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Résumé

La conception d’un systéeme électrique de transport ferroviaire est une tache complexe qui
fait appel simultanément a des experts de domaines de compétence différents. Les construc-
teurs ferroviaires gerent cette complexité ce qui leurs permet de fabriquer des équipements
performants. Néanmoins, dans un marché global, tout gain méthodologique peut se traduire
en avantage concurrentiel.

La conception systémique optimale de composant électrotechnique est abordée dans cette
these. Une chaine de traction électrique est choisie comme exemple représentatif d’un systeme
complexe. La démarche et les outils sont mis en oeuvre sur deux applications: la conception
d’un moteur de traction et la conception simultanée de plusieurs composants clés.

Pour concevoir un moteur de traction, le cycle de fonctionnement et le comportement
thermique transitoire sont primordiaux. La bonne adaptation du moteur & sa mission per-
met de réduire considérablement sa masse. L’approche multidisciplinaire est utilisée pour
gérer les interactions entre modeles de disciplines différentes au sein d’un méme processus
d’optimisation. Suivant la méthode employée, le temps d’optimisation peut étre réduit grace
a la répartition des taches par domaine physique et d’en paralléliser ’exécution. Des optimi-
sations multiobjectif ont également été appliquées. Des fronts de Pareto sont obtenus malgré
I'utilisation d’un modele précis mais colteux, le modele éléments finis.

L’approche décomposition hiérarchique de la méthode “Target Cascading” est appliquée
au probleme de conception de la chaine de traction. Le systeéme et ses composants sont
conjointement congus. Cette méthode est bien adaptée a la démarche de conception optimale

des systémes complexes, tout en respectant ’organisation par produit de I'entreprise.

Mots-clés

Conception optimale

Chaine de traction ferroviaire
Modele de substitution
Optimisation multidisciplinaire

Approche multi-niveaux






Abstract

The design of traction systems is a complex task, which needs experts from various fields.
Train manufacturers can manage this complexity and produce high performance rolling stock
materials. However, any improvement in design methodology can lead to a competitive
advantage in a global market.

This thesis focuses on the optimal design methodology of complex systems such as a
railway traction system. The design process and tools are demonstrated via two applications:
the design of a traction motor and the concurrent design of several key components.

The load cycle and transient thermal behaviour are essential in the design of a traction
motor. The adaptation of a motor to its load cycle reduces significantly its mass. The multi-
disciplinary design optimization approach is used to manage interactions between various
discipline models in the optimization process. The optimization time can be reduced through
a task distribution and a parallel computing. The multi-objective design optimizations are
also applied. Pareto fronts are obtained despite the difficulty in using the high fidelity but
expensive in computation time such as Finite Element Analysis model.

The hierarchical decomposition approach: the Target Cascading method is applied to the
traction system design problem. The system and components are designed simultaneously.
This method is suitable for implementing the complex system optimal design process while

respecting the product development structure of the company.
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Introduction

Railway transportation has proved itself as a competitive transportation mode for short
distance urban trips and medium distance journeys. Big capital cities have metro or tram to
move their people around the city, whereas, regional and intercity trains operate in suburban
and city links. Modern rail vehicles emphasize their image as regards sustainable development
as they are typically equipped with electric propulsion. The emission gas due to the energy
conversion process is centralized at the power plant and can be controlled easily and efficiently.

The traction system design process is a very complex task. These days, train manufactur-
ers have sufficient knowledge to design and manufacture good quality rolling stocks. However,
due to their concern in global market and environment, they ask themselves whether and
how they can do better in terms of product performances, cost and development time.

This thesis focuses on the complex system design methodology and its application in
electric railway traction systems. A lot of efforts have been made by aerospace industries
in the field of complex system optimal design [30, 89, 102]. The application domain resides
mainly in structural and aerodynamic design. The recent literature extends to a more global
point of view and system design by taking into account, for example, the aircraft mission,
the fuel consumption, the environmental impact [3, 4, 70]. A similar reflection is initiated in
railway traction system design. It seems that the methodology is quite general and can be
applied with success to electrical system design.

This thesis is divided into 2 parts, Tools and Applications. Chapter 1 presents the complex
system design approach in general and more particularly, in railway industry. The optimal
design (also called design optimization) methodology helps engineers in design and decision-
making phases. Railway traction systems and design tools are presented. Potentials and
needs to optimise such systems are discussed.

The modelling technique is considered in Chapter 2. The physical-based modellings are
firstly presented. These traditional techniques are widely used by design engineers to derive
the high fidelity model. Secondly, the Surrogate modelling approach is discussed. The sur-
rogate model replaces the high fidelity model in many situations. The last sections present
the non-conventional sampling and surrogate modelling techniques. They intend to introduce
the reader to the next chapter.

According to the design methodology presented in Chapter 1, once the models are con-
structed, the optimization process can be launched. Chapter 3 provides the reader with an
overview of optimization techniques and main single and multi-objective optimization algo-
rithms. The surrogate model can be used in these algorithms not only to replace the high

fidelity model but it also to integrate into the optimization algorithm. This is referred to as



the “Surrogate-assisted optimization algorithm”. In addition, the Multi-disciplinary Design
Optimization (MDO) and Target Cascading (TC) approaches are presented. The optimal
design of decoupled complex systems can be achieved via these methods.

From Chapter 4 onwards, the applications to railway traction system are presented. This
chapter investigates the design methodology of traction motors. A multidisciplinary semi-
numerical model is used in the comparative study of design approaches and then in the multi-
criteria optimal design. This multidisciplinary model is also used to illustrate the contribution
of the MDO methodology. In addition to the semi-analytic model, a high fidelity tool such
as Finite Element Analysis is incorporated in the optimal design problem directly thanks to
two surrogate-assisted optimization algorithms. Such algorithms allow obtaining the optimal
design in a quick time.

Chapter 5 goes up to the top of system view. The optimal design of the control parameters
of a tram traction system is presented in the first section. Thereafter, the design scope covers
the top system level and goes down to the component level. A decomposition approach
and TC method are used to achieve the optimal design of the tram traction system and
its components. The conclusion and further research perspectives are discussed in the last
chapter.

The main contribution of this work consists in demonstrating the advantages of optimal
design process in the industry’s design problem. The two main expected advantages are: (i)
a shorter development time and (ii) optimal products. The methodology is applied to many
real-world cases. A proprietary corporate tool is used as simulation tool and integrated into
the optimal design process. The optimal design can take place in any phases e.g. preliminary
and detail design phases. Various tools help engineers to solve the design problem in an
efficient way. With promising approaches such as surrogate modelling and surrogate-assisted
algorithm, design engineers can obtain optimal solutions within a short computation time.
The trade-off problems can be solved by using multi-objective optimization. The Pareto
optimal solution set generated by optimal design process is used as a support for decision-
making process. In a large and well established organisation, the Target Cascading method,
explored in this work, helps teams to formulate an optimal design problem in a manner not
far from what they have done in the past. With this innovative approach, the optimal design

should gain higher acceptance from industries.
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Chapter 1
Optimal design of complex systems

Nowadays, due to the global market, strict government regulations and standards, products
or electrical systems become more and more complex as they involve many engineering fields
as well as other non-technical issues such as marketing, psychology. The objective of any
company is to design profitable products within a reasonable development time and at min-
imum cost. The product development or design processes reflect the vision of each company
and can vary.

Designing such complex systems requires a lot of experience. Many product characteristics
must be determined, subject to a large number of constraints. Any system or product is
designed to be the best in terms of performances, cost, reliability, etc. The analysis capacity
of human is limited to a certain level of complexity. Therefore, engineers hardly achieve
optimal design of a complex system.

According to [2], a complex system represents:
An assembly of interacting members which is difficult to understand as a whole.

The author also emphasized that an interaction between members exists if the state of one
member affects how the system responds to changes made in another member.
Several technical and non-technical aspects are involved in a complex system description.

In [49], the authors gave the expression of a complex engineering system as:

A complicated product or device requiring a variety of knowledge from several

different engineering disciplines.

In this research, a complex system is referred to as a system consisting of several inter-
acting subsystems and components. This system evolves many technical and non-technical
disciplines such as marketing, management and user satisfaction. The system is operated in
a certain environment by users.

Three sources of complexity can be identified:
e the interaction between subsystems and/or components constituting the system.
e the interaction between disciplines describing physical or non-physical phenomena.

e the interaction between the system and the environment in which the system operates.
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In the context of this research, a rolling stock is a good example of a complex system. A
train is composed of many subsystems e.g. traction system, carriage, air conditioning sys-
tem and communication system. Each subsystem includes lower-level subsystems as well as
components. For example, a traction system is an integration of traction motors, converters,
transformers, etc. Several disciplines are required to describe a train e.g. mechanical, electri-
cal, thermal. The train is operated by immediate customers (railway operating companies)
and provides services to final customers (passengers). As the train system is a complex sys-
tem, many interactions can be observed e.g. the structural and aerodynamic design of the
carriage affects the required power of the traction motor; the traction motor itself implies
many physical disciplines, hence interactions between them. Moreover, both train and trac-
tion motor designs are strongly linked to their environment such as customer satisfaction,

energy consumption. Figure 1.1 illustrates this example.

. . Comfort
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Environment Operator
Reliability Design
Maintenance
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@ Electric Mechanic
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Figure 1.1: Illustration of a train system and its interactions

This chapter intends to give the background ideas on how the complex systems should
be designed and how optimization techniques should be used in this design process. The last

section focuses on the objective of this research i.e. the rolling stock optimal design process.
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1.1 Complex system design methodology

The goal of product design is to obtain an optimal product which can make profit in a
reasonable development time and at minimum cost [100]. When developing a complex system,
the product development process can be very complicated since the complex system itself
is difficult to understand. Designers require a design methodology and tools in order to
accomplish this task. Various aspects must be considered in the design process. The following

sections provide basic knowledge of design methodology as well as optimal design process.

1.1.1 Conventional approach

The typical system design process named V-cycle is composed of 2 main phases: design and
validation [64]. The design process is shown in Figure 1.2. Starting from market research,
a specification is defined and a feasibility study is performed. The system, subsystems and
components are designed thereafter. The system design phase allows determining the subsys-
tem specification and the subsystem design phase defines the component specification. These
design phases are called “Top-down”. Once component prototypes have been manufactured,
they are firstly tested and then integrated to the subsystems and system. Each “Bottom-up”

phase allows validating the corresponding design phases.

Functional
. . Product test
specification
System design Integration test
Subsystem design Subsystem test
Component design Component test

Component prototype manufacturin}/

Figure 1.2: V-cycle design process

1.1.2 Design problem as inverse problem

In the field of engineering design, Computer Aided Design (CAD) and Computer Aided En-
gineering (CAE) are used in design and manufacturing industries. A number of computer
modellings have been made to simulate behaviour of real systems. These models are some-
times called Virtual prototypes as they are used by design engineers as a tool to verify their
design instead of building a real prototype. With the knowledge of the components/system
characteristics e.g. their size, shape and material (cause), these models compute system per-
formances (effects). A problem of this kind can be referred to as a “direct problem”[73] and
the model which simulates system performances can be called a “behaviour model”. How-
ever, one may realise that, in design problem, one want to design a complex system (i.e.

to determine the size and shape of the system) which performs the desired performances.
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Therefore, system performances are defined as specification and system characteristics are
being sought. This kind of problem is called “inverse problem” as opposed to direct problem

[73]. Figure 1.3 shows input and output of direct and inverse problems.

Analysis — Direct problem

———
Given Sought
Characteristic Behaviour model Performance
of system of system
Design model
Cause Sought Given Effect

Design — Inverse problem

Figure 1.3: Input and output of direct and inverse problems

In order to use behaviour models in design problem, an iterative method is necessary.
In the conventional design process, based on his experiences or a base-line design, designer
makes a first guess at the system characteristics (design variable), runs simulation model
and observes output performances. If the performances do not satisfy constraints and design
This

Trial-and-error process is shown in Figure 1.4a. The manual iteration can be replaced by

criteria, the designer adjusts the design variables and makes the simulation again.

an optimization technique, which ensures optimality and allows efficient problem solving.
In this case, the behaviour model included in the optimization loop operates like a “design
model” [87] as shown in Figure 1.4b. Note that the behaviour model is always present but can
be considered as a design model from the designer’s point of view, outside of the optimization

loop. This optimal design process is presented in Section 1.1.6.

Characteristic Performance
of system Behaviour of system
model
Cause Effect
i T

Trial-and-error \

(a) Manual iteration

Design variables Optimization loop Objectives and constraints

Characteristic | ! Performance
of system | Behaviour ! of system
| model !
Cause [ : Effect

(b) Behaviour model and optimization technique as design model

Figure 1.4: Use of behaviour model to solve design problem

The most effective approach is to build the model in a design-oriented manner named
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“inverse model” or “design model” as shown in Figure 1.3. By giving the desired perfor-
mances, the model computes system characteristics. In this case, an optimization loop is
not required. The design problem solving is faster. Unfortunately, this kind of model is not
always available. A model intended to be used in design problem should be constructed in a

design-oriented manner as much as possible.

1.1.3 Complex system decomposition

In large and complex system design problems, there are many design variables, constraints as
well as several design criteria. A large number of engineers and experts gets involved in the
design process. The decomposition approach is naturally used for large and complex system
design. Designers usually decompose complex system design problems into subproblems due
to cognitive limitations of human [35, 98]. Smaller problems yield a limited number of design
variable and a smaller design space. Problem solving can be more efficient since experts in
each corresponding field make decision on each subproblem. Global system design criteria
can be achieved by allocating some design targets to subproblems. Subproblems are solved
with respect and subject to their own design variables and constraints. The system engineer
is responsible for coordinating design tasks done by engineering teams as well as ensuring
compatibility between subproblem designs.

A decoupled design problem has several advantages:
e the design problem is understandable and easier to solve;

e the subproblems can be solved by an engineering team or an external supplier. The

coordination and the design process remain the same;
e the specialized engineering teams own and maintain their models.

Several decomposition approaches are used, depending on companies. Object-based and
discipline-based decompositions are natural. These decompositions reflects the managerial
structure of the company and how company develops its products. Usually, one approach in
itself cannot describe the system in a proper manner. For example, a train can be decom-
posed into subsystems and components with help of an object-based approach. Furthermore,
depending on the problem, the same system can be decomposed in different ways e.g. some

subproblems may be simplified or promoted to an upper level.

1.1.4 Global system design

In complex systems, there are interactions between subsystems, components and disciplines.
The integration of optimised subsystems cannot ensure the optimality of a complex system
[73]. Subsystems or components should not be developed individually without taking into
account the interactions from other subsystems. Figure 1.5 depicts the example of a system
composed of 2 components. It shows the efficiency of 2 separately designed components as
well as the global efficiency of the system. It can be observed that the peak efficiency of

the system is not at the same position as that of the subsystems (different working point).
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Moreover, an increase in the efficiency of the subsystem (as in 77/1) does not necessary lead to

an improvement of the system and can even reduce the system global performances.

Efficiency (%)

100
80
60
40

20

04 ‘ ‘ ‘ ‘ ‘ ‘ > Current (A)

Figure 1.5: Efficiency of a 2 component system

In electrical engineering systems, an interaction between the traction motor and the in-
verter is very common. Figure 1.6 plots the motor efficiency and the inverter current against
the number of conductor. They are obtained from the motor model presented in Appendix
B. For the same torque, the motor efficiency and inverter current are computed for various
numbers of conductors. The other dimensions of the motor are fixed as a constant. Any
increase in the number of turns increases the total flux and reduces the current required
to generate the same torque. This results in a low inverter current and low inverter losses.
However, a high number of turns leads to low base speed. The motor needs to operate with
a flux-weakening strategy and generates high losses in high speed zone. In this example, 18
conductors is the best compromise between motor and inverter efficiency (showed as a red
point in the figures). It can be clearly concluded that the motor and the inverter must be
designed simultaneously in order to take into account their interaction and to obtain the
maximum efficiency of the global system.

In decoupled complex system designs, targets and constraints can be allocated to each
subproblems. Subsystems can be designed by experts and by coordinating information be-
tween engineering teams so that the system is simultaneously designed. The Target Cascading
method presented in Chapter 3 integrates the optimal design in such a complex system design

process.
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Figure 1.6: Interaction between motor and inverter

1.1.5 Multi-criteria design problem

Real-world design problems always deal with several conflicting criteria. The designer searches
for solutions, which satisfy all criteria simultaneously e.g. low cost, high performances, low
environment impact, high reliability. Unfortunately, such a “perfect” solution does not exist.
In both engineering and marketing points of views, it is clear that these criteria are conflicting
and that a compromise must be found. For example, if the high performances criterion is
preferred, a trade-off at cost level would be inevitable.

In the preliminary design phase (see Section 1.1.1), the knowledge of the system is gen-
erally insufficient to pose a well-defined design problem. Unknown characteristics may be
considered as criteria so that the designer obtains a wide range of information at the end of
the design process. After having made a decision, some of these criteria are considered as
constraints in the detailed design phase.

The decision maker or design engineer makes a decision based on a group of optimal
solutions. In multi-criteria problems, optimal solutions satisfy Pareto optimality conditions
(see Section 1.1.5.1 below) so that the group of optimal solutions can be presented by a Pareto

front!.

1.1.5.1 Pareto optimality definition

A Pareto front is a group of solutions, which satisfy Pareto optimality conditions. Based on
the definition given in [78], a solution S* is Pareto optimal if there does not exist another
feasible solution such as at least one criterion is better than that of S* and all another
criteria are at least equal to - if not better than - those of S*. This solution S* is also called
non-dominated solution [78].

In Figure 1.7a, The B solution is better than the E and F solutions for at least one
criterion. Therefore, the B solution dominates the E and F solutions. Similarly, the C

solution dominates the F and G solutions and the D solution dominates the G solution. As a

Lalso called Non-dominated front, trade-off curve or surface
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result, the A, B, C and D solutions are non-dominated and satisfy Pareto optimality. These
non-dominated solutions are treated as equivalent regarding the two criteria. Any solution is
better than any other. Figure 1.7b shows these solutions together, the feasible region and the
true Pareto front being depicted as bold lines. In this case, the Pareto front is nonconnected.

