

Diagnostic et Commande Active Tolérante aux Défauts appliqués aux Systèmes décrits par des Multi-Modèles Linéaires

Mickael Rodrigues

▶ To cite this version:

Mickael Rodrigues. Diagnostic et Commande Active Tolérante aux Défauts appliqués aux Systèmes décrits par des Multi-Modèles Linéaires. Automatique / Robotique. Université Henri Poincaré - Nancy I, 2005. Français. NNT: . tel-00364804

HAL Id: tel-00364804 https://theses.hal.science/tel-00364804v1

Submitted on 27 Feb 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UFR Sciences et Techniques Mathématiques Informatique Automatique Ecole Doctorale IAEM Lorraine DFD Automatique et Production Automatisée

THÈSE

présentée pour l'obtention du

Doctorat de l'Université Henri Poincaré, Nancy 1

(Spécialité Automatique)

par

Mickaël Rodrigues

Diagnostic et commande active tolérante aux défauts appliqués aux systèmes décrits par des multi-modèles linéaires

Soutenue publiquement le 06.12.2005

Membres du jury

Président du jury : G. MILLERIOUX Professeur à l'Université Henri Poincaré, Nancy I

Rapporteurs : A. ZOLGHADRI Professeur à l'Université de Bordeaux I

V. COCQUEMPOT Maître de conférences HDR à l'Université de Lille I

Examinateurs : D. SAUTER Professeur à l'Université Henri Poincaré, Nancy I

D. THEILLIOL Professeur à l'Université Henri Poincaré, Nancy I

Y. ZHANG Assistant Professor, Department of Computer Science and Engineering

Aalborg University Esbjerg, Denmark

A ma femme Emilie, pour son indéfectible soutien

A mon fils Mathis, source de joie inaltérable

A ma soeur et mes chers parents

Remerciements

Les travaux de recherche présentés dans ce mémoire ont été effectués à la Faculté des Sciences et Techniques de Vandoeuvre-lès-Nancy au sein du groupe thématique "Sûreté de Fonctionnement et Diagnostic des Systèmes (SURFDIAG)" dans l'équipe "Représentation Multimodèles - Applications au Diagnostic des Systèmes (MUMODIA)" au Centre de Recherche en Automatique de Nancy (CRAN) dirigé antérieurement par Monsieur Francis Lepage et actuellement par Monsieur Alain Richard.

Je tiens à remercier Monsieur Dominique Sauter, responsable de l'équipe " Systèmes Distribués et Embarqués Réactifs aux défauts (SYDER)" et directeur de ma thèse, pour m'avoir accueilli au sein de son équipe de recherche et de m'avoir fait confiance dans mes choix et orientations. Je remercie également Monsieur Didier Theilliol, co-Directeur de ma thèse, pour sa constante disponibilité, ses conseils ainsi que les innombrables réunions et discussions pour mener à bien ce travail. Je lui suis aussi reconnaissant de la confiance qu'il m'a toujours témoignée.

J'exprime ma gratitude à Messieurs Ali Zolghadri et Vincent Cocquempot d'avoir accepté de rapporter mon mémoire et pour l'intérêt qu'ils ont bien voulu porter à ce travail. Je remercie également Monsieur Gilles Millérioux d'avoir accepté d'examiner ce travail et de faire partie de ce jury de thèse.

I would like to address my special thanks to Mr. Youmin Zhang for coming in France and making me the great honor to be part of the jury.

Merci à tous les doctorants, collègues et étudiants que j'ai côtoyés durant ces 3 années de thèse, pour l'ambiance plus qu'amicale ils ont su y faire régner. Merci également à Madame Sabine Huraux pour sa sympathie et sa constante disponibilité tout au long de ces années.

Je tiens à dire toute ma sympathie aux personnes avec lesquelles j'ai passé des moments formidables au labo ainsi qu'en dehors. Aussi, je remercie chaleureusement Messieurs : Vincent Mazet(merci Latex man), Said Moussaoui, Samir Aberkane(loukoum favori), Ludovic Guillemot(bassiste de talent), Yann Gaudeau, Frédéric Hamelin, El-Hadi Djermoune, Jean-Marie Moureaux, Benoît Vinsonneau, Hicham Jamouli, Manuel Adam-Medina et Mademoiselle Magalie Thomassin. Merci pour toutes les soirées tardives (merci Sam+Ludo), festives, sportives(WE à Nonnette) et musicales (BGA-21, merci Ludo pour ces 2 ans d'aventure où notre verve artistique s'est révélée ... mais n'a pas encore été reconnue!). Un grand merci à Manu pour toutes ces années de collaboration remplies de ce rire mexicain si particulier.

6 Remerciements

Enfin, je dédie cette thèse à mes parents pour leur amour et sans qui je n'en serais pas là aujourd'hui, à ma soeur qui malgré la distance m'a toujours encouragé. Je ne saurais oublier ma femme Emilie qui a toujours cru en moi depuis longtemps maintenant, et à qui je dois d'avoir fait cette thèse. Merci pour le fils que tu m'as donné et qui me sourit tous les jours.

Table des matières

Table des figures

Références personnelles

Congrès internationaux avec comité de lecture et actes

- Didier Theilliol, Mickael Rodrigues, E. Quintero-M-M, Manuel Adam-Medina et Dominique Sauter, "Adaptive Filter Design for Fault Detection and Isolation of Non Linear Systems described by Interpolated LTI Models, Latinamerican Congress of Automatic Control, CLCA'2002, Guadalajara, Jalisco, Mexico, 2002.
- Didier Theilliol, Mickael Rodrigues, Manuel Adam-Medina et Dominique Sauter, "Adaptive filter design for FDI in nonlinear systems based on multiple model approach", IFAC Symposium Safeprocess, Washington D.C, USA, CD Rom, June 2003.
- Manuel Adam-Medina, Mickael Rodrigues, Didier Theilliol et Hicham Jamouli, "Fault diagnosis in nonlinear systems through an adaptive filter under a convex set representation", European Control Conference, Cambridge, U.K, CD Rom, September 2003.
- Mickael Rodrigues, Manuel Adam-Medina, Didier Theilliol et Dominique Sauter, "Fault Diagnosis on Industrial Systems based on a Multiple Model approach, IFAC Symposium on Automation in Mining, Mineral and Metal processing, Nancy, France, September 2004.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter, "Design of an Active Fault Tolerant Control for Nonlinear Systems described by a Multi-Model Representation, The 20th IEEE International Symposium on Intelligent Control (ISIC'05) and the 13th Mediterranean Conference on Control and Automation (MED'05), Limassol, Cyprus, June 2005.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter," Fault Tolerant Control Design of Nonlinear Systems using LMI gain Synthesis, 16th IFAC World Congress, Prague, Czech Republic, July 2005.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter, "Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Nonlinear Systems described by a Multi-Model Representation", Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC, Sevilla, Spain, December 2005.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter, "Design of a Robust Polytopic Unknown Input Observer for FDI: Application to Nonlinear Systems described by a Multi-Models Representation", Proc. 44th IEEE Conference on Decision and Control and European

Control Conference ECC, Sevilla, Spain, December 2005.

Congrès nationaux avec comité de lecture et actes

- Mickael Rodrigues, Didier Theilliol, Manuel Adam-Medina et Dominique Sauter, "Fault Isolation and Estimation in Nonlinear Systems: an Adaptive Filter Solution based on Multiple Model Approach", IAR, Grenoble, France 2002.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter, "Synthèse d'une loi de commande tolérante aux défauts actionneurs : Application aux systèmes non linéaires décrits par de multiples modèles", Journées Doctorales et Nationales du GDR MACS 5-7 Septembre, Lyon, France, 2005.

Travaux soumis : Revues internationales avec comité de lecture

- Mickael Rodrigues, Manuel Adam-Medina, Didier Theilliol et Dominique Sauter, "A Fault Detection and Isolation Scheme for Industrial Systems based on Multiple Operating Models", Control Engineering Practice, 2005, soumis.
- Mickael Rodrigues, Didier Theilliol et Dominique Sauter, "Diagnostic de défauts de systèmes représentés par des multi-modèles : Synthèse et analyse d'un observateur polytopique à entrées inconnues robuste aux erreurs de modélisation", Journal Européen des Systèmes Automatisés (JESA), 2005, soumis.

Introduction générale

" La souris est un animal qui tué en quantité suffisante et dans des conditions contrôlées, produit une thèse de doctorat." Woody Allen

En raison d'une modernisation incessante des outils de production, les systèmes industriels deviennent de plus en plus complexes et sophistiqués. En parallèle, une demande accrue de fiabilité, de disponibilité, de reconfigurabilité et de sûreté de fonctionnement des systèmes sont devenus de véritables enjeux du troisième millénaire. L'Automatique, qui repose sur une notion de système représentant un ensemble d'éléments formant un tout structuré, a permis à l'Homme de développer des méthodes de supervision telles le diagnostic et la commande tolérante aux défauts des systèmes.

Ces deux notions que nous définirons plus tard, sont issues d'un travail préliminaire nécessaire qui est la modélisation du système, c'est-à-dire une représentation mathématique du comportement dynamique du système. Cependant, la modélisation de systèmes physiques requiert non seulement une connaissance précise des phénomènes intervenant sur ce système, mais également une aptitude à les représenter sous une forme mathématique. Le problème principal réside en l'utilisation d'un modèle simple mais suffisamment précis pour décrire fidèlement le comportement du système. Une hypothèse largement répandue dans le domaine de l'Automatique est la linéarité des systèmes car de nombreux outils mathématiques existent pour des systèmes représentés par des systèmes Linéaires Invariants dans le Temps (LTI). Cependant, il faut bien souligner que cette hypothèse de linéarité n'est valable que pour une plage de fonctionnement restreinte autour d'un point d'équilibre, de sorte que lorsque le système s'éloigne de ce point, la modélisation n'est plus en adéquation avec le comportement du système.

Le diagnostic, à l'image du domaine médical, consiste à ausculter le système en comparant ses données courantes aux données provenant d'un fonctionnement normal. Ces indicateurs permettent en général, de déterminer des symptômes amenant alors la détection et l'isolation de la ou des partie(s) défaillante(s) du système. De nombreuses méthodes ont été développées dans le cadre des systèmes linéaires (Gertler, 1998) et (Chen and Patton, 1999). Néanmoins, comme nous l'avons rappelé, la notion de linéarité s'applique uniquement pour

des systèmes particuliers ou des systèmes réels représentés autour d'un point d'équilibre particulier avec une plage de fonctionnement réduite. Afin d'effectuer le diagnostic d'un système non linéaire prenant en compte une plus grande plage de fonctionnement, des méthodes basées sur la connaissance d'un modèle analytique du système provenant d'une représentation mathématique du comportement physique du système, ont été développées (Isidori, 1995), (Hammouri et al., 2001), (Fliess, 2001). Cependant, dans le domaine industriel, la connaissance exacte du modèle du système sur toute sa plage de fonctionnement n'est pas une chose aisée de part la complexité même du système. En effet, la connaissance du système autour de différents modes de fonctionnement peut permettre par exemple de produire telle ou telle quantité de matière. De même, en aéronautique, les régulateurs sont synthétisés pour différentes plages de paramètres en fonction de l'altitude et de la vitesse par exemple.

Afin de représenter le comportement dynamique du système, une approche globale basée sur des modèles multiples Linéaires Invariants dans le Temps (LTI), a été développée depuis plusieurs années comme indiqué dans le livre de (Murray-Smith and Johansen, 1997). Cette approche, dénommée multi-modèles, s'attache à construire une représentation polytopique convexe pour approcher la dynamique d'un système pouvant être obtenue par plusieurs méthodes comme la linéarisation autour de points de fonctionnement (Angelis, 2001), (Glover, 2003) ou à partir de données d'entrées-sorties (Gasso et al., 2002).

Le diagnostic des défauts a rarement été abordé dans le contexte de la représentation multi-modèle où la problématique de déterminer les fonctions d'interpolation et d'isoler les défauts est double. Ainsi, sur la base de cette modélisation, un des objectifs de cette thèse est d'élaborer des méthodes permettant la détection des défauts, l'isolation voire l'estimation en ligne de l'amplitude des défauts au sein de systèmes sur une grande plage de fonctionnement représentés par des multi-modèles. La détection de défauts est une opération délicate soumise aux perturbations de l'environnement du système. Il est nécessaire de synthétiser des méthodes de détection de défauts robustes aux perturbations afin d'éviter les fausses alarmes et les non détections de défauts. Dans certains systèmes complexes, comme dans l'aéronautique ou les centrales nucléaires, la détection et la localisation d'un ou de plusieurs défauts est nécessaire mais n'est pas suffisante pour garantir la sûreté de fonctionnement car il est indispensable de modifier la loi de commande en temps réel afin de maintenir la stabilité du système et de garantir ainsi un fonctionnement acceptable en mode dégradé. Ainsi, il est nécessaire d'associer au diagnostic une loi de commande tolérante aux défauts.

Ainsi, l'autre objectif de cette thèse est de synthétiser une loi de commande tolérante aux défauts dans le cadre des multi-modèles afin d'effectuer une accommodation de défauts et/ou une reconfiguration du régulateur. Les systèmes tolérants aux défauts résultants permettent d'accroître la sécurité et la disponibilité des outils de production. La contribution principale de nos travaux est de générer des systèmes tolérants aux défauts en synthétisant à la fois des modules de diagnostic ainsi qu'un mécanisme de reconfiguration lors de la perte d'actionneurs prenant en considération l'information du module de diagnostic. Cette vue globale du problème d'automatique pour la mise en oeuvre de systèmes tolérants aux défauts nous a amené à étudier à la fois des méthodes pour le diagnostic ainsi que des méthodes de commande tolérante aux

défauts.

Ce mémoire comporte 4 chapitres articulés comme suit :

Chapitre 1 : Ce chapitre présente les principales stratégies de commande tolérante aux défauts. Il permet notamment de classer diverses méthodes en deux grandes catégories : les lois de commandes tolérantes aux défauts passives d'une part, et actives d'autre part. L'accent est toutefois porté sur les commandes tolérantes actives exploitant des modules de diagnostic, concentrant notre attention sur l'approche multi-modèle. Les avantages et inconvénients de chacune de ces méthodes de commande tolérante permettent de définir l'orientation et la problématique de la thèse.

Chapitre 2 : Ce chapitre aborde le problème du diagnostic de défauts des systèmes représentés par des multi-modèles. La représentation multi-modèle est basée sur des fonctions d'activation où la présence de défauts peut engendrer des problèmes lors de l'obtention d'une représentation globale du système. Ce chapitre traite de ce problème au travers un existant, afin d'obtenir une représentation d'état globale du système. Le diagnostic des défauts s'effectuera alors par la synthèse d'un filtre adéquat permettant de détecter, isoler et estimer des défauts en ligne. La stabilité de ce filtre est analysée et les performances du filtre illustrées à travers différents exemples, notamment le système des 3 cuves.

Chapitre 3 : Ce chapitre est dévolu à l'élaboration d'Observateurs Polytopiques à entrées inconnues (\mathcal{UIO}) pour le diagnostic des systèmes représentés par des multi-modèles. Les \mathcal{UIO} permettent de rejeter des informations non désirables (erreurs de modélisation modélisées comme des entrées inconnues) tout en conservant leur capacité de générer des résidus sensibles aux défauts. Ces observateurs font l'objet d'une analyse de stabilité et de convergence au moyen d'Inégalités Matricielles Linéaires \mathcal{LMI} . Des exemples, notamment une cuve de réaction continûment remuée ou CSTR, permettent d'illustrer les différents \mathcal{UIO} synthétisés.

Chapitre 4 : Ce chapitre a pour objectif de présenter une synthèse de lois de commandes tolérantes actives aux défauts dans le cadre multi-modèle. Cette synthèse permet d'assurer la stabilité du système en boucle fermée en présence de défauts actionneurs mais aussi lors de défaillance d'actionneurs c'est-à-dire lorsqu'un actionneur est totalement hors service. Cette synthèse par retour d'état et de sortie est appliquée sur différents exemples ainsi qu'une partie appliquée sur un système réel : le système des 3 cuves. Cette application met en relief les résultats de nos propositions tant au niveau de la synthèse des régulateurs que de la compensation des défauts actionneurs.

Le travail présenté dans ce mémoire contribue à enrichir les méthodes visant à la synthèse d'un filtre de détection et isolation des défauts, aux méthodes dédiées aux observateurs polytopiques discrets à entrées inconnues ainsi qu'à la synthèse de lois de commandes tolérantes aux défauts dédiées aux systèmes représentés sous forme polytopique. A la fin de cette thèse, un paragraphe sera consacré aux conclusions et perspectives des travaux présentés.

Chapitre 1

Concepts et principes des systèmes tolérants aux défauts

Ce chapitre a pour objet la présentation des principaux concepts de synthèse de commande tolérante aux défauts. La classification des méthodes résultantes, permet d'effectuer un état de l'art de l'ensemble des méthodes de Commandes Tolérantes aux Défauts (Fault Tolerant Control) afin de synthétiser des systèmes tolérants aux défauts.

1.1 Les systèmes tolérants aux défauts

1.1.1 Objectifs de la commande tolérante aux défauts

Un système tolérant aux défauts possède la capacité de maintenir les objectifs nominaux en dépit de l'occurrence d'un défaut et à s'en accommoder de manière automatique. Il permet notamment de garantir la stabilité du système et/ou des performances dégradées acceptables en présence de défauts. Un conventionnel gain de retour d'état peut s'avérer très limité et amener le système vers des comportements non désirés, voire à l'instabilité, en présence d'un défaut. Pour pallier de telles catastrophes, de nouvelles lois de commande ont été développées dans le but précis de maintenir les performances du système ainsi que sa stabilité, lors d'un mauvais fonctionnement du système (Wu, 2001). Dans le domaine industriel ou en aéronautique, ce type de problèmes a été souvent évité en se fondant sur de la redondance matérielle à base d'actionneurs et de capteurs. Cette stratégie est non seulement onéreuse mais elle requiert aussi un important dispositif de maintenance. Ainsi, la commande tolérante aux défauts traitée de manière analytique, permet d'éviter de tels coûts d'achat et d'entretien.

La tâche principale qui incombe à la commande tolérante aux défauts est de synthétiser des lois de commande avec une structure permettant de garantir la stabilité et les performances du système, non seulement lorsque tous les composants de la commande sont opérationnels, mais aussi lorsque des capteurs ou des actionneurs sont défaillants.

La commande tolérante aux défauts est généralement classée en deux approches distinctes : une approche passive (Passive Fault Tolerant Control, PFTC) et une approche active (Active

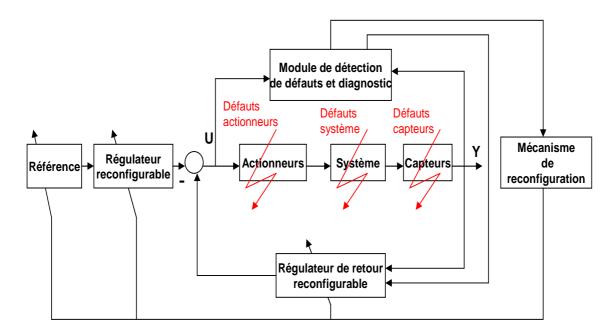


Fig. 1.1: Principe d'un système de commande tolérante aux défauts

Fault tolerant Control, AFTC). Dans le cadre de la première approche, les régulateurs sont synthétisés de façon à être robuste à certains défauts (Eterno et al., 1985). L'idée principale est de faire en sorte que le système en boucle fermée (BF) soit robuste aux incertitudes et à quelques défauts spécifiques. Cette approche ne nécessite aucun schéma de détection de défauts ni aucune reconfiguration de loi de commande mais sa capacité de tolérance reste restreinte à quelques défauts.

A l'opposé de la voie passive, l'AFTC est amenée à réagir aux diverses défaillances du système en reconfigurant les lois de commande tout en préservant la stabilité et les performances de celui-ci. La figure (

L'AFTC requiert tout d'abord, de synthétiser un schéma de FDD permettant de fournir de manière aussi précise que possible une information sur les défauts éventuels (l'instant d'apparition, le type et l'amplitude du défaut) ainsi qu'un modèle de défaut du système. Puis, de synthétiser en ligne un nouveau régulateur (reconfigurable ou restructurable) en réponse aux défauts du système et de compenser l'effet de ceux-ci tout en assurant la stabilité et les performances de l'ensemble.

Pour poursuivre, nous définissons brièvement les différents types de défauts présents apparaissant sur les systèmes.

1.1.2 Les différents types de défauts

Les défauts sont des événements qui apparaissent à différents endroits du système. Dans la littérature, les défauts sont classés en fonction de leur localisation, définissant alors des types de défauts.

Les défauts actionneurs :

Les défauts actionneurs agissent au niveau de la partie opérative et détériorent le signal d'entrée du système. Ils représentent une perte totale (défaillance) ou partielle d'un actionneur agissant sur le système. Un exemple de perte totale d'un actionneur est un actionneur qui est resté "collé" sur une position entraînant une incapacité à commander le système par le biais de cet actionneur. Les défauts actionneurs partiels sont des actionneurs réagissant de manière similaire au régime nominal mais en partie seulement, c'est-à-dire avec une certaine dégradation dans leur action sur le système. (perte de puissance d'un moteur, fuite dans un vérin, . . .).

Les défauts capteurs :

Ce type de défaut est la cause d'une mauvaise image de l'état physique du système. Un défaut capteur partiel produit un signal avec plus ou moins d'adéquation avec la valeur vraie de la variable à mesurer. Ceci peut se traduire par une réduction de la valeur affichée par rapport à la valeur vraie, ou de la présence d'un biais ou de bruit accru empêchant une bonne lecture. Un défaut capteur total produit une valeur qui n'est pas en rapport avec la grandeur à mesurer $(0, \infty)$.

Les défauts composants ou systèmes :

Ce type de défaut provient du système lui-même; bien souvent les défauts n'appartenant pas à un défaut capteur ou actionneur sont classés de manière arbitraire dans cette catégorie. Néanmoins, un défaut composant résulte de la casse ou de l'altération d'un composant du système réduisant les capacités de celui-ci à effectuer une tâche. En pratique, ceci revient à considérer une modification des caractéristiques du système proprement dit (la CTN : résistance à Coefficient de Température Négatif, d'une chaufferie est cassée, un roulement est altéré, . . .).

Par la suite, nous allons faire un état de l'art des principales commande tolérantes aux défauts pour amener et justifier les choix et les orientations de cette thèse. Chaque type de méthodes fait l'objet d'une discussion avec ses avantages et ses inconvénients.

1.1.3 Méthodes passives

Les méthodes PFTC utilisent les techniques de la commande robuste pour assurer que le système en boucle fermée demeure insensible à certains défauts avec des régulateurs constants et sans utilisation d'information en ligne des défauts sur le système (Eterno et al., 1985), (Zhou, 2000), (Chen and Patton, 2001), (Niemann and Stoustrup, 2003). Les régulateurs passifs ont pour but de maintenir le système "fiable" au sens de la stabilité et de ses performances dans les cas nominaux et de défauts prédéfinis. Le but est de chercher un régulateur qui optimise les performances "pour le pire défaut" (en terme de synthèse LQR ou H_{∞}) pour tous les défauts anticipés. Cette approche considère que les défaillances (défaut de 100%) peuvent apparaître dans un ensemble prédéfini de défauts potentiels sur les actionneurs et les capteurs. Le régulateur "passif" rejette le défaut si ce dernier se modélise comme une simple incertitude. Pour une vue globale des méthodes des commandes robustes ou fiables, le lecteur

pourra se référer aux travaux de (Zhao and Jiang, 1998), (Veillette, 2002), (Suyama, 2002). En PFTC, le système en défaut continue d'opérer avec le même régulateur et la même structure du système : les objectifs et performances restent les mêmes que ceux du système nominal. Cependant, le système est synthétisé de manière à être robuste à certains défauts en supposant un ensemble de défauts potentiels restrictifs voire des fois un seul défaut. Ceci peut être valable dans certains cas restreints avec des défauts de faibles amplitudes. Dans des conditions pratiques, l'utilisation seule de la commande robuste peut être risquée. Comme un régulateur inintelligent, sans utilisation de module de diagnostic et sans connaissance sur l'occurrence de défaut(sa sévérité, sa localisation,...), le système passif a alors une faible capacité de tolérance aux défauts.

1.1.4 Méthodes actives

Les méthodes AFTC se distinguent des méthodes PFTC par les principes énoncés précédemment tels l'utilisation d'un module FDD (Tyler and Morari, 1994), une synthèse en ligne du régulateur,..., comme proposé par (Patton, 1997) et (Zhang and Jiang, 2003a). Il est possible de classer les AFTC selon certains critères tels que la commande active développée soit ou non :

- basée sur des lois de commande pré-calculées hors-ligne (méthodes de projection),
- basée sur de l'accommodation de défauts en ligne (commutation de modèles de défauts par exemple) et n'utilisant pas de FDI,
- tolérante aux défauts non-anticipés utilisant l'isolation et la détection des défauts (Fault Detection and Isolation, FDI).

Cependant certains types de commande active sont parfois difficiles à classer et de ce fait, la classification ci-après n'est pas exhaustive mais permet de se repérer parmi les grandes tendances actuelles.

- Loi de commande Re-séquencée ou control law re-scheduling

Une vision simple de la loi de commande tolérante aux défauts consiste à enregistrer au préalable des paramètres de gains pré-calculés. Ce concept est directement lié aux lois de commandes tolérantes aux défauts par re-séquencement (Control Law Re-scheduling (CLR)) qui est considéré pour les changements en aérodynamique (donc spécifique au domaine de l'aéronautique) : altitude, vitesse... . Dans les applications d'aéronautique, le mécanisme de CLR est déclenché par les données de vol. Des chercheurs comme (Rugh, 1992), (Shamma and Athans, 1992) et (Stiwell and Rugh, 1999), ont étudié ce type de commande. Les principaux dispositifs de la loi de commande par séquencement sont :

- Utilisation des mécanismes de FDI,
- Estimation d'état pour reconfiguration du régulateur,
- Lois de commande pré-calculées et enregistrées.

Un système muni d'une loi de commande séquencée peut être vu comme un système avec

une commande de retour d'état dont les gains sont ajustés par compensation. Cependant l'ajustement effectué par cette loi de commande ne tient pas compte des performances du système en boucle fermée pour compenser une action incorrecte de la CLR. Ceci implique une robustesse accrue du module de FDD car toute fausse alarme ou défaut non détecté pourrait entraîner une instabilité et conduire au désastre.

- Méthode de la pseudo-inverse

La méthode de pseudo-inverse (Gao and Antsaklis, 1991) est une référence des plus citées dans le domaine de commande tolérante active aux défauts du fait de sa simplicité de calcul et sa capacité à manipuler une très large classe de défauts, à condition qu'ils soient prédéfinis. La version de base de la méthode pseudo-inverse (il en existe plusieurs autres revisitées comme récemment dans (Staroswiecki, 2005)) considère un système linéaire nominal :

$$\begin{cases} x_{k+1} = Ax_k + Bu_k \\ y_k = Cx_k \end{cases} \tag{1.1}$$

avec loi de commande de retour d'état $u_k = Fx_k$, sous l'hypothèse que le vecteur d'état est connu. Le système en défaut se représente de la manière suivante :

$$\begin{cases}
 x_{k+1}^f = A_f x_k^f + B_f u_k^R \\
 y_k^f = C_f x_k^f
\end{cases}$$
(1.2)

où la nouvelle loi de commande reconfigurée est de structure équivalente, c'est-à-dire $u_k^R = F_R x_k^f$. Le but est de trouver la matrice de gain de retour d'état F_R telle que la "distance" entre les matrices d'état des systèmes nominaux et en défaut soit minimisée :

$$\begin{cases}
F_R = \underset{F_R}{arg \min} \|(A + BF) - (A_f + B_f F_R)\|_F \\
= B_f^+ (A + BF - A_f)
\end{cases}$$
(1.3)

où B_f^+ est la pseudo-inverse de la matrice B_f et $\|.\|_F$ la norme de Frobenius (Cf. Annexe B). Les avantages de cette approche résident dans le fait qu'elle est très appropriée pour une implémentation en ligne dûe à sa simplicité et que les changements sur le système causés par un défaut, sont calculés directement par (

- Placement de structure propre : eigenstructure assignment

La méthode par placement de structure propre (Liu and Patton, 1998) pour la reconfiguration de régulateur est une approche plus intuitive que l'approche par pseudo-inverse car elle vise à faire coïncider les structures propres (c.à.d les valeurs propres et les vecteurs propres) des matrices des systèmes nominaux et en défaut en boucle fermée. L'idée principale est d'assigner exactement les plus importantes valeurs propres de ces matrices tandis qu'en même temps l'approche minimise la différence de la norme 2 entre les différents vecteurs propres correspondants. La procédure a été développée aussi bien avec un retour d'état constant (Zhang and

Jiang, 1999a), (Zhang and Jiang, 2000) ainsi que par retour de sortie (Konstantopoulos and Antsaklis, 1996). Plus précisément, dans le cas de retour d'état, si λ_i , i = 1, 2, ..., N sont les valeurs propres de la matrice déclinant la boucle fermée A + BF avec une loi de commande de retour d'état $u_k = Fx_k$, et si v_i sont leurs vecteurs propres correspondants, la méthode par placement de structure propre calcule le gain F_R de retour d'état pour le modèle en défaut (

$$\begin{cases}
\text{Trouver } F_R \\
\text{tel que } (A_f + B_f F_R) v_i^f = \lambda_i v_i^f, i = 1, 2, \dots, N \\
\text{et } v_i^f = \arg \min_{v_i^f} \|v_i - v_i^f\|_{W_i}^2
\end{cases} \tag{1.4}$$

avec $arg\min \|v_i - v_i^f\|_{W_i}^2 = (v_i - v_i^f)^T W_i (v_i - v_i^f)$ où la matrice W_i est une matrice de pondération définie positive servant de degré de liberté supplémentaire. En d'autres termes le nouveau gain F_R est synthétisé de manière à ce que les pôles du système en boucle fermée coïncident avec les pôles du système nominal en boucle fermée; de même que les vecteurs propres des matrices d'état doivent être les plus proches possibles. Du fait que les valeurs et les vecteurs propres déterminent la forme de la réponse du système en boucle fermée, le but est donc de préserver la dynamique du système en boucle fermée la plus proche possible de celle dans le cas nominal. Ainsi, la méthode par placement de structure semble garantir la stabilité du système en boucle fermée. La charge de calcul ne semble pas importante par le fait que la solution de l'expression analytique (

- Neuro-Flou

Ces méthodes basées sur des réseaux de neurones et de la logique floue, ont aussi reçu une grande attention de la part de la communauté s'intéressant à la commande tolérante aux défauts. Ces méthodes ont le principal avantage de très bien s'appliquer sur des systèmes non linéaires habituellement modélisés par des modèles flous de Takagi-Sugeno (Takagi and Sugeno, 1985). Les modèles de Takagi-Sugeno se représentent par des 'règles' (rules) de la façon suivante : IF $z(t) \in M_j$ THEN

$$\begin{cases} \dot{x}(t) = A_j x(t) + B_j u(t) \\ y(t) = C_j x(t) + D_j u(t) \end{cases}$$

$$(1.5)$$

avec M_j représentant un ensemble flou et $j \in [1, \ldots, r]$ représentant le nombres de règles. Les capacités d'apprentissage de ces méthodes rendent possible l'adaptation du modèle à la suite de l'occurrence d'un défaut sur le système. Pour plus de détails sur ces méthodes neuro-flou pour le FTC, le lecteur intéressé pourra se référer aux travaux de (Chen and Narendra, 2001) concernant la synthèse d'une loi de commande adaptative utilisant les multi-modèles, (Diao and Passino, 2001) pour une commande tolérante au défauts appliquée sur un moteur, (Lopez-Toribio et al., 1998), (Lopez-Toribio et al., 1999) et (Patton and Lopez-Toribio, 2000) pour une loi de commande tolérante basée sur une représentation floue de type Takagi-Sugeno. Cette dernière approche a pour mérite de traiter des systèmes non linéaires et considère notamment des représentations multi-modèles avec des fonctions d'activation floues c.à.d définies de manière arbitraires et ne tenant pas compte de l'apparition d'un défaut. Elles sont synthétisées de telle manière que la dynamique du modèle représente

au mieux la dynamique du système. Ces fonctions d'activation sont parfois fondées sur un banc d'observateurs qui considèrent un ensemble restreint de défaut pouvant survenir sur le système.

- Linéarisation par retour ou principe d'identification en ligne

Les régulateurs linéaires fonctionnent généralement correctement pour des petites variations de l'état ou de variables. Le concept de linéarisation par retour (feedback linearization) peut être utilisé pour compenser les effets liés aux non linéarités. Ces techniques ont été utilisées en aéronautique (Meyer and Hunt, 1984) et (Lane and Stengel, 1988). Les défauts sont identifiés en estimant les paramètres des équations du mouvement de l'avion en utilisant les moindres carrés récursifs. Les paramètres estimés sont alors utilisés pour mettre à jour les nouveaux paramètres du régulateur. Étant donné qu'un avion a de nombreux paramètres à surveiller, des difficultés peuvent survenir quant à l'identification des paramètres.

- Approches par modèles de référence

Cette approche est une alternative de l'approche de linéarisation par retour où l'on considère 3 stratégies : Explicite (Morse and Ossman, 1990), Implicite (Huang and Stengel, 1990) et enfin l'approche Multiple Model Kalman filtering (Napolitano and Swaim, 1991). L'approche par modèles de référence est une méthode attractive pour la nouvelle synthèse du régulateur d'un système associé à une commande tolérante aux défauts. En effet, le but est d'émuler les caractéristiques des performances du modèle désiré en présence ou non de défauts et de défaillances. Classiquement, l'approche de poursuite de modèles (Model Following), considère un modèle de référence de la forme :

$$\begin{cases} x_{k+1}^{M} = A_{M} x_{k}^{M} + B_{M} r_{k} \\ y_{k}^{M} = C x_{k}^{M} \end{cases}$$
 (1.6)

où r_k est un signal de trajectoire de référence et x_k^M l'état du modèle de référence. Le but est de calculer des matrices de gains K_r et K_x telles que la commande par retour d'état avec le système (

$$u_k = K_r r_k + K_x x_k \tag{1.7}$$

permettant d'être le plus proche possible du modèle de référence. Ainsi, le modèle de référence et le système en boucle fermée sont représentés sous la forme suivante :

$$\begin{cases} x_{k+1}^{M} = A_{M}x_{k}^{M} + B_{M}r_{k} \\ y_{k+1} = (CA + CBK_{x})x_{k} + CBK_{r}r_{k} \end{cases}$$
 (1.8)

tel que le "Perfect Model Following" puisse être réalisé en sélectionnant :

$$K_x = (CB)^{-1}(A_M - CA)$$

 $K_r = (CB)^{-1}B_M$ (1.9)

Ces gains sont obtenus si le système est carré c.à.d si dim(y) = dim(u) et que l'inverse de la matrice CB existe. Lorsque les matrices du système (

- Commande Adaptative

La commande adaptative est une commande très appropriée dans le terme de commande Active tolérante aux défauts. En effet, ce type de commande a pour capacité d'adapter automatiquement les paramètres du régulateur en fonction des changements du système. Ce type de méthode ne requiert donc pas de module FDD comme c'est le cas dans les schémas de AFTC. Les méthodes de commandes avec paramètres linéaires variant dans le temps ou Linear Parameter Varying (LPV) dédiées au FTC sont incluses dans la classe des commandes adaptatives comme celles développées dans la thèse de (Kanev, 2004). D'autres méthodes adaptatives comme (Landau, 1999), (Jiang et al., 2003), (Dionisio et al., 2003) et (Boskovic and Mehra, 2003) illustrent les propos de la commande adaptative. Cependant, ces méthodes n'utilisent pas le FDI, il n'y a pas de module de supervision et des problèmes de convergence lors de l'estimation de paramètres peuvent apparaître.

Nous allons expliciter plus en détails une approche basée sur les multi-modèles. Après un bref aperçu de la commande par multi-modèles en l'absence de défauts, nous présenterons diverses approches de commande active tolérante en multi-modèles.

1.1.5 Approche Multi-Modèles

Dans cette section, nous allons focaliser notre attention sur des méthodes dites multimodèles utilisées pour des objectifs de reconfiguration de la loi de commande et de diagnostic. L'approche Multi-Modèle est basée sur un ensemble de modèles $j=1,\ldots,N$ décrivant le système dans diverses conditions opératoires selon la représentation d'état suivante :

$$\begin{cases}
 x_{k+1} = f_j(x_k, u_k) \\
 y_k = g_j(x_k, u_k)
\end{cases}$$
(1.10)

où $f_j(x_k, u_k)$ et $g_j(x_k, u_k)$ sont des fonctions connues pour chaque modèle j. Ces modèles sont souvent considérés comme des modèles de défauts, où chaque modèle représente un type de défaut. Ainsi, pour chaque modèle j, un régulateur R_j est synthétisé. L'objectif est de synthétiser en ligne la loi de commande à appliquer au système au travers une combinaison pondérée, de différentes lois de commande issues de chaque régulateur R_j (Athans $et\ al.$, 2005) dans "Issues on Robust Adaptive Feedback Control" session plénière du 16ème World IFAC, (Maybeck and Steven, 1991), (Zhang and Jiang, 2001) et (Demetriou, 2001). Cette loi de commande pondérée est également définie comme une conjugaison de lois de commande, en anglais "blending control law" (Griffin and Maybeck, 1991), (Tayebi and Zaremba, 2002), (Theilliol $et\ al.$, 2003 a). La figure (

$$u_k = \sum_{j=1}^{M} \varphi_j(\eta) \ u_k^j , \qquad (1.11)$$

où u_k^j représente la loi de commande générée par le régulateur R_j et $\varphi_j(\eta)$ représente la variable d'interpolation en fonction de η , elle-même dépendant des variables du système (état, entrée, ...). Ainsi, $\varphi_j(\eta)$ peut être considérée comme un paramètre dépendant du temps. Cette fonction peut être aussi calculée par l'intermédiaire de la sortie estimée du système (comme détaillé dans les paragraphes suivants), ou du résidu de sortie d'un filtre, ou grâce à la connaissance du comportement physique du système comme par exemple dans le cadre de la logique floue avec les règles d'inférences (Tanaka et al., 1996).

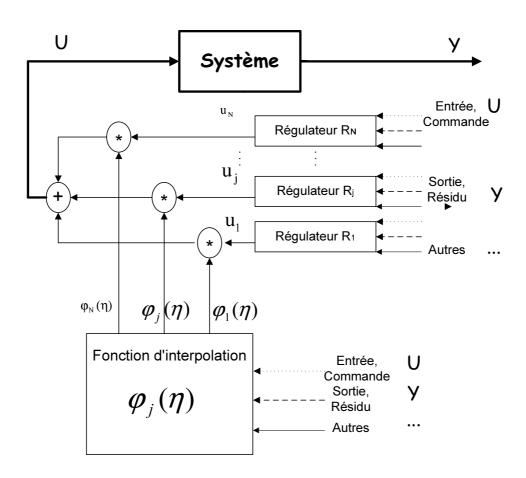


Fig. 1.2: Principe de la commande multi-régulateurs

Dans le cadre des multi-modèles représentant chacun un défaut particulier, les désavantages résident dans le fait qu'un nombre fini et prédéterminé de défauts est capable d'être détecté. En effet, selon la plupart des approches multi-modèles proposées, celles-ci ne considèrent qu'un seul défaut pouvant intervenir à la fois sur le système et que par conséquent un seul modèle j est sélectionné. Si le modèle représentant le système à l'instant k n'appartient pas à l'ensemble des modèles prédéfinis, la commande alors associée n'est pas optimale correspondant à une pondération inadéquate de plusieurs modèles à la fois conduisant le système à l'instabilité.

La commande multi-contrôleur, en l'absence de défauts, est également développée afin d'asservir un système non linéaire par l'intermédiaire de l'interpolation des lois de commande u_k^j issues des régulateurs locaux synthétisés autour de M points de fonctionnement différents comme

nous l'illustrons à la figure (

A) Multiple Model Switching and Tuning (MMST)

L'approche multi-modèle concerne plus particulièrement la commande reconfigurable, notamment avec la méthode Multiple Model Switching and Tuning (MMST) (Jones, 2002), (Kanev, 2004). Lorsqu'un défaut apparaît, la stratégie MMST conduit à commuter sur une loi de commande pré-calculée correspondant à une situation donnée. Ainsi, chaque scenario de défaut est décrit par un modèle différent. Ces modèles sont implantés en parallèle, où chacun possède un régulateur propre comme illustré à la figure (

$$S = \begin{cases} \dot{x} = A_0(p(t))x + B_0(p(t))u \\ y = C_0(p(t))x \end{cases}$$
 (1.12)

avec $x \in \mathbb{R}^n$, $u \in \mathbb{R}^m$, $y \in \mathbb{R}^k$, $A_0 \in \mathbb{R}^{n \times n}$, $B_0 \in \mathbb{R}^{n \times m}$, $C_0 \in \mathbb{R}^{k \times n}$ et $p(t) \in \mathcal{S} \in \mathbb{R}^l$ définissent les paramètres du système. p(t) varie dans le temps de manière brutale et représente les scénari de défauts.

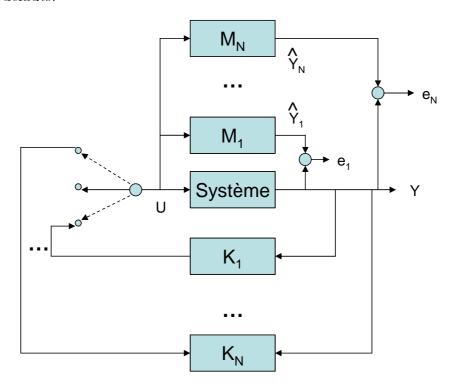


Fig. 1.3: Schéma de principe de la méthode Multiple Model Switching and Tuning

L'ensemble de modèles \mathcal{M} est un ensemble de N modèles linéaires

$$\mathcal{M}: \{M_1, \dots, M_N\} \tag{1.13}$$

tel que

$$M_j = \begin{cases} \dot{x}_j = A_j x_j + B_i u \\ y_j = C_i x_j + D_i u \end{cases}$$

$$\tag{1.14}$$

où le modèle M_j correspond à un ensemble de paramètres particuliers $p_j \in \mathcal{S}$. Un régulateur stabilisant K_j est synthétisé pour chaque modèle $M_j \in \mathcal{M}$.

