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Spécialité : Génie Electrique

par

Sangkla Kreuawan

DOCTORAT DELIVRE PAR L’ECOLE CENTRALE DE LILLE

Titre de la thèse :
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Résumé

La conception d’un système électrique de transport ferroviaire est une tâche complexe qui
fait appel simultanément à des experts de domaines de compétence différents. Les construc-
teurs ferroviaires gèrent cette complexité ce qui leurs permet de fabriquer des équipements
performants. Néanmoins, dans un marché global, tout gain méthodologique peut se traduire
en avantage concurrentiel.

La conception systémique optimale de composant électrotechnique est abordée dans cette
thèse. Une châıne de traction électrique est choisie comme exemple représentatif d’un système
complexe. La démarche et les outils sont mis en oeuvre sur deux applications: la conception
d’un moteur de traction et la conception simultanée de plusieurs composants clés.

Pour concevoir un moteur de traction, le cycle de fonctionnement et le comportement
thermique transitoire sont primordiaux. La bonne adaptation du moteur à sa mission per-
met de réduire considérablement sa masse. L’approche multidisciplinaire est utilisée pour
gérer les interactions entre modèles de disciplines différentes au sein d’un même processus
d’optimisation. Suivant la méthode employée, le temps d’optimisation peut être réduit grâce
à la répartition des taches par domaine physique et d’en paralléliser l’exécution. Des optimi-
sations multiobjectif ont également été appliquées. Des fronts de Pareto sont obtenus malgré
l’utilisation d’un modèle précis mais coûteux, le modèle éléments finis.

L’approche décomposition hiérarchique de la méthode “Target Cascading” est appliquée
au problème de conception de la châıne de traction. Le système et ses composants sont
conjointement conçus. Cette méthode est bien adaptée à la démarche de conception optimale
des systèmes complexes, tout en respectant l’organisation par produit de l’entreprise.
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Abstract

The design of traction systems is a complex task, which needs experts from various fields.
Train manufacturers can manage this complexity and produce high performance rolling stock
materials. However, any improvement in design methodology can lead to a competitive
advantage in a global market.

This thesis focuses on the optimal design methodology of complex systems such as a
railway traction system. The design process and tools are demonstrated via two applications:
the design of a traction motor and the concurrent design of several key components.

The load cycle and transient thermal behaviour are essential in the design of a traction
motor. The adaptation of a motor to its load cycle reduces significantly its mass. The multi-
disciplinary design optimization approach is used to manage interactions between various
discipline models in the optimization process. The optimization time can be reduced through
a task distribution and a parallel computing. The multi-objective design optimizations are
also applied. Pareto fronts are obtained despite the difficulty in using the high fidelity but
expensive in computation time such as Finite Element Analysis model.

The hierarchical decomposition approach: the Target Cascading method is applied to the
traction system design problem. The system and components are designed simultaneously.
This method is suitable for implementing the complex system optimal design process while
respecting the product development structure of the company.
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Introduction

Railway transportation has proved itself as a competitive transportation mode for short
distance urban trips and medium distance journeys. Big capital cities have metro or tram to
move their people around the city, whereas, regional and intercity trains operate in suburban
and city links. Modern rail vehicles emphasize their image as regards sustainable development
as they are typically equipped with electric propulsion. The emission gas due to the energy
conversion process is centralized at the power plant and can be controlled easily and efficiently.

The traction system design process is a very complex task. These days, train manufactur-
ers have sufficient knowledge to design and manufacture good quality rolling stocks. However,
due to their concern in global market and environment, they ask themselves whether and
how they can do better in terms of product performances, cost and development time.

This thesis focuses on the complex system design methodology and its application in
electric railway traction systems. A lot of efforts have been made by aerospace industries
in the field of complex system optimal design [30, 89, 102]. The application domain resides
mainly in structural and aerodynamic design. The recent literature extends to a more global
point of view and system design by taking into account, for example, the aircraft mission,
the fuel consumption, the environmental impact [3, 4, 70]. A similar reflection is initiated in
railway traction system design. It seems that the methodology is quite general and can be
applied with success to electrical system design.

This thesis is divided into 2 parts, Tools and Applications. Chapter 1 presents the complex
system design approach in general and more particularly, in railway industry. The optimal
design (also called design optimization) methodology helps engineers in design and decision-
making phases. Railway traction systems and design tools are presented. Potentials and
needs to optimise such systems are discussed.

The modelling technique is considered in Chapter 2. The physical-based modellings are
firstly presented. These traditional techniques are widely used by design engineers to derive
the high fidelity model. Secondly, the Surrogate modelling approach is discussed. The sur-
rogate model replaces the high fidelity model in many situations. The last sections present
the non-conventional sampling and surrogate modelling techniques. They intend to introduce
the reader to the next chapter.

According to the design methodology presented in Chapter 1, once the models are con-
structed, the optimization process can be launched. Chapter 3 provides the reader with an
overview of optimization techniques and main single and multi-objective optimization algo-
rithms. The surrogate model can be used in these algorithms not only to replace the high
fidelity model but it also to integrate into the optimization algorithm. This is referred to as
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the “Surrogate-assisted optimization algorithm”. In addition, the Multi-disciplinary Design
Optimization (MDO) and Target Cascading (TC) approaches are presented. The optimal
design of decoupled complex systems can be achieved via these methods.

From Chapter 4 onwards, the applications to railway traction system are presented. This
chapter investigates the design methodology of traction motors. A multidisciplinary semi-
numerical model is used in the comparative study of design approaches and then in the multi-
criteria optimal design. This multidisciplinary model is also used to illustrate the contribution
of the MDO methodology. In addition to the semi-analytic model, a high fidelity tool such
as Finite Element Analysis is incorporated in the optimal design problem directly thanks to
two surrogate-assisted optimization algorithms. Such algorithms allow obtaining the optimal
design in a quick time.

Chapter 5 goes up to the top of system view. The optimal design of the control parameters
of a tram traction system is presented in the first section. Thereafter, the design scope covers
the top system level and goes down to the component level. A decomposition approach
and TC method are used to achieve the optimal design of the tram traction system and
its components. The conclusion and further research perspectives are discussed in the last
chapter.

The main contribution of this work consists in demonstrating the advantages of optimal
design process in the industry’s design problem. The two main expected advantages are: (i)
a shorter development time and (ii) optimal products. The methodology is applied to many
real-world cases. A proprietary corporate tool is used as simulation tool and integrated into
the optimal design process. The optimal design can take place in any phases e.g. preliminary
and detail design phases. Various tools help engineers to solve the design problem in an
efficient way. With promising approaches such as surrogate modelling and surrogate-assisted
algorithm, design engineers can obtain optimal solutions within a short computation time.
The trade-off problems can be solved by using multi-objective optimization. The Pareto
optimal solution set generated by optimal design process is used as a support for decision-
making process. In a large and well established organisation, the Target Cascading method,
explored in this work, helps teams to formulate an optimal design problem in a manner not
far from what they have done in the past. With this innovative approach, the optimal design
should gain higher acceptance from industries.
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Chapter 1

Optimal design of complex systems

Nowadays, due to the global market, strict government regulations and standards, products
or electrical systems become more and more complex as they involve many engineering fields
as well as other non-technical issues such as marketing, psychology. The objective of any
company is to design profitable products within a reasonable development time and at min-
imum cost. The product development or design processes reflect the vision of each company
and can vary.

Designing such complex systems requires a lot of experience. Many product characteristics
must be determined, subject to a large number of constraints. Any system or product is
designed to be the best in terms of performances, cost, reliability, etc. The analysis capacity
of human is limited to a certain level of complexity. Therefore, engineers hardly achieve
optimal design of a complex system.

According to [2], a complex system represents:

An assembly of interacting members which is difficult to understand as a whole.

The author also emphasized that an interaction between members exists if the state of one
member affects how the system responds to changes made in another member.

Several technical and non-technical aspects are involved in a complex system description.
In [49], the authors gave the expression of a complex engineering system as:

A complicated product or device requiring a variety of knowledge from several
different engineering disciplines.

In this research, a complex system is referred to as a system consisting of several inter-
acting subsystems and components. This system evolves many technical and non-technical
disciplines such as marketing, management and user satisfaction. The system is operated in
a certain environment by users.

Three sources of complexity can be identified:

• the interaction between subsystems and/or components constituting the system.

• the interaction between disciplines describing physical or non-physical phenomena.

• the interaction between the system and the environment in which the system operates.

5
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In the context of this research, a rolling stock is a good example of a complex system. A
train is composed of many subsystems e.g. traction system, carriage, air conditioning sys-
tem and communication system. Each subsystem includes lower-level subsystems as well as
components. For example, a traction system is an integration of traction motors, converters,
transformers, etc. Several disciplines are required to describe a train e.g. mechanical, electri-
cal, thermal. The train is operated by immediate customers (railway operating companies)
and provides services to final customers (passengers). As the train system is a complex sys-
tem, many interactions can be observed e.g. the structural and aerodynamic design of the
carriage affects the required power of the traction motor; the traction motor itself implies
many physical disciplines, hence interactions between them. Moreover, both train and trac-
tion motor designs are strongly linked to their environment such as customer satisfaction,
energy consumption. Figure 1.1 illustrates this example.

Train

Bogie
Carriage

Traction
system

Air-conditioning
system

Switch gearMotorConverter

Transformer

Operator Environment

Passenger

MechanicElectric

ThermalMagnetic

Satisfaction

Design

Comfort

Consumption Cost

Reliability

Maintenance

CEM

Noise

Recyclability

Environment

Subsystem

Structural

Aerodynamic

Figure 1.1: Illustration of a train system and its interactions

This chapter intends to give the background ideas on how the complex systems should
be designed and how optimization techniques should be used in this design process. The last
section focuses on the objective of this research i.e. the rolling stock optimal design process.
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1.1 Complex system design methodology

The goal of product design is to obtain an optimal product which can make profit in a
reasonable development time and at minimum cost [100]. When developing a complex system,
the product development process can be very complicated since the complex system itself
is difficult to understand. Designers require a design methodology and tools in order to
accomplish this task. Various aspects must be considered in the design process. The following
sections provide basic knowledge of design methodology as well as optimal design process.

1.1.1 Conventional approach

The typical system design process named V-cycle is composed of 2 main phases: design and
validation [64]. The design process is shown in Figure 1.2. Starting from market research,
a specification is defined and a feasibility study is performed. The system, subsystems and
components are designed thereafter. The system design phase allows determining the subsys-
tem specification and the subsystem design phase defines the component specification. These
design phases are called “Top-down”. Once component prototypes have been manufactured,
they are firstly tested and then integrated to the subsystems and system. Each “Bottom-up”
phase allows validating the corresponding design phases.

Functional
specification

System design

Subsystem design

Component test

Component prototype manufacturing

Subsystem test

Integration test

Product test

Component design

Figure 1.2: V-cycle design process

1.1.2 Design problem as inverse problem

In the field of engineering design, Computer Aided Design (CAD) and Computer Aided En-
gineering (CAE) are used in design and manufacturing industries. A number of computer
modellings have been made to simulate behaviour of real systems. These models are some-
times called Virtual prototypes as they are used by design engineers as a tool to verify their
design instead of building a real prototype. With the knowledge of the components/system
characteristics e.g. their size, shape and material (cause), these models compute system per-
formances (effects). A problem of this kind can be referred to as a “direct problem”[73] and
the model which simulates system performances can be called a “behaviour model”. How-
ever, one may realise that, in design problem, one want to design a complex system (i.e.
to determine the size and shape of the system) which performs the desired performances.
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Therefore, system performances are defined as specification and system characteristics are
being sought. This kind of problem is called “inverse problem” as opposed to direct problem
[73]. Figure 1.3 shows input and output of direct and inverse problems.

Behaviour model

Design model

Characteristic
of system

Cause Effect

Analysis – Direct problem

Design – Inverse problem

Given Sought

GivenSought

Performance
of system

Figure 1.3: Input and output of direct and inverse problems

In order to use behaviour models in design problem, an iterative method is necessary.
In the conventional design process, based on his experiences or a base-line design, designer
makes a first guess at the system characteristics (design variable), runs simulation model
and observes output performances. If the performances do not satisfy constraints and design
criteria, the designer adjusts the design variables and makes the simulation again. This
Trial-and-error process is shown in Figure 1.4a. The manual iteration can be replaced by
an optimization technique, which ensures optimality and allows efficient problem solving.
In this case, the behaviour model included in the optimization loop operates like a “design
model”[87] as shown in Figure 1.4b. Note that the behaviour model is always present but can
be considered as a design model from the designer’s point of view, outside of the optimization
loop. This optimal design process is presented in Section 1.1.6.

Characteristic
of system

Cause Effect

Trial-and-error

Performance
of systemBehaviour

model

(a) Manual iteration

Characteristic
of system

Cause Effect

Performance
of systemBehaviour

model

Optimization loop Objectives and constraintsDesign variables

(b) Behaviour model and optimization technique as design model

Figure 1.4: Use of behaviour model to solve design problem

The most effective approach is to build the model in a design-oriented manner named
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“inverse model” or “design model” as shown in Figure 1.3. By giving the desired perfor-
mances, the model computes system characteristics. In this case, an optimization loop is
not required. The design problem solving is faster. Unfortunately, this kind of model is not
always available. A model intended to be used in design problem should be constructed in a
design-oriented manner as much as possible.

1.1.3 Complex system decomposition

In large and complex system design problems, there are many design variables, constraints as
well as several design criteria. A large number of engineers and experts gets involved in the
design process. The decomposition approach is naturally used for large and complex system
design. Designers usually decompose complex system design problems into subproblems due
to cognitive limitations of human [35, 98]. Smaller problems yield a limited number of design
variable and a smaller design space. Problem solving can be more efficient since experts in
each corresponding field make decision on each subproblem. Global system design criteria
can be achieved by allocating some design targets to subproblems. Subproblems are solved
with respect and subject to their own design variables and constraints. The system engineer
is responsible for coordinating design tasks done by engineering teams as well as ensuring
compatibility between subproblem designs.

A decoupled design problem has several advantages:

• the design problem is understandable and easier to solve;

• the subproblems can be solved by an engineering team or an external supplier. The
coordination and the design process remain the same;

• the specialized engineering teams own and maintain their models.

Several decomposition approaches are used, depending on companies. Object-based and
discipline-based decompositions are natural. These decompositions reflects the managerial
structure of the company and how company develops its products. Usually, one approach in
itself cannot describe the system in a proper manner. For example, a train can be decom-
posed into subsystems and components with help of an object-based approach. Furthermore,
depending on the problem, the same system can be decomposed in different ways e.g. some
subproblems may be simplified or promoted to an upper level.

1.1.4 Global system design

In complex systems, there are interactions between subsystems, components and disciplines.
The integration of optimised subsystems cannot ensure the optimality of a complex system
[73]. Subsystems or components should not be developed individually without taking into
account the interactions from other subsystems. Figure 1.5 depicts the example of a system
composed of 2 components. It shows the efficiency of 2 separately designed components as
well as the global efficiency of the system. It can be observed that the peak efficiency of
the system is not at the same position as that of the subsystems (different working point).
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Moreover, an increase in the efficiency of the subsystem (as in η
′
1) does not necessary lead to

an improvement of the system and can even reduce the system global performances.

η1

η2

η1 · η2

Current (A)

Efficiency (%)
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′
1 · η2

Figure 1.5: Efficiency of a 2 component system

In electrical engineering systems, an interaction between the traction motor and the in-
verter is very common. Figure 1.6 plots the motor efficiency and the inverter current against
the number of conductor. They are obtained from the motor model presented in Appendix
B. For the same torque, the motor efficiency and inverter current are computed for various
numbers of conductors. The other dimensions of the motor are fixed as a constant. Any
increase in the number of turns increases the total flux and reduces the current required
to generate the same torque. This results in a low inverter current and low inverter losses.
However, a high number of turns leads to low base speed. The motor needs to operate with
a flux-weakening strategy and generates high losses in high speed zone. In this example, 18
conductors is the best compromise between motor and inverter efficiency (showed as a red
point in the figures). It can be clearly concluded that the motor and the inverter must be
designed simultaneously in order to take into account their interaction and to obtain the
maximum efficiency of the global system.

In decoupled complex system designs, targets and constraints can be allocated to each
subproblems. Subsystems can be designed by experts and by coordinating information be-
tween engineering teams so that the system is simultaneously designed. The Target Cascading
method presented in Chapter 3 integrates the optimal design in such a complex system design
process.
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Figure 1.6: Interaction between motor and inverter

1.1.5 Multi-criteria design problem

Real-world design problems always deal with several conflicting criteria. The designer searches
for solutions, which satisfy all criteria simultaneously e.g. low cost, high performances, low
environment impact, high reliability. Unfortunately, such a “perfect” solution does not exist.
In both engineering and marketing points of views, it is clear that these criteria are conflicting
and that a compromise must be found. For example, if the high performances criterion is
preferred, a trade-off at cost level would be inevitable.

In the preliminary design phase (see Section 1.1.1), the knowledge of the system is gen-
erally insufficient to pose a well-defined design problem. Unknown characteristics may be
considered as criteria so that the designer obtains a wide range of information at the end of
the design process. After having made a decision, some of these criteria are considered as
constraints in the detailed design phase.

The decision maker or design engineer makes a decision based on a group of optimal
solutions. In multi-criteria problems, optimal solutions satisfy Pareto optimality conditions
(see Section 1.1.5.1 below) so that the group of optimal solutions can be presented by a Pareto
front1.

1.1.5.1 Pareto optimality definition

A Pareto front is a group of solutions, which satisfy Pareto optimality conditions. Based on
the definition given in [78], a solution S∗ is Pareto optimal if there does not exist another
feasible solution such as at least one criterion is better than that of S∗ and all another
criteria are at least equal to - if not better than - those of S∗. This solution S∗ is also called
non-dominated solution [78].

In Figure 1.7a, The B solution is better than the E and F solutions for at least one
criterion. Therefore, the B solution dominates the E and F solutions. Similarly, the C
solution dominates the F and G solutions and the D solution dominates the G solution. As a

1also called Non-dominated front, trade-off curve or surface
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result, the A, B, C and D solutions are non-dominated and satisfy Pareto optimality. These
non-dominated solutions are treated as equivalent regarding the two criteria. Any solution is
better than any other. Figure 1.7b shows these solutions together, the feasible region and the
true Pareto front being depicted as bold lines. In this case, the Pareto front is nonconnected.
It can be also nonconvex.
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Figure 1.7: Pareto optimality

In traditional design process, the Pareto front may include a small number of “improved”
solutions compared with a base-line solution. For optimal design processes, a larger amount
of well-distributed optimal solutions can be generated by using an optimization algorithm.
The Pareto front provides a good support for decision-making. It can be used for negotiation
in the design process.

1.1.6 Optimal design

Most models used in engineering designs are not design models. They are constructed for the
simulation purposes and used in performance evaluation. As mentioned earlier, design aims
at determining the characteristics, geometry or parameters of systems/components while
satisfying desired performances (criteria). Therefore, the inverse design model is needed.
In most cases, the system model cannot be totally built in a design-oriented manner. This
means that an iteration must be performed. In conventional approaches, engineering designers
carry out this process manually. It is difficult to obtain optimum solutions, the system being
complex and many design variables and many constraints being involved.

This lack of human ability to solve the complex problems results in the necessity to in-
tegrate optimization techniques in the design process. An optimization technique is a tool,
which helps designers to systematically explore the design space. It proposes intermediate
or candidate results to designers. This helps the designer to better understand the complex
design problem, to clarify his ideas and to make decision. Instead of performing trial-and-
error method, optimization technique offers a more complete view. Based on its algorithm,
an optimization technique uses information from models to find out how design variables
should be varied in order to achieve optimal solutions while satisfying a number of con-
straint. However, optimization techniques do not have any intelligence. They only take in
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charge repetitive automated tasks. Designer remains responsible of formulating a well-posed
optimization problem, observes what optimization does during problem solving process and
analyses given results.

Figure 1.8 shows an optimal design process. It is composed of 6 phases. Each phase
is subject to being modified if it cannot yield satisfied results. Note that the specification
definition phase is considered as the input to the problem and can be modified only once the
decision is made in the final phase.

Specification
definition

Design
problem

formulation

Optimization
problem

formulation

Problem
solving

Result
analysis

Making
decision

Figure 1.8: Design optimization process

1.1.6.1 Specification definition

This phase consists in collecting requirements and needs. Specification extends from non-
technical to technical issues. This phase is essential for the design process because all design
teams (engineering, marketing, etc.) are involved and must work together to elaborate all
needs, requirements and design objectives.

1.1.6.2 Design problem formulation

After the specification analysis phase, the design problem can be posed. Several design criteria
are selected. The other specifications are defined as constraints. These design objectives and
constraints are as function of design variables and design parameters. The design variables are
controlled by designers during the design process in order to achieve the desired performances
expressed by the design criteria. The design parameters are assigned to specific values. They
can be determined on the basis of the prior knowledge of the system. At the early design
stage, the design problem may consist of a large number of design variables but of very few
design parameters since the system is not well known. The more the knowledge of the system
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the design gains, the more design variables are fixed. Other interacting systems may also
impose some design parameters or constraints to the studied system.

Design problem formulation should not be confused with optimization problem formula-
tion. A design problem can be solved by using different techniques. Optimization is only one
of them. As it will be discussed later, a multi-criteria design problem can be formulated as a
single- or multi-objective optimization problem. Each technique may lead to a different level
of solution as depicted in Figure 1.9. Based on pre-designed or past experiences, a simple
table or graph gives rapidly a preliminary design. This solution is hardly optimal. More
advanced tools such as CAE can be used to simulate the behaviour of the system. An im-
proved design can be obtained after a few iterations by designer. An optimization algorithm
is preferred in order to ensure the optimal solution. In a single-objective optimal design, an
algorithm gives only one optimal solution. In a multi-objective case, the solution is given as
a Pareto front containing a set of optimal results.

Improved solutionFeasible solution Optimal solution

Table, graph CAE
Trial-and-error

OptimizationTool

Solution

Figure 1.9: Level of optimality

For complex systems, a global system design problem can be decomposed into small
linked subproblems by using the decomposition approach. Interactions between subproblems
are identified. Design variables and constraints are assigned to subproblems. Therefore, each
subproblem deals with fewer design variables and constraints. This helps engineering teams
to understand the problems and to solve them more efficiently.

This phase also involves in developing or selecting models. In the complex system design,
the model construction process should be done with the optimization purpose in mind. This
issue is discussed in Section 3.2.1.

1.1.6.3 Optimization problem formulation

The mathematics formulation of the general optimization problem (referred to as O) is defined
as in (1.1)

O : min
X

fo (X) o = 1, . . . ,m

subject to gi (X) ≤ 0 i = 1, . . . , ng

hj (X) = 0 j = 1, . . . , nh

lbk ≤ xk ≤ ubk k = 1, . . . , nv

(1.1)

X = [x1, x2, . . . , xnv ] denotes the design variable vector. The V design space is defined
by lower and upper bounds for each variable, lbk and ubk, respectively. The optimization
minimises several fo objective functions, subject to gi inequality constraints and hj equality
constraints. The S∗ optimal result set, representing group of X∗ non-dominated solution,
is the subset of the S feasible solution set. These non-dominated solutions in design space
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form the NF non-dominated front (Pareto front) in objective space. Figure 1.10 shows the
optimization process from design space to non-dominated front.

V

x1

x3

x2

S

X∗

f1

f2

NF

O (V ) F (S)

S∗

F (X)

F (X∗)

X

Figure 1.10: Optimization process; from design space to non-dominated front

Usually, engineering design problems are multi-criteria problems. Two approaches can be
used to formulate this kind of problems:

• The a priori approach: This approach formulates multi-objective design problems as
single-objective optimization problems. The objectives are usually transformed into
equivalent objective functions by using transformation techniques e.g. weighted-sum,
epsilon-constraint. The designer defines trade-off between objectives before solving
the optimization problem. For example, an electrical motor design problem has two
conflicting objectives: mass minimisation and efficiency maximisation. By using the
weighted-sum approach, the mass weight coefficient may be given 10 and the efficiency
weight coefficient is given 1, on the basis of the past experience of the designer. When
using the epsilon-constraint approach, the problem is to minimise motor mass while
having efficiency superior to 90%. One may realise that it is not very convenient as
it requires quite a lot of experience to reach this compromise. However, the a priori
approach is very useful (i) when refining the existing or well-studied solutions, (ii) to
investigate some solutions selected from Pareto front and (iii) for optimal design in
detail design phase.

• The a posteriori approach: Optimal solutions on Pareto front are located by an opti-
mization algorithm. Based on this information, the designer or the engineering team
selects some interesting solutions to further the investigation. With the a posteriori
approach, no decision is made before solving optimization problem. It is more practical
to make a decision based on trade-off after knowing the Pareto front. For the motor
design example above, the optimal results are non-dominated solutions on the Pareto
front, which is a trade-off curve between the motor mass and efficiency.

Chapter 3 presents various optimization techniques. Designers should select an appropri-
ate algorithm to solve the optimization problem. It depends on:

• the number of objective functions;

• the unimodal or multimodal problem;
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• smooth or noisy functions;

• the type of design variable i.e. continuous, discrete, category (non-classifiable) or mixed;

• the size of the problem i.e. number of design variables. This factor plays an important
role for the robustness and convergence properties of the algorithm.

1.1.6.4 Problem solving

The formulated optimization problems are launched. Various parameters of the optimization
algorithm have to be adjusted. Optimization algorithm development trends focus on the
parallel and distributed computing. Genetic algorithms can benefit from this approach by
distributing objective function evaluations to multiple processors or computers [19]. In the
Target Cascading method described in Section 3.2.2, a large-scale problem is divided into
small subproblems. These optimization subproblems can be solved in parallel, leading to a
distributed optimization.

1.1.6.5 Result analysis

Once the optimization problem is solved, designers should analyse the results. Optimization
failures can occur and lead to non valid results. Result design vector and constraint values
must be verified against boundary and constraint limits. Sometimes this unvalid results can
be suspected from the fact that the system behaves in a non-physical manner. Therefore,
designers must have a good knowledge of the studied system.

The optimization technique gives only “intermediate” results to designers. This means
that engineers must analyse the given results and make a decision in order to obtain the
“final” results. Optimization can provide several forms of results e.g. table, graph, Pareto
front.

A Pareto front is a common representation of multi-criteria optimal design results. As
discussed earlier, it provides information about trade-offs between criteria. A two criteria
Pareto front is comprehensible. A three criteria Pareto front can be represented with 3 pro-
jections between any two criteria. They may be given together with a 3 dimension interactive
graph i.e. engineers can select the view, orientation and zoom as desired. When more than
3 criteria are involved, a representation may be difficult to achieve. A Pareto front shows
optimal results in an objective space i.e. a relationship between objectives. However, other
information such as optimal values of design variables and constraint are also necessary. Since
there are excessive information, they are usually given as a data table for only several optimal
results. Nevertheless, all results obtained during the optimization process must be collected
in a database and ready to use if needed.

Sensitivity analysis is a useful tool in the result analysis phase. This analyse is based on
the well-known Design Of Experiment (DOE) methodology [29, 50]. By applying sensitivity
analysis at optimum design solutions, it provides local relationship between design variables
and objectives and constraints. Figure 1.11a shows a bar graph of sensitivity analysis. Design
variables with a greater effect than certain statistic thresholds are considered as significant
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factors2. In some systems, a design less sensitive to changes in the design variable/parameter
value3 may be preferred. Figure 1.11b depicts a graphic representation of local robust and
global non-robust optima. A robust system ensures its best operation even in a bad or
uncontrolled environment.
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Figure 1.11: Sensitivity analysis

In DOE, the sensitivity analysis is also used in problem formulation phases. It is called
“Screening”. Based on a base-line design, the local effect of design variables or parameters
is studied. Only significant factors are selected as design variables and used in optimization
problems. Other factors are fixed as design parameters. This allows reducing the problem
dimensions hence its complexity.

1.1.6.6 Decision making process

In case of a multi-objective problem, optimal results are often provided in the form of a
Pareto front. Some of these non-dominated solutions are selected for further study. The
chosen solutions can be analysed with high fidelity tools. To select these solutions, one can
use other criteria, which were not defined or cannot be expressed as objective functions in
the optimization problem.

On the basis of optimal results, designers can also simplify the optimization problem
e.g. reduce the study domain, relax the constraint limit and fix one or several criteria as
constraint. If a low fidelity tool is used in the optimal design process, the optimization can
be therefore re-run by using high fidelity tools in order to verify the obtained results.

2In design of experiment methodology, the term “factor” is referred to as “design variable”.
3Robust design
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1.2 Optimal design in the railway industry

In the railway industry, optimal design has been recently used in the development of com-
ponents [55, 60]. Interaction problems draw attention to extend optimal design to a larger
application domain as well as more global systems. Traction system design is emphasized
here in this research. This section gives an overview of railway traction systems. A corpo-
rate design process is then introduced and analysed in order to discuss on the possibility to
integrate optimal design into actual design process.

1.2.1 Overview of railway traction systems

Nowadays, more than 20% of railroads around the world are equipped with electrical supply
[21]. Electrical rolling stocks are widely used in many applications such as high speed trains,
locomotives, trams, and metros. In a general point of view, a traction system includes all
components from pantograph to wheels. Figures 1.12 and 1.13 show typical schema of a
railway traction system. Pantograph draws electricity from power supply. Electricity pass
through DC supplier, whose main function is to supply a DC source to inverters at the desired
voltage level. The inverter then transforms the DC source into a variable frequency AC source
and provides it to the traction motors. Mechanical energy is sent to the wheels via gearbox.

Catenary, Overhead supply

Pantograph

DC supply

Motor

Inverter

Gearbox

Wheel
Rail

Figure 1.12: Schema of railway traction system

1.2.1.1 Power supply

According to countries and applications, there are many type of power supply as shown in
Figure 1.14. High voltage AC sources are suitable for long route and high power trains
such as EMU (Electric Multiple Units) and VHST (Very High Speed Trains)4 due to low
transmission losses in the overhead supply. On the other hand, lower voltage DC sources are
more common in short route and low power applications such as trams and metros. This
allows to reach a favourable compromise between energy losses and traction system cost.

4Very High Speed Train (VHST) or Train à Grande Vitesse (TGV) in French.
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Traction motor Control electronic

Traction box
(Converters + cooling system)
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Figure 1.13: Main subsystem/component of railway traction system
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Tram Metro EMU VHST Locomotive

Figure 1.14: Power supply

1.2.1.2 DC supply

The inverter requires a DC source with a certain level of voltage as input. For the DC
overhead supply, a step-up or step-down chopper is used in order to change the voltage level
of the DC source into the voltage required by the inverter. A DC filter is also an important
component preventing harmonic currents from the DC link from going back to the power
network. For the AC supply, a transformer and a rectifier are required. In multi-source or
multi-voltage traction systems, the transformer can also be used as the harmonic filter when
the train is operated with a DC source.

1.2.1.3 Electric braking

There are two types of electric braking: regenerative braking and rheostat braking. The
regenerative braking is more interesting because it lowers the energy consumption. However,
a braking rheostat resister must always be onboard for safety reasons. The rheostat braking
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system consists of a chopper connected to a DC bus and a braking resistance with a cooling
fan.

1.2.1.4 Variable speed converter

In recent traction systems, AC traction motors have been used. A DC/AC converter or
3-phase inverter is necessary in order to vary the motor speed. In the past, switching compo-
nents such as Gate Turn Offs (GTO) and Silicon Controlled Rectifiers (SCR) were preferred
in high power applications. They are now obsolete and replaced by Insulated Gate Bipolar
Transistors (IGBT), which are of high efficiency and fast switching [66].

To evacuate losses and to maintain an acceptable operating temperature of the IGBT,
inverters are always equipped with a cooling system. Depending on the customer requirements
and power losses, the cooling medium can be natural air, forced-air with fan, or water.

1.2.1.5 Traction motor

Squirrel cage induction motors are used in many traction systems. This type of motor offers a
high reliability and simplicity in terms of manufacturing and maintenance. New development
trends are leaning towards permanent magnet synchronous motors. Their high power density
and high efficiency are very attractive in traction application. They are the best solution for
distributed traction systems, where the space in bogie is very restrained. However, the cost
of these motors is still higher and their industrialization phase is more complex due to the
lack of experience in railway applications.

1.2.2 Decomposition of train systems

According to the business unit management organization of the company, a train design
problem is decomposed into several problems as in the example shown in Figure 1.15. They
are coordinated by system engineers at the train level. The system engineering team decides
on the allocation of several targets such as reliability, mass, volume and cost. These targets
are assigned to subsystem engineering teams including e.g. the bogie, carriage and traction
system. One department is in charge of the traction system design and manufacturing. Inside
this department, the traction system design problem is also decomposed into subsystem5

and component design problems (traction box, motor, transformer, etc.). At a lower level,
a traction box contains several converters (rectifier, inverter, chopper) and their cooling
system. Each subsystem/component design problem is solved by several engineering units
and suppliers. The decomposition shown in Figure 1.15 is object-based. However, another
approach can be simultaneously used depending on disciplinary expertise.

One may observe that in traditional design processes, communication and data exchange
(i.e. target allocation, constraint specification) between the different levels are done iteratively
and thanks to meetings of the different design engineers. Usually, few iterations should lead
to an “improved solution”. For example, the traction system department at the subsystem
level imposes mass target to transformer suppliers at the component level. If the supplier

5In this case, it means subsystem at lower level than its parent.
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Figure 1.15: Object-based train decomposition

cannot meet this requirement, a compromise will be sought e.g. modifying the traction
system design in order to tolerate the constraint; the supplier reviews its transformer design
while the customer consults other suppliers. Actually, the problem is much more complex.
A concession made with a supplier can affect the design of other components. Interaction
problems sometimes lead to high development time and cost.

1.2.3 Corporate design process

The traditional design process of a rolling stock company is composed of three main phases as
shown in Figure 1.16. The technology phase concerns the research, observation, selection and
validation of new technologies e.g. IGBT semiconductors, permanent magnet motors. In the
second phase - the product phase - systems and subsystems are designed and validated. These
designs are based on state-of-the-art technologies and new technologies validated during the
first phase. The result of this phase is for example an IGBT-based inverter, a tram traction
system using such inverter and permanent magnet motors. The systems developed in this
phase is added to an internal product catalogue. The third phase is called the contract phase
(applicative project phase). It starts when the company concludes a contract with a customer,
concerning, for example, an intercity train for a railway operator. The applicative project
team designs a train, using the products in the catalogue as much as possible. However, some
components must be customized in order to meet some specific requirements of the customer.

For each main phase, the company uses the V-cycle process, as described in Section 1.1.1.
Figure 1.17 shows V-cycle for product development phase. Each phase is finalised with a
Gate Review (GR). GR is the decision-making stage in which design teams review the design
and have to decide whether or not to go on with the next phase.

For traction system development, the main duties of the traction system department are
to design and manufacture standardised traction systems, which are mainly in the second
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Figure 1.16: The three main design phases of a company
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Figure 1.17: V-cycle product development phase

phase (Product development phase) as well as in the first phase (Technology phase). The
input data for traction system development are provided by marketing department. Previous
contracts and potential projects are analysed in order to determine the specifications and
constraints. Several applicative projects are chosen as reference projects and improving tar-
gets are defined. As suggested by their names, each GR concerns different objectives. SGR
intends to determine specifications, needs and constraints of the traction system and com-
ponents. During the PGR phase, preliminary designs are carried out. Practically, all design
parameters involving in the main function of the traction system, as well as all interactions
between the systems are determined in this phase. More detailed designs are completed
during the CGR phase. In the last phases, prototypes are produced and tested in order to
confirm the design.

Figure 1.18 shows the Degree Of Freedom (DOF) and modification cost against time.
Product and contract phases appear in the figure. In order to obtain an optimal system with
a low cost, the system should be well developed and take into account all possible customer
needs during the contract phase. Once the subsystems and components are added into the
catalogue, it is inappropriate to modify them, due to cost constraints. This consideration
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leads to the standardisation approach presented in the following section.
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Figure 1.18: Degree of freedom and modification cost

1.2.4 Standardisation

In the context of global market, customized design for each product leads to non-competitive
cost and a long time to market. Many industries are considering platform or family product
design approaches [100]. A product platform is a group of products, which shares subsystems
and components. Even if many subsystems or components are common for the platform,
options can be selected and some components are designed specifically for each product in
order to satisfy the requirements of customers.

In the rolling stock business, three main platforms can be defined: the carriage platform
(tram, metro), the bogie platform and the traction system platform. Platform standardisation
can be applied in two aspects:

(i) Standardisation for applicative projects: A platform developed for an applicative project
is re-used in other applicative projects in the same product range/platform. For exam-
ple, a tram traction system can be used in many tram applicative projects.

(ii) Standardisation for platforms: This is done at the component level. A component used
for a platform can be used in other platforms. For example, an inverter/power module
can be used in the traction system of a metro and EMU.

Figure 1.19 shows cost, development time and optimality level compared to the level of
standardisation.

