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Résumé

Les plates-formes dynamiques de services (SOP, pour ‘service-oriented programming’) sont
des environnements d’exécution génériques qui définissent un modèle d’architecture logicielle
structuré: les composants communiquent par le biais d’interfaces explicites, ce qui facilite
la configuration et l’évolution de ces systèmes. Les plates-formes SOP utilisent leur envi-
ronnement réseau pour réaliser des tâches fonctionnelles, mais également pour améliorer leur
capacité de gestion et d’évolution. Elles sont exploitées dans des contextes variés, des serveurs
d’application aux systèmes embarqués médicaux ou automobiles. La flexibilité apportée par
les plates-formes SOP permet l’intégration de composants de plusieurs sources aussi bien lors
de la conception qu’à l’exécution.

Cette tendance induit cependant un risque important. Peu d’outils existent pour évaluer la
qualité des systèmes résultants, et aucun ne garantit que les composants sélectionnés ne sont
pas malicieux. Dans des contextes applicatifs tels que les systèmes e-Business ou les systèmes
embarqués sensibles, l’existence d’attaques n’est pas à exclure.

L’assurance de sécurité logicielle (Software Security Assurance) définit des méthodes pour
le développement d’applications sûres, mais se concentre sur les systèmes monolithiques. Son
principe est le suivant: les vulnérabilités doivent être identifiées et résolues tôt dans le cycle
de vie pour éviter les attaques lors de l’exécution et limiter les coûts de réparation. Cepen-
dant, cette approche ne peut s’appliquer directement aux applications à composants, où le
développement n’est pas nécessairement contrôlé par l’intégrateur, et où l’intégration peut
avoir lieu à l’exécution de manière automatisée.

Nous proposons par conséquent de réaliser une analyse de sécurité pour une plate-forme
SOP de référence, la plate-forme OSGi, et de fournir des mécanismes de protection adaptés
aux besoins ainsi identifiés.

L’analyse de sécurité de la plate-forme OSGi est réalisée par une méthode spécifique,
SPIP , le Processus Spirale de Prévention d’Intrusion (Spiral Process for Intrusion Preven-
tion). Elle permet l’évaluation des vulnérabilités du système cible et de la protection apportée
par les mécanismes de sécurité associés. Le résultat de l’analyse est : les vulnérabilités de la
plate-forme Java/OSGi, et les vulnérabilités des composants SOP Java.

Plusieurs mécanismes de protection sont développés pour prévenir l’exploitation des vul-
nérabilités identifiées. Ils sont implémentés dans la plate-forme elle-même et au niveau des
composants. OSGi Robuste (Hardened OSGi) est un ensemble de recommandations pour la
mise en œuvre de plates-formes OSGi résistantes. CBAC, le contrôle d’accès basé composants
(Component-based Access Control) est un mécanisme de contrôle d’accès qui vérifie lors de
l’installation qu’un composant n’exécute que les appels explicitement autorisés. Son objectif
est d’être plus flexible que le gestion de sécurité Java, de garantir que seuls les composants
valides soient installés et de réduire autant que possible le coût de vérification en terme de
performance. WCA, l’analyse de composants faibles (Weak Component Analysis), est un outil
pour identifier les vulnérabilités exploitables dans les composants SOP selon l’exposition des
classes: les objets partagés tels les services SOP, les classes partagées et les classes internes
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des composants ne sont pas concernés par les mêmes vulnérabilités.
Nos propositions sont validées par leur intégration avec une JVM sécurisée dédiée aux

applications OSGi, la JnJVM. Les propriétés de sécurité de l’environnement ainsi réalisé sont
encourageantes.

Une présentation de cette thèse en français est disponible dans [PF08d].
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Summary

Service-oriented programming (SOP) platforms are generic execution environments enforcing
a proper architectural model for applications: software components communicate through
well-defined interfaces, which eases the configuration and evolution of applications. These
platforms take advantage of their networked environment to perform distributed functional
tasks, but also to enhance their management and evolution capacity. They are involved in
numerous contexts, from applications servers to embedded health-care and automotive sys-
tems. The increased flexibility brought in by SOP platforms enables to integrate components
provided by different issuers during the design phase and even at runtime.

This trend has nonetheless a serious drawback. Few tools exist to assess the actual quality
of the resulting systems, and none is available to guarantee that the selected components
do not perform malicious actions. In applications such as e-Business systems or sensitive
embedded systems, the intervention of attackers can not be excluded.

Software Security Assurance provides methods for the development of secure applications,
but focuses on monolithic systems. Its principle is the following one: vulnerabilities should be
identified and solved as early as possible in the life-cycle to avoid runtime abuses and to reduce
patching costs. However, this approach is not well-suited for component applications: the
development process is not controlled by the integrator. When the integration is performed
at runtime, no human intervention is possible to evaluate the quality of the components.

We therefore propose to perform a security analysis of one prototypical SOP platform, the
OSGi platform, and to provide protection mechanisms tailored to the identified requirements.

The security analysis of the OSGi platform is performed with a dedicated method we
define for security benchmarking, SPIP , the Spiral Process for Intrusion Prevention. It
supports the assessment of vulnerabilities of the target system and of the protective power
of associated security mechanisms. The output of the analysis is: the vulnerabilities of the
Java/OSGi platform, and the vulnerabilities of Java SOP components.

Several protections mechanisms are developed to prevent the exploitation of identified vul-
nerabilities. They are implemented in the platform itself and at the component level. Hard-
ened OSGi is a set of recommendations for building more robust implementations of the OSGi
platform. CBAC, Component-based Access Control, is an access control mechanism that ver-
ifies at install time that a component only performs calls it is authorized to. It intends to be
more flexible than the Java security manager, to ensure that policy-compliant components
only are installed and to reduce as much as possible the verification performance overhead.
WCA, Weak Component Analysis, is a tool for identifying exploitable vulnerabilities in SOP
components, according to the exposition of classes: shared objects, i.e. SOP services, shared
classes, and component internal classes are not plagued by the same type of vulnerabilities.

Our propositions are validated through their integration with a secure JVM dedicated to
OSGi applications, the JnJVM. The resulting environment proves to have very encouraging
security benchmarking results.
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Terms are used in a manner that aims at being coherent, and at providing a comprehensive
understanding of the subject of study. When no consensus arises in the community, they can
be used with slightly different meanings than in the work of other authors.

Terms that are defined in Appendix A are marked with a star (*) at their first occurrence
in each chapter.





Introduction 1
1.1 The Argument of this Thesis

Dynamic applications are applications that can evolve at runtime, i.e. can be reconfigured and
extended without the need for rebooting their execution environments*. They can thus gain
new functionalities and adapt themselves to their unstable environment. Dynamic applica-
tions exploit the component-based software engineering (CBSE) [SGM02] and service-oriented
programming* (SOP) [BC01] paradigms to enhance development agility and runtime flexi-
bility. They are often built on top of virtual machines and take advantage of the portability
they provide and of the robustness properties of high level languages. These paradigms are
integrated in service-oriented programming platforms* which provide component* binding
through local services*1. Through advanced features such as the discovery of components
in the environment, they pave the way for groundbreaking applications in the domains of
connected homes, pervasive environments, or application servers.

Dynamic applications can be built according to three trust models:

• Legacy applications, where all components are developed by the same provider.
• Design time integration of applications, where components are developed by various

providers and integrated by the application architect. In this case, the architects trust
the component providers and can test the code to challenge this trust.
• Automated runtime integration in ‘open dynamic applications’. In this case, the com-

ponents are discovered dynamically in the environment by providers on which little to
no control exists. The only guarantee that is usually set is the presence of a digital
signature* which certifies that the code is provided by a known entity*. Consequently,
no functional or quality evaluation is performed.

The last configuration would enable to build truly dynamic applications which evolve ac-
cording to their environments. However, this vision would require that guarantees can be
set on the component behavior related to component functionalities, quality, or benevolence.
Only specific techniques such as proof-carrying-code [Nec97] for algorithmic safety exist so
far. They only enable to express specific properties such as the absence of infinite loops or of
memory leaks. No comprehensive method exists to manage the security* issues generated by
open dynamic applications.

A recent trend in application security* consists in creating software that is provably built-
in secure, i.e. on which assertions related to the code property can be expressed. It is what

1Service-oriented Programming (SOP) provides therefore a perspective on software components. It is not to
be confused with Service-oriented architectures (SOA), which enable to interact remotely, although both
can be used complementarily
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is called ‘Software Security’* [McG06]. Its main objectives is to avoid the presence of vul-
nerabilities* in the architecture and in the code of applications as early as possible in the
life-cycle. We consider that the application of such an approach can help increase the secu-
rity status of dynamic applications, i.e. their ability to withstand attacks*, provided their
specific properties are taken into account.

Consequently, the work of this thesis is motivated by the following methodological assump-
tion:

Secure SOP platforms are required to make the vision of dynamic applications
a reality. This challenge is made realistic thanks to the intrinsic properties of
available SOP platforms but require to enforce additional, new security paradigms
such as ‘software security’.

The experiments that are reported in this thesis are conducted on the Java/OSGi platform.
A common claim in the OSGi community is that this execution environment is a very secure
one since it supports a scheme for component isolation that is more complete than many
others. It is even sometimes considered as the universal local middleware, because it provides
facilities for component management that are exploited by several other SOP platforms or
Web servers. It is actually designed with promising properties: component isolation through
class loaders which enables to load each component is a specific naming space, important set
of execution permissions and specific security mechanisms that are pervasive to the specifica-
tions. However, very few use cases are reported that would confirm that the OSGi platform is
suited to withstand adversarial environments. Moreover, very few tools are broadly available
to support the secure execution of OSGi systems*.

The choice of the target system is therefore motivated by the following technical assumption:

The Java/OSGi platform is a promising but currently immature SOP platform
for building secure systems for dynamic applications.

The implementation of protection mechanisms for the OSGi platform must take its specific
properties into account:

• Components can be discovered dynamically from the environment, from providers that
are not necessarily trusted.
• Security checks can thus only be mandatorily performed when the components are

available, i.e. when they are downloaded on the platform. They can rely on component
Bytecode only.

1.2 Context

1.2.1 The Software Crisis

Middleware development and software engineering are structured around the response they
provide to the successive crises of software development. The historical crisis is on the way
to be resolved by manageable software such as SOP platforms. As the number of networked
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economically sensitive applications increase dramatically, a second crisis is gaining attention:
the software security crisis.

The ‘Ball of Mud’ and the emergence of manageable software The historical ‘software
crisis’ is due to the important complexity of software programs related to the available devel-
opment methodologies. The term dates back to the ‘Software Engineering’ NATO Conference
of 1968 [Ran96], where the requirements for a proper management of software development
processes have first been explicited. The dramatic increase of hardware speed made it hard
for developers to build programs that could exploit the available resources while controlling
the actual duration of the software projects. The term has been used until the 1990’s, where
the web forced the number of programmers to explode.

The principles of the requirements for managing the crisis are known since Dĳskra’s Turing
Award lecture, The Humble Programmer [Dĳ72]: systems have to be intellectually manage-
able; they should be organized hierarchically; it should be possible to extract proof of correct-
ness. These requirements represent two kinds of constraints: they can be either embedded in
the programming language, or may require external theorem provers.

Over the year, languages and systems have evolved to avoid the creation of ‘Big Balls of
Mud’ [FY97], i.e. monolithic software with deeply intertwined code. Techniques have been
developed to enforce better programming models: Object-oriented programming, component-
based development. SOP platforms are currently the most complete solution. They rely on
efficient execution platforms and enforce programming best practices. They enable to achieve
both better productivity and better code quality.

The software security crisis and software security assurance *

As the management of software projects seems to be a concern of less intensity, another
crisis is gaining attention: the software security crisis. Since more and more applications are
developed for connected devices, the weaknesses that once where simple bugs turn out to be
vulnerabilities that enable attacker to abuse the systems.

The response of the software engineering community to the software security crisis is called
software security assurance. It consists in integrating security measures throughout the de-
velopment life-cycle to prevent the presence of as much vulnerabilities as possible in the code.
Of course, the objective is to limit the cost caused by security failures. Figure 1.1 [Jon99]
shows the average of defects found throughout the life-cycle of software and the cost to repair
them2.

One error that costs 1 US dollar ($) to repair during the design phase costs 25 $ during
coding, between 100 and 150 $ during tests and up to 16 000 $ if it is corrected post release.
This estimation does not take into account the by-products of such errors such as reputation
loss.

Strong efforts are therefore advocated to enforce software security early in the life-cycle.

1.2.2 SOP Platforms

SOP platforms are characterized by the programming paradigms they rely on: Virtualization*,
modularity* and service-oriented programming. The target system of our analysis, the OSGi
platform, is an example of a widespread SOP platform.

2The graph is reproduced with the kind authorization of the author
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Figure 1.1: Average of defects found throughout the life-cycle of software and the cost to
repair them

Virtualization and Modularity Virtualization is a broad term that refers to the abstraction
of computer resources. At the application level, it enables to control the execution of full
programs while being independent of both the underlying hardware and operating system. It
is suited for resource constraint environments: it does not emulate a full computer but only
provides required support for executing general purpose applications.

Modularity is a software design technique that increases the extent to which software is
composed from separate parts called modules or components. It aims in particular at mak-
ing these modules re-usable [McI69]. Components can serve different goals: execution unit
[Hal01], service unit or deployment unit. These goals can co-exist in a single component
model. The type of components that we are concerned about is Off-the-Shelf components*
(OTS). OTS is a generic term that appoints readily available components, as opposed to
components that are built according to pre-defined constraints. OTS can be commercial OTS
(COTS) [CL00, Voa98], open source components, legacy software or components that are dis-
covered at runtime in the environment through repositories such as the OSGi Open Bundle
Repository, OBR [AH06].

Service-oriented programming Service-oriented programming [BC01] consists in letting soft-
ware components installed on the same execution platform communicate through local ser-
vices. It is presented in Chapter 5. It is built on Object-Oriented-Programming (OOP) and
component models, and emphasizes the possibility of improved software re-use [SVS02] and
the evolution of applications at runtime.

The OSGi platform One of the platforms of choice for executing dynamic Java applications
is the OSGi platform [All07a]. It has originally been designed for lightweight and connected
devices, for instance automotive entertainment systems or health care systems. Its clean
deployment and programming model fosters its adoption in numerous other contexts such as
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application servers. Components can be discovered, installed and managed throughout their
life-cycle and can be un-installed to let place to other ones. Moreover the memory footprint
of the platform itself is quite reduced.

These mechanisms prove to be useful for a wide range of Java-based systems. More and
more application servers such as JBoss, Jonas, Weblogic, and Integrated Development Envi-
ronments (IDEs) such as Eclipse use it to manage components and their dependencies.

However, and even though the standard Java security model has been tailored for OSGi, few
work related to the new security challenges brought in by this platform have been released.

1.2.3 SOP Platforms and Security

SOP platforms exploit the security features of their building blocks, such as the virtual ma-
chine and the modular support. Java SOP platforms, of course, heavily rely on the Java
security model. However, the highly connected and extensible applications they enable to
build introduce new security challenges. The main attack vectors* are presented, as well as
the limitations of mainstream software security assurance approaches.

Virtualization and modularity Virtualization provides a layer that isolates the applications
from the underlying system. The benefits are manyfold. First, isolation from the underlying
operating system enhances the security of the system. Code can no longer access the OS. Only
the VM which is smaller and contains well-defined interfaces must be secured. Next, high
level languages are often safer as native languages because they support advanced security
models and are designed with built-in properties such as type-safety. Moreover, virtualization
enables the reuse of secure architectures and thus prevents the multiplication of ad-hoc less
tested solutions.

Modularity can be considered in itself as another good practice for building secure systems
[MTS04]. Building an application out of small components with strict boundaries between
them enhances the isolation between its different parts and makes the system far more testable
as a monolithic structure. This increases the stability of the system and makes it less exposed
to denial-of-service attacks or ill-defined behavior. Moreover, component models often inte-
grate additional patterns that enhance the security level* of systems that are built on top of
them [MTS04] even though they are not explicitly meant to be protection mechanisms. Such
patterns are information hiding, abstraction, principle of least authority, absence of global
namespace, use of patterns of safe cooperation, to only cite a few.

The Java security model The security in Java SOP applications in based on the Java
security model. It is composed by two complementary elements: the default features of the
Java language and virtual machine, and the Java security manager.

The default features of the Java language and VM are designed to avoid abuses of the
system by malicious programs (See Chapter 4). They are type safety, Bytecode validation at
class loading, automated memory management through garbage collection, and modularity.
Modularity is enforced by the loading of classes from various origins in different class loaders
to prevent undue access and name conflicts.

The Java security manager enforces access control in Java applications. It is based on the
notions of ‘principal’*, i.e. the owner of a code component, and a ‘domain’, i.e. the set of
rights a principal has for executing sensitive code. Its principle is the following: in dangerous
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methods, calls to the security manager enable to check the availability of sufficient execution
rights for all principals of the current call stack.

The Java security model is designed to enable the safe execution of untrusted Applets and
in particular to prevent Bytecode forgery. Its support for secure modularity is limited to a
comprehensive but not flexible access control mechanism. One of the goals of our work is
to determine to what extend it is suitable for dynamic applications, and whether it complies
with their specific requirements.

Attack vectors Introducing flexibility in applications also means introducing new ways for
malicious actors to exploit the system. For typical applications of SOP platforms such as
web applications, multimedia automotive or health systems this is clearly not acceptable and
prevents vendors from exploiting the full potential of the platform.

We strongly believe that the dynamism of SOP platforms can only be leveraged if its
security implications are well understood and risks of malicious exploitation reduced. At the
moment we began this work this was clearly not the case, in particular in the context of the
OSGi platform. Our objective is therefore to identify the actual threats to SOP platforms
and potential solutions that would enable users to take the best out of this technology.

Figure 1.2 shows an overview of the threats on a SOP system and the subject of this thesis:
exploiting weaknesses of SOP platforms.

Figure 1.2: The weaknesses in a SOP dynamic application

The following attack vectors can be exploited.

• Bundle* deployment: the code can be intercepted, read and/or modified.
• Application interfaces: Graphical User Interfaces (GUI) and remote interfaces such as

RMI or Web Services which are often used in conjunction with the platform.
• Attack against the JVM from the host system.
• Execution of malicious bundles inside the platform.

We choose to focus to the attack vectors specific to SOP platforms. The deployment
essentially induce development effort. Execution of malicious bundles needs to be analyzed
thoroughly to identify exploitable vulnerabilities it introduces and to propose new protection
mechanisms

Limitations of software security assurance approach The ‘software security assurance’
approach is relatively straightforward for monolithic systems, where the code is developed
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by a single organization. For dynamic applications, where the code originates from third
party providers, it highlights a paradox: code should be ‘built-in’ free of vulnerability, but is
not necessarily available. Building secure dynamic applications therefore imply to tackle this
paradox.

1.3 Document Outline

Defining a secure SOP execution environment involve two complementary challenges: a
methodological challenge, and a technical challenge. The methodological challenge is the
relevance of the Software Security approach to build secure component platforms*. The tech-
nical challenge is the suitability of the security level service-oriented programming platforms
such as the OSGi platform can provide for its use cases. The study of these challenges is
performed through three main steps: a state of the art survey on these topics, the security
analysis of the target system and the proposition of a set of security mechanisms that intend
to solve the identified vulnerabilities.

Preliminary development A pre-requisite for building secure Java SOP platforms is to en-
sure that the deployment process is itself secure, i.e. that components can not be modified
between the time they are released and the time they are installed on a client* platform as
presented in Chapter 2. No open source tools exist for the OSGi platform. We therefore
developed tools to support verifying the digital signature of OSGi bundles which is more
strict than the signature for standard Java Archives and a tool for signing and publishing
bundles. The standard security mechanism for secure execution in Java, the enforcement of
Permissions through a security manager, also need to be supported. This enables the evalu-
ation of the security level that can be provided by an OSGi platform and provides a reference
implementation for comparison with our own propositions.

Part I presents a survey of the state of the art of research and technology for software
security in Chapter 3, the security mechanisms in the Java world in Chapter 4 and the target
system of our study, SOP platforms, in Chapter 5.

The properties of the Software Security approach and related techniques are given in Chap-
ter 3 page 21. This research and technical domain is defined. It concerns specific security
aspects that are bound with the properties of the code of the application, rather than network-
level, system-level security or security issues that are tackled after the development of applica-
tions. The concept of Software Security Assurance, i.e. the process of ensuring that software
is free of vulnerabilities with a certain level of confidence, is introduced. Techniques that can
enforce security at the software level are of three main types independent of the considered
programming language. The first approach relies on software engineering, i.e. modification
of the development life-cycle and the second one on code engineering, i.e. constraints and
modifications on the code.

The security features of Java platforms are presented in Chapter 4 page 39. Several vul-
nerabilities are well-known and others are disclosed in very recent publications. The default
security model for Java platforms is based on Permissions. It is also named ‘Stack-based
Access Control’ since it implies the verification of the whole call stack when security checks
are performed. This ensures that a method can be executed if all the callers are allowed to
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access it. Various extensions to this security model are proposed. They imply either the mod-
ification of the platform, the addition of constraints on the code to be executed or behavior
injection through code transformation.

SOP platforms are discussed in Chapter 5 page 57. The SOP paradigm is defined. The
structure of significant SOP platforms is identified and examples are given. The specific secu-
rity requirements of this execution environment are identified. Lastly, the OSGi platform and
its support for service-oriented programming are presented. Security aspects are discussed.

Part I introduces state of the art methodologies for security analysis, and presents existing
protection principles and mechanisms for Java environments. It defines SOP platforms, the
target system of our analysis.

Part II presents the security analysis of the target system. A dedicated methodology, SPIP ,
is defined in Chapter 6. The results of its application on Java SOP platforms, at the example
of the OSGi platforms, are given in Chapter 7.

The methodology of this thesis is presented in Chapter 6 page 75. The scientific and tech-
nical motivation for this work lies in the absence of efficient tools that enable the realization
of secure systems that are based on Java SOP platforms but also on the lack of information
related to the vulnerabilities that appear in such execution environments. A specific process
for security analysis of complex systems, in particular execution environments, is defined.
The SPIP process is a Spiral Process for Intrusion Prevention. It consists in a series of
iterations of system security* evaluation and enhancement. Each iteration is built up by
a Vulnerability Assessment* phase where weaknesses are analyzed and a Protection Assess-
ment* phase where protection mechanisms are evaluated. The application of SPIP to Java
SOP platforms builds the remaining of the thesis. The results of vulnerability assessment for
the Java/OSGi SOP platform are presented in Chapter 7 page 87. The first step is to refine
the tools for security analysis to make them fine-tuned for our target system: taxonomies and
a descriptive Vulnerability Pattern* for security benchmarking* of component platforms are
defined. A more generic metric, the Protection Rate, is introduced to quantify the protection
level that is brought by each potential security mechanism. It can also be used to compare
various implementations of the Java/OSGi SOP platform. The second step is to perform the
actual vulnerability assessment. This is performed for the vulnerabilities that are induced by
the Java/OSGi SOP platform itself and for the vulnerabilities that originate in the component
code.

Part III presents a set of solutions to the security requirements that are identified in previous
part. The individual mechanisms we propose are presented in Chapter 8. An integrated secure
Java/OSGi execution environment is presented in Chapter 9, and a global security assessment
is performed.

The mechanisms for secure execution in the Java/OSGi SOP platform that build the core
of our proposition are presented and assessed in Chapter 8 page 115. An example scenario
is given to highlight the requirements and benefits of the solutions. The first of these se-
curity solutions aims at solving vulnerabilities that originate in the implementation of the
OSGi framework itself. It consists in a set of implementation recommendations. The next
propositions are implementations of the Install Time Firewall Security Pattern*. It con-
sists in performing security verification on the component Bytecode immediately before its
installation. This approach has both advantages not to require the co-operation of the code
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issuer which may not be benevolent and to avoid runtime overhead. It is already used for
approaches such as Proof-Carrying-Code. The first example of the Install Time Firewall is
the Component-Based Access Control, CBAC. Its objective is to replace Java Permissions
which prove to have several serious drawbacks with execution permissions that are computed
through static analysis. The second example is the Weak Component Analysis, WCA. Its
objective is to parse the code of bundles to ensure that the classes that are shared with others
are free from vulnerabilities. It is also based on static analysis. Vulnerabilities are defined
through a formal Vulnerability Pattern for Java classes which is distinct from the descriptive
Vulnerability Pattern that is introduced for documentation purpose. Each of these mecha-
nisms is discussed and the protection it provides is quantified. The result of the integration
of these propositions with a secure JVM which enforces resource isolation between the class
loaders and thus the OSGi bundles is presented in Chapter 9 page 143. The secure JVM that
is used is the JnJVM which takes advantages of OSGi class loaders to create Isolates and
transparently performs resource and access control. The constraints that need to be guaran-
teed on Java/OSGi bundles to enforce the maximal security are summarized. The security
benchmarking of the integrated system validates the proposition. It highlights requirements
that still need to be addressed.

Part IV, Conclusions The results of this work are discussed: security benchmarking pro-
cesses and tools, taxonomies and security mechanisms that are proposed greatly improve the
security status of Java SOP platforms. They pave the way to further research efforts that are
required to turn this set of complementary security mechanisms into a prototype that could
be exploited in production environments. The state of development is also evoked. So as to
ease the exploitation of this work the requirements identified in term of support for industrial
use cases as well as in term of research effort are summarized.

As a conclusion, the assumption that lay the main motivation of this thesis, which is
presented at the beginning of this first Section, is revisited to take the lessons of the present
thesis into account.
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Preliminary Development: secure
Deployment for the OSGi Platform 2

The objective of this research work is to improve the state of the art of security* mechanisms
for the Java SOP platforms* at the example of the OSGi platform. This requires that standard
tools are available so as to identify their limitations, possible extensions, as well as relevant
security requirements.

In the case of the OSGi platform the publication of security tools is quite limited. This is
first due to the fact that industry developments are often kept as added value closed source
projects. This is also due to the fact that open source OSGi implementations project mostly
focus on functional rather than non functional features.

The development of a secure OSGi ecosystem involves to tackle the two aspects of security
for extensible Java SOP platforms: secure deployment and secure execution. Preliminary
development for secure deployment involves an OSGi-compliant library for verification of
the digital signature* as well as a graphical tool for signing and publishing components*.
Preliminary development for secure execution entails the support of bundle*-specific Java
permissions.

2.1 Bundle Digital Signature

Digital Signature ensures that the integrity of the bundles is preserved during the deploy-
ment process and that the issuers that sign them are authenticated and trusted. We released
an open source implementation in the INRIA Gforge, under the name SFelix1. This project
is an extension of the Apache Felix implementation of the OSGi platform with the subset
of the OSGi R.4 Security Layer in charge of the digital signature verification [All05a]. It
is presented in [FD06], [PF06a] and [PF07b]. Implementation details are given in [PF06b].
The structure of a signed bundle and the verification algorithm are first presented. Next the
criteria of validity of a digital signature are discussed for various tools and environments: the
Sun jarsigner [Sun03], Java programs with a security manager [GED03], the Felix open
source OSGi implementation and the SFelix extension of Felix.

Structure of a signed Bundle Being a Java Archive, an OSGi bundle contains its pay-
load, classes and resources and meta-data in the META-INF/ directory. Integrity is guar-
anteed by storing the value of the hash digest value for each file of the archive in the
META-INF/MANIFEST. MF file. Since the Java 1.5 version all meta-data except the mani-
fest itself are included. So as to enable the co-existence of several signers an intermediate file,
the Signature file, is created and stored in the META-INF/ directory. It contains the hash

1http://sfelix.gforge.inria.fr/
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values of the sections of the MANIFEST.MF file: the ‘Main-Attributes’ and each other manifest
entries such as the hash value for each archive file. The digital signature in the cryptographic
sense [Sch96] is extracted from this Signature file and stored in the Signature Block file
together with the public key certificate(s) of the signer. The format of this Signature Block

file is PKCS #7 [BK98], or CMS (Cryptography Message Syntax) [Hou04]. Digital signature
uses pairs of hash and public key cryptography algorithms such as SHA-1 and DSA.

Validation Criteria Whereas signing tools are available, tools for verifying the validity of
digital signature are not compliant with OSGi R4 specification. This is due to the fact that
OSGi requirements for digital signature are stronger than those of standard Java Archives
[Sun03], where classes can be added and removed without invalidating the signature. The
objective of this restriction is to prevent runtime security exceptions when classes that are
not signed would be called as well as the additional overhead that is implied by related
verifications at class loading.

Table 2.1 shows the criteria of validity of the digital signature for various environments.

Error Sun Java with Felix SFelix
Type Jarsigner Security

Manager

Unsigned W A R R
Archive

Unknown A A R R
Signer

Addition of A A A R
Resource

Removal of A A A R
Resource

Modification R R W R
of Resource

Unvalid Order A A A R
of Resources

Signature of R R W R
Embedded
Archive
Unvalid

Time Of Check Test Exec Exec Install

A: Accept; R: Reject; W: Warning.

Table 2.1: Behavior of several tools and frameworks in the presence of unvalid archives

Sun jarsigner tool considers the modification of archive resources and invalid signature of
embedded archive as errors. Unsigned archive cause a warning to be emitted. This behavior
has direct implications on the execution of Java application with a security manager: errors
cause the interruption of the execution but warning are not considered. For instance an
unsigned archive is executed as an archive with a valid signature. Removal of signature
information is thus sufficient to by-pass the default verification mechanism. Open source
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OSGi implementations does not fully solve this limitation. For instance in Felix the validity of
certificates is checked but the validity of digital signature itself is handled over to the security
manager. Consequently addition, removal or dis-ordering of resources are not considered as
errors, which violates OSGi specification.

Our SFelix implementation is developed to comply with these specifications and reject
the bundles at install time whenever the digital signature is not compliant with OSGi R4
specification. Install time validation has the advantage not to impair the runtime performance
of applications.

Performances Figure 2.1 shows the performances of the bundle digital signature validation
process, according to the class number. The tests are performed with a Sun JVM 1.5.

Figure 2.1: Performances of bundle digital signature validation, according to the class number

Figure 2.2 shows the performances of the bundle digital signature validation process, ac-
cording to the class number when it is repeated. The tests are performed with a Sun JVM
1.5.

This mechanism will be re-used for further verifications such as Component Based Access
Control (CBAC) (see Section 8.3) and Weak Component Analysis (WCA) (see Section 8.4)
to provide the identity of the component provider.

2.2 Bundle Publication

Principles The SF-Jarsigner tool2 supports the secure publication of OSGi bundles. It pro-
vides features to sign and publish bundles on a public repository: the Open Bundle Repository
(OBR) [AH06]. OSGi client* platforms can then discover which bundles are available for in-
stallation, download them and let the SFelix verification take place. The SF-Jarsigner tool
is presented in [PF07b]. Implementation details are given in [PF06b]. The functionalities of

2http://sf-jarsigner.gforge.inria.fr/
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Figure 2.2: Performances of bundle digital signature validation, according to the class number,
with repetitions

the SF-Jarsigner tool are first presented. Next, an extension of the OSGi bundle life-cycle is
defined to enable remote management for instance through the MOSGi console3 [RF07].

The SF-JarSigner Tool contains four panels: the key management, signature and verifica-
tion, OBR management and publication panels.

The key management panel enables to load a pair of public/private keys pair for the digital
signature from a Java keystore (JKS format).

The signature and verification panel enables to select set of bundles to be signed and to
specify the local directory where they are stored before being published. Alternatively it can
be used to verify the validity of existing digital signature with regard to the keystore loaded
in previous step.

The OBR management panel enables to store information related to a set of remote file
servers: access protocol, login information, archive directory, meta-data file reference. These
meta-data contained in the OBR file provide data related to the bundles such as size, depen-
dencies and various properties to enable the OSGi platform to perform dependency resolution
and to load bundles only if they are required and if all dependencies are available for proper
execution. New file servers can be added, removed and stored for further use. Only the FTP

protocol is supported so far.

The publication panel enables to upload signed bundles onto a file server. Bundles can be
selected individually or sent all together.

Once uploaded these bundles can be identified through the OBR file by all client platforms
that maintain a reference to it. Since the bundle reference is given as a URL they do not need
to be stored on the same server. The HTTP protocol is usually used to retrieve both OBR file
and bundles.

3http://mosgi.gforge.inria.fr/
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Extension of the Bundle Life-Cycle The management of OSGi platforms requires to track
the state of the bundles that are installed. For instance, the MOSGi platform gives informa-
tion about the bundle state, whether they are installed, active, or resolved. These states are
defined in the OSGi R4 specification. However, the case of bundle rejection because of invalid
signature is not considered. In this case no information about invalid bundles are available.
We therefore propose to introduce an additional state in the life-cycle of OSGi bundles: the
REJECTED state to enable the observation of the aborted installation for bundles with invalid
digital signature [RPF+07].

Figure 2.3 presents the life-cycle of OSGi bundles with security management support.

Figure 2.3: Life-cycle of OSGi bundles with security management support

Deployment and Identity-based Cryptography Together with Samuel Galice we worked on
another improvement of the process of bundle publication, namely the cryptographic scheme
for digital signature. Java Archives and OSGi bundles are usually signed using the SHA-1
and DSA algorithms. We propose to exploit the properties of Identity-Based Cryptography
to ease the key management process [PGFU07].

Identity-based cryptography derives the public key of actors - here the bundle signers - from
their identity and a seed from a Public Key Generator. Each client can thus verify the validity
of any signature without previously having access to its public key certificate: the distribution
of PKG parameters to clients is sufficient. This means that only the signers need to contact
the PKG. In the case of bundle publication where few signers and numerous clients exists,
this makes the key management process lighter. Moreover, through regular regeneration of
the signers private key for instance on a daily basis no key revocation is necessary.

The main drawback of the Identity-based cryptographic scheme is that the PKG is a sin-
gle point of failure in the system*: its compromission provides the attacker with sufficient
information to forge false signatures. Even though some variants such as the CZK-IBS make
possible to prove the forgery a posteriori this weakness may limit the exploitation of Identity-
Based Cryptography to protected closed networks rather than exposing such an infrastructure
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on the Internet.

2.3 OSGi Bundles as Java Protection Domains

Java Protection Domains * Access Control in Java platforms is enforced through Java
Permissions. In the context of the OSGi platform code is provided by issuers that do not
necessarily know each other and therefore may not trust each other. Neither does the OSGi
platform itself trust bundles that are discovered from the environment. It is therefore essential
to perform security checks so as to prevent the bundles from executing dangerous methods.

Java Permissions are associated with the bundles through Permission Domains. Each bun-
dle is started in the Permission Domain of its signer. For each signer a set of Java permissions
is defined in the java.policy configuration file. This mechanism enables the platform ad-
ministrator to define the minimal set of permissions that are required to execute each bundle.
If a bundle intends to perform a sensitive call that is not expressively allowed the call aborts.

Java Permissions are defined in the Java 1.2 specification so as to relieve the sandbox-
ing model for Applets: code can be trusted to execute some actions, but not some others
[GMPS97]. For instance a local file management application needs access to the file system
but not to the network.

Since protection domains where not implemented in the OSGi platform we use for imple-
mentation, Apache Felix, it was necessary for us to code this feature.

Conclusion Figure 2.4 presents the preliminary development that were necessary before the
beginning of the actual research work on security models for Java SOP platforms.

Figure 2.4: Overview of preliminary developments

The Apache Felix implementation of the OSGi platform is extended with specification-
compliant features: validation of the digital signature of bundles which is part of the OSGi
Security Layer and bundle-specific Permission Domains. We also developed a tool for signing
and publishing bundles, the SF-Jarsigner which exploit the Open Bundle Repository (OBR)
format from the OSGi Alliance. Experiments with Identity-based Cryptography show that
this technology can be used with benefits to ease key management in large scale deployment
of OSGi platforms. Related software remains proof-of-concept and is not mature enough to
be released.

18



Part I
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The development of secure software is historically based on external protection mechanisms:

code sandboxing, black-box testing, as well as on reactive patching. Whereas this approach
improves the security* status of applications, it does not tackle the root of unsecurity: appli-
cations are mainly not built to be secure, because developers and security practitioners live
in different worlds.

The dramatic increase of networked applications imply that their are built to withstand
attacks* instead of relying on external mechanisms meant to hide their weaknesses. This
requires that developers are trained, and that convenient tools are provided to help them
create secure applications.

This trend lead to the inception of the Software security domain. Its objective is to avoid
the ‘patch hell’ and to limit costly upgrades of deployed software.

3.1 What is Software Security ?

3.1.1 Definition

Software security is concerned with Black Hat* activities such as developing exploits* and
malwares and with White Hat activities which consists in building systems* that resist to
attacks from the Black Hat world. Both should be considered as complementary parts [HM04].
Since the goal of this thesis is to define a secure execution platform*, we concentrate here on
the White Hat approach. Software Security* is identified as a specific research field by Gary
McGraw [McG04] and defined in [McG06]. Its core claim is that security should be built-in
into systems1.

1https://buildsecurityin.us-cert.gov/
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Software Security is the technical and research field that is concerned with the realization
of provably secure software systems. The objectives of Software Security are listed below:

• To enforce security as an intrinsic property of the software, rather than a feature to be
added afterwards.
• To ensure security properties of all projects, not only highly critical systems such as

nuclear plants or aviation and railway control systems; commercial software such as
mobile devices or entertainment systems also need to be protected.
• To build secure and usable systems [FSH03].
• To make the security level* measurable.
• To exploit the full development life-cycle to enhance the security level of the software.

Trinity of trouble Security issues in software are due to three factors:

• Complexity.
• Extensibility.
• Connectivity.

These features are intrinsic properties of almost all software that is produced in our connected
world. They are the core properties of software that provides both a rich user experience and
a satisfactory manageability.

Pillars of Software Security The Software Security approach is characterized by four basis
concepts, or ‘pillars’:

• Applied risk management [McG06]: software security expenses should be made if and
only if they prevent losses that are predictably more important.
• Knowledge [McG06] (see Section 3.2): software security should be deduced from a deep

understanding of the system and of its weaknesses.
• Pro-activity [HL02, VM01]: software security should be performed early in the life-cycle

to avoid costly refactoring once the system is deployed.
• Software security techniques (see Section 3.3): secure design and coding should rely on

well-defined and possibly automated techniques.

Topics of Software Security The activities around Software Security are the following
[McG06] ones:

• Code-breaking techniques: identification of vulnerabilities* and related exploits.
• Building secure software, e.g. through risk management and security-aware life-cycle.
• Designing and using secure languages and platforms, e.g. type-safe languages and virtual

machines.
• Designing secure software, e.g. through Security Patterns*.
• Making sure that software is secure, e.g. through tests, white-box audit and benchmark-

ing.
• Educating software developers, architects and users about how to build security in,

e.g. by providing security related data in a convenient format.
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3.1.2 The Domains of Computer Security

Building secure computing systems is not a new topic in itself. However, security is often per-
ceived as a set of features: cryptographic libraries, authentication and authorization libraries,
or a property of the execution environment*: hardened OSes, virtual machine sandboxing.
The security of the applications themselves often relies on a very intuitive and unorganized
approach where developers enforce generic good development practice, but little resource is
dedicated to security. This matter of fact is due to 1) the usual scarce resources in software
projects which do not enable to perform tasks that do not directly aim at developing new
functionalities and 2) the gap between the developer and software engineering community on
the first hand and the security community on the second hand. Security development and
research is historically performed in following areas: cryptography, network security*, oper-
ating system security* and application security*. The first and the last areas deal essentially
with providing security libraries. The second and the third deal with with defining stable
protocols and systems that are free from vulnerabilities.

Figure 3.1 shows the various Security Domains in the common applicative stack for execu-
tion environments.

Figure 3.1: The security domains of computer security in the applicative stack

Well established approaches obviously do not address one fundamental requirement of to-
day’s software: as far as almost every piece of software is connected to the Internet and thus
accessible to hackers, it should be built so as to withstand attacks.

Software Security and Network Security The objectives of Network Security [CBR03] is to
define secure communication protocols and to control security in the network through firewalls
and intrusion detection systems. Its main challenge is to provide protection mechanisms
that do not contain vulnerability themselves. Because they introduce more software and are
exposed to the Internet, systems like firewalls are a target of choice for hackers. Network-
based mechanisms prove to be efficient against network attacks. Nonetheless, they fail to
prevent the exploitation of weak code [McG06]. This is particularly true of high-level firewalls
such as HTTP or applicative firewalls which often fail to provide adequate solutions because
applicative protocols are more complex and evolutive, as well as less defined, than network
protocols.

The challenge for Software Security in relationship with Network Security is to provide
applications that are not vulnerable to network traffic that can not be protected through
firewalls or IDS.
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Software Security and Operating System Security Operating System Security is the do-
main of security that deals with the prevention and detection of attacks against an OS. The
ultimate goal of such attacks is to ’own’ the OS, i.e. to have full administration rights on
it. The challenges of secure OSes are: to build systems that are sufficiently secure for com-
mon users, to build hardened OSes such as Security Enhanced (SE) Linux versions [Sri06] or
Asbestos [Ste06] and to ensure the integrity of the OS itself through secure bootstrap mech-
anisms [AFS97]. Alternative to secure OSes are virtual machines or secure middlewares that
enable more flexibility in the system design and thus support advanced security schemes (see
for instance [VNC+06]). Because of their inherent complexity, securing OSes is performed
in an empirical manner which questions the fact that OSes can actually be secure at all
[THB06]. Attempts at modeling full systems to evaluate their security exist [SSLA06] but
remain marginal. Their efficiency can be discussed: vulnerabilities are often very low level
features that are abstracted away in most models.

The challenge for Software Security in relationship with Operating System Security is to
take advantage of system level mechanisms such as isolation in an efficient and configurable
manner to exploit them accordingly to the application requirements.

Software Security and Application Security Application Security is the domain of security
that deals with the prevention and detection of attacks against applications through post-
development analysis and protection mechanisms. Its main activities are [McG06] as follows;

• Sandboxing.
• Black-box testing.
• Protection against malicious code.
• Code obfuscation.
• Executable lock down.
• Runtime monitoring.
• Policies management and enforcement.