La loi de commande est établie de la façon suivante : à chaque instant, le modèle le plus proche, en terme de dynamique, du système courant(c.à.d le plus apte à représenter le comportement dynamique du système), est déterminé en calculant un indice de performance $J_j(t)$, fonction des erreurs $\varepsilon_j(t)$ entre les sorties estimées du modèle M_j et les mesures à l'instant t (Narendra et al., 1995):

$$J_{j}(t) = \alpha \varepsilon_{j}(t)^{2} + \beta \int_{0}^{t} e^{-\lambda(t-\tau)} \varepsilon_{j}^{2}(\tau) d\tau$$

$$\alpha \ge 0, \beta > 0, \lambda > 0$$
(1.15)

où α et β sont choisis pour donner une combinaison désirée des mesures exactes à court et long termes. Un facteur λ assure que l'indice de performance $J_j(t)$ est borné en fixant un seuil maximum à ε_j . Le couple modèle/régulateur, M_j/K_j possédant le plus petit index est alors choisi et une période d'attente $T_{min}>0$ est imposée pour prévenir des commutations trop rapides. Les algorithmes MMST inclus une partie "tuning" qui apparaît durant la période où le régulateur K_j est actif. Or durant cette période, les paramètres du modèle M_j correspondant sont réactualisés en utilisant une technique appropriée d'identification (Astrom and Wittenmark, 1995). Le théorème suivant énonce des résultats de stabilité de cette approche MMST:

Théorème 1 (Narendra et al., 1995) Considérons le système (

- le temps d'attente $T_{min} \in (0, T_s)$
- et qu'il existe au moins un modèle M_j avec erreur de paramètres $\|\widehat{p}_j p_j\| < \mu_s(p, T_{min})$

alors tous les signaux de tous les systèmes, en fonction des indices de performances $J_j(t)$, sont uniformément bornés. Ici, T_s dépend uniquement de S, et μ_s dépend de β , λ , α et S.

Ainsi, le théorème

Plusieurs études ont utilisées ce type d'approche. Dans (Boskovic and Mehra., 1998) et (Boskovic et al., 2000), un régulateur MMST est consacré à un avion. 11 modèles ont été requis pour couvrir les scénari de défauts et un intervalle de commutation de 25ms a été fixé pour assurer la stabilité. Cependant, cette approche ne pouvait pas considérer de défauts multiples. Toujours dans le domaine de l'aviation, (Boskovic and Mehra, 1999) utilise un schéma MMST avec pertes d'efficacité des actionneurs. Seulement 5 modèles sont requis pour satisfaire aux conditions de performance mais encore une fois l'accommodation aux défauts multiples ne peut être réalisée.

Pour des systèmes avec relativement peu de modes de défaillances ou des modes parfaitement connus, la commutation de modèles multiples possède l'avantage d'être très rapide et stable. Des travaux dans le cadre non linéaire de la commande MMST (Narendra et al., 2003) ont permis d'étendre des résultats du cadre linéaire vers le non linéaire. Cependant, les défauts non répertoriés peuvent toujours apparaître constituant la principale limitation de ces méthodes. L'explosion du nombre de modèles avec le nombre de défauts simultanés considérés représente

également une autre limitation.

Un autre aspect de la commutation entre modèles peut être géré par des automates dans le cadre d'une approche hybride alliant un système sous forme continue et un automate discret gérant les transitions entre les différents modèles. La commande hybride tolérante aux défauts se base sur un aspect commun avec l'approche multi-modèle dans le sens où cette approche considère que le système peut être représenté par un ensemble fini N de modèles, où chaque modèle représente un mode particulier. Ce mode est directement lié au défaut apparaissant sur le système (Clements, 2003) dans le cadre de la commande hybride et (Cocquempot et al., 2003) dans le cadre du développement du diagnostic sur les systèmes hybrides. Scott Clements considère notamment un graphe permettant d'allier à la fois la partie discrète du système et la partie continue avec les équations dynamiques du système. La commutation d'un mode de défaut à un autre se fait au travers ce type de graphe que l'on retrouve dans le livre de (Blanke et al., 2003). La communauté scientifique se penche sur la question et sur les formalismes à adopter en ce qui concerne l'alliance des travaux provenant du domaine discret avec celui provenant du domaine continu comme dans l'AS Systèmes Dynamiques Hybrides.

B)Interacting Multiple Models (IMM)

La méthode d'Interaction des Modèles Multiples (en anglais Interacting Multiple Model) repousse les limitations de la méthode MMST en considérant que les modèles de défauts sont représentés par une combinaison convexe de modèles dans un ensemble de modèles. (Zhang and Jiang, 1999b) considèrent chaque défaut comme un modèle particulier tout en commandant les systèmes décrits sous forme de systèmes stochastiques hybrides linéaires à partir de l'algorithme d'IMM développé par Blom (Blom and Bar Shalom, 1988) et amélioré par (Rong et al., 2002).

Une modélisation mathématique plus appropriée est obtenue en utilisant une modélisation des systèmes sous forme « hybrides » stochastiques qui diffèrent des systèmes stochastiques de type classique par le fait que les premiers peuvent changer d'état de façon abrupte. (Val et al., 2002) traitent des systèmes linéaires à sauts Markoviens (Markov jump linear systems) lorsqu'une partie de l'état n'est pas mesurée afin de synthétiser un régulateur.

Un système linéaire discret stochastique soumis à des défauts peut être considéré comme un système hybride avec un séquencement de mode traduit sous forme de chaînes de Markov en assimilant les défauts à des modes de fonctionnement en tenant compte des probabilités d'occurrence des défauts/défaillances. Néanmoins, (Blom and Bar Shalom, 1988) ont développé cet algorithme pour résoudre le problème de l'estimation d'état au sein des systèmes linéaires dont les coefficients basculent brusquement d'un modèle à l'autre afin d'être exploité à des fins de commande de systèmes (Li and BarShalom, 1993). (Zhang and Li, 1998) ont été parmi les premiers à prendre en compte une telle hypothèse considérant l'algorithme IMM, pour synthétiser une approche permettant de détecter et de localiser ainsi des probabilités d'occurrence entre les défauts, et d'estimer le vecteur d'état de chaque filtre au moyen des modes de probabilités.

L'interaction des modèles multiples consiste en un banc de filtres de Kalman où chaque filtre représente un mode de fonctionnement du système. Cette technique a la capacité d'estimer l'état sous une réduction significative du bruit, sans pour autant augmenter la charge de calcul (Li and BarShalom, 1993). L'estimation initiale au début de chaque cycle, est une combinaison

appropriée des estimations récentes, ce qui permet à l'algorithme IMM de prendre en compte l'historique des modes du système. La méthode d'interaction des modèles multiples, utilise une modélisation de changement abrupt du système sous forme hybride. La probabilité de chaque modèle est calculée pour indiquer le mode actuel et le mode de transition à chaque instant.

Le système se définit sous la forme d'un modèle dynamique hybride selon la représentation suivante :

$$\begin{cases} x(k+1) \triangleq A(k, m(k+1))x(k) + B(k, m(k+1))u(k) + \omega(k, m(k+1)), \\ y(k) \triangleq C(k, m(k+1))x(k) + \nu(k, m(k+1)), \end{cases}$$
(1.16)

où $x \in \mathbb{R}^n$ est l'état, $y \in \mathbb{R}^m$ est la sortie, $u \in \mathbb{R}^p$ est l'entrée du système, ω et ν caractérisent les bruits de système et de sortie mutuellement indépendants à moyenne nulle et de matrices de covariance associées Q et R respectivement. m(k+1) représente le mode de fonctionnement du système à l'instant (k+1).

Considérons qu'un ensemble de \mathcal{M} modèles linéaires est utilisé pour réaliser une description du système original (

$$m_{j} \begin{cases} x(k+1) = (A(k) + \Delta A_{j}(k))x(k) + (B(k) + \Delta B_{j}(k))u(k) + \omega_{j}(k), \\ x(k+1) = A_{j}(k)x(k) + B_{j}(k)u(k) + \omega_{j}(k), \end{cases}$$
(1.17)

$$m_{j} \begin{cases} y(k) = (C(k) + \Delta C_{j}(k))x(k) + \nu_{j}(k), \\ y(k) = C_{j}(k)x(k) + \nu_{j}(k) & \forall j \in (1, 2, \dots, M), \end{cases}$$
(1.18)

où $\Delta A_j(k)$, $\Delta B_j(k)$, et $\Delta C_j(k)$, représentent des changements sur les composants du système, sur les actionneurs et sur les capteurs liés à l'occurrence des défauts. En l'absence de défauts, ces matrices sont considérées comme nulles.

L'ensemble $\mathcal{M} = [m_1, m_2, \dots, m_M]$ représente les modèles conçus pour décrire toutes les conditions de fonctionnement du système sous certaines hypothèses de défauts, ils sont nommés « modes » dans l'ensemble \mathcal{M} . Dans ce contexte, m_1 représente le mode de fonctionnement sans défaut et $[m_2, m_3, \dots, m_M]$ représentent les "modes" avec des conditions particulières de défauts.

Par ailleurs, le mode m(k) du système est défini comme une chaîne de Markov du premier ordre où à chaque instant d'échantillonnage, la probabilité de transition d'un mode m_i à un mode m_i peut être définie par :

$$\pi_{ij}(k) = P\{m(k) = j \mid m(k-1) = i\} \quad \forall m_j, m_j \in \mathcal{M},$$
 (1.19)

avec

$$\forall j \in (1, ..., M)$$
 $\Sigma_{j=1}^{M} \ \pi_{ij}(k) = 1,$ (1.20)

 π_{ji} est la probabilité de transition du mode m_j au mode m_i ; l'événement m_j qui a lieu au temps k est décrit par $m_j \triangleq \{m(k) = j\}$. La plus grande difficulté dans l'exploitation de l'algorithme IMM réside dans la détermination de la matrice π_{ji} .

C)Sélection de régulateur : controller switching

Cette approche représente un type de méthode de projection en commande active tolérante aux défauts. Le point de départ est un ensemble de modèles linéaires locaux qui représente la dynamique du système sous influence d'un défaut particulier prédéfini. Un régulateur est synthétisé pour chaque modèle puis sélectionné en fonction de la dynamique du système lorsqu'un modèle représente le plus fidèlement possible le système. Aucune pondération, interpolation ni "mélange" (mixing) des lois de commande définies pour chaque modèle n'apparaît, seul un régulateur est actif à un moment donné. Dans (Boskovic et al., 1999) et (Lemos et al., 1999) les sorties des modèles locaux sont comparées aux sorties mesurées du système pour définir une génération de résidus à partir de laquelle on définit quel modèle représente le mieux le système à un instant t. Récemment, une approche (Yamé and Kinnaert, 2003) a été proposée où la commutation est réalisée par la surveillance du système en boucle fermée. Dans (Mahmoud et al., 2001) une attention particulière a permis la synthèse d'un banc de régulateurs, en supposant que l'apparition des défauts sont des procédés markoviens du premier ordre avec des matrices de transitions de probabilités données. Il existe des approches développées sur la commutation de régulateur notamment dans (Maki et al., 2001) et (Médar et al., 2002). Le problème de réduction des périodes transitoires lors des commutations a été récemment considéré par (Kovacshazy et al., 2001). Le principal inconvénient de cette approche est de ne considérer l'apparition que d'un seul défaut à la fois. En revanche, la modélisation des incertitudes peut être prise en compte en synthétisant des régulateurs locaux robustes aux incertitudes.

La figure (

Il faut toutefois noter que la plupart du temps dans la synthèse de loi de commande tolérante aux défauts, il est supposé un "principe de séparation" des modules FDI/FTC comme par exemple dans la reconfiguration de la loi de commande des systèmes LPV (Ganguli et al., 2002). En effet, le module FDI est la plupart du temps considéré comme "parfait" permettant une détection et une estimation en ligne du défaut sans incertitudes ni retard à la détection. Des travaux de recherche (Shin, 2003) soulignent ce problème encore ouvert, où la phase transitoire liée au retard à la détection du module FDI est quantifiée afin de définir si le système peut être rendu instable par ce temps de retard. Ce problème définit à lui seul un problème d'automatique ainsi qu'un axe de recherche d'interaction commande/diagnostic (Jacques et al., 2003) lors de la reconfiguration de la loi de commande et nous nous placerons dans un contexte où le module de FDI sera supposé parfait.

Dans cette première section, nous avons classé les plus importantes approches de commande tolérante aux défauts notamment celles utilisant l'approche multi-modèle. Nous nous focalisons désormais sur les méthodes dédiées aux systèmes non linéaires représentés par des multi-modèles.

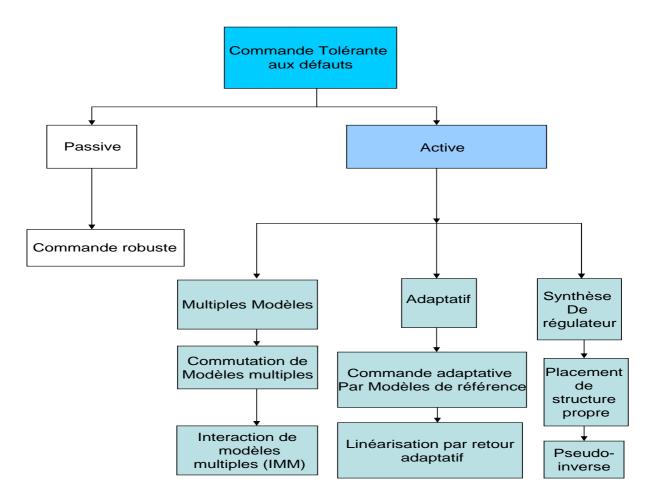


FIG. 1.4: Schéma récapitulatif des méthodes FTC

1.2 Diagnostic de défauts à base de multi-modèles

Précédemment, nous avons montré comment l'approche multi-modèle pouvait être utilisée dans le cadre de la commande, nous proposons de découvrir comment ceux-ci ont été utilisés à des fins de diagnostic de défauts.

Le développement du diagnostic de défauts en Automatique a principalement été réalisé par l'étude des systèmes linéaires (Basseville and Nikiforov, 1993), (Gertler, 1998), (Chen and Patton, 1999), etc. Afin de résoudre le problème du diagnostic de défauts à base de modèles sur des systèmes réels, le diagnostic dédié aux systèmes non linéaires a fait l'objet d'une attention particulière. Des articles de référence illustrent l'attractivité et la vitalité du domaine non linéaire en diagnostic tels les travaux de (Hammouri et al., 2001) et (Persis and Isidori, 2001) pour les méthodes géométriques, (Alcorta-Garcia and Frank, 1997) pour les méthodes analytiques. Toutefois, ces méthodes s'utilisent principalement lorsqu'il existe un modèle mathématique représentant le système sur toute la plage de fonctionnement alors que bien souvent la modélisation ne représente le système que pour une plage de fonctionnement réduite. Aussi, si les représentations non linéaires peuvent être difficiles à obtenir, une stratégie consiste à représenter le système non linéaire autour de plusieurs points de fonctionnement

où les modèles sont connus (Johansen and Foss, 1993) et (Porfirio *et al.*, 2003). Cette représentation se regroupe sous la dénomination des multi-modèles où la dynamique du système est représentée par une pondération de modèles locaux qui ne sont pas forcément linéaires.

Dans le cadre de la représentation multi-modèles, deux tendances émergent toutefois : les multi-modèles où chaque modèle représente un défaut et les multi-modèles où chaque modèle représente le système autour d'un point de fonctionnement.

1.2.1 Les multi-modèles de défauts

Un algorithme d'estimation d'état à base de multi-modèles (Multiple Model Adaptive Estimation) couplé avec un algorithme de commande a été proposé pour résoudre le problème du contrôle des systèmes dynamiques linéaires stochastiques en présence de défauts (ou incertitudes paramétriques). Cet algorithme a notamment été utilisé dans le domaine de l'aéronautique (Stepaniak and Maybeck, 1997), (Hamlon and Maybeck, 1997). (Eide and Maybeck, 1996) ont développé un banc de filtres de Kalman synthétisés pour des défauts actionneurs et capteurs spécifiques, permettant d'une part la détection et l'isolation du défaut (Dai et al., 1997), ainsi qu'une estimation de l'état en ligne. Le MMAE, récemment retravaillé dans (Athans et al., 2005), est basé sur le principe que le système en défaut peut être modélisé par un modèle particulier en fonction du type de défaut rencontré. La modélisation repose sur des modèles stochastiques de la forme :

$$m_{j} \begin{cases} x_{k+1} = A_{j}x_{k} + B_{j}u_{k} + \omega_{k}^{j} \\ y_{k} = C_{j}x_{k} + D_{j}u_{k} + \nu_{k}^{j} \end{cases}$$
(1.21)

où $x \in \mathbb{R}^n$ est le vecteur d'état, $u \in \mathbb{R}^p$ est le vecteur de commande, $y \in \mathbb{R}^m$ est le vecteur de sortie, ω_k^j et ν_k^j sont deux bruits blancs gaussiens, de covariance Q_j et R_j respectivement. Les matrices A_j, B_j, C_j, D_j sont des matrices d'état connues et de dimensions appropriées. Afin de réaliser simultanément l'estimation d'état et l'identification du défaut, l'algorithme suppose qu'une seule hypothèse m_j peut être vérifiée à la fois parmi les N valeurs possibles. De ce fait, à chacune des hypothèses m_j correspond un système linéaire stochastique à temps discret décrivant un mode de fonctionnement identifié et déterminé. Les hypothèses considèrent que le résidu résultant de la différence entre le système et chaque filtre, suit une loi de distribution normale centrée permettant de calculer une densité de probabilité. A partir du Théorème de Bayes, le calcul de la probabilité de chaque modèle p_k^j est réalisée de la manière suivante :

$$p_k^j = Pr[m = m_j | y_k = y_j] (1.22)$$

Cette probabilité p_k^j est la probabilité que le système peut être représenté par le mode m_j connaissant le vecteur des mesures de la sortie y à l'instant k et peut se calculer comme suit :

$$p_{k+1}^{j} = \frac{\wp_{k}^{j} p_{k}^{j}}{\sum_{l=1}^{N} \wp_{k}^{l} p_{k}^{l}}$$
 (1.23)

Cette dernière utilise une fonction de densité normale centrée, avec le résidu γ_k^j exprimant la différence entre la sortie du système et la sortie du jème filtre :

$$\wp_k^j = \frac{\exp\{-0.5(\gamma_k^j)^T(\Theta_k^j)^{-1}\gamma_k^j\}}{(2\pi)^{\psi/2}|\Theta_k^j|^{1/2}}$$
(1.24)

où la matrice Θ_k^j représente la matrice de variance du résidu et ψ la dimension du vecteur des résidus. Cette technique permet la reconstruction globale de l'état du système à partir des estimations d'état des modèles pondérés par les probabilités. L'état global se représente alors de la manière suivante :

$$\widehat{x}_{k+1} = \sum_{j=1}^{N} \widehat{x}_k^j p_k^j \tag{1.25}$$

Sur la figure (

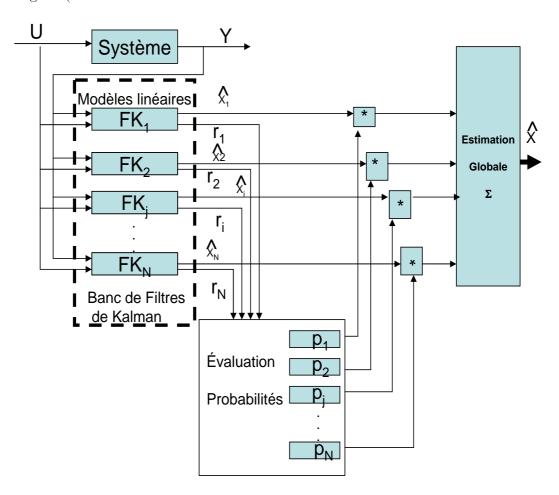


Fig. 1.5: Schéma général associé à l'algorithme MMAE

Ce paragraphe a développé l'approche MMAE où chaque modèle représente le système dans un type de défaillance particulière. Le mécanisme illustré à la figure (

1.2.2 Les multi-modèles autour de points de fonctionnement

La modélisation représente une étape indispensable pour la conduite de processus industriels. Cette étape est tout aussi nécessaire pour l'élaboration d'une loi de commande ou d'un schéma de diagnostic. La modélisation d'un processus vise donc à établir les relations qui lient les variables caractéristiques de ce dernier entre elles et à représenter d'une manière rigoureuse son comportement dans un domaine de fonctionnement donné.

L'approche multi-modèles a connu un intérêt certain depuis de nombreuses années. Les travaux de (Johansen and Foss, 1993), (Murray-Smith and Johansen, 1997) définissent l'idée de l'approche multi-modèles comme l'appréhension d'un comportement non linéaire d'un système par un ensemble de modèles locaux (linéaires ou non linéaires) caractérisant le fonctionnement du système dans différentes zones de fonctionnement. La motivation d'une telle approche découle du fait qu'il est souvent difficile de concevoir ou d'identifier un modèle tenant compte de toute la complexité du système étudié.

Depuis (Zadeh, 1965) qui fût un des instigateurs de la logique floue dans la decomposition des systèmes non linéaires en de multiples systèmes linéaires, d'autres comme (Takagi and Sugeno, 1985), (Tanaka et al., 1996) et (Zhao, 1995) ont suivi cette approche. L'approche floue propose un ensemble de règles "si prémisse alors conséquence" (IF-THEN-RULES), telle que la conséquence d'une règle est la sélection d'un modèle. Le modèle global est alors obtenu par l'agrégation des différents modèles locaux.

La modélisation de systèmes non linéaires par les multi-modèles a été d'un intérêt croissant comme il est possible de l'appréhender dans les travaux de (Hadjili and Wertz, 2002), (Bhagwat et al., 2003) et (Venkat et al., 2003). Ces derniers proposent notamment des fonctions de pondération à pente douce en fonction de l'entrée du système. (Zheng et al., 2002) modélisent un CSTR (Continuous Stirred Tank Reaction) par approche multi-modèles autour de différents points de fonctionnement caractéristiques du système. D'autre part, les travaux de (Leith and Leithead, 2000) sont orientés sur les fonctions de pondération douces des modèles en l'absence de défaut.

Dans le cadre de l'approche multi-modèle, les systèmes étudiés se représentent sous forme d'une interpolation entre les modèles linéaires locaux. Chaque modèle local est un système dynamique LTI valide autour d'un point de fonctionnement. Selon l'information disponible, plusieurs méthodes distinctes peuvent être utilisées pour l'obtention d'un multi-modèle. Deux méthodes sont principalement utilisées pour obtenir les modèles locaux d'une représentation multi-modèles d'un système non linéaire :

- Identification de type boîte noire lorsque le système non linéaire n'a pas de forme analytique,
- Linéarisation du système autour de plusieurs points de fonctionnement.

Si l'on ne dispose par exemple que des mesures d'entrées-sorties du système, il faut procéder par identification (Gasso *et al.*, 2002) en cherchant ou en imposant la structure multi-modèle recherchée (Johansen *et al.*, 1998).

Il est parfois possible en connaissant les équations qui régissent l'ensemble d'un système de définir un modèle unique non linéaire. Toutefois, il est bien souvent préférable de linéariser ce modèle pour pouvoir utiliser des techniques de commande ou de diagnostic faites pour les cas linéaires. Même si notre but n'est pas l'identification des systèmes non linéaires par les multi-modèles, un des points fondamentaux dans cette décomposition reste le choix du nombre ainsi que l'emplacement des points de fonctionnement afin de refléter au mieux l'évolution intrinsèque du système. Il est important de définir des critères pour une meilleure sélection des régimes linéaires :

- Stabilité des régimes de fonctionnement,
- Bonnes performances des régimes,
- Bonnes commutations entre les modèles.

Cependant, l'augmentation des problèmes liés à la commutation entre modèles et au temps de calcul n'est pas négligeable. De ce fait, il sera judicieux de choisir le nombre de modèles et la zone des modèles avec parcimonie (Gasso, 2000) même si ceci ne constitue pas notre problématique de recherche.

De manière à illustrer ces propos, considérons un système non linéaire pour lequel nous cherchons à obtenir une représentation multi-modèles permettant de décrire le comportement de ce système. Ainsi sur la figure (

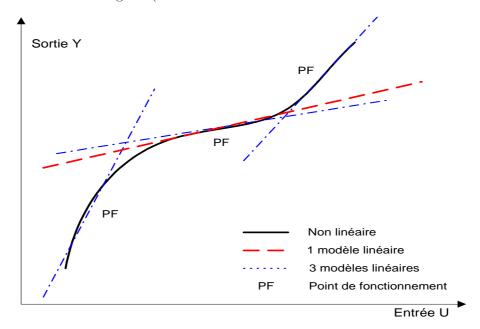


Fig. 1.6: Caractéristique statique : choix du nombre de modèles locaux.

Supposons qu'un ensemble de N modèles locaux $f_j(x(t), u(t))$ décrivant le comportement du système dans différentes zones de fonctionnement. Ces modèles peuvent être

construits par exemple à partir de connaissances physiques sur le fonctionnement du systèmes dans ces zones. La validité locale de chaque modèle f_j est indiquée par une fonction de validité $\beta_j(x(t), u(t))$ pour $j \in [1, ..., N]$. Le modèle global s'obtient de la manière suivante :

$$y_m(t) = \frac{\sum_{j=1}^{N} \beta_j(x(t), u(t)) f_j(x(t), u(t))}{\sum_{j=1}^{N} \beta_j(x(t), u(t))}$$
(1.26)

et posons

$$\gamma_{j}(x(t), u(t)) = \frac{\beta_{j}(x(t), u(t))}{\sum_{j=1}^{N} \beta_{j}(x(t), u(t))}$$
(1.27)

En combinant alors les équations (

$$y_m(t) = \sum_{j=1}^{N} \gamma_j(x(t)) f_j(x(t), u(t))$$
(1.28)

La fonction d'activation $\gamma_j(x(t),u(t))$ est normalisée et détermine le degré d'activation du jème modèle local associé. Selon la zone où évolue le système, cette fonction indique la contribution plus ou moins importante du modèle local correspondant dans le modèle global(multi-modèle). Elle assure un passage progressif de ce modèle aux modèles locaux voisins. Ces fonctions sont généralement de forme triangulaire, sigmoïdale ou gaussienne et satisfont aux propriétés suivantes :

$$\sum_{j=1}^{N} \gamma_j(x(t), u(t)) = 1$$

$$0 \le \gamma_j(x(t), u(t)) \le 1$$

$$(1.29)$$

Soient f et g les fonctions non linéaires continues telles que le système non linéaire étudié ait une représentation d'état de la forme :

$$\begin{cases} x_{k+1} = f(x_k, u_k) \\ y_k = g(x_k, u_k) \end{cases}$$
 (1.30)

où $x \in \mathbb{R}^n$ est le vecteur d'état et $u \in \mathbb{R}^p$ est le vecteur d'entrée. Nous supposerons dans la

suite que le comportement dynamique du système non linéaire (

$$x_{k+1} = \sum_{j=1}^{N} \gamma_{j}(x_{k}, u_{k}) (A_{j}x_{k} + B_{j}u_{k} + \Delta X_{j})$$

$$y_{k} = \sum_{j=1}^{N} \gamma_{j}(x_{k}, u_{k}) (C_{j}x_{k} + D_{j}u_{k} + \Delta Y_{j})$$
(1.31)

avec

$$A_{j} = \frac{\partial f(x, u)}{\partial x} \Big|_{\substack{x=x_{j} \\ u=u_{j}}}, \quad B_{j} = \frac{\partial f(x, u)}{\partial u} \Big|_{\substack{x=x_{j} \\ u=u_{j}}}, \quad \Delta X_{j} = f(x_{j}, u_{j}) - A_{j}x_{j} - B_{j}u_{j}$$

$$C_{j} = \frac{\partial g(x, u)}{\partial x} \Big|_{\substack{x=x_{j} \\ u=u_{j}}}, \quad D_{j} = \frac{\partial g(x, u)}{\partial u} \Big|_{\substack{x=x_{j} \\ u=u_{j}}}, \quad \Delta Y_{j} = g(x_{j}, u_{j}) - C_{j}x_{j} - D_{j}u_{j}$$

$$(1.32)$$

La précision de la modélisation souhaitée dépend directement du nombre de modèles locaux N, de la complexité du système non linéaire ainsi que du choix des fonctions d'activation devant satisfaire les relations (

Dans le cas où le point de fonctionnement appartient à l'ensemble des points d'équilibre défini par $f(x_j, u_j) = g(x_j, u_j) = 0$, les expressions de Δ_{X_j} et Δ_{Y_j} se simplifient de la sorte :

$$\Delta_{X_j} = -A_j x_j - B_j u_j \tag{1.33}$$

$$\Delta_{Y_j} = -C_j x_j - D_j u_j \tag{1.34}$$

La représentation mathématique des multi-modèles s'apparente aussi à des formes de modélisation de systèmes de type Linéaires à Paramètres Variants dans le temps ou LPV, dont les paramètres varient dans le temps. Certains systèmes LPV sont intéressants à étudier notamment les systèmes LPV affines de la forme $A_0 + \sum_{j=1}^N \Theta_k^j A_j$. De nombreux travaux existent dans ce domaine attractif où (Arzelier et al., 2001) et (Reberga et al., 2005) traitent des diverses formes de modèles pouvant s'écrire sous une forme LPV. Une autre représentation intéressante des systèmes LPV est la représentation polytopique utilisée par (Angelis, 2001), (Hensen et al., 2000), ainsi que dans (Glover, 2003), (Angeli et al., 2000) où ceux-ci modélisent les systèmes non linéaires sous une forme polytopique $\sum_{j=1}^{2^N} \rho_k^j \widetilde{A}_j$ (Voir Annexe D), similaire à celle utilisée en multi-modèles. Cette forme polytopique est une généralisation des systèmes affines. Dans (Rosinova and Vesely, 2004), il est question d'un système avec des incertitudes paramétriques mis sous forme LPV affine puis sous forme polytopique. On notera toutefois que la présence de défauts y est rarement mentionnée et reste donc peu traitée.

Nous allons désormais traiter des multi-modèles, au sens de modèles définis autour de plusieurs points de fonctionnement, et de diagnostic de manière générale permettant la détection, l'isolation et l'estimation des défauts.

1.2.3 Représentation multi-modèle en présence de défauts

Afin d'avoir un modèle qui représente à la fois le système autour des différents points de fonctionnement considérés tout en tenant compte des défauts actionneurs et capteurs, nous redéfinissons la représentation d'état. En reprenant l'équation non linéaire (

La dynamique du système (

$$\begin{cases} x_{k+1} = A_j x_k + B_j u_k + F_{xj} d_k + \Delta_{X_j} \\ y_k = C_j x_k + D_j u_k + F_{yj} h_k + \Delta_{Y_j} \end{cases}$$
 (1.35)

où les matrices (A_j, B_j, C_j, D_j) sont des matrices invariantes définies autour du jème point de fonctionnement (\mathcal{PF}_j) . La matrice de distribution des défauts actionneurs et capteurs sont représentées respectivement par $F_{xj} \in \mathbb{R}^{n \times p}$ et $F_{yj} \in \mathbb{R}^{m \times n}$. $d_k \in \mathbb{R}^p$ représente le vecteur des défauts actionneur et $h_k \in \mathbb{R}^p$ le vecteur des défauts capteur. Δ_{X_j} et Δ_{Y_j} représentent les vecteurs constants dépendants du jème point de fonctionnement définis précédemment. Ainsi, de manière similaire au formalisme de (Johansen et al., 1998) en l'absence de défauts, le système linéaire (

$$S_j = \begin{bmatrix} A_j & B_j & F_{x_j} & \Delta_{X_j} \\ C_j & D_j & F_{y_i} & \Delta_{Y_j} \end{bmatrix}, \forall j = [1, \dots, N]$$

$$(1.36)$$

Afin de pouvoir représenter le système non linéaire (

$$S_k := \left\{ \sum_{j=1}^N \rho_k^j S_j : \rho_k^j \ge 0, \sum_{j=1}^N \rho_k^j = 1 \right\}$$
 (1.37)

Cette séquence S_k caractérise à chaque instant le système non linéaire et par conséquent, la dynamique du système non linéaire peut être représentée par un ensemble convexe de multiples modèles linéaires invariants. Comme considéré dans (Murray-Smith and Johansen, 1997) et (Theilliol et al., 2003b), un modèle apte à représenter toute la plage de fonctionnement du système est constitué de N modèles locaux pondérés par des fonctions de pondération ρ_k^j . Ces fonctions de pondération ou d'activation ρ_k^j $\forall j \in [1, ..., N]$ évoluent dans un ensemble convexe Ω tel que

$$\Omega := \left\{ \rho_k^j : \rho_k^j \ge 0, \sum_{j=1}^N \rho_k^j = 1 \right\}$$
 (1.38)

Ces fonctions de pondération ρ_k^j dépendent du vecteur d'état x_k du système ainsi que de l'entrée u_k du système telles que celles-ci s'écrivent de manière similaire à (

D'après (Park et al., 1994) et sans nuire à la généralité de la méthode présentée, les défauts capteurs considérés comme des incertitudes structurées, peuvent être interprétés mathématiquement comme des défauts actionneurs par une augmentation d'état en supposant une dynamique lente du défaut capteur. Il est alors possible de redéfinir la représentation (

$$S_{j} = \begin{bmatrix} A_{j} & B_{j} & F_{j} & \Delta_{X_{j}} \\ C_{j} & D_{j} & \Delta_{Y_{j}} \end{bmatrix}, \forall j = [1, \dots, N]$$

$$(1.39)$$

Cette dernière représentation du système non linéaire va nous permettre dans les chapitres suivants, de pouvoir avoir une représentation à la fois du système autour de différents points de fonctionnement tout en pouvant effectuer un travail de diagnostic de défauts.

1.3 Conclusions et problématique

Afin de mettre en exergue l'intérêt de nos travaux, nous avons classé différentes méthodes de commande active tolérante aux défauts notamment celles utilisant l'approche multi-modèle, en énumérant leurs avantages et leurs inconvénients.

Il est apparu au cours de cette étude que ces stratégies d'AFTC étaient essentiellement consacrées à des systèmes linéaires et le problème reste ouvert, en ce qui concerne le développement de stratégies pour des systèmes non linéaires ou variant dans le temps que sont majoritairement les systèmes industriels.

De plus, comme nous avons pu le constater, les méthodes développées se basent sur la détection et l'accommodation d'un seul défaut, ne permettant pas de traiter des défauts multiples. Il est essentiel de pouvoir, dans le cas de défauts multiples, développer une stratégie permettant d'une part de détecter, isoler et estimer plusieurs défauts à la fois et d'autre part, il apparaît intéressant de développer une stratégie qui tienne compte des incertitudes pour une meilleure prise de décision.

Dans l'approche multi-modèle, nous avons pû constater que les modèles représentent soit un type de défaut soit un modèle défini autour d'un point de fonctionnement. Très peu de stratégies multi-modèles permettent d'appréhender le multi-modèle avec des modèles issus d'identification locale avec une prise en compte des défauts incorporés sur ces modèles. De plus, peu d'approches multi-modèle s'attachent à rendre robuste aux défauts les fonctions d'activation.

Les hypothèses de travail sur lesquelles cette thèse repose sont : un système inconnu (dont les équations physiques nous sont inconnues (Athans et al., 2005)), avec des connaissances uniquement locales du système autour de plusieurs points de fonctionnement. Autour de ces PF, il est supposé que l'on dispose d'une représentation d'état du système ainsi que les entrées U_e^j et sorties Y_e^j du système associé. Ainsi, l'objectif est d'effectuer un diagnostic de défauts et plus tard, de remédier à l'occurrence de ces derniers par la reconfiguration sur une plage connue du système. Ceci afin de pallier la présence de défauts pour rejoindre les performances nominales du système autour de ces points de fonctionnement. Ce type d'hypothèses se retrouvent notamment dans la conduite des procédés chimiques industriels tels que les cuves de réaction (CSTR) dans (Gatzke and Doyle, 1999), (Zheng et al., 2002), (Ozkan et al., 2003) et (Wan and Kothare, 2004), où des modèles locaux sont identifiés parce qu'ils sont intéressants d'un point de vue rendement et\ou économique. Le procédé est vu comme un ensemble de modèles définissant des conditions de fonctionnement spécifiques. En aucun cas, un aspect plus approfondi sur la partie modélisation a été envisagé. Nous avons considéré que le nombre de modèles requis ou à considérer pour une plus grande plage de fonctionnement faisait partie

d'une recherche en soi (Gasso, 2000) et n'a pas été le but de cette thèse.

D'autre part, le diagnostic à base de filtres de Kalman sera basé sur la représentation du système inconnu au travers ses N modèles linéaires. Ceux-ci, à la manière d'(Athans et al., 2005), devront permettre une évaluation du système représenté par ces multi-modèles.

Les fonctions de pondération ou d'activation des différents modèles sont bien souvent issues de mesures sur le système (entrées-états-sorties). Or, il est évident que de telles mesures peuvent être sujettes aux défauts (ainsi que l'état du système) engendrant alors des fonctions d'activation corrompues par la présence de défaut et une mauvaise sélection du modèle représentant le système. Si l'on développe une stratégie permettant d'assurer la robustesse des fonctions d'activation, il est alors possible d'avoir à la fois une représentation de la dynamique du système non linéaire et d'avoir connaissance du ou des défauts présents sur le système. La stabilité de ce schéma FDD doit pouvoir être vérifiée pour permettre d'assurer la fiabilité du système en présence de défauts.

Ainsi réalisé, le schéma de diagnostic dédié aux systèmes non linéaires représentés par des multi-modèles, permet la synthèse d'une stratégie de commande active tolérante aux défauts sur de tels systèmes. Les stratégies d'AFTC en multi-modèles notamment, considèrent qu'une modélisation du système en défaut est disponible, restreignant le type et le nombre de défauts potentiellement détectables, ce qui est difficile et n'est pas toujours possible. Il est intéressant de pouvoir synthétiser une stratégie d'AFTC permettant de considérer dans un premier temps plusieurs défauts potentiels arrivants sur le système. Puis dans un second temps, il semble intéressant que la stratégie à développer puisse tenir compte de toute la plage de fonctionnement du système de manière analogue à celles vues dans le cadre multi-modèles précédemment et à l'image du schéma (

Chapitre 2

Synthèse d'un filtre de détection, d'isolation et d'estimation de défauts

" Douter de tout ou tout croire sont deux solutions également commodes, qui l'une et l'autre nous dispensent de réfléchir." Henri Poincaré

Ce chapitre a pour objectif la synthèse d'un filtre permettant la détection, l'isolation et l'estimation de défauts au sein de systèmes représentés par des multi-modèles. Comme nous l'avons vu au chapitre 1, considérer des multi-modèles modélisant le système autour de plusieurs points de fonctionnement tout en considérant des défauts n'est pas une chose courante. Nos hypothèses de travail sont celles spécifiées au chapitre 1 dans la section 1.3.

2.1 Introduction

Diverses méthodes de diagnostic basées sur des représentations analytiques existent dans le cadre linéaire (Cf. Chapitre 1) telle la synthèse d'observateurs à entrées inconnues présentée dans le livre de (Chen and Patton, 1999), les filtres de détection dont une édition spéciale leur est entièrement consacrée (Edelmayer, 2002), l'affectation de structures propres (Liu and Patton, 1998) et les équations de parité structurées en considérant la redondance temporelle (Gertler, 1998). L'état de l'art de (Frank and Ding, 1997) constitue une bonne base sur la génération de résidus robustes ainsi que les diverses méthodes de diagnostic qui s'y rapportent.

Le développement du diagnostic et de l'automatique a été réalisé principalement dans le domaine de l'étude des systèmes linéaires, cependant, un grand nombre des processus industriels sont naturellement non linéaires. Afin de résoudre le problème du diagnostic pour de tels processus et sous l'hypothèse d'une représentation par un modèle non linéaire exact, de nombreux travaux ont consisté à générer des résidus découplés des défauts pour des classes particulières de systèmes non linéaires tels que les systèmes bilinéaires (Kinnaert, 1999) et les systèmes polynômiaux. Dans les techniques dédiées au diagnostic des systèmes non linéaires, on peut citer des articles consacrés au découplage exact des défauts par méthodes géométriques

tels (Hammouri et al., 2001) et (Persis and Isidori, 2001), et par méthodes analytiques : (Alcorta-Garcia and Frank, 1997). Dans le cadre du diagnostic des systèmes non linéaires par découplage exact, on pourra citer les références suivantes (Join, 2002) et (Kinnaert, 2003). Ces méthodes sont utilisées s'il existe une description mathématique du système; malheureusement cette condition n'est pas facile à remplir de part la complexité des systèmes non linéaires, engendrant ainsi l'impossibilité d'effectuer un découplage.

Si les représentations non linéaires peuvent quant à elles être très difficiles à obtenir, un autre type de représentation consiste à définir différents points de fonctionnement et à considérer un modèle linéaire autour de chaque point de fonctionnement. Les multi-modèles constituent une autre manière de représenter la dynamique d'un système non linéaire sur toute sa plage de fonctionnement (Cf. Chapitre 1).

Nous nous attachons plus particulièrement ici aux méthodes de filtres de détection, d'isolation et d'estimation de défauts.

Afin de mieux appréhender la problématique à laquelle nous nous sommes confrontés en considérant de telles hypothèses de travail, nous retracerons la méthode mise en oeuvre pour obtenir des fonctions d'activation robustes (Adam-Medina et al., 2003) et (Adam-Medina, 2004). Effectivement, les représentations de systèmes à base de multi-modèles dépendent de variables de décision $\rho_k^j(x_k)$ fonction des paramètres du système, bien souvent l'état et\ou de l'entrée de ce dernier. Ces fonctions d'activation aussi utilisées dans la logique floue, permettent d'avoir une représentation d'état du système à tout instant.

Cependant, lors de l'apparition de défaut(s) au sein du système, l'état et les sorties du système sont alors corrompus par la présence de ce(s) dernier(s). Par conséquent, les fonctions d'activation basées sur l'état du système en défaut donneront également une information fausse et de ce fait, le système ne pourra pas être correctement modélisé. Toute tentative de diagnostic sur une représentation d'état erronée sera impossible. C'est pourquoi, nous proposons d'étudier dans un premier temps, une façon d'obtenir des fonctions d'activations robustes aux défauts afin dans un second temps de développer un module de diagnostic de défauts via la synthèse d'un unique générateur de résidus ou filtre découplant adaptatif. Le terme "adaptatif" est directement en relation avec la représentation du système sous forme de multi-modèles. Le module de diagnostic de défauts résultant de nos travaux de recherche doit permettre de détecter, isoler et estimer les défauts tout en considérant les conditions de stabilité propres à ce module.