Three examples of this in traction system designs are:

(i) Low level of standardisation: This approach was used in the past. A unique traction
system is developed for each applicative project. Only few components are re-used later
in other applicative projects. A number of components is designed for a particular
project and never used in the following projects.

Advantages:
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Figure 1.19: Standardisation

• The traction system is highly “optimised” for each project.

Drawbacks:

• High development cost and time

• High development time

• High product cost due to low quantity manufacturing

• High reliability cannot be guaranteed

(ii) Medium level of standardisation: This level represents today state-of-the-art. Trac-
tion systems are developed for each rolling stock product range i.e. tram, metro, EMU,
VHST and locomotive. According to the applicative projects, each traction system can
be reconfigured and adapted in order to satisfy specifications made by customers. For
example, the architecture of the power scheme and the choice of power converter can
be adapted, on the basis of each project. Some components such as transformers and
harmonic filters are newly designed to meet the specifications for the projects. The
traction system power schemes can be of different AC or DC, voltage level, depending
on the countries, the power supply networks. Moreover, the harmonic constraints are
also different. This leads to customized designs of the transformer and harmonic filter
for each project.

Advantages:

• Lower development cost

• Shorter time to market because the most part of traction system design is already
done during the early design phase.

• Lower product cost, due to a higher quantity production

• More reliability. The Return of experience from previous projects allows improving
the product reliability. Note that, traction systems are permanently improved,
along their life cycle.

Drawbacks:
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• A traction system cannot be “optimal” for every project. It is oversized for some
projects.

(iii) High level of standardisation: An ideal traction system is suitable for all rolling
stock product ranges. A more practical idea may be a traction system for several
product ranges. Different power or effort requirements can be achieved with redundancy.
A design must take into account as many constraints and requirements specified by
customers as possible. This approach has been applied by Alstom in AGV (Automotrice
à Grande Vitesse) and Pendolino train, which share the same traction system. A great
number of components are identical. Based on the modular approach, the traction
power can be adjusted according to the project needs. Moreover, a transformer can be
used as a DC filter when the train operates in DC power supply. It is designed by taking
harmonic constraints for almost any network into account. It then becomes a “standard”
component and is not a “customised” component anymore, as in the previous example.

Advantages:

• The development cost is split on several projects.

• Shortest time to market because most designs are already finished before the tender
phase. Only small adjustments are to be done before the delivery.

• Lowest component cost due to a scale effect

• More reliability. The Return Of Experience from the previous projects allows
improving the product reliability.

Drawbacks:

• A traction system cannot be “optimal” for every project. It is oversized for some
projects. However, profit is maximised at global company level.

1.2.5 Design criteria

The traction system design problem is a multi-criteria design problem. Some of the design
criteria can be stated:

• Life cycle cost (LCC): It is composed of the purchase cost and possession cost e.g.
maintenance and energy consumption costs. LCC should be an important criterion
for customers. Regarding the energy consumption cost, it is an implicit function of
another criteria. This allows simplifying multi-criteria problems to single-criterion.
Minimisation of energy consumption can be achieved through efficiency maximisation
and mass minimisation (reduction of resistance effort of train).

• Development cost: The maximisation of the standardisation level allows minimising the
development cost.

• Mass: As mentioned earlier, the minimisation of the mass leads to minimisation of
the energy consumption or the maximisation of passenger capacity if the axle weight
remains the same (e.g. 17 tons for the VHST).
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• Volume: The minimisation of the traction box and motor volumes is very important
for small rolling stocks such as trams as well as full size vehicles such as metros or
EMUs. For AC traction systems, a small transformer is also preferred. Any volume
minimisation allows increasing the passenger capacity.

• Reliability: Reliability is defined in terms of failure rate. For trains, the service reliabil-
ity6 is usually expressed. The failure of a traction box or a traction motor should not
lead to the immobility of train. The train reliability can be improved via a component
redundancy as well as the reliability of each component.

• Noise: The main source of noise in traction systems is the forced-air cooling system
(for the inverter, rheostat resistance, transformer, filter). The actual solution is to stop
the ventilation at the stations. A more effective solution might be a loss minimisation
allowing the use of less noisy cooling fans. The inverter and traction motor are also
noise sources. An optimal inverter control strategy [107] and an optimal geometry of
the motor can minimise the audible noise.

• Electromagnetic compatibility (EMC): According to the rail network (country, railway
operator), the harmonic currents rejected to supply network are limited. This ensures
that the communication network and the signalisation system will not be affected.

1.2.6 Model and analysis tools

To design a traction system, a company uses a wide range of models and software. For electric
and thermal phenomena at the traction system level, several rules are used in the preliminary
stage in order to determine the initial variables. The preliminary results are then verified,
with the help of an in-house traction system simulation program called CITHEL. This tool
allows simulating the cinematic, electric, and thermal behaviour of a train operating on the
track e.g. a round-trip of train. It uses a library of standard components and focuses mainly
on the traction system. More detailed models of component are available depending on the
speciality of each engineering team. Figure 1.20 shows CITHEL’s user interface. Section
5.1.2 presents its features in a more detailed manner.

Design engineers also use standard commercial software as well as Finite Element Analysis
(FEA) tools in mechanical and thermal analysis e.g. ANSYSr, CATIAr, FloTHERMr.
They are used at different stages as shown in Figure 1.21.

Some design criteria are not associated to any analysis tool. Reliability is computed, on
the basis of estimated value (from previous experiences), the Return Of Experience (ROE)
or value given by supplier. The FMECA (Failure Mode, Effects, and Criticality Analysis)
and the Reliability Block Diagram and Fault Trees Analysis are also deployed.

In this work, a model of permanent magnet motor has been developed. It is an semi-
analytical model with link to geometry (see Appendix B). Its exploitation will be shown in
Part II.

6Service reliability is described by additional time used to accomplish a trip.
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Figure 1.20: CITHEL’s user interface
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Figure 1.21: Various tools in different design phases
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1.2.7 Optimal design consideration

In order to apply and integrate an optimal design process into the corporate design process,
several points may be discussed.

For design problems of decoupled parts of traction systems, the information exchange
between subproblems should be carried out more or less automatically in order to achieve an
optimal global system. Subproblems must be integrated and coordinated by a hierarchical
optimization method. This issue will be discussed in Chapter 3. To integrate all optimal
design subproblems into a global hierarchical one, various models must be compatible and
must be launched from an optimization supervisor. Some difficulties may be encountered in
reality e.g. the different teams might not be on the same site or, worse, they work in different
countries; the suppliers do not want to communicate their models; or design software are not
compatible. In any cases, surrogate models are an efficient communication tool (see Chapter
2).

Regarding the whole design process, it is clear that an optimization can operate in any
phase. In the contract phase, it can be used to adjust some parameters, and this allows
satisfying customer’s requirements. However, it is more effective in the early design phase,
where the problem is more complex, a large number of design variable are accessible and
interaction problems are not well studied. Optimization can be applied to low fidelity models.
the results from this preliminary optimization provide sufficient information to understand
trade-off between several design criteria, to fix some variables as parameters and to simplify
the problem.

The optimal design of standardised traction systems is of main interest, particularly if
a high level of standardisation is aimed at. It is obvious low cost, hence high profit. The
problem should be well defined since it is more complex than usual. Traction systems must
meet the requirements of a wide range of customers as well as different operating scenarios.
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1.3 Conclusion

The design problem of complex systems has been presented in this chapter. A complex sys-
tem is a system integrating several interacting subsystems and components. In the “business
as cause” approach, the design of the system is decomposed into several smaller design sub-
problems. Once subsystems and components are defined, they are coordinated and integrated
back by the system engineer.

Models and software packages used in design are mainly simulation tools providing be-
haviours. Therefore, iterations are required to solve the design problem.

Usually a complex system design problem deals with a large number of design variables
and constraints. The usual trail-and-error method is not suitable as engineers cannot deal
with such complex problems. An optimal design is then required to help engineers to obtain
results better and faster. However, the engineer will stay to drive the process, devoting the
repetitive tasks to the computer and keeping in mind the decision-making process. With
a well-formulated optimization problem, a suitable algorithm and a trained designer, the
optimization technique can ensure optimal results. An optimal design should be superior to
a conventional design method in terms of design time delay. The conventional trail-and-error
method hardly gives optimal results and design problems are always simplified. By using an
optimization technique, the design problem can be more complete and meet the requirements
of the designer in a better way.

The optimal design process has been presented. It takes place in a V shaped design
cycle. The design problem is firstly formulated. Modelling or model selection, if possible,
should consider the fact that the models will be used in an optimal design. The optimization
problem is formulated and solved using various optimization techniques. Results may be
given in several forms. A Pareto front is common for a multi-criteria design problem. It
allows obtaining a trade-off curve between objectives. The table gives more information e.g.
design variables and constraint values and is suitable for investigating several solutions in
detail.

In railway applications, an overview of traction systems has been given. The main com-
ponents are a DC supply (transformer, rectifier, chopper), a line filter, an inverter and a
motor. Then, a corporate design process has been presented. Some interesting points re-
garding optimal design and its place in the product development cycle have been discussed.
Design criteria and simulation tools have also been reviewed.

Following the chapter, Chapter 2 presents several modelling techniques and Chapter 3
Optimization techniques. Finally, Part II describes some applications of optimal design to
both railway traction systems and components.





Chapter 2

Modelling technique

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) are used in many
industrial domains. They allow simulating the behaviour of physical systems. Therefore,
computer simulations are widely used by engineers when designing products. Development
cost can be significantly decrease since the application of the trail-and-error process has a
lower cost, when using these computer simulations as virtual prototypes.

In the last decades, scientists and engineers have put a lot of effort to model engineering
systems based on the knowledge of basic physical phenomena e.g. magnetic, electrical and
mechanical laws. Experiments are necessary in order to identify the model parameters, verify
modelling hypotheses, and assess the model accuracy. The modelling can be very simple or
very complex depending on details needed and the complexity of the system itself i.e. the level
of interaction between the physical domains and the number of components to be simulated
simultaneously. The obtained models are used afterwards to simulate or study the behaviour
and performances of the studied systems.

In some cases, mathematics modelling techniques replace physical-based modelling, for
example when:

• Physical phenomena are very difficult to understand or not well established.

• The system being studied is very complex.

• Experiments are available.

Mathematics modelling techniques are closely related to the statistics field. A well-known
technique is the Design Of Experiment (DOE) methodology. It allows modelling a real
system based on a limited number of experiments. The DOE is popular and has proved its
effectiveness in a wide range of applications such as in chemical and industrial processes [9].
In statistics literature, another technique can also be stated such as the Bayesian network
or the Kriging method [13]. Outside the field of statistics, famous mathematics modelling
techniques are for example the Neural network [65] and the Splines [42].

Although mathematics modelling techniques are initially developed for “Real-world” ex-
periments, they can also be used to model “computer simulation”. When doing so, the term
of Surrogate model or Metamodel1 are employed. In this research, we emphasize our

1Model of model

31
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interest in the modelling of experiments done on a computer (i.e. simulation). The modelling
technique and mathematical formulation are shared between the Mathematics modelling and
the Surrogate modelling. The main difference is that the Mathematics model is applied to real
experiments and the Surrogate model is applied to computer simulations obtained by using a
physical-based model, which can be reproduced without an experimental error. The idea be-
hind the Surrogate model approach is discussed in Section 2.2. This reflects our main concern
on CAD/CAE and optimal design processes. As computer technology has been improved on
a daily basis, engineers tend to develop more and more complex physical models, which take
into account many phenomena. However it is not very practical to include these models in
the optimization process because the computations are usually time-consuming. Therefore,
an approach using surrogate models is necessary. This kind of model is constructed using
information from a physical-based high fidelity model. It replaces the high fidelity model
in the optimization process and its sufficiently low computation cost allows to speed-up the
process.

Figure 2.1 depicts a summary of the idea introduced earlier. It also gives a summary
of various physical-based modelling techniques usually employed in electrical engineering
domains as well as several surrogate modelling techniques presented in the following sections.

2.1 Physical-Based Modelling

The physical-based modelling technique is certainly the most common approach used by
engineers. A system or process is modelled based on the knowledge of physical phenomena2

and equations describing them. The experiment is always carried out to identify some model
parameters, to validate the hypothesis posed and to verify the accuracy of the model.

In electrical engineering and related fields, three main techniques are used frequently;
analytical, numerical, and semi-numerical modelling. Each technique has got its own advan-
tages and drawbacks. There is no technique that is better than another. It depends on how it
is used and what application is made of it. For example, an analytical model of motor is very
suitable for pre-sizing and a numerical model such as the Finite Element Analysis (FEA) is
used for detailed design phase.

2.1.1 Analytical model

Analytical models are expressed explicitly in terms of analytical equations. These analytical
equations can be solved without any difficulty. The analytical model can be represent a system
at different detail levels. This depends on the applications and needs. Again, there is not
any model better than another. A model is more or less suitable in a context. For example, a
motor can be very low detailed with a circuit model as used in control application and more
detailed with an electromagnetic model with linked to geometries in a sizing application.
Because of their nature, explicit models are very cheap regarding their computation time.
Therefore, they can be integrated successfully in an optimal design process [60].

2This should not be limited to physical phenomena. It can also be economics or else depending on the

theory describing the system being investigated.
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Figure 2.1: Summary of the presented modelling techniques

An example in electrical engineering applications, especially in motor designs, is presented
in Figure 2.2. This example shows an analytical model with two interconnected sub-models.
A simple circuit model shown in Figure 2.2a represents the electrical domain and an equiva-
lent magnetic circuit model with linked to the geometry (Figure 2.2b) describes the magnetic
domain. Both models are used together to simulate performances of a motor. Many hypothe-
ses are considered e.g. the magnetic flux is non-saturated, the phase current and flux density
in the air gap are sinusoidal and the leakage flux is introduced via an empirical coefficient.

2.1.2 Numerical model

To solve the nonlinear characteristics of a numerical model, an iterative method is required.
They are for example, numerical, semi-numerical and time-domain simulation models.

Many numerical techniques are used nowadays in our activity field: the Finite Element
Method (FEM) [115], the Boundary Element Method (BEM) [91] and the Finite Volume
Method (FVM) [25]. The FVM is mainly applied in the field of Computation Fluid Dynamic
(CFD). The FEM is commonly used in the application of magnetic field computation (mag-
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Figure 2.2: Analytical model of a permanent magnet motor

netic domain) and stress analysis (mechanical domain). These methods consist in dividing
an object into small elements via a mesh generation process. Governing partial differential
equations are then discretized over this mesh and solved numerically. Such governing equa-
tions are for example Maxwell equations in magnetic field computation [11], the elasticity
theory for stress analysis [16] and the Navier-Stoke in CFD [110]. Numerical models allow
taking into account nonlinear characteristics of materials and many phenomena, which are
neglected in explicit models. This increases the precision and accuracy of the analysis results.
They can also give local information on the system e.g. the magnetic saturation in a small
zone of tooth. Furthermore, the combination of several physical domains in the same solver is
possible i.e. solving the coupled magnetic, thermal and mechanical domains simultaneously
[24, 68, 90].

The development of numerical software packages seems to be a demanding task. Fortu-
nately, many commercial software packages are available on the market. Some of them can
be listed: Opera, Flux, ANSYS, FLUENT, FloTHERM, CosmosWorks and COMSOL. In
the point of view of the user/designer, using such software to model a system can reduce sig-
nificantly their modelling effort, while no deep knowledge of the theory is needed. However,
the computation time can be very high. Figure 2.3 shows modelling and analysis results of a
motor using FEM package Vector Field Opera 3D [22].

Unlike numerical models, a semi-numerical model is expressed by using analytical equa-
tions with some nonlinear characteristics, which are needed to be solved iteratively [11].
Such a model offers a good compromise between computation time and precision because it
does not require a huge number of assumptions as in an explicit model (due to its nonlinear
property) nor provide a lot of local information. Well-known semi-numerical models are the
permeance network (magnetic field computation) and the lumped parameter thermal model
(thermal, heat transfer). Figure 2.4 shows the permeance network of a synchronous generator
taken from [88].
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Figure 2.3: Finite element model of a motor

Figure 2.4: Permeance network of a synchronous generator
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2.1.3 Summary

The model development is always a very long and delicate task. It requires a lot of time,
financial resources, knowledge and experiences in the application domain. This is always
an experts job. For analytical models and semi-numerical models, this development phase
is realised by experts. The models are usually proprietary or in-house coded. For numer-
ical models, designers commonly use software packages already developed by the software
company.

Four criteria are compared in Figure 2.5:

(i) Modelling details: The more the model is described in detail, the easier it is to access
the local information. It is supposed that if the local information is available, the global
one is also obtained.

(ii) Accuracy: The model can be build with different levels of accuracy.

(iii) Computation time: The model should be selected on the basis of the needs of the
designer. The model with too much information may not be suitable for certain appli-
cations.

(iv) System description: The ability of each component to react and to interacts with
the system and the other components around it.

The numerical technique is more accurate but it does not describe the interactions with
the system very well. The analytical technique is rapid and able to describe the system.
However, it hardly provides detailed local information. The developing trend is to combine
these techniques in order to obtain both high accuracy and description of the system. Several
examples of hybrid model can be listed:

• The transient finite element analysis, which uses an electric circuit model and mechani-
cal dynamic model (both are time-domain simulation models) and the FEM to simulate
the performance of a motor in transient state.

• A system of two components. One is described by an analytical model and the other
by a numerical model.

The integration of modelling techniques can be done directly and transparently in one software
package or indirectly via an external process such as multidisciplinary design analysis (see
Section 3.2.1).

A prototype is also compared in Figure 2.5. It allows validating the modelling due to the
fact that all physical phenomena and all interactions can be observed. However, development
time and cost are the main drawbacks.
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2.2 Surrogate modelling

2.2.1 Overview

In spite of the increase of computers speed, engineers always find it difficult to integrate the
high computational time and high fidelity simulation software constraints in the optimal de-
sign process. Many researchers are working on the optimization algorithm to decrease model
evaluation number requirements. For example, space mapping techniques allow combining 2
models, high and low fidelity [104], while hybrid algorithm allows taking advantage of global
evolutionary algorithms and local gradient algorithms [61]. Others focus on the development
of an approximation method called the Surrogate model [67, 92, 99, 112]. The most popular
techniques involve the Response Surface Methodology (RSM), the Radial Basis Function, the
Neural Network and Kriging.

A Surrogate model or metamodel is simply a model of a model. It is constructed using
the sample data computed by a high fidelity software (or fine model). It replaces the time-
consuming fine model in many circumstances. The use of a Surrogate model in engineering
design can be described as following:

• Design space exploration: CAD/CAE tools or physical-based models allow engineers
to obtain the relationship between design variables and system performances. However,
when designing a new or even well-known system, engineers do not have a perfectly clear
idea of how performances would change if design variables are modified. A common
approach is to perform a sensitivity analysis around an interesting point. To capture
the global idea of design space, engineers can use surrogate models to visually explore
the design domain. Design space can be plotted in the way that they need and as many
times as they want because working on a surrogate model is very cheap regarding the
computation time.

• Problem formulation: When designing a system, engineers may have specifications or
requirements, but actually they may not know how to formulate the optimization design
problem. At this stage, using a high fidelity model is very time-consuming. By using
a surrogate model, many formulations can be tested. A problem may be formulated as
multi-objective problem at first and then reduced to a single-objective problem and vice
versa. Some non-active constraints may be removed and some forgotten constraints may
be added as well. Another potential is using a surrogate model to perform screening
or sensitivity analysis. This allows selecting the most influential design variables of
objective functions.

• Data exchange and communication: In the context of multidisciplinary and con-
current design, many groups of engineers work together toward the same global goals.
Interactions between groups are unavoidable. A group may need information or a model
from another group in order to perform its design. A Surrogate model offers a cheap
and confidential means to exchange data and models. A company can avoid giving a
proprietary code to its partner or subcontractor.
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• Optimization: The use of a Surrogate model in an optimization process can reduce
the computation time compared with a direct optimization using a high fidelity model.
Concerning the accuracy issue, in most cases, the designer performs sequential optimiza-
tion manually in order to obtain high accuracy results. Such a process will be discussed
later in this section. A more advanced optimization algorithm called surrogate-assisted
optimization, allows automatically refining a surrogate model during optimization. It
is introduced in Chapter 3.

In the context of Multidisciplinary design optimization, one can profit from the advan-
tages of the surrogate model not only its low computation time but also its compatibility
issue. MDO involves many tools and software. Sometimes they are not on the same
operating system platform. A designer with no computer/technical skills can construct
surrogate models based on various tools running on different platforms and use them
to perform an MDO on his preferred computer environment.

Regarding the purpose of optimization, Figure 2.6 shows the typical flowchart of an op-
timization process using surrogate models. This optimization approach begins with the se-
lection of sample points. The expensive models are then evaluated at these points. The
responses or outputs are therefore used to construct surrogate models. These surrogate mod-
els replace the expensive models in the optimization process. The optimal results are verified
with the high fidelity model. It leaves to the designer the task of reducing the design domain
and adding some additional sample points. This manual sequential process runs until the
errors between two models are corrected. Finally, the optimization results are analysed and
validated.

The optimization approach using a surrogate model is typically used in a large-scale
optimization problem such as MDO [39, 102]. In electrical engineering optimization design,
the surrogate-modelling approach has been used in many applications. Maruyama et al. [69]
applied the Kriging model in the reliability design of electromagnetic devices. An application
to a permanent magnet motor design was presented in [32].

A great advantage of the Surrogate model is the reduction in the computation time.
However, the main inconvenience is the trade-off between the accuracy and the computational
time. Once the Surrogate model is built, it should be validated. The assessment strategies of
the surrogate model can be found in [72]. A statistical method called “Leave-k-out” is used
to verify if the building of a surrogate model is sufficiently accurate. The surrogate model
denoted “Reference model” is firstly built using information from all sample points. The k
sample points are randomly left out from the sample point set. A surrogate model denoted
“Leave-k-out model” is constructed using the remaining sample points. The “leave-k-out”
model is verified against the reference model. An assessment vector such as Root mean square
error, Maximum error are computed. By doing this many times, average values of assessment
vector can be considered as an approximate error.

The goal of a surrogate model construction is to obtain a cheap-to-evaluate model repre-
senting accurately the fine model. It depends on three main factors; (i) how the sample points
are placed in the design space, (ii) how many they are, and (iii) what modelling method is
used. These three issues will be discussed in the following sections.
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Figure 2.6: Optimization using a surrogate model

2.2.2 Sampling technique

In statistical fields, the classical DOE theory combines several sampling techniques, the RSM
and other statistic tools such as screening. The aim of the DOE is to place a number of sample
design point in the design space in order to minimise the influence of the random error. As a
result, the sample points are placed mainly near the boundaries of the design domain. Some
designs associating with higher-order polynomial models may place few sample points inside
the design domain. Even the classical DOE is more or less perfect when used together with
screening and the RSM to estimate a local trend of a function. However, some information in
the centre may be lost when using the same experimental design along with other modelling
techniques to predict the global trend.

In modern DOE, typically applied to computer or simulation-based experiments [31], two
assumptions are made. Firstly, the random error does not exist i.e. two simulations with the
same design point give the same response. Secondly, the trend of the fine model is not known
beforehand. For this reason, the modern DOE uses “space filling designs” that treats all
regions of the design space equally and tend to place sample points inside the design space.
This allows minimizing bias errors i.e. the discrepancy between a surrogate model and a fine
model3.

3The bias errors is not only at the sample sites but also in the overall design space. This cannot be identified
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In the following subsection, a variety of classical and modern DOE is described. A compar-
ative study of modern sampling techniques together with modelling techniques is presented
in Section 2.2.4.

2.2.2.1 Classical experimental design

The most basic design is a two-level full factorial design [112]. It places sample points at all
combination of lower- and higher-level of each factor. This results in 2nv experiments. Figure
2.7a shows how sample points are placed on the hypercube at two levels and in a three factors
full factorial design. By using a full factorial design and a screening, the main effects and
interactions between factors can be studied.

Using a two-level factorial design in a quadratic polynomial RSM is not suitable, as it
cannot capture information inside the design domain. Various designs are possible for this
purpose. Some of them can be stated: n-level factorial design (nnv sample points) and
central composite design (1 + 2nv + 2nv). One may realize that the number of a sample point
increases rapidly as the number of the factor increases. This problem is known as the curse
of dimensionality [53]. For high dimensional design spaces, the fractional design can be used.
The number of sample points is decreased to nnv−r and 1+2nv+2nv−r for fractional factorial
and fractional central composite designs, respectively, where r is a reduced order. Figure 2.7b
shows a 23−1 fractional factorial design.

x1

x2

x3

(a) 23 factorial design

x1

x2

x3

(b) A 23−1 fractional factorial design

Figure 2.7: A two-level full and fractional factorial design for three factors. With 23−1

fractional design, the number of experiments is reduced from 8 to 4.

2.2.2.2 Monte Carlo Sampling

Monte Carlo Sampling (MCS), also called random design, is commonly used in the field of
robust or reliability design [14]. It intends to mimic a random natural process4. MCS is
very easy to implemented when using a programming language in which a random function

without any knowledge of the true function.
4Actually, computers cannot generate true random numbers. Therefore, a Monte Carlo sampling generated

by computer is not a real one. A predefined table is classically used. This is why a prefix “Pseudo” is sometimes

used.
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is available. The position of a sample point in the dimension nth can be located by selecting
a random number in an interval of design variables in the dimension nth. Therefore, a MCS
point for an n-dimensional design space is represented by a vector of nv random numbers in
the interval [lb, ub]nv .

MCS points may not well cover all design spaces due to the fact that each sample point
or even each dimension of a sample point is selected independently. Many improved MCS
methods have been developed such as Stratified Monte Carlo sampling [54]. The design
space is divided into bins. Only one sample point is placed in each bin. This provides more
“space-filling” properties than the original MCS. Figure 2.8 shows an example of a MCS and
a stratified MCS design. A stratified MCS design provides more uniformly distributed sample
points.

0 1

1

x1

x2

(a) MCS

0 1

1

x1

x2

(b) Stratified MCS

Figure 2.8: Monte Carlo sampling for a two-dimensional design space with 12 sample points

Hammersley Sequence Sampling (HSS) is in the class of Quasi-Monte Carlo sampling
methods5. It uses a deterministic algorithm to generate sample points so that the points are
uniformly distributed in the design space [45]. It provides better uniformity property than
LHS. A ten point HSS of two dimensions are illustrated in Figure 2.9.

0 1

1

x1

x2

Figure 2.9: Hammersley sequence sampling of a two-dimensional design space with 10 sample
points

5Also called low-discrepancy sampling
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2.2.2.3 Latin Hypercube Sampling

Latin Hypercubes Sampling (LHS) is very popular in computer experiments. It was firstly
introduced for computer experiments by McKay et al. [71]. It is widely used with Kriging
in Design and Analysis of Computer Experiments (DACE) introduced by Sacks et al. [92].
As MCS, LHS is also a modern DOE or space-filling design. Sample points are scattered
throughout the whole design space.

By giving a number of sample points, ns, the design space is divided into ns intervals of
equal probability for each dimension. This results in nnvs hypercubes or bins. LHS requires
that sample sites meet the following criteria:

• A bin can contain only one point, which is placed randomly in the bin.

• When projecting a design space in any two dimensions, there are ns points and bins.
Only one bin is selected in each row and column.

LHS are represented using a LHS matrix of ns rows and nv columns. This matrix is
quite easy to generate. It requires a random permutation of ns levels for each column. Each
column of the LHS matrix is defined as:

LHSj =
πj − Uj
ns

(2.1)

where πj is the uniformly distributed random permutation of the integers from 1 to ns, Uj
is [0, 1] uniformly distributed random number vector of ns elements. For example, the LHS
design in Figure 2.10a is constructed from a LHS matrix:
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︸ ︷︷ ︸
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0.41 0.93

0.62 0.13

0.94 0.60

0.05︸︷︷︸
x1

0.40︸︷︷︸
x2




In fact, there are many possibilities to select a LHS that satisfies the criteria. Figure 2.10a
shows an example of a well-distributed two-dimension LHS. Figure 2.10b shows an example
of a poor LHS. In this case, four sample points are positioned diagonally, leaving the two
other extrema unexplored.

To avoid this poor design, many strategies can be used. For example, maximizing the
minimum distance between any pair of points (maximin LHS) and minimizing the maximum
distance (minimax LHS). To do so, one might simply re-sample the points until a criterion
such as maximum number of trial is met. A more advanced user may use an optimization
algorithm as it was done in [40]. In [40], the authors used a Simulated annealing algorithm
to find the maximin LHS. However, in this research, we use the maximin criteria. The best
design is simply selected from a set of trials.
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0 1

1

x1

x2

(a) Well distributed LHS

0 1

1

x1

x2

(b) Poor distributed LHS

Figure 2.10: Latin hypercube sampling for a two dimensional design space with 4 sample
points

2.2.2.4 Number of sample point

As mentioned above, the number of sample points is one of the main criteria in order to achieve
an accurate surrogate model. Theoretically, one might put as many points as possible. This
idea is always right though it is not practical. Firstly, a lot of computation effort must be
paid. This is usually prohibited. Secondly, when using a surrogate model for an optimization
purpose, if the number of sample points should be very high, it is more reasonable to perform
the optimization directly on the fine model and the surrogate model is not necessary.

In a classical DOE, the number of sample points depends on the dimension of the design
space. When using an RSM, the minimum sample point should be the same as the number of
polynomial coefficients (see Section 2.2.3.1). In a high dimension design space and high-order
polynomial approximation, ns can be very high and the most important is that it is not
controllable by the engineer. This may cause a problem when computation time matters.

In a space-filling design or modern DOE, ns can be chosen freely by the engineer. It
is not tied to the number of design variables. It may be given to meet available computer
resources. Jin et al. [42] tested the accuracy of surrogate modelling techniques constructed
from sample sets with different sizes. They confirmed that a higher number of sample points
yields a more accurate model.

2.2.2.5 Summary

The classical DOE techniques are good sampling techniques suitable for RSM. They place the
sample points in the design space so that random errors caused by experiment are minimised.
Each design provides special characteristics and depends on the chosen RMS model. The
number of sample points is tied with the number of design variable.

The space-filling designs e.g. MCS and LHS have been more investigated and used in the
field of surrogate modelling. Their main characteristic is to provide well-distributed sample
points in the design space. This is more suitable for describing the large design space due to
the fact that the information inside the design space can be captured by its well-distributed
sample point property. The number of sample points does not obligatorily depend on the
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number of design variables. This gives a degree of freedom to the designer to determine the
number of sample points based on criteria such as computer resources, problem complexity
and problem nonlinearity. A comparative study of the sampling techniques and the modelling
techniques is presented in Section 2.2.4.

2.2.3 Surrogate modelling technique

The objective of a surrogate model is to give an accurate approximation of a fine model. The
ideal case would be a surrogate model that represents perfectly the fine model in a short
computation time.

A fine model describes the relationship between input: design variables vector x and
output: response y.

y = f(x) (2.2)

With a surrogate modelling technique and the knowledge of sample data: x(i)
s and y

(i)
s

where i is the number of sample data points from 1 to ns, the estimated response ŷ can be
defined as:

ŷ = f̂(x) (2.3)

where f̂ is the surrogate model of f .

Three surrogate modelling techniques are presented in the following sections. General
principles and important considerations are detailed. These modelling techniques can be
classified into two types: a regression model (Polynomial) and an interpolation model (Radial
Basis Function and Kriging). The different is that the interpolation model passes exactly
through the sample points whereas the regression model does not. Therefore, the regression
model is always associated with residual or fitting errors i.e. a difference between a regression
model and the observed response.

Two analytic examples are used in this section for an illustrative purpose. The position
of sample points is selected in order to show the specific properties of the method. Therefore,
these examples are for illustrative purpose and they do not intend to give any comparative in-
formation between each technique. A comparative study of surrogate modelling and sampling
techniques is presented in Section 2.2.4.

• One-dimensional test function (modified from [94]):

f1 (x) = sin(x)− exp
( x

20

)
+ 10

where x ∈ [0, 10]
(2.4)

• Two-dimensional test function (Peaks function):

f2 (x1, x2) =3 (1− x1)2 exp
(
−x2

1 − (x2 + 1)2
)

− 10
(x1

5
− x3

1 − x5
2

)
exp

(
−x2

1 − x2
2

)
− 1

3
exp

(
−(x1 + 1)2 − x2

2

)

where x ∈ [−3, 3] for all dimensions

(2.5)
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One-dimensional function is shown in Figure 2.11a. Figure 2.16a shows a two-dimensional
test function. It can be observed that both functions are multi-modal. For a two-dimensional
problem, there is a large flat area.

2.2.3.1 Polynomial

Polynomial approximations are the most common techniques for constructing a surrogate
model. In the statistic field, the combination of DOE, Polynomial-based approximation and
Analysis of variance (ANOVA) is known as Response Surface Methodology (RSM) [9, 50, 112].
It is originally developed to build a smooth response surface of observed data from physical
experiments, which are always subject to empirical or random errors. Therefore, a regression
model6 is very suitable for this kind of problem. RSM is very popular because it provides
a compact and explicit relationship between a true function (so called response) and input
variables (called factor). Each regression coefficient has a meaning in itself7. Moreover, the
least-square method used to construct the models is inexpensive and simple to implement.

A polynomial model requires a specific number of experiments or sample points depending
on the model order and the polynomial term requirements. It is usually associated with
the DOE method in order to select appropriated experiments. ANOVA allows to predict
the uncertainty of a model by using information from the discrepancy between fine and
polynomial models at sample sites.

A relationship between the observed response y and the factors X can be predicted by a
polynomial model.

y = ŷ + ε (2.6)

ε denotes a fitting error or noise. It is actually an error between the observed response and
the predicted response. It is assumed to be normally distributed (Gaussian) and with zero
means. This term is called residual.

An approximated response ŷ is defined as:

ŷ = Xβ̂ (2.7)

where β̂ is a polynomial coefficient vector to be estimated. The number of polynomial coeffi-
cient terms nt depends on the order of the polynomial model. For example, the linear model
requires a constant term b0 and nv main effect coefficients. The generalized β̂ is expressed as
[112]:

β = [b0, b1, b2, . . . , bnv , b11, b22, . . . , bnvnv , b12, . . . , b1nv , . . .]
T (2.8)

Note that the order and specifications of the polynomial model depends on the knowledge
of the fine model. An engineer should have an idea on the system behaviour and interactions
between factors. This can be obtained from their knowledge of studied physical phenomena
or by performing a screening or a sensitivity analysis [29]. However, if the design space is too
large, these information might be inaccurate or completely wrong in the worst case.

6The regression model often refers to a model obtained using the least-square method. This kind of model

is non-interpolation i.e. the response surface does not pass through the observed data.
7Each coefficient represents the level of correlation between factors. They are known as main effects and

interactions.
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By giving the sampled design vector xs and the observed response ys at observed sites,
the unique least square solution to (2.6) is [9]:

β̂ =
(
XT
s Xs

)−1

XT
s ys (2.9)

where Xs is a sample design variable matrix of ns row and nt column:

Xs =




1 x
(1)
1 x

(1)
2 · · · x

(1)
nv

(
x

(1)
1

)2
· · ·

(
x

(1)
nv

)2
· · ·

...
...

...
. . .

...
...

. . .
...

. . .

1 x
(ns)
1 x

(ns)
2 · · · x

(ns)
nv

(
x

(ns)
1

)2
· · ·

(
x

(ns)
nv

)2
· · ·


 (2.10)

and

ys =
[
y(1), y(2), . . . , y(ns)

]T
(2.11)

In spite of its popularity and simplicity, the low-order polynomial model suffers from
its accuracy when dealing with a highly nonlinear fine model over a large region [99]. It is
efficient only for local approximations over limited design spaces. The increase of the number
of sample points does not necessarily lead to increased model accuracy. This is depicted in
Figure 2.11. Linear and quadratic polynomials are used to approximate a highly nonlinear
function. Figure 2.11a plots models constructed from 5 poor distributed sample points. It
can be observed that a second order polynomial model cannot capture the high nonlinearity
of the true function. In Figure 2.11b, a sample point is added so that the sample points
are better distributed in the design space. Even an additional point is added, both models
are still far from the true function. This example confirms that a polynomial model is not
suitable for approximating a highly nonlinear fine model. A polynomial model should not be
applied without prior knowledge of fine model trends.
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Figure 2.11: One-dimension example illustrating linear and quadratic polynomial approxi-
mations.
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2.2.3.2 Radial basis function

A RBF model is a weighted-sum of basis functions usually expressed in terms of the euclidean
distance

∥∥x− x(i)
∥∥ of a design vector x and a centre, which is usually an observed point x(i).

