
HAL Id: tel-00363037
https://theses.hal.science/tel-00363037

Submitted on 20 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control of Timed Systems
Franck Cassez

To cite this version:

Franck Cassez. Control of Timed Systems. Other [cs.OH]. IRCCyN, 2007. �tel-00363037�

https://theses.hal.science/tel-00363037
https://hal.archives-ouvertes.fr

HABILITATION À DIRIGER LES RECHERCHES
English Version

Franck Cassez

CNRS/IRCCyN

Control of Timed Systems

École Doctorale : STIM

Specialisation : Computer Science

September 21st, 2007 at IRCCyN

Examining Committee

Reviewers:
Ahmed Bouajjani Professor, University of Paris 7, France
Oded Maler Research Director, CNRS, VERIMAG, Grenoble, France
Jean-François Raskin Professor, Université Libre de Bruxelles, Belgium

Examiners:
Jean Bézivin Professor, University of Nantes, France
Claude Jard Professor, ENS Cachan, Antenne de Bretagne, Rennes, France
Kim G. Larsen Professor, Aalborg University, Denmark
Jean-Jacques Loiseau Research Director, CNRS, IRCCyN, Nantes, France
Olivier H. Roux Assistant Professor (HDR), University of Nantes, France

Table of Contents

1 Curriculum Vitæ 1
1.1 Positions Held . 1
1.2 Professional Experience . 1
1.3 Research Activities . 2
1.4 Committees and Administrative Duties . 2
1.5 Students Supervision and Collaborations . 3

1.5.1 Students Supervision . 3
1.5.2 Collaborations. 4
1.5.3 Reviewing . 6
1.5.4 Organisation of Summer Schools, Journal Special Issue 6

1.6 Funded Projects . 7
1.6.1 Recent National Projects . 7
1.6.2 European Project . 7
1.6.3 Visits Abroad . 7

1.7 Seminars & Invited talks . 8
1.8 Publications . 10
1.9 Acronyms . 15

2 Overview of my Research Contributions 17
2.1 Introduction . 17
2.2 Semantics of Timed Games . 20

2.2.1 Rules for Playing Timed Games . 20
2.2.2 Strategies . 21
2.2.3 Control Objectives . 22
2.2.4 Winning Strategies . 22
2.2.5 Winning States . 23

2.3 Algorithms for Controller Synthesis . 24
2.3.1 Controllable Predecessors . 24
2.3.2 Symbolic Controllable Predecessors . 24
2.3.3 Symbolic Computation of Winning States 25
2.3.4 Synthesis of Winning Strategies . 25

2.4 Contributed Results . 26
2.4.1 Decidability Issues for Timed Control 27
2.4.2 Specification of Control Objectives . 29
2.4.3 Optimal Control . 32
2.4.4 Efficient Algorithms for Controller Synthesis 36
2.4.5 Partial Observation: Control and Diagnosis 41

3 Conclusion and Future Work 45

4 References 49

Foreword

To the reader who is not familiar with the French Higher Education system, the “Habilitation à
Diriger les Recherches” (HDR) is a French degree which is supposed to acknowledge your ability
to become a group leader, and more importantly which entitles you to officially supervise PhD
students.

It is also mandatory to hold an HDR if you want to apply for a University Professor
position or Research Director (INRIA, CNRS) position. Holding an HDR is a necessary but
not sufficient condition.

Indeed, if you hold an HDR you can apply for a Research Director position, but there are
not many positions per year and you might have to wait for a while.

An alternative is to apply for a University Professor position. Prior to this, you have to
apply for a “Qualification”: this “Qualification” is delivered (or not) by a National French
Panel1, and to obtain it you have to hold an HDR and also to write a careful application
(of course the forms you have to fill in are different from the ones you had to fill in when
you registered as an HDR student2). If you are “qualified” then you can apply for University
Professor positions (and submit another application in yet another format).

The rules to obtain an HDR can sometimes appear to be inconsistent: you have to demon-
strate you were able to write some research articles which is fine but also to show you could
supervise PhD students. Here you can notice the French Cartesian tradition: without an HDR
you cannot officially supervise PhD students, but to obtain it you must have supervised PhD
students.

To sum up, obtaining an HDR requires you: 1) to write a report emphasising your research
results and students’ supervisions, and 2) to defend your report in front an Examining Com-
mittee. There are no rules for item 1), and you can write a hundred page book or just an
extended abstract.

I chose to write an extended abstract and this report is organised as follows:

• Chapter 1 consists of a short Curriculum Vitæ;

• Chapter 2 gives an overview of my recent research contributions on the control of timed
systems. This has been my main research interest in the last few years;

• Chapter 3 contains an overview of my other research activities and some hints for future
work;

• finally Chapter 4 contains the references (sorted by categories) used in this report.

1the “Commission Nationale des Universités”, CNU; there is one panel per domain e.g., Computer Science.
2Indeed, when you want to defend an HDR, you register as a University student and you get a nice student’s

ID which entitles you the right you for many reduced fees.

Chapter 1

Curriculum Vitæ

Current Professional Address:

Institut de Recherche en Communication et Cybernétique de Nantes (IRCCyN)
UMR CNRS 6597
1 rue de la noë
BP 92101
44321 Nantes cedex 03
France

tel : (+33 | 0) 2 40 37 69 81
fax : (+33 | 0) 2 40 37 69 30
email: franck.cassez@cnrs.irccyn.fr
web: http://www.irccyn.fr/franck

Acronyms used in this Chapter like HDRn are listed page 15.

1.1 Positions Held

1993–1997 Associate Professor, Department of Computer Science, University of Western
Brittany (Université de Bretagne Occidentale, UBO1), Brest, France.

1997–2007 Full-Time Researcher at the Centre National de la Recherche Scientifique
(CNRS2, French National Centre for Scientific Research), affiliated with the
Institut de Recherche en Communications et Cybernétique de Nantes (IR-
CCyN3, Research Institute in Communications and Cybernetics of Nantes),
France

1.2 Professional Experience

1993–1997 At the University of Western Brittany: Lectures in Computer Science, “DEUG
Sciences” (undergraduate), and Masters. Algorithms and Data Structures,
Operating Systems, Language Theory, Introduction to Complexity Theory.

1999–2006 At the Ecole Nationale de la Statistique et de l’Analyse de l’Information (EN-
SAI4), Rennes, France: Introduction to parsing (17h). Graduate level, Engi-

1

franck.cassez@cnrs.irccyn.fr
http://www.irccyn.fr/franck

2 Chapter 1: Curriculum Vitæ

neering Degree, 3rd year. Lab work with JFlex and JavaCup (Java versions of
Lex & Yacc).

2001–2002 At Ecole Centrale de Nantes (ECN5), Nantes, France. Modeling and Veri-
fication (Lectures: 16h and Lab work: 10h). Specialisation in « Embedded
Systems », Graduate level, Engineering Degree, 3rd year. Theory: transition
systems, model-checking, temporal logic, timed automata. Lab work with
SPIN6 and UPPAAL7.

2005 At Ecole Centrale de Nantes. Operating Systems (Lectures: 12h and Lab
work: 6h). Graduate level, Engineering Degree, 3rd year, specialisation in
Computer Science.

1.3 Research Activities

1990–1993 PhD in Computer Science, École Centrale de Nantes & University of Nantes,
France.

1993–1997 Member of the research group Langages et Interfaces pour Machines Intelli-
gentes (LIMI), Department of Computer Science, University of Western Brit-
tany, Brest, France.
I participated in the following projects:

• European project ESPRIT-WG 23531 Fireworks8 from 1997 to 2000;

•Working group GRAFCET (AFCET);

•Working group GDR CNRS Protocoles-Réseaux-Systèmes (Protocol-Net-
works-Systems).

1997–2007 Member of the research group Modélisation et Vérification des Systèmes Em-
barqués (MOVES, Modeling and Verification of Embedded Systems) at IRC-
CyN, Nantes.
I am involve or have been involved in the following projects:

• Distributed Open Timed Systems (DOTS9) funded by ANR (French Na-
tional Research Agency), started January 2007, duration: 4 years;

• Control and Observation of Real-Time Open Systems (CORTOS10) ACI
program11 from September 2003 to January 2007;

• Tools and Algorithms for the Verification of Hybrid Systems (CHRONO12)
ACI program11 from September 2001 to September 2004;

•Working group “GDR ARP” (Architecture, Networks, Parallelism).

1.4 Committees and Administrative Duties

2002– Member of the Steering Committee of the Summer School MOVEP13.

2002–2006 Member of the Editorial Board of the French Journal Technique et Science
Informatiques (TSI).

2002–2005 Member of the recruiting (or scientific) committee “commission de spécialistes”
of the University of Evry, France.

1.5 Students Supervision and Collaborations 3

1.5 Students Supervision and Collaborations

I am working regularly with my colleagues in Nantes on various research topics (timed au-
tomata, time Petri nets). The work described in this report was also carried out with PhD
students I was co-supervising and with colleagues from France and abroad with whom I have
ongoing collaborations.

1.5.1 Students Supervision

Post Doc Student:

• Julien D’Orso.
Subject: Control of Timed Systems.
Funding : ACI CORTOS, January to December 2004.

PhD Students:

• Frédéric Herbreteau, PhD defended in December 2002.
Automates à file réactifs embarqués (Embedded Reactive FIFFO Automata).
Supervision: Franck Cassez (50 %), Olivier Roux (50%).
Funding: French Ministry of Research.
PhD Committee: B. Boigelot, F. Cassez, A. Finkel, P. Gastin, O. Roux, F. Vernadat.
Publications: one journal paper (Journal of Real-Time Systems, [J3]), and one interna-
tional conference paper (LATIN’02, [C18]).
Current activity: Associate professor at ENSEIRB, Bordeaux and researcher at LaBRI.

• Claire Pagetti, PhD defended in April 2004.
Extension temps-réel d’AltaRica (Timed Extenstion of AltaRica).
Supervision: Franck Cassez (50 %), Olivier Roux (50%).
Funding: French Ministry of Research.
PhD Committee: A. Arnold, F. Cassez, J.-P. Elloy, F. Laroussinie, A. Rauzy, O. Roux,
R. Valette.
Publications: one journal paper (Fundamentæ Informatica, [J2]) and one international
workshop paper (Formal Aspects of Component Software (FACS’03), [C16]).
Current activity: Research Engineer at CERT/ONERA, Toulouse.

I have not co-supervised any other PhD thesis since 2004. In the meantime I have tried to
strengthen and develop collaborations with my colleagues abroad (Aalborg, DK; Sydney, AU;
Bruxelles, B) and in France (LSV, ENS-Cachan, VERIMAG, Grenoble) and also to expand
my research activities. Since 2004, even if I was not supervising them, I have been working
with PhD students in my lab: Didier Lime on the expressiveness of time Petri nets [C7, C8,
C9] and Guillaume Gardey on the control of time Petri nets [I3, J7]. At the moment I am
not considering any new supervision as I have applied for a Mobility Project (Marie Curie
European Program) to spend two years abroad.

Master Students:

• Cédric Meuter, Compilation et répartition de programmes ELECTRE sur LEGO Mind-
storms (Compiling and Distributing ELECTRE Programs for LEGO Mindstorms). Mas-
ter Thesis in Computer Science, Université Libre de Bruxelles, Belgium, 2001/2002.

4 Chapter 1: Curriculum Vitæ

• Armelle Prigent, Vérification des systèmes SDL par abstraction, (Verification of SDL
specifications), co-supervised with Philippe Dhaussy, ENSIETA, Brest and Olivier Roux,
IRCCyN, Nantes). Master Thesis in Automatique et Informatique Appliquée (Auto-
mated Systems and Computer Science), Nantes, 1999/2000.

• Manuel David, Test de Systèmes Temporisés, Master Thesis in Automatique et Informa-
tique Appliquée, Nantes, 1998/1999.

• François Lorillard, Vérification de propriétés d’un logiciel de surveillance médicale avec
SPIN, (Verification of Medical Monitoring Software). Master Thesis in Automatique
et Informatique Appliquée, Nantes,1997/1998. One publication in a national work-
shop [M1].

1.5.2 Collaborations.

National Collaborations. I work on a regular basis with my colleagues in the research
group MOVES14 (Modeling and Verification of Embedded Systems) and also with Olivier H.
Roux from the Real-Time Systems group. Hereafter I just mention the collaborations I had
or have with other colleagues in France:

• with Philippe Dhaussy (ENSIETA, Brest), during the Master Thesis of François Lorillard
in 1998, we have designed a model of the software of a medical monitoring system (used
in the main hospital of Brest) and formally verified it. The result of this work was
published in a national workshop [M1]. Later on, during the Master Thesis of Armelle
Prigent in 2000, we have proposed a translation of SDL in SPIN [C19].

• with Alain Finkel and Grégoire Sutre (LSV, ENS-Cachan) between 1998 and 2002, we
have proposed a model for asynchronous infinite state systems, namely FIFFO automata
(First In First Fireable Out) and studied the properties of this model (decidability of
verification problems). The results we have obtained were published in [C22, C18].

• with François Laroussinie (LSV, ENS-Cachan), since 1999, we have been working on
various problems. We were co-leaders of the project ACI CHRONO12 (2001–2004)
which focussed on tools and algorithms for hybrid systems and more particularly for
stopwatch automata. Stopwatch automata are interesting because they can be used to
model scheduling problems with preemption and complex synchronisation. This collab-
oration was pursued with Patricia Bouyer. We have worked on control problems for
timed systems during the course of the project ACI-CORTOS10 for which I was the
site leader in Nantes. The results we have obtained were published in various confer-
ences [I3, C10, C12, C14, C20, E1].

• with Gilles Bernot, Jean-Paul Comet and Franck Delaplace (LaMI, Evry), we have
worked on modeling biological regulatory networks. This work was published in the
BioCONCUR international workshop [C15].

• with Béatrice Berard and Serge Haddad (LAMSADE, Paris) we have been working
since 2005 on the expressiveness of timed automata and time Petri nets. The results
were published in [C7, C8, C9].

• with Claude Jard and Thomas Chatain (IRISA, Rennes) since 2005, we have been work-
ing on unfoldings of networks of timed automata. Our results were published in [C6].
This collaboration is now pursued in the French project DOTS9 which started in January
2007.

1.5 Students Supervision and Collaborations 5

• with Karine Altisen and Stavros Tripakis (VERIMAG, Grenoble) we have been working
on diagnosis problems for discrete event systems and timed systems. Our results were
published in [C4, C3, C5] and in the research report [RR1].

• with André Arnold, Alain Griffault (LaBRI, Bordeaux) and Antoine Rauzy (LMI, Mar-
seille) during the PhD Thesis of Claire Pagetti (2004), we have proposed an extension
of the language AltaRica for timed systems [J2, C16].

International Collaborations. The collaborations are listed in chronological order:

• with Mark Ryan (University of Birmingham, UK) and Pierre-Yves Schobbens (FUNDP,
Namur, Belgium), during the course of the project FIREworks8. This project addressed
the problem of feature integration in requirements engineering which is a real concern in
the telecoms industry. The project started in May 1997 and ended in November 2000.
Many European groups were involved in FIREworks, in particular the University of
Birmingham, LaMI (Evry), FUNDP (Namur, Belgium), and Aalborg University, Den-
mark. I was the site leader in Nantes for this project.

Together with Mark Ryan (University of Birmingham, UK) and Pierre-Yves Schobbens
(FUNDP, Namur, Belgium) we have contributed some results on the detection of features
interaction using the ATL logic. This work has been reported at the FIREworks annual
meeting in May 2000 and published in [M2].

Following this collaboration, Mark Ryan joined the Organising Committee of the summer
school MOVEP13 until 2004.

• with Kim G. Larsen, Aalborg University, Denmark, we started a collaboration in Septem-
ber 1999. Since then, I have visited Aalborg regularly (2 weeks a year). We have first
contributed results on the expressiveness of stopwatch automata (published in CON-
CUR’2000, [C21]). More recently, we have been working on (Priced) Timed Games [C12,
C14] and efficient algorithms for solving timed games [C1, C11].

• with Jean-François Raskin, Université Libre de Bruxelles (ULB) we started to collabo-
rate in 2002. We contributed some results on the decidability of some sampling control
problems for timed automata. This work was carried out together with Thomas Hen-
zinger, UC Berkeley (USA) and published in HSCC’02 ([C17]). More recently we have
worked (together with Kim G. Larsen) on the design of efficient algorithms for partially
observable timed games [C1].

In 2002, I supervised a Master’s student, Cédric Meuter, from the Université Libre de
Bruxelles.

Lastly Jean-François Raskin has been in the organising committee of the school MOVEP
since 2002 and hosted the school in Brussels in 2004.

• with Ralf Huuck and Ansgar Fehnker, from NICTA15, Sydney, Australia, we have worked
on modeling sensor networks with timed automata. This work was carried out during a
2-month visit I made at NICTA in 2005. I have applied for a Marie Curie International
Outgoing Fellowship (OIF) of the 7th Framework Programme to spend two years at
NICTA from 2008.

• with John Mullins, CRAC16, école Polytechnique de Montréal, Canada, we have worked
on non-interference problems, more precisely on the synthesis of non-interferent sys-
tems [C2]. This work was done in collaboration with Olivier H. Roux.

6 Chapter 1: Curriculum Vitæ

1.5.3 Reviewing

I was a member of the Editorial Board of the French Journal Technique et Science Informa-
tiques (TSI) from 2002 to 2006. As a member of the Editorial Board I helped in dispatching
papers to reviewers and also reviewing papers for the journal TSI. In 2006, I was Associate
Editor with François Laroussinie of a Special Issue of the journal about the Control of Timed
and Hybrid Systems [E1].

I am regularly reviewing papers for international conferences: CAV17, TACAS18, FOS-
SACS19, CONCUR20, BioCONCUR21, LICS22, HSCC23, FSTTCS24, CSL25 and interna-
tional journals: Journal of Real-Time Systems, Fundamenta Informaticæ, Discrete Mathemat-
ics and Theoretical Computer Science, Information & Computation, Theory and Practice of
Logic Programming, Formal Methods in System Design and IEEE Transactions on Automatic
Control (since September 2006, I have reviewed one paper for each of the above mentioned
journals.)

Since 2006, I am an expert evaluator for the French Research Agency (ANR) now in
charge of dispatching the funding for public research in France, and I also served as an expert
evaluator for the Canadian Fonds de Recherche sur la nature et les technologies.