It considers software as an entity* that should be protected through external measures and
focuses on the interactions between the application and the outside world: users, servers,
clients*. The Application Security approach faces several challenges. First, it does not provide
suitable tools to identify flaws* early in the development life-cycle. This can have important
financial consequences because of the cost involved by late bug correction (See Figure 1.1
page 6). Secondly, it does not support the management of security issues in On-the-Shelf
(OTS) applications: tools and methods are not available to evaluate efficiently the security
status of software outside its development process. Application Security only provides an
external view of the software system. Complementing it with Software Security can overcome
its limitations by defining the intrinsic properties of the software that ensure the security of
the resulting system.

3.1.3 Software Security Assurance

The objective of Software Security is to enhance and guarantee the actual security level
of programs. It can be achieved through dedicated Software Security Assurance* method-
ologies which typically enrich software engineering processes with security related activities
[GWM+07]. The requirement for software security assurance is to define tools, techniques
and metrics for building and managing securing software [Bla05, BKF06].
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Several industrial initiatives aim at integrating software security assurance in the standard
development process. Examples are Windows security pushes, back to 2002 [HL02] and the
Software Assurance Forum for Excellence in Code (SafeCode) initiative [Sof08] which gathers
Juniper, Microsoft, Nokia, SAP, Symantec.

Definition Software Security Assurance is ‘the basis for gaining justifiable confidence that
software will consistently exhibit all properties required to ensure that the software, in op-
eration, will continue to operate dependably despite the presence of sponsored (intentional)
faults’. In practical terms, this means that ‘such software must be able to resist most attacks,
tolerate as many as possible of those attacks it can not resist and contain the damage and
recover to a normal level of operation as soon as possible after any attacks it is unable to
resist or tolerate’ [GWM+07].

The NASA [nas92] defines Software Security Assurance as all activities that ensures confor-
mity to requirements, standards and procedures during the software development life-cycle:
requirement and specifications, testing, validation and reporting.

Secure Development Life-Cycle The Life-Cycle phases of Software Security Assurance are
shown in Figure 3.2.

Figure 3.2: The life-cycle phases of software security assurance

They are the following ones [GWM+07]:

• Requirements for secure software directly affect the likelihood that the software will be
insecure. They are directed toward reducing or eliminating vulnerabilities. They are
tied to the software development plan and to project management direction. They are
not to be confused with requirements for security functionalities that concern access
control, identification, authentication and authorization, and cryptographic functions.
• Architecture & Design consist in performing a security analysis of the system architec-

ture and of individual components*, as well as in integrating secure design principles
and patterns. It should be performed for the whole system as well as for individual
modules.
• Secure Coding implies a set of issues that should be considered such as language choice,

compiler, library and execution environment choice, coding conventions and rules, com-
ments, documentation of security sensitive code and constructs, integration of OTS
software and filters and wrappers.
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• Analysis & Testing represent the most widespread best practices for security assurance.
They can be parted in ‘white-box’ techniques such as static analysis, property based
testing, fault injection, fault propagation and dynamic analysis of source code, and
‘black-box’ techniques such as binary analysis, penetration testing, fuzz testing and
automated vulnerability scanning. It should be performed for the whole system as well
as for individual modules.
• Distribution & Configuration aim at minimizing the opportunities for malicious actors

to gain access and to tamper the software during its transmittal from its issuer to its
consumer.

Software Security Assurance thus includes activities that are specific to Software Security,
but takes issues from the Application Security domain into account to build a coherent system.

Representative Secure Development Life-Cycles (SDLC) are the McGraw process for ‘Build-
ing Security in’, Microsoft SDLC and the GIAC framework. McGraw process for ‘Building
Security in’ [McG06] is built around 7 touch-points: Code Review, Architectural Risk Anal-
ysis, Penetration Testing, Risk-based Security Testing, Abuse Cases, Security Requirements
Elicitation, Security Operations. Microsoft SDLC [HL02, LH05] consists in enriching the stan-
dard development life-cycle with incremental security improvements and emphasizes strongly
on developer training. The Global Information Assurance Certification (GIAC)2 framework
[McC02] which is based on following principles: integrate security as part of the design, as-
sume a hostile environment, use open standards, minimize and protect system elements to be
trusted, protect data at the source, limit access to need-to-known, authenticate, do not sub-
vert in place security solutions, fail securely, log, monitor and audit, and maintain accurate
system time and date.

Other software security assurance proposals exist, for instance to support component based
development [Kim04] or to exploit certification schemes such as the Common Criteria [Llo05].

The AEGIS model [FSH03] is the mapping of security concerns to Boehm’s spiral develop-
ment model [Boe86].

A comparison of several approaches for software security assurance is proposed by the
Software Engineering Institute of Carnegie Mellon University [Noo06]. It emphasizes on the
Capability Maturity Model (CMM) which aims at certifying development processes rather
than the software itself.

3.2 Security Requirement Elicitation

The first step in a software security assurance process is the elicitation of the security require-
ments. It implies to have a precise knowledge of the vulnerabilities of the system under study
and to be able to perform precise benchmark.

3.2.1 Vulnerability Identification

The tools for vulnerability identification are taxonomies, Reference Vulnerability Information*
(RVI) databases and Top N reminder lists. Attack patterns structure these informations.

2http://www.giac.org/
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Vulnerability Taxonomies Taxonomies provide a fine grain description of the properties of
each vulnerability.

Each taxonomy* should verify the properties of a valid taxonomy as defined by [Krs98] and
[HL98]. These properties are the following: objectivity, determinism, repeatability, specificity
(disjunction), observability.

The seminal works on vulnerability taxonomy have been performed by Abbott [ACD+75]
and Bisbey [BH78]. The flaws are classified by type of error (such as incomplete parameter
validation). This approach turns out not to support deterministic decisions since one flaw
can often be classified in several categories according to the context. To solve this prob-
lem, Landwehr [LBMC94] defines three fundamental types of taxonomies for vulnerabilities:
classification* by genesis of the vulnerability, by time of introduction and by location (or
source).

Moreover, vulnerabilities should be considered according to specific constraints or assump-
tions since there existence depends most of the time on the properties of the environment
[Krs98]. These assumptions make it necessary to rely on a well defined system model. For
instance, such a model is proposed for generic computing systems by the Process/Object
Model [BAT06]. Consequently it is difficult for generic purpose databases to rely on specific
taxonomies: the Common Vulnerability Enumeration [BCHM99] project has given up the use
of taxonomies.

Extensive discussions of vulnerability taxonomies can be found in [Krs98] and [SH05].The
CWE (Common Weaknesses Enumeration) Project maintains a web page with additional
references and a graphical representation of each taxonomy3.

Reference Vulnerability Information (RVI) Databases Extensive databases are meant to
maintain up to date references on known software vulnerabilities, to force the system vendor to
patch the error before hackers can exploit it. They are also known as Reference Vulnerability
Information (RVI), or Refined Vulnerability Information (RVI) sources. Two main types of
RVI exists: the vulnerability mailing lists and the vulnerability databases.

The main mailing lists are the following:

• Bugtraq, 1993 onwards (see http://msgs.securepoint.com/bugtraq/),
• Vulnwatch, 2002 onwards (see http://www.vulnwatch.org/),
• Full Disclosure, 2002 onwards (see among others http://seclists.org/).

The reference vulnerability databases are the following. They are meant to publish and
maintain reference lists of identified vulnerabilities.

• CERT (Computer Emergency Response Team) Database. It is based on the Common
Language for Security Incidents [HL98]4.
• CVE (Common Vulnerabilities and Exposures) Database5.
• CWE (Common Weaknesses Enumeration) Database. It is bounded with the CWE and

aims at tracking weaknesses and flaws that have not yet turned out to be exploitable
for attackers6 .

3http://cwe.mitre.org/about/sources.html
4http://www.cert.org/, Carnegie Mellon University
5http://cve.mitre.org/, US Department of Homeland Security and Mitre Corporation
6http://cwe.mitre.org/index.html, US Department of Homeland Security and Mitre Corporation
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• CIAC (Computer Incident Advisory Capability) Database7.
• OSVDB, Open Source Vulnerability Database8. It is centered at Open Source Products.

Complementary RVI Sources are the following organizations: SecuriTeam 9, Packet Storm
Security 10, the French Security Incident Response Team 11, ISS X-Force 12, Secunia and
SecurityFocus.

The limitations of the RVIs is that they follow no stable policy, which makes comparison
between sources and between the item of a given sources difficult [Chr06].

Reminder Lists Since catalogs are not so easy to remember and therefore to put into prac-
tice, several ‘Top N’ lists have been defined. The motivation for such lists is the recurrent
drawbacks of other approaches: vulnerability catalogs do not provide a useful overview of the
identified vulnerabilities [Chr06].

One classification of computer security intrusions is given by Lindqvist [LJ97]. It contains
external and hardware misuse, and several software misuse cases: bypassing intended control,
active and passive misuse of resources, preparation for other misuse cases...

The Plover classification13 is an example of rationalization of Vulnerability catalogs to sup-
port analysis. It is based on the MITRE CVE Database and contains 300 specific entries that
reflect 1400 vulnerabilities identified in the CVE database. Its goal is to suppress redundancy
from the original database so as to enable scientific analysis, e.g. using statistical approaches
[Chr05].

The Nineteen Deadly Sins of software systems are defined by Michael Howard, from Mi-
crosoft [HLV05]. They describe the most common vulnerabilities that are found in enterprise
information systems. They concern Web based systems, the architecture of the information
systems and the technologies involved.

The Open Web Application Security Project (OWASP) maintains a TOP 10 of Web Appli-
cations vulnerabilities14. It concerns input validation, data storage, as well as configuration
and error management. Another consortium for Web Application security enforcement, the
WASC (Web Application Security Consortium), provides its own threat classification15.

A convenient vulnerability list is provided by Gary McGraw, through the Seven Kingdoms
of software vulnerabilities [McG06] [TCM05]. The number 7 is chosen to be easily remem-
bered. Each entry is completed with phyla i.e. precise example of the broader categories
that are defined by the kingdoms. The kingdoms are the following: input validation and
representation, API abuse, security features, time and state, error handling, code quality, en-
capsulation + environment. This classification is targeted at enterprise information systems.

Attack and Vulnerability Patterns The descriptive spirit of Design Pattern [Ale77], [GHJV94],
[MM97], is well suited for application in the security fields, where the question of organiza-

7http://www.ciac.org/ciac/index.html, US Department of Energy
8http://osvdb.org/, Open Source
9http://www.securiteam.com/, Beyond Security Company

10http://packetstormsecurity.nl/, Non-Profit Organization
11http://www.frsirt.com/, A.D.Consulting Company
12http://xforce.iss.net/xforce/alerts, IBM Company
13http://cve.mitre.org/docs/plover/
14http://www.owasp.org/index.php/OWASP_Top_Ten_Project
15http://www.webappsec.org/projects/threat/
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tion and exploitation of the knowledge is central to the protection of systems. Two types of
patterns are defined in the security domain: Attack Patterns and Vulnerability Patterns*.

Attack Patterns represent potential attacks against a system. They model the precondi-
tions, process and postconditions of the attack. They can be combined with attack trees,
so as to automate the identification of attacks that are actually build from simpler atomic
attacks [MEL01]. An extensive presentation of the applications of attack patterns is given in
the book by Markus Schumacher [Sch03]. The use of Attack Patterns together with software
architecture description to identify vulnerabilities is described by Gegick [GW05]. The lim-
itation of this approach is that the attacks as well as the system must be modelized. This
makes the approach impractical and often not realistic based on the available knowledge.

The Vulnerability Patterns are used in catalogs of vulnerabilities. They often contain a
limited number of informations that are meant to identify the vulnerability, but also to not
make it easily reproduceable without a reasonable amount of effort to prevent lazy hackers
from exploiting the vulnerability databases as a source of ready-to-exploit attack references.

We list here the most wide-spread Vulnerability Patterns, along with the attribute they
contain.

• Rocky Heckman pattern16: Name, type, subtype, AKA, description, more information.
• CERT (Computer Emergency Response Team) pattern: name, date, source, systems

affected, overview, description, qualitative impact, solution, references.
• CVE17 (Common Vulnerability and Exposures) pattern: name, description, status, ref-

erence(s).
• CIAC18 (US Department of Energy) pattern: identifier, name, problem description,

platform, damage, solution, vulnerability assessment, references.

These Vulnerability Patterns are quite simple ones. They have an informative goal but
do not intend to support the reproduction of the vulnerability with a minimum of effort, as
other patterns do. This approach makes sense relative to their use context - making users and
administrators aware of the existence of the flaws - but are not sufficient to support detailed
analysis of the related vulnerabilities.

3.2.2 Software Security Benchmarking

The definition of quantified security requirements is based on security benchmarking*. It is
based on the assumption that security is not to be considered as an absolute value but should
be measurable in order to compare various flavours of a system or a given implementation
against a reference implementation. Further references related to security benchmarking can
be found on the Security Metrics web page19.

Requirements for security benchmarking research are explicited by the NIST Samate (Soft-
ware Assurance Metrics and Tool Evaluation) project20 [Bla05]. It is dedicated to improving
software assurance by developing methods to enable software tool evaluations, measuring

16http://www.rockyh.net/
17http://cve.mitre.org/
18http://www.ciac.org/ciac/index.html
19http://www.securitymetrics.org/
20http://samate.nist.gov
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the effectiveness of tools and techniques and identifying gaps in tools and methods. It is
complemented by the SRD (Standard Reference Dataset) project which aims at providing a
knowledge base for assessing software security tools.

SRD requirements to support software security tools evaluation are:

• Identify classes of security flaws and vulnerabilities.
• Develop metrics to assess software.
• Identify classes of software security assessment* techniques.
• Document the state of the art in software security assessment tools.
• Develop measures to evaluate tools.
• Develop a collection of reference awed or vulnerable programs.

Samate goals are high level ones which express the need to propagate the technical infor-
mation in industrial software projects.

• People: provide education and training.
• Process: define life cycle development process, best practices, standards.
• Technology: develop new tools.

Limitations Metrics and statistics build the basis of security assessment. However, they can
not be considered as fully trustworthy data for following reasons [Chr06]:

• variation in editorial policy: quantity and type of cataloged vulnerabilities may vary
over time, especially for databases where the administration team is evolving; this can
lead to inconsistency in the available data.
• fractured vulnerability information: each RVI source collects its own data; catalogues

may not be coherent. They often can not be translated from one to another.
• lack of complete cross referencing between RVI sources: competition between RVIs or

simply resource limitation make it not possible to track the data from all (even public)
RVIs, so no database can be considered to be comprehensive.
• unmeasurable research community bias: researchers vary in skill set, preferences for

certain vulnerability types or target product; identified vulnerabilities therefore reflect
more the effort spent on analyzing systems than their actual security level.
• unmeasurable disclosure bias: vendors and researchers vary in their disclosure models,

so again the identified vulnerabilities reflect more the analysis and publication habit
that the actual state of the systems.

These limitations directly impact the validity of vulnerability catalogs and of the security
benchmarking that is based on them.

Counter Metrics The first step in security benchmarking is to count occurrences of security
related properties. These metrics can be related to the development process or to the code
itself [Che06]. Metrics of the first category include the number if identified threats, performed
tests, measures of the security-related activities or measures related to the education of the
development teams. They can also concern analysis coverage: How much of the code is
thoroughly tested ? How much has been reviewed through automated tools ? Through manual
review ? Code metrics can measure the number of found bugs, the number of different bugs,
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the number of occurrences by vulnerability category, by severity, or the number of times a
system is mentioned in an RVI.

These simple metrics are often used as evolution indicators rather that as absolute values.
Moreover, they tend to express the thoroughness of the benchmarking process rather than
the actual security status of the target software. For instance, a software that is known to
contains an important number of bugs during early development phases is likely to be well
tested.

Estimation of System Exposure The security level of a software system can be estimated
through its exposure. Related metrics are the attack surface*, the approximation of the
number of bugs per Line of Code (LoC) and the coverage brought in by protection mechanisms.

The attack surface surf is defined as a part of Microsoft SDLC [HPW05]. It is impacted
by five dimensions of software systems:

• targets: processes and data which corruption is the goal of attacks,
• enablers: processes and data which corruption enables further exploits,
• channels: means of communicating informations from a sender to a receiver,
• protocols: the rules for exchanging information associated with a channel,
• access_rights, that limit the access to the different resource types such as processes,

data and channels.

The attack surface is expressed as:

surf = f(targets, enablers, channels, protocols, access_rights) (3.1)

where f can be an additive function that takes the interactions between dimensions into
account, or can be weighted to reflect their relative importance.

The approximation of Nbug the number of bugs in an application is deduced from experience
by considering the number of bugs per Line of Code (LoC) in similar projects [HM04]. Typical
values range from 5 bugs/KLoC (1000 LoC) for code that has undergone intensive testing to
50 bugs/KLoC for well-tested code. The approximation Nbug is given by:

Size ∗ 5/1000 < Nbug < Size ∗ 50/1000 (3.2)

where Size is the number of LoC (Lines of Code) in the application.

Coverage is a metric from the domain of fault tolerance [Arn73]. It expresses the ability of
a fault tolerant system to withstand a certain number of faults. The evaluation of coverage is
based on the comparison of the values of Mean Time to Failure (MTTF) for the default and
the resilient system. To the best of our knowledge, no such metric exists to assess protection
mechanisms in the security domain.

Estimation of Damage Potential and actual Risk The risk implied by attacks can be
expressed as damage potential, or as actual risk [HM04]. The financial risk can then be
deduced.

Damage potential and actual risk are expressed according to a certain number of factors.
The authors suggest to rate the risks as high, medium or low unless more precise measures
are available. The metrics depends on following variables:
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• Attack_Potency, the potential to create damage. High-potency attacks are likely to
cause problems that are noticeable by the users. Medium-potency attacks are likely to
cause problems that are noticeable by the administrators. Low-potency attacks do not
cause noticeable problems.
• Target_Exposure, the measure of how difficult it is to carry an attack. Low-exposure

attacks are those that are blocked by a firewall. Medium-exposure attacks are blocked
by suitable application configuration. High-exposure attacks can not be blocked through
the system configuration. If target exposure can not be measured, it should be estimated
to 100 %.
• Impact, the measure of the harm the attack causes to the system. For instance, a

database that is vulnerable to request injection and fully exposed but contains no data
has 0 % of risk to leak private information. If impact can not be measured, it should
be estimated to 100 %.

The Damage_Potential metric is expressed as:

1 < Attack_Potency < 10

0 < Target_Exposure < 1.0

Damage_Potential = Attack_Potency ∗ Target_Exposure/10 (3.3)

The Damage_Potential has a range value from 0 to 1. It can also be expressed as a
percentage.

The actual risk Actual_Risk brought in by a vulnerability is expressed as:

0 < Impact < 1

Actual_Risk = Damage_Potential ∗ Impact (3.4)

The Actual_Risk has a range value from 0 to 1. It can also be expressed as a percentage.

The financial risk fin_risk bound with a given asset can then be measured:

fin_risk = Actual_Risk ∗ Asset_value (3.5)

with Asset_value the financial value of the protected asset. Typically, protection mecha-
nisms should be implemented when their cost is inferior to the financial risk.

Mean Time to Intrusion; Minimum Time to Intrusion More complex metrics exist to
express the security properties of a software system such as mean time to intrusion (MTTI)
and minimum time to intrusion (MinTTI) [VGMC96]. They are based on the estimation of
the skills of potential attackers. They are no absolute measures but relative ones that help
compare different versions of the same system.

3.3 Techniques for Software Security

The core technical activities for building secure software are architecture and design and secure
coding. For critical systems, they can be complemented by certification of the development
process or of specific properties of the software.
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3.3.1 Secure Architecture and Design

Design Principles The core principles of secure software design are well understood since
the publication of the Saltzer and Schröder Principles [SS73].

• Economy of mechanism: keep the design as simple and small as possible.
• Fail-safe defaults: base access decisions on permission rather than exclusion.
• Complete mediation: every access to every entity must be checked for authorization.
• Open design: the design should not be secret.
• Separation of privileges: where feasible, protection mechanisms that require two keys

to unlock should be used instead of simpler mechanisms with one single key.
• Least privilege: every program and every user of the system should operate using the

least set of privileges necessary to complete the job.
• Least common mechanism: minimize the amount of mechanism common to more that

one user and depended on by all users.
• Psychological acceptability: its is essential that the human interface be designed for ease

of use, so that the users routinely and automatically apply the protection mechanisms
correctly.

Additional requirements have been elicited more recently, in particular to support the
specific properties of component-based architectures [GWM+07]:

• Security-aware error and exception handling: in particular, attacks should not lead to
software crash (denial-of-service) or to the release of system-related or applicative data.
• Mutual suspicion: components should not trust each other when they are not explicitly

intended to.
• Isolation and constraint of untrusted processes: misbehavior of un- or less trusted com-

ponents should not affect the system.
• Isolation of trusted/high consequence processes: integrity and availability of sensitive

components should be protected by isolating them.

Security Patterns The objectives of security patterns is: capture expert knowledge, be
domain independent i.e. usable in diverse contexts such as network, operating system, software
and application security, and be reusable. They are a direct application of the design pattern
concept to the domain of security. A comprehensive survey of security patterns is provided
by [YWM08].

The most important collection of security patterns is provided by Kienzle and Elder [KETEH01].
Their report gathers 29 patterns dedicated to web applications and parted in two categories:
structural patterns and procedural patterns. Only patterns that are not specific to web ap-
plications are presented here.

The proposed versatile structural patterns are: hidden implementation, minefield, parti-
tioned application, secure assertion, server sandbox, trusted proxy, and validated transaction.

The proposed procedural patterns for the development process are: build the system from
the ground up, choose the right stuff, log for audit.

Some patterns describe specific security features. These patterns should be seen more as
informative as actual reference, but they provide the advantage of supporting explicit defini-
tions of concepts that are not well documented elsewhere in the literature. Patterns for access
control are provided by [RFMP06]: Authorization, RBAC, Multi-level security, file authoriza-
tion, Virtual Address Space access control, reference monitor, session, Single Access Point,
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Check Point. Patterns for secure development are given by [Rom01]: Authoritative Source of
Data, Layered Security, Risk Assessment and Management, 3rd Party Communication, The
Security Provider, White Hats* Hack Thyself, Fail Securely, Low Hanging Fruit.

Domain specific patterns are targeted at specific environments. Sun Core Security Pat-
terns21 initiative defined patterns for J2EE and enterprise applications [LC05, Bru06]. They
are categorize in Web Tier patterns (Authentication enforcer, Intercepting validator...), Busi-
ness Tier patterns (Container Managed Security, Dynamic Service* Management), Web Ser-
vice Tier patterns (Message Interceptor, Secure Message Router), Identity Management and
Service Provisioning (Single sign-on delegator, Password synchronizer). Sun maintains a list
of technologies that implement the patterns. The other domains where numerous patterns
are defined is privacy and anonymity [Sch02b].

3.3.2 Secure Coding

The objective of secure coding is to enforce language based security. The first principle is to
train developers to avoid vulnerabilities and the second one is to embed protection mechanisms
in the language through secure language type systems or at least in automated tools. Secure
coding is the agile way of implementing software security: responsibility of the code quality is
shared among developers. A discussion of the important business stakes related to this topic
is to be found at [the08].

Activities of Secure Coding Security issues for the coding activities of the software imple-
mentation phase include [GWM+07]:

• language choice,
• compiler, library and execution environment choices,
• definition of coding conventions and rules,
• insertion of comments,
• documentation of security-sensitive code, constructs and implementation decisions,
• integration of non-developmental software,
• identification of filters and wrappers need,
• and, of course, writing secure code.

Writing secure code is eased by a set of methodologies that can be applied during develop-
ment, in parallel or between successive development phases: code review, static analysis and
security testing.

Code Review is performed manually to identify and solve security issues in the code. It must
be performed by someone who is not the author of the code to make the code be analyzed
as it performs, not as it is intended to perform. Some authors advise reviewers to have a
black hat experience so as to better understand the actually threats the software is exposed
to [HM04].

The OWASP suggests to perform reviews as coherent sessions organized around a meeting
[OWA08]. The process is intended to be lightweight, i.e. the preparation should not exceed
the duration of the meeting itself. Roles during a review process are the moderator, who
selects the reviewers and conduct the meetings, the authors of the code, the inspectors who

21http://www.coresecuritypatterns.com/
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perform the review, the reader who presents the code during the review meeting and the
scribe who records the raised issues during the code review. Each meeting should consist in
following steps:

• Initialization: the moderator plans the meeting and prepares the review package with
the author. The review package contains the source code, the document, review check-
lists, coding rules as well as other useful material such as the output of static analysis
tools.
• Preparation: after receiving the review package, the inspectors study the code to search

for defects. Typically, the duration of this phase is similar to the duration of the
following meeting.
• Meeting: the reader presents each code excerpt to the participants. Reviewers bring up

issues they identified during the preparation. Ambiguities can also be identified through
the (mis)interpretation of the code by the reader.
• Correction: the authors address the issues identified and the moderator validates their

completeness.

Less formal review processes skip either the preparation or the meeting phase. The process
can also be iterated again.

Another code review process is proposed by M. Howard from Microsoft [How06]. It focuses
on the expertise of the reviewer and involves less team interactions. It can also serve as
guidelines for the preparation phase of the previous process.

• Prioritize.
• Review the code.

◦ Rerun all available tools.
◦ Look for common vulnerability patterns.
◦ Dig deep into risky code.

These generic processes must be implemented for each target language and system. A
strong experience and documentation relative to their security issues is required. Resources
can be found for instance for the C language in [HM04] and in the ‘CERT C Secure Coding
Standard’22, for the C++ language with the ‘CERT C++ Secure Coding Standard’23, for
Linux and Unix systems in [Whe03], for Windows-based systems in [HL02], for Java in [Sun07]
and for Web application in [OWA08].

Static Analysis supports the automation of code review as well as the verification of complex
code properties. It aims at handling the problem of code volume by improving the identifica-
tion of known vulnerabilities by several orders of magnitude and at letting human reviewers
focus on hard issues. Two approaches for static analysis can be identified: production tools
and research efforts.

The key characteristics of tools for code analysis are the following [McG06].

• Be designed for security: although security analysis is a subset of software quality, the
knowledge that underlies it is very specific.

22https://www.securecoding.cert.org/confluence/display/seccode/CERT+C+Secure+Coding+Standard
23https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=637
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• Support multiple tiers: as applications are often written in several languages and for
several platforms, each of these technologies must be supported.
• Be extensible: security problems evolve, grow and mutate and tools should adapt ac-

cordingly.
• Be useful for security analysts and developers alike: analysis output should provide

sufficient data for developers to enable them to fix the identified issues; this property
makes tools an excellent way of training security-unaware developers.
• Support existing development processes and Integrated Development Environments

(IDEs).
• Make sense to multiple stakeholders: metrics should be provided that support not only

secure development but also the business decisions related to the software to be built;
release managers, development managers and executives should get useful insight from
analysis tools.

A wide variety of tools exist. The historical tool for finding bugs is Lint for the C language
which was presented by the Bell Labs in 1978 [Joh78]. The better known recent tools are the
Rough Auditing Tool for Security24 (RATS) for C, C++, Perl, Php, Python, FlawFinder25

for C and C++, ITS426 [VBKM00] for C and C++, Splint27 for C. MOPS [CW02] applies an
original approach of model checking to identify source code defects. Example of commercial
tools are Fortify 36028 which supports analysis for C/C++, .NET, Java, JSP, ASP.NET,
ColdFusion, ASP, PHP, VB6, VBScript, JavaScript, PL/SQL, T-SQL and COBOL and con-
figuration files, or Coverity Prevent 29.

Two approaches exist for static code analysis: source code analysis and binary analysis.
Source code analysis tools support the identification of more complex vulnerability patterns,
especially for languages that are compiled into low level binaries such as C. They thus provider
a deeper analysis. Binary analysis tools are very useful to assess the quality of code which
source code is not available, for instance for COTS.

Research efforts reflect the diversity of potential solutions for enhancing static code analysis.
Some tools exploit assertions to enrich the set of properties that can be verified such as ES-
C/Java 30 which exploits the Java Markup Language (JML). Static analysis can be extended
to support taint code analysis, i.e. to control the propagation of sensitive data [KZZ06]. It
can also be used to validate weak typed languages such as scripting languages [XA06]. Ad-
vanced solutions consists in combining static analysis with code injection to optimize runtime
security controls [Sch00]: this approach is called ‘security passing style’ (SPS). Experiments
have been performed to reduce the overhead of Java security manager. However, proposed
implementations do not prove to be faster than the default runtime analysis by Sun. The ac-
tual benefit of SPS is the flexibility it introduces in the security models. A powerful approach
is to integrate security checks in the language definition itself and to delegates verification to
language constructs. An example is provided by the secure type system for Java defined in
[Boy04].

24http://www.fortify.com/security-resources/rats.jsp
25http://www.dwheeler.com/flawfinder/
26http://www.cigital.com/its4/
27http://www.splint.org/
28http://www.fortify.com/
29http://www.coverity.com/
30http://kind.ucd.ie/products/opensource/ESCJava2/
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The collateral consequence of static analysis is that it enables a seamless training of the
developers, since identified vulnerabilities are documented so as to ease the correction process.

Testing is the activity that validates the security properties of a given software system. A
comprehensive framework is defined by the OWASP Testing Guide [OWA07].

Security testing should be based on following principles:

• There is no Silver Bullet: no single tool can make software secure,
• Think strategically, not tactically: tests should be performed during the initial develop-

ment of software as much as possible; the cost overhead is by far reduced when compared
to the classical wait-and-patch approach to security,
• The SDLC is king: developers are comfortable with classical development life-cycles;

security should be integrated to limit organizational overhead,
• Test early and test often,
• Understand the scope of security: according to the considered project,
• Mindset: security testers should think ‘outside the box’, not only in term of foreseen

functionalities,
• Understanding the subject: the application should be well documented and tests per-

formed according to it,
• Use the right tools: in order to increase efficiency,
• The devil is in the details: every section of code should be reviewed,
• Use source code when available,
• Develop metrics: to monitor the evolution of the project.

Testing processes can be either integrated in a V life-cycle [OWA07] or performed in an
agile manner using abuse cases [McG06] as reference.

Conclusion Software Security provides a set of methods and tools that can be integrated in
the classical software development life-cycle to enhance and control the security level of built
systems. By preventing vulnerabilities rather than patching them, it promises to complement
in a powerful way network security, because firewalls have a hard time in preventing the access
to flawed applications, operating system security, since security responsibility is transfered to
a certain extent from the administrator to application developers and application security
by making software not only robust through a protective shell but secure by design and by
implementation.
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The Java environment is composed by two main parts: the Java language specified in

[GJSB05] and the Java virtual machine specified in [LY99]. It is designed with the assumption
that no software entity* is to be trusted and therefore that each need to be checked. The first
success of Java was the inception of Java Applets which enabled fully untrusted code provided
by unknown web sites to be executed in a browser [DFW96]. This feature demonstrated
the isolation brought by the Java Virtual Machine (JVM) between the applications and the
underlying operating system. It is made possible because each internal unit of the JVM is
designed to enforce such security*.

Figure 4.1 shows the architecture of a Java Virtual Machine (adapted from [COR07]).

Figure 4.1: Architecture of a Java Virtual Machine

The units of the JVM are:
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• SSU : the System Services Unit. It contains the class loader and Bytecode verifier, the
thread management, management and debugging tools and timers.
• MMU : the Memory Management Unit. It contains the reference handling, finalization,

garbage collection and fast allocation mechanisms.
• ExecU : Execution Unit. It contains the exception handling, Just-In-Time (JIT) Com-

piler, Interpreter and JNI mechanisms. It is responsible for executing runtime opera-
tions.
• OS Virtualization* Layer Unit: a platform*-independent abstraction layer to access

host resources. It is the very module that is in charge of application virtualization.

The default Java security model is presented. Its sound design does not prevent the exis-
tence of vulnerabilities* in the JVM and in the code of Java applications. Security extensions
to the JVM are then detailed. They intend to address the challenges that are brought in by
the simultaneous execution of mutually untrusted components*.

4.1 The default Security Model

The security model of Java evolved from HotJava, to Netscape, to Java 2 [DFW96]. It was
first designed to support the secure execution of Applets, which are potentially malicious code
pieces. This is made possible by the strict language definition and its mechanisms for security
enforcement. The shift towards components applications urged the support of modularity*:
components from various sources can be executed on the same platform with no mutual access
to their data. A comprehensive introduction is to be found in [GED03].

4.1.1 The Java Language

The Java language is meant to be a safe subset of the C language. This means that all
language elements that can be exploited in C programs such as the nefarious buffer overflows
or memory management activities are removed from the specification. This simplicity intends
to free developers from error prone tasks and to enhance their productivity by letting him
focus on the features they develop.

The principles that underlie the security of the Java language are the following [GM96]:

• Type safety.
• Automated memory management.
• Bytecode validation.
• Modularity.

Type Safety means that each language element has a given type and can only perform ac-
tions that are coherent with this type. In particular type safe languages are free from pointers
which enable to manipulate memory addresses independently of their type. Type safety is en-
forced at three different moments: during the compilation, when the Bytecode is loaded into
memory, and at runtime to ensure type coherence with libraries that are dynamically linked.
Some authors consider that the Java language is not completely type safe since it enables to
handle Sets and Collections of data without regard to their actual type. Errors then lead to
thrown exceptions at runtime. The solution at the language level is the use of Generics which
force the data structures to only contain objects of a given type. For backward compatibility
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reason, this feature is not made mandatory. A solution exist in certain SOP platforms such
as Guice, that create objects in an ‘extraordinarily type safe’ manner (see Section 5.2.2) and
thus prevent runtime exceptions which could occur due to cast errors.

Automated Memory Management consists in hiding memory allocation and de-allocation
from the language. This is done by postponing these operations from the compilation phase
as in C and C++ to runtime. The virtual machine is itself responsible to allocate required
memory at object instantiation and to release the memory that is not longer used through a
Garbage Collector (GC). Garbage collection is performed by maintaining a list of objects in
use. When an object is dereferenced by all its callers, it can be removed safely. This prevents
development errors. It also prevents malicious code from directly accessing the memory, which
makes the resulting code more robust against attacks*. Additional mechanisms are enforced
to guarantee the integrity of the memory. For instance, array bounds are checked to prevent
reading or writing data outside the defined data structures. This prevents the buffer overflows
and therefore eliminates one important attack vector* used for executing malicious code.

Bytecode Validation mechanisms are presented in Section 4.1.2. They guarantee that the
executed Bytecode is compliant with the specification and therefore prevent the forgery of
instruction suites that could not be derived from the source code by a valid compiler.

Modularity mechanisms are presented in Section 4.1.3. They enable to execute several
components with no naming conflict and unintended access. In particular, they target classes
that are loaded from diverse locations such as remote code servers.

The security mechanisms for the Java language mix the Software Security*, e.g. language
features, and the Application Security* approaches in a much integrated way such as modular
support. It is a powerful illustration of the complementarity of the two techniques: Software
Security is enforced when possible to assert comprehensive security properties in an efficient
manner. When it is not sufficient, it is complemented with Application Security mechanisms.

4.1.2 Bytecode Validation

Loaded Bytecode is considered as untrusted. It must therefore be completely validated before
its execution to ensure it is compliant with the specification. This validation occurs in the
Bytecode verifier of the JVM immediately before the code is loaded in memory [GM96]. It is
complemented by runtime checks in two cases: when the required information is not available
during validation, e.g. when several libraries are used together and when optimizations make
runtime checks more efficient.

Figure 4.2 shows the process of Bytecode verification.

The code is generated from a .java source file to a Bytecode .class file by the compiler.
Language specifications are enforced here but no guarantee exists that 1) the compiler is
valid [Tho84], 2) the Bytecode has not been forged without compiler or 3) the file is not
modified during its transfer through the network or any other medium. When it is loaded,
the Bytecode is therefore first checked in the System Service Unit (SSU) of the JVM, before
being forwarded to the Execution Unit (ExecU) for JIT compilation or interpretation.

The validation that is performed by the Bytecode verifier is made of following tasks [Sch02a]:

• Structural correctness: checks attribute lengths, class file validity.
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Figure 4.2: The process of Bytecode verification

• Data type correctness: checks that final classes are not subclassed and final methods not
overridden, that all classes except java.lang.Object have a superclass, that all fields
and methods references have legal name, classes and type signature.
• Bytecode checks: checks 1) static constraints: control flow correctness, validity of excep-

tion handlers; 2) static constraints: reachability of subroutines and exception handlers,
data flow validity such as absence of buffer overflow and underflow.
• Symbolic reference management during runtime: checks the validity of current class

references, type safety of method calls and field access, visibility of method calls and
field access.

This approach for Bytecode validation pertains to the category of Software Security, because
properties that make the code secure are deeply embedded in it. However, it is a very
unflexible method that can only enforce permanent properties.

4.1.3 Modularity

Support for modular programming intends to enable the execution of mutually unknown
components that do not necessarily trust each other.

Class Loaders built a subsystem of the JVM that is responsible for finding classes and
making them available for execution1. They are organized as a hierarchy, as shown in Figure
4.32.

The presence of application specific class loaders is optional but required to support names-
pace isolation between the components. When executed in its own class loader, a component
have access to the classes of its parent class loaders as well as to its own classes. This en-
sures that no naming conflict can occur if several components contains classes with the same

1http://interviewjava.blogspot.com/2007/04/what-is-class-loader-and-what-is-its.html, read on 2008/08/18
2http://java.sun.com/docs/books/tutorial/ext/basics/load.html, read on 2008/18/08
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Figure 4.3: The hierarchy of class loaders

name. As shown in Figure 4.3, the component 1 and 3 can both have an internal class named
my.package.Foo that have different implementations. They will share system classes such as
java.lang.System.

Each class loader have the following behavior. It first checks whether the class to be loaded
is already available. If this is the case, it returns it. Otherwise, it delegates the search for
the new class to its parent class loader. If this request is unsuccessful, i.e. if none of the class
loader in the hierarchy finds the class, the current class loader searches for the class itself
with the findClass() method.

The default class loaders of the hierarchy are the bootstrap class loader, the extension
class loader and the system class loader. The bootstrap class loader has access to the classes
that are required to launch the JVM. In particular, it is responsible for the runtime classes
(rt.jar archive) and the internationalization classes (i18n.jar archive). The extension
class loader is responsible for extension classes such as the implementation of cryptographic
libraries. It concerns the archive that are stored in the lib/ext/ directory such as the
sunjce_provider.jar, sunpkcs11.jar or localedata.jar archives in the case of the Sun
JVM. The system class loader is responsible for the classpath, which is set through the
CLASSPATH environment variable or the -classpath or -cp option of the JVM. Additional
class loaders can be defined by the applications or by the framework used. For instance,
the OSGi framework loads each bundle* in a dedicated class loader. Classes can be shared
between the bundles and thus between the class loaders through a specific package import

and export mechanism.

The obvious security benefit of class loaders is the namespace isolation which prevents one
component to access another without being explicitly allowed to. Moreover, system classes
are shared which prevent inconsistencies.

However, class loaders are not designed to support strong isolation. In particular, static
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variables in parent class loaders are shared. For instance, the System.out variable in the
bootstrap class loader can be accessed and modified by all classes. This can lead to unrequired
interference such as denial-of-service or to data transmission that should not occur. Similarly,
static synchronized calls can be exploited. Moreover, they do not support resource isolation
which is the second necessary protection besides namespace safety. The last drawback of class
loaders is that they can not be simply removed to uninstall a component since this could imply
inconsistencies in programs executed by others. For all these reasons, class loaders build an
interesting feature of Java component platforms* but can not be considered to be secure.

Protection Domains * are the solution proposed by Sun for securely executing components
in parallel. This approach is also known as Stack Based Access Control (SBAC) since it relies
on the inspection of the call stack to determine whether all callers have sufficient rights to
execute a given method. It is defined in [BG97, WF98]. A technical presentation is to be
found in [Sun].

Per se, a Protection Domain is the set of objects currently directly accessible by a principal*
[SS73]. A Principal is the software representation of an entity (an individual, a corporation,
a login, a place in the file system) to which execution rights are granted. In the case of Java
component platforms, a Protection Domain thus represents all objects that can be accessed
by one component. It is made of all unsensitive code which can be called seamlessly and of
sensitive code to which access is granted explicitly through a permission policy. The use of
protection domains in Java applications requires that the security manager of the JVM is
enabled and the policy file defined according to the requirements of the applications:

java -Djava.security.manager -Djava.security.policy=java.policy ...

Security checks are performed at runtime in the code of the application, the framework or
the standard libraries through a call to the security manager:

mySecurityManager.checkPermission(

new ServicePermission(serviceName, ServicePermission.GET));}

The example shows the permission check in the OSGi platform when a service* is re-
quested. The security manager then performs following operations: it reconstructs the call
stack that leads to the sensitive call and identifies related principals; it checks whether all
principal have sufficient rights to perform the sensitive calls. If these rights are not granted,
a java.lang.SecurityException is thrown.

One of the main limitations of protection domains is the important overhead they imply,
especially when their number and the frequency of security checks increases. An important
improvement effort has been dedicated to the original implementation [GS98]. Alternative
solutions, e.g. through static analysis, have been proposed. However, they remain research
efforts and have not succeeded at providing more efficient solutions.

Evaluation of Java Security After its release, the Java 2 language and platform have been
subject to an extended analysis by the industrial and academic community [CM99]. The
most important discussion arose about the conservation of the property of type safety in the
presence of several class loaders. A subset of the Java language has been proved to be type safe
[DE97], before an implementation error in the class name resolution was identified [Sar97].
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This error has been formally modeled afterwards [JLT98] and corrected in later releases of
Sun JVM.

Moreover, following limitations of the Java Stack Inspection policy are identified in the
literature [ES00]:

• If a new thread is created from within a doPrivileged block then that thread will
continue to enjoy amplified privileges, even though its code might not be within the
scope of a doPrivileged block and even after its creator has exited from within the
doPrivileged. This is because the new thread starts execution with a copy of its cre-
ator’s call-stack (whose top frame is marked as being within the scope of a doPrivileged).
• When a class B extends some class A but does not override A’s implementation of a

method foo(), then the protection domain for A (and not B) will always be used by
checkPermission for foo’s stack frame. Because B can extend A in ways that may act
the semantics of foo, (such as by overriding other methods), one might argue that the
wrong protection domain is being consulted.

