition 2.33 with
ε = ε1/3 and A = T , we get that for n large enough, paths σ in B(yn, T ) of length less than
T will lift to paths σ̄ in B(y, T ) satisfying

d(σ(t), σ̄(T )) < ε1/3,

for every t.

The ball B(yn, T ) must approximate all of L within ε1/3. In particular, x is within ε1/3 from
a point z ∈ B(yn, T ) in the distance of M . But if σ is a path in L starting at yn and going to
z of length smaller than T , then the endpoint of its lift z′ = σ̄(1) will be within ε1/3 of the
point z. Then

d(x, z′) < d(x, z) + d(z, z′) < 2ε1/3,

contradicting the fact that x is at distance ε1 from K and z′ ∈ K . This contradiction com-
pletes the proof of the first part of the theorem: a leaf is minimal if and only if it is recurrent.

(ii) Assume that L is minimal, then L is recurrent. Let a > 1 be given, we will find an A
satisfying the first part of the definition of a quasi-homogeneous leaf. Set a1 = a + 1 and
apply proposition 2.35 with an ε < 1. This assures us that the maps that come from path
lifting will have dilatation bound 1 ≤ 2ε < 2. We have a δ1 > 0 such that for any x ∈ L and
z ∈ Nδ1(x), we can define a path lifting map f : B(x, a1) → Lz . We will assume that δ1 < 1

2 .
Now we choose δ2 small enough so that

BM (x, δ2) ⊂ Nδ1(B(x, δ1)).

The existence of such a δ2 follows from the fact that M is compact and is the zero section
of Neε. We now use the fact that L is recurrent for ε = δ2 ≤ δ1, that is in the definition the
constant k = 2δ2 . We get T (δ2) such that

L ⊂ BM (B(x, T (δ2)), δ2).

We claim that the first part of the quasi-homogeneity of L is satisfied forA = T (δ2)+2a1. To
check our claim, assume we are given B(x, a) and B(y,A) in L. Since L is recurrent, there
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Figure 2.9: y1 ∈ B(y, T (δ2))

exists a point y1 ∈ B(y, T (δ2)) such that the distance to x in M is less than δ2. Then we have
an x1 ∈ L such that y1 ∈ Nδ2(x1) and x1 ∈ B(x, δ1).
Then we get the path lifting map f : B(x1, a1) → L. Since f has dilatation bound 2δ2 < 2,
the image f(B(x1, a1)) ⊂ B(y1, 2a1). The assumption δ1 < 1

2 assures us that

B(x, a) ⊂ B(x1, a1)

and also we have that B(y1, 2a1) ⊂ B(y,A). Thus the map we are looking for is the restric-
tion of f to B(x, a).

For the proof of the second part of the definition of a quasi-homogeneous leaf, we need to
consider a fixed ball B̃(x, a). We will follow the precedent proof adjusting δ2 and T (δ2).
First we apply proposition 2.35 to a1 = a+ 1 and ε. We will not only assume that ε < 1, this
time we will take ε such that Nε(B(x, a)) is embedded by the exponential map in M . This
can be done because ε < ε̃ and exp is an embedding of Neε.

Thus any map f : B(x, a) → Ly, defined by path lifting within the disc bundle Nε(B(x, a)),
will be endpoint monic. This follows from the fact that the fibers Nε(z) for z ∈ B(x, a) are
pairwise disjoint. Observe that δ2 becomes smaller and T (δ2) larger. Thus, defining A′ with
the new T (δ2) we have that A′ > A.

�

Let us make two remarks about the quantifiers involve in the quasi-homogeneity that we will
use later. First, observe that the dilatation of the map f can be taken arbitrarily close to one. This
follows because the dilatation of f is 2δ2 and δ2 ≤ δ1. The δ1 is taken such that for every z ∈ Nδ1(x)
the path lifting map f : B(x, a) → Lz is defined. Then δ1 can be taken arbitrarily close to zero.
Secondly, if we fix δ1 we get that A and A′ are equal to a constant plus 2a, that is they depend
linearly on a.

2.6 Minimal Følner foliations are amenable

We can now prove that a minimal foliation with Følner leaves is amenable. We will fix a foliated
atlas satisfying the conditions of section 2.1, and a Riemannian metric on the ambient manifold.



2.6. Minimal Følner foliations are amenable 95

Call ρ the distance on the leaves.

Theorem E Let F be a minimal foliation of a compact manifoldM . If µ is a transverse invariant measure
and µ-almost all the leaves are Følner, F is amenable for µ.

Proof. The idea of the proof is the following. First, theorem 2.37 tell us that the leaves are quasi-
homogeneous. This fact will allow us to construct sequences of measures satisfying the criterion
in theorem 2.7. We will use the notation and quantifiers of the proof of theorem 2.37.