1.5.4 Organisation of Summer Schools, Journal Special Issue

Since 1998, I have been in the organising committee of the summer school MOVEP13. The
scope of the school is MOdeling and VErification of parallel Processes and the subjects covered
are continuously updated following the new research advances. MOVEP used to be a French
summer school (1994, 1996, 1998) and in 2000, I decided to give the school an international
dimension. Renowned speakers from Europe and North America gave tutorials and invited
talks. For this first international edition of MOVEP, the proceedings were published as a
volume in the series Lecture Notes in Computer Science Tutorials [E5]. Ever since, around
120 participants from Europe, North America, India and North Africa have attended each
edition of the school. MOVEP is now a well-established and internationally recognised event.
It was organised in Brussels in 2004, Bordeaux in 2006 and will be held in Rennes in 2008.
The school has been sponsored by national organisations (CNRS) and also European Network
of Excellence (ARTIST2 NoE in 2006).

At the last international conference on Concurrency Theory (CONCUR’06, Bonn, Ger-
many), I was in charge of organising the workshop CORTOS26 on Control and Observation
of Real-Time Open Systems. This workshop was sponsored by the French project CORTOS

I was involved in, and gathered around 15 people working on the control of timed systems
(6 invited talks were given at the workshop among them 2 were given by participants of the
French project CORTOS).

In 2006, I was Associate Editor with François Laroussinie of a Special Issue of the jour-
nal Technique et Science Informatiques (TSI) about the Control of Timed and Hybrid Sys-
tems [E1].

Since 2004, I am also participating in the programme rencontres élèves-chercheurs, aimed at
improving interaction between the research community and students (from Primary school to
High school). A few times a year, I am giving short talks in classrooms to present researchers’s
activities. I am also participating in the fête de la science, held in October every year in France.
For instance in 2007, I will give a talk in Nantes on The limited power of computers.

1.6 Funded Projects 7

1.6 Funded Projects

Since I was hired as an Associate Professor in 1993, I have tried to participate in funded
projects. Some of them are mentioned in this section.

1.6.1 Recent National Projects

• Since January 2007, I am involved in the project Distributed Open Timed Systems
(DOTS9) funded by the ANR programme on Sécurité Informatique (Security). The
project addresses verification and control problems for distributed and timed systems.
The leader of the project is François laroussinie (LSV, ENS Cachan) and the other par-
ticipants1 are: IRISA Districom, Rennes (Claude Jard); IRCCyN, Nantes (Didier Lime);
LaBRI, Bordeaux (Igor Waluckiewicz); LAMSADE, Paris Dauphine (Serge Haddad) and
LSV, ENS Cachan (François Laroussinie). This project spans over 4 years and the total
funding is 600 KEuros with 100 KEuros for our group at IRCCyN.

• from September 2003 to January 2007, I was the site leader of the project CORTOS10

(Control and Observation of Real-Time Open Systems). CORTOS was also funded by
the ANR programme on Sécurité Informatique (Security). This was a joint project
with LSV (ENS Cachan) and VERIMAG (Grenoble) and the project leader was Pa-
tricia Bouyer (LSV, ENS Cachan). Total funding for this project was 300 KEuros
with 100 KEuros for our group. The results of the project are available from the
URL http://www.lsv.ens-cachan.fr/aci-cortos/.

• from September 2001 to September 2004, I was co-leader with François Laroussinie of the
project CHRONO12. The theme of this project was using stopwatch automata to model
scheduling problems. We were interested in studying decision problems for subclasses of
stopwatch automata. The total funding for this project was 100 KEuros with 30 KEuros
for our group.

1.6.2 European Project

From 1997 to 2000, I was involved in the Fireworks8 project. This project addressed the prob-
lem of feature integration in requirements engineering which is a real concern in the telecoms
industry. The project started in May 1997 and ended in November 2000. Many European
groups were involved in FIREworks, in particular the University of Birmingham (UK, project
leader), LaMI (Evry), FUNDP (Namur, Belgium), and Aalborg University, Denmark. I was
the site leader in Nantes for this project.

Together with Mark Ryan (University of Birmingham, UK) and Pierre-Yves Schobbens
(FUNDP, Namur, Belgium) we have contributed some results on the detection of features
interactions using the ATL logic. This work has been reported at the FIREworks annual
meeting in May 2000 and published in [M2].

The funding for our group in Nantes was around 20 KEuros.

1.6.3 Visits Abroad

I have visited a few research laboratories abroad. These visits were sponsored either by the
host laboratory, or by the Direction des Relations Internationales (DRI) of CNRS, or by the

1Only site leaders are mentioned.

http://www.lsv.ens-cachan.fr/aci-cortos/

8 Chapter 1: Curriculum Vitæ

funds of the projects listed in Section 1.6.1. Here are some of the groups I visited recently:

• Professor Kim Guldstrand Larsen, Aalborg University, Denmark.

– October–November 1999, 2 months, sponsored by BRICS27, Denmark;

– January 2001, 1 month, sponsored by BRICS, Denmark and DRI28 CNRS;

– August 2001, 1 month, sponsored by BRICS, Denmark;

– December 2002, 3 weeks, sponsored by BRICS, Denmark and DRI CNRS;

– December 2003, 2 weeks, sponsored by BRICS, Denmark;

– February 2005, 2 weeks, sponsored by CISS29 & ACI-CORTOS;

– June 2006, 2 weeks, sponsored by CISS & ACI-CORTOS;

• Professor Jean-François Raskin, Université Libre de Bruxelles (ULB), Belgium.

– May–June 2002, 2 months, sponsored by FNRS30;

– November–December 2007, 1 month, sponsored by FNRS;

• Professor John Mullins, Ecole Polytechnique de Montréal, Canada.

– June 2005, 2 weeks, sponsored by ACI CORTOS;

– April 2007, 2 weeks, sponsored by ACI CORTOS;

• Professors Ron Van der Meyden and Ralf Huuck, NICTA, Sydney, Australia.

– November–December 2005, 2 months, sponsored by DREI31 CNRS.

1.7 Seminars & Invited talks

Recently, I have presented the conference papers at ACSD’07, TASE’07, ACSD’06, ATVA’06,
FORMATS’05, CONCUR’05, AVoCS’04, GDV’04.

In addition to this, I have given invited talks at projects meetings (FireWorks, ACI
CHRONO, ACI CORTOS, ANR DOTS), or conferences or seminars:

1. Efficient Algorithms for Timed Games [I1], FORMATS’07, October 2007, Salzburg,
Austria.

2. Contrôle des systèmes temporisés [I4], ETR’07, September 2007, Nantes, France.

3. Sensor Minimization Problems for Finite Automata, Seminar of the Centre Fédéré en
vérification, November 2006, Brussels, Belgium.

4. Fault Diagnosis with Digital Clocks, CORTOS workshop, Bonn, August 2006.

5. Sensor Minimization Problems for Finite Automata, CISS Seminar, Aalborg, June 2006,
Denmark.

6. Sensor Minimization Problems for Finite Automata, Joint Workshop of the French
projects CORTOS10, Versydis, Persee, Cachan, March 2006.

1.7 Seminars & Invited talks 9

7. Control of Timed Systems, NICTA, Lectures on the theory of control of timed systems,
implementation and optimal control. November–December 2005, Sydney, Australia.

8. Introduction to Control of Timed Systems, NICTA Workshop on Formal Methods, 7–9
November 2005, Sydney, Australia.

9. Optimal Strategies for Priced Timed Games, VERIMAG seminar, October 20th, 2005,
Grenoble, France.

10. Introduction to Control of Timed Systems, Invited Talk, MSR’05, October 7th, 2005,
Autrans, France.

11. Introduction to Control of Timed Systems, CRAC Seminar, June 2005, Ecole Polytech-
nique de Montréal, Canada

12. Efficient Algorithms for reachability control of timed systems, Seminar of Université Libre
de Bruxelles, Brussels, May 28th, 2005.

13. From Timed Petri Nets to Timed Automata, CISS Seminar, Aalborg, March 2005, Den-
mark.

14. Introduction to Control of Timed Systems, ENS Bretagne, Rennes, January 2005.

15. Optimal Strategies for Priced Timed Games, Journées du Centre Fédéré en vérification,
May 2004, Brussels, Belgium.

16. Optimal Strategies for Priced Timed Games, MVTSI Seminar, May 2004, LaBRI, Bor-
deaux, France.

17. Vérification Qualitative – Model Checking et logiques temporelles [I5], Ecole Jeunes Cher-
cheurs Ecole Temps Réel, ETR’03, September 2003, Toulouse, France.

18. Comparison of Control Problems for Timed and Hybrid Systems, LIAFA seminar, Paris 7,
June 2002, Paris, France.

19. Comparison of Control Problems for Timed and Hybrid Systems, 68NQRT Seminar,
February 2003, IRISA, Rennes, France

20. New results for Reactive FIFFO Automata, Seminar of Université Libre de Bruxelles,
Brussels, December 2002.

21. Comparison of Control Problems for Timed and Hybrid Systems, LaBRI seminar, Jan-
uary 2002, Bordeaux, France.

22. Comparison of Control Problems for Timed and Hybrid Systems, BRICS Seminar, Novem-
ber 2001, Aalborg, Denmark

23. The Expressive Power of Stopwatches, LSV Seminar, January 2000, Paris, France.

10

1.8 Publications

Most of the following papers are available from http:www.irccyn.fr/franck.

— Refereed Journal Papers —

International Journals

[J1] Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to
timed automata. Journal of Software and Systems, 29:1456–1468, 2006.

[J2] Franck Cassez, Claire Pagetti, and Olivier Roux. A timed extension for AltaRica.
Fundamenta Informatica, 62(3–4):291–332, 2004.

[J3] Frédéric Herbreteau, Franck Cassez, and Olivier Roux. Application of Partial-Order
Methods to Reactive Systems with Event Memorization. Journal of Real-Time Systems,
20(3):287–316, 2001.

[J4] Olivier Roux, Vlad Rusu, and Franck Cassez. Hybrid Verification of Reactive Systems.
Formal Aspects of Computing, 11(4):448–471, 1999.

[J5] Franck Cassez. Formal Semantics for Reactive GRAFCET. European Journal of Au-
tomation, 31(3):581–603, 1997.

[J6] Franck Cassez and Olivier Roux. Compilation of the Electre Reactive Language into
Finite Transition Systems. Theoretical Computer Science, 146(1–2):109–143, 1995.

National Journals

[J7] Karine Altisen, Patricia Bouyer, Thierry Cachat, Franck Cassez, and Guillaume
Gardey. Introduction au contrôle des systèmes temps-réel. Journal Européen des Sys-
tèmes Automatisés, 39(1-2-3):367–380, 2005.

[J8] Olivier Roux, Denis Creusot, franck Cassez, and Jean-Pierre Elloy. Le langage réactif
asynchrone ELECTRE. Technique et Science Informatiques, 11(5):35–66, 1992.

— Invited Contributions —

[I1] Franck Cassez. Efficient on-the-fly algorithms for partially observable timed games.
In Proc. of the 5th Int. Conf. on Formal Modeling and Analysis of Timed Systems
(FORMATS’07), volume 4763 of LNCS, pages 5–24. Springer, 2007. Invited Paper.

[I2] Franck Cassez and Olivier H. Roux. Petri Nets – Theory and Application, chapter From
Time Petri Nets to Timed Automata. Advanced Robotic Systems, Vienna, Austria,
2007. Forthcoming.

[I3] Karine Altisen, Patricia Bouyer, Thierry Cachat, Franck Cassez, and Guillaume
Gardey. Introduction au contrôle des systèmes temps-réel. In Actes du 5ème Colloque
sur la Modélisation des Systèmes Réactifs (MSR’05), pages 367–380. Hermès Science,
2005. Invited Paper. Also appeared as [J7].

[I4] Franck Cassez and Nicolas Markey. Contrôle des systèmes temporisés. Actes de l’école
d’été ETR’07, 2007. Nantes.

http:www.irccyn.fr/franck

11

[I5] Franck Cassez. Vérification qualitative – Model-Checking et Logiques Temporelles.
Actes de l’école d’été ETR’03, 2003. Toulouse.

— Refereed Conferences —

International Conferences

The acceptance ratio for the articles of this section are: [C2]: 32%; [C3]: 40%; [C4]: 22%;
[C5]: 51%; [C6]: 25%; [C7]: 44%; [C8]: 23%; [C9]: 35%; [C10] et [C11]: 38%; [C13]: 67%;
[C14]: 24% ; [C17]: 45%; [C18]: 42%; [C19]: 50%; [C20]: 38%; [C21]: 36%; [C22]: 36%.

[C1] Franck Cassez, Alexandre David, Kim G. Larsen, Didier Lime, and Jean-François
Raskin. Timed control with observation based and stuttering invariant strategies. In
5th Int. Symp. on Automated Technology for Verification and Analysis (ATVA’07),
LNCS, pages 307–321. Springer, 2007. Forthcoming.

[C2] Franck Cassez, John Mullins, and Olivier H. Roux. Synthesis of non-interferent systems.
In 4th Int. Conf. on Mathematical Methods, Models and Architectures for Computer
Network Security (MMM-ACNS’07), volume 1 of Communications in Computer and
Inform. Science, pages 307–321. Springer, 2007.

[C3] Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor minimization problems
with static or dynamic observers for fault diagnosis. In 7th Int. Conf. on Application
of Concurrency to System Design (ACSD’07), pages 90–99. IEEE Computer Society,
2007.

[C4] Franck Cassez, Stavros Tripakis, and Karine Altisen. Synthesis of optimal dynamic
observers for fault diagnosis of discrete-event systems. In 1st IEEE & IFIP Int. Symp.
on Theoretical Aspects of Soft. Engineering (TASE’07), pages 316–325. IEEE Computer
Society, 2007.

[C5] Karine Altisen, Franck Cassez, and Stavros Tripakis. Monitoring and fault-diagnosis
with digital clocks. In 6th Int. Conf. on Application of Concurrency to System Design
(ACSD’06). IEEE Computer Society, 2006.

[C6] Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic Unfoldings for Networks
of Timed Automata. In 4th Int. Symp. on Automated Technology for Verification and
Analysis (ATVA’06), volume 4218 of LNCS, pages 307–321. Springer, 2006.

[C7] Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime.
Comparison of the Expressiveness of Timed Automata and Time Petri Nets. In Proc. of
the 3rd Int. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS’05),
volume 3829 of LNCS, pages 211–225. Springer, 2005.

[C8] Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime.
When are Timed Automata weakly timed bisimilar to Time Petri Nets ? In Proc. of
the 25th Int. Conf. on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’05), volume 3821 of LNCS, pages 276–284. Springer, 2005.

12

[C9] Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime.
Comparison of Different Semantics for Time Petri Nets. In 3rd Int. Symp. on Automated
Technology for Verification and Analysis (ATVA’05), volume 3707 of LNCS, pages 293–
307. Springer, 2005.

[C10] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal logics for timed
control. In Proc. of the 16th Int. Conf. on Concurrency Theory (CONCUR’05), volume
3653 of LNCS, pages 81–94. Springer, 2005.

[C11] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In Proc. of the 16th Int.
Conf. on Concurrency Theory (CONCUR’05), volume 3653 of LNCS, pages 66–80.
Springer, 2005.

[C12] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Synthesis
of optimal strategies using HyTech. In Proc. of the Workshop on Games in Design
and Verification (GDV’04), volume 119 of Elec. Notes in Theo. Comp. Science, pages
11–31. Elsevier, 2005.

[C13] Franck Cassez and Olivier H. Roux. Structural Translation of Time Petri Nets into
Timed Automata. In Proceedings of the Workshop on Automated Verification of Critical
Systems (AVoCS’04), volume 128 of Elec. Notes in Theo. Comp. Science, pages 145–
160. Elsevier, 2005.

[C14] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strate-
gies in priced timed game automata. In Proc. of the 24th Int. Conf. on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of
LNCS, pages 148–160. Springer, 2004.

[C15] Gilles Bernot, Franck Cassez, Jean-Paul Comet, Franck Delaplace, Céline Müller,
Olivier Roux, and Olivier Roux. Semantics of Biological Regulatory Networks. In
Proc. of the Workshop on Concurrent Models in Molecular Biology (BioConcur’03),
Elec. Notes in Theo. Comp. Science. Elsevier, 2003.

[C16] Claire Pagetti, Franck Cassez, and Olivier Roux. Hierarchical Modeling and Verification
of Timed Systems in Timed AltaRica. In Workshop on Formal Aspects of Component
Software (FACS’03), pages 63–80. UNU/IIST, Macau, 2003. Pisa, Italy, September
8–9, 2003.

[C17] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A Comparison of
Control Problems for Timed and Hybrid Systems. In Proc. of the Workshop on Hybrid
Systems Computation and Control (HSCC’02), number 2289 in LNCS, pages 134–148.
Springer, 2002.

[C18] Frédéric Herbreteau, Franck Cassez, Alain Finkel, Olivier Roux, and Grégoire Sutre.
Verification of Embedded Reactive FIFFO Systems. In Proc. of the Latin American
Symp. on Theoretical Informatics (LATIN’02), volume 2286 of LNCS, pages 400–414.
Springer, 2002.

13

[C19] Armelle Prigent, Franck Cassez, Philippe Dhaussy, and Olivier Roux. Extending the
Translation from SDL to Promela. In Proc. of the 9th International SPIN Workshop on
Model Checking of Software (SPIN’02), volume 2318 of LNCS, pages 400–414. Springer,
2002.

[C20] Franck Cassez and François Laroussinie. Model-Checking of Hybrid Automata by
Quotienting and Constraints Solving. In Proc. of the Int. Conf. on Computer Aided
Verification, (CAV’00), volume 1855 of LNCS, pages 373–388. Springer, 2000.

[C21] Franck Cassez and Kim Guldstrand Larsen. The Impressive Power of Stopwatches. In
Proc. of the 11th Int. Conf. on Concurrency Theory, (CONCUR’00), volume 1877 of
LNCS, pages 138–152. Springer, 2000.

[C22] Grégoire Sutre, Alain Finkel, Olivier Roux, and Franck Cassez. Effective recognizability
and model-checking of reactive FIFFO automata. In Proc. of the 7th Int. Conf. on
Algebraic Methodology and Software Technology (AMAST’98), volume 1548 of LNCS,
pages 106–123. Springer, 1999.

National Conferences

[C23] Franck Cassez and Olivier Henri Roux. Traduction structurelle des Réseaux de Petri
Temporels en Automates Temporisés. In 4ème Colloque Francophone sur la Modélisa-
tion des Systèmes Réactifs, (MSR’03), 2003.

[C24] Franck Cassez, Frédéric Herbreteau, and Olivier Roux. Reactive Systems with Un-
bounded Event Memorization. In Conférence Africaine de Recherche en Informatique,
CARI’2000, pages 291–298. INRIA, 2000. Conférence francophone.