It can be also nonconvex.

A A
“ C: Feasible solution set
5] ! 5]
= I = /
:4 | | ; [ ]
O Ae O <+— — Pareto front
|
Bé- lF707 _ °
|
I Ge °
Cb-mm--
De
Criterion 1 Criterion 1
(a) Mlustration of domination (b) Pareto front

Figure 1.7: Pareto optimality

In traditional design process, the Pareto front may include a small number of “improved”
solutions compared with a base-line solution. For optimal design processes, a larger amount
of well-distributed optimal solutions can be generated by using an optimization algorithm.
The Pareto front provides a good support for decision-making. It can be used for negotiation

in the design process.

1.1.6 Optimal design

Most models used in engineering designs are not design models. They are constructed for the
simulation purposes and used in performance evaluation. As mentioned earlier, design aims
at determining the characteristics, geometry or parameters of systems/components while
satisfying desired performances (criteria). Therefore, the inverse design model is needed.
In most cases, the system model cannot be totally built in a design-oriented manner. This
means that an iteration must be performed. In conventional approaches, engineering designers
carry out this process manually. It is difficult to obtain optimum solutions, the system being
complex and many design variables and many constraints being involved.

This lack of human ability to solve the complex problems results in the necessity to in-
tegrate optimization techniques in the design process. An optimization technique is a tool,
which helps designers to systematically explore the design space. It proposes intermediate
or candidate results to designers. This helps the designer to better understand the complex
design problem, to clarify his ideas and to make decision. Instead of performing trial-and-
error method, optimization technique offers a more complete view. Based on its algorithm,
an optimization technique uses information from models to find out how design variables
should be varied in order to achieve optimal solutions while satisfying a number of con-

straint. However, optimization techniques do not have any intelligence. They only take in
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charge repetitive automated tasks. Designer remains responsible of formulating a well-posed
optimization problem, observes what optimization does during problem solving process and
analyses given results.

Figure 1.8 shows an optimal design process. It is composed of 6 phases. Each phase
is subject to being modified if it cannot yield satisfied results. Note that the specification
definition phase is considered as the input to the problem and can be modified only once the

decision is made in the final phase.
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Figure 1.8: Design optimization process

1.1.6.1 Specification definition

This phase consists in collecting requirements and needs. Specification extends from non-
technical to technical issues. This phase is essential for the design process because all design
teams (engineering, marketing, etc.) are involved and must work together to elaborate all

needs, requirements and design objectives.

1.1.6.2 Design problem formulation

After the specification analysis phase, the design problem can be posed. Several design criteria
are selected. The other specifications are defined as constraints. These design objectives and
constraints are as function of design variables and design parameters. The design variables are
controlled by designers during the design process in order to achieve the desired performances
expressed by the design criteria. The design parameters are assigned to specific values. They
can be determined on the basis of the prior knowledge of the system. At the early design
stage, the design problem may consist of a large number of design variables but of very few

design parameters since the system is not well known. The more the knowledge of the system
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the design gains, the more design variables are fixed. Other interacting systems may also
impose some design parameters or constraints to the studied system.

Design problem formulation should not be confused with optimization problem formula-
tion. A design problem can be solved by using different techniques. Optimization is only one
of them. As it will be discussed later, a multi-criteria design problem can be formulated as a
single- or multi-objective optimization problem. Each technique may lead to a different level
of solution as depicted in Figure 1.9. Based on pre-designed or past experiences, a simple
table or graph gives rapidly a preliminary design. This solution is hardly optimal. More
advanced tools such as CAE can be used to simulate the behaviour of the system. An im-
proved design can be obtained after a few iterations by designer. An optimization algorithm
is preferred in order to ensure the optimal solution. In a single-objective optimal design, an
algorithm gives only one optimal solution. In a multi-objective case, the solution is given as
a Pareto front containing a set of optimal results.

CAE

Optimization
Trial-and-error P

Tool Table, graph

Solution Feasible solution Improved solution Optimal solution

Figure 1.9: Level of optimality

For complex systems, a global system design problem can be decomposed into small
linked subproblems by using the decomposition approach. Interactions between subproblems
are identified. Design variables and constraints are assigned to subproblems. Therefore, each
subproblem deals with fewer design variables and constraints. This helps engineering teams
to understand the problems and to solve them more efficiently.

This phase also involves in developing or selecting models. In the complex system design,
the model construction process should be done with the optimization purpose in mind. This

issue is discussed in Section 3.2.1.

1.1.6.3 Optimization problem formulation

The mathematics formulation of the general optimization problem (referred to as O) is defined
as in (1.1)

O: m)én fo (X) o=1,...,m
subject to gi(X) <0 i=1,...,n4 (1.1)
h; (X)=0 ji=1,...,ny
Iby, < xp < ubyg k=1,...,n
X = [x1,%2,...,2Tp,] denotes the design variable vector. The V design space is defined

by lower and upper bounds for each variable, lb; and wubg, respectively. The optimization
minimises several f, objective functions, subject to g; inequality constraints and h; equality
constraints. The S* optimal result set, representing group of X* non-dominated solution,

is the subset of the S feasible solution set. These non-dominated solutions in design space
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form the NF non-dominated front (Pareto front) in objective space. Figure 1.10 shows the

optimization process from design space to non-dominated front.
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Figure 1.10: Optimization process; from design space to non-dominated front

Usually, engineering design problems are multi-criteria problems. Two approaches can be

used to formulate this kind of problems:

e The a priori approach: This approach formulates multi-objective design problems as

single-objective optimization problems. The objectives are usually transformed into
equivalent objective functions by using transformation techniques e.g. weighted-sum,
epsilon-constraint. The designer defines trade-off between objectives before solving
the optimization problem. For example, an electrical motor design problem has two
conflicting objectives: mass minimisation and efficiency maximisation. By using the
weighted-sum approach, the mass weight coefficient may be given 10 and the efficiency
weight coefficient is given 1, on the basis of the past experience of the designer. When
using the epsilon-constraint approach, the problem is to minimise motor mass while
having efficiency superior to 90%. One may realise that it is not very convenient as
it requires quite a lot of experience to reach this compromise. However, the a prior:
approach is very useful (i) when refining the existing or well-studied solutions, (ii) to
investigate some solutions selected from Pareto front and (iii) for optimal design in

detail design phase.

The a posteriori approach: Optimal solutions on Pareto front are located by an opti-
mization algorithm. Based on this information, the designer or the engineering team
selects some interesting solutions to further the investigation. With the a posteriori
approach, no decision is made before solving optimization problem. It is more practical
to make a decision based on trade-off after knowing the Pareto front. For the motor
design example above, the optimal results are non-dominated solutions on the Pareto

front, which is a trade-off curve between the motor mass and efficiency.

Chapter 3 presents various optimization techniques. Designers should select an appropri-

ate algorithm to solve the optimization problem. It depends on:

e the number of objective functions;

e the unimodal or multimodal problem:;
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e smooth or noisy functions;
e the type of design variable i.e. continuous, discrete, category (non-classifiable) or mixed;

e the size of the problem i.e. number of design variables. This factor plays an important

role for the robustness and convergence properties of the algorithm.

1.1.6.4 Problem solving

The formulated optimization problems are launched. Various parameters of the optimization
algorithm have to be adjusted. Optimization algorithm development trends focus on the
parallel and distributed computing. Genetic algorithms can benefit from this approach by
distributing objective function evaluations to multiple processors or computers [19]. In the
Target Cascading method described in Section 3.2.2, a large-scale problem is divided into
small subproblems. These optimization subproblems can be solved in parallel, leading to a

distributed optimization.

1.1.6.5 Result analysis

Once the optimization problem is solved, designers should analyse the results. Optimization
failures can occur and lead to non valid results. Result design vector and constraint values
must be verified against boundary and constraint limits. Sometimes this unvalid results can
be suspected from the fact that the system behaves in a non-physical manner. Therefore,
designers must have a good knowledge of the studied system.

The optimization technique gives only “intermediate” results to designers. This means
that engineers must analyse the given results and make a decision in order to obtain the
“final” results. Optimization can provide several forms of results e.g. table, graph, Pareto
front.

A Pareto front is a common representation of multi-criteria optimal design results. As
discussed earlier, it provides information about trade-offs between criteria. A two criteria
Pareto front is comprehensible. A three criteria Pareto front can be represented with 3 pro-
jections between any two criteria. They may be given together with a 3 dimension interactive
graph i.e. engineers can select the view, orientation and zoom as desired. When more than
3 criteria are involved, a representation may be difficult to achieve. A Pareto front shows
optimal results in an objective space i.e. a relationship between objectives. However, other
information such as optimal values of design variables and constraint are also necessary. Since
there are excessive information, they are usually given as a data table for only several optimal
results. Nevertheless, all results obtained during the optimization process must be collected
in a database and ready to use if needed.

Sensitivity analysis is a useful tool in the result analysis phase. This analyse is based on
the well-known Design Of Experiment (DOE) methodology [29, 50]. By applying sensitivity
analysis at optimum design solutions, it provides local relationship between design variables
and objectives and constraints. Figure 1.11a shows a bar graph of sensitivity analysis. Design

variables with a greater effect than certain statistic thresholds are considered as significant
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factors?. In some systems, a design less sensitive to changes in the design variable/parameter
value? may be preferred. Figure 1.11b depicts a graphic representation of local robust and
global non-robust optima. A robust system ensures its best operation even in a bad or

uncontrolled environment.

A
Effect f
A
2
Local optimum
1 95% Robust design
0 > :
1 To T3 T4 Global optimum
—1 95% .
x
(a) Effect of design variable (b) Robust solution

Figure 1.11: Sensitivity analysis

In DOE, the sensitivity analysis is also used in problem formulation phases. It is called
“Screening”. Based on a base-line design, the local effect of design variables or parameters
is studied. Only significant factors are selected as design variables and used in optimization
problems. Other factors are fixed as design parameters. This allows reducing the problem

dimensions hence its complexity.

1.1.6.6 Decision making process

In case of a multi-objective problem, optimal results are often provided in the form of a
Pareto front. Some of these non-dominated solutions are selected for further study. The
chosen solutions can be analysed with high fidelity tools. To select these solutions, one can
use other criteria, which were not defined or cannot be expressed as objective functions in
the optimization problem.

On the basis of optimal results, designers can also simplify the optimization problem
e.g. reduce the study domain, relax the constraint limit and fix one or several criteria as
constraint. If a low fidelity tool is used in the optimal design process, the optimization can

be therefore re-run by using high fidelity tools in order to verify the obtained results.

2In design of experiment methodology, the term “factor” is referred to as “design variable”.
3Robust design
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1.2 Optimal design in the railway industry

In the railway industry, optimal design has been recently used in the development of com-
ponents [55, 60]. Interaction problems draw attention to extend optimal design to a larger
application domain as well as more global systems. Traction system design is emphasized
here in this research. This section gives an overview of railway traction systems. A corpo-
rate design process is then introduced and analysed in order to discuss on the possibility to

integrate optimal design into actual design process.

1.2.1 Overview of railway traction systems

Nowadays, more than 20% of railroads around the world are equipped with electrical supply
[21]. Electrical rolling stocks are widely used in many applications such as high speed trains,
locomotives, trams, and metros. In a general point of view, a traction system includes all
components from pantograph to wheels. Figures 1.12 and 1.13 show typical schema of a
railway traction system. Pantograph draws electricity from power supply. Electricity pass
through DC supplier, whose main function is to supply a DC source to inverters at the desired
voltage level. The inverter then transforms the DC source into a variable frequency AC source

and provides it to the traction motors. Mechanical energy is sent to the wheels via gearbox.

Catenary, Overhead supply

Pantograph
Motor

A Gearbox

DC supply Inverter
Wheel
Rail

Figure 1.12: Schema of railway traction system

1.2.1.1 Power supply

According to countries and applications, there are many type of power supply as shown in
Figure 1.14. High voltage AC sources are suitable for long route and high power trains
such as EMU (Electric Multiple Units) and VHST (Very High Speed Trains)* due to low
transmission losses in the overhead supply. On the other hand, lower voltage DC sources are
more common in short route and low power applications such as trams and metros. This

allows to reach a favourable compromise between energy losses and traction system cost.

*Very High Speed Train (VHST) or Train & Grande Vitesse (TGV) in French.
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Figure 1.13: Main subsystem/component of railway traction system

AC 25kV 50Hz or 60 Hz
| AC 15kV 16.7Hz| AC 15kV 16.7Hz

| DC 3000V

DC 600 to 750V
Tram Metro EMU VHST Locomotive

Figure 1.14: Power supply

1.2.1.2 DC supply

The inverter requires a DC source with a certain level of voltage as input. For the DC
overhead supply, a step-up or step-down chopper is used in order to change the voltage level
of the DC source into the voltage required by the inverter. A DC filter is also an important
component preventing harmonic currents from the DC link from going back to the power
network. For the AC supply, a transformer and a rectifier are required. In multi-source or
multi-voltage traction systems, the transformer can also be used as the harmonic filter when

the train is operated with a DC source.

1.2.1.3 Electric braking

There are two types of electric braking: regenerative braking and rheostat braking. The
regenerative braking is more interesting because it lowers the energy consumption. However,

a braking rheostat resister must always be onboard for safety reasons. The rheostat braking
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system consists of a chopper connected to a DC bus and a braking resistance with a cooling

fan.

1.2.1.4 Variable speed converter

In recent traction systems, AC traction motors have been used. A DC/AC converter or
3-phase inverter is necessary in order to vary the motor speed. In the past, switching compo-
nents such as Gate Turn Offs (GTO) and Silicon Controlled Rectifiers (SCR) were preferred
in high power applications. They are now obsolete and replaced by Insulated Gate Bipolar
Transistors (IGBT), which are of high efficiency and fast switching [66].

To evacuate losses and to maintain an acceptable operating temperature of the IGBT,
inverters are always equipped with a cooling system. Depending on the customer requirements

and power losses, the cooling medium can be natural air, forced-air with fan, or water.

1.2.1.5 Traction motor

Squirrel cage induction motors are used in many traction systems. This type of motor offers a
high reliability and simplicity in terms of manufacturing and maintenance. New development
trends are leaning towards permanent magnet synchronous motors. Their high power density
and high efficiency are very attractive in traction application. They are the best solution for
distributed traction systems, where the space in bogie is very restrained. However, the cost
of these motors is still higher and their industrialization phase is more complex due to the

lack of experience in railway applications.

1.2.2 Decomposition of train systems

According to the business unit management organization of the company, a train design
problem is decomposed into several problems as in the example shown in Figure 1.15. They
are coordinated by system engineers at the train level. The system engineering team decides
on the allocation of several targets such as reliability, mass, volume and cost. These targets
are assigned to subsystem engineering teams including e.g. the bogie, carriage and traction
system. One department is in charge of the traction system design and manufacturing. Inside
this department, the traction system design problem is also decomposed into subsystem?®
and component design problems (traction box, motor, transformer, etc.). At a lower level,
a traction box contains several converters (rectifier, inverter, chopper) and their cooling
system. Each subsystem/component design problem is solved by several engineering units
and suppliers. The decomposition shown in Figure 1.15 is object-based. However, another
approach can be simultaneously used depending on disciplinary expertise.

One may observe that in traditional design processes, communication and data exchange
(i.e. target allocation, constraint specification) between the different levels are done iteratively
and thanks to meetings of the different design engineers. Usually, few iterations should lead
to an “improved solution”. For example, the traction system department at the subsystem

level imposes mass target to transformer suppliers at the component level. If the supplier

5In this case, it means subsystem at lower level than its parent.
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Figure 1.15: Object-based train decomposition

cannot meet this requirement, a compromise will be sought e.g. modifying the traction
system design in order to tolerate the constraint; the supplier reviews its transformer design
while the customer consults other suppliers. Actually, the problem is much more complex.
A concession made with a supplier can affect the design of other components. Interaction

problems sometimes lead to high development time and cost.

1.2.3 Corporate design process

The traditional design process of a rolling stock company is composed of three main phases as
shown in Figure 1.16. The technology phase concerns the research, observation, selection and
validation of new technologies e.g. IGBT semiconductors, permanent magnet motors. In the
second phase - the product phase - systems and subsystems are designed and validated. These
designs are based on state-of-the-art technologies and new technologies validated during the
first phase. The result of this phase is for example an IGBT-based inverter, a tram traction
system using such inverter and permanent magnet motors. The systems developed in this
phase is added to an internal product catalogue. The third phase is called the contract phase
(applicative project phase). It starts when the company concludes a contract with a customer,
concerning, for example, an intercity train for a railway operator. The applicative project
team designs a train, using the products in the catalogue as much as possible. However, some
components must be customized in order to meet some specific requirements of the customer.

For each main phase, the company uses the V-cycle process, as described in Section 1.1.1.
Figure 1.17 shows V-cycle for product development phase. Each phase is finalised with a
Gate Review (GR). GR is the decision-making stage in which design teams review the design
and have to decide whether or not to go on with the next phase.

For traction system development, the main duties of the traction system department are

to design and manufacture standardised traction systems, which are mainly in the second
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(Traction system)
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Figure 1.16: The three main design phases of a company

Specification Gate Review (SGR)

e Preliminary Gate Review (PGR)
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First Equipment Inspection (FEI)

Initial Quality Approval (IQA)

Figure 1.17: V-cycle product development phase

phase (Product development phase) as well as in the first phase (Technology phase). The
input data for traction system development are provided by marketing department. Previous
contracts and potential projects are analysed in order to determine the specifications and
constraints. Several applicative projects are chosen as reference projects and improving tar-
gets are defined. As suggested by their names, each GR concerns different objectives. SGR
intends to determine specifications, needs and constraints of the traction system and com-
ponents. During the PGR phase, preliminary designs are carried out. Practically, all design
parameters involving in the main function of the traction system, as well as all interactions
between the systems are determined in this phase. More detailed designs are completed
during the CGR phase. In the last phases, prototypes are produced and tested in order to
confirm the design.