4.2 Vulnerabilities

Vulnerabilities in Java-based systems* can be found in two distinct locations: the virtual
machine and application code. Their disclosure acts as a strong incentive for both JVM and
application developers to increase the security level* of the system.

4.2.1 Vulnerabilities in the Java Virtual Machine

Generic JVM Vulnerabilities can be identified. A comprehensive analysis of bug databases
of Sun JVM and Jikes3 is proposed by [COR06]. They can be exploited to perform at least
denial-of-service exploits*. Statistics related to the origin of failures are extracted from a
selected set of bug entries: 103 bugs from Sun and 28 bugs from Jikes. Consequently, only
those two VMs are directly concerned by the given results. The conclusions are the following:

• Garbage collection is responsible for 73 % of the failures in the memory management
unit (MMU).
• Runtime support operations such as method invocation, stack frame allocation and

deallocation, exception handling and optimized Just-in-Time (JIT) compilation are re-
sponsible for 77 % of the failures in the Execution Unit (ExecU).
• Thread management is responsible for 76 % of the failures of the System Service Unit

(SSU).
• Most of the failures (80 %) occur when the JVM is running under an important work-

load.

JVM optimizations such as garbage collection and JIT compilers are clearly identified as
reliability bottlenecks. A clear trade-off appears here between performance and reliability.

These JVM failures worsen when the applications are running a long-time without inter-
ruption. This phenomenon is called aging and is especially present for application servers. It
leads to the following behavior of an example mail application running on a Java server:

3http://jikesrvm.org/
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• A consistent memory depletion trend (up to 50 KB/min) during periods of low garbage
collector activity.
• A consistent throughput loss (up to 2.4 KB/min) has also been observed.
• The Just-In-Time compiler is responsible for a not negligible memory depletion trend

(numerical value is not given).

The experiment is conducted with a mail server called James for a duration of 100 hours with
a workload generator.

More exotic vulnerabilities can be exploited. For instance, memory errors can be used to
abuse a virtual machine [GA03]. The attack relies on an aleatory error in a program with
a very repetitive address scheme. The shift of any bit in one method leads to type unsafe
behavior. The attack is sped up through physical access to the machine: the authors use a
simple light bulb to perform the bit shift.

Moreover, each specific implementation of the JVM introduces new vulnerabilities. Mobile
platforms are especially fragile to such attacks since they are meant to be extended through
MIDlets provided by third parties. A vulnerability analysis is proposed for Sun Connected
Limited Device Configuration (CLDC) by [DSTZ05]. Following flaws* are identified: SMS can
be sent by malicious MIDlets, network and cryptographic errors exist in the MIDP Reference
Implementation (MIDP RI), data is recorded in stores not protected from malicious attacks,
no quota can be set in data storage, low level helper functions* for high level libraries are
available for execution by MIDlets, and MIDlets can be transferred from a device to another
by the user. These vulnerabilities can not be extrapolated to other VMs or other implemen-
tations. However, they are representative of the type of vulnerabilities that can occur in Java
environments.

4.2.2 Vulnerabilities in Code

Various authors propose lists of vulnerabilities that are to be avoided and coding rules that
help prevent them. Though these lists are partially overlapping, they each provide specific
entries.

Source Code The first set of vulnerabilities that can be identified in the Java source code
consists in counterintuitive behaviors of Java programs [Blo01, BG05] known as puzzlers.
They concern the range limit of numbers or intricate exception and thread management.
These ‘strange’ behaviors lead to code misunderstanding and to infinite loops or program
deadlocks. An example of such an infinite loop is given in Listing 4.1. Its origin is the way
the integer counter is incremented: when it reaches Integer.MAX_V ALUE, the count goes
on with Integer.MIN_V ALUE.

Listing 4.1: Example of a counterintuitive infinite loop in the Java language

pub l i c s t a t i c f i n a l i n t END = I n t ege r .MAX_VALUE;
pub l i c s t a t i c f i n a l i n t START = END − 100;

// or any other s t a r t va lue
f o r ( i n t i = START; i <= END; i ++);

The reader is invited to refer to the books or to our technical report [PF07a] for selected
puzzlers that turn out to introduce vulnerabilities.
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The second set of vulnerabilities are real features that can be exploited to realize exploits
against the JVM [Lon05]. These features are:

• Type safety: the use of the same type name for several classes can lead to confusion.
This is especially true with fields that are private or protected that are made globally
available for compilation reasons, for instance in nested classes.
• Public Field: clearly, no sensitive data should be stored in public fields, as they are

accessible from the whole application.
• Inner Classes: since inner classes do not have explicit Bytecode support and are compiled

as simple classes, their private members (fields and methods) have a package visibility
to allow access by the outer class. This can be abuse by any class in the same package
to access the private content of the inner class. This is illustrated in Listings 4.2 and
4.3.
• Serialization: enables to store the state of a program as a byte stream. If kept in clear,

this data can be accessed from third party programs.
• Reflection: enables Java program to analyse and to modify itself.
• JVM Tool Interface (JVM-TI): is a tool for monitoring and modifying the internal state

of a running JVM. It does not require specific permissions to run with the default
security manager.
• Debugging: the Java platform Debugger Architecture is built on JVM-TI. It enables to

monitor and modify the state and thus the data of Java programs. Since access control
is not enforced, private fields can be access transparently. Its use can be prevented by
the security manager.
• Monitoring and Management: the JMX management tool enables to monitor class load-

ing, thread state, stack traces, deadlock detection, memory usage, garbage collection,
operating system information. It can also introduce remote management.

Some of these features such as reflection or debugging can be protected through a security
manager. Others such as remote management imply that required libraries are installed on
the system under control. However, most of them stay open for exploitation.

Listing 4.2: Private inner class and methods: source code

pub l i c c l a s s HelloWorld
{

. . .

p r i v a t e c l a s s Hel loWorldPr inter
{

p r i v a t e S t r ing t ex tH e l l o ="HelloWorld " ;
p r i v a t e S t r ing textGoodbye ="Goodbye World " ;

p r i v a t e void sayHel lo ( )
{

System . out . p r i n t l n ( t ex tH e l l o ) ;
}

p r i v a t e void sayGoodbye ( )
{
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System . out . p r i n t l n ( textGoodbye ) ;
}

}
}

Listing 4.3: Private inner class and methods: Bytecode

c l a s s f r . i n r i a . a r e s . h e l l owor ld . Hel loWorld$Hel loWorldPr inter
extends java . lang . Object {

f r . i n r i a . a r e s . h e l l owor ld . Hel loWorld$Hel loWorldPr inter (
f r . i n r i a . a r e s . h e l l owor ld . HelloWorld ,
f r . i n r i a . a r e s . h e l l owor ld . HelloWorld$1 ) ;
Code :

0 : aload_0
1 : aload_1
2 : i n v ok e s p e c i a l #3;

//Method "< i n i t >" : ( L f r / i n r i a / ar e s / he l l owor ld /HelloWorld ; )V
5 : return

s t a t i c void access$100 (
f r . i n r i a . a r e s . h e l l owor ld . Hel loWorld$Hel loWorldPr inter ) ;
Code :

0 : aload_0
1 : i n v ok e s p e c i a l #2; //Method sayHel lo : ( )V
4 : return

s t a t i c void access$200 (
f r . i n r i a . a r e s . h e l l owor ld . Hel loWorld$Hel loWorldPr inter ) ;
Code :

0 : aload_0
1 : i n v ok e s p e c i a l #1; //Method sayGoodbye : ( )V
4 : return

}

Sun provides detailed guidelines relative to exploits that can be performed on Java appli-
cations [Sun07, Lai08]. These guidelines aim at preventing weak code by promoting good
development practices. They are organized in following categories:

1. Accessibility and extensibility

• 1-1 Limit the accessibility of classes, interfaces, methods and fields
• 1-2 Limit the extensibility of classes and methods
• 1-3 Understand how a superclass can affect subclass behavior

2. Input and output parameters

• 2-1 Create a copy of mutable inputs and outputs
• 2-2 Support copy functionality for a mutable class
• 2-3 Validate inputs
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3. Classes

• 3-1 Treat public static fields as constants
• 3-2 Define wrapper methods around modifiable internal state
• 3-3 Define wrappers around native methods
• 3-4 Purge sensitive information from exceptions

4. Object construction

• 4-1 Prevent the unauthorized construction of sensitive classes
• 4-2 Defend against partially initialized instances of non-final classes
• 4-3 Prevent constructors from calling methods that can be overridden

5. Serialization and Deserialization

• 5-1 Guard sensitive data during serialization
• 5-2 View deserialization the same as object construction
• 5-3 Duplicate the SecurityManager checks enforced in a class during serialization

and deserialization

6. Standard APIs

• 6-1 Safely invoke java.security.AccessController.doPrivileged

• 6-2 Safely invoke standard APIs that bypass SecurityManager checks depending
on the immediate caller’s class loader
• 6-3 Safely invoke standard APIs that perform tasks using the immediate caller’s

class loader instance
• 6-4 Be aware of standard APIs that perform Java language access checks against

the immediate caller

Another similar classification* is defined by McGraw and Felten as the ‘12 rules’ for devel-
oping more secure Java code [MF98].

Flaw disclosures are meant to improve the quality of the concerned software. Several
publications that have had an important impact such as the Java ‘Hall of Shame’ [Dep00],
the vulnerabilities identified in web browsers by the ‘Last Stage of Delirium’ group [The02]
are now outdated for this reason.

Bytecode A List of vulnerability types identified at the Bytecode level is given by the
FindBugs tool4 [HP04], in the ‘Malicious code’ category.

• EI: Expose Internal representation by returning a reference to a mutable object.
• EI2: Expose Internal representation by incorporating reference to mutable object.
• FI: Finalizer should be protected, not public.
• MS: Excessive visibility of fields and methods. Examples are static fields, non-final

fields and fields of mutable types such as array and Hashtable.

These vulnerabilities are only partly redundant with previous guidelines. They provide the
advantage of being identified in an automated way.

These threats call for two important shifts in the Java development community: the training
of developers to make them aware of the flaws they may introduce in their applications and
the extensive use of automated tools to identify at least the most common of these issues.

4http://findbugs.sourceforge.net/bugDescriptions.html
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4.3 Security Extensions

The limitations of the default security model and the existence of vulnerabilities in Java
applications lead to the development of security extensions: platform extensions, specific
coding constraints and behavior injection mechanisms.

4.3.1 Platform Extensions

Platform extensions aim at isolating applications and making them accountable for the re-
source they consume.

Isolates The goal of isolates is to run independent programs in the same Java runtime
environment while preventing interactions between them [Cza00]. The execution in an isolate
should not be different than the execution in a dedicated VM from the point of view of the
program. Isolates are specified in the Sun JSR 121 [Jav] and detailed in [Bry04]. The reference
implementation is provided in the Sun Barcelona project5 and following and is known as the
Multi-tasking Virtual Machine (MVM) [GCLDBT03]. It is available for Solaris only.

Each isolate executes a task, i.e. an application with a main method, in a dedicated thread.
This thread enforces a strong isolation with others so as to overcome the limitations of class
loaders in particular: an isolate has its own system static variables, to prevent any interference
(see the example of the System.out variable); it has its own instance of java.lang.Class

objects; it has its own set of interned Strings, i.e. immutable string values. Consequently,
the communication can only be performed through IPCs or networking techniques, which
prevents the realization of efficient multi-task applications with this technique.

The benefits of isolates are manyfold [Bry04]. First multi-programmed and multi-part
application environments become platform-neutral which enhances the testability and the
manageability of systems. Scalability is improved. Next the security is strongly improved
through the combination of OS security such as process isolation and absence of data shared
between applications and VM security which provides a protection against direct access to
OS resources . Moreover, access to operating system mechanisms is not longer required to
manage multi-application systems. Lastly resource management is made possible because
each application is executed independently from others even if this is not part of the Isolate
specification.

Though these important gains in the support of multi-task environments, Isolates and
the MVM are so far only used in a limited manner. This is due peculiarly to their lack
of convenience for production environments and the lack of transparency of the proposed
programming model [Bry04, GTCF08]. Isolates are inappropriate for a certain number of
widespread Java environments such as devices with restricted resources, with no address
spaces isolation between processes or with no thread support. Moreover, they provide no
centralized management of the Java entities in the system and are very inefficient in term of
resource consumption especially at the instantiation of a new task, since all execution and
management mechanisms are duplicated.

Sun Resource Management Interface [CHS+05] (RM interface) is specified by Sun JSR
2846. It is an extension of the isolate concept. The RM interface enables to model and monitor

5http://research.sun.com/projects/barcelona/
6http://jcp.org/en/jsr/detail?id=284
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any resource type and in particular to track the resource consumption for each isolate. It is
an follow up of the JRes (Java Resources) prototype [CvE98]. Its goal is to enable a trusted
part of the Java system to be informed of thread creation, to state an upper limit to the
resources that are consumed by a thread or set of threads and to define ’overuse call-backs’,
i.e. actions to be performed when the limits are exceeded. It is transparent for the monitored
applications. It requires access to the VM. The core entities are the resource, resource domain,
dispenser, consume action and reservation.

A resource is identified unambiguously by the qualified name* of its implementation class.
It is modeled as a set of properties, and can be disposable, i.e. a program span where it
is considered to be consumed can be identified, reservable, revokable, i.e. the available
resource amount can be restricted without impact on the application behavior other than
performance, or unbounded, i.e. no limitation exists to the consumption of this resource as
for the absolute CPU time.

A resource domain is the instance of a policy regarding resource consumption. Several
isolates can be bound to the same resource domain and therefore to the same policy.

A dispenser is an object that controls the quantity of a given resource that is available for
resource domains and thus to computation. This control is performed based on the current
usage and policy.

A consume action is executed when a request to consume a given type of resource is made.
It can be persistent, i.e. be repeated at each similar request or not, and synchronous or not.
Specific triggers which launch the consume action and call-back mechanisms which follow the
action can be defined.

The reservation of a resource guarantees its availability.

The important benefit of the RM interface is that is is fully compatible with existing
applications. Its main restriction is that it allows to perform very sensitive operations such
as the limitation of the resources that an isolate can consume which can be exploited to
performed denial-of-service attacks. This implies that the RM API is to be used conjointly
with the security manager and that suitable permissions are set carefully.

Alternatives Several alternatives exist for process isolation.

KaffeOS [BHL00] is an extension of the Kaffe VM that implements isolation as well as
resource management and sharing. It supports resource management through the introduction
of OS processes at the VM level and the use of a user/kernel boundary which enables to split
user processes that can be terminated arbitrarily from system processes that can not be.

J-Seal 2 [BHV01] is another Java micro-kernel architecture that aims at executing mobile
objects that are not trusted. Resource accounting is performed for low level resources such
as CPU and memory and for high level resources such as thread count.

RAJE [GS02] (Resource Aware Java Environment) is an extension of the standard Java2
platform. It aims at monitoring resource access and consumption for global resources such as
CPU and memory and for resources consumed by each thread.

J-RAF (Java Resource Accounting Framework) [HK03] enables transparent monitoring of
resource consumption performed through Bytecode transformation for CPU, memory and
network bandwidth reification. Contrary to the other solutions for resource management, it
does not involve a specific implementation of the JVM and is compatible with most Java
platforms up to hardware VMs.

JMX (Java Management Extension) can also be used to perform resource management for
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Java systems [Chu04]. The author proposes the JConsole which tracks available memory and
OS resources such as CPU time, total and free physical memory, etc.

Similar projects exist for other target environments such as Sun PhoneME Features7 for
CDC/MIDP.

4.3.2 Static Analysis

Besides the modification of the execution platform, the enforcement of security constraints
at the code level enables to improve the security properties of the applications in a impor-
tant manner. Static analysis consists in verifying the compliance of the code with explicit
constraints. It is usually performed at development time to enhance the quality of the code.
This enables to perform costly verifications which could not be performed at runtime.

Static analyzers are often executed as a post-development mechanism. They intend to
be more lightweight than proof languages such as B that enable to specify systems in a
formal manner. They therefore aim at providing a reasonable trade-off between the cardinal
properties of analyzers: completeness, soundness and effectiveness. Completeness means that
the checked property holds for all code that is analyzed. Soundness means that no false
positive, i.e. code excerpts that are identified as being errors but are not, are produced.
Effectiveness relates to the capacity of tools of finding real bugs in software.

A comparison of several tools for static analysis of Java programs is proposed by [RAF04].
The authors consider JLint, PMD FindBugs, ESC/Java2, Bandera. The conclusion of this
study is that the different tools find non-overlapping sets of bugs because they each take a
different approach. Consequently no tool is sufficient in itself and all tools are complementary.
Moreover, no tool can always report correct results and false positives are unavoidable.

Most tools are targeted at identifying generic bugs. Some such as FindBugs consider a
subset of security bugs. One tool that is presented to the research community, JSLint, is
specifically targeted at security bugs. Numerous commercial tools also exist but no precise
technical data are published.

Bug Pattern Detection consists in identifying generic bugs that are described as abstracted
programming constructs, the bug patterns. It focuses on local syntactic features of the code.
This approach aims at improving the global quality of the analyzed software. This makes it
more robust and less likely to let malicious users take advantage of its failures. However, this
can not be considered as a security mechanism since no specific attention is paid to exploitable
vulnerabilities and their prevention.

Examples of bug pattern detectors are JLint and PMD. They both target Java source code.
JLint8 also supports inter-procedural data flow analysis for detecting locks, in particular in
multi-threaded programs. It is not easily extensible. PMD9 [Cop05] supports two types of bug
patterns detectors: XPath10 expressions and Java analyzers. It contains a series of predefined
bug patterns and is easily extendible. It is used for instance in the Eclipse IDE. Example of
academic tools for bug pattern detection are Spoon [NP06] which analyzes the source code of
Java programs, and Tom [MRV03] which analyzes the Java Bytecode.

7https://phoneme.dev.java.net/
8http://artho.com/jlint/
9http://pmd.sourceforge.net/

10http://www.w3.org/TR/xpath
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Findbugs [HP04] is another tool for bug pattern detection and intra-procedural data-flow
analysis. It is targeted at Java Bytecode. As previous tools is designed to identify development
bad practices. It includes a small subset of bugs that are security vulnerabilities. These bugs
are listed in Section 4.2.2.

FindBugs is based on four complementary analysis techniques:

• Class structure and inheritance hierarchy.
• Linear code scan with a state machine.
• Control flow analysis.
• Data flow analysis.

It is implemented using the BCEL library for Bytecode manipulation. The output of FindBugs
is much smaller than the one for instance of PMD. It identifies only bug patterns that directly
lead to errors when executed.

Experiments with FindBugs lead to a number of findings that highlight the benefits of such
tools: 1) even well tested code written by experts contains a surprising number of obvious
bugs; 2) Java has many language features and APIs which are prone to misuse; 3) simple
automatic techniques can be effective at countering the impact of both ordinary mistakes and
misunderstood language features. Code static analysis is shown to both increase the quality
of the produced code and the developer awareness and knowledge.

JSLint [VMMF00] is the first tool dedicated to the identification of security bug patterns
that is advertised to the research community. Its goal is to automatically utilize existing se-
curity knowledge to prevent bugs familiar to the security community. It enforces in particular
the first 11 of the 12 rules of secure coding by McGraw and Felten presented in Section 4.2.2.
Is is targeted at source code. This tool is not to be confused with JSLint11, the JavaScript
Verifier.

Annotated Code consists in expressing the constraints that variables must comply with
throughout the execution. The verification is enforced at runtime when the actual value of
these methods is available. It implies the insertion of additional code in the application and is
strongly dependent upon the semantic of the code that is monitored. Two important examples
of tools that supports annotated code are ESC/Java 2 and Bandera.

ESC/Java 2 [FLL+02] aims at extending the scope of standard static analysis mechanisms
such as the Java Bytecode verifier (see Section 4.1.2). It enriches simpler analysis techniques
with a theorem prover that performs formal verification of properties in the source code
annotations such as preconditions, postconditions and loop invariants. A non-negligible set
of bugs can be found without the need for annotations: null dereferences, array bounds errors,
type cast errors, race conditions, deadlocks. It enforces modular checking, i.e. it does not
require the source of all program libraries to be able to check a particular module.

Bandera [CDH+00] is based on model checking. Annotations in the source code express
the checks that are to be performed. Several model checkers such as SPIN [Hol03] or Java
PathFinder [GPC04] are supported. In the absence of annotations it verifies standard syn-
chronization properties such as the absence of deadlocks. It is therefore not meant to identify
generic security vulnerabilities. Its main limitation is that it can not check library calls, even
standard ones. It is restricted to the modules under analysis.

11http://www.jslint.com/
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4.3.3 Behavior Injection

Behavior injection consists in modifying the code to be executed to enable the enforcement
of security policies in the application, at runtime. It can be performed in two manners:
transparently or through weavable code. In both cases, it is independent of the semantic of
the monitored methods.

Bytecode Injection enables to monitor and control the usage of resources as well as to limit
functionality [CMS01]. It is performed through insertion of additional Bytecode in exist-
ing classes and is usually performed with Bytecode manipulation libraries such as ASM12 or
BCEL13. Two main techniques are used: class modification, e.g. subclassing non-final classes
and method modification for control over object of final classes. It provides for instance a
protection against denial-of-service attacks through excessive resource consumption or against
the use of sensitive functions such as networking. The authors present two example imple-
mentations for Java Applets and for Jini proxies, i.e. code that is dynamically discovered,
loaded and executed. This demonstrate that the approach is generic enough to be applied
to unknown code in a fully automated manner. It implies a performance overhead that is
estimated from 5 to 20 %.

Weavable Code Also named aspect code, it consists in integrating code excerpts at pre-
defined cut points. It is a technology dedicated to implement non-functional features. As
such security mechanisms are natural candidates for being implemented as weavable code.

To the best of our knowledge, there is little work regarding the application of Aspect-
oriented Programming (AOP) to security, in particular in the Java language. A solution,
AOSF, the Aspect Oriented Security Framework, is proposed by [SH00, VBC01]. It targets
C programs. Their conclusions also apply to the Java language. The principles of AOSF are:

• Separation of Concerns: developers should not have to handle security issues.
• Proactive stance: weavable code is meant for security mechanisms defined and configured

during the development process.
• Global application.
• Consistent implementation: of security mechanisms throughout the system.
• Adaptability: security policies should be flexible enough to implement various sets of

security configurations.
• Seamless integration: security mechanisms should have no impact on the development

of the application features.

The obstacle to adoption are the resistance from the development team, the learning curve
for development paradigm shift, the traceability of development and the lack of tool support.
The benefits of AOP for security are manyfold. It enables to replace insecure function calls
with secure alternatives, to check errors automatically, to prevent buffer overflow through
unsuitable function parameters (in C), to perform security logs, to insert additional access
control mechanisms and to specify privileged sections in a program.

Meta-programming and Inlined Reference Monitors are also used for behavior injection.
Meta-Programming provides a comprehensive framework for code injection [CV01]. It is im-
plemented by Meta-Object Protocols, MOPs, that define a language to access and modify the

12http://asm.objectweb.org/
13http://jakarta.apache.org/bcel/
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code. It provides the advantage not to require the definition of cut points and therefore to be
applicable to third party components. Inlined Reference Monitor(IRM) uses code injection
to flexibly enforce a wide range of security policies [ES00]. The benefit of IRM is the great
flexibility it introduces in the eligible security policies. For instance, it is capable of enforc-
ing Execution Monitoring (EM) policies which include mandatory and discretionary access
control, Chinese Wall, type enforcement, and the Clark-Wilson [CW87] commercial policy.

Conclusion No static analysis code for Java is fully dedicated to the identification of vulner-
abilities. Consequently, they can be considered as an important help to enhance the quality
of the code and thus to improve the security level of the applications but do not bring any
security guarantee. As stated with success in the FindBugs project, an important requirement
in this effort is to identify the bugs patterns that are vulnerabilities rather than proposing
new analysis techniques.

Figure 4.4 presents existing mechanisms for enforcing security in Java systems.

Figure 4.4: Existing protection mechanisms for Java systems

Protection mechanisms for Java are of three types: transparent mechanisms which have
no impact on the development process, constraint-based mechanisms that enforce specific
properties of programs developed according to the standards, and mechanisms that require
the insertion of additional code. Additional code can be independent of the semantic of the
application or dependent on it.

Those mechanisms are enforced throughout the life-cycle of applications: during develop-
ment, at load time, or at runtime. Security mechanisms that are enforced at runtime can be
driven by the virtual machine or by the application itself.
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Service-oriented Programming* platforms* are execution environments* that support local
communications between their components* through well-defined interfaces. The objective
is to provide manageable multi-application systems* as well as re-usable applications com-
ponent [HT99]. They enforce a set of architectural and design patterns to enhance software
productivity and to avoid the development of Ball of Mud [FY97] Software.

SOP platforms are not to be confused with service-oriented Architecture (SOA) which are
concerned with the loose integration of distributed systems or with service-oriented Com-
puting (SOC) which is the research domain related to SOA [PG03]. SOA are sometimes
considered to be compliant with the SOP paradigm [SVS02].

Amongst SOP platforms the OSGi platform take a particular place. It is sometimes con-
sidered as the ‘universal middleware’ [CK08], thanks to the support of the full life-cycle of
the components, from discovery to uninstallation. It provides itself a rich support for local
services* and can be used as a container for higher level SOP platforms such as Spring.

5.1 Service-oriented Programming

5.1.1 What is SOP ?

Service-oriented Programming (SOP) is a programming paradigm where software components
publish and use services in a peer-to-peer manner. It is built on Object-oriented programming
(OOP) and component models [BC01]. It emphasizes the possibility of improved software re-
use [SVS02] and the evolution of applications at runtime.
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As its name implies, SOP is based on the core concept of services. A service is a contrac-
tually defined behavior that can be implemented and provided by any component for use by
any component, based solely on the contract [BC01].

The principles and key entities of SOP are the following ones [SVS02]:

• Encapsulation consists in the use of well-defined interfaces that can be made remote
through e.g. interfaces. It maximizes the reusability, information hiding, and separation
of concerns.
• A service interface is a well-defined software task with well-defined input and output

data structures.
• A service implementation is the code providing the actual behavior of the service inter-

face(s).
• A service broker is a registry that make services interfaces available for service clients*.

It provides location transparency (for available components and for available remote
hosts) and virtualization* (when several implementation languages are supported).
• Service listeners track the life-cycle of services such as registration and unregistration.
• Semantic based approach enriches service interfaces with meta-data to ease the binding

between services [Ibr08] according to the execution context.

5.1.2 Service Dependency Resolution

SOP as a Design Pattern The SOP paradigm originates as the Hollywood Pattern : ‘Do
not call us, we will call you’ [GHJV94] in which software entities are not active but reactive
to external stimuli. It is also named the Dependency Injection Pattern (DIP) [Mar96] as well
as Inversion of Control (IoC) [Fow04]. The difference between these different names is mainly
a question of conceptual focus. SOP insists on the availability of usable services, while IoC
insists on the programming shift from Object Oriented Programming (OOP) and is often
bound with Dependency Injection.

Figure 5.1 shows the timeline for the definition and implementation of the Inversion of
Control Pattern. SOP has first been popularized by the Avalon and OSGi platforms through
a simple dependency lookup mechanism. It has next been extended by platforms with a
more complete SOP support: Spring, Pico-container, HiveMind, Guice. These platforms are
discussed in Section 5.2.

The Inversion of Control pattern can be implemented in several different manners2 [Fow04]:

• Programmative binding consists in hard-coding the binding between components. This
is the case in Guice and in Pico-container.
• Service registry lookup or contextualized dependency lookup consists in servants* pub-

lishing the services they provide by a register and clients emitting request to this register
to check whether the services they need are available. It is also named the ‘Whiteboard
Pattern’ [KH04]. This is used by the Avalon and OSGi platforms.
• Dependency injection consists in the automated resolution of the service dependencies.

The objects that depend on services are populated by the framework with the services
they required.

◦ Programmative vs. XML configuration.

2http://www.picocontainer.org/injection.html

58



5.1 Service-oriented Programming

Figure 5.1: The timeline for the Inversion of Control pattern
[from pico-container documentation1]

◦ Setter dependency injection (SDI), through setAttribute() methods; this is the
case e.g. in Pico-container.
◦ Constructor dependency injection (CDI), through suitable object constructors; this

is the case e.g. in Pico-container and Spring.
◦ Typed field injection, without a dedicated method; this is the case e.g. in Pico-

container and Spring.
◦ Annotated global variable injection, which is a variation of field injection using

annotations; this is the case e.g. in Pico-container.

Good SOP Practices In the frame of the Pico-container project, Dan North and Aslak
Hellesoy identify a set of good programming practices for SOP platform3. They are not
explicitly aiming at providing better security* or reliability, but respecting them lead to better
code quality and thus potentially less security issues. Their advices consists in the commands
such as: keep a consistent state at all times, have no static fields or methods, never expect or
return null, fail fast - even when constructing, be easy to test, chain multiple constructors to
a common place, raise checked exceptions when the caller asked for something unreasonable -
e.g. open a non-existent file, raise unchecked exceptions when I can’t do something reasonable
that the caller asked of me - e.g. disk error when reading from an opened file, only catch
exceptions that can be handled fully, only log information that someone needs to see.

It is noteworthy that these advices are fully independent of the type of implementation of
the IoC pattern. This means that correctness and robustness of services are bound with the
implementation of the services themselves rather than with the way they are bound together.
This provides us with an useful abstraction to perform security analysis. The analysis of a
given implementation of the IoC pattern keeps being valid for other implementations.

5.1.3 Contribution to Security

As for components, the security support in SOP platforms is reduced.

3http://docs.codehaus.org/display/PICO/Good+Citizen
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Default protection mechanisms are based on the Java security manager. Openwings for
instance simply relies on the Java security manager which is presented in Section 4.1.3. The
OSGi platform introduces specific permissions that enable to control the life-cycle of OSGi
bundles* [All07a]. It also support specific conditional permissions.

This approach does not cope with the security issues that SOP introduces. The IoC forces
the developer to consider that the service client are not necessarily trustworthy to the servant
this latter does not know who is calling it. However, no mechanism beyond a set of good
practices is provided to ensure their security. In particular, the services of a SOP platform
share resources to spare unnecessary duplication. As far as no isolation between the services
is possible, this opens the way to abuses. Moreover, the sharing of services, which can be
singletons by default, between several clients is not safe against malicious code or simply
against unforeseen integration of the services.

This lead us to identify two security issues for SOP platforms: sound access control to
shared services and resource isolation.

5.2 Existing Java SOP Platforms

5.2.1 Structure

SOP platforms share a similar architecture and to this regard differ mainly by the mechanism
for service dependency resolution they implement. It is therefore possible to extract an
abstracted structure that represents the features of all SOP platforms.

Figure 5.2 shows the structure of a service-oriented programming (SOP) platform.

Figure 5.2: The structure of a SOP platform

A SOP platform is composed of following layers: the virtual machine and the SOP platform.
The virtual machine is compound of the runtime, the language support and the standard
API. The SOP platform is compound of the life-cycle management, module dependency,
service dependency and service binding layers. SOP Components are executed inside the
SOP platform. They typically share modules as full components or packages and communicate
through services.
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The virtual machine is an application-level VM. It is responsible for executing the code of
the programs. The runtime provides the interpreter and JIT (Just-in-Time) compiler for the
Bytecode. Language support provides language specific features such as Bytecode verification.
The standard API provides classes that can be used by the applications. It differs from VM
to VM, according to the VM features and to the target system: embedded devices have not
the same requirements and expressiveness as desktop environments.

The SOP platform is responsible for managing service-oriented programming features, of
course, but also the components themselves. The life-cycle layer is optional. It enables
to install new components, to load them and to update and uninstall them. The module
dependency layer is in charge of binding components together. When one component relies
on classes that are provided by another one, a binding is to be created between the supplier
and the user of the classes. The service dependency layer provides simple tools to bind
services together such as a service registry (Whiteboard) where client components can find
their dependencies through lookup. Most SOP platforms include a service binding layer that
enables to define the dependencies through a definition that is external to the component
themselves.

SOP components are software components containing implementation code and access code
that are enriched with SOP services.

5.2.2 Examples

The most representative SOP platforms are the EJBs, Avalon, Spring, SCA, and Pico-
Container. The OSGi platform is presented in Section 5.3 and is therefore not detailed
here. A comparison of SOP platforms can be read in the white-paper by David Chappell4.

Enterprise Java Beans (EJBs) are designed to support the reuse of non functional concerns
such as persistence, transactional integrity and security. It is one of the first technology to
support SOP. EJB 1.0 only supported remote services. EJB 2.0 introduced local services.
Configuration occurs through XML descriptors. The last version, EJB3, is defined by the
Java Specification Request (JSR) 220 [Sun04]. In addition to beans, it supports Plain Old
Java Objects (POJOs), dependency injection, and annotations. Configuration can be per-
formed through annotations instead of XML descriptors. EJBs rely on a service broker, the
Java Naming and Directory Service (JNDI) to perform dependency resolution. They provide
various types of beans which match specific types of services: stateful and stateless session
beans for synchronous calls, and Message Driven Beans (MDB) for asynchronous communi-
cation. Entity beans used to represent data are replace in EJBs 3.0 by the Java persistence
API for performance reasons. EJBs have brought the concept of service-oriented program-
ming into business development. However, the first versions are perceived as heavyweight.
Lightweight alternatives such as the Spring framework have been developed as an answer to
these limitations. EJBs 3.0 integrate these evolutions.

Avalon [Lor01] is a framework that provides a powerful control over the life-cycle of its
components along with service-based communication between them. It is an Apache project5

that is closed since 2004. SOP is supported through a service repository, as in the OSGi

4http://www.davidchappell.com/HTML_email/Opinari_No15_12_05.html, read the 2008/06/27
5http://avalon.apache.org/
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framework. Avalon suffers from serious drawbacks: each component has to implement sev-
eral interfaces to be manageable, such as Configurable, Startable or Disposable. This
introduces an important development overhead.

Spring aims at providing a lightweight application server with SOP support. It integrates
libraries necessary to build web applications. It is made of a main project, the Spring
Framework6 and a set of community project such as Spring Dynamic Modules (DM)7, which
ports Spring over OSGi. Spring supports aspect-oriented programming, a data access frame-
work, transaction management, a Model-View-Controller web framework aiming at replacing
Jakarta Struts, remote access through RMI, SOAP, RMI, Corba or EJB integration, Au-
thentication and Authorization, Remote Management, Messaging and Testing. SOP can be
performed through dependency lookup and dependency injection. The main limitation of
Spring is the verbose dependencies between components which are expressed through XML
descriptors.

Service Component Architecture (SCA) is a framework that aims at integrating composite
applications in a Service-oriented Architecture (SOA) programming style [BBB+07]. As such,
it provides a binding between the SOP and the SOA world. SCA is specified by the Open
Service-Oriented Architecture8. It is implemented by IBM Websphere, IBM Aqualogic and
Apache Tuscany amongst others. SCA provides a comprehensive architectural description of
applications. Those are built out of assemblies. Assemblies consist of a series of artifacts,
i.e. composites, components, entry points, references and wires. Composites are the unit of
deployment. They hold services and contain one or several components. Components contain
the business logic. Entry points are available services and references are anchors to required
services from other composites. Both are linked to the composite and external to components.
References are bound with entry points through wires. SCA does not define services meant to
be dynamically linked. However, it can be executed on top of Spring or EJB platform which
makes it an extension of SOP platforms. SCA is well suited to model complex distributed
component applications since it integrates the main component models as well as several
communication protocols such as SOAP, JMS, JCA, RMI, RPC. It supports the expression
of quality of service requirements such as security, transactions and reliable messaging. Two
main limitations are identified in SCA. First, it does not address the performance question,
the bottleneck of SOA applications. Next, it focuses on portability instead of interoperability
which may be counter-productive and somehow recalls Corba errors.

Pico-Container 9 is a very lightweight SOP framework. It supports a wide range of service
dependency resolution implementations: constructor injection, injection into setter methods,
injection into annotated fields, injection into typed fields. It is meant to be used in an
non obtrusive way. Its benefits are the following ones10: no external configuration file, no
mandatory annotations, a simple life-cycle support for components (start/stop/dispose), the
support of container hierarchies. As far as it is targeted at small projects Pico-container may

6http://www.springframework.org/
7http://www.springframework.org/osgi
8http://www.osoa.org/
9http://www.picocontainer.org/

10http://www.christianschenk.org/blog/comparison-between-guice-picocontainer-and-spring/
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not be well-suited to play the role of an application server. Another of its drawbacks is the
restricted support for aspect-oriented programming.

Nano-Container11 is an extension of the Pico-Container. It adds several features: the
management of tree of pico-containers and of class loaders, the support for class-name based
composition through reflection, the support for XML, Groovy, Beanshell, Jython and Rhino
languages, and a set of components for Web Applications. The life-cycle of the platform
comprises a booter to launch the trees of Pico-Containers and a deployer to install components.

Other platforms Other SOP platforms are Guice, HiveMind, Tapestry-IoC.

Guice12 is a Google project that intends to be small and fast, where SOP services are bound
together programmatically. It claims to be ‘extraordinarily type-safe’13, i.e. provided services
do not need to be cast. Guice intends to be fast. Repeated test have proved it to be at
least 1000%, i.e. 10 times faster than Spring14. This performance implies serious limitations:
annotations bind the application to the framework and make the code less portable at least
at compile time.

HiveMind15 is a micro-kernel platform designed for Tapestry IoC V4. Services are pro-
vided as POJOs and bound through dependency injection. Hivemind is considered as lacking
usability, expressiveness and performances.

Tapestry-IoC v516 aims at overcoming the features of Spring, Guice and Hivemind that are
considered hindrances. It is the container for the Tapestry project17. Services can be man-
aged throughout a complete life-cycle: defined, virtual, realized, shutdown. They are bound
together through dependency injection. The benefits of Tapestry-IoC v5 are the wrapping of
services which enables to hide original services, to embed service configuration in the module,
and to define explicit error messages. Moreover it does not rely on an XML configuration file
and is thus more lightweight

SOP platforms for .Net such as ObjectBuilder18, Castle19 or Spring.Net20 are built accord-
ing to the same principles and are mostly ported from the Java world.

5.2.3 Security

The specification of security in the context of SOP platforms is relatively scarce. This may be
due to the fact that SOP platforms can be considered as protected by several available mech-
anisms: the virtual machine sandbox, the use of harmless HTTP request for web servers or of
encrypted communications for sensitive messages and the integration of trusted components
only.

However, since modularity* and SOP ease the reuse of components, it does not seem rea-
sonable to put a full trust in them [Mey03]. Securing the execution of components and their
interactions may thus become a important requirement for SOP platforms.

11http://nanocontainer.codehaus.org/
12http://code.google.com/p/google-guice/
13http://smallwig.blogspot.com/2007/03/by-way-what-does-extraordinarily.html
14http://gorif.wordpress.com/2007/07/05/google-guice-1000-faster-than-spring/
15http://hivemind.apache.org/
16http://tapestry.apache.org/tapestry5/tapestry-ioc/
17http://tapestry.apache.org/
18http://www.codeplex.com/ObjectBuilder
19http://www.castleproject.org/
20http://www.springframework.net/
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Protection mechanisms exist for the EJBs, Spring and for SCA. A comparison of the diverse
Java execution environments is to be found in [HS05]. Protection mechanisms for the OSGi
platform is presented in details in Section 5.3.3. All specified protection mechanisms are
related to access control, i.e. to the domain of Application Security* as discussed in Section
3.1.2.

EJBs security relies on Java security as presented in Section 4.1 and extends it. Principals*,
i.e. service callers and providers, are assigned roles. These roles are mapped to Java execu-
tion permissions that are enforced through the security manager. Built-in features such as
authentication, authorization management and secure communication support are provided
along with the EJB framework.

The security mechanisms of the EJBs have been criticized in particular by the Spring
project, which intends to by-pass identified limitations: the security model is not powerful
and flexible enough for all enterprise applications and the configuration can not be done at a
EAR or WAR level. This implies an important configuration overhead during migrations.

Spring Security 21 is dedicated to Web Applications through authentication and authoriza-
tion features. It intends to by-pass the limitations of the EJBs. It supports in particular
portable configurations that can be re-used between various servers. Security policies are set
at the code archive level. Authentication features are HTTP, LDAP, JA-SIG Central Au-
thentication Service (otherwise known as CAS, which is a popular open source single sign-on
system), Java Authentication and Authorization Service (JAAS) and Java Open Source Single
Sign On (JOSSO). It can be integrated with the JBoss, Jetty, Resin and Tomcat containers
which enables to still use Container Manager Authentication. Authorizations are handled at
the level of web requests, method calls and access control for individuals.

One vulnerability* has been discovered and patched in Spring. It is not located in the
framework itself but in common implementations of the web support for data access. It
allowed a client to modify the data from another session22. Besides this flaw* that requires
developers to be careful for their implementation, the Spring framework is believed to be
mostly secure.

SCA Security [BBC+07] defines policies for authorization management for SCA frameworks.
In particular, it supports WS-Policy [BBC+06], the standard for Web Service Security. Poli-
cies are of two types: implementation policies apply to service components and interaction
policies apply to the binding of services. policySets are concrete policies that apply to pol-
icy domains. They must be compliant with the intents, i.e. the requirements for individual
components and interactions. The intents are also of two types: implementation intents such
as authorization for access control and security identity for policy management of the autho-
rized users, and interaction intents such as authentication, confidentiality and integrity at the
message and transport layer level.

Other SOP platforms do not explicitly address security issues.

The security issues for SOP platforms are the following ones:

21http://static.springframework.org/spring-security/site/index.html
22http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1321417,00.html
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• Few tools are available for controlling the security of systems based on SOP platforms,
besides access control and standard secure communication protocols.
• The complexity of resulting systems is not considered as a security risk.
• SOP platforms are secured in an intuitive manner against network attacks*. However,

the flexibility they allow is likely to introduce new vulnerabilities that are not considered.