[C25] Franck Cassez. Sémantique pour le GRAFCET réactif. In Actes du 1er Colloque sur
la Modélisation des Systèmes Réactifs (MSR’96), 1996.

— Proceedings, Journal Special Issue —

I was co-editor of the following books:

[E1] Franck Cassez and François Laroussinie, editors. Contrôle des applications temps-
réel: modèles temporisés et hybrides, volume 25 of Technique et Science Informatiques.
Hermès Science, 2006.

[E2] Franck Cassez, Therry Jéron, François Laroussinie, Jean-François Raskin, and Mark
Ryan, editors. Proceedings of the Summer School MOVEP’2006. LaBRI, Bordeaux,
France, Bordeaux, France, December 2006. 400 pages, in English.

[E3] Franck Cassez, Therry Jéron, François Laroussinie, Jean-François Raskin, and Mark
Ryan, editors. Proceedings of the Winter School MOVEP’2004. Université Libre de
Bruxelles, Belgique, Bruxelles, Belgium, December 2004. 400 pages, in English.

[E4] Franck Cassez, Claude Jard, François Laroussinie, and Mark Ryan, editors. Proceedings
of the Summer School MOVEP’2002. Ecole Centrale de Nantes, 2002. 450 pages, in
English.

14

[E5] Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark D. Ryan, editors. Proc. of the
Int. Summer School on Modelling and Verification of Parallel Processes (MOVEP’2k),
volume 2067 of Lecture Notes in Computer Science Tutorials. Springer, 2001.

[E6] Franck Cassez, Claude Jard, Brigitte Rozoy, and Mark Ryan, editors. Proceedings of the
Summer School MOVEP’2000. Ecole Centrale de Nantes, 2000. 300 pages, in English.

[E7] Franck Cassez, Claude Jard, Olivier Roux, and Brigitte Rozoy, editors. Actes de l’école
d’été MOVEP’98. Ecole Centrale de Nantes, 1998. 280 pages, in french.

— Recent Research Reports —

[RR1] Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor Minimization Problems
with Static or Dynamic Observers for Fault Diagnosis. Technical Report RI-2007-1,
IRCCyN/CNRS, Nantes, 2007.

[RR2] Franck Cassez, Thomas Chatain, and Claude Jard. Symbolic Unfoldings for Networks
of Timed Automata. Technical Report RI-2006-4, IRCCyN/CNRS, Nantes, 2006.

[RR3] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal Logics for Timed
Control. Technical Report RI-2005-2, IRCCyN/CNRS, Nantes, 2005.

[RR4] Béatrice Bérard, Franck Cassez, Serge Haddad, Didier Lime, and Roux Olivier Henri.
Comparison of the Expressiveness of Timed Automata and Time Petri Nets. Technical
Report RI-2005-3, IRCCyN/CNRS, Nantes, 2005.

[RR5] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim Guldstrand Larsen. Op-
timal Strategies in Priced Timed Game Automata. BRICS Reports Series RS-04-0,
BRICS, Denmark, 2004. ISSN 0909-0878.

— Miscallenous —

[M1] Ahmed Bouabdallah, Franck Cassez, Joël Champeau, Philippe Dhaussy, François Lo-
rillard, and Olivier Roux. Vérification d’un logiciel temps-réel distribué: étude compar-
ative des environnements B, SDT et SPIN. 7ième journées thématiques Informatique
et électronique embarquées, Brest, 1998.

[M2] Franck Cassez, Mark D. Ryan, and Pierre-Yves Schobbens. Proving Feature non-
interaction with Alternating Time Temporal logic. In 3rd FIREworks Workshop –
Language Constructs for Describing Features, pages 85–104. Springer Verlag, London,
2000. Copyright Springer Verlag.

http://www.springer.co.uk/

1.9 Acronyms 15

1.9 Acronyms

1 – UBO: Université de Bretagne Occidentale (University of Western Brittany), Brest, France.
2 – CNRS: Centre National de la Recherche Scientifique, http://www.cnrs.fr
3 – IRCCyN: Institut de Recherche en Communication et Cybernétique de Nantes (Research Institute in
Communications and Cybernetics of Nantes), http://www.irccyn.ec-nantes.fr
4 – ENSAI: Ecole Nationale de la Statistique et de l’Analyse de l’Information (French National School in
Statistics).
5 – ECN: Ecole Centrale de Nantes, France.
6 – SPIN: Model-checker for communicating automata, http://spinroot.com/
7 – UPPAAL: Model-checker for timed automata, http://www.uppaal.com
8 – FIREworks: Feature Integration in Requirements Engineering

http://www.cs.bham.ac.uk/~mdr/fireworks/

9 – DOTS: Distributed Open Timed Systems. Project funded by ANR (French National Research Agency)
« Sécurité Informatique », started January 2007, duration: 4 years; http://www.lsv.ens-cachan.fr/anr-dots/
10 – CORTOS: ACI program « Sécurité Informatique », Control and Observation of Real-Time Open Systems

http://www.lsv.ens-cachan.fr/aci-cortos/

11 – ACI: Action Concertée Incitative which is a French government program to sponsor research.
12 – CHRONO: ACI « Jeunes Chercheurs », Tools and Algorithms for the Verification of Hybrid Systems

http://www.irccyn.fr/franck/aci-chrono/

13 – MOVEP: Modeling and Verification of Parallel Processes. Summer School. http://movep.labri.fr/

14 – MOVES: Modeling and Verification of Embedded Systems
15 – NICTA: National Information and Communications Technology Australia. http://nicta.com.au

16 – CRAC: Laboratoire de Conception et de Réalisation des Applications Complexes, Ecole Polytechnique
de Montréal, Canada.
17 – CAV: Conference on Computer Aided verification.
18 – TACAS: Part of ETAPS, conference on Tools and Algorithms for the Construction and Analysis of
Systems.
19 – FOSSACS: Foundations of Software Science and Computation Structures.
20 – CONCUR: Conference on Concurrency Theory.
21 – BioCONCUR: Workshop on Concurrent Models in Molecular Biology.
22 – LICS: Conference on Logics in Computer Science.
23 – HSCC: Hybrid Systems: Computation and Control.
24 – FSTTCS: Foundations of Software Technology and Theoretical Computer Science.
25 – CSL: Computer Science Logic
26 – Workshop CORTOS: http://www.lsv.ens-cachan.fr/aci-cortos/workshop-concur06/

27 – BRICS: Basic Research In Computer Science, Denmark.
28 – DRI: Direction Relations Internationales du CNRS.
29 – CISS: Center for Indlejrede Software Systemer (Center for Embedded Software Systems).

http://www.ciss.dk

30 – FNRS: Fonds National de la Recherche Scientifique; Belgium.
31 – DREI: Direction Relations Européennes et Internationales du CNRS, formerly DRI.

http://www.cnrs.fr
http://www.irccyn.ec-nantes.fr
http://spinroot.com/
http://www.uppaal.com
http://www.cs.bham.ac.uk/~mdr/fireworks/
http://www.lsv.ens-cachan.fr/anr-dots/
http://www.lsv.ens-cachan.fr/aci-cortos/
http://www.irccyn.fr/franck/aci-chrono/
http://movep.labri.fr/
http://nicta.com.au
http://www.lsv.ens-cachan.fr/aci-cortos/workshop-concur06/
http://www.ciss.dk

16

Chapter 2

Overview of my Research

Contributions

In this chapter, I give an overview of some results I have contributed to the domain of control
of timed systems. In the last few years I have also been working on the expressive power of
time Petri nets and timed automata. I have not developed this line of work as it was done
with Olivier H. Roux, and a summary of the results we have obtained together is already
available (in French) from Olivier’s “Habilitation à Diriger les Recherches” [84].

Sections (2.1–2.3) give an introduction to the domain of control for timed systems. They
were inspired from an earlier synthesis article [9] (in French). This paper was prepared for
an invited session at the French conference Modeling of Reactive Systems (MSR in French)
where we have presented the results obtained during the course of the project CORTOS (see
section 1.3, page 2 and page 15 for the URL). I was in charge of this paper and I presented
the invited talk at the conference. For further results, an excellent synthesis of the results on
control for timed systems can be found in [8].

In the next section 2.4, I give an overview of some more advanced subjects in the domain
of control for times systems, and emphasise some results I contributed to the domain.

2.1 Introduction

A classical approach to verification of critical systems, is model-checking [7]: this amounts
to building a model (S) of the system we want to check (e.g., the model can be a finite
automaton), to give a formal statement of the correctness property (ψ) the system has to
satisfy (e.g., the property can be given in a temporal logic), and to use a model-checking
algorithm to check whether S satisfies (or not) the property ψ (“S satisfies ψ” is often denoted
S |= ψ). The model-checking technology is now mature enough to be used in an industrial
context.

Nevertheless, models like finite automata cannot capture quantitative timing constraints
easily nor efficiently. Consider a scheduling problem with complex synchronisation and non-
deterministic tasks durations. It is possible to use finite automata and a discrete time domain
to model the problem but there are some drawbacks: one has to encode manually all the
behaviours (e.g., if the duration of a task is within 1 and 3 time units, the model will contain
explicitly the cases for 1, 2 and 3 time units), and moreover if the constants that appear
in the specification have different order of magnitude, say 1 to 1000000, one has to consider

17

18 Chapter 2: Overview of my Research Contributions

that the discrete time scale is 1 and the model will contain explicitly 1000000 different cases;
this will result in a huge number of discrete states (state explosion problem) and thus makes
verification a very hard task.

To handle features like non-deterministic tasks durations, and to have a compact and
concise specification of a system, we can use an extension of the finite automaton model: Timed
Automata, TA. Timed automata were introduced in [1], and are finite automata enriched with
dense time clocks. Model-checking algorithms (as well as temporal logics) for discrete (finite)
systems have been extended to handle the quantitative aspects of TA, and efficient tools were
developed to model-check TA: UPPAAL [89], KRONOS [88], CMC [91, 86] or HyTech [87] for
Hybrid Automata which are an extended version of TA that can handle more general types of
clocks (like stopwatches that can be stopped and resumed).

The Controller Synthesis Problem. To verify the correctness of a system, for instance
using a model-checking technique, it is necessary to have a complete model of the system: for
a lift system, one has to build a model of the lift and a model of the control program in order
to verify anything meaningful. Using an “automated systems” terminology, such systems are
closed loop systems.

The environment S the control program has to supervise (e.g., the lift) is called an open
system. It is the purpose of controller synthesis to check that a control program, say C, exists
such the closed system “S supervised by C” (denoted (S ‖ C) in the sequel), is correct.

If the correctness property is φ, the verification problem is “Does (S ‖ C) satisfy φ?”. The
model-checking problem can be formally defined by:

Given S, C and φ, does (S ‖ C) |= φ ? (MC)

As said previously, this approach requires to build a model of the controller C, of the environ-
ment S and of the compound system (S ‖ C). Guessing a controller might be a difficult task
for complex systems, of for complex properties (e.g., a property involving timing constraints).
Moreover, if we can design a controller, it could happen that the property is not satisfied
by the closed system. In this case, it is necessary to patch the controller. This process can
be applied iteratively until a good controller is found. This guess/check method has some
drawbacks: it could be that the handcrafted controller we designed is not very efficient (in
terms of lines of code for instance) and a better one exists; even worse, it might be that no
controller exists to enforce the property φ on the environment S and the iterative process of
guess/check will end up in an infinite loop.

Ideally, we would like to start with a specification of the system to be controlled S, a
property to be enforced, φ, and compute or synthesise a controller C s.t. (S ‖ C) |= φ. Before
computing a controller, we have to check that one exists. This is the Control Problem (CP)
defined formally by:

Given S and φ, is there any C s.t. (S ‖ C) |= φ ? (CP)

The answer to the control problem (CP) depends on many parameters: for instance, which
type of controllers we are looking for. We can decide to look for a finite state controller (with
bounded memory) or a more powerful one which has its own clocks and can measure durations.
If the answer to (CP) is “yes”, a natural question is to compute a witness controller: this is
the Controller Synthesis Problem (CSP):

If the answer to the (CP) is "yes", can we compute a witness controller C ? (CSP)

2.1 Introduction 19

The previous problems have been identified and studied for discrete event systems in the
pioneering work of Ramadge and Wonham [12, 13]. Another way of addressing the control
problem is to use the framework of Game Theory.
From Control to Games. The control problem can be seen as a game problem in which a
controller has to win against an environment. As such, it can formalised using the game theory
developed for discrete systems [14, 18, 15, 17] and later extended to timed systems [20, 25, 23,
29]. For instance, an open system can be specified using a Timed Game Automaton (TGA) like
the one given in Figure 2.1. A TGA is a standard TA in which the actions are partitioned into
two disjoints sets: controllable actions which can be . . . controlled, and uncontrollable actions
on which the controller has no control. In the TGA of Figure 2.1, controllable transitions

x := 0 l0

[x ≤ 4]

l1

[x ≤ 5]

l2

[x ≤ 5]

Bad
x ≤ 4; c1

c2
c3; x := 0

x < 2;u

x > 3;u

Figure 2.1: A Timed Game Automaton S.

are pictured using plain lines whereas uncontrollable transitions are pictured by dashed lines.
The type of a transition is determined by the type of its action. Actions are partitioned into
Σc = {c1, c2, c3} for controllable ones and and Σu = {u} for uncontrollable ones.

The TGA of Figure 2.1 specifies a control problem where the controller is in charge of Σc

i.e., the controller can choose when to play a Σc-action, and Σu are uncontrollable actions
played by the environment. In this example, the goal of controller is to avoid the state Bad,
and this whatever the environment is doing. This type of game where one has to keep the
system within a set of good states is called a safety game.
Timed Automata. A timed automaton (TA) is a finite automaton enriched with clocks, the
values of which are in a dense time domain like R≥0. In the example of Figure 2.1, x is a clock
of the TA S. The behaviours generated by a TA like S begin in the initial state (ℓ0, x = 0).
The semantics of TA is such that a state has two components: one discrete component which
is the location in which the TA is, and the other component is an assignment of the clocks to
real values in R≥0. This means that, when a dense time domain is considered, a TA has an
infinite (sometimes uncountable) set of states.

In a TA, the values of the clocks increase synchronously as time elapses. Each location is
tagged with an invariant1 which is a constraint imposed on time elapsing. For instance, in
location ℓ0, the invariant is [x ≤ 4]. This imposes that from state (ℓ0, x = 0), the maximum
amount of time that can elapse is 4 time units. For any δ ∈ R≥0 with δ ≤ 4, time can
elapse from (ℓ0, x = 0) and the system S reaches state (ℓ0, x = δ): this is a time transition.
A discrete transition can be fired if the constraints given by the guard of the transition are
satisfied: for instance c1 can be triggered when x ≤ 4. The automaton S of Figure 2.1 imposes
that transition c1 occurs before 4 time units have elapsed from the initial state: the invariant

1Invariants are within square brackets in the figures.

20 Chapter 2: Overview of my Research Contributions

[x ≤ 4] prevents time elapsing beyond x = 4.
The semantics of a TA is a Timed Transition System (TTS) which is a standard transition

system with two types of transitions: time transition labelled by some δ ∈ R≥0 and discrete
transitions labelled by an action in Σc ∪ Σu. A behaviour generated by a TA is a sequence
of alternating time and discrete transitions. For example, the automaton S of Figure 2.1 can
generate the following runs2 ρ1 and ρ2:

ρ1 : (ℓ0, 0)
1.55−−−→ (ℓ0, 1.55)

c1−−→ (ℓ1, 1.55)
1.67−−−→ (ℓ1, 3.22)

u−→ (Bad, 3.22)

ρ2 : (ℓ0, 0)
1.1−−→ (ℓ0, 1.1)

c1−−→ (ℓ1, 1.1)
2.1−−→ (ℓ1, 3.2)

c2−−→ (ℓ2, 3.2)
0.1−−→ (ℓ2, 3.3)

c3−−→ (ℓ0, 0) · · ·

In a TTS there are infinitely many time transitions (with labels δ ∈ R≥0) and infinitely
many states. Nevertheless, for any TA A, the TTS that gives the semantics of A admits a
finite abstraction (the region automaton or graph from Alur & Dill [1]) which contains enough
information to prove most of the correctness properties of A. The nodes of this abstraction
are symbolic states which are pairs of the form (ℓ, Z) where ℓ is a location of A and Z is a
zone i.e., a convex set of valuations of the clocks. In the example of Figure 2.1, we can have a
symbolic node of the form (ℓ0, 1 ≤ x < 3) (actually this type of nodes with a zone defined by a
non-elementary constraint 1 ≤ x < 3 cannot be in the region graph; it can be encountered in a
coarser abstraction of this graph, the simulation graph). In case the set of clocks X has more
than one element, zones are subsets of RX

≥0 and can be defined by diagonal constraints [1, 4].

To come back to the safety game defined by S in Figure 2.1, if the controller wants to
avoid location Bad, it must restrict the set of behaviours: for instance it should not play c1
in ℓ0 if x > 3, as the environment could reply instantaneously by playing u from ℓ1. When
in location ℓ1 with x ≤ 3, it should not wait too long before playing c2, because as soon as
x > 3, the environment can again play u and S reaches location Bad.

2.2 Semantics of Timed Games

When playing a timed game, we must define the rules that the players must follow. In the
case of a discrete (no time) game, the possible moves for each player are discrete actions. Each
player has its own set of actions, Σc and Σu, and some of them are enabled in each state. The
same semantics apply for discrete transitions in timed games: in the example of Figure 2.1,
c1 can be fired from (ℓ0, x ≤ 4), and u from (ℓ1, x > 3) and (ℓ2, x < 2). Still there is another
available action in the timed setting: the “do nothing” or “wait” action. A player can choose
to wait before playing a discrete action.

2.2.1 Rules for Playing Timed Games

In discrete games theory [18] (where games are finite automata, pushdown automata, etc),
there are two types of games:

• turn-based games in which the moves of the players alternate. At each point in time,
one player chooses the next state of the game;

2We use the notation (ℓ, v) for a state of S instead of (ℓ, x = v).

2.2 Semantics of Timed Games 21

• concurrent games in which each player chooses a move and the next state is the result
of the combination of the two choices.

The turn based semantics is not always adequate for timed games3: the moves of the players
depend on the time elapsed since a particular instant and thus the semantics is similar to
concurrent games. Two classical semantics have been proposed for timed games:

• timed games with continuous observation [20, 25]. With this semantics we assume that
the players can observe each other continuously. They can choose an action based on
the complete history of system’s evolution. In the example of Figure 2.1, in location
ℓ1, the controller can choose to wait (until x = 5) or to fire c2: this choice is based on
the current state (full observation) of the system, for instance the controller can choose
to wait for x < 3 and to fire c2 when x = 3. Notice that there is no priority in this
semantics: for instance, from the state (ℓ1, x = 4), if the controller chooses to fire c2, the
environment can choose simultaneously to fire u. The next state of the system is chosen
non-deterministically from the target states of these two actions i.e., it is either ℓ2 or
Bad. If the controller has to avoid location Bad, it has to enforce the firing of c2 before
the “date” x = 3 (included). As the controller can observe the system continuously, it is
never committed to wait for a particular amount of time. In this sense, the environment
cannot play a move by surprise.