2.1.1 Problématique et résidus corrompus

Dans un premier temps, nous allons montrer le problème de pondération des modèles locaux par des fonctions d'activation synthétisées sur des résidus au travers l'utilisation d'un banc de filtres de Kalman classiques lors de la présence de défauts. Soit la représentation d'état locale suivante définie au chapitre précédent :

2.1 Introduction 43

$$\begin{cases} x_{k+1} = A_j x_k + B_j u_k + F_j d_k + \Delta_{X_j} + \omega_k^j \\ y_k = C_j x_k + D_j u_k + \Delta_{Y_j} + \nu_k^j \end{cases}$$
(2.1)

où les matrices $(A_j, B_j, C_j, D_j, \Delta_{X_j}, \Delta_{Y_j})$ sont des matrices invariantes définies autour du jème point de fonctionnement (\mathcal{PF}_j) . Les termes ω_k^j et ν_k^j sont deux bruits gaussiens, indépendants, de moyenne nulle et de matrices de variance-covariance respectivement Q_j et R_j pour le jème point de fonctionnement. Dans la suite de ce chapitre, nous noterons j le modèle local représentant le système et i le filtre de Kalman établi autour du jème point de fonctionnement.

En considérant les travaux de (Banerjee et al., 1995) réalisés dans le cadre de la commande et l'estimation d'état de systèmes non linéaires ainsi que, dans le cadre du diagnostic, ceux d' (Athans et al., 2005) en multi-modèles : soit un banc de N filtres de Kalman (i) exploités autour de N points de fonctionnement (j). Afin d'expliciter la problématique de l'obtention de fonctions de pondération lors de l'apparition de défauts sur le système, un filtre de Kalman est établi en considérant que le système évolue autour d'un \mathcal{PF}_j , et se représente sous la forme :

$$\begin{cases} \hat{x}_{k+1}^{i} = A_{i}\hat{x}_{k}^{i} + B_{i}u_{k} + K_{k}^{i}(y_{k} - \hat{y}_{k}^{i}) + \Delta_{X_{i}} \\ \hat{y}_{k}^{i} = C_{i}\hat{x}_{k}^{i} + D_{i}u_{k} + \Delta_{Y_{i}} \quad \forall i \in [1, \dots, N] \end{cases}$$
(2.2)

où \hat{x}^i est l'estimation du vecteur d'état et \hat{y}^i est l'estimation du vecteur de sortie. $K_k^i \in \mathbb{R}^{n \times m}$ correspond à la matrice de gain du filtre de Kalman. Δ_{X_i} et Δ_{Y_i} représentent les vecteurs constants dépendants du *i*ème modèle considéré. La figure (

De la même façon que (Banerjee et al., 1995) et (Murray-Smith and Johansen, 1997) le proposent, nous synthétisons des fonctions de validité des modèles linéaires comme pouvant être définies par des probabilités établies sur la base de résidus $r_k^i = y_k - \hat{y}_k^i$. Celles-ci permettent de déterminer une pondération à chaque modèle linéaire lors de la reconstruction du modèle non linéaire sous un ensemble convexe Ω . Comme suggéré par (Maybeck, 1999), le résidu est utilisé pour calculer la densité de probabilité sous l'hypothèse de suivre une loi de distribution gaussienne autour de chaque point de fonctionnement. Si le jème modèle décrit exactement le système, alors l'innovation r_k^i du ième filtre est de moyenne nulle et a pour matrice de variance-covariance Θ_i . La densité de probabilité, notée \wp_k^i est définie par :

$$\wp_k^i = \frac{\exp\{-0.5r_k^i(\Theta_k^i)^{-1}(r_k^i)^T\}}{[(2\pi)\det(\Theta_k^i)]^{1/2}}$$
(2.3)

avec $\Theta_i = C_i Q_i C_i^T + R_i$ avec respectivement Q_i et R_i les matrices de variance-covariance du bruit de l'état et de la mesure du *i*ème modèle.

En présence de défauts, ce principe ne peut en aucun cas être considéré : nous proposons de découvrir ci-dessous les principales raisons et difficultés inhérentes à la mise en oeuvre du diagnostic dans ce contexte. Celles-ci sont notamment explicitées dans (Adam-Medina, 2004) et (Rodrigues *et al.*, 2004).

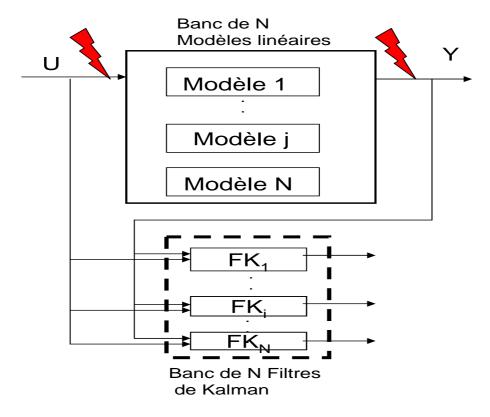


Fig. 2.1: Multi-modèles

1er Cas de figure :

Chacun des filtres de Kalman du banc permet d'obtenir une erreur d'estimation, lorsque le système est représenté par le modèle j correspondant à l'estimateur i(j=i) en l'absence de défaut $(d_k=0)$, alors l'erreur d'estimation ainsi que le résidu \bar{r}_k^i sont équivalents à :

$$\bar{\varepsilon}_k^i = x_k - \hat{x}_k^i
\bar{\varepsilon}_{k+1}^i = (A_i - K_k^i C_i) \bar{\varepsilon}_k^i - K_k^i \nu_k^j + \omega_k^j$$
(2.4)

et

$$\bar{r}_k^i = y_k - \hat{y}_k^i
\bar{r}_k^i = C_i \bar{\varepsilon}_k^i + \nu_k^j$$
(2.5)

Les notations $\bar{\varepsilon}_k^i$ et \bar{r}_k^i signifient que le système est considéré en l'absence de défaut.

2ème Cas de figure :

Si le modèle j correspond à l'estimateur i (c.à.d j = i) en présence de défauts ($d_k \neq 0$), alors le vecteur d'erreur d'estimation (ε_i) et le vecteur des résidus de sortie (r_k^i) peuvent s'écrire sous la forme :

2.1 Introduction 45

$$\varepsilon_k^i = x_k - \hat{x}_k^i
\varepsilon_{k+1}^i = (A_i - K_k^i C_i) \varepsilon_k^i - K_k^i \nu_k^j + \omega_k^j + F_j d_k$$
(2.6)

et

$$\begin{aligned}
r_k^i &= y_k - \hat{y}_k^i \\
r_k^i &= C_i \varepsilon_k^i + \nu_k^j
\end{aligned} (2.7)$$

L'erreur d'estimation (

3ème Cas de figure :

Lorsque le modèle j est différent de l'estimateur i ($j \neq i$) en l'absence de défauts ($d_k = 0$), alors le vecteur d'erreur d'estimation (ε_i) et le vecteur des résidus de sortie (r_k^i) se représentent sous la forme :

$$\varepsilon_k^i = x_k - \hat{x}_k^i
\varepsilon_{k+1}^i = (A_i - K_k^i C_i) \varepsilon_k^i - K_k^i \nu_k^j + \omega_k^j
+ (\Delta \Delta_{X_i}^i - K_k^i \Delta \Delta_{Y_i}^i) \xi_j^i(k)$$
(2.8)

et

$$r_k^i = y_k - \hat{y}_k^i r_k^i = C_i \varepsilon_k^i + \nu_k^j + \Delta \Delta_{Y_j}^i \xi_j^i(k)$$

$$(2.9)$$

où $\xi_j^i \in \Re^{(n+p+1)\times 1}$ correspond à la distance entre le système non linéaire représenté par le $j^{\text{ème}}$ modèle linéaire et le $i^{\text{ème}}$ modèle linéaire utilisé dans la synthèse du filtre de Kalman. $\Delta \Delta_{X_j}^i \in \Re^{n \times (n+p)}$ et $\Delta \Delta_{Y_j}^i \in \Re^{m \times (n+p)}$, sont les matrices de distribution des incertitudes associées respectivement à l'équation d'état, et à l'équation de sortie. Leur dimension est liée aux possibles incertitudes sur les matrices d'état. Le vecteur des erreurs d'estimation et de résidus sont corrompus par la présence des incertitudes. On notera que ces incertitudes structurées représentent la non adéquation entre le système et le modèle.

4ème Cas de figure :

Lorsque le modèle j est différent de l'estimateur i ($j \neq i$) et que le système est en présence de défauts ($d_k \neq 0$), alors le vecteur d'erreur d'estimation (ε_i) et le vecteur de résidus de sortie (r_i) deviennent équivalents à :

$$\varepsilon_k^i = x_k - \hat{x}_k^i
\varepsilon_{k+1}^i = (A_i - K_k^i C_i) \varepsilon_k^i - K_k^i \nu_k^j + \omega_k^j
+ F_j d_k + (\Delta \Delta_{X_j}^i - K_k^i \Delta \Delta_{Y_j}^i) \xi_j^i(k)$$
(2.10)

et

$$r_k^i = y_k - \hat{y}_k^i r_k^i = C_i \varepsilon_k^i + \nu_k^j + \Delta \Delta_{Y_j}^i \xi_j^i(k)$$
(2.11)

Dans ce dernier cas, le vecteur des erreurs d'estimation et de résidus sont corrompus par la présence des incertitudes mais également des défauts : deux types d'information interfèrent sur la génération de résidus.

Les équations (

Si
$$d_k = 0$$
, $i = j$ alors $\bar{r}_k^i \sim \mathcal{N}(0, \Theta_i) \Rightarrow (\bar{r}_k^i, \Theta_k^i)$
 $d_k \neq 0$, $i = j$ $r_k^i \neq \bar{r}_k^i \Rightarrow F_j d_k$
 $d_k = 0$, $i \neq j$ $r_k^i \neq \bar{r}_k^i \Rightarrow \Delta \Delta_{Y_j}^i \xi_j^i(k)$
 $d_k \neq 0$, $i \neq j$ $r_k^i \neq \bar{r}_k^i \Rightarrow F_j d_k + \Delta \Delta_{Y_j}^i \xi_j^i(k)$ (2.12)

Le bilan ci-dessus permet d'observer le comportement du résidu dans les différentes conditions. Quand le point de fonctionnement \mathcal{PF}_j , est décrit exactement pour le filtre (i), en l'absence de défaut $(d_k = 0)$, le résidu $r_k^i = \bar{r}_k^i$ suit une loi gaussienne de moyenne nulle. En dehors de cette condition, le résidu ne suit pas une loi gaussienne centrée, causé soit par les effets de défauts $(F_j d_k)$, et/ou soit par les effets des incertitudes de modèles $(\Delta \Delta_{Y_i}^i \xi_j^i(k))$.

Au vue des différentes situations possibles le fait de vouloir envisager un diagnostic de défauts à partir d'un banc de filtres de Kalman n'est pas réalisable. De plus, l'exploitation des probabilités calculées à partir de l'innovation issue de chacun des filtres ne peut pas non plus être considérée pour déterminer le modèle le plus représentatif du système considéré étant donné que les innovations ne sont pas robustes à la présence de défauts. Le diagnostic de défauts ne peut être réalisé correctement étant donné que les résidus sont corrompus aux mêmes instants par deux types d'information : un changement de point de fonctionnement ainsi que l'apparition d'un défaut. La méthode des probabilités de Bayes ne peut être utilisée pour définir des fonctions de pondération robustes aux défauts avec de tels filtres, mais reste cependant appropriée pour des résidus insensibles aux défauts.

Dans le but de savoir quel est le modèle le plus représentatif à chaque instant dans le cas sans et avec défaut, nous nous sommes intéressés à une nouvelle synthèse de résidus découplés des défauts permettant de générer un premier signal insensible aux défauts et un second sensible aux défauts et pouvant s'exprimer comme suit :

$$\tilde{r}_k^i = \begin{bmatrix} \Sigma_i \\ \Xi_i \end{bmatrix} r_k^i \tag{2.13}$$

où Σ_i et Ξ_i sont des termes introduits dans le but de découpler les résidus dans des directions adéquates avec des dimensions appropriées, et \tilde{r}_k^i définit le nouveau vecteur des résidus. Cette idée nous a poussé à étudier plus en profondeur les filtres de détection générant des résidus découplés des défauts comme dans (Keller, 1999), que nous avons étendu et intégré dans le

2.1 Introduction 47

cadre des multi-modèles.

2.1.2 Fonctions de pondération robustes aux défauts

Sous les hypothèses que le défaut apparaît à un instant k_d $(k > k_d)$, et que le changement de point de fonctionnement apparaisse à l'instant k_e $(k > k_e)$, le vecteur de résidus du *i*ème filtre s'exprime alors :

$$r_k^i = \bar{r}_k^i + \Delta \Delta_{X_j}^i \xi_{j,k}^i + \rho_{k,k_d} [d_{k_d} \ d_{k_d+1} \dots d_{k-1}] + \beta_{k,k_e} [\xi_{j,k_e}^i \ \xi_{j,k_e+1}^i \dots \xi_{j,k-1}^i]$$
(2.14)

avec

$$\rho_{k,k_d} = C_i \begin{bmatrix} \Gamma_{k,k_d+1}^i F_j \\ \Gamma_{k,k_d+2}^i F_j \\ \vdots \\ F_j \end{bmatrix}$$

$$(2.15)$$

et

$$\beta_{k,k_e} = C_i \begin{bmatrix} \Gamma_{k,k_e+1}^i (\Delta \Delta_{X_j}^i - K_{k_e}^i \Delta \Delta_{Y_j}^i) \\ \Gamma_{k,k_e+2}^i (\Delta \Delta_{X_j}^i - K_{k_e+1}^i \Delta \Delta_{Y_j}^i) \\ \dots \\ (\Delta \Delta_{X_j}^i - K_{k-1}^i \Delta \Delta_{Y_j}^i) \end{bmatrix}$$
(2.16)

οù

$$\Gamma_{k,(k_d,k_e)}^i = \prod_{\tau=(k_d,k_e)}^{k-1} L_{\tau}^i
L_k^i = (A_i - K_k^i C_i)$$
(2.17)

En l'absence de défaut, le vecteur de l'erreur d'estimation est représenté par $\bar{\varepsilon}_i$ et le vecteur de résidus de sortie est noté \bar{r}_k^i . L'équation (

$$\left(A_i - K_k^i C_i\right) F_i = 0

(2.18)$$

Si l'équation (

$$K_k^i = \omega_i \Xi_i + \bar{K}_k^i \Sigma_i \tag{2.19}$$

avec $\Xi_i = (C_i F_i)^+$, $\omega_i = A_i F_i$, $\Sigma_i = \alpha_i (I_m - C_i F_i \Xi_i)$ et $\alpha_i \in \Re^{(m-q) \times m}$ est une matrice arbitraire constante définie telle que la matrice Σ_i soit de plein rang ligne.

Enfin, le résidu est défini dans (

$$r_k^i = \bar{r}_k^i + \Delta \Delta_{X_j}^i \xi_{j,k}^i + C_i F_i[d_{k-1}] + \beta_{k,k_e} [\xi_{j,k_e}^i \xi_{j,k_e+1}^i \cdots \xi_{j,k-1}^i]$$
 (2.20)

Sous les conditions d'existence et de stabilité présentées et étudiées dans (Keller, 1999), chaque filtre est décrit par :

$$\begin{cases} \hat{X}_{k+1}^{i} = A_{i}\hat{X}_{k}^{i} + B_{i}U_{k} + (\omega_{i}\Xi_{i} + \bar{K}_{k}^{i}\Sigma_{i})(Y_{k} - \hat{Y}_{k}^{i}) + \Delta_{X_{i}} \\ \hat{Y}_{k}^{i} = C_{i}\hat{X}_{k}^{i} + \Delta_{Y_{i}} \end{cases}$$
(2.21)

οù

$$\bar{K}_{k}^{i} = \bar{A}_{i} \bar{P}_{k}^{i} \bar{C}_{i}^{T} (\bar{C}_{i} \bar{P}_{k}^{i} \bar{C}_{i}^{T} + \bar{V}_{i})^{-1}$$
(2.22)

$$\bar{P}_{k+1}^{i} = (\bar{A}_{i} - \bar{K}_{k}^{i}\bar{C}_{i})\bar{P}_{k}^{i}(\bar{A}_{i} - \bar{K}_{k}^{i}\bar{C}_{i})^{T} + \bar{K}_{k}^{i}\bar{V}_{i}(\bar{K}_{k}^{i})^{T} + \bar{Q}_{i}$$
(2.23)

avec $\bar{A}_i = (A_i - \omega_i \Xi_i C_i)$, $\bar{C}_i = \Sigma_i C_i$, $\bar{V}_i = \Sigma_i R_i \Sigma_i^T$ et $\bar{Q}_i = Q_i + \omega_i \Xi_i R_i \Xi_i^T \omega_i^T$. Les paires $(\bar{A}_i, \bar{C}) \forall i \in [1, \dots, N]$ sont supposées observables. En relation avec (

$$\tilde{r}_k^i = \begin{bmatrix} \gamma_k^i \\ \Omega_k^i \end{bmatrix} = \begin{bmatrix} \Sigma_i r_k^i \\ \Xi_i r_k^i \end{bmatrix} = \begin{bmatrix} \Sigma_i (Y_k - \hat{Y}_k^i) \\ \Xi_i (Y_k - \hat{Y}_k^i) \end{bmatrix}$$
(2.24)

où $\gamma_k^i \in \Re^{m-q}$ est le vecteur des résidus découplés des défauts et $\Omega_k^i \in \Re^q$ est le vecteur des résidus sensibles aux défauts. Par les propriétés des matrices $\Sigma_i C_i F_j = 0$ et $\Xi_i C_i F_j = I$, chaque résidu est défini par l'équation (

$$\gamma_k^i = \Sigma_i(\bar{r}_k^i + \Delta \Delta_{X_j}^i \xi_{j,k}^i) + \Sigma_i \beta_{k,k_e} [\xi_{j,k_e}^i \xi_{j,k_e+1}^i \cdots \xi_{j,k-1}^i]$$
 (2.25)

$$\Omega_k^i = d_{k-1} + \Xi_i(\bar{r}_k^i + \Delta \Delta_{X_i}^i \xi_{j,k}^i) + \Xi_i \beta_{k,k_e} [\xi_{j,k_e}^i \xi_{j,k_e+1}^i \cdots \xi_{j,v}^i]$$
(2.26)

Les équations (

Suivant ces suppositions, lorsqu'un système opère autour du jème point de fonctionnement, le nouveau résidu insensible aux défauts γ_k^i satisfait :

$$\forall d, \begin{cases} \gamma_k^i \sim \mathcal{N} \text{ if } i = j\\ \gamma_k^i \sim \mathcal{N} \text{ if } i \neq j \end{cases}$$
 (2.27)

Considérant que le résidu γ_k^i suit une loi de distribution gaussienne autour du jème point de fonctionnement, le vecteur des résidus peut alors être utilisé pour calculer la densité de probabilité telle que :

$$\wp_k^i = \frac{\exp\{-0.5\gamma_k^i(\Theta_k^i)^{-1}(\gamma_k^i)^T\}}{[(2\pi)^{(m-q)}\det(\Theta_k^i)]^{1/2}}$$
(2.28)

où Θ_k^i définit la matrice de covariance des résidus γ_k^i , égale à $(\bar{C}_i\bar{P}_k^i\bar{C}_i^T + \bar{V}_i)$. La probabilité de mode insensible aux défauts se représente alors comme suit :

$$\varphi^{i}(\gamma_{k+1}) = \frac{\wp_{k}^{i} \varphi^{i}(\gamma_{k}^{i})}{\sum_{h=1}^{N} \wp_{k}^{h} \varphi^{h}(\gamma_{k}^{h})}$$
(2.29)

Ces probabilités de modes permettent alors de déterminer avec précision où le système non linéaire opère. Ces probabilités sont utilisées pour déterminer le point de fonctionnement et par conséquent définissent des fonctions de pondération robustes aux défauts.

Sur la base de ces fonctions de pondération robustes aux défauts, le comportement dynamique du système peut être représenté autour et lors du passage d'un point de fonctionnement spécifique, à l'aide d'un ensemble convexe Ω de modèles LTI comme définis en (

$$S_k^{\star} := \left\{ \sum_{i=1}^N \varphi^i(\gamma_k) S_i : \varphi^i(\gamma_k) \ge 0, \sum_{i=1}^N \varphi^i(\gamma_k) = 1 \right\}$$
 (2.30)

où S_k^{\star} représente le modèle global comme défini en (

$$S_i = \begin{bmatrix} A_i & B_i & F_i & \Delta_{X_i} \\ C_i & \Delta_{Y_i} & & \end{bmatrix}, \quad \forall i = [1, \dots, N]$$
 (2.31)

Les termes Δ_{X_i} et Δ_{Y_i} sont ceux définis au Chapitre 1.

Notons que sans perte de généralité, nous n'avons pas considéré pour S_i le cas avec une entrée directe $D_i u_k$ sur le vecteur de sortie.

En prenant en considération la représentation convexe du système non linéaire (

$$\begin{cases} x_{k+1} = A_k^* x_k + B_k^* u_k + F_k^* d_k + \Delta_{x,k}^* \\ y_k = C_k^* x_k + \Delta_{y,k}^* \end{cases}$$
 (2.32)

avec des matrices $(\cdot)_k^*$ égale à $\sum_{i=1}^N \varphi^i(\gamma_k)(\cdot)_i$ obtenues grâce aux hypothèses faîtes sur le bruit à l'équation (

Sur la base de la représentation d'état (

2.2 Synthèse d'un filtre adaptatif

Dans la suite de la synthèse du filtre adaptatif, il est supposé qu'il n'existe pas de non linéarités sur les sorties du système et les matrices d'observation $C_i, \forall i \in [1, ..., N]$. Celles-ci sont alors identiques et équivalentes à une unique matrice C. On notera toutefois que si toutes les matrices F_i supposées de plein rang colonne sont identiques c.à.d $F_i = F, \forall i \in [1, ..., N]$, alors le lecteur pourra passer directement au paragraphe 2.2.2.

2.2.1 Représentation unique des défauts

Dans la représentation d'état (

$$\left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}\right) d_{k} \tag{2.33}$$

Afin de permettre le découplage des résidus sur l'ensemble des points de fonctionnement considéré, l'écriture des défauts (

Théorème 2 (Theilliol et al., 2003b)(Rodrigues et al., 2004) Soient $rang[F_i] = q \ \forall h \in [1...q], \ \forall i \in [1, ..., N],$

$$si$$
 $rang\left[F_1^h \dots F_i^h \dots F_N^h\right] = 1$, $alors$ $\left(\sum_{i=1}^N \varphi^i(\gamma_k) F_i\right) d_k = \Im f_k$

où $d \in \mathbb{R}^q$ représente le vecteur des défauts et $f \in \mathbb{R}^q$ est alors une image du vecteur des défauts, et $\Im \in \mathbb{R}^{n \times q}$ est une matrice de distribution des défauts dont les vecteurs colonnes sont colinéaires aux vecteurs colonnes des matrices F_i .

Preuve:

Si $Rang[F_1^h \dots F_i^h \dots F_N^h] = 1$, alors la hème colonne de la matrice F_i a alors la même direction. Cette condition peut être reformulée de la façon suivante : $F_i^h = \alpha_i^h \Im^h$ où α_i^h est un scalaire correspondant à la hème colonne de la matrice F_i avec \Im une matrice composée d'éléments constants. Ainsi, ces coefficients α_i^h ne peuvent être égaux à zéro sinon les conditions de rang ne seraient plus vérifiées.

Par définition, on a $F_i = [F_i^1 \dots F_i^h \dots F_i^q]$ donc

$$\left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}\right) d_{k} = \left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) [F_{i}^{1} \dots F_{i}^{h} \dots F_{i}^{q}]\right) d_{k}$$

$$= \left[\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{1} \dots \sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{h} \dots \sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{q}\right] d_{k}$$
(2.34)

or par définition,
$$d_k = \begin{bmatrix} d_k^1 \\ \vdots \\ d_k^h \\ \vdots \\ d_k^q \end{bmatrix}$$

Ainsi,

$$\left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}\right) d_{k} = \left[\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{1} d_{k}^{1} \dots \sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{h} d_{k}^{h} \dots \sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{q} d_{k}^{q}\right]$$
(2.35)

En considérant l'élément $\sum_{i=1}^{N} \varphi^i(\gamma_k) F_i^h d_k^h$ et en soulignant la colinéarité de chaque colonne, la contribution des défauts dans la représentation d'état peut être notée suivant :

$$\left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}^{h}\right) d_{k}^{h} = \left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) (\alpha_{i}^{h} \Im^{h})\right) d_{k}^{h}$$

$$\Im^{h} \left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) \alpha_{i}^{h} d_{k}^{h}\right) = \Im^{h} f_{k}^{h}$$
(2.36)

où $\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) \alpha_{i}^{h}$ est un scalaire et d_{k}^{h} et f_{k}^{h} définissent le hème élément du vecteur des défauts.

En considérant l'égalité (

$$\left(\sum_{i=1}^{N} \varphi^{i}(\gamma_{k}) F_{i}\right) d_{k} = \Im f_{k} \tag{2.37}$$

avec, $\forall i$

$$\Im = \left[\begin{array}{cc} \frac{1}{\alpha_i^1} F_i^1 & \frac{1}{\alpha_i^2} F_i^2 & \dots & \frac{1}{\alpha_i^q} F_i^q \end{array} \right] \tag{2.38}$$

$$f_k = \left[\left(\sum_{i=1}^N \varphi^i(\gamma_k) \alpha_i^1 d_k^1 \right)^T \dots \left(\sum_{i=1}^N \varphi^i(\gamma_k) \alpha_i^q d_k^q \right)^T \right]^T$$

Remarque n°1 : La matrice \Im n'est pas unique par sa synthèse. Les scalaires α_i^h sont déterminés et sont fixés, et de plus ils ne sont pas nuls si les conditions de rang du Théorème 1 sont respectées.

Remarque n^2 : L'obtention d'une unique matrice de distribution des défauts \Im est directe dans le cadre des défauts capteurs car ces derniers peuvent être considérés, après une augmentation d'état (Park et al., 1994), par un ensemble de 1 et de 0.

Remarque n°3 : Sous l'hypothèse que la matrice $(\sum_{i=1}^N \varphi^i(\gamma_k)F_i)$ soit de plein rang colonne, les défauts d_k peuvent être estimés par une matrice de Moore-Penrose appliquée à (

$$\widehat{d}_k = \left(\sum_{i=1}^N \varphi^i(\gamma_k) F_i\right)^+ \Im f_k \tag{2.39}$$

où $(\cdot)^+$ représente la matrice de Moore-Penrose.

 $Remarque: n^{\circ}4:$

Dans le cas de défauts actionneurs et si la matrice de commande B est unique quels que soient les points de fonctionnement, il est possible que la matrice de défauts soit unique simplifiant ainsi le problème.

A partir du Théorème

où 3 est la nouvelle représentation de la matrice de distribution des défauts.

2.2.2 Synthèse

Dans le but de détecter et d'isoler les défauts, un filtre découplant possédant un gain K_k adéquat, peut être synthétisé avec les matrices A_k^{\star} et C définies en (

$$\begin{cases} \hat{x}_{k+1} = A_k^{\star} \hat{x}_k + B_k^{\star} u_k + K_k (y_k - \hat{y}_k) + \Delta_{x,k}^{\star} \\ \hat{y}_k = C \hat{x}_k + \Delta_{y,k}^{\star} \end{cases}$$
(2.40)

 \Diamond

où \hat{x} et \hat{y} représentent respectivement l'état estimé et la sortie estimée.

Suivant (

$$\begin{cases}
e_{k+1} = (A_k^* - K_k C)e_k + \Im f_k \\
r_k = C e_k
\end{cases}$$
(2.41)

où $\Im = F$ si quelque soit le point de fonctionnement considéré la matrice de distribution des défauts est constante. Sous l'hypothèse que le défaut apparaît à l'instant k_d $(k > k_d)$, le vecteur résiduel est défini tel que :

$$r_k = \bar{r}_k + \rho_{k,k_d} [f_{k_d} \ f_{k_d+1} \ \cdots \ f_{k-1}]$$
 (2.42)

où \bar{r}_k représente le résidu dans le cas sans défaut et

$$\rho_{k,k_d} = C \begin{bmatrix} \Gamma_k^{k_d+1} \Im \\ \Gamma_k^{k_d+2} \Im \\ \dots \\ \Im \end{bmatrix}$$
(2.43)

avec $\Gamma_k^{k_d} = \prod_{\tau=k_d}^{k-1} L_{\tau}, L_k = (A_k^{\star} - K_k C).$ Comme défini en (

$$K_k = \omega_k \Pi + \bar{K}_k \Sigma \tag{2.44}$$

avec $\Pi = (C\Im)^+$, $\omega_k = A_k^{\star}\Im$, $\Sigma C = \bar{C}$, $\bar{A}_k^{\star} = A_k^{\star} - \omega_k \Pi C$ et $\Sigma = \alpha(I_m - C\Im\Pi)$ où α est une matrice arbitraire déterminée telle que Σ soit de plein rang ligne. Les paires $(\bar{A}_i, \bar{C}) \forall i \in [1, \ldots, N]$ sont supposées observables.

Selon (

$$\begin{cases}
\widetilde{x}_{k+1} = A_k^{\star} \widetilde{x}_k + B_k^{\star} u_k + \Delta_{x,k}^{\star} + (\omega_k \Pi + \overline{K}_k \Sigma)(y_k - \widetilde{y}_k) \\
\widetilde{y}_k = C \widetilde{x}_k + \Delta_{y,k}^{\star}
\end{cases} (2.45)$$

où \widetilde{x}_k et \widetilde{y}_k sont respectivement l'état estimé et la sortie estimée.

La décomposition du gain, définie en (

$$\Pi C \Im = I \text{ and } \Sigma C \Im = 0 \tag{2.46}$$

et rend alors possible la génération du vecteur de résidus modifié (Adam-Medina et al., 2003):

$$\begin{bmatrix} \gamma_k^* \\ \Omega_k^* \end{bmatrix} = \begin{bmatrix} \Sigma \\ \Pi \end{bmatrix} r_k = \begin{bmatrix} \Sigma \bar{r}_k \\ \Pi \bar{r}_k + f_{k-1} \end{bmatrix}$$
 (2.47)

Il peut être noté que $\gamma_k^{\star} \in \mathbb{R}^{m-q}$ est un vecteur de résidus insensible aux défauts et $\Omega_k^{\star} \in \mathbb{R}^q$ est un vecteur de résidus sensibles aux défauts et permet d'estimer par la même occasion le vecteur

des défauts f_k . En présence d'un défaut actionneur, l'indice de détectabilité (Cf. (Liu, 1996) et (Keller, 1999)) est équivalent à 1 comme il est possible de le constater dans l'équation (

Le gain \bar{K}_k , défini en (

En prenant l'erreur d'estimation du filtre adaptatif (

$$\bar{e}_{k+1} = (A_k^{\star} - K_k C) \bar{e}_k = (A_k^{\star} - (\omega_k \Pi + \bar{K}_k^{\star} \Sigma) C) \bar{e}_k
= (A_k^{\star} (I - \Im \Pi C) - \bar{K}_k^{\star} \Sigma C) \bar{e}_k
= (\bar{A}_k^{\star} - \bar{K}_k^{\star} \bar{C}) \bar{e}_k$$
(2.48)

avec
$$\bar{A}_k^{\star} = \sum_{i=1}^N \varphi^i(\gamma_k) \bar{A}_i$$
 et $\bar{A}_i = A_i(I - \Im \Pi C)$.

2.2.3 Stabilité sur un ensemble convexe

En utilisant la définition de la stabilité de Lyapunov sur l'erreur d'estimation sans défaut (

$$\begin{cases}
(\bar{A}_i - \bar{K}_i \bar{C})^T P(\bar{A}_i - \bar{K}_i \bar{C}) - P < 0 \\
P > 0, \quad \forall i \in [1, \dots, N]
\end{cases}$$
(2.49)

Le complément de Schür (Boyd et al., 1994) transforme l'inégalité (

$$\begin{pmatrix} P & (\bar{A}_i - \bar{K}_i \bar{C})^T P \\ P(\bar{A}_i - \bar{K}_i \bar{C}) & P \end{pmatrix} > 0, \quad \forall i \in [1, \dots, N]$$
 (2.50)

Or cette dernière inégalité n'est pas linéaire en les variables P et \bar{K}_i . En effectuant un changement de variables, il est possible de linéariser cette inégalité avec $P\bar{K}_i = M_i$:

$$\begin{pmatrix} P & \bar{A}_i^T P - \bar{C}^T M_i^T \\ P \bar{A}_i - M_i \bar{C} & P \end{pmatrix} > 0, \quad \forall i \in [1, \dots, N]$$
 (2.51)

En multipliant chacune des \mathcal{LMI} (

$$\begin{pmatrix}
P & \sum_{i=1}^{N} \varphi(\gamma_k^i)(\bar{A}_i^T P - \bar{C}^T M_i^T) \\
\sum_{i=1}^{N} \varphi(\gamma_k^i)(P\bar{A}_i - M_i\bar{C}) & P
\end{pmatrix} > 0, \quad \forall i \in [1, \dots, N] \tag{2.52}$$

En résolvant l'inégalité (

Ainsi, trouver une unique solution P pour tout $i=[1,\ldots,N]$ assure la stabilité du filtre ($Remarque: n^{\circ}5:$

Il faut noter qu'il est toutefois possible de synthétiser des \mathcal{LMI} moins restrictives afin d'assurer la stabilité quadratique de l'erreur d'estimation. En effet, des méthodes faisant appel à la stabilité polyquadratique sont explicitées dans (Daafouz and Bernussou, 2001) et (Bara, 2001). Cette méthode permet de synthétiser plusieurs matrices définies positives P_i ainsi que d'obtenir des degrés de liberté supplémentaires avec l'adjonction de matrices G qui ne sont pas forcément définies positives. Cependant, nous ne sommes pas intéressés dans notre problématique de diagnostic à développer plus en profondeur de tels outils.

2.2.4 Résumé de la méthode développée

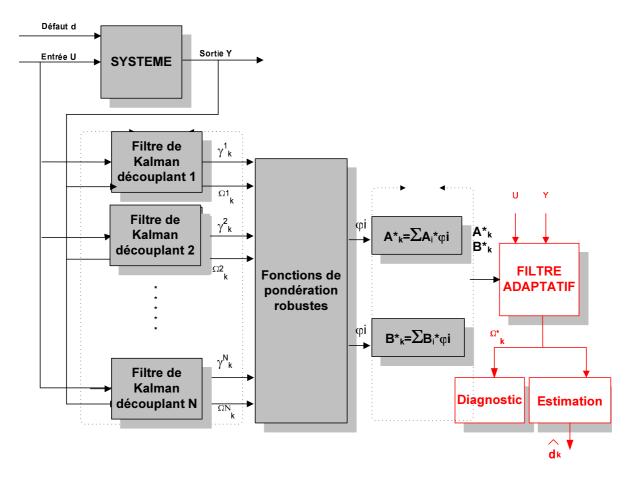


Fig. 2.2: Schéma général de diagnostic

La figure (

La détection, l'isolation et l'estimation des défauts sont directement liées à la synthèse du filtre adaptatif via le vecteur des résidus sensibles aux défauts Ω_k^* .

On notera toutefois que l'estimation des défauts ne peut se faire que si la modélisation du système est adéquate, c.à.d si les points de fonctionnement considérés représentent la plage de fonctionnement étudiée. En d'autres termes, si l'on s'éloigne trop des points de fonctionnement considérés (ou connus), le filtre ne sera plus capable de discerner les incertitudes des défauts car ces dernières deviendront trop importantes si le système évolue trop loin de tous les points de fonctionnement connus. Ainsi, les défauts considérés sont des défauts de faibles amplitudes définis autour des points de fonctionnement recensés. La section suivante va permettre d'illustrer nos propos.

2.3 Exemples

Le premier exemple met en exergue la méthode et permet de montrer l'efficacité du filtre. Dans ce premier exemple, nous ne nous attachons pas à la synthèse des fonctions d'activation mais nous le montrons dans le second exemple. Le second apporte un regard plus pratique et montre les avantages et inconvénients de la méthode développée.

2.3 Exemples 55

2.3.1 Premier exemple

La méthode proposée est appliquée à un système linéaire par morceaux en boucle ouverte représenté par un multi-modèle (Adam-Medina et al., 2003) et (Rodrigues et al., 2004). Ce système discret possède les dimensions suivantes : $x \in \Re^4$, $u \in \Re^1$ et $y \in \Re^3$. Le $j^{\text{ème}}$ modèle linéaire représente la dynamique du système autour du $j^{\text{ème}}$ point de fonctionnement dépendant directement de l'amplitude des entrées de commande sollicitant le système. Associé à chaque plage de commande, la dynamique du système est différente comme définie dans la Table (

- 11. Beninteren des permes de re-	ione dominamente de daracteristique dyn				
Points de fonctionnement	$j = 1$ $U \in [0; 3[$	$j = 2$ $U \in [3; 6[$	$j = 3$ $U \in [6; 9[$		
Y_{P_j}	3.2-5.0 2.58	5.82-8.54 4.88	9.88-15.62 8.34		
U_{P_j}	2	4	7		
Valeurs propres $\mathrm{de}\ A_j$	$\begin{bmatrix} 0.15 \\ 0.37 \\ 0.60 \\ 0.22 \end{bmatrix}$	0.01 0.02 0.04 0.01	$\begin{bmatrix} 0.20 \\ 0.50 \\ 0.80 \\ 0.30 \end{bmatrix}$		

Tab. 2.1: Définition des points de fonctionnement et caractéristique dynamique

Les différentes matrices sont données par la suite :

$$\forall j, \ B_j = \begin{bmatrix} 1 \ 0 \ 0 \ 0 \end{bmatrix}^T, \ C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \ Q_j = diag([0.9 \ 0 \ 0.5 \ 0.3])^T \text{ and } R_j = I_{3\times 3} \text{ et}$$

$$\Delta_{X_i} = \Delta_{Y_i} = 0, \forall i.$$

Les matrices de distribution des défauts sont différentes et équivalentes à :

$$F_1 = \begin{bmatrix} 0 & 0 \\ 0.9 & 0 \\ 0 & 2.8 \\ 0 & 0 \end{bmatrix}, F_2 = \begin{bmatrix} 0 & 0 \\ 2.4 & 0 \\ 0 & 1.4 \\ 0 & 0 \end{bmatrix}$$
 and $F_3 = \begin{bmatrix} 0 & 0 \\ 3.2 & 0 \\ 0 & 3.7 \\ 0 & 0 \end{bmatrix}.$

La simulation du système considéré est développée dans le cadre de multiples défauts $(d \in \Re^2)$ avec une entrée U choisie comme une succession d'échelons avec des transitions douces (Fig. (Un banc de 3 filtres de Kalman découplant est élaboré selon (

Selon la synthèse du filtre adaptatif développée dans les précédentes sections, différentes conditions doivent être vérifiées telles que : $rank(C\Im) = q < m$ avec q = 2 et m = 3 sur cet exemple. De plus, les conditions de rang spécifiées dans le Theorem

$$\Im = \begin{bmatrix} 0 & 0 \\ 5 & 0 \\ 0 & 7 \\ 0 & 0 \end{bmatrix}, \ \alpha = 1e - 5* \begin{bmatrix} 10 & 30 & 50 \end{bmatrix} \text{ et } P = 1e + 2* \begin{bmatrix} 1.547 & 0 & 0 & 0 \\ 0 & 1.575 & 0 & 0 \\ 0 & 0 & 1.575 & 0 \\ 0 & 0 & 0 & 1.575 \end{bmatrix}$$

Après avoir obtenu la matrice P > 0, on obtient les 3 gains $\bar{K}_i = P^{-1}M_i, \forall i \in [1, ..., 3]$ selon les inégalités (

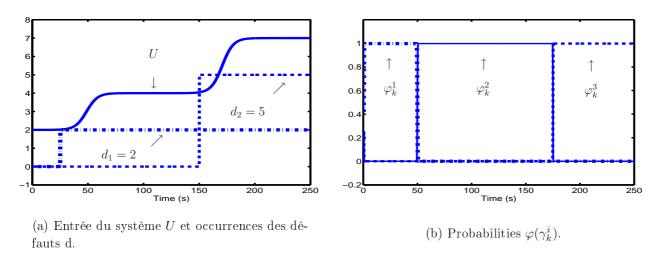


Fig. 2.3: Entrée du système et évolution du sélecteur de modèle en présence de défaut.

$$\bar{K}_1 = 1e + 2* \begin{bmatrix} 0 \\ 0 \\ 0 \\ 4.5 \end{bmatrix}, \ \bar{K}_2 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 30 \end{bmatrix}, \ \bar{K}_3 = 1e + 2* \begin{bmatrix} 0 \\ 0 \\ 0 \\ 6 \end{bmatrix} \ \text{et} \ \bar{C} = 1e - 3* \begin{bmatrix} 0 & 0 & 0 & 0.5 \end{bmatrix}$$
 La figure (

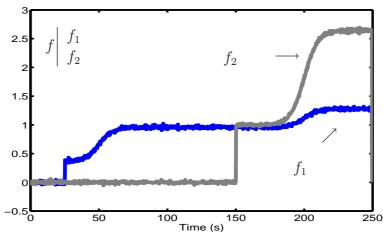


Fig. 2.4: Estimation de défaut par le filtre adaptatif

Comme illustré dans la figure (La figure (

Ce premier exemple numérique permet d'illustrer la synthèse même du filtre adaptatif dans un cas idéal. Dans l'exemple suivant, nous allons illustrer la stratégie complète appliquée à un système hydraulique en simulation.