5.3 The OSGi Platform

The OSGi platform is a lightweight SOP platform originally developed for embedded sys-
tems. Its powerful support for component life-cycle promotes it as a management layer for
application servers. The platform is defined by the Core Specifications Release 4 [All05a]
and Release 4.1 [All07a]. It is complemented by a rich set of services through the Service
Compendium Specifications Release 4 [All05b] and Release 4.1 [All07b]. The OSGi platform
evolves in parallel with Sun Java Specification Requests (JSRs) 277 ‘Java Module System’23,
291 ‘Dynamic Component Support for Java SE’ 24 and 294 ‘Improved Modularity Support in
the Java Programming Language’ 25. An introduction can be read in [MK01].

We consider the OSGi platform as a prototypical SOP platform not because it is better
than others but because it can be integrated with other SOP platforms. Spring Dynamic
Modules (DM) provide an illustration of such an integration.

The work of this thesis is performed using OSGi Release 4 as reference, since it is the
current reference for most available implementations.

5.3.1 Principles

The Platform Model The OSGi platform is compound of four layers that are running on
top of a Java Virtual Machine: the Security Layer, the Module Layer, the Life-Cycle Layer
and the Service Layer as shown in Figure 5.3.

Figure 5.3: OSGi platform model

The Java Virtual Machine can be any JVM that provides an over-set of the Java Con-
nected Device Configuration (CDC) Foundation Profile. Standard JVMs from 1.3 upwards
are supported.

23http://jcp.org/en/jsr/detail?id=277
24http://jcp.org/en/jsr/detail?id=291
25http://jcp.org/en/jsr/detail?id=294
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The Security Layer supports the validation of digital signature* of bundles and enforcement
of execution permissions inside the OSGi platform. Digital signature of OSGi bundles is
discussed in Section 2.1.

The Life-Cycle Layer deals with the installing, starting, stopping, updating and uninstalling
of the bundles. These advanced management features are in the heart of the power of the
OSGi platform. It enables loading new bundles at runtime without disturbing the execution
of already installed ones.

The Module Layer acts as a dependency resolver between the bundles. Actually, each bundle
is executed in a specific class loader which enables class isolation between applications. To
enable the interactions between bundles, dependencies have to be explicitly defined, i.e. the
name of the required packages are to be mentioned as metadata in the bundles. A bundle can
be installed only if all its dependencies are resolved, i.e. if all required libraries are available.
A specific type of bundle is also handled by the Module Layer: fragment bundles, which are
‘slave’ bundles that are used to provide configuration informations or context-dependent code
to a ‘Host’ bundle. They cannot be used independently.

The Service Layer provides the support of service-oriented programming [BC01]. Bundles
can publish services in a common BundleContext under the form of Java Interfaces. They
are frequently enriched with specific properties that enable service search using the LDAP
request format [How97]. These services can be dynamically discovered and used by other
bundles without requiring that dependencies are defined at the Module Level.

A Bundle Downloader bundle (often called ‘Bundle Repository’ because it handles remote
repositories) completes the full support of the bundle life-cycle. It is defined as an OSGi
Request for Comments document [AH06]. It performs discovery and download new bundles
over the Internet. Metadata format for the Bundle Repositories is named OBR v2 (Open
Bundle Repository v2).

The Component Model OSGi Bundles are Java Archive (Jar) files [Sun03] extended to
support life-cycle management and dependency resolution. They are composed of two main
types of data: Meta-data, and resources such as Java classes, data files and native libraries.
Their structure is shown in Figure 5.4.

Figure 5.4: OSGi component model

Meta-data are defined in the Manifest.MF file of the archive. The most important infor-
mation is the bundle’s symbolic name, its version number, the reference of the Activator

class and the list of imported and exported packages. The list of required and provided OSGi
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services is optional. The Activator class is a specific Java class that performs starting ac-
tivities for the bundle such as configuration and service handling. It contains start() and
stop() methods called when the bundle is started and stopped. The list of imported and
exported packages enables proper dependency resolution. All packages that are not exported
are kept private in the bundle.

The application code is standard Java code. It can either be used by the bundle only, made
available as packages where all classes can be used by third party bundles or made available
as OSGi services. Application code could also contain native code as any Java application.
This feature breaks all security benefits of the Java Virtual Machine and usually provides full
access to the underlying operating system. It should therefore be considered an option for
fully trusted code only.

A bundle can be in one of the following life-cycle phases: installed (be manageable from the
platform), resolved (installed and with all dependencies resolved, after complete installation
or after stopping), active (after its start), or not visible. Through the shared BundleContext

reference, bundles can be managed by all other bundles in the platform unless specific man-
agement permissions are set.

5.3.2 Service Management

The default mechanism for service management is the service registry, or whiteboard. Other
mechanisms are optional.

OSGi Service Registry The default lookup mechanism is built with a Whiteboard registry
[KH04] which enables bundles to register and find services. Services can be registered with
specific properties to support context aware dependency resolution. Service management is
eased by a service listener mechanism: events are emitted at each modification of service state.
It can also be automated through the Service Tracker, which is defined in OSGi Service Com-
pendium [All07b]. The goal of the tracker is to relieve the bundles from themselves managing
data related to the services they use. It supports customization and can be specialized to find
services that match specific service name, LDAP filter or service references.

Optional service dependency mechanisms Optional service dependency mechanisms are
the Service Binder, iPOJO and the Declarative Services Specification. Service Binder [CH03]
is defined as part of the Gravity26 project for managing integration of components and ser-
vices as complementary mechanisms [CH04]. It performs dependency resolution according
to an XML descriptor. Bundles need to be adapted to support it. Dependency injection is
performed through setter classes.

iPOJO (integrated POJO - Plain Old Java Objects)27 is a service injection framework that
claims to be independent of the execution environment and is currently implemented for OSGi
[EH07]. The goal of iPOJO is to enable developers to provide POJO-like classes and to let
an external XML descriptor define service binding. Services are defined as POJOs that are
encapsulated in a component specific container. Dependency injection is performed through
typed variables.

Declarative Services Specification is defined in OSGi Service Compendium 4.1 [All07b]. It is
a follow up of the Service Binder that supports backward compatibility. The management of

26http://gravity.sourceforge.net/servicebinder/
27http://felix.apache.org/site/ipojo.html
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service is supported by the Service Component Runtime (SCR). Dependencies are expressed
through a XML descriptor. Service can be accessed through event-based communication or
through service lookup.

A rapid comparison of these tools with other SOP frameworks show that they follow a
completely different path: most tend to get rid of XML descriptors, such as Pico-container and
Guice, whereas all OSGi tools relieve the developer from service management by abstracting
the service binding in such descriptors.

5.3.3 Security

The Security Layer The OSGi specification takes advantage of two complementary mecha-
nisms to enforce security: the Java security manager and class loaders [All07a, PO08]. The
Java security manager enables to control the access of bundles to sensitive methods that
are provided by the JVM such as Runtime access, network or file systems API and by the
OSGi framework itself such as the bundle management API. Class loaders isolate the bundles
from each others: dependencies between bundles need to be explicited. They are enforced by
the framework. Publication is made through package export or through service registration.
Other classes, in the first case, and objects, in the second, can not be accessed.

Permission Admin The OSGi framework adds access control support for administration
operations. Up to OSGi Release 4.0 excluded, PermissionAdmin enforces security through
classical security manager checks. They can be set at runtime. Authorization criteria are the
type of the action, i.e. the class name of the permission, the name argument of the permission,
i.e. the target of the action and the action that is to be controlled. The authorization scheme
is default-deny, i.e. all sensitive operations must be allowed explicitly. Authorizations are
set according to the bundle signer who is liable for the behavior of the code. Following
permissions are defined for the PermissionAdmin:

• AdminPermission which controls the actions: class, execute, extensionLifecycle,

lifecycle, listener, metadata, resolve, resource, startlevel, context.
• PackagePermission which controls the actions: export and import.
• ServicePermission which controls the actions: get and register.
• BundlePermission which controls the actions: provide, require, host, fragment.

Conditional Permission Admin The Conditional Permission Admin extends the standard
Java access control model with fine-grained, arbitrary conditions sets. These conditions can
be defined by the developer and may involve the origin of the bundle, but also the state of
the application or the user inputs. It also defines an explicit API for permission management
to guarantee the interoperability and portability of management tools. It is introduced in the
Release 4.0 of the OSGi specification.

The permissions for a given bundle are the intersection of the system permissions and the
local permissions. The system permissions are defined statically for the whole platform. The
local permissions are defined by the developer and stored in the bundle itself. According to
the OSGi specification, the manager of the platform has to check that these local permissions
will not enable the bundle to harm the platform once it is installed.
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Possible trust levels for the bundles are: untrusted, with no or very limited rights, trusted,
with important rights up to the system and management functions, system, and manage levels
for the system access and platform management respectively.

An example of permissions for untrusted bundles is:

{

(..ServicePermission "..LogService" "get" )

(..PackagePermission "..log "import" )

(..PackagePermission "..framework" "import" )

}

An example of permissions for trusted bundles from the ACME company is:

{

{

[ ..BundleSignerCondition "* ; o=ACME" ]

( ..AdminPermission "(signer=\* ; o=ACME)" "*" )

( ..ServicePermission "..ManagedService" "register" )

( ..ServicePermission "..ManagedServiceFactory" "register" )

( ..PackagePermission "..cm" "import" )

}

}

The conditional permissions are expressed by conditions-permissions tuples. The conditions
are expressed between square brackets ([ ... ]). When several conditions are defined,
they are bound with an AND relationship, i.e. all of them must apply for the permission to
be set. The permissions are expressed between parentheses (( ... )). So as to make the
implementations of this scheme efficient, optimizations are proposed in the specification.

The properties of Conditional Permission Admin are:

Fine granularity : the developer sets the minimal required permissions himself for each bun-
dle. They are stored in the OSGi-INF/permissions.perm file in the bundle archive.
The OSGi security model assumes that the bundle dependencies are known at devel-
opment time. The permission should enable the bundle and its dependencies to run
seamlessly.

Auditability : Architects can audit the file containing local permissions to identify the au-
thorization requirements for the bundle.

Sandboxing : all permissions that are not explicitly set are denied by default.

They are completed in the Release 4.2 Draft of the OSGi specification [OSG08] by two
extensions: the ordering of the permission tuples, to prevent conflicts and ambiguities in the
security policies, and the possibility of defining positive (ALLOW) as well as negative (DENY)
permission types.

The limitations of conditional permissions are the following ones. First, the developer
must set the permission himself, i.e. he must know the implementation of the dependencies
of its bundles. This is plausible in commercial OSGi applications but contradictory with
the possibility of runtime discovery of application and dynamic resolution of dependencies
provided by the OSGi framework. Secondly, the ‘least privilege’ design principle (see Section
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3.3.1 page 33) is not respected: if no local permission file exists, the specification defines that
the bundle should run with all permissions.

Improvement of OSGi Security This security scheme introduces two main flaws: the be-
havior of bundles can not be controlled beyond existing permissions and no resource isolation
exist between bundles. Java permissions only enable to prevent the access to methods that
perform the security check themselves. This is powerful for system methods such as file sys-
tem access but is of no help to control the access to sensitive methods provided by third party
bundles. The lack of resource isolation allows any ill-coded bundle to consume most system
resources such as CPU and memory and even disk space if it is granted sufficient rights.
Several proposals exist to remedy to these flaws. First monitoring and managing computer
resource usage is possible at the Thread level [Yam05]. However, the OSGi platform can be
run on limited VMs with no thread support which makes this approach to be difficult to
generalize. Next resources and access isolation can be done in a way compliant with OSGi
specification by defining class loader as Isolates [GTCF08]. Since bundles are started in their
own class loader, they are thus parted from each other in a natural way. A third proposition
consists in monitoring the activities of bundles through an OSGi-internal IDS [HWH07]. This
approach shows that the authors consider that bundles can not be completely trusted, even if
their issuer is known and that preventive access control through permission is not sufficient.
Its benefit is that it supports an advanced and flexible detection scheme. Its current limi-
tation is the important performance overhead, from 50 to 70 %. This is due to the lack of
optimization of the prototype which is meant to prove the validity of the detection scheme,
not to be a production tool. The idea seems to be a very promising one and still needs to be
implemented with reasonable performances. It is to the best of our knowledge one of the first
research work that considers that installed bundles can actually be harmful.

These propositions pertain to the category of Software Security* as Java Permissions and
to the category of Application Security as the resource control and IDS solutions. Software
Solutions as implemented in the JVM proves to lack flexibility for dynamic platforms such as
OSGi: new bundles that can be delivered by third party issuers can not be protected through
permissions if they are not specifically coded to support it.

Secure Distributed Systems based on the OSGi platform The main use case of the OSGi
platform is to be an application server for connected devices with limited resources. As such,
security solutions to support distributed applications are a core requirement. Two security
challenges are to be tackled: the secure deployment of bundles and secure connections with
remote devices.

Secure deployment is supported by the OSGi specification. Our own implementation is
presented in Section 2. Several alternatives are proposed, for secure service discovery [KCS05]
and for bundle authentication based on Message Authentication Code (MAC) and XML
security technology [LKMB05].

Enforcing secure connections with remote devices consists in providing sets of tools and
protocols to guarantee the confidentiality, integrity and authentication of these connections.
Recommendations for building secure OSGi infrastructure are given in the OSGi Request
for Comment (RFC) 18 [OSG01]. A distributed RBAC access control model for the OSGi
platform is proposed by [CMPB06].
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Writing secure OSGi Bundles The actual challenge in securing OSGi systems is the de-
velopment of secure bundles by people who are mostly Java developers rather than security
professionals. It is therefore necessary to provide them with clear guidelines and efficient
tools.

The technical requirements for building secure OSGi bundles are provided by [D’H05]. The
author identifies the reason of the relative lack of security in current implementations of the
platform: several trust models coexist and suitable protection mechanisms are not available
for all. The OSGi platform can be used in following contexts:

• Development environment: OSGi bundles are used as COTS. This configuration implies
the same risks as in any Java-based execution environment.
• Updatable platform: the platform is a closed world, bundles are all controlled by the

same provider. Security policies can be provided by the bundle with no risk since it is
signed. This is the model for most commercial deployments.
• Hosting platform: it allows trusted third parties to provide their bundles. This is the

model supported by the OSGi R.4 release.
• Open platform: allows installation of untrusted bundles. The security model is still to

be invented.

The first two configurations are closed worlds and do not introduce specific threats. The last
two open the way to unknown code. The current state of the technology clearly does not
enable to run fully untrusted code. Moreover, it is quite unlikely that platforms will be open
to known third parties if no guarantees can be provided that go further than simply good
will.

Several threats can emerge from malicious bundles or from ill-coded bundles:

• Malicious bundles can provide Trojan services such as an HTTP server or a logger
that can see a lot of valuable data or Trojan classes that leak data or provide weak
implementation of cryptographic protocols.
• Badly coded bundles can introduce a wide set of security risks.

◦ The right set of permissions is not easy to set. Moreover, this protection mechanism
suffers from the absence of repudiation and the impossibility to set resource quota.
◦ Stopping a bundle may not be a trivial task when threads or non Java resources

are used. Tracking and accounting user resources is a requirement to enable to
fully stop the activity of a bundle when it is stopped or uninstalled.
◦ Unregistered services can still be used by clients, leading to stale references. The

solution is to provide a proxy object that update services when they are unreg-
istered. However, the limitation of proxies is the performance overhead which is
proportional to the number of parameters.
◦ Listener management is an error prone task since faulty listeners may have methods

that never returns. The solution is to catch all exceptions (inclusive Throwables
and Errors) and to warn administrators when a very serious problem is identified.

The author also proposes to introduce bundle certification to assess their security level*.
Such a certification would entail an automated test suite, code review and the use of Condi-
tional Permission Admin.

The next step after writing bundles that do not contain known security flaws is to identify
the set of permissions that are necessary for them to be executed seamlessly. This is not a
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trivial task since services dependencies are identified dynamically and the use of privileged
code, which does not require the caller to have all permissions, introduces new threats.

A solution is proposed by the Sword4j (Security Workbench Development Environment
for Java)28 project [PHK05]. It aims at solving following difficulties: how to give just the
right set of them, not too much, not too few ? What permissions are implicitly transfered
by privileged code to the client ? What data are transfered between privileged code and its
callers ? Which portion of code should be made privileged ?

Sword4J is an automated tool that enables to identify the required permissions as well
as code excerpts that should be made privileged. It is specifically designed for the OSGi
environment which makes it suitable to cope with dynamic dependencies. Sword4J is built of
four parts: a static analysis engine, to identify required permissions, privileges, and ‘tainted
variables’ (data that is passed from privileged to unprivileged code) errors, a jar inspection
part, to check the validity of digital signature and permissions, a jar signer and a keystore
editor. The limitation of Sword4j is the tendency to define redundant privileged code which
means that developers must use it as an helper tool rather than an oracle.

Conclusion The security issues that are identified in the OSGi platform are:

• The target system has a wide attack surface*.
• Executed code is granted many rights and little control can be enforced.
• Bundles should not be trusted, even though their issuer is known.
• The security model for executing components from known third party does not provide

strong guarantees so far.
• No security model exists to support the execution of fully untrusted components.

The limitations of the default Java security scheme are:

• It only enables to prevent the access to methods that perform the security check them-
selves.
• It does not support resource isolation.

28http://www.alphaworks.ibm.com/tech/sword4j
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Building secure execution environments* requires a complete methodology for assessing
the existing vulnerabilities* and protection mechanisms. This can not be performed in an
efficient manner through the V Secure Development Life-Cycle which is presented in Figure 3.2
page 25: it is targeted at complete applications and falls short in defining reusable security*
knowledge and solutions for a given system.

The motivations for defining a specific methodology for security analysis of execution en-
vironments are first highlighted. Next, SPIP , the Spiral Process for Intrusion Prevention,
is defined. Lastly, its application to our target system, Java Service-oriented Programming*
(SOP) platforms*, is introduced.

6.1 Motivations

The motivation for defining a new methodology for security analysis of execution environ-
ments originates in the lack of suitable methodologies in the literature. It should support
generic requirements for analysis of execution environments as well as the specific require-
ments for securing Java SOP platforms. To ensure that this methodology provides both
reusable knowledge and powerful secure environments, it should meet several high level goals:
the support of Knowledge-based Security, System-based Security, and Pro-active Security.
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6.1.1 Security Analysis for Execution Environments: a Terra Incognita of
Software Security

Whereas a great variety of techniques for enforcing Software Security* are available, very few
integrated processes have been defined so far. When they exist, these processes are centered
around the end-to-end development of stand alone applications. They do not provide methods
and tools to build secure execution environments while controlling the security assumptions
made by the underlying environment. This is required to usefully build and document a
secure SOP platform.

Existing Software Security Processes The most representative processes for Software Secu-
rity are the Process for Software Security Assurance*, as defined by the IATAC State-of-the-
Art report [GWM+07], McGraw process for ‘Building Security In’ [McG06], and Microsoft
Secure Development Life-Cycle (SDLC) [HL02] which are presented in Section 3.1.3, page 24.
The first is an abstract process which aims at providing a systematic overview on the Software
Security Assurance process. It provides a valuable framework but each step must be instan-
tiated according to the specific requirements of the system under study. The second proposes
a linear process aiming at full applications which are to be deployed as is. It is basically a
more detailed version of the previous one. It is articulated around 7 specific techniques, or
‘Touch-points’. The third process is an extension of a classical software development life-cycle.
It has the advantage to be easy to integrate with existing development processes but is hardly
tunable for more complex security tasks.

Limitations None of them provides a sufficient support for building secure execution en-
vironments, because they do target stand-alone applications. They can not be applied as
is to perform the security analysis of a specific execution environment. This means that so
far, application developers must assume that the environment which run their applications
is fully trustworthy. In any complex system this is not the case. No methods and tools are
available to help developer manage the vulnerabilities of their platforms. Moreover, they do
not explicitly support the trade-off between security level* and development overhead.

6.1.2 Requirements

The requirements for a methodology for security analysis of execution environments draw
from two complementary questions: what are the properties of software security for complex
systems ? What are the specific requirements for our target system, SOP platforms ?

Security for complex Systems The perception of system security is evolving, in particular
when complex systems such as execution environments are considered: security is no longer
an absolute value; security is required for all software, not only for critical systems; security
is a property of the software itself.

Security is no longer an absolute value but should be quantified and tailored according to the
target system. Quantification makes sense out of the concept of ‘relative security’, i.e. security
features which are suitable to the target system and not only ‘best effort’ features. Not every
one needs full fledge security, if it can be achieved at all. Nor does every one has sufficient
monetary resources or financial interest to build systems with a high level of security.
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Security is required for all software and not only for highly critical systems or applications
protecting high value assets. This means that costly certifications schemes such as the Com-
mon Criteria should be complemented by lightweight processes for building secure software
in spite of the pressure of time-to-market and limited time and financial resources. In partic-
ular, developing secure software should be a task that standard developers should be able to
perform and not only experts.

Security is a property of the software itself and not a feature. This means that software
security should be considered as a part of software quality, even though techniques and risks
can not be derived directly from the software quality field. In particular, security should
be tightly integrated with the software development life-cycle and not restricted to specific
development phases.

Security Analysis of SOP platforms In addition to high-level requirements, the methodology
for security analysis should support the needs which are identified for Java SOP platforms.
These requirements are elicited in Section 5.2.3, page 63 and in Section 5.3.3 page 68.

The availability of solutions to these requirements will be of use for other execution envi-
ronments beyond SOP platforms.

6.1.3 Objectives

The methodology for enforcing software security analysis and development pertains to the
category of Software Security Assurance (see Section 3.1.3). It should provide a process and
tools for performing the identification of the vulnerabilities which plague the software system
and for enforcing secure design as well as secure coding.

Three complementary approaches to security should be supported by our methodology in
order to comply with the identified requirements: knowledge-based security, system-based
security, and pro-active security.

Knowledge-based Security consists in gathering a comprehensive knowledge of the vulner-
abilities of the target system before performing actual benchmarking* and development of
security solutions. Knowledge here is used with the strong meaning of ‘information [which
can be] put to work using processes and procedures’ [McG06]. A database of vulnerabilities
or a catalog should be built and populated with reference and detailed description of each vul-
nerability. This phase is especially useful for the analysis of systems with a limited amount of
available vulnerability information, in particular for commercial systems where security risks
are only restrictively published. Actually, such data is available for widely deployed tools such
as operating systems and common open source applications (see Section 3.2.1), but not for
more specific systems. This phase of identification of the vulnerabilities is necessary to lay a
sound basis for latter security analysis. It can be completed with the development of exploit
code to be used for benchmarking various implementations of the target system or specific
protection mechanisms. Knowledge-based security is required to make the quantification of
the security status of a system possible. It is also well suited to deal with important attack
surfaces*, where numerous vulnerabilities are to be managed and protected.

System-based Security consists in integrating security checks and enforcement in the exe-
cution environment. It provides an automatization of secure design by urging the designer
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to exploit the security best practices and mechanisms which are provided by the system it-
self. The ultimate goal of system-based security is to make software developed in an insecure
manner either protected by the environment or not available if it does no comply with the
security policy of the environment. This obligation actually eases the task of the developers:
they mainly need to build applications which cope with the architecture and with the exe-
cution environment properties rather than to shift the focus from actual development to a
costly security documentation process. System-based security is therefore a way of enforcing
security for all software and not only for application deserving a costly certification. It is
also a good candidate for dealing with important attack surfaces and important execution
right of the code since it relieves the development team from manually tracking individual
vulnerabilities.

Security is then built in the execution environment itself and not in the application. Higher-
level documentation processes such as Secure Development Life-Cycle (SDLC) [LH05, Noo06]
can then be exploited with benefit in complement to system-based security, especially if
it complies with system specific knowledge and application specific checks that can not be
automatized.

Pro-active Security consists in providing systems which are built-in secure rather than
security patches which imply an important administration overhead. It is based on secure
coding techniques to free the application code from unproper constructs which are known
to be exploitable by malicious entities. The objective is to avoid as much vulnerabilities as
possible long before they would show up during execution. It is based on two complementary
approaches: recommendations [Sun07, Lai08] which aim at training developers and experts,
and tools such as code static analysis [RAF04] which aim at relieving the developers from
painful code review which can be easily automatized. However, currently available techniques
strive toward clean code - which is a great benefit for the quality of applications - but fall
short in providing actual security guarantees, except in specific environments such as web
applications [LL05]. Their use to prevent specific vulnerabilities is likely to bring in an
important security benefit, provided they are fine-tuned according to the weaknesses which
are identified during the phase of identification of vulnerabilities. The pro-active approach
urges security to be a property of the code itself. It should be enforced as early as possible.
An optimal configuration is the enforcement of protection during the development and the
control on the execution environment before the execution of the suspicious code.

The principle of knowledge-based security is used for a long time in network security*.
However, it is so far used to a limited extend in the context of applications, when one excepts
widespread stable applications such as firewalls and web servers. The principle of system-based
security is long used in the context of operating systems [SS73]. However, its application in
the context of execution environments such as virtual machines or component platforms*
is so far limited. The principle of pro-active security has experienced a more recent fame,
in particular because of the increased number of target specific attacks* and the relative
maturity of the Network and Operating System Security* domains.

6.2 SPIP - Spiral Process for Intrusion Prevention

The Spiral Process for Intrusion Prevention, SPIP , is a Software Security Assurance
method for complex systems. As its name implies, SPIP is a spiral process to be imple-
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mented in a recursive manner. In the context of Java SOP platforms, its objective is to
reduce at each iteration the set of unprotected APIs. The analysis course is first defined.
Next, the process is detailed for one iteration. Lastly, the approach for security benchmark-
ing is presented.

6.2.1 Analysis Course

The goal of SPIP is to identify and develop software protection mechanisms which can be
automatized and integrated in the execution environment. It finds its inspiration in the risk
oriented spiral development process defined by Boehm [Boe86] and the AEGIS spiral model
for secure software development [FSH03].

Figure 6.1 shows the overview of SPIP .

Figure 6.1: Overview of SPIP - Spiral Process for Intrusion Prevention

Principles SPIP targets any complex system which require the use of several complemen-
tary protection mechanisms. It is made of a set of subsequent iterations that aims at incre-
mentally building a more secure system. Each iteration consists in the analysis of a given
subset of the target subsystem to identify and solve its vulnerabilities. No continuity exists
between two contiguous iterations. SPIP is concluded by integrating the different protection
mechanisms. It implies the drawback of non negligible analysis, review and report overhead.
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SPIP aims at relieving the analyst from tasks which can be automatized and integrated into
the execution environment.

SPIP Iterations SPIP is a full-fledged process for the security analysis of complex sys-
tems. Its goals are of several types: defining system sub-sets which are ever more secure;
providing data for evaluating security/cost trade-offs; supporting vulnerability identification
and definition of related protection mechanisms. Each iteration provides a more hardened
system, with more development and configuration constraints. SPIP highlights the fact that
no absolute security level exists and that an adequate combination of protection mechanisms
should be found for each application type.

The matching between these iterations and the standard life-cycle process for software
security assurance (Figure 3.2 page 25) is the following:

• Iteration 1: the default system to be assessed and secured is analyzed: its vulnerabilities
are characterized and reported; default configurations and protection mechanisms are
assessed. This step can be viewed as a requirement analysis for the secure system
to be defined; vulnerabilities can be considered a negative requirement. They should
be resolved in the final system. Iteration 1 addresses the knowledge-based security
principle.
• Iterations 2 to N-1: each protection mechanism is evaluated. They typically target a

specific subset of the system (target API or module, or security patterns* which applies
to several APIs or modules). These protection mechanisms can be existing ones which
are adapted to the target system or new mechanisms which are specifically defined.
Each protection mechanism is characterized by: 1) the protection it provides, and 2)
the constraints it implies on the system such as development assumptions and restricted
access to specific entities of the system. They should address both the system-based and
pro-active security principles. Evaluation is performed through benchmarking and the
results are reported. This step can be viewed as the module design of the secure system
(see Figure 3.2 page 25): the various mechanisms build individual blocks of the final
secure system. Module analysis and testing is performed to evaluate each individual
mechanism.
• Iteration N : the individual protection mechanisms are integrated and the overall protec-

tion which is provided is assessed to identify its benefit as well as its potential limitations.
For instance, some vulnerabilities may be to complex to detect through automated tools
and still need intervention of human auditors. This step matches the global validation
of the secure system.

6.2.2 An Iteration

Each iteration of SPIP is built of two main phases: vulnerability assessment* and protection
assessment*. All steps need not be performed systematically. For instance, when several
protection mechanisms are defined for the same set of vulnerabilities, vulnerability assessment
is not repeated.

Vulnerability Assessment Its goal is to characterize the vulnerabilities which exist in the
considered target system, to provide exploit code for further tests and to assess the various
implementations of the target system. The steps for vulnerability assessment are the following:
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1. Selection of the target (sub)system, identification of the hypotheses and of relevant threat
types. The target system is defined by its specifications. In Java SOP platforms, its
selection typically consists in identifying a given API such as the Java standard API
or the OSGi API. The correct elicitation of security hypotheses is often the key factor
for a successful security analysis: many security flaws* originate in broken security
assumptions such as environment properties or trust level of the users [HL02]. The
scope of the analysis can be restricted to focus on specific features of the system and
to neglect some others. For instance, in our case, service* binding mechanisms are not
considered, because they often build an optional part of Java SOP platforms. Relevant
threat types can be selected, so as to focus on a particular type of attack such as outsider
or insider attacks. For instance, in our case, we focus on attacks which are made possible
by the installation of third party components* inside a Java platform.

2. Identification of vulnerabilities is performed by gathering various sources of informa-
tion, as well as through independent review. The sources of information are one’s own
experience, the bibliography, as well as vulnerability disclosure databases. The review
of the target system should be based on two complementary references: the system
specifications to identify design weaknesses and the system implementations to identify
implementation weaknesses.

3. Benchmarking of the system can be done if relevant in the context of vulnerability
assessment, for instance to compare different implementations of the target system.

4. Reporting has two goals. First, it structures and synthesizes knowledge to support
the training of developers, for instance through dedicated taxonomies. Secondly, it
provides a reference of known vulnerabilities through extensive catalogs or databases.
These sources can be used by auditors to certify the quality of code or by automated
tools to provide technical security solutions. Reporting is typically done with the help of
security taxonomies and vulnerability patterns*. These tools are presented in Sections
7.1.1 and 7.1.2.

The output data which is produced during vulnerability assessment are system specific
taxonomies and a vulnerability database or catalog. This knowledge can be used as input for
the protection assessment phase.

Protection Assessment Its goal is to identify a suitable protection mechanism, or to define
it if it does not exist yet. Each protection mechanism typically targets a subset of the
known vulnerabilities. Its efficiency and limitations are evaluated. It is quite unlikely that
a Silver Bullet [Bro87] protection can be found, i.e. a protection mechanism which solves all
vulnerabilities. The steps for protection assessment are the following:

1. Identification of the security requirements for the considered protection mechanism.
These requirements are design constraints, development constraints, non-functional con-
straints and the vulnerabilities to be prevented. Design constraints are implied by the
platform architecture. For instance, in the Java/OSGi platform, components are iso-
lated from each others and can only communicate through shared packages and SOP
services. Development constraints are implied by the type of application and the devel-
opment team organization. For instance a safety critical component is not coded in the
same manner as entertainment software. Non-functional constraints on the application
can be performance and usability. For instance, a strong deterrent for implementing
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standard Java Permissions is the fact that they imply an overhead of approximatively
30 percent. Vulnerabilities fail into two categories: the flaws which need to be patched,
and the dangerous actions which require access control.

2. Definition and implementation of the protection mechanisms is to be performed accord-
ing to the security requirements in the case existing solutions are unsufficient. It can
imply one or several security patterns* (see Section 8.2 for an example).

3. Benchmarking consists in evaluating the efficiency of the considered protection mech-
anism against the identified vulnerabilities. Comparison of various implementations of
the target system can also be performed if they behave differently in the presence of the
protection mechanism.

4. Reporting consists in documenting the security patterns which are introduced or used in
the protection mechanism, the constraints on the applications to be run in the secured
execution environment, as well as further challenges. These constraints on applications
must be available for developers so as to ensure that the programs can run seamlessly
in the modified environment. For instance, the Java SecurityManager requires that
suitable permissions are set. Static analysis approaches require that the code is able to
pass pre-defined tests before being installed. Further challenges should also be identified.
Since no protection mechanism is perfect, this step enables to write down the information
the protection mechanism designer has about the limitations of his own tool. It is likely
to save time in latter analyses, when the system is improved again.

The output data which is produced during protection assessment is the definition of new
protection mechanisms, the security patterns which are applied, the result of quantitative
benchmarking (for instance with the Protection Rate metric), the implied constraints such as
development overhead, loss of functionality and performance overhead, and further challenges
which are identified. The designer of an application can then rely on these data to decide
whether the mechanism is worth using or too costly or restrictive.

In the case of assessment of the integration of several tools, the same process can be applied.

6.2.3 Security Benchmarking

Security Benchmarking is performed both during the vulnerability assessment and the protec-
tion assessment phases. Its goal is to quantify the security level of the individual protections
mechanisms and the overall security level of the target system in its default configuration or
augmented with a set of security protections. Making security measurable is a pre-requisite
to make it manageable [Bla05].

We propose to perform the evaluation of the security level for a given system through an
evaluation of the attack surface [HPW05] (see Section 3.2.2 page 31) of the system which
matches the number of vulnerabilities which is identified in the system. So as to express the
protection brought in by particular implementations of the target system or by individual
protection mechanisms, we introduce the Protection Rate metric. It is defined in Section
7.1.3. Of course, other metrics can be used.

SPIP can be seen as an incremental analysis: each additional protection mechanism aims
at providing a solution to vulnerabilities which are so far not protected. Each iteration
therefore increases the security level of the target system. Figure 6.2 illustrates this stepwise
securization effort.

The effects of protection mechanisms cumulate with each other so that the maximum
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Figure 6.2: Stepwise securization of a system: the cumulated effect of complementary protec-
tion mechanisms

possible security level for this system is achieved when all mechanisms are used together.
This maximum security level can be the maximum certification level or the protection of all
known vulnerabilities. It does not mean that the system is completely secure, only that the
maximal possible efforts have been performed to solve known vulnerabilities.

The current definition of the SPIP process supports following features:

• Analysis of a given target system, independently of its context.
• Identification of the vulnerabilities for a given system and comparison of various imple-

mentations of this system.
• Evaluation of the security level for each protection mechanism as well as for the inte-

grated secure system.

Its benefits are the following:

• Developers can manage the vulnerability status of the execution environment on which
their applications run. They know which vulnerabilities exist, which are protected and
the cost of this protection. This is supported thanks to Knowledge-based Security.
• The definition of new protection mechanisms which expressively target identified vul-

nerabilities is integrated as part of the security analysis. System for which sufficient
mechanisms are not available can therefore also be secured, even though the additional
cost is important. The availability of a vulnerability database makes it possible to per-
form a pre-benchmark even before the mechanism is developed to evaluate its relevance.
Of course, such theoretical evaluation must be confirmed afterwards through tests with
actual exploits.
• The development of exploit code for each vulnerability make tests of similar execution

environments or of protection mechanisms a straightforward task.
• For each protection mechanisms, the cost in term of development overhead, loss of

functionality and performance overhead is explicited. This can help designers decide
whether the protection is required for a particular type of application or if the constraints
overweight the benefits. This is supported thanks to Pro-active Security.
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We advocate to develop new protection mechanisms as a mandatory element of the target
system under analysis to enforce System-based Security.

However, SPIP still need to be completed and has several identified limitations:

• The evaluation of the actual exposure of the vulnerabilities which is dependent on the
context of exploitation is not supported.
• The cost evaluation for each protection mechanism is not supported. It can only be

done when the context of exploitation is known.
• Several tool sets such as metrics and patterns for analyzing various target system types

with heterogeneous objectives in term of security level are not available. It is highly
likely that for different systems, for instance health care systems and online games,
security requirements will vary and that specific tools are required for each specific use
case.

For each of these topics, methods and tools are to be identified or defined if they do not
exist.

6.3 Using SPIP for SOP platforms

Once a generic methodology for security analysis of complex systems is defined, it is possible
to apply it to the target of our analysis: a Java SOP platform, at the example of Java/OSGi.
One specific attack vector* is considered: the dynamic installation of a SOP component from
a not-fully-trusted provider on a platform. The security hypothesis is that the host on which
the platform runs can not be corrupted and that interactions between the applications and the
outside world are protected through a standard Application Security* approach, as presented
in Section 3.1.2. This means that we focus on the features which we consider to be specific
to the target environment. Other attack vectors are better studied and thus do not deserve
our attention here.

The implementation of the SPIP process for this system is first detailed. Next, experiments
which are conducted are presented.

6.3.1 Process Implementation

The implementation of SPIP for analyzing SOP platforms is performed with the Java/OSGi
platform which can be considered as a prototypical example of such technology. It is per-
formed in three main steps: the analysis of the default target platform with standard pro-
tection mechanisms, the definition and analysis of new mechanisms which intend to solve the
identified vulnerabilities and the analysis of an integrated Java/OSGi system which combines
our propositions with a secure Java virtual machine, the JnJVM. A final benchmark is per-
formed to summarize the security properties of the target system and its candidate protection
mechanisms.

The following of the document is organized according to the course of SPIP .

The default Execution Environment The first SPIP iteration consists in defining and
performing a security analysis of a Java/OSGi system with a default configuration. Its results
are presented in Chapter 7 page 87. The vulnerability assessment phase consists in identifying
and documenting flaws and functions which can be exploited by malicious bundles* which
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would be installed in the platform. The protection assessment phase consists in evaluating
existing implementations and protection mechanisms. A first measure of the security status
of common implementations of the OSGi platform, such as Felix, Equinox, Knopflerfish and
Concierge, is performed so as to set a reference for latter benchmarks. A second measure of
the security status of the same platforms is performed to assess the benefit of the standard
protection mechanism of Java platforms: Java Permissions.

The individual Protections Mechanisms The second, third and fourth SPIP iterations
consists in defining and assessing new protection mechanisms. The three mechanisms we
introduce are Hardened OSGi, in Section 8.1 page 116 which is a set of recommendations
for building more robust implementations of the OSGi platform, Component-Based Access
Control, CBAC, in Section 8.3 page 124 which is an alternative to Java Permissions based on
static analysis, and Weak Component Analysis, WCA, in Section 8.4 page 133 which parses
the code of bundles to ensure that the classes which are shared with others are free from
vulnerabilities. The vulnerability assessment phase is avoided since vulnerability information
stems from the analysis of the default system which needs to be improved. Each of these
iterations is performed in a similar manner. First, security requirements for the default
Java/OSGi platform which are to be solved are identified. Each mechanism targets a specific
set of vulnerabilities. Hardened OSGi intends to solve vulnerabilities which are brought in
by the OSGi specification, CBAC intends to prevent the execution of dangerous calls by
unauthorized code while providing a solution for the drawbacks of Java Permissions and
WCA intends to prevent the sharing of vulnerable code between untrusted bundles inside
the platform. Secondly, the protection mechanism is defined and implemented. Thirdly,
measures of the security benefits which are yielded by them are performed. Benchmarking
is performed against the specific set of vulnerabilities the mechanism targets and against all
vulnerabilities which plague the target platform. Comparison with the default platform and
protection mechanism enables to evaluate their actual gain.

The secure integrated Execution Environment The SPIP iteration number five aims at
solving a requirement category which is not addressed in this thesis: the resource isolation
between components. Such a mechanism is necessary to prevent in particular denial-of-
service attacks and requires the modification of the virtual machine itself. It is supported in
particular by the JnJVM [TGCF08] which takes advantage of the isolation of OSGi bundles
in class loaders to control their resource consumption. It is presented is Section 9.1, page
143. Security assessment is performed to verify that the combination of software security and
virtual machine protection mechanisms is necessary, but very efficient, to provide secure SOP
platforms.

The SPIP iteration number six provides a global overview of the security level of a
Java/OSGi platform which is augmented with the various presented protection mechanisms.
It is presented in Section 9.3 page 150. Such a comparison of the considered protection mech-
anisms and summary of the protected and unprotected vulnerabilities should help designers
select the suitable mechanisms when building a particular system.

In the conclusion, Section 10.2 page 162, further requirements are identified, either to refine
and extend the security tools, or to identify the vulnerabilities which exploitation can not be
prevented with them.
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6.3.2 Experiments

The validation of the propositions of this work is performed through experimentations. It
consists in the implementation of all considered software entities, along with their evaluation.
Implementation of proposed protection mechanisms is done in the way defined by SPIP . It
will therefore not be further discussed here. Experimentations related to the identification of
vulnerabilities and their possible exploitation require more attention.

Condition of the Experimentations Since current production Java/OSGi SOP platforms are
used in closed worlds, very few informations exist related to actual malicious bundles which
would live in the wild. In any case, it is highly unlikely that firms which would be victims
of such attacks would make advertisement for their own failure. Consequently, gathering
information relative to Java/OSGi vulnerabilities must be done in the lab.

Development We therefore developed one or several proof-of-concept attack bundle for each
suspected vulnerability so as to highlight various implementations, possible hindrances or spe-
cific preconditions for the exploitation of each vulnerability. For each platform vulnerability,
a malicious OSGi bundle is built to prove its exploitability. They are 32 occurrences. Rela-
tive information is presented in the Malicious Bundle Catalog and in Section 7.2.1.3 of this
thesis. For each Bundle vulnerability, a pair of vulnerable/malicious bundle is built. They
are 33 occurrences. Relative information is presented in the Vulnerable Bundle Catalog and
in Section 7.2.2.3 of this thesis.