• timed games with an “element” of surprise [29]. In this semantics, each player must
announce its choice for the next move. The choices are pairs (duration, action) where
the action is either a discrete move or the special action “do nothing”. A choice for a
player is a pair (δ, a) and stands for: “I will do the a-action in δ time units”. Once
they have announced their choices, the players cannot change their mind. Assume the
controller chooses (δ1, a1) and the environment chooses (δ2, a2). The next state of the
system will be determined by the move that occurs first in the future. From state s, if
δ1 < δ2, the next state of the system, s′′, is obtained by computing the state of system
after a continuous evolution of δ1 time units, say s′, and then the successor state of s′

after the discrete move a1. This semantics is symmetric and if δ2 < δ1 the next state is
the one obtained after δ2 and a2. In case δ1 = δ2, the next state is non-deterministically
chosen in next states obtained after (δ1, a1) and (δ2, a2). For instance, once the controller
has announced a move (δ1, a1), it cannot change its mind, and in this sense there is an
element of surprise: the environment can play a move before δ1 time units have elapsed.

2.2.2 Strategies

In the framework of game theory, the control problem (CP) amounts to: “Is there a strategy
for the controller to win the game?” (the winning condition is discussed in section 2.2.3) i.e.,
a controller is a strategy and vice versa. The notion of strategy is the standard one which
is commonly used in board games. Given a complete history of the game (from the initial
state), a strategy indicates which action to play. In the case of real-time games with the
continuous observation semantics, a strategy is a partial4 function from the set of runs of the

3Such a semantics is meaningful when one considers a physical environment which evolves only by continuous
moves, and a digital controller that can only react at predefined instants as in [26].

4It can happen that a run of the system ends in a state from which no Σc actions are enabled and time
cannot elapse. In this case it is not possible to define a strategy for the controller. Either the system is in a
deadlock state or the environment can play.

22 Chapter 2: Overview of my Research Contributions

system (i.e., sequences of alternating discrete and time steps) to the set {λ} ∪ Σc where λ
is the special move “do nothing”. For the example of Figure 2.1, we can define the strategy
f by: f(ρ.ℓ0, x < 2) = λ, f(ρ.ℓ0, x = 2) = c1, where ρ.ℓi stands for “any run ending in ℓi”.
This strategy means: wait when in ℓ0 with x < 2, and do c1 when x = 2. if we use this
strategy to control the system S of Figure 2.1, it is impossible to generate a run ending in
(ℓ0, x > 2) from (ℓ0, x = 0) as the strategy imposes that c1 be taken when x = 2 is reached.
A strategy restricts the set of behaviours the system can generate and consequently the set of
reachable states. Notice also that a strategy must be consistent in the sense that the move it
proposes is valid: a strategy f ′ with f ′(ρ.ℓ0, x > 4) = c1 is not consistent as c1 is not enabled
in (ℓ0, x > 4).

A strategy like f above, which depends on the last state of a run and not on the complete
history of the game, is a positional or memoryless strategy.

In the semantics with “surprise”, a strategy is a function from the set of runs to the set of
pairs of R≥0 × ({λ} ∪Σc). If we impose that all the moves are of the form (0, c) with c ∈ Σc,
or (δ, λ) with δ ∈ R≥0 (i.e., both players always propose the same δ when they play the λ
action), the element of surprise disappears.

2.2.3 Control Objectives

In section 2.1, the control problem (CP) is parametrised by the correctness property we want to
enforce. The simplest properties are (state or location based) safety or reachability properties.
A safety property φ consists of a set of safe (resp. unsafe) states and the objective of the
controller (the control objective) is to keep the system within (resp. outside) the set of safe
(resp. unsafe) states defined by φ. A control problem with a safety control objective is safety
control problem (SCP). A reachability control objective φ is a set of states which must be
forced: the control problem amounts to finding a strategy to force the system to reach a state
in φ. This version of the control problem is the reachability control problem (RCP). Control
objectives can be defined using temporal logic formulae like LTL [16] or TCTL [23]. It is then
possible to write a control objective like “the system has to reach a φ1-state infinitely often
and avoid any φ2-state”. Finally, a more expressive class of control objectives is the class of
ω-regular control objectives [18].

2.2.4 Winning Strategies

In this section we focus on safety control problems with the continuous observation seman-
tics [20, 25]. Let G be a TGA (like the TGA S in Figure 2.1), and let Reach(G) be the set
of states reachable in (the open system) G. Let φ be the safety property which consists of a
set of safe states. We consider the SCP for G and φ. A strategy (equivalently a controller) is
winning if it keeps the system G in φ states. Notice that even if a strategy f is deterministic,
there can be more than one run that can be generated in G supervised by f . The game G
supervised or controlled with the strategy f is denoted f(G). A strategy only imposes restric-
tions on the date at which a controllable action is taken but uncontrollable actions cannot be
affected by it. For example, using the strategy f(ρ.ℓ2, x < 1) = λ, and f(ρ.ℓ2, x = 1) = c3

the closed system f(G) can produce the runs (ℓ2, x = ν < 1)
δ−→ (ℓ2, x = ν + δ < 1) and

(ℓ2, x = ν < 1)
u−→ (Bad, x = ν). From the state (ℓ2, x = 1), there is no priority to controllable

actions (like c2), and the two runs (ℓ2, x = 1)
c3−−→ (ℓ0, x = 1) and (ℓ2, x = 1)

u−→ (Bad, x = 1)

2.2 Semantics of Timed Games 23

ℓ0 Bad

y > 0;c; y := 0

x ≥ 1;u

Figure 2.2: Zeno Controller

are possible outcomes of f(G). As a result the set of runs of f(G) is a subset of the set
of runs of G and Reach(f(G)) ⊆ Reach(G). The SCP reduces to: “Is there a strategy f

s.t. Reach(f(G)) ⊆ φ?”. If a strategy f satisfies the previous inclusion, f is a winning strategy.
It could be that the trivial strategy fλ with fλ(ρ) = λ for any run ρ is winning: checking that
fλ is winning can be done using a model-checking algorithm to check that Reach(fλ(G)) ⊆ φ.
Even if Reach(fλ(G)) ⊆ φ, this winning strategy is not always valid as it can create a deadlock
in the supervised game. Of course, we want to avoid this and to look for non-blocking strate-
gies [20, 22, 38]. Another trick a strategy can play in real-time games is to prevent time from
diverging. It can do so by generating zeno behaviours i.e., behaviours containing an infinite
number of discrete actions in a finite amount of time. On the example of Figure 2.2, to avoid
Bad and keep the system in the safe states φ = {(ℓ0, x, y ≥ 0)}, we can use the following
strategy:

• let ρn be the run (ℓ0, x = 0)
(δ0,c)−−−−→ · · · (δn,c)−−−−→ (ℓ0, x =

∑n
i=0 δi) where

(δi,c)−−−→ means
“wait δi time units and play c”;

• define f(ρn) = (1
2 · (1−

∑n
i=0 δi), c).

This strategy f is non-blocking if we take 0 < δ0 < 1. The outcome of the strategy contains
a single (infinite) run which avoids Bad. Nevertheless, it prevents time from diverging, as the
total duration of this run is upper bounded by 1: f produces a zeno run. If we think of an
implementation of this strategy, it has to react faster and faster as time increases. The amount
of time between two c actions must become smaller each time c is played, and tends to zero.
It is not a realistic or an implementable strategy and some methods have been proposed to
build non-zeno strategies [28, 29].

2.2.5 Winning States

A winning state is a state from which there is a winning strategy. LetW be the set of winning
states. The control problem can be solved easily if we can compute the set of winning states:
if suffices to check that the initial state of the game belongs to W. A good property of the
continuous observation semantics is that timed games are determined : this means that each
state s of the game is either winning for the controller or winning for the environment (in this
case it is losing for the controller). Moreover, if the initial state is winning, there is a (global)
strategy f , which is memoryless, and winning (Cf. Theorem 2 in section 2.3.3). The fact
that timed games are determined under the continuous observation semantics enables one to
reduce reachability timed games to safety games: the control objective “the controller must
enforce φ” is transformed into “the environment must avoid φ”.

Timed games under the “surprise” semantics are not determined. Moreover, winning a
timed game under this semantics can be more complicated than for the continuous observation

24 Chapter 2: Overview of my Research Contributions

s s′st X

X

u ×
t δ − t c

Figure 2.3: Controllable Predecessors

semantics and you may need unbounded memory [29] whereas memoryless strategies suffice
under the continuous observation semantics (Theorem 2).

2.3 Algorithms for Controller Synthesis

Algorithms for the synthesis of timed controllers have been given in [20, 25] and later gen-
eralised in [27, 29]. In this section, we describe an algorithm to compute winning states of
safety timed games taken from [20]. The result of the computation of this algorithm for the
example of Figure 2.1 is given at the end of this section.

2.3.1 Controllable Predecessors

Let CPre(X) = {s | ∃c ∈ Σc |s c−→ s′ ∧ s′ ∈ X} and UPre(X) = {s | ∃u ∈ Σu |s u−→ s′ ∧
s′ ∈ X}. These two sets give the states from which there is an outgoing controllable (resp.
uncontrollable) transition leading to X.
Figure 2.3 pictures the conditions for a state s to be a controllable predecessor of a set of states
X: the controller must be able to force the game into a state of X, first by time elapsing (δ)
and then by firing a controllable transition c, and from each state st (with t ≤ δ) encountered
during the time elapsing phase, the environment must not be able to fire an uncontrollable
transition leading outside of X (denoted X).
A state s is a controllable predecessor of X iff:

1. there is some δ, δ ≥ 0, s
δ−→ s′ ∧ s′ ∈ CPre(X)

2. for all 0 ≤ t ≤ δ s.t. s
t−→ st, we have st 6∈ UPre(X)

The set of controllable predecessors of X is denoted π(X). In the example of Figure 2.1, the
state (ℓ1, x = 1) is a controllable predecessor of (ℓ2, x = 2): a controller can let time elapse (1
time unit) until (ℓ1, x = 2) and then fire c2 from ℓ1 to ℓ2. During the time elapsing phase no
uncontrollable transition can be fired.

2.3.2 Symbolic Controllable Predecessors

As said previously, the semantics of a TGA is a TTS and contains infinitely many (even
uncountable) transitions and states. To analyse this type of models, states are represented
symbolically: a symbolic state is a finite union of pairs of the form (ℓ, Z) where ℓ is a location
and Z is zone i.e., a convex set of clock valuations. The operators we have introduced in the
previous section have two important properties. Let Z be a zone, then:

2.3 Algorithms for Controller Synthesis 25

Computation of W ∗

i ℓ0 ℓ1 ℓ2

0 0 ≤ x ≤ 4 0 ≤ x ≤ 5 0 ≤ x ≤ 5

1 0 ≤ x ≤ 4 0 ≤ x ≤ 3 2 ≤ x ≤ 5

2 0 ≤ x ≤ 3 – –

Most Permissive Strategy f∗

ℓ0 ℓ1 ℓ2

λ x < 3 x < 3 x < 5

c x ≤ 3 2 ≤ x x ≤ 5

Table 2.1: Symbolic Computation for the example of Figure 2.1.

P1: CPre(Z),UPre(Z) and π(Z) are unions of zones,

P2: CPre(Z), UPre(Z) et π(Z) can be effectively computed5.

For the automaton of Figure 2.1, we have CPre(ℓ1, x ≤ 3) = (ℓ0, x ≤ 3) and if Z = (ℓ0, x ≤
4)∪(ℓ1, x ≥ 0)∪(ℓ2, x ≥ 0) then π(Z) = Z ′ avec Z ′ = (ℓ0, x ≤ 3)∪(ℓ1, 0 ≤ x ≤ 3)∪(ℓ2, x ≥ 2).

2.3.3 Symbolic Computation of Winning States

For TGA and a safety control objective φ, the set of winning statesW (defined in section 2.2.5)
is the greatest fixpoint (see [25]) of the function h(X) = φ∩π(X) (for reachability games this
is the least fixpoint of h(X) = φ∪π(X)). Notice thatW is the maximal set of winning states:
thus s ∈ W iff s is winning. If φ is defined as union of zones, then the symbolic iterative
computation X0 = φ, Xi+1 = h(Xi) = φ ∩ π(Xi) is such that each (i) Xi is a zone (the
intersection of two zones is a zone) and (ii) there is some index k0 s.t. Xk0

= Xk0+1 = W ∗

and thus the computation of the fixpoint W ∗ terminates in a finite number of steps. Then we
can effectively decide whether the initial state belongs to the symbolic representation W ∗ of
W and thus we have the following result:

Theorem 1 ([25, 19]) The control problems SCP and RCP are decidable for TGA and
EXPTIME-complete.

For the example of Figure 2.1, the iterative computation of W ∗ is given in Table 2.1: the
current winning zone is given for each location in the corresponding column. For more complex
properties, computing symbolically the winning states requires more involved fixpoints [20,
25, 27, 29].

2.3.4 Synthesis of Winning Strategies

To solve the Control Synthesis Problem for a safety game, we can define a most liberal or most
permissive strategy. Actually, this strategy is not a strategy in the sense of section 2.2.2 as it
maps states to sets of controllable actions and not to a single controllable action. The most
permissive strategy f∗ associates with each run ρ a set of actions from Σc ∪ {λ} which are
safe: every non-blocking strategy f (in the sense of section 2.2.2) s.t. f(ρ) ∈ f∗(ρ) is winning
and conversely a strategy f is winning only if f(ρ) ∈ f∗(ρ). This is why f∗ is called the most
permissive strategy. For the synthesis problem we have the following result:

5To compute π(X), another operator is needed and we do not introduce it here. This operator satisfies
properties P1 and P2.

26 Chapter 2: Overview of my Research Contributions

Theorem 2 ([25]) Let G be a TGA and φ a safety control objective. If the initial state of G
is winning, there is a most permissive memoryless winning strategy.

To compute this most permissive strategy, we begin by strengthening the guards of the control-
lable transitions such that, from a winning state s, firing the transition with the strengthened
guard leads to a winning state. This amounts to computing a most liberal pre-condition. In
our case, we strengthen (the guard of) transition c1 by x ≤ 3, c2 by x ≥ 2 (which ensures
that c2 is not fired too early). The most permissive strategy is then defined by: wait in each

winning state s such that there is some δ > 0 and s
δ−→ s′ with s′ winning; fire a control-

lable transition ci is the strenghtened guard is satisfied. For the example of Figure 2.1 the
most permissive strategy is given in Table 2.1. Notice that to obtain a non-zeno strategy,
one should not choose infinitely often λ in ℓ0 (or ℓ1, ℓ2), but at some point fire c1. Using
the previous method we can compute a timed automaton C (given in Figure 2.4) which is
a representation of the most permissive strategy f∗, and such that Reach(G ‖ C) ⊆ φ with
φ = Reach(G) \ {Bad}. For reachability games, computing a winning strategy may be a bit
more complicated [59].

z := 0 K0

[z ≤ 3]

K1

[z ≤ 3]

K2

[2 ≤ z ≤ 5]

z ≤ 3; c1

c2
z ≥ 2

c3; z := 0
u

u

u

Figure 2.4: C: The Most Permissive Controller for the Example of Figure 2.1.

2.4 Contributed Results

In this section, I give a summary of some recent results obtained in the domain of controller
synthesis for timed systems. The subsections address different advanced subjects about con-
troller synthesis, and for each subsection, I describe my contribution to the domain.

All the results I will present were obtained in collaboration with colleagues in France
and abroad. In particular, the co-authors of the papers presented hereafter are: Karine Al-
tisen (VERIMAG, Grenoble, F.), Patricia Bouyer (LSV, ENS Cachan, F.), Alexandre David
(CISS, Aalborg University, DK), Emmanuel Fleury (LaBRI, Bordeaux, F.), Thomas Henzinger
(EPFL, Lausanne, CH), Didier Lime (IRCCyN, Nantes, F.), François Laroussinie (LSV, ENS
Cachan, F.), Kim G. Larsen (CISS, Aalborg University, DK.), Jean-François Raskin (Uni-
versité Libre de Brussels, B.) and Stavros Tripakis (VERIMAG, Grenoble, F. et Cadence,
Berkeley, USA).

Some work presented in this section roughly consists in freezing a parameter (the model
for timed games, the semantics or the type of control objective) of the control problem and
studying the impact of the other ones:

• in the work presented in section 2.4.1, we focus on the SCP or the RCP, with a sampling

2.4 Contributed Results 27

semantics, i.e., (SCP,sampling), and study the class of timed automata for which (SCP,
sampling) is decidable. This work was published in [28].

• in section 2.4.2, we study the decidability status of the control problem for control
objectives expressed in a fixpoint modal logic. This work was published in [39].

In the following section 2.4.3, we study the optimal control problem for Priced Timed Game
Automata. Timed automata were extended in [47, 46] with cost or price. The corresponding
model is Priced Timed Automata (PTA) also called Weighted Timed Automata (WTA). Each
run of a PTA has an associated cost. The cost of a run is computed by summing up the costs of
the discrete transitions and time transitions. The optimal path problem for PTA, is to compute
a path of minimal cost. The natural extension of this one player problem is to consider the
optimal control problem for Priced Timed Game Automata (PTGA) in which some transitions
are uncontrollable. This model and the control problem were defined in [51, 50].

In the next section 2.4.4, we focus on an important aspect of controller synthesis which is
to design efficient algorithm for computing controllers. This section is based on the results of
paper [68].

Finally, we conclude with some recent work on fault diagnosis for timed systems. Fault
diagnosis is very similar to control under partial observation. This work is presented in
section 2.4.5 and based on the paper [77].

2.4.1 Decidability Issues for Timed Control

In this section we focus on the safety control problem. As timed games with an element of
surprise do not have good properties (they are non determined, may need unbounded memory
controllers), we restrict our attention to continuous observation games. We can consider the
following variants of this semantics:

• the controller can only react at predefined instants, and these instants are separated
by a fixed amount of time. This is the sampling control problem [19]. Notice that the
environment can only do continuous moves in this framework.

• the controller cannot control time elapsing: it can choose to do a discrete action or to
wait, but in the latter case, the environment chooses the amount of time that will elapse.
This variant is called time-abstract control [26].