2.3.2 Second exemple : Application à un système hydraulique

Le filtre adaptatif est appliqué à un système hydraulique (Zolghadri et al., 1996) comme explicité dans la figure (

2.3 Exemples 57

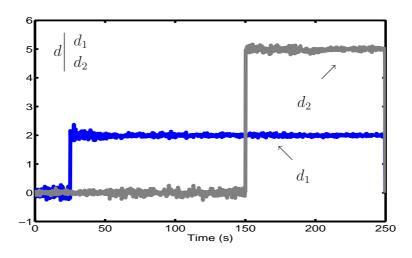


Fig. 2.5: Estimation de défauts

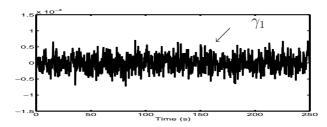


FIG. 2.6: Résidu insensible généré par le filtre adaptatif

Le système hydraulique est composé de 3 cuves cylindriques de section identique S. Les cuves sont connectées par 2 tubes cylindriques avec pour section S_p et un coefficient de sortie noté $\mu_{13} = \mu_{32}$. La sortie est localisée sur la cuve 2, avec une section circulaire S_p et un coefficient de sortie μ_{20} . Deux pompes sont commandées par des moteurs à courant continu sur les cuves 1 et 2. Le débit est noté, respectivement, q_1 pour la pompe 1 et q_2 pour la pompe 2 : le vecteur de commande résultant est noté $U = [q_1 \quad q_2]^T$. Les trois cuves sont équipées de capteurs piézo-résistifs pour mesurer le niveau des liquides (l_1, l_2, l_3) et le vecteur de sortie Y est $[l_1 \quad l_2 \quad l_3]^T$. En utilisant les équations d'équilibre des débits, le système peut être représenté de la façon suivante :

$$\begin{cases}
S \frac{dl_1(t)}{dt} = q_1(t) - q_{13}(t) \\
S \frac{dl_2(t)}{dt} = q_2(t) + q_{32}(t) - q_{20}(t) \\
S \frac{dl_3(t)}{dt} = q_{13}(t) - q_{32}(t)
\end{cases} \tag{2.53}$$

où q_{mn} représente la vitesse du flux du liquide de la cuve m à n $(m, n = 1, 2, 3 \,\forall m \neq n)$, et s'exprime sous l'hypothèse d'un écoulement laminaire selon la loi de Torricelli par :

$$q_{mn}(t) = \mu_{mn} S_p sign(l_m(t) - l_n(t)) \sqrt{2g \mid l_m(t) - l_n(t) \mid}$$
(2.54)

et q_{20} représente la vitesse de sortie avec

$$q_{20}(t) = \mu_{20} S_p \sqrt{2gl_2(t)} \tag{2.55}$$

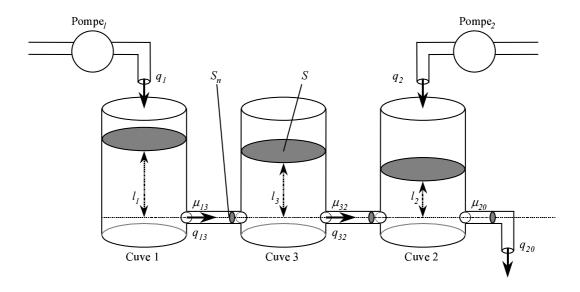


Fig. 2.7: Système hydraulique

Sous l'hypothèse qu'en l'absence ou en présence de défaut la propriété $l_1>l_3>l_2$ est conservée, les 3 conditions opératoires répertoriées dans le tableau (

Point de fonctionnement \mathcal{PF}_i	1	2	3
$y_e^i = [l_1 \ l_2 \ l_3]^T $ (%)	24.19	80.65 24.19 52.42	80.65 65.32 72.58
$u_e^i = [q_1 \ q_2]^T \tag{\%}$	14.60 33.66	38.6 9.65	20.63 58.16

TAB. 2.2: Définition des points de fonctionnement

Chaque modèle linéaire est discrétisé avec pour période d'échantillonnage Te=5s et possède une représentation d'état discrète de la forme suivante :

$$\begin{cases}
 x_{k+1} = A_i x_k + B_i u_k + \Delta_{X_i} \\
 y_k = C x_k + \Delta_{Y_i}
\end{cases}$$
(2.56)

où $x \in \mathbb{R}^3$, $u \in \mathbb{R}^2$ et $y \in \mathbb{R}^3$. Les matrices $A_i, B_i, C, \Delta_{X_i}, \Delta_{Y_i}, \forall i \in [1, 2, 3]$, ont les dimensions appropriées. Nous considérons ici des défauts actionneurs pouvant affecter le système. Un défaut actionneur peut se représenter sous la forme suivante :

2.3 Exemples **59**

$$u_k^f = \alpha u_k \tag{2.57}$$

où u et u^f représente respectivement le vecteur de commande nominal et en défaut. Le terme $\alpha \triangleq diag[\alpha_1, \alpha_2, \dots, \alpha_h, \dots, \alpha_p]$, $\alpha_h \in \mathbb{R}$, tel que $\alpha_h = 0$ représente une perte totale, une défaillance du hème actionneur et $\alpha_h = 1$ implique que le hème actionneur opère normalement (Theilliol et al., 2002a). Ainsi, en présence de défauts actionneurs et autour du ième point de fonctionnement, (

$$\begin{cases}
 x_{k+1} = A_i x_k + B_i u_k + F_i d_k + \Delta_{X_i} \\
 y_k = C x_k + \Delta_{Y_i}
\end{cases}$$
(2.58)

où $d_k \in \mathbb{R}^2$ représente le défaut. Dans notre cas, par le fait que seuls des défauts actionneurs sont considérés, la matrice de distribution F_i est égale à B_i , et dû au système lui-même : $\forall i, B_i = B$. Par conséquent, $\forall i \ F_i$ est égale à une unique matrice F et le résidu sensible aux défauts Ω_k^* est directement équivalent à l'image du défaut \widehat{d}_k (voir section 2.2).

L'analyse de la stabilité du filtre adaptatif résultant a été réalisée comme dans la section 2.2.3 et les gains \bar{K}_i synthétisés assurent une stabilité quadratique autour de chaque point de fonctionnement \mathcal{PF}_i .

2.3.3 Résultats et commentaires

a) En l'absence de défaut :

Les simulations ont été réalisées en l'absence de défaut en atteignant les 3 conditions opératoires mentionnées dans la Table (

La figure (

$$u_k = \sum_{i=1}^{3} \varrho_k^i * u_e^i \tag{2.59}$$

où ϱ_k^i est une variable de séquencement associée à chaque mode opératoire générée par nos soins dans le cadre de cette étude en BO, telle que pour k=1 à 4000 :

$$\varrho_k^1 = \frac{1}{(1 + \exp(0.05 * (k - 510)))}$$

$$\varrho_k^2 = \frac{1}{(1 + \exp(-0.05 * (k - 510))} + \exp(0.05 * (k - 2520)))$$

$$\varrho_k^3 = 1 - \varrho_k^1 - \varrho_k^2$$
(2.60)

Note: pour obtenir le vecteur temporel, il faut multiplier k par Te = 5s.

Dans la suite, ϱ_k^i sera considérée comme la probabilité de référence ou fonction de pondération de référence caractérisant la dynamique du système non linéaire. L'évolution dynamique de ϱ^i est illustrée à la figure (

Dans le but d'évaluer la méthode, un banc de 3 filtres de Kalman définis en (

Sur la base des fonctions de pondération issues des filtres de Kalman découplant, les résidus générés par le filtre adaptatif sont présentés sur la figure (

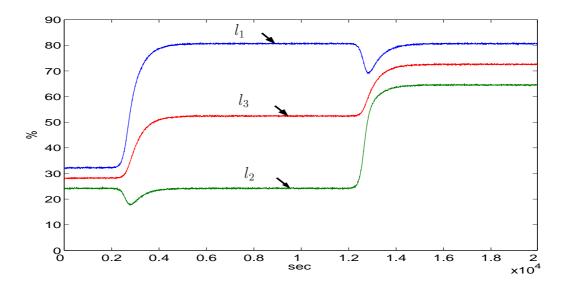


Fig. 2.8: Les sorties en l'absence de défaut

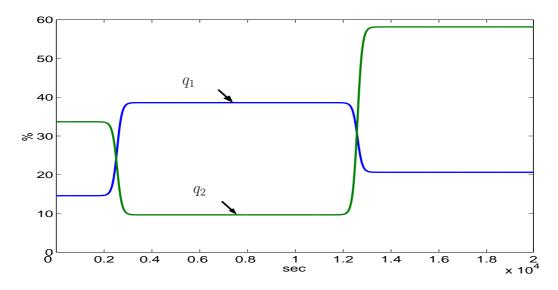


Fig. 2.9: Entrées en l'absence de défaut

b) En présence de défauts :

Une dégradation du gain de la pompe 1 équivalente à 10% de perte d'efficacité (c.à.d. 10% de la valeur nominale) est supposée apparaître à l'instant $t_1 = 5000$ s après le premier changement de point de fonctionnement. Un second défaut actionneur est considéré sur la pompe 2 avec une perte d'efficacité de 10% apparaissant à l'instant $t_2 = 11500$ s (Cf. figure (

Les résultats du filtre adaptatif se visualisent sur la figure (

Néanmoins, l'efficacité de la méthode dépend de l'amplitude des défauts, car le modèle en défaut ne doit pas trop s'éloigner du point de fonctionnement connu. En effet, si un défaut plus important venait à apparaître sur le système, le filtre adaptatif ne pourrait estimer correctement

2.3 Exemples 61

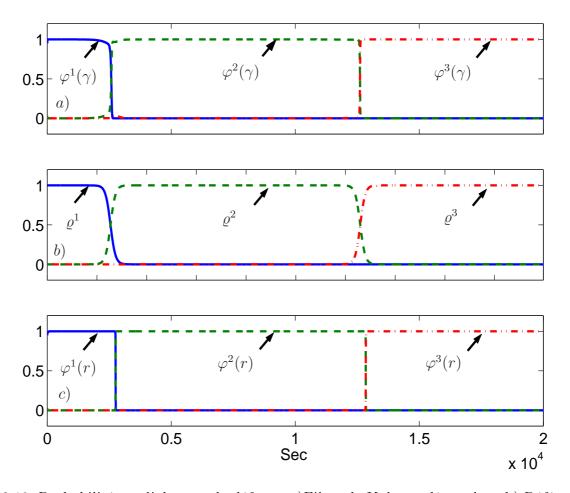


Fig. 2.10: Probabilités en l'absence de défaut : a)Filtre de Kalman découplant b) Référence c) Filtre de Kalman classique

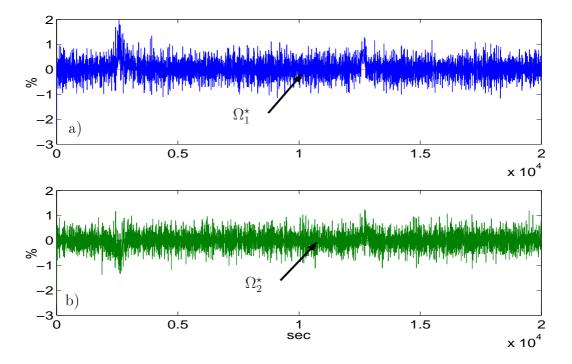


Fig. 2.11: Résidu sensible aux défauts provenant filtre adaptatif en l'absence de défaut

le défaut étant donné que la modélisation du système serait alors inadaptée. Pour illustrer nos propos, nous appliquons des défauts de l'ordre de 60% (au lieu de 10%) par rapport à la valeur nominale de la commande. On observe à la figure (

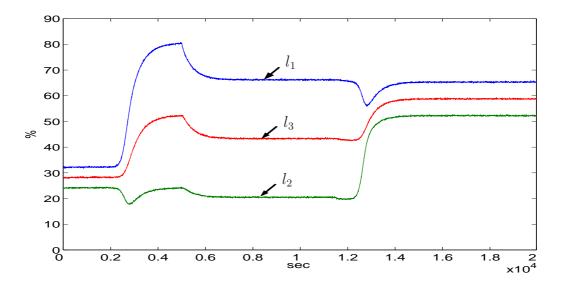


Fig. 2.12: Sorties en présence de défaut

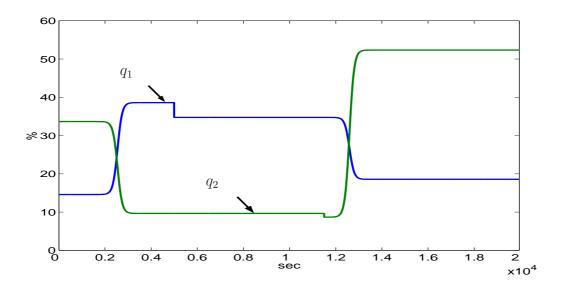


Fig. 2.13: Entrées en présence de défaut

2.4 Conclusion

La problématique du diagnostic de défauts présents au sein de systèmes non linéaires basés sur une représentation multi-modèles a été développée dans ce chapitre. Nous avons montré que la synthèse de fonctions de pondérations robustes aux défauts constituait un élément essentiel. Ces fonctions de pondération robustes permettent de reproduire la dynamique du système sur une grande plage de fonctionnement en présence ou en l'absence de défaut. On pourra remarquer qu'en boucle fermée, les fonctions de pondération robustes peuvent être des

2.4 Conclusion 63

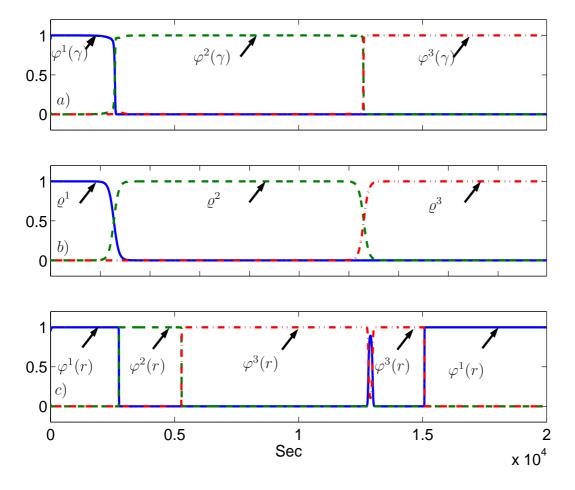


Fig. 2.14: Probabilités en présence de défaut

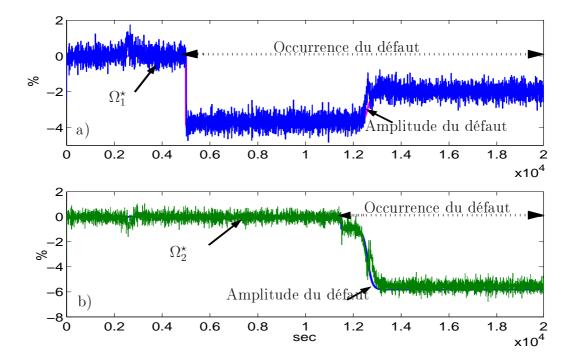


Fig. 2.15: Résidu sensible provenant du filtre adaptatif en présence de défaut

variables efficaces dans les techniques de commande, de séquencement de gain non mesurables

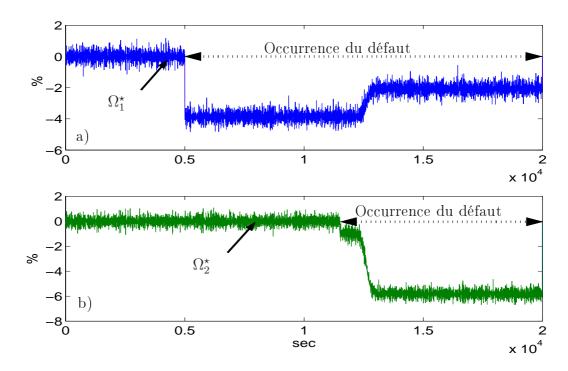


Fig. 2.16: Résidus sensibles aux défauts basés sur les fonctions de pondération de référence

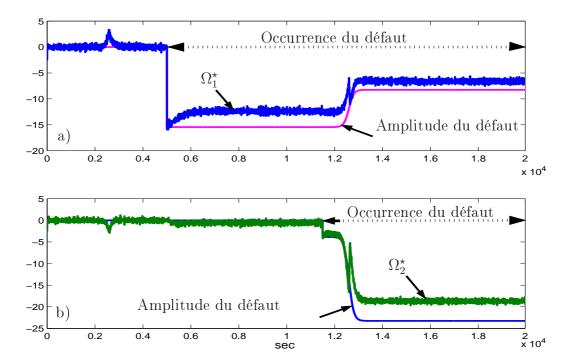


FIG. 2.17: Estimation des défauts avec commande réduite de 60% de sa valeur nominale ou corrompues par la présence de défaut.

Un filtre adaptatif robuste est synthétisé pour détecter, isoler et estimer les défauts au travers d'une représentation multi-modèle du système. Afin de garantir la stabilité du filtre adaptatif, une étude de stabilité est réalisée au moyen de \mathcal{LMI} . Le premier exemple explicite les performances du filtre découplant tandis que le second plus pratique, illustre son potentiel ainsi que ses limites. En effet, lorsque les défauts éloignent de manière trop forte le

2.4 Conclusion 65

système de son point de fonctionnement initial, le filtre n'est plus alors capable de fournir une estimation du défaut adéquate. Cependant, une solution serait de définir d'autres points de fonctionnement autour desquels le filtre serait à même de pouvoir effectuer un diagnostic correct. De même, on pourrait envisager un apprentissage du type de défauts ainsi que de leurs éventuelles amplitudes, comme c'est le cas en aéronautique, afin de définir plus précisément les besoins pour effectuer un diagnostic correct du système. Afin de pallier ses limitations, nous proposons de tenir compte de ces erreurs de modélisation qui n'affectent pas les fonctions de pondération mais seulement l'estimation des défauts.

Chapitre 3

Synthèse d'observateurs polytopiques à entrées inconnues pour le diagnostic

"Seuls les croyants qui demandent à la science de leur remplacer le catéchisme auquel ils ont renoncé, verront d'un mauvais oeil qu'un savant poursuive et développe ou même qu'il modifie ses idées". Sigmund Freud

Ce chapitre traite de la génération de résidus robustes aux erreurs de modèles inhérents à l'exploitation d'une représentation multi-modèle de systèmes. Ces erreurs de modèles interviennent sur le système comme des "entrées inconnues" (entrées exogènes). Sur la base de ces hypothèses, nous proposons de découvrir dans ce chapitre la synthèse d'observateurs polytopiques à des fins de diagnostic de défauts.

3.1 Introduction

Les travaux de recherche développés dans ce chapitre ont pour but de prendre en considération les perturbations affectant la génération de résidus. Le type de perturbations sur lequel nous nous sommes focalisé sont les erreurs de modélisation. Ces erreurs de modélisation nuisent à la détection de défauts autour des points de fonctionnement mais aussi lors des transitions de points de fonctionnement à un autre. De plus, elles peuvent engendrer de fausses alarmes lors de la détection des défauts ou interférer sur leur estimation. Sous l'hypothèse que les défauts actionneurs et capteurs puissent être modélisés sous la forme d'incertitudes structurées et que dans ce contexte multi-modèles les fonctions d'interpolation soient insensibles aux défauts, la contribution de ces travaux résident en la synthèse d'un générateur de résidus robustes. Nous reprenons par ailleurs les hypothèses formulées au premier chapitre à la section 1.3, concernant la modélisation des systèmes autour de différents points de fonctionnement ainsi que leur représentation dynamique.

Dans les travaux précédents de (Theilliol et al., 2003b), (Rodrigues et al., 2004) et dans le

précédent chapitre, les erreurs de modélisation (perturbations) avaient été prises en compte mais aucun découplage ne permettaient de les éliminer de la génération de résidus. De ce fait, ce chapitre se propose de prendre en compte ces dernières dans le schéma de diagnostic des systèmes représentés par des multi-modèles et de s'attacher à éliminer ces informations qui perturbent les résidus pour la détection des défauts.

A des fins de robustesse, les observateurs à entrées inconnues ont été développés initialement dans le domaine de la commande afin que l'erreur d'estimation converge vers zéro en présence de perturbations (entrées inconnues) modélisées sous forme d'incertitudes structurées. Après l'observateur de (Luenberger, 1966), un grand nombre d'approches ont été proposées pour concevoir des observateurs à entrées inconnues telle la décomposition en valeurs singulières de (Fairman et al., 1984) ou l'approche algébrique de (Hou and Muller, 1992) avec des observateurs d'ordre réduit. En considérant les défauts comme des perturbations, les observateurs à entrées inconnues ont inspiré un grand nombre de chercheurs depuis ces vingt dernières années (Frisk, 1996). Une synthèse bibliographique ainsi que la mise en oeuvre de techniques à base d'entrées inconnues sont présentées dans le livre de (Chen and Patton, 1999), dans l'état de l'art de (Frank and Ding, 1997) et les références qui s'y rapportent. Cependant, ces méthodes ne permettent pas la prise en compte à la fois de l'évolution dynamique du système sur plusieurs points de fonctionnement et du découplage des perturbations sur les résidus.

Parmi les méthodes de découplage et de par la représentation des défauts considérés dans le cas polytopique, nous proposons d'utiliser des observateurs à entrées inconnues, largement traités dans le cas linéaire (Chen and Patton, 1999), mais conduisant ici à la synthèse spécifique d'observateurs polytopiques. La stabilité et la convergence de l'erreur d'estimation sont étudiées au travers l'utilisation de \mathcal{LMI} alliant les contraintes de découplage et l'ensemble polytopique sur lequel le système est représenté. La synthèse de ces différents observateurs à entrées inconnues (en anglais Unknown Inputs Observer, \mathcal{UIO}) va notamment dépendre des matrices de découplage des erreurs de modélisation.

3.2 Modélisation des perturbations et problématique pour la génération de résidus robustes

3.2.1 Erreurs de modélisation : détermination des matrices de distribution

La matrice de distribution des perturbations n'est généralement pas disponible directement ni mesurable. Toutefois, il existe des cas où à partir de connaissances a priori du système, il est possible de déterminer la matrice de distribution E des perturbations comme suggéré par (Chen and Patton, 1999).

Par exemple, soit un système modélisé avec des variations de paramètres pouvant être décrites comme suit :

$$x(t) = (A + \Delta A(t))x(t) + (B + \Delta B(t))u(t)$$
(3.1)

Ces variations de paramètres peuvent parfois être approximées, comme par exemple dans le domaine de la commande robuste, de la façon suivante :

$$\Delta A(t) = \sum_{i=1}^{N} a_i(t) A_i \quad \Delta B(t) = \sum_{i=1}^{N} b_i(t) B_i$$
 (3.2)

où A_i et B_i sont des matrices constantes et connues, les termes $a_i(t)$ et $b_i(t)$ sont des scalaires variant dans le temps. Dans ce cas, les erreurs de modèles peuvent être approximées de la manière suivante :

$$\Delta A(t)x(t) + \Delta B(t)u(t) = [A_1 \dots A_N \dots B_1 \dots B_N] \begin{bmatrix} a_1(t)x(t) \\ \dots \\ a_N(t)x(t) \\ b_1(t)u(t) \\ \dots \\ b_N u(t) \end{bmatrix} = Ed(t)$$
(3.3)

D'autre part, dans le domaine de la commande robuste, il est fréquent d'avoir des matrices ΔA et ΔB bornées supposées satisfaire la condition suivante :

$$[\Delta A(t) \ \Delta B(t)] = E\Sigma(t)[F_a \ F_b] \tag{3.4}$$

où E, F_a, F_b sont des matrices connues avec des dimensions appropriées, $\Sigma(t)$ est une matrice diagonale variant dans le temps qui représente les incertitudes paramétriques. Dans cette situation, la matrice de distribution des perturbations est E et le vecteur des entrées inconnues est alors : $d(t) = \Sigma(t)[F_ax(t) F_bu(t)]$.

Dans un autre contexte, considérons les matrices d'un système dépendant d'un vecteur de paramètres $\alpha \in \mathbb{R}^k$:

$$\dot{x}(t) = A(\alpha)x(t) + B(\alpha)u(t) \tag{3.5}$$

Si le vecteur des paramètres est défini autour de la valeur nominale $\alpha = \alpha_0$, l'équation (

$$\dot{x}(t) = A(\alpha_0)x(t) + B(\alpha_0)u(t) + \sum_{i=1}^{k} \left[\frac{\partial A}{\partial \alpha_i} \delta \alpha_i x(t) + \frac{\partial B}{\partial \alpha_i} \delta \alpha_i u(t)\right]$$
(3.6)

Dans ce cas, la matrice de distribution et le vecteur des perturbations sont :

$$E = \left[\frac{\partial A}{\partial \alpha_1} \left| \frac{\partial B}{\partial \alpha_1} \right| \dots \right| \frac{\partial A}{\partial \alpha_k} \left| \frac{\partial B}{\partial \alpha_k} \right|$$

$$d(t) = \left[\delta \alpha_1 x^T \left| \delta \alpha_1 x^T \right| \dots \left| \delta \alpha_k x^T \right| \delta \alpha_k x^T \right]^T$$

$$(3.7)$$

où d(t) est l'amplitude des perturbations présentes sur le système.

De manière similaire, lors du calcul de la dérivée d'une fonction f(x) par le théorème de Taylor, les dérivées de l'ordre 2 à n peuvent être considérées comme des incertitudes et le polynôme de Taylor $P_{f,a,n}(x)$ s'écrit alors :

$$P_{f,a,n}(x) = f(a) + \sum_{l=1}^{n} \frac{f^{l}(a)}{l!} (x-a)^{l}$$
(3.8)

En se basant sur cette définition, il vient

$$\dot{x}(t) = \sum_{i=1}^{N} \gamma_i(x(t)) \left(A_i x(t) + B_i u(t) + \Delta x_i + \sum_{l=2}^{n} \left. \frac{\partial^l f(x, u)}{l! \partial x^l} \right|_{\substack{x=x_i \\ u=u_i}} (x - x_i)^l + \sum_{l=2}^{n} \left. \frac{\partial^l f(x, u)}{l! \partial u^l} \right|_{\substack{x=x_i \\ u=u_i}} (u - u_i)^l$$
(3.9)

avec

$$A_{i} = \frac{\partial f(x, u)}{\partial x} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}}, \quad B_{i} = \frac{\partial f(x, u)}{\partial u} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}}, \quad \Delta x_{i} = f(x_{i}, u_{i}) - A_{i}x_{i} - B_{i}u_{i}$$

$$(3.10)$$

L'équation précédente peut s'écrire de la manière suivante

$$\dot{x}(t) = \sum_{i=1}^{N} \gamma_i(x(t)) (A_i x(t) + B_i u(t) + \Delta x_i + E_i d(t))$$
(3.11)

avec

$$E_{i} = \left[\frac{\partial^{2} f(x, u)}{2! \partial x^{2}} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}} \frac{\partial^{2} f(x, u)}{2! \partial u^{2}} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}} \dots \frac{\partial^{n} f(x, u)}{n! \partial x^{n}} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}} \frac{\partial^{n} f(x, u)}{n! \partial u^{n}} \bigg|_{\substack{x=x_{i} \\ u=u_{i}}} \right]$$
(3.12)

et

$$d(t) = \begin{bmatrix} (x - x_i)^2 \\ (u - u_i)^2 \\ \vdots \\ (x - x_i)^n \\ (u - u_i)^n \end{bmatrix}$$

$$(3.13)$$

Ainsi, nous avons pu voir à travers quelques exemples, qu'il est possible de ramener l'écriture de variations de paramètre sous une forme additive Ed(t). Par la suite et en admettant qu'il est possible de s'y ramener, nous utiliserons ce type de représentation pour les perturbations intervenant sur le système dans le cas discret. Notons que dans (Chen and Patton, 1999), plusieurs travaux permettent de déterminer les matrices de distribution des erreurs de modélisation autour de différents points de fonctionnement. Ainsi ces matrices de distribution pourront provenir de tels travaux. Cependant, il est toutefois possible que des perturbations (entrées inconnues) apparaissent directement sur le vecteur de sortie du système. Ce cas sera étudié dans ce chapitre à la section 3.3.

Nous allons voir dès à présent la problématique de la génération de résidus corrompue par la présence de ce type de perturbations.

3.2.2 Positionnement du problème

Soit un système représenté dans le cas discret autour d'un point de fonctionnement i tenant compte des erreurs de modélisation et des défauts :

$$x_{k+1} = A_i x_k + B_i u_k + E_i d_k + F_i f_k + \Delta x_i$$

$$y_k = C_i x_k$$
(3.14)

Les matrices de distribution des entrées inconnues et de défauts sont notées respectivement $E_i \in \mathbb{R}^{n \times q}$ et $F_i \in \mathbb{R}^{n \times f}$ supposées toutes deux de plein rang en colonne. D'autre part et d'un point de vue de détectabilité des défauts (Armeni, 2004), nous supposerons que les matrices $F_i, \forall i \in [1...N]$ sont monics c.à.d que si $f_k \neq 0$ alors $F_i f_k \neq 0$. De plus, il faut noter que de manière classique et à des fins de détectabilité de défauts, le diagnostic des systèmes linéaires (Willsky, 1976), (Frank and Ding, 1997) ou (Chen and Patton, 1999), impose que le nombre de perturbations et\ou défauts, soit inférieur strictement au nombre de sorties du système. Tout module de diagnostic, basé sur la génération de résidus, est donc tributaire du nombre de sorties du système afin de pouvoir détecter et isoler les défauts. De ce fait et comme au chapitre 2, il sera spécifié que le nombre de sorties du systèmes est supérieur strictement au nombre de défauts et perturbations à détecter. Le fait de considérer comme connue la matrice E_i se définit par le terme "d'incertitudes structurées".

Comme nous l'avons expliqué au chapitre 1, le comportement dynamique du système, sur une plage de fonctionnement donnée, peut être approximé à partir de la pondération des N

modèles locaux \mathcal{PF}_i (Tayebi and Zaremba, 2002) par des fonctions d'interpolation $\rho_k^i \in \Omega$, sous la forme d'état suivante (Rodrigues et al., 2005a):

$$x_{k+1} = \sum_{i=1}^{N} \rho_k^i [A_i x_k + B_i u_k + E_i d_k + F_i f_k + \Delta x_i]$$

$$y_k = C x_k$$
(3.15)

Concernant (

$$\Xi_i = \begin{bmatrix} A_i & B_i & E_i & F_i & \Delta x_i \\ C & & & \end{bmatrix}, \forall i \in [1, \dots, N]$$
 (3.16)

où Ξ_i correspond aux sommets d'un ensemble Θ convexe $Co\{\Xi_1,...,\Xi_N\}$ tel que :

$$\Theta := \left\{ \Xi(\rho) : \Xi(\rho) = \sum_{i=1}^{N} \rho_i \Xi_i, \quad \sum_{i=1}^{N} \rho_i = 1, \quad \rho_i \ge 0 \right\}$$
 (3.17)

Ainsi, l'ensemble polytopique $\Xi(\rho)$ modélise la représentation du comportement non linéaire du système.

Ces fonctions peuvent être générées comme nous l'avons vu au chapitre 2, permettant de générer des résidus insensibles aux défauts sur lesquelles sont synthétisées les fonctions de pondération ((Adam-Medina et al., 2003) et (Theilliol et al., 2003b)). Ainsi, les fonctions d'activation sont robustes aux défauts et la dynamique du système est correctement représentée. Les fonctions d'activation utilisées dans ce chapitre seront supposées provenir de ces travaux antérieurs ou d'autres travaux permettant de les synthétiser. Notons toutefois qu'il est difficile d'obtenir des fonctions d'activation robustes aux erreurs de modélisation étant donné que les matrices E_i dépendent de l'état du système.

Les erreurs de modélisation représentées sous forme d'incertitudes structurées, nous conduisent en toute logique à nous attacher à la synthèse d'observateurs afin de résoudre la problématique du diagnostic de défauts sous nos hypothèses de travail.

Dans le cadre du diagnostic, un observateur est souvent destiné à estimer le vecteur de sortie d'un système. Pour le concevoir, on suppose que les modèles locaux sont localement observables, c'est-à-dire que toutes les paires (A_i, C_i) sont observables (Chen and Patton, 1999). Dans le domaine de la logique floue, l'utilisation de multiples observateurs de Luenberger a souvent été utilisée afin de servir à une estimation d'état en ligne du système (Tanaka et al., 1996), (Lopez-Toribio et al., 1998). Cependant, cette stratégie n'intègre pas toujours la robustesse vis-à-vis des défauts et encore moins vis-à-vis des incertitudes. Les fonctions d'activation sont imposées comme des "règles" ou "lois" en fonction d'un vecteur de décision fonction des valeurs que prennent les entrées, l'état du système ou des variables du système supposées mesurables et connues. Cependant, il n'y a pas d'étude de robustesse des fonctions d'activation vis-à-vis des défauts qui peuvent corrompre ce vecteur de décision. De plus, les systèmes sont souvent des modèles de défauts où est supposé connu un certain nombre de modèles du système en défaut, ce qui n'est pas en adéquation avec nos hypothèses. Cette stratégie couvre dans le cadre de la détection de défauts, un nombre forcément limité de modèles en défauts connus

alors que notre étude se veut plus générale permettant une détection de défauts plus large.

Afin de réaliser le diagnostic de systèmes connus autour de multiples points de fonctionnement, la synthèse d'un banc d'observateurs de Luenberger (

$$\begin{cases} \hat{x}_{k+1} = A_i \hat{x}_k + B_i u_k + K_i (y_k - \hat{y}_k) + \Delta x_i \\ \hat{y}_k = C_i \hat{x}_k \end{cases}$$
(3.18)

 $\forall i \in [1, ..., N]$ avec K_i le gain de l'observateur local, \hat{x} l'estimation de x et Δx_i un terme connu dépendant du point de fonctionnement considéré. L'erreur d'estimation $e_k = x_k - \hat{x}_k \in \mathbb{R}^n$ et le résidu $r_k = y_k - \hat{y}_k \in \mathbb{R}^m$ s'expriment de la manière suivante :

$$\begin{cases}
e_{k+1} = (A_i - K_i C_i) e_k + E_i d_k + F_i f_k \\
r_k = y_k - \hat{y}_k = C_i (x_k - \hat{x}_k) = C_i e_k
\end{cases}$$
(3.19)

Comme nous l'avons vu au chapitre 2, l'erreur d'estimation et le résidu (

Les observateurs à entrées inconnues, ont été développés pour estimer l'état d'un système en dépit de la présence d'entrées inconnues ou des perturbations en les éliminant dans les équations d'état. Cet outil a été parfaitement défini pour les systèmes linéaires (Chen and Patton, 1999), (Frisk, 1996) et est adapté pour rejeter les informations à ne pas prendre en compte au moyen d'un découplage exact basé sur la connaissance des matrices de distribution des incertitudes autour des \mathcal{PF}_i . Cependant, aucune étude à notre connaissance ne permet de découpler les erreurs de modélisation dans leur ensemble au travers tous les points de fonctionnement identifiés : il semble donc intéressant de définir une méthode permettant d'effectuer le découplage de ces erreurs même lors des transitions. Au cours de notre étude sur les \mathcal{UIO} , des travaux effectués en parallèle dans un autre contexte utilisant les \mathcal{UIO} sous la même dénomination polytopique, ont été publiés comme (Millerioux and Daafouz, 2004a) où ceux-ci traitent du problème de la synchronisation dans un contexte de cryptage de l'information ainsi que dans un contexte plus général dans (Millerioux and Daafouz, 2004b). Cependant, ceux-ci ne traitent pas de diagnostic de défauts mais utilisent les \mathcal{UIO} pour estimer une entrée ou un état, même si toutefois les outils utilisés restent les mêmes : \mathcal{UIO} , \mathcal{LMI} ,... Dans le même temps, la thèse de (Akhenak, 2004) se situe dans le même axe de recherche des multi-modèles et un chapitre est consacré à la synthèse de multi observateurs utilisant les \mathcal{UIO} . Néanmoins, l'estimation d'état reste le but principal de la méthode alors que nous désirons nous consacrer à la génération de résidus robustes pour la détection de défauts sur des systèmes représentés par des multi-modèles. Les résultats sont toutefois assez similaires sur la façon de synthétiser les \mathcal{UIO} pour des systèmes représentés par des multi-modèles à la différence que nous synthétisons un module de détection, d'isolation et d'estimation des défauts dans son ensemble.

Nous proposons d'étudier dans la section suivante la synthèse d'observateurs polytopiques dédiés aux systèmes (

Ce chapitre se compose de 2 parties principales sur la synthèse d'observateurs polytopiques : la première décrit la synthèse d'un observateur polytopique lorsque les matrices de distribution des entrées inconnues sont différentes pour chaque modèle local et que le vecteur de sortie est soumis à ces mêmes entrées inconnues. La seconde partie traite des entrées inconnues qui

diffèrent selon chaque point de fonctionnement sans que celles-ci n'interviennent sur le vecteur de sorties. Ces entrées inconnues sont alors ramenées à l'expression d'une seule et unique matrice de distribution. La synthèse de l' \mathcal{UIO} ainsi que l'étude de stabilité, sont alors revisitées.

3.3 Synthèse d'un observateur polytopique à entrées inconnues : 1ère Partie

Tout d'abord, cette section offre une solution de découplage lorsque les entrées inconnues $d_k \in \mathbb{R}^q (q < n)$, sont différentes pour chaque modèle local (E_i) et que le vecteur de sortie y_k est soumis à ces mêmes entrées inconnues d_k par une matrice unique G. Considérons le système (

$$\begin{cases} x_{k+1} = \sum_{i=1}^{N} \rho_i(\gamma_k) [A_i x_k + B_i u_k + E_i d_k + F_i f_k + \Delta x_i] \\ y_k = C x_k + G d_k \end{cases}$$
(3.20)

avec

$$\begin{cases}
\sum_{i=1}^{N} \rho_i(\gamma_k) = 1 \\
0 \le \rho_i(\gamma_k) \le 1 , \quad \forall i \in [1, \dots, N]
\end{cases}$$
(3.21)

où $x_k \in \mathbb{R}^n$ représente le vecteur d'état, $u_k \in \mathbb{R}^p$ est le vecteur d'entrée et $y \in \mathbb{R}^m$ est le vecteur de sortie. $E_i \in \mathbb{R}^{n \times q}$ et $G \in \mathbb{R}^{m \times q}$ sont les matrices de distribution des entrées inconnues intervenant respectivement sur l'équation d'état et de sortie. La matrice d'état du ième modèle local est $A_i \in \mathbb{R}^{n \times n}$, la matrice de commande est $B_i \in \mathbb{R}^{n \times p}$ et la matrice de sortie est $C \in \mathbb{R}^{m \times n}$. Les matrices de distribution des défauts sont notées $F_i \in \mathbb{R}^{n \times f}$, et $f_k \in \mathbb{R}^f$ représente le vecteur des défauts. Le terme $\Delta x_i \in \mathbb{R}^{n \times 1}$ est un vecteur dépendant du ième point de fonctionnement. Afin d'isoler les défauts, une condition nécessaire consiste à définir que le nombre de sorties doit être supérieur au nombre de perturbations sur le système (Hou and Muller, 1994), (Darouach and Zasadzinski, 1994) et (Frank and Ding, 1997). Ainsi, on supposera que le nombre des incertitudes q ajouté à celui des défauts f, est inférieur à mreprésentant la dimension de la sortie du système : q + f < m. Les principes d'isolation des défauts seront énoncés dans la dernière section de ce chapitre. De même, on supposera que les paires (A_i, C) sont observables. Les fonctions d'activation des modèles locaux sont notées $\rho_i(\gamma_k)$ et γ_k représente le vecteur de variables de décision qui peuvent dépendre des sorties et/ou des entrées. Pour alléger les notations, $\rho_i(\gamma_k)$ sera noté ρ_k^i . Ces fonctions d'activation pourraient être obtenues comme nous l'avons vu au chapitre précédent.

Définition 1 (Observateur polytopique à entrées inconnues)(\mathcal{UIO}) Un observateur polytopique pour le système décrit par les équations (

Cet observateur polytopique à entrées inconnues se présente comme suit :

$$z_{k+1} = \sum_{i=1}^{N} \rho_k^i \left[S_i z_k + T B_i u_k + K_i y_k + \Delta z_i \right]$$

$$\widehat{x}_{k+1} = z_{k+1} + H y_{k+1}$$
(3.22)

où $\widehat{x} \in \mathbb{R}^n$ est l'estimation de l'état et $z \in \mathbb{R}^n$ est l'état de l'observateur. $S_i \in \mathbb{R}^{n \times n}$ est la matrice d'état de l'observateur, $K_i \in \mathbb{R}^{n \times m}$ est le gain, $\Delta z_i \in \mathbb{R}^n$ est un vecteur constant dépendant du point de fonctionnement et une matrice $T \in \mathbb{R}^{n \times n}$. L'UIO permet de rejeter les informations non désirables au moyen du découplage des entrées inconnues. Dans la suite, la notation $X(\rho) = \sum_{i=1}^N \rho_k^i X_i$ est adoptée pour l'ensemble des matrices écrites sous cette forme. L'erreur d'estimation entre le système (

$$e_{k+1} = x_{k+1} - \widehat{x}_{k+1}$$

$$= x_{k+1} - (z_{k+1} + Hy_{k+1})$$

$$= x_{k+1} - H(Cx_{k+1} + Gd_{k+1}) - z_{k+1}$$

$$= [I - HC]x_{k+1} - HGd_{k+1} - (S(\rho)z_k + TB(\rho)u_k + K(\rho)y_k + \Delta z(\rho))$$
(3.23)

En décomposant le gain $K(\rho)$ sous la forme $K(\rho) = K^1(\rho) + \Pi(\rho)$, l'équation (

$$e_{k+1} = [I - HC](A(\rho)x_k + B(\rho)u_k + E(\rho)d_k + F(\rho)f_k + \Delta x(\rho)) - \Delta z(\rho) -TB(\rho)u_k - S(\rho)(x_k - e_k - Hy_k) - K^1(\rho)(Cx_k + Gd_k) - \Pi(\rho)y_k - HGd_{k+1}$$
(3.24)

L'erreur d'estimation est équivalente à :

$$e_{k+1} = S(\rho)e_k - [S(\rho) - (I - HC)A(\rho) - K^1(\rho)C]x_k + [(I - HC)E(\rho) - K^1(\rho)G]d_k - [\Pi(\rho) - S(\rho)H]y_k - [T - (I - HC)]B(\rho)u_k + (I - HC)F(\rho)f_k - HGd_{k+1} + [I - HC]\Delta x(\rho) - \Delta z(\rho)$$

$$r_{k+1} = Ce_{k+1} (3.25)$$

Les matrices $S(\rho)$, T, $K(\rho)$ et H doivent être synthétisées dans le but d'assurer la convergence et la stabilité de l'erreur d'estimation $e_k = x_k - \hat{x}_k$ et du résidu r_k en l'absence de défaut $(f_k = 0)$. Si les conditions suivantes sont vérifiées :

$$\begin{cases}
T = I - HC \\
TE_i = K_i^1 G \\
S_i = TA_i - K_i^1 C \\
\Pi_i = S_i H \\
T\Delta x_i = \Delta z_i \\
HG = 0 \\
S(\rho) = \sum_{i=1}^{N} \rho_k^i S_i \text{ est stable}
\end{cases}$$
(3.26)

L'erreur d'estimation et le résidu s'écrivent alors :

$$e_{k+1} = S(\rho)e_k + TF(\rho)f_k$$

 $r_{k+1} = Ce_{k+1}$ (3.27)

En l'absence de défaut, l'erreur d'estimation notée \bar{e}_k et le résidu \bar{r}_k associé, tendent asymptotiquement vers zéro si l'ensemble de ces conditions (

$$\bar{e}_{k+1} = S(\rho)\bar{e}_k = \sum_{i=1}^N \rho_k^i S_i \bar{e}_k$$

$$\bar{r}_{k+1} = C\bar{e}_{k+1}$$
(3.28)

La décroissance de l'erreur asymptotique \bar{e}_k dépend de la matrice $S(\rho)$ car la stabilité locale des matrices S_i ne permet pas de garantir la stabilité globale de l'erreur d'estimation. Il est donc nécessaire d'étudier la stabilité de la matrice $S(\rho)$ sur l'ensemble convexe pour pouvoir assurer la convergence de cette erreur d'estimation. Les paires (\bar{A}_i, C) seront supposées détectables.