The benefit of the realization of proof-of-concept attack bundles is twofold. First, the
exploitability of the candidate vulnerabilities is demonstrated. It actually proves to be a very
easy task since bundles which are installed in a Java/OSGi platform have very few limitation
if any in the access to the JVM features, to bundles classes or to registered services objects.
Secondly, these samples are available to perform tests for automated detection tools, for
instance through static analysis. They build therefore a complete test suite for the protection
mechanisms which are defined for the Java/OSGi platform.
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Security assessment* is performed to evaluate the security* status of the Java/OSGi plat-

form* for a specific attack vector*: dynamic installation of a SOP component* from a not-
fully-trusted provider on a platform. The results of this security assessment process are of two
complementary types. First, the tools that support the security analysis process are defined
and validated by the confrontation with more than 60 vulnerability* occurrences. Secondly,
this information is structured according to several taxonomies* and gathered in two vulnera-
bility catalogs: the Malicious Bundle catalog, which contains vulnerabilities of the platform,
and the Vulnerable Bundle catalog, which contains vulnerabilities of the components, or bun-
dles* in the OSGi world.
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7.1 Defining Tools for Security Analysis

Assessing the security status of a complex system such as a Java platform requires that suitable
tools are available. However, as few security analyses have been performed on this type of
system, specific tools are not yet proposed in the literature so far. For our analysis, we derive
widespread tools such as security taxonomies, vulnerability patterns*, and software security
metrics. They are presented in Section 3.2 and provide a sound basis to define customized
versions for specific systems.

Security taxonomies should characterize each property of the vulnerabilities. We introduced
the descriptive Vulnerability Pattern for Component platforms to support comprehensive in-
formation related to each vulnerability to enable efficient developer training and definition of
suitable security mechanisms. We define the Protection Rate metric to quantify the efficiency
of existing protection mechanisms and to make possible the comparison of the security status
between different implementations of the Java/OSGi platform.

7.1.1 Taxonomies

The objective of defining taxonomies is to provide a framework on which developers and
researchers can rely to develop security mechanisms for the Java SOP platform. They are a
tool that ease the generalization, communication, and application of research findings [GV95].
Their use in the computer security field show that they are a pre-condition for building secure
systems, as shown in Section 3.2.1. Taxonomies must verify several properties to be useful
and valid, i.e. to provide a sound basis both for the definition of the considered problem, here
the vulnerabilities in the Java/OSGi platform and for the development of tools that are based
on this knowledge. These properties are first presented. Their validity in the context of the
proposed taxonomies is discussed.

To be useful, taxonomies must be explanatory and predictive [Krs98]:

• Explanatory means that they should clarify the relationships between their elements.
• Predictive means that their structure should reflect the knowledge of a specific domain

- in our case the security related properties of the Java/OSGi platform - and that
loopholes in this knowledge are easy to identify. For instance, the taxonomy for the
Implementations of Vulnerabilities in the Java/OSGi platform, in Table 7.2, reflects the
structure of the platform under study. If for instance no vulnerability is identified in the
Module Layer, it is more likely that they have been overlooked rather than the module
layer would be free of any vulnerability.

To be valid taxonomies must satisfy several properties: objectivity, determinism, repeata-
bility and specificity [Krs98]:

• Objectivity means that each feature must be identified from the object known and not
from the subject knowing. The attribute being measured should be clearly observable.
• Determinism means that there must be a clear procedure that can be followed to extract

the feature.
• Repeatability means that several people independently extracting the same feature for

the object must agree on the value observed.
• Specificity means that the value for the feature must be unique and unambiguous.
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Taxonomies for characterizing vulnerabilities in the Java/OSGi platform are presented in
Section 7.2.1.2. Taxonomies for characterizing vulnerabilities in Java/OSGi bundles are pre-
sented in Section 7.2.2.2. Both are built in a bottom-up approach: properties of the vulnera-
bilities are first observed then classified. When possible, the possible value of the properties
are drawn from the relevant specifications.

The validation of our taxonomies is obtained by the confrontation between the two vul-
nerability catalogs. The fact that the taxonomies developed for platform vulnerabilities are
exploitable with minor extensions for component vulnerabilities shows that they actually
represent an objective and repeatable view of the system under study. We claim that the
taxonomies are deterministic since they are based on the system specifications. Specificity is
verified for each feature since the taxonomy properties can not take ambiguous values.

7.1.2 The descriptive Vulnerability Pattern for Component Platforms

The descriptive Vulnerability Pattern for Component Platforms, or shortly descriptive Vul-
nerability Pattern, is presented extensively in [PF07a]. It aims at gathering all information
relative to a vulnerability that can be abused by malicious components that are install in
a Java/OSGi platform to understand it and prevent its exploitation. It extends widespread
vulnerability patterns to adapt them both for development support - whereas most patterns
are designed for information only - and for developer training - whereas others are targeting
system administrators. Patterns similar to the The descriptive Vulnerability Pattern are the
VEDEF Pattern [ACDM01] and the OVAL Pattern [Mar05].

The structure of the descriptive Vulnerability Pattern is the following:

• Vulnerability Reference, to provide the unique identifier of the vulnerability and a proper
classification* according to the taxonomies that are introduced in Sections 7.2.1.2 and
7.2.2.2.
• Vulnerability Description, to enable a more verbose presentation of the behavior of the

vulnerability, as in the Morbray pattern [MM97].
• Protections, being actual or potential ones that may be efficient.
• Vulnerability Implementation, the development status of the proof-of-concept malicious

bundles.

The ‘Vulnerability Reference’ Section contains the name of the vulnerability, its origin and
the value for each feature that is represented through a dedicated taxonomy. Main sources
for Java related vulnerabilities are the FindBugs database1, the Sun Guidelines for secure
coding [Sun07], as well as the Malicious-Bundle Amazones project 2 which is the development
project we set up that contains proof-of-concept bundles for all vulnerabilities addressed in
this study. The only source for OSGi related vulnerabilities is the Malicious-Bundle project,
since we do not know of other similar research or development projects that concern this
specific platform. The taxonomies of interest are the following: technical implementation
of the vulnerability, location of the malicious payload, targets and consequences of attacks*
based on these vulnerabilities, introduction time, and exploitation time.

1http://findbugs.sourceforge.net/bugDescriptions.html
2The code is available with Subversion on the INRIA Forge: svn checkout

svn://scm.gforge.inria.fr/svn/maliciousosgi
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The ‘Vulnerability Description’ Section contains more detailed explanation related to the
type of vulnerability and the way it is exploited. A general description, the precise precon-
ditions, the attack process, and the description of the consequence of attacks based on the
vulnerability are given. Reference to related patterns - the famous See also entry - concludes
the section.

The ‘Vulnerability Implementation’ Section contains information related to the proof-of-
concept implementation of the vulnerability: the reference of the code (name of the bundle
archive), the OSGi Profile on which the tests have been performed (in the vulnerability cata-
logs: J2SE-1.5 and J2SE-1.6), the date of implementation for reference, the test coverage (the
percentage of the known variants of the vulnerability that have actually been implemented),
and the list of the OSGi platform implementations that are vulnerable.

The ‘Protections’ Section identifies existing and potential security mechanisms, their life-
cycle enforcement point, as well as mechanisms to prevent attacks, and possible reactions to
an attack based on the considered vulnerability.

The descriptive Vulnerability Pattern for an example vulnerability, the Management Utility
Freezing - Infinite Loop vulnerability, is given in Table 7.1. This vulnerability enables an
attacker to freeze the management utility of the platform by providing a component which
starter method (e.g. the Activator.start() method in OSGi) does not return.

For further examples, the reader is invited to refer to the INRIA Research Reports that
contain the Malicious Bundle [PF07a] and the Vulnerable Bundle [PF08c] catalogs.

7.1.3 The Protection Rate Metric

Protection assessment requires that tools for quantifying the security level* of a system are
available. The requirements are twofold: the efficiency of each security mechanism as well as
the robustness of whole platforms must be quantified. To the best of our knowledge, no such
metric is available so far. We therefore define the Protection Rate metric [PF].

The Protection Rate (PR) metric has a goal similar to the coverage metric presented in
Section 3.2.2 page 31, which expresses the percentage of faults that are contained by fault-
tolerance mechanisms. It targets security mechanisms. It represents the percentage of the
known vulnerabilities that are protected by such a mechanism.

The Protection Rate is defined as the quotient of the Attack Surface* [HPW05] (see Section
3.2.2 page 31) that is protected through the considered security mechanism and the Attack
Surface of the reference system, without any protection. It is also expressed as the complement
of the quotient of the actual Attack Surface for the system to be evaluated and the Attack
Surface of the reference system. In our example, the reference system is an idealized OSGi
platform that contains all vulnerabilities that are identified both in the specifications and in
common implementations. The system to be evaluated is a concrete implementation of the
OSGi platform, possibly with some security mechanisms enabled. The Protection Rate can
be expressed as:

PR =
(

1−
Attack Surface of the evaluated System

Attack Surface of the Reference System

)

∗ 100 (7.1)
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Vulnerability Reference
• Vulnerability Name: Management Utility Freezing - Infinite Loop
• Extends: Infinite Loop in Method Call
• Identifier: Mb.osgi.4
• Origin: Ares research project ‘malicious-bundle’
• Location of Exploit Code: Bundle Activator
• Source: OSGi Platform - Life-Cycle Layer (No safe Bundle Start)
• Target: OSGi Element - Platform Management Utility
• Consequence Type: Performance Breakdown; Unavailability
• Introduction Time: Development
• Exploit Time: Bundle Start

Vulnerability Description

• Description: An infinite loop is executed in the Bundle Activator.
• Preconditions: -
• Attack Process: An infinite loop is executed in the Bundle Activator.
• Consequence Description: Blocks the OSGi Management entity (the Felix, Equinox

or Knopflerfish (KF) shell; when launched in the KF graphical interface, the shell re-
mains available but the GUI is frozen). Because of the infinite loop, most CPU resource
is consumed.
• See Also: CPU Load Injection, Infinite Loop in Method Call, Stand Alone Infinite

Loop, Hanging Thread.

Protection

• Existing Mechanisms: -
• Enforcement Point: -
• Potential Mechanisms: Static Code Analysis; Resource Control and Isolation - CPU;

OSGi Platform Modification - Bundle Startup Process (launch the bundle activator in
a separate thread to prevent startup hanging).
• Attack Prevention: -
• Reaction: -

Vulnerability Implementation

• Code Reference: fr.inria.ares.infiniteloopinmethodcall-0.1.jar
• OSGi Profile: J2SE-1.5
• Date: 2006-08-24
• Test Coverage: 10%
• Known Vulnerable Platforms: Felix; Equinox; Knopflerfish; Concierge
• Known Robust Platforms: SFelix

Table 7.1: Example of the descriptive vulnerability pattern: Management utility freezing -
infinite loop
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The Protection Rate metric enables to compare several similar platforms, for instance
several implementations of the same specifications, by expressing the rate of protection that
each of the platforms provides when compared to the set of vulnerabilities that are identified.
Moreover, individual security mechanisms can be evaluated by calculating the Protection
Rate for an OSGi platform that is run with the considered protection. The Protection Rate
metric still has some limitations. It does only represent the rate of known vulnerabilities that
are protected in a given flavour of the considered system: unknown vulnerabilities can not be
taken into account. Moreover, it does not reflect the relative importance of the vulnerabilities,
e.g. according to the impact of the attacks that exploit them.

7.2 Vulnerability Assessment of Java/OSGi Systems and
Applications

7.2.1 Vulnerabilities in the Java/OSGi Platform

7.2.1.1 Examples of Attacks against the Java/OSGi Platform

Example attacks against the Java/OSGi platform can in particular exploit the standard JVM
API, the OSGi Life-Cycle layer, the OSGi Service layer, or application code [PF].

Standard JVM API One attack that exploits the standard JVM API uses the platform
life-cycle management functions to stop the whole runtime by performing a System.exit(0)

call. Whereas such a call is innocuous in a stand-alone application which just kills itself, it
leads to a radical denial-of-service attack against all installed applications in a component
platform. This attack is avoidable by using Java permissions. This highlights the fact that,
in spite of their limitations (see section 7.3.3), Java permissions are necessary to protect Java
component platforms - unless an alternative is provided.

Another attack exploits the standard JVM API, namely the Thread management API. A
vulnerability of the VM implementations can be exploited by recursively creating Threads. It
is due to the fact that Threads are processes that go on executing (and recursively creating
themselves here) in spite of errors in other locations of the virtual machine. Up the the Sun
1.5 JVM included, StackOverflowErrors that are generated by numerous thread creations
are not caught properly, and lead to a OutOfMemoryError and a virtual machine crash. The
JamVM 1.4.5 Virtual Machine is also vulnerable to this attack. The vulnerability is not
reproducible with recursive objects creation since, in this case, the StackOverflowError is
properly caught. It corrected in the Sun JVM 1.6.

Listing C.1 in Appendix C gives an implementation of the Recursive Thread Creation vul-
nerability.

OSGi Life-Cycle Layer Several attacks exploit features and weaknesses of the OSGi Life-
Cycle layer. This layer brings flexilibity in the platform since it enables the installation and
management of bundles at runtime. It actually also makes the vulnerabilities of the platform
exploitable by enabling, under some conditions, the installation of third party code without
further control.

One attack against an unsecured Java/OSGi platform consists in interfering with the life-
cycle of third party bundles through the BundleContext API. For instance, it is possible
to install a new bundle, to stop or to uninstall available ones. In this case, the attack is
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due to the abusive execution of a legitimate system function by a malicious entity. Listing
C.2 in Appendix C gives an implementation of the Launch a Hidden Bundle attack where a
malicious bundle loads another one that is hidden inside its own archive and starts it.

This attack can be prevented through the use of Java permissions or an alternative mech-
anism.

Another example of attack that exploits the OSGi Life-Cycle layer consists in freezing the
OSGi management tool through a non-returning bundle activator, which is the class used to
start and stop the bundle. This example has been presented in Table 7.1 to illustrate the
descriptive Vulnerability Pattern. Each management tool, such as the OSGi shell, executes
all commands in the same Thread. In particular, the BundleActivator.start() method of
a bundle is executed. If it freezes, e.g. when looking for an unavailable network resource or
simply if an infinite loop occurs, all subsequent calls to the management tool are also blocked.
In this case, the attack is due to a flaw in the platform architecture.

Listing 7.1 gives an implementation of the Infinite Loop in Bundle Activator attack.

Listing 7.1: Example of malicious code in an OSGi bundle: infinite loop in bundle activator

pub l i c c l a s s In f in i t eS tar tupLoopA ct i va tor
implements BundleActivator

{
pub l i c void s t a r t ( BundleContext context ){

System . out . p r i n t l n ( " Bundle In f in i t eS tar tupLoop s t a r t ed " ) ;
wh i l e ( true ){}

}

pub l i c void stop ( BundleContext context ){
System . out . p r i n t l n ( " Bundle In f in i t eS tar tupLoop stopped " ) ;

}
}

This attack can be prevented by starting each Activator object in a specific Thread. Of
course, this requires that the JVM supports multi-threading, which is not a prerequisite of
the OSGi specification.

OSGi Service Layer An example of an attack that exploits the OSGi Service layer is the
Numerous Service Registration attack. In most cases, a bundle registers a couple of services.
When the bundle is stopped, all services must be unregistered before the stopping process can
be fulfilled. The unregistration mechanism has a cost similar to the registration. Numerous
services can be provided, for instance through a while loop, when the same service is published
with varying configurations. The duration of unregistration then grows significantly. It can
lead to a denial-Of-service attack. DoS is effective through important resource consumption
when the registration process takes place but also when the bundle is to be stopped or when
the whole platform is shut down. In some OSGi implementations, such as Concierge, the
Numerous Service Registration attack leads to the freezing of the whole platform, which can
no longer be used and needs to be re-started.

This attack can be prevented by setting a limitation in the number of registered services. For
instance, 50 services can be registered by any bundle. This is far more as usually required, does
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not imply a significative performance overhead and guarantees that the maximum duration
of the registration and unregistration processes remains almost unnoticeable.

Application Code The last example of attacks by malicious bundles exploits features of
the application code, without requiring access to the platform itself, by exploiting language
features. Such attacks are due to lack of algorithm safety in Java, for instance through the
exhaustion of CPU resources or injection of memory load. This vulnerability is referenced by
[BG05].

Listing C.3 in Appendix C gives an implementation of the Memory Load Injection attack,
which consumes an important part of the available memory. It can lead to an OutOfMemoryError

if other processes also require memory.

No standard mechanism exists to prevent such attacks. Research efforts such as Proof-
Carrying-Code [NL96, Nec97] define promising techniques but no Java compiler is made
publicly available3 [CLN00].

7.2.1.2 Taxonomies for characterizing Platform Vulnerabilities

The prevention of vulnerabilities implies to have precise knowledge about them. Such charac-
terization can be done through the 5 Ws: what, who, where, why, and when, and structured
through taxonomies. The What is related to the subject of the taxonomies, namely vulnera-
bilities of the Java/OSGi platform. This is the only invariant property. The Who identifies
the entity* that performs the action, in our case the malicious payload in the Java/OSGi
component. The Where identifies the location of the vulnerability that is exploited in the
target system, i.e. the way it is implemented. This property can also be considered to be
the source of the vulnerability. The Why identifies the target of the exploitation, i.e. the
entity that is impacted and its objective, i.e. the consequence of the attack based on the
vulnerability. The When is related to the time points where the vulnerability is introduced
in the system and where it can be exploited. To provide a complete knowledge about one
vulnerability, each field is to be informed.

The taxonomies that characterize platform vulnerabilities are now presented. The taxon-
omy for the Location of the malicious payload in a Bundle describes the place where attacks
that are based on the considered vulnerabilities are launched. Its goal is to identify the ele-
ment of the bundle that can be analyzed to identify such attacks. The values that build up
this taxonomy are the following:

• Bundle Archive: the vulnerability is exploited through the format of the archive such
as its size, its structure.
• Manifest File: the vulnerability is exploited through specific values of the meta-data

that are contained in the Manifest.mf file.
• Activator : the vulnerability is exploited through the Activator class which is used to

launch the bundle and to configure it.
• Application Code: the vulnerability is exploited by the code of the bundle.

◦ Native Code: the vulnerability is exploited through a call to native code.
◦ Java Code: the vulnerability is exploited through the Java code itself.
◦ Java API : the vulnerability is exploited through calls to some Java API method.

3Mail exchange with George Necula, 2006/03/06 and 2006/03/27.
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Entity Layer Property Flaw/
Function

Occurrences

Operating System Function 2

JVM Runtime Runtime stopping
methods

Function 2

Thread Management Function 3
API ClassLoader Function 3

Reflection Function 3
File Handling Function 1
Native Code Execu-
tion

Function 2

Language No algorithm safety Flaw 4

OSGi Life-Cycle Layer Proper removal Flaw 1
Bundle Management Function 2
Invalid Activator Flaw 2
Invalid Archive Flaw 3

Module Layer Fragments Function 3
Invalid Metadata Flaw 3

Service Layer No control on service
registration

Flaw 2

Invalid Workflow Flaw 1

Table 7.2: Taxonomy: implementations of the vulnerabilities in the Java/OSGi platform
[The vulnerabilities that are considered here are those that can be exploited by a malicious
component installed in the platform. Vulnerabilities are classified according to the entity in
which they occur, the layer in this entity, and the property in this layer. Each property can
be either a flaw, or a function. A flaw is an error in the implementation that can be patched
without impacting the proper system behavior. A function is a feature exploited by other
parts of the application to perform specific task.]

◦ OSGi API : the vulnerability is exploited through calls to some OSGi API method.

• Bundle Fragment: the vulnerability is exploited through the Bundle Fragment feature
which allows a bundle to gain access to all classes it contains.

The taxonomy Implementations of the Vulnerabilities in the Java/OSGi Platform describes
the way vulnerabilities are exploited in the vulnerable system. Its goal is to identify the
element of the system that need to be modified or protected to prevent the exploitation of
each vulnerability. Vulnerabilities can be of two type: flaw* or function*. A flaw is an error
in the implementation that can be patched without impacting the proper system behavior.
A function is a feature that is exploited by other parts of the application to perform specific
tasks. The vulnerability occurs when these tasks are dangerous, for instance if they provide
access to sensitive resources or enable to perform denial-of-service attacks. Access to functions
must be granted to trustworthy code only.

Table 7.2 shows the taxonomy for the Implementations of the Vulnerabilities in the Java/OSGi
Platform.
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The total number of identified vulnerabilities that plague the Java/OSGi platform is 32.
The total number of occurrences that are given in this table is bigger than this, since some vul-
nerabilities imply the use and abuse of several functions together. For instance, ClassLoaders
and Reflection are often used together, as well as Java Native Interface (JNI) and op-
erating system functions.

The three main entities that contain vulnerabilities are the operating system, the Java
Virtual Machine, and the OSGi framework. The concerned layers in the JVM are the runtime
engine which executes classes, the API which provides standard libraries to applications, and
the language itself. The concerned layer in the OSGi framework are the Life-Cycle layer,
the Module layer, and the Service* layer. Each of these layers contains specific flaws and
functions that are detailed in the table.

The taxonomy for the Targets of Attacks describes the victims of the attacks that exploit
the vulnerabilities of the Java/OSGi platform. Its goal is to identify the entities that are
impacted by such attacks to rank the importance of the vulnerabilities. A vulnerability
which exploitation threatens the whole platform is more serious that one that targets a specific
service. This does not mean that, according to the applicative context, the latter can not lead
to more damages, for instance through financial or reputation loss, but gives an approximation
of the potential impact of the vulnerability. The potential targets of attacks in the Java/OSGi
platform are the following:

• Platform: the whole platform is impacted: it is typically either unavailable or suffers
from important performance loss. In any case, all components that are installed are
also directly impacted.
• Java Element: a specific element of a Java program is impacted.

◦ Class: a specific class in a component.
◦ Object: a specific object, that is shared between several clients* components.

• OSGi Element: a specific element of the OSGi framework is impacted.

◦ Package: a specific package is the target.
◦ Service: a specific service is the target.
◦ Bundle: a whole bundle and thus the resource it provides are the target; specific

bundles such as Fragment bundles and Extension Bundles pertain to this category.
◦ Management Utility: the management utility, which can be a shell, a graphical user

interface, or an automated management tool, is the target. Such attacks usually
impact all subsequent management operations.

The taxonomy for the Consequences of attacks that exploit vulnerabilities of the Java/OSGi
platform describes the type of impact that the attacks have. It should be used together with
the Targets of Attacks taxonomy. Its goal is to evaluate the impact of the attacks. Like
the previous taxonomy, it enables to rank the importance of the vulnerabilities. The type of
consequences of an attack can take following values:

• Unavailability: the impacted entity is no longer available. If the attack target is the
platform, all dependent entities, i.e. the whole system, are unavailable.
• Performance Breakdown: the impacted entity experiences a loss of performance. If the

attack target is the platform, all dependent entities run with less resources.
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• Undue Access: the impacted entity is accessed in an undue manner. Since access to
Java code in general does not enable to distinguish between read and write access, data
can be read AND modified.

The two last taxonomies that characterize vulnerabilities of the Java/OSGi platform repre-
sent the temporal properties of the vulnerabilities: the introduction time, and the exploitation
time of the vulnerability. This information is required to identify the moment when preventive
mechanisms can be efficiently introduced in the target system.

The possible values for the Introduction Time of the vulnerabilities are the following:

• Platform Design/Implementation: the vulnerability is induced by the platform issuer,
either through design or through implementation weaknesses.
• Development: the vulnerability is introduced during the development of the bundles.
• Bundle Metadata Generation: the vulnerability is introduced during the generation of

the bundle meta-data.
• Bundle Digital Signature* : the vulnerability is introduced during the digital signature

of the bundle.
• Bundle Installation: the vulnerability is introduced at the moment of installation of the

bundle.
• Service Publication/Resolution: the vulnerability is introduced during the process of

service publication or resolution.

The possible values for the Exploitation Time of the vulnerabilities are the following:

• Bundle Download: the vulnerability is exploited consecutively to the download of the
bundle.
• Bundle Installation: the vulnerability is exploited when the bundle is installed.
• Bundle Start: the vulnerability is exploited when the bundle is started.
• Bundle Execution: the vulnerability is exploited when the bundle is executed, for in-

stance when the code it provides is called.

These six complementary taxonomies enable to characterize with precision the properties
of a vulnerability in an SOP platform such as OSGi.

7.2.1.3 The Malicious Bundle Vulnerability Catalog

Protecting a system against malicious actions imply to know in a systematic manner what
the threat is. Since very few work have been done so far to analyze the security properties
of the Java/OSGi platform, it is necessary to make an inventory of the vulnerabilities of this
platform. Such an inventory relies on two strong bases: the Java vulnerabilities that are
quite well documented and the tools we defined to support vulnerability assessment, that
provide a complete methodology for analysis and documentation. The Malicious Bundle
vulnerability catalog is first presented. It contains 32 occurrences. Next, the catalog is
analyzed to identify the predominant characteristics of the vulnerabilities. In particular, the
origins of the vulnerabilities, and attack targets and consequences are discussed.

The motivation for building a vulnerability catalog is to make the result of this vulnerability
analysis available for the community. It can be used for training, as reference for developers
who wish to build more secure OSGi applications, or for platform developers that intend
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to build more robust environments. The Malicious Bundle vulnerability catalog is built up
as follows. First, all entries are identified, from the literature, our own experience, and
discussion with practitioners. For each entry, a proof-of-concept bundle is developed, to show
that the vulnerability can actually be exploited. The documentation is done through the
descriptive Vulnerability Pattern, which contains information relative to the characterization
of the vulnerabilities (through the taxonomies), its description, the actual and potential
protections, as well as the implementation status of the proof-of-concept bundles. An overview
of the catalog entries can be seen in Appendix 7.2.1.3. The whole catalog is published as an
INRIA Research Report [PF07a].

Based on this vulnerability catalog, it is possible to better understand the security proper-
ties of most widespread open-source implementations of the OSGi platform. First, the origin
of the vulnerabilities are analyzed to identify the type of intrusion techniques that are ex-
ploited and the relative responsibilities of the Java and OSGi environments. Next, targets
and consequences of the attacks are detailed to enable the focus on the more serious attacks
when protections are developed.

Analyses are performed through automated parsing of the XML representation of the Vul-
nerability Patterns (see Appendix F of our technical report [PF07a]). Life-Cycle related
information is not considered further here, though they are available. Actually, they do not
bring in information that is of outstanding interest for the assessment analysis.

Origin of the Vulnerabilities Protecting a system against the vulnerabilities it contains
imply that their causes and their relative importance are known. Two main aspects are to
be considered: the part of the system where the vulnerabilities are located, and the type of
intrusion technique that is used to exploit them.

A raw partition of the system can be made between the Java Virtual Machine and the
OSGi platform. This distinction enables to identify the relative liability of each part and to
know which amount of the vulnerabilities is specifically due to the OSGi platform. Out of the
thirty-two (32) vulnerabilities that are presented in the catalog in Section 7.2.1.3, eighteen
(18) are are implied by the JVM, i.e. 56 %. The number of vulnerabilities that are implied
by the OSGi platform is 14 out of 32, i.e. 44 %. This means that most of the vulnerabilities
that are identified in this study are due to the JVM itself and therefore that other Java-based
component platforms* such as J2EE and MIDP are very likely to suffer from the same threats.

The relative importance of the intrusion techniques in an OSGi platform are shown in Fig-
ure 7.1. The classification that is used as reference is the Neumann and Parker Classification
[NP89] which defines nine categories of intrusion techniques that can be used against comput-
ing systems. Categories 3 to 8 are related to software attacks, other ones to non technological
and hardware attacks. Category 3 concerns masquerading, which is not relevant here as far
as no access control system is considered. Categories 4 to 8 are the following: 4) setting up
subsequent misuse, 5) bypassing intended control, 6) active misuse of resources i.e. write or
execution access to the system or resource (CPU, memory, disk space) consumption, 7) pas-
sive misuse of resources i.e. read-only access by a malicious bundle, and 8) misuse resulting
from inaction.

The distribution of the vulnerabilities in the Neumann and Parker categories is the follow-
ing. One vulnerability can pertain to several categories.

Most vulnerabilities are active misuse of resources - 25 of them - which means that a great
deal of the vulnerabilities are directly implied by actions that are performed by the malicious
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Figure 7.1: Relative importance of intrusion techniques in the Java/OSGi platform
[The number of vulnerabilities in the Malicious Bundle catalog is given for each category.]

bundles. Preventing these actions through a convenient access control mechanism would thus
bring an important improvement in the security status of the OSGi platform.

The number of misuses resulting from inaction is 7. These vulnerabilities are due to the
fact that the OSGi platform has not yet been designed to withstand attacks against it and
that therefore very few counter-measures are available.

The number of passive misuse of resource is 4, mainly undue read access. Since writing and
reading access inside programs both occur through method calls, this kind of vulnerabilities
can be prevented through the same mechanisms than active misuse, i.e. access control.

The number of vulnerabilities that consist in setting up subsequent misuse is 3. They are
related to bundle management and fragments and are solved by OSGi permissions.

The last type of vulnerability is bypassing intended control. The unique occurrence is due
to the fact that JVM digital signature validation algorithm does not exactly match the OSGi
specification. A patch is presented in [PF07b] and is available on the SFelix Web Site.

Vulnerabilities that originate in the JVM cause the majority of identified threats in the
OSGi platform. The OSGi specification itself is not free of such threats, as very few efforts
have been so far done to make it secure. Though other types of weaknesses exist, most
vulnerabilities are due to the absence of default access control mechanism, both at the Java
and OSGi level.

Attacks: Targets and Consequences Each vulnerability can be exploited to set up attacks
against a platform. The objective of the analysis of their characteristics is to identify the ones
that represent major threats to the system so as to express priorities in the process of securing
the OSGi platform. Two properties of the attacks are relevant to identify these priorities: the
platform elements that are targeted and the type of consequence they have.

The two main targets are the OSGi platform itself and the OSGi elements. The platform is
the execution and management environment for the applications it contains. Consequently,
attacking the platform means that all of the applications that are running on it are impacted.
The OSGi elements represent the code that is executed inside the platform. These elements
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can be impacted with a varying granularity: whole bundles can be attacked, single services,
or packages. Attacks that target a specific element have impact on the element itself and
to the elements that interact with it, but unrelated elements are not disturbed. A specific
type of sensitive element is the platform Management Utility which is a single point of failure
since its unavailability prevents the subsequent management of any new or already installed
bundle.

The most serious attacks are those that target the whole platform. The relative importance
of attacks that target specific elements depends on the number of interactions the victim
element has with others and of the application type: the unavailability of an entertainment
service has not the same consequence that the unavailability of a health-care service.

The second characteristic of attacks is the consequence they have on the system under
aggression. Figure 7.2 shows a dedicated taxonomy to reflect the specificity of the OSGi
platform. A comparison with a mainstream classification, the Lindqvist Classification [LJ97],
is also given for reference.

Figure 7.2: Taxonomy for consequence type in the Java/OSGi platform

The types of attack consequences for the OSGi platform are unavailability, performance
breakdown and undue access. Here, the target elements are not considered. One vulnerability
can have several consequences. Unavailability is the consequence of 13 of the vulnerabilities,
i.e. represents 40% of them. Performance breakdown concerns 11 vulnerabilities, i.e. 34% of
them. Undue access in read or write mode represents 9 vulnerabilities, i.e. 28%. Lindqvist
classification establishes a distinction between the Exposure (i.e. read-only) and the Erroneous
Output (i.e. read-write) undue access type. This reflects security properties of networks and
operating systems and is less relevant in our case: access to a given method of a bundle
enables both read and write access. It does not depend on access control properties. It also
considers all denial-of-service (DoS) attacks as a single type, whereas in the OSGi context
unavailability and performance breakdown are clearly caused by different kinds of attacks.

The type of attack consequence that causes the most serious threats is highly dependent on
the kind of application. For instance, Health-Care Systems are very sensitive to unavailability,
whereas undue access is of the utmost importance in banking systems. In both cases, the
wider the attack is, the most damages are caused. However, it is important to note that a
recent trend in computer security is that aggressions are targeted at very specific victims and
that a precise aggression to an element that is a single point of failure can cause even more
damage than when the whole platform is attacked in a brute force manner.
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7.2.1.4 Requirements for Protection Mechanisms

The vulnerability assessment of the Java/OSGi platform enables to identify the security
requirements for this environment. The requirements are related to the robustness of the
platform or the constraints that the platform puts on the components it executes. They are
the following:

• For the OSGi framework itself a hardened implementation is necessary to patch identi-
fied flaws and proper access control is required to prevent the exploitation of dangerous
functions.
• For the Java execution environment, proper access control is required to prevent the

exploitation of dangerous calls to the API or the runtime.
• A solution to contain resource consumption is necessary. This can be achieved either

through resource isolation between the components, of through algorithmic safety.

The vulnerabilities that should be prevented with the highest priority are the vulnerabilities
that lead to the full unavailability of the platform, through a call to System.exit(0) or
through a JVM crash, but also the vulnerabilities that lead to Undue Access, in particular
Erroneous Output, since it is frequent that data modifications are more damageable than
unavailability. Vulnerabilities that lead to Data Exposure and Performance Breakdown can
be considered to have a smaller priority even though they should not be neglected.

7.2.2 Vulnerabilities in Java/OSGi Bundles

The vulnerability assessment process for the Java/OSGi Bundles brings two major results:
taxonomies to characterize the properties of the vulnerabilities of the target system and the
Vulnerable Bundle catalog that gathers all these vulnerabilities [PF08a]. The availability of
the catalog enables to perform a first analysis to identify the origin of the vulnerabilities,
i.e. the weaknesses in the bundles, the types of attacks that are based on them, i.e. their
dangerousness, and the efficiency of existing security mechanisms, which prove, as in the case
of the platform vulnerabilities, to be fully unsufficient.

7.2.2.1 Examples of Attacks against Java/OSGi Bundles

Three categories of attacks against bundles can be identified, according to the level of access
that is then required: Stand-alone applications, to which no access to the code is provided,
Class-sharing components where access to the class Bytecode is provided, and Service-oriented
Programming* components where access to objects published by other components is provided.

Stand-alone Applications On way to obtain access to application data without direct access
to the code is the exploitation of serialized data, which is often stored either on a file system or
sent without protection across a network. Since the serialization vulnerability is not specific
to SOP platforms, we will not discuss it further. However, this highlights the fact that no
component should serialize objects without ensuring that their data is properly protected,
e.g. through encryption.
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Class-sharing platforms Class-sharing occurs in almost all software environments where
libraries are used to perform recurrent tasks. In the Java/OSGi platform, class-sharing is
obtained by exporting and importing packages from a bundle.

Attacks that exploit class-sharing consists in impacting the behavior of applications through
access or modification of the class data. For instance, static variables that are available to
third party bundles can be modified. Another example of an attack that exploits class-sharing
is the freezing of Synchronized Code blocks in static methods. Whenever a Synchronized Code
block can be freezed, either by freezing a method that it depends on or by relying on material
errors, all subsequent calls to this static method also freeze.

An example of the Synchronized Code attack is shown in Figure 7.3 as an UML sequence dia-
gram. The scenario is the following: A component for digitally signing documents, ScaSigner

is installed on a handheld device such as a mobile phone. A pre-installed software component
provides an interface for accessing the SIM chip of the device, which executes among others
cryptographic operations bound with the digital signature. A client component, Ecom, emits
requests for digital signatures of specific documents.

Figure 7.3: An example scenario for an attack against a synchronized method: sequence dia-
gram

The synchronized method, requestSignature(), is provided by the ScaSigner class. This
service relies on another one, SimChip, which provides a getSignature() method. A default
valid scenario is executed by Alice, which is a benevolent component that signs a contract
every 20 seconds. The attack is performed as follows. First, the SimChip.getSignature()

method hangs when it is provided a specific pin2 value for the pin parameter. This hanging
condition can be replaced by a denial-of-service attack against a valid implementation of
the SimChip service. The Mallory component is aware of the malfunction of the vulnerable
SimChip service. It can therefore trigger its freezing (i.e. transmit the pin data with pin2

value). It performs the malicious call to the ScaSigner service, which in turn calls the
SimChip service, which hangs. As a consequence, Alice as well as any other client that call
the ScaSigner.requestSignature() method will hang.

This attack can also be performed against SOP objects without requiring that the synchro-
nized method be static. Two solutions exist to prevent the attack. Either all dependencies
of the synchronized statement must be trusted and validated to prevent freezing, or the
synchronized statement must be banned from class-sharing platforms to prevent such abuse.
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SOP platforms Attacks against SOP components exploit the access they obtain to objects
from third party bundles to modify them, retrieve information, modify the behavior of the ap-
plications, or perform denial-of-service. Since services are often provided as singleton objects,
they are shared between client components.

Such an attack is the Malicious Inversion of Control through overridden Parameters attack.
It can occur when a service takes non-final classes as parameter. An example of this attack
is given in Figure 7.5 as UML sequence diagrams. The scenario is the same as in previous
example (see Figure 7.3).

Figure 7.4 presents the normal execution process of contract signature.

Figure 7.4: An example of a service with vulnerable method: sequence diagram

The scenario is the following. First, Alice EcomClient1 creates the contracts object as
an object of type List<SignedContract>, by using the ArrayList implementation of the
required interface. SignedContract objects contain variables for both contract data and con-
tract signature. They are initialized with contract data only. Next, Alice EcomClient1 sends
the List as a parameter to the ScaSigner service, through the requestSignature(List)

method. So as to prevent replay attacks, contracts that are already signed are not signed
again. This requires to store them in the ScaSigner service as the signedContracts class
variable. Removing old contracts from the contracts List is done by calling the List.

removeAll(signedContracts) method. In the benevolent case, the implementation is pro-
vided by the Java ArrayList API. The ScaSigner then signs each new contract and sends
them back to the Alice EcomClient1 object.

Figure 7.5 presents the process of attack against contract signature with Malicious Inversion
of Control through overridden Parameters.

In this case, the malicious implementation of the EcomClient, Mallory EcomClient2, pro-
vides its own implementation of the List interface, MaliciousArrayList, which extends the
original ArrayList class. The difference between ArrayList and MaliciousArrayList lies
in the implementation of the removeAll() method. In the malicious case, all objects that
are passed as parameter of the removeAll() method are stored, before calling the origi-
nal ArrayList.removeAll() implementation. At the end of the signature process, Mallory

EcomClient2 thus owns the content of the signed contract objects, i.e. the valid contracts
that have been performed by the ScaSigner beforehand - if any - but also all the matching
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Figure 7.5: An example of a service with vulnerable method that is abused through malicious
inversion of control: sequence diagram

contract signatures.

The Malicious Inversion of Control through overridden Parameters attack has two precon-
ditions. First, services must provide methods with non-final parameters. Next, the victim
service must call methods on these parameters and possibly passes to them some sensitive in-
formation. The given example is deliberately exaggerated: it is quite unlikely that any careful
developer would handle back digital signatures to unknown code. It nonetheless highlights
the potential risks that exist on ill-protected bundles.

Two solutions can be identified against this attack. The first solution would be to limit the
use of Singleton objects to services that are fully stateless. In the example case, this does not
solve the problem since information from previous transactions are required to prevent replay
attacks. The second solution would be to harden the implementation of registered services
by programming them with important constraints. One such constraint is the fact that all
method parameters of registered services should be either basic types or final classes. The
exact set of these constraints is still to be determined.

7.2.2.2 Taxonomies for characterizing Bundle Vulnerabilities

As they describe the vulnerabilities that can be exploited through installed components in a
manner that is similar to the vulnerabilities of the platform, the taxonomies for the Vulnerable
Bundles catalog are similar to the taxonomies that are defined for the catalog of Malicious
Bundles exploiting platform vulnerabilities. In most case, no or very limited modification
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is required. The shift of focus from the vulnerable platform towards vulnerable components
imply to redefine the Implementation and the Consequence of the Attack taxonomies. This
work is published in [PF08a].

In the Target of attack taxonomy, the ‘Java Element’ type is specific to the Vulnerable
Bundles catalog. Actually, components can make some of their classes and their members, or
some of their objects and their members, accessible from other components.

The taxonomy for Implementations of the Bundles Vulnerabilities describes the way vulner-
abilities are opened in components. Its goal is to identify the element of the components that
need to be modified or protected in order to prevent the exploitation of each vulnerability.

Table 7.3 gives the taxonomy for the Implementations of the Bundles Vulnerabilities in the
Java/OSGi platform.

The vulnerabilities are classified according to the category of applications that can suffer
from them. The three main such categories are stand-alone applications, class-sharing sys-
tems, and object-sharing systems. Stand-alone applications do not make their code available
to third party code. Class-sharing systems enable components to share the definition of classes
with others. This is the case for instance in the OSGi framework with the import and export

meta-data for packages. Object-sharing systems, typically SOP platforms, enable a compo-
nent to make an instance of an object available to third party components that act as clients.
If such objects are shared between the clients, these latter can use them to communicate in an
undue manner or to interfere with each other in ways that are not foreseen by the component
developers. In specific cases, vulnerabilities can plague both class-sharing and object-sharing
systems. This is the case of synchronization which can be abused to freeze all subsequent calls
to the synchronized method. If this method is static, the vulnerability can be exploited in
class-sharing systems. Otherwise, only object-sharing systems are vulnerable. Each of these
categories contains specific implementations that are detailed in the table.

The taxonomy for Consequences of the Attacks describes the outcome of the exploitation
of component vulnerabilities. Its goal is to highlight the actual risks that exist in ill-coded
components and to rank them.

Table 7.4 gives the taxonomy for the Consequences of the Attacks that exploit Vulnerabil-
ities in Java/OSGi Bundles Interactions.

The two consequence types are Undue Access and denial-of-service (DoS). Contrary to
platform vulnerabilities, performance breakdown can not be achieved by attacking bundles
directly. Undue access can be either access to data that should be kept internal to the
component, or by-passing existing security mechanisms such as calls to the security manager.
Each of these category contains specific sub-consequences that are detailed in the table.

7.2.2.3 The Vulnerable Bundle Vulnerability Catalog

These vulnerabilities exploit features of the Java language. They are therefore not bound
with the OSGi platform but to the way Java elements are shared inside this platform. Most
of other Java SOP platforms are therefore highly likely to contain the same vulnerabilities.
An overview of the catalog entries in provided in Appendix 7.2.2.3. There are contains 33
occurrences.

Origin of the Vulnerabilities The repartition of the vulnerabilities in the defined categories
is the following. Stand-alone application experience one occurrence of vulnerability out of
33, i.e. 3% of the total. Class-sharing systems are concerned with 14 occurrences, i.e. 42
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Attack Vec-
tor

Implementation Occurrences

Component
Interactions

Stand
Alone App.