Discrete and Continuous Control. Variants of the safety control problem have been
proposed in many papers [26, 19, 25, 20]. In the paper

[28] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin.
A comparison of control problems for timed and hybrid systems.
In Proc. 5th International Workshop on Hybrid Systems: Computation and
Control (HSCC’02), volume 2289 of LNCS, pages 134–148. Springer, 2002.

we have given a classification of these problems and we have compared them. First we have
identified the following main classes:

• discrete time control: can we control the system with a controller that reacts every β

time units? This is the Known Sampling Rate (KSR) control problem. A more general
question is ask for the computation of a value β s.t. the system is controllable. This is
the Unknown Sampling Rate (USR) control problem.

28 Chapter 2: Overview of my Research Contributions

• dense time control: in this setting the controller can either (i) control time elapsing,
which is the setting of the seminal papers [20, 25]; in this case this is the Unknown
Switch Condition (USC) control problem; or (ii) cannot control time elapsing and in
this case this is the Known Switch Condition (KSC) control problem.

The decidability status of the standard safety control problem also depends on the expressive
power of the formalism used to specify timed games. Before giving the decidability status of the
previous problems (KSR, USR, USC, KSC) we review some well-known classes of extensions
of timed automata.

Hybrid Automata. The more general class that is usually considered for the control prob-
lem is the class of Linear Hybrid Automata (LHA) [5]. This class extends timed automata
in the following manner: (i) the evolution rate of the variables6 are given by intervals of the
form 1 ≤ ẋ ≤ 3; (ii) guards and resets are linear functions like 2x+ 3y ≤ 4 et x := 3y − 7z.

An interesting subclass of LHA is the class of Rectangular Automata (RA) [19]. For RA,
the guards and resets cannot involve two distinct variables: they are of the form x ≥ 1∧y < 2
and for resets x :=]2, 3] to assign a value v with 2 < v ≤ 3 to x. This class has interesting and
surprising decidability results: the reachability problem is decidable for RA [19]. A subclass of
RA is the class of Initialised Rectangular Automata (IRA): if a derivative of a variable changes
on a transition from ℓ to ℓ′, then the variable must be reset on this transition.

The reachability problem is decidable for RA but for any subclass if becomes undecid-
able [3]. Another interesting class of hybrid systems with good decidability properties, is the
class of O-minimal Automata, (OminA) [2]: in this model, the dynamics can be non-linear
(exponential or any o-minimal theory) but all the variables must be reset when firing a discrete
transition.

Decidability results for the safety control problem on LHA are summarised in Table 2.2:

Formalism KSC USC KSR USR
Timed Automata

√
[20]

√
[20]

√
[24] × [28]

Initialised Rectangular Automata
√

[26] × [3]
√

[19] × [28]
Rectangular Automata × [26] × [26]

√
[19] × [28]

Table 2.2: Safety Control Problem: Decidability Results. KSC = Known Switch Conditions
controller, USC =Unknown Switch Conditions controller, KSR = Known Sampling Rate con-
troller, and USR = Unknown Sampling Rate controller.

√
= decidable, × = undecidable.

A recent result by Patricia Bouyer, Thomas Brihaye et Fabrice Chevalier [30] is the decid-
ability of the Reachability control problem, USC variant, for o-minimal automata.

Contribution to the Domain. The main result of the paper [28] is that the USR control
problem is undecidable, even for the class of timed automata. Another result of the paper is
that, there are systems that can be controlled with a dense time controller (USC), but by no
sampling controller (USR). We have given an example of such a system, given by the timed
automaton of Figure 2.5. This timed automaton can be controlled with a non-zeno controller.

6We note ẋ the derivative of x.

2.4 Contributed Results 29

In this example, all the transitions are controllable. To avoid location Bad, it suffices to avoid
firing a d-transition. This can be achieved by computing a most permissive controller: this
controller C only requires to leave ℓ2 when x < 1, and thus we add the invariant [x < 1] to
location ℓ2

x := [0, 1[
y := 0

[x ≤ 2]

l0 l1

l2

Bad

x = 1
x := 0

a

y = 1
z := 0

b
z > 0
y := 0

c

d
x ≥ 1

d
x ≥ 1 ∧ z > 0

d
x ≥ 1

Figure 2.5: A System that Admits no Sampling Controller.

The controller C has to do the sequence of actions (a.b.c)ω, but the time elapsed between
the n+1-th a and the n+1-th b must be smaller than for the previous round n. More precisely,
if the time elapsed between the n-th a and the n-th b is δn, the controller has to ensure that∑+∞

i=1 δi ≤ K where K ≤ 1. Because of this, no sampling controller can control the system:
given a sampling rate β, after a finite number of rounds m, the sum

∑m
i=1 δi is beyond 1. The

controller C is non-zeno (and non-blocking) because the n-th a action occurs at time n. This
shows dense time controllability does not imply sampling controllability. In other words, if the
answer to the USC-CP is “yes”, the most permissive controller is not always implementable on
a digital controller.

The previous result show that the notion of implementable controllers is important and
must be addressed in the control problem. This aspects of the control problem have been
extensively studied by Jean-François Raskin and his group in [63, 66, 65, 64] and a synthesis
of this work (in French) is given in [10].

2.4.2 Specification of Control Objectives

In the previous section, we have considered safety (or reachability) control objectives. In this
section, we model the systems by timed automata and focus on more general types of control
objectives.

Specification of Properties. In [27] the authors give an algorithm to deal with general
ω-regular control objectives. It is to be noticed that those control objectives are often called
internal in the sense that they refer to the state properties (and clocks) of the system to be
controlled. The safety and reachability properties that we considered previously are internal
property. In the case of timed systems they only refer to the untimed sequences of states of
the system and thus have a restrictive expressiveness: it is possible to specify a property like
“after p has been reached q will be reached” but nothing like “after p has been reached, q will
be reached within less than d time units” (bounded liveness). In [37], the authors show that

30 Chapter 2: Overview of my Research Contributions

the control problem is 2EXPTIME-complete for specifications given by LTL formulae7.

A control objective is a property of a closed system, and it is natural to write properties
using temporal logics or automata i.e., to give the set of timed words the controlled system has
to generate. The language8 L(A) accepted by a timed automaton is a set of behaviours (timed
words) and this can be considered to be a control objective: in this sense this is an external
control objective. Notice that it can either specify good or bad behaviours. Assume we have
two timed automata: Sd which defines the desired (permitted) behaviours of the system, and
Su which defines the undesired behaviours. Let E be the system we want to control. The
External Specification Control Problem, (ES-CP) is the following:

Is there any C tel que (1) L(E ‖ C) ∩ L(Su) = ∅ and (2) L(E ‖ C) ⊆ L(Sd) ? (ES-CP)

In the paper [38], the authors prove that:

1. the sub-problems ES-CP.(1) et ES-CP.(2) are undecidable when Sd and Su are non-
deterministic timed automata;

2. these problems become decidable if Sd and Su are deterministic; deterministic timed
automata can be complemented and in this case the ES-CP can be reduced to a (internal)
safety control problem;

3. the control problem ES-CP.(2) is decidable and 2EXPTIME-complete if the resources
(number of clocks, granularity and constants used in the specification) of the controller
are bounded, and this even if Su is non-deterministic. ES-CP.(1) remains undecidable
even for bounded resources.

Expressing control objectives using timed automata is a very powerful tool and there is a gap
between the control objectives we considered previously (safety or reachability) and these very
general class of ω-regular properties. Temporal logics are a less powerful yet often sufficient
specification formalism for most properties needed in practise.

In [40], the authors consider a timed extension of LTL namely MTL [33]. The control
problem is undecidable for MTL specifications but become decidable if the resources of the
controller are bounded (it is still non primitive recursive). In [23], the authors consider TCTL
specifications without equality and prove that the control problem (for timed automata) can
be decided in exponential time for this type of specifications.

Recent work [15, 17] on control of discrete event systems has considered a more general
framework in which properties of the controlled system are specified in various extensions of
the µ-calculus: loop µ-calculus for [15] and quantified µ-calculus for [17]. In both cases the
control problem is reduced to a model-checking problem. It is then natural to try and extend
this work to timed systems.

Contribution to the Domain. In the paper

7This result does not contradict the complexity result of [29] because the specification is given as an LTL
formula and not by the automaton that recognises the valid sequences.

8We consider languages over infinite words e.g., ω-regular languages.

2.4 Contributed Results 31

[39] Patricia Bouyer, Franck Cassez, and François Laroussinie.
Modal logics for timed control.
In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th Inter-
national Conference on Concurrency Theory (CONCUR’05), volume 3653
of Lecture Notes in Computer Science, pages 81–94, San Francisco, CA,
USA, August 2005. Springer.

we have used the (timed) temporal logic Lν which is a fragment of the timed µ-calculus that
allows to specify bounded safety properties. More precisely, we consider a subset of Lν , denoted
Ldet

ν , and study the control problem:

Given E and ϕ ∈ Ldet

ν , is there any C s.t. E ‖ C |= ϕ ? (Lν–CP)

The results we give in the paper are summarised by:

• as in the untimed case, the control problem Lν–CP can be reduced to a model-checking
problem. For this, we need to add a new operator to Lν , which is a kind of until operator,
and we define the extended logic Lcont

ν . We then show that the control problem Lν–CP
reduces to a model-checking problem of the type E |= f(ϕ) where f(ϕ) is a syntactical
translation of ϕ and is an Lcont

ν formula.

• the extended logic Lcont
ν is strictly more expressive than Lν .

• nevertheless, the model-checking problem for Lcont
ν against timed automata remains

EXPTIME-complete (model-checking Lν is already EXPTIME-complete [34]).

It is important to notice that the previous results concern the existence of a controller: in
this work we have not yet proved that memoryless or bounded memory controllers exist for a
control objective in Ldet

ν . In other words, we have not solved the synthesis problem for Ldet
ν

specifications. Nevertheless, the result we have obtained is useful because it allows to decide
at reasonable cost (model-checking EXPTIME) for the existence of a controller: if the answer
is “no”, we know for sure that there is no timed (nor hybrid) automaton that can control the
system.

Open problems concerning the previous work are:

• we can decide the control problem for Ldet
ν specifications but the controller synthesis is

still open. This problem is closely related to the satisfiability problem for Lν (Cf. [34])
which is also open.

• we have restricted the control objectives to Ldet
ν but this may not be necessary. For

instance, in the untimed case, the controller synthesis problem can be solved for general
µ-calculus specifications.

In the previous work we have considered control objectives given in temporal logics used
to specify properties of closed systems.

There is a nice logic which was designed to specify properties of open (discrete) systems:
Alternating-time Temporal Logic (ATL) [35]. This logic generalises CTL in the sense that we
can refer to the strategies of the players in the formula: it is possible to write formulae likes
“The controller has a strategy to reach a state where it has a strategy to enforce a state q”.

Recent work by François Laroussinie, Nicolas Markey and Ghassan Oreiby [41] proposed a
timed extension of ATL for timed games with integer durations (time elapsing is a integer).
They gave an algorithm to model-check timed ATL specifications against timed automata
(using the discrete time step semantics).

32 Chapter 2: Overview of my Research Contributions

2.4.3 Optimal Control

The control problem for timed systems (USC) was introduced and solved in 1995 in [20]. If we
consider the reachability control problem, we want to synthesise a controller which enforces
a particular state q. Once solved, we can ask for the controller to be optimal e.g., the state
q is reached as soon as possible with the controller. This version of optimal control called
time-optimal control was solved in [57].

Timed Automata with Costs. A few years later in 2001, timed automata were extended
with costs or prices : this extension was called priced timed automata (PTA) in [47, 48] and
weighted timed automata (WTA) in [46] (both models are exactly the same thing but they
were proposed independently at the same time by two different groups.)

The notion of cost or price generalises the notion of elapsed time: the cost is a linear
function of the elapsed time in each location, and is an integer value on each discrete transition.
In the example of Figure 2.6, the costs in the PTA A are given by the keyword cost. Assume
δ time units elapse in location ℓ0, and then c1 is fired. The invariant on ℓ1 prevents time from
elapsing in ℓ1. This location is a choice location in which we immediately go either to ℓ2 or
ℓ3. Assume we choose ℓ2 and let δ′ time units elapse before firing c2. In this case the total
cost of this execution is 5 · δ + 10 · δ′ + 1. In PTA all the transitions are controllable.

The optimal-cost computation problem for PTA consists in computing the minimal cost
to reach a particular location. The (smart) solutions to the optimal-cost computation prob-
lem for PTA were simultaneously proposed in [46, 47]. A symbolic algorithm [48] has been
implemented in an extended version of UPPAAL called UPPAAL CORA [94].

If we consider PTA and a dual problem i.e., keep the system in a set of states, we can
define an optimal problem as well: here the model has costs and rewards, and the aim is to
minimise the limit of the ration cost/reward on infinite runs. This latter problem was solved
in [44, 49].

A step further consists in defining a logic which can refer to cost values: such a logic,
WCTL, has been defined in [45], and extends TCTL with cost variables. Inside this logic, it is
possible to write a formula which which states “it is possible to reach a state q and this at a cost
which is less than K.” The model-checking problem for WCTL against timed automata was
proved undecidable (even if the time domain is discrete). Nevertheless, for a subset of WCTL,
there are some classes of timed automata for which model-checking is decidable. Recently
in [58], the authors have proved that WCTL was decidable for o-minimal PTA.

Optimal Cost in Timed Games. The previous optimal-cost problem can be defined for
timed games. In this case we start with a model which is a Priced Timed Game Automaton
(PTGA) i.e., a TGA enriched with costs. We consider here reachability games: the aim is to
reach a location at an optimal cost, and this optimal cost is the best the controller can ensure,
whatever the adversary (environment) does. The automaton A of Figure. 2.6 is an example
of a PTGA.

Uncontrollable transitions are labelled by u. Notice that in this game, there is a controller
which can enforce location Goal: fire c1 and then whatever the environment chooses in ℓ1, fire
c2. In the sequel, we assume that the reachability control problem has been solved and the
answer was “yes” i.e., there is a controller which can enforce Goal. Our problem is now to
compute the optimal cost.

2.4 Contributed Results 33

ℓ0

cost(ℓ0) = 5

ℓ1

[y = 0]

ℓ2

cost(ℓ2) = 10

ℓ3

cost(ℓ3) = 1

Goal
x ≤ 2;c1;y := 0

u

u

x ≥ 2;c2;cost = 1

x ≥ 2;c2;cost = 7

Figure 2.6: The Priced Timed Game Automaton A

This optimal cost is defined as the value the controller can guarantee whatever the envi-
ronment does. For example, in the PTGA A of Figure 2.6, there are two families of runs: the
runs in which the environment chooses to go from ℓ1 to ℓ2 and the runs in which it chooses
to go from ℓ1 to ℓ3. The only real decision the controller has to make is to choose how long
to wait in ℓ0 before firing c1 (indeed when in ℓ2 or ℓ3 it chooses to fire c2 as soon as x ≥ 2.)
Let δ be the amount of time the controller chooses to wait for in ℓ0. The costs that can result
from this choice depend on the choice of the environment: if it chooses ℓi, i = 2, 3, the cost
is respectively α2(δ) = 5 · δ + 10 · (2 − δ) + 1 and α3(δ) = 5 · δ + 1 · (2 − δ) + 7. Once the
controller has fired c1, the environment will try to maximise the cost of the current run: it
will choose ℓi, i = 2, 3 such that αi(δ) is maximal. The aim of the controller is to minimise
this maximum.

Thus the optimal cost for the PTGA A is defined by:

OptCost = inf
0≤δ≤2

max(5 · δ + 10 · (2− δ) + 1, 5 · δ + 1 · (2− δ) + 7)

For A, this value is 43
3 which means c1 should be fired at the date 4

3 . The problem of computing
automatically this optimal cost is the Optimal Cost Reachability Control Problem (OC-RCP).

Contribution to the Domain. Of course we can give a general definition of the optimal
cost and generalise the above formula given for A. With the model of PTGA we have in-
troduced, the time optimal control problem is a particular version: in each location, the cost
rate is 1 and each discrete transition has a null cost. A first step towards a solution of the
optimal cost reachability control problem was given for acyclic timed games in [56]. As the
PTGA does not have any cycle, the computation of the optimal cost can be reduced to a
linear optimisation problem.

If we consider PTGA which can contain cycles, it is not obvious that the algorithm pro-
posed in [56] can be tuned to accommodate cycles. Actually, a solution to this more general
version of the computation of the optimal cost was simultaneously given by Alur, Bernadsky
et Madhusudan [54] and in our papers

[50] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
Optimal Strategies in Priced Timed Game Automata.
In Kamal Lodaya and Meena Mahajan, editors, Proceedings of the 24th
Conference on Fundations of Software Technology and Theoretical Com-
puter Science (FSTTCS’04), volume 3328 of Lecture Notes in Computer
Science, pages 148–160, Chennai, India, December 2004. Springer.

34 Chapter 2: Overview of my Research Contributions

and

[51] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen.
Synthesis of Optimal Strategies Using HyTech.
In Luca de Alfaro, editor, Proceedings of the Workshop on Games in Design
and Verification (GDV’04), volume 119 of Electronic Notes in Theoretical
Computer Science, pages 11–31, Boston, Massachussetts, USA, February
2005. Elsevier Science Publishers.

The paper [54] was published at the ICALP’04 conference, and the results we have obtained use
a different technique and were available at the same time in the BRICS research report [59] in
February 2004. Compared to [54], we give decidability results for PTGA as well as structural
properties of the class of strategies (or controllers) that can win this type of games. Moreover,
we have implemented our result with HyTech [87] and this is reported in [51].

The idea we propose to solve the optimal cost problem9 for PTGA is the following: the
OC-RCP can be rephrased as: “What is the minimum amount of resources (time, petrol, etc)
I should start with, to be able to enforce Goal, and when Goal is reached I have not run out
of resources?” Thus to solve the OC-RCP we can proceed as follows:

1. we start with a PTGA A similar to the one given on Figure 2.6;

2. then we build a game HA, which is a timed game with a special variable rsrc: we end
up with a timed game which is a special kind of linear hybrid automata (LHA). This
variable stores the amount of resources which is left at each point in the game. Its value
will then decrease in a location ℓ of HA with a rate which is the opposite of the rate of
the cost in the corresponding location in A.

ℓ0

d rsrc

dt = −5

ℓ1

y = 0

ℓ2

d rsrc

dt = −10

ℓ3

d rsrc

dt = −1

Goal
x ≤ 2; c1 ; y := 0

u

u

x ≥ 2; c2
rsrc’ = rsrc− 1

x ≥ 2; c2
rsrc’ = rsrc− 7

Figure 2.7: The LHA HA built from A.