3.3.1 Convergence de l'observateur polytopique

Il existe de nombreuses façons d'assurer la convergence et la stabilité de l'erreur d'estimation notamment en imposant les valeurs propres de S_i tout en respectant les contraintes matricielles énoncées dans (

L'équation dynamique (

$$\begin{cases}
S_i^T P S_i - P & < 0, \forall i \in [1 \dots N] \\
P & > 0
\end{cases}$$
(3.29)

Ainsi, en se fondant sur l'équation (

$$\begin{cases}
S_{i}^{T}PS_{i} - P < 0 \\
P > 0 \\
T = I - HC \\
TE_{i} = K_{i}^{1}G \\
S_{i} = TA_{i} - K_{i}^{1}C, \quad \forall i \in [1...N] \\
\Pi_{i} = S_{i}H \\
T\Delta x_{i} = \Delta z_{i} \\
HG = 0 \\
\Pi_{i} = S_{i}H \\
K_{i} = K_{i}^{1} + \Pi_{i}
\end{cases} (3.30)$$

On peut remarquer la première inégalité de (Soit les changements de variables suivant :

$$\begin{cases}
Q_i = PK_i^1 \\
M = PH, \quad \forall i \in [1...N]
\end{cases}$$
(3.31)

Les contraintes des lignes (4) et (8) de (

$$\begin{cases}
MG &= 0 \\
(P - MC)E_i &= Q_iG, \quad \forall i \in [1...N]
\end{cases}$$
(3.32)

A l'aide du complément de Schur (Cf. Annexe A), il est possible de transformer l'écriture de la première inégalité de (

$$\begin{pmatrix} P & * \\ PS_i & P \end{pmatrix} > 0, \quad \forall i \in [1 \dots N]$$
(3.33)

En remplaçant S_i par $TA_i - K_i^1C$, la \mathcal{LMI} (

$$\begin{pmatrix} P & * \\ PTA_i - Q_iC & P \end{pmatrix} > 0, \quad \forall i \in [1 \dots N]$$
(3.34)

L'écriture devient alors :

$$\begin{pmatrix} P & * \\ PA_i - MCA_i - Q_iC & P \end{pmatrix} > 0, \quad \forall i \in [1 \dots N]$$
(3.35)

Cette dernière inégalité est linéaire par rapport aux matrices P, M et Q_i . Il est possible de pondérer cette \mathcal{LMI} sur un ensemble convexe pour assurer la stabilité de l'erreur d'estimation. La \mathcal{LMI} (

Remarque:

Il faut noter qu'en résolvant les \mathcal{LMI} (

Les autres matrices de l'observateur polytopique peuvent alors être déduites en connaissance des matrices P, M et $Q_i, \forall i \in [1...N]$:

$$\begin{cases}
H &= P^{-1}M \\
T &= I - HC \\
T\Delta x_i &= \Delta z_i \\
K_i^1 &= P^{-1}Q_i \\
S_i &= TA_i - K_i^1C \\
\Pi_i &= S_i H \\
K_i &= K_i^1 + \Pi_i
\end{cases}$$
(3.36)

Dans cette dernière partie, nous avons montré comment passer de contraintes \mathcal{BMI} (inégalités matricielles bilinéaires) à des contraintes \mathcal{LMI} par changements de variables.

Il est également possible de contraindre les valeurs propres de l'observateur à appartenir à une région précise du cercle unité pour garantir la convergence de l'observateur à l'aide de \mathcal{LMI} (Voir Annexe C).

3.3.2 Placement de pôles

Dans le cadre de notre étude, la convergence de l'UIO polytopique est fixée à partir des valeurs propres des matrices S_i en calculant un gain de telle sorte que ces valeurs propres

appartiennent à un ensemble spécifique d'une région du plan complexe défini par \mathcal{LMI} . Il est important d'effectuer un placement de pôles aux sommets S_i du polytope afin d'assurer qu'autour de ses sommets l'UIO a une dynamique adéquate. Par la suite, nous allons utiliser une région du plan complexe définissant un cercle à l'intérieur du cercle unité afin de pouvoir assurer une décroissance par l'intermédiaire du paramètre r sur l'erreur d'estimation (en anglais decay rate). Le paramètre $q \neq 0$ permet de régler le centre du cercle afin de converger ailleurs que vers zéro avec les \mathcal{LMI} et d'obtenir un placement de pôles adéquat.

Proposition 1 Soit \mathcal{D} , une région \mathcal{LMI} définissant un disque de centre (-q,0), et de rayon r avec (q+r) < 1 pour définir un placement de pôles dans le cercle unité (Chilali and Gahinet, 1996). L'erreur d'estimation (

$$\begin{pmatrix} -rP & * \\ qP + PA_i - MCA_i - Q_iC & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N]$$
 (3.37)

 $sous\ contraintes$

$$\begin{cases}
MG = 0 \\
(P - MC)E_i = Q_iG
\end{cases}$$
(3.38)

avec

$$\begin{cases}
Q_i = PK_i^1 \\
M = PH
\end{cases}$$
(3.39)

Preuve:

Si (

$$\begin{pmatrix} -rP & * \\ qP + P(TA_i - K_i^1C) & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N]$$
 (3.40)

où T = I - HC. En notant $\bar{A}_i = TA_i$, les pôles des matrices $(\bar{A}_i - K_i^1C)$ restent dans le cercle de centre (-q,0) et de rayon (q+r) < 1 (Cf. voir définition des régions \mathcal{LMI} élémentaires dans (Chilali and Gahinet, 1996)). En pondérant chaque \mathcal{LMI} (

$$\begin{pmatrix} -rP & qP + \sum_{i=1}^{N} \rho_k^i (\bar{A}_i - K_i^1 C)^T P \\ qP + P \sum_{i=1}^{N} \rho_k^i (\bar{A}_i - K_i^1 C) & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N] \quad (3.41)$$

où les matrices $\sum_{i=1}^{N} \rho_k^i(\bar{A}_i - K_i^1C)$ peuvent s'écrire $(\bar{A}(\rho) - K^1(\rho)C)$ sous un ensemble convexe Ω , assurant que les pôles de l'erreur d'estimation \bar{e}_k de (

Remarque: si les paramètres r = 1 et q = 0 alors la \mathcal{LMI} (

3.3.3 Détection de défaut par la génération de résidus

Rappelons que nous avons supposé que les matrices $F_i \in \mathbb{R}^{n \times f}, \forall i \in [1...N]$ étaient de plein rang colonne et monic c.à.d que si $f_k \neq 0$ alors $F_i f_k \neq 0$. Si les conditions de découplage (

$$e_{k+1} = S(\rho)e_k + TF(\rho)f_k$$

$$r_k = Ce_k$$
(3.42)

Le découplage permet le rejet des perturbations en annulant le terme $[TE(\rho)-K^1(\rho)G]$ de l'équation (

$$Rang[TF(\rho)] = rang[F(\rho)], \forall \rho \in \Omega$$
(3.43)

Si cette condition est vérifiée, elle permet d'assurer que le découplage des entrées inconnues n'altère pas la détection des défauts sur l'erreur d'estimation. Cette condition s'interprète de manière géométrique suivant :

$$\bigcup_{i=1}^{N} Im(F_i) \subseteq Im(T^T) \tag{3.44}$$

Si l'image de l'union des matrices F_i est incluse dans l'image de la matrice de découplage T^T , alors la détection des défauts est possible sur toute la plage de fonctionnement. Cette relation est équivalente à :

$$\bigcup_{i=1}^{N} Im(F_i) \bigcap Ker(T) = \{0\}$$

$$= Im([F_1 \dots F_i \dots F_N]) \bigcap Ker(T) = \{0\}$$
(3.45)

La condition (

3.3.4 Estimation des entrées inconnues

Nous avons démontré précédemment que la convergence de l'observateur (

$$\begin{cases}
\widehat{x}_{k+1} = \sum_{i=1}^{N} \rho_k^i (A_i \widehat{x}_k + B_i u_k + E_i \widehat{d}_k + \Delta x_i) \\
y_k = C \widehat{x}_k + G \widehat{d}_k
\end{cases}$$
(3.46)

L'estimation des entrées inconnues peut s'effectuer comme suit lorsque $f_k=0$:

$$\begin{cases}
\left[\sum_{i=1}^{N} \rho_{k}^{i} E_{i}\right] \widehat{d}_{k} = \widehat{x}_{k+1} - \left[\sum_{i=1}^{N} \rho_{k}^{i} \left(A_{i} \widehat{x}_{k} + B_{i} u_{k} + \Delta x_{i}\right)\right] \\
G \widehat{d}_{k} = y_{k} - C \widehat{x}_{k}
\end{cases}$$
(3.47)

Sous l'hypothèse que la matrice $L = [(\sum_{i=1}^N \rho_k^i E_i)^T \ G^T]^T$ soit de plein rang colonne, alors le problème se ramène à un système d'équations linéaires en d_k équivalent à un problème d'optimisation linéaire résolu par la méthode des moindres carrés. La solution numérique de ce problème est basée sur le calcul de la pseudo-inverse de la matrice L. Une estimation de l'entrée inconnue est alors déduite :

$$\widehat{d}_k = (L^T L)^{-1} L^T \left(\widehat{x}_{k+1} - \left[\sum_{i=1}^N \rho_k^i \left(A_i \widehat{x}_k + B_i u_k + \Delta x_i \right) \right] \right)$$

$$y - C \widehat{x}_k$$
(3.48)

et L est égale à :

$$L = \begin{pmatrix} \sum_{i=1}^{N} \rho_k^i E_i \\ G \end{pmatrix}$$
 (3.49)

Remarquons que si la matrice G est de plein rang colonne alors le calcul de l'estimation des perturbations peut s'effectuer de la manière suivante selon la 2ème équation de (

$$\hat{d}_k = (G^T G)^{-1} G^T (y_k - \hat{y}_k)$$
(3.50)

avec $\widehat{y}_k = C\widehat{x}_k$. Cette méthode, en l'absence de défaut, peut être utilisée pour faire de la détection et de l'estimation de perturbation. Elle peut également servir à estimer des défauts qui auraient la structure des perturbations.

Ainsi, l'Observateur polytopique peut avoir de multiples usages en fonction de ce que l'on cherche à détecter et à estimer.

Afin d'illustrer cette section, nous allons présenter un premier exemple avec des perturbations à la fois sur l'état et sur les sorties du système ainsi qu'en présence d'un défaut actionneur. Cet exemple permet de souligner le découplage des perturbations et la conservation de la détection des défauts sur les résidus.

3.3.5 Exemple

Considérons un système représenté par 3 modèles locaux définis autour de 3 points de fonctionnement comportant 4 états et 4 sorties décrit par :

$$\begin{cases} x_{k+1} = \sum_{i=1}^{N} \rho_k^i (A_i x_k + B_i u_k + E_i d_k + F_i f_k + \Delta x_i) \\ y_k = C x_k + G d_k + v_k \end{cases}$$
(3.51)

Ces modèles locaux sont définis respectivement pour les valeurs de la commande u_k associée autour des points de fonctionnement i tel que $u_e^1 = 2, u_e^2 = 5, u_e^3 = 7$. On suppose connues les fonctions d'activation provenant par exemple d'un banc de filtres découplant comme nous l'avons vu au second chapitre. Un bruit additif gaussien centré v_k de variance 0.004 est ajouté à la sortie y_k . Les valeurs numériques des matrices A_i , B_i , E_i , G, C sont les suivantes :

$$A_{1} = \begin{bmatrix} 0.15 & 0 & 0 & 0 \\ 0 & 0.375 & 0 & 0 \\ 0 & 0 & 0.60 & 0 \\ 0 & 0 & 0 & 0.225 \end{bmatrix} A_{2} = \begin{bmatrix} 0.01 & 0 & 0 & 0 \\ 0 & 0.025 & 0 & 0 \\ 0 & 0 & 0.04 & 0 \\ 0 & 0 & 0 & 0.015 \end{bmatrix} A_{3} = \begin{bmatrix} 0.20 & 0 & 0 & 0 \\ 0 & 0.50 & 0 & 0 \\ 0 & 0 & 0.80 & 0 \\ 0 & 0 & 0 & 0.30 \end{bmatrix}$$
(3.52)

$$B_{i} = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} E_{1} = \begin{bmatrix} 0.4\\-1\\0.5\\0.5 \end{bmatrix} E_{2} = \begin{bmatrix} 0.5\\-1\\-0.3\\0.3 \end{bmatrix} E_{3} = \begin{bmatrix} 0.5\\-0.5\\-0.7\\0.2 \end{bmatrix} G = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix} C = \begin{bmatrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}$$
(3.53)

$$\Delta x_1 = 1e - 4 * \begin{bmatrix} 0.50 \\ 0 \\ 0 \\ -0.35 \end{bmatrix} \Delta x_2 = \begin{bmatrix} 0.494 \\ 1.68 \\ 4.2 \\ 0.813 \end{bmatrix} \Delta x_3 = \begin{bmatrix} -0.752 \\ -2.062 \\ -3.875 \\ -1.158 \end{bmatrix}$$
(3.54)

Étant donné que nous avons considéré un défaut actionneur, les matrices F_i sont équivalentes aux matrices $B_i = B$. L'observateur polytopique synthétisé est alors défini comme suit :

$$z_{k+1} = \sum_{i=1}^{N} \rho_k^i \left[S_i z_k + T B_i u_k + K_i y_k + \Delta z_i \right]$$

$$\widehat{x}_{k+1} = z_{k+1} + H y_{k+1}$$
(3.55)

 $En \ appliquant \ la \ m\'ethode \ d\'evelopp\'ee \ dans \ la \ section \ pr\'ec\'edente, \ les \ valeurs \ num\'eriques \ de \ l'observateur \ polytopique \ sont \ :$

$$S_{1} = S_{2} = S_{3} = \begin{bmatrix} 0.01 & 0 & 0 & 0 \\ 0 & 0.01 & 0 & 0 \\ 0 & 0 & 0.01 & 0 \\ 0 & 0 & 0 & 0.01 \end{bmatrix} T = \begin{bmatrix} -1.2179 & 0.3336 & -0.6267 & 2.5109 \\ -1.2179 & 0.3336 & -0.6267 & 2.5109 \\ -1.2179 & 0.3336 & -0.6267 & 2.5109 \\ -1.2179 & 0.3336 & -0.6267 & 2.5109 \end{bmatrix}$$
(3.56)

$$K_{1} = \begin{bmatrix} -0.1927 & 0.1251 & -0.3760 & 0.5650 \\ -0.1827 & 0.1151 & -0.3760 & 0.5650 \\ -0.1827 & 0.1251 & -0.3860 & 0.5650 \\ -0.1827 & 0.1251 & -0.3760 & 0.5550 \end{bmatrix} K_{2} = \begin{bmatrix} -0.0222 & 0.0083 & -0.0251 & 0.0377 \\ -0.0122 & -0.0017 & -0.0251 & 0.0377 \\ -0.0122 & 0.0083 & -0.0351 & 0.0377 \\ -0.0122 & 0.0083 & -0.0251 & 0.0277 \end{bmatrix}$$
(3.57)

$$K_{3} = \begin{bmatrix} -0.2536 & 0.1668 & -0.5014 & 0.7533 \\ -0.2436 & 0.1568 & -0.5014 & 0.7533 \\ -0.2436 & 0.1668 & -0.5114 & 0.7533 \\ -0.2436 & 0.1668 & -0.5014 & 0.7433 \end{bmatrix} H = \begin{bmatrix} 2.2179 & -0.3336 & 0.6267 & -2.5109 \\ 1.2179 & 0.6664 & 0.6267 & -2.5109 \\ 1.2179 & -0.3336 & 1.6267 & -2.5109 \\ 1.2179 & -0.3336 & 0.6267 & -1.5109 \end{bmatrix}$$
(3.58)

$$P = 1e - 014 * \begin{bmatrix} 0.2248 & 0 & 0 & 0\\ 0 & 0.2248 & 0 & 0\\ 0 & 0 & 0.2248 & 0\\ 0 & 0 & 0 & 0.2248 \end{bmatrix}$$

$$(3.59)$$

avec r = 0.005 et q = 0.1 de façon à obtenir une convergence rapide ainsi qu'une dynamique adéquate de l'UIO par rapport aux valeurs propres des matrices A_i , $i \in [1, 2, 3]$.

Le séquencement des modèles est représenté sur la figure (

$$u_k = \sum_{i=1}^{3} \rho_k^i * u_e^i \tag{3.60}$$

avec les commandes u_e^i définies autour des points de fonctionnement i.

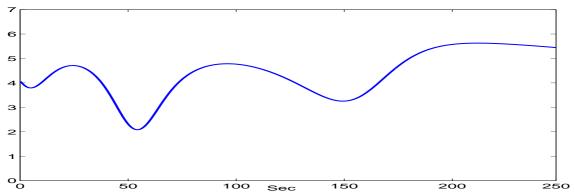


Fig. 3.1: Commande U appliquée au système

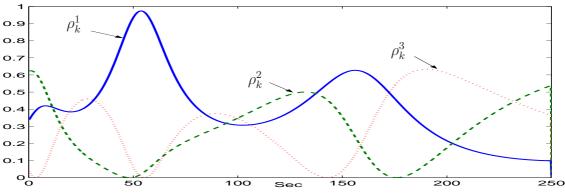


Fig. 3.2: Fonctions d'activation

En absence de défauts et de perturbations, l'erreur d'estimation (équivalent au résidu dans cet exemple) converge vers zéro sur la figure (

Dans une seconde expérimentation, on simule le système en présence de perturbations illustrées à la figure (

a. En présence de défaut actionneur : résultats et commentaires

Un défaut actionneur apparaît à l'instant t=50s lors d'une transition de points de fonctionnement avec une amplitude variante comme illustré à la figure (

b. En présence de perturbations et de défauts : résultats et commentaires

Dans le cas où un défaut actionneur f_k apparaît en présence de perturbations d_k sur le système, la figure (

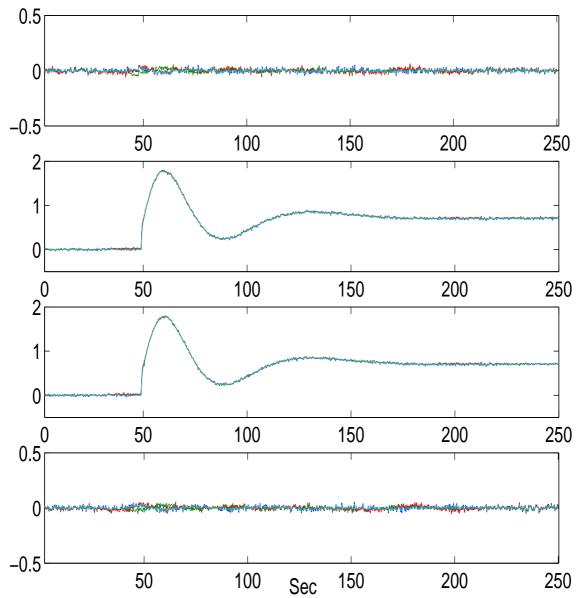


FIG. 3.3: Evolution des résidus en fonction des diverses situations : a) Résidu sans défaut et sans perturbation, b) Résidu en présence de défaut, c) Résidu en présence de défaut et de perturbations, d) Résidu en présence de perturbations

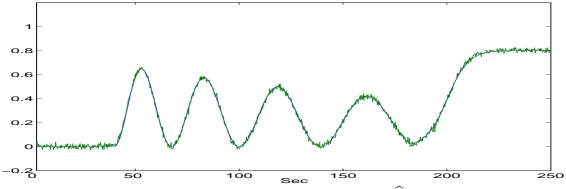


Fig. 3.4: Perturbations d_k et leurs estimées \widehat{d}_k par l'UIO

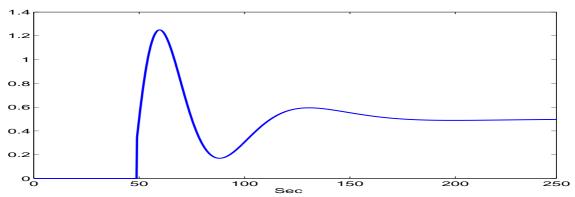


Fig. 3.5: Amplitude du défaut actionneur f_k

3.3.6 Conclusion de la première partie

Nous avons considéré une représentation multi-modèle alliant la présence d'incertitudes et de défauts. La synthèse de l'observateur polytopique ainsi que son étude de stabilité et convergence nous ont amené à différentes considérations matricielles se ramenant à des calculs de gains locaux. D'un point de vue diagnostic, l'UTO est capable de générer différents types d'information : d'une part l'estimation des incertitudes en l'absence de défaut et d'autre part la détection des défauts par la génération de résidus sur l'ensemble des points de fonctionnement considérés. Des conditions de détection des défauts ont été formulées afin de distinguer les défauts des incertitudes pour permettre une détection robuste.

3.4 Observateur polytopique à entrées inconnues 2ème Partie :

Les erreurs de modélisation peuvent apparaître différemment selon le point de fonctionnement considéré avec des matrices de distribution des perturbations E_i différentes comme nous avons pu le voir dans la première partie. Néanmoins, il est possible que les perturbations n'affectent pas directement le vecteur de sortie mais uniquement l'état du système. L'inconvenient principal de la synthèse d'un observateur polytopique défini en (

$$TE_i = 0, \quad i \in [1, \dots, N]$$
 (3.61)

Cette contrainte (

Même si le découplage autour de chaque \mathcal{PF} est possible, il n'est pas intéressant de le faire dans le sens où on ne maîtriserait pas le découplage des perturbations (donc le diagnostic) lors des transitions. De plus, la synthèse d'une matrice de découplage H_i pour chaque PF_i générerait un problème non-convexe dans les \mathcal{LMI} de synthèse de l \mathcal{UIO} (

$$\begin{pmatrix} P & * \\ PT_iA_i - PK_i^1C & P \end{pmatrix} > 0, \quad \forall i \in [1, \dots, N]$$
(3.62)

avec $T_i = I - H_iC$. Cette inégalité serait alors non linéaire en les paramètres P, K_i^1 et T_i , et sa résolution ne peut se faire avec les outils standard \mathcal{LMI} .

3.4.1 Approximation d'un ensemble de matrices d'erreurs de modélisation

Ainsi, pour contribuer à la robustesse du diagnostic vis-à-vis des incertitudes de modèles au travers de plusieurs \mathcal{PF} , l'idée d'obtenir une unique matrice de distribution des erreurs de modélisation, notée E^* , a pour but de garantir sur l'ensemble de la plage de fonctionnement concernée, que la matrice de distribution soit de rang plein en colonne et permet un découplage des erreurs de modélisation même entre les \mathcal{PF} (Rodrigues et al., 2005a). Il faut en effet noter que de manière générale un découplage local ne garantit en aucun cas le découplage lors d'une transition. Nous proposons d'utiliser une technique référencée dans (Lou et al., 1986) et (Chen and Patton, 1999) permettant d'apporter une solution à notre problème.

Soit R l'ensemble des N matrices de distribution des erreurs de modélisation tel que :

$$R = [E_1 \dots E_i \dots E_N] \tag{3.63}$$

où $i \in [1, ..., N]$, $E_i \in \mathbb{R}^{n \times q}$ soit donc $R \in \mathbb{R}^{n \times (N \times q)}$. Le problème de calculer une matrice E^* permettant d'approximer au mieux l'ensemble R est équivalent au problème de la minimisation du critère suivant :

$$\min_{R^*} ||R - R^*||_F^2$$
sous contrainte de rang(R*) < m

où $\|.\|_F^2$ représente la norme de Frobenius. De plus, la condition de rang imposée à R^* est fixée pour obtenir une solution dans l'objectif d'effectuer un découplage exact comme nous le découvrirons dans le paragraphe suivant. La matrice R^* est synthétisée selon (

où U et V sont des matrices orthogonales, k est le rang de la matrice R et $\sigma_1 \geq \sigma_2 > \ldots \geq \sigma_k$ sont les valeurs singulières. Alors la solution R^* peut être trouvée de la façon suivante :

$$R^* = Udiag(\sigma_1, \dots, \sigma_q, 0, \dots, 0)V^T$$
(3.65)

L'obtention de la matrice E^* de rang q (voir Annexe B et (Chen and Patton, 1999)) et de dimension $n \times q$ requise est fondée sur la décomposition de la solution R^* selon :

$$R^* = R_1 R_2 (3.66)$$

où $R_1 \in \mathbb{R}^{n \times q}$ est de rang plein en colonne et $R_2 \in \mathbb{R}^{q \times (N \times q)}$. D'après (

3.4.2 Synthèse

Nous allons voir au cours de cette section, comment les incertitudes influent sur le découplage et modifient les conditions de stabilité et de convergence de l \mathcal{UIO} polytopique. Le travail précédent sur un ensemble de matrices d'erreurs de modélisation va nous permettre, dans la synthèse de observateur polytopique, d'obtenir une unique matrice T^* de découplage permettant d'assurer la stabilité de l'erreur d'estimation sur la base d'une approximation des erreurs de modélisation.

L'approximation par la norme de Frobenius de la matrice des erreurs de modélisation, permet de redéfinir la représentation d'état du système (

$$x_{k+1} \simeq \sum_{i=1}^{N} \rho_i(\gamma_k) [A_i x_k + B_i u_k + E^* d_k + F_i f_k + \Delta x_i]$$

$$y_k = C x_k$$
(3.67)

avec

$$\begin{cases}
\sum_{i=1}^{N} \rho_i(\gamma_k) = 1 \\
0 \le \rho_i(\gamma_k) \le 1 , \quad \forall i \in [1, \dots, N]
\end{cases}$$
(3.68)

avec $E^* \in \mathbb{R}^{n \times q}$ la matrice unique sur laquelle est basée le découplage des erreurs de modélisation de plein rang colonne. De la même façon que précédemment, nous supposerons les paires (A_i, C) observables et que le nombre des incertitudes q ajouté à celui des défauts f, est inférieur à m représentant la dimension de la sortie du système soit : q + f < m. $\rho_i(\gamma_k)$ sont les fonctions d'activation des modèles locaux et γ_k représente le vecteur de variables de décision qui peuvent dépendre de l'état, des sorties et/ou des entrées. Elles sont supposées connues.

L'observateur polytopique à entrées inconnues associé à (

$$z_{k+1} = \sum_{i=1}^{N} \rho_k^i \left[S_i z_k + T B_i u_k + K_i y_k + \Delta z_i \right]$$

$$\widehat{x}_{k+1} = z_{k+1} + H^* y_{k+1}$$
(3.69)

où \widehat{x} est l'estimation de l'état et z l'état de l'observateur. L'erreur d'estimation entre le système (

$$e_{k+1} = x_{k+1} - \widehat{x}_{k+1}$$

$$= x_{k+1} - (z_{k+1} + H^* y_{k+1})$$

$$= x_{k+1} - H^* (Cx_{k+1}) - z_{k+1}$$

$$= [I - H^* C] x_{k+1} - (S(\rho) z_k + TB(\rho) u_k + K(\rho) y_k + \Delta z(\rho))$$
(3.70)

En décomposant le gain $K(\rho)$ sous la forme $K(\rho) = K^1(\rho) + \Pi(\rho)$, l'équation (

$$e_{k+1} = [I - H^*C](A(\rho)x_k + B(\rho)u_k + E^*d_k + F(\rho)f_k + \Delta x(\rho)) - \Delta z(\rho) -TB(\rho)u_k - S(\rho)(x_k - e_k - H^*y_k) - K^1(\rho)Cx_k - \Pi(\rho)y_k$$
(3.71)

L'erreur d'estimation et le résidu sont équivalents à :

$$e_{k+1} = S(\rho)e_k - [S(\rho) - (I - H^*C)A(\rho) - K^1(\rho)C]x_k + (I - H^*C)E^*d_k - [\Pi(\rho) - S(\rho)H^*]y_k + [I - H^*C]\Delta x(\rho) + (I - H^*C)F(\rho)f_k - \Delta z(\rho) - [T - (I - H^*C)]B(\rho)u_k$$
(3.72)

 $r_{k+1} = Ce_{k+1}$

Les matrices $S(\rho), T, K(\rho)$ et H^* doivent être synthétisées dans le but d'assurer la convergence et la stabilité de l'erreur d'estimation $e_k = x_k - \widehat{x}_k$ en l'absence de défaut $(f_k = 0)$.

Si les conditions suivantes sont vérifiées alors il s'agit d'un découplage parfait (effectué sur une matrice de distribution d'erreur de modélisation E*) (Rodrigues et al., 2005a) :

$$\begin{cases}
(I - H^*C)E^* &= 0 \\
T &= I - H^*C \\
S_i &= TA_i - K_i^1C \\
\Pi_i &= S_iH^* \\
K_i &= K_i^1 + \Pi_i \\
T\Delta x_i &= \Delta z_i \\
S(\rho) &= \sum_{i=1}^N \rho_i^k S_i \text{ est stable}
\end{cases}$$
(3.73)

L'erreur d'estimation et le résidu s'écrivent alors :

$$e_{k+1} = S(\rho)e_k + TF(\rho)f_k$$

 $r_{k+1} = Ce_{k+1}$ (3.74)

La synthèse de cet UIO polytopique s'effectue par la résolution des équations (

- (a) $Rang(CE^*) = Rang(E^*) = q < m$
- (b) les couples (TA_i, C) doivent être détectables, $\forall i \in [1, ..., N]$.

Ces conditions (a) et (b) constituent une extension au cas polytopique de celles énoncées par (Chen and Patton, 1999) dans le cas linéaire.

La condition (a) étant réalisée, il est possible de synthétiser la matrice de découplage H* permettant d'annuler l'effet des entrées inconnues. La synthèse de la matrice de découplage H* se fait de la manière suivante selon la première égalité de (

$$H^* = E^*(CE^*)^+ (3.75)$$

D'autre part, la condition (b) assure l'existence d'un gain K_i^1 permettant d'obtenir des matrices $S_i = TA_i - K_i^1C$, $\forall i \in [1, ..., N]$ qui soient Hürwitz par placement de pôles ainsi qu'une erreur d'estimation e_k tendant vers zéro en l'absence de défaut. Il est à noter que la matrice E^* est fixe $\forall i \in [1, ..., N]$ et que dans un but de détection des défauts, il est important de contraindre : q + f < m, c'est-à-dire que le rang de la matrices des erreurs de modèles ajouté

au rang de la matrice des défauts doit être inférieur au nombre de sorties du système strictement pour pouvoir détecter et isoler les défauts. Cette condition permet aussi de pouvoir placer arbitrairement les valeurs propres des matrices S_i (Millerioux and Daafouz, 2004a).

Pour isoler les défauts, il suffit d'utiliser l'UIO en banc avec pour entrées inconnues une nouvelle matrice $E_{new} = [E^* \ F^j(\rho)]$ où $F^j(\rho)$ représente la jème colonne de la matrice $F(\rho)$ comme dans les structures Dedicated Observer Scheme (DOS)(Garcia and Frank, 1996) ou Generalized Observer Scheme (GOS) (Frank and Wunnenberg, 1989).

3.4.3 Convergence de l'observateur

L'équation de l'erreur d'estimation en l'absence de défaut \bar{e}_k et le résidu associé \bar{r}_k s'écrivent :

$$\bar{e}_{k+1} = S(\rho)\bar{e}_k = \sum_{i=1}^N \rho_k^i S_i \bar{e}_k
\bar{r}_{k+1} = C\bar{e}_{k+1}$$
(3.76)

L'erreur d'estimation est asymptotiquement stable s'il existe une matrice symétrique et définie positive P>0, telle que :

$$S_i^T P S_i - P < 0$$

$$P > 0, \quad \forall i \in [1, \dots, N]$$

$$(3.77)$$

En se basant sur l'équation (

$$\begin{cases}
S_i^T P S_i - P < 0 \\
P > 0 \\
T = I - HC \\
S_i = T A_i - K_i^1 C \\
T \Delta x_i = \Delta z_i \\
\Pi_i = S_i H^* \\
K_i = K_i^1 + \Pi_i
\end{cases} \tag{3.78}$$

A l'aide du complément de Schür (Annexe A et équivalences d'écritures), il est possible de transformer l'écriture des deux premières inégalités de (

$$\begin{pmatrix} P & * \\ PS_i & P \end{pmatrix} > 0, \quad \forall i \in [1, \dots, N]$$
(3.79)

En remplaçant S_i par $TA_i - K_i^1C$, la \mathcal{LMI} (

$$\begin{pmatrix} P & * \\ PTA_i - PK_i^1C & P \end{pmatrix} > 0, \quad \forall i \in [1, \dots, N]$$
(3.80)

Or ces inégalités (

Une fois déterminée la matrice H* de l'équation (

$$Q_i = PK_i^1 (3.81)$$

qui permet de réécrire les inégalités (

Cette dernière inégalité est linéaire par rapport aux matrices P et Q_i . Il est possible de pondérer cette \mathcal{LMI} sur un ensemble convexe pour assurer la stabilité quadratique de l'erreur d'estimation. Ayant ainsi résolu ce problème et obtenu des solutions P et Q_i vérifiant (

$$K_i^1 = P^{-1}Q_i (3.82)$$

Finalement les matrices H, T, K_i^1 ayant été déterminées, on en déduit les matrices d'état S_i et les matrices $K_i, \Delta z_i$:

$$\begin{cases}
S_i = TA_i - K_i^1 C \\
\Delta z_i = T\Delta x_i \\
\Pi_i = S_i H^* \\
K_i = K_i^1 + \Pi_i
\end{cases}$$
(3.83)

Ainsi, l'erreur d'estimation en l'absence de défaut notée \bar{e}_k , tend asymptotiquement vers zéro si l'ensemble de ces conditions (

$$\bar{e}_{k+1} = S(\rho)\bar{e}_k
\bar{r}_{k+1} = C\bar{e}_k$$
(3.84)

3.4.4 Placement de pôles

Le placement de pôles concerne en particulier les valeurs propres des sommets S_i du polytope $S(\rho)$ (Cf. Section (

$$\bar{e}_{k+1} = S(\rho)\bar{e}_k = TA(\rho) - K^1(\rho)C\bar{e}_k
\bar{r}_{k+1} = C\bar{e}_{k+1}$$
(3.85)

où $K^1(\rho) = \sum_{i=1}^N \rho_k^i K_i^1$. Afin d'assurer une bonne dynamique de la convergence de l \mathcal{UIO} polytopique, il est nécessaire de définir une région du plan complexe où l'on désire placer les valeurs propres de la matrice $S(\rho)$.

Proposition 2 (Rodrigues et al., 2005a) Soit $\mathcal{D}(r)$ une région \mathcal{LMI} définissant un disque circulaire inclus dans le cercle unité avec un centre d'affixe (-q,0) et un rayon q+r<1. L'erreur d'estimation (

$$\begin{pmatrix} -rP & qP + \bar{A}_i^T P - C^T R_i^T \\ qP + P\bar{A}_i - R_i C & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N]$$
 (3.86)

avec $R_i = PK_i^1$ et $\bar{A}_i = TA_i$.

Preuve:

Si (

$$\begin{pmatrix} -rP & qP + (\bar{A}_i - K_i^1 C)^T P \\ qP + P(\bar{A}_i - K_i^1 C) & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N]$$
 (3.87)

Les pôles de la matrice $(\bar{A}_i - K_i^1 C)$ sont dans le cercle de centre (-q, 0) et de rayon q + r < 1 (Cf. Voir les définitions élémentaires des régions \mathcal{LMI} dans (Chilali and Gahinet, 1996)). En pondérant chacune des \mathcal{LMI} (

$$\begin{pmatrix} -rP & qP + \sum_{i=1}^{N} \rho_k^i (\bar{A}_i - K_i^1 C)^T P \\ qP + P \sum_{i=1}^{N} \rho_k^i (\bar{A}_i - K_i^1 C) & -rP \end{pmatrix} < 0, \quad \forall i \in [1 \dots N] \quad (3.88)$$

où la matrice $\sum_{i=1}^{N} \rho_k^i(\bar{A}_i - K_i^1C)$ peut être écrite comme $(\bar{A}(\rho) - K^1(\rho)C)$ sous l'ensemble convexe Ω , assurant que les pôles de l'erreur d'estimation \bar{e}_k in (

Les conditions de détection de défauts restent les mêmes que celles énoncées dans la première partie. On vérifie de la même façon que le découplage sur les entrées inconnues E^* n'altère pas la détection des défauts sur les résidus.

D'autre part, l'erreur d'estimation (

L'exemple qui suit, est un système de cuve continuement remuée ou CSTR où nous appliquons l'observateur polytopique avec une unique matrice E^* afin de détecter un défaut actionneur.

3.4.5 CSTR: Continuous Stirred Tank Reaction

3.4.5.1 Description du système

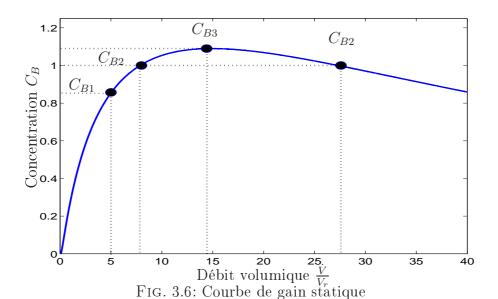
L'illustration de l'UTO polytopique robuste porte sur le diagnostic de défauts d'un système non linéaire étudié en boucle ouverte : un CSTR (Rodrigues et al., 2005a). Une description plus complète du système CSTR peut être trouvée dans (Chen et al., 1995). Ce système possède plusieurs caractéristiques non linéaires telles que : la multiplicité des entrées, le changement de signe du gain de la caractéristique statique, une réponse asymétrique et une réponse avec minimum et non-minimum de phase (Gatzke and Doyle, 1999), (Gatzke and Doyle, 2002). La réaction considérée est une cuve de réaction remuée continuement : la réaction principale est donnée par la transformation du cyclopentadiene (substance A) pour produire du cyclopentenol (substance B). Le cyclopentendiene réagit dans une réaction parallèle mais non désirée pour produire du dicyclopentadiene (substance D). De plus, le cyclopentanediol (substance C) se forme dans un réaction involontaire et parallèle pour produire du cyclopentenol. Cette réaction se nomme communément la réaction de Van der Vusse et se résume sous la forme suivante :

 $A \Rightarrow B \text{ avec } B \Rightarrow C \text{ et } 2A \Rightarrow D.$

Tous les modèles de réaction utilisent la vitesse de réaction d'Arhenius dépendant de la température v et conduisent à une représentation d'état classique suivante :

$$\begin{cases}
\dot{C}_{A} = \frac{\dot{V}}{V_{r}}(C_{A0} - C_{A}) - k_{1}(v)C_{A} - k_{3}(v)C_{A}^{2} \\
\dot{C}_{B} = \frac{\dot{V}}{V_{r}}C_{B} + k_{1}(v)C_{A} - k_{2}(v)C_{B} \\
\dot{v} = \frac{\dot{V}}{V_{r}}(v_{0} - v) - \frac{k_{1}(v)C_{A}\Delta H_{RAB} + k_{2}(v)C_{B}\Delta H_{RBC}k_{1}(v) + k_{3}(v)C_{A}^{2}\Delta H_{RAD}}{\rho C_{p}} \\
+ \frac{k_{w}A_{r}}{\rho C_{p}V_{r}}(v - v_{k}) \\
\dot{v}_{k} = \frac{1}{m_{k}C_{PK}} \times ((\dot{Q}_{k} - v_{k}) + k_{w}A_{r}(v - v_{k}))
\end{cases} (3.89)$$

$$où k_i(v) = k_{i0}e^{\frac{E_i}{v+273.15}}$$



Ce modèle possède 4 états : la concentration de A (C_A) de concentration initiale C_{A0} , la concentration de B (C_B) , la température du réacteur v initialement fixée à v_0 et la température du circuit primaire v_k . Les états sont supposés directement mesurables excepté v_k . Les commandes du système sont : le débit volumique $\frac{\dot{V}}{V_r}$ et un débit de chaleur \dot{Q}_k . Les autres variables sont des paramètres constants définis dans le tableau (

3.4.5.2 Conditions d'exploitation

Une condition évoquée dans le benchmark (Chen et al., 1995), souligne le fait que la concentration du produit B doit rester comprise entre [0.8, 1.09] $mol.l^{-1}$ pour des entrées de commande comprises dans l'intervalle $[3h^{-1};35h^{-1}]$ associé à $\frac{\dot{V}}{V_r}$ et $[-9000kJ.h^{-1};0]$ associé à \dot{Q}_k . Au vue des caractéristiques physiques d'utilisation, la température d'entrée v_0 est considérée constante à 105° C comme précisé dans (Chen et al., 1995). Dans le cas de notre étude et sur la base des équations d'état définies en (

La figure (

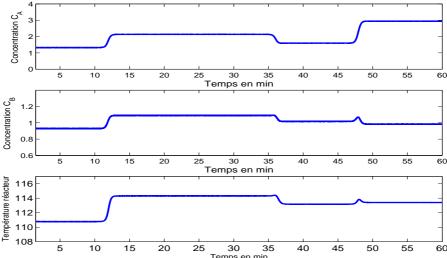


FIG. 3.7: Concentrations de l'élèment A en $Mol.L^{-1}$, de l'élèment B en $Mol.L^{-1}$ et de la température du réacteur en $^{\circ}C$

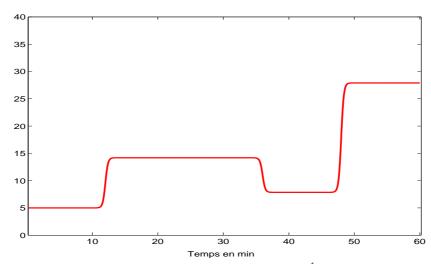


FIG. 3.8: Débit volumique en h^{-1}

3.4.5.3 Expériences et résultats

Dans la suite de notre étude, nous supposons que le système est exploité uniquement autour de quatre points de fonctionnement. Sur la base des équations d'état définies en (

Le système a été linéarisé autour des 4 points de fonctionnements suivants : $C_{B1} = 0.85mol.L^{-1}$, $C_{B3} = 1.09mol.L^{-1}$ et $C_{B2} = 1.00mol.L^{-1}$ avec $\frac{\dot{V}_{21}}{V_r} = 7.8570h^{-1}$ et $C_{B2} = 1.00mol.L^{-1}$ avec $\frac{\dot{V}_{22}}{V_r} = 27.90h^{-1}$. Il est à noter que (Gatzke and Doyle, 2002) définit un point de fonctionnement optimal permettant de générer un maximum de la substance B représenté ici par la concentration $C_{B3} = 1.09mol.L^{-1}$.