Serialization 1

Class Shar-
ing

Exposed Inter-
nal Representa-
tion

Mutable element
in static variable

2

Reflection 3
Fragments 2
No suitable con-
trol

2

Avoidable Calls
to the Security
Manager

At instantiation 4

In method call 5
Class Shar-
ing or SOP

Synchronization 2

SOP Exposed Inter-
nal Representa-
tion

Returns refer-
ence to mutable
element

2

No suitable con-
trol

4

Flaws in Param-
eter Validation

Unchecked
parameter

3

Checked param-
eter without
copy

1

Checked and
copied parame-
ter

4

Non final param-
eter

2

Invalid Work-
flow

1

Table 7.3: Taxonomy: implementations of the component vulnerabilities in the Java/OSGi
platform

[The vulnerabilities that are considered here are those that can be exploited by a malicious
component that is installed in the platform.]
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Attack Conse-
quence

Sub-Consequence Interaction Category

Undue Access Access to internal
Data

Class Sharing and SOP - Exposed In-
ternal Representation
Class Sharing - Fragments

By-pass Security
Check

Class Sharing - Avoidable Calls to the
Security Manager
SOP - Flaws in Parameter Validation

DoS Method unavailabil-
ity

Class Sharing and SOP - Synchroniza-
tion
SOP - Invalid Workflow

Table 7.4: Taxonomy: consequences of the attacks that exploit vulnerabilities in Java/OSGi
component interactions

%. Object-sharing systems are concerned with 16 occurrences i.e. 49 %. Two occurrences of
vulnerabilities, that are bound with synchronization, concern both class-sharing and object-
sharing systems. This tantamounts to 6 %. This shows that vulnerabilities in class-sharing
and in object-sharing systems have a similar importance. Both need to be addressed.

The intrusion types are of three different categories in the Neumann and Parker’s classifi-
cation [NP89]. 9 occurrences concern the NP5-by-passing intended control category, i.e. 27
%. 23 occurrences concern the NP6-active misuse of resource category, that is to say writing
access, i.e. 70 %. 1 occurrence concerns the NP7-passive misuse of resource, that is to say
reading access, i.e. 3 %. This shows that the lack of protection for writing access is the cause
of most vulnerabilities in Java components. Next to it, the proper enforcement of security
checks is the second threat type. Read-only access is only a marginal vulnerability in the case
of components.

Attacks: Targets and Consequences The target of attacks that exploit component vulner-
abilities can be objects, classes, the platform, and configuration data. The most important
target is built by the objects that are in memory. This is due to the fact that the assets that
components can protect or make available are data they store. This is true for the vulnerabil-
ities that are specific to object-sharing environments but also for several vulnerabilities that
originate in class-sharing mechanisms, for instance through static variables. The number of
occurrences for this category is 24, i.e. 73 %. The second target set is built by the classes
themselves which represent 6 vulnerabilities, i.e. 18 %. Marginal targets are the platform,
which can be forced to execute code outside of the component life-cycle through Shutdown

hooks, with 2 vulnerabilities, i.e. 6 %, and configuration data, which can be leaked through
excessively verbose exception, with 1 vulnerability, i.e. 3 %.

A great majority of these attacks can lead to erroneous output since access to the code of
another component imply in almost cases that the values of its variables can be impacted. 30
occurrences of vulnerabilities, i.e. 91 %, concern this case. 2 attacks lead to denial-of-service,
i.e. 6 %, and 1 to exposure of data,i.e. 3 %.
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7.2.2.4 Requirements for Protection Mechanisms

The vulnerability assessment for Java/OSGi bundles enables to identify the security require-
ments that should be enforced on the applicative code. The requirements are related to the
robustness of components against malevolent third party components. They are the following:

• SOP Workflows should be secured and mandatory.
• Component code should be properly isolated from each other, to avoid undue modifi-

cation of their data. This implies a clean encapsulation, whose criteria are given by
the Exposed internal representation and Flaws in parameter validation vulnerability
categories.
• Effective access control should be enforced, i.e. not be by-passable.
• No data leak should occur in component, in particular through serialization and excep-

tions.
• Synchronized calls should be avoided unless it is possible to guarantee that their de-

pendencies do not freeze.

The vulnerabilities that should be prevented with the highest priority are the one that en-
able malicious components to perform actions that they should not or to impact the behavior
of other components without control. Security protections that are thus urgently required are
effective access control and proper isolation between bundles. Data leak and localized freezing
should be prevented, with less priority. The securization of SOP Workflows would only pro-
vide marginal improvement relative to the vulnerabilities that are identified here. However,
Workflow specific security issues have not been considered. It is likely that secure Workflows
could improve the global security status of SOP platforms but this question requires further
research to identify requirements, constraints and possible solutions.

The agregation of the information from the Malicious Bundles and the Vulnerable Bundles
taxonomies provides an overview of the vulnerability categories that can occur in systems that
are based on SOP platforms. The vulnerabilities are of four origins: the underlying operating
system, the Java Virtual Machine, the SOP platform itself and the components. Figure 7.6
presents the taxonomy of vulnerability categories in the Java/OSGi platform.

Since this taxonomy is an overview of data that has already been presented, it will not
be explained in details again. Worth to mention is the fact that it integrates vulnerabilities
that are mentioned by the literature such as JVM bugs in optimized modules, or the security
issues that originate in service binding mechanisms and that are difficult to control due to
their optional implementation is platforms such as OSGi.

The integration of data from the two vulnerability catalogs close the vulnerability assess-
ment phase for the default target system of the SPIP process. A first protection bench-
marking must be performed, so as to identify the security level that is provided by default
implementations and security mechanisms against the vulnerabilities that are identified here.

7.3 Protection Assessment of Java/OSGi Systems and
Applications

The second phase of the SPIP process is protection assessment. It consists in evaluating
security mechanisms that intend to protect the system from the vulnerabilities that are iden-
tified in the first phase. Since the actual state of the available system is to be assessed first, no
extra definition of new security mechanism is to be done during the first iteration of SPIP .
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Figure 7.6: Taxonomy: vulnerability categories in the Java/OSGi platform
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7.3.1 Protection Assessment of standard Implementations of the OSGi platform

The quantitative evaluation of the security level is performed with the help of the Protection
Rate metric. The security level provided by default configurations of various implementations
of the OSGi framework is measured. Next, the benefit that is brought in by Java permission
is quantified.

The Protection Rates for the various implementations of the OSGi platform are given in
Table 7.5.

Platform Type # of Protected Flaws # of Known Flaws Protection
Rate

Concierge 0 28 0 %

Felix 1 32 3,1 %

Knopflerfish 1 31 3,2 %

Equinox 4 31 13 %

Java Permissions 13 32 41 %

Concierge with
perms

10 28 36 %

Felix with perms 14 32 44 %

Knopflerfish with
perms

14 31 45 %

Equinox with perms 17 31 55 %

Table 7.5: Protection rate for mainstream OSGi platforms

The number of known flaws varies to reflect the features actually supported by each imple-
mentation. The security manager, which is responsible of enforcing security checks that are
defined by Java permissions, proves to bring a not negligible security improvement for the
Java/OSGi platform.

However, even though Java permissions greatly enhance the protection rate of each im-
plementation, it can not be considered as satisfactory: 56 % (for Felix), or even 45 % (for
Equinox) of unprotected vulnerabilities are more than required to attack a system.

7.3.2 Protection Assessment of Java/OSGi Bundles

The vulnerabilities that occur in components also need to be protected: they represent more
than the half of the documented vulnerabilities. Developers will be interested in knowing
whether their application is safe and not only whether the underlying platform can be harmed.

In the case of components, Java permissions are far less efficient: only 3 out of 33, i.e. 9
% of the vulnerabilities can be protected in this manner. One of the important source of
vulnerabilities for the Vulnerable Bundles catalog is the FindBugs project4. One would thus
expect that the 9 vulnerabilities that are identified from there would be protected. According
to the tests that are performed with the proof-of-concept bundles, this is not the case for any
of the concerned occurrences. This is due to the fact that FindBugs aims at providing good
practices in Java programming. It therefore advocates pattern that can be exploited without

4http://findbugs.sourceforge.net/
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restricting the expressive power of the code. In the case of the vulnerability assessment for
SOP Components, a very tight definition of vulnerability has been used, namely that fact
that any access in reading, writing, or denial-of-service, is considered to be harmful. The use
case for both approach is not identical.

The only tool that remains for ensuring the security of developed component is manual
review. It has the advantage to tackle complex coding patterns that prove to be vulnerabilities
in our target environment. However, it is very costly and does not provide a full guarantee
even though all vulnerabilities can theoretically be identified.

7.3.3 Evaluation of Java Permissions

Performances Java permission are an efficient standard for enforcing access control in Java-
based systems. However, they suffer from several serious drawbacks. First, they imply an
important performance overhead, because the call stack must be rebuilt at each security
check. Though important effort have been dedicated to minimize this overhead [GS98], it
causes many production systems to withdraw the use of the security manager to preserve
acceptable user experience and overall performance5. Example of this overhead is shown in
Figure 7.7, where the duration for platform start is printed for several application profiles.
Here, overhead goes from 0 second, where no check is performed, to 30 %, when a complex
application is launched and when numerous checks have to be performed. This is the case
for the managedplatform and sfjarsigner profiles which launch the necessary bundles to
manage an OSGi platform through the JMX protocol and to use the SF-Jarsigner6 respec-
tively tool respectively. Secondly, security checks are performed in the code and can not be
customized at runtime. Basically, each method that considers itself as dangerous performs its
own check, through an explicit call to the SecurityManager. Consequently, it is not possible
to declare a third party method as dangerous, for instance if a bundle is identified as not trust-
worthy. This approach is satisfactory for systems where all code archives are under control
of the administrator but proves to be unsufficient if new code is loaded dynamically from the
environment. Thirdly, runtime time check has another drawback in addition to performance
overhead: it forces the application to abort, or asks for specific permissions to users that are
security unaware. Both behaviors can lead to security weaknesses which is obviously not the
goal of Java permissions.

Table 7.6 shows the protection rate brought in by Java permissions for the platform and
the Java component vulnerabilities.

It improves the platform security but falls short in protected Java components from each
others.

Requirements These considerations encouraged us to identify an alternative mechanism to
permission, that are also called Stack-based Access Control: the Component-based Access
Control (see section 8.3) which aims at providing security mechanisms that are more suitable
for Java platforms such as OSGi. Moreover, the vulnerability catalogs show that isolation
between bundles can not be obtained with mere access control mechanisms and that they
are plagued with an important number of vulnerabilities if the development is not properly
validated. Therefore, interactions between bundles at the package and at the service level are

5Discussions with the Open Web Applications Security Project (OWASP) Switzerland Group, 2007-07-24,
among others.

6http://sf-jarsigner.gforge.inria.fr/
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Figure 7.7: Performance of Felix OSGi platform without and with the Java security manager

Security Mecha-
nism

# of Protected Flaws # of Known Flaws Protection
Rate

Java Permissions
(platform vulns)

13 32 41 %

Java Permissions
(component vulns)

3 33 1 %

Java Permissions (all
vulns)

16 65 25 %

Table 7.6: Protection rate for the Java security manager

to be protected, for instance through the Weak Component Analysis (WCA) tool (see section
8.4).

Conclusion Default OSGi platforms are very unsecure: even though specific implementa-
tions such as Equinox are to some extend a bit more robust than the others, they open an
important attack vector by installing components from third party providers with almost no
isolation. The standard security mechanism, Java permissions, provides a first improvement.
It is well suited to perform access control. However, it has several drawbacks: it is not exten-
sible for pre-existing classes, for instance to control the access to a method that is discovered
to be dangerous in a particular context. Moreover, it implies an important performance over-
head which makes it difficult to use in resource constraint environments. New tools that
harden Java SOP platforms therefore need to be defined, to enhance the security status of
both the platform and the components.
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The security* analysis of the default distributions of the Java/OSGi platform* provides us
with a detailed knowledge of the requirements that should be enforced if one intends to build
a secure OSGi system*. A set of protection mechanisms is set forth, which goal is precisely
to solve the identified vulnerabilities* in the OSGi platform implementations, in the access
control model for Java environments, and in the component* code. These propositions build
the iterations 2, 3 and 4 of the SPIP Spiral Process for Intrusion Prevention, presented in
Section 6.2.

The protection mechanisms that are defined fall in the two categories for construction
of secure software presented in Section 3.3: Architecture and Design, and Secure Coding.
Architecture and Design solutions for the secure OSGi system are Hardened OSGi, the Install
Time Firewall security pattern* and the CBAC ( Component-Based Access Control) security
model. The Secure Coding solution for secure OSGi applications is WCA (Weak Component
Analysis) which guarantees the robustness of component code.

Hardened OSGi [PF] aims at solving the vulnerabilities that originate in the OSGi platform
implementations. The Install Time Firewall security pattern highlights the architectural
modification we advocate to enhance the security status of SOP platforms: the verification of
security properties of components immediately before their installation. This pattern is used
for both the CBAC model and the WCA tool.

115



8 Mechanisms for secure Execution in the Java/OSGi Platform

CBAC [PF08b] is an access control model that is enforced through static analysis at install
time. Its goal is to restrict the access to sensitive code at the package, class or method level
to which each component can access. Sensitive code can be provided by the platform or by
other components. Its execution can so far only be controlled if access control is pre-defined
through hard-coded permissions, or on a coarse grained level, since access to full packages or
services* can be prevented by OSGi permissions. CBAC intends to solve the features of the
Java security manager that appear to be ill-suited in SOP platforms, such as the important
resource overhead, as presented in Section 7.3.3.

WCA automatizes code review for building vulnerability free components. It sets con-
straints on the code that components share with others. In particular, shared classes should
be free of the vulnerabilities that can be exploited on classes, and shared objects, i.e. SOP
services, from vulnerabilities that can be exploited on objects, as presented in Section 7.2.2.

For each mechanism, analysis and testing is performed through the SPIP method: bench-
mark* is based on the Protection Rate metric and tests are done through the sample malicious
and vulnerable bundles* (see Section 6.3.2).

8.1 Hardened OSGi

The first proposition in the Architecture and Design category for secure software construction
is Hardened OSGi, a set of recommendations for enhancing the implementations of the OSGi
platform. It is presented in [PF07a] and [PF]. The objective is to patch flaws* that affect
the SOP platform, as shown in Figure 7.6 page 109. In particular, the Life-cycle, Module and
Service layers should be protected. The service binding process is not considered, because it
builds an optional part of the OSGi framework.

These recommendations are first listed. Their implementation requires to slightly mod-
ify the OSGi API. The performance footprint is measured. The protection enhancement is
quantified to evaluate the proposition.

8.1.1 Recommendations

Following modifications should be introduced in the implementations of SOP platforms, and in
particular in the OSGi framework, to prevent known weaknesses. For each recommendation,
the reference section of the OSGi R4 specification is given. They are presented according
to the OSGi platform layer (see Table 7.2) that is concerned. The references of prevented
attacks* as defined in the Malicious Bundle catalog in Appendix B.1 are given.

Module layer The recommendation for a hardened Module Dependency layer for SOP plat-
forms, at the example of the OSGi Module layer, intends to make bundle dependency man-
agement more robust.

• Do not reject harmless unnecessary metadata in particular duplicate imports during the
bundle dependency resolution process, but simply ignore them and install the concerned
bundle (see OSGi R4 par. 3.5.4). This prevents the attack ‘Duplicate Package Import’
(mb.osgi.1) of the Malicious Bundle catalog.
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Life-Cycle Layer Recommendations for a hardened Life-cycle Management layer for SOP
platforms, at the example of the OSGi Life-Cycle layer, intend to protect the platform from the
installation of malicious or ill-formed bundles as well as to guarantee that the uninstallation
process is performed in a clean manner.

• Check component size before download, if a component download facility such as an
OBR client [AH06] is available. The components should be installed only if the re-
quired storage space is available. This prevents the attack ‘Big Component Installer’
(mb.archive.2). This security mechanism can be used in conjunction with the ‘maximum
storage size’ recommendation at the platform level (see next item).
• Control the cumulated size of loaded components that are actually installed on the plat-

form. The check is performed immediately before the installation. It is based on a
platform property, ‘secureosgi.max.storage’. Alternatively, a maximum storage size
for all data stored on the local disk, such as component archives and files created by the
component during its execution, could be set. The related specification paragraph is
OSGi R4 par. 4.3.3. This prevents the attack ‘Big Component Installer’ (mb.archive.2).
• Check digital signature* at install time through a dedicated library. The check should

not rely on the Java built-in validation mechanism since this latter is not compliant
with the OSGi R4 specification [PF07b] (Section 2.1; see OSGi R4, par. 2.3) which is
better suited for extensible platforms. This prevents the attack ‘Invalid Digital Signa-
ture Validation’ (mb.archive.1). Moreover, the standard Java validation is enforced at
runtime which enables to install components with invalid signature (e.g. if one class if
modified) and causes runtime failures (when this class is used).
• Launch the component activator in a separate Thread, to decouple the management

process of the application starting and configuration process (see OSGi R4 par. 4.3.5).
This prevents the attacks ‘Management Utility Freezing - Infinite Loop’ (mb.osgi.4)
and ‘Management Utility Freezing - Hanging Thread’ (mb.osgi.5). It is only possible in
JVMs that support threads.
• Remove all component data at uninstallation rather than when the platform is stopped.

The related paragraph of the OSGi specification is OSGi R4 par. 4.3.8. This prevents
the ‘Zombie Data’ attack (mb.osgi.8).

Service Layer The recommendation for a hardened Service Dependency layer for SOP plat-
forms, at the example of the OSGi Service layer, intends to make the Service-oriented Pro-
gramming* (SOP) feature of the platform more reliable.

• Limit the number of registered services for each SOP component. The value is set for
instance through the secureosgi.max.service.number system property. It can be set
e.g. to 50. The related paragraph of the OSGi specification is OSGi R4 par. 5.2.3.
This prevents the attacks ‘Numerous Service Registration’ (mb.osgi.10) and ‘Freezing
Numerous Service Registration’ (mb.osgi.11).

In the context of the OSGi platform, several attacks relative to the bundle archive, the
bundle manifest, the bundle activator and the OSGi API are prevented through this set of
modifications. In particular, memory exhaustion due to the installation of big bundles or
unclean uninstallation, or denial-of-service against the platform management utility and the
service registry are prevented. Installation of maliciously modified bundles is also prevented.
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These recommendations can be used in any OSGi implementation to make it more robust
in presence of malicious or simply ill-coded bundles.

8.1.2 Implementation

A prototype for Hardened OSGi, Hardened Felix, has been built based on the Felix Apache
implementation1 of the OSGi R.4 platform to validate the usability of these recommendations.

Impact on the OSGi API The control of storage size through the Check bundle size before
download and Control the cumulated size of bundles recommendations requires to extend the
OSGi core [All05a, All07a] and service APIs [All05b, All07b]:

• In the Class BundleContext, a method getAvailableStorage() is defined to support
both recommendations.
• In the class org.osgi.service.obr.Resource, a method getSize() is defined to sup-

port the ‘Check bundle size before download’ recommendation. This method relies on
the size entry of the bundle meta-data representation (usually a XML file).

Other modifications are strictly limited to the OSGi framework itself.

Performances To be acceptable as a security mechanism for production systems, Hardened
Felix should imply only a limited performance overhead. Three phases of the life-cycle of the
bundles are impacted by the Hardened OSGi recommendations: the installation, the service
registration, and the uninstallation.

Figure 8.1 shows the performances of Hardened Felix without a Java security manager
during the installation phase, which concentrates most of the modifications.
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Figure 8.1: Performances of Hardened Felix

1http://felix.apache.org
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These performances can be compared with those of the default Felix implementation, in
Figure 7.7 page 112. The void profile is not impacted because recommendations concern the
installation of bundles. Other aspects of the behavior of the platform are not impacted. The
profiles: ‘default’, ‘JMX managedplatform’ and ‘upnpav control point’ contain bundles with
reduced initial configuration, i.e. a limited amount of code in the BundleActivator.start()

method. They experience an overhead of approximatively 20 %, due to the control of digital
signature validation. The profiles: ‘jmxconsole’ and ‘sfjarsigner’ contain bundles with im-
portant initial configuration, i.e. a non negligible amount of code in the BundleActivator.start()

method. The graph shows a decoupling of the duration of bundle installation and of bundle
start, because the bundle activator is started in a dedicated thread. This modification leads
to more availability of the platform management tool. The overhead is due mainly to the
verification of bundle digital signature. It is therefore bound with the enforcement of the
OSGi specification for security, which is not available on default distributions such as Felix.
Actual overhead of the Hardened OSGi recommendations at start time is negligible.

Overhead in other phases of the bundle life-cycle such as service registration and bundle
uninstallation is expected to be very low since it mostly concerns the verification of counters.
The ‘Remove all bundle data at uninstallation’ recommendation is slightly more costly since
it involved access to the file system but occurs during uninstallation only. It therefore does
not impact directly the performance or availability of active bundles.

8.1.3 Results of Security Benchmarking

The Hardened OSGi recommendations intend to solve vulnerabilities that originate in the
OSGi framework implementation. The precise evaluation of its benefits and limitations is
required to show that its benefits overweight its cost and to identify the vulnerabilities that it
can not prevent. This evaluation is performed with the Malicious Bundle catalog as reference.
This means that only platform vulnerabilities are considered. Hardened OSGi does not intend
to prevent component vulnerabilities.

Protection Rate for Hardened OSGi The Protection Rate (PR) for Hardened OSGi plat-
forms are given in the Table 8.1 for the following configurations: theoretical PR value for
the specification, PR value for Hardened Felix, PR value for Hardened Felix, PR value for
Hardened Felix with Java permissions, and PR value for an hypothetical implementation of
Hardened Equinox with Java permissions.

Hardened OSGi recommendations prevent one quarter of all the platform vulnerabilities.
Used together with the standard security mechanism for Java environments, the Java per-
missions, they protect the system from two third to more than 70 % of the vulnerabilities,
according to the considered implementation.

Further requirements As long as no combination of security mechanisms is available for
the Java/OSGi platforms that prevents all identified vulnerabilities, further effort is required.
The relative importance of remaining Java and OSGi-specific vulnerabilities are discussed for
two configurations: without, and with Java permissions.

Vulnerabilities of Hardened Felix without Java permissions that are specific to the OSGi
platform are bound with OSGi functions such as bundle management, OSGi services and
fragments. Almost all of these can be protected through OSGi permissions.
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Platform Type # of Protected Flaws # of Known Flaws Protection
Rate

Hardened OSGi
(HO) Spec.

8 32 25 %

HO + perms 21 32 66 %

Hardened Felix 8 32 25 %

Hardened Felix with
permissions

21 32 66 %

Hardened Equinox
with perms (ex-
pected)

22 31 71 %

Table 8.1: Protection rate for the Hardened OSGi platform
[The evaluation is performed with the Malicious Bundle catalog as reference, i.e. only

platform vulnerabilities are considered. Hardened OSGi does not intend to prevent
component vulnerabilities.]

One single vulnerability of Hardened Felix with Java permissions is bound with the OSGi
platform, i.e. 9 %: the ‘Erroneous value of Manifest attributes’. It is actually more a configu-
ration error than an raw vulnerability but is considered as a kind of denial-of-service because
it can in several cases lead to the failure of the bundle installation.

OSGi vulnerabilities can be considered to be fully patched by the Hardened OSGi recom-
mendations, when suitable Java and OSGi permissions are set. However, Java vulnerabilities
keep being open and make OSGi platforms at risk. The remaining major attacks that can
occur in a Hardened Felix platform with Java permissions set are the following: platform
crash through recursive thread creation, uncontrolled CPU or memory resource consumption,
as well as hanging thread, decompression bomb and excessive size of the manifest file.

Relative to default OSGi platforms, Hardened OSGi recommendations bring an important
step towards building secure systems. When used together with Java permissions, Hardened
Felix enables the development of platforms that have a high Protection Rate. Hardened Felix
with permissions has a Protection Rate of 66 %, and Equinox with the same mechanisms
provides a Protection Rate of 71 %. However, the important overhead of permissions acts as
a deterrent for their actual use in production system. They can therefore not be considered
as an sufficient solution. An alternative mechanisms is required.

8.2 The Install Time Firewall Security Pattern

The next propositions in the Architecture and Design category for secure software construc-
tion are implementation of the Install Time Firewall security pattern. This pattern targets
extensible component platforms*. The principle is the following: components are validated
after they have been downloaded and before they are installed on the platform. This pattern
builds the basis of our subsequent propositions: Component-based Access Control (CBAC)
presented in Section 8.3, and Weak Component Analysis (WCA) in Section 8.4.

Table 8.2 gives the full representation of the Install Time Firewall security pattern.
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Reference

Name: Install Time Firewall

Extends: -

Also Known As: -

Definition date: 2008/05/21

Related Patterns: Component-based Access Control, Weak Component Analysis

Problem

Context: The Install Time Firewall pattern is relevant for component platforms that support
component life-cycle management. The installation phase of components in the system
is extended by security checks.

Scope: This pattern is applicable for all component platforms with life-cycle management
facilities.

Purpose: Security checks at runtime are often costly, and strongly impair user experience.
This has several consequences. When security mechanisms are on, systems behave less
efficiently. However, this fact has often as the pragmatic consequence that security is
simply turned off in production systems. The objective is to reduce or withdraw runtime
checks.

Intent: Since more and more systems enable to manage the life-cycle of components, the
Install Time Firewall pattern intends to exploit the installation phase of the life-cycle
to perform security checks on the component archive. Such checks include metadata
validations or code static analysis.

Motivation: Installation is not part of the execution of a component, and is often a process
that imply several time-costly operations, such as component discovery, download, or
the standard digital signature validation. Performing additional checks is likely to add
a negligible overhead to a process that is not time critical.
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Solution

Applicability: The platform must have a reference on the software component that is to be
checked, and this reference can not be modified after the check by an external party.

Structure: The platform first gets a reference on a software component. Then, is passes it to
a security checker. The checker retrieves the security policy, if is does not yet have it,
and checks the component according to this policy. Figure 8.2 shows the UML sequence
diagram for the Install Time Firewall security pattern.

Participants: The entities that participate in the Install Time Firewall pattern are the fol-
lowing: the component platform, the checker library, the policy database. The software
component is a passive entity that is being checked.

Collaborations: -

Consequences: Components that are valid according to the policy are installed. Others
are rejected. Variations can imply modification of the runtime behavior of the system
according to verification results. Verification occurs in a negligible amount of time and
does not impact the behavior of the system when it is executed. The limitations is the
number of false positives, and the fact that install time analysis sometimes needs to be
complemented by runtime checks for finer verifications.

Implementation: Integrity of the platform, the checker library and the security policy must
be guaranteed.

Known Uses: Digital Signature Validation; Proof-Carrying-Code (PCC); CBAC; WBA.

Table 8.2: The Install Time Firewall security pattern
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The Problem The problem it tackles is the following. Components that are dynamically
installed from the environment are usually not provided with any security guarantee. When
these components are installed in security sensitive environments - and any production plat-
form is, as well as any PC since its owner is responsible for the possible attacks that would be
launched from it - their probable behavior should be evaluated and compared with explicit
policies. The motivation for performing these checks at install time is that runtime security
checks are often costly and impair the user experience. Standard Java security is there-
fore frequently removed from the execution environments* for convenience reasons. Since
the installation process is performed only once and involves several costly operations such
as download and validation of digital signature, the additional performance overhead of the
Install Time Firewall pattern is not likely to be annoying. It can be unnoticeable for checks
that are not overly too complex.

The Solution The pattern can be applied as soon as a reference to the component is avail-
able. To prevent TOCTOU (Time Of Check to Time Of Use) attacks, no external party
should be able to modify this reference afterwards. It implies the participation of several
software entities: the component platform, that launches the check; the checker module, that
performs it; and the policy database, that provides security policies the component should
be compliant with. All components that are valid are installed. All components that are not
valid according to the policy are rejected. The limitation of this pattern is that static analy-
sis, which can be performed on the component code and metadata, necessarily produces false
positives with regard to runtime analysis. Implementations of this pattern should guarantee
that the rate of false positives is kept as low as possible.

Figure 8.2 shows the UML sequence diagram for the Install Time Firewall security pattern.

Figure 8.2: The Install Time Firewall security pattern: sequence diagram

The interactions between the concerned entities are the following. First, the platform
creates a new checker object. When the component is loaded, its sends a request to the
checker to perform the evaluation. At the first evaluation request, the checker loads the
policy. It can then perform the security check of the component according to this policy. If
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this check is negative, i.e. no security policy violation is identified, the component is installed.

8.3 Component-based Access Control - CBAC

The second proposition in the Architecture and Design category for secure software construc-
tion is the Component Based Access Control (CBAC) security model. Its goal is to restrict
access to dangerous method calls to authorized components only. It is presented in [PF08b].

8.3.1 Requirements

The objective of CBAC is to provide an access control mechanism to all sensitive functions*
that are identified in the Java Virtual Machine and in the SOP platform itself, as shown in
Figure 7.6 page 109.

Unprotected Vulnerabilities The first category of sensitive functions which access should
be controlled entails the functions that lead to denial-of-service attacks if the components
are not developed in a careful manner and well tested. This is the case of Threads which
can lead to platform crash and call hanging but also of native code execution which lets the
component execute any utility that is provided by the underlying operating system to abuse
it or to attack the SOP platform itself.

The second category of sensitive functions which access should be controlled entails the
functions that allow the components to access and alter system resources configurations.
In the Java Virtual Machine, the use of class loading, reflection and file manipulation are
concerned. In the SOP platform, the administration functions of the life-cycle, module and
service layer are concerned. Examples of such functions are respectively the installation of
bundles, the use of fragment bundles and the registration of services.

In addition to these vulnerabilities that are presented in Section 7.2.1.3, components them-
selves can provide sensitive or dangerous methods. The administrator of the platform should
be able to define an access control policy that limits the access to component methods to
trustworthy code only or to prevent for all the access to methods that are identified as ma-
licious. Moreover, would a given method be identified as dangerous, it should be possible to
fully prevent its access without requiring that the method itself enforces the call, as is usual
in Java permissions.

An Alternative to Java Permissions Most of the sensitive methods that are provided by
the JVM standard API as well as by SOP platforms such as OSGi can be protected by Java
permissions. However, they fail in being an efficient security solution, as discussed in Section
7.3.3. Their deficiencies are 1) the runtime overhead, up to 30 %, 2) the programmative
definition of sensitive methods, and 3) the runtime failure they imply. The runtime overhead
induces an important loss in user experience. Programmative definition of sensitive methods
implies that each sensitive method declares itself as such. This is likely not what malicious
code does and makes the Java permissions approach valid for access control in benevolent
applications only. Failed security checks lead to errors during the execution or urge the user to
grant required execution rights, often without a precise understanding of their consequences.

Our access control method should therefore have following properties. It should imply little
to no runtime overhead. It should support declarative policies for arbitrary code. Lastly, it
should not discover unresolved rights at runtime.
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8.3.2 Definition of CBAC

The CBAC security model is defined to provide a solution to the identified requirements for
access control in SOP platforms.

The CBAC Security Pattern The Component-based Access Control security pattern
The Component-based Access Control security pattern aims at enforcing access control at

the code level by identifying the method calls that are performed in the component. Direct
calls, performed in the component, as well as indirect calls, performed in dependencies, are
considered. This security mechanism is applicable for all component platforms where an
installation phase can be identified to enforce code analysis and verification. The objective
is to replace the Java permissions security model, also known as Stack-based Access Control,
while resolving its limitations. The CBAC analysis is performed as follows for each component.
The description, as list of methods, of the calls that are performed in the component are
extracted through static analysis. The security verification is performed in two steps: first,
the calls that are directly performed in the component are verified; next, the calls that
are performed in the component dependencies are checked. A call can be executed if it is
innocuous or if it is both sensitive and granted for all of its call stack. Since a component
is provided by a given issuer, it builds a security domain (see Section 4.1.3). Static analysis
enables to perform checks without impairing the runtime performances of the applications.
Explicit policies enable to extend the calls that are considered as sensitive, what is not possible
with Java permissions.

The structure of the Component-based Access Control model is shown in Figure 8.3 as an
UML sequence diagram.

Figure 8.3: The Component-based Access Control security pattern: sequence diagram

Components that are valid according to the CBAC policy are installed. Others are rejected.
The limitation of CBAC is that static analysis implies a certain rate of false positive when
compared to runtime analysis and thus a rejection rate that is higher as would be required
to prevent the dangerous calls that are actually performed.
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Hypotheses The CBAC security model is valid when the two following hypotheses are valid:

• The component platform itself is not modified i.e. the process of access right verification
cannot be tampered with. This can be obtained through the use of a Trusted Computing
Base (TCB) [AFS97].
• Each component contains a valid digital signature which guarantees that no modification

has been done to the component archive and that the component signer name is unique
and known by the platform2.

Formalization Following parameters are defined to describe security policy-related entities
in an extensible component platform:

pf : the Component platform,
bi : the ID of the considered bundle,
{b}i : the list of bundles on which the bundle i depends,
CSpf,bi : the sensitive calls performed by the bundle i directly to the platform, or directly to

the bundles on which it depends,
pi : the provider of the bundle bi,
Api : the set of authorized sensitive calls for the provider p of the bundle i,
PSCbi : the set of Performed Sensitive Calls by the bundle i, directly to the platform or via

method calls to other bundles,
PSC{b}i : the set of Performed Sensitive Calls by the bundles on which the bundle i depends.

PSC{b}i =
∑

bj in {b}i PSCbj .

• A component N is valid if:

bi, pi, pf ⊢ Api ∧ PSC{b}i ,¬PSC{b}i (8.1)

with PSCbi = CSpf,bi ∨ PSC{b}j (8.2)

This means that a bundle can be installed when the calls that are made directly to the
platform or to other bundles and all calls that are made via other bundles are either sensitive
and allowed by the current policy or innocuous.

This can be demonstrated with the following argument through recursion. Suppose that
the set of Performed Sensitive Calls for the bundle k, PSCbk , is available for all bundles k that
are already installed on the gateway. The bundle i which has dependencies to a set of bundle
bj can be installed if its execution does not break the access control policy through direct or
indirect calls. The value of PSCbi , the set of Performed Sensitive Calls for the bundle i, can
then be extracted. The demonstration of this theorem with Sequent Calculus is given in the
Appendix of the related paper [PF08b] and available on the web3.

8.3.3 Implementation

The first step in validating the proposed security model is to implement it so as to evaluate its
feasibility and the impact is has on performances. The implementation of the CBAC Model
is performed on the Felix implementation of the OSGi framework.

2In particular, this implies that default Java Archive signature verification tools should not be used [PF07b].
3http://www.rzo.free.fr/parrend08cbac.php

126



8.3 Component-based Access Control - CBAC

Integration with OSGi The integration of the CBAC checker library with the OSGi platform
is done through a call to the OSGiSecurityChecker.check() (which is called Checker.check()

in the security pattern, Figure 8.3) that takes place immediately before the actual installation
of the bundle on the Java/OSGi platform. In Felix, this check is performed at the end of
the creation of the BundleArchive object, and precisely at the end of the revise() method.
This ensures that all data that is required to check the component is available, including the
component itself and that, in case of error, the platform is rolled back to the state before the
operation (installation or update of a bundle) began.

The verification of the compliance between a component and the CBAC policy requires that
the issuer of the component is known, for instance through the component digital signature,
as presented in Section 2.1. The CBAC mechanism can not be enforced if the digital signature
is not available.

Implementation Choices The goal of the CBAC library is twofold: to handle the policies
to be enforced, and to extract related data from the component Bytecode through static
analysis. Policy management is developed in an ad-hoc manner. Static Bytecode analysis is
performed with the ASM library 4 [BLC02]. It aims at extracting the list of sensitive calls
that are performed by the components. ASM is selected because it is much smaller than other
libraries for Bytecode manipulation such as BCEL 5 or SERP6, and because its performances
are better by several orders of magnitude 7.

An earlier prototype has also been built using the FindBugs framework which often implies
an overhead of more than 100% in performance because of the indirection between the SOP
platform and the Bytecode analysis library. This overhead is mainly due to the fact that
FindBugs is a development tool and not a tool for securing execution environments. In this
context, expressivity and flexibility is privileged over performance.

Policy Management Since CBAC intends to replace Java permissions, the CBAC policy is
expressed according to a very similar syntax. The objective is to relieve developers from as
much learning efforts as possible.

Table 8.3 shows an example of a CBAC policy file.

A CBAC policy file is defined for the whole platform. It is compound of two parts: the
list of sensitive methods and Manifest attributes, and the execution grants for each bundle
signer, i.e. the sensitive methods and Manifest attributes the signer is allowed to execute.

The list of sensitive methods contains the qualified name* of packages, classes and methods
that are considered as sensitive. The sensitivity property is hierarchical. If a given package
is sensitive, all the classes it contains are sensitive. If a given class is sensitive, all the
methods is contains are sensitive. The keyword <init> is used to denote the constructor
method, as in the Bytecode language. The list of sensitive Manifest attributes contains the
name of the attributes that are sensitive, such as Fragment-Host which enables a bundle
to attach to another (see Section 5.3.1). The default values for sensitive methods should
cover all methods that are protected through Java permissions, as well as all methods that
are identified as sensitive in the Malicious Bundle catalog. The identification of sensitive

4http://asm.objectweb.org/
5http://jakarta.apache.org/bcel/
6http://serp.sourceforge.net/
7http://james.onegoodcookie.com/?p=106, in addition to the conference paper by the authors [BLC02]
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sensitiveMethods {

java.io.ObjectInputStream.defaultReadObject;

java.io.ObjectInputStream.writeInt;

java.security.*;

java.security.KeyStore.*;

java.io.FileOutputStream.<init>;

};

sensitiveManifestAttributes {

Fragment-Host;

}

grant Signer:bob {

Fragment-Host;

java.io.ObjectInputStream.defaultReadObject;

java.io.ObjectInputStream.writeInt;

java.io.FileOutputStream.<init>;

java.security.Security.addProvider;

java.security.NoSuchAlgorithmException.<init>;

java.security.KeyStore.getInstance;

...

};

Table 8.3: Example of a CBAC policy file

methods from the Vulnerable Bundle catalog would require the support of single method
names such as readObject and writeObject, to protect the access to serialization.

The execution grants contain the list of attributes and methods that the related signer can
access. In Java permissions, the Principal* for a code archive can be either the signer or
the code location on the network or on the filesystem. The principal for CBAC can only be
the signer of the archive. This enables to guarantee that the archive has been issued by the
signer itself and that the trust that can be put on the component is the same that is put
on the signer itself. Of course, several grant entries can exist in the CBAC policy, because
bundles are likely to be provided by various signers.

Management tools enable to check the validity of bundles or to extract the policy they
require. The cbac_validity.sh tool checks the validity of a bundle according to the policy,
without taking dependencies into account. The cbac_requirement.sh tool provides the
CBAC policy requirements for a bundle or set of bundles, and for a given list of sensitive
methods. They are currently both implemented as Linux shell scripts.

The access control check for indirect calls is performed as shown is Figure 8.3: the list of
performed sensitive calls is stored for each by the platform through a DependencyResolver

object. Bytecode analysis for each bundle is performed when it is installed or updated, and
needs not be performed again when new bundles that depends on them are installed.
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Performances One of the objective of CBAC is to resolve the performance limitations of
Java permission. The overhead implied by CBAC should therefore be reduced, so as to makes
it a credible alternative to the Java standard.

Figure 8.4 shows the duration of the CBAC check only and Figure 8.5 shows the performance
of Digital Signature validation and CBAC check which are to be performed together to ensure
the validity of the analysis.

Figure 8.4: Performances of OSGi security: CBAC check only

Figure 8.5: Performances of OSGi security: Digital signature and CBAC checks

These graphs highlight the fact that for a limited number of sensitive methods (which is
usually the case), the overhead implied by CBAC is negligible when compared to the duration
of the digital signature check. Note that the abscissa is not linear but represents the size of
the various bundles that are available in the Felix distribution of the OSGi platform.
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For most bundles, that are smaller that 30 KBytes, the verification time for CBAC only
does not exceed 20 ms. For bundles until 100 KBytes, it is less than 40 ms. For the bigger
bundles, that weight a couple of hundred KBytes, the verification time does not exceed 140
ms.

For the bundles that weight 70 KBytes, the verification time, including the verification of
digital signature, is less than 500 ms. This concerns the vast majority of sample bundles.
For bundles under 100 KBytes, the verification time does not exceed 600 ms. In rare cases,
where bundles weight several hundred KBytes, the verification time is beyond one second.
The worst case example is 2.3 seconds.

These figures show that the performance cost of CBAC is very limited, especially when
compared with the verification of the digital signature. Any SOP platform that intends to
put any control on the security status of the executed code should verify the digital signature
of bundles8. Moreover, this overhead is restricted to the installation phase of components. It
therefore does not impact the runtime behavior.

Advanced Features To provide a proper protection of OSGi applications, several comple-
mentary features have to be defined. They are not implemented in the first CBAC protype
but are required to support an efficient use of this security mechanism.

The first feature is Privileged Method Calls. Privilege calls means that a given component
can execute sensitive calls, even though the initial caller of the method does not own sufficient
rights. This is for instance the case of logging mechanisms. A component from a less trusted
provider can log its action on a file through the platform logger without having access rights
to the file system.

The second advanced feature which can easily be provided by the CBAC model thanks to
its declarative nature is the support of both Positive and Negative permissions. Currently,
negative permissions are set by identifying a given method call as ‘sensitive’; positive permis-
sions are set by allowing a given signer to execute some methods. A more flexible expression
could be introduced in the future, in particular to support negative permissions for a given
signer without impacting the policies for other bundle providers.

The last required feature is to support Access Control for Service Calls. The OSGi platform
support Service-oriented Programming (SOP) [BC01] and thus calls through services that are
published inside the platform. Since the services are resolved at runtime, a runtime mechanism
is to be defined that enforces the CBAC policy for these service. Otherwise, package level
access control can be by-passed through service calls.

8.3.4 Results of Security Benchmarking

The validation of the proposed security model is performed through security benchmarking,
to check whether requirements are met.