Figure 1.18 shows the Degree Of Freedom (DOF) and modification cost against time.
Product and contract phases appear in the figure. In order to obtain an optimal system with
a low cost, the system should be well developed and take into account all possible customer
needs during the contract phase. Once the subsystems and components are added into the

catalogue, it is inappropriate to modify them, due to cost constraints. This consideration
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leads to the standardisation approach presented in the following section.
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Figure 1.18: Degree of freedom and modification cost

1.2.4 Standardisation

In the context of global market, customized design for each product leads to non-competitive

cost and a long time to market. Many industries are considering platform or family product

design approaches [100]. A product platform is a group of products, which shares subsystems

and components. Even if many subsystems or components are common for the platform,

options can be selected and some components are designed specifically for each product in

order to satisfy the requirements of customers.

In the rolling stock business, three main platforms can be defined: the carriage platform

(tram, metro), the bogie platform and the traction system platform. Platform standardisation

can be applied in two aspects:

(i) Standardisation for applicative projects: A platform developed for an applicative project

is re-used in other applicative projects in the same product range/platform. For exam-

ple, a tram traction system can be used in many tram applicative projects.

(ii) Standardisation for platforms: This is done at the component level. A component used

for a platform can be used in other platforms. For example, an inverter/power module

can be used in the traction system of a metro and EMU.

Figure 1.19 shows cost, development time and optimality level compared to the level of

standardisation.

Three examples of this in traction system designs are:

(i) Low level of standardisation: This approach was used in the past. A unique traction

system is developed for each applicative project. Only few components are re-used later

in other applicative projects. A number of components is designed for a particular

project and never used in the following projects.

Advantages:
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Figure 1.19: Standardisation

e The traction system is highly “optimised” for each project.
Drawbacks:

e High development cost and time
e High development time
e High product cost due to low quantity manufacturing

e High reliability cannot be guaranteed

(i) Medium level of standardisation: This level represents today state-of-the-art. Trac-
tion systems are developed for each rolling stock product range i.e. tram, metro, EMU,
VHST and locomotive. According to the applicative projects, each traction system can
be reconfigured and adapted in order to satisfy specifications made by customers. For
example, the architecture of the power scheme and the choice of power converter can
be adapted, on the basis of each project. Some components such as transformers and
harmonic filters are newly designed to meet the specifications for the projects. The
traction system power schemes can be of different AC or DC, voltage level, depending
on the countries, the power supply networks. Moreover, the harmonic constraints are
also different. This leads to customized designs of the transformer and harmonic filter

for each project.

Advantages:

e Lower development cost

e Shorter time to market because the most part of traction system design is already

done during the early design phase.
e Lower product cost, due to a higher quantity production

e More reliability. The Return of experience from previous projects allows improving
the product reliability. Note that, traction systems are permanently improved,

along their life cycle.

Drawbacks:
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e A traction system cannot be “optimal” for every project. It is oversized for some

projects.

(iii) High level of standardisation: An ideal traction system is suitable for all rolling
stock product ranges. A more practical idea may be a traction system for several
product ranges. Different power or effort requirements can be achieved with redundancy.
A design must take into account as many constraints and requirements specified by
customers as possible. This approach has been applied by Alstom in AGV (Automotrice
a Grande Vitesse) and Pendolino train, which share the same traction system. A great
number of components are identical. Based on the modular approach, the traction
power can be adjusted according to the project needs. Moreover, a transformer can be
used as a DC filter when the train operates in DC power supply. It is designed by taking
harmonic constraints for almost any network into account. It then becomes a “standard”

component and is not a “customised” component anymore, as in the previous example.

Advantages:

e The development cost is split on several projects.

e Shortest time to market because most designs are already finished before the tender

phase. Only small adjustments are to be done before the delivery.
e Lowest component cost due to a scale effect

e More reliability. The Return Of Experience from the previous projects allows

improving the product reliability.
Drawbacks:

e A traction system cannot be “optimal” for every project. It is oversized for some

projects. However, profit is maximised at global company level.

1.2.5 Design criteria

The traction system design problem is a multi-criteria design problem. Some of the design

criteria can be stated:

e Life cycle cost (LCC): It is composed of the purchase cost and possession cost e.g.
maintenance and energy consumption costs. LCC should be an important criterion
for customers. Regarding the energy consumption cost, it is an implicit function of
another criteria. This allows simplifying multi-criteria problems to single-criterion.
Minimisation of energy consumption can be achieved through efficiency maximisation

and mass minimisation (reduction of resistance effort of train).

e Development cost: The maximisation of the standardisation level allows minimising the

development cost.

e Mass: As mentioned earlier, the minimisation of the mass leads to minimisation of
the energy consumption or the maximisation of passenger capacity if the axle weight
remains the same (e.g. 17 tons for the VHST).
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e Volume: The minimisation of the traction box and motor volumes is very important
for small rolling stocks such as trams as well as full size vehicles such as metros or
EMUs. For AC traction systems, a small transformer is also preferred. Any volume

minimisation allows increasing the passenger capacity.

e Reliability: Reliability is defined in terms of failure rate. For trains, the service reliabil-
ity% is usually expressed. The failure of a traction box or a traction motor should not
lead to the immobility of train. The train reliability can be improved via a component

redundancy as well as the reliability of each component.

e Noise: The main source of noise in traction systems is the forced-air cooling system
(for the inverter, rheostat resistance, transformer, filter). The actual solution is to stop
the ventilation at the stations. A more effective solution might be a loss minimisation
allowing the use of less noisy cooling fans. The inverter and traction motor are also
noise sources. An optimal inverter control strategy [107] and an optimal geometry of

the motor can minimise the audible noise.

e Electromagnetic compatibility (EMC): According to the rail network (country, railway
operator), the harmonic currents rejected to supply network are limited. This ensures

that the communication network and the signalisation system will not be affected.

1.2.6 Model and analysis tools

To design a traction system, a company uses a wide range of models and software. For electric
and thermal phenomena at the traction system level, several rules are used in the preliminary
stage in order to determine the initial variables. The preliminary results are then verified,
with the help of an in-house traction system simulation program called CITHEL. This tool
allows simulating the cinematic, electric, and thermal behaviour of a train operating on the
track e.g. a round-trip of train. It uses a library of standard components and focuses mainly
on the traction system. More detailed models of component are available depending on the
speciality of each engineering team. Figure 1.20 shows CITHEL’s user interface. Section
5.1.2 presents its features in a more detailed manner.

Design engineers also use standard commercial software as well as Finite Element Analysis
(FEA) tools in mechanical and thermal analysis e.g. ANSYS®, CATIA®, FloTHERM®.
They are used at different stages as shown in Figure 1.21.

Some design criteria are not associated to any analysis tool. Reliability is computed, on
the basis of estimated value (from previous experiences), the Return Of Experience (ROE)
or value given by supplier. The FMECA (Failure Mode, Effects, and Criticality Analysis)
and the Reliability Block Diagram and Fault Trees Analysis are also deployed.

In this work, a model of permanent magnet motor has been developed. It is an semi-
analytical model with link to geometry (see Appendix B). Its exploitation will be shown in
Part II.

SService reliability is described by additional time used to accomplish a trip.
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Figure 1.20: CITHEL’s user interface
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Figure 1.21: Various tools in different design phases
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1.2.7 Optimal design consideration

In order to apply and integrate an optimal design process into the corporate design process,
several points may be discussed.

For design problems of decoupled parts of traction systems, the information exchange
between subproblems should be carried out more or less automatically in order to achieve an
optimal global system. Subproblems must be integrated and coordinated by a hierarchical
optimization method. This issue will be discussed in Chapter 3. To integrate all optimal
design subproblems into a global hierarchical one, various models must be compatible and
must be launched from an optimization supervisor. Some difficulties may be encountered in
reality e.g. the different teams might not be on the same site or, worse, they work in different
countries; the suppliers do not want to communicate their models; or design software are not
compatible. In any cases, surrogate models are an efficient communication tool (see Chapter
2).

Regarding the whole design process, it is clear that an optimization can operate in any
phase. In the contract phase, it can be used to adjust some parameters, and this allows
satisfying customer’s requirements. However, it is more effective in the early design phase,
where the problem is more complex, a large number of design variable are accessible and
interaction problems are not well studied. Optimization can be applied to low fidelity models.
the results from this preliminary optimization provide sufficient information to understand
trade-off between several design criteria, to fix some variables as parameters and to simplify
the problem.

The optimal design of standardised traction systems is of main interest, particularly if
a high level of standardisation is aimed at. It is obvious low cost, hence high profit. The
problem should be well defined since it is more complex than usual. Traction systems must

meet the requirements of a wide range of customers as well as different operating scenarios.
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1.3 Conclusion

The design problem of complex systems has been presented in this chapter. A complex sys-
tem is a system integrating several interacting subsystems and components. In the “business
as cause” approach, the design of the system is decomposed into several smaller design sub-
problems. Once subsystems and components are defined, they are coordinated and integrated
back by the system engineer.

Models and software packages used in design are mainly simulation tools providing be-
haviours. Therefore, iterations are required to solve the design problem.

Usually a complex system design problem deals with a large number of design variables
and constraints. The usual trail-and-error method is not suitable as engineers cannot deal
with such complex problems. An optimal design is then required to help engineers to obtain
results better and faster. However, the engineer will stay to drive the process, devoting the
repetitive tasks to the computer and keeping in mind the decision-making process. With
a well-formulated optimization problem, a suitable algorithm and a trained designer, the
optimization technique can ensure optimal results. An optimal design should be superior to
a conventional design method in terms of design time delay. The conventional trail-and-error
method hardly gives optimal results and design problems are always simplified. By using an
optimization technique, the design problem can be more complete and meet the requirements
of the designer in a better way.

The optimal design process has been presented. It takes place in a V shaped design
cycle. The design problem is firstly formulated. Modelling or model selection, if possible,
should consider the fact that the models will be used in an optimal design. The optimization
problem is formulated and solved using various optimization techniques. Results may be
given in several forms. A Pareto front is common for a multi-criteria design problem. It
allows obtaining a trade-off curve between objectives. The table gives more information e.g.
design variables and constraint values and is suitable for investigating several solutions in
detail.

In railway applications, an overview of traction systems has been given. The main com-
ponents are a DC supply (transformer, rectifier, chopper), a line filter, an inverter and a
motor. Then, a corporate design process has been presented. Some interesting points re-
garding optimal design and its place in the product development cycle have been discussed.
Design criteria and simulation tools have also been reviewed.

Following the chapter, Chapter 2 presents several modelling techniques and Chapter 3
Optimization techniques. Finally, Part II describes some applications of optimal design to

both railway traction systems and components.






Chapter 2
Modelling technique

Computer Aided Design (CAD) and Computer Aided Engineering (CAE) are used in many
industrial domains. They allow simulating the behaviour of physical systems. Therefore,
computer simulations are widely used by engineers when designing products. Development
cost can be significantly decrease since the application of the trail-and-error process has a
lower cost, when using these computer simulations as virtual prototypes.

In the last decades, scientists and engineers have put a lot of effort to model engineering
systems based on the knowledge of basic physical phenomena e.g. magnetic, electrical and
mechanical laws. Experiments are necessary in order to identify the model parameters, verify
modelling hypotheses, and assess the model accuracy. The modelling can be very simple or
very complex depending on details needed and the complexity of the system itself i.e. the level
of interaction between the physical domains and the number of components to be simulated
simultaneously. The obtained models are used afterwards to simulate or study the behaviour
and performances of the studied systems.

In some cases, mathematics modelling techniques replace physical-based modelling, for

example when:

e Physical phenomena are very difficult to understand or not well established.
e The system being studied is very complex.

e Experiments are available.

Mathematics modelling techniques are closely related to the statistics field. A well-known
technique is the Design Of Experiment (DOE) methodology. It allows modelling a real
system based on a limited number of experiments. The DOE is popular and has proved its
effectiveness in a wide range of applications such as in chemical and industrial processes [9].
In statistics literature, another technique can also be stated such as the Bayesian network
or the Kriging method [13]. Outside the field of statistics, famous mathematics modelling
techniques are for example the Neural network [65] and the Splines [42].

Although mathematics modelling techniques are initially developed for “Real-world” ex-
periments, they can also be used to model “computer simulation”. When doing so, the term

of Surrogate model or Metamodel' are employed. In this research, we emphasize our

'Model of model
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interest in the modelling of experiments done on a computer (i.e. simulation). The modelling
technique and mathematical formulation are shared between the Mathematics modelling and
the Surrogate modelling. The main difference is that the Mathematics model is applied to real
experiments and the Surrogate model is applied to computer simulations obtained by using a
physical-based model, which can be reproduced without an experimental error. The idea be-
hind the Surrogate model approach is discussed in Section 2.2. This reflects our main concern
on CAD/CAE and optimal design processes. As computer technology has been improved on
a daily basis, engineers tend to develop more and more complex physical models, which take
into account many phenomena. However it is not very practical to include these models in
the optimization process because the computations are usually time-consuming. Therefore,
an approach using surrogate models is necessary. This kind of model is constructed using
information from a physical-based high fidelity model. It replaces the high fidelity model
in the optimization process and its sufficiently low computation cost allows to speed-up the
process.

Figure 2.1 depicts a summary of the idea introduced earlier. It also gives a summary
of various physical-based modelling techniques usually employed in electrical engineering

domains as well as several surrogate modelling techniques presented in the following sections.

2.1 Physical-Based Modelling

The physical-based modelling technique is certainly the most common approach used by
engineers. A system or process is modelled based on the knowledge of physical phenomena?
and equations describing them. The experiment is always carried out to identify some model
parameters, to validate the hypothesis posed and to verify the accuracy of the model.

In electrical engineering and related fields, three main techniques are used frequently;
analytical, numerical, and semi-numerical modelling. Each technique has got its own advan-
tages and drawbacks. There is no technique that is better than another. It depends on how it
is used and what application is made of it. For example, an analytical model of motor is very
suitable for pre-sizing and a numerical model such as the Finite Element Analysis (FEA) is

used for detailed design phase.

2.1.1 Analytical model

Analytical models are expressed explicitly in terms of analytical equations. These analytical
equations can be solved without any difficulty. The analytical model can be represent a system
at different detail levels. This depends on the applications and needs. Again, there is not
any model better than another. A model is more or less suitable in a context. For example, a
motor can be very low detailed with a circuit model as used in control application and more
detailed with an electromagnetic model with linked to geometries in a sizing application.
Because of their nature, explicit models are very cheap regarding their computation time.

Therefore, they can be integrated successfully in an optimal design process [60].

2This should not be limited to physical phenomena. It can also be economics or else depending on the

theory describing the system being investigated.
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Figure 2.1: Summary of the presented modelling techniques

An example in electrical engineering applications, especially in motor designs, is presented
in Figure 2.2. This example shows an analytical model with two interconnected sub-models.
A simple circuit model shown in Figure 2.2a represents the electrical domain and an equiva-
lent magnetic circuit model with linked to the geometry (Figure 2.2b) describes the magnetic
domain. Both models are used together to simulate performances of a motor. Many hypothe-
ses are considered e.g. the magnetic flux is non-saturated, the phase current and flux density

in the air gap are sinusoidal and the leakage flux is introduced via an empirical coefficient.

2.1.2 Numerical model

To solve the nonlinear characteristics of a numerical model, an iterative method is required.
They are for example, numerical, semi-numerical and time-domain simulation models.
Many numerical techniques are used nowadays in our activity field: the Finite Element
Method (FEM) [115], the Boundary Element Method (BEM) [91] and the Finite Volume
Method (FVM) [25]. The FVM is mainly applied in the field of Computation Fluid Dynamic
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(a) Electric model (b) Magnetic model

Figure 2.2: Analytical model of a permanent magnet motor

(CFD). The FEM is commonly used in the application of magnetic field computation (mag-
netic domain) and stress analysis (mechanical domain). These methods consist in dividing
an object into small elements via a mesh generation process. Governing partial differential
equations are then discretized over this mesh and solved numerically. Such governing equa-
tions are for example Maxwell equations in magnetic field computation [11], the elasticity
theory for stress analysis [16] and the Navier-Stoke in CFD [110]. Numerical models allow
taking into account nonlinear characteristics of materials and many phenomena, which are
neglected in explicit models. This increases the precision and accuracy of the analysis results.
They can also give local information on the system e.g. the magnetic saturation in a small
zone of tooth. Furthermore, the combination of several physical domains in the same solver is
possible i.e. solving the coupled magnetic, thermal and mechanical domains simultaneously
[24, 68, 90].

The development of numerical software packages seems to be a demanding task. Fortu-
nately, many commercial software packages are available on the market. Some of them can
be listed: Opera, Flux, ANSYS, FLUENT, FloTHERM, CosmosWorks and COMSOL. In
the point of view of the user/designer, using such software to model a system can reduce sig-
nificantly their modelling effort, while no deep knowledge of the theory is needed. However,
the computation time can be very high. Figure 2.3 shows modelling and analysis results of a
motor using FEM package Vector Field Opera 3D [22].

Unlike numerical models, a semi-numerical model is expressed by using analytical equa-
tions with some nonlinear characteristics, which are needed to be solved iteratively [11].
Such a model offers a good compromise between computation time and precision because it
does not require a huge number of assumptions as in an explicit model (due to its nonlinear
property) nor provide a lot of local information. Well-known semi-numerical models are the
permeance network (magnetic field computation) and the lumped parameter thermal model
(thermal, heat transfer). Figure 2.4 shows the permeance network of a synchronous generator
taken from [88].
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Figure 2.4: Permeance network of a synchronous generator
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2.1.3 Summary

The model development is always a very long and delicate task. It requires a lot of time,
financial resources, knowledge and experiences in the application domain. This is always
an experts job. For analytical models and semi-numerical models, this development phase
is realised by experts. The models are usually proprietary or in-house coded. For numer-
ical models, designers commonly use software packages already developed by the software
company.

Four criteria are compared in Figure 2.5:

(i) Modelling details: The more the model is described in detail, the easier it is to access
the local information. It is supposed that if the local information is available, the global

one is also obtained.
(ii) Accuracy: The model can be build with different levels of accuracy.