ŷ (x) =
ns∑

i=1

wiϕ
(
x, x(i)

)
(2.12)

where wi is the weight to be estimated and ϕ
(
x, x(i)

)
is the radial basis function. The basis

functions depend on the distance between the input vector x and the centre of the basis
function. Possible choices for the basis function are [43, 52]:

ϕ
(
x, x(i)

)
=
∥∥x− x(i)

∥∥ (linear)

ϕ
(
x, x(i)

)
=
∥∥x− x(i)

∥∥3
(cubic)

ϕ
(
x, x(i)

)
=
∥∥x− x(i)

∥∥2
ln
(∥∥x− x(i)

∥∥) (thin plate spline)

ϕ
(
x, x(i)

)
=
√∥∥x− x(i)

∥∥2 + γ2 (multiquadric)

ϕ
(
x, x(i)

)
= exp

(
− 1
γ2

∥∥x− x(i)
∥∥
)

(Gaussian)

(2.13)

where γ > 0 is the width parameter controlling how spread the basis function is. This
parameter is given by the user.

In matrix form, ŷ can be written as:

ŷ = AW (2.14)

By substituting the observed data pair ys and xs, the weight matrix W can be solved and
a unique solution is obtained:

W = A−1ys (2.15)

where ys defined as in (2.11) and

A =




ϕ
(
x(1), x(1)

)
ϕ
(
x(1), x(2)

)
· · · ϕ

(
x(1), x(ns)

)

ϕ
(
x(2), x(1)

)
ϕ
(
x(2), x(2)

)
· · · ϕ

(
x(2), x(ns)

)
...

...
. . .

...

ϕ
(
x(ns), x(1)

)
ϕ
(
x(ns), x(2)

)
· · · ϕ

(
x(ns), x(ns)

)




(2.16)

Figure 2.12 shows a one-dimensional example. The RBF model is constructed from 5
sample points. One can observe that the RBF model passes though the sample points. In
this research, the thin plate spline is used, as it does not require spread parameter.

2.2.3.3 Kriging

Kriging was first developed by D. Krige, a mining engineer. It was used with success in
the field of geological statistics to estimate mineral concentrations over areas of interest,
given a set of sampled sites [13]. In the field of computer science and engineering, it was
introduced by Sacks et al. as Design and Analysis of Computer Experiments (DACE) [92].
The Kriging method was also used with success in many engineering applications, including
electromagnetic device design [63] and traction system design [61].
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Figure 2.12: One dimensional example – RBF model constructed from 5 equally distributed
sample points

In the Kriging modelling approach, an unknown true function can be written in the
following form:

y(x) = B(x) + Z(x) (2.17)

The first term B(x) is a regression or polynomial model representing the global trend of
the function. The second term Z(x) gives the localized deviations from the global trend. This
term corresponds to the residual term ε in polynomial approximation (see Section 2.2.3.1).
Z(x) is a model of a stochastic process with zero mean, variance of σ2 and covariance defined
by:

Cov
[
Z
(
x(i)
)
, Z
(
x(j)
)]

= σ2R
[
R
(
x(i), x(j)

)]
(2.18)

where R is the correlation matrix, R the correlation function, i and j are the sample points
(from 1 to sample point number ns). The choice of the correlation function controls how the
surrogate model fits the data. Various correlation functions are given in [92]. The Gaussian
function is the most common.

R
(
x(i), x(j)

)
= exp

[
−

nv∑

k=1

θk

∣∣∣x(i)
k − x

(j)
k

∣∣∣
pk

]
(2.19)

where nv is the number of design variables, θk is the unknown correlation function parameter
≥ 0 determining how rapidly the correlation is lost in the kth design variable (large values
implying rapid loss in correlation), and pk the smoothness parameter 0 < pk ≤ 2. The
value near 2 gives smooth functions and value near 0 gives rough functions. Figure 2.13
depicts this effect. Note that pk = 2 is commonly used and gives good results in most cases.
One can also notice that at the sample point

∣∣∣x(i)
k − x

(j)
k

∣∣∣ is zero and R = 1. The Kriging
predictor passes exactly through the sample points i.e. is an interpolation model. However,
a non-interpolating model may be preferred when the fine model is highly noisy e.g. FEA.
A derivative non-interpolating version of Kriging can be used for this purpose. It uses an
additional parameter called nugget in the correlation function to help smoothing the data.
This thesis does not investigate this Kriging version. Readers should refer to [51, 80, 94] for
more detail.
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(a) pk = 1

(b) pk = 2

Figure 2.13: Effect of the smoothness parameter pk. The models are constructed from 20
data points sampled by Hammersley sequence sampling
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While (2.17) defines the true response value y, the Kriging model predicts the estimated
response value ŷ. The Mean Square Error (MSE) is the expected value of difference between
the true response and the estimated one.

MSE (x) = E
(

(y (x)− ŷ (x))2
)

(2.20)

Since Kriging interpolates the data, the MSE is zero at the sample points. At the
other unknown points, the MSE is supposed to be minimum in order to obtain a good
approximation. When MSE is minimised, the Kriging model becomes:

ŷ = fβ̂ + rTR−1
(
y − fβ̂

)
(2.21)

and the MSE (2.20) can be rewritten as

MSE = σ2

[
1− rTR−1r +

(
1− fTR−1r

)2

fTR−1f

]
(2.22)

where β̂ is the estimator of regression model defined as in (2.27), r the correlation vector
between a new location x to be estimated and the sampled locations, f a unit vector with
length of ns.

r(x) =
[
R
(
x, x(1)

)
, R
(
x, x(2)

)
, . . . , R

(
x, x(ns)

)]
(2.23)

R =
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...

R
(
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R
(
x(ns), x(2)
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· · · R

(
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(2.24)

Note that R is symmetric R
(
x(i), x(j)

)
= R

(
x(j), x(i)

)
with ones along diagonal,

R
(
x(i), x(i)

)
= 1 [67].

R and r depend on θk, which can be found using the Maximum Likelihood Estimation
(MLE).

The likelihood function (L) is defined as:

L =
1√

(2πσ̂2)ns |R|
exp



−
(
y − fB̂

)T
R−1

(
y − fB̂

)

2σ̂2


 (2.25)

The log-likelihood function (LL) is generally used in order to simplify (2.25).

LL =
−
(
y − fB̂

)T
R−1

(
y − fB̂

)

2σ̂2
− ns ln

(
2πσ̂2

)
+ ln (|R|)

2
(2.26)

β̂ and σ̂2 can be estimated as:

β̂ =
(
fTR−1f

)−1
fTR−1y (2.27)

σ̂2 =
1
ns

((
y − fβ̂

)T
·R−1 ·

(
y − fβ̂

))
(2.28)
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Substituting β̂ and σ̂2, the log-likelihood function (2.26) becomes:

LL = −ns ln
(
σ̂2
)

+ ln (|R|)
2

(2.29)

By solving the MLE optimization problem (2.30), θk can be determined (pk is fixed to
2). In this research, a genetic algorithm is used to solve the MLE problem. Once θk is
determined, the response at any design point x can be estimated using (2.21).

max
θk

−ns ln
(
σ̂2
)

+ ln (|R|)
2

subject to 0 < θk <∞
(2.30)

Jin et al. [42] showed that the Kriging method works slightly better than other surrogate
models. However, Kriging needs more computational time to solve the MLE optimization
problem in the model fitting process. This time could be very high in large-scale problems
with large sample size. In the real implementation, it does not cause any trouble due to the
fact that the surrogate model is built only one time, moreover the use of this model in an
optimization process is very rapid compared to the high fidelity model.

2.2.4 Surrogate model accuracy assessment

In the above sections, several sampling and surrogate techniques were presented. This section
intends to assess performances of the methods. Six test functions are selected. They are
comprised of 4 two-dimensional, 1 four-dimensional and 1 six-dimensional functions. These
functions are listed in Appendix A.

2.2.4.1 Assessment methodology

This test aims at assessing the performances of surrogate and sampling techniques in the case
of a highly nonlinear function. Three sampling techniques, three sample size rules and two
surrogate techniques are tested. They are listed below.

• Sampling techniques: LHS, HSS and MCS

• Size of the sample sets: The sample sets are scaled by the number of design variables.
They are set to 5, 10 and 20 times the number of design variables for small, medium,
and large sample set, respectively.

• Surrogate techniques: RBF and Kriging. Note that the polynomial model is omitted.

This yields a total of 18 combinations for each test function.

The accuracy of a surrogate model can be assessed by comparing the surrogate model
with a true function. In this example, the validate points are selected randomly in the design
space, 1000 points for each test function. Two standard methods are used: Normalized root
mean squared error (NRMSE) and Normalized maximum absolute error (NEMAX). The
normalized errors are used because they allow comparing different test functions i.e. they



2.2 Surrogate modelling 53

are not sensitive to the design space of each test function. NRMSE represents global errors
while NEMAX represents local errors.

NRMSE =

√√√√
∑ns

i=1

(
y(i) − ŷ(i)

)2
∑ns

i=1

(
y(i)
)2 (2.31)

NEMAX =
maxi=1:ns

∣∣y(i) − ŷ(i)
∣∣

√
1
ns

∑ns
i=1

(
y(i) − ȳ

)2 (2.32)

where y(i) is the true response, ŷ(i) the estimated response both at the sample site x(i) and
ȳ the mean of the true function at the ns sample sites.

2.2.4.2 Results

The average NRMSE and NEMAX values of all test functions are plotted in Figure 2.14 and
Figure 2.15, respectively. Full results are given in Appendix A. At the first sight, one can
rapidly conclude that the MCS gives the lowest accuracy and the HSS gives slightly better
results than the LHS. Regarding the size of sample point sets, the larger the sample set, the
higher the accuracy. Kriging performs better than the RBF except for the high dimensional
problem, the RBF gives slightly better NRMSE than Kriging. However, the NEMAX for the
RBF is higher than that of Kriging (see Appendix A).

The Kriging technique seems to be a good interpolation model. It is applied to a traction
system re-design problem as can be found in [61].
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Figure 2.14: Normalized root mean squared error (NRMSE) for a (a) small sample set, (b)
medium sample set and (c) large sample set
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Figure 2.15: Normalized maximum absolute error (NEMAX) for a (a) small sample set, (b)
medium sample set and (c) large sample set

2.2.5 Non-conventional sampling and modelling technique

This section presents two non-conventional sampling and modelling techniques. The first one,
the Global response surface methodology, improves the traditional RSM in the case of highly
nonlinear function modelling. The second one, the Kriging-assisted sampling technique, adds
the additional sample points to the initial Kriging model according to the predicted error
information. It gives the possibility to control the number of sample points just needed.

2.2.5.1 Global response surface methodology

One of the drawbacks of the polynomial modelling technique is that it is suitable for a local
approximation not for a global one. In order to obtain a global model, one can divide the
design space into multiple sub-domains. Each polynomial approximation is associated to only
one sub-domain. The linear or quadratic polynomial approximates a smaller design space.
Therefore, it is more accurate than modelling of the entire design space. S. Vivier [112]
presented some variants of a classical DOE, which reuse sample points when performing a
global RSM.

Figure 2.16 shows a global RSM example. The entire design space is divided into 16
sub-domains. 16 linear polynomial models form the global RSM model. These models are
constructed from 25 sample points in total.

2.2.5.2 Kriging-assisted sampling technique

One useful property of a Kriging surrogate model is its error estimator (MSE or standard
error). This information indicates that the Kriging model gives the exact value at the sample
points (interpolation model) and may present some errors at other design vectors. One-
dimensional example is showed in Figure 2.17. The Kriging model is constructed using 5
sample design points. One can observe that the standard error is zero at the sample point
and higher in the sample point gap.

This MSE predictor can be used as sampling point selection criterion. A Kriging-assisted
sampling algorithm is shown in Figure 2.18. By starting with a very small number of sample
experiments, the initial Kriging model is fitted. The initial Kriging model is usually associated
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Figure 2.17: One-dimensional illustration example showing the true function, the Kriging
prediction and its estimated standard error. The Kriging model is constructed with the use
of 5 sample points.

with high errors. The MSE tends to be very high at non-sampled design vectors. One may
realise that the most beneficial action is to add extra points to where the MSE value is the
highest. A single-objective optimization algorithm can be used for this purpose. Once the
most promising design vectors have been located, the high fidelity model is then evaluated at
these points and the Kriging model is refitted. Stopping criteria can be a maximal allowable
number of design points, the maximal allowable time or an error assessment such as the
“leave-k-out” method [72].

An example is shown in Figure 2.19. An initial Kriging model is constructed using 10
initial sample points (LHS). Figure 2.19b shows the Kriging estimated MSE for the initial
model. The algorithm described above is run for 10 iterations. At each iteration, a maximi-
sation of the MSE is performed. Note that the −MSE is plotted in Figure 2.19b. In this
case, a minimum of −MSE surface is sought. After 10 iterations, Figure 2.19c and 2.19d
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Select initial sample points

Fit initial Kriging model

Stopping criteria

Locate additional sample points
by maximizing MSE

Yes
No

Begin

Evalute sample points using
high fidelity model

Obtain final Kriging model

Figure 2.18: Flowchart of a sequential technique based on Kriging MSE information

present the final Kriging model and its associated MSE. The algorithm adds 8 points near
the boundary and only 2 points inside the design space. This extrapolation keeps on being
minimum.

Although the additional points are added sequentially, this is not limited to only one
point per iteration. Several additional points can be added at each iteration if we use an
optimization algorithm capable of locating multiple optima [41]. It is possible to apply the
parallel and distributed computation. This avoids spending too much time on the surrogate
model building process.
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(a) Initial Kriging model (b) Initial estimated MSE

(c) Final Kriging model (d) Final estimated MSE

Figure 2.19: Analytical example of Kriging-assisted sampling technique. The initial model
was constructed from 10 initial points (black circle). Then other 10 points were added
iteratively by an algorithm. (additional points are shown as red squares)
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2.3 Multimodel approach

Engineers endeavour to develop more and more complex models, which take into account
many physical domains and components. This is due to the needs for high accuracy results
in the system context. Outputs of a sub-model may act as inputs to others and vice versa.
Many modelling techniques can be mixed together into the same model. For example, the
model of a motor can combine three sub-models:

• On the basis of the motor geometry, a FEM is used for magnetic field computation.

• The output from the FEM is then fed to analytical electric and control models. Losses
are then computed.

• The semi-analytical thermal model uses losses as heat sources and allows calculating
the temperature of the motor.

A problem might occur if an output coming from the model A (to be used as input for
the model B) is outside the validity domain of the model B. These circumstances may lead
to an error in the computation code or, even worse, give wrong results without any notice to
the designer. The robustness of the model is very important when used in an optimization
process. Two boundary constraints should be added to any linking output to ensure that
these values are inside the validity domain.
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2.4 Conclusion

This chapter presented various modelling techniques arising in electrical engineering. The
physical-based modelling techniques are commonly used. These include analytical, numerical
and semi-numerical models. The analytical model is very cheap to evaluate with a limited
accuracy due to the fact that many hypotheses must be assumed. On the contrary, the
numerical model is more general and needs less modelling assumptions. It provides a high
accuracy results. However, these advantages are obtained with high computation time. The
semi-numerical model like lumped-mass model is a good compromise between accuracy and
computational cost.

Another modelling approach is the surrogate modelling technique. It is a mathematics
model constructed by using information i.e. computation results from physical-based model.
It extracts a black-box model from a physical-based model. The main advantage is that the
designer does not need to have a strong knowledge to model a system. This is not the case
when using physical-based modelling techniques. Surrogate models can replace high fidelity
models for various purposes, not only for data visualization but also for communication,
problem formulation and optimization. They allow a rapid estimation of the relationship
between the input and the output of a fine model. However, some precision must be lost. An
analytical example has illustrated how Kriging and RBF models behave on multi-dimensional
test functions. The influence of the sampling techniques and the size of sample points have
also been tested.

Two non conventional sampling and modelling techniques have been presented. (i) The
global response surface methodology improves traditional RSM in the case of a highly nonlin-
ear function. (ii) The Kriging-assisted sampling technique uses the estimated standard errors
to select iteratively the added sample points. In this chapter, they were presented only for
the modelling purpose. However, these methods intend to offer an opening towards the next
chapter – Optimization technique. One must realize the potential of the extension of these
techniques to perform optimization. For example, instead of dividing a design space equally
and a priori, it can be panned and zoomed into the zone where the optimum might be found.
A more or less similar principle can be applied to the surrogate-assisted technique. The
combination of model accuracy and surrogate model information offers exploration and ex-
ploitation possibilities, both at the same iteration. These techniques are detailed in Chapter
3.

New developments focus on the system and multidisciplinary approach. In such ap-
proaches, several components are modelled and optimised simultaneously. More attention is
needed when working with a multimodel. The most important issue is the validity domain
of each model, concerning the input and the output. The out-of-domain input can cause
a fatal error of the computation code or unexpected results. This affects the robustness of
the model when used in an optimization process. Chapter 3 presents the Multidisciplinary
Design Optimization approach that takes into account all these considerations.





Chapter 3

Optimization technique

An optimization technique is established in any discipline and application domain. It is a
general tool that helps designers to manage the complexity of design problems in order to
produce at low cost and efficiently. The Trial-and-error conventional method cannot fulfil the
needs of industries any more. This Chapter intends to give an overview of the optimization
technique used to solve complex system design problems.

For less complex system, an optimization technique is applied to the design problem as a
whole. This approach is called the Global System (GS) approach [73]. It is commonly used
in optimal design. Several conventional optimization techniques as well as a more advanced
technique using the surrogate model in the algorithm are presented. These techniques can ap-
ply to single- and multi-objective optimization problems. This approach is not recommended
due to the too high amount of work it requires.

For most complex system, complexity is mainly due to the existence of interactions be-
tween disciplines and between physical or functional subsystems. Such interactions are usually
difficult to manage because of the increased number of design parameters. In the aeronautic
community, the optimal design of such a system is referenced under the concept of Multi-
disciplinary Design Optimization (MDO) [102]. MDO associates different aspects: analysis
tools, optimization algorithm and problem formulation. The problem formulation concept
does not only refer to the definition of the objective function, constraints and design variables
as in single disciplinary optimization but also corresponds to the way of solving interactions
between disciplines [102].

In most cases, the design problems are broken-down into several smaller independent
problems. This issue is already discussed in Chapter 1. To optimise such a decoupled system,
several subproblems need to be brought back together. A multilevel hierarchical coordination
and optimization algorithm called Target Cascading (TC) gives a straightforward way to
mange such a hierarchical breaking down. The coordination process is more or less similar
to the organisation of the company.

MDO and TC are considered as complex optimal design problem formulations. They
ensure consistency of the whole system via coordination and information procedures between
models. The optimization algorithm used in the global system approach is thus used to solve
the subproblem. Figure 3.1 summarizes the three optimization techniques for the complex

61
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system design detailed in the following sections.

Global system approach

Model

Optimization algorithm

• Single-objective

• Multi-objective

• Surrogate-assisted

Discipline 1

Discipline 2

MDO

Subsystem 1 Subsystem 2

System

TC

Discipline decomposition Hierarchical decomposition

Section
3.1

Section
3.2

Figure 3.1: Summary of optimization techniques

3.1 Global system approach

The global system approach considers the whole system as a single unit. The system modelling
may consist of several models1, which are launched sequentially or solved using a numerical
method. In any case, the system model is considered as a whole black-box model. The
global system design problem is formulated as a single optimization problem. Therefore, the
whole system is optimised simultaneously. This is a traditional approach commonly used in
engineering optimal designs [73].

This section presents optimization algorithms used to solve nonlinear and constrained
optimization problems, which are common for engineering design problems. Several conven-
tional optimization algorithms for both single-objective and multi-objective optimization are
firstly presented. Thereafter, the surrogate-assisted algorithm, an extension of the surrogate
modelling concept from Chapter 2, will be discussed.

3.1.1 Single-objective

This section intends to give practical information on single-objective optimization algorithms
to solve a multimodal problem. Two popular algorithms are presented. The first one is
Sequential Quadratic Programming (SQP) and the second one is Genetic Algorithm (GA).
GA is a global optimization algorithm and SQP is a local method. A multistart approach is
used with SQP in order to improve the SQP performances in the multimodal optimization

1For each disciplinary or sub-system
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problem. Each algorithm presents specific advantages and drawbacks. The hybridization of
2 algorithms allows making use of their advantages.

3.1.1.1 Gradient method

In the field of deterministic optimization, gradient information is commonly used in nonlinear
optimization methods2. The Sequential Quadratic Programming (SQP) algorithm is one of
the best gradient algorithms. It allows solving nonlinear constrained optimization problems.
SQP includes directly objective and constraint functions into its optimum solution search
process. The optimum solution satisfies Kuhn-Tucker conditions [109]:

∇f (x∗) +
i=1∑

m

λ∗i · ∇g (x∗) = 0

λ∗i · ∇g (x∗) = 0 i = 1, . . . ,m

λ∗i ≥ 0 i = me + 1, . . . ,m

(3.1)

At each iteration, the SQP solves Quadratic Programming (QP) problem. The Hessian
of Lagrange function is included in the QP problem. This allows taking into account direct
constraints.

The gradient of objective and constraint functions are needed in the Hessian estimation
process performed by the BFGS method. The gradient and derivative can be computed by
symbolic math when it is possible. This increases the robustness of the algorithm. However,
this symbolic derivative calculation may not always be possible. The finite difference method
can be used but it increases significantly the number of function calls. The SQP method is
efficient in the following conditions:

(i) The problem is not of a too high dimension, because a high dimensional problem be-
comes highly multimodal and the SQP is then trapped into local optima. Moreover, the
number of function evaluations increases rapidly in high dimensional problems if finite
difference is used to compute the gradient;

(ii) Computation of a gradient can be obtained with a rather high precision. The conver-
gence speed depends on the gradient precision;

(iii) The problem is smooth and scaled. Design variables must be scaled in order to ensure
a correct operation of the algorithm.

As SQP uses gradient information, it encounters some difficulties to find the global opti-
mum if the problem has several optima. A similar problem is stated in the case of a noisy
function with one or several true optima3. Figure 3.2 shows one-dimensional noisy example
as expressed in (3.2). Optimal points can be stuck in local optima (caused by noise in this
case). The global optimum is found at x = 0.9758 and f = −0.00937

min
x

f = (x− 1)2 + 0.01 sin (50x)︸ ︷︷ ︸
Noise term

subject to 0 ≤ x ≤ 2

(3.2)

2Nonlinear Programming (NLP) problem refers to an optimization problem whose models are nonlinear.
3In a noisy function, the true optimum is referred as the optimum found in the function without noise.
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(b) Initial point x = 1.7

Figure 3.2: SQP example with Noisy function

The same problem occurs in a multimodal optimization problem. An analytical optimiza-
tion problem taken from [95] illustrates this issue. The optimization problem is to minimise
a multimodal objective function with respect to a nonlinear constraint:

min
x

f = 2 + 0.01
(
x2 − x2

1

)2 + (1− x1)2 +

2 (2− x2)2 + 7 sin (0.5x1) sin (0.7x1x2)

subject to gexp = − sin (x1 − x2 − π/8) ≤ 0

x1 ∈ [0, 5], x2 ∈ [0, 5]

(3.3)

Figure 3.3a shows the contour plot and different optimal results found by 100 SQP runs
using random initial points. The global optimum is shown by a red triangle. One can observe
from Figure 3.3b that only 30 runs converge to the global optimum, which is x1 = 2.7450,
x2 = 2.3523 and f = −1.1743.
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Figure 3.3: SQP Multimodal example
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When dealing with the problem with multiple optima (multimodal), the “multistart”
strategy is very useful in order to obtain the global optimum. However, multiple SQP runs
can require high computation time.

3.1.1.2 Genetic algorithm

Genetic algorithms (GAs) are part of the most popular Evolutionary Algorithm (EA). GAs
are stochastic algorithms whose search methods are based on Darwin’s theory of natural
selection [23, 77].

Like other EAs, a genetic algorithm applies selection operators and variation operators
or search operators (called genetic operators in GAs’ case) to a set of individuals (design
vector). A Fitness value is assigned to each individual. The fitness depends on the objective
function and represents how good the individual is. The set of individuals or population is
treated simultaneously and improved from the actual generation (iteration) to the next one.
Two classical genetic operators are used: mutation and crossover. The mutation operators
transform an individual. The crossover operators use two or more parents to create a child
(called offspring) for the next generation.

GAs are known as global optimization algorithms as they are less sensitive to noisy func-
tions and able to solve multimodal problems. Figure 3.4 shows a two-dimensional example
(3.3) without constraint. A GA from Matlab “Genetic Algorithm and Direct Search Tool-
box” is used in this example. Individuals are plotted for the initial population, intermediate
and final generations. One can observe that individuals progressively converge to the global
optimum. In the intermediate generations, the populations are grouped at several design
locations. Most of them, therefore, are placed nearby the global optimum at the few last
generations.

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(a) Initial population

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(b) Generation 10

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(c) Generation 20

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(d) Generation 30

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(e) Generation 40

x1

x
2

0 1 2 3 4 5
0

1

2

3

4

5

(f) Generation 51 (final)

Figure 3.4: GA convergence over iterations
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One of the main advantages of GAs is that they can handle discrete and non-classifiable
variables [105]. This is not possible with an algorithm using gradient information. However,
some of GAs drawbacks can be stated:

(i) GAs are not likely to be able to find high accurate results compared with a deterministic
algorithm such as SQP, since GAs cannot ensure optimality [77]. The stopping criterion
is usually the maximum number of generations or the number of “stall” generations4.

(ii) GAs usually require a high number of function calls due to their global search char-
acteristics. However, since GAs work with population, they can be easily parallelized.
This reduces significantly the computation time.

To overcome these drawbacks, a hybrid algorithm combining GA and SQP is presented
in the next section.

3.1.1.3 Hybrid algorithm

As mentioned above, SQP and GAs have their own advantages and drawbacks. To summarize,
SQP requires a smaller number of objective and constraint function calls than GAs. It can
also find accurate optimum results as it is a deterministic algorithm. However, due to the
fact that SQP uses gradient information in its search algorithm, it tends to be trapped in
the local optimum and suffers from noise in objective or constraint functions. In contrast,
GAs search more globally and have more chance to find a global optimum. J. H. Holland
suggested [37] that GAs should be used to perform the initial global search. The results are
used to guide the local search.

In order to benefit the global search ability of a GA and the accurate local search of a
SQP, they are used as a complement of each other [36, 62]. To do so, the GA stopping criteria
are set so that the GA would stop prematurely e.g. with a low generation, a low population
or a high tolerance. It is assumed that the GA should find its optimal results near the true
global optimum. The GA results are therefore used as an initial point for the SQP algorithm.
The SQP proceeds the local search and find its local optimum, which is the global optimum
sought.

Table 3.1 shows optimization results for a multimodal 2D problem (3.3) obtained using a
SQP, a GA and a hybrid GA and SQP algorithm. 100 runs were performed for each algorithm.
The GA parameters are 100 for the population and 100 maximal generations. In the hybrid
algorithm, the population is reduced to 20. The hybrid algorithm gives more accurate results
than the GA. 87 runs of the hybrid algorithm give the results with a relative error lower than
0.01% compared to only 4 runs of the GA and 26 runs of the SQP. It can be observed that the
GA performed better for higher relative error (5%). This is due to the fact that the GA uses
a higher population than the hybrid algorithm. This allows the GA to serach more globally
and not to be trapped into the local optima. Regarding the number of function evaluation,
the SQP used the lowest function evaluation. However, the SQP must be launched many
times, using multi-start strategy and needs a higher function call number. The GA required

4Number of successive generations with no improvement in the fitness value.
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the highest number of evaluations. The hybrid algorithm offers a compromise between SQP
and GA. In this example, if only one optimization is launched, the hybrid algorithm has the
highest probability to find the accurate global optimum.

This kind of comparison is also performed for a traction system design problem. The
reader should refer to [61] for details.

Table 3.1: Comparison between 3 optimization algorithms

Method
Relative error Number of function evaluation

≤ 0.01% ≤ 1% ≤ 5% min. avg. max.

SQP 30 30 30 9 23 97

GA 4 66 92 1969 5593 10657

Hybrid GA,SQP 87 87 87 667 1261 1971

3.1.2 Multi-objective

One should be realise that in real life, most of engineering design problems are multi-criteria
or multi-objective problems. To optimise such design problems, the engineer may simplify
the multi-objective “design problems” and formulate a single-objective “optimization prob-
lem” due to the limited performance of early developed optimization algorithms. Only the
most important criterion is selected as a sole objective function. The others are fixed as
parameters or constraint limits. It is important to note that this process is done during the
optimization problem formulation phase. This approach is called the “a priori method”. The
transformation techniques are introduced in Chapter 1 and will be detailed here since these
techniques can also be used to generate a Pareto front, which is known as the “a posteriori
method”. This section intends to explain how to solve the “multi-objective design problem”
using the a posteriori approach.

To illustrate the algorithms, two test problems are chosen from the literature. These
examples will be used all along this Chapter. Both problems have 2 design variables and 2
objectives to be minimised. The first problem is a constrained problem “CONSTR” retrieved
from [20]. It is expressed as following:

min f1 = x1

min f2 = (1 + x2)/x1

subject to g1 = x2 + 9x1 ≥ 6

g2 = −x2 + 9x1 ≥ 1

x1 ∈ [0.1, 1] and x2 ∈ [0, 5]

(3.4)

Figures 3.5 are obtained from 50 step grids (2500 points in total). Only feasible designs
are plotted in the design space as shown in Figure 3.5a and in the objective space as in Figure
3.5b. The Pareto optimal solutions are depicted by the red circles.
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Figure 3.5: CONSTR test problem

The second problem “VLMOP2” from [108] is without constraint. It is expressed as:

min f1 = 1− exp


−

∑

i=1,...,n

(
xi −

1√
n

)2



min f2 = 1 + exp


−

∑

i=1,...,n

(
xi −

1√
n

)2



subject to x1 ∈ [−2, 2] and x2 ∈ [−2, 2]

n = 2

(3.5)

Figure 3.6 shows 2500 sample points obtained from a grid design. Since there is no
constraint, the design points are spread throughout the design space. The Pareto front is
concave.
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Figure 3.6: VLMOP2 test problem
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3.1.2.1 Transformation

In the early era of optimization, there were only single-objective optimization algorithms.
However, the real-world design problems are multi-criteria problems. As mentioned above,
engineers simplify or transform the design problem into an equivalent design problem that
can be solved by using a single-objective optimization algorithm. This approach is not very
suitable for industrial design processes since the decision (e.g. importance of each criterion,
allowable limit) must be made before obtaining optimal design solutions and the optimiza-
tion process has to be rerun if the results are not satisfying due to the lack of problem
knowledge. The a posteriori approach is preferred as it gives the possibility to generate the
Pareto front (see Section 1.1.5) and to shift the decision to perform after the optimization
phase. Meanwhile, researchers are forced to develop transformation techniques. A multi-
objective design problem can be solved i.e. generate the Pareto front, by using multiple runs
of single-objective optimization. The objectives are transformed into one objective using
transformation technique such as weighted-sum and epsilon-constraint techniques [15, 78].
The equivalent problem is then optimised using single-objective optimization algorithm. The
optimization is rerun with different transformation parameters so that an optimal solution
set is located.

3.1.2.1.1 Weighted-sum

Several objectives are transformed into one objective with weighted-sum formulation. The
weighted-sum optimization problem is expressed as:

min
x

fws =
m∑

i=1

wifi

subject to g ≤ 0

h = 0

(3.6)

where wi is the weight for the ith objective function. For the a priori approach, weights are
given by an engineer using his experiences and knowledge of design problems. The equation
(3.6) results in a unique final solution.

This transformed objective function can be represented as a straight line in an objective
space as shown in Figure 3.7. L1 and L2 show the slope of fws with different weight. The
minimisation of fws is equivalent minimizing c in:

f2 = −w1

w2
f1 + c = L · f1 + c (3.7)

In the figure, c is minimised. Therefore, Pareto solutions can be located.
One weight vector and one optimization yield a Pareto optimum solution. The weighted-

sum optimization problem is then run with different weight parameters in order to find the
Pareto front. This approach is the a posteriori approach mentioned above. Usually, wi ≥ 0
for i = 1, . . . ,m and

m∑

i=1

wi = 1 (3.8)
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Figure 3.7: Weighted-sum transformation

Even the weighted-sum method is known as an efficient approach [84], this method cannot
ensure the non-dominated solutions in the concave part of Pareto front as shown in Figure
3.7b. With the same slope L1, it tends to find a solution in the convex part where the
constant value c is minimised.

3.1.2.1.2 Epsilon-constraint

In the epsilon-constraint method, only one criterion is chosen as objective function. Other
criteria are considered as constraints. The epsilon-constraint optimization problem is defined
as following:

min
x

f1

subject to g ≤ 0

h = 0

fi ≤ εi i = 2, . . . ,m

(3.9)

where ε parameter is an additional constraint value.

By varying εi for each optimization, the Pareto front can be found. This method can
located the whole Pareto front even in the nonconvex zone.

3.1.2.1.3 Illustration example

As already stated in the previous section, the Weighted-sum technique cannot find the
non-convex Pareto front. Therefore, it is tested only with the “CONSTR” problem. For
solving the “CONSTR” problem, 11 weight parameters are given (10 steps from 0 to 1)
and 11 optimizations are launched independently. A SQP with multistart is used for each
optimization in order to ensure a global optimum. Table 3.2 shows 11 weight parameters and
optimization results i.e. objective functions and constraint functions. Figure 3.9a shows a
non-dominated front. One can observe that the weight parameters of point 1 to point 6 lead
to the same non-dominated solution. The same behaviour occurs for points 8 to point 10.
This is because the change in the slope of the Pareto front is not continuous. Figure 3.9b
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Figure 3.8: Epsilon-constraint transformation

shows the non-dominated front plotted from 1000 weight parameter steps. The large part of
non-dominated front on the left side is obtained from very small variation of w1 from 0.94 to
1.

Table 3.2: Weighted-sum results for “CONSTR” problem

Number
Weight Design variable Objective Constraint

w1 w2 x1 x2 f1 f2 g1 g2

1 0.00 1.00 1.00 0.00 1.00 1.00 -3.00 -8.00

2 0.10 0.90 1.00 0.00 1.00 1.00 -3.00 -8.00

3 0.20 0.80 1.00 0.00 1.00 1.00 -3.00 -8.00

4 0.30 0.70 1.00 0.00 1.00 1.00 -3.00 -8.00

5 0.40 0.60 1.00 0.00 1.00 1.00 -3.00 -8.00

6 0.50 0.50 1.00 0.00 1.00 1.00 -3.00 -8.00

7 0.60 0.40 0.82 0.00 0.82 1.22 -1.35 -6.35

8 0.70 0.30 0.67 0.00 0.67 1.50 0.00 -5.00

9 0.80 0.20 0.67 0.00 0.67 1.50 0.00 -5.00

10 0.90 0.10 0.67 0.00 0.67 1.50 0.00 -5.00

11 1.00 0.00 0.39 2.50 0.39 9.00 0.00 0.00

For the epsilon-constraint technique, anchor points are sought in the first step by mini-
mizing each objective function. This allows determining epsilon parameters according to the
variation in the objective function. Ten epsilon steps are defined for “CONSTR” problems.
This yields 11 optimization runs in total. Figure 3.10a plots non-dominated fronts. The
front with stars is the case in which the objective function f1 is minimised and the objective
function f2 is considered as a constraint. Table 3.3 lists design variables and objective and
constraint values for each epsilon ε2. The part situated on the right side of this front is not
explored. The fixed epsilon constraint step is larger than the variation of the objective f2 in
this part. To overcome this problem, one can minimise f2 and use f1 as epsilon constraint
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Figure 3.9: Non-dominated front for “CONSTR” problem obtained from weighted-sum tech-
nique

instead. The results are depicted by squares in the same figure. Non-dominated solutions are
better spread throughout the front. Figure 3.10b shows Pareto optimal front for the “VL-
MOP2” problem obtained by using epsilon-constraint technique. It shows that this technique
can locate nonconvex Pareto fronts.

Table 3.3: Epsilon-constraint results for “CONSTR” problem

Number
Epsilon Design variable Objective Constraint

ε2 x1 x2 f1 f2 g1 g2

1 min f2 1.00 0.00 1.00 1.00 -3.00 -8.00

2 1.80 0.65 0.17 0.65 1.80 0.00 -4.67

3 2.60 0.60 0.57 0.60 2.60 0.00 -3.86

4 3.40 0.56 0.92 0.56 3.40 0.00 -3.16

5 4.20 0.53 1.23 0.53 4.20 0.00 -2.55

6 5.00 0.50 1.50 0.50 5.00 0.00 -2.00

7 5.80 0.47 1.74 0.47 5.80 0.00 -1.51

8 6.60 0.45 1.96 0.45 6.60 0.00 -1.08

9 7.40 0.43 2.16 0.43 7.40 0.00 -0.68

10 8.20 0.41 2.34 0.41 8.20 0.00 -0.33

11 min f1 0.39 2.50 0.39 9.00 0.00 0.00

Both transformation techniques allow using a state-of-the-art single-objective optimiza-
tion algorithm to generate a Pareto front. The application of a weighted-sum technique to
the optimal design in electrical engineering can be found in [55].