Prevented Attacks The CBAC security model prevents the exploitation of the following
vulnerabilities. The references of vulnerabilities according to their definition in the Malicious
Bundle catalog in Appendix B.1, and in the Vulnerable Bundle catalog in Appendix B.2, are
given.

8This is not true in the case of code that is proved to be correct such as Proof-Carrying Code. However, the
availability of this technique does not allow so far to use it for production systems, at least in the Java
world.
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Security Mecha-
nism

# of Protected Flaws # of Known Flaws Protection
Rate

Hardened OSGi
(HO)

8 32 25 %

CBAC 16 32 50 %

Java Permissions
(Perms)

13 32 41 %

HO + CBAC 24 32 75 %

HO + Perms 21 32 66 %

Table 8.4: Protection rate for the CBAC protection mechanism, and comparison with the
Java Permissions alternative

[The evaluation is performed with the Malicious Bundle catalog as reference, i.e. only
platform vulnerabilities are considered. The results are given for the Felix/CBAC

implementation.]

• ‘CPU load injection’ (mb.native.1) when it is performed through native code.
• System.exit() (mb.java.1) and Runtime.halt(mb.java.2).
• ‘Recursive Thread Creation’ (mb.java.3), ‘Hanging Thread’ (mb.java.4) and ‘Sleeping

Bundle’ (mb.java.5) when the use of the Thread API is forbidden.
• ‘Big File Creator’ (mb.java.6) when the use of the File API is forbidden.
• ‘Code Observer’ (mb.java.7), ‘Component Data Modifier’ (mb.java.8) and ‘Hidden Method

Launcher’ (mb.java.9) when the use of the Reflection API is forbidden.
• ‘Launch a Hidden Bundle’ (mb.osgi.6) and ‘Pirate Bundle Manager’ (mb.osgi.7) when

the use of the OSGi BundleContext API is forbidden or restricted.
• ‘Execute Hidden Classes’ (mb.osgi.12), ‘Fragment Substitution’ (mb.osgi.13) and ‘Ac-

cess Protected Package through split Packages’ (mb.osgi.14) if the use of Fragments is
forbidden.
• ‘Shutdown Hook’ (vb.java.class.4) if the use of Shutdown hooks are forbidden.
• ‘Expose Internal Representation - Serialized Sensitive Data’ (vb.java.1), ‘Cloning’ (vb.

java.class.9) and ‘Deserialization’ (vb.java.class.10) could be prevented if CBAC is ex-
tended to support the execution of methods based on their (short) name. This feature
is currently not implemented.

A recapitulative table for platform vulnerabilities and the suitable protection mechanisms
can be found in Table 1 from the related technical report [PF07a].

Protection Rate for CBAC The Protection Rate for CBAC and other security mechanisms
for the Java/OSGi platform is given in Table 8.4: PR value for Hardened OSGi (see Table
8.1), PR value for CBAC, PR value for Java permissions, and two combinations: PR value
for Hardened OSGi + CBAC, and PR value for Hardened OSGi + Java permissions.

All results are given for our implementation of CBAC over Felix.

CBAC protects from 50 % of the vulnerabilities from the Malicious Bundle catalog. Com-
bination of several mechanisms give the maximal protection level that can be achieved with
available tools. The use of Hardened OSGi together with CBAC provides a protection rate of
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75 %. In comparison, Hardened OSGi together with Java permissions provides a protection
rate of 66 %.

CBAC prevents the exploitation of 1 single bundle vulnerability out of 33 in the Vulnerable
Bundle catalog.

Comparison with Java Permissions CBAC is designed to solve several drawbacks of Java
permissions. It therefore presents better properties what relates to runtime overhead, policy
expression, and absence of runtime failures. Runtime overhead is prevented by the execution
of all verifications at install time. Policy are expressed in a full declarative manner which
enables to set any method as vulnerable even after the application has been released or
installed. Since components that do not comply with the CBAC policies are rejected before
being installed, all components that are on the platform are executed seamlessly, with risk of
runtime failure.

Moreover, the security benchmarking with the Protection Rate metric shows that CBAC
has a slightly better protective power than Java permissions.

As a runtime mechanism, Java permissions keep being more accurate. A call that is present
in the code but never executed will be rejected by CBAC but be unnoticed with permissions.
This can cause problems for instance with libraries that contain an important amount of code
that is not used in a specific context.

Limitations The proposed model for CBAC is an efficient step towards the development of
more secure applications. However it has some drawbacks and does not prevent all vulnera-
bilities.

The main drawback of the current implementation is the coarse granularity of the security
checks. All calls that are contained in the code are taken into account for policy compliance,
even if they are never called. An extension of the model using Control Flow Graphs [BJMT01]
could be an efficient solution for this problem.

Another drawback which is easier to patch is the fact that the declaration of sensitive
methods that are not bound to a specific class is not supported. Vulnerabilities that could be
prevented by this extension exist in the Vulnerable Bundle catalog, such as the readObject()

or writeObject() methods that are called during the serialization process.

Seven platform vulnerabilities stay unprotected by the Hardened OSGi and CBAC security
mechanisms. They are bound with consumption of resources such as CPU and memory, and
the lack of algorithmic safety in the Java language. Resource consumption control can be
done by taking advantage of the fact that each bundle is started in a dedicated class loader to
isolate it. Such control can only be enforced inside the JVM and can not be done through the
Software Security* techniques. The JnJVM provides such an isolation of components based
on class loaders [TGCF08]. The integration of this secure JVM with our hardened OSGi
platform is presented in Section 9.1.

The last limitation of CBAC is that it contains a flaw that enable to by-pass the access
control mechanism. This flaw is namely the ‘Malicious inversion of control through overridden
parameter’, that is presented in Section 7.2.2.1. When a component calls another one, it can
provide its own implementation for all parameter classes that are not final. In particular, they
can provide an implementation that performs a call back to the initial class. CBAC (contrary
to Java permissions for instance) can not identify such calls. It is therefore necessary to put
additional constraints on the code that is shared between components, to prevent the abuse
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of this flaw - and of other flaws that are presented in the Vulnerable Bundle catalog. This
effort leads us to the definition of Weak Component Analysis, WCA.

8.4 Weak Component Analysis - WCA

Our proposition in the Secure Coding category for secure software construction is the Weak
Component Analysis (WCA) code validation tool. Its goal is to ensure that installed com-
ponents are free from common vulnerabilities that can be exploited by other components.
It is based on the taxonomy* for implementation of component vulnerabilities presented in
Table 7.3 page 106. Some vulnerabilities can be exploited when they are located in shared
classes such as exported packages from OSGi bundles, some when they are located in shared
objects such as SOP services, some can be exploited independently of their location in the
component. WCA is presented in [Par09].

8.4.1 Requirements

Secure coding is required to ensure the validity of secure design: high level protection mech-
anisms can otherwise be bypassed though the exploitation of local weaknesses. This fact is
highlighted by the Vulnerable Bundle vulnerability catalog. Almost none of its entries are
protected by the protection mechanism we propose, nor by standard protection mechanisms
such as the Java security manager.

Moreover, static analysis tools such as FindBugs and JSLint (see Section 4.3.2 page 52)
enforce coding best practices but do not consider the exploitability of vulnerability. We claim
that the development of secure components imply to enforce very strict constraints on code
that is accessible to third party components, i.e. shared classes and shared objects, to prevent
uncontrolled access from one component to another. The inner code of the component should
be written in a clean manner but is less sensitive.

One special case is to be considered. Some components share all of their classes. This is
the case of libraries but also of OSGi bundles that act as fragment Host (see Section 5.3.1
page 65). All classes are then shared classes and should be free from related vulnerabilities.

Finally, the analysis should be performed on the Bytecode level to enable the verification
of Java components for which the source code is not available.

8.4.2 Definition of WCA

The WCA Security Pattern The Weak Component Analysis security pattern aims at pre-
venting exploitable vulnerabilities in the installed components. It is applicable for all com-
ponent platforms that execute components sharing code resources with different exposition
types: sharing of objects, sharing of classes, and internal classes. Internal classes must be
analyzed since they can contain language constructs that are identified as potential vulner-
abilities such as synchronized code. Since different vulnerabilities flaw code according to
its exposition, component classes should be written accordingly. The objective is to prevent
malicious components from impacting the behavior of others and from gaining access to their
internal state. Dubious interactions are those that 1) do not occur through proper encapsu-
lation, and 2) enable to impact in an unintended manner the behavior of components that
do not take part in the current interaction. The realization of WCA is motivated by the fact
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that available tools only enforce generic best practices for coding without regard to the actual
threat. They are therefore likely to be not strict enough for highly exposed code.

WCA analysis requires that the actual exposition of each class in the component is known:
which classes are kept internal, which classes are shared as such, and which classes are shared
as objects, for instance as service. Identification of vulnerabilities can be performed through
static analysis. WCA policy defines the vulnerabilities that are to be identified and the type
of reaction for each of them. If WCA is used during development, it typically generates a
report with all identified vulnerabilities. If it is used to perform code check at install time, it
typically rejects invalid components.

The structure of the WCA Security Pattern is shown in Figure 8.6.

Figure 8.6: The structure of the WCA Security Pattern

The limitation of WCA is that it is not possible to identify vulnerabilities from code or Byte-
code in the general case through static analysis. Only vulnerabilities that can be expressed
can be identified. Others are neglected.

Hypotheses The WCA security model is valid when the following hypothese is valid:

• The component platform itself is not modified i.e. the process of access right verification
cannot be tampered with.

The WCA formal Vulnerability Pattern Target flaws are expressed as a formal vulnerability
pattern which defines the set of properties that characterizes a vulnerability. The patterns
are compared with the structure of the classes and the code of their methods. When all
properties of a pattern occur in the same class, the related vulnerability is identified. The
formal vulnerability pattern is composed of three parts: the vulnerability reference, the related
message, and the characterization of the vulnerability.

Listing 8.5 gives a concrete example of the formal Vulnerability Pattern*, for the vulnera-
bility Synchronized method call.
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<vs:vulnerability>

<vs:vulnerabilityRef>

<vs:catalog_id>vb</vs:catalog_id>

<vs:src_ref>java</vs:src_ref>

<vs:type>class</vs:type>

<vs:id>15</vs:id>

</vs:vulnerabilityRef>

<vs:message>Synchronized method call. If the method call is blocked

for any reason (infinite loop during execution, or delay due to an

unavailable remote resource), all subsequent clients that call this

method are freezed (Vulnerability can be exploited with class-sharing only

through a static call).

</vs:message>

<vs:exposition>sharedClasses</vs:exposition>

<vs:location>allCode</vs:location>

<!--vs:weaknessScope>publicClasses</vs:weaknessScope-->

<vs:method>

<vs:access>synchronized</vs:access>

</vs:method>

</vs:vulnerability>

Table 8.5: Example of the formal Vulnerability Pattern: Synchronized Method Call

This vulnerability is referenced as the vulnerability vb.java.class.15 (see Appendix B.2
page 179). It concerns components that have classes exposed as ‘shared classes’, and occurs
if a method located in any class of the component (allCode) is synchronized.

Policy Management Policy management in WCA consists in setting the type of reaction
when a vulnerability is discovered. The reactions can be: ignore, warning, or reject. It
can be set for each individual vulnerability. The maximum reaction level is set according to
the origin of the related class. Classes can be provided either by the current component, by
dependency components, by the classpath, or in the standard JVM archives.

Table 8.6 shows the example of a WCA policy file.

In this example, the reaction level for the vulnerability vb.java.class.14 is set to warning.
The maximum reaction level for the classes provided in the current component (current_bundle

property, since WCA implementation is OSGi specific so far) is also set to abort.

8.4.3 Implementation

The fist step in validating the proposed security model is to implement it so as to evaluated
its feasibility and the impact it has on performances. The implementation of WCA is realized
as a stand-alone command line tool. It provides a BundleVulnerabilityChecker Java class
to makes its integration as a library into existing systems easy.
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<!-- policy entries -->

<vcp:policyEntries>

<vcp:policyEntry>

<vcp:vulnerabilityRef><!-- vulnerability reference -->

<vcp:catalog_id>vb</vcp:catalog_id><!-- tobe released -->

<vcp:src_ref>java</vcp:src_ref>

<vs:type>class</vs:type>

<vcp:id>14</vcp:id>

</vcp:vulnerabilityRef>

<vcp:level>warning</vcp:level><!-- could be: ignore|warning|abort -->

</vcp:policyEntry>

<!-- force max level entries -->

<vcp:forceMaxLevel>

<vcp:maxLevel>

<vcp:maxLevel>

<vcp:origin>current_bundle</vcp:origin>

<vcp:level>abort</vcp:level>

</vcp:maxLevel>

</vcp:forceMaxLevel>

Table 8.6: Example of the Policy for Reaction to Vulnerability

WCA in the Component Life-Cycle The WCA tool is made available through two different
versions: bundlevulchecker.xml, based on the XML expression of the formal vulnerability
pattern, and bundlevulchecker.hardcoded which implements the same policy through Java
programming to limit the performance overhead due to the analysis of XML policies as well
as the memory footprint bound with the presence of additional libraries.

bundlevulchecker.xml aims at providing flexibility for developers. The set of vulnerabili-
ties that are looked after are defined in a dedicated XML file. They can therefore be selected
easily. Current implementation of the WCA tool only enables this selection. More mature
versions should support the definition of arbitrary vulnerabilities.

bundlevulchecker.hardcoded aims at providing a better performance for validation of
the component at install time. To ensure the coherence between both versions, the class
enforcing the vulnerability analysis in bundlevulchecker.hardcoded, GenVulnerability, is
generated automatically from the XML file for vulnerability definition.

Implementation Choices The implementation of WCA requires the support of following
information: the exposition of the classes in the component, the representation of the classes
through a dedicated meta-model. Moreover, a library for static code analysis must be selected.

The conditions for the realization of WCA is that the exposition of each class from the
component under analysis is known. In the case of OSGi, shared classes are the classes
contained in exported packages. Shared services can not be easily deduced from code, at
least in the general case. We therefore advocate to add a specific ServiceImpl entry in the
metadata which references the service and related implementation classes. This makes the
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current implementation of WCA not fully compatible with default implementation of OSGi
bundles due to this additional metadata entry.

The representation of the classes is performed through a complete meta-model of Java
classes. In particular, the entities MetaClass, Attribute, MetaMethod, Parameter are defined
and extracted for each class under analysis. They are used to perform the pattern matching
with the formal vulnerability patterns.

Bytecode analysis is performed with the ASM library as in the case of the implementation of
the CBAC model. The library provides a relative lightweight support for Bytecode handling
and proves to have better performances than other available libraries.

The size of the libraries for the WCA implementations together with their dependencies is
437 KBytes for the bundlevulchecker.xml version and 373 KBytes for the bundlevulchecker.

hardcoded version. The difference lies essentially in the absence of XML handling libraries
in the second one. The ASM library itself is 319 KBytes big. This let assume that many
classes that are not used by WCA could be pruned for instance to provided a lightweight
implementation for embedded platforms.

Performances The two versions of WCA pursue different goals: bundlevulchecker.xml

is a development tool, and bundlevulchecker.hardcoded is intended to be executed im-
mediately before the component is installed. Consequently, the performance aspect is less
critical for the first version, and is more important for the second one. The performances are
extracted for three configurations: bundlevulchecker.hardcoded in abort mode, i.e. the
verification aborts as far a vulnerability is found, bundlevulchecker.hardcoded in warning

mode, i.e. a vulnerability report is printed when the whole component is checked, and
bundlevulchecker.xml in warning mode. All tests are performed with the check option,
which enables to analyze the method code. Code analysis is necessary for a couple of vul-
nerabilities, and implies a non-negligible overhead. Tests results are therefore worse case
tests.

Figure 8.7 shows the performance of a WCA check for sample vulnerable bundles, according
to the number of public classes. Public classes are classes that pertain to the ‘shared classes’
or ‘shared object’ category. The samples classes are test classes that each contain one specific
vulnerability from the ‘Vulnerable Bundle’ catalog.

The overhead implied by the reading of XML files is 20 ms. It is observed when 0
public classes exist in the component, and therefore when no code analysis is performed.
For components with few public classes, the analysis overhead is between 10 and 20 ms
for bundlevulchecker.hardcoded, and between 20 and 40 ms for bundlevulchecker.xml.
When the number of public classes increase, the overhead grows in an important manner, as
shows the last sample. One can note that the analysis duration is not proportional to the
number of public classes. This is due to the fact that the analysis depends on many factors:
type of public class, ‘shared class’ or ‘shared object’, internal complexity and size of the class.

Figure 8.8 shows the performance of a WCA check for actual bundles, namely the bundles
from the Apache Felix trunk code repository, according to the number of public classes.

The analysis for an arbitrary set of real OSGi bundles confirms the observation from Fig-
ure 8.7: the duration generally grows as the number of public classes do, but is not pro-
portional to it. Most analyses do not exceed 200 ms. However, in several cases, analysis
takes more that 400 ms, and more that 1 second for one example. These important values
are directly correlated with the size of the component under analysis. Moreover, for large
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Figure 8.7: Performances of WCA check for sample vulnerable bundles

analyses, the performance of bundlevulchecker.hardcoded is worse than the performance
of bundlevulchecker.xml. Consequently, it still provides a benefit in term of used disks
space, but have a negative impact on the system reactivity.

Figure 8.9 shows the performance of a WCA check for actual bundles, namely the bundles
from the Apache Felix trunk code repository, according to the component size, which is an
indirect indicator of the total number of classes in a component and of its complexity (number
of methods, attributes, size of the methods that are analyzed).

A stronger correlation between component size and analysis duration can be observed.
However, there is still no proportionality. Though in most case the WCA verification requires
only a short time, it can not be considered as negligible, and may even imply a long delay. It
should be used carefully as an install time mechanism, since it is likely to have an impact on
the performances of the whole system, in particular in term of CPU availability.

Advanced Features WCA makes possible to install only components that are known to be
free of common vulnerabilities. However, its performance impact can be important, since the
whole code of public classes and internal classes must be analyzed. Moreover, automated
analysis through the formal vulnerability pattern only partially covers the set of known vul-
nerabilities.

We therefore propose to define a WCA certificate to enable the costly analysis to be
performed during the development. The WCA certificate is made of two sections: the
Manual-Review section, which enable reviewers to express the vulnerabilities they have looked
after, and the Automated-Review which contains the list of vulnerabilities that are not present
in the code, according to the WCA tool. Such certificate require that the component signer
is liable for the validity of these assertions.

Figure 8.7 shows an example of a WCA certificate, for a component that is checked for
class-level vulnerabilities only.

Vulnerabilities in this class are numbered from 1 to 14. Vulnerabilities in objects are not
verified: it is therefore likely that some of them exist in this component. The name of the
signer is repeated for information only. It is actually redundant with the information that is
contained in the X.509 certificate of the signer.
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Figure 8.8: Performances of WCA check for Felix trunk bundles

Signer-Name: CN=Alice, OU=Wonderland Unit, O=Wonderland, L=Nowhere, ST

=Rhone-Alpes, C=FR

Manual-Review: vb.java.class.4, vb.java.class.6, vb.java.class.7, vb.j

ava.class.8, vb.java.class.9, vb.java.class.10, vb.java.class.14

Automated-Review: vb.java.class.1, vb.java.class.2, vb.java.class.3, v

b.java.class.5, vb.java.class.11, vb.java.class.12, vb.java.class.13

Table 8.7: Example of a WCA Certificate

8.4.4 Results of Security Benchmarking

The validation of the proposed security mechanism is performed through security benchmark-
ing, to check whether the requirements are met.

Prevented Attacks The WCA security mechanism prevents the exploitation of the following
vulnerabilities. The reference of vulnerabilities according to their definition in the Vulnerable
Bundle catalog in Appendix B.2 are given.

• ‘Stores Mutable Object in static Variable’ (vb.java.class.1).
• ‘Stores Array in Static Variable’ (vb.java.class.2).
• ‘Non Final Static Variable’ (vb.java.class.3).
• ‘Private nested Classes and Attributes made protected’ (vb.java.class.5).
• ‘Finalize Method’ (vb.java.class.13).
• ‘Synchronized Method’ (vb.java.class.15).
• ‘Synchronized Code’ (vb.java.class.16).
• ‘Returns Reference to Mutable Object’ (vb.java.object.1).
• ‘Returns Reference to Array’ (vb.java.object.2).
• ‘Non Final non Private Field]’ (vb.java.object.4).
• ‘Non Final Parameters - Malicious Implementation’ (vb.java.object.15).
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Figure 8.9: Performances of WCA check for Felix trunk bundles, according to bundle size

• ‘Non Final Parameters - Inversion of Control’ (vb.java.object.16).

A recapitulative table for all vulnerabilities and the suitable protection mechanisms can be
found in Table 6 from the related technical report [PF08c].

Protection Rate for WCA The Protection Rates for the mechanisms enabling to prevent
vulnerabilities in OSGi bundles are given in Table 8.8. These mechanisms are WCA of
course, CBAC, the Java security manager. Since all vulnerabilities from the Vulnerable Bundle
catalog can not be identified in an automated manner, manual review is also considered.
However, since it relies on human intervention, it can not be considered as a guarantee of
absence of the vulnerabilities of interest.

CBAC protects from 2 vulnerabilities. Up to 3 more could be prevented if CBAC would
support the definition of method ‘short names’, readObject()), as sensitive methods, which
is not the case in the current implementation.

Limitations The proposed WCA tool is an efficient step towards the development of secure
Java components. In particular, it is to the best of our knowledge the only one that takes the
exposition of classes and the actual set of exploitable vulnerabilities into account. However,
it has some restrictions, and does not prevent all vulnerabilities.

The limitations of the current WCA model are the following ones. First, the use of static
analysis together with pattern matching enables to identify only a subset of the known vul-
nerabilities. A more complete definition of the formal vulnerability pattern is required. In
particular, it should support the expression of state machines to analyse method Bytecode,
control flow graphs (CFG) and data flow graphs (DFG). These artifacts are used for instance
by FindBugs, but are hardcoded. They are consequently hard to validate and to reuse. The
expression of complex vulnerabilities can be performed for the source code with XPath, such
as in PMD. However, the design of the JVM stack does not enable to reuse this approach
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Security Mecha-
nism

# of Protected Flaws # of Known Flaws Protection
Rate

CBAC 2 33 6 %

WCA 12 33 36 %

Java Permissions
(Perms)

3 33 9 %

Manual Review 33* 33 100* %

WCA + Manual Re-
view

33* 33 100* %

*Security level achieved through manual review can not be considered as being an actual
guarantee: human auditors can find any type of bugs they know, but are not likely to
find them all.

Table 8.8: Protection rate for the WCA and complementary protection mechanisms
[The evaluation is performed with the Vulnerable Bundle catalog as reference, i.e. only

component vulnerabilities in the context of the OSGi platform are considered.]

directly for Bytecode. Next, standard vulnerability patterns such as those defined for Find-
Bugs or JSLint, should be supported in addition to our Vulnerable Bundle catalog. This
would ensure that known vulnerabilities are all taken into account, and would help improve
the overall quality of code validated through WA. Lastly, the abstract definition of vulnerabil-
ities implies that they are specific to object oriented languages, but not limited to Java. The
model could therefore be extended to support other languages such as C#, C++, Delphi. Of
course, language specific features should then be taken into account.

The limitations of the current WCA implementation are the following ones. First, it is
specific to the OSGi platform. Other Java SOP component types such as Spring component,
or EJB, could also be supported with a minimal refactoring work. Next, WCA validation
implies in certain cases an important validation overhead. This could be limited by the
implementation of the proposed WCA certificate scheme to enable costly verification to be
performed by trusted issuers during the development. The last implementation improvement
that is required is the development of plug-ins for integrating WCA in common development
environments such as Eclipse or Maven.

Conclusion So as to solve the identified vulnerabilities in the Java/OSGi platform and re-
lated components, we propose a set of protection mechanisms: the Hardened OSGi recommen-
dations, to patch the features of the OSGi platforms that can be abused, CBAC, Component
Based Access Control, to support a flexible access control model and overcome the limita-
tions of the Java security manager, and WCA, Weak Component Analysis, to identify the
exploitable vulnerabilities in the code of SOP components.
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The realization of a secure execution environment* require that the different protection
mechanisms are integrated together, that vulnerabilities* that were not addressed in this thesis
are prevented, and that the components* themselves are coded according to the identified
constraints.

Security benchmarking* is performed to identify the relationship of the proposed mecha-
nisms with existing Java protection mechanisms and to assess their efficiency.

9.1 Hardened OSGi over a secure Java Virtual Machine

Software security* mechanisms provide a great improvement in the security level* of the
Java/OSGi platform*. However, all vulnerabilities can not be protected at the level of the
SOP platform and in the component code. In particular, resource isolation is a system* issue.
It builds a different area of research and could not be addressed in the time frame of this
thesis.

9.1.1 Resource Isolation for OSGi Platforms

Selection of a secure JVM The architecture of OSGi applications, where each bundle* is
started in a dedicated class loader, provides a sound isolation based on the namespaces. It
prevents uncontrolled interactions between the bundles. However, shared system data such
as system static variables (e.g. System.out) or resources such as CPU and memory can not
be protected.

A secure JVM for executing OSGi applications should therefore provide following features:
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• It should isolate bundles from each other in term of memory and CPU consumption.
• It should support the execution of legacy OSGi applications, inclusive the communica-

tion between bundles.

The Sun MVM is not suitable for this tasks, since its isolates can communicate through
system IPC only, and since each process is defined by a main method. Consequently, bundle
communication can not be supported, and the MVM can not deal with bundle activators.
The KaffeOS VM requires that the processes are defined as kernel or user processes. It can
neither deal with bundle activators.

The JnJVM [TGCF08] is a recent prototype implementing isolation of resources and static
variables based on class loaders. It is explicitly designed to be a secure execution environment
for the OSGi platform. As such, it supports the execution and the transparent management of
bundles. The main limitation of the JnJVM for executing legacy OSGi bundles is that static
variables are no longer shared at the system level, to prevent in particular the modification
of system variables. As the SOP paradigm intends to make the components communicate
through service* exclusively, it is possible to consider that no communication through static
variable should occur, and therefore that this limitation only enforces a programming best
practice. The JnJVM is currently under development at the Regal team of the LIP6 Labora-
tory, Paris1. It proposed to adapt the concept of Isolates, defined by the JSR 121, to support
isolation of system resources between the OSGi bundles [GTCF08]. Each isolate is executed
in a domain.

Domains are an hybrid of standard Java class loaders (see Section 4.1.3 page 42) and Isolates
from JSR 121 (see Section 4.3.1 page 50) which enables OSGi applications to run unmodified
in a protected way. They are so far only available for the JnJVM Virtual Machine.

The principles of security* domains are the following:

• Each bundle has its private environment.
• Class loading properties are preserved, in particular the possibility of user-defined class

loader.
• Direct method invocation between bundles is preserved, contrary to Java Isolates that

only support calls through IPCs.

Their implementation combines lightweight isolation and resource accounting. Lightweight
isolation means that domains share the system classes, have private access to the class
they load (as with standard class loaders). They have their own system static variable,
java.lang.Class instances, and interned Strings, as Java Isolates do. Consequently, classes
are either loaded by a domain, which is the case for all the classes of a given bundle, or
shared as common facilities, e.g. system classes, system libraries and the classpath. Resource
accounting encompasses CPU and memory consumption. Memory consumption is checked at
allocation opcodes in the applications and at allocations that are performed by the runtime.

The JnJVM The JnJVM is a full-fledged implementation of JVM Specifications [LY99]. It
is actually a set of scripts that can generate adaptative virtual machines in a flexible manner
[OTF05, TGCF08].

As such, it can be considered as a virtualized virtual machine, i.e. a virtual machine that
enable the dynamic adaptation of the behavior of the VM itself to enhance performances

1http://vvm.lip6.fr/projects_realizations/jnjvm/
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[Bac04]. This dynamism could be extended to the instruction set at the hardware level and
to the scheduler. The first implementation of the JnJVM was based on the Virtual Virtual
Machine Project2 which shares common goals with [Bac04], and on the Low Level Virtual
Machine (LLVM) project [LA04].

An adaptative virtual machine is a VM that can be modified at runtime, to adapt to the
system context (e.g. available resources) or to specific applications (e.g. by extending the VM
when required). Flexible generation of the VM means that it can be set up according to the
foreseen execution context. Modules such as Garbage Collector or Just-in-Time (JIT) com-
piler can be replaced or customized. The JnJVM is a research prototype with performances
that are comparable with the Kaffe Virtual Machine. JnJVM is a recursive acronym standing
for JnJVM is not a virtual machine.

9.1.2 Implementation

No modification to the OSGi platform is required: the domains of the JnJVM are designed to
support the execution of unmodified OSGi bundles. Hardened Felix is already integrated with
complementary protection mechanisms such as CBAC and WCA. Is is therefore sufficient to
start the secure implementation of the OSGi platform atop the JnJVM.

Figure 9.1 shows the architecture of a secure Java/OSGi implementation: Hardened OSGi
with CBAC over the JnJVM Virtual Machine.

Figure 9.1: Hardened OSGi with CBAC over the JnJVM Virtual Machine

The application layer is the following. The Micro Virtual Machine [OTF05] is a configurable
virtual machine that provides a minimal basis for execution of Java applications. It can be
customized through a Lisp-like language to replace core features such as the Just-In-Time
(JIT) compiler or Garbage Collector or to extend it. It is written in C++. The Micro Virtual
Machine runs VMLets which are executable configuration file. One such VMLet is the JnJVM
which can be enriched with the ‘domain’ security model presented hereafter. Our secure OSGi
platform is run atop the JnJVM.

9.1.3 Results of Security Benchmarking

Prevented Attacks* The JnJVM with security domains prevents the exploitation of the
following vulnerabilities. The references of vulnerabilities according to their definition in the
Malicious Bundle catalog in Appendix B.1, and in the Vulnerable Bundle catalog in Appendix
B.2, are given.

2http://vvm.lip6.fr/
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Security Mecha-
nism

# of Protected Flaws # of Known Flaws Protection
Rate

JnJVM 14 32 44 %

HO + JnJVM 18 32 56 %

Perms + JnJVM 22 32 69 %

CBAC + JNJVM 22 32 69 %

HO + Perms + Jn-
JVM

30 32 94 %

HO + CBAC + Jn-
JVM

30 32 94 %

Table 9.1: Protection rate for the OSGi platform over JnJVM for platform vulnerabilities
[The evaluation is performed with the Malicious Bundle catalog as reference, i.e. only

platform vulnerabilities are considered. The results are given for the Hardened Felix over
JnJVM configuration.]

• ‘CPU load injection’ (mb.native.1) which is prevented by monitoring CPU times of each
service and setting suitable limits.
• ‘Stand Alone Infinite Loop’ (mb.java.11).
• ‘Infinite Loop in Method Call’ (mb.java.12).
• ‘Memory Load Injection’ (mb.java.10) which is prevented by dedicating a memory allo-

cator to each service so that the system knows how much memory a service consumes.
• ‘Exponential Object Creation’ (mb.java.13), with a memory allocator that is tuned

accordingly.
• ‘Cycle between service’ (mb.osgi.9), in a similar way to the previous item.
• System.exit() (mb.java.1) and Runtime.halt(mb.java.2).
• ‘Recursive Thread Creation’ (mb.java.3) which is prevented by monitoring the number

of new threads.
• ‘Hanging Thread’ (mb.java.4) and ‘Sleeping Bundle’ (mb.java.5).
• ‘Synchronized Method’ (vb.java.15) and ‘Synchronized Block’ (vb.java.16).

It prevents in particular the exploitation of vulnerabilities bound with Thread management
and resource consumption.

Protection Rate for the integrated system Table 9.1 show the security benchmarking
results for the OSGi platform over JnJVM for the vulnerabilities of the OSGi platform.

The JnJVM alone accounts for a protection rate of 44 %.
When combined either with a Java security manager or Component-based Access Control

(CBAC), it provides a protection rate of 69 %. The interesting fact here is that both combi-
nation protect from the same set of vulnerabilities, although the Java security manager and
CBAC do not protect from the same vulnerabilities. This is due to their redundancy with
the JnJVM isolation mechanism. Consequently, designers can choose to use Java permissions
or CBAC according to their precise requirements. If performance is privileged, CBAC will be
the correct match. If the user is allowed to grant new rights to the applications to enable the
execution of some sensitive operation or if sensitive methods are optional or rarely used, the
security manager is a better choice. In both case, the JnJVM introduce a finer management
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Security Mecha-
nism

# of Protected Flaws # of Known Flaws Protection
Rate

Hardened OSGi
(HO) + Perms

24 65 37 %

JnJVM 14 65 22 %

HO + Perms + Jn-
JVM + WCA

44 65 68 %

HO + CBAC + Jn-
JVM + WCA

44 65 68 %

HO + CBAC + Jn-
JVM + WCA +
Manual Review

65* 65 100* %

*Security level achieved through manual review can not be considered as being an actual
guarantee: human auditors can find any type of bugs they know, but are not likely to
find them all.

Table 9.2: Protection rate for Hardened OSGi with CBAC and WCA over JnJVM for platform
and component vulnerabilities

[The evaluation is performed with the Malicious Bundle and the Vulnerable Bundle catalogs
as reference. The results are given for the Hardened Felix over JnJVM configuration.]

for sensitive operations such as thread handling: it can control the number of threads to avoid
excessive use and does not need to completely prevent them. Moreover it prevents platform
shutdown and crashes which is an important improvement for the system stability.

Together with Hardened OSGi (HO), these solutions provide a protection rate of 94 %. If
errors in the manifest settings are not considered as vulnerabilities, the protection rate can
be considered to amount to 30/31 = 97 %.

Table 9.2 show the security benchmarking results for the OSGi platform over JnJVM for
the vulnerabilities of the OSGi platform and components.

An important effort is still required to realize an Hardened OSGi platform with robust
bundles. In particular, bundle vulnerabilities are only partially prevented so far. Moreover,
management tools are still lacking to control individual security mechanisms.

The integration of the JnJVM with our protection mechanisms nonetheless provides an
important benefit in term of achieved security level. It supports the power of isolates while
keeping a programming model fully compliant with the OSGi specifications.

9.2 Developing secure Java/OSGi Bundles

Developing secure Java/OSGi bundles implies to comply with the constraints identified so
as to pass successfully the CBAC and WCA validation processes. The validation of bundle
code through static analysis is performed in two of the bundle life-cycle phases: at the end of
development, and at installation time.
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9.2.1 Identified Constraints

Dangerous method calls are the calls that are protected through Java permissions, OSGi-
specific permissions, and the additional calls that we identify as sensitive in the context of
SOP component platforms*. They should be used in a manner as limited as possible, by
trusted component providers only.

They are the following ones:

• Security related actions,
• File management actions,
• Some Graphical User Interface (GUI) management actions,
• Reflection,
• Access to the Runtime and System classes,
• Thread management,
• Network related action,
• Database access actions,
• Bean management actions,
• Class loading actions,
• OSGi management actions.

Based on the presented experiments and classifications* of vulnerabilities in Java/OSGi
component interactions, following recommendations can be emitted to component developers.
Security constraints should be enforced at two level: the component level, i.e. the application
architecture, and the public code level, i.e. the code that components make available to others.

Components should:

• only have dependencies on components they trust,
• never used synchronized statements that rely on third party code,
• provide a hardened public code implementation following given recommendations.

Shared Classes should:

• provide only final static non-mutable fields,
• set security manager calls during creation in all required places, at the beginning of the

method: all constructors, clone() method if the class is cloneable, readObject(ObjectInputStream)

if serializable,
• have security checks in final methods only,

Shared Objects (e.g. SOP Services) should:

• only have basic types and serializable final types as parameter,
• perform copy and validation of parameters before using them,
• perform data copy before returning a given object in a method. This object should also

be either a basic type or serializable,
• not use Exception that carry any configuration information, and not serialize data unless

a specific security mechanism is available,
• never execute sensitive operations on behalf of other components.

The actual implementation of these recommendations should be compliant with the secu-
rity requirements of the system where the components are deployed, and therefore with the
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existing security policy. For instance, some components can be allowed to access the network,
or to contain synchronized code if their implementation and dependencies are provided by
trustworthy code issuers.

9.2.2 Security in the Software Development Life-Cycle

Software security assurance* can be enforced throughout the development process of Java
components, in particular OSGi bundles, through the proposed code validation tools: the
CBAC engine and the WA tool. The secure development life-cycle of components is not to be
confused with SPIP , which is a process for building secure execution platforms. Moreover,
the recommendations we propose here do not take into account the integration of components,
i.e. the properties of the resulting software architecture. It focuses on the properties of the
component code.

As stated in the original claim of this thesis, in Section 1.1 page 3, the objective of developing
secure component is to enforce security as early as possible in the life-cycle while taking the
constraints of extensible SOP platforms into account. Consequently, two development options
are to be considered:

1. Target system and related security policies are known: the security policies are to be
enforced in the component code.

2. Off-the-Shelf components*: the target system and related security policies are not
known. The development should enforce maximal protection: vulnerabilities that are
‘flaws’* are to be prevented; vulnerabilities that are sensitive ‘functions’* are to be used
only if required. This is the case of sensitive functions defined in the CBAC model, and
of synchronized code in the WCA mechanism.

CBAC policies enforce access control requirements. WCA policies enforce code quality
requirements.

Figure 9.2 shows the publication process for Hardened OSGi Applications (development of
constraint compliant code, validation of the Access Control policies, deployment, component
verification according to constraints and policies, installation).

The secure development life-cycle SDLC for components is the following one:

• Developer training.
• Code development.
• Code analysis and correction (CBAC, WCA). This step should be simultaneous with

the previous one.
• Code manual review and WCA certification.
• Archive signature. This step should be done in an atomic process integrating previous

one to prevent code modification after the validation.
• Archive publication.
• Archive discovery and download.
• Automated verification (CBAC, WCA).
• Installation, execution.

This SDLC considers only protection mechanisms studied in this thesis, CBAC and WCA.
It does not intend to define a generic framework. In particular, it is generally recommended
to run all available tools for vulnerability identification through static analysis, since they all
covert non fully overlapping sets of vulnerabilities.
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Figure 9.2: The publication process for Hardened OSGi applications

9.3 Security Benchmarking of the integrated System

The final step of the SPIP process is the realization of the security benchmarking of the
integrated system, with all identified and newly defined security mechanisms. The types of
the defined mechanisms are compared with existing mechanisms for Java components. The
protection they provide are documented.

9.3.1 Protection Mechanisms for Java Systems

Figure 9.3 presents existing and proposed mechanisms for enforcing security in Java systems.
It complements the figure 4.4 page 55 with our own propositions.

Hardened OSGi is a Platform-level protection mechanism which is transparent for the
developed component. CBAC and WCA implies that the code is compliant with the policy
constraints. Both mechanisms are enforced at install time.

9.3.2 Protection against Vulnerabilities

The security improvement brought in by our propositions is now summarized. First, a qual-
itative overview of the contribution of each tool to the realization of a secure OSGi-based
environment is provided. Next, an overview of the the quantitative benchmarks presented
throughout this document is given.

The proposed protection mechanisms intend to prevent the vulnerabilities we identified.
These vulnerabilities can be of two kinds: flaws, which have to be patched, and dangerous
functions for which a suitable access control mechanism is required.

Figure 9.4 shows an overview of the type of vulnerabilities that are addressed by the pro-
posed protection mechanisms.

The vulnerabilities are found in two main locations: the platform and the components. The
access control scheme is part of the platform, since it is enforced by it. Platform vulnerabilities
are related to the access control model, to the implementation of the SOP platform, and to
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Figure 9.3: Existing and proposed protection mechanisms for Java systems

the JVM. The related solutions are the CBAC model, the Hardened OSGi recommendations
which are our own proposition, and the JnJVM with is an external proposition respectively.
Component vulnerabilities are located in the internal classes, in the shared classes or in the
shared object. The WCA tool, and CBAC marginally, enable to tackle an important number
of them. However, manual review is still required to identify complex vulnerabilities which
discovery can not be automated easily.

These protection mechanisms should be extended with new vulnerabilities as their are
discovered and documented.

The global results of the performed security benchmarking are now expressed for the three
types of OSGi platforms: the specification compliant default OSGi platform with a standard
JVM, the Hardened OSGi platform with a standard JVM, and the Hardened OSGi platform
executed on the top of a JnJVM. For each platform, the protection provided by our proposition
is quantified.

Following figures are implementations of the generic figure 6.2 page 83.

Figure 9.5 shows the security benchmark for a default OSGi platform with each of our
Software Security propositions.

The default OSGi platform does not provide any protection. CBAC, WCA for shared
classes and WCA for shared objects enable to achieve a protection rate of 50 %. Manual
code review is required for ensuring a higher security level, but does not provide any formal
guarantee.

Figure 9.6 shows the security benchmark for Hardened OSGi with each of our Software
Security propositions.
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Figure 9.4: The type of vulnerabilities in a SOP platform

The Hardened OSGi platform provides per se a protection rate of slightly more that 10 %.
CBAC, WCA for shared classes and WCA for shared objects enable to achieve a protection
rate of 60 %.

The vulnerabilities that are not covered are:

• Decompression bomb,
• Erroneous value of manifest attribute (which leads to denial-of-service of the faulty

component, but can not be exploited by malicious component to harm other entities of
the system),
• Exponential object creation,
• Cycle between services,
• The complex component vulnerabilities identified in the Vulnerable Bundle catalog.

The heterogeneity of these vulnerabilities imply that a specific security mechanism is to be
defined for each of them.

Manual code review is required for ensuring a higher security level, but does not provide
any formal guarantee.

Figure 9.7 shows the security benchmark for Hardened OSGi over JnJVM with each of our
Software Security propositions.

The Hardened OSGi platform executed on top of the JnJVM provides a protection rate of
almost 30 %. CBAC, WCA for shared classes and WCA for shared objects enable to achieve
a protection rate of almost 70 %. Manual code review is required for ensuring a very high
security level, but does not provide any formal guarantee. Moreover, vulnerabilities that are
neither identified by the tools nor known by the developers can not be identified.