(ili) Computation time: The model should be selected on the basis of the needs of the
designer. The model with too much information may not be suitable for certain appli-

cations.

(iv) System description: The ability of each component to react and to interacts with

the system and the other components around it.

The numerical technique is more accurate but it does not describe the interactions with
the system very well. The analytical technique is rapid and able to describe the system.
However, it hardly provides detailed local information. The developing trend is to combine
these techniques in order to obtain both high accuracy and description of the system. Several

examples of hybrid model can be listed:

e The transient finite element analysis, which uses an electric circuit model and mechani-
cal dynamic model (both are time-domain simulation models) and the FEM to simulate

the performance of a motor in transient state.

e A system of two components. One is described by an analytical model and the other

by a numerical model.

The integration of modelling techniques can be done directly and transparently in one software
package or indirectly via an external process such as multidisciplinary design analysis (see
Section 3.2.1).

A prototype is also compared in Figure 2.5. It allows validating the modelling due to the
fact that all physical phenomena and all interactions can be observed. However, development

time and cost are the main drawbacks.
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2.2 Surrogate modelling

2.2.1 Overview

In spite of the increase of computers speed, engineers always find it difficult to integrate the
high computational time and high fidelity simulation software constraints in the optimal de-
sign process. Many researchers are working on the optimization algorithm to decrease model
evaluation number requirements. For example, space mapping techniques allow combining 2
models, high and low fidelity [104], while hybrid algorithm allows taking advantage of global
evolutionary algorithms and local gradient algorithms [61]. Others focus on the development
of an approximation method called the Surrogate model [67, 92, 99, 112]. The most popular
techniques involve the Response Surface Methodology (RSM), the Radial Basis Function, the
Neural Network and Kriging.

A Surrogate model or metamodel is simply a model of a model. It is constructed using
the sample data computed by a high fidelity software (or fine model). It replaces the time-
consuming fine model in many circumstances. The use of a Surrogate model in engineering

design can be described as following;:

e Design space exploration: CAD/CAE tools or physical-based models allow engineers
to obtain the relationship between design variables and system performances. However,
when designing a new or even well-known system, engineers do not have a perfectly clear
idea of how performances would change if design variables are modified. A common
approach is to perform a sensitivity analysis around an interesting point. To capture
the global idea of design space, engineers can use surrogate models to visually explore
the design domain. Design space can be plotted in the way that they need and as many
times as they want because working on a surrogate model is very cheap regarding the

computation time.

e Problem formulation: When designing a system, engineers may have specifications or
requirements, but actually they may not know how to formulate the optimization design
problem. At this stage, using a high fidelity model is very time-consuming. By using
a surrogate model, many formulations can be tested. A problem may be formulated as
multi-objective problem at first and then reduced to a single-objective problem and vice
versa. Some non-active constraints may be removed and some forgotten constraints may
be added as well. Another potential is using a surrogate model to perform screening
or sensitivity analysis. This allows selecting the most influential design variables of

objective functions.

e Data exchange and communication: In the context of multidisciplinary and con-
current design, many groups of engineers work together toward the same global goals.
Interactions between groups are unavoidable. A group may need information or a model
from another group in order to perform its design. A Surrogate model offers a cheap
and confidential means to exchange data and models. A company can avoid giving a

proprietary code to its partner or subcontractor.
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e Optimization: The use of a Surrogate model in an optimization process can reduce
the computation time compared with a direct optimization using a high fidelity model.
Concerning the accuracy issue, in most cases, the designer performs sequential optimiza-
tion manually in order to obtain high accuracy results. Such a process will be discussed
later in this section. A more advanced optimization algorithm called surrogate-assisted
optimization, allows automatically refining a surrogate model during optimization. It

is introduced in Chapter 3.

In the context of Multidisciplinary design optimization, one can profit from the advan-
tages of the surrogate model not only its low computation time but also its compatibility
issue. MDO involves many tools and software. Sometimes they are not on the same
operating system platform. A designer with no computer/technical skills can construct
surrogate models based on various tools running on different platforms and use them

to perform an MDO on his preferred computer environment.

Regarding the purpose of optimization, Figure 2.6 shows the typical flowchart of an op-
timization process using surrogate models. This optimization approach begins with the se-
lection of sample points. The expensive models are then evaluated at these points. The
responses or outputs are therefore used to construct surrogate models. These surrogate mod-
els replace the expensive models in the optimization process. The optimal results are verified
with the high fidelity model. It leaves to the designer the task of reducing the design domain
and adding some additional sample points. This manual sequential process runs until the
errors between two models are corrected. Finally, the optimization results are analysed and
validated.

The optimization approach using a surrogate model is typically used in a large-scale
optimization problem such as MDO [39, 102]. In electrical engineering optimization design,
the surrogate-modelling approach has been used in many applications. Maruyama et al. [69]
applied the Kriging model in the reliability design of electromagnetic devices. An application
to a permanent magnet motor design was presented in [32].

A great advantage of the Surrogate model is the reduction in the computation time.
However, the main inconvenience is the trade-off between the accuracy and the computational
time. Once the Surrogate model is built, it should be validated. The assessment strategies of
the surrogate model can be found in [72]. A statistical method called “Leave-k-out” is used
to verify if the building of a surrogate model is sufficiently accurate. The surrogate model
denoted “Reference model” is firstly built using information from all sample points. The k
sample points are randomly left out from the sample point set. A surrogate model denoted
“Leave-k-out model” is constructed using the remaining sample points. The “leave-k-out”
model is verified against the reference model. An assessment vector such as Root mean square
error, Maximum error are computed. By doing this many times, average values of assessment
vector can be considered as an approximate error.

The goal of a surrogate model construction is to obtain a cheap-to-evaluate model repre-
senting accurately the fine model. It depends on three main factors; (i) how the sample points
are placed in the design space, (ii) how many they are, and (iii) what modelling method is

used. These three issues will be discussed in the following sections.
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Figure 2.6: Optimization using a surrogate model

2.2.2 Sampling technique

In statistical fields, the classical DOE theory combines several sampling techniques, the RSM
and other statistic tools such as screening. The aim of the DOE is to place a number of sample
design point in the design space in order to minimise the influence of the random error. As a
result, the sample points are placed mainly near the boundaries of the design domain. Some
designs associating with higher-order polynomial models may place few sample points inside
the design domain. Even the classical DOE is more or less perfect when used together with
screening and the RSM to estimate a local trend of a function. However, some information in
the centre may be lost when using the same experimental design along with other modelling
techniques to predict the global trend.

In modern DOE, typically applied to computer or simulation-based experiments [31], two
assumptions are made. Firstly, the random error does not exist i.e. two simulations with the
same design point give the same response. Secondly, the trend of the fine model is not known
beforehand. For this reason, the modern DOE uses “space filling designs” that treats all
regions of the design space equally and tend to place sample points inside the design space.
This allows minimizing bias errors i.e. the discrepancy between a surrogate model and a fine

model?.

3The bias errors is not only at the sample sites but also in the overall design space. This cannot be identified
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In the following subsection, a variety of classical and modern DOE is described. A compar-
ative study of modern sampling techniques together with modelling techniques is presented
in Section 2.2.4.

2.2.2.1 Classical experimental design

The most basic design is a two-level full factorial design [112]. It places sample points at all
combination of lower- and higher-level of each factor. This results in 2™ experiments. Figure
2.7a shows how sample points are placed on the hypercube at two levels and in a three factors
full factorial design. By using a full factorial design and a screening, the main effects and
interactions between factors can be studied.

Using a two-level factorial design in a quadratic polynomial RSM is not suitable, as it
cannot capture information inside the design domain. Various designs are possible for this
purpose. Some of them can be stated: n-level factorial design (n" sample points) and
central composite design (14 2n, + 2™ ). One may realize that the number of a sample point
increases rapidly as the number of the factor increases. This problem is known as the curse
of dimensionality [53]. For high dimensional design spaces, the fractional design can be used.
The number of sample points is decreased to n™*~" and 1+ 2n, + 2™ ~" for fractional factorial
and fractional central composite designs, respectively, where r is a reduced order. Figure 2.7b

shows a 237! fractional factorial design.

T3 T3

T T

(a) 2% factorial design (b) A 237! fractional factorial design

Figure 2.7: A two-level full and fractional factorial design for three factors. With 2371

fractional design, the number of experiments is reduced from 8 to 4.

2.2.2.2 Monte Carlo Sampling

Monte Carlo Sampling (MCS), also called random design, is commonly used in the field of
robust or reliability design [14]. It intends to mimic a random natural process*. MCS is

very easy to implemented when using a programming language in which a random function

without any knowledge of the true function.
4 Actually, computers cannot generate true random numbers. Therefore, a Monte Carlo sampling generated

by computer is not a real one. A predefined table is classically used. This is why a prefix “Pseudo” is sometimes

used.
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is available. The position of a sample point in the dimension nt"

can be located by selecting
a random number in an interval of design variables in the dimension n**. Therefore, a MCS
point for an n-dimensional design space is represented by a vector of n, random numbers in
the interval [b, ub]™.

MCS points may not well cover all design spaces due to the fact that each sample point
or even each dimension of a sample point is selected independently. Many improved MCS
methods have been developed such as Stratified Monte Carlo sampling [54]. The design
space is divided into bins. Only one sample point is placed in each bin. This provides more
“space-filling” properties than the original MCS. Figure 2.8 shows an example of a MCS and
a stratified MCS design. A stratified MCS design provides more uniformly distributed sample

points.
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Figure 2.8: Monte Carlo sampling for a two-dimensional design space with 12 sample points

Hammersley Sequence Sampling (HSS) is in the class of Quasi-Monte Carlo sampling
methods®. It uses a deterministic algorithm to generate sample points so that the points are
uniformly distributed in the design space [45]. It provides better uniformity property than
LHS. A ten point HSS of two dimensions are illustrated in Figure 2.9.
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Figure 2.9: Hammersley sequence sampling of a two-dimensional design space with 10 sample

points

5Also called low-discrepancy sampling
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2.2.2.3 Latin Hypercube Sampling

Latin Hypercubes Sampling (LHS) is very popular in computer experiments. It was firstly
introduced for computer experiments by McKay et al. [71]. It is widely used with Kriging
in Design and Analysis of Computer Experiments (DACE) introduced by Sacks et al. [92].
As MCS, LHS is also a modern DOE or space-filling design. Sample points are scattered
throughout the whole design space.

By giving a number of sample points, ng, the design space is divided into ng intervals of
equal probability for each dimension. This results in n}* hypercubes or bins. LHS requires

that sample sites meet the following criteria:
e A bin can contain only one point, which is placed randomly in the bin.

e When projecting a design space in any two dimensions, there are ng points and bins.

Only one bin is selected in each row and column.

LHS are represented using a LHS matrix of ns; rows and n, columns. This matrix is
quite easy to generate. It requires a random permutation of ng levels for each column. Each

column of the LHS matrix is defined as:

ris, = Ui

- (2.1)

where 7; is the uniformly distributed random permutation of the integers from 1 to ng, U;
is [0, 1] uniformly distributed random number vector of ns elements. For example, the LHS

design in Figure 2.10a is constructed from a LHS matrix:

[ x| 2 0.35 4 0.28 [ 0.41 0.93
x® 1 31 _ | 052 1| | 047 0.62 0.13
xo | 4| | 0.24 3 0.62 = | 0.94 0.60
X 1 0.81 2 0.41 0.05 0.40

— ———— ~ =~

) ) L Random number Random number - T2 4

In fact, there are many possibilities to select a LHS that satisfies the criteria. Figure 2.10a
shows an example of a well-distributed two-dimension LHS. Figure 2.10b shows an example
of a poor LHS. In this case, four sample points are positioned diagonally, leaving the two
other extrema unexplored.

To avoid this poor design, many strategies can be used. For example, maximizing the
minimum distance between any pair of points (maximin LHS) and minimizing the maximum
distance (minimax LHS). To do so, one might simply re-sample the points until a criterion
such as maximum number of trial is met. A more advanced user may use an optimization
algorithm as it was done in [40]. In [40], the authors used a Simulated annealing algorithm
to find the maximin LHS. However, in this research, we use the maximin criteria. The best

design is simply selected from a set of trials.
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Figure 2.10: Latin hypercube sampling for a two dimensional design space with 4 sample

points

2.2.2.4 Number of sample point

As mentioned above, the number of sample points is one of the main criteria in order to achieve
an accurate surrogate model. Theoretically, one might put as many points as possible. This
idea is always right though it is not practical. Firstly, a lot of computation effort must be
paid. This is usually prohibited. Secondly, when using a surrogate model for an optimization
purpose, if the number of sample points should be very high, it is more reasonable to perform
the optimization directly on the fine model and the surrogate model is not necessary.

In a classical DOE, the number of sample points depends on the dimension of the design
space. When using an RSM, the minimum sample point should be the same as the number of
polynomial coefficients (see Section 2.2.3.1). In a high dimension design space and high-order
polynomial approximation, ng can be very high and the most important is that it is not
controllable by the engineer. This may cause a problem when computation time matters.

In a space-filling design or modern DOE, ny can be chosen freely by the engineer. It
is not tied to the number of design variables. It may be given to meet available computer
resources. Jin et al. [42] tested the accuracy of surrogate modelling techniques constructed
from sample sets with different sizes. They confirmed that a higher number of sample points

yields a more accurate model.

2.2.2.5 Summary

The classical DOE techniques are good sampling techniques suitable for RSM. They place the
sample points in the design space so that random errors caused by experiment are minimised.
Each design provides special characteristics and depends on the chosen RMS model. The
number of sample points is tied with the number of design variable.

The space-filling designs e.g. MCS and LHS have been more investigated and used in the
field of surrogate modelling. Their main characteristic is to provide well-distributed sample
points in the design space. This is more suitable for describing the large design space due to
the fact that the information inside the design space can be captured by its well-distributed

sample point property. The number of sample points does not obligatorily depend on the
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number of design variables. This gives a degree of freedom to the designer to determine the
number of sample points based on criteria such as computer resources, problem complexity
and problem nonlinearity. A comparative study of the sampling techniques and the modelling

techniques is presented in Section 2.2.4.

2.2.3 Surrogate modelling technique

The objective of a surrogate model is to give an accurate approximation of a fine model. The
ideal case would be a surrogate model that represents perfectly the fine model in a short
computation time.

A fine model describes the relationship between input: design variables vector x and

output: response y.
y=[f(z) (2.2)
With a surrogate modelling technique and the knowledge of sample data: xgi) and ygi)
where ¢ is the number of sample data points from 1 to ng, the estimated response ¢ can be

defined as:
j=f() (2.3)

where f is the surrogate model of f.

Three surrogate modelling techniques are presented in the following sections. General
principles and important considerations are detailed. These modelling techniques can be
classified into two types: a regression model (Polynomial) and an interpolation model (Radial
Basis Function and Kriging). The different is that the interpolation model passes exactly
through the sample points whereas the regression model does not. Therefore, the regression
model is always associated with residual or fitting errors i.e. a difference between a regression
model and the observed response.

Two analytic examples are used in this section for an illustrative purpose. The position
of sample points is selected in order to show the specific properties of the method. Therefore,
these examples are for illustrative purpose and they do not intend to give any comparative in-
formation between each technique. A comparative study of surrogate modelling and sampling

techniques is presented in Section 2.2.4.

e One-dimensional test function (modified from [94]):

x
x) =sin(x) —exp | == ) + 10
fi (&) = sin(x) — exp (5 ) o)
where z € [0, 10]
e Two-dimensional test function (Peaks function):
fa(arw2) =3 (1= a1) exp (—af — (224 1))
1

—10 (% i x%) exp (—ac% - ;1:%) — 3 exp (—(z1 + 1)? - x%) (2.5)

where z € [—3, 3] for all dimensions
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One-dimensional function is shown in Figure 2.11a. Figure 2.16a shows a two-dimensional
test function. It can be observed that both functions are multi-modal. For a two-dimensional

problem, there is a large flat area.

2.2.3.1 Polynomial

Polynomial approximations are the most common techniques for constructing a surrogate
model. In the statistic field, the combination of DOE, Polynomial-based approximation and
Analysis of variance (ANOVA) is known as Response Surface Methodology (RSM) [9, 50, 112].
It is originally developed to build a smooth response surface of observed data from physical
experiments, which are always subject to empirical or random errors. Therefore, a regression
model® is very suitable for this kind of problem. RSM is very popular because it provides
a compact and explicit relationship between a true function (so called response) and input
variables (called factor). Each regression coefficient has a meaning in itself’. Moreover, the
least-square method used to construct the models is inexpensive and simple to implement.

A polynomial model requires a specific number of experiments or sample points depending
on the model order and the polynomial term requirements. It is usually associated with
the DOE method in order to select appropriated experiments. ANOVA allows to predict
the uncertainty of a model by using information from the discrepancy between fine and
polynomial models at sample sites.

A relationship between the observed response y and the factors X can be predicted by a
polynomial model.

y=19y+e¢€ (2.6)

€ denotes a fitting error or noise. It is actually an error between the observed response and
the predicted response. It is assumed to be normally distributed (Gaussian) and with zero
means. This term is called residual.

An approximated response ¢ is defined as:
j=Xp (2.7)

where B is a polynomial coefficient vector to be estimated. The number of polynomial coeffi-
cient terms n; depends on the order of the polynomial model. For example, the linear model
requires a constant term by and n, main effect coefficients. The generalized Bis expressed as
[112]:

B = [bo, b1,ba,s... bn,, bi1,b22s - bpunys b12s .- biny, .. ]t (2.8)

Note that the order and specifications of the polynomial model depends on the knowledge
of the fine model. An engineer should have an idea on the system behaviour and interactions
between factors. This can be obtained from their knowledge of studied physical phenomena
or by performing a screening or a sensitivity analysis [29]. However, if the design space is too

large, these information might be inaccurate or completely wrong in the worst case.