However, the examples above show some drawbacks of the method. The weighted-sum
technique encounters the duplicated solution problem when the slope of the Pareto front is
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Figure 3.10: Non-dominated fronts obtained from epsilon-constraint technique

not continuous. Moreover, it cannot solve the problem with non-convex fronts. The epsilon-
constraint works slightly better since it can locate nonconvex front. Furthermore, it solves
the problem in a more intuitive manner.

3.1.2.2 Multi-objective algorithm

Some recently developed multi-objective algorithms can generate a Pareto front in a single
run. These algorithms fall into the class of evolutionary algorithms. They deal with a
group of feasible solutions concurrently. They allow finding a set of optimal solutions i.e.
non-dominated solutions from a single optimization. Moreover, evolutionary algorithms can
easily cope with discontinuous or non-convex Pareto fronts [20]. This section introduces
one of the most popular and best performances multi-objective evolutionary optimization
algorithm: Non-dominated sorting genetic algorithm II (NSGA-II) [20].

NSGA-II uses an elitist approach and a Pareto optimal concept. It combines two sort-
ing procedures: non-dominated sorting and crowding distance sorting. From the previous
population Pt, an offspring population Qt of the same size Npop is created by using binary
tournament selection, recombination and mutation operators. A combined population Rt is
sorted based on the nondomination and each solution is assigned a rank as shown in Figure
3.11a. The rank 1 solutions (denoted as F1) are the best solutions. For a constrained opti-
mization, the definition of domination is modified in order to take into account the constraint
issue. According to Deb et al. [20], a solution i “constrained-dominates” a solution j if any
of these three conditions is true:

(i) The solution i is feasible and the solution j is infeasible.

(ii) The solution i and j are infeasible but the solution i generates a smaller constraint
violation.

(iii) The solution i and j are feasible and the solution i dominates the solution j.
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Any feasible solution is always given a better rank level than any infeasible one. Any infeasible
solution with a smaller constraint violation is better than a solution with a higher constraint
violation. The comparison between feasible solutions is not changed. Their ranks depend on
the level of domination according to (iii). By using the ranks, the algorithm converges to
non-dominated and feasible solutions.

To construct a new population for the next generation Pt+1, the lower rank sets are
selected in priority i.e. rank 1 then rank 2 and so on. Assume that Fl is the last non-
dominated set that can fit into Pt+1. If the total number of solutions from F1, F2, · · · , Fl is
larger than Npop, only the best solutions of Fl can be selected. The crowding distance is used
for this purpose. The crowding distance allows estimating the density of solutions around a
solution in the population. The higher the crowding distance, the more sparsely solutions
on the front5. The crowding distance is computed for the last rank Fl. The solutions with
higher crowding distance are selected into Pt+1 until the total number of population reaches
Npop. Figure 3.11b from [20] depicts this sorting procedure.
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Figure 3.11: NSGA-II

As GAs for single-objective problems, NSGA-II can handle the mixed variable problem.
The Pareto fronts for two test problems “CONSTR” and “VLMOP2” are given in Section
3.1.3.7.2. Figure 3.22 shows the results from NSGA-II and a surrogate-assisted algorithm
presented below. The application of NSGA-II to the design of traction motors can be found
in [60].

5The crowding distance assignment process can be found in [20]
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3.1.3 Surrogate-assisted optimization algorithm

3.1.3.1 Overview

Chapter 2 has presented several surrogate modelling techniques. The surrogate model con-
structed on the basis of these techniques can be used for many purposes as mentioned in
Section 2.2.1. One of the main purposes is to replace the fine model in the optimization
process in order to decrease optimization time. The evaluation of surrogate models is fast
during an optimization process, however, the final solution remains the approximated one.
This approximated solution must be validated with high fidelity models. This validation may
not be satisfying if a surrogate model presents low accuracy characteristics. If the number
of sample points is low, the surrogate model will not be accurate. On the other hand, if the
number of sample points is too high, this yields a high accuracy model, but some sample
points can be wasted if they are not close to the sought optimum. When using a surrogate
model in the optimization process, the most important area is the area where the optimum
is located. The sample points should be dense in this zone. In other areas, the sample points
can be more sparse. The surrogate model gives the global trend and guides the optimization
algorithm towards the optimum. Figure 3.12 shows two surrogate models constructed from
well distributed sample point sets (Figure 3.12a) and sample points concentrated near the
optimum with the same amount of sample points (3.12b). The optimal results are found at
ŷ = −4.6742 for the former case and −6.2504 for the latter case. The true optimum is at
f = −6.5511. Even the form of the model constructed from well-distributed sample points
is similar to the true function (see Figure 2.16a) but the optimal result is not correct. The
model built from sample points concentrated near the optimum gives a better result. In this
case, the overall error is higher but the model is more accurate near the optimum sought.

(a) Distributed sample point set (b) Sample points concentrated near optimum

Figure 3.12: Surrogate model for an optimization purpose

Surrogate model refinement can be performed manually by the designer or even better, by
an optimization algorithm. For example, the simplest algorithm can iteratively add sample
points where the minimum of the surrogate model is located until the error between the fine
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model and the surrogate model is sufficiently small. Such optimization algorithms are in the
class of Surrogate-assisted optimization algorithm. Some of them can be stated: Efficient
Global Optimization (EGO) [97], SuperEGO [94], RBF based global optimization [33]. A
taxonomy of surrogate-assisted algorithms can be found in [43]. Most of them have a common
general algorithm. The difference is how the infill criteria are described.

The following sections give the general algorithm and the explanation for the single-
objective case. Then the particular information concerning the multi-objective case are given.
As the general principle is common between single and multi-objective case, the information
given for the single-objective case is also useful for the multi-objective case if it is not stated
otherwise.

3.1.3.2 Main algorithm

Figure 3.13 shows the general flowchart of a surrogate-assisted optimization algorithm (single
or multi-objective). Some differences may be found, depending on the algorithm.

The algorithm can be described step-by-step as following:

(i) The algorithm starts with sampling a set of initial points using sampling technique6.

(ii) The initial sample points are evaluated by using a high fidelity model.

(iii) Initial surrogate models are fitted individually for each objective function and constraint.

(iv) An infill point is located by maximizing the infill criteria. Most of the surrogate-assisted
algorithms use a Kriging surrogate model and an estimated standard error (ŝ) associated
with Kriging in their infill criteria. This step allows selecting the most promising design
vector to evaluate high fidelity models such as FEA at the next iteration.

(v) Once a design vector of infill point is located, the high fidelity model is evaluated.

(vi) The infill high fidelity results are validated against acceptance rules. In a single-objective
optimization, it may be to simply check if the objective function of the infill point is
lower than the best objective function known so far. For constraint optimization, it is
important that the constraint value of the infill point does not violate the constraint
condition (within a small tolerance). It will be included in the improvement solution
set if these conditions are verified.

(vii) In any case, the new infill point is added to the sample point set.

(viii) At each iteration, the algorithm checks if the stopping criteria are met. Various stopping
criteria can be used. They include the maximal number of iterations, the maximal time
limit or the minimal expected improvement. The minimal expected improvement is
particularly used for EGO algorithm. The maximal number of iterations and time limit
are more practical as the engineer can control his allowable computer resources.

(ix) Return to (iii). The Kriging model is then reconstructed and the process continues until
the stopping criteria are met.

6DOE or space-filling design. See Section 2.2.2
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Figure 3.13: Flowchart of a Surrogate-assisted algorithm

3.1.3.3 Initial point selection

The location of initial sample points should be well distributed over the design space. The
sampling techniques presented in Section 2.2.2 can be used. Space filling designs are reported
to perform better with a small number of data set [42].

The number of initial points nsinit is not well studied in the literature and remains arbi-
trary. D. Jones et al. suggest 10·nv initial points [44] for a single-objective optimization. In
constraint optimization, the number of initial points may depend on the number of design
variables (nv) and on the inequality and equality constraint (ng, nh). From previous experi-
ences, the rule described as in (3.10) gives good results. For a multi-objective optimization,
nsinit is also scaled according to the number of objective m. This issue is not investigated in
this research. Further study of it would however be interesting.

nsinit = 5m · (nv + ng + 2nh) (3.10)

It should be noted that some of these initial points must be feasible. In hard constrained
optimization problems, the feasible sample point search procedure may be performed before
doing the infill point search.



78 Optimization technique

3.1.3.4 Infill criteria for single-objective optimization

In single-objective optimization, in order to find an optimum of the true function using the
surrogate model and predicted model error, one should evaluate a new sample point where:

(i) the surrogate model is minimal and the error is low. This is called exploitation.

(ii) the error is high. This is called exploration.

The combination of 2 criteria of selection is known as Infill Criteria (IC). The infill criteria
are usually based on statistic approaches like, for example, the probability of improvement
[43], the expected improvement [44] and the generalized expected improvement [97]. The infill
criterion has to be maximised using a conventional single-objective optimization algorithm.
Due to its multimodal properties, a global optimization algorithm is more suitable. A genetic
algorithm or a gradient-based algorithm with multi-start can be used.

In this research, the Generalized Expected Improvement (GEI) is used. It was proposed
by M. Schonlau et al. [97] in EGO algorithm. It is the probability that the estimated response
(ŷ) is smaller than the current minimal feasible objective function (fmin) and the uncertainty
associated with Kriging model (ŝ) is high. It can be explained as how the objective will be
improved if we add a candidate point into the sample point set. Mathematical proof of GEI
can be found in [96].

GEI can be expressed as:

GEI=E [Ig (x)] = ŝg
g∑

k=0

(−1)k
(

g!
k! (g − k)!

)
ug−kTk (3.11)

where
u (x) =

fmin − ŷ (x)
ŝ (x)

(3.12)

Tk = −φ (u)uk−1 + (k − 1)Tk−2 (3.13)

T0 = Φ (u) (3.14)

T1 = −φ (u) (3.15)

ŝ (x) =
√
MSE (x) (3.16)

Φ and φ are normal cumulative distribution and normal probability density functions, re-
spectively (see Figure 3.14).

The value of the non-negative integer g allows controlling the behaviour of GEI. If g is
high, GEI is high in the uncertain region. But if g is small, the peak of the GEI function
moves to the region where the probability of finding a better response is high (see Figure
3.15). The GEI with g = 1 becomes the expected improvement (EI) given as in (3.17) [44].
In this case, two parts can be observed clearly. The first part performs local search i.e. ŷ is
smaller than fmin. The second part allows to search more globally in low accuracy areas i.e.
high ŝ.

EI=E [I (x)] = (fmin − ŷ) · Φ
(
fmin − ŷ

ŝ

)

︸ ︷︷ ︸
Local search term

+ ŝ · φ
(
fmin − ŷ

ŝ

)

︸ ︷︷ ︸
Global search term

(3.17)
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Figure 3.15: Generalized Expected Improvement for (a) g = 1 and (b) g = 4

M. J. Sasena et al. proposed the cooling schedule [95], which starts with high g and then
decreases. In this work, g has been fixed to 5 for the first iterations. This allows the algorithm
to search globally. It is then decreased to 1 when reaching higher iteration numbers in order
to improve local search. Other schemes can be used depending on the problem considered.

3.1.3.5 Constraint handling

The constraints can be grouped into 2 types: inexpensive constraint (ginexp) and expensive
constraint (gexp). An inexpensive constraint can be evaluated rapidly using analytic model
for example mass calculation or geometry constraint. It is then used directly in the infill
optimization process (infill sub-optimization problem). It is handled from the constraint
optimization algorithm being used. On the contrary, an expensive constraint is evaluated by
using the high fidelity model requiring high computation time. In addition to the objective
function, the expensive constraint is modelled individually, by using a surrogate model.

Two constraint handling methods are investigated. The probability method transforms
a constrained optimization problem into an unconstrained one. The second method uses a
direct constraint approach. A particular equivalent constraint function allows taking into
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account the uncertainty of a surrogate constraint model. The two methods are presented
firstly and an example with 4 cases shows the particular characteristics of each technique.

3.1.3.5.1 Probability method

In order to take into account constraints, the Infill Criteria (IC)7 is multiplied by the prob-
ability that the interesting point is feasible. The infill maximisation problem with constraint
using the probability method is described as [96]:

max
x

IC (x) ·
∏

Pexp (x)

subject to ginexp ≤ 0

where Pexp (x) = P (ĝexp (x) ≤ 0) = Φ
(

0− ĝexp (x)
ŝgexp (x)

) (3.18)

Pexp is the probability that the estimated expensive constraint (ĝexp) is lower than or equal
to 0 i.e. the interesting point is feasible.

This probability method allows sampling the infill points in the infeasible zone, which is
necessary for increasing the accuracy of a Kriging constraint model. However the probability
method impacts on the infill criterion function too strongly near the border of the constraint
[95]. After a number of iterations when the constraint model is sufficiently accurate, it is
suggested to incorporate a constraint surrogate model (ĝexp) directly in the sub-optimization
problem as already done with inexpensive constraints. This prevents choosing too many infill
points in the infeasible zone. This method is described in the following section.

3.1.3.5.2 Direct integration into sub-optimization problems

This method uses a Kriging constraint model directly in the infill sub-optimization prob-
lem. The infill optimization maximises the infill criterion and points out an infill design
vector, which is feasible according to the information from surrogate models. Since the Krig-
ing models are not sufficiently accurate at the first iterations, it is possible that it is not
feasible and fails when evaluating with the fine model and validating against the acceptance
condition. This is always true even at high iteration numbers, when the surrogate models
are sufficiently accurate. For these reasons, the surrogate models should not be treated as if
they were correct.

In order to avoid this problem, we propose a novel approach [59], which allows taking into
account the uncertainty of a surrogate constraint model instead of directly using the surrogate
model of expensive constraints. The surrogate equivalent of an expensive constraint (ĝexpeq)
is expressed as:

ĝexpeq = ĝexp + αŝgexp (3.19)

where ĝexp and ŝgexp are the Kriging prediction and the estimated standard error of expensive
constraint8, respectively. α is positive adaptive coefficient.

7It can be any infill criteria mentioned in 3.1.3.4. In this research, the GEI is considered.
8ĝexp and ŝgexp are the same scale and use the similar unit
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The infill maximisation problem with constraint using direct integration method is de-
scribed as:

max
x

IC (x)

subject to ginexp ≤ 0

ĝexpeq ≤ 0

(3.20)

This method allows taking into account the estimated errors of the Kriging constraint
model. As ŝgexp is always positive, ĝexpeq is higher than ĝexp at any unknown design site9.
This acts as a “factor of safety”. One can start with high α so that the infill optimization
is more conservative i.e. the infill point is selected only in the feasible zone. The adaptive
coefficient is then decreased gradually when the Kriging model is more and more accurate, as
the number of iterations and sample points increase. Therefore, the infill points are placed
near or at the constraint border.

Drawbacks of this surrogate equivalent of expensive constraint (ĝexpeq) are that the infill
selection process is conservative and that the constraint model in the infeasible zone is hardly
improved. For this reason, it is more efficient to use the probability method at the first
iterations and switch to the direct constraint integration approach when the constraint model
is sufficiently accurate as suggested above.

3.1.3.5.3 Constraint handling illustration example

A one-dimensional mathematics test problem is described in (3.21). This example intends
to show the behaviour of constraint handling methods via four illustration cases. The objec-
tive function is the same as (2.4) in Chapter 2. Figure 3.16 shows objective and constraint
functions. A coordinate of three local optima are shown in Table 3.4.

min
x

y = sin(x)− exp
( x

20

)
+ 10

subject to gexp = (0.0106x3 − 0.0943x2 + 0.0822x+ 8.0447)− y ≤ 0

0 ≤ x ≤ 10

(3.21)

Table 3.4: Three optima of a one-dimensional test problem

Number x Objective

1 1.1430 8.0313

2 1.8482 7.9414

3 7.2662 7.7297

9At an unknown design site, ŝgexp is of positive value. ŝgexp is zero at a known sampled site.
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Figure 3.16: One dimensional test optimization problem

Figure 3.17a and 3.17b show Kriging models constructed from five sample points (the five
sample points and corresponding objective and constraint values are shown in Table 3.5).
Lines represent true functions and dotted lines depict Kriging models. An error between
true functions and Kriging models can be observed. Figure 3.17b also shows the surrogate
equivalent constraint ĝexpeq and Kriging constraint model ĝexp. It is constructed for α = 1.

Table 3.5: Sample point for one dimensional test problem

Point x Objective Constraint

1 0.7 8.3202 -0.2605

2 2 7.9855 -0.0688

3 4.2 9.6379 -2.1261

4 6.7 8.1972 -0.6468

5 9.5 8.4671 0.9361

Figure 3.17c plots infill criteria based on GEI with and without probability constraint
handling. To compute GEI (3.11), the control parameter g is set to 4 and fmin is the
minimum objective value among 5 sample points i.e. 7.9855. One can observe that the infill
criteria differ from each other. The maximum value of infill criteria moves from the right side
to the left side in the case of a GEI with probability constraint where the feasible probability
is high.

The following cases give an example of when the algorithm is at the first iteration. Four
cases correspond to different ways of treating objective and constraint models in the infill
sub-optimization problem. Figures 3.18 shows infill criteria and the constraint model for each
case (The comparison of different models is already shown in Figure 3.17 above.) and Table
3.6 gives a summary of the model, the infill location and the results during the validation
step.

Case 1: This is the simplest surrogate-assisted algorithm. The Kriging objective model is
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Figure 3.17: Different models used in one-dimensional examples
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Figure 3.18: One-dimensional example: Objectives and constraints for each case

minimised and Kriging constraint models are used. This is done without taking into account
the inaccuracy of the models. The optimal result is then verified with the fine model (true
function in this case) and if the error between two models is higher than a predefined allowable
error, the Kriging model is updated with this optimum point and optimization is rerun. As a
result, The minimum is found when x = 2 for the first iteration. It is clear that the result is
not improved, even when the additional point is added at this minimum point, because the
Kriging model and the true function give the same result. Therefore, the algorithm will stop
at this iteration.

Case 2: Case 2 uses GEI as the infill criteria and the Kriging constraint model is
taken into consideration. By maximising GEI with a constraint using the Kriging constraint
model10, the maximum is found at the rightmost peak ( x = 7.81). This infill point will
not be accepted as the improve result when validating against the true models due to the

10The location of the maximum infill criterion is used as the new design vector for the next iteration. See

Equation (3.18) and Figure 3.13 for the algorithm
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fact that this sample point violates the true constraint value (gexp > 0). This is because
the Kriging constraint model for x between 6.7 and 9.5 gives an incorrect prediction. The
constraint model is underestimated. The first two cases confirm that the constraint model
must be treated with the use of a more efficient method.

Case 3: Case 3 demonstrates the case of the probability method. The GEI with a feasible
probability is given as the infill criterion. It is maximised without any constraint in the infill
subproblem (3.18). The infill point is found when x = 2.66. This infill point can be validated
with the true functions.

Case 4: This case illustrates the direct constraint integration method. It uses GEI as the
infill criteria and the surrogate equivalent constraint ĝexpeq instead of the Kriging constraint
model as in case 2. The surrogate equivalent constraint shows a more pessimistic constraint
prediction compared to the Kriging constraint model. As a result, the infill maximisation
with constraint (3.20) gives a result when x = 2.64, which is near to that of case 3. This infill
point is feasible when validating against the true constraint function.

At this iteration level, these infill points have not yet allow to improve the results. The
infill point is added into the sample data set, the Kriging models are refitted and the algorithm
proceeds to the next iteration.

Table 3.6: Summary of the model used in four cases and 1st iteration infill point location

Case Infill criteria Cons. model 1st iter. infill point True function

(x, y) validated

1 ŷ ĝexp (2, 7.99) yes

2 GEI ĝexp (7.81, 8.46) no

3 GEI (x) ·∏Pexp (x) - (2.66, 8.28) yes

4 GEI ĝexpeq (2.64, 8.27) yes

3.1.3.6 Multi-objective optimization

In this section, the information specific to multi-objective optimization using surrogate-
assisted algorithms are given. The infill criteria and the acceptance conditions are different
from those of single-objective optimization.

3.1.3.6.1 Infill criteria for multi-objective optimization

In the explanation below, a trial point represents an objective vector (in objective space)
evaluated by using the Kriging model at the trial design vector (in design variable space)
given by a single-objective optimization algorithm used in the infill optimization process. An
infill point represents an objective vector evaluated with the high fidelity model and the infill
design vector, which is the optimal result from the above mentioned optimization process.

For multi-objective optimization, the infill criterion is different. In this work, the new infill
criterion, named pseudo distance is proposed. It is based on the non-dominate concept. The
pseudo distance comprises two terms: the dominate distance Dd and the neighbour distance
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Dn given in (3.22)–(3.24). It intends to give rise to the most promising design vector, which
has the following two properties:

(i) It dominates the maximum number of existing non-dominated solutions with the fur-
thest distance. This improves the optimality of non-dominated front.

(ii) It fills the largest gap between two existing non-dominated solutions. This gives the
uniformly spread non-dominated front.

These two properties are common for multi-objective optimization algorithms using non-
dominated concepts. However, a unique characteristic of surrogate-assisted algorithms is
that they take into account the uncertainty of surrogate models. Therefore, the pseudo
distance infill criteria search for:

(i) an accurate solution that offers the longest euclidean distance between itself and the
existing non-dominated solutions that are dominated by it.

(ii) a less accurate solution that is located on the non-dominated front and that fills the
largest gap between its two nearby existing non-dominated solutions.

The pseudo distance infill criteria are expressed as:

Dpseudo (x) = Dn (x) +Dd (x) (3.22)

Dn (x) =
m∑

i=1

((
f

(s+)
i − f̂i (x)
fimax − fimin

)
ŝi (x)

)
(3.23)

Dd (x) =
ndom∑

j=1

m∑

i=1

((
f

(sj)
i − f̂i (x)
fimax − fimin

)
1

ŝi (x)

)
(3.24)

where m corresponds to the number of objective functions, ndom to the number of existing
non-dominated points dominated by the trail point, fimin and fimax minimum and maximum
of the ith objective function in the existing non-dominated front (NF), ŝi to the predicted
standard error (3.16) of the ith objective function Kriging model, f̂i to the Kriging prediction
of the ith objective function and f

(s+)
i to the ith objective function of the point next to the

trial point in the ith objective space.
Dd seeks for a design vector with the lowest estimated standard error (low ŝ) i.e. an

accurate Kriging prediction, and dominates the existing NF with the greatest distance. It
tends to push the infill point to the global utopia point if there is an accurate solution that
dominates all existing non-dominated solutions.

Contrarily, Dn focuses only on neighbours of the trial point. It gives a design vector with
the highest standard error (high ŝ) i.e. a non-accurate Kriging prediction, and the highest
distance between the trial point and its neighbour non-dominated points. Dn will try to push
the infill point to the local utopia point if the solution is not an accurate one. And compared
to another pairs of neighbour points, Dn will simultaneously fill out the largest gap between
two existing non-dominated points. The high standard error allows improving the Kriging
models and doing global search in the design variable domain.
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To explain the idea of the pseudo distance, an illustration example is given in Figure
3.19. Design solutions are shown in an objective space. A set of existing non-dominated
front NFinit = [S1 S2 S3 S4 S5] is obtained from the initial sample point set. At iteration 1,
many trial design vectors are tested through an infill criteria optimization process depending
on the optimization algorithm used. For simplification reasons, only two trial points T1 and
T2 are shown in Figure 3.19a. T1 dominates 2 existing non-dominated points S2 and S3. A
trial non-dominated front is determined TNF (T1) = [S1 T1 S4 S5]. Similarly, T2 dominates
only S3 and TNF (T2) = [S1 S2 T2 S4 S5] can be identified. Dn and Dd for each trial point
are then computed according to (3.23) and (3.24), respectively. Note that the modelling
accuracy is considered as equal throughout the entire Kriging models in order to simplify the
explanation. In this example, T1 gives higher Dpseudo than that of T2 and is chosen as the
infill point. The fine model is evaluated using the design vector of T1. The Kriging model is
then rebuild. This infill point (T1) is validated against the acceptance conditions (see Section
3.1.3.6.2 below). It is accepted as the improved solution S6. Therefore, a new non-dominated
front can be located NF1 = [S1 S6 S4 S5].

At iteration 2, two trial points T3 and T4 are tested. These trail points do not dominate
any existing solution since all existing solutions are on the true Pareto front. This gives
Dd = 0. In this case, only Dn influences the choice of the infill point. The infill criteria
optimization process will try to improve the distribution property of non-dominated front by
filling the largest gap between any two points on the non-dominated front. Therefore T3 is
selected as the infill point.

In reality, when the Kriging model accuracy is not equal and several constraints are taken
into account, the infill optimization may select the infill point in a different manner. It reaches
a compromise between the distance and the accuracy of models.
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Figure 3.19: Illustrating example of the Pseudo distance concept

3.1.3.6.2 Acceptance condition for multi-objective optimization

Once the infill design vector is located by the infill optimization subproblem, the high
fidelity model is evaluated. The acceptance condition is the verification that the new infill
point improves the existing NF and satisfies the constraints. Based on the non-dominated
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concept, a solution improves the existing non-dominated front if one of the two following
criteria is met:

(i) It dominates at least one existing non-dominated solution.

(ii) It is not dominated by any existing non-dominated solution.

If the candidate infill point respects the acceptance condition, it will be added to the
existing non-dominated front. In any case, it is added to the set of sample points. Kriging
models are then refitted with the new set of sample points.

3.1.3.7 Mathematical test example

3.1.3.7.1 Single-objective noisy function optimization

The first example intends to demonstrate the capability of a surrogate-assisted algorithm
(EGO in this case) to cope with noisy functions. This is a very important issue in the design
of electrical machines using Finite Element Analysis (FEA) [56]. The application to electric
machine designs will be presented in Chapter 4.

The originally proposed problem expressed in (3.3) is multimodal and with a constraint.
It deals with smooth objective and constraint functions. In order to imitate the numerical
noise in FEA, the problem has been modified. A noise term is added into the constraint
function. The optimization problem is expressed as following:

max
x

f = 2 + 0.01
(
x2 − x2

1

)2 + (1− x1)2 +

2 (2− x2)2 + 7 sin (0.5x1) sin (0.7x1x2)

subject to gexp = − sin (x1 − x2 − π/8) + 0.1 {sin (100x1) + sin (100x2)}︸ ︷︷ ︸
Noise term

≤ 0

x1 ∈ [0, 5], x2 ∈ [0, 5]

(3.25)

Figure 3.20 shows the contour plot and feasible area of analytical test problem. Multi-
ple local optima can be observed especially on the border of constraint limits. The global
optimum is presented by the red star at the design vector x = [2.6759 2.4356], which gives
f = −1.323. This reference global optimal solution is found by using an SQP multistart with
1000 random initial points.

In the EGO algorithm, both the objective and constraint functions are considered “ex-
pensive”. Therefore, they were modelled by two independent Kriging models. The constraint
is handled by the probability method. Ten tests were carried out with different sets of initial
sample points selected by using the Latin Hypercube Sampling (LHS) technique. EGO stops
when the GEI value is lower than 0.01. This is done with an average of 80 function calls.
Figure 3.21a shows initial sample points and infill points in the design space. Figure 3.21b
shows the EGO infill history. One can observe that EGO evaluates the points with a high
objective function or infeasible points in order to improve the Kriging model accuracy and
the global search.

Despite the noisy constraint function, the worst EGO results (from 10 tests) are found with
a relative error of 13% on the optimal objective function value11 and 10% on the Euclidian

11compared with the reference global optimum objective value
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(a) entire design space (b) zoom

Figure 3.20: Contour plot of an analytical test function and constraint for the entire design
space (a) and with a zoom (b)

distance12. The best EGO results are within 2% for both criteria. However it cannot find
the exact global optimum.

(a) initial and infill points in design space
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Figure 3.21: Infill point history. (a) Initial and infill points in design space. Circles are initial
points and squares are infill points (b) Objective function value at each iteration

Compared with a traditional algorithm Sequential Quadratic Programming (SQP) method
with multistart (100 starts with random initial points), each optimization required an average
of 145 function evaluationss. As a result, 3 initial points can precisely find the global opti-
mum. But only 25 out of 100 initial points lead to the same precision as or better precision
than EGO worst case (i.e. 13% on the objective function and 10% on Euclidian distance).
This proves that SQP is not very suitable for this kind of problem.

12compared with the reference global optimum design vector



90 Optimization technique

This example shows the capability of EGO to find the solutions around the optimal point
in the global optimization problem with noise in the constraint function. EGO does not have
the capability to reduce noise in noisy functions. But it overlooks this noise by using the
Kriging model. Thus, it improves the convergence towards a global solution. However, since
the Kriging model is an interpolation model, there is always noise in the global optimum.

3.1.3.7.2 Multi-objective problem

Two test problems “CONSTR” and “VLMOP2” presented in Section 3.1.2.1.3 are used
to demonstrate the capability of surrogate-assisted algorithm using the pseudo-distance infill
criterion. An application of the algorithm to an electrical machine design is presented in
Section 4.5.

For each problem, LHS is used to select 20 initial sample points. 80 other infill points
are added according to the pseudo-distance infill criterion. In total This yields only 100
fine model evaluations. For the “CONSTR” problem, the constraint is managed through
a direct integration method with a surrogate equivalent constraint. Non-dominated fronts
for both problems are shown in Figure 3.22a and 3.22b. The algorithm founds 40 and 46
non-dominated solutions for “CONSTR” and ‘VLMOP2” problem, respectively.
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Figure 3.22: Non-dominated fronts obtained from NSGA-II and surrogate-assisted algorithm
using pseudo distance infill criterion

For comparison purposes, an optimization using NSGA-II is also performed. The NSGA-
II parameters are defined as following: crossover probability = 0.9, population number = 30
and generation number = 100. This yields 3000 fine model evaluations in total. One can
observe that two algorithms achieve more or less similar results. For both problems, non-
dominated fronts from NSGA-II are slightly better distributed than those of the surrogate-
assisted algorithm. However, NSGA-II requires a very high number of function evaluations
in order to obtain a good result. For surrogate-assisted algorithm, similar results can be
achieved with considerable fewer function calls (30 times lower than that of NSGA-II for
these examples).
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3.2 Decomposition approach

Complex systems are referred to as systems composed of several subsystems and components.
Such systems also imply several disciplines. They can be physical/engineering disciplines
or non-technical disciplines. In conventional design processes, such complex system design
problems are always decomposed into several subproblems, as already discussed in Chapter
1. In this section, the Multidisciplinary Design Optimization (MDO) and Target Cascading
(TC) methodologies are presented.

3.2.1 Multidisciplinary Design Optimization

3.2.1.1 Overview

Complex systems always deal with many engineering disciplines. The interaction between
such disciplines is mainly concerned in MDO. As mentioned earlier, a complex system design
problem is usually decomposed into subproblems. In the MDO case, the decomposition is
based on the discipline. This comes from the traditional design methodology in aeronautic
field as MDO was firstly introduced by the aeronautic and aerospace community. MDO for-
mulations allow coordinating various design/simulation tools and solving interacted problem
among such tools. Moreover, MDO integrates optimization tools in modelling phase. Both
processes are done simultaneously and not sequentially anymore as it used to be in the past.

The MDO implies many formulations, which can be grouped into 2 families: single level
and multilevel formulations. In this research, only single level MDO formulations have been
investigated: Multidisciplinary Feasible (MDF), Individual Discipline Feasible (IDF), All-At-
Once (AAO) [1, 18, 103]. Multilevel MDO formulations can be found in [1, 10, 101].

The aim of MDO formulation is to manage and coordinate calculation, interaction i.e.
feedback and feed-forward dataflow from one analysis tool to another. Some single level
formulations manage the interactions, so that analysis tools can be run in parallel.

In the multidisciplinary design context, many analysis tools are employed to evaluate
the performance of the system. These tools usually correspond to the different disciplines.
Since there are interactions between disciplines i.e. an input of a discipline is evaluated using
another discipline tool as:

output1 (z, x1, y2 (z, x2, y1))

output2 (z, x2, y1 (z, x1, y2))
(3.26)

where output1 and output2 are calculated from disciplines 1 and 2, respectively and can be
the objective f , inequality or equality constraint (g or h) and y coupling variable. output1 is
as a function of their local design variables x1, global or share design variable z and coupling
variable y2, which, itself, is an output from discipline 2 and as a function of z, x2, and y1.
Figure 3.23a presents this explanation. The resolution of these interactions can be performed
by a numerical method such as the Newton-Raphson or fixed point method [17, 102]. This
kind of problem is called Multidisciplinary Design Analysis (MDA). Two MDA disciplines
can be written in a compact form as:

MDA = SA [A1 → A2] (3.27)
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Two discipline analyses A1 and A1 are nested within a System Analysis (SA) and are evalu-
ated sequentially (denoted as →).

The optimization of such problems can be achieved by using several approaches. The fol-
lowing subsections explain different single level MDO formulations. They give the possibility
to perform the optimal design of a multidisciplinary system in efficient and systematic ways
by using an optimization process in the connection of the analysers or the evaluators between
disciplines.
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Figure 3.23: Structure and dataflow of a multidisciplinary design problem

3.2.1.2 Multidisciplinary feasibility

The simplest way to perform a MDO is to directly put the MDA within an optimization
process. This is called a Multidisciplinary Feasible (MDF). This formulation ensures the
feasibility of the whole system at each optimization step. Figure 3.23b shows the structure of
the MDF formulation. The system analyser solves a problem with interaction. The optimizer
solves the optimization problem in which the design variables only remain design variables of
the design problem. Multidisciplinary feasibility is achieved for each design vector. A MDF
formulation can be shown as in (3.28). The MDA (3.27) is nested within a System Optimiser
(SO).

MDF = SO [MDA] = SO [SA [A1 → A2]] (3.28)
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The MDF optimization problem is expressed as:

min f (Z,X)

with respect to Z,X

subject to g (Z,X, Y (Z,X)) ≤ 0

h (Z,X, Y (Z,X)) = 0

(3.29)

where SA forces Y k+1 = Y k at each optimization iteration, k being the SA internal loop
iteration.

A MDF is the simplest MDO formulation. However, some drawbacks can be stated. The
fixed point iteration method commonly used in MDF is not always very efficient. If the fixed-
point method fails to supply a solution to the MDF, the optimization may not be convergent.
Moreover, the fixed-point method is a sequential method. The parallelised analysis is not
possible.

3.2.1.3 Individual disciplinary feasibility

IDF allows decoupling the discipline analysers. There is not any direct interaction between
disciplines anymore. The optimization gives an initial guess of the coupling variables via
additional design variables Y ∗. IDF ensures only the feasibility of each discipline (i.e. each
discipline performs discipline analysis). In order to obtain the multidisciplinary feasibility
solution at the convergence point, multidisciplinary feasibility constraints are added to ensure
consistency between the estimated coupling variable Y ∗ given by the optimizer and the value
Y evaluated by the discipline analyser. This yields a more complicated optimization problem
than a MDF. The IDF optimization problem can be described as:

min f (Z,X, Y ∗)

with respect to Z,X, Y ∗

subject to g (Z,X, Y (Z,X, Y ∗)) ≤ 0

h (Z,X, Y (Z,X, Y ∗)) = 0

y∗i − yi (zi, xi, y∗i ) = 0

(3.30)

where i and j are different disciplines.
The architecture of IDF can be written as in (3.31). The discipline analyser A1 and A2

can be launched in parallel (depicted as ‖) and are nested within the SO.

IDF = SO [A1‖A2] (3.31)

In Figure 3.23c, it can be observed that two different discipline analyses do not carry out
any direct information exchange. The discipline analyses can be evaluated in parallel.

A derivative of the IDF formulation called Sequenced IDF [18] corresponds to the case
where only some of the coupling variables are treated by way of optimization and others are
the actual computed output. Some disciplines have to be sequenced and this allows forming
groups of sequenced discipline, which can be parallelised. Sequenced IDF can be used if there



94 Optimization technique

are too many coupling variables or if the optimization algorithm encounters convergence
difficulties. It is also useful in order to balance the load of parallelised computation. For
example, two low time-consuming disciplines can be sequenced and parallelised with one
high time-consuming discipline analysis.

3.2.1.4 All at once

AAO is also named Simultaneous Analysis and Design (SAND). The optimizer solves simul-
taneously the design problem, the coupling variables and the governing equations. The state
variables are added to the design variable set and the residuals are treated as constraints.
Both multidisciplinary and discipline feasibility are obtained only at the optimization con-
vergence point. The state variable may be referred to as a numerical solving in finite element
analysis (FEA) or any nonlinear characteristic or implicit variables such as a nonlinear B-H
curve in electromagnetic field computation and a thermal characteristic of material depend-
ing on the temperature in thermal discipline. In AAO, the code acts as an evaluator, not as
an analyser. It computes a set of equations in a one-pass manner rather than solving those
equations iteratively i.e. there is no internal iteration loop.

Figure 3.23d shows an AAO structure. The codes of the discipline are shown as the
“Discipline Evaluator”. The AAO formulation can be expressed in a mathematical equation
as in (3.32). Two discipline evaluators are used in parallel and are nested in a system
optimiser. As with IDF, disciplines are completely decoupled and can be parallelised.