Conclusion The protection mechanisms we propose provide a great improvement in the
security level of OSGi applications. These results are encouraging, and are an incentive
to develop tools with production level quality to let developers and architects build secure
OSGi-based environments.
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Figure 9.5: Security benchmark for a default OSGi platform

Figure 7.6 presents the taxonomy* of vulnerability categories in the Java/OSGi SOP plat-
form, along with the related security mechanisms we developed.

Most vulnerabilities are fully protected through the set of mechanisms we presented. Some
stay partially unprotected, and require further efforts to automate their prevention, in partic-
ular vulnerabilities in the component code. The simpler cases can be protected by applying
state-of-the art techniques to the set of vulnerabilities we defined.It is likely that more complex
cases can only be tackled with manual review, or with new static analysis methods.

We can consider that the research effort presented here provides a complete set of solutions
to the identified security weaknesses, even though it requires to be deepened to provide a
Java SOP platform that can be considered as sufficiently secure to be exploited in production
environments.

Of course, the reference set of vulnerabilities should be extended as new ones are discovered,
to enable to keep the proposed solutions up to date.

153



9 An integrated secure Java/OSGi Execution Environment

Figure 9.6: Security benchmark for Hardened OSGi

Figure 9.7: Security benchmark for Hardened OSGi over JnJVM
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Figure 9.8: Taxonomy: vulnerability categories and related security mechanisms in the
Java/OSGi platform
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Conclusions and Perspec-
tives 10

10.1 Synthesis

This thesis presents a comprehensive security* analysis of a specific SOP platform*, the
Java/ OSGi platform, as well as a set of potential solutions to the identified vulnerabilities*.
It focuses on one attack vector* against the target system*: the installation of malicious
components*. Two types of attacks* are considered: attacks against the platform, and attacks
against other components.

The objective is to identify the challenges that need to be tackled to make the ‘open
dynamic application’ vision a reality, and to propose first solutions: Component integration
is currently performed at design time only, because very limited guarantees can be set on the
code itself. The exploitation of the full potential of SOP platforms, and of the OSGi platform
in particular, would require that secure integration at runtime is supported.

This section provides an overview of the presented research effort and its relationship to the
state of the art in the domain of Software Security* for Java SOP platforms. Developments
introduced throughout the document are also summarized.

10.1.1 Methodology for Security Analysis

The proposed methodology for security analysis, SPIP , intends to be an original approach
to the problem of building secure systems: whereas common methodologies define develop-
ment processes focusing on the realization of ‘one-shot’ secure applications, SPIP focuses
on the realization of secure execution environments* which can be used to build families of
secure applications. The resulting execution environment, along with the related security
information such as the result of security assessment* of the various security solutions, aims
at providing tools for application developers and integrators. This increases the reusability
of protection mechanisms, and is therefore likely to increase their stability. Automatization
and generalization of the security infrastructure relieve the developers from the configuration
overhead and therefore reduce security risks caused by misconfigurations. Application de-
velopers and integrators can then choose the protections that match their requirements and
control the security risks they choose to address or to neglect.

For these reasons, we believe that the SPIP process pave the way for more secure applica-
tions. However, it still has several limitations. First, we did not yet have had the opportunity
to work with application developers to experiment whether the process of selecting protection
mechanisms actually match existing requirements. This is in particular due to the lack of
maturity of the proposed technical solutions. Next, it lacks genericity. We did not have had
the opportunity to experiment SPIP in the frame of other projects as the one presented here.
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Analysis tools as well as metrics that are more expressive than the Protection Rate are likely
to be necessary. Lastly, the SPIP process does not involve enough information to make the
selection of suitable protection mechanisms possible. In particular, the cost involved with the
use of such mechanisms, as well as the cost involved with the absence of protection for certain
type of vulnerabilities, should be expressed to enable architects to take balanced choices.

SPIP is therefore in the state of an early research proposition. More effort is required to
make its adoption on a wider scale possible.

10.1.2 A secure Execution Environment

The proposed secure execution environment, Hardened OSGi over the JnJVM, intends to
provide a comprehensive solution for executing sensitive dynamic applications. It emphasizes
the complementarity of the software security and system security approach. Software security
is enforced in particular through code analysis at installation. System security is enforced by
the component platform as well as by the underlying secure JVM. The component platform
should be implemented according to the Hardened OSGi recommendations we provide. A
secure JVM which must comply with the specific requirements of OSGi applications. This
requirements let us select the JnJVM environment, which is designed to take advantage of
the class loader structure of the OSGi platform. The JnJVM provides an important benefit
for building secure Java/OSGi platforms in particular in term of resource isolation.

The integration of the two solutions, Hardened OSGi and a secure JVM is the demonstration
that each of them addresses a part of the security problem of Java/OSGi applications. It
highlights the need of a radical evolution of the security paradigm for Java environments and
identifies one possible evolution: components should be isolated from each other, but still be
able to communicate through local method calls. The current security manager is by far not
sufficient to build secure Java SOP applications.

The limitation of this proposition is due to the fact that no real complex application involv-
ing components from mutually untrusted developers has been realized. The benchmarks were
limited to the verification of the robustness of the integrated execution environment in the
presence of our proof-of-concept OSGi attack bundles*. Further research is therefore required
to identify the impact on the programming model, if any, and to protect the interactions
between the bundles which are not protected by this security solution.

The benefit of the standard Java security manager has not been subject to enough attention
to enable us to emit criticism. However, several of its features seem to be ill-suited for dynamic
applications: the lack of flexibility, the risk of runtime errors, the performance overhead. It
nonetheless keeps being a powerful tool for controlling access to the pre-defined sensitive
methods in the JVM, and to developer-defined sensitive methods e.g. in libraries. It avoids
the exploitation of a non negligible number of dangerous functions* in SOP platforms such
as the OSGi platform.

10.1.3 Secure Components

We propose to perform the control of the interaction between bundles through two comple-
mentary protection mechanisms: CBAC (Component-based Access Control) and WCA (Weak
Component Analysis). They enable to identify dangerous bundles based on the sensitive ac-
tion they perform, with CBAC, and vulnerable bundles that can be exploited by others, with
WCA. These tools enable to assess in an automated manner the security status of compo-
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nents without requiring any human intervention or even the availability of the source code.
They shift the focus of the security analysis from the process, as most production tools do, to
the product which is assessed directly. WCA in particular enables to identify vulnerabilities
that are really exposed, supporting focused code analysis. These tools should thus enable
to evaluate the security properties of a component that is discovered dynamically from the
environment.

The limitation of these propositions are the lack of completeness of both solutions. The
CBAC mechanism fails into identifying generic malicious bundles, especially because it does
not support algorithmic safety. It should therefore be completed with techniques such as
proof-carrying-code. Moreover, as an access control mechanism, it does not provide a very
fine-grained access control: the methods contained by dependency bundles are taken into
account even if they are never called. Refinement of the analysis through control flow graphs
(CFG) or data flow graphs (DFG) are likely to provide better results. The WCA mechanism
fails into identifying a comprehensive set of vulnerabilities in components. The current formal
vulnerability pattern* should be completed with state machines, CFG and DFG to enhance
the quality of the detection. Moreover, it relies on a catalog of known vulnerabilities rather
than on an abstract definition of these vulnerabilities, which prevents the automated discovery
of new weaknesses. For both tools, further research is required in order to make production
tools out of the existing research prototypes.

10.1.4 Development

Figure 10.1 shows an overview of our development and scientific contributions.

Figure 10.1: Overview of development and scientific contributions

The original research contributions in the context of SOP platforms are the CBAC and
WCA models and tools, as well as the identification of platform and component vulnerabilities.
They are integrated with another research contribution from the LIP6 laboratory in Paris,
the JnJVM, which provides the underlying secure virtual machine. The propositions for
enhancing existing specifications are Hardened OSGi and the SF-Jarsigner, which enables to
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sign and publish OSGi bundles. Implementations that are compliant with the specifications
are a library for digitally signing and verifying digital signature* (Dig. Sig) of OSGi bundles,
and the integration of bundle-specific Java permissions.

Table 10.1 shows the summary of developed software along with its size and number of
Lines of Code (LoC).

Projet Code size # of LoC

Digital Signature 30.5 KBytes 330

Java Protection Do-
mains for Felix

- 83

SF-JarSigner 44.5 KBytes 557

Hardened OSGi - 224

CBAC 21 KBytes 577

WCA 60.5 KBytes 2026

Table 10.1: Developed Software
[Lines of Code (LoC) are counted as Non Commented Source Statements (NCSS). The size

of the Digital Signature and SF-Jarsigner tools include pre-set configuration such as
cryptographic keys. Size for the implementations of Java protection domains and Hardened
OSGi is not given, since the code is integrated with existing OSGi implementations such as

Apache Felix.]

The number of bundles which have been developed as proof-of-concept for the Malicious
Bundle and the Vulnerable Bundle catalogs is 155. This number encompasses the various im-
plementations of the malicious bundles as well as the couples of malicious/vulnerable bundles
for the second catalog. Extracting the total number of Lines of Code (LoC) for these bundles
is not meaningful, since most code is compound of standard code for OSGi bundles such as
the activation code. The active code is in most case very succinct.

10.2 Perspectives

Further efforts are required to build production systems based on secure OSGi platforms.
Both research work and industrial development are needed.

10.2.1 Open Requirements for building Secure Execution Environments

Research requirements concern both the methodology for security analysis, and the develop-
ment of secure SOP platforms. They have been identified throughout this document.

The methodology for security analysis, SPIP , should be refined in following ways:

• It should be validated against other target systems, and if required extended, to makes
it technology independent. It is likely that specific tools such as metrics, vulnerability
patterns and security patterns* are required for each type of target system.
• Finer security metrics are required. In particular, a metric to perform vulnerability

assessment based on the dangerousness of attacks is missing. Such a metric should take
the type of application into account: health care systems, banking systems and online
games to not have similar security requirements; for instance, a heart-disease monitor
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can not afford to suffer from complete denial-of-service, whereas a financial transaction
server will not allow integrity damage.
• The cost computation should be considered explicitly to support the trade-off between

a high security level* which prevents abuses and thus latter patches, and development
overhead and constraints which requires developer training, limited functionalities, ad-
ditional security review and tests.

Research requirements for building secure SOP platforms are the following ones. They
include the integration of available research tools, such as a Trusted Computing Platform
(TPM) for guaranteeing platform integrity, and the development of new ones to tackle iden-
tified challenges.

All attack vectors against OSGi systems should be mitigated (see Section 1.2.3 page 8):

• Bundle Deployment; tools are presented in this document.
• Application Interfaces, both GUI and remote interfaces.
• Attacks against the JVM and OSGi data.
• Execution of malicious bundles inside the platform, for which a set of tools are defined

here.

In particular, these open requirements can be addressed through the following proposals:

• A Hardened JVM is required that provides protection against attacks from the local
host, e.g. through JVM-TI or modification of system resources on the file system.
• Hardened OSGi should be extended to withstand modifications of data and resources

on the file system such as platform code and applicative profiles.
• The proposed tools for assessing the security status of individual components need to

be completed.
• An architectural approach to integrate components with a known security status in a

secure manner is required.
• An integrated tool suit for building secure Java components is still to be developed.
• A secure SOP Workflow framework is to be defined. It should be mandatory for com-

ponents that communicate through services*.
• Standard secure remote communication protocols and architecture validation tools should

be defined and made available.

Moreover, our work opens the way for Bytecode analysis for security of non-Java languages
that are compiled to Java Bytecode, such as Python with the Jython framework and Ruby
with the JRuby framework. Since analyses are performed at the Bytecode level, such analysis
should be supported. However, the impact of the original source language on the security
status of the applications is hardly known.

Recent evolution of service-based computing consists in accessing remote services instead
of local execution of components. This is called the ‘software-as-a-service’ approach. This
opens new security challenges: if one component of the SOP platform is replaced by a stub
to a service executed in a remote component, what trust can be put on it ? What are the
technical guarantees that can be set ?

10.2.2 Open Requirements for Industrial Use Cases

Requirements for industrial development concern security mechanisms that are well known
but not available so far. Their availability would make it possible for the industrial users

163



10 Conclusions and Perspectives

of the OSGi platform to take the best of the platform. It is likely that at least part of the
identified required tools are providers by commercial vendors.

5 OSGi Security Profiles The OSGi platform is used in many different environments and
application types. Therefore, several OSGi Security Profiles can be identified, which each
provide a solution for a given use case.

The OSGi security profiles that we have identified so far are the following:

• Specification
• Life-cycle
• Management
• Critical applications
• Multi-user applications

For each profile, specific requirements are defined, and suitable implementation should be
available.

Profile 1: OSGi R4 Specifications OSGi R4 Specifications is the basic security profile. The
requirements are the following:

• Proper implementation of the specifications. For instance, OSGi Permissions, and OSGi
Conditional Permissions are currently not available in the Apache Felix implementation.
• Simple OSGi Security Configuration Management for simple use of the specification-

defined security mechanisms. Ready to use permissions profiles should be defined, that
match specific application types.
• Negative permissions (preventing an operation for a given principal*) are currently

missing, since OSGi permission management is fully based on Java permissions, that
supports positive permission (allowing an operation) only.

The state of existing implementations is as follows.

• SFelix is an implementation of the bundle signature validation process, provided as a
patch for the Apache Felix 1.0 implementation of the OSGi platform. It guarantees that
no unvalid or unsigned bundle can be installed on the platform. SFelix is developed by
the INRIA-ARES project.

Profile 2: Life-Cycle The Life-Cycle of OSGi bundles is not addressed by the OSGi R4
specification. However, it is supported in most if not all implementations. The Life-Cycle of
OSGi bundles is compound of following steps: bundle packaging, bundle publication (by the
issuer), bundle discovery, bundle download, bundle installation, and bundle execution (by the
OSGi Platform). However, a Life-Cycle long security control is so far only partially available.

The state of existing implementations is as follows. SF-Jarsigner is a tool for signing and
publishing bundles onto an OBR v2 repository. SF-Jarsigner is developed by the INRIA-
ARES project, as a complement for the SFelix platform.

The requirements are as follows.

• Tools for management of public and private keys are to be defined, according to the
needs of real projects.
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Profile 3: Remote Management of OSGi Gateways OSGi Platforms need to be managed
remotely. This can be done through JMX based console, such as the MOSGI console in the
Felix project. So far, no security mechanisms exists for such environments, which prevents
their exploitation over the Internet.

The requirements for secure OSGi management are as follows.

• JMX management over secure channels.
• Key management for OSGi remote access.
• Confidential deployment.

Profile 4: Critical Client* Server applications based on the OSGi platform The dynamic
nature of OSGi platforms make them a potential candidate for being an execution environment
for evolutive applications. For instance, critical applications such as billing terminals and
related banking servers could take advantage of the technology, provided that the enforced
security model can be proved to be sufficient.

The requirements for OSGi Critical Applications are the following ones:

• Isolation between providers inside the OSGi Gateway.
• Transaction Support for (e.g. monetary) transactions.
• Secure message-based communications between gateways and servers.
• Certification of Security procedure in the case of bank card applications which protect

data, PIN codes and keys.

The Requirements relative to the development of critical applications are the following
ones:

• Cohabitation of applications.
• Ease of development.
• No compromission of security.

The security profile ’Critical Applications’ shows that the OSGi Platform has a great po-
tential for building highly secure applications, both because of built-in security features and
because of the associated development model. However, the technology is clearly not yet
mature enough to support such applications.

Profile 5: Multi-User Applications The 5th profile, ’Multi-User Applications’, requires that
proper access control mechanisms are available.

Associated requirements are the following ones:

• Access isolation between bundles - validated access control model.
• Limited performance overhead.
• Compile time or install time verification when possible.

Conclusion Besides the identification of vulnerabilities and the proposition of several protec-
tion mechanisms for the OSGi platform, and SOP platforms in general, the open requirements
in term of research and of development are summarized here. They should be considered in
the context of the final claim of our work.
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10.3 Conclusions on the Thesis’ Argument

The technological conclusion of this work is that, in spite of the actual state of available
implementations, the OSGi platform can actually be a very secure execution environment if
sufficient development effort is provided. This imply to continue the development effort to
release tools with production level quality.

The original methodological argument of this thesis, presented in Section 1.1 page 3, can
be revised according to the presented experiments:

Techniques from the Software Security domain at the platform level greatly
enhance the security level of extensible SOP platforms, and their integration in
the development life-cycle provides the additional benefit of supporting seamless
developer training.

These techniques should be used together with System Security* techniques at
the Virtual Machine level to provide maximal protection.

This thesis highlights three important challenges for building secure extensible SOP plat-
form:

1. A Secure Development Life-Cycle (SDLC) process should be defined to tackle application-
specific threat prevention. It should be supported as far as possible by automated tools.

2. Tools with production level quality are required to support the proposed Software Se-
curity process,

3. Secure implementations of the Java Virtual Machine and other VMs with production-
compliant performances are required.

This work leads me to believe in the efficiency of Mandatory Software Security both in term
of security properties of complex software systems, and in term of developer awareness and
training.

Mandatory Software Security for component-based systems can be defined as follows:

Recent execution environments enforce software quality through a mandatory
programming model. For instance, the OSGi platform provides component isola-
tion and a clean dependency resolution process.

Software Security should be similarly enforced in the execution environment
itself by dedicated modules as a mandatory non functional property of the software
components.
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Definitions A
Application Security : the domain of security* that deals with the prevention and de-
tection of attacks* against applications through post-development analysis and protection
mechanisms (black-box testing, sandboxing, runtime monitoring, policies management and
enforcement).

Attack : actions that attempt to defeat the expected security status of a system. The goal
of attack can be the technical exploit, or the obtention of direct benefits.

Attack Surface : the scope of functionalities that is available to application users, particu-
larly unauthenticated users, in a software environment. This includes, but is not limited to:
user input fields, protocols, interfaces, services*1.

Attack Vector : a path or means by which a hacker (or cracker) can gain access to a com-
puter or network server in order to deliver a payload or malicious outcome. Attack* vectors
enable hackers to exploit system* vulnerabilities*, including the human element. Examples of
attack vectors are viruses, e-mail attachments, Web pages, pop-up windows, instant messages,
chat rooms, and deception2.

Black Hat : term used to describe a hacker (or cracker) who breaks into a computer system
or network with malicious intent3.

Bundle : the unit of deployment and installation of code in the OSGi platform* [All07a]. A
bundle typically contains Java classes, exports some packages for use by third party bundles
as libraries, and provides service-oriented programming* (SOP) services*.

Classification : systematic arrangement in groups or categories according to established
criteria [MW08].

Client : an application or system* that accesses a local or remote service* through a well-
defined protocol. Service providers are called ‘servants’* when they are located in the same
system than the client, ‘servers’ otherwise.

1from http://en.wikipedia.org/wiki/Attack_surface, 2008/07/29
2from http://searchsecurity.techtarget.com/dictionary/definition/1005812/attack-vector.html, 2008/07/29
3from http://searchsecurity.techtarget.com/sDefinition/0„sid14_gci550815,00.html, read on 2008/08/20
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Component : a system* element offering a predefined service* or event, and able to com-
municate with other components4. The following five criteria for what a software component
shall be are: multiple-use, non-context-specific, composable with other components, encap-
sulated i.e., non-investigable through its interfaces, a unit of independent deployment and
versioning [SGM02].

Component Platform : a platform* that is dedicated to the management and execution of
a specific type of components*. Examples are J2EE for EJB, OSGi for OSGi bundles*, .Net
for Assemblies.

Digital Signature : a type of asymmetric cryptography used to simulate the security prop-
erties of a handwritten signature on paper. Digital signature schemes consist of at least three
algorithms: a key generation algorithm, a signature algorithm, and a verification algorithm.
A signature provides authentication of a "message"5.

Entity : An entity is something that has a distinct, separate existence, though it need not
be a material existence6. We use the term entity to describe any element of a computing
system* that interacts with others.

Execution Environment : A software routine that accepts commands as input and causes
them to be executed. Execution environments exist within operating systems and may be an
option within applications7. Commands can be simple or be made of full programs. Examples
of execution environments are virtual machines, OS, and any application supporting plug-ins
(e.g. Firefox and other Web browsers).

Exploit : a piece of software, a chunk of data, or sequence of commands that take advantage
of a bug, glitch or vulnerability in order to cause unintended or unanticipated behavior to
occur on computer software8.

Flaw : a developmental, internal, human-made, software, nonmalicious, nondeliberate, per-
manent fault [ALRL04].

Function : Behavior of a program that is part of its specification. A function can be a
vulnerability* if it can be abused by malicious entities.

Modularity : the property of modular programming. Modular programming is a software
design technique that increases the extent to which software is composed from separate parts,
called modules9.

4from http://en.wikipedia.org/wiki/Component-based_software_engineering, 2008/07/29
5from http://en.wikipedia.org/wiki/Digital_signature, 2008/07/29
6http://en.wikipedia.org/wiki/Entity, 2008/07/29
7from http://www.techweb.com/encyclopedia/defineterm.jhtml?term=execution+environment, 2008/07/29
8from http://en.wikipedia.org/wiki/Exploit_(computer_security), read on 2008/08/20
9from http://en.wikipedia.org/wiki/Modularity_(programming), 2008/07/29
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Network Security : the domain of security* that deals with the prevention and detection of
attacks* through protocols, appliances and monitoring tools that are located in the network
(firewalls, IDS, etc.).

Off-the-Shelf Component : generic software component*, that contains fixed functionality
[Voa98], and can be obtained as is. Examples are COTS (Commercial OTS), open source
libraries, legacy software ...

Platform : the basic technology of a computer system*’s hardware and software that defines
how a computer is operated and determines what other kinds of software can be used10.

Principal : Software representation of an entity* (an individual, a corporation, a login, a
place in the file system) to which execution rights are granted11.

Protection Domain : the set of objects directly accessible by a principal* [SS73].

Qualified Name : an unambiguous name that specifies which object, function, or variable
a call refers to absolutely12.

Reference Vulnerability Information (RVI) , or Refined Vulnerability Information: exten-
sive databases that maintain up to date information related to known software vulnerabilities
[PF07a].

Security : a composition of the following attributes: confidentiality (the absence of unau-
thorized disclosure of information), integrity (absence of unauthorized system* alterations)
and availability (readiness for correct service, for authorized actions only) [ALRL04].

Security Assessment : the qualitative and quantitative evaluation of the security properties
of a system*. The goal of assessment is to gather information relative to a given system.

Security Assurance Software Security Assurance (SSA) is the process of ensuring that soft-
ware is designed to operate at a level of security that is consistent with the potential harm
that could result from the loss, inaccuracy, alteration, unavailability, or misuse of the data
and resources that it uses, controls, and protects13.

Security Benchmarking : the quantitative evaluation of a system*. The goal of benchmark-
ing is to compare various flavours of a system, or to compare a given implementation against
a reference implementation. Security benchmarking is a subset of security assessment*.

Security Level : Quantification of the security status of a given computing system. It is a
relative measure aimed at comparing various flavours of the system. In this thesis, we propose
to use the Protection Rate as a metric for expressing the security level.

10http://www.answers.com/topic/platform
11from http://java.sun.com/j2se/1.5.0/docs/api/java/security/Principal.html
12from http://en.wikipedia.org/wiki/Fully_qualified_name, read on 2008/08/20
13from http://en.wikipedia.org/wiki/Software_Security_Assurance
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Security Pattern : a well-understood solution to a recurring information security problem.
They are patterns in the sense originally defined by Christopher Alexander [Ale77] (the basis
for much of the later work in design patterns and pattern languages of programs), applied to
the domain of information security14.

Servant : a component* that provides local services* to other components executed in the
same execution environment*, which act as its clients*. The term servant is used to make a
distinction with the term ‘server’ which often imply remoting technologies.

Service : a contractually defined behavior that can be implemented and provided by any
component* for use by any component, based solely on the contract [BC01]. This term is
often used implicitly for remote services using technologies such as the Web Services.

Service-oriented Programming : a programming paradigm where software components*
publish and use services* in a peer-to-peer manner. It is built on object-oriented programming
(OOP) and component models [BC01].

Software Security : the domain of security* that is concerned with the realization of prov-
ably secure software systems*. The term Realization means that security is to be enforced
throughout the software development life-cycle. Provably secure means that the security level
of the resulting software system can be measured to assess the actual benefit brought in by
the security effort and to compare it with similar systems.

System : A group of interacting, interrelated, or interdependent elements forming a complex
whole15. The term ‘System’ is also used to denote operating system, distributed system or
any coherent set of software and hardware.

System Security , or Operating System Security: the domain of security* that deals with
the prevention and detection of attacks* against an operating system. The ultimate goal of
attacks against an OS is to ’own’ it, i.e. to have full administration rights on it.

Taxonomy : the theoretical study of a classification*, including its bases, principles, and
rules. The term taxonomy is also used to appoint the classifications that are built according
to such principles [Krs98, MW08].

Virtualization : a broad term that refers to the abstraction of computer resources. In
this thesis, we are concerned with Application Virtualization, i.e. software technologies that
improve the portability, manageability and compatibility of applications by encapsulating
them from the underlying operating system on which they are executed16.

14from http://www.scrypt.net/ celer/securitypatterns/, 2008/07/29
15from http://www.thefreedictionary.com/system, 2008/07/29
16from http://en.wikipedia.org/wiki/Application_Virtualization, 2008/07/29
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Vulnerability : a weakness in a computing system* that could be exploited to gain unau-
thorized access to information or to disrupt critical processing [DM90], cited by [Krs98].
Unauthorized access means that the access is either forbidden by the system specifications,
or that it constitute a violation of the expectations of users, administrators, and designers
[Krs98]. A vulnerability can be either a flaw* or a dangerous function*.

Vulnerability Pattern : Design Pattern that documents software vulnerabilities*.

White Hat : White hat describes a hacker (or cracker) who identifies a security weakness
in a computer system or network but, instead of taking malicious advantage of it, exposes
the weakness in a way that will allow the system’s owners to fix the breach before it is can
be taken advantage by others17.

17from http://searchsecurity.techtarget.com/sDefinition/0„sid14_gci550882,00.html, read on 2008/08/20
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Vulnerability Catalog Entries B
B.1 The Malicious Bundle Catalog

Bundle Archive

Vulnerabilities that originate in the Bundle Archive are due to flaws in the structure of the
archive. They are not bound with the content of the archive, and are therefore not specifically
bound to the Java world.

Invalid Digital Signature Validation (mb.archive.1) a bundle which signature is NOT com-
pliant to the OSGi R4 Digital Signature is installed on the platform; bundles with
lacking or additional malicious classes can then be installed,

Big Component Installer (mb.archive.2) remote installation of a bundle which size is bigger
than the available device memory; this results in rapid disk space exhaustion,

Decompression Bomb (mb.archive.3) the Bundle Archive is a decompression Bomb (either
a huge file made of identical bytes, or a recursive archive); this leads to memory ex-
haustion.

Bundle Manifest

Vulnerabilities that originate in the Bundle Manifest are due to flaws in the expressed Meta-
data. They are bound either to the way the JVM handles the Manifest, or to OSGi-defined
properties.

Duplicate Package Import (mb.osgi.1) a package is imported twice (or more) according to
manifest attribute ’Import-Package’. In the Felix and Knopflerfish OSGi implementa-
tions, the bundle can not be installed. This is due to the OSGi platform.

Excessive Size of Manifest File (mb.osgi.2) a bundle with a huge number of (similar) pack-
age imports (more than 1 MByte); this behavior originates in the virtual machine (in
particular, SUN JVM and JamVM are concerned), and leads to a temporary freezing
of the platform when the Manifest is loaded into memory,

Erroneous values of Manifest attributes (mb.osgi.3) a bundle that provides false meta-data,
for instance an non existent bundle update location. This is bound with OSGi Meta-
data.

Bundle Activator

Vulnerabilities that originate in the Bundle Activator are bound to OSGi bundle starting
process.
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Management Utility Freezing - Infinite Loop (mb.osgi.4) an infinite loop is executed in the
Bundle Activator ; this freezes the process that has launched the starting of the bundle,
and consumes most of the available CPU,

Management Utility Freezing - Thread Hanging (mb.osgi.5) a hanging thread in the Bun-
dle Activator makes the management utility freeze. Already installed bundles are not
impacted.

Bundle Code (Native)1 Vulnerabilities that originate in Native Code are bound to the
possibility that exists in the Java Virtual Machine to execute code outside of the JVM. They
are therefore not specific to the Java world.

Runtime.exec.kill (mb.native.1) a bundle that stops the platform through an OS call,
CPU Load Injection (mb.native.2) a malicious bundle that consumes an arbitrary amount

(up to 98%) of the host CPU. Other processes on the platform experience an important
loss of performance.

Bundle Code (Java API)
Vulnerabilities that originate in Java API are due to features that are provided through

the Java Classpath, i.e. libraries that are provided along with the JVM.

System.exit (mb.java.1) a bundle that stops the platform by calling ’System.exit(0)’,
Runtime.halt (mb.java.2) a bundle that stops the platform by calling ’Runtime.getRuntime.

halt(0)’,
Recursive Thread Creation (mb.java.3) The platform is brought to crash by the creation of

an exponential number of threads,
Hanging Thread (mb.java.4) Thread that makes the calling entity hang through interlocking

(service, or package),
Sleeping Bundle (mb.java.5) a malicious bundle that goes to sleep during a specified amount

of time before having finished its job,
Big File Creator (mb.java.6) a malicious bundle that creates a big (relative to available re-

sources) files to consume disk memory space,
Code Observer (mb.java.7) a component that observes the content of another one through

reflection; code and hard-coded configurations can be spied,
Component Data Modifier (mb.java.8) a bundle that modifies data (i.e. the value of the

public static attributes of the classes) of another one through reflection,
Hidden Method Launcher (mb.java.9) a bundle that executes (through reflection) methods

from classes that are not exported or provided as service. All classes that are referenced
(directly or indirectly) as class attributes can be accessed. Only public methods can be
invoked.

Bundle Code (Java Language)
Vulnerabilities that originate in Java Language are bound with language-level features,

in particular Object Orientation. They can therefore be relevant to other Object-Oriented
Languages, and some are general enough to concerns any programming language.

1These Bundles are specifically targeted to the OSGi platform. All native code attacks against the operating
system or other applications are not considered here.

176



B.1 The Malicious Bundle Catalog

Memory Load Injection (mb.java.10) a malicious bundle that consumes most of available
memory; if other processes are executed that require memory, MemoryErrors are caused.
This vulnerability concerns any multi-process system without resource isolation.

Stand Alone Infinite Loop (mb.java.11) a void loop in a lonesome thread that consumes
much of the available CPU. This vulnerability concerns any multi-process system with-
out resource isolation.

Infinite Loop in Method Call (mb.java.12) an infinite loop is executed in a method call (at
class use, package use); this vulnerability concerns any programming language.

Exponential Object Creation (mb.java.13) Objects are created in an exponential way, and
force the call to abort with a StackOverflowError. This vulnerability as such is specific
to Object-Oriented languages, but variants can be built that use procedure recursions
in any programming language.

Bundle Code (OSGi API)
Vulnerabilities that originate in the OSGi API are due to features that are provided by the

OSGi platform.

Launch a Hidden Bundle (mb.osgi.6) a bundle that launches another bundle it contains (the
contained bundle could be masqueraded as a ’MyFile.java’ file); any program can there-
fore be hidden.

Pirate Bundle Manager (mb.osgi.7) a bundle that manages others without being requested
to do so (for instance, stops, starts or uninstalls the victim bundle).

Zombie Data (mb.osgi.8) Data stored in the local OSGi data store are not deleted when the
related bundle is uninstalled. It thus becomes unavailable and consumes disks space
(especially on resource constraint devices). This is due to the implementation of the
OSGi platform.

OSGi Services and Bundle Fragments
Vulnerabilities that originate in the OSGi API are due to the specific type of interactions

that exist inside the OSGi platform. Those that are due to the Service-oriented Programming
(SOP) [BC01] paradigm are relevant to any SOP platforms.

Cycle Between Services (mb.osgi.9) a cycle exists in the services call; this vulnerability is
related to SOP,

Numerous Service Registration (mb.osgi.10) registration of a high number of (possibly iden-
tical) services through an loop; this vulnerability is related to SOP,

Freezing Numerous Service Registration (mb.osgi.11) registration of a high number of (pos-
sibly identical) services through an loop, that make the whole platform freeze in the
Concierge implementation; this vulnerability is related to SOP.

Execute Hidden Classes (mb.osgi.12) a fragment bundle exports a package from its Host
that this latter do not intend to make visible. Other bundles can then execute the
classes in this package,

Fragment Substitution (mb.osgi.13) a specific fragment bundle is replaced by another, which
provides the same classes but with malicious implementation,

Access Protected Package through split Packages (mb.osgi.14) a package is built in the
fragment that have the same name than a package in the host. All package-protected
classes and methods can then be accessed by the fragment, and thus exported to the
framework.
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B.2 The Vulnerable Bundle Catalog

Stand-Alone Applications Vulnerabilities

Expose Internal Representation - Serialized Sensitive Data (vb.java.1) All data in a seri-
alized object can be read. In particular, security checks that may exist in the code are
no longer enforced. No sensitive data must be stored in serializable objects.

Class Sharing Vulnerabilities - Exposed Internal Representation

Stores Mutable Object in static Variable (vb.java.class.1) A method stores a reference to
a mutable object in a static variable. Internal Data of the victim object can be read
and/or modified.

Stores Array in Static Variable (vb.java.class.2) A method stores a reference to a array in a
static variable. Process. Internal Data of the victim object can be read and/or modified.

Non Final Static Variable (vb.java.class.3) A method keeps a reference to a static non final
static object. Internal Data of the victim object can be read and/or modified.

Shutdown Hook (vb.java.class.4) Shutdown Hooks enable to execute code when the platform
is stopped. In particular, this implies that components can execute code after they have
been uninstalled.

Private nested Classes and Attributes made protected (vb.java.class.5) Private nested classes
and attributes are made protected at compilation. Consequently, OSGi Bundle Frag-
ments can be exploited to access the target package through the ‘Split Package’ vulner-
ability, and access the private Class or Attribute as a protected one.

Class Sharing Vulnerabilities - Avoidable Calls to the Security Manager

Override Method (vb.java.class.6) Security
Checks that are performed in overridable methods can be by-passed by rewriting the
methods.

Privileged Execution of Code provided by the Caller (vb.java.class.7) Privileged Code Ex-
ecution must be restricted to code provided by the privileged bundle. If code origin is
not properly controlled, less trusted bundles can provide their own code for Privileged
Execution.

Privileged Execution of Code provided by the Caller - Class Loader Privileges (vb.java.class.8)
Privileged Code Execution must be restricted to code provided by the privileged bundle.
If code origin is not properly controlled, less trusted bundles can provide their own code
for Privileged Execution. Privileged Execution is granted for several calls according to
the current class loader (Reflection, Library Loading).

Cloning (vb.java.class.9) Calls to the ‘clone’ method enable to create a new instance of a
class without calling the constructor, which often contains security checks such as calls
to the security manager.

Deserialization (vb.java.class.10) Deserialization enables to create a new instance of a class
without calling the constructor, which often contains security checks such as calls to the
security manager.

Call Overrideable Method in Constructor (vb.java.class.11) Calling non-final methods in con-
structor enable sub-classes to access to partially initialized instances of the objects, and
break security and configuration assumptions that are made in the superclass.
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Call Overrideable Method in Clone Method (vb.java.class.12) Calling non-final methods in
clone method enable sub-classes to access to partially initialized instances of the objects,
and break security and configuration assumptions that are made in the superclass.

Finalize Method (vb.java.class.13) Methods on a Class that is protected through a security
manager can be called by creating a subclass that, after creation abortion, performs
calls on the partially initialized object during finalization.

Shutdown Hook (vb.java.class.14) Shutdown Hooks enable to execute code when the plat-
form is stopped. In particular, this implies that components can execute code after they
have been uninstalled. Moreover, if a security check is performed in the constructor after
static global variable have been initialized, their value can be accessed.

Class or Object Sharing - Synchronization

Synchronized Method (vb.java.class.15) A method is synchronized, to as to avoid the execu-
tion of the same method by two different clients (used in particular in case of access to
resources). If the method call is blocked for any reason (infinite loop during execution,
or delay due to an unavailable remote resource), all subsequent clients that call this
method are freezed.

Synchronized Code (vb.java.class.16) A
method contains a synchronized block, so as to avoid the execution of the same method
by two different clients (used in particular in case of access to resources). If the method
call is blocked for any reason (infinite loop during execution, or delay due to an unavail-
able remote resource), all subsequent clients that call this method are freezed.

Object Sharing Vulnerabilities - Exposed Internal Representation

Returns Reference to Mutable Object (vb.java.object.1) A method returns a reference to a
mutable object. Internal Data of the victim object can be read and/or modified.

Returns Reference to Array (vb.java.object.2) A method returns a reference to a array. In-
ternal Data of the victim object can be read and/or modified.

Visibility (vb.java.object.3) A method keeps a reference to a variable with too much visibility.
Internal Data of the victim object can be read and/or modified.

Non Final non Private Field (vb.java.object.4) A method keeps a reference to a static non
final non private object. Internal Data of the victim object can be read and/or modified.

No Wrapper (vb.java.object.5) Variables can be accessed on the object without wrapper
methods, which prevent the execution of security or parameter checks. Variables can
be accessed directly on the object.

Information Leak through Exceptions (vb.java.object.6) Exception Messages often contain
data that describes the configuration of the system. These data should not be propa-
gated to external callers, unless it directly concerns caller input.

Object Sharing Vulnerabilities - Flaws in Parameter Validation

Unchecked Parameters - Malicious Program Abuse - Java Code (vb.java.object.7) Uncheck-
ed parameters in bundle public code (OSGi Services or Exported Packages) can be
exploited to execute malicious code.
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Unchecked Parameters - Malicious Program Abuse - Native Code (vb.java.object.8) Uncheck-
ed parameters in bundle public code (OSGi Services or Exported Packages) can be
exploited to execute malicious code, especially native code that does not provide any
security guarantees.

Unchecked Parameters - Accidentally unsupported Value (vb.java.object.9) Unchecked pa-
rameters in bundle public code (OSGi Services or Exported Packages) can lead to un-
expected program behavior if constraints on their values are not enforced.

Parameters Checked without Copy (vb.java.object.10) A parameter that is checked without
being copied beforehand can be modified after validation and lead a TOCTOU (Time
of Check To Time of Use) attack.

Copied and Checked Parameters - Fake Clone Method (vb.java.object.11) Copying param-
eters before their validation can be worthless if the copy is done through an overridden
‘clone’ method that is implemented partially or with a malicious objective.

Copied and Checked Parameters - Fake Copy Constructor (vb.java.object.12)Copying pa-
rameters before their validation can be worthless if the copy is done through a fake copy
constructor that is implemented partially or with a malicious objective.

Copied and Checked Parameters - Uncomplete Copy - State Omission (vb.java.object.13)
Copying parameters before their validation can be unsufficient if some states are omit-
ted.

Copied and Checked Parameters - Uncomplete Copy - Mutable States (vb.java.object.14)
Copying parameters before their validation can be unsufficient if some states are muta-
ble.

Non Final Parameters - Malicious Implementation (vb.java.object.15) Non-final parameters
in bundle public code (SOP Services or Exported Packages) can be exploited to execute
malicious code, possibly exploiting internal data of the victim bundle.

Non Final Parameters - Inversion of Control (vb.java.object.16) Non-final parameters in bun-
dle public code (SOP Services or Exported Packages) can be exploited to execute ma-
licious code through inversion of control, ie. actions in the malicious bundle can be
triggered through the victim bundle, possibly leaking data. Data from the victim bun-
dle can be exploited. Certain type of access control mechanisms can be by-passed.
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Listings C
C.1 Examples of Attacks against the Java/OSGi Platform

Listing C.1 gives an implementation of the Recursive Thread Creation vulnerability.

Listing C.1: Example of malicious code in OSGi bundle: recursive thread creation

pub l i c c l a s s Stopper extends Thread{

Stopper ( i n t id , byte [ ] payload )
{

t h i s . id=id ;
t h i s . payload = payload ;

}
pub l i c void run ( )
{

System . out . p r i n t l n ( " Stopper id : "+ id ) ;
Stopper t t = new Stopper(++id , payload ) ;
t t . s t a r t ( ) ;

Stopper t t2 = new Stopper(++id , payload ) ;
t t2 . s t a r t ( ) ;

Stopper t t3 = new Stopper(++id , payload ) ;
t t3 . s t a r t ( ) ;

}
}

Listing C.2 gives an implementation of the Launch a Hidden Bundle attack, where a mali-
cious bundle loads another one, that is hidden inside its own archive, and starts it.

Listing C.2: Bundle that launches a bundle that is hidden inside it

pub l i c void s t a r t ( BundleContext context )
{

try
{

// get data f o r the c r eated bundle
S t r ing f i leName = " b i g f l ow e r p i r a t −1.1. j a r " ;
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byte [ ] b u f f e r = t h i s . getBundleResourceData ("/"+ f i leName ) ;

// c r ea t e a new data f i l e with loaded data
F i l e f i l e = t h i s . newDataFile ( f i leName , bu f f e r , context ) ;

// i n s t a l l new bundle
S t r ing l o c a t i o n = f i l e . getPath ( ) ;
System . out . p r i n t l n ( l o c a t i o n ) ;
Bundle b = context . i n s t a l l Bu n d l e ( " f i l e ://"+ l o c a t i o n ) ;
b . s t a r t ( ) ;

}
catch ( Exception e ){ e . pr in tStackTrace ( ) ; }

System . out . p r i n t l n ( " Mal ic ious BundleLoader s t a r t ed " ) ;
}

Listing C.3 gives an implementation of the Memory Load Injection attack, which consumes
an important part of the available memory. It can lead to an OutOfMemoryError if other
processes also require memory.

Listing C.3: Example of malicious code in OSGi bundle: memory load injection

p r i v a t e void stressMem ( i n t s i z e )
{

System . out . p r i n t l n ( " Eating " + s i z e + " bytes o f memory " ) ;

t h i s . memEater = new byte [ s i z e ] ;
f o r ( i n t i =0 ; i<s i z e ; i++)
{

t h i s . memEater [ i ] = 0 ;
}

}
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