5The regression model often refers to a model obtained using the least-square method. This kind of model

is non-interpolation i.e. the response surface does not pass through the observed data.
"Each coefficient represents the level of correlation between factors. They are known as main effects and

interactions.
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By giving the sampled design vector x; and the observed response ys at observed sites,

the unique least square solution to (2.6) is [9]:
~ -1
B=(xIX,) Xlys (2.9)

where X is a sample design variable matrix of ns row and n; column:

1 xgl) mél) 567(113 (9#))2 (ﬁg)z
Xs= | : : T : : (2.10)
L g (o) (o)
and
Ys = [y(l)’y@)’ . ,y(ns)r (2.11)

In spite of its popularity and simplicity, the low-order polynomial model suffers from
its accuracy when dealing with a highly nonlinear fine model over a large region [99]. It is
efficient only for local approximations over limited design spaces. The increase of the number
of sample points does not necessarily lead to increased model accuracy. This is depicted in
Figure 2.11. Linear and quadratic polynomials are used to approximate a highly nonlinear
function. Figure 2.11a plots models constructed from 5 poor distributed sample points. It
can be observed that a second order polynomial model cannot capture the high nonlinearity
of the true function. In Figure 2.11b, a sample point is added so that the sample points
are better distributed in the design space. Even an additional point is added, both models
are still far from the true function. This example confirms that a polynomial model is not
suitable for approximating a highly nonlinear fine model. A polynomial model should not be

applied without prior knowledge of fine model trends.

True function

+== Linear poly.
7 = = =Quadratic poly A 7
O Sample point
6.5 6.5
0 2 4 6 8 1C 2 4 6 8 1C
r r

Figure 2.11: One-dimension example illustrating linear and quadratic polynomial approxi-

mations.
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2.2.3.2 Radial basis function

A RBF model is a weighted-sum of basis functions usually expressed in terms of the euclidean

distance Ha; —z® H of a design vector z and a centre, which is usually an observed point z(?).
N '
g(x) = Zwa (:c, x(’)) (2.12)
i=1

where w; is the weight to be estimated and ¢ (x, x(i)) is the radial basis function. The basis
functions depend on the distance between the input vector x and the centre of the basis

function. Possible choices for the basis function are [43, 52]:

o (z, z(i)) = Ha: —z® H (linear)

¢ (z,20) = ||z — 2 H3 (cubic)

o (z, x(i)) = Hx —z(® H2 In (Haz —z(® H) (thin plate spline) (2.13)
o (z,20) = \/ |z — 2|2 + 42 (multiquadric)

o (z, x(i)) = exp (—7% |z — () H) (Gaussian)

where v > 0 is the width parameter controlling how spread the basis function is. This
parameter is given by the user.

In matrix form, § can be written as:
g=AW (2.14)

By substituting the observed data pair ys and x4, the weight matrix W can be solved and

a unique solution is obtained:

W =A"1y, (2.15)
where ys defined as in (2.11) and
[ %) (gg(l)’m(l)) %) (m(l)’ m(Q)) e %) (lv(l)’$(ns)) |
(2) M (2) 2 e (2) p(ns)
e (p(x , T ) go(a: .,ac ) go(a: , T ) (2.16)
i © (IE(nS),LE(l)) %) (l'(ns)7 x(Q)) ) (aj(nS)’ x(ns)) ]

Figure 2.12 shows a one-dimensional example. The RBF model is constructed from 5
sample points. One can observe that the RBF model passes though the sample points. In

this research, the thin plate spline is used, as it does not require spread parameter.

2.2.3.3 Kriging

Kriging was first developed by D. Krige, a mining engineer. It was used with success in
the field of geological statistics to estimate mineral concentrations over areas of interest,
given a set of sampled sites [13]. In the field of computer science and engineering, it was
introduced by Sacks et al. as Design and Analysis of Computer Experiments (DACE) [92].
The Kriging method was also used with success in many engineering applications, including

electromagnetic device design [63] and traction system design [61].
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Figure 2.12: One dimensional example — RBF model constructed from 5 equally distributed

sample points

In the Kriging modelling approach, an unknown true function can be written in the
following form:

y(z) = B(z) + Z(z) (2.17)

The first term B(z) is a regression or polynomial model representing the global trend of

the function. The second term Z(x) gives the localized deviations from the global trend. This

term corresponds to the residual term e in polynomial approximation (see Section 2.2.3.1).

Z(z) is a model of a stochastic process with zero mean, variance of 02 and covariance defined
by:

Cov [Z (l'(i)) A (x(j))} = o’R [R (x(i),:):(j))} (2.18)
where R is the correlation matrix, R the correlation function, ¢ and j are the sample points
(from 1 to sample point number ns). The choice of the correlation function controls how the
surrogate model fits the data. Various correlation functions are given in [92]. The Gaussian

function is the most common.
R (:L'(Z), x(])) = exp [_ Zek ’-T;;) _ xéj) Pk] (2'19)
k=1

where n,, is the number of design variables, 0 is the unknown correlation function parameter

> 0 determining how rapidly the correlation is lost in the k" design variable (large values
implying rapid loss in correlation), and p; the smoothness parameter 0 < pr < 2. The
value near 2 gives smooth functions and value near 0 gives rough functions. Figure 2.13
depicts this effect. Note that pp = 2 is commonly used and gives good results in most cases.
One can also notice that at the sample point ’xg) — xl(j )’ is zero and R = 1. The Kriging
predictor passes exactly through the sample points i.e. is an interpolation model. However,
a non-interpolating model may be preferred when the fine model is highly noisy e.g. FEA.
A derivative non-interpolating version of Kriging can be used for this purpose. It uses an
additional parameter called nugget in the correlation function to help smoothing the data.
This thesis does not investigate this Kriging version. Readers should refer to [51, 80, 94] for

more detail.
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Figure 2.13: Effect of the smoothness parameter pi. The models are constructed from 20

data points sampled by Hammersley sequence sampling
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While (2.17) defines the true response value y, the Kriging model predicts the estimated
response value §. The Mean Square Error (M SE) is the expected value of difference between

the true response and the estimated one.

MSE (z) = B ((y(2) - 5 (2))°) (2.20)

Since Kriging interpolates the data, the MSFE is zero at the sample points. At the
other unknown points, the MSFE is supposed to be minimum in order to obtain a good

approximation. When M SE' is minimised, the Kriging model becomes:
j=f3+1"R (y - ff}) (2.21)

and the M SE (2.20) can be rewritten as

1- R 'r)?
MSE =0* |1 -r"R7'r + (-fR x) 2.22
[ fTRIf (2.22)
where ﬁA is the estimator of regression model defined as in (2.27), r the correlation vector
between a new location x to be estimated and the sampled locations, f a unit vector with

length of n.

r(z) = [R (m,x(1)> , R (1:,3:(2)) s R (a:, x(”s))} (2.23)

[ R(D,2M)  R(W,2®) .. R(zD),z0) |
(2) LM @ @y ... (2) p(ns)
R - R(x ',J:‘ ) R(x .,x ) R(x ',x ) (2.24)
i R(m(né)’jx(l)) R(x(né),gj(2)) R(J;("%‘)’x(ns)) |

Note that R is symmetric R (:):(i), iL'(j)) =R (x(j),:):(i)) with ones along diagonal,
R (2®,20) =1 [67].

R and r depend on 6, which can be found using the Maximum Likelihood Estimation

(MLE).
The likelihood function (L) is defined as:
AT .
) - (y—fB> R! <y—fB)
I _ 2.25
2o R| 267 (229
The log-likelihood function (LL) is generally used in order to simplify (2.25).
N .
- (y - fB) R~ (y - fB) nsIn (2762) + In (|R)
LL = - - (2.26)
20 2
B and 62 can be estimated as:
=R TRy (2.27)

52 = nl ((y—fB)TR—l : @-fﬁ)) (2.28)
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Substituting 3 and 62, the log-likelihood function (2.26) becomes:

nsln (62) +In (|RJ)
2
By solving the MLE optimization problem (2.30), 6; can be determined (py is fixed to

LL = (2.29)

2). In this research, a genetic algorithm is used to solve the MLE problem. Once 6y is

determined, the response at any design point x can be estimated using (2.21).

nsln (62) +1n (|R|)
max -
Oy, 2 (2.30)
subject to 0 <0 < o0

Jin et al. [42] showed that the Kriging method works slightly better than other surrogate
models. However, Kriging needs more computational time to solve the MLE optimization
problem in the model fitting process. This time could be very high in large-scale problems
with large sample size. In the real implementation, it does not cause any trouble due to the
fact that the surrogate model is built only one time, moreover the use of this model in an

optimization process is very rapid compared to the high fidelity model.

2.2.4 Surrogate model accuracy assessment

In the above sections, several sampling and surrogate techniques were presented. This section
intends to assess performances of the methods. Six test functions are selected. They are
comprised of 4 two-dimensional, 1 four-dimensional and 1 six-dimensional functions. These

functions are listed in Appendix A.

2.2.4.1 Assessment methodology

This test aims at assessing the performances of surrogate and sampling techniques in the case
of a highly nonlinear function. Three sampling techniques, three sample size rules and two

surrogate techniques are tested. They are listed below.
e Sampling techniques: LHS, HSS and MCS

e Size of the sample sets: The sample sets are scaled by the number of design variables.
They are set to 5, 10 and 20 times the number of design variables for small, medium,

and large sample set, respectively.
e Surrogate techniques: RBF and Kriging. Note that the polynomial model is omitted.

This yields a total of 18 combinations for each test function.

The accuracy of a surrogate model can be assessed by comparing the surrogate model
with a true function. In this example, the validate points are selected randomly in the design
space, 1000 points for each test function. Two standard methods are used: Normalized root
mean squared error (NRMSE) and Normalized maximum absolute error (NEMAX). The

normalized errors are used because they allow comparing different test functions i.e. they
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are not sensitive to the design space of each test function. NRMSE represents global errors

while NEMAX represents local errors.

Sy () — )
>y (y(i))2
y@ — g(i)}

NRMSE =

(2.31)

max;=1:n,
s 3 —\2
n% >ty (?/(l) - 3/)

where y(i) is the true response, g)(i) the estimated response both at the sample site z(9 and

NEMAX =

(2.32)

g the mean of the true function at the ns sample sites.

2.2.4.2 Results

The average NRMSE and NEMAX values of all test functions are plotted in Figure 2.14 and
Figure 2.15, respectively. Full results are given in Appendix A. At the first sight, one can
rapidly conclude that the MCS gives the lowest accuracy and the HSS gives slightly better
results than the LHS. Regarding the size of sample point sets, the larger the sample set, the
higher the accuracy. Kriging performs better than the RBF except for the high dimensional
problem, the RBF gives slightly better NRMSE than Kriging. However, the NEMAX for the
RBF is higher than that of Kriging (see Appendix A).

The Kriging technique seems to be a good interpolation model. It is applied to a traction

system re-design problem as can be found in [61].

2 — 2 2
I Kriging
1.5 1.5 15 [ IRBF
= & &
2 2 c
1 = 1 = 1
< I~ <
2 4 2
0.5 H 0.5 H I 0.5JH IH
1 nl m i
LHS HSS MCS LHS HSS MCS LHS HSS MCS

(a) (b) (c)

Figure 2.14: Normalized root mean squared error (NRMSE) for a (a) small sample set, (b)

medium sample set and (c) large sample set
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Figure 2.15: Normalized maximum absolute error (NEMAX) for a (a) small sample set, (b)

medium sample set and (c) large sample set

2.2.5 Non-conventional sampling and modelling technique

This section presents two non-conventional sampling and modelling techniques. The first one,
the Global response surface methodology, improves the traditional RSM in the case of highly
nonlinear function modelling. The second one, the Kriging-assisted sampling technique, adds
the additional sample points to the initial Kriging model according to the predicted error

information. It gives the possibility to control the number of sample points just needed.

2.2.5.1 Global response surface methodology

One of the drawbacks of the polynomial modelling technique is that it is suitable for a local
approximation not for a global one. In order to obtain a global model, one can divide the
design space into multiple sub-domains. Each polynomial approximation is associated to only
one sub-domain. The linear or quadratic polynomial approximates a smaller design space.
Therefore, it is more accurate than modelling of the entire design space. S. Vivier [112]
presented some variants of a classical DOE, which reuse sample points when performing a
global RSM.

Figure 2.16 shows a global RSM example. The entire design space is divided into 16
sub-domains. 16 linear polynomial models form the global RSM model. These models are

constructed from 25 sample points in total.

2.2.5.2 Kriging-assisted sampling technique

One useful property of a Kriging surrogate model is its error estimator (MSE or standard
error). This information indicates that the Kriging model gives the exact value at the sample
points (interpolation model) and may present some errors at other design vectors. One-
dimensional example is showed in Figure 2.17. The Kriging model is constructed using 5
sample design points. One can observe that the standard error is zero at the sample point
and higher in the sample point gap.

This M SFE predictor can be used as sampling point selection criterion. A Kriging-assisted
sampling algorithm is shown in Figure 2.18. By starting with a very small number of sample

experiments, the initial Kriging model is fitted. The initial Kriging model is usually associated
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Figure 2.16: Global RSM example
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Figure 2.17: One-dimensional illustration example showing the true function, the Kriging
prediction and its estimated standard error. The Kriging model is constructed with the use

of 5 sample points.

with high errors. The M SFE tends to be very high at non-sampled design vectors. One may
realise that the most beneficial action is to add extra points to where the MSE value is the
highest. A single-objective optimization algorithm can be used for this purpose. Once the
most promising design vectors have been located, the high fidelity model is then evaluated at
these points and the Kriging model is refitted. Stopping criteria can be a maximal allowable
number of design points, the maximal allowable time or an error assessment such as the
“leave-k-out” method [72].

An example is shown in Figure 2.19. An initial Kriging model is constructed using 10
initial sample points (LHS). Figure 2.19b shows the Kriging estimated MSE for the initial
model. The algorithm described above is run for 10 iterations. At each iteration, a maximi-
sation of the M SE is performed. Note that the —MSFE is plotted in Figure 2.19b. In this
case, a minimum of —MSFE surface is sought. After 10 iterations, Figure 2.19¢ and 2.19d
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Figure 2.18: Flowchart of a sequential technique based on Kriging M SE information

present the final Kriging model and its associated MSE. The algorithm adds 8 points near
the boundary and only 2 points inside the design space. This extrapolation keeps on being
minimum.

Although the additional points are added sequentially, this is not limited to only one
point per iteration. Several additional points can be added at each iteration if we use an
optimization algorithm capable of locating multiple optima [41]. It is possible to apply the
parallel and distributed computation. This avoids spending too much time on the surrogate

model building process.
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Figure 2.19: Analytical example of Kriging-assisted sampling technique. The initial model
was constructed from 10 initial points (black circle). Then other 10 points were added

iteratively by an algorithm. (additional points are shown as red squares)
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2.3 Multimodel approach

Engineers endeavour to develop more and more complex models, which take into account
many physical domains and components. This is due to the needs for high accuracy results
in the system context. Outputs of a sub-model may act as inputs to others and vice versa.
Many modelling techniques can be mixed together into the same model. For example, the

model of a motor can combine three sub-models:
e On the basis of the motor geometry, a FEM is used for magnetic field computation.

e The output from the FEM is then fed to analytical electric and control models. Losses

are then computed.

e The semi-analytical thermal model uses losses as heat sources and allows calculating

the temperature of the motor.

A problem might occur if an output coming from the model A (to be used as input for
the model B) is outside the validity domain of the model B. These circumstances may lead
to an error in the computation code or, even worse, give wrong results without any notice to
the designer. The robustness of the model is very important when used in an optimization
process. Two boundary constraints should be added to any linking output to ensure that

these values are inside the validity domain.
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2.4 Conclusion

This chapter presented various modelling techniques arising in electrical engineering. The
physical-based modelling techniques are commonly used. These include analytical, numerical
and semi-numerical models. The analytical model is very cheap to evaluate with a limited
accuracy due to the fact that many hypotheses must be assumed. On the contrary, the
numerical model is more general and needs less modelling assumptions. It provides a high
accuracy results. However, these advantages are obtained with high computation time. The
semi-numerical model like lumped-mass model is a good compromise between accuracy and
computational cost.

Another modelling approach is the surrogate modelling technique. It is a mathematics
model constructed by using information i.e. computation results from physical-based model.
It extracts a black-box model from a physical-based model. The main advantage is that the
designer does not need to have a strong knowledge to model a system. This is not the case
when using physical-based modelling techniques. Surrogate models can replace high fidelity
models for various purposes, not only for data visualization but also for communication,
problem formulation and optimization. They allow a rapid estimation of the relationship
between the input and the output of a fine model. However, some precision must be lost. An
analytical example has illustrated how Kriging and RBF models behave on multi-dimensional
test functions. The influence of the sampling techniques and the size of sample points have
also been tested.

Two non conventional sampling and modelling techniques have been presented. (i) The
global response surface methodology improves traditional RSM in the case of a highly nonlin-
ear function. (ii) The Kriging-assisted sampling technique uses the estimated standard errors
to select iteratively the added sample points. In this chapter, they were presented only for
the modelling purpose. However, these methods intend to offer an opening towards the next
chapter — Optimization technique. One must realize the potential of the extension of these
techniques to perform optimization. For example, instead of dividing a design space equally
and a priori, it can be panned and zoomed into the zone where the optimum might be found.
A more or less similar principle can be applied to the surrogate-assisted technique. The
combination of model accuracy and surrogate model information offers exploration and ex-
ploitation possibilities, both at the same iteration. These techniques are detailed in Chapter
3.

New developments focus on the system and multidisciplinary approach. In such ap-
proaches, several components are modelled and optimised simultaneously. More attention is
needed when working with a multimodel. The most important issue is the validity domain
of each model, concerning the input and the output. The out-of-domain input can cause
a fatal error of the computation code or unexpected results. This affects the robustness of
the model when used in an optimization process. Chapter 3 presents the Multidisciplinary

Design Optimization approach that takes into account all these considerations.