Ainsi, le système non linéaire, dont les équations sont en continu, a été discrétisé par la méthode de Tustin permettant de générer les modèles linéaires discrets sous la forme définie à l'équation (

Possédant les quatre modèles linéaires, conformément au cadre de notre étude consacrée à la synthèse et l'analyse d'un observateur polytopique, nous supposons les fonctions d'activation connues et insensibles à l'occurrence des défauts. En appliquant cette technique, la figure (

$k_{10} = 1.287.10^{1} 2h^{-1}$	$k_{20} = 1.287.10^{1} 2h^{-1}$	$k_{30} = 9.043.10^9 \frac{1}{molAh}$
$E_1 = -9758.3K$ $\Delta H_{RAB} = 4.2 \frac{kJ}{molA}$ $\rho = 0.9342 \frac{kJ}{L}$ $k_w = 4032 \frac{kJ}{hm^2K}$ $V_R = 10L$	$E_2 = -9758.3K$ $\Delta H_{RBC} = -11 \frac{kJ}{molB}$ $C_p = 3.01 \frac{kJ}{kgK}$ $A_R = 0.215m^2$ $F_{KC} = 10.52 \frac{kg}{h}$ $\dot{V} = 14.10 \frac{L}{h}$	$E_3 = -8560K$ $\Delta H_{RBD} = -41.85 \frac{kJ}{molA}$ $C_{PK} = 2.0 \frac{kJ}{kgK}$ $m_K = 5.0kg$ $v_{k0} = 60^{\circ}C$

Tableau des paramètres

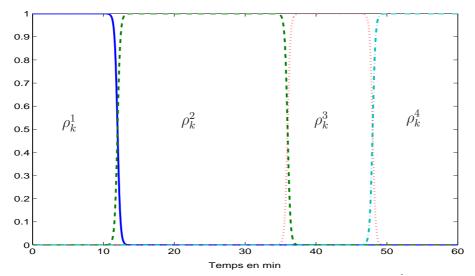


Fig. 3.9: Evolution des fonctions d'activation ρ_k^i

Toutes les matrices de distributions d'erreurs de modélisation E_i sont $\forall i \in [1, ..., N]$ de rang 3 et de plus le rang de l'ensemble de ces matrices $[E_1 \ E_2 \ E_3 \ E_4]$ est également de rang 3. Pour obtenir l'observateur polytopique adéquat, la technique employée est celle développée dans le paragraphe 3.4.1 par utilisation de la SVD et permet l'obtention d'une matrice optimale de distribution des erreurs de modélisation E^* de rang 2 < m où m est le nombre de sorties mesurées, m = 3. De cette manière, la synthèse de la matrice de découplage H^* se déduit à l'aide de la formule (

Muni de la matrice unique des incertitudes E^* , la synthèse du gain de l'observateur polytopique découplant s'effectue selon le placement de pôles développé au paragraphe 3.4.4 avec une région \mathcal{LMI} définie avec les paramètres : r=0.1 et q=0.5. Les pôles de l'observateur sont synthétisés comme dans (

Les performances de l'UIO polytopique sont dans une première étape évaluées en l'absence de défauts en soumettant une entrée de commande semblable à celle définie précédemment. La figure (

La norme des résidus $r_k = Ce_k$ est un bon indicateur en diagnostic de la pertinence des résultats. L'amplitude de la norme est quasi-constante au travers l'ensemble des \mathcal{PF} et représente l'amplitude résiduelle des erreurs de modélisation du fait de l'approximation de celles-ci.

Une seconde expérience est effectuée en présence d'un défaut actionneur représenté par la figure (

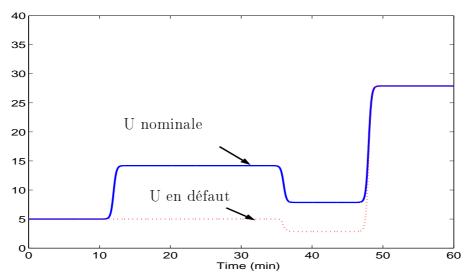


Fig. 3.10: Commandes en défaut et sans défaut

Le défaut actionneur se répercute évidemment sur l'erreur d'estimation et sur les résidus (En présence de plusieurs actionneurs, un banc d'UIO polytopique peut être envisagé. Dans le cas de notre étude, l'isolation de l'unique défaut actionneur se réduit à un simple problème de détection, ne remettant pas en cause l'efficacité de la méthode développée en terme de diagnostic de défauts.

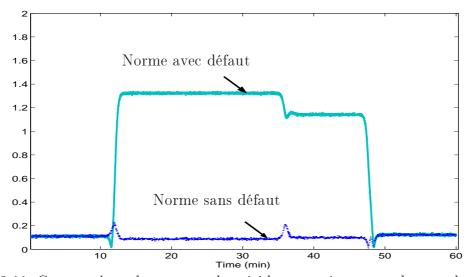


Fig. 3.11: Comparaison des normes des résidus en présence et absence de défaut

3.4.6 Conclusion de la 2ème partie

Dans cette section, nous avons présenté une méthode de génération de résidus robustes aux erreurs de modélisation et sensibles aux défauts sur des systèmes représentés par des multimodèles. La différence principale entre la première et la seconde partie tient du fait que les entrées inconnues sont absentes sur le vecteur de sortie entraînant des modifications tant sur le découplage des entrées inconnues que sur l'étude de stabilité de ce nouvel UIO.

L'approximation des matrices de distribution des erreurs de modélisation sur plusieurs points de fonctionnement permet d'effectuer un découplage unique sur toute la plage de fonctionnement même lors des transitions. La contribution de nos travaux s'inscrit dans la synthèse d'un observateur polytopique à entrées inconnues UIO qui permet de générer des résidus découplés des erreurs de modélisation avec un gain d'observation construit de manière polytopique à partir de l'utilisation de LMI sur un ensemble convexe. Cette stratégie permet d'assurer non seulement la stabilité mais aussi le placement de pôles de lUIO avec des outils dont l'implémentation est aisée. Le diagnostic de défauts d'un système non linéaire CSTR est ainsi réalisé en présence d'erreurs de modélisation et d'un défaut actionneur sans connaissance préalable de leurs amplitudes ni des instants d'apparition.

Cependant, dans l'exemple du CSTR, nous n'avons pas montré la possible détection de défauts multiples du fait des dimensions mêmes du système par rapport aux conditions de détection et isolation. Nous allons montrer par la suite que lUIO généré peut tout à fait être utilisé en banc pour isoler de multiples défauts.

Les matrices ayant permis la synthèse de l'UIO polytopique du CSTR ainsi que celles assurant la stabilité de l'erreur d'estimation, sont données par la suite.

$$E^* = \begin{bmatrix} -0.8142 & 1.3831 \\ -0.0032 & -1.6090 \\ 11.7210 & 0.0956 \\ 0 & 0 \end{bmatrix} \quad H^* = \begin{bmatrix} 0.4289 & -0.4933 & -0.0398 \\ -0.4933 & 0.5739 & -0.0344 \\ -0.0398 & -0.0344 & 0.9972 \\ 0 & 0 & 0 \end{bmatrix}$$
(3.90)

$$K_{1}^{1} = \begin{bmatrix} 0.4300 & 0.5161 & 0.0343 \\ 0.5439 & 0.2455 & 0.0296 \\ 0.0439 & 0.0359 & -0.1976 \\ 3.7878 & 3.2781 & 0.7970 \end{bmatrix} \quad K_{2}^{1} = \begin{bmatrix} 0.3878 & 0.4710 & 0.0292 \\ 0.5079 & 0.2070 & 0.0253 \\ 0.0414 & 0.0332 & -0.1979 \\ 3.6401 & 3.2116 & 0.7846 \end{bmatrix}$$
(3.91)

$$K_{3}^{1} = \begin{bmatrix} 0.4108 & 0.5010 & 0.0324 \\ 0.5271 & 0.2322 & 0.0279 \\ 0.0427 & 0.0351 & -0.1977 \\ 3.8198 & 3.2521 & 0.7925 \end{bmatrix} \quad K_{4}^{1} = \begin{bmatrix} 0.3033 & 0.4148 & 0.0252 \\ 0.4342 & 0.1577 & 0.0217 \\ 0.0346 & 0.0285 & -0.1983 \\ 3.8482 & 3.1264 & 0.7560 \end{bmatrix}$$
(3.92)

$$K_{1}^{1} = \begin{bmatrix} 0.4300 & 0.5161 & 0.0343 \\ 0.5439 & 0.2455 & 0.0296 \\ 0.0439 & 0.0359 & -0.1976 \\ 3.7878 & 3.2781 & 0.7970 \end{bmatrix} \quad K_{2}^{1} = \begin{bmatrix} 0.3878 & 0.4710 & 0.0292 \\ 0.5079 & 0.2070 & 0.0253 \\ 0.0414 & 0.0332 & -0.1979 \\ 3.6401 & 3.2116 & 0.7846 \end{bmatrix}$$

$$K_{3}^{1} = \begin{bmatrix} 0.4108 & 0.5010 & 0.0324 \\ 0.5271 & 0.2322 & 0.0279 \\ 0.0427 & 0.0351 & -0.1977 \\ 3.8198 & 3.2521 & 0.7925 \end{bmatrix} \quad K_{4}^{1} = \begin{bmatrix} 0.3033 & 0.4148 & 0.0252 \\ 0.4342 & 0.1577 & 0.0217 \\ 0.0346 & 0.0285 & -0.1983 \\ 3.8482 & 3.1264 & 0.7560 \end{bmatrix}$$

$$X = 1.0e + 003 * \begin{bmatrix} 1.5003 & 0.2468 & 0.0199 & -0.0601 \\ 0.2468 & 1.4257 & 0.0171 & -0.0517 \\ 0.0199 & 0.0171 & 1.2148 & -0.0042 \\ -0.0601 & -0.0517 & -0.0042 & 0.0049 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$0.393)$$

$$0.4476082 & R_{2} R_{3} R_{4} R_{5} R_{5$$

Les matrices R_1, R_2, R_3, R_4 ne sont pas mentionnées ici car elles se déduisent de par la relation $K_i^1 = X^{-1}R_i$.

Nous donnons dans ce paragraphe, les principes permettant d'isoler de multiples défauts au travers une utilisation en banc des UIO préalablement synthétisés.

3.4.7Observateur Polytopique en banc : schéma d'isolation

La localisation d'un défaut s'opère à partir de l'évaluation de résidus issus d'un banc d'observateurs à entrées inconnues insensibles à l'une des composantes des perturbations

(défauts) et sensibles aux autres. (Frank and Wunnenberg, 1989) ont été parmi les premiers à proposer des structures de bancs d'observateurs de Luenberger généralisés (GOS : Generalized Observer Scheme) ou dédiés (Garcia and Frank, 1996) (Dedicated Observer Scheme). Dans le schéma généralisé, chacun des observateurs est insensible à un seul défaut par contre dans le cas dédié, chacun des observateurs génère un résidu insensible à tous les défauts sauf à un. La structure DOS définit une matrice d'incidence équivalente à une matrice d'identité permettant l'isolation de multiples défauts simultanés, chaque observateur étant insensible à (p+m-1) défauts. La structure GOS définit une matrice unitaire avec des termes diagonaux nuls conduisant à l'isolation d'un unique défaut. Conformément à (Hou and Muller, 1994) et (Darouach and Zasadzinski, 1994), une condition nécessaire selon laquelle le nombre de sorties est supérieur au nombre d'entrées inconnues, doit être respectée.

Un banc de d'observateurs polytopiques à entrées inconnues reconstruit le vecteur de sortie et le vecteur d'état par autant d'observateurs polytopiques qu'il y a d'entrées p. Le ième observateur polytopique est piloté par toutes les sorties et toutes les entrées exceptée la ième (u_i) . La détection et la localisation de défaut du ième actionneur est effectuée en considérant l'entrée u_i comme étant une entrée inconnue au système, voir figure (

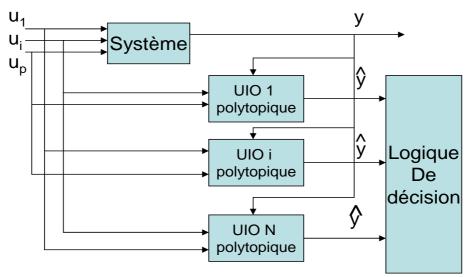


Fig. 3.12: Schéma de détection par UIO

Dans le cas de défaut actionneur, la matrice de défaut F_i est représentée par la matrice B_i . Supposons que celle-ci soit fixe quelque soit le point de fonctionnement considéré, nous allons montrer comment l'UIO développé peut être utilisé en banc pour effectuer une procedure de diagnostic. Soit le système suivant :

$$x_{k+1} = \sum_{j=1}^{N} \rho_i(\gamma_k) [A_j x_k + B u_k + [E^* F_d] \begin{bmatrix} d_k \\ f_k^d \end{bmatrix} + F_x^* f_k^* + \Delta x_j]$$

$$y_k = C x_k$$
(3.94)

avec

$$\begin{cases}
\sum_{i=1}^{N} \rho_i(\gamma_k) = 1 \\
0 \le \rho_i(\gamma_k) \le 1 , \quad \forall i \in [1, \dots, N]
\end{cases}$$
(3.95)

En dissociant la matrice de distribution des défauts actionneurs sous la forme : $F_i = [F_d \ F_x^*]$ avec la matrice F_d égale à B^i qui représente la ième colonne de B, et la matrice F_x^* égale à \bar{B}^i qui est la matrice B sans la ième colonne. La matrice $[E^* \ F_d]$ fait office de nouvelle matrice de distribution des perturbations à découpler et la matrice F_x^* représente les défauts à détecter. La restriction pour pouvoir estimer ces défauts actionneurs sera d'imposer que le système puisse être représenté avec une unique matrice de commande B quels que soient les points de fonctionnement concernés.

L'observateur polytopique à entrées inconnues se présente de manière similaire à l' \mathcal{UIO} de la seconde partie :

$$z_{k+1} = \sum_{i=1}^{N} \rho_k^i \left[S_i z_k + T B u_k + K_i y_k + \Delta z_i \right]$$

$$\widehat{x}_{k+1} = z_{k+1} + H^* y_{k+1}$$
(3.96)

où \widehat{x} est l'estimation de l'état et z l'état de l'observateur. Les conditions d'existence sont celles évoquées dans la seconde partie. L'estimation de l'amplitude du défaut est extraite directement du lème observateur polytopique à entrées inconnues $(l \in [1, \ldots, p])$ qui est synthétisé de manière à être insensible au lème défaut $(f_k^* = 0)$. Si les conditions (

$$e_{k+1} = S(\rho)e_k + TF_x^* f_k^*$$

 $r_k = Ce_k$ (3.97)

Les conditions de détection des défauts sont les mêmes que celles évoquées lors de la première partie. Si les conditions (

L'isolation de défauts est réalisée par un banc de p observateurs polytopiques à entrées inconnues comme mentionnée dans les travaux de (Theilliol et al., 2002a). Chaque vecteur des résidus $r_k^l = y_k - C\widehat{x}_k$, produit par le lème observateur à entrées inconnues, permet de détecter un défaut. Une proposition d'isolation et d'estimation de défauts a été faîte dans (Rodrigues et al., 2005b) en considérant uniquement des défauts actionneurs (pas de perturbation) sur un système représenté sous forme polytopique. Cette estimation d'amplitude de défaut actionneur a été réalisée afin de permettre une accommodation en ligne de la loi de commande. Nous verrons dans le prochain chapitre, comment l'incorporation des défauts au sein de la loi de commande peut pallier les défaillances du système.

Proposition 3 (Rodrigues et al., 2005b) Si (

$$\widehat{f}_k^d = F_d^+(\widehat{x}_{k+1} - A(\rho)\widehat{x}_k - Bu_k - \Delta x(\rho))$$
(3.98)

Preuve :

Alors, si (

Notons qu'en présence d'un défaut actionneur, F_d est une matrice de plein rang colonne.

3.5 Conclusion

Dans ce chapitre, une nouvelle méthode de génération de résidus robustes aux erreurs de modélisation et sensibles aux défauts a été développée pour des systèmes représentés par des multi-modèles. La synthèse d'observateurs polytopiques à entrées inconnues dépend directement de la représentation multi-modèles du système ainsi que des matrices de distribution des erreurs de modélisation. La contribution de nos travaux s'inscrit dans la synthèse d'un observateur polytopique à entrées inconnues UIO qui permet de générer des résidus découplés des erreurs de modélisation avec un gain d'observation construit de manière polytopique à partir de l'utilisation de LMI sur un ensemble convexe. Cette stratégie permet d'assurer non seulement la stabilité mais aussi le placement de pôles de lUIO avec des outils dont l'implémentation est aisée. Le diagnostic de défauts d'un système non linéaire est ainsi réalisé en présence d'erreurs de modélisation et de défauts actionneurs et/ou capteurs sans connaissance préalable de leurs amplitudes ni des instants d'apparition.

Afin de générer des résidus robustes aux erreurs de modélisation permettant la détection de défauts, nous avons synthétisé des Observateurs Polytopiques. Nous avons pu voir qu'en fonction de l'apparition des perturbations sur le système, si elles apparaissent directement sur l'état et/ou sur la sortie, différents UIO polytopiques ont été synthétisés. Ces UIO ont leurs propres caractéristiques en fonction du découplage des perturbations qui influencent directement l'étude de la stabilité de l'erreur d'estimation et du résidu.

Étant donné que les systèmes étudiés sont représentés par des multi-modèles sur des ensembles convexes, l'outil utilisé pour l'étude de la stabilité a été les LMI. Cet outil est particulièrement bien adapté aux ensembles convexes que nous avons traités. Les problèmes de découplage des perturbations, qui avait entraîné des résolutions de type BMI, ont pu être solutionné en linéarisant celles-ci par changements de variables.

Nous fondant sur des travaux de (Lou et al., 1986), (Chen and Patton, 1999), nous avons pû approximer un ensemble de matrices d'erreurs de modélisation permettant de contribuer à un découplage unique sur plusieurs points de fonctionnement même lors des transitions. Nous avons aussi donné des conditions permettant de tester la détection des défauts sur la génération de résidus robustes. Ces travaux ont été appliqués sur des exemples de type académique et aussi sur un CSTR pour montrer l'efficacité de la méthode appliquée à un problème non linéaire. Le diagnostic est réalisé en synthétisant un banc dUIO polytopiques permettant d'isoler les défauts à la manière des structures GOS, DOS existant dans le cas linéaire. L'estimation de défauts actionneurs peut alors être réalisée via ces structures.

Chapitre 4

Commande active tolérante aux défauts

"La science a-t-elle promis le bonheur? Je ne le crois pas. Elle a promis la vérité, et la question est de savoir si l'on fera jamais du bonheur avec de la vérité." Emile Zola

L'objectif de ce chapitre est de synthétiser une loi de commande active tolérante aux défauts actionneurs pour des systèmes représentés par des multi-modèles.

Les études sur des modules de diagnostic ont été développées dans les 2 chapitres précédents sur des systèmes représentés de la sorte. La synthèse de commande active tolérante aux défauts que nous proposons de développer ici, consiste à s'appuyer sur un module de diagnostic qui pourvoit à l'estimation du ou des défaut(s) actionneur(s) considéré(s). Cette estimation du défaut actionneur doit pouvoir permettre une synthèse en ligne du nouveau régulateur qui est un des principes de la commande tolérante active aux défauts.

Comme spécifié au chapitre 1, la détection, isolation et estimation des défauts permet de déterminer l'origine d'un mauvais fonctionnement mais ne permet pas au système de continuer d'opérer en toute sécurité. Le module de diagnostic n'est que le premier maillon en vue d'une nouvelle synthèse de la loi de commande permettant de prendre en compte les défauts. Le second maillon est un mécanisme de reconfiguration apte à synthétiser une nouvelle loi de commande avec les informations du module FDI assurant en même temps la stabilité du système en boucle fermée. C'est ce second maillon de la commande active tolérante aux défauts que nous allons développer dans ce chapitre.

Dans le paragraphe suivant, nous retraçons brièvement la synthèse de régulateur par retour d'état en multi-modèles. Nous soulignons notamment les effets des défauts actionneurs au sein du système avec ces régulateurs nominaux. Puis, au travers d'un existant dans le domaine de la synthèse des régulateurs en vue d'une accommodation de défauts (Cf. Chapitre 1), nous expliquons nos objectifs de reconfiguration par une loi de commande tolérante aux défauts actionneurs. Une étude de cas d'un système linéaire avec une redondance matérielle permettra de discerner plus justement nos propos lors de la reconfiguration de la loi de commande en multi-modèles. Différents exemples permettent d'illustrer les propositions de reconfiguration de

loi de commande sur plusieurs types de systèmes.

4.1 Systèmes tolérants aux défauts en multi-modèles

4.1.1 Problématique

Considérons un système représenté par le multi-modèle suivant :

$$\begin{cases} x_{k+1} = \sum_{j=1}^{N} \rho_k^j [A_j x_k + B_j u_k] \\ y_k = \sum_{j=1}^{N} \rho_k^j [C_j] x_k \end{cases}$$
(4.1)

 $x_k \in \mathbb{R}^n$ représente le vecteur d'état, $u_k \in \mathbb{R}^p$ est le vecteur d'entrée, $y \in \mathbb{R}^m$ est le vecteur de sortie. A la manière des chapitres précédents, et en considérant l'équation (

$$S_k := \left\{ \sum_{j=1}^N \rho_k^j S_j : \rho_k^j \ge 0, \sum_{j=1}^N \rho_k^j = 1 \right\}$$
 (4.2)

avec $S_j = [A_j, B_j, C_j]$. De manière similaire aux précédents chapitres, les fonctions d'activation ρ_k^j sont supposées robustes aux défauts, pouvant provenir des travaux du chapitre 2 ou de travaux de (Narendra et al., 1995). Le but de ce chapitre n'est pas l'obtention de ces fonctions mais bien de reconfigurer la loi de commande lors de défauts actionneur et d'assurer la stabilité en Boucle Fermée. Ces fonctions d'activation seront supposées connues et robustes aux défauts occurrent sur le système.

De manière classique en l'absence de défaut, le système (

$$\begin{cases} x_{k+1} = A_j x_k + B_j (-K_j x_k) \\ = (A_j - B_j K_j) x_k \end{cases}$$
(4.3)

Les gains $K_j \in [1, ..., N]$ sont calculés de façon à stabiliser l'équation (

En présence de défaut actionneur (sous forme multiplicative) sur le système à l'instar de (Kanev and Verhaegen, 2002), (Wu et al., 2000) et (Rodrigues et al., 2005d), le système précèdent s'écrit de la façon suivante :

$$\begin{cases} x_{k+1} = A_j x_k + B_j^f u_k \\ = A_j x_k + B_j (I_{p \times p} - \gamma_k) u_k \end{cases}$$

$$(4.4)$$

avec

$$\gamma_{k} \triangleq diag[\gamma_{k}^{1}, \gamma_{k}^{2}, \dots, \gamma_{k}^{p}], \gamma_{k}^{i} \in \mathbb{R}, tel \ que
\begin{cases} \gamma_{k}^{i} = 1 & défaillance \ du \ ième \ actionneur \ i \in [1, \dots, p] \\ \gamma_{k}^{i} = 0 & le \ ième \ actionneur \ opère \ normalement \end{cases}$$
(4.5)

Il faut noter que chaque composante γ_k^i dépend du temps k. En prenant un simple retour d'état, le système (

$$\begin{cases} x_{k+1} = A_j x_k + B_j^f(-K_j x_k) \\ = (A_j - B_j^f K_j) x_k = (A_j - B_j (I - \gamma_k) K_j) x_k \end{cases}$$
(4.6)

Il est clair que les gains nominaux K_j des régulateurs ne peuvent garantir la stabilité du système en boucle fermée (

En reprenant un schéma de commande tolérante aux défauts du premier chapitre à la figure

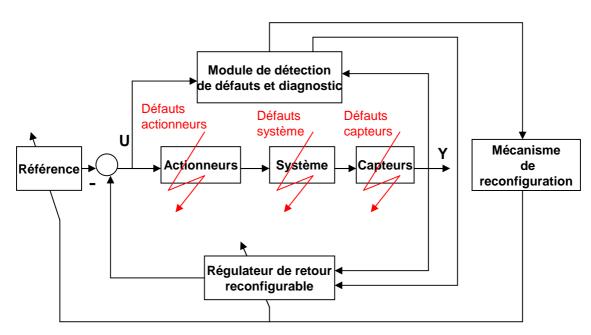


FIG. 4.1: Schéma de principe général avec commande tolérante aux défauts

Les hypothèses de travail seront de supposer qu'un module de FDI est réalisé et qu'il fournit une estimation exacte, en un temps minimal, de multiples défauts actionneurs apparaissant sur le système. Les chapitres 2 et 3 permettent d'assurer une détection et/ou une estimation du défaut sur des systèmes représentés par des multi-modèles. Ces méthodes (Filtre Adaptatif et Observateurs polytopiques à entrées inconnues) ont notamment permis de montrer qu'il était possible d'effectuer un diagnostic des défauts sur de tels systèmes. Ainsi, dans la suite de la méthode présentée et de la même façon que (Zhang and Jiang, 2003b), nous considérerons qu'il possible d'estimer en ligne l'amplitude du ou des défaut(s) actionneur γ_k sur le système. Nous supposerons que cette estimation $\widehat{\gamma}_k$ est parfaite et qu'il n'y a pas d'incertitudes :

$$\gamma_k = \widehat{\gamma}_k \tag{4.7}$$

Comme mentionné au chapitre 1 à la section (

4.1.2 Commande tolérante en multi-modèles : accommodation par compensation

Une approche de commande tolérante aux défauts en multi-modèles a été développée par (Theilliol et al., 2003a). Cette approche considère des défauts sous forme additive où chaque modèle local s'écrit de la façon suivante :

$$\begin{cases} x_{k+1} = A_j x_k + B_j (u_k^j + f_k^a) \\ = A_j x_k + B_j u_k^j + F_j f_k^a \end{cases}$$
(4.8)

avec les égalités suivantes $F_j = B_j$ et f_k^a est le terme en défaut de l'entrée de commande. L'objectif de la méthode est de synthétiser une loi de commande u_k^r qui annule l'effet des défauts sur le système en BF. Chaque loi de commande locale est synthétisée pour chaque régulateur de la façon suivante :

$$u_k^r = u_k^j + u_{ad}^j (4.9)$$

où u_{ad}^j définit une loi de commande additive locale et u_k^j représente un gain de retour d'état nominal tel que $u_k^j = -K_j x_k$. Le terme u_{ad}^j est synthétisé afin de compenser le défaut (Theilliol et al., 1998), (Noura et al., 2000) et (Theilliol et al., 2002a), dans la représentation d'état (

$$B_j u_{ad}^j + F_j f_k^a = 0 (4.10)$$

De ce fait, le système (

$$\begin{cases} x_{k+1} &= A_j x_k + B_j u_k^r + F_j f_k^a \\ &= A_j x_k + B_j (u_k^j + u_{ad}^j) + F_j f_k^a \\ &= (A_j - B_j K_j) x_k + \underbrace{B_j u_{ad}^j + F_j f_k^a}_{=0} \end{cases}$$

$$= (A_j - B_j K_j) x_k$$

$$(4.11)$$

Cette première étude effectuée dans le cadre de l'accommodation de défauts actionneurs en ligne basée sur un module FDD, permettait d'apporter une solution pour les systèmes représentés par des multi-modèles. Le module de FDD utilisé était un banc de filtres adaptatifs (Rodrigues et al., 2004) que nous avons présenté au second chapitre. Ceux-ci permettaient notamment, de détecter, isoler et estimer l'amplitude du défaut f_k^a et par ce fait, de déterminer le terme additif u_{ad}^j dans l'équation (

Néanmoins, comme dans (Zhang and Jiang, 2003b), cette étude ne permettait pas la prise en compte des pertes d'actionneur car seule l'accommodation était permise. C'est pourquoi afin d'étendre ces travaux dans le contexte de défauts actionneurs représentés sous forme multiplicative, nous avons décidé de nous focaliser sur les pertes d'actionneur et l'analyse de la synthèse de régulateurs adéquats assurant la stabilité en BF du système.

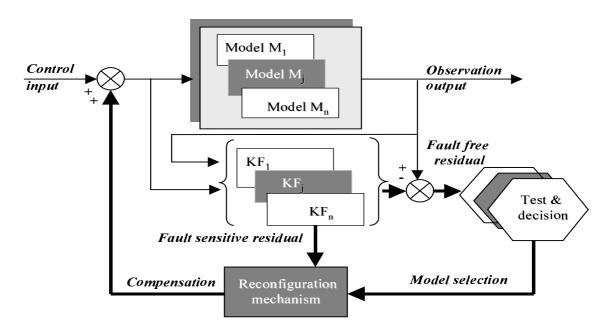


Fig. 4.2: Accommodation de défaut en multi-modèles

4.2 Stratégie de reconfiguration en présence de défauts actionneurs : vers une solution

Soit \mathcal{I} l'ensemble des actionneurs en mode nominal. Soit $\mathcal{I} = \mathcal{I}_N \cup \mathcal{I}_F$ où \mathcal{I}_N est le sous ensemble des actionneurs sans défaut tandis que \mathcal{I}_F est le sous ensemble des actionneurs en défaut à l'instant donné k. La dynamique d'un système linéaire en défaut (Staroswiecki, 2002), (Blanke et al., 2003) est décrite par :

$$x_{k+1} = Ax_k + Bu_k$$

$$= Ax_k + \sum_{i \in \mathcal{I}} B_i u_i(k)$$

$$= Ax_k + \sum_{i \in \mathcal{I}_N} B_i u_i(k) + \sum_{i \in \mathcal{I}_F} \beta_i (u_i(k), \theta_i)$$

$$(4.12)$$

où $x \in \mathbb{R}^n$ est le vecteur d'état et $u \in \mathbb{R}^p$ est le vecteur de commande. $u_i \in \mathbb{R}^p$ est l'entrée du ième actionneur $\in \mathcal{I}$ tel que $p = \sum_{i \in \mathcal{I}} p_i$. Le terme $\beta_i(u_i(k), \theta_i)$ décrit la contribution du ième actionneur en défaut avec θ_i qui correspond aux éléments $\gamma^i \neq 0$ définis en (

Dans un premier temps, afin d'illustrer le cas de défaillance d'actionneur (c.à.d lors de la perte d'un actionneur), nous allons supposer que le système dispose d'une redondance matérielle suffisante. Cette première hypothèse va nous permettre d'expliciter la loi de commande lors d'une reconfiguration d'actionneur, avec l'ensemble des actionneurs en défaut et celui en mode nominal comme illustré dans l'équation (

Considérons le système nominal suivant

$$x_{k+1} = Ax_k + Bu_k (4.13)$$

En présence de défauts actionneurs, de l'écriture (

$$x_{k+1} = Ax_k + B(I - \gamma_k)u_k (4.14)$$

en notant que l'ensemble \mathcal{I}_N représente le cas où $\gamma_k^i = 0, \forall i \in [1, \dots, p-r]$ et \mathcal{I}_F le cas où $\gamma_k^i \neq 0, \forall i \in [1, \dots, r]$. Remarquons que l'ensemble \mathcal{I}_F représente à la fois les actionneurs en défauts $(0 < \gamma_k^i < 1, i \in [1, \dots, r-h])$ et les actionneurs défaillants $(\gamma_k^i = 1, i \in [1, \dots, h])$, c.à.d perdus.

En s'appuyant sur cette nouvelle représentation des défauts actionneurs au sein du système, l'idée est de calculer une loi de reconfiguration de commande u_k^r à partir de la loi de commande nominale u_k , de telle façon que les effets des défauts soient totalement compensés et que le système reconfiguré puisse être stable.

Dans la suite du document, nous utiliserons les notations suivantes : I_p représente la matrice identité de dimension $p \times p$, $I_{p \times h}$ représente la matrice identité de dimension $p \times h$, 0_p représente une matrice de zéros de dimension $p \times p$ et $0_{p \times h}$ représente une matrice de zéros de dimension $p \times h$. Enfin, dans le cas où $p \leq l$, $I_{p \times l} = [I_p \quad 0_{p \times (l-p)}]$.

Définissons la matrice Γ_k qui représente seulement les actionneurs totalement perdus :

$$\Gamma_k \triangleq (I_p - \gamma_k)(I_p - \gamma_k)^+ \tag{4.15}$$

Ainsi, Γ_k est une matrice diagonale et contient sur ses entrées diagonales seulement des 1 (absence de défaut) et des 0 (représentant des défauts totaux). Nous omettrons la dépendance au temps sur les matrices γ et Γ pour permettre une meilleure lisibilité des indices. Sans perte de généralité, il est possible de considérer que

$$\Gamma = \begin{pmatrix} I_{p-h} & 0\\ 0 & 0_h \end{pmatrix} \tag{4.16}$$

où nous avons noté le nombre d'actionneurs totalement perdus par h, et p-h les actionneurs qui fonctionnent normalement ou qui sont en défaut mais non défaillants ($\gamma^i \neq 1$). La matrice Γ correspond au cas où la matrice γ est représentée par :

$$\gamma = \begin{pmatrix} \gamma_{p-h} & 0\\ 0 & I_h \end{pmatrix} \tag{4.17}$$

avec γ_{p-h} étant une matrice diagonale contenant sur sa diagonale les entrées diagonales de γ_{p-h}^i , $i \in [1, \ldots, p]$ qui sont différentes de 1. Il faut noter que $(I_{p-h} - \gamma_{p-h})$ est une matrice non-singulière par définition rendant possible son inversion. Considérons la partition de la matrice B suivant (

$$B = [B_{p-h} \qquad B_h] \tag{4.18}$$

avec $B_{p-h} \in \mathbb{R}^{n \times (p-h)}$ et $B_h \in \mathbb{R}^{n \times h}$. Nous pouvons écrire que

$$B(I - \gamma) = B\Gamma(I - \gamma) = [B_{p-h}(I_{p-h} - \gamma_{p-h}) \quad 0_{n \times h}]$$
(4.19)

qui substituée dans l'équation (

$$x_{k+1} = Ax_k + B_{p-h}(I_{p-h} - \gamma_{p-h})u_{p-h}^r$$
(4.20)

où nous avons défini la nouvelle loi de commande en défaut $u_{p-h}^r \in \mathbb{R}^{p-h}$, c.à.d les actionneurs restant qui peuvent être utilisés pour commander le système. On notera que le système en défaut (

Hypothèse préliminaire :

$$\mathcal{R}(B) = \mathcal{R}(B_{p-h}) \tag{4.21}$$

où $\mathcal{R}(B)$ est l'espace engendré par les colonnes de la matrice $B = [b_1, \dots, b_p] \in \mathbb{R}^{n \times p}$ définie telle que

$$\mathcal{R}(B) = span(b_1, \dots, b_p) = \{ v \in \mathbb{R}^n : v = \sum_{i=1}^p \beta_i b_i, \beta_i \in \mathbb{R}, i = 1, \dots, p \}$$
 (4.22)

Cette hypothèse exprime le cas de redondance matérielle sur un système. Cette hypothèse semble à première vue une hypothèse forte et restrictive, mais dans le domaine de l'aéronautique, aérospatiale, aviation,... il est beaucoup plus probable et moins pessimiste de considérer cette hypothèse due au fait de la présence d'actionneurs redondants comme des actionneurs symétriques sur les avions, les élévateurs droit et gauche, etc. Ainsi, dans le cas où un de ces actionneurs est défaillant alors le modèle du système en défaut est supposé satisfaire à cette hypothèse.

Sous cette hypothèse, une première stratégie de reconfiguration peut être explicitée. A cette fin, considérons la partition de la loi de commande nominale u(k), correspondant à la partition (

$$u(k) = \begin{pmatrix} u_{p-h}(k) \\ u_h(k) \end{pmatrix} \tag{4.23}$$

Le régulateur est synthétisé pour le système nominal, et ne change pas quelque soit l'apparition des défauts. L'idée est de trouver u_m(k) telle aue l'éauation résultante (

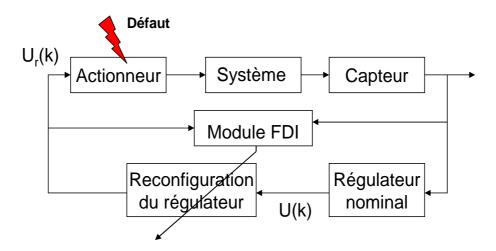


Fig. 4.3: Stratégie de reconfiguration

Proposition 4 Considérons le système (

$$u^{r}(k) = \begin{bmatrix} I_{p-h} \\ 0_{h \times (p-h)} \end{bmatrix} [I_{p-h} - \gamma_{p-h}]^{-1} [I_{p-h} \quad 0_{(p-h) \times h}] u(k)$$
 (4.24)

appliquée au système en défaut (Preuve :

Nous allons montrer que le système en défaut (Le système (

$$x_{k+1} = Ax_k + B(I - \gamma)u^r(k)$$

$$= Ax_k + [B_{p-h} \quad B_h] \begin{bmatrix} I_{p-h} - \gamma_{p-h} & 0\\ 0 & 0_h \end{bmatrix} u^r(k)$$
(4.25)

En appliquant l'expression de $u^r(k)$ donnée en (

$$x_{k+1} = Ax_k + B_{p-h}(I_{p-h} - \gamma_{p-h})(I_{p-h} - \gamma_{p-h})^{-1}u_{p-h}(k)$$

= $Ax_k + B_{p-h}u_{p-h}(k)$ (4.26)

Or, du fait de l'hypothèse (

Nous avons étudié le cas d'un système avec des défauts actionneurs en considérant la perte possible d'actionneurs dans le cas de redondance matérielle d'actionneurs. Nous avons vu comment la loi de commande de reconfiguration pouvait permettre au système en défaut de continuer d'opérer avec le reste des actionneurs non hors-service. Maintenant, nous allons formaliser une technique dédiée aux systèmes multi-modèles commandables pour chaque paires $(A_j, B_j^i), \forall j \in [1, \ldots, N]$ où B_j^i représente la ième colonne de la matrice B_j avec $i \in [1, \ldots, p]$ sans pour autant parler de redondance matérielle. Les notions évoquées dans l'étude de ce cas linéaire et notamment les notations (

Note: La commande de reconfiguration peut aussi s'écrire $u^r(k) = (I - \gamma)^+ u(k)$ avec $(\cdot)^+$ représentant la matrice de Moore-penrose, la pseudo-inverse, qui peut être calculée par décomposition en valeurs singulières (SVD) telle que $(I - \gamma)^+ = \begin{bmatrix} (I_{p-h} - \gamma_{p-h})^{-1} & 0 \\ 0 & 0 \end{bmatrix}$

4.3 Commande tolérante active sur de multiples points de fonctionnement

Comme nous l'avons vu lors du premier chapitre, il existe de nombreuses stratégies permettant de synthétiser des régulateurs permettant de ramener le système en défaut au cas nominal par la méthode pseudo-inverse comme référencée dans (Gao and Antsaklis, 1991) ou par placement de structure propre (Zhang and Jiang, 1999a). Pour des systèmes représentés sous forme multi-modèles, des approches comme (Banerjee et al., 1995) ont étudié la pondération de la loi de commandes locales afin d'en définir une globale pour commander le système. De même, dans le domaine de la logique floue, des approches comme (Wang et al., 1996) et (Tanaka et al., 1996) ou plus récemment (Guerra et al., 1999), ont étudié la stabilité des systèmes représentés par un multi-modèle. D'autres approches sur des systèmes Linéaires à Paramètres Variants (LPV) dans (Shamma and Athans, 1992) et (Stiwell and Rugh, 1999), ont été développées permettant d'assurer la stabilité du système en fonction des paramètres du système. Néanmoins, toutes ces approches ne tiennent pas compte des défauts et des défaillances potentiels qui peuvent apparaître sur le système.

Étant donné que nous considérons des systèmes représentés par des multi-modèles avec des défauts et pertes d'actionneur, nous proposons de synthétiser des régulateurs avec des outils adéquats tels les LMI. En effet, celles-ci permettent de synthétiser des gains pour des systèmes représentés sous forme polytopique (Daafouz and Bernussou, 2001) et\ou d'effectuer du placement de pôles (Chilali and Gahinet, 1996) dans le cadre de la commande robuste par exemple.

Lors de la synthèse de la loi de commande, les performances désirées du système en boucle fermée peuvent être requises tout en garantissant la stabilité. Aussi, une réponse dynamique satisfaisante peut être garantie en confinant les pôles dans une région précise du plan complexe, voir Annexe C. Pour la plupart des problèmes réels, le placement de pôles de manière stricte n'est pas nécessaire : il suffit de garantir que les pôles en boucle fermée restent dans une région précise du plan complexe (Rodrigues et al., 2005c) et (Rodrigues et al., 2005e), comme nous l'avons vu au cours du chapitre 3.

4.3.1 Synthèse d'une loi de commande tolérante active par retour d'état

Soit un système, considérant des défauts actionneurs γ_k , représenté autour des points de fonctionnement suivant \mathcal{PF}_j :

$$x_{k+1} = \sum_{j=1}^{N} \rho_k^j \left[A_j x_k + \sum_{i=1}^{p} B_j^i (I - \gamma_k) u_k \right]$$

$$y_k = \sum_{j=1}^{N} \rho_k^j C_j x_k$$
(4.27)

avec $i:i=1,\ldots,p$ l'ensemble des actionneurs pour chaque \mathcal{PF}_j et les matrices $(A_j,B_j,C_j)\in S_k$ définies dans (

$$B_i^i = [0, \dots, 0, b_i^i, 0, \dots, 0] \tag{4.28}$$

et $B_j = \sum_{i=1}^p B_j^i = [b_j^1, b_j^2, \dots, b_j^p,]$ avec $b_j^i \in \mathbb{R}^{n \times 1}$. Il est supposé que chaque colonne de B_j est de plein rang colonne quel que soit le \mathcal{PF}_j . La matrice des défauts actionneurs γ_k se modélise de la façon suivante :

$$\gamma_{k} \triangleq diag[\gamma_{k}^{1}, \gamma_{k}^{2}, \dots, \gamma_{k}^{p}], \gamma_{k}^{i} \in \mathbb{R}, tel \ que
\begin{cases} \gamma_{k}^{i} = 1 & défaillance \ du \ ième \ actionneur \ i \in [1, \dots, p] \\ \gamma_{k}^{i} = 0 & le \ ième \ actionneur \ opère \ normalement \end{cases}$$
(4.29)

$Hypoth\`ese~2:$

Les paires
$$(A_j, b_j^i), \forall i = 1, ..., p$$
 sont supposées commandables $\forall j = 1, ..., N$.

Avant d'aborder la synthèse de la loi de commande en défaut, nous développons une synthèse de gains de régulateurs dans le cadre nominal car les gains reconfigurant le système en défaut seront basés sur la synthèse des gains nominaux.