AAO = SO [E1‖E2] (3.32)

The AAO optimization problem can be described as:

min f (Z,X, Y ∗, U)

with respect to Z,X, Y ∗, U

subject to g (Z,X, Y (Z,X, Y ∗) , U) ≤ 0

h (Z,X, Y (Z,X, Y ∗) , U) = 0

y∗i − yi (zi, xi, y∗i , ui) = 0

W (Z,X, Y ∗, U) = 0

(3.33)

where U is a state variable and W a residual of the state variable of the disciplines.
AAO solves analysis and design problems simultaneously. This reduces the computation

time because the disciplinary and multidisciplinary feasibilities are not sought when the
actual solution is far from an optimum. However, the optimization algorithm may encounter
difficulties due to a very high number of auxiliary design variables and equality constraints
getting involved. Furthermore, in order to perform this formulation, one must have access to
state variables. Therefore, commercial software cannot be used since the code modification
is not possible.
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3.2.1.5 Mathematical example

In this section, the MDF and IDF formulations are illustrated via a mathematical example.
The example consists of two disciplines A1 and A2 with one share design variable z and 2
coupling variables y1 and y2 characterising the interaction between both disciplines as shown
in Figure 3.24. The discipline A1 and A2 are expressed by y1 and y2, respectively. These
functions are constructed from a certain number of sample points by using the regression
least-square method.

y2 y1

y1 y2f1 = y1

z z

Discipline
A1

Discipline
A2

Figure 3.24: Interaction between two disciplines

The problem is described as:

min f (z) = y1

with respect to z

where y1 (z, y2) =
(
4.2667y4

2 − 1.0667y3
2 − 5.8667y2

2 + 2.6667y2 + 0.7
)
×

(
4.2667z4 − 1.0667z3 − 5.8667z2 + 2.6667z + 0.7

)

y2 (z, y1) = y1 − 0.76923z + 0.76923
(3.34)

The optimization problem above is formulated using the MDF formulation. The system
analysis uses the fixed point iteration method for solving interaction problems. This problem
can be formulated by using IDF as:

min f (z, y∗1, y
∗
2) = y1

with respect to z, y∗1, y
∗
2

where y1 (z, y∗2) =
(

4.2667y∗
4

2 − 1.0667y∗
3

2 − 5.8667y∗
2

2 + 2.6667y∗2 + 0.7
)
×

(
4.2667z4 − 1.0667z3 − 5.8667z2 + 2.6667z + 0.7

)

y2 (z, y∗1) = y∗1 − 0.76923z + 0.76923

subject to y1 = y∗1

y2 = y∗2
(3.35)

The problem is solved by using MDF and IDF formulations. For the MDF formulation,
the interaction problem is solved through the fixed point method with a tolerance of 10−4.
The convergence problem can be observed. To cope with this problem, a maximum iteration
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limit is fixed at 300 iterations. The initial design vector for the SQP algorithm is set to
z = 0.5, y1 = 0.2 and y2 = 0.2. Note that for the MDF, only z is required.

Both formulations give the same results: z = 0.7756, f = y1 = 0.2419 and y2 = 0.4145.
The summary of the function evaluation is shown in Table 3.7. As the MDF has only 1 design
variable, SQP converges to the optimal result faster than in the IDF formulation with 3 design
variables and 2 constraints. However, the MDF needs more discipline function evaluations
than the IDF because of its fixed point iteration solver. For each function objective call,
the MDF requires an average of 76.7 discipline function evaluations to solve its interaction
problem between y1 and y2. This results in the higher total computation time i.e. 997
discipline evaluations are needed in total. Whereas, IDF does not need any internal iteration.
Only one discipline function evaluation per objective function call is required i.e. 67 discipline
evaluations.

Table 3.7: Function evaluation for MDF and IDF examples

MDF IDF

Design variable 1 3

Constraint 0 2

Average discipline evaluation per objective function call 76.7 1

Number of objective function call 13 67

Total evaluation for each discipline 997 67
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3.2.1.6 Conclusion

In complex system design problem, multiple design tools/models are involved. These tools
represent, in general, disciplines. Traditionally, interactions between disciplines or models
are solved through iteration methods such as the fixed point method. This ensures multidis-
ciplinary feasibility at each model evaluation. When solving such design problems using an
optimization technique, this group of models is wrapped with optimization layers and forms
the simplest MDO formulation, the multidisciplinary feasibility (MDF). The IDF formula-
tion treats the design problem and the multidisciplinary interaction problem simultaneously.
This speeds up the optimization process since multidisciplinary feasibility is ensured only
at the final optimal results level. In extreme cases, AAO optimization treats the internal
iteration loop (discipline analysis) in addition to the interdisciplinary loop. IDF and AAO
require additional design variables and constraints in order to take into account these itera-
tion processes. Depending on the level of interaction and the performance of the optimization
algorithm used, one can be faced with a very high dimension optimization problem and this
can result in a higher computation time than that of the MDF formulation (conventional
approach). However, IDF and AAO problems can be parallelised. This is done at the model
level and does not depend on the optimization algorithm.

It can be concluded at this stage that MDO gives a new point of view. When the model
is meant to be used in an optimization process, the modelling process can be different from
a model used only for simulation purpose. A carefully developed model taking into account
its final purpose - in our case optimal design purpose - can result in a more robust, more
efficient optimal design problem. The application of the MDO methodology to the traction
motor design problem can be found in Chapter 4.
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3.2.2 Target cascading optimal design

3.2.2.1 Overview

Designing of a complex system is usually a delicate task and involves many engineering
domains. Furthermore, a complex system is always composed of several subsystems and
components, which are sometimes designed concurrently. In traditional design methodology,
complex system design problems are decomposed into several subproblems (see Figure 3.25)
in order to understand the problem better and, after all, to be able to solve it. Subproblems
are assigned to design teams. They provide optimal results to the system engineer, who
coordinates and ensures the consistency between these subsystems. This is very common
way of working, widely used by industrials.

Subsystem 1 Subsystem 2

System

Hierarchical decomposition

Figure 3.25: Hierarchical design problem

In order to apply an optimization technique to solve such already decomposed complex
system design problems, two approaches can be considered

(i) To discard any already decomposed system and reformulate the problem as a global
system optimization problem, which can be solved using the optimization technique
presented in Section 3.1. If there are interactions between subsystems (models), the
MDO methodology can be applied.

(ii) To continue working with hierarchical decomposed problems and find a suitable method
to solve this kind of problem.

The former approach requires the reformulation of the design problem. This can require
significant time and resources as the design problem formulation can affect the company
structure in the case of a big company in which engineering units are well structured for the
conventional design methodology. Therefore, the latter approach is considered as a better
solution because the only change is the way the problem is solved and not the way it is formu-
lated. Moreover, specialized engineering teams can only focus on the design subproblem in the
domain they are expert in. Such a hierarchical optimization problem can be solved through
multilevel optimization methods. In the literature, one can find multilevel MDO formulations
such as Collaborative Optimization (CO) [10], Bi-Level Integrated System Synthesis (BLISS)
[101] and Target Cascading method (TC) [47]. TC is the only presented in this research.
TC is a multilevel coordination formulation. It has been used in many applications such as
aircraft design [3] and automotive vehicle design [48]. It allows solving multilevel hierarchical
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optimization problems. It is assumed that the problem is already decomposed. Figure 3.26
shows a decomposed optimization problem consisting of 3 levels: the system level, the sub-
system level and the component level. Each optimization subproblem has its own local design
variables and local constraints (not shown in the figure). A child subproblem is connected
to its parent subproblem via targets, responses and linking variables13. One can also observe
that there is no direct link between two subproblems at the same level. The interactions are
managed by their parent subproblems via linking variables. Subproblems can be launched in
parallel, by being decoupled.

Subsystem 1 Subsystem 2

System
System
level

Subsystem
level

Component
level

RL
ss,1, y

L
ss,1

RU
ss,1, y

U
ss,1

Component 1

RL
ss,2, y

L
ss,2 RU

ss,2, y
U
ss,2

Component 2 Component 3 Component 4

Figure 3.26: Target cascading hierarchical optimization problem

3.2.2.2 TC formulation

TC solves the target setting problem at the system subproblem and propagates the subsystem
targets to the subsystem subproblems and so on. A target setting problem at the system
level is to minimise discrepancy between set targets and computed responses [47]. This
optimization subproblem at the system level consists in finding local design variables and
also linking variables and sublevel targets. Once the system level optimization has finished,
the sublevel targets and linking variables found at the system level are then cascaded to the
sublevel problems. At the sublevel, the sublevel problems minimise errors between sublevel
targets and sublevel responses and between upper level and sublevel linking variables. The
process continues until reaching the bottom level. The information from bottom level are
then returned back to the upper level. The optimizations at the upper level are rerun. TC
completes one iteration whilst the optimization returns back to the system level.

13The linking variable characterises the share variable and the interaction between subproblems.
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System level (top level): The optimization problem at the system level is to minimise
errors between targets Tsys and system responses Rsys. It is defined as:

Psys : min ‖Rsys − Tsys‖+ εR + εy

with respect to xsys, yss, Rss, εR, εy

where Rsys = f (Rss, xsys)

subject to
∑

k∈Csys

∥∥Rss,k −RLss,k
∥∥ ≤ εR

∑

k∈Csys

∥∥yss,k − yLss,k
∥∥ ≤ εy

gsys (Rss, xsys) ≤ 0

hsys (Rss, xsys) = 0

(3.36)

It can be observed that Rsys is a function of the system local design variables xsys and
subsystem responses Rss. Additions to the xsys, optimization problem must search for the
yss linking variables of the Rss subsystem and the εR and εy coordination tolerances to be
minimised. These tolerances are used as constraint values to ensure consistency between sys-
tem and subsystem levels for each child subproblem of the system Csys = {k1, k2, . . . , kcsys}.
Note that RLss,k and yLss,k are the optimal results sent back from the subsystem level. The L
superscript indicates that the value comes from a “Lower” level.

Subsystem level (intermediate level): The jth subsystem level problem is to minimise
the discrepancy between subsystem targets given by the system (Upper) level (RUss,j) and
Rss,j subsystem responses and between the yUss,j subsystem linking variables from system
level and those from the yss,j subsystem level. Note that RUss,j and yUss,j are the optimum
values found by the system optimization subproblem.

Pss,j : min
∥∥∥Rss,j −RUss,j

∥∥∥+
∥∥∥yss,j − yUss,j

∥∥∥+ εR + εy

with respect to xss,j , yss,j , ycom, Rcom, εR, εy

where Rss,j = f (Rcom, xss,j , yss,j)

subject to
∑

k∈Css,j

∥∥Rcom,k −RLcom,k
∥∥ ≤ εR

∑

k∈Css,j

∥∥ycom,k − yLcom,k
∥∥ ≤ εy

gss,j (Rcom, xss,j , yss,j) ≤ 0

hss,j (Rcom, xss,j , yss,j) = 0

(3.37)

Like the system level optimization, the subsystem optimization problem searches for its
own xss,j local design variables, yss,j linking variables and linking variables and ycom and
Rcom respectively responses for its child component subproblems.
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Component level (bottom level): The jth component subproblem minimises the de-
viation for component responses (Rcom,j and RUcom,j) and component linking variables (ycom
and yUcom).

Pcom,j : min
∥∥∥Rcom,j −RUcom,j

∥∥∥+
∥∥∥ycom,j − yUcom,j

∥∥∥

with respect to xcom,j , ycom,j

where Rcom,j = f (xcom,j , ycom,j)

subject to gcom,j (xcom,j , ycom,j) ≤ 0

hcom,j (xcom,j , ycom,j) = 0

(3.38)

3.2.2.3 Mathematical example

A mathematical example is used to demonstrated TC. The problem is composed of 3 sub-
problems at 2 levels. According to the TC formulation, they are expressed as:

Psys : min (Rsys − Tsys)2 + εR

with respect to x1, x2, Rss,1, Rss,2, εR

where Rsys = f (Rss,1, Rss,2, xsys)

= (x1 − 1)2 + (x2 − 1)2 +Rss,1 +Rss,2

subject to
(
Rss,1 −RLss,1

)2 +
(
Rss,2 −RLss,2

)2 ≤ εR
0 ≤ x1 ≤ 2

0 ≤ x2 ≤ 2

0 ≤ Rss,1 ≤ 2

0 ≤ Rss,2 ≤ 2

0 ≤ εR ≤ 2

(3.39)

The system target Tsys is set to 0 in order to minimise Rsys. The system optimization is
firstly launched. The optimal value of sublevel targets: RUss,1 and RUss,2 are cascaded to the
sublevel problems:

Pss,1 : min
(
Rss,1 −RUss,1

)2

with respect to x3, x4

where Rss,1 = f (x3, x4) = (x3 − 1)2 + (x4 − 1)2

subject to 2− x3 · x4 ≤ 0

0 ≤ x3 ≤ 2

0 ≤ x4 ≤ 2

(3.40)



102 Optimization technique

Pss,2 : min
(
Rss,2 −RUss,2

)2

with respect to x5, x6

where Rss,2 = f (x5, x6) = (x5 − 1)2 + (x6 − 1)2

subject to 0 ≤ x5 ≤ 2

0 ≤ x6 ≤ 2

(3.41)

Note that there are 2 levels for this problem. The subsystem level is considered as the bottom
level. The ss subscription in (3.41) is used instead of com as in (3.38).

Table 3.8 shows the optimal results for each iteration. TC converges in 3 iterations. The
Pss,1 subproblem is subject to a constraint. At the first iteration, the system level gives
the sublevel target that is not feasible for the subproblem 1. Therefore, it returns the best
response to the system level. At the second iteration, the system problem increases the
sublevel target for the subsystem 1 (Rss,1) in order to meet the response returned from the
sublevel at the first iteration. As shown in Figure 3.27, TC found the compromise between
two levels at the third iteration i.e. relative error between target and response is lower that
1%. Unlike in the subsystem 1, there is no conflict between the target and the response in
the subsystem 2. The subsystem 2 problem can always provide the response required by the
system level problem.

Table 3.8: Optimal value at each iteration

Problem Variable
Optimal value at iteration:

1 2 3

System

x1 1 0.99994 1

x2 1 0.99994 1

Rss,1 0 0.33975 0.3428

Rss,2 0 0 0

εR 0 1.15 · 10−5 1.18 · 10−7

Rsys 0 0.3398 0.3428

Subsystem 1

x3 1.4142 1.4142 1.4142

x4 1.4142 1.4142 1.4142

Rss,1 0.34315 0.34315 0.34315

Subsystem 2

x5 1 1 1

x6 1 1 1

Rss,2 0 0 0
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Figure 3.27: Evaluation of Rss,1 subsystem 1 target

3.2.2.4 Conclusion

TC allows applying optimization in a large-scale design problem, which is decomposed into
several small subproblems. By using the TC formulation, each design subproblem is for-
mulated as an optimization subproblem. TC coordinates the interactions and information
exchange of these subproblems. In the global system approach, all design subproblems are
treated as a whole optimization problem. The optimization algorithm may suffer from a
high number of design variables and constraints. In contrast, TC works with several small
optimization problems, which are easier to deal with.

In the traditional design methodology, a system engineer designs the system and imposes
targets to subsystem design teams. The subsystem design teams try to match the given
targets. Sometimes, the targets cannot be achieved due to the fact that there are several
constraints. The results are reported back to the system engineer. System performances
are therefore re-evaluated and new targets are redistributed to subsystem design teams. TC
works in more or less the same manner as the traditional design methodology. At lower
levels, subproblems do the best by selecting their local variables while respecting constraints
to achieve the targets imposed by upper levels (e.g. RUss and yUss). The optimal results are
therefore communicated back to the upper level. TC iteration proceeds until convergence i.e.
consistency between the system and subsystem levels is obtained.
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3.3 Conclusion

In this chapter, three main points have been discussed. The global system approach is
commonly used in engineering optimal design. A model representing the whole system is
optimised in a single loop. This global system optimization problem searches for all system
design variables with respect to all system constraints. Several optimization techniques allow
solving this kind of problem. Figure 3.28 summarizes the characteristics of the presented
single-objective optimization algorithms. Some main points are emphasized in Table 3.9.
SQP is very suitable for the unimodal constrained optimization problem. It can rapidly
find a local optimum. For multimodal problems, multistart strategy can be used with SQP.
However, a GA may perform better but it requires more function evaluations. A hybrid
GA and SQP algorithm combines advantages of GA and SQP e.g. global search ability, low
number of function calls and accurate results. A surrogate-assisted algorithm is preferred,
while allowing to use a high fidelity model with a very low number of evaluations. It is a
global optimization algorithm and also proved to be less sensitive to numerical noise. But it
may not be suitable for problems using a fast model due to overhead time for fitting Kriging
models and solving infill criteria subproblems.
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Time
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Constraint

Global
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Figure 3.28: Summary of single-objective optimization algorithms
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Table 3.9: Advantages and drawbacks of the presented optimization methods

Method Advantages Drawbacks

SQP

+ High accuracy - Sensitive to noise

+ Small number of function evaluations - Local method

+ Performs well with constrained problems - Needs gradient information

- Continuous variables

- Needs initial design point

GA

+ Global method - Low accuracy

+ Robust, no gradient need - Large number of functions

+ Continuous and discrete variables evaluation

+ Parallelisable

Hybrid GA
and SQP

+ Able to find global optimum - Sensitive to noise

+ High accuracy - Needs gradient information

+ Less evaluations than GA alone - Continuous variables

+ GA search process can be parallelised

Surrogate-
assisted
EGO

+ Global method - High overhead time

+ Very small number of function evaluations - Continuous variables

+ Less sensitive to noise

+ No gradient needed

Engineering design problems always deal with several conflicting criteria/objectives. Tech-
niques to generate the Pareto front have been presented. They can be obtained using transfor-
mation techniques or via a multi-objective algorithm such as NSGA-II or surrogate-assisted
by using pseudo-distance infill criterion. The main drawback of the weighted-sum technique is
that it cannot locate a non-dominated front in the nonconvex part. In most cases, weighted-
sum and epsilon-constraint techniques operate quite well. Some problems are stated if the
slope of the Pareto front is not continuous (see 3.1.2.1.1). NSGA-II is more robust. It is
able to find any kind of Pareto front e.g. noncontinuous front, nonconvex front. However,
like other GAs, it needs a very large number of function evaluations in order to obtain good
results. For the surrogate-assisted algorithm, the same conclusion as for the single-objective
may be drawn. It uses a smaller number of function evaluations. Experiment have shown
that it is able to locate a nonconvex front and gives similar results to NSGA-II, but with a
very small number of function calls. These optimization techniques intend to solve ordinary
optimization problems as well as the Global System approach.

The second point discussed in this chapter has been the MDO approach. MDO is a pool of
formulations dealing with interactions between models. These interactions are unavoidable
in multidisciplinary/multiphysical modelling and optimization context. The MDF is the
simplest MDO formulation that puts the MDA into the optimization loop. This formulation
is commonly used. The IDF and AAO treat interactions and discipline implicit variables (for
AAO case) by way of optimization. This allows parallel and distributed computation. It has
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been shown that the MDO offers the possibility to break a system model into disciplinary
models and to perform the optimization process in an efficient manner.

For complex systems including many subsystems and components, the design problem is
generally broken into subproblems. TC allows formulating the system optimization problem
as coordinated optimal design subproblems. Large-scale optimal design problems can then be
performed with respect to the organisation of the company. The optimal design subproblems
are mapped directly to each corresponding engineering unit. This should make it easier for
the company to accept and use the optimal design for their everyday design tasks.
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Chapter 4

Optimal design of traction motors

A great amount of research and development in permanent magnet synchronous motors al-
lows the railway industry to develop and industrialise this kind of motors in their traction
applications. The two main reasons are its high efficiency and its compactness. However,
traction motor design is a task for specialists. In a global market and in the context of
sustainability, electrical motors must fulfil various requirements, not only physical and tech-
nological but also regulatory and environmental. Motors must be better adapted to their
usage. Therefore, the design process becomes more complex since many engineering domains
are involved. The complexity is mainly due to the existence of interactions between disci-
plines and between physical or functional subsystems. Such interactions are usually difficult
to manage because of the increasing number of design parameters. This problem arises in
many engineering situations.

The traction motor design problem implies many interactions, which can be “internal” in-
teractions e.g. material properties are influenced by temperature, and “external” interactions.
The main external interactions are the inverter (electrical) and performances (mechanical).
When designing a motor without considering the system, these interactions are usually fixed
by specifications and given as design parameters. The mechanical performances of a motor
are basically expressed as the required torque and speed. They are described by specifications,
which must take into account the constraints of the system. The adaptations of component
specification is a complex task. The optimal design methodology is used to carry out this
task.

The optimal design of such complex systems is under investigation in the engineering
field. Four main subjects are discussed in this chapter:

(i) Definition of required torque and speed

(ii) Solving of interaction problems using MDO

(iii) Multi-criteria optimal design

(iv) Use of high fidelity tool in optimal design

First, a multidisciplinary semi-numerical traction motor model is briefly introduced. This
model is used in Section 4.2, 4.3 and 4.4. In Section 4.5, a multi-physical traction motor
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model including a finite element electromagnetic field analysis and an analytical thermal
model is presented and used in the optimal design process.

4.1 Traction motor design methodology

Figure 4.1 depicts a general process of traction motor design. Vehicle performance require-
ment such as acceleration, maximum speed needed, or route profile are used to determine
required torque and speed of motor. Several approaches are introduced in Section 4.2. Then,
design problem is formulated i.e. definition of design variable, design parameter, constraint
and objectives. Next step is the preliminary design. Optimal design technique or just simple
calculation sheet can be performed. Generally, analytical model is used in this design phase.
Results from this phase (i.e. dimensions of motor) are sent to the detail design phase and
considered as base-line or initial design. High fidelity tools are used in this phase to verify
local phenomena and to adjust some geometries such as tooth or magnet shape.

Define motor performances

Begin

Formulate design problem

End

Preliminary design
(use low fidelity tool)

Detail design
(use high fidelity tool)

Specification

Express the specification in mathematical
forme or in software interface

Sizing

Verification and improvement

Manufacturing

Figure 4.1: Traction motor design methodology

The following sections semi-numerical traction motor model and associating design prob-
lem. This model is used in preliminary design phase.

4.1.1 Traction motor modelling

A Surface-Mounted Permanent Magnet (SMPM) motor model is specially developed due to
the specific needs of traction system designs. The SMPM motor model’s structure, as well
as its inputs and outputs, are shown in Figure 4.2. The model is developed using a mod-
ular approach. Each module represents a discipline. This modular approach simply allows
modifying or replacing modules as needed in terms of accuracy, functionality, etc. Several
simulation possibilities can be followed e.g. maximal torque per ampere control strategy or
flux-weakening control, steady state temperature or transient temperature simulation. These
functionalities are important for a traction motor design. In this section, only important
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points are given, Readers should refer to Appendix B for a detailed description of the design
model.
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Figure 4.2: Structure of a SMPM motor model

4.1.1.1 Thermal module

The thermal behaviour is a very important constraint in traction motor designs. A lumped
parameter thermal network is used to predict the temperature in various parts of the motor,
both in transient and steady state. When solving steady state temperatures, thermal capac-
itors are omitted. Copper losses and iron losses in teeth and yoke are heat sources. Thermal
resistances and capacitors are computed from motor geometries and materials. Heat convec-
tion is also taken into account in the air gap and on the external surface. The thermal model
has 8 nodes and 66 equations in total.

4.1.1.2 Temperature feedback

In the SMPM model, two temperature feedbacks are defined: the winding temperature (Tw)
and the permanent magnet temperature (TPM ). The winding temperature allows an update
phase resistance using:

Rs = Rs20 (1 + αcu · (Tw − 20)) (4.1)

where Tw is in ◦C, αcu conductivity temperature coefficient of copper and Rs20 phase resis-
tance at 20◦C. For αcu = 0.00393 ◦C−1, a resistance of 1Ω at 20◦C increases to 1.3144Ω at
Tw = 100◦C.

The permanent magnet temperature effect can be taken into account via:

Br = Br20

(
1 +

αBr
100
· (TPM − 20)

)
(4.2)

where TPM is expressed in ◦C, αBr reversible temperature coefficient of the PM remanence
flux density (Br) and the Br20 PM remanence flux density at 20◦C. The PM relative per-
meability is considered constant. For NdFeB, αBr is negative. It means that when the PM
temperature is high, Br is low. For example, for NdFeB 39H, αBr is -0.1 %·◦C−1 and Br20 is
equal to 1.28T. If the temperature increases to 100◦C, Br becomes equal to 1.18T
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The PM temperature also determines the demagnetization of the PM. The resultant flux
density cannot be lower than the PM flux density at the knee point of a normal demagne-
tization curve (Brmin) (red points in Figure 4.3a, a PM datasheet is provided in [93]). This
relationship can be approximated from B-H curve at various temperatures given in the PM
data sheet (see Figure 4.3b). For example, for NdFeB 39H, Brmin can be given as:

Brmin = −5.58 · 10−5 · T 2
PM + 0.022 · TPM − 1.445 (4.3)

This relationship is valid from 60◦C to 150◦C. Out of this domain, constant values corre-
sponding to values at lower and upper boundaries are given. In Figure 4.3b, one can see
clearly that at a high PM temperature, the minimum PM flux density to avoid demagne-
tization is high, hence a poor flux weakening capability. Therefore, this relationship must
be taken into consideration in order to avoid the PM demagnetization at high temperatures.
A constraint on the PM maximal temperature must be taken into account when using the
model.
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(a) B-H characteristic from PM data sheet
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Figure 4.3: The minimal value of the remanence flux density as a function of temperature
can be estimated on the basis of the PM B-H curve

4.1.1.3 Control strategy

The flux-weakening control strategy is very useful in traction applications. It allows operating
at constant power in a high speed range and limiting the inverter current in low speed. It is
essential to verify whether the motor can successfully operate in a flux-weakening zone not
only on an electric point of view but also on a magnetic and thermal point of view, by using
the PM demagnetization curve and temperature feedback.

Control module is the inverse model i.e. design model. Its inputs are the torque and speed
requirements. A flowchart of flux-weakening control is shown in Figure 4.4. Circuit param-
eters (phase resistance, phase inductance and flux) computed by electric parameter modules
are also needed. Figure 4.5 depicts two operating zones and their electrical properties. The
detailed expressions are given in Appendix B.
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4.1.2 Design problem formulation

In this chapter, several design problems are expressed with different design variables, design
parameters, constraints and objectives. Regarding the SMPM motor semi-numerical model,
design variables and parameters can be chosen from model input variables, for example the
following:

• Motor architecture: number of pole pairs, number of phases, number of slots per pole;

• Motor dimensions: stack length, PM height, slot height;

• Winding characteristics: number of conductors, winding pitch;

• Material and material properties;

• Inverter interface: maximum voltage1.

Some are fixed as design parameters and some are design variables. Their upper and lower
bounds depend on which design problem is being studied.

Design objectives and constraints are defined from model outputs variables, which are the
following:

• Model hypothesis: maximum flux density (linear B-H characteristic);

• Material properties: maximum winding and PM temperatures;

• Failure protection: demagnetization of the PM;

• Mechanical interface: external diameter and length, mass, volume;

• Inverter interface: maximum current;

• Motor efficiency: energy consumption, efficiency, losses;

• Other: cost.

1In this model, maximum voltage is fixed as design parameter
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4.2 Definition of required torque and speed

In electric motor design, a wide range of specification must be defined. They may characterise
the interaction to the other components e.g. maximum current and voltage (inverter inter-
action), external volume, mass (mechanical installation interaction), cooling mean (cooling
system interaction). Figure 4.6 shows the interfaces of the traction motor with the system.
The system imposes mechanical performances to the motor. The motor interacts with the
system via mass, volume, temperatures, current and voltage.

Traction motor

Torque,
Speed

Mechanical
structure

Cooling systemInverter

Current,
Voltage

Mass,
Volume

Temperature

Mechanical
performances

Specification

System imposes to motor

Motor imposes to system

Figure 4.6: Interaction with the traction motor

The most important specifications may be the torque and speed that the motor must
produce. Many approaches can be used depending on applications and needs [5, 26, 74]. In
industrial applications, a classical design approach using rated torque and speed is commonly
used. It can perform quite well due to the fact that the load is constant. However, in
traction applications, loads vary according to driving cycles. Different approaches should be
employed. This section aims at assessing various electric traction motor design approaches.
The “optimal” results obtained using different approaches are compared.

4.2.1 Torque and speed characteristics

The torque and speed requirements depend on the application and operating conditions. Some
applications need a fixed speed and a constant torque motor and other applications meet the
requirements through the use of the load cycle. The load cycle may be simply described as
the amount of torques that the motor can produce at a fixed speed in a certain period of
time. This cycle is repeated and allows the motor to operate in the steady-state. In some
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traction motor applications, a more complicated description of load cycle is typically used.
The motor load profile can be computed on the basis of the known vehicle characteristics and
the requirements of:

(i) the driving cycle (i.e. speed or acceleration as a function of time) in the automotive
application.

(ii) the route profile (i.e. maximal speed and climbing slope as a function of distance) and
trip time requirements in the rail application.

For rail applications, the customer (train operator) specifies how the train will be operated.
This implies giving the track characteristics (such as speed limit, track slope, bending curve),
station information (stop time, stop distance) and driving characteristics related to passenger
comfort (maximum acceleration, deceleration and jerk) and trip time. All these information
and vehicle characteristics allow determining the tractive force and braking force necessary to
accomplish the route profile. The motor torque and rotation speed can then be easily deduced
from the number of motors and the gear ratio. The reader should refer to [7, 75, 114] for
vehicle dynamic and torque, speed calculations.

Figure 4.7a shows the motor torque and speed characteristics in time domain. The motor
operates in both traction and braking modes. Figure 4.7b shows time sharing of torque and
speed in the load cycle. In this load cycle, the motor operates most of the time in the medium
torque and speed zone. It can be stated that the thermal behaviour becomes very essential
when a motor works in variable load and variable speed conditions [57].
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Figure 4.7: Torque and speed requirement

The following section provides different torque and speed requirement definitions used as
inputs in traction motor design problems.
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4.2.1.1 Approach using rated torque and speed

A rated point, also called base point, represents a rated torque and base speed of a motor
(see Figure 4.5). At base speed, the inverter reaches its maximal voltage [73]. In the classical
design approach, the base point is usually considered as a design point. The motor can
operate permanently at this load and speed without excessive heat. This approach works
very well with industrial motor designs, in which the load and speed are fixed and the flux-
weakening operating mode is not considered. A motor designed by using this approach can be
successfully used in variable speed applications and can operate at a speed over the base speed
by using an appropriate inverter with flux-weakening control. However, the full operation
ability is not ensured at the design stage and is used as it is in variable speed applications.

In traction applications, a question may be asked: How to determine this rated point?
The rated speed is easily referred to as the transition speed from the constant torque zone
to the constant power zone. The rated torque is more complicated to select. The maximal
torque requirement can be used but it might lead to an oversized motor because the motor
would never operate permanently at the maximal torque. One might determine the rated
torque as a percentage of the maximal torque requirement. However how many percent it
should be set to is not always clear. This depends on the application and requires a lot of
experience.

In this work, three rated points are defined:

(i) The maximal torque and base speed (case I)

(ii) 75% of the maximal torque and base speed (case II) (75% is chosen arbitrarily.)

(iii) The average torque and average speed (case III) computed using (4.4) and (4.5):

Tavg =

√
Σ
(
T 2
i · ti

)

Σti
(4.4)

Ωavg =
Σ (|Ωi| · ti)

Σti
(4.5)

where Ti and Ωi denote torque and rotational speed at time period ti.
For the considered load profile (shown in Figure 4.7), the average torque is 53% of the

maximal torque and the average speed is 45% of the maximal speed. This average point can
be seen as the operating point of the motor most of the time. For both cases I and II, the
base speed is defined by the transition speed from the constant torque mode to the constant
power mode in the traction torque-speed curve as shown in Figure 4.8. The figure also plots
torque versus speed at each time step (the data are from Figure 4.7a).
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Figure 4.8: Rated point definition

4.2.1.2 Approach using torque versus speed curve

This approach is very similar to the rated point approach. Several operating points on the
torque-speed curve are used instead of only one point. This ensures that the motor can
operate at all required torques and speeds including the flux-weakening zone [26]. As in
the previous approach, a percentage between the rated torque-speed curve and the maximal
torque-speed curve can be introduced. The steady state operation is considered throughout
the rated torque-speed curve. Four characteristic points are selected (depicted as stars in
Figure 4.9). These points represent the maximum torque, maximum speed point in both
traction and braking modes (case IV). A 75% torque-speed curve is also examined (case V)
and represented by triangles in Figure 4.9.
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Figure 4.9: Torque-speed characteristic. The stars represent the 4 characteristic points (max-
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4.2.1.3 Approach using load cycle

In some applications such as light rails (metro and tram), load profiles are precisely known.
It is very interesting to take into account the transient thermal behaviour of the motor in the
design [74]. Thermal simulation on load profile is repeated until the temperatures reach their
steady state. The steady state operation concerns not only an operating point but also the
whole load cycle. This approach ensures that the optimal motor operates normally at each
operating point on the predefined load cycle. The load cycle shown in Figure 4.7a is used in
this approach (case VI).

4.2.2 Comparative study methodology

A study is performed in order to investigate how different torque speed definition approaches
affect the design of a motor. Three comparison metrics are determined: (i) optimality in
terms of design criterion, (ii) ability of the motor to operate on the load cycle and (iii) design
time (in our case, optimization time). The comparison is based on optimal motors designed
by using different approaches (case I – case VI). Each optimal motor is obtained through an
optimization technique.

In this work, the motor mass is considered as the objective function. Many constraints
are also defined e.g. the maximal temperature, maximal flux density, and maximal current.
To solve the optimization problems, a single-objective optimization technique, Sequential
Quadratic Programming (SQP) with multistart [83], is used in order to ensure a global
optimum.

All design variables, constraints and objective functions are shown in Table 4.1. Some
parameters are fixed as a constant due to the fact that SQP cannot deal with integer design
variables. They are firstly considered as continuous variables. The optimization results are
rounded to integers and fixed as a constant in the comparative study.

To summarize, six optimization cases are carried out. The objective is mass minimisation.
The six optimization cases correspond to different design approaches as shown in Table 4.2.
Note that:

(i) The Nc number of conductors per slot is fixed to 4 for all cases except case III. The
optimization algorithm cannot converge unless the number of conductor is considered
as a design variable. In this case, the value of 8.32 conductors per slot was found by
optimization. This number was rounded to 8 and fixed as a constant. After that the
optimization is rerun.

(ii) The initial temperature condition in simulation (case VI) during the optimization is set
to 100◦C and the time step is of 10s (instead of a 1s time step from torque and speed
input data) in order to accelerate the optimization process.

(iii) The RMS maximum inverter voltage is of 290V in traction mode and of 350V in braking
mode.
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Table 4.1: List of design variables, constraints, constants, and objective function

Symbol Quantity Unit Remark Limit

Y Yoke height mm D.V. [10, 50]

lm PM height mm D.V. [1, 15]

g Air gap mm D.V. [2, 10]

ds Slot height mm D.V. [20, 40]

ra Armature radius mm D.V. [100, 500]

lstk Stack length mm D.V. [100, 700]

rwt Tooth width ratio - D.V. [0.3, 0.7]

kp PM span coeff. - Constant 0.8

p Pole pair - Constant 3

Nslot Slot/pole/phase - Constant 2

Nc Conductor/slot - Constant 4, 8

A Parallel path - Constant 1

Vrms rms maximum voltage V Constant 290 (Traction), 350 (Braking)

Tw Winding temp. ◦C Con. ≤ 200

TPM PM temp. ◦C Con. ≤ 150

BYs
Stator yoke flux density T Con. ≤ 1.6

BYr
Rotor yoke flux density T Con. ≤ 1.6

BT Teeth flux density T Con. ≤ 1.6

Irms rms current A Con. ≤ 300

Ptdem PM demag. point - Con. ≤ 0

M Mass kg Obj. min.

Note: D.V. = Design variable; Con. = Constraint; Obj. = Objective function

Table 4.2: Summary of optimal design cases

Case I Maximal torque and base speed steady state

Case II 75% of the maximal torque and base speed steady state

Case III Average torque and speed steady state

Case IV Four characteristic points on the maximal torque-speed curve steady state

Case V 75% of the torque-speed curve steady state

Case VI Load cycle transient
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4.2.3 Results

Table 4.3 shows optimization results. Only the main motor characteristics are shown. The
values in brackets are relative values compared with case VI solutions. The comparison
between approaches is based on the optimal solutions designed by using the same criterion.
Therefore, it only reflects the influence of different design approaches.

The optimal motors, obtained by using optimization, are simulated on the load cycle with
time steps of 1s and an initial temperature of 40◦C. Their behaviour can be observed in Table
4.4. In this table, the values in brackets are relative values, compared to constraint limits.
These simulations ensure that the motors can operate correctly on the load cycle.