Chapter 3
Optimization technique

An optimization technique is established in any discipline and application domain. It is a
general tool that helps designers to manage the complexity of design problems in order to
produce at low cost and efficiently. The Trial-and-error conventional method cannot fulfil the
needs of industries any more. This Chapter intends to give an overview of the optimization

technique used to solve complex system design problems.

For less complex system, an optimization technique is applied to the design problem as a
whole. This approach is called the Global System (GS) approach [73]. It is commonly used
in optimal design. Several conventional optimization techniques as well as a more advanced
technique using the surrogate model in the algorithm are presented. These techniques can ap-
ply to single- and multi-objective optimization problems. This approach is not recommended

due to the too high amount of work it requires.

For most complex system, complexity is mainly due to the existence of interactions be-
tween disciplines and between physical or functional subsystems. Such interactions are usually
difficult to manage because of the increased number of design parameters. In the aeronautic
community, the optimal design of such a system is referenced under the concept of Multi-
disciplinary Design Optimization (MDO) [102]. MDO associates different aspects: analysis
tools, optimization algorithm and problem formulation. The problem formulation concept
does not only refer to the definition of the objective function, constraints and design variables
as in single disciplinary optimization but also corresponds to the way of solving interactions
between disciplines [102].

In most cases, the design problems are broken-down into several smaller independent
problems. This issue is already discussed in Chapter 1. To optimise such a decoupled system,
several subproblems need to be brought back together. A multilevel hierarchical coordination
and optimization algorithm called Target Cascading (TC) gives a straightforward way to
mange such a hierarchical breaking down. The coordination process is more or less similar
to the organisation of the company.

MDO and TC are considered as complex optimal design problem formulations. They
ensure consistency of the whole system via coordination and information procedures between
models. The optimization algorithm used in the global system approach is thus used to solve

the subproblem. Figure 3.1 summarizes the three optimization techniques for the complex

61
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system design detailed in the following sections.

Global system approach
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Figure 3.1: Summary of optimization techniques

3.1 Global system approach

The global system approach considers the whole system as a single unit. The system modelling
may consist of several models!, which are launched sequentially or solved using a numerical
method. In any case, the system model is considered as a whole black-box model. The
global system design problem is formulated as a single optimization problem. Therefore, the
whole system is optimised simultaneously. This is a traditional approach commonly used in
engineering optimal designs [73].

This section presents optimization algorithms used to solve nonlinear and constrained
optimization problems, which are common for engineering design problems. Several conven-
tional optimization algorithms for both single-objective and multi-objective optimization are
firstly presented. Thereafter, the surrogate-assisted algorithm, an extension of the surrogate

modelling concept from Chapter 2, will be discussed.

3.1.1 Single-objective

This section intends to give practical information on single-objective optimization algorithms
to solve a multimodal problem. Two popular algorithms are presented. The first one is
Sequential Quadratic Programming (SQP) and the second one is Genetic Algorithm (GA).
GA is a global optimization algorithm and SQP is a local method. A multistart approach is

used with SQP in order to improve the SQP performances in the multimodal optimization

IFor each disciplinary or sub-system
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problem. Each algorithm presents specific advantages and drawbacks. The hybridization of

2 algorithms allows making use of their advantages.

3.1.1.1 Gradient method

In the field of deterministic optimization, gradient information is commonly used in nonlinear
optimization methods?. The Sequential Quadratic Programming (SQP) algorithm is one of
the best gradient algorithms. It allows solving nonlinear constrained optimization problems.
SQP includes directly objective and constraint functions into its optimum solution search

process. The optimum solution satisfies Kuhn-Tucker conditions [109]:

i=1
V") + Z)\f Vg (z*)=0

(3.1)
A Vg (z") = i=1,...,m

A >0 i=me+1,...,m

At each iteration, the SQP solves Quadratic Programming (QP) problem. The Hessian
of Lagrange function is included in the QP problem. This allows taking into account direct
constraints.

The gradient of objective and constraint functions are needed in the Hessian estimation
process performed by the BFGS method. The gradient and derivative can be computed by
symbolic math when it is possible. This increases the robustness of the algorithm. However,
this symbolic derivative calculation may not always be possible. The finite difference method
can be used but it increases significantly the number of function calls. The SQP method is

efficient in the following conditions:

(i) The problem is not of a too high dimension, because a high dimensional problem be-
comes highly multimodal and the SQP is then trapped into local optima. Moreover, the
number of function evaluations increases rapidly in high dimensional problems if finite

difference is used to compute the gradient;

(ii) Computation of a gradient can be obtained with a rather high precision. The conver-

gence speed depends on the gradient precision;

(iii) The problem is smooth and scaled. Design variables must be scaled in order to ensure

a correct operation of the algorithm.

As SQP uses gradient information, it encounters some difficulties to find the global opti-
mum if the problem has several optima. A similar problem is stated in the case of a noisy
function with one or several true optima®. Figure 3.2 shows one-dimensional noisy example
as expressed in (3.2). Optimal points can be stuck in local optima (caused by noise in this
case). The global optimum is found at z = 0.9758 and f = —0.00937
min f = (x—1)*+0.01sin (50z)

T

(3.2)

Noise term

subject to 0<r<?2

*Nonlinear Programming (NLP) problem refers to an optimization problem whose models are nonlinear.
3In a noisy function, the true optimum is referred as the optimum found in the function without noise.
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Figure 3.2: SQP example with Noisy function

The same problem occurs in a multimodal optimization problem. An analytical optimiza-
tion problem taken from [95] illustrates this issue. The optimization problem is to minimise

a multimodal objective function with respect to a nonlinear constraint:

min f=2+40.01(z3 — x%)Q +(1—z)*+

2(2 — 19)* + 7sin (0.5z1) sin (0.7z122) (3.3)

subject to Geap = —sin(x1 —x2 —7/8) <0

T € [O, 5], T € [0, 5]

Figure 3.3a shows the contour plot and different optimal results found by 100 SQP runs
using random initial points. The global optimum is shown by a red triangle. One can observe
from Figure 3.3b that only 30 runs converge to the global optimum, which is z; = 2.7450,
xo = 2.3523 and f = —1.1743.
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Figure 3.3: SQP Multimodal example
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When dealing with the problem with multiple optima (multimodal), the “multistart”
strategy is very useful in order to obtain the global optimum. However, multiple SQP runs

can require high computation time.

3.1.1.2 Genetic algorithm

Genetic algorithms (GAs) are part of the most popular Evolutionary Algorithm (EA). GAs
are stochastic algorithms whose search methods are based on Darwin’s theory of natural
selection [23, 77].

Like other EAs, a genetic algorithm applies selection operators and variation operators
or search operators (called genetic operators in GAs’ case) to a set of individuals (design
vector). A Fitness value is assigned to each individual. The fitness depends on the objective
function and represents how good the individual is. The set of individuals or population is
treated simultaneously and improved from the actual generation (iteration) to the next one.
Two classical genetic operators are used: mutation and crossover. The mutation operators
transform an individual. The crossover operators use two or more parents to create a child
(called offspring) for the next generation.

GAs are known as global optimization algorithms as they are less sensitive to noisy func-
tions and able to solve multimodal problems. Figure 3.4 shows a two-dimensional example
(3.3) without constraint. A GA from Matlab “Genetic Algorithm and Direct Search Tool-
box” is used in this example. Individuals are plotted for the initial population, intermediate
and final generations. One can observe that individuals progressively converge to the global
optimum. In the intermediate generations, the populations are grouped at several design
locations. Most of them, therefore, are placed nearby the global optimum at the few last

generations.

24 3 4 5

(d) Generation 30 (e) Generation 40 (f) Generation 51 (final)

Figure 3.4: GA convergence over iterations
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One of the main advantages of GAs is that they can handle discrete and non-classifiable
variables [105]. This is not possible with an algorithm using gradient information. However,

some of GAs drawbacks can be stated:

(i) GAs are not likely to be able to find high accurate results compared with a deterministic
algorithm such as SQP, since GAs cannot ensure optimality [77]. The stopping criterion

is usually the maximum number of generations or the number of “stall” generations?.

(ii) GAs usually require a high number of function calls due to their global search char-
acteristics. However, since GAs work with population, they can be easily parallelized.

This reduces significantly the computation time.

To overcome these drawbacks, a hybrid algorithm combining GA and SQP is presented

in the next section.

3.1.1.3 Hybrid algorithm

As mentioned above, SQP and GAs have their own advantages and drawbacks. To summarize,
SQP requires a smaller number of objective and constraint function calls than GAs. It can
also find accurate optimum results as it is a deterministic algorithm. However, due to the
fact that SQP uses gradient information in its search algorithm, it tends to be trapped in
the local optimum and suffers from noise in objective or constraint functions. In contrast,
GAs search more globally and have more chance to find a global optimum. J. H. Holland
suggested [37] that GAs should be used to perform the initial global search. The results are
used to guide the local search.

In order to benefit the global search ability of a GA and the accurate local search of a
SQP, they are used as a complement of each other [36, 62]. To do so, the GA stopping criteria
are set so that the GA would stop prematurely e.g. with a low generation, a low population
or a high tolerance. It is assumed that the GA should find its optimal results near the true
global optimum. The GA results are therefore used as an initial point for the SQP algorithm.
The SQP proceeds the local search and find its local optimum, which is the global optimum
sought.

Table 3.1 shows optimization results for a multimodal 2D problem (3.3) obtained using a
SQP, a GA and a hybrid GA and SQP algorithm. 100 runs were performed for each algorithm.
The GA parameters are 100 for the population and 100 maximal generations. In the hybrid
algorithm, the population is reduced to 20. The hybrid algorithm gives more accurate results
than the GA. 87 runs of the hybrid algorithm give the results with a relative error lower than
0.01% compared to only 4 runs of the GA and 26 runs of the SQP. It can be observed that the
GA performed better for higher relative error (5%). This is due to the fact that the GA uses
a higher population than the hybrid algorithm. This allows the GA to serach more globally
and not to be trapped into the local optima. Regarding the number of function evaluation,
the SQP used the lowest function evaluation. However, the SQP must be launched many

times, using multi-start strategy and needs a higher function call number. The GA required

4Number of successive generations with no improvement in the fitness value.
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the highest number of evaluations. The hybrid algorithm offers a compromise between SQP
and GA. In this example, if only one optimization is launched, the hybrid algorithm has the
highest probability to find the accurate global optimum.

This kind of comparison is also performed for a traction system design problem. The
reader should refer to [61] for details.

Table 3.1: Comparison between 3 optimization algorithms

Relative error Number of function evaluation
Method
<0.01% | <1% | <5% min. avg. max.
SQP 30 30 30 9 23 97
GA 4 66 92 1969 5593 10657
Hybrid GA,SQP 87 87 87 667 1261 1971

3.1.2 Multi-objective

One should be realise that in real life, most of engineering design problems are multi-criteria
or multi-objective problems. To optimise such design problems, the engineer may simplify
the multi-objective “design problems” and formulate a single-objective “optimization prob-
lem” due to the limited performance of early developed optimization algorithms. Only the
most important criterion is selected as a sole objective function. The others are fixed as
parameters or constraint limits. It is important to note that this process is done during the
optimization problem formulation phase. This approach is called the “a priori method”. The
transformation techniques are introduced in Chapter 1 and will be detailed here since these
techniques can also be used to generate a Pareto front, which is known as the “a posteriori
method”. This section intends to explain how to solve the “multi-objective design problem”
using the a posteriori approach.

To illustrate the algorithms, two test problems are chosen from the literature. These
examples will be used all along this Chapter. Both problems have 2 design variables and 2
objectives to be minimised. The first problem is a constrained problem “CONSTR” retrieved

from [20]. It is expressed as following:

min fi=m
min fo=(1+m2)/21
subject to g1 =22+9x1 > 6 (3.4)

go=—22+971 > 1
z1 € [0.1, 1] and z9 € [0, 5]

Figures 3.5 are obtained from 50 step grids (2500 points in total). Only feasible designs
are plotted in the design space as shown in Figure 3.5a and in the objective space as in Figure

3.5b. The Pareto optimal solutions are depicted by the red circles.
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Figure 3.5: CONSTR test problem

The second problem “VLMOP2” from [108] is without constraint. It is expressed as:

2
min fi=1l—exp | — Z <xz—\/15>

i=1,....n
S (n-b)
min fo=1+4+exp| — <a:Z — > (3.5)
i=1,...,n \/ﬁ

subject to x1 € [-2, 2] and x5 € [-2, 2]

n=2
Figure 3.6 shows 2500 sample points obtained from a grid design. Since there is no

constraint, the design points are spread throughout the design space. The Pareto front is

concave.
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Figure 3.6: VLMOP2 test problem
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3.1.2.1 Transformation

In the early era of optimization, there were only single-objective optimization algorithms.
However, the real-world design problems are multi-criteria problems. As mentioned above,
engineers simplify or transform the design problem into an equivalent design problem that
can be solved by using a single-objective optimization algorithm. This approach is not very
suitable for industrial design processes since the decision (e.g. importance of each criterion,
allowable limit) must be made before obtaining optimal design solutions and the optimiza-
tion process has to be rerun if the results are not satisfying due to the lack of problem
knowledge. The a posteriori approach is preferred as it gives the possibility to generate the
Pareto front (see Section 1.1.5) and to shift the decision to perform after the optimization
phase. Meanwhile, researchers are forced to develop transformation techniques. A multi-
objective design problem can be solved i.e. generate the Pareto front, by using multiple runs
of single-objective optimization. The objectives are transformed into one objective using
transformation technique such as weighted-sum and epsilon-constraint techniques [15, 78].
The equivalent problem is then optimised using single-objective optimization algorithm. The
optimization is rerun with different transformation parameters so that an optimal solution

set is located.

3.1.2.1.1 Weighted-sum

Several objectives are transformed into one objective with weighted-sum formulation. The

weighted-sum optimization problem is expressed as:

x

m
min fws = szfz
=1

. (3.6)
subject to g<o0

where w; is the weight for the i*" objective function. For the a priori approach, weights are
given by an engineer using his experiences and knowledge of design problems. The equation
(3.6) results in a unique final solution.

This transformed objective function can be represented as a straight line in an objective
space as shown in Figure 3.7. L; and Lo show the slope of f,s with different weight. The

minimisation of f,s is equivalent minimizing c in:
w1
f2=—wf2f1+C=L'f1+C (3.7)

In the figure, ¢ is minimised. Therefore, Pareto solutions can be located.

One weight vector and one optimization yield a Pareto optimum solution. The weighted-
sum optimization problem is then run with different weight parameters in order to find the
Pareto front. This approach is the a posteriori approach mentioned above. Usually, w; > 0

fori=1,...,m and

iwi =1 (3.8)
i=1
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Figure 3.7: Weighted-sum transformation

Even the weighted-sum method is known as an efficient approach [84], this method cannot
ensure the non-dominated solutions in the concave part of Pareto front as shown in Figure
3.7b. With the same slope L1, it tends to find a solution in the convex part where the

constant value ¢ is minimised.

3.1.2.1.2 Epsilon-constraint

In the epsilon-constraint method, only one criterion is chosen as objective function. Other
criteria are considered as constraints. The epsilon-constraint optimization problem is defined

as following;:

min f1
x
subject to g<o0 (3.9)
Ji<e 1 =2, M

where € parameter is an additional constraint value.
By varying ¢; for each optimization, the Pareto front can be found. This method can

located the whole Pareto front even in the nonconvex zone.

3.1.2.1.3 Illustration example

As already stated in the previous section, the Weighted-sum technique cannot find the
non-convex Pareto front. Therefore, it is tested only with the “CONSTR” problem. For
solving the “CONSTR” problem, 11 weight parameters are given (10 steps from 0 to 1)
and 11 optimizations are launched independently. A SQP with multistart is used for each
optimization in order to ensure a global optimum. Table 3.2 shows 11 weight parameters and
optimization results i.e. objective functions and constraint functions. Figure 3.9a shows a
non-dominated front. One can observe that the weight parameters of point 1 to point 6 lead
to the same non-dominated solution. The same behaviour occurs for points 8 to point 10.

This is because the change in the slope of the Pareto front is not continuous. Figure 3.9b
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Figure 3.8: Epsilon-constraint transformation

shows the non-dominated front plotted from 1000 weight parameter steps. The large part of
non-dominated front on the left side is obtained from very small variation of w; from 0.94 to
1.

Table 3.2: Weighted-sum results for “CONSTR” problem

Number Weight Design variable | Objective Constraint

wy | wy | T T2 fi | f 91 92
1 0.00 | 1.00 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
2 0.10 | 0.90 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
3 0.20 | 0.80 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
4 0.30 | 0.70 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
5 0.40 | 0.60 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
6 0.50 | 0.50 | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
7 0.60 | 0.40 | 0.82 0.00 0.82 | 1.22 | -1.35 | -6.35
8 0.70 | 0.30 | 0.67 0.00 0.67 | 1.50 | 0.00 | -5.00
9 0.80 | 0.20 | 0.67 0.00 0.67 | 1.50 | 0.00 | -5.00
10 0.90 | 0.10 | 0.67 0.00 0.67 | 1.50 | 0.00 | -5.00
11 1.00 | 0.00 | 0.39 2.50 0.39 | 9.00 | 0.00 | 0.00

For the epsilon-constraint technique, anchor points are sought in the first step by mini-
mizing each objective function. This allows determining epsilon parameters according to the
variation in the objective function. Ten epsilon steps are defined for “CONSTR” problems.
This yields 11 optimization runs in total. Figure 3.10a plots non-dominated fronts. The
front with stars is the case in which the objective function f; is minimised and the objective
function fs is considered as a constraint. Table 3.3 lists design variables and objective and
constraint values for each epsilon €5. The part situated on the right side of this front is not
explored. The fixed epsilon constraint step is larger than the variation of the objective fo in

this part. To overcome this problem, one can minimise fo and use f; as epsilon constraint
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Figure 3.9: Non-dominated front for “CONSTR” problem obtained from weighted-sum tech-

nique

instead. The results are depicted by squares in the same figure. Non-dominated solutions are
better spread throughout the front. Figure 3.10b shows Pareto optimal front for the “VL-
MOP2” problem obtained by using epsilon-constraint technique. It shows that this technique

can locate nonconvex Pareto fronts.