Applied to A of Figure 2.6, this construction gives the automaton HA on Figure 2.7. The
OC-RCP for PTGA can then be reduced to a (standard) Reachability Control Problem for a
linear hybrid game: the control objective is to enforce Goal and a value of rsrc which is larger
or equal than zero i.e., the control objective is (Goal, rsrc ≥ 0). We know how to effectively
compute the set of winning states for this type of (linear hybrid) games, and if the algorithm
terminates we obtain a set of pairs of the form (ℓ, Z) where ℓ is a location and Z a polyhedron.
In particular we may obtain a set of pairs (ℓ0, Z) giving the set of winning states (values of the

9As emphasised earlier we assume there is a strategy to win the game i.e., to force Goal. This ensures that
the optimal cost exists and is an finite number.

2.4 Contributed Results 35

variables) in the initial location. By definition of the algorithm to solve linear hybrid games,
the set of such zones Z gives the maximal winning set of values for the variables in location
ℓ0.

The projection of the winning set in ℓ0 on the variable rsrc gives the set of values of rsrc
from which we can win the game i.e., enforce (Goal, rsrc ≥ 0). In our case of PTGA, we can
prove that this set is of the form rsrc ⊲⊳ k with ⊲⊳ {>,≥} and this means that the optimal
cost is k. Decidability of the OC-RCP for PTGA is also reduced to the decidability of the
RCP for the class of LHA that is obtained when we use our translation. We have obtained
the following results:

• for bounded PTGA (all the clocks are bounded) such that on each cycle, the cost is
at least β > 0 (we call this class of PTGA, cost non-Zeno PTGA), the classical back-
ward algorithm that computes the winning states of the associated linear hybrid game
terminates.

• the optimal cost can be obtained by computing the projection of the set of initial winning
states on the variable rsrc. When the previous algorithm terminates, this set is always
of the form rsrc ⊲⊳ k with ⊲⊳ {>,≥} and k is the optimal cost. Compared to [54], we
can decide whether there is a strategy that guarantees the optimal cost, i.e., an optimal
strategy: if the initial winning interval is of the form rsrc ≥ k the answer is “yes”,
otherwise it is of the form rsrc > k and there is a family of strategies that can ensure a
cost k + ǫ for any ǫ > 0. Still there is no optimal strategy.

• optimal strategies when they exist, may need cost information i.e., the accumulated
amount of resources consumed since the game started. In this sense, the clocks of the
PTGA are not always sufficient to decide what to do to ensure winning at optimal cost,
and we may need the cost information.

• we have identified a syntactical class C of PTGA for which there is always an optimal
strategy, and the strategy depends on the state of the PTGA (no cost information is
needed).

• finally, we have implemented our algorithm [51] for computing the optimal cost and an
optimal strategy for the subclass C.

Since these results were published, some new results about optimal cost for PTGA were
obtained:

• in [53], the authors prove that the non-Zeno assumption we had made to prove termina-
tion of our algorithm is necessary. In other words, without this assumption, the optimal
cost computation problem is undecidable. This proof was refined in [42] and the most
recent result is that for PTGA with 3 clocks the optimal cost computation problem is
undecidable.

• in [52], the authors prove that for PTGA with one clock, the optimal cost can be
computed (3EXPTIME).

• finally, in [58], there is a proof that the optimal cost is computable for o-minimal au-
tomata.

36 Chapter 2: Overview of my Research Contributions

2.4.4 Efficient Algorithms for Controller Synthesis

Tools for Analysing Timed Systems. In the last ten years, a lot of progress has been
made in the design of efficient tools for the analysis (model-checking) of timed systems. Tools
like Kronos [88] or Uppaal [93, 89] have become very efficient and widely used to check
properties of timed automata but still no real efficient counterpart had been designed for
timed games.

One of the reason may be that on-the-fly algorithms have been absolutely crucial to the
success of these model-checking tools: on-the-fly algorithms were already crucial for model-
checkers for discrete systems like SPIN [92]. Both reachability, safety as well as general liveness
properties of such timed models may be decided using on-the-fly algorithms i.e., by exploring
the reachable state-space in a symbolic forward manner with the possibility of early termi-
nation. Timed automata technology has also been successfully applied to optimal scheduling
problems with on-the-fly algorithms which quickly lead to near-optimal (time- or cost-wise)
schedules [57, 46, 56, 55, 32].

The algorithms for computing controllers for timed games described in section 2.3.3 are
based on backwards fix-point computations of the set of winning states [20, 25, 27]. For timed
game automata, they were implemented in the tool Kronos [31] at the end of the 90’s but
lack efficiency because they require the computation of the complete set of winning states.
Moreover the backward computation may sometimes not terminate or be very expensive for
some extended classes of timed game automata.

Indeed, a backward algorithm does not take into account the fact that a state is reachable
from the initial state or not. Backward computation may thus yield to an enormous set of
winning states on which iterative computations are carried out. A solution is to first compute
the set of reachable states and at each step of the iterative algorithm for computing winning
states, take the intersection on the winning states with the reachable states. Even if these
sets are represented with efficient data structures this can be very expensive and imply the
generation of the whole state space of the system.

A more difficult problem is that for simple extensions of timed automata, it is very difficult
and sometimes impossible to compute the controllable predecessor operator π. For instance,
if transitions are of the form i := 2j + k (which is allowed in UPPAAL), computing the
controllable predecessors of the symbolic state (ℓ, j ≥ 0 ∧ k ≥ 0) means collecting all the
values of i s.t. i = 2j + k. This computation can be very expensive. In practise, if we start
from a given initial state and given j and k, there might be a few reachable (admissible) values
for j and k and consequently a few for i. Or a least, for each new value v(i) of i which is
reached, we know the values of j and k that were used to obtain v(i).

On-the-fly Algorithms . To obtain an on-the-fly algorithm for computing winning states,
we should not have to compute the set of reachable states before we compute the winning set
of states.

Regarding timed games, in [69, 70], Karine Altisen and Stavros Tripakis have proposed a
partially on-the-fly method for solving timed games. However, this method involves an ex-
tremely expensive preprocessing step in which the quotient graph of the timed game w.r.t. time-
abstracted bisimulation10 needs to be built. Once obtained this quotient graph may be used
with any on-the-fly game-solving algorithms for untimed systems.

10A time-abstracted bisimulation is a binary relation on states preserving discrete states and abstracted
delay-transitions.

2.4 Contributed Results 37

To design a truly on-the-fly algorithm for the computation of winning states for (reachabil-
ity, timed) game automata we start from the on-the-fly algorithm suggested by Liu & Smolka
in [36] for linear-time model-checking of finite-state systems.

Contribution to the Domain. In a recent paper

[68] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games.
In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory (CONCUR’05), volume 3653 of Lecture Notes in
Computer Science, pages 66–80, San Francisco, CA, USA, August 2005. Springer.
Copyright Springer-Verlag.

we have proposed an efficient, truly on-the-fly algorithm for the computation of winning states
for (reachability) timed game automata.

For finite-state systems, on-the-fly model-checking algorithms has been an active and suc-
cessful research area since the end of the 80’s, with the algorithm proposed by Liu & Smolka [36]
being particularly elegant (and optimal). In this paper, we have focused on reachability un-
timed an timed games.

The on-the-fly algorithm, OTFUR, we have proposed in [68] is given in Fig. 2.8. The idea
for this algorithm is the following: we assume that some variables store two sets of transitions:
ToExplore store the transitions that have explored and ToBackPropagate store the transitions
the target states of which has been declared winning. Another variable, Passed, stores the
set of states that have already been encountered. Each encountered state q ∈ Passed has a
status, Win[q] which is either winning (1) or unknown (0). We also use a variable Depend[q]
that stores for each q, the set of explored transitions t s.t. q is a target of t. The initial values
of the variables are set by lines 2 to 6.

To perform a step of the on-the-fly algorithm OTFUR, we pick transition (q, α, q′) either
in ToExplore or ToBackPropagate (line 10) and process it as follows:

• if the target state q′ is encountered for the first time (q′ 6∈ Passed), we update Passed,
Depend and Win[q′] (lines 14–16). We also initialise some counters (lines 12 and 13)
c(q′) and u(q′) which have the following meaning: at each time, c(q′) represents the
number of controllable transitions that can be taken to reach a winning state from q′

and u(s) represents the number of uncontrollable hazardous transitions from q′ i.e.,
those for which we do not know yet if they lead to a winning state. When q′ is first
encountered u(q′) is simply the number of outgoing uncontrollable transitions from q′.
Finally (lines 17 to 20), depending on the status of q′ we add the outgoing transitions to
ToExplore or just schedule the current transition for back propagation if q′ is winning.

• in case q′ ∈ Passed, it means that either its status has been changed recently (and we
just popped a transition from ToBackPropagate) or that a new transition leading to q′

has been chosen (from ToExplore). We thus check whether the status of q′ is winning
and if yes, we update some information on q: lines 24 and 25 updates the counters
c(q) or u(q) depending on the type of the transition being processed (controllable or
not). The state q can be declared winning (line 27) if at least one controllable transition
leads to a winning state (c(q) ≥ 1) and all outgoing uncontrollable transitions lead to a
winning state as well (u(q) = 0). In this case the transitions leading to q (Depend[q]) are

http://www.springer.de

38 Chapter 2: Overview of my Research Contributions

scheduled for back propagation (line 29). Otherwise we have just picked a new transition
leading to q′ and we only update Depend[q′] (line 31).

The formal proof of correctness of this algorithm is summarised by the following theorem:

Theorem 3 ([68]) Upon termination of OTFUR on a given untimed game G the following
holds:

1. If q ∈ Passed and Win[q] = 1 then q ∈ W(G);

2. If (ToExplore ∪ ToBackPropagate) = ∅ and Win[q] = 0 then q 6∈ W(G).

In addition to being on-the-fly and correct, this algorithm terminates and is optimal in that
it has linear time complexity in the size of the underlying untimed game: it is easy to see
that each edge e = (q, α, q′) will be added to ToExplore at most once and to ToBackPropagate
at most once as well, the first time q is encountered (and added to Passed) and the second
time when Win[q′] changes winning status from 0 to 1. Notice that to obtain an algorithm
running in linear time in the size of G (i.e., |Q|+ |E|) it is important that the reevaluation of
the winning status of a state q is performed using the two variables c(q) and u(q).

We can extend algorithm OTFUR to the timed case using a zone-based forward and on-
the-fly algorithm for solving timed reachability games. The algorithm, SOTFTR, is given
in Fig. 2.9 and may be viewed as an interleaved combination of forward computation of the
simulation graph of the timed game automaton together with back-propagation of information
of winning states. As in the untimed case the algorithm is based on two sets, ToExplore
and ToBackPropagate, of symbolic edges in the simulation-graph, and a passed-list, Passed,
containing all the symbolic states of the simulation-graph encountered so far by the algorithm.

The crucial point of our symbolic extension is that the winning status of an individual
symbolic state is no more 0 or 1 but is now the subset Win[S] ⊆ S (union of zones) of the
symbolic state S which is currently known to be winning. The set Depend[S] indicates the set
of edges (or predecessors of S) which must be reevaluated (i.e., added to ToBackPropagate)
when new information about Win[S] is obtained, i.e., when Win[S] (Win∗. Whenever
a symbolic edge e = (S, α, S′) is considered with S′ ∈ Passed, the edge e is added to the
dependency set of S′ so that that possible future information about additional winning states
within S′ may also be back-propagated to S.

The correctness of the symbolic on-the-fly algorithm SOTFTR is given by the theorem:

Theorem 4 ([68]) Upon termination of the algorithm SOTFTR on a given timed game au-
tomaton G the following holds:

1. If (ℓ, v) ∈Win[S] for some S ∈ Passed then (ℓ, v) ∈ W(G);

2. If ToExplore ∪ ToBackPropagate = ∅, (ℓ, v) ∈ S \Win[S] for some S ∈ Passed then
(ℓ, v) 6∈ W(G).

Termination of the algorithm SOTFTR is guaranteed by the finiteness of the number of
symbolic states of SG(A). Moreover, each edge (S, α, T) will be present in the ToExplore and
ToBackPropagate at most 1+ |T | times, where |T | is the number of regions of T : (S, α, T) will
be in ToExplore the first time that S is encountered and subsequently in ToBackPropagate each

2.4 Contributed Results 39

1: Initialisation
2: Passed← {q0};
3: ToExplore← {(q0, α, q′) |α ∈ Σ, q

α−→ q′};
4: ToBackPropagate← ∅;
5: Win[q0]← (q0 = Goal ? 1 : 0); // set status to 1 if q0 is Goal

6: Depend[q0]← ∅;
7: Main

8: while ((ToExplore ∪ ToBackPropagate 6= ∅)) ∧Win[q0] 6= 1)) do

9: // pick a transition from ToExplore or ToBackPropagate
10: e = (q, α, q′)← pop(ToExplore) or pop(ToBackPropagate);
11: if q′ 6∈ Passed then

12: c(q′) = 0;

13: u(q′) = |{(q′ a−→ q′′, a ∈ Σu}|;
14: Passed← Passed ∪ {q′};
15: Depend[q′]← {(q, α, q′)};
16: Win[q′]← (q′ = Goal ? 1 : 0);
17: if Win[q′] = 0 then

18: ToExplore← ToExplore ∪ {(q′, α, q′′) | q′ α−→ q′′};
19: else

20: ToBackPropagate← ToBackPropagate ∪ {e};
21: else

22: if Win[q′] = 1 then

23: // update the counters of the state q
24: if α ∈ Σc then c(q)← c(q) + 1;
25: else u(q)← u(q)− 1;
26: // re-evaluate the status of the state q
27: Win[q]← (c(q) ≥ 1) ∧ (u(q) = 0);
28: if Win[q] then

29: ToBackPropagate← ToBackPropagate ∪Depend[q];
30: else // Win[q′] = 0
31: Depend[q′]← Depend[q′] ∪ {e};
32: endif

33: endif

34: endwhile

Figure 2.8: OTFUR: On-The-Fly Algorithm for Untimed Reachability Games

40 Chapter 2: Overview of my Research Contributions

1: Initialisation
2: Passed← {S0} where S0 = {(ℓ0, 0)}ր;
3: ToExplore← {(S0, α, S

′) |S′ = Postα(S0)
ր};

4: ToBackPropagate← ∅;
5: Win[S0]← S0 ∩ ({Goal} × RX

≥0);
6: Depend[S0]← ∅;
7: Main

8: while ((ToExplore ∪ ToBackPropagate 6= ∅) ∧ (ℓ0, 0) 6∈6= Win[S0])) do

9: // pick a transition from ToExplore or ToBackPropagate
10: e = (S, α, S′)← pop(ToExplore) or pop(ToBackPropagate);
11: if S′ 6∈ Passed then

12: Passed← Passed ∪ {S′};
13: Depend[S′]← {(S, α, S′)};
14: Win[S′]← S′ ∩ ({Goal} × RX

≥0);
15: if Win[S′] (S′ then

16: ToExplore← ToExplore ∪ {(S′, α, S′′) |S′′ = Postα(S′)ր};
17: if Win[S′] 6= ∅ then

18: ToBackPropagate← ToBackPropagate ∪ {e};
19: else

20: // If T 6∈ Passed, we assume Win[T] = ∅
21: Good←Win[S] ∪⋃

S
c−→T

Predc(Win[T]);

22: Bad← ⋃
S

u−→T
Predu(T \Win[T])) ∩ S;

23: Win∗ ← Predt(Good,Bad);
24: if (Win[S] (Win∗) then

25: Waiting ←Waiting ∪Depend[S];
26: Win[S]←Win∗;
27: Depend[S′]← Depend[S′] ∪ {e};
28: endif

29: endwhile

Figure 2.9: SOTFTR: Symbolic On-The-Fly Algo. for Timed Reachability Games

2.4 Contributed Results 41

time the set Win[T] increases. Now, any given region may be contained in several symbolic
states of the simulation graph (due to overlap). Thus the SOTFTR algorithm is not linear in
the region-graph and hence not theoretically optimal, as an algorithm with linear worst-case
time-complexity could be obtained by applying the untimed algorithm directly to the region-
graph. However, this is only a theoretical result and it turns out that the implementation of
the algorithm in UPPAAL-TiGA is very efficient.

We can optimise (space-wise) the previous algorithm. When we explore the automaton
forward, we check if any newly generated symbolic state S′ belongs Passed. As an optimisation
we may instead use the classical inclusion check: ∃S′′ ∈ Passed s.t. S′ ⊆ S′′, in which case,
S′ is discarded and we update Depend[S′′] instead. Indeed, new information learnt for S′′

can be new information on S′ but not necessarily. This introduces an overhead (time-wise)
in the sense that we may back-propagate irrelevant information. On the other hand, back-
propagating only the relevant information would be unnecessarily complex and would void
most of the memory gain introduced by the use of inclusion. In practise, the reduction of
the number of forward steps obtained by the inclusion check pays off for large systems and
is a little overhead otherwise, as shown in our experiments. It is also possible to propagate
information about losing states: in the case of reachability games, if a state is a deadlock
state and is not winning, for sure it is losing. This can also speed-up the algorithm. For
the example of Figure 2.1, we can propagate the information that (ℓ5, x > 1) is losing which
entails (ℓ1, x > 1) is losing as well. Then it only remains to obtain the status of (ℓ1, x ≤ 1) to
determine if the game is winning or not.

This algorithm has been implemented in the game version of UPPAAL which is called
UPPAAL-Tiga [95].

2.4.5 Partial Observation: Control and Diagnosis

In the previous sections, we have assumed that the controller has full knowledge of what
happens in the system: it can observe the global state of the system at any point in time and
record the events that have occurred. In many practical applications, this is not realistic and
the controller can only obtain partial information about the state of the system and some of
the events that occurred might be unobservable. Nevertheless, we still want to control the
system: this is the Control Under Partial Observation Problem, (PO-CP).

Partial observation usually means that the uncontrollable events, Σu, are partitioned into
two classes: Σo

u which are observable and Σu \Σo
u which are unobservable. Thus the controller

can only observe sequences (a0, t0)(a1, t1) · · · (an, tn) of timed events in ((Σc ∪ Σo
u) × R≥0)

∗

and must determine what to do according to this observation.
Thus we introduce the notion of trace-based strategies: a strategy is trace-based if, for any

two runs ρ and ρ′ with the same timed trace11, we have f(ρ) = f(ρ′).
The PO-CP then consists in deciding whether there is a trace-based strategy f to win a

game. As a controller is a strategy we can as well define Trace-Based Controllers (TBC) and
formalise the control problem under partial observation as:

Given S and φ, is there a TBC C s.t. (S ‖ C) |= φ ? (PO-CP)

Results about Control Under Partial Observation. The paper [11] (in French) gives
an overview of the results about the control of partially observable (timed) systems. If the

11The timed trace of a run is a timed word in ((Σc ∪ Σo

u) × R≥0)
∗.