Figure 4.10 depicts the electrical limit of the motor torque when the maximal current is
supplied without taking into account the thermal limit.

Table 4.3: Optimal motor characteristics for each case

Symbol Quantity Unit I II III IV V VI

M Mass kg 531 423 296 562 437 364

(45.9%) (16.2%) (-18.7%) (54.4%) (20%)

V ol. Volume m3 0.0976 0.0713 0.05562 0.1105 0.0845 0.0632

(54.4%) (12.8%) (-11.1%) (74.8%) (33.7%)

C Cost euro 2793 2153 1471 3276 2609 1815

(53.9%) (18.6%) (-19%) (80.5%) (43.7%)

Rext External radius mm 217.7 176.3 185.3 235.2 212.2 174.8

lext External length mm 655.4 730.2 520.9 635.6 597.2 659.1

g Air gap mm 3.67 2 2 5.93 5.38 3.37

lm PM height mm 11.94 7.17 7.67 15 15 6.61

Nc Conductor per slot - 4 4 8 4 4 4

Rs Phase resistance Ω 22.9 40.7 107.1 17.3 21.3 37.3

Ls Inductance mH 1.148 1.474 3.782 0.794 0.729 1.119

Φ̂g1 Flux Wb 0.53 0.53 0.69 0.47 0.42 0.39

TPM PM temp. ◦C 150 150 150 150 150 145.3

Tw Winding temp. ◦C 173.4 168.3 183.3 185.8 188.5 200.0

Irms RMS current A 219.2 164.1 89.9 246.0 209.9 300

BYT Flux density T 1.6 1.6 1.6 1.6 1.6 1.6

topt Time per s, 8s 8s 8s 15s 15s 7min

optimization min (10s step)

Note: Percentage relative values in brackets are compared with case VI.

4.2.3.1 Case I and II

As expected, the cases using steady state temperature constraints lead to oversized motors
as the simulated temperatures on cycle do not reach maximal value. Furthermore, the flux
density in the tooth, the stator and the rotor are over the limit for the reason that the
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Table 4.4: Transient simulation on load cycle

Quantity I II III IV V VI

TPM 82.4 99.7 - 79.3 90.8 145.7

(-45.1%) (-33.5%) (-47.1%) (-39.5%) (-2.8%)

Tw 93.9 117.3 - 91.2 114.1 196.8

(-53.0%) (-41.4%) (-54.4%) (-43.0%) (-1.6%)

Irms 245.6 221.4 - 257.8 262.0 300.3

(-18.1%) (-26.2%) (-14.1%) (-12.7%) (0.1%)

BYT
2.06 2.09 - 1.84 1.79 1.65

(28.8%) (30.6%) (15.0%) (11.9%) (3.1%)

Cycle to steady state 26 26 - 28 28 40

Energy per cycle (kWh) 8.85 8.92 - 8.83 8.85 9.08

Note: Percentage relative values in brackets are compared with constraints.

steady state temperatures were considered in the optimization and are higher than the initial
temperature of 40◦C. At 40◦C, the PM yields a better performance (Equation 4.2 gives the
relationship between the PM remanence flux density and the temperature). Therefore, the
flux density is usually higher at a low temperature than at a high temperature. The flux
density is always higher than the constraint limit of 1.6T as it can be seen in Figure 4.11a.
This shows that the normal operating on load cycle cannot be ensured by the approach using
steady state temperatures.

From Table 4.3, one can notice that the motors do not use the maximum current. This is
because a higher current would generate higher losses and the motor should then be bigger
in order to be able to evacuate these losses.

4.2.3.2 Case III

Case III results in the lightest motor. However, the simulation on the load cycle cannot be
achieved with this motor. The flux-weakening range does not cover all the desired speeds
as shown in Figure 4.10c. This case confirms that the rated point approach can lead to
an inappropriate design because the flux-weakening characteristic is neglected during the
optimization design process.

4.2.3.3 Case IV and V

The motor mass for the cases using a characteristic torque-speed curve (case IV and V) is
greater than for the cases using a rated point. This is due to the fact that the motor needs
to cover a higher speed range (until maximal speed is reached), hence higher flux density and
demagnetization issue. Moreover, the motor is subject to high iron losses while operating at
a high speed. The heat exchange surface must be greater. This results in bigger and heavier
motors than for other cases.
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Figure 4.10: Torque at electrical limits for different cases Ls and Φ̂g1 are given in Table 4.3.
The phase resistance is neglected. Irms = 300A, Vrmsmax = 290V

4.2.3.4 Case VI

The approach using the load cycle (case VI) gives the best results among the six cases. The
simulation during optimization allows taking the requirements exactly into account. As the
time steps during the optimization and the simulation are not the same (10s and 1s), some
constraint violations can be observed (see the case VI column in Table 4.4). For example, the
rotor yoke flux density constraint is of 1.65T instead of 1.6T, as defined in the optimization
problem. Figure 4.11b shows that the flux density is over 1.6T at the beginning and then
decreases to 1.5T at a steady state. Figure 4.12 shows the simulation results for the Case VI
motor. The temperatures reach a steady state after 40 cycles, instead of 26 or 28 cycles for
other cases. In Figure 4.12b, the PM demagnetization does not occur since the result flux
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Figure 4.11: Rotor yoke flux density simulation results
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Figure 4.12: Simulation results for the Case VI motor

density curve is always higher than the minimal PM flux density curve obtained while using
equation (4.3).

In order to compare this with other solutions, the rated torque and base speed can be
found through an optimization problem using the motor geometries as input parameters and
searching for the highest torque and speed that satisfy the above mentioned constraints in
the steady state operation. As a result, this motor has a rated torque of 626.14Nm and a
base speed of 1923rpm (60.15% of the maximal torque and 75% of the maximal speed). It is
not obvious to find these values beforehand and use them in a steady state approach.

4.2.3.5 Computation time

Regarding computation time, the steady state approaches have taken much lower time: ap-
proximately 8s per optimization for rated point approaches and 15s per optimization for
torque-speed approaches. For load cycle transient approaches, each optimization takes 7min.
These times cannot be generalized to other design problems.

In this work, analytic models are used in each modules of the SMPM model. If FEA is
used for magnetic module, the time discrepancy may be reduced since the time consuming
task is now FEA. At each trail optimization design vector, only one FEA is called since FEA
only provides circuit parameters (inductance and flux linkage). Other modules such as the
control and thermal modules remain analytical equations and are relatively rapid compared
with FEA. On the other hand, if more complex thermal models (e.g. model with more
node number) or co-simulations (control integrated with FEA) are used, the time difference
between the steady state and the load cycle approaches will be much higher since at each time
step, a high computation time model is called. However, for preliminary design purposes, a
more or less complex analytic model is used. Therefore, the computation time is acceptable.
It is suggested to incorporate the load cycle and transient thermal behaviour in the design
of traction motors.

Another issue can be stated. The computation time can depend on the load cycle. For
example, if the load cycle is long and contains high torque or speed variations, the time step
must be smaller. The computation time can be very high. In this case, an inevitable load
cycle analysis needs to be carried out to simplify the load cycle or select an important part
of it.
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4.2.4 Conclusion on the comparative study

The electric motor can be designed, on the basis of various approaches depending on the
application and needs. This research intends to compare different approaches for the traction
application. The optimal design results deduced from each approach are compared and
analysed. The advantages and drawbacks are pointed out.

The approach using a rated point is suitable for the fixed speed and constant torque
motors since it allows obtaining the optimal design rapidly. However it cannot ensure an
operation in a flux-weakening mode. The case III depicts this inconvenient.

To overcome this problem, several load points, including some points in the flux-weakening
zone, can be used instead of the rated point. This is referred to as the torque-speed curve
approach. It preserves the advantages of the previous rated point approach while ensuring a
proper operation in the flux-weakening zone. Nevertheless, this approach results in extremely
oversized motors because the high speed zone must be taken into account in the design.

The approaches mentioned above allow taking only the steady state operation into ac-
count. In traction applications, it is strongly recommended to take into account the transient
thermal behaviour of the motor. According to the results, downsizings can be obtained. The
motor mass can be reduced significantly and the constraints are well respected when oper-
ating on the load cycle. In this example, the motor mass can be reduced of at least 16%,
as shown in Table 4.3. Despite these advantages, when using load cycle in optimal design,
the computation time will be higher than with the rated point approach. However, it is
acceptable while using an analytical model. The compromise between the fidelity of model
(e.g. analytical or numerical) and the optimization time requires further investigation.
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4.3 Multidisciplinary Design Optimization

In complex system design problems, the interactions between subsystems and disciplines are
very important issues. As presented in Chapter 3, the Multidisciplinary Design Optimization
(MDO) addresses to such problems. The MDO federates different aspects: analysis tools,
optimization algorithms and problem formulation. The problem formulation term does not
only correspond to the definition of objective function, constraint and design variables as
in a single disciplinary design optimization but corresponds also to the way of solving the
interactions between disciplines. The MDO has been used successfully in aeronautic and
automotive fields. This concept can be applied in electrical engineering and seems to be very
helpful for designers facing complex systems or multidisciplinary aspects.

Electrical machine design involves a number of disciplines e.g. magnetics, electrics, con-
trol, heat transfer, mechanics, cost analysis, and load cycle. An electrical motor model
consisting of several discipline models is presented in Section 4.1.1. The interactions be-
tween modules must be solved by using a numerical method. However, when using such a
model in an optimal design process, different approaches can be implemented. This section
presents an application of MDO techniques to SMPM optimal designs. Three single-level
MDO techniques are applied (see Section 3.2.1 for mathematical formulations).

4.3.1 MDO techniques comparison

The design problems for a MDO comparison are the same as in the previous section. A list of
design variables and constraints is given in Table 4.1. For these problems, the required torque
and speed are defined by a rated point2 and a steady state thermal behaviour is considered.
The rated torque and speed are defined: Trated = 626.14Nm and Nrated = 1923rpm. This
rated point was found in Section 4.2.3.4.

The SMPM model presented in Section 4.1.1 presents two thermal interactions as well as
6 implicit variables in the thermal discipline. In the original version, these interactions and
implicit variable loops are solved by using fixed point iteration method. According to the
MDO techniques used, the model is then re-configured and some auxiliary design variables
and constraints are added to the optimization problem [58]. A SQP algorithm is used to
solve the optimization problem.

Starting from the same initial design point, all approaches lead to approximately the same
final optimal motor. These results will be discussed in the next section. This section intends
to observe the impact of each approach on the optimization problem formulation and the
behaviour of the optimization process. The assessment is done by comparing the number of
design variables and constraints as well as the number of system analysis evaluations (i.e.
the number of objective function evaluations and number of evaluations for each discipline.
These evaluation quantities are reported in Table 4.5.

2see Section 4.2
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Table 4.5: Comparison of different MDO cases

Number of MDF IDF AAO

Design variable 7 15 21

Constraint 10 18 24

Function objective evaluation 158 859 1149

Magnetic module evaluation 1745 859 1149

Electric parameters module evaluation 1745 859 1149

Electric control module evaluation 1745 859 1149

Losses module evaluation 1745 859 1149

Mass module evaluation 158 859 1149

Thermal module evaluation 4516 3401 1149

4.3.1.1 MDF case

Figure 4.13a shows the data flow and model architecture of a SMPM motor optimal design
problem formulated using an MDF. Design variables are given by optimization (shown as a
full line). The interactions between physical domains are presented: feed-forward (depicted
as dotted line) and feedback (dashed line). An MDF can be considered as an optimization
layer enveloping a multidisciplinary model or a simulation model. The problem of interactions
between disciplines must be solved by an iterative method such as the fixed point method.
Furthermore, there are internal iteration loops inside the thermal discipline. These loops are
solved separately by the fixed point method as well. The SMPM model and optimal design
problems are identical to those in Section 4.23.

4.3.1.2 IDF case

The sequenced IDF4 is used in the aim of minimizing the number of coupling variables. The
load balancing feature is not investigated since time discrepancy between each disciplinary
module of a SMPM motor model is not important. Three groups are identified (depicted
as three big rectangles in Figure 4.13b and 4.13c): (i) magnetics, (ii) electric parameters,
control, and losses, and (iii) mass and thermal. This results in a total of 8 coupling variables;
2 feedback and 6 feed-forward coupling variables.

The advantage of the IDF over the MDF is that the parallelization capability can be
exploited if each module is completely independent i.e. the optimization process takes control
over both feedback and feed-forward interactions. Two feedbacks i.e. winding and magnet
temperatures (Tw, TPM ) and 6 feed-forward variables are removed. Eight design variables and
8 constraints are added into the MDF optimization problem. Table 4.6 shows IDF auxiliary
design variables added into the original MDF optimal design problem. The optimization gives

3Optimal design problem in Section 4.2 is formulated using MDF approach.
4Sequenced IDF is a variant of IDF formulation. Only some coupling variables are treated by optimization.

Please refer to Section 3.2.1.3 for more details.
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Figure 4.13: Data flow of different MDO approaches

a guess of the temperatures and other linking parameters as the additional design variables.
At the end of the optimization process, the outputs computed by each discipline are enforced
to be equal to the guessed input via 8 compatibility constraints.

The optimization algorithm needs a high number of function evaluations in order to cope
with a large set of design variables and constraints. As a result of the parallelization, the
computation time should decrease compared with the MDF case. A compromise between
the number of auxiliary variables and constraints and the parallelization capacity must be
studied in order to obtain the lowest computation time as possible.

4.3.1.3 AAO case

In an IDF, an assumption is made that the existing or commercial analysis tools are used. In
an AAO, the codes are supposed to be modified and integrated directly to the optimization
process. All iteration processes are handled by a system optimizer. In this example, the
internal loop in the thermal module is removed. The thermal block is represented with a full
line in Figure 4.13c. It should be noted that the thermal loop has 6 implicit variables. This
adds 6 design variables and 6 constraints to the IDF cases.

The number of function evaluations for an AAO case is higher than that of an IDF case,
due to a higher number of design variables and constraints. Due to the fact that the thermal
discipline evaluator is called once per objective function evaluation, the number of total
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Table 4.6: Auxiliary design variables for an IDF case

Number Symbol Quantity Unit

1 T ∗PM PM temp. ◦C

2 Φ∗ Flux Wb

3 B̂∗ga Armature air gap flux density T

4 B̂∗g Air gap flux density T

5 T ∗w Winding temp. ◦C

6 P ∗cu Copper loss W

7 P ∗coreT
Core loss in teeth W

8 P ∗coreY s
Core loss in stator yoke W

thermal discipline computations is divided by more than two compared with the IDF case.
Figure 4.14 shows the convergence properties of each formulation. The figure plots the

objective function i.e. the motor mass against the optimization time. In fact, the real
computation time of a SMPM model is very small and the difference between each formulation
cannot be captured clearly. Therefore, the computation time for one evaluation of each
module is fixed to 1s for demonstration purposes. This computation time is multiplied by
the total number of module function calls in order to obtain the total optimization time. For
IDF and AAO, the parallelization is also taken into account. The computation time for each
case is obtained as follows:

• MDF case: All modules are launched sequentially. tMDF = 4×1175+158+4516 = 11654

• IDF case: There are 3 groups that are launched in parallel. The computation time is
the slowest group i.e. the mass and thermal modules. tIDF = 859 + 3401 = 4260

• AAO case: The computation time is computed from the slowest group i.e. electric
parameters, electric control and losses modules. tAAO = 3× 1149 = 3447

From 1500s onwards, the objective function value for all formulations is subject to very little
changes. This is because the algorithm was in fact tracking for the feasible results. It suffers
from a high number of constraints in design problems. On the basis of the figure, it can
be concluded that the slowest approach is the MDF. The AAO performs better than other
formulations, in this example. The IDF takes a slightly higher time than the AAO. The AAO
and the IDF can profit from the parallel computation, which decreases significantly the total
optimization time.

4.3.2 SMPM design results

The same optimal motor, illustrated in Figure 4.15a, has been deduced from all the MDO
formulation. Table 4.7 shows the characteristics of the optimal motor, such as the motor
mass, its volume and material cost. It can be observed that the constraints are respected.
Some important constraints are tightly active. For example, the stator yoke, the rotor yoke,
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Figure 4.14: Convergence comparison between each formulation. The motor mass is plotted
against the optimization time.

and the tooth flux density are of 1.6T. The permanent magnet temperature constraint is very
essential in traction motors. In this example, the PM temperature reaches its limit at 150◦C.
It should be noted that auxiliary constraints are not shown in this table.

Table 4.7: Constraint and objective values of an optimal motor

Symbol Quantity Unit Remark Limit Optimal result

Tw Winding temp. ◦C Con. ≤ 200 176.77

TPM PM temp. ◦C Con. ≤ 150 150.00

BYs
Stator yoke flux density T Con. ≤ 1.6 1.60

BYr Rotor yoke flux density T Con. ≤ 1.6 1.60

BT Tooth flux density T Con. ≤ 1.6 1.60

Irms rms current A Con. ≤ 300 196.97

Ptdem PM demag. flag - Con. ≤ 0 -0.097

PtVrms
rms voltage flag - Con. ≤ 0 -52.41

Rext External radius mm Con. ≤ 700 203.66

Lext External length mm Con. ≤ 1000 552.69

M Mass kg Obj. min. 343.82

V ol Volume m3 - - 0.068

Cost Material cost euro - - 1796

Note: Con. = Constraint; Obj. = Objective function

Even though this optimal design problem is solved by using the rated torque approach,
the simulation on the load cycle must be carried out in order to confirm that the optimal
motor can operate properly on the load cycle. This load cycle is computed on the basis of
the vehicle characteristics and required performances. The simulation or design based on
the basis of the load cycle is very important and should be performed if the load cycle is
known e.g. in the case of a light rail traction motor as discussed in Section 4.2. Figure 4.15b
shows the motor temperatures obtained from the simulation. The simulation is run until the
temperatures reach their steady-state on the load cycle. It takes 30 load cycles for this motor.
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Figure 4.15: (a) Optimal motor, (b) Simulation of an optimal motor on the load cycle. The
figure shows various temperatures.

One can observe that the PM and winding temperatures do not reach their constrained limit
(150 and 200◦C, respectively). This indicates that the motor is oversized for the chosen load
cycle. This is one of the drawbacks of the rated point design approach.

4.3.3 Conclusion on the MDO

This section applied MDO formulations in the optimal design process of SMPM motors.
These help engineers in formulating optimization problems. Some of these formulations can
even be used to determine how the model is constructed. An optimal design of a SMPM motor
was performed. It illustrates the application of the method in the light of a rather frequent
design problem. Three single level MDO formulation were tested: MDF, IDF and AAO.
The IDF and AAO allow decoupling interactions between submodels (disciplinary module
in our case). Nevertheless, auxiliary design variables and constraints must be added to the
optimization problem. This can be problematic depending on the manner the optimization
algorithm is used since the optimization problem dimensions are higher. Due to the fact
that these submodels are decoupled, they can be evaluated in parallel. For this problem, the
optimization time is, therefore, divided by 2 for the IDF and by 4 for the AAO formulation,
compared to the MDF formulation. It should be noted that all MDO approaches lead to
similar optimal solutions. A selection of different formulations can be based on the number
of implicit and explicit variables, the complexity of the design problem, the code accessibility,
and time constraints.

MDO formulations open new approaches to formulate and to solve complex problems.
They can be used in optimal design layers (as in MDF) as well as in model construction
processes (as in AAO). It is clear that a well developed model, with an optimization purpose
in mind, can benefit from a low optimization time and more robust optimization problem
solving.
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4.4 Multi-criteria optimal design problem

In the sections presented earlier, the design problems are formulated as single-criterion prob-
lems. However, the design of a traction motor usually involves trade-offs between several
criteria. The design problem should be formulated as a multi-criteria problem. At the prelim-
inary design stage, the multi-criteria design problem helps the design engineer to understand
the trade–offs [60]. The Multi-objective Optimization (MO) approach allows constructing the
trade-off curve between objectives, called Pareto optimality front. The Pareto front repre-
sents the group of the “best solutions”, which can be used as supports in the decision making
process.

4.4.1 Design problem definition

Several criteria are considered as important for traction motor designs. Three objectives are
defined:

(i) minimisation of mass;

(ii) minimisation of cost;

(iii) minimisation of energy consumption.

In this problem, the load cycle approach (see Section 4.2) is used to define the required
torque and speed of the motor. In this case, a transient simulation must be performed. The
MDF approach is applied to the optimal design problem.

The design variables are the motor geometries. They include 8 continuous variables
(D.V.c.) such as the armature radius, the yoke height and 4 discrete (integer) variables
(D.V.d.) e.g. the number of pole pairs and the number of conductors per slot. The optimiza-
tion algorithm must allow to handle such design variables.

The solutions must also satisfy several constraints e.g. the maximal winding and PM
temperatures, the maximal flux density in the yokes and tooth, maximal RMS current, etc.
These constraints are imposed by the model hypothesis, the material properties and the
interaction with other components. The maximal RMS voltage, material properties, and
load profile i.e. the required torque and speed as a function of time (time dependent inputs)
are considered as design parameters.

The multi-criteria design problem can be graphically represented in Figure 4.16. The
design variables are defined on the left side and the objective functions and constraints are
shown on the right side. The parameters are on the top. Table 4.8 lists all the objective
functions, design variables, and constraints.

A multi-objective optimization algorithm is used to solve this multi-criteria design prob-
lem. NSGA-II5 is one of the most efficient multi-objective evolutionary algorithms using an
elitist approach. It generates a Pareto front representing the trade-offs between the different
objectives. NSGA-II can handle both continuous and integer design variables [20, 82].

5see Section 3.1.2.2
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Figure 4.16: Optimization problem

In this test, the following algorithm parameters are used: population size N = 500,
maximum number of generations T = 100, mutation probability 0.1, crossover probability
0.9, and the distribution index for crossover and mutation operators are ηc = 20 and ηm =
20, respectively.

4.4.2 Results

The multi-objective optimization takes 8 hours with the NSGA-II algorithm. 3D Pareto front
and projections of this front in each direction are shown in Figure 4.17. There are main four
solution groups. The solutions in each group share a common trend in design variable values.
The solutions in Groups 1 and 2 offer almost the same design with a low conductor number,
a low armature radius but a long stack length. Unlike the first two groups, Groups 3 and 4
present a high armature radius but a short stack length. Group 1 has a higher PM height
value but a lower PM span coefficient and a thinner air gap compared with other groups.
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Figure 4.17: Optimization results – Pareto front

The mass and consumption criteria are clearly conflicting. A higher mass motor consumes
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less energy than a motor with a low mass. For mass and cost criteria, an increase in mass
and cost are in the same direction. However, for motors whose mass is lower than 400kg, a
trade-off exists between Groups 2 and 3. Having the same mass, a Group 2 motor is more
expensive but its energy consumption is slightly better than that of a Group 3 motor.

The evolutions of the design variable on the Pareto front are depicted in Figures 4.18. It
is not obvious to clearly identify design criterion trends. They depend on the interactions
between design variables as well as between other design criteria. Nevertheless, the linear
global trends are presented in the figures. Without an optimal design, designers may have
difficulty to find the optimal solutions. This confirms the advantage of an optimal design.
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Figure 4.18: Evolution of design variables on a Pareto front

In order to make a decision, four design points are selected among the optimal Pareto
solutions: Motor A–minimal mass, Motor B–minimal cost, Motor C–minimal consumption,
and Motor D–average mass, cost and consumption (shown in Figure 4.17). Any solution in
Group 2 has been taken because the cost increase does not significantly improve the energy
consumption compared to Group 3, which presents the same mass but at a lower cost.

The comparison of the design variable vectors, constraint vectors and objective vectors of
these solutions are shown in Table 4.8 and Figure 4.19. All solutions show 7 pole pairs and 1
slot per pole and per phase. Motor C and Motor D are almost of the same design. As Motor
C is longer, its heat exchange surface is larger than that of Motor D. The temperatures can
be kept lower. As a PM offers a better performance at a low temperature, the current needed
to generate the required torque tends to be lower. By combining this effect with a low phase
resistance at a low temperature, a high efficiency, hence a low energy consumption can be
achieved.
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Table 4.8: Optimization results

Symbol Quantity Unit Mt.A Mt.B Mt.C Mt.D Remark Limit

Y Yoke height mm 30.74 36.89 40.19 37.17 D.V.c. [10, 50]

lm PM height mm 18.93 10.39 9.05 12.71 D.V.c. [1, 20]

g Air gap mm 3.62 3.86 5.07 3.05 D.V.c. [1, 10]

ds Slot height mm 33.71 35.73 36.77 35.73 D.V.c. [20, 40]

ra Armature radius mm 150.6 246.4 237.3 241.0 D.V.c. [100, 300]

lstk Stack length mm 265.9 117.4 202.1 139.7 D.V.c. [100, 300]

rwt Tooth width ratio - 0.663 0.536 0.487 0.535 D.V.c. [0.3, 0.7]

kp PM span coeff. - 0.676 0.538 0.500 0.510 D.V.c. [0.5, 1]

p Pole pair - 7 7 7 7 D.V.d. [2, 8]

Nslot Slot/pole/phase - 1 1 1 1 D.V.d. [1, 3]

Nc Conductor/slot - 8 28 10 11 D.V.d. [1, 50]

a Parallel path - 2 4 2 2 D.V.d. [1, 4]

Tw Winding temp. ◦C 191.4 200 117.7 142.9 Con. ≤ 200

TPM PM temp. ◦C 150 144.8 103 118.1 Con. ≤ 150

BY Yoke flux density T 1.17 1.19 0.84 1.23 Con. ≤ 1.6

BT Tooth flux density T 1.60 1.48 1.30 1.59 Con. ≤ 1.6

Irms RMS current A 266.5 286.7 286.7 282.0 Con. ≤ 300

Ptdem. PM demag. point - 0 0 0 0 Con. ≤ 0

M Mass kg 329 346 537 387 Obj. min

C Cost euro 2114 1698 2642 1976 Obj. min

E Consumption kWh 7.44 7.41 7.32 7.36 Obj. min

D.V. = Design variable; c. = continuous variable; d. = discrete variable
Obj. = Objective function; Con. = Constraint
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Figure 4.19: Shape of optimal motors in two dimensions

Motor A and Motor B are also interesting for traction applications due to their low mass,
regardless of their high energy consumption. A rather thick PM (high value of PM height)
is used in Motor A. It allows using a lower current compared to other solutions. However,
the cost would be higher. One can observe that the flux density in yoke has not reached
the constraint limits. In a conventional motor design approach, in order to minimise the
mass, the yoke height has to be minimized. This can be obtained by computing it directly
on the basis of the allowable flux density. In our case, the temperature constraints are active,
instead of the magnetic constraints. This shows the advantages of using of the thermal
model. If the conventional approach is performed, the motor could suffer from extremely
high temperatures.

The last decision was made. Motor A was chosen using mass and dimension criteria. The
energy consumption is a bit higher but this is not crucial because it can be compensated by
lower current, hence lower inverter losses. However the cost is much higher than the Motor
B. It has to be investigated in detail, by including manufacturing cost.
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4.4.3 Conclusion on the multi-criteria optimal design

This application shows an interesting approach to design a traction motor. In real-world
design problems, the objective is to satisfy several design criteria. With multi-objective
optimal design, multiple criteria can be defined instead of simplifying the design problem to
a single-objective as in the previous sections. Designers obtain intermediate results in the
form of trade-off curves. This provides useful information to make decision i.e. select the
final results.

Multi-criateria optimal design of traction motors was presented. A load cycle approach
was used in order to define the required torque and speed of the motor. The SMPM model
takes into account transient thermal simulations. Design problems include three objective:
mass, cost and energy consumption minimisations. Design variables are of two types: con-
tinuous and discrete variables. The NSGA-II optimization algorithm was used to generate a
Pareto front. Results show that the mass and cost are not conflicting for big motors (high
mass), but for smaller motors, some conflicts may be observed. In contrast, the mass and
energy consumption are clearly conflicting. An ncrease in mass leads to a lower consumption.
The influence of design variables on objective functions cannot be observed clearly. There are
interactions between design variables and between objective functions. Four optimal motors
were chosen from Pareto-optimal solutions. A motor was chosen to be further studied by
using mass and dimension criteria, regardless of its higher energy consumption.
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4.5 Use of high fidelity tools

A classical design process of electrical machines uses an analytical model to obtain preliminary
designs. These results are then verified with a more accurate tool: the Finite Element Analysis
(FEA). The FEA allows taking into account phenomena neglected in the analytical model and
does not require strong hypotheses. Optimization techniques are usually performed using the
analytical or semi-analytical model as in the previous sections. The FEA is used in refining
problem such as shape design [86, 113]. Such problems are rather simple e.g. the initial
design is available, only a few design variables are considered and the design problems are
without or only few constraints. Design of experiment method is very suitable for such kind
of problems [12, 28]. For full-range problems such as sizing problems, no initial design exists.
There are several constraints. Most of time, it is multi-criteria design problem. The use
of FEA in sizing problems is more or less prohibited because of a high computational time.
However, due to its high accuracy, it is interesting to integrate the FEA in the optimal design
process. But some precautions must be taken:

(i) the design space is usually large and the mesh size must be adapted automatically
with the geometries of machines in order to avoid inappropriate meshes and to obtain
accurate results;

(ii) a numerical error may cause difficulties to some optimization algorithm (e.g. gradient
method);

(iii) the computational time is usually high;

(iv) other physical phenomena such as thermal and mechanical must be included in the
design process.

To solve the problem of optimization time, two main research tracks are carried out
by researchers: the surrogate modelling technique (see Chapter 2) and the optimization
technique (see Chapter 3). Section 3.1.3 presented a promising optimization approach assisted
by the surrogate model. This kind of optimization algorithm uses the surrogate model and its
uncertain properties to determine where to select a new point. The design point set increases
and the surrogate model are updated over optimization iterations. The mathematical example
in Section 3.1.3 showed the robustness of this algorithm in the case of a noisy constraint
function, which is typical in the optimal design using FEA [56, 59].

In this section, surrogate-assisted optimization techniques are applied to two SMPM mo-
tor design problems using FEA. The first problem is a single criterion optimal design problem.
This problem is solved using an EGO algorithm. The results are compared with the previous
results obtained by a SQP algorithm [76].

The second problem is a multi-criteria problem. A new infill criteria called Pseudo dis-
tance, presented in Section 3.1.3.6.1, allows generating a trade-off curve between two criteria:
the mass and the total losses minimisations.
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4.5.1 Multi-physical model

To achieve the optimal design, it is necessary to take into account different physical domains:
electromagnetic, thermal, mechanical etc. In this work we consider the two most important
phenomena: the electromagnetic and thermal phenomena.

The electromagnetic phenomenon is computed by a commercial FEA software: Vector
Field Opera 2d. The FEA simulation uses the nonlinear characteristics of B-H curve. The
simulation was performed in only one static position. The torque at this position is calculated
by using the Maxwell stress integral method. An automatic mesh generation is implemented.
It adapts the mesh size and the node number to the geometry of the motor. This procedure
allows obtaining an appropriate mesh, hence good simulation results, for any geometry within
the variation domain of the design variables [73, 76].

Figure 4.20 shows a finite element model and mesh created automatically in the FEA
software. However, due to mesh changes during optimization, a numerical noise can be
observed and causes problem to some optimization algorithms such as the SQP method.

Figure 4.20: PMSM FEM model with and without mesh

The thermal phenomenon is a very important constraint in electrical machine designs.
The geometries of the machine, iron losses and copper losses are injected into the thermal
model in order to determine the temperature of the various components of the machine.
The motor thermal model is a lumped parameter model composed of 8 nodes representing 8
motor elements [76]. The parameters are computed on the basis of the motor geometries and
material properties. This thermal model allows computing the steady state temperature.

4.5.2 Single objective problem (SOP)

A single-objective optimal design problem (SOP–FEA) can be represented graphically in Fig-
ure 4.21. It consists of 7 design variables, which are the motor geometries and the current
density. Some motor data including machine structure, some geometries and material prop-
erties are fixed as design parameters e.g. PM width ratio is fixed to 0.8 in order to obtain
sinusoidal flux density distribution over pole. Design objective is to minimise motor mass
while satisfying 6 constraints as shown in Table 4.9 (“Con.” remark). These constraints ex-
press the maximum flux density in the various parts of the machine, the maximum allowable
winding temperature, the torque requirement and the length of the slot. The last constraint
(Ls) ensures that the automatic geometry generation in the FEA software is correct. A
detailed description of the problem can be found in [73, 76].
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Figure 4.21: Graphical representation of the single-objective optimal design problem

Six constraints and one objective function can be considered as “expensive”. Therefore,
all the 7 functions are approximated by using surrogate models. LHS is used to generate 41
initial points (= 5 × 7 design variables + 6 constraints), according to (3.10). The number
of initial points is important because a too small number of initial points leads to a slow
convergence, while if there are too many initial points, some of them are wasted.

The SOP–FEA sizing problem was solved by using multistart SQP and EGO. The result
comparison is shown in Table 4.9. The previous SQP results (from [76]) are slightly better
than the EGO results as the EGO constraints tolerance is set to be larger than that of
SQP. The EGO managed to find the global solution from 140 FEA evaluations. At the
obtained optimum, four out of six constraints are active within the relative tolerance of 0.01.
This is rather difficult for an algorithm using the surrogate model. The surrogate models of
constraints have to be fairly accurate near the feasible limit. This difficulty increases as the
number of active constraints is increased. Figure 4.22 shows the FEA of EGO’s final result.

Figure 4.22: Finite Element Analysis of EGO’s results

On the contrary, the SQP constraints are tightly active (tolerance of 10−6). The SQP
algorithm requires approximately 80 function calls per launch. But it is necessary to provide
many different initial points to the SQP in order to guarantee a global solution due to the
fact that the SQP is a local optimization algorithm that depends on the initial points. For
this reason, its overall function evaluation is much higher than that of the EGO. The given
SQP results were obtained from 4 optimizations with random initial design vectors.
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Table 4.9: Optimization results for single objective problem

Symbol Quantity Unit EGO result SQP result Remark

R External radius mm 221.55 231 D.V.

ES Stator yoke thickness mm 13.10 13 D.V.

ER Rotor yoke thickness mm 13.75 14 D.V.

EW Winding thickness mm 19.03 16 D.V.

J Current density A/mm2 1.94 2.16 D.V.

EPM PM thickness mm 4.07 3.8 D.V.

LT/2 Length of the half-tooth mm 3.00 3.08 D.V.

M Mass kg 98.40 98.3 Obj.

BT Tooth flux density T 1.63 1.57 Con. ≤ 1.8

BS Stator yoke flux density T 1.802 1.8 Con. ≤ 1.8

BR Rotor yoke flux density T 1.802 1.8 Con. ≤ 1.8

TW Winding temperature ◦C 90.13 90 Con. ≤ 90

T Torque Nm 199.20 200 Con. ≥ 200

Ls Length of the slot mm 10.4 11.4 Con. ≥ 1

D.V. = Design variable; Obj. = Objective function; Con. = Constraint

Another great advantage of the surrogate-assisted algorithm is that surrogate models of
objective function and constraints are available after the optimization process has finished.
These models are accurate around the optimal point. They can be used in analysis or commu-
nication phases in order to better understand the design space and the optimization results.
In this work, we use these surrogate models to perform sensitivity analysis by applying DOE
[50]. The design variable domain for each variable is reduced to ±2.5% of the optimal point.
The effect of each design variables on the mass, the winding temperature and the torque
are studied and shown in Figure 4.23. To interpret this graph, for example, if the external
radius R is changed from a low to a high level (from -2.5% to +2.5% of the optimal value)
while keeping other factors unchanged, it can be then observed that the mass, the winding
temperature and the torque will be increased by 3, 0.5, and 5% of the average value, re-
spectively. This tendency is physically correct because increasing of external radius, thus
armature radius, would increase the mass and the torque. Despite a higher torque, as the
external radius provides a greater heat exchange surface, the winding temperature would not
be affected so much. Moreover, it can be concluded from this graph that the most significant
factors on mass are R, EW , ER, and ES . And in the same way, change in R, J , EW , and
EPM affect the torque significantly.
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Figure 4.23: Sensitivity analysis results

4.5.3 Multi-objective problem (MOP)

For multi-criteria problems (MOP–FEA), two design criteria are defined: the mass and the
total losses. The problem consists of 5 design variables. Two design variables are removed
from the single-objective problem presented above: the rotor yoke thickness (ER) and the
length of the half-tooth (LT/2). The rotor and the stator yoke thicknesses are equal and LT/2
is set to ES/5. The other problem and model definitions are the same as in single-objective
problems.

Surrogate-assisted using pseudo distance infill criterion was applied to MOP–FEA prob-
lems. The non-dominated front shown in Figure 4.24 is obtained from only 250 FEA eval-
uations in total: 200 infill points and 50 initial points using LHS. The results show that
the proposed algorithm is very promising because this problem is a very difficult constrained
optimization problem. The design space is quite large because the base-line design does not
exist and the feasible zone is very small. NSGA-II has only found infeasible solutions and
cannot construct any front with the same number of function evaluations.
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Figure 4.24: Non-dominated solutions
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On an engineering point of view, this non-dominated front is very useful for design en-
gineers. The trade-off study between the motor mass and losses can be carried out. Several
interesting solutions can be investigated in detail afterwards. For example, two designs with
a minimal mass and minimal losses are shown in Figure 4.25.