Table 3.3: Epsilon-constraint results for “CONSTR” problem

Number Epsilon | Design variable | Objective Constraint
€2 L1 T2 fi f2 g1 92
1 min fo | 1.00 0.00 1.00 | 1.00 | -3.00 | -8.00
2 1.80 0.65 0.17 0.65 | 1.80 | 0.00 | -4.67
3 2.60 0.60 0.57 0.60 | 2.60 | 0.00 | -3.86
4 3.40 0.56 0.92 0.56 | 3.40 | 0.00 | -3.16
5 4.20 0.53 1.23 0.53 | 4.20 | 0.00 | -2.55
6 5.00 0.50 1.50 0.50 | 5.00 | 0.00 | -2.00
7 5.80 0.47 1.74 0.47 | 5.80 | 0.00 | -1.51
8 6.60 0.45 1.96 0.45 | 6.60 | 0.00 | -1.08
9 7.40 0.43 2.16 0.43 | 7.40 | 0.00 | -0.68
10 8.20 0.41 2.34 0.41 | 8.20 | 0.00 | -0.33
11 min f; | 0.39 2.50 0.39 | 9.00 | 0.00 | 0.00

Both transformation techniques allow using a state-of-the-art single-objective optimiza-
tion algorithm to generate a Pareto front. The application of a weighted-sum technique to
the optimal design in electrical engineering can be found in [55].

However, the examples above show some drawbacks of the method. The weighted-sum

technique encounters the duplicated solution problem when the slope of the Pareto front is
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Figure 3.10: Non-dominated fronts obtained from epsilon-constraint technique

not continuous. Moreover, it cannot solve the problem with non-convex fronts. The epsilon-
constraint works slightly better since it can locate nonconvex front. Furthermore, it solves

the problem in a more intuitive manner.

3.1.2.2 Multi-objective algorithm

Some recently developed multi-objective algorithms can generate a Pareto front in a single
run. These algorithms fall into the class of evolutionary algorithms. They deal with a
group of feasible solutions concurrently. They allow finding a set of optimal solutions i.e.
non-dominated solutions from a single optimization. Moreover, evolutionary algorithms can
easily cope with discontinuous or non-convex Pareto fronts [20]. This section introduces
one of the most popular and best performances multi-objective evolutionary optimization
algorithm: Non-dominated sorting genetic algorithm IT (NSGA-II) [20].

NSGA-IT uses an elitist approach and a Pareto optimal concept. It combines two sort-
ing procedures: non-dominated sorting and crowding distance sorting. From the previous
population P, an offspring population @; of the same size N, is created by using binary
tournament selection, recombination and mutation operators. A combined population R; is
sorted based on the nondomination and each solution is assigned a rank as shown in Figure
3.11a. The rank 1 solutions (denoted as F}) are the best solutions. For a constrained opti-
mization, the definition of domination is modified in order to take into account the constraint
issue. According to Deb et al. [20], a solution 7 “constrained-dominates” a solution j if any

of these three conditions is true:
(i) The solution i is feasible and the solution j is infeasible.

(ii) The solution i and j are infeasible but the solution i generates a smaller constraint

violation.

(iii) The solution ¢ and j are feasible and the solution i dominates the solution j.
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Any feasible solution is always given a better rank level than any infeasible one. Any infeasible
solution with a smaller constraint violation is better than a solution with a higher constraint
violation. The comparison between feasible solutions is not changed. Their ranks depend on
the level of domination according to (iii). By using the ranks, the algorithm converges to
non-dominated and feasible solutions.

To construct a new population for the next generation P;, i, the lower rank sets are
selected in priority i.e. rank 1 then rank 2 and so on. Assume that Fj is the last non-
dominated set that can fit into P.y;. If the total number of solutions from Fi, Fy,--- , Fj is
larger than Np,,, only the best solutions of Fj can be selected. The crowding distance is used
for this purpose. The crowding distance allows estimating the density of solutions around a
solution in the population. The higher the crowding distance, the more sparsely solutions
on the front®. The crowding distance is computed for the last rank Fj. The solutions with
higher crowding distance are selected into P,11 until the total number of population reaches

Npop. Figure 3.11b from [20] depicts this sorting procedure.

A Non-dominated Crowding distance
f2 sorting sorting
Rank 2
F R et >
. ] ]
Fy |- -]
- F3 -
Rank 3 ( P
Q; 1] %
Rank 1 |:| < Rejected
f o R; —
(a) Non-dominated Ranking (b) Sorting procedure

Figure 3.11: NSGA-II

As GAs for single-objective problems, NSGA-II can handle the mixed variable problem.
The Pareto fronts for two test problems “CONSTR” and “VLMOP2” are given in Section
3.1.3.7.2. Figure 3.22 shows the results from NSGA-II and a surrogate-assisted algorithm
presented below. The application of NSGA-II to the design of traction motors can be found
in [60].

5The crowding distance assignment process can be found in [20]
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3.1.3 Surrogate-assisted optimization algorithm
3.1.3.1 Overview

Chapter 2 has presented several surrogate modelling techniques. The surrogate model con-
structed on the basis of these techniques can be used for many purposes as mentioned in
Section 2.2.1. One of the main purposes is to replace the fine model in the optimization
process in order to decrease optimization time. The evaluation of surrogate models is fast
during an optimization process, however, the final solution remains the approximated one.
This approximated solution must be validated with high fidelity models. This validation may
not be satisfying if a surrogate model presents low accuracy characteristics. If the number
of sample points is low, the surrogate model will not be accurate. On the other hand, if the
number of sample points is too high, this yields a high accuracy model, but some sample
points can be wasted if they are not close to the sought optimum. When using a surrogate
model in the optimization process, the most important area is the area where the optimum
is located. The sample points should be dense in this zone. In other areas, the sample points
can be more sparse. The surrogate model gives the global trend and guides the optimization
algorithm towards the optimum. Figure 3.12 shows two surrogate models constructed from
well distributed sample point sets (Figure 3.12a) and sample points concentrated near the
optimum with the same amount of sample points (3.12b). The optimal results are found at
7§ = —4.6742 for the former case and —6.2504 for the latter case. The true optimum is at
f = —6.5511. Even the form of the model constructed from well-distributed sample points
is similar to the true function (see Figure 2.16a) but the optimal result is not correct. The
model built from sample points concentrated near the optimum gives a better result. In this

case, the overall error is higher but the model is more accurate near the optimum sought.
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Figure 3.12: Surrogate model for an optimization purpose
Surrogate model refinement can be performed manually by the designer or even better, by

an optimization algorithm. For example, the simplest algorithm can iteratively add sample

points where the minimum of the surrogate model is located until the error between the fine
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model and the surrogate model is sufficiently small. Such optimization algorithms are in the
class of Surrogate-assisted optimization algorithm. Some of them can be stated: Efficient
Global Optimization (EGO) [97], SuperEGO [94], RBF based global optimization [33]. A
taxonomy of surrogate-assisted algorithms can be found in [43]. Most of them have a common
general algorithm. The difference is how the infill criteria are described.

The following sections give the general algorithm and the explanation for the single-
objective case. Then the particular information concerning the multi-objective case are given.
As the general principle is common between single and multi-objective case, the information
given for the single-objective case is also useful for the multi-objective case if it is not stated

otherwise.

3.1.3.2 Main algorithm

Figure 3.13 shows the general flowchart of a surrogate-assisted optimization algorithm (single
or multi-objective). Some differences may be found, depending on the algorithm.

The algorithm can be described step-by-step as following:

(i) The algorithm starts with sampling a set of initial points using sampling technique®.
(ii) The initial sample points are evaluated by using a high fidelity model.
(iii) Initial surrogate models are fitted individually for each objective function and constraint.

(iv) An infill point is located by maximizing the infill criteria. Most of the surrogate-assisted
algorithms use a Kriging surrogate model and an estimated standard error (§) associated
with Kriging in their infill criteria. This step allows selecting the most promising design

vector to evaluate high fidelity models such as FEA at the next iteration.
(v) Once a design vector of infill point is located, the high fidelity model is evaluated.

(vi) The infill high fidelity results are validated against acceptance rules. In a single-objective
optimization, it may be to simply check if the objective function of the infill point is
lower than the best objective function known so far. For constraint optimization, it is
important that the constraint value of the infill point does not violate the constraint
condition (within a small tolerance). It will be included in the improvement solution

set if these conditions are verified.
(vii) In any case, the new infill point is added to the sample point set.

(viii) At each iteration, the algorithm checks if the stopping criteria are met. Various stopping
criteria can be used. They include the maximal number of iterations, the maximal time
limit or the minimal expected improvement. The minimal expected improvement is
particularly used for EGO algorithm. The maximal number of iterations and time limit

are more practical as the engineer can control his allowable computer resources.

(ix) Return to (iii). The Kriging model is then reconstructed and the process continues until

the stopping criteria are met.

SDOE or space-filling design. See Section 2.2.2
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Figure 3.13: Flowchart of a Surrogate-assisted algorithm

3.1.3.3 Initial point selection

The location of initial sample points should be well distributed over the design space. The
sampling techniques presented in Section 2.2.2 can be used. Space filling designs are reported
to perform better with a small number of data set [42].

The number of initial points ng,, ., is not well studied in the literature and remains arbi-
trary. D. Jones et al. suggest 10-n, initial points [44] for a single-objective optimization. In
constraint optimization, the number of initial points may depend on the number of design
variables (n,) and on the inequality and equality constraint (ng, ns). From previous experi-
ences, the rule described as in (3.10) gives good results. For a multi-objective optimization,
Mg, 15 also scaled according to the number of objective m. This issue is not investigated in

this research. Further study of it would however be interesting.
Nsipiy = DM - (nv + ng + th) (3.10)

It should be noted that some of these initial points must be feasible. In hard constrained
optimization problems, the feasible sample point search procedure may be performed before

doing the infill point search.
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3.1.3.4 Infill criteria for single-objective optimization

In single-objective optimization, in order to find an optimum of the true function using the

surrogate model and predicted model error, one should evaluate a new sample point where:
(i) the surrogate model is minimal and the error is low. This is called exploitation.
(ii) the error is high. This is called exploration.

The combination of 2 criteria of selection is known as Infill Criteria (IC). The infill criteria
are usually based on statistic approaches like, for example, the probability of improvement
[43], the expected improvement [44] and the generalized expected improvement [97]. The infill
criterion has to be maximised using a conventional single-objective optimization algorithm.
Due to its multimodal properties, a global optimization algorithm is more suitable. A genetic
algorithm or a gradient-based algorithm with multi-start can be used.

In this research, the Generalized Expected Improvement (GEI) is used. It was proposed
by M. Schonlau et al. [97] in EGO algorithm. It is the probability that the estimated response
(9) is smaller than the current minimal feasible objective function ( fy,) and the uncertainty
associated with Kriging model (8§) is high. It can be explained as how the objective will be
improved if we add a candidate point into the sample point set. Mathematical proof of GEI
can be found in [96].

GEI can be expressed as:

R k g! —k
GEI=E[IY ()] = 8 ) (1) <> uwI kT, (3.11)

— k(g —k)!
where X
w(z)=? = (_:L'?)J (z) (3.12)
Tp = —d(w)u" "t 4 (k= 1) T (3.13)
To = @ (u) (3.14)
Ty = —é (u) (3.15)
§(z) = /MSE (z) (3.16)

® and ¢ are normal cumulative distribution and normal probability density functions, re-
spectively (see Figure 3.14).

The value of the non-negative integer g allows controlling the behaviour of GEIL If g is
high, GEI is high in the uncertain region. But if g is small, the peak of the GEI function
moves to the region where the probability of finding a better response is high (see Figure
3.15). The GEI with g = 1 becomes the expected improvement (EI) given as in (3.17) [44].
In this case, two parts can be observed clearly. The first part performs local search i.e. g is
smaller than fy,;,. The second part allows to search more globally in low accuracy areas i.e.
high s. ) A

EI=E [I (2)] = (fmin — ) - ® (W) +5-6 <fm’;_y> (3.17)

Local search term Global search term
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Figure 3.15: Generalized Expected Improvement for (a) g = 1 and (b) g = 4

M. J. Sasena et al. proposed the cooling schedule [95], which starts with high g and then
decreases. In this work, g has been fixed to 5 for the first iterations. This allows the algorithm
to search globally. It is then decreased to 1 when reaching higher iteration numbers in order

to improve local search. Other schemes can be used depending on the problem considered.

3.1.3.5 Constraint handling

The constraints can be grouped into 2 types: inexpensive constraint (ginesp) and expensive
constraint (gegp). An inexpensive constraint can be evaluated rapidly using analytic model
for example mass calculation or geometry constraint. It is then used directly in the infill
optimization process (infill sub-optimization problem). It is handled from the constraint
optimization algorithm being used. On the contrary, an expensive constraint is evaluated by
using the high fidelity model requiring high computation time. In addition to the objective
function, the expensive constraint is modelled individually, by using a surrogate model.

Two constraint handling methods are investigated. The probability method transforms

a constrained optimization problem into an unconstrained one. The second method uses a

direct constraint approach. A particular equivalent constraint function allows taking into



80 Optimization technique

account the uncertainty of a surrogate constraint model. The two methods are presented

firstly and an example with 4 cases shows the particular characteristics of each technique.

3.1.3.5.1 Probability method

In order to take into account constraints, the Infill Criteria (IC)7 is multiplied by the prob-
ability that the interesting point is feasible. The infill maximisation problem with constraint

using the probability method is described as [96]:

max IC () - H Py ()
subject to Gineap < 0 (3.18)
where Pexp (x) =P (gexp (x) < O) =0 <W)

Sgczp (.'L‘)

P, is the probability that the estimated expensive constraint (gesp) is lower than or equal
to 0 i.e. the interesting point is feasible.

This probability method allows sampling the infill points in the infeasible zone, which is
necessary for increasing the accuracy of a Kriging constraint model. However the probability
method impacts on the infill criterion function too strongly near the border of the constraint
[95]. After a number of iterations when the constraint model is sufficiently accurate, it is
suggested to incorporate a constraint surrogate model (gegp) directly in the sub-optimization
problem as already done with inexpensive constraints. This prevents choosing too many infill

points in the infeasible zone. This method is described in the following section.

3.1.3.5.2 Direct integration into sub-optimization problems

This method uses a Kriging constraint model directly in the infill sub-optimization prob-
lem. The infill optimization maximises the infill criterion and points out an infill design
vector, which is feasible according to the information from surrogate models. Since the Krig-
ing models are not sufficiently accurate at the first iterations, it is possible that it is not
feasible and fails when evaluating with the fine model and validating against the acceptance
condition. This is always true even at high iteration numbers, when the surrogate models
are sufficiently accurate. For these reasons, the surrogate models should not be treated as if
they were correct.

In order to avoid this problem, we propose a novel approach [59], which allows taking into
account the uncertainty of a surrogate constraint model instead of directly using the surrogate
model of expensive constraints. The surrogate equivalent of an expensive constraint (gesp.,)

is expressed as:

gexpeq = geacp + 04<§gel.p (3.19)

where gerp and g, are the Kriging prediction and the estimated standard error of expensive

constraint®, respectively. « is positive adaptive coefficient.

"It can be any infill criteria mentioned in 3.1.3.4. In this research, the GEI is considered.
Sgezp and 8, ,, are the same scale and use the similar unit
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The infill maximisation problem with constraint using direct integration method is de-

scribed as:
max IC (z)
subject to Ginexp <0 (3.20)
gexpeq S 0

This method allows taking into account the estimated errors of the Kriging constraint
model. As 84, is always positive, Jezp,, is higher than ge,, at any unknown design site”.
This acts as a “factor of safety”. One can start with high a so that the infill optimization
is more conservative i.e. the infill point is selected only in the feasible zone. The adaptive
coefficient is then decreased gradually when the Kriging model is more and more accurate, as
the number of iterations and sample points increase. Therefore, the infill points are placed
near or at the constraint border.

Drawbacks of this surrogate equivalent of expensive constraint (esp,,) are that the infill
selection process is conservative and that the constraint model in the infeasible zone is hardly
improved. For this reason, it is more efficient to use the probability method at the first
iterations and switch to the direct constraint integration approach when the constraint model

is sufficiently accurate as suggested above.

3.1.8.5.3 Constraint handling illustration example

A one-dimensional mathematics test problem is described in (3.21). This example intends
to show the behaviour of constraint handling methods via four illustration cases. The objec-
tive function is the same as (2.4) in Chapter 2. Figure 3.16 shows objective and constraint

functions. A coordinate of three local optima are shown in Table 3.4.

min y = sin(x) — exp (£> + 10
o 20
subject to Geap = (0.010623 — 0.094322 + 0.0822z + 8.0447) —y < 0 (3.21)

0<x<10

Table 3.4: Three optima of a one-dimensional test problem

Number x Objective
1 1.1430 8.0313
2 1.8482 7.9414
3 7.2662 7.7297

9At an unknown design site, 3g.qp is of positive value. 5,4, is zero at a known sampled site.
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Objective function

< ——Non feasible ——>

Output

Constraint function

Figure 3.16: One dimensional test optimization problem

Figure 3.17a and 3.17b show Kriging models constructed from five sample points (the five
sample points and corresponding objective and constraint values are shown in Table 3.5).
Lines represent true functions and dotted lines depict Kriging models. An error between
true functions and Kriging models can be observed. Figure 3.17b also shows the surrogate

equivalent constraint geyp., and Kriging constraint model ge,p,. It is constructed for oo = 1.

Table 3.5: Sample point for one dimensional test problem

Point | x | Objective | Constraint
1 0.7 | 8.3202 -0.2605
2 2 7.9855 -0.0688
3 4.2 9.6379 -2.1261
4 6.7 | 8.1972 -0.6468
5 9.5 | 8.4671 0.9361

Figure 3.17c plots infill criteria based on GEI with and without probability constraint
handling. To compute GEI (3.11), the control parameter g is set to 4 and fp, is the
minimum objective value among 5 sample points i.e. 7.9855. One can observe that the infill
criteria differ from each other. The maximum value of infill criteria moves from the right side
to the left side in the case of a GEI with probability constraint where the feasible probability
is high.