42 Chapter 2: Overview of my Research Contributions

specification is given by a deterministic TA, the PO-CP is undecidable [60]. If we consider
the safety version (PO-SCP), and we want to synthesise a non-Zeno controller, the PO-SCP
is still undecidable [8].

If the resources of controllers are bounded, we can extend the proof of section 2.4.2 for
the synthesis of controllers for external specification to the case of partial observation. This
yields the following result: if the resources of the controller are bounded, and the property φ
is specified by a deterministic timed automaton, the PO-CP is EXPTIME-complete [60].

Recent results [62, 61] about partial observability for finite automata consider that the
state of the system is partially observable. We have recently extended this work to timed
systems [C1].

Algorithms for solving the control problem under partial observation are often used to solve
the diagnosis problem which is a special type of control under partial observation.

Fault Diagnosis. We can define the fault diagnosis problem (FDP) as a special form of the
PO-CP. In the FDP, we consider a system S, with observable events in Σo and the others in
the complement set, Σo, are unobservable. A special unobservable event f is the fault event.
The goal in fault diagnosis, is to design an observer12 that can detect that a fault has occurred
i.e., f has occurred. The diagnosis problem has been extensively studied for discrete event
systems [72, 71, 73].

System

Observer

« fault »

« no fault »

w π/Σo
(w)•

• •
•

f

ε
a

b

Figure 2.10: Fault-Diagnosis

The diagnosis problem framework is depicted on Figure 2.10. The system generates events,
and only those that belong to Σo can be observed. If the system has generated a sequence of
events w then the observer could only see the projection on Σo of this sequence i.e., π/Σo

(w).
The goal of the observer is to watch observable events and to indicate as soon as possible if a
fault occurred. Notice that the observer does not observe a complete input sequence w but it
receives the actions one after the other.

The main parameter in the fault diagnosis problem is the amount of time it takes to detect
a fault. In discrete event systems, this is the number of steps the system has made since the
fault occurred. The runs of the system can be split into two categories:

• those that do not contain the fault event f ; they are called non-faulty runs;

• and those that contain a fault event, followed by at least k steps: they are called k-faulty
runs.

A k-diagnoser for a system S is an observer which behaves as follows:

• for each non-faulty run, it does not announce a fault;

12it is not a controller because it can only observe the system.

2.4 Contributed Results 43

• for each k-faulty run it has to announce a fault.

Nothing is required for faulty runs with less than k steps after the fault. The k-fault diagnosis
problem can be formally defined by:

Given a system S, k ∈ N, is there a k-diagnoser for S ? (k-FDP)

S is k-diagnosable if there is a k-diagnoser for S and S is diagnosable if there is some k s.t. S
is k-diagnosable. Deciding whether a system S is diagnosable is the Fault-Diagnosis Problem
(FDP). Synthesising a diagnoser is the associated Fault-Diagnosis Synthesis Problem (FDSP).
For discrete event systems, it was proved that the FDP is in PTIME and the FDSP is in
EXPTIME [72, 71, 73].

These results have been extended to timed automata by Stavros Tripakis in [74]. For timed
systems, the number of steps (k) following a fault is replaced by a duration ∆ ∈ N, and the
goal of a ∆-diagnoser is to announce a fault within ∆ time units. The diagnoser can sense the
(observable) events and the time at which they occurred. In Figure 2.10, it suffices to replace
w by a pair (w, t) where w is a set of events generated by the system and t a sequence of
dates. The diagnoser “sees” the observable events in w and the date of occurrence of each of
them. In the paper mentioned above ([74]), it was proved that the FDP for timed automata
is PSPACE-complete. In this paper, the FDSP is solved by building a Turing machine which
is a ∆-diagnoser.

A natural follow-up question is then to decide whether there is a simpler diagnoser, which
can be represented for instance by a timed automaton. This version of the FDP was stated
and solved in [75] and the results are:

• the FDSP is 2EXPTIME-complete if the resources of the diagnoser are bounded, and if
the diagnoser is a deterministic timed automaton;

• the FDSP becomes PSPACE-complete if the diagnoser is an Event-Recording Automaton
(ERA) [6] (with bounded resources). ERA forms a subclass of TA where each clock is
associated with an event and reset when this event occurs.

Contribution to the Domain. In the previous versions of the FDP, it is assumed that
the diagnoser can rely on analog clocks which are infinitely precise. If we consider a real
implementation, an observer will not be able to read clock values but rather it will sense
periodically a tick event. Such a discrete clock that generates tick events is called a digital
clock. To have a more fair or precise modeling of a system, it may be interesting to consider
this notion of digital clocks. It has already been considered as the problem of implementing
the ideal mathematical model of timed automata in [67] and in [63, 66, 65, 64].

This it makes sense to address the FDP using digital clocks: this version of the FDP is the
Digital-Clock Diagnosis Problem (DC-DP). The architecture that we consider in this setting
is given on Figure 2.11.

The digital clock issues tick events. The diagnoser can observe the observable events of the
system plus the tick event. In contrast to the dense-time version, it cannot measure the time
elapsed between two events (and thus it cannot obtain the date of an event). The diagnoser
must announce of fault observing only the interleavings of events in Σo ∪ {tick}.

We have defined this problem in

44 Chapter 2: Overview of my Research Contributions

System

Digital-Clock
Diagnoser

« fault »

« no fault »
w

Clock
v

π/Σo∪{tick}(v ‖ w)

Figure 2.11: Fault Diagnosis with Digital Clocks

[77] Karine Altisen, Franck Cassez, and Stavros Tripakis.
Monitoring and fault-diagnosis with digital clocks.
In Sixth International Conference on Application of Concurrency to System
Design (ACSD’06), Turku, Finland, June 2006. IEEE Computer Society Press.

In this paper, we proved that, given a timed automaton S, a digital clock H which is also
a timed automaton (and generates tick events), the digital fault diagnosis problem can be
decided in EXPTIME. The size of the diagnoser is doubly exponential in the size of S and H
(building a diagnoser usually requires a determinization step which adds an exponential to the
diagnosis problem). One problem was left open in the previous paper: it is the digital clock
synthesis problem: is there a digital clock H which is a TA, s.t. the system is diagnosable
using this digital clock?

Notice that in [76], the authors also consider a diagnosis problem with digital clocks.
Nevertheless, they do not mention the open problem we stated previously and the definition
they give for the other problems are not totally formalised.

Chapter 3

Conclusion and Future Work

Conclusion

My main research contributions were obtained in the domain of Control of Timed Systems
and developed in Chapter 2. The problems we have studied are of particular interest for the
community working in this area. The results presented in Chapter 2 were obtained together
with colleagues from French and European groups and were published in renowned conferences.
The previous work has also been financially supported by the French Ministry of Research
and by the French National Research Agency (ANR).

Another line of work I have contributed to recently is about the relations between Timed
Automata (TA) and Time Petri nets (TPNs). First, together with colleagues in Nantes and
Paris, we have first proved that TPNs could be translated into networks of TA [81]. Following
this work, we have shown how to model-check the temporal real-time logic TCTL on TPNs [80].
This has been implemented in the tool Roméo [90, 85] developed by Olivier H. Roux in Nantes.
Second, we have investigated how to translate TA into TPNs and proved that: (i) given a TA
H, there is a TPN TH which accepts1 the same timed language [82] and (ii) there exists a TA
H ′ such that no TPN (even unbounded) can be timed bisimilar to H ′ [82]; we have given a
semantic condition for checking that a TA has an equivalent timed bisimilar TPN in [83].

Future Work

My future work will consist in applying the recent developments, theories and tools, in control
theory for timed systems, to real commercialised systems. For instance the new tool UPPAAL-

TiGA [95] enables one to solve timed games efficiently. This is a good starting point to
address the problem of implementation of controllers for timed systems, and later the synthesis
of optimal controllers. This domain of application is described more precisely in Section
“Application of Control Theories and Tools to Real Systems” in the sequel. Of course I will
also pursue the work I started on more theoretical aspects which is described hereafter.

1To do this, we extended the original TPN model with open intervals to specify the timing constraints of
transitions.

45

46 Chapter 3: Conclusion and Future Work

Control of Distributed Open Timed Systems

The project DOTS (Distributed Open Timed Systems2 began in January 2007, and during the
course of this project we are going to work on many aspects related to the control problem.
In this project I will be particularly interested in the following parts:

• Extending the results we have obtained for optimal reachability control of timed systems.
This amounts to study the optimal control problem for safety games and hopefully
general Büchi games;

• Extending the on-the-fly algorithm of section 2.4.4 to other type of games like safety
games and Büchi games. Considering Büchi games is a rather important aspect when
one wants to solve safety dense-time games: indeed, when one considers safety games, it
could be that a controller exists, which prevents time from diverging, and this is the well-
known Zenoness problem. Time divergence can be enforced by a Büchi objective and
thus solving a safety+Büchi game will ensure the synthesis of non-Zeno controllers. This
work is expected to be implemented in the next versions of the tool UPPAAL-TiGA [95].

• Designing logics for specifying timed control objectives. In a recent work [41], François La-
roussinie et al. (LSV, ENS Cachan) showed how to solve the control problem in a discrete
time setting, for a timed version of the logic ATL. We will study the extension of this
work to dense time. This can also be viewed as a generalisation of some results we
obtained earlier (section 2.4.2);

• Defining a concurrent semantics for timed systems. Recently with Thomas Chatain and
Claude Jard (IRISA, Rennes, F.), we have proposed a method for computing unfoldings
of networks of timed automata (see [C6] in section 1.8, page 10 of chapter 1). We will
continue this work during the project DOTS and try to define a meaningful concurrent
semantics for timed systems.

• Controller synthesis under partial observation. We have recently worked on: 1) controller
synthesis under partial observation where the observations are given by some predicates
on the timed systems we want to control as in [62, 61]; and 2) the extension of the on-the-
fly algorithm of section 2.4.4 (which was designed for reachability games) to this setting.
This work was carried out together with Didier Lime (IRCCyN, Nantes), Alexandre
David and Kim G. Larsen (Aalborg, DK), and Jean-François Raskin (Bruxelles, B.) and
will be presented at the next ATVA conference [C1]. There are many extensions of this
work to be investigated and among them the data structures used to encode the winning
set of states (Cf. [62, 61]).

Application of Control Theory to Other Domains

Fault diagnosis can be considered as a simplified version of the control problem and another
line of work I am going to pursue concerns fault diagnosis of discrete and timed systems.

In dense time, the problems we have to solve are the ones which were left open in [77]. In
this work we considered a plant and a digital clock (specified by a timed automaton). The
digital clock emits “ticks” and the diagnoser can only sense the discrete events of the plant and
the (discrete) “ticks”. Given a plant and a clock, we have showed how to check that a discrete

2DOTS: http://www.lsv.ens-cachan.fr/anr-dots/.

http://www.lsv.ens-cachan.fr/anr-dots/

47

(we say “digital”) diagnoser exists. A more abstract version of this problem is to check whether
there is a digital clock (given by a timed automaton) s.t. the plant is diagnosable. Actually
we will consider two versions of the problem: one where the digital clock has a given (fixed)
amount of resources (number of clocks, constants used in the specification of the digital clock)
and the other one where we do not give a bound on the resources.

In discrete time, we have investigated some optimal fault diagnosis problems in [78, 79].
The purpose is to compute a least expensive diagnoser, given some measure of how much it
costs to observe sequences of events. We will generalise the results of this work, obtained for
fault diagnosis, to control under partial observation (for discrete event systems).

Finally, we have started to work on the synthesis of non-interferent systems. Non-interference
is a security property of (discrete) systems that ensures no information can flow from a low
level user to a high level user. We have already studied the problem of synthesis of non-
interferent discrete systems in [C2] (section 1.8, page 10 of chapter 1). This work was carried
out together with Olivier H. Roux (IRCCyN, Nantes, F.) and John Mullins (Ecole Polytech-
nique de Montréal, CA.). This subject is a work package of the project DOTS. Following [C2],
we will study the decidability status of the various non-interferent problems for timed systems
specified by timed automata.

Application of Control Theories and Tools to Real Systems

I have an ongoing collaboration with colleagues at NICTA, Sydney, Australia, and we try
to model real systems (parts of embedded systems of sensor networks) and verify them or
synthesise controllers for them. NICTA is a research laboratory working in close collaboration
with industry. They have developed for instance a commercialised version of the micro-kernel
L4, and have used formal methods to check correctness of the system. They have lots of
specifications of real systems and need to use advanced theories and tools (like computing
optimal controllers which can be used to design low power consumption devices).

One of the main issue in embedded systems at the moment is to come up with a method-
ology for designing such systems and to go from theory to practise, i.e., confront the theory
and tools recently developed for timed systems with real life systems.

I will try to contribute to this challenging issue in the next few years by modeling real
systems, and try to obtain results that will help engineers in the design of advanced and
complex embedded systems. In particular, I will address the problem of optimal scheduling
both time-wise and energy-wise. This work will hopefully be carried out abroad during a long
term visit at NICTA, Sydney.

48 Chapter 3: Conclusion and Future Work

Chapter 4

References

This chapter contains the references used in chapters 2 and 3. The refercences have been
sorted using Nicolas Markey’s splitbib package available from

http://www.ctan.org/tex-archive/macros/latex/contrib/splitbib/.

— Timed Automata and Their Extensions —

Journal Papers

[1] Rajeev Alur and David Dill. A theory of timed automata. Theoretical Computer Science
(TCS), 126(2):183–235, 1994.

[2] Gerardo Lafferriere, George Pappas, and Shankar Sastry. Ominimal hybrid systems.
Mathematics of Control Signals and Systems, 13(1):1–21, 2000.

[3] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin Varaiya. What’s decidable
about hybrid automata? Journal of Computer and System Sciences, 57:94–124, 1998.

[4] Patricia Bouyer. Forward analysis of updatable timed automata. Formal Methods in
System Design, 24(3):281–320, May 2004.

Conference Papers

[5] Thomas A. Henzinger. The theory of hybrid automata. In LICS, pages 278–292, 1996.

[6] Rajeev Alur, Limor Fix, and Thomas A. Henzinger. A determinizable class of timed
automata. In CAV: Computer-Aided Verification, Lecture Notes in Computer Science
818, pages 1–13. Springer, 1994.

49

http://www.ctan.org/tex-archive/macros/latex/contrib/splitbib/

50 BIBLIOGRAPHY

— Overview Articles and Books —

Book

[7] Philippe Schnoebelen, Béatrice Bérard, Michel Bidoit, François Laroussinie, and Antoine
Petit. Vérification de logiciels : Techniques et outils de model-checking. Vuibert, 1999.

Journal Papers

[8] Patricia Bouyer and Fabrice Chevalier. On the control of timed and hybrid systems.
EATCS Bulletin, 89:79–96, June 2006.

Conference Papers

[9] Karine Altisen, Patricia Bouyer, Thierry Cachat, Franck Cassez, and Guillaume Gardey.
Introduction au contrôle des systèmes temps-réel. In Actes du 5ème Colloque sur la
Modélisation des Systèmes Réactifs (MSR’05), pages 367–380. Hermès Science, 2005.
Invited Paper.

[10] Karine Altisen, Nicolas Markey, Pierre-Alain Reynier, and Stavros Tripakis. Implé-
mentabilité des automates temporisés. In Hassane Alla and Éric Rutten, editors, Actes
du 5ème Colloque sur la Modélisation des Systèmes Réactifs (MSR’05), pages 395–406,
Autrans, France, October 2005. Hermès. Invited paper.

[11] Patricia Bouyer, Fabrice Chevalier, Moez Krichen, and Stavros Tripakis. Observation par-
tielle des systèmes temporisés. In Hassane Alla and Éric Rutten, editors, Actes du 5ème
Colloque sur la Modélisation des Systèmes Réactifs (MSR’05), pages 381–393, Autrans,
France, October 2005. Hermès. Invited paper.

— Articles on Control of Discrete Event Systems —

Journal Papers

[12] P.J.G. Ramadge and W.M. Wonham. Supervisory control of a class of discrete event
processes. SIAM Journal of Control and Optimization, 25(1):1202–1218, 1987.

[13] P.J.G. Ramadge and W.M. Wonham. The control of discrete event systems. Proc. of the
IEEE, 77(1):81–98, 1989.

[14] Robert McNaughton. Infinite games played on finite graphs. Annals of Pure and Applied
Logic, 65(2):149–184, 1993.

[15] André Arnold, Aymeric Vincent, and Igor Walukiewicz. Games for synthesis of controllers
with partial observation. Theor. Comput. Sci., 1(303):7–34, 2003.

Conference Papers

[16] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proc. 16th ACM
Symposium on Principles of Programming Languages (POPL’89), pages 179–190. ACM,
1989.

BIBLIOGRAPHY 51

[17] Stéphane Riedweg and Sophie Pinchinat. Quantified mu-calculus for control synthesis. In
Proc. 28th International Symposium on Mathematical Foundations of Computer Science
(MFCS’03), volume 2747 of Lecture Notes in Computer Science, pages 642–651. Springer,
2003.

[18] Wolfgang Thomas. On the synthesis of strategies in infinite games. In Proc. 12th Annual
Symposium on Theoretical Aspects of Computer Science (STACS’95), volume 900, pages
1–13. Springer, 1995. Invited talk.

— Articles on Control of Timed Systems —

Journal Papers

[19] Thomas A. Henzinger and Peter W. Kopke. Discrete-time control for rectangular hybrid
automata. Theoretical Computer Science, 221:369–392, 1999.

Conference Papers

[20] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers
for timed systems. In Proc. 12th Annual Symposium on Theoretical Aspects of Computer
Science (STACS’95), volume 900 of Lecture Notes in Computer Science, pages 229–242.
Springer, 1995.

[21] Karine Altisen and Stavros Tripakis. Tools for controller synthesis of timed systems.
In Proc. 2nd Workshop on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published as
Technical Report 2002-025, Uppsala University, Sweden.

[22] Luca de Alfaro, Thomas A. Henzinger, and M. Stoelinga. Timed interfaces. In Proc. 2nd
International Workshop on Embedded Software (EMSOFT’02), volume 2491 of Lecture
Notes in Computer Science, pages 108–122. Springer, 2002.

[23] Marco Faëlla, Salvatore La Torre, and Aniello Murano. Dense real-time games. In Proc.
17th IEEE Symposium on Logic in Computer Science (LICS’02), pages 167–176. IEEE
Computer Society Press, 2002.