Soit \mathcal{D} , une région \mathcal{LMI} définissant un disque de centre (-q,0), et de rayon r avec (q+r) < 1 définissant le cercle unité (Voir Annexe C). Considérons tout d'abord le système (

$$\begin{pmatrix} -rX_{i} & qX_{i} + (A_{j}X_{i} - B_{j}^{i}Y_{i})^{T} \\ qX_{i} + A_{j}X_{i} - B_{j}^{i}Y_{i} & -rX_{i} \end{pmatrix} < 0$$
 (4.30)

Théorème 3 (Rodrigues et al., 2005d) Soit un système (

$$u_{nom}^{j} = -\left(\sum_{i=1}^{p} G_{i} Y_{i}\right) \left(\sum_{i=1}^{p} X_{i}\right)^{-1} x_{k}$$

$$= -Y X^{-1} x_{k} = -K_{nom} x_{k}$$
(4.31)

avec $\sum_{i=1}^p G_i Y_i = Y$, $X = \sum_{i=1}^p X_i$ et $G_i = B_j^{i+} B_j^i$ une matrice possédant des zéros partout sauf à l'entrée (i,i) où il y a un 1. La commande générale pour tout \mathcal{PF}_j peut être définie telle que :

$$u_k = \sum_{j=1}^{N} \rho_k^j u_{nom}^j = -\sum_{j=1}^{N} \rho_k^j K_{nom} x_k = -K_{nom} x_k$$
 (4.32)

Preuve:

La commandabilité des paires (A_j, b_j^i) permet d'assurer le placement de pôles par retour d'état des matrices $A_j - B_j^i K_i$. La sommation de (

décrivant la \mathcal{D} -stabilité quadratique dans une région \mathcal{LMI} précise. Notons $X = \sum_{i=1}^{p} X_i$ (avec $X = X^T > 0$), (

$$\left(\begin{array}{ccc}
-rX & qX + (A_{j}X - \sum_{i=1}^{p} B_{j}^{i}Y_{i})^{T} \\
qX + (A_{j}X - \sum_{i=1}^{p} B_{j}^{i}Y_{i}) & -rX
\end{array}\right) < 0$$
(4.33)

Notons la l-ème ligne de la matrice Y_i par Y_i^l , i = 1, ..., p et l = 1, ..., p, c.à.d

$$Y_i^l = G_l Y_i \tag{4.34}$$

Ainsi,

$$\sum_{i=1}^{p} B_j^i Y_i = \sum_{i=1}^{p} [0, ..., 0, b_j^i, 0, ..., 0] Y_i^i = B_j \sum_{i=1}^{p} Y_i^i$$
(4.35)

conduisant à

$$\sum_{i=1}^{p} B_j^i Y_i = B_j(\sum_{i=1}^{p} G_i Y_i)$$
(4.36)

De plus, en prenant $Y = \sum_{i=1}^{p} G_i Y_i$, l'équation (

$$\sum_{i=1}^{p} B_j^i Y_i = B_j Y (4.37)$$

En substituant (

$$\begin{pmatrix} -rX & qX + (A_jX - B_jY)^T \\ qX + (A_jX - B_jY) & -rX \end{pmatrix} < 0$$

$$(4.38)$$

pour tout \mathcal{PF}_j , j = 1, 2, ..., N. En multipliant chaque \mathcal{LMI} (

$$\begin{pmatrix} -rX & qX + \sum_{j=1}^{N} \rho_k^j (A_j X - B_j Y)^T \\ qX + \sum_{j=1}^{N} \rho_k^j (A_j X - B_j Y) & -rX \end{pmatrix} < 0$$
 (4.39)

qui est équivalent à

$$\begin{pmatrix} -rX & qX + (A(\rho)X - B(\rho)Y)^T \\ qX + (A(\rho)X - B(\rho)Y) & -rX \end{pmatrix} < 0$$

$$(4.40)$$

où $A(\rho) = \sum_{j=1}^{N} \rho_k^j A_j \in S_k$ et $B(\rho) = \sum_{j=1}^{N} \rho_k^j B_j \in S_k$. La \mathcal{D} -stabilité quadratique est alors assurée en résolvant (

En absence de défaut, il est possible de relaxer l'hypothèse 2 pour la synthèse de tels régulateurs, c.à.d qu'il est possible de considérer que seules les paires $(A_j, B_j), \forall j \in [1, ..., N]$ doivent être commandables. Cependant, comme nous désirons traiter du cas de défaillance d'actionneurs, il s'avère nécessaire de considérer cette hypothèse étant donné que les gains de reconfiguration sont basés sur les gains $K_i = Y_i X_i^{-1}, i \in [1, ..., p]$. Le Théorème qui suit propose une solution pour la reconfiguration de la loi de commande lors de défauts engendrant des défaillances d'actionneurs, spécifiées dans la section précédente notamment aux équations (

Théorème 4 (Rodrigues et al., 2005d) Soit le système (

Preuve:

En appliquant la nouvelle loi de commande tolérante aux défauts (

$$B_j(I - \gamma_k)u_{FTC}^j = -B_j\Gamma_k(\sum_{i \in \Theta} G_i Y_i)(\sum_{i \in \Theta} X_i)^{-1} x_k$$
(4.41)

avec $\Gamma_k = (I - \gamma_k)(I - \gamma_k)^+$ définie en (

où Γ_k est une matrice diagonale possédant seulement des zéros (représentant des défaillances) et des 1 (signifiant l'absence de défaut). De ce fait, la matrice $B_j\Gamma_k=\sum\limits_{i\in\Theta}B^i_j$ modélise uniquement les actionneurs non défaillants ($\gamma^a_i\neq 1$) suivant les matrices définies en (

Cette synthèse de loi de commande tolérante aux défauts dépend de l'estimation de l'amplitude du défaut et conduit à appliquer au système la nouvelle loi de commande suivante :

$$u_k = \sum_{j=1}^N \rho_k^j u_{FTC}^j$$

= $-K_{FTC} x_k$ (4.42)

avec
$$K_{FTC} = (I - \gamma_k)^+ \sum_{i \in \Theta} G_i Y_i (\sum_{i \in \Theta} X_i)^{-1}.$$

Remarque1:

Il n'y a pas lieu d'étudier la stabilité des matrices telles $A_j - B_j K_l (l \neq i)$ car un unique gain de régulateur est utilisé. On pourra le constater dans (Wang et al., 1996) ou comme le fait remarquer (Chadli, 2002) pour des modèles Takagi-Sugeno, avec une loi de commande PDC (Parallel Distributed Compensation) qui utilise un unique gain.

Remarque2:

Si tous les modèles locaux ont la même matrice B_j , c.à.d $B_j = B$ pour tout j = 1, ..., N, il est alors possible d'envisager une synthèse de gains différents pour tous les points de fonctionnement du système :

$$u_k = \sum_{j=1}^{N} \rho_k^j u_{nom}^j = -\sum_{j=1}^{N} \rho_k^j [K_j x_k]$$
(4.43)

avec $K_j = Y_j Q^{-1}$. Les matrices résultantes restent les mêmes excepté que les matrices K_j remplacent les matrices K, la matrice B remplace les matrices B_j , et les matrices Y_j remplacent les matrices Y.

Remarque3:

De la même façon que la remarque (2), si les matrices d'entrée B_j sont positivement et linéairement dépendantes, c.à.d $\exists \alpha_j : B_j = \alpha_j B, \forall j \in [1, \ldots, N]$, on pourra définir un type de loi nommée CDF (Compensation et Division pour modèles Flous) (Guerra et al., 1999) de la façon suivante :

$$u_k = -\frac{\sum_{j=1}^{N} \rho_k^j \alpha_j K_j}{\sum_{j=1}^{N} \rho_k^j \alpha_j} x_k$$

$$(4.44)$$

Cette loi de commande permet notamment de n'observer les conditions de stabilité que pour les termes dominants $A_j - B_j K_j$ (Chadli, 2002) à l'instar de la synthèse de gains multiples dans le cadre des systèmes linéaires par morceaux (Piecewise Linear Systems (Ozkan et al., 2003)).

Remarque 4:

La synthèse des gains du régulateur dans le cas nominal se fait en prenant le nombre h=0, qui est le nombre d'actionneurs défaillants. Dans ce cas, l'ensemble Θ est équivalent à l'ensemble $i:i\in[1,\ldots,p]$ des actionneurs non défaillants.

La stratégie proposée est résumée sur la figure (

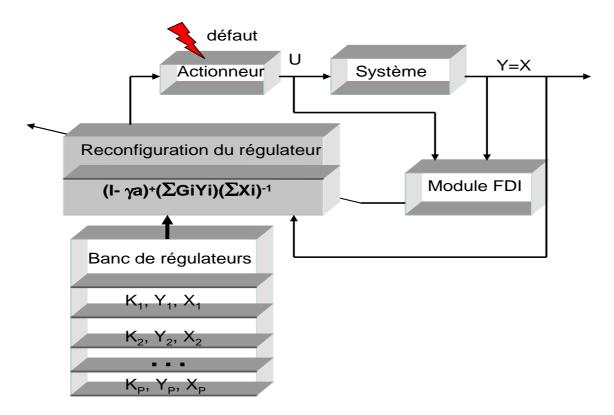


Fig. 4.4: Reconfiguration de régulateur pour défauts actionneur

Cette stratégie permet de considérer le cas de défaillance $\gamma_i = 0$ si l'hypothèse de commandabilité des paires (A_j, B_j^i) est vérifiée c.à.d si toutes les paires (A_j, b_j^i) sont commandables. Le système reste commandable tant qu'il reste au moins un actionneur non défaillant sur le système.

Afin d'illustrer notre méthode de reconfiguration par retour d'état présentée, nous allons utiliser une représentation de modèle affine LPV ou Linéaire à Paramètres Variants dans le temps. Ce type de représentation a notamment été utilisé et développé dans (Bara, 2001) pour la synthèse d'observateur polytopique, dans (Rosinova and Vesely, 2004) où il est question d'un système avec des incertitudes paramétriques mis sous forme LPV affine puis sous forme polytopique, dans (Hensen et al., 2000), (Angelis, 2001) et (Glover, 2003) pour la représentation polytopique des systèmes non linéaires et la synthèse de commande et enfin récemment dans (Reberga et al., 2005) où il est question de divers systèmes pouvant s'écrire sous une forme LPV.

4.3.2 Exemples numériques

A. Système LPV-polytopique : Soit un système représenté par un modèle LPV affine sous la forme suivante :

$$x_{k+1} = (A_0 + \sum_{j=1}^{N} \Theta_k^j A_j) x_k + (B_0 + \sum_{j=1}^{N} \Theta_k^j B_j) u_k$$
$$y_k = C x_k \tag{4.45}$$

où N=2 et avec les variables Θ_k^j qui varient selon $\Theta_k^1 \in [-0.05, 0.05]$ et $\Theta_k^2 \in [-0.1, 0.1]$. Les matrices décrivant ce système LPV affine sont représentées par :

$$A_{0} + \sum_{j=1}^{2} \theta_{k}^{j} A_{j} = \begin{bmatrix} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 0.75 + \Theta_{k}^{1} & 0 \\ 0 & 0 & 0 & 1 + \Theta_{k}^{2} \end{bmatrix}, B_{0} + \sum_{j=1}^{2} \theta_{k}^{j} B_{j} = \begin{bmatrix} 1 + \Theta_{k}^{1} & 1 + \Theta_{k}^{1} \\ 1 & 1 \\ 1 + \Theta_{k}^{2} & 1 + \Theta_{k}^{2} \\ 1 & 1 \end{bmatrix}$$

$$(4.46)$$

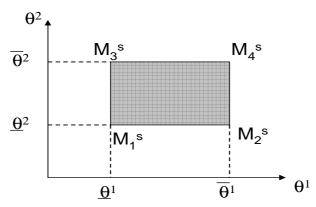


Fig. 4.5: Le domaine d'évolution des paramètres Θ^j

On notera que pour des valeurs de paramètres $\Theta_k^2 \geq 0$, le système est instable. Il est possible à partir d'une représentation sous forme affine, de transformer la représentation d'état (

$$x_{k+1} = \sum_{j=1}^{2^{N}} \rho_k^j \widetilde{A}_j x_k + \sum_{j=1}^{2^{N}} \rho_k^j \widetilde{B}_j (I - \gamma_k) u_k$$
$$y_k = C x_k \tag{4.47}$$

avec $\rho_k^j = \rho(k, \overline{\Theta}_k^j, \underline{\Theta}_k^j, \Theta_k^j)$. Le vecteur des paramètres évolue dans un rectangle donné sur la figure (

$$\widetilde{A}_1 = \begin{bmatrix} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 0.75 & 0 \\ 0 & 0 & 0 & 0.9 \end{bmatrix}, \widetilde{B}_1 = \begin{bmatrix} 0.95 & 0.95 \\ 1 & 1 \\ 0.9 & 0.9 \\ 1 & 1 \end{bmatrix} \widetilde{A}_2 = \begin{bmatrix} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 0.9 \end{bmatrix}, \widetilde{B}_2 = \begin{bmatrix} 1.05 & 1.05 \\ 1 & 1 \\ 0.9 & 0.9 \\ 1 & 1 \end{bmatrix}$$

$$\widetilde{A}_{3} \left[\begin{array}{cccc} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 0.70 & 0 \\ 0 & 0 & 0 & 1.1 \end{array} \right], \widetilde{B}_{3} = \left[\begin{array}{cccc} 0.95 & 0.95 \\ 1 & 1 \\ 1.1 & 1.1 \\ 1 & 1 \end{array} \right], \widetilde{A}_{4} = \left[\begin{array}{cccc} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 0.8 & 0 \\ 0 & 0 & 0 & 1.1 \end{array} \right], \widetilde{B}_{4} = \left[\begin{array}{cccc} 1.05 & 1.05 \\ 1 & 1 \\ 1.1 & 1.1 \\ 1 & 1 \end{array} \right]$$

La simulation s'effectue avec des défauts actionneurs à partir de l'instant $k \geq 2$ avec la matrice $\gamma_k = \begin{bmatrix} 1 & 0 \\ 0 & 0.9 \end{bmatrix}$

Selon la matrice γ_k , il y a une défaillance du premier actionneur et un défaut de 90% sur le second. Les matrices issues des Théorème

Dans le cas nominal, la matrice de retour d'état $K = \sum_{i=1}^2 G_i Y_i (\sum_{i=1}^2 X_i)^{-1}$ vaut :

$$Y_2 = 1.0e + 007 * \left[\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 4.0708 & 4.6969 & 4.3427 & 5.3087 \end{array} \right], K = \left[\begin{array}{ccccc} 0.0391 & 0.0195 & 0.0308 & 0.3556 \\ 0.0391 & 0.0195 & 0.0308 & 0.3556 \end{array} \right]$$

Sur la figure (

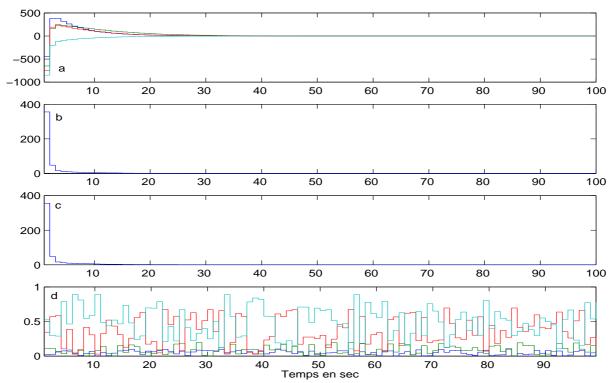


FIG. 4.6: Cas nominal : (a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

Sur la figure (La figure (

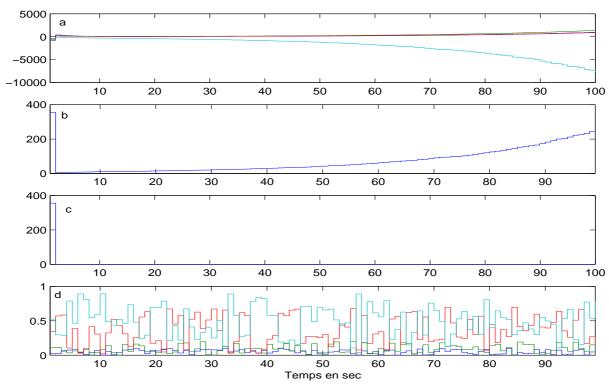


FIG. 4.7: En présence de défaut :(a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

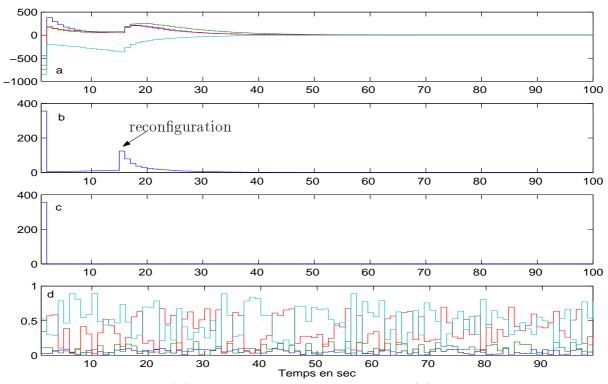


FIG. 4.8: Reconfiguration : (a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

B. Application à un système hybride à commutation

Le système hybride (

$$x_{k+1} = \sum_{j=1}^{2^{N}} \rho_k^j \widetilde{A}_j x_k + \sum_{j=1}^{2^{N}} \rho_k^j \widetilde{B}_j (I - \gamma_k) u_k$$
$$y_k = C x_k \tag{4.48}$$

avec $\rho_k^j = \rho(k, \overline{\Theta}_k^j, \underline{\Theta}_k^j, \Theta_k^j)$. Les modes de ce système hybride à commutation sont donc représentés par les matrices $\widetilde{A}_j, \widetilde{B}_j, \widetilde{C}$ de l'exemple précédent mais avec des paramètres $\rho_k^j = 1, \rho_k^i = 0, i \neq j$. Les matrices de gain de retour d'état sont les mêmes que celles de l'exemple précédent.

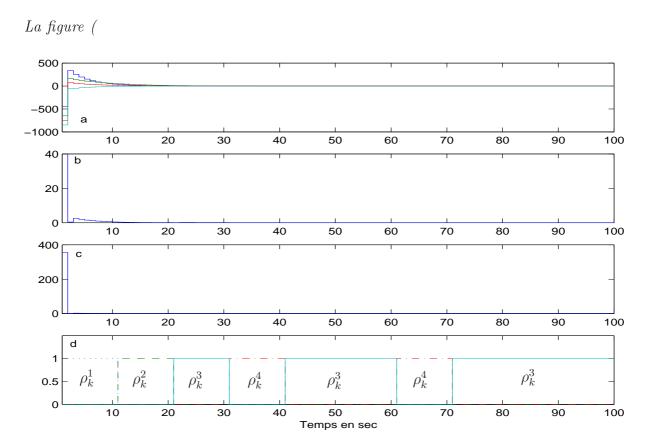


FIG. 4.9: Cas nominal : (a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

La figure (La figure (

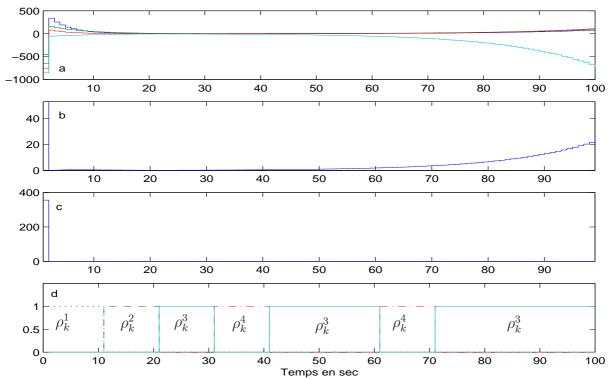


FIG. 4.10: En présence de défaut : (a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

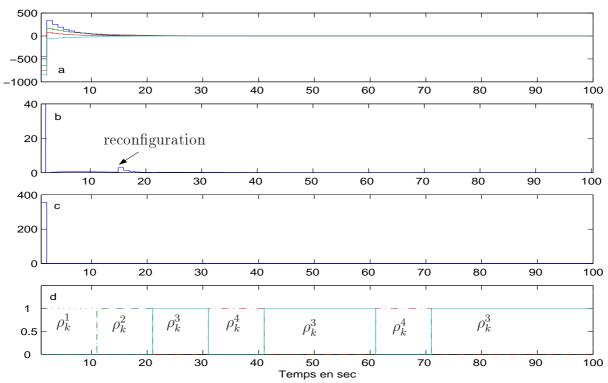


FIG. 4.11: Reconfiguration : (a) Evolution de l'état du système, (b) Evolution du second actionneur, (c) Evolution du premier actionneur, (d) Evolution des paramètres ρ_k^j

La méthode proposée est basée sur un retour d'état. Nous avons vu que si la sortie ne représentait pas totalement l'état du système, alors un estimateur devait être utilisé. Cependant, il existe des cas où il est possible de s'affranchir d'utiliser un estimateur d'état et d'effectuer

directement un retour de sortie. Nous allons voir sous quelles conditions cette synthèse par retour de sortie est rendue possible.

4.3.3 Synthèse d'une loi de commande active tolérante aux défauts par retour linéaire de sortie

Différents gains de retour de sortie en multi-modèles sont envisagés, en l'absence de défaut, notamment dans (Chadli et al., 2002) ou dans (Wang et al., 1996) "Output Parallel Distributed Compensation (OPDC)" pour les modèles flous de type Takagi-Sugeno. Notre objectif est de synthétiser une commande active tolérante aux défauts par un retour linéaire de sortie, afin d'étendre notre stratégie à un cas plus général où l'état n'est pas disponible de suite. Nous allons voir notamment les conditions spécifiques à ce type de commande afin de garantir la stabilité du système en présence de défauts actionneurs ou capteurs.

Tout d'abord, si l'on désire prendre en compte les défauts capteur ainsi que les défauts actionneurs, il est possible de redéfinir une nouvelle représentation du système (

$$x_{k+1} = \sum_{j=1}^{N} \rho_k^j \left[A_j x_k + \sum_{i=1}^{p} B_j^i (I_{p \times p} - \gamma_k) u_k \right]$$

$$y_k = (I_{m \times m} - \sigma_k) C x_k$$
(4.49)

 $où \sigma_k$ se définit comme suit

$$\sigma_{k} \triangleq diag[\sigma_{k}^{1}, \sigma_{k}^{2}, \dots, \sigma_{k}^{m}], \sigma_{k}^{l} \in \mathbb{R}, tel \ que$$

$$\begin{cases} \sigma_{k}^{l} = 1 & défaillance \ du \ l-\`eme \ capteur \ l \in [1, \dots, m] \\ \sigma_{k}^{l} = 0 & le \ l-\`eme \ capteur \ op\`ere \ normalement \end{cases}$$

$$(4.50)$$

Sans toutefois parler de défaillance de capteur (c.à.d $\sigma_k^l \neq 1, \forall l \in [1...m]$), il est possible d'envisager de manière analogue au cas de défaut actionneur, une loi de reconfiguration basée sur un retour de sortie permettant la prise en compte des deux sortes de défauts. Dans un premier temps, seuls les défauts actionneurs seront supposés apparaître sur le système c.à.d $\sigma_k = 0, \forall k$, le cas des défauts capteurs étant discuté plus tard dans cette section.

Hypothèse 3 : Dans cette section, nous supposons que $C = C_j, \forall j \in [1...N]$. De plus, cette matrice de sortie C est supposée être de plein rang ligne.

Le retour de sortie linéaire dans le cas nominal, s'exprime sous la forme suivante :

$$u_k = -Fy_k \tag{4.51}$$

avec $y_k = Cx_k$. La matrice de gain est $F \in \mathbb{R}^{p \times m}$. En présence de défauts, actionneurs tout d'abord, la représentation multi-modèles du système avec un régulateur (

$$x_{k+1} = \sum_{j=1}^{N} \rho_k^j [A_j x_k + B_j (I - \gamma_k) (-F_{FTC} y_k)]$$

$$= \sum_{j=1}^{N} \rho_k^j (A_j - B_j F_{FTC} C) x_k$$
(4.52)

avec la matrice F_{FTC} à déterminer afin de pouvoir annuler l'effet des défauts actionneurs sur le système.

Comme défini précédemment dans ce chapitre, nous désirons établir la stabilité du système en boucle fermée au moyen d'un placement de pôles des valeurs propres de la matrice du système en BF. Ainsi, nous avons pu voir précédemment que pour déterminer des réponses transitoires adéquates ainsi que des performances sur le système en BF, il était essentiel de réaliser un placement de pôles. Les valeurs propres du système en BF peuvent se définir dans une région précise du plan complexe (Lopez-Toribio and Patton, 2000), (Chilali and Gahinet, 1996) et (Rodrigues et al., 2005d).

Nous reprenons la région \mathcal{LMI} \mathcal{D} définie dans la section précédente, qui décrit une région circulaire à l'intérieur du cercle unité. Le placement de pôles du système en BF (

$$\begin{pmatrix} -rX & qX + (A_jX - B_jFCX)^T \\ qX + (A_jX - B_jFCX) & -rX \end{pmatrix} < 0, \forall j \in [1 \dots N]$$
 (4.53)

Cependant, ces inégalités (

De la même façon que dans la section précédente, nous allons synthétiser un gain F pour chaque actionneur pour permettre un retour de sortie qui stabilise le système même lors d'une défaillance d'un actionneur.

Théorème 5 Considérons le système (

$$\begin{pmatrix} -rX_{i} & qX_{i} + (A_{j}X_{i} - B_{j}^{i}N_{i}C)^{T} \\ qX_{i} + A_{j}X_{i} - B_{j}^{i}N_{i}C & -rX_{i} \end{pmatrix} < 0, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$
(4.54)

avec pour contrainte égalité

$$CX_i = M_i C, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$
 (4.55)

La loi de commande par retour de sortie $u_k = -Fy_k$ permet de placer les valeurs propres du système (

Preuve:

Cette preuve est similaire à celle de la section précédente. En additionnant (

$$\sum_{i=1}^{p} \begin{pmatrix} -rX_i & qX_i + (A_jX_i - B_j^iN_iC)^T \\ qX_i + A_jX_i - B_j^iN_iC & -rX_i \end{pmatrix} < 0, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$
(4.56)

On note $X = \sum_{i=1}^{p} X_i$ (avec $X = X^T > 0$) et l'on obtient

$$\begin{pmatrix} -rX & qX + (A_{j}X - \sum_{i=1}^{p} B_{j}^{i} N_{i}C)^{T} \\ qX + (A_{j}X - \sum_{i=1}^{p} B_{j}^{i} N_{i}C) & -rX \end{pmatrix} < 0, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$

$$(4.57)$$

Notons, la l-ème ligne de la matrice N_i telle que N_i^l , $i=1,\ldots,p$ et $l=1,\ldots,p$, et $G_i=B_i^{i+}B_i^i$ est une matrice ayant des zéros partout exceptée à l'entrée (i,i) où il y a un 1:

$$N_i^l = G_l N_i (4.58)$$

Aussi,

$$\sum_{i=1}^{p} B_j^i N_i C = \sum_{i=1}^{p} [0, \dots, 0, b_j^i, 0, \dots, 0] N_i^i C = B_j \sum_{i=1}^{p} N_i^i C$$
(4.59)

amenant à

$$\sum_{i=1}^{p} B_j^i N_i C = B_j \sum_{i=1}^{p} N_i^i C = B_j (\sum_{i=1}^{p} G_i N_i C)$$
(4.60)

Ainsi, en prenant $N = \sum_{i=1}^{p} G_i N_i$, l'équation (

$$\sum_{i=1}^{p} B_j^i N_i C = \sum_{i=1}^{p} B_j^i N_i C = B_j N C$$
(4.61)

on obtient

$$\begin{pmatrix} -rX & qX + (A_{j}X - B_{j}NC)^{T} \\ qX + (A_{j}X - B_{j}NC) & -rX \end{pmatrix} < 0, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$
(4.62)

Avec les changements de variables N = FM et CX = MC qui, substitué dans la \mathcal{LMI} (

$$\begin{pmatrix} -rX & qX + (A_jX - B_jFCX)^T \\ qX + (A_jX - B_jFCX) & -rX \end{pmatrix} < 0, \quad \forall i = [1, \dots, p], \forall j = [1, \dots, N]$$
(4.63)

qui sont des BMIs (

$$\begin{pmatrix} -rX & qX + \sum_{j=1}^{N} \rho_k^j (A_j X - B_j NC)^T \\ qX + \sum_{j=1}^{N} \rho_k^j (A_j X - B_j NC) & -rX \end{pmatrix} < 0$$
 (4.64)

qui est équivalent à

$$\begin{pmatrix} -rX & qX + (A(\rho)X - B(\rho)NC)^T \\ qX + (A(\rho)X - B(\rho)NC) & -rX \end{pmatrix} < 0$$
 (4.65)

avec $A(\rho) = \sum_{j=1}^{N} \rho_k^j A_j \in S_k$ et $B(\rho) = \sum_{j=1}^{N} \rho_k^j B_j \in S_k$.

Étant donné que la matrice C est supposée de plein rang ligne, nous nous déduisons de (Dans un second temps, nous nous plaçons dans le cas où seuls les défauts actionneurs peuvent apparaître sur le système.

Théorème 6 Considérons le système (

$$\Theta \triangleq \{i : i \in (1, \dots, p), \gamma^i \neq 1\}$$

La loi de commande tolérante aux défauts par retour de sortie autour d'un \mathcal{PF}_j est équivalente à

$$u_{FTC} = -(I - \gamma_k)^+ \left(\sum_{i \in \Theta} G_i N_i (CC^T (C \sum_{i \in \Theta} X_i C^T)^{-1} \right) y_k$$

= $-(I - \gamma_k)^+ F_{rec} y_k = -F_{FTC} y_k$ (4.66)

avec $G_i = B_i^{i+} B_i^i$, appliquée au système en défaut (

La loi de commande par retour de sortie $u_k = -F_{FTC}y_k$ permet de placer les valeurs propres du système en BF dans une région \mathcal{LMI} prédéterminée avec $F_{rec}M = N$, $F_{rec} = \sum_{i \in \Theta} G_i N_i (CC^T (C\sum_{i \in \Theta} X_i C^T)^{-1}$ ou $F_{rec} = NCC^T (CXC^T)^{-1}$, avec $G_i = B_j^{i+} B_j^i, \forall i = [1, \ldots, p], \forall j = [1, \ldots, N]$.

Preuve:

Cette preuve est similaire à celle du Théorème

$$B_j(I - \gamma_k)u_{FTC} = -B_j\Gamma_k\left(\sum_{i \in \Theta} G_i N_i (CC^T (C\sum_{i \in \Theta} X_i C^T)^{-1})\right) y_k$$
(4.67)

avec $\Gamma_k = (I - \gamma_k)(I - \gamma_k)^+$ définie en (

Sans toutefois parler de défaillance de capteur (c.à.d $\sigma^l \neq 1, \forall l \in [1...m]$), il est possible d'envisager de manière analogue au cas de défaut actionneur, une nouvelle sortie \widetilde{y}_k synthétisée de la façon suivante

$$\widetilde{y}_k = (I_{m \times m} - \sigma_k)^+ y_k \tag{4.68}$$

Cette nouvelle sortie \widetilde{y}_k permet d'annuler l'effet des défauts capteurs sur le système (

$$u_k = -F\widetilde{y}_k = -F(I - \sigma_k)^+ y_k \tag{4.69}$$

qui appliqué sur le système (

$$x_{k+1} = \sum_{j=1}^{N} \rho_k^j \left[A_j x_k - \sum_{i=1}^{p} B_j^i (I - \gamma_k) F \widetilde{y}_k \right]$$

$$= \sum_{j=1}^{N} \rho_k^j \left[A_j x_k - \sum_{i=1}^{p} B_j^i (I - \gamma_k) F (I - \sigma_k)^+ y_k \right]$$

$$= \sum_{j=1}^{N} \rho_k^j \left[A_j x_k - \sum_{i=1}^{p} B_j^i (I - \gamma_k) F (I - \sigma_k)^+ (I - \sigma_k) C x_k \right]$$
(4.70)

Comme nous ne considérons pas le cas de perte de capteur, (

$$x_{k+1} = \sum_{j=1}^{N} \rho_k^j \left[A_j x_k - \sum_{j=1}^{p} B_j^i (I_{p \times p} - \gamma_k) FC x_k \right]$$
 (4.71)

De ce fait, en utilisant la nouvelle sortie (

$$u_k = -(I - \gamma_k)^+ F \widetilde{y}_k = -(I - \gamma_k)^+ F (I - \sigma_k)^+ y_k \tag{4.72}$$

sans autre condition supplémentaire à celle énoncées dans cette section, si l'on ne considère pas la perte de capteur sur le système. Dans le cas contraire, il faut alors envisager de nouvelles conditions plus restrictives pour pallier la perte éventuelle d'un capteur. Nous ne traitons pas de ce cas ici.

Nous allons présenter un premier exemple numérique afin de montrer l'apport de la loi de commande tolérante aux défauts par retour de sortie sur des systèmes variant dans le temps comme les systèmes LPV (Linear Parameter Varying). Nous illustrons notamment la perte d'un actionneur.

4.3.4 Exemple numérique

Soit un système représenté par 4 modèles locaux instables en présence de défauts actionneurs uniquement ($\sigma_k = 0$). Considérons la représentation d'état (

$$A_{1} = \begin{bmatrix} 0.75 & 0 & 0 & 0 \\ 0 & 0.85 & 0 & 0 \\ 0 & 0 & 1.25 & 0 \\ 0 & 0 & 0 & 1.5 \end{bmatrix}, A_{2} = \begin{bmatrix} 0.6 & 0 & 0 & 0 \\ 0 & 0.68 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1.2 \end{bmatrix}, A_{3} = \begin{bmatrix} 0.525 & 0 & 0 & 0 \\ 0 & 0.595 & 0 & 0 \\ 0 & 0 & 0.875 & 0 \\ 0 & 0 & 0 & 1.05 \end{bmatrix}$$

et

$$A_4 = \begin{bmatrix} 0.6375 & 0 & 0 & 0 \\ 0 & 0.7225 & 0 & 0 \\ 0 & 0 & 1.0625 & 0 \\ 0 & 0 & 0 & 1.2750 \end{bmatrix}, C = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, B_1 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \end{bmatrix}$$

Les autres matrices sont $B_2 = 0.8 * B_1$, $B_3 = 0.7 * B_1$ et $B_3 = 0.85 * B_1$. Le système est en boucle fermée par un retour de sortie $u_k = -(I - \gamma_k)^+ F y_k = -(I - \gamma_k)^+ F C x_k$ synthétisé selon les théorèmes (

$$N_1 = \begin{bmatrix} -0.1573 & -0.1527 & -0.1321 \\ 0 & 0 & 0 \end{bmatrix}, N_2 = \begin{bmatrix} 0 & 0 & 0 \\ -0.1573 & -0.1527 & -0.1321 \end{bmatrix}, M_1 = \begin{bmatrix} 0.9680 & 0.1074 & 0.1079 \\ 0.1074 & 0.1738 & 0.1341 \\ 0.1079 & 0.1341 & 0.1071 \end{bmatrix}$$

et

$$M_2 = \begin{bmatrix} 0.9680 & 0.1074 & 0.1079 \\ 0.1074 & 0.1738 & 0.1341 \\ 0.1079 & 0.1341 & 0.1071 \end{bmatrix}, X_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0.9680 & 0.1074 & 0.1079 \\ 0 & 0.1074 & 0.1738 & 0.1341 \\ 0 & 0.1079 & 0.1341 & 0.1071 \end{bmatrix}, X_2 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0.9680 & 0.1074 & 0.1079 \\ 0 & 0.1074 & 0.1738 & 0.1341 \\ 0 & 0.1079 & 0.1341 & 0.1071 \end{bmatrix}$$

avec
$$F = NM^{-1} = \sum_{i=1}^{p} G_i N_i \left(C \sum_{i=1}^{p} X_i C^T (CC^T) \right)^{-1}$$
:
$$F = \begin{bmatrix} -0.0253 & -1.2221 & 2.1734 \\ -0.0253 & -1.2221 & 2.1734 \end{bmatrix}, G_1 = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, G_2 = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

Le système est en boucle fermée avec une défaillance du premier actionneur à partir de k=2 et un défaut de 60% sur le second actionneur. Les paramètres sont $q=-0.05,\ r=0.93$ et la matrice γ est égale à

$$\gamma_k = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0.6 \end{array} \right], k \ge 2$$

La figure (

La figure (

La figure (

La figure (

L'exemple qui suit est un exemple pratique mettant en avant un aspect plus industriel avec une régulation de niveaux autour de points de fonctionnement connus. Dans cet exemple, le vecteur de sortie représente exactement le vecteur d'état. Nous allons appliquer la méthode sur un système hydraulique : le système des 3 cuves.

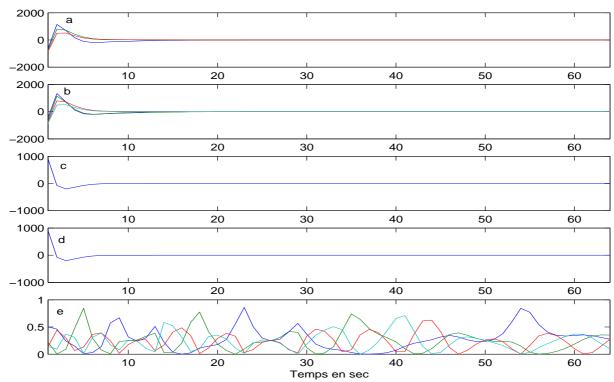


FIG. 4.12: Cas nominal : (a) Evolution des sorties du système, (b) Evolution de l'état du système, (c) Evolution du second actionneur, (d) Evolution du premier actionneur, (e) Evolution des paramètres ρ_k^j

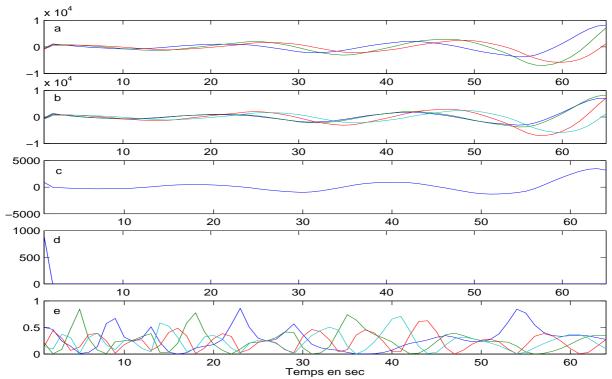


Fig. 4.13: En présence de défaut : (a) Evolution des sorties du système, (b) Evolution de l'état du système, (c) Evolution du second actionneur, (d) Evolution du premier actionneur, (e) Evolution des paramètres ρ_k^j

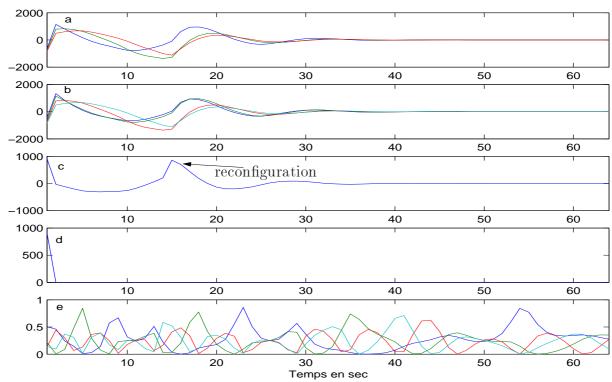


Fig. 4.14: Reconfiguration : (a) Evolution des sorties du système, (b) Evolution de l'état du système, (c) Evolution du second actionneur, (d) Evolution du premier actionneur, (e) Evolution des paramètres ρ_k^j

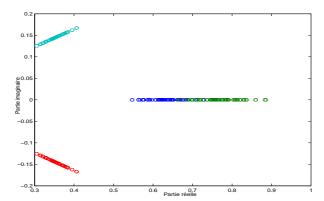


Fig. 4.15: Le domaine des valeurs propres de la matrice $A(\rho) - B(\rho)FC$ en absence de défaut

4.4 Application sur un système hydraulique : les 3 cuves

4.4.1 Description du procédé

La méthode présentée dans ce chapitre est appliquée au benchmark des 3 cuves (Zolghadri et al., 1996), (Theilliol et al., 2003a) et (Rodrigues et al., 2005d). Le système hydraulique est composé de trois cylindres avec des sections identiques S. Les cuves sont couplées par deux tuyaux cylindriques avec une section S_p et un coefficient de sortie $\mu_{13} = \mu_{32}$. La sortie d'évacuation est localisée sur la cuve 2, et a de même une section S_p et un coefficient de sortie μ_{20} : les données

numériques sont répertoriées dans la Table (

$$\begin{cases}
S \frac{dl_1(t)}{dt} = q_1(t) - q_{13}(t) \\
S \frac{dl_2(t)}{dt} = q_2(t) + q_{32}(t) - q_{20}(t) \\
S \frac{dl_3(t)}{dt} = q_{13}(t) - q_{32}(t)
\end{cases} \tag{4.73}$$

où q_{mn} représente le débit d'eau entre les cuves m et n $(m, n = 1, 2, 3 \ \forall m \neq n)$, et peut être exprimé en utilisant la loi de Torricelli :

$$q_{mn}(t) = \mu_{mn} S_p sign(l_m(t) - l_n(t)) \sqrt{(2g \mid l_m(t) - l_n(t) \mid)}$$
(4.74)

et q₂₀ représente le débit de sortie avec

$$q_{20}(t) = \mu_{20} S_p \sqrt{(2gl_2(t))} \tag{4.75}$$

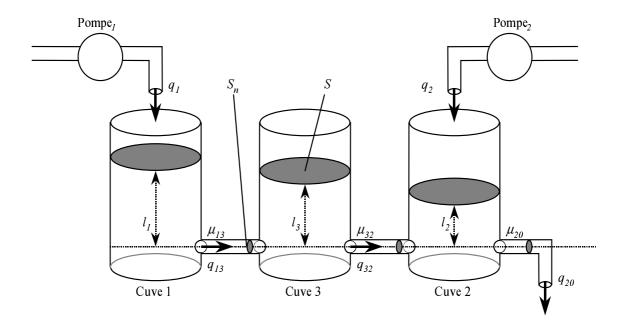


Fig. 4.16: Système hydraulique

Le système expérimental est équipé de capteurs et d'actionneurs qui communiquent via une carte d'acquisition (DAC6214) et un ordinateur. Deux convertisseurs D/A avec une gamme de tensions comprises entre -10 et +10V, sont utilisées pour commander les pompes. Le plus grand débit de la pompe i est noté q_{imax} (voir Tableau (

Le but est de commander le système autour de trois points de fonctionnement parfaitement connus. Aussi, sous l'hypothèse qu'en l'absence et en présence de défauts la condition $(l_1 > l_3 > l_2)$ soit vraie, 3 modèles linéaires ont été identifiés autour de ces points de fonctionnement et les conditions opératoires sont répertoriées dans la Table (

TAB: 1:1: I didfiction du système des 9 cuves					
Variable	Symbole	Valeur			
Section de la cuve	S	$0.0154m^2$			
Section inter-cuve	S_p	$5\times 10^{-5}m^2$			
Coefficient de sortie	$\mu_{13} = \mu_{32}$	0.5			
	μ_{20}	0.6			
Débit maximum	$q_{imax}(i \in [1\ 2])$	$2 \times 10^{-4} m^3 s^{-1}$			
Niveau maximum	$l_{jmax}(j \in [1\ 2\ 3])$	$0.62 \mathrm{m}$			

TAB. 4.1: Paramètres du système des 3 cuves

Tab. 4.2: Définition des points de fonctionnement

Point de fonctionnement	j=1	j=2	j=3
$y_e^j(m)$	0.20;	0.50;	0.50;
	0.15;	0.15;	0.405;
	0.175	0.325	0.45
$u_e^j $ $(m^3/s) \times 10^{-5}$	1.7509;	4.6324;	2.4761;
	4.0390	1.1574	6.9787

Le système linéarisé est décrit par une représentation d'état discrète avec une période d'échantillonnage Ts = 1s. Pour chaque \mathcal{PF} , chaque paire de matrices (A_j, b_j^i) est commandable. Les régulateurs ont été synthétisés pour les niveaux l_1 et l_2 afin de suivre le vecteur de référence $Y^r \in \mathbb{R}^2$. Les régulateurs nominaux ont été synthétisés au moyen du Théorème

En simulation, il est souvent supposé que les vannes peuvent être ouvertes à l'infini. En fait, ces hypothèses ne sont pas réalistes et les vannes ont d'un point de vue physique, des limitations au niveau de la saturation d'ouverture. Le régulateur a été implanté avec une anti-windup sur chaque action intégrale afin d'éviter des problèmes de stabilisation\d'oscillations durant les transitions.