(a) Minimum mass (b) Minimum losses

Figure 4.25: Optimal motors for the multi-objective problem

4.5.4 Conclusion on the optimal design using high fidelity

tools

In design of electrical machine, the FEA offers high accuracy analysis results. However,
it is still difficult to use FEA directly in optimal design processes due to the fact that a
high optimization time is required. Surrogate-assisted optimization algorithms allow using
high fidelity tools such as FEA in an optimization process, both single-objective and multi-
objective optimal designs depending on the infill criteria used. The results shows that they can
cope with the noise characteristics of the FEA and multi-modal design problem. Furthermore,
they requires a very small number of FEA evaluations. For the presented design problems,
140 FEAs are need for single-objective problem compared with 320 FEA evaluations by
using SQP. For multi-objective problem, it requires 250 FEA calls to generate a Pareto front
whereas NSGA-II cannot even find any feasible solution with the same number of function
calls.
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4.6 Conclusion

In this chapter, the traction motor optimal design methodology was presented. A surface-
mounted permanent magnet motor has been chosen as an example of application. Two models
were used: the multidisciplinary semi-analytical model and the multi-physical FEA model.

To design an electrical motor, the required torque and speed are needed as inputs of
the design problem. Several approaches were compared. The design approach using a load
cycle and transient thermal simulation is suitable for the traction application. The thermal
behaviour of the motor can be taken into account. This allows downsizing the motor, in
comparison with the traditional approach using a rated torque and a steady-state tempera-
ture. However, the optimization time is then significantly higher than in approaches taking
a steady-state temperature into consideration.

A multidisciplinary motor model is usually composed of several tools or submodels (Each
submodel represents a discipline.). There are interactions between these models. MDO
formulations allow solving simultaneously these interaction problems and the design problem.
The simplest and commonly used formulation is MDF. The interaction between disciplines
is solved by an iteration method and forms a system analysis model. This system analysis is
then introduced into the optimization loop. IDF and AAO formulations solve the problem
in a different manner. They treat an interaction (coupling variable) as an auxiliary design
variable. As a result, submodels are decoupled and can be launched in parallel. The SMPM
design application shows that the optimization time can be divided by 2 to 4.

The design problem was extended to the multi-criteria problem, which is common in
the electrical motor designs. The design problem is to minimise the motor mass, cost and
energy consumption. The trade-off curve named Pareto front was found using NSGA-II. The
Pareto front represents the group of the best solutions, which can be used as a support in
the decision making. Designers must choose the final solution among the solutions suggested
by the Pareto front. This is based on other criteria, which did not or cannot be expressed as
objective functions in optimal design problems.

The use of FEA in motor design problem may cause convergence problems to some op-
timization algorithms as there is a numerical noise associated with it. Moreover, a high
computation time is required. The last section presented the application of the surrogate-
assisted optimization algorithm. It allows using a high fidelity tool such as FEA in the
optimal design of a traction motor. The multi-physical motor model combines the electro-
magnetic FEA model and the analytical thermal model. The surrogate-assisted algorithm
can be used in single-objective problems and multi-objective problems. It requires a small
number of FEA evaluations.



Chapter 5

Optimal design of railway traction

systems

A railway traction system is considered as a complex system. Its design problem is a compli-
cate task requiring many designers and experts as well as an efficient industrial management.
In the rolling stock industry, optimization techniques are used in the design process to im-
prove performances of components. But without taking into account the interaction between
subsystems, some designs can lead to suboptimal systems. To design a system or even a
subsystem, it is essential to consider the system as a whole [74].

In this chapter, two application examples are presented. The first one is a tram traction
system re-design problem. In this problem, only the system level is considered. The control
parameters are adjusted by the optimization method in order to satisfy the performances and
component specifications. The traction system design tool of Alstom is used. The surrogate
modelling approach, as well as a hybrid optimization algorithm, are applied.

The second application problem covers the tram traction system as well as its components.
The goal is to design a standard tram traction system. In the application example, a simplified
problem is studied. The decomposition approach and the Target Cascading method are used
to solve the problem. The problem is decoupled into 3 linked subproblems. The coordination
and optimization are performed by the Target Cascading method presented previously in
Chapter 3.

145
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5.1 Tram traction system re-design problem

As presented in Section 1.2.1 Alstom Transport has developed the standard traction system
for tram applications in order to minimise cost and delivery time. Each applicative project
has different customer specifications. These components are chosen and adapted according
to these specifications in order to satisfy the global performance of trams operating on a
predefined track.

In this study, the goal of Alstom is to increase the passenger capacity of the tram. The
traction system would be re-designed due to the increase in global weight. The hardware re-
design is discarded because the cost is unacceptable. For this reason, only control parameters
can be modified. The solution has to meet not only the hardware constraints but also the
customers’ specifications.

5.1.1 Problem description

Due to a change in passenger capacity, the vehicle weight is increased. In the normal operating
mode, the simulation results show that the tram can be operated perfectly without any
problem. According to the customer contract specifications, in the faulty operating mode
(one traction box is defective) the tram must be able to continue the service until the end of
the trip with the remaining 50% motorization (3 motors) with the same performance as in the
normal operating mode, except that the maximum speed had been reduced. The simulation
results show that the required performance can be achieved [61]. However, some problems
are observed:

(i) The temperature of IGBT (Insulate Gate Bipolar Transistor) modules used in VSIs
was over the limit of 125◦C defined by the semi-conductor manufacturer. The normal
operation of IGBT cannot be guaranteed beyond this temperature limit. Figure 5.1
shows the simulation results obtained by using the simulation tools i.e. CITHEL. The
maximum temperature reachs 170◦C;

(ii) Due to the increased torque, the line current did not respect the line filter specifications.

 

Figure 5.1: IGBT temperature – initial design, 50% motorization mode
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5.1.2 Modelling of traction systems

An overview of railway traction systems has been given in Section 1.2.1. A tram is usually
equipped with a DC traction system. For low power application, the DC power supply allows
decreasing the cost of the traction system, as a transformer and a rectifier are not needed.

A simplified schema of a tram traction system is shown in Figure 5.2. A pantograph
collects electricity from the direct current (DC) overhead supply with a nominal voltage of
750V. Electricity passes through a line filter and then through a voltage source inverter (VSI)
and finally traction motors. Normally, a regenerative braking is used. However, for security
reasons, a braking chopper with a braking resistance is connected to a DC bus, for example
in the case of voltage saturation of the DC line.

DC supply

Pantograph

Line filter

VSI

Motor

Rail

Figure 5.2: Simplified power schema of a tram traction system

In reality, the studied tram is composed of 2 traction boxes. Each traction box contains
a line filter, 2 braking choppers and 3 VSIs, which can drive one motor each, and other
electrical equipments e.g. breakers, sensors etc.

The traction system model is an in-house code of Alstom Transport–CITHEL. The model
is the integration of the train system, the traction system and its components. These models
are described with different levels of complexity and form a system model. It allows simulating
the behaviour of rolling stocks operating on tracks e.g. a round-trip of tram (mission of more
than 1 hour). It requires a lot of knowledge:

(i) the rolling stock characteristics e.g. the aerodynamic properties, the component param-
eters.

(ii) the track characteristics i.e. the track curve, the speed limit, the stop station, the stop
time, the altitude level.

(iii) the driving performance requirements e.g. the maximal acceleration, the deceleration.

The simulation takes into account the transient thermal behaviour of components such as
the motor and the inverter. The electrical computation only takes the steady state into
consideration. At each time step, it computes the global dynamic values of the train (speed,
acceleration, etc.) and the local electrical, thermal, and mechanical values of the components
(line current, IGBT temperature, output torque, etc.).

The main role of CITHEL is to define the architecture of traction systems (number of
motors, inverters, etc.) and to verify the operation of a train on a track based on the compo-
nents already developed. The component properties are defined by rather global parameters,
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for example, the motor model is a single-phase equivalent circuit model and is not linked to
the geometries of the motor. The simulation must be performed in many operating scenarios
in order to satisfy the specification requirements.

Usually, several missions (different tracks) and several operation modes including normal
operation and various faulty situations, have to be taken into account. However in this
problem, the track profile of only one customer and a 50% motorization faulty mode are
taken into consideration. Two driving strategies are tested: with and without regenerative
braking. This allows verifying the maximum current passing through the line filter and the
braking resistance.

The surrogate model approach [61] is used to decrease the computation time. Figure 5.3
depicts the main idea of a surrogate model approach. The surrogate model uses information
from the high fidelity model and provides a cheap-to-evaluate model estimating the high
fidelity model. It replaces the high fidelity model in the optimal design process. In this work,
the Kriging surrogate model [63] is constructed independently for each output.

The traction system design tool is then replaced by the surrogate models during the
optimization process. The computation time is then decreased from more than one hour to
less than one second per design evaluation.

High fidelity
tool

0 1

1

x1

x2

Sample points

Surrogate model

Optimization

1 hour
1 second

Figure 5.3: Surrogate modelling approach

In this example, 108 sample points have been computed with the high fidelity tool i.e.
CITHEL. These sample points are used to build 12 surrogate models of CITHEL outputs.

5.1.3 Optimal design problem

The optimal design methodology is applied to this problem. The design criteria is to minimise
the maximum IGBT junction temperature (Tj) during the round-trip of the tram in faulty
operating mode on the customer route profile.

Four control parameters are selected (see Table 5.1). The first two design variables are
the parameters for the Pulse Width Modulation (PWM) used in VSI. Two Asynchronous
Space Vector (ASV) schemes [38] with different switching frequencies are used in different
speed zone.

Table 5.2 and Figure 5.4 shows the PWM schemes for different VSI output frequencies
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Table 5.1: List of design variables

Number Design variable (unit) Symbol Limit

1 VSI switching frequency (Hz) fpwm low [300, 900]

2 Min. ratio
VSI switching frequency

VSI output frequency
(-) n [10, 20]

3 Maximum torque limit (Nm) T [800, 840]

4 Maximum power limit (kW) P [70, 90]

(fvsi). For VSI output frequencies from zero to fpwmlow/n, the switching frequency is set
to fpwmlow and from fpwmlow/n to fvsimax , the switching frequency is fpwmhigh . It should be
noted that fvsimax is the maximum frequency generated by the VSI and fpwmhigh is a constant
value.

Table 5.2: PWM scheme parameters

Output frequency (Hz) Switching frequency (Hz)

0 to fpwmlow/n fpwmlow

fpwmlow/n to fvsimax fpwmhigh

fpwm (Hz)

fpwmhigh

(constant)

fpwmlow

fpwmlow

n

fvsimax

(constant)

fvsi (Hz)

Figure 5.4: PWM scheme

These schemes allow the VSI to operate with a low switching frequency in low output
frequency zones (low tram speeds) where the train driver always needs a high torque to
accelerate the tram, hence high current, high IGBT losses and a high IGBT temperature.
The minimum ratio between fpwm and fvsi is determined to respect some design rules for
this application.

The last two design variables are the maximum torque limit and the maximum power limit
of the motor. These limitations affect the IGBT temperature in 2 conflicting approaches:

(i) The low torque requires a low current, hence a low IGBT temperature.

(ii) The train driver can reach the maximum speed easier and faster with a high torque
and a high power, but the high torque requirement applies only for a short period. As
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the thermal response time is slow, it is possible that the IGBT temperature would not
increase significantly.

Due to the component specifications and performance requirements, 11 inequality con-
straints given in Table 5.3 are required.

The summary of the optimization problem can be represented graphically as shown in
Figure 5.5. The left side shows 4 design variables. The objective function and constraints
are on the right side.

Table 5.3: List of constraints

Number Inequality constraint Unit Limit

1 Inductor current–traction mode A ≤ 675

2 Inductor current–regenerative braking mode A ≤ 675

3 Inductor thermal current–braking resistor mode A ≤ 300

4 Inductor thermal current–regenerative braking mode A ≤ 300

5 Capacitor thermal current–braking resistor mode A ≤ 240

6 Capacitor thermal current–regenerative braking mode A ≤ 240

7 Peak phase current A ≤ 600

8 Motor rotor temperature ◦C ≤ 300

9 Motor winding temperature ◦C ≤ 250

10 Motor iron temperature ◦C ≤ 250

11 Round-trip time s ≤ 5500

fpwmlow
(Hz)

n (-)

T (Nm)

P (kW)

Tj (◦C)

Calculation
tool

11 inequality
constraints

Objective function4 design variables

Figure 5.5: Optimization problem

The Kriging surrogate modelling approach presented in Section 2.2.3.3 is applied. Sam-
ple points are firstly selected. In this application, nonlinear relationships between design
variables, constraints and the objective can be observed. At least three level-factorial design
seem to be necessary in order to capture these nonlinear relationships. A grid design with 4
levels for fpwmlow and 3 levels for other design variables is used. The response of the objec-
tive and 11 constraints are obtained by evaluating CITHEL at 108 sample points allowing
to construct 12 Kriging surrogate models (eleven constraints and one objective function).
Figure 5.6 shows the surrogate model of the objective function. Finally, the optimizations
are carried out with these 12 surrogate models.
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Figure 5.6: Surrogate model of the objective function

5.1.4 Comparative results

Three single-objective optimization algorithms are tested: SQP, GA and hybrid GA and
SQP. The initial point set (SQP) and the initial population (GA, Hybrid) can influence the
behaviour of algorithms. Three initial point sampling methods are studied: Monte Carlo
Sampling, Grid Sampling and Latin Hypercube Sampling. In order to compare the results
given by different studies, the optimal results found by a reference optimization using SQP
with 1000 initial point multistart is chosen as a reference global optimum (Tj = 114.25◦C).

5.1.4.1 SQP optimization results

A main drawback of the SQP is that it can be trapped in local optima if the initial point is far
from the global solution. Therefore, a multistart strategy is used. The SQP is restarted with
a set of different initial points in order to increase the probability to find the global optimum.
Three sets of 108 initial points are chosen by using (i) Monte Carlo Sampling (MCS), (ii)
grid sampling (Grid) and (iii) Latin Hypercube Sampling (LHS).

Table 5.4 compares the Percentage of Convergence (PC) towards the reference optimum
point with a an Euclidean distance lower than 10−3 and the average number of evaluations for
the three SQP approaches starting from 108 initial points. The computational time is given in
terms of average number of evaluations. For example, the computation time of the SQP with
a LHS approach is equal to 121 × 0.08s = 9.68s, where 0.08s is the average time needed to
evaluate the objective and constraint functions and 121 is the number of SQP’s evaluations.
In this comparison, all design variables are scaled to [0, 1]. The LHS performs slightly better
than other sampling approaches. As shown in Table 5.4, the SQP converged at an average of
one hundred evaluations of the objective function. However, whatever the choice of the initial
point set is, with any ten points, the SQP can converge at least once (PC=15.74%) or at
most twice (PC=23.15%) towards the global solution because the percentage of convergence
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is between 15.74% and 23.15%.

Table 5.4: SQP optimization results

MCS Grid LHS

PC precision 10−3 (%) 20.37 15.74 23.15

Average number of evaluation 116 113 121

As shown in Figure 5.7, the studied problem is a hard optimization problem with several
local optima. Using 108 initial points chosen randomly. Only 20% of the 108 initial points
chosen randomly allow the SQP method to converge towards the reference optimum point
(first bar with temperature=114.2514◦C). It means that approximately 80% of the initial
points lead to the local optima. Therefore, GA algorithms are performed in order to overcome
this disadvantage.

114.2514 114.3159 ]114.3159,118] ]118,120] ]120,125] ]125,130] ]130,131]
0

10

20

30

40

50

60

Temperatures

Figure 5.7: Multimodal problem

5.1.4.2 GA optimization results

Like the SQP, the GA is an initial population dependent algorithm. To compare rigorously
the SQP results with those of GA, the three sets of SQP initial points, presented above,
are used as the GA initial population containing 108 individuals each. The GA parameters
have the following values: population size N=108, maximum number of generations T=100,
crossover probability 0.8, rank fitness scaling, scattered crossover, and stochastic uniform
selection operators. If the objective value is not improved over 10 generations or if the
objective function tolerance is of less than 10−6, the algorithm stops.

In Table 5.5, it can be observed that the GA results are less accurate than the SQP results.
The GA found solutions, which are very close to the global optimum (with an accuracy of
10−1). However, the percentages of convergence for a precision of 10−3 are of zero for all
initial populations. To improve the results, the hybrid method has been used.
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Table 5.5: GA optimization results

MCS Grid LHS

PC precision 10−1 (%) 1 19 16

Average number of evaluations 5987 5025 9906

5.1.4.3 Hybrid method (GA & SQP) results

The GA parameters are tuned like previously. However, in order to reduce the number of
evaluations, the GA algorithm is stopped prematurely. For this purpose, the number of
generations has been reduced to 5 generations. It is the sole stopping criterion. Then the
solutions found by the GA are used as initial points for the SQP algorithm. Table 5.6 shows
the performance of the hybrid method. The results are more accurate than the SQP and GA
alone, while fewer evaluations are required. With the GA and the grid sampling approach, the
solutions are very close to the global one. Each solution is used by the SQP as an initial point
in order to overcome the local optima. This explains the highest percentage of convergence
of the hybrid method with the grid sampling approach.

Table 5.6: Hybrid method optimization results

MCS Grid LHS

PC precision 10−3 (%) 11 70 32

Average number of evaluation 3380 3380 3323

5.1.4.4 Summary

Three optimization algorithms have been tested. The SQP with multistart and the GA can
be considered as effective. Due to the lack of precision of the GA and the risk to be trapped
in the local optima of the SQP, a hybrid method combining the SQP and the GA with three
different initial populations has been applied. The hybrid method using the grid sampling
initial population gives a greater percentage of convergence and a lower computational time
than the Monte Carlo and Latin hypercube sampling approaches.

5.1.5 Traction system design results

The final results are presented in this section. The minimum IGBT temperature is found at
114.25◦C on the basis of the Kriging surrogate model. This design point is verified against
CITHEL, which gives 113.05◦C. The relative error of the surrogate model at the optimal point
is of 1%. At this point, all the constraints are satisfied. The rotor temperature constraint is
active at 300◦C.

Figures 5.8a and 5.8b show the evolution of the IGBT and motor temperatures. These
results are obtained from CITHEL. It can be observed that the IGBT temperature is de-
creased significantly compared to the initial case (170◦C in Figure 5.1). In order to decrease
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inverter losses (and the IGBT temperature), the PWM switching frequency is reduced. As a
result, the motor harmonic currents are increased. This causes high losses in the motor and
hence a high motor temperature.

 
(a) IGBT temperature

 
(b) Motor temperature

Figure 5.8: Simulation results at optimal solution

The Design of Experiments methodology (DOE) [29] is used to perform the sensitivity
analysis. The objective function is observed when one or more input values are changed. A
variation of 5% is applied to the optimal solution as shown in Table 5.7. The result of the
sensitivity analysis is shown in Figure 5.9. Its intepretation is that the motor torque (T ) is the
most significant design variable to the objective function. The increase in the motor torque
leads to the increase in the IGBT temperature. Other design variables are not considered as
significant factors because their effects are lower than 95% of the confidential level.

Table 5.7: Variation of design variables for sensitivity analysis

Number Symbol Lower level (-5%) Optimal value Upper level (+5%)

1 fpwm low 437.03 460.03 483.03

2 n 9.5 10 10.5

3 T 791.13 832.77 874.40

4 P 77.49 81.57 85.65
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n T P

Effect

fpwm low

Figure 5.9: Sensitivity analysis

5.1.6 Conclusion on the re-design problem

This application shows the advantages of the optimal design using the surrogate model.
The computation time is significantly decreased with this approach. Three optimization
algorithms and initial point sampling methods are also studied. The GA and SQP hybrid
algorithm offers a compromise between the global search capability and the optimization
speed.

The optimal result of the traction design problem allows minimising the IGBT temper-
ature while satisfying a number of constraints such as component specifications and tram
performances. According to the simulation using Alstom’s traction design tools, the tram
can be perfectly operated in both normal and faulty modes.

In this application, the optimal design is applied in the late design phase. Therefore, only
a few design variables can be taken into consideration. In the following section, the optimal
design and the multilevel approach are used in the design of a standard tram traction system
and its components. The problem is in the early design phase during which the degree of
freedom is higher and many design variables are accessible.
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5.2 Multilevel tram traction system design

This section demonstrates an application of the decomposition approach solved with the
Target Cascading (TC) method described in Section 3.2.2. A standard tram traction system
design problem consists of a traction system and a component design. According to the
decomposition approach presented in Section 1.2.2, a train design problem is decoupled into
several linked design problems as shown in Figure 5.10. These problems form a hierarchical
design problem. The Target Cascading method allows coordinating and solving such optimal
design problems. The tram traction system and its components are designed simultaneously.

Train

Bogie Carriage Traction
system

Inverter MotorFilter

· · ·

IGBT . . .

Figure 5.10: Object-based train decomposition

5.2.1 Multilevel optimal design problem

The tram traction system design problem is a hierarchical design problem. In this research,
a simplified traction system design problem is investigated. The system level describes the
whole traction system. Only two subsystems are considered: (i) the heat sink of traction
inverter and (ii) the Permanent Magnet Motor (PMM) (Note that the modelling of each
system is presented in the following section.). Therefore, three subproblems are defined: one
system level problem and 2 subsystem level problems as shown in Figure 5.11. The system
level design criteria are to achieve the target of total energy consumption (E) and total mass
(Mt). Each subproblem has its own design variables and constraints. The system level is
linked to the subsystem level via subtargets and subresponses. The system level problem
(Psys) consists of 9 design variables in total:

• 2 system level local variables: pulse width modulation (PWM) frequencies (Fpwm1 and
Fpwm2),

• 3 sublevel targets for the subsystem heat sink: the thermal parameters (the RUth thermal
resistance, the CUth thermal capacitance) and the MU

HS heat sink mass,

• 4 sublevel targets for the subsystem PMM: the electric circuit parameters (the RUs phase
resistance, the LUs inductance, the ΦU

s flux) and the MU
mot motor mass.
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The system level optimization is a target setting problem according to the TC method.
The above mentioned design variable are sought while minimising the discrepancy between
targets and computed responses. The first system level optimization allows finding the opti-
mal design vector. This design vector includes the “optimal” value of the sublevel targets for
the subsystem heat sink and the PMM, which are then cascaded to subsystem optimization
problems.

The subsystem heat sink problem (PsubHS ) has 6 design variables (heat sink geometries)
and the subsystem PMM (PsubPMM

) has 8 design variables (motor geometries). They try
to match the cascaded targets with the computed sublevel responses. As each subproblem
is a constrained problem, the subsystem optimization may not be successful to match these
targets and return the best achieved sublevel responses (e.g. RLth, CLth and MU

HS for the
subsystem heat sink problem) to the system level. At this stage, the TC has finished the
first iteration. Starting the second iteration, the TC alternates with the system optimization
problem, which, again, solves the target setting problem as well as doing its best to minimise
discrepancy between sublevel targets and sublevel responses. The process continues until the
convergence criteria are met i.e. the sublevel target at the system level is equal to the sublevel
response computed at the subsystem level. Table 5.8 summarises the three optimization
subproblems. For each subproblem, the design variables, targets, responses and objective
function to be minimised are described.

Table 5.8: Summary of 3 optimal design subproblems

Problem Find Response Target Minimisation

System Local design variable: ER, ET ,
(
ER − ET

)2+

Psys Fpwm1 and Fpwm2 MR MT
(
MR −MT

)2 + εR

Heat sink subproblem target:

RU
th, CU

th and MU
HS

PMM subproblem target:

RU
s , LU

s , ΦU
s and MU

mot

Heat sink Local design variable: RL
th, RU

th,
(
RL

th −RU
th

)2+

PsubHS
6 Geometries CL

th, CU
th,

(
CL

th − CU
th

)2+

ML
HS MU

HS

(
ML

HS −MU
HS

)2

PMM Local design variable: RL
s , RU

s ,
(
RL

s −RU
s

)2+

PsubP MM
8 Geometries LL

s , LU
s ,

(
LL

s − LU
s

)2+

ΦL
s , ΦU

s ,
(
ΦL

s − ΦU
s

)2+

ML
mot MU

mot

(
ML

mot −MU
mot

)2
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5.2.2 Tram traction system modelling

For a hierarchical design problem, several models are needed. The main difficulty is to choose
the models representing the system and components with suitable details. The system model
can be less detailed i.e. presented in a more global point of view, the component models at the
subsystem level should typically represent the components in detail and, therefore, provide a
higher degree of freedom to the designer. These models are used in a complimentary way to
design the traction system.

5.2.2.1 Modelling of traction systems

The traction system model is presented in Section 5.1.2. In this design problem, a standard
tram traction system is considered. In order to ensure the performances of the system, two
tracks are chosen as references. The traction system must be optimised for these scenarios:

• 2 reference tracks.

• 3 operation modes: normal operation, 75% motorization and 50% motorization faulty
modes.

• 2 driving strategies: with and without regenerative braking.

This yields 12 different simulations in total for each design evaluation. These computations
take more than one hour. Among 12 simulations, only the extreme value is used as a con-
straint or objective. For example, the IGBT temperature is considered as a constraint in the
optimization problem. The calculation results obtained from CITHEL are a profile of the
IGBT temperature as function of time. Firstly, the maximal temperature is selected. For one
design vector, 12 values from 12 CITHEL simulation cases are obtained. Then, the maximum
among these 12 values is considered as the output provided to the optimization process.

Similary to the previous example, the Kriging surrogate modelling approach is used to
reduce the computation time. The Kriging surrogate model is constructed independently for
each output. According to the design problem, there are 5 surrogate models of 7 inputs.
Figure 5.12 depicts the system level model. It contains an analytic equation for total mass
computation.
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Local design variables

Subsystem heat sink
targets

Subsystem PMM
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Subsystem heat sink
target

Subsystem PMM
target

Local
constraints

System
response

System
response

Figure 5.12: System level model

5.2.2.2 Modelling of heat sinks

The inverter is equipped with a cooling system to dissipate the heat losses generated by
IGBTs. In tram application, the inverter cooling system is typically of air type. An air
cooling system is more robust, cheaper and simpler than a water cooling system. Even with
a fan forced-air convection cooling, its performance is not as good as the water cooling type
but it is usually sufficient for this application.

The heat sink model aims at computing thermal resistance, thermal capacitance and
mass from the geometry of the heat sink shown in Figure 5.13. These parameters are used
in CITHEL to simulate the thermal behaviour of an inverter cooling system. The model is
based on the theory of a thin plate heat conduction and forced-air convection through fins
due to the fan equipped in the inverter cooling system [46, 111]. This model includes 72
equations in total with several if-else conditions according to experimental coefficients.

LgAil

LaAil
LaCan

Ldx

Ldy

Ed

IGBT

Air flow direction

Figure 5.13: heat sink geometries
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The thermal resistance, thermal capacitance and mass are used in the subproblem ob-
jective function, as described in Table 5.8. Three constraints are defined: pressure loss, air
speed between two fins and minimum number of fins. Inputs and outputs of the heat sink
model are shown in Figure 5.14.

Ldx

Ldy

Ed

Lacan

LgAil

LaAil

Analytical
Heat sink model

Subsystem heat sink model

Rth

Cth

MHS

dP

vair

nfin
Local design variables

Local
constraints

Subsystem
responses

Figure 5.14: Subsystem heat sink model

5.2.2.3 Modelling of traction motors

The traction motor model is given in Appendix B. The rated torque and base speed are
defined as performance specifications (see Section 4.2). The rated torque is set to 75% of the
maximal torque computed in the system level by the traction system design tool. According
to the PMM model, the steady-state thermal module is used i.e. the motor must be able to
operate at this base point permanently without any excessive temperature.

Figure 5.15 shows inputs and outputs of the traction motor model. Local design variables
are the dimensions of the motor. Constraints are defined in order to satisfy the following
requirements:

• Model hypothesis: maximum flux density (linear B-H characteristic)

• Material properties: maximum winding and PM temperatures

• Failure protection: demagnetization of PM

• Mechanical interface: external diameter and length

• Inverter interface: maximum current and voltage
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Figure 5.15: Subsystem traction motor model

5.2.3 Results

In this section, the TC convergence property is discussed firstly. After that, the optimal
solution is presented.

The TC solves the target setting problem. The system targets and the optimal responses
are given in Table 5.9. It can be observed that there are small discrepancies between the
targets and the responses (approximately 1%). In this work, attainable targets are defined.
Therefore, the original version of the TC (described in Section 3.2.2) works quite well. These
targets are given empirically after encountering several non-convergence problems due to the
fact that the original TC might suffer from the convergence difficulty when solving the same
design problem with non-attainable system target (or minimisation problem). We propose
an improved version of TC described in [85]. The similar traction design problem is solved
with this improved algorithm in the case of a non-attainable target. The reader should refer
to [5] for details of proposed algorithm.

Table 5.9: Traction system level targets and responses

Quantity Unit Target Final results

Total mass kg 420 420.21

Consumption kWh 190 191.93

At each TC iteration (alternate between system and subsystem levels), relative deviation
(Devia) of each sublevel target is computed. TC algorithm stops when the maximum absolute
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value of relative deviation is less than 1%:

max(Devia) = max




∣∣∣RUss,i −RLss,i
∣∣∣

RUss,i
· 100%


 for i = 1, . . . , nT (5.1)

where nT is number of sublevel target/response (7 for this problem i.e. 3 from the subproblem
heat sink and 4 from the subproblem PMM).

The relative deviation of all sublevel targets are shown in Figure 5.16a and the maximum
relative deviation is depicted in Figure 5.16b. Ten iterations have been performed by TC.
Note that Devia for the first iteration is not plotted in Figure 5.16a (24% and -19% for Cth
and MHS , respectively). At the final iteration, all relative deviations are lower than 1%. The
numerical values are given in Table 5.10. Note that the responses are the value computed by
the subsystem models and the targets are found by system level optimization subproblems
and used in the calculation at the system level. They are defined as design variables in the
system level problem. Their upper and lower limits are also given in the table.
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Figure 5.16: Deviation of subsystem targets and subsystem responses

The traction system design problem involves 3 subproblems. The optimal value of local
design variables for each subproblem are given in Table 5.11. All constraints are satisfied.
Figure 5.17 shows some simulation results obtained from CITHEL (system level). The sim-
ulation is made for 50% motorization in faulty mode, which is the most difficult scenario. It
can be observed that the maximum IGBT temperature slightly exceeds the constraint limit
defined at 120◦C (see Table 5.12). This is caused by the surrogate model of this constraint
(less than 2% error). Five surrogate models are used in the system level problem, maximum
error at the optimal point is only 3.86% for the energy consumption model. The energy
consumption computed with CITHEL is 199.63 kWh compared with 191.93 kWh obtained
from the surrogate model.

For the heat sink subproblem, three design variables are located at their boundary limit.
However, there is not any active constraint. Table 5.12 lists constraints of system and sub-
system problems.
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Table 5.11: Optimization results – Local optimal design variables

Problem Quantity Symbol Unit Limit Optimal results

System
PWM frequency 1 Fpwm1 Hz [300, 1500] 796

PWM frequency 2 Fpwm2 Hz [1500, 2000] 1693

Heat sink

Width of heat sink Ldx mm [150, 500] 150.19

Length of heat sink Ldy mm [140, 500] 140

Diffuser thickness Ed mm [10, 50] 27.93

Heat sink fin gap LaCan mm [5, 20] 20

Fin height LgAil mm [10, 100] 59

Fin thickness LaAil mm [3, 20] 3

PMM

Stator yoke height Ys mm [10, 50] 39.56

PM height lm mm [1, 15] 15

Air gap g mm [2, 10] 4.33

Slot height ds mm [20, 40] 37.31

Armature radius ra mm [100, 500] 125.28

Stack length lstk mm [100, 700] 367

Tooth width ratio rwt - [0.3, 0.7] 0.6

Conductor per slot nc/slot - [1, 10] 5
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Figure 5.17: System level simulation results at optimal design solution – IGBT temperature
during round-trip of tram operation
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For the PMM subproblem, the PM temperature constraint is active at 150◦C. The flux
density in the stator yoke, rotor yoke and teeth constraints are active. According to the
required torque and speed and sublevel targets, the PMM control strategy does not use
maximum inverter voltage and current.

Table 5.12: Constraint values

Problem Symbol Quantity Unit Limit Optimal result

System

IL Inductor thermal current A ≤ 230 188.89

IC Capacitor thermal current A ≤ 140 121.18

Isw Phase switching current A ≤ 1000 558.71

TIGBT IGBT temperature ◦C ≤ 120 120

Heat sink

dP Pressure loss Pa ≤ 200 176

vair Air speed m/s ≤ 20 19.63

nfin Number of fin - ≥ 5 38

PMM

Tw Winding temp. ◦C ≤ 200 184.25

TPM PM temp. ◦C ≤ 150 150.00

BYs Stator yoke flux density T ≤ 1.6 1.60

BYr Rotor yoke flux density T ≤ 1.6 1.60

BT Tooth flux density T ≤ 1.6 1.60

Irms RMS current A ≤ 300 171.64

Ptdem PM demag. flag - ≤ 0 -0.1

PtVrms RMS voltage flag - ≤ 0 -23.98

Rext External radius mm ≤ 700 212.10

Lext External length mm ≤ 1000 564.80

Note that the optimal results for the system level problem are obtained from surrogate
model.
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5.2.4 Conclusion on the multilevel problem

An application of the Target Cascading method to the design of tram traction system was
presented. The tram traction system design problem has been decomposed into several
subsystem and component subproblems. To perform an optimal design, such decomposed
system can be coordinated via TC algorithm. TC gives a new approach to formulate and to
solve the complex system optimal design problem. The problem formulation is more suitable
to this kind of problem than the conventional method, where the models are merged and
used in the optimal design problem.

A tram traction system and 2 components: a heat sink for an inverter and a traction
motor, have been designed simultaneously and consistently using the TC method. The co-
ordination process via sublevel targets and responses has been performed successfully with
a relative error of 1%. The component designs (sublevel problem) are performed in parallel.
This allows limiting the computation time, which is significantly increased as the number
of subproblems increases. Some convergence problems must be stated in the case of a non-
attainable target. An improved TC algorithm is described and used to solve the same problem
in [82, 85].

5.3 Conclusion

In this chapter, two typical design problems in the railway industry were presented. The
techniques given in Part I have been applied to these problems.

The first application was the tram traction re-design problem. This problem appeared in
the late design phase. Only a few control parameters at the system level can be considered as
design variables. Even with a limited number of degrees of freedom, the surrogate modelling
technique and several optimization techniques were successfully used to solve this problem.
Combining these techniques, the solution can be found with high precision and acceptable
computation time.

The second application was a more general design problem. The problem is to design a
standard tram traction system and its components. As the problem is in the early design
phase, it involves many components and there is also a great number of degrees of freedom
as well as interactions. For these reasons, the design problem has become very complex.
In the design of a complex system such as the traction system, the design problem is tra-
ditionally decomposed into several subproblems. TC was used to formulate such optimal
design subproblems coordinated together. It can be considered as the optimization of the
optimization process or metaoptimization. With TC, large-scale optimal design problems
can be performed and integrated into the existing structure of the company. The optimal
design problem is mapped directly to each engineering team/unit. This makes it easier for a
company to accept and use the optimal design in their everyday design task.





Conclusion

This thesis presents an optimal design approach applied to the railway traction system design.
The approach is general and can be used in the complex system design problem. The method-
ology is demonstrated via real application cases: a railway traction motor and hierarchical
traction system design problems.

A complex design methodology is presented in Chapter 1. The conventional V-cycle is
firstly described. It is composed of 2 main phases: design phase (Top-down) and validation
phase (Bottom-up). A design problem is always an inverse problem i.e. the performances
of the system are given and the component characteristics are sought. The behaviour model
referred to as the model that simulates the behaviour of the system, is generally used in
the computer aided engineering. Therefore, an iterative method must be used to inverse
the behaviour model. To solve the design problem, an optimal design methodology can be
applied. It is considered as a tool that helps the designer to find the solution more rapidly.

In the last section of Chapter 1, the railway traction system is introduced. Reflections
on the optimal design applied to Alstom’s design process are discussed. The optimal design
should be applied in the early phase in which many design variables are accessible. Regard-
ing the design criteria, mass, cost and reliability seem to be very important in the railway
application.

Chapter 2 presents several modelling techniques, which can be classified into 2 groups:
physical models and surrogate models. The physical modelling approach is traditional. It
requires a lot of experience and time to develop. Depending on the technique, the model
can be high fidelity and very expensive in terms of computation time. Integration of such
time-consuming model into the optimal design process is sometimes prohibited. Therefore,
an approach using a surrogate model tends to solve this problem. A surrogate model is
constructed from a low number of high fidelity model evaluations. Three surrogate modelling
techniques are presented: Polynomial, Radial Basis Function and Kriging. Assessment results
show that Kriging model is more accurate than the other techniques.