Consider a minimal leaf L, since it is Følner there exist a sequence of submanifolds Vi of di-
mension d such that

lim
i→∞

area(∂Vi)
volume(Vi)

= 0.

For any point x ∈ Vi there exist ax such that Vi ⊂ B(x, ax). Put xi ∈ Vi, such that axi = ai is
minimal. Take a point y ∈ L, we claim that there exists a sequence of compact submanifolds
{Wi}, containing y, such that

area(∂Wi)
volume(Wi)

→ 0 (2.3)

as i→ ∞.

To make the notation simpler, we will forget for a moment of the index i. Beginning with a
submanifold V ⊂ L we will construct a submanifold W ⊂ L around any given point y ∈ L. By
assumption the leaf L is minimal. Using the quasi-homogeneous hypothesis, we have that there
exist A′ > 0 and a map

f : B(x, a) → B(y,A′)

into any ball B(y,A′) ⊂ L. The map has dilatation bound k = 2δ2 ≤ 2δ1 , then a path σx ⊂ B(x, a)
starting at x is mapped to a path f(σx) ⊂ B(y,A′) such that

1
k
≤ lenght(f(σx))

lenght(σx)
≤ k.

Moreover, there exist y1 ∈ BM (x, δ2) and x1 ∈ B(x, δ1) such that y1 ∈ Nδ1(x1). The map was
constructed by lifting paths starting at x1 to paths starting at y1.

Put W̃ = f(V ). Then there exist constants c and C, depending only on δ2 ≤ δ1 and the
dimension d of L, such that

c ≤ volume(fW )

volume(V )
≤ C

c ≤ area(∂fW )
area(∂V ) ≤ C.

In fact c ∼ (2−δ2)d and C ∼ (2δ2)d. The way f was constructed implies that W̃ may not contain
y. To overcome this difficulty let l = ρ(W̃ , y) < A′, and take a path σ from y to W̃ of length l. Let
P1, P2, . . . , Pk be a finite covering by plaques of σ, and set

W = W̃
⋃( k⋃

i=1

Pi

)
.
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Consider for V the d-current

ξ(α) =
1

volume(V )

∫
V

α.

Since f is locally Lipschitz, we can define the image of ξ as the d-current

f∗ξ(α) =
1

volume(V )

∫
V

f∗α =
1

volume(V )

∫
f(V )

α.

Let us come back to the Følner sequence. Starting with the sequence Vi we obtain the sequence
Wi satisfying 2.3. Observe that we get a sequence δi1 of the number δ1 we used above. Since δi2 ≤ δi1
can be taken arbitrarily close to zero, the constants Ci and ci are close to one. As in proposition
2.5, the sequences Vi and Wi of submanifolds define the sequences of d-currents

ξi(α) =
1

volume(Vi)

∫
Vi

α

ηi(α) =
1

volume(Wi)

∫
Wi

α,

that give rise to a sequences of measures λix and λiy , respectively. Such sequences converge weakly
to transverse invariant measures λx and λy for F , respectively.

Using the sequences of measures criterion of V. A. Kaimanovich, we get that for proving the
amenability of F we need to prove that ‖λix − λiy‖ → 0, or equivalently that

M(ξi − ηi) → 0,

as i→ ∞, where M denotes de mass of a current. But

M(ξi − ηi) ≤ M

(
ξi − 1

volume(Wi)

∫
fWi

)
≤ sup

α,‖α‖=1

(
1

volume(Vi)

∫
Vi

(1 − f∗
i )α
)

+M

( |volume(Vi) − volume(Wi)|
volume(Vi)volume(Wi)

∫
fWi

)
→ 0,

The convergence follows because the sequences Ci and ci converge to one as we make δi1 → 0.
Hence, ‖λix − λiy‖ → 0.

The above construction can be done for every point y ∈ L and for any minimal Følner leaf L of
F . Thus F satisfies the measures of sequences criterion from theorem 2.7. Hence, F is amenable.

�

Clearly, the theorem is valid under the assumption that the foliation is uniquely ergodic. There
are known examples of minimal foliations that posses several transverse invariant probability
measures, hence not uniquely ergodic.

Consider a foliation F of a compact manifold with a harmonic measure µ. We say that the
foliation is Liouville, with respect to µ if µ-almost every leaf have the Liouville property: that is
there is no non constant bounded harmonic function on it. Proposition 20 of [14] states that a
Liouville foliation is amenable. An open question is
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does a minimal foliation with all its leaves Følner is Liouville?

A positive answer to this question would imply that if we have a minimal foliation of a com-
pact manifold with all its leaves Følner, all the harmonic measures are completely invariant mea-
sures. This follows from corollary of theorem 4 of [47].
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[15] Georges de Rham. Variétés différentiables. Formes, courants, formes harmoniques. Her-
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augmentée. Hermann, Paris, 1966.