[24] G. Hoffmann and Howard Wong-Toi. The input-output control of real-time discrete-event
systems. In Proceedings of the 13th Annual Real-time Systems Symposium, pages 256–265.
IEEE Computer Society Press, 1992.

[25] Eugene Asarin, Oded Maler, Amir Pnueli, and Joseph Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symposium on System Structure and Control, pages
469–474. Elsevier Science, 1998.

[26] Thomas A. Henzinger, Benjamin Horowitz, and Rupak Majumdar. Rectangular hybrid
games. In Proc. 10th International Conference on Concurrency Theory (CONCUR’99),
volume 1664 of Lecture Notes in Computer Science, pages 320–335. Springer, 1999.

[27] Luca de Alfaro, Thomas A. Henzinger, and Rupak Majumdar. Symbolic algorithms
for infinite-state games. In Proc. 12th International Conference on Concurrency The-
ory (CONCUR’01), volume 2154 of Lecture Notes in Computer Science, pages 536–550.
Springer, 2001.

52 BIBLIOGRAPHY

[28] Franck Cassez, Thomas A. Henzinger, and Jean-François Raskin. A comparison of control
problems for timed and hybrid systems. In Proc. 5th International Workshop on Hybrid
Systems: Computation and Control (HSCC’02), volume 2289 of LNCS, pages 134–148.
Springer, 2002.

[29] Luca de de Alfaro, Marco Faëlla, Thomas A. Henzinger, Rapuk Majumdar, and Mariëlla
Stoelinga. The element of surprise in timed games. In Proc. 14th International Conference
on Concurrency Theory (CONCUR’2003), volume 2761 of Lecture Notes in Computer
Science, pages 142–156. Springer, 2003.

[30] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Control in o-minimal hybrid
systems. In Proceedings of the 21st Annual IEEE Symposium on Logic in Computer Sci-
ence (LICS’06), pages 367–378, Seattle, Washington, USA, August 2006. IEEE Computer
Society Press.

[31] Karine Altisen, Gregor Goessler, Amir Pnueli, Joseph Sifakis, Stavros Tripakis, and Sergio
Yovine. A framework for scheduler synthesis. In Proc. International Real-Time Systems
Symposium (RTSS’99), IEEE Computer Society, pages 154–163, 1999.

[32] Yasmina Abdeddaïm, Eugene Asarin, and Oded Maler. Scheduling with timed automata.
Theor. Comput. Sci., 354(2):272–300, 2006.

— Logics for Control and Games —

Journal Papers

[33] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

[34] Luca Aceto and François Laroussinie. Is your model checker on time? On the complexity
of model checking for timed modal logics. Journal of Logic and Algebraic Programming,
52-53:7–51, August 2002.

[35] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal
logic. Journal of the ACM, 49:672–713, 2002.

Conference Papers

[36] X. Liu and S. A. Smolka. Simple Linear-Time Algorithm for Minimal Fixed Points. In
Proc. 26th Int. Conf. on Automata, Languages and Programming (ICALP’98), volume
1443 of LNCS, pages 53–66, Aalborg, Denmark, 1998. Springer.

[37] Marco Faella, Salvatore La Torre, and Aniello Murano. Automata-theoretic decision
of timed games. In 3rd International Workshop on Verification, Model Checking, and
Abstract Interpretation (VMCAI’02), volume 2294 of Lecture Notes in Computer Science,
pages 240–254, Venezia, Italy, January 2002.

[38] Deepak D’Souza and P. Madhusudan. Timed control synthesis for external specifica-
tions. In Proc. 19th International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS’02), volume 2285 of Lecture Notes in Computer Science, pages 571–582.
Springer, 2002.

BIBLIOGRAPHY 53

[39] Patricia Bouyer, Franck Cassez, and François Laroussinie. Modal logics for timed control.
In Proc. of the 16th Int. Conf. on Concurrency Theory (CONCUR’05), volume 3653 of
LNCS, pages 81–94. Springer, 2005.

[40] Patricia Bouyer, Laura Bozzelli, and Fabrice Chevalier. Controller synthesis for MTL
specifications. In Christel Baier and Holger Hermanns, editors, Proceedings of the 17th
International Conference on Concurrency Theory (CONCUR’06), volume 4137 of Lecture
Notes in Computer Science, pages 450–464, Bonn, Germany, August 2006. Springer.

[41] François Laroussinie, Nicolas Markey, and Ghassan Oreiby. Model checking timed ATL for
durational concurrent game structures. In Eugène Asarin and Patricia Bouyer, editors,
Proceedings of the 4th International Conference on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), volume 4202 of Lecture Notes in Computer Science,
pages 245–259, Paris, France, September 2006. Springer.

— Priced Timed Automata —

Journal Papers

[42] Patricia Bouyer, Thomas Brihaye, and Nicolas Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 98(5):188–194, June 2006.

[43] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and Antoine Petit. Updatable
timed automata. Theoretical Computer Science, 321(2-3):291–345, August 2004.

[44] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Optimal infinite scheduling for multi-
priced timed automata. Formal Methods in System Design, 2007. To appear.

Conference Papers

[45] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. Model-checking for
weighted timed automata. In FORMATS/FTRTFT, pages 277–292, 2004.

[46] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal paths in weighted
timed automata. In Proc. 4th Int. Work. Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Computer Science, pages 49–62. Springer,
2001.

[47] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Minimum-cost reachability for priced timed automata.
In Proc. 4th International Workshop on Hybrid Systems: Computation and Control
(HSCC’01), volume 2034 of Lecture Notes in Computer Science, pages 147–161. Springer,
2001.

[48] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul Pettersson, Judi
Romijn, and Frits Vaandrager. Efficient guiding towards cost-optimality in uppaal. In
Proc. 7th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS’01), volume 2031 of Lecture Notes in Computer Science,
pages 174–188. Springer, 2001.

54 BIBLIOGRAPHY

[49] Patricia Bouyer, Ed Brinksma, and Kim G. Larsen. Staying alive as cheaply as possi-
ble. In Rajeev Alur and George J. Pappas, editors, Proceedings of the 7th International
Conference on Hybrid Systems: Computation and Control (HSCC’04), volume 2993 of
Lecture Notes in Computer Science, pages 203–218, Philadelphia, Pennsylvania, USA,
March 2004. Springer.

[50] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Optimal strate-
gies in priced timed game automata. In Proc. of the 24th Int. Conf. on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS’04), volume 3328 of
LNCS, pages 148–160. Springer, 2004.

[51] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim G. Larsen. Synthesis of
optimal strategies using HyTech. In Proc. of the Workshop on Games in Design and
Verification (GDV’04), volume 119 of Elec. Notes in Theo. Comp. Science, pages 11–31.
Elsevier, 2005.

[52] Patricia Bouyer, Kim G. Larsen, Nicolas Markey, and Jacob Illum Rasmussen. Almost op-
timal strategies in one-clock priced timed automata. In Naveen Garg and S. Arun-Kumar,
editors, Proceedings of the 26th Conference on Foundations of Software Technology and
Theoretical Computer Science (FSTTCS’06), volume 4337 of Lecture Notes in Computer
Science, pages 345–356, Kolkata, India, December 2006. Springer.

[53] Thomas Brihaye, Véronique Bruyère, and Jean-François Raskin. On optimal timed strate-
gies. In FORMATS, pages 49–64, 2005.

[54] Rajeev Alur, Mikhail Bernadsky, and P. Madhusudan. Optimal reachability in weighted
timed games. In Proc. 31st International Colloquium on Automata, Languages and Pro-
gramming (ICALP’04), volume 3142 of Lecture Notes in Computer Science, pages 122–
133. Springer, 2004.

[55] Jacob Rasmussen, Kim G. Larsen, and K. Subramani. Resource-optimal scheduling using
priced timed automata. In Proc. 10th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’04), volume 2988 of Lecture Notes
in Computer Science, pages 220–235. Springer, 2004.

[56] Salvatore La Torre, Supratik Mukhopadhyay, and Aniello Murano. Optimal-reachability
and control for acyclic weighted timed automata. In Proc. 2nd IFIP International Con-
ference on Theoretical Computer Science (TCS 2002), volume 223 of IFIP Conference
Proceedings, pages 485–497. Kluwer, 2002.

[57] Eugene Asarin and Oded Maler. As soon as possible: Time optimal control for timed
automata. In Proc. 2nd International Workshop on Hybrid Systems: Computation and
Control (HSCC’99), volume 1569 of Lecture Notes in Computer Science, pages 19–30.
Springer, 1999.

[58] Patricia Bouyer, Thomas Brihaye, and Fabrice Chevalier. Weighted o-minimal hybrid
systems are more decidable than weighted timed automata! In Sergei N. Artemov, editor,
Proceedings of the Symposium on Logical Foundations of Computer Science (LFCS’07),
Lecture Notes in Computer Science, New-York, NY, USA, June 2007. Springer. To appear.

BIBLIOGRAPHY 55

Research Report

[59] Patricia Bouyer, Franck Cassez, Emmanuel Fleury, and Kim Guldstrand Larsen. Optimal
Strategies in Priced Timed Game Automata. BRICS Reports Series RS-04-0, BRICS,
Denmark, 2004. ISSN 0909-0878.

— Control under Partial Observation —

[60] Patricia Bouyer, Deepak D’Souza, P. Madhusudan, and Antoine Petit. Timed control
with partial observability. In Warren A. Hunt, Jr and Fabio Somenzi, editors, Proceedings
of the 15th International Conference on Computer Aided Verification (CAV’03), volume
2725 of Lecture Notes in Computer Science, pages 180–192, Boulder, Colorado, USA,
July 2003. Springer.

[61] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. A lattice theory for solving
games of imperfect information. In HSCC, pages 153–168, 2006.

[62] Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Algorithms for omega-regular games with imperfect information, . In CSL, pages 287–
302, 2006.

— Implementation of Timed Automata —

Journal Papers

[63] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics:
From timed models to timed implementations. Formal Aspects of Computing, 17(3):319–
341, 2005.

Conference Papers

[64] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Almost ASAP semantics:
From timed models to timed implementations. In Proceedings of HSCC 2004: Hybrid
Systems—Computation and Control, Lecture Notes in Computer Science 2993, pages
296–310. Springer-Verlag, 2004.

[65] Martin De Wulf, Laurent Doyen, Nicoals Markey, and Jean-François Raskin. Robustness
and implementability of timed automata. In Proceedings of FORMATS-FTRTFT 2004:
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems, Lecture
Notes in Computer Science 3253, pages 118–133. Springer-Verlag, 2004.

[66] Martin De Wulf, Laurent Doyen, and Jean-François Raskin. Systematic implementation
of real-time models. In Proceedings of FM 2005: Formal Methods, Lecture Notes in
Computer Science 3582, pages 139–156. Springer-Verlag, 2005.

[67] Karine Altisen and Stavros Tripakis. Implementation of timed automata: an issue of
semantics or modeling? In Formal Modeling and Analysis of Timed Systems (FOR-
MATS’05), volume 3829 of Lecture Notes in Computer Science. Springer, 2005.

56 BIBLIOGRAPHY

— On-the-fly Algorithms —

[68] Franck Cassez, Alexandre David, Emmanuel Fleury, Kim G. Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. In Proc. of the 16th
Int. Conf. on Concurrency Theory (CONCUR’05), volume 3653 of LNCS, pages 66–80.
Springer, 2005.

[69] Karine Altisen and Stavros Tripakis. On-the-fly controller synthesis for discrete and
dense-time systems. In World Congress on Formal Methods (FM’99), volume 1708 of
Lecture Notes in Computer Science, pages 233–252. Springer, 1999.

[70] Karine Altisen and Stavros Tripakis. Tools for controller synthesis of timed systems.
In Proc. 2nd Workshop on Real-Time Tools (RT-TOOLS’02), 2002. Proc. published as
Technical Report 2002-025, Uppsala University, Sweden.

— Fault Diagnosis —

Journal Papers

[71] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diag-
nosability of discrete event systems. IEEE Transactions on Automatic Control, 40(9),
September 1995.

[72] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Failure
diagnosis using discrete-event models. IEEE Transactions on Control Systems technology,
4(2), March 1996.

[73] S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing
diagnosability of discrete event systems. IEEE Transactions on Automatic Control, 46(8),
August 2001.

Conference Papers

[74] Stavros Tripakis. Fault diagnosis for timed automata. In 7th International Symposium on
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’02), volume 2469
of Lecture Notes in Computer Science, pages 205–224, Oldenburg, Germany, September
2002.

[75] Patricia Bouyer, Fabrice Chevalier, and Deepak D’Souza. Fault diagnosis using timed
automata. In Vladimiro Sassone, editor, Proceedings of the 8th International Conference
on Foundations of Software Science and Computation Structures (FoSSaCS’05), volume
3441 of Lecture Notes in Computer Science, pages 219–233, Edinburgh, U.K., April 2005.
Springer.

[76] S. Jiang and Ratnesh Kumar. Diagnosis of dense-time systems using digital clocks. In
American Control Conferece (ACC’06), 2006. To appear.

[77] Karine Altisen, Franck Cassez, and Stavros Tripakis. Monitoring and fault-diagnosis
with digital clocks. In 6th Int. Conf. on Application of Concurrency to System Design
(ACSD’06). IEEE Computer Society, 2006.

BIBLIOGRAPHY 57

[78] Franck Cassez, Stavros Tripakis, and Karine Altisen. Synthesis of optimal dynamic ob-
servers for fault diagnosis of discrete-event systems. In 1st IEEE & IFIP Int. Symp.
on Theoretical Aspects of Soft. Engineering (TASE’07), pages 316–325. IEEE Computer
Society, 2007.

[79] Franck Cassez, Stavros Tripakis, and Karine Altisen. Sensor minimization problems
with static or dynamic observers for fault diagnosis. In 7th Int. Conf. on Application of
Concurrency to System Design (ACSD’07), pages 90–99. IEEE Computer Society, 2007.

— Time Petri Nets —

Journal Papers

[80] Franck Cassez and Olivier H. Roux. Structural translation from time petri nets to timed
automata. Journal of Software and Systems, 29:1456–1468, 2006.

Conference Papers

[81] Franck Cassez and Olivier H. Roux. Structural Translation of Time Petri Nets into Timed
Automata. In Proceedings of the Workshop on Automated Verification of Critical Systems
(AVoCS’04), volume 128 of Elec. Notes in Theo. Comp. Science, pages 145–160. Elsevier,
2005.

[82] Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime. Com-
parison of the Expressiveness of Timed Automata and Time Petri Nets. In Proc. of
the 3rd Int. Conf. on Formal Modeling and Analysis of Timed Systems (FORMATS’05),
volume 3829 of LNCS, pages 211–225. Springer, 2005.

[83] Béatrice Bérard, Franck Cassez, Serge Haddad, Olivier H. Roux, and Didier Lime. When
are Timed Automata weakly timed bisimilar to Time Petri Nets ? In Proc. of the 25th
Int. Conf. on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS’05), volume 3821 of LNCS, pages 276–284. Springer, 2005.

Habililtation à diriger les recherches (in French)

[84] Olivier H. Roux. Vérification des réseaux de petri temporels et à chronomètres, December
2005. Habilitation à diriger les recherches, Ecole doctorale STIM, Nantes, France.

— Tools for Analysing Timed Systems —

Journal Papers or Conference Papers

[85] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H. Roux. Romeo: A tool
for analyzing time petri nets. In CAV, pages 418–423, 2005.

[86] François Laroussinie and Kim G. Larsen. CMC: A tool for compositional model-checking
of real-time systems. In Proc. IFIP Joint International Conference on Formal Description
Techniques & Protocol Specification, Testing, and Verification (FORTE-PSTV’98), pages
439–456. Kluwer Academic, 1998.

[87] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model-checker
for hybrid systems. Journal on Software Tools for Technology Transfer (STTT), 1(1–
2):110–122, 1997.

58 BIBLIOGRAPHY

[88] Sergio Yovine. Kronos: A verification tool for real-time systems. Journal of Software
Tools for Technology Transfer (STTT), 1(1–2):123–133, 1997.

[89] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre David,
Angskar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, Oliver Möller, Paul
Pettersson, Carsten Weise, and Wang Yi. Uppaal – now, next, and future. In Proc.
Modelling and Verification of Parallel Processes (Movep2k), volume 2067 of Lecture
Notes in Computer Science, pages 99–124. Springer, 2001.

URLs

[90] Guillaume Gardey, Morgan Magnin, Didier Lime, and Olivier H. Roux. Roméo.
http://romeo.rts-software.org/.

[91] François Laroussinie. CMC. http://www.lsv.ens-cachan.fr/~fl/cmcweb.html.

[92] Gerard Holtzmann. Spin. http://spinroot.com.

[93] Tobias Amnell, Gerd Behrmann, Johan Bengtsson, Pedro R. D’Argenio, Alexandre David,
Angskar Fehnker, Thomas Hune, Bertrand Jeannet, Kim G. Larsen, Oliver Möller, Paul
Pettersson, Carsten Weise, and Wang Yi. Uppaal. http://www.uppaal.com.

[94] Gerd Behrmann, Kim Guldstrand Larsen, and Jacob Illum Rasmussen. Uppaal-cora.
http://www.cs.aau.dk/~behrmann/cora/.

[95] Gerd Behrmann, Agnès Cougnard, Alexandre David, Emmanuel Fleury, Kim G. Larsen,
and Didier Lime. Uppaal-tiga. http://www.cs.aau.dk/~adavid/tiga/.

http://romeo.rts-software.org/
http://www.lsv.ens-cachan.fr/~fl/cmcweb.html
http://spinroot.com
http://www.uppaal.com
http://www.cs.aau.dk/~behrmann/cora/
http://www.cs.aau.dk/~adavid/tiga/

	Curriculum Vitæ
	Positions Held
	Professional Experience
	Research Activities
	Committees and Administrative Duties
	Students Supervision and Collaborations
	Students Supervision
	Collaborations.
	Reviewing
	Organisation of Summer Schools, Journal Special Issue

	Funded Projects
	Recent National Projects
	European Project
	Visits Abroad

	Seminars & Invited talks
	Publications
	Acronyms

	Overview of my Research Contributions
	Introduction
	Semantics of Timed Games
	Rules for Playing Timed Games
	Strategies
	Control Objectives
	Winning Strategies
	Winning States

	Algorithms for Controller Synthesis
	Controllable Predecessors
	Symbolic Controllable Predecessors
	 Symbolic Computation of Winning States
	Synthesis of Winning Strategies

	Contributed Results
	Decidability Issues for Timed Control
	Specification of Control Objectives
	Optimal Control
	Efficient Algorithms for Controller Synthesis
	Partial Observation: Control and Diagnosis

	Conclusion and Future Work
	References