The design problem can be formulated as an optimization problem. It can use the global
system approach in which the design problem is formulated as an optimization problem. The
problem can be a single-objective or multi-objective optimization problem. For a single-
objective optimization problem, SQP, GA and Hybrid algorithm are described. The hybrid
algorithm profits from the advantage of both SQP and GA. It gives a compromise between
the number of function calls, global search capability and accuracy of the final results. For
a multi-objective optimization problem, a set of single-objective optimizations is launched
in order to generate a group of optimal solutions, a Pareto front. Such strategy is referred
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to as Transformation strategy. The weighted-sum and the epsilon-constraint are presented.
The epsilon-constraint strategy is more robust and can generate a nonconvex Pareto front. A
multi-objective optimization algorithm such as NSGA-II searches the Pareto front based on
sets of individuals. This stochastic method provides an accurate and well-distributed Pareto
front. However, it requires a very high number of function evaluations.

The surrogate-assisted algorithm is a promising approach. It uses the surrogate model
and modelling error associated with the model to guide and iteratively refine the surrogate
model. This allows performing both local and global search (exploitation and exploration).
The GEI infill criteria is used in the single-objective optimization. We proposed a novel infill
criteria called Pseudo distance that extends the algorithm to the multi-objective optimization
case. We show that these algorithms cope with noisy function and they are able to find the
global solutions by using a very low number of function evaluations. These properties are
very useful when using FEA in the optimal design problem.

The complex system design problem is typically decomposed into several small problems.
It also involves many models representing components or disciplines. Multidisciplinary Design
Optimization allows solving the interaction problem between different models. The implicit
variables as well as interaction variables are treated by the optimization algorithm. The
optimization problem is unavoidably more complex because of the additional design variables
and constraints. However, since the models are completely decoupled, they can be evaluated
in parallel. This reduces significantly the total optimization time.

In multilevel hierarchical design problem, Target Cascading allows coordinating the de-
coupled subproblems. It can be considered as the optimization of optimization process or
metaoptimization. With TC, the optimization problem formulation is more likely to the exist-
ing management structure of company. It is mapped directly to each engineering team/unit.
This makes it easier for the company to accept and use optimal design in their everyday
design task.

In Part II, the applications of the optimal design are presented. Chapter 4 focuses on
the traction motor design. The comparative study emphasizes that the transient thermal
behaviour of a motor must be taken into account in case that the load cycle is known. This
allows downsizing the motor and ensures the correct operation in the flux-weakening mode.

The model of a surface-mounted permanent magnet motor, used in the comparative study,
is a semi-nemerical multidisciplinary model. It is composed of several interacting modules.
MDO formulations are applied to the optimal design using this model. In the IDF formu-
lation, interaction variables e.g. the winding temperature, the PM temperature, the phase
resistance and the flux are treated by the optimization algorithm. This removes any direct
link between modules, therefore, they can be launched in parallel. In AAO formulation, im-
plicit variables in the thermal module are also added to the optimization problem. Fix point
iteration in the thermal module has been removed. As a result, AAO formulation leads to
the most complex optimization problem but it requires the lowest optimization time i.e. 4
times lower than in the MDF case.

In this research, a commercial FEA code, Vector Filed Opera2D is also directly integrated
into the optimal design process. Both single and multi-objective optimal design problems are
solved using a surrogate-assisted algorithm. A very low number of FEA evaluations is needed
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to locate the Pareto optimal solutions. The proposed algorithm outperformes NSGA-II for
this problem.

The tram traction system design problem is discussed in Chapter 5. A comparative study
of single-objective algorithm is presented. Multistart SQP, GA and hybrid algorithms are
used to solve a tram traction system re-design problem. CITHEL, Alstom’s traction system
design tool is used as the high fidelity tool in the Kriging surrogate model construction.
The results show that the hybrid algorithm is better than GA in terms of accuracy and
number of function evaluations. The percentage of convergence (to the global optimum) is
the best among the three algorithms. From an engineering aspect, the optimal design using
a surrogate modelling approach allows improving the tram traction system while respecting
11 constraints (component specifications, tram performances). The Kriging models are also
used in the sensitivity analysis. It shows that the final result is robust.

The decomposition approach is demonstrated via a multilevel tram traction system de-
sign problem. The global design problem is decoupled (object-based decomposition) into 3
subproblems: the traction system design, heat sink design and PMM design problems. The
Target Cascading method is used to coordinate and solve these subproblems. Two system
targets are defined: total mass and energy consumption. The results show that the system
targets as well as subsystem targets can be achieved. TC requires 10 TC iterations i.e. alter-
nation between the system and subsystem levels. The traction system and two components
have been designed concurrently. The complex system decomposition and multilevel hierar-
chical optimization methods are very promising. They allow solving large-scale and complex
optimal design problems, which usually have a strong link to the company management
structure.

This work has opened up new research opportunities. The surrogate modelling tech-
nique and a surrogate-assisted optimization algorithm are very promising approaches. The
applications to traction system design have shown a great potential of this method. Several
enhancements may be considered in further works. The surrogate modelling technique must
be able to deal with integer and non-classifiable variables. The problem involving mixed
design variables is very common in the electrical engineering field e.g. type of component
chosen from catalogue, number of conductors. It is interesting to develop an infill criterion
that can handle the design tool with different levels of fidelity. It seems very useful in our
community as the designer typically uses low fidelity analytical model and high fidelity FEA
model.

The complex system design methodology as well as the multilevel optimization algorithm
(MDO and TC approaches) must be studied in detail. Such methods are suitable for compa-
nies with a large management structure. In order to gain more acceptance from the railway
industry, the methods must be tested in more complex problems taking into account many
components. Also, more Alstom’s existing design tools must be integrated in the optimal
design process. In order to ensure the company’s achievement, non-technical criteria such as
marketing and environmental issues should be considered as design criteria.
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Appendix A

Surrogate modelling assessment

This appendix gives the description of test functions and the full result of the surrogate
modelling assessment presented in Section 2.2.4.

A.1 Test function

1. Branin function (Br): 2 variables,

fBr (x1, x2) =
(
x2 −

5.1
4π2

x2
1 +

5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)
cosx1 + 10

where x1 ∈ [−5, 10], x2 ∈ [0, 15]
(A.1)

2. Peaks function (Pk): 2 variables,

fPk (x1, x2) = 3 (1− x1)2 exp
(
−x2

1 − (x2 + 1)2
)

−10
(x1

5
− x3

1 − x5
2

)
exp

(
−x2

1 − x2
2

)
− 1

3
exp

(
−(x1 + 1)2 − x2

2

)

where x1, x2 ∈ [−3, 3]
(A.2)

3. Goldstein and Price function (GP): 2 variables,

fGP (x1, x2) =
(

1 + (x1 + x2 + 1)2
(
19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

))
·

(
30 + (2x1 − 3x2)2

(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

))

where x1, x2 ∈ [−2, 2]
(A.3)

4. Hartman function (H): 6 variables,

fH (x) = −
4∑

i=1

ci exp


−

6∑

j=1

αij (xj − pij)2



where x1, . . . , x6 ∈ [0, 1]

(A.4)

αij , ci and pij are defined as in Table A.1 and A.2.
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Table A.1: Hartman function parameter – αij and ci

i
αij , j = 1, . . . , 6

ci
1 2 3 4 5 6

1 10 3 17 3.5 1.7 8 1

2 0.05 10 17 0.1 8 14 1.2

3 3 3.5 1.7 10 17 8 3

4 17 8 0.05 10 0.1 14 3.2

Table A.2: Hartman function parameter – pij

i
pij , j = 1, . . . , 6

1 2 3 4 5 6

1 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886

2 0.2329 0.4135 0.8307 0.3736 0.1004 0.9991

3 0.2348 0.1451 0.3522 0.2883 0.3047 0.6650

4 0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

5. Six-hump camel-back function (SC): 2 variables,

fSC (x1, x2) = 4x2
1 − 2.1x4

1 +
1
3
x6

1 + x1x2 − 4x2
2 + 4x4

2

where x1, x2 ∈ [−2, 2]
(A.5)

6. Shekel 10 function (Sh): 4 variables,

fSh (x1, x2) =
10∑

i=1

1
ci +

∑4
j=1 (xj − aji)2

where x1, . . . , x4 ∈ [0, 10]

(A.6)

aji and ci are given in Table A.3.
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Table A.3: Shekel 10 function parameter – aji and ci

i
aji, j = 1, . . . , 4

ci
1 2 3 4

1 4 4 4 4 0.1

2 1 1 1 1 0.2

3 8 8 8 8 0.2

4 6 6 6 6 0.4

5 3 7 3 7 0.4

6 2 9 2 9 0.6

7 5 5 3 3 0.3

8 8 1 8 1 0.7

9 6 2 6 2 0.5

10 7 3.6 7 3.6 0.5

A.2 Results

Test criteria are:

• Sampling technique: LHS, HSS and MCS

• Size of a sample set: The sample sets are scaled by the number of design variables.
They are set to 5, 10 and 20 times number of design variables for small, medium, and
large sample set, respectively.

• Surrogate techniques: RBF and Kriging.

Table A.4: Kriging – Normalized maximum absolute error (NEMAX)

Test
function

LHS HSS MCS

small medium large small medium large small medium large

1 0.33 0.18 0.04 0.25 0.03 0.02 0.42 0.16 0.01

2 0.92 2.18 0.25 0.94 1.20 1.01 2.02 2.17 0.32

3 1.25 1.24 0.59 1.68 1.64 1.25 0.73 0.60 1.48

4 2.20 1.73 3.36 1.19 2.07 1.95 0.84 0.79 3.29

5 1.85 0.53 0.11 0.66 0.20 0.29 2.00 0.68 0.10

6 1.58 0.75 2.62 0.65 0.46 0.74 4.07 1.02 1.57

Average 1.35 1.10 1.16 0.90 0.94 0.88 1.68 0.90 1.13
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Table A.5: Kriging – Normalized root mean squared error (NRMSE)

Test
function

LHS HSS MCS

small medium large small medium large small medium large

1 0.16 0.11 0.01 0.39 0.04 3e-4 0.44 0.10 0.04

2 1.72 0.72 2.02 0.34 0.15 0.06 1.94 1.54 1.99

3 1.88 0.04 0.16 0.56 0.11 0.22 1.33 0.45 0.01

4 1.59 0.80 0.97 0.61 0.35 0.07 0.30 1.47 1.26

5 0.07 0.33 0.03 0.11 0.03 0.04 0.03 0.36 0.04

6 0.41 0.07 0.97 0.63 0.52 0.13 1.98 0.16 0.35

Average 0.97 0.34 0.69 0.44 0.20 0.09 1.00 0.68 0.62

Table A.6: RBF – Normalized maximum absolute error (NEMAX)

Test
function

LHS HSS MCS

small medium large small medium large small medium large

1 1.70 0.21 0.60 2.09 0.38 0.12 1.23 1.37 0.11

2 0.73 0.57 0.48 0.81 1.31 1.18 5.66 4.95 1.54

3 1.03 1.18 0.91 1.66 0.87 2.25 7.48 3.06 2.29

4 3.63 2.52 3.80 1.53 1.81 1.56 1.88 1.06 2.93

5 2.52 0.75 1.44 2.77 1.02 1.64 1.63 2.03 1.35

6 0.98 1.42 2.36 0.90 0.73 1.30 3.10 1.46 2.53

Average 1.76 1.11 1.60 1.63 1.02 1.34 3.50 2.32 1.79

Table A.7: RBF – Normalized root mean squared error (NRMSE)

Test
function

LHS HSS MCS

small medium large small medium large small medium large

1 0.02 0.49 0.16 0.37 0.07 0.17 0.72 0.08 0.61

2 1.22 1.77 2.22 0.36 0.78 0.17 2.84 4.00 1.09

3 1.79 9e-3 0.01 0.086 0.10 0.25 6.20 0.05 0.19

4 2.74 0.15 0.62 0.37 0.85 0.17 0.27 1.30 1.20

5 0.23 0.74 4e-3 0.28 0.25 0.23 0.67 1.08 0.31

6 0.43 0.29 0.70 1.32 1.01 0.18 1.00 0.21 0.26

Average 1.07 0.57 0.62 0.59 0.51 0.20 1.95 1.11 0.61



Appendix B

Surface-mounted permanent

magnet synchronous motor

modelling

This appendix intends to detail the semi-numerical model of surface-mounted permanent
magnet motor.

B.1 Introduction

A design of a surface-mounted permanent magnet (SMPM) motor implies a multidisciplinary
design: magnetic, electric, heat transfer, mechanic, cost, etc. The modelling of SMPM is
based on a modular approach. Input and output data of each module are defined in the
first place. These input and output describe interactions between modules. Once the input
and the output are identified, the model used in each module can be selected based on the
need of fidelity. For example, the analytical model or Finite Element Analysis (FEA) can be
used in the magnetic or thermal module. In the same manner, the flux-weakening control or
the maximal torque per ampere strategy can be used in the control module. The structure
of SMPM motor model is shown in Figure B.1. It consists of eight modules. Each module
represents a discipline; magnetic, electric, control, thermal etc. Regarding the interaction,
there are two temperature feedbacks:

(i) The magneto-thermal loop allows taking into account permanent magnet properties
change due to the PM temperature change;

(ii) The electro-thermal loop modifies phase resistance value according to the winding tem-
perature.

There are two types of input and output: time dependent and time independent variable.
Time dependent inputs consist of torque and speed (as a function of time). These can
be obtained using vehicle dynamic equations. Time independent inputs are voltage limit,
material property and motor geometry. Time dependent outputs e.g. flux density, phase
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Figure B.1: Structure of SMPM motor model

current, temperature (as a function of time) and time independent outputs; mass, cost, and
consumption are computed by the SMPM model. When using the model in optimization, each
input variable can be fixed as a design parameter or assigned as a design variable depending
on how an optimal design problem is formulated. Outputs have to be conditioned before
used in the optimization e.g. taking the maximal value of time dependent output. Table B.1
- Table B.11 provide an exhaustive list of model’s inputs and outputs.

In this research, an approach using semi-numerical model is used. Physical phenomena are
described by analytical equations. Thermal interdisciplinary interactions and temperature-
material property interactions are solved by an iterative method. This allows fast compu-
tation and acceptable accuracy since it will be used in preliminary design phase. Model
accuracy and complexity are sufficient to capture interactions between disciplines. The fol-
lowing sections describe each module in detail and a simulation example will be presented.

B.2 Magnetic module

A simplified model was built. Several assumptions were made:

(i) Squarewave PM flux density distribution is considered.

(ii) Flux crossing PM and air gap is in radial direction.

(iii) First harmonic of flux density is extracted from square-wave and used for further cal-
culation.

(iv) Steel permeability is assumed infinity.

The main flux path of the SMPM motor is shown in Figure B.2a. Magnet flux is the
actual flux that passes the magnet. It is composed of two main flux paths: air gap flux and
leakage flux. The air gap flux is effective flux crossing the air gap. The leakage flux can be
taking into account by leakage coefficient kleak, which is a ratio of air gap flux and magnet
flux.
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Figure B.2b shows magnetic equivalent circuit of one pole. The air gap reluctance Rg and
the magnet reluctance Rm are expressed as:

Rg =
1

π

p
· kp · µ0 · µr · lstk

· ln
(

ra
ra − g′

)
(B.1)

Rm =
1

π

p
· kp · µ0 · lstk

· ln
(
ra − g′ − lm
ra − g′

)
(B.2)

where g′ = kc · g, kc Carter coefficient given in [27], lstk stack length, kp magnet span
coefficient. Other dimensions can be found in Figure B.3.

Main flux
Φg

Leakage flux
Φleak

PM

Stator
core

(a) Main flux path

Rm

Fm
Rg

ϕg

(b) Magnetic equivalent circuit

Figure B.2: Magnetic circuit
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wt
ws ys

yr

lm
ds

g

ra rrot

Figure B.3: Motor geometry

Magnetomotrice force (MMF) of magnet Fm and air gap flux ϕg are related by equation:

Fm =
Br
µRµ0

lm = (Rg +Rm)ϕg = (Rg +Rm)B̂gAm (B.3)

with Am magnet pole area. Therefore, flux density in air gap due to PM can be expressed
as:

B̂g =
kleak ·Br · lm

rg
·
(

ln
(
rrot + lm + g′

rrot + lm

)
+

1
µR

ln
(
rrot + lm
rrot

))−1

(B.4)
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where Br remanence flux density, µR relative permeability of PM, rg mid-air gap radius
(rg = rrot + lm + g/2). The Carter coefficient has been verified with FEA and the relative
error between flux for the case of a slotted stator and a smooth stator with a corrected air gap
has been studied. In order to keep relative error below 5%, tooth width ratio

(
rwt = wt

ws+wt

)

higher than 0.4 is preferred.
In sinewave back-EMF motor, fundamental air gap flux density (B̂g1) given in (B.5)is

extracted from squarewave flux density distribution as shown in Figure B.4.

B̂g1 =
4
π
· B̂g · sin

(π
2
kp

)
(B.5)

θ

0 π
p

π
p kp

B̂g

B̂g1
B

Figure B.4: Squarewave flux density distribution and fundamental flux density

Peak value of fundamental flux φ̂g1 can be computed by integrating flux density over
a pole area as in (B.6). Total flux per phase Φ̂g1 is obtained by multiplying effective coil
number per phase.

φ̂g1 =
∫ π

p

0
B̂g1lstkrg · dθ (B.6)

Φ̂g1 = φ̂g1 ·Ns,eff =
2
p
· B̂g1 ·

(
rrot + lm +

g

2

)
· lstk ·Ns,eff (B.7)

where p poles pair, kp PM span ratio, lstk stack length, and Ns,eff effective coil number per
phase described as:

Ns,eff = Ns · kpitch · kw =
(
Nc ·Nslot · p

a

)
· kpitch · kw (B.8)

whereNs coil number per phase, Nc conductor number per slot, Nslot slot number per pole and
per phase, a parallel path number, kpitch winding pitch factor, and kw winding distribution
factor.

Flux equation (B.7) is validated against FEA. Figure B.5 shows flux lines computed by
FEA. The relative error between (B.7) and FEA is less than 10%, which is acceptable for
preliminary design. The main error is due to Carter coefficient, which is inaccurate for the
structure with narrow teeth (rwt is equal to 0.26 for this motor.). However, correction factors
can be used to calibrate the model in case that the model error is known a priori.

The properties of the PM are critical in the design of a SMPM. The major factors are
the protection against the demagnetization, the property change due to temperature changes
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Figure B.5: Flux line from FEA

and the working temperature limit. The characteristic of permanent magnet such as Br
and the intrinsic coercive field strength (Hci) change as the temperature changes. It can be
described by a reversible temperature coefficient of Br and Hci, αBr and βHci , respectively
[106]. For NdFeB, Br decreases as the temperature increases. However, reversible losses can
be recovered when the temperature returns to the initial point. In order to take into account
the PM temperature effects, at each simulation step, Br will be updated with the actual
permanent magnet temperature TPM using the remanence flux density at 20◦C (Br20) and
remanence temperature coefficient αBr .

Br = Br20

(
1 +

αBr
100
· (TPM − 20)

)
(B.9)

Note that TPM is in ◦C.
The change in “knee point” of normal demagnetization curve is very important (red points

in Figure B.6a). In order to avoid irreversible loss, the operating point cannot be lower than
this point [34] i.e. the allowable motor current is limited by the knee point. Unfortunately,
the relationship between the knee point and the temperature is generally not provided by
the manufacturer. However, one can always approximate this relationship from B-H curve
at various temperatures given in the data sheet. It will be used as a constraint in the
optimization problem. For NdFeB 39H, Brmin can be given as:

Brmin = −5.58 · 10−5 · T 2
PM + 0.022 · TPM − 1.445 (B.10)

with TPM in ◦C. This relationship is valid from 60◦C to 150◦C. For TPM lower than 60◦C or
higher than 150◦C, constant values are given as shown in Figure B.6b.

B.3 Electric module

This module computes circuit parameters (resistance Rs and inductance Ls) from motor
geometry. The phase resistance at 20◦C is defined as:

Rs20 =
ρcu · l

kr · ws · ds
· 2Ns (B.11)

where l one conductor length (including end winding), kr slot-fill factor and ρcu copper
conductivity at 20◦C.
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Figure B.6: Minimal value of the remanence flux density as a function of the temperature
can be estimated from the PM B-H curve

During the simulation phase, the resistance is updated with the actual winding tempera-
ture (Tw, in ◦C) from the heat transfer module.

Rs = Rs20 (1 + αcu · (Tw − 20)) (B.12)

where αcu is the conductivity temperature coefficient of copper.
The phase inductance is composed of 4 components, (i) air gap self inductance Lg, (ii) air

gap mutual inductanceMg, (iii) slot leakage inductance Lslot, and (iv) end winding inductance
Lend.

Ls = Lg −Mg + (Lslot − Lend) (B.13)

Lg is computed by simply dividing the peak value of fundamental air gap flux due to
armature current (Φ̂ga1) by current I. For sinusoidal distributing winding, Mg is obtained
using (B.17).

Lg =
Φ̂ga1

I
(B.14)

Φ̂ga1 =
2 · lstk · ra

p
· B̂ga1 ·Ns,eff (B.15)

B̂ga1 =
4
π
· µ0

2 · p · (g′ + lm/µR)
·Ns,eff · (B.16)

Mg = −1
2
Lg (B.17)

End winding leakage inductance Lend formula are given in [8]:

Lend = 3.15 · 10−6 (2Ns)
2 3k2

w

4πp

(
b1 +

(b4 + b3/2)
2

)
(B.18)

where b1, b3, b4 are geometries of end winding as shown in Figure B.71.
For open rectangular slot, Lslot can be computed as [34]:

Lslot = µ0N
2
s lstk

(
h2
3ws

+
h1
ws

+
h2
4ws

)
p

(
b1 +

(b4 + b3/2)
2

)
(B.19)

h1 and h2 are slot and winding dimensions (see Figure B.8).
1Figure from [8]
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B.4 Control strategy module

Since only electrical steady-state operation is considered, it is assumed that there is no error
between the controllers’ reference signal and real output. The model is an inverse steady-
state single-phase equivalent model as shown in Figure B.9. It is then transformed in d-q
reference frame in order to perform the flux-weakening strategy [81]. It computes necessary
d-axis, q-axis, phase current and voltage to produce the required torque and speed at each
time step.

E

Rs LsI

V

Figure B.9: Single-phase equivalent electric model

Relationships between RMS current (Irms) and d-q axis current id and iq are given as:

id =
√

3Irms sinψ (B.20)

iq =
√

3Irms cosψ (B.21)

Therefore voltage equations in d-q coordinates (vd and vq) and RMS voltage Vrms can be
described as follows:

vd = Rsid − ωsLqiq (B.22)

vq = Rsiq + ωs (Ldid + φd) (B.23)

Vrms =

√
v2
d + v2

q

3
(B.24)

where ωs electrical speed, Ld and Lq d- and q-axis inductance.
The electromagnetic torque Tem can be computed from electromagnetic power balance:

Tem =
Pem
Ω

= p (Ld − Lq) idiq + pφdiq (B.25)

For SMPM motor, both Ld and Lq are equal to Ls (B.13). Equation B.25 becomes

Tem = pφdiq (B.26)

where φd d-axis flux computed from fundamental air gap flux (B.7):

φd =

√
3
2
· Φ̂g1 (B.27)

Two operating modes are shown in Figure B.10. Zone 1: constant torque, in this zone,
the torque is proportional to q-axis current iq. d-axis current id is controlled to zero in
order to maximise the torque per ampere. As the speed increases, the voltage increases.
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Once the voltage reaches the maximum inverter voltage, the controller switches to flux-
weakening mode (zone 2). The speed at this transition point is called base speed (Ωb). In
this zone, Ψ phase angle between back-EMF and phase current is changed by decreasing
id. This results in negative value of id. It creates a flux in the opposite direction of the
air gap flux. The result flux, hence back-EMF, then decreases. Therefore, the speed can be
increased. As mentioned above, if the operating flux density is lower than the knee point at
the corresponding temperature in the PM characteristic curve, it would cause an irreversible
demagnetization of the magnet, which is not preferred.

Ωb Speed (rad/s)

ZONE 1

id = 0
Vrms ≤ Vrms max

ZONE 2

id < 0
Vrms = Vrms max

T
o
rq

u
e

(N
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Figure B.10: Traction motor operating zone

A flux weakening control flowchart is shown in Figure B.11. By giving the required
electromagnetic torque (Tem), iq can be defined:

iq =
Tem
p · φd

(B.28)

Vrms (B.24) is then computed. If Vrms is higher than the maximal inverter output RMS
voltage (Vrms max), this means that the inverter does not provide sufficient voltage and flux-
weakening mode may be performed in order to achieve the required torque and speed.

In the flux weakening zone, id can be computed by solving the quadratic equation obtained
with (B.22)-(B.24) substituting Vrms for Vrms max and iq from (B.28):

V 2
rms max =

(
R2
s + ω2

sL
2
d

)
i2d +

(
2ω2

sLdΦd

)
id+

(
ω2
sL

2
qi

2
q + ω2

sΦ
2
d + 2ωsΦdRsiq +R2

si
2
q

)

0 = A · i2d +B · id + C

(B.29)

The solution should be a real negative value. Otherwise, it can be concluded that the voltage
is not sufficient to produce the required torque at the corresponding speed. In this case, the
necessary voltage (which is higher than the maximum voltage) is given as an output and used
as a constraint in optimal design process2.

The RMS phase current (Irms) can be computed:

Irms =

√
i2d + i2q

3
(B.30)

Ψ and ϕ, angle between current and voltage, can be written as:

Ψ = arctan
(
id
iq

)
(B.31)

2This voltage output must be lower or equal to Vrms max in order to ensure that motor can produce required

torque at the corresponding speed.
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Figure B.11: Flux weakening control flowchart

ϕ = arctan
(
vd
vq

)
−Ψ (B.32)

B.5 Losses module

Copper losses can be easily obtained using conventional formula:

Pcu = 3I2
rmsRs (B.33)

Core losses are computed using an approximate model obtained from a specific losses
curve at 50Hz (qt) given in the lamination datasheet. This model uses the peak value of the
resulting flux density in tooth (B̂t) or stator yoke (B̂Ys) as input. For M235-35A, qt is given
as in (B.34)

qt = −1.2073B̂4 + 4.5706B̂3 − 4.6764B̂2 + 2.4067B̂ − 0.2025 (B.34)

These specific losses are recalibrated to the corresponding electrical frequency (fs). They
are then multiplied by the mass of teeth and the stator yoke to achieve core losses in the
teeth and stator yoke.

Pcore (tooth,yoke) = mass(teeth,yoke) · qt ·
(
fs
50

)1.5

(B.35)

Figure B.12 shows the vector diagram of the resulting flux density B̂g res1, which is vector
sum of the air gap flux density due to the PM, mutual, and armature current B̂g1, B̂Mg1,
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and B̂ga1, respectively. The resulting flux density in the teeth, stator and rotor yoke can be
expressed as:

B̂t = B̂g res1 ·
(

π · rg
3 ·Nslot · wt

)
(B.36)

B̂Ys =
1
2
B̂g res1 ·

(
π · rg
p · Ys

)
(B.37)

B̂Yr =
1
2
B̂g res1 ·

(
π · rg
p · Yr

)
(B.38)

B̂gres1

B̂g1

B̂Mg1

B̂ga1 I

90◦ −Ψ Ψ

Figure B.12: Vector diagram of the resulting flux density

B.6 Heat transfer module

The transient thermal behaviour of motor is necessary to design a motor in variable speed
applications, especially when the load profile is known such as in the traction applications
[74]. Motor sizing is based on the steady-state temperature on the whole route profile, not
on a rated point (base point).

A lumped parameter thermal network allows estimating the temperature in various parts
of motor. The model is based on models developed for asynchronous motors [6, 79]. They
are modified for Totally Enclosed, Fan-Cooled (TEFC) SMPM motors. Several hypotheses
are made:

(i) Radial heat fluxes are considered, except shaft, heat transfer is axially.

(ii) Heat sources are concentrated at node.

(iii) Air flow at end winding is neglected.

(iv) Only tangential air flow is considered at air gap.

Model is composed of 8 nodes (see Figure B.13). The node temperature represents the
average temperature of each element. For each node, the differential equation is:

Cthi
dTi
dt

=
n∑

i,j=1

(Tj − Ti)
Rthij

+ Pi (B.39)

Thermal resistances Rth characterise conduction and convection heat transfers. Thermal ca-
pacitances Cth represent thermal inertia in case of a transient simulation. Thermal resistances
and capacitors are determined from dimensions and motor materials. Losses generated by a
motor act as heat sources P .
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The Rthij resistance between two nodes i and j can be defined as:

Rthij =
Rthi

2
+
Rthj

2
(B.40)

Note that the temperature at node represents the average temperature of the element and
the node position does not necessary have to be in the middle of elements.

For radial heat conduction, Rth of an element can be expressed as:

Rthi = Rcondi =
1

θkiL
ln
(
rexti
rinti

)
(B.41)

where k thermal conductivity coefficient (k is function of the temperature as given in [6]),
rint internal radius, rext external radius and L longueur and θ open angle comprising between
0–2π radian. (see Figure B.14).
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Figure B.14: Thermal resistance of radial convection

Heat convection is considered at the air gap and external frame. Thermal resistance due
to heat convection is described as:

Rthi = Rconvi =
1

A · h (B.42)

where A heat exchange surface and h heat convection coefficient.
Air gap heat convection coefficient: At air gap, tangential air speed due to rotation

of rotor is:
vairg = (ra − g) Ω (B.43)

Reynolds number and Prandtl number are expressed as:

Reg =
lstk · vairg · ρairg

µairg
(B.44)

Prg =
Cpairg · µairg

kairg
(B.45)

where ρairg air mass density, µairg air dynamic viscosity and Cpairg specific heat capacity of
air in the air gap.
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h is expressed as:

hg =
Nug · kairg

g
(B.46)

where Nug Nusselt number at air gap. Nug is function of Taylor number as shown in
(B.47)[79].

Ta ≤ 41, Nug = 2.2

41 ≤ Ta ≤ 100, Nug = 0.23Ta0.63 · Pr0.27
g

Ta > 100, Nug = 0.3855Ta0.5 · Pr0.27
g

(B.47)

where
Ta = Reg

√
g

ra − g
(B.48)

External frame heat convection coefficient: It depends on external air properties
and external air speed in axial direction as depicted in Figure B.15

External air flow direction

Motor

Fan

lext

Figure B.15: External air flow

Reynolds number and Nusselt number are expressed as:

Reext =
lext · vairamb · ρairamb

µairamb
(B.49)

Reairext < 10000, Nuext = 0.66Re0.5ext · Pr0.33
ext

Reairext ≥ 10000, Nuext = 0.66Re0.75
ext · Pr0.33

ext

(B.50)

Therefore, external air heat convection coefficient is defined as:

hext =
Nuext · kairamb

lext
(B.51)

The heat transfer module includes the numerical algorithm for solving the Ordinary Dif-
ferential Equation (ODE). At the end of the load profile, steady state convergence over load
cycle is checked. The temperatures at the end of the cycle are set as the new initial tem-
perature and the simulation is rerun until the temperatures reach their steady state. This
depends on the thermal time constant.

It also allows computing the steady-state temperature at any time step (do not take into
account thermal capacitor). This can be useful when only the simple calculation is needed
e.g. a design based on the torque as a function of speed characteristics or a base point
design, in such cases the simulation is not needed since the time domain is not concerned.
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Temperatures are implicit variables because material properties depend on temperatures as
mentioned above. At any torque-speed point, the input temperatures are forced to be equal
to the output temperatures through the fixed-point iteration method.

B.7 Simulation example

The simulation can be done by giving the motor’s geometry and material, inverter voltage
limit. Motor load profile (torque and speed as a function of time) is given as shown in Figure
B.16. The simulation takes 40 load cycles to achieve the steady-state temperatures.
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Figure B.16: Torque and speed requirement

Figure B.17a shows the temperatures as a function of time. The temperature evolu-
tion starts from the ambient temperature at 40◦C. The winding and the PM temperatures
reach their steady-state after 40 load cycles. At the steady-state, the winding and the PM
temperatures can be observed at 175◦C and 145◦C, respectively.

The resulting flux density and minimal PM flux density are shown in Figure B.17b. As the
PM temperature increases, the minimal PM flux density increases. The PM demagnetization
can be occurred if the resulting flux density is lower than the minimal PM flux density. In
this example, it cannot be observed.

Figure B.18 show the RMS voltage and current. The maximum RMS voltage is given
290V in traction mode and 350V in braking mode. At the beginning of the simulation, the
required RMS current is lower due to the fact that when the PM temperature is low, the PM
can provide high remanence flux density. Therefore, motor requires less current to produce
the same amount of torque.

In d-q coordinate, currents are shown in Figure B.19. It can be observed that id is negative
when the motor is operated in a flux weakening mode.

When using these simulation results in an optimal design process, the results must be
reconditioned. The maximum value of the PM temperature is taken. Different value between
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the resulting flux density and the minimal PM flux density (Bres−Brmin) is used to indicate
the demagnetization of the PM.

B.8 Conclusion

In this appendix, a model of a surface-mounted permanent magnet motor is presented. This
model is built using a modular approach. Each module represents a discipline. They are
described by analytical relationship. Implicit variables and interaction loops are solved by
using the iterative method. This model is suitable for preliminary design and for using in an
optimal design process. Applications of this model are presented in Chapter 4 and 5.

Table B.1: Input–Geometries

Symbol Quantity Unit

Ys Stator yoke height m

Yr Rotor yoke height m

lm PM height m

g Air gap m

ds Slot height m

ra Armature radius m

lstk Stack length m

dopen Slot opening depth m

tinsu Insulation thickness m

tframe Frame thickness m

rwt Tooth width ratio -

kp PM span coefficient -

p Pole pair -

Nslot Slot/pole/phase -

kleak Leakage flux coefficient -

Table B.2: Input–Winding

Symbol Quantity Unit

nph Number of phases -

Nc Conductor/slot -

A Parallel path -

pitch Winding pitch -

kr Slot filling coefficient -
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Table B.3: Input–Inverter

Symbol Quantity Unit

VmaxT r
Maximal inverter voltage (traction) V

VmaxBr
Maximal inverter voltage (braking) V

flagcontrol Flag control model: 1=with Rs, 2=without -

flagfw Flag flux-weakening: true=with Rs, false=without -

Table B.4: Input–Performances

Symbol Quantity Unit

T Required torque vector Nm

Ω Required speed vector rad/s

t Time vector s

Table B.5: Input–Simulation options

Symbol Quantity Unit

h Time step s

ode 1=transient, 0=steady-state -

cyclemax Maximal cycle to simulate -

Table B.6: Input–Thermal

Symbol Quantity Unit

Tamb Ambient temperature K

Tinit Initial temperature vector K
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Table B.7: Input–Material properties

Symbol Quantity Unit

General

ρ Mass density kg/m3

cost Material cost Euro/kg

k Thermal conductivity W/(m·K)

cp Specific heat J/kg/K

Copper

ρelec20 Resistivity at 20◦C Ωm

αcu Conductivity temp. coefficient ◦C−1

PM

Br20 Remanence flux density at 20◦C T

µr Relative permeability -

αBr Temperature coefficient % ◦C−1

- Demagnetization model -

Steel
sheet

- Core loss model -

Table B.8: Output–Electric parameter module

Symbol Quantity Unit

Rs20 Phase resistance at ◦C Ω

Rs Phase resistance at actual temperature Ω

Ls Inductance H
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Table B.9: Output–Magnetic module

Symbol Quantity Unit

ˆBga1 Peak air gap flux density due to armature current T
ˆBg1Br1 Peak air gap flux density due to PM for Br=1 T
ˆΦg1Br1 Total flux per phase for Br=1 Wb

Br PM remanence flux density T

B̂g1 Peak air gap flux density due to PM T
ˆΦg1Br1 Total flux per phase Wb
ˆBgres1 Result flux density in air gap T

BYs
Resulting flux density in stator yoke T

BYr
Resulting flux density in rotor yoke T

Bt Resulting flux density in tooth T

Brmin Minimum allowable PM flux density T

Table B.10: Output–Electric control module

Symbol Quantity Unit

Irms RMS current A

id d-axis current A

iq q-axis current A

Vrms RMS voltage V

Vd d-axis voltage V

Vq q-axis voltage V

Ψ Angle between back-EMF and phase current ◦

ϕ Angle between current and voltage ◦

Tem Electromagnetic torque Nm
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Table B.11: Output–Other modules

Symbol Quantity Unit

Losses

Pcu Copper losses W

Pcoret
Core losses in teeth W

PcoreY s
Core losses in stator yoke W

η Efficiency %

E Energy consumption kWh

Thermal

Ti Temperature at node i K

Tw Winding temperature K

TPM PM temperature K

Mass

Mj Mass of element j kg

M Total mass kg

Cost

Costj Cost of element j euro

Cost Total cost euro
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