[66] Sol Schwartzman. Asymptotic cycles. Ann. of Math. (2), 66:270–284, 1957.

[67] Paul A. Schweitzer. Counterexamples to the Seifert conjecture and opening closed leaves of
foliations. Ann. of Math. (2), 100:386–400, 1974.

[68] Paul A. Schweitzer. Codimension one foliations without compact leaves. Comment. Math.
Helv., 70(2):171–209, 1995.

[69] Herbert Seifert. Closed integral curves in 3-space and isotopic two-dimensional deforma-
tions. Proc. Amer. Math. Soc., 1:287–302, 1950.

[70] Caroline Series. Foliations of polynomial growth are hyperfinite. Israel J. Math., 34(3):245–258
(1980), 1979.

[71] Jean-Claude Sikorav. Growth of a primitive of a differential form. Bull. Soc. Math. France,
129(2):159–168, 2001.

[72] Dennis Sullivan. A counterexample to the periodic orbit conjecture. Inst. Hautes Études Sci.
Publ. Math., (46):5–14, 1976.

[73] Dennis Sullivan. Cycles for the dynamical study of foliated manifolds and complex mani-
folds. Invent. Math., 36:225–255, 1976.

[74] Dennis Sullivan. A foliation of geodesics is characterized by having no “tangent homolo-
gies”. J. Pure Appl. Algebra, 13(1):101–104, 1978.

[75] Clifford H. Taubes. The seiberg-witten equations and the weinstein conjecture ii: More closed
integral curves of the reeb vector field. arxiv:math/0702366, 2007.

[76] David Tischler. On fibering certain foliated manifolds over S1. Topology, 9:153–154, 1970.

[77] Claude Viterbo. A proof of Weinstein’s conjecture in R2n. Ann. Inst. H. Poincaré Anal. Non
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Résumé

Dans ce travail, nous nous intéressons à deux questions. La première est de savoir si les
champs de vecteurs non singuliers et géodésibles sur une variété fermée de dimension trois ont
des orbites périodiques. La seconde, étudie les relations entre les feuilletages moyennables et les
feuilletages dont toutes les feuilles sont Følner. L’idée commune dans ces deux problèmes est
l’utilisation de pièges: un outil qui nous permet de changer un feuilletage à l’intérieur d’une carte
feuilletée.

Dans le premier chapitre nous abordons la première question. On dit qu’un champ de vecteurs
non singulier est géodésible s’il existe une métrique riemannienne sur la variété ambiante pour
laquelle toutes les orbites sont des géodésiques. Soit X un tel champ de vecteurs sur une variété
fermée de dimension trois. Supposons que la variété est difféomorphe à S3 ou son deuxième
groupe d’homotopie est non trivial. Pour ces variétés, on montre que si X est analytique réel ou
s’il préserve une forme volume, il possède une orbite périodique.

Le deuxième chapitre est dédié à la seconde question. En 1983, R. Brooks avait annoncé qu’un
feuilletage dont presque toutes les feuilles sont Følner est moyennable. À l’aide d’un piège, on
va construire un contre-exemple à cette affirmation, c’est-à-dire un feuilletage non moyennable
dont toutes les feuilles sont Følner. Nous cherchons ensuite des conditions suffisantes sur le
feuilletage pour que l’énoncé de R. Brooks soit valable. Comme suggéré par V. A. Kaimanovich,
une possibilité est supposer que le feuilletage soit minimal. On montre que cette hypothèse est
suffisante en utilisant un théorème de D. Cass que décrit les feuilles minimales.

Abstract

In this text we deal with two main questions. The first one is to know if geodesible vector
fields on closed 3-manifolds have periodic orbits. The second one studies the relation between
the concepts of amenability and having Følner leaves in the context of foliations. The common
point is the use of plugs. Plugs are a useful tool for changing a foliation inside a foliated chart.

The first chapter is dedicated to the first question. A non singular vector field is geodesible
if there is a Riemannian metric of the ambient manifold making the orbits of the vector field
geodesics. Let X be a geodesible vector field on a closed oriented 3-manifold, and assume that
the 3-manifold is either diffeomorphic to S3 or has non trivial second homotopy group. The main
theorems of this chapter said that under this assumptionsX has a periodic orbit if it is real analytic
or if it preserves a volume.

In the second chapter we talk about the second question. In 1983, R. Brooks stated that a
foliation with all its leaves Følner is amenable, with respect to an invariant measure. Using a plug,
we will construct a counter-example of this statement, that is a non-amenable foliation whose
leaves are Følner. We will then show that if we assume that the foliation is minimal, that is that
all the leaves are dense, the fact that the leaves are Følner implies that the foliation is amenable.
This hypothesis was suggested by V. A. Kaimanovich. The proof uses a theorem by D. Cass that
describes minimal leaves.