The following cases give an example of when the algorithm is at the first iteration. Four
cases correspond to different ways of treating objective and constraint models in the infill
sub-optimization problem. Figures 3.18 shows infill criteria and the constraint model for each
case (The comparison of different models is already shown in Figure 3.17 above.) and Table
3.6 gives a summary of the model, the infill location and the results during the validation
step.

Case 1: This is the simplest surrogate-assisted algorithm. The Kriging objective model is
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Figure 3.18: One-dimensional example: Objectives and constraints for each case

minimised and Kriging constraint models are used. This is done without taking into account
the inaccuracy of the models. The optimal result is then verified with the fine model (true
function in this case) and if the error between two models is higher than a predefined allowable
error, the Kriging model is updated with this optimum point and optimization is rerun. As a
result, The minimum is found when x = 2 for the first iteration. It is clear that the result is
not improved, even when the additional point is added at this minimum point, because the
Kriging model and the true function give the same result. Therefore, the algorithm will stop
at this iteration.

Case 2: Case 2 uses GEI as the infill criteria and the Kriging constraint model is
taken into consideration. By maximising GEI with a constraint using the Kriging constraint
model!’, the maximum is found at the rightmost peak ( # = 7.81). This infill point will

not be accepted as the improve result when validating against the true models due to the

0The location of the maximum infill criterion is used as the new design vector for the next iteration. See
Equation (3.18) and Figure 3.13 for the algorithm
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fact that this sample point violates the true constraint value (gez, > 0). This is because
the Kriging constraint model for x between 6.7 and 9.5 gives an incorrect prediction. The
constraint model is underestimated. The first two cases confirm that the constraint model
must be treated with the use of a more efficient method.

Case 3: Case 3 demonstrates the case of the probability method. The GEI with a feasible
probability is given as the infill criterion. It is maximised without any constraint in the infill
subproblem (3.18). The infill point is found when z = 2.66. This infill point can be validated
with the true functions.

Case 4: This case illustrates the direct constraint integration method. It uses GEI as the
infill criteria and the surrogate equivalent constraint gesp,, instead of the Kriging constraint
model as in case 2. The surrogate equivalent constraint shows a more pessimistic constraint
prediction compared to the Kriging constraint model. As a result, the infill maximisation
with constraint (3.20) gives a result when x = 2.64, which is near to that of case 3. This infill
point is feasible when validating against the true constraint function.

At this iteration level, these infill points have not yet allow to improve the results. The
infill point is added into the sample data set, the Kriging models are refitted and the algorithm

proceeds to the next iteration.

Table 3.6: Summary of the model used in four cases and 1% iteration infill point location

Case Infill criteria Cons. model | 1% iter. infill point | True function
(z, y) validated
i ; Geop (2, 7.99) yes
2 GEI Gexp (7.81, 8.46) no
3 GEI (z) - [[ Peap (x) - (2.66, 8.28) yes
4 GEI Jeapeq (2.64, 8.27) yes

3.1.3.6 Multi-objective optimization

In this section, the information specific to multi-objective optimization using surrogate-
assisted algorithms are given. The infill criteria and the acceptance conditions are different

from those of single-objective optimization.

3.1.8.6.1 1Infill criteria for multi-objective optimization

In the explanation below, a trial point represents an objective vector (in objective space)
evaluated by using the Kriging model at the trial design vector (in design variable space)
given by a single-objective optimization algorithm used in the infill optimization process. An
infill point represents an objective vector evaluated with the high fidelity model and the infill
design vector, which is the optimal result from the above mentioned optimization process.

For multi-objective optimization, the infill criterion is different. In this work, the new infill
criterion, named pseudo distance is proposed. It is based on the non-dominate concept. The

pseudo distance comprises two terms: the dominate distance D, and the neighbour distance
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D,, given in (3.22)—(3.24). It intends to give rise to the most promising design vector, which

has the following two properties:

(i) It dominates the maximum number of existing non-dominated solutions with the fur-

thest distance. This improves the optimality of non-dominated front.

(ii) It fills the largest gap between two existing non-dominated solutions. This gives the

uniformly spread non-dominated front.

These two properties are common for multi-objective optimization algorithms using non-
dominated concepts. However, a unique characteristic of surrogate-assisted algorithms is
that they take into account the uncertainty of surrogate models. Therefore, the pseudo

distance infill criteria search for:

(i) an accurate solution that offers the longest euclidean distance between itself and the

existing non-dominated solutions that are dominated by it.

(ii) a less accurate solution that is located on the non-dominated front and that fills the

largest gap between its two nearby existing non-dominated solutions.

The pseudo distance infill criteria are expressed as:

Dpseudo (.7;) =D, (Qj) + Dy (‘r) (3.22)
m f,(s+) _ (x)> ) )
D, (z) = (( 8 (2) (3.23)
i=1 fima:c - fimin
P << : ; (3.24)
' j§=:1 =\ \Simaz = fimin | 5 (2)

where m corresponds to the number of objective functions, ngem, to the number of existing
non-dominated points dominated by the trail point, f; , and f; . minimum and maximum
of the i*" objective function in the existing non-dominated front (NF), §; to the predicted
standard error (3.16) of the i*? objective function Kriging model, fz to the Kriging prediction
of the it" objective function and fi(SJr) to the it" objective function of the point next to the
trial point in the ¥ objective space.

Dy seeks for a design vector with the lowest estimated standard error (low §) i.e. an
accurate Kriging prediction, and dominates the existing NF with the greatest distance. It
tends to push the infill point to the global utopia point if there is an accurate solution that
dominates all existing non-dominated solutions.

Contrarily, D,, focuses only on neighbours of the trial point. It gives a design vector with
the highest standard error (high §) i.e. a non-accurate Kriging prediction, and the highest
distance between the trial point and its neighbour non-dominated points. D,, will try to push
the infill point to the local utopia point if the solution is not an accurate one. And compared
to another pairs of neighbour points, D,, will simultaneously fill out the largest gap between
two existing non-dominated points. The high standard error allows improving the Kriging

models and doing global search in the design variable domain.
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To explain the idea of the pseudo distance, an illustration example is given in Figure
3.19. Design solutions are shown in an objective space. A set of existing non-dominated
front N Fj,; = [S1 S2 S3 S4 Ss| is obtained from the initial sample point set. At iteration 1,
many trial design vectors are tested through an infill criteria optimization process depending
on the optimization algorithm used. For simplification reasons, only two trial points 77 and
T5 are shown in Figure 3.19a. 77 dominates 2 existing non-dominated points Sy and S3. A
trial non-dominated front is determined TNF (1) = [S1 T Sy Ss)|. Similarly, T, dominates
only S3 and TNF(™2) =[S} Sy Ty Sy S5 can be identified. D,, and Dy for each trial point
are then computed according to (3.23) and (3.24), respectively. Note that the modelling
accuracy is considered as equal throughout the entire Kriging models in order to simplify the
explanation. In this example, T7 gives higher D)4, than that of T3 and is chosen as the
infill point. The fine model is evaluated using the design vector of T7. The Kriging model is
then rebuild. This infill point (77) is validated against the acceptance conditions (see Section
3.1.3.6.2 below). It is accepted as the improved solution Sg. Therefore, a new non-dominated
front can be located NFy =[Sy Sg Sy Ss).

At iteration 2, two trial points T35 and Ty are tested. These trail points do not dominate
any existing solution since all existing solutions are on the true Pareto front. This gives
Dy = 0. In this case, only D, influences the choice of the infill point. The infill criteria
optimization process will try to improve the distribution property of non-dominated front by
filling the largest gap between any two points on the non-dominated front. Therefore T3 is
selected as the infill point.

In reality, when the Kriging model accuracy is not equal and several constraints are taken
into account, the infill optimization may select the infill point in a different manner. It reaches

a compromise between the distance and the accuracy of models.

A A

True Pareto front True Pareto front
fo / fa ‘/S
1

(a) Iteration 1 (b) Iteration 2

Figure 3.19: Illustrating example of the Pseudo distance concept

3.1.83.6.2 Acceptance condition for multi-objective optimization

Once the infill design vector is located by the infill optimization subproblem, the high
fidelity model is evaluated. The acceptance condition is the verification that the new infill

point improves the existing NF and satisfies the constraints. Based on the non-dominated
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concept, a solution improves the existing non-dominated front if one of the two following

criteria is met:

(i) It dominates at least one existing non-dominated solution.

(ii) It is not dominated by any existing non-dominated solution.

If the candidate infill point respects the acceptance condition, it will be added to the
existing non-dominated front. In any case, it is added to the set of sample points. Kriging

models are then refitted with the new set of sample points.

3.1.3.7 Mathematical test example
3.1.3.7.1 Single-objective noisy function optimization

The first example intends to demonstrate the capability of a surrogate-assisted algorithm
(EGO in this case) to cope with noisy functions. This is a very important issue in the design
of electrical machines using Finite Element Analysis (FEA) [56]. The application to electric
machine designs will be presented in Chapter 4.

The originally proposed problem expressed in (3.3) is multimodal and with a constraint.
It deals with smooth objective and constraint functions. In order to imitate the numerical
noise in FEA, the problem has been modified. A noise term is added into the constraint

function. The optimization problem is expressed as following:
max F=24001 (22— a22)* + (1 —z1)+
2(2 — x9)? + Tsin (0.521) sin (0.72122)
subject t0  gezp = —sin (1 — 22 — 7/8) 4+ 0.1 {sin (100x1) + sin (100z2)} < 0

g

(3.25)

Noise term
x1 €10, 5], x2 € [0, 5]

Figure 3.20 shows the contour plot and feasible area of analytical test problem. Multi-
ple local optima can be observed especially on the border of constraint limits. The global
optimum is presented by the red star at the design vector x = [2.6759 2.4356], which gives
f = —1.323. This reference global optimal solution is found by using an SQP multistart with
1000 random initial points.

In the EGO algorithm, both the objective and constraint functions are considered “ex-
pensive”. Therefore, they were modelled by two independent Kriging models. The constraint
is handled by the probability method. Ten tests were carried out with different sets of initial
sample points selected by using the Latin Hypercube Sampling (LHS) technique. EGO stops
when the GEI value is lower than 0.01. This is done with an average of 80 function calls.
Figure 3.21a shows initial sample points and infill points in the design space. Figure 3.21b
shows the EGO infill history. One can observe that EGO evaluates the points with a high
objective function or infeasible points in order to improve the Kriging model accuracy and
the global search.

Despite the noisy constraint function, the worst EGO results (from 10 tests) are found with

a relative error of 13% on the optimal objective function value'! and 10% on the Euclidian

" ecompared with the reference global optimum objective value
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distance®. The best EGO results are within 2% for both criteria. However it cannot find

the exact global optimum.

Objective function
35- * Feasible solution |
+ Infeasible solution

N
a

N
=

i Infeasible
zone

=
o
T

Objective function

[N
o

V\ A A

Of+* V vy s B A B B R
0 10 20 30 20 50
Iteration
(a) initial and infill points in design space (b) objective function value at each iteration

Figure 3.21: Infill point history. (a) Initial and infill points in design space. Circles are initial
points and squares are infill points (b) Objective function value at each iteration

Compared with a traditional algorithm Sequential Quadratic Programming (SQP) method
with multistart (100 starts with random initial points), each optimization required an average
of 145 function evaluationss. As a result, 3 initial points can precisely find the global opti-
mum. But only 25 out of 100 initial points lead to the same precision as or better precision
than EGO worst case (i.e. 13% on the objective function and 10% on Euclidian distance).

This proves that SQP is not very suitable for this kind of problem.

12compared with the reference global optimum design vector
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This example shows the capability of EGO to find the solutions around the optimal point
in the global optimization problem with noise in the constraint function. EGO does not have
the capability to reduce noise in noisy functions. But it overlooks this noise by using the
Kriging model. Thus, it improves the convergence towards a global solution. However, since

the Kriging model is an interpolation model, there is always noise in the global optimum.

3.1.3.7.2 Multi-objective problem

Two test problems “CONSTR” and “VLMOP2” presented in Section 3.1.2.1.3 are used
to demonstrate the capability of surrogate-assisted algorithm using the pseudo-distance infill
criterion. An application of the algorithm to an electrical machine design is presented in
Section 4.5.

For each problem, LHS is used to select 20 initial sample points. 80 other infill points
are added according to the pseudo-distance infill criterion. In total This yields only 100
fine model evaluations. For the “CONSTR” problem, the constraint is managed through
a direct integration method with a surrogate equivalent constraint. Non-dominated fronts
for both problems are shown in Figure 3.22a and 3.22b. The algorithm founds 40 and 46
non-dominated solutions for “CONSTR” and ‘VLMOP2” problem, respectively.
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Figure 3.22: Non-dominated fronts obtained from NSGA-II and surrogate-assisted algorithm

using pseudo distance infill criterion

For comparison purposes, an optimization using NSGA-II is also performed. The NSGA-
II parameters are defined as following: crossover probability = 0.9, population number = 30
and generation number = 100. This yields 3000 fine model evaluations in total. One can
observe that two algorithms achieve more or less similar results. For both problems, non-
dominated fronts from NSGA-II are slightly better distributed than those of the surrogate-
assisted algorithm. However, NSGA-IT requires a very high number of function evaluations
in order to obtain a good result. For surrogate-assisted algorithm, similar results can be
achieved with considerable fewer function calls (30 times lower than that of NSGA-II for

these examples).
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3.2 Decomposition approach

Complex systems are referred to as systems composed of several subsystems and components.
Such systems also imply several disciplines. They can be physical/engineering disciplines
or non-technical disciplines. In conventional design processes, such complex system design
problems are always decomposed into several subproblems, as already discussed in Chapter
1. In this section, the Multidisciplinary Design Optimization (MDO) and Target Cascading
(TC) methodologies are presented.

3.2.1 Multidisciplinary Design Optimization
3.2.1.1 Overview

Complex systems always deal with many engineering disciplines. The interaction between
such disciplines is mainly concerned in MDO. As mentioned earlier, a complex system design
problem is usually decomposed into subproblems. In the MDO case, the decomposition is
based on the discipline. This comes from the traditional design methodology in aeronautic
field as MDO was firstly introduced by the aeronautic and aerospace community. MDO for-
mulations allow coordinating various design/simulation tools and solving interacted problem
among such tools. Moreover, MDO integrates optimization tools in modelling phase. Both
processes are done simultaneously and not sequentially anymore as it used to be in the past.

The MDO implies many formulations, which can be grouped into 2 families: single level
and multilevel formulations. In this research, only single level MDO formulations have been
investigated: Multidisciplinary Feasible (MDF'), Individual Discipline Feasible (IDF), All-At-
Once (AAO) [1, 18, 103]. Multilevel MDO formulations can be found in [1, 10, 101].

The aim of MDO formulation is to manage and coordinate calculation, interaction i.e.
feedback and feed-forward dataflow from one analysis tool to another. Some single level
formulations manage the interactions, so that analysis tools can be run in parallel.

In the multidisciplinary design context, many analysis tools are employed to evaluate
the performance of the system. These tools usually correspond to the different disciplines.
Since there are interactions between disciplines i.e. an input of a discipline is evaluated using

another discipline tool as:

outputy (z,z1,Y2 (2, 22,91)) (3.26)

outputs (z,r2,y1 (2, 71,92))
where output; and outputs are calculated from disciplines 1 and 2, respectively and can be
the objective f, inequality or equality constraint (g or h) and y coupling variable. output; is
as a function of their local design variables x1, global or share design variable z and coupling
variable yo, which, itself, is an output from discipline 2 and as a function of z, zo, and y;.
Figure 3.23a presents this explanation. The resolution of these interactions can be performed
by a numerical method such as the Newton-Raphson or fixed point method [17, 102]. This
kind of problem is called Multidisciplinary Design Analysis (MDA). Two MDA disciplines

can be written in a compact form as:

MDA = SA[A; — Aj] (3.27)
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Two discipline analyses A; and A; are nested within a System Analysis (SA) and are evalu-

ated sequentially (denoted as —).

The optimization of such problems can be achieved by using several approaches. The fol-
lowing subsections explain different single level MDO formulations. They give the possibility
to perform the optimal design of a multidisciplinary system in efficient and systematic ways

by using an optimization process in the connection of the analysers or the evaluators between

disciplines.
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Figure 3.23: Structure and dataflow of a multidisciplinary design problem

3.2.1.2 Multidisciplinary feasibility

The simplest way to perform a MDO is to directly put the MDA within an optimization
process. This is called a Multidisciplinary Feasible (MDF). This formulation ensures the
feasibility of the whole system at each optimization step. Figure 3.23b shows the structure of
the MDF formulation. The system analyser solves a problem with interaction. The optimizer
solves the optimization problem in which the design variables only remain design variables of
the design problem. Multidisciplinary feasibility is achieved for each design vector. A MDF
formulation can be shown as in (3.28). The MDA (3.27) is nested within a System Optimiser
(S0O).

MDF = SO [MDA] = SO [SA[A; — Ay] (3.28)
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The MDF optimization problem is expressed as:

min f(Z,X)
with respect to Z, X (3.29)
subject to 9(Z, X, Y (Z,X)) <0

h(Z,X,Y (Z,X))=0

where SA forces Y*+1 = Y* at each optimization iteration, k being the SA internal loop
iteration.

A MDF is the simplest MDO formulation. However, some drawbacks can be stated. The
fixed point iteration method commonly used in MDF is not always very efficient. If the fixed-
point method fails to supply a solution to the MDF, the optimization may not be convergent.
Moreover, the fixed-point method is a sequential method. The parallelised analysis is not

possible.

3.2.1.3 Individual disciplinary feasibility

IDF allows decoupling the discipline analysers. There is not any direct interaction between
disciplines anymore. The optimization gives an initial guess of the coupling variables via
additional design variables Y*. IDF ensures only the feasibility of each discipline (i.e. each
discipline performs discipline analysis).