4.4.2 Application sur un procédé réel

Dans l'application de la méthode développée sur ce système réel que l'on visualise à la figure (

Les expériences ont été réalisées telles que les 3 conditions opératoires décrites dans la Table

Dans un premier temps, nous avons réalisé une expérimentation en l'absence de défaut avec les 3 points de fonctionnement : nous pouvons voir les résultats sur la figure (

Dans une seconde expérience, nous avons introduit un défaut actionneur. La conséquence d'un défaut actionneur est illustrée sur la figure (

Dans une troisième expérience, nous introduisons notre régulateur qui tient compte des défauts actionneurs sur la figure (

Le calcul de la norme de l'erreur de poursuite en l'absence de défaut, en présence de défaut sans et avec FTC souligne les performances de cette approche comme on peut le voir dans le

Fig. 4.17: Système réel

tableau (

TAB. 4.3: Comparaison de l'erreur entre l_1 et l_1^{ref}

Erreur Norme	Sans défaut	Défaut actionneur Régulateur nominal FTC	
$\parallel e_{l1} \parallel$	1.1063	3.3365	1.1176

Afin d'illustrer le potentiel inhérent à la méthode développée, nous considérons toujours le système des 3 cuves non plus uniquement autour de 3 points de fonctionnement mais réagissant face à des changements de consigne amenant le système à évoluer en dehors des points de fonctionnements parfaitement connus. La commande permettant de générer ces courbes est définie comme suit :

$$U_k = \sum_{j=1}^3 \rho_k^j * U_e^j \tag{4.76}$$

avec les commandes U_e^j définies autour des points de fonctionnement dont les valeurs sont données en (

Sous l'hypothèse que la dynamique du système se représente à travers l'interpolation de ces 3 points de fonctionnement, et que le module de diagnostic de défauts est apte à isoler et estimer les défauts, nous effectuons 3 expériences similaires avec des régulateurs uniquement proportionnels : l'une en l'absence de défauts, l'autre avec des défauts sans FTC et une dernière avec FTC. La figure (

Un défaut actionneur de 80% apparaît à l'instant t=500s illustré dans le cas d'un régulateur nominal à la figure (

Le défaut est supposé être compensé 30s après son apparition pour mieux visualiser l'impact sur le système et prendre en considération le temps de retard du module FDI. On observe sur la figure (4.5 Conclusion 129

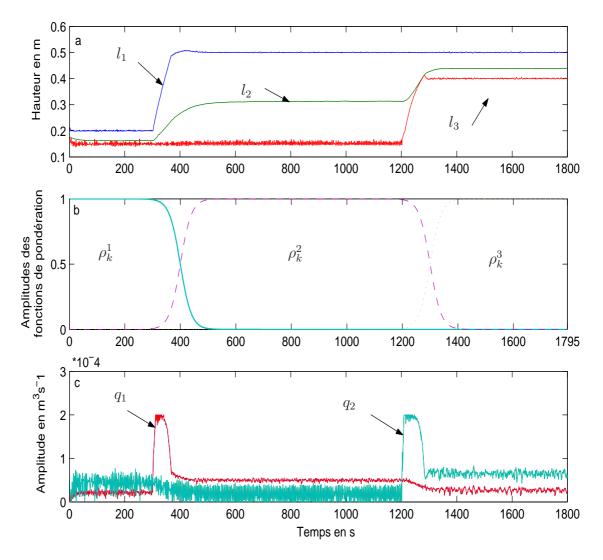


FIG. 4.18: Evolution des caractéristiques du système dans le cas nominal :(a) les sorties du système, (b) les paramètres ρ_k^j , (c) les commandes du système

4.5 Conclusion

Dans ce chapitre, nous avons présenté une stratégie de commande tolérante aux défauts appliquée aux systèmes représentés sous une forme polytopique ou multi-modèles. La méthode développée souligne l'importance de l'AFTC sur les systèmes représentés par des multi-modèles. Cette méthode illustre l'apport de la loi de commande active tolérante face aux défauts actionneurs sur toute la plage de fonctionnement.

Un régulateur robuste est synthétisé pour chaque actionneur séparément, au moyen d'un placement de pôles par LMI en présence et en absence de défaut. Ceci permet au système de continuer d'opérer de manière saine, évitant ainsi de stopper le système immédiatement tout en assurant sa stabilité. La synthèse de cette commande de retour d'état ou sortie prend en compte les informations provenant d'un module de FDI en supposant que l'estimation des défauts actionneurs est parfaite. Ceci est une limite à la méthode de reconfiguration que nous avons proposé dont nous reparlerons dans les perspectives de la thèse. Nous avons aussi montré qu'il était possible d'intégrer des défauts capteurs au sein de la loi de re-

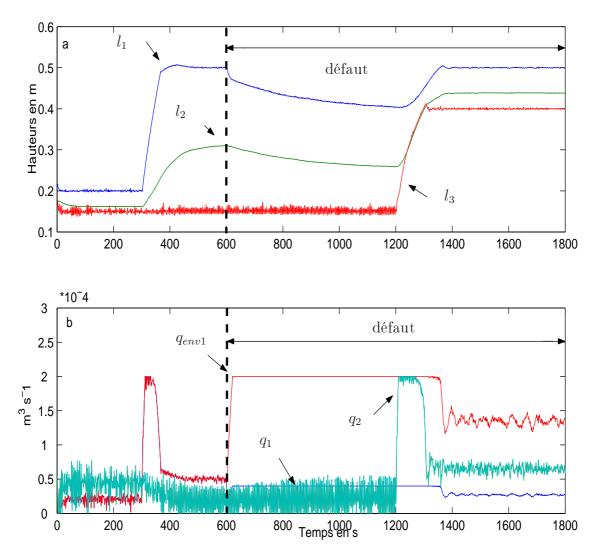


Fig. 4.19: Evolution des caractéristiques du système en présence de défaut sans FTC :(a) les sorties du système, (b) les commandes du système

configuration, sous l'hypothèse que le défaut capteur n'entraîne pas la perte complète du capteur.

Les performances et l'efficacité de cette commande active tolérante aux défauts basée sur une approche multi-modèles ont été illustrées sur des systèmes LPV mis sous forme polytopique, sur des systèmes hybrides à commutations, sur un système modélisé par un multi-modèles. Nous avons vu aussi l'apport de cette loi de commande en l'implémentant sur un système non linéaire réel avec l'exemple des 3 cuves. Les résultats illustrent la stratégie de commande active tolérante aux défauts appliquée aux systèmes représentés par des multi-modèles.

4.5 Conclusion 131

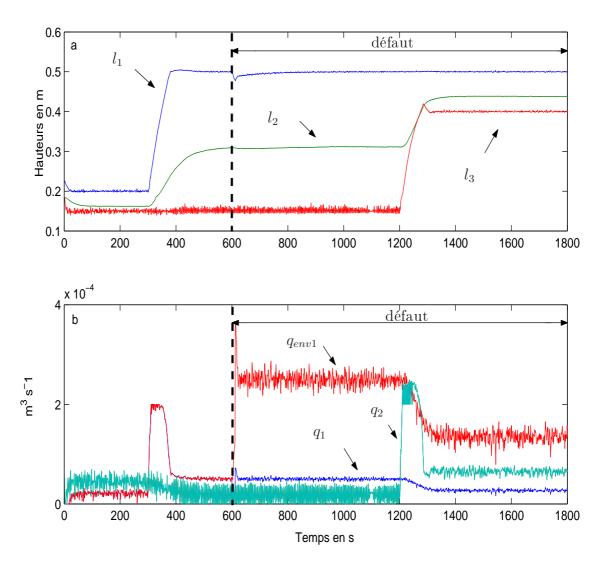


FIG. 4.20: Evolution des caractéristiques du système en présence de défaut et FTC :(a) les sorties du système, (b) les commandes du système

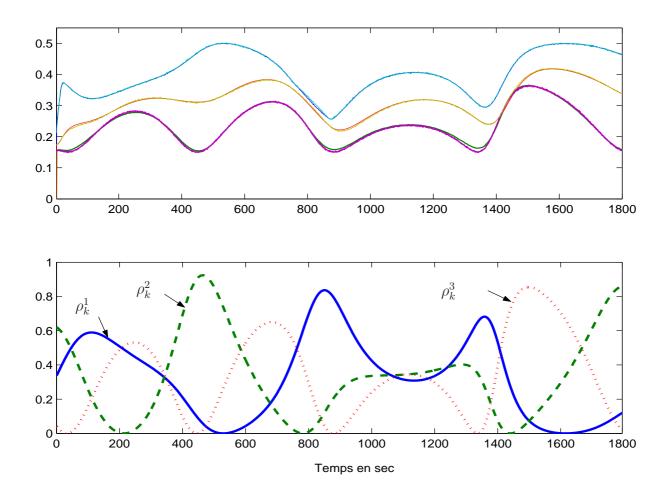


Fig. 4.21: Evolution des sorties du système non linéaire et du multi-modèle dans le cas nominal

4.5 Conclusion 133

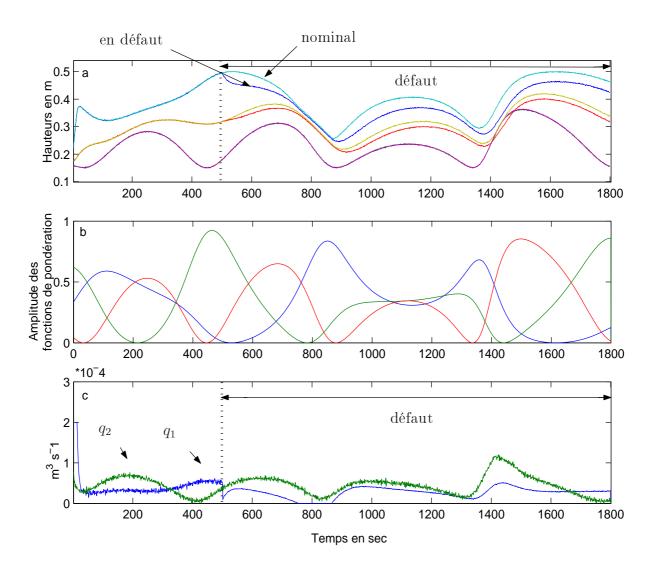


Fig. 4.22: Evolution des sorties avec un régulateur nominal en présence de défaut

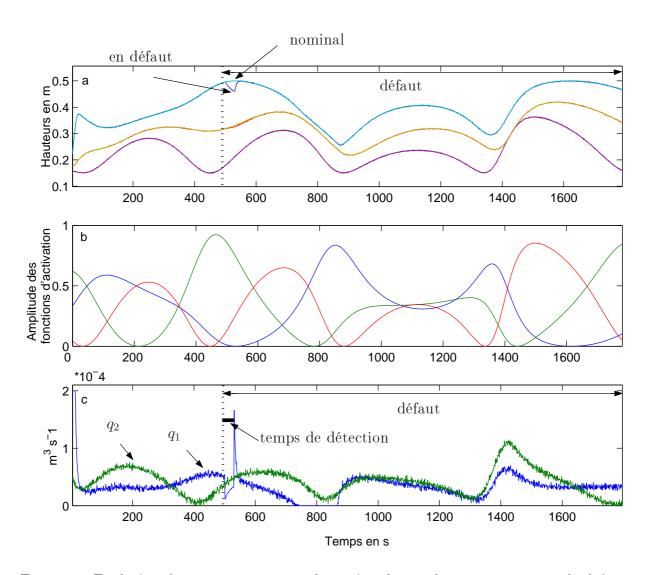


Fig. 4.23: Evolution des sorties avec reconfiguration du régulateur en présence de défaut

Conclusion générale et perspectives

"Aller à l'idéal pour comprendre le réel". Jean Jaurés

Les systèmes tolérants aux défauts se déclinent en deux grandes familles avec d'une part une approche passive et d'autre part l'approche voie active incluant un module de diagnostic. Un grand nombre de publications traite du domaine de la commande tolérante aux défauts mais la plupart traite des systèmes linéaires ou de systèmes évoluant dans un domaine restreint. Notre objectif a été de développer des lois de commandes tolérantes aux défauts en considérant des systèmes représentés par des multi-modèles. De ce fait, deux axes majeurs ont été développés : l'un dans le domaine du diagnostic et l'autre dans le domaine de la commande tolérante aux défauts sur de tels systèmes.

Afin de synthétiser des outils permettant d'effectuer un diagnostic sur des systèmes représentés par une interpolation de modèles locaux, nous avons tout d'abord développé un filtre découplant permettant d'effectuer la détection, l'isolation et l'estimation de défauts. Ce filtre est tributaire d'une bonne estimation de la dynamique du système au moyen de fonctions de pondération robustes aux défauts. Celles-ci permettent notamment de pouvoir obtenir à tout instant une représentation d'état du système et de savoir autour de quel point de fonctionnement se situe le système. Moyennant certaines conditions de rang pour la détectabilité des défauts, ce filtre génére des estimations de défauts en ligne, information nécessaire pour la commande tolérante active aux défauts (AFTC). La stabilité de ce filtre est garantie par l'utilisation d'outils appropriés tels que les LMI lors de la synthèse de gains. La stabilité quadratique de l'erreur d'estimation est alors garantie sur un ensemble convexe.

Toutefois, des incertitudes de modélisation peuvent altérer le filtre adaptatif et nuire à l'estimation des défauts qu'il génére. A cette fin, les observateurs à entrées inconnues (UIO) nous ont permis de découpler la génération de résidus des perturbations. Cette méthode bien connue dans le cas linéaire a été revisitée et adaptée sur des systèmes représentés par des multi-modèles. Les principales difficultés résident dans la matrice de distribution des perturbations qui peuvent être différentes selon les points de fonctionnement considérés. Ceci entraîne un problème de découplage de celles-ci sur la génération de résidus, et à cette fin deux types dUIO polytopiques ont été synthétisés. L'étude de stabilité de lUIO est effectuée au moyen de LMI; le découplage des perturbations entraîne la résolution de problèmes d'inégalités matricielles bilinéaires BMI. Ceux-ci sont résolus en effectuant des changements de variables adéquats. La génération de résidus qui en découle permet de prendre en compte les défauts apparaissant sur le système si ceux-ci remplissent des conditions de rang spécifiques. Les UIO polytopiques synthétisés sont alors capables de générer des résidus robustes à la

présence d'incertitudes. Ceux-ci permettent de rendre le module de diagnostic robuste aux erreurs de modèles dans le cadre de son exploitation au sein de systèmes tolérants aux défauts.

Le filtre adaptatif ainsi que les UIO polytopiques sont des outils spécifiques aux systèmes représentés par de multi-modèles : ceux-ci peuvent servir de module de diagnostic pour l'AFTC. Afin de synthétiser une loi de commande capable de reconfigurer le système lors de la défaillance d'un actionneur, le système est supposé commandable par chaque actionneur. Dans un premier temps un retour d'état est synthétisé avec des gains provenant de LMI permettant de contraindre les pôles du système en boucle fermée dans une région précise du plan complexe. La synthèse du qain global tient compte de l'information provenant du module de diagnostic et le système peut continuer d'opérer avec les actionneurs non hors-services. Dans un aspect plus industriel, un retour de sortie est synthétisé car bien souvent l'état du système n'est pas atteignable et requiert un observateur. Ce retour de sortie permet d'assurer que le système est robuste aux défauts actionneurs. L'impact de la méthode proposée se visualisent au travers de différents exemples qui dépassent le cadre initial des multi-modèles. La représentation multi-modèles peut en effet s'apparenter à la représentation linéaire à paramètres variant (LPV) polytopique, et ces exemples soulignent le fait que la méthode proposée de commande active tolérante aux défauts peut être utilisée dans de nombreux domaines tels les systèmes LPV, les systèmes hybrides, les systèmes non linéaires, ..., avec une perte d'actionneur entraînant alors la reconfiguration du régulateur. Un exemple sur un cas pratique met en exerque les capacités de l'AFTC proposée. La régulation de niveau des cuves autour de plusieurs points de fonctionnement, comme c'est souvent le cas dans les procédés chimiques, permet de considérer un système représenté par un multi-modèle. La loi de commande nominale ne permet pas de compenser l'apparition du défaut alors que la loi de commande tolérante aux défauts que nous avons proposée permet de le faire.

Perspectives

La loi de commande tolérante proposée repose sur une estimation parfaite du défaut actionneur. S'il apparaît possible dans le cas linéaire d'intégrer des incertitudes sur l'estimation du défaut pour les intégrer dans les incertitudes de la matrice de commande B (Wu et al., 2000), il est plus difficile d'intégrer ces éléments dans le cadre des multi-modèles notamment dans la résolution des \mathcal{LMI} . Des incertitudes Δ_{γ^a} sur l'estimation du défaut $\widehat{\gamma}^a$ telle que

$$(I - \gamma^a) = (I - \widehat{\gamma}^a)(I + \Delta_{\gamma}) \tag{4.77}$$

pourraient être prises en compte avec la méthode actuelle dans la synthèse des gains avec une synthèse en ligne. Cette synthèse tiendrait compte via les \mathcal{LMI} de l'incertitude reportée sur la matrice B qui deviendrait alors $B(\Delta_{\gamma^a})$ et les gains générés seraient robustes à ce type d'incertitudes.

De la même façon que dans le cas de défaut actionneur, les incertitudes sur les défauts capteurs pourraient être incorporées au sein de la matrice $C(\Delta_{\gamma^c})$. Si l'on désire traiter du

4.5 Conclusion 137

cas de perte de capteur, il faudra envisager de nouvelles contraintes du type de redondance de capteur, par exemple en imposant que l'espace engendré par les m lignes de la matrice C puisse être engendré par un moindre nombre de lignes. De cette façon, il est possible de considérer la perte d'un capteur. Bien sûr ceci suppose de pouvoir avoir une certaine redondance de capteurs de la même façon que nous l'avons proposé pour les actionneurs (

La commande active tolérante aux défauts pourrait être aussi envisagée comme minimisant un critère d'énergie sur la commande. Ainsi, une commande tolérante de type Model Predictive Control (MPC) pourrait selon les principes évoqués par (Wan and Kothare, 2003) ou (Kothare et al., 1996), permettre de synthétiser des gains alliant la stabilité ainsi que la minimisation d'un critère d'énergie. Ainsi, désirant générer des gains de retour d'état $u_k = Kx_k$ qui stabilisent le système autour de chaque point de fonctionnement, l'objectif serait de minimiser une fonction quadratique sur un horizon infini du type :

$$\min_{\substack{u(k+l)=-Kx(k+l)}} \max_{\substack{[A_j,B_j]}} J_{\infty}(k)$$
(4.78)

avec $J_{\infty}(k) \triangleq \sum_{l=1}^{\infty} \|x_{k+l}\|_{Q_1}^2 + \|u_{k+l}\|_{R}^2 = J(A_j, B_j, Q_1, R)$ avec $Q_1 = Q_1^T > 0$ et $R = R^T > 0$. Ce critère pourrait être réévalué en fonction de la perte d'actionneurs avec une nouvelle matrice $B_j^f = B_i(I - \gamma)$. De la même façon que nous avons généré les gains pour chaque actionneur, les \mathcal{LMI} pourraient définir de nouveaux régulateurs avec une minimisation du critère $J_{\infty}(k)$.

D'autre part, comme nous l'avions noté dans les remarques [1] à [4] de la section 4.3.1, il peut être intéressant d'étudier le cas où l'on a des gains différents pour chaque point de fonctionnement. L'étude de stabilité qui en découlera, se dirigera vers des \mathcal{LMI} permettant de traiter les termes dominants et les termes croisés (Chadli, 2002).

Enfin, la relaxation de la contrainte de commandabilité de chaque paire pourrait être une bonne voie d'investigation. En effet, le problème pourrait être abordé de deux façons, par exemple : une première façon pourrait être de synthétiser des gains de régulateurs, pour un système représenté par des multi-modèles, où tant que le système reste stabilisable avec un ensemble d'actionneurs non défaillants. L'étude de stabilité ainsi que les moyens employés pourraient être totalement différents. D'autre part, le problème pourrait être abordé d'un autre point de vue, par exemple, en recalculant en fonction de l'amplitude du défaut, les paramètres q et r afin de permettre au système d'avoir des degrés de liberté supplémentaire (Staroswiecki, 2005).

Concernant le module de diagnostic, déterminer un seuil adaptatif de détection de défauts pourrait être une solution pour évaluer les résidus générés par les observateurs polytopiques. En effet, afin d'accroître les performances à la détection de défaut entre les fausses alarmes et la non détection, il serait intéressant de réaliser un seuil de détection adaptatif en fonction des incertitudes de modèle.

Annexe A

Stabilité

Nous allons rappeler ici quelques notions sur la stabilité dynamique des systèmes à temps continu et à temps discret. La théorie de Lyapunov (Boyd et al., 1994) traite de la stabilité du mouvement ou de la trajectoire d'un système.

Stabilité au sens de Lyapunov

La stabilité au sens de Lyapunov est une théorie mathématique générale applicable à toute équation différentielle. Ce principe signifie qu'une équation différentielle autonome avec une condition initiale suffisamment proche de la trajectoire d'équilibre a une solution qui reste arbitrairement proche de la trajectoire d'équilibre.

Cas des systèmes à temps continu

Considérons l'ensemble des systèmes décrits par l'équation dynamique générale:

$$\dot{x}(x,t) = f(x(t), u(t), t)y(t) = g(x(t), u(t), t), \quad \forall t \ge 0$$
 (A.1)

avec les conditions $x(t_0)$ où $x(t) \in \mathbb{R}^n$ est le vecteur d'état, $u(t) \in \mathbb{R}^m$ est le vecteur des entrées et $y(t) \in \mathbb{R}^p$ est le vecteur des sorties.

La méthode directe de Lyapunov nous permet de regarder la stabilité asymptotique comme l'existence d'une fonction de Lyapunov propre définie positive telle que sa dérivée soit strictement négative.

Une classe de fonctions de Lyapunov jouant un rôle important dans l'analyse de la stabilité des systèmes dynamiques est la classe des fonctions quadratiques. Ces fonctions s'écrivent sous la forme :

$$V(x,t) = x^{T}(t)Px(t)$$
(A.2)

$$\dot{V}(x,t) = \partial V(x,t)/\partial t + (\partial V(x,t)/\partial t)^{T} < 0$$
(A.3)

Cette fonction est définie positive si P est une matrice symétrique définie positive. Dans le cas des systèmes autonomes LTI:

$$\dot{x} = Ax \tag{A.4}$$

Annexe A : Stabilité

une condition nécessaire et suffisante pour que la dérivée $\dot{V}(x,t)$ soit négative et implicitement pour que le système autonome LTI soit asymptotiquement stable, consiste à trouver une matrice P symétrique définie positive telle que l'inégalité matricielle soit vérifiée

$$A^T P + PA < 0 (A.5)$$

Notons que les fonctions de Lyapunov ne sont pas nécessairement quadratiques. D'autres classes peuvent être définies comme par exemple les fonctions de Lyapunov polyhédrales. Dans ce rapport néanmoins nous nous limiterons au cas des fonctions de Lyapunov quadratiques.

Cas des systèmes à temps discret

Dans le cas des systèmes autonomes LTI, la notion de stabilité quadratique s'exprime avec une fonction de Lyapunov de la forme $V(x,k)=x_k^TPx_k>0$ et P>0 pour l'étude de stabilité d'un système du type :

$$X_{k+1} = AX_k \tag{A.6}$$

Afin de garantir la stabilité asymptotique de (

$$V(x+1,k+1) - V(x,k) < 0 (A.7)$$

En utilisant la forme quadratique de la fonction V(x,k), nous pouvons conclure que le système

$$A^T P A - P < 0$$

$$P > 0 (A.8)$$

est vérifiée.

Il existe aussi des équivalences d'écritures pour la stabilité (Daafouz et al., 2002), (Boyd et al., 1994) dans le but d'utiliser des Inégalités Matricielles Linéaires (\mathcal{LMI}) qui se représentent sous la forme suivante :

 $Lemme 2: Si\ P=P^T>0\ et\ Q=P^{-1},\ alors:$

$$P - A^{T}PA > 0 \Leftrightarrow \begin{pmatrix} P & A^{T}P \\ PA & P \end{pmatrix} > 0 \tag{A.9}$$

$$Q - AQA^{T} > 0 \Leftrightarrow \begin{pmatrix} Q & AQ \\ QA^{T} & Q \end{pmatrix} > 0 \tag{A.10}$$

Théorie des matrices

Une matrice P $(n \times n)$ est définie positive si et seulement si pour tout x non nul on a $x^T P x > 0$.

Théorème:

Les valeurs propres d'une matrice P symétrique définie positive sont réelles et positives et det(P) > 0.

Une matrice est définie non négative lorsque pour tout vecteur x non nul on a $x^T P x \ge 0$. Lorsqu'une matrice P a son opposé (-P) qui est défini positive, P est définie négative, et lorsque -P est définie non négative alors P est définie non positive, ces notions sont à distinguer de la définition d'une matrice positive qui est une matrice dont tous les coefficients sont positifs, ou d'une matrice négative dont tous les coefficients sont négatifs, ou non négative lorsque ceux-ci sont positifs ou nuls.

Complément de Schur(Boyd et al., 1994)

Lemme1: Soient les matrices $Q \in S_n$ (ensemble des matrices symétriques dans \mathbb{R}^n), $R \in S_m$ et la matrice bloc

$$M = \begin{pmatrix} Q & S \\ S^T & R \end{pmatrix} < 0$$

alors les affirmations suivantes sont équivalentes :

1. M est définie négative

2.
$$R < 0$$
 et $Q - SR^{-1}S^T < 0$

3.
$$Q < 0$$
 et $R - S^T Q^{-1} S < 0$

Annexe A : Stabilité

Annexe B

Décomposition de rang de matrice et norme de Frobenius

Proposition(Chen and Patton, 1999)

Toute matrice $E \in \mathbb{R}^{p \times q}$ et de rang r(r < min(p,q)), peut être décomposée de la façon suivante :

$$E = E_1 E_2 \tag{B.1}$$

 $où E_1 \in \mathbb{R}^{p \times r}, E_2 \in \mathbb{R}^{r \times q} et$

$$rang(E_1) = rang(E_2) = r (B.2)$$

Preuve:

En se basant sur la décomposition en valeurs singulières (SVD), la matrice E peut être décomposée comme suit

$$E = U\Sigma V^T \tag{B.3}$$

où $U \in \mathbb{R}^{p \times p}$ et $V \in \mathbb{R}^{q \times q}$ sont des matrices orthogonales et

$$\Sigma = \begin{pmatrix} \Sigma_r^2 & 0_{r \times q - r} \\ 0_{(p-r) \times r} & 0_{(p-r) \times (q-r)} \end{pmatrix} \in \mathbb{R}^{p \times q}$$
(B.4)

avec

$$\Sigma_r^2 = diag(\sigma_1^2, \sigma_2^2, \dots, \sigma_r^2)$$
(B.5)

où $\sigma_1^2, \sigma_2^2, \dots, \sigma_r^2$ sont les valeurs singulières de E.

La matrice E peut alors être réécrite de la façon suivante :

$$E = U \begin{bmatrix} \Sigma_r \\ 0_{(p-r)\times r} \end{bmatrix} [\Sigma_r \quad 0_{r\times (q-r)}] V^T$$
(B.6)

On définit les matrices suivantes :

$$E_1 = U \begin{bmatrix} \Sigma_r \\ 0_{(p-r)\times r} \end{bmatrix} = [u_1, u_2, \dots, u_r] \Sigma_r \in \mathbb{R}^{p \times r}$$
(B.7)

$$E_2 = \left[\Sigma_r \ 0_{r \times (q-r)} \right] V^T = \Sigma_r [v_1, v_2, \dots, v_r]^T \quad \in \mathbb{R}^{r \times q}$$
(B.8)

où u_1, u_2, \ldots, u_r sont les r premières colonnes de U et v_1, v_2, \ldots, v_r sont les r premières colonnes de V. On peut aisément voir que E_1 est une matrice de plein rang colonne et E_2 est une matrice de plein rang ligne.

Norme de Frobenius

La norme de Frobenius est définie comme étant la racine carrée de la somme au carré de tous les élèments de la matrice, c.a.d,

$$A \in \mathbb{R}^{n \times m}, \|A\|_F = \sqrt{\sum_{i=1}^n \sum_{j=1}^m a_{ij}^2}$$
 (B.9)

ou par équivalence

$$\parallel A \parallel_F = \sqrt{Trace(A^T A)} \tag{B.10}$$

Annexe C

Régions LMI

Définition 2 les régions LMI (Chilali and Gahinet, 1996)

Un sous ensemble \mathcal{D} du plan complexe est dit 'une région \mathcal{LMI} ' s'il existe une matrice symétrique $\alpha \in \mathbb{R}^{m \times m}$ et une matrice $\beta \in \mathbb{R}^{m \times m}$ telle que

$$\mathcal{D} = z \in \mathbb{C} : f_{\mathcal{D}}(z) < 0 \tag{C.1}$$

avec $f_{\mathcal{D}}(z) = \alpha + z\beta + \bar{z}\beta^T$. La notation \bar{z} désigne le conjugué de z et $f_{\mathcal{D}}(z)$ est appelée la fonction caractéristique de \mathcal{D} .

Les valeurs propres d'une matrice A sont placées dans une région \mathcal{LMI} \mathcal{D} (

$$M_{\mathcal{D}}(A, P) = \alpha \otimes P + \beta \otimes (AP) + \beta^{T} \otimes (AP)^{T}$$
(C.2)

 $où \otimes représente$ le produit de Kronecker de (Arzelier et al., 1993). Considérons 2 régions $\mathcal{LMI} \mathcal{D}_1$ et \mathcal{D}_2 du plan complexe. Les valeurs propres de la matrice A appartiennent à la région $\mathcal{LMI} \mathcal{D}_1 \cap \mathcal{D}_2$ avec des fonctions caractéristiques $f_{\mathcal{D}_1}(z)$ et $f_{\mathcal{D}_2}(z)$ respectivement, si et seulement si il existe une matrice symétrique P > 0 solution des inégalités suivantes :

$$M_{\mathcal{D}_1}(A, P) < 0 \tag{C.3}$$

$$M_{\mathcal{D}_2}(A, P) < 0$$

que $z \in \mathcal{D}$,

$$f_{\mathcal{D}}(\bar{z}) = \overline{f_{\mathcal{D}}(z)} < 0$$
 (C.4)

Soit une région résultante de l'intersection de N sous-régions \mathcal{LMI} , \mathcal{D}_i . Les valeurs propres d'une matrice réelle appartiennent à \mathcal{D} si et seulement si il existe une matrice $P \in \mathbb{R}^{n \times n}$, symétrique définie positive, telle que :

$$M_{\mathcal{D}_i}(A, P) = \alpha_i \otimes P + \beta_i \otimes (AP) + \beta_i^T \otimes (AP)^T < 0, \qquad \forall i \in [1, 2, ..., N]$$
 (C.5)

ce qui est équivalent à :

$$M_{\mathcal{D}}(A, P) = \alpha \otimes P + \beta \otimes (AP) + \beta^T \otimes (AP)^T = Diag(M_{\mathcal{D}_i}(A, P)) < 0,$$
 (C.6)
 $\forall i \in [1..N]$

où $\alpha = diag(\alpha_1, ..., \alpha_N)$ et $\beta = diag(\beta_1, ..., \beta_N)$. Cette inégalité montre alors que \mathcal{D} peut elle-même être formulée comme une région \mathcal{LMI} . Ceci montre que l'approche \mathcal{LMI} permet de considérer la même matrice P pour toutes les sous-régions de l'intersection tout en préservant la nécessité de la condition de \mathcal{D} -stabilité.

L'utilité du domaine d'application de la fonction $f_{\mathcal{D}}(z)$ permet de considérer un cercle de rayon r et de centre (-q,0) (Garcia and Bernussou, 1995). La fonction caractéristique associée est alors :

$$f_{\mathcal{D}}(z) = \begin{pmatrix} -r & q + \bar{z} \\ q + z & -r \end{pmatrix} < 0 \tag{C.7}$$

La \mathcal{LMI} garantissant que les pôles de la matrice A appartiennent à la région \mathcal{D} est alors :

$$\begin{pmatrix} -rP & qP + PA^T \\ qP + AP & -rP \end{pmatrix} < 0 \tag{C.8}$$

avec P > 0.

Les coefficients sont alors réglés comme suit $\alpha = \begin{pmatrix} -r & q \\ q & -r \end{pmatrix}$ et $\beta = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

Si l'on pose q=0 et r=1 (ce qui correspond au cercle unité en discret)(Garcia and Bernussou, 1995), alors cela revient à calculer

$$\begin{pmatrix} -P & PA^T \\ AP & -P \end{pmatrix} < 0 \tag{C.9}$$

qui est équivalent en fait, en utilisant le Complément de Schür (cf. Annexe A), à $A^TPA-P < 0$ avec P symétrique définie positive exprimant la stabilité quadratique d'un système de la forme $X_{k+1} = AX_k$ (Daafouz and Bernussou, 2001).

La fonction (

Annexe D

Convexité et systèmes LPV

Les systèmes Linéaires à Paramètres Variants (LPV)

Dans un système LPV, les matrices d'état A, B, C, D dépendent d'un vecteur de paramètres Θ qui peut varier en fonction du temps (Apkarian et al., 1995), (Arzelier et al., 2001), (Bara, 2001), (Hensen et al., 2000). Étant donné l'ensemble des trajectoires admissibles du vecteur des paramètres Γ , le système LPV est défini comme étant l'ensemble des trajectoires admissibles à temps variant associés à la famille Γ . Le système LPV est représenté par :

$$x_{k+1} = A(\Theta)x_k + B(\Theta)u_k$$

$$y_k = C(\Theta)x_k + D(\Theta)u_k$$
(D.1)

A défaut de connaître à l'avance la trajectoire de Θ , on connaît souvent des bornes \underline{sur} ses différentes composantes : $\underline{\Theta}_k \leq \Theta_k \leq \overline{\Theta}_k$ ainsi que les vitesses de variations : $\underline{\dot{\Theta}}_k \leq \dot{\Theta}_k \leq \overline{\dot{\Theta}}_k$.

Les systèmes quasi-LPV sont des systèmes dans lesquels il existe un couple de matrices non nulles (F,G) tel que :

$$F\theta_k = Gx_k \tag{D.2}$$

Dans la réalité, la plupart des systèmes rencontrés dans la pratique sont quasi-LPV. Il existe des représentations d'état différentes avec lesquelles on peut passer de l'une à l'autre. Le vecteur des paramètres peut être vu comme une entrée supplémentaire qui ne rentre alors plus dans la classe des systèmes linéaires. Parmi les systèmes LPV, certains types particuliers sont intéressants à étudier : les systèmes LPV affines et les systèmes LPV polytopiques.

Les systèmes LPV affine

Dans ce cas, la dépendance des matrices d'état en fonction des paramètres est linéaire. Notons

$$M(\Theta) = \begin{bmatrix} A(\Theta) & B(\Theta) \\ C(\Theta) & D(\Theta) \end{bmatrix}$$
 (D.3)

On a alors $M(\Theta) = M_0 + \Theta_k^1 M_1 + \Theta_k^2 M_2 + \ldots + \Theta_k^N M_N$.

Les systèmes LPV polytopiques

La matrice représentant le système est une combinaison barycentrique de plusieurs matrices $M_1^s, M_2^s, \ldots : M = \rho_k^1 M_1^s + \rho_k^2 M_2^s + \ldots + \rho_k^{2^N} M_{2^N}^s$, avec $0 \le \rho_k^j \le 1$ et $\sum \rho_k = 1$.

Un système LPV affine dont les paramètres varient sur des intervalles connus peut être considéré comme un système polytopique. Traitons l'exemple d'un système dépendant de deux paramètres $M(\Theta) = M_0 + \Theta_k^1 M_1 + \Theta_k^2 M_2$ et notons $M_1^s, M_2^s, M_3^s, M_4^s$ ses sommets tels que :

$$M_1^s = M_0 + \underline{\Theta}^1 M_1 + \underline{\Theta}^2 M_2$$

$$M_2^s = M_0 + \overline{\Theta}^1 M_1 + \underline{\Theta}^2 M_2$$

$$M_3^s = M_0 + \underline{\Theta}^1 M_1 + \overline{\Theta}^2 M_2$$

$$M_4^s = M_0 + \overline{\Theta}^1 M_1 + \overline{\Theta}^2 M_2$$
(D.4)

en prenant pour notation $\underline{\Theta}^1$ pour la borne inférieure de $\underline{\Theta}^1_k$, et $\overline{\Theta}^1$ pour la borne supérieure.

Construisons maintenant le système polytopique $\widetilde{M} = \rho_k^1 M_1^s + \rho_k^2 M_2^s + \rho_k^3 M_3^s + \rho_k^4 M_4^s$ avec

$$\rho_k^1 = \frac{\overline{\Theta^1} - \Theta_k^1}{\overline{\Theta^1} - \underline{\Theta^1}} \frac{\overline{\Theta}^2 - \Theta_k^2}{\overline{\Theta}^2 - \underline{\Theta}^2}
\rho_k^2 = \frac{\Theta_k^1 - \overline{\Theta^1}}{\overline{\Theta^1} - \underline{\Theta^1}} \frac{\overline{\Theta}^2 - \Theta_k^2}{\overline{\Theta}^2 - \underline{\Theta}^2}
\rho_k^3 = \frac{\overline{\Theta^1} - \Theta_k^1}{\overline{\Theta^1} - \underline{\Theta^1}} \frac{\Theta_k^2 - \overline{\Theta^2}}{\overline{\Theta}^2 - \underline{\Theta}^2}
\rho_k^4 = \frac{\Theta_k^1 - \overline{\Theta^1}}{\overline{\Theta^1} - \underline{\Theta^1}} \frac{\Theta_k^2 - \overline{\Theta}^2}{\overline{\Theta}^2 - \underline{\Theta}^2}$$
(D.5)

Moyennant quelques calculs, on peut vérifier que M=M. Ce résultat est encore valable pour un nombre de paramètres d'ordre supérieur. On retiendra qu'il y a équivalence entre les représentations affines et polytopiques. Ce type de modèle admet une définition plus générale que le modèle affine parce que l'hyper-rectangle Γ peut être remplacé par un polytope à $m=2^N$ sommets.

Convexit'e

Un ensemble C est dit convexe (Barmish, 1994), (Boyd et al., 1994) si une ligne joignant deux points C_1 et C_2 de cet ensemble C reste dans cet ensemble. Ainsi quels que soient C_1 et $C_2 \in C$ et $0 < \lambda < 1$, on a alors:

$$\lambda C_1 + (1 - \lambda)C_2 \in \mathcal{C}$$

L'aspect géométrique peut être visualiser sur les figures suivantes :

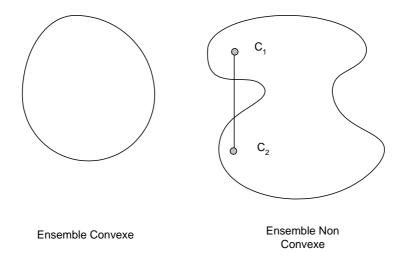


Fig. D.1: Exemples convexes et non convexes

Polytopes

Définition : Un polytope P dans \mathbb{R}^k est un corps convexe d'un ensemble fini de points $p_1, p_2, ..., p_m$. On écrit :

$$P = convp_i \tag{D.6}$$

où $p_1,p_2,...,p_m$ est un ensemble de générateurs. Cependant il faut noter que cet ensemble peut ne pas être unique. De ce fait, on introduit la notion de point extrême. Ainsi, en prenant $P = convp_i$ un polytope, alors un point $p \in P$ est dit point extrême de P s'il ne peut être exprimé comme une combinaison convexe de deux points distincts de P. De ce fait, il n'existe pas p_a et $p_b \in P$ avec $p_a \neq p_b$ et $\lambda \in (0,1)$ tels que :

$$P = \lambda p_a + (1 - \lambda)p_b \tag{D.7}$$

Par exemple dans la figure (

Propriétés de la combinaison convexe

Soit un polytope $P = convp_1, p_2, ..., p_m$ chaque point $p \in P$ peut être exprimé comme une combinaison convexe de p_i ; c'est pourquoi il existe des scalaires réels $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_m$ tels que :

$$\sum_{i=1}^{m} \lambda_i p_i = p \tag{D.8}$$

et

$$\sum_{i=1}^{m} \lambda_i = 1 \tag{D.9}$$

En conséquence il est parfois préférable de décrire les contraintes de cet ensemble en utilisant la notation :

$$\Lambda = \{ \lambda \in \mathbb{R}^m : \lambda_i \ge 0 \text{ pour } i = 1, 2, \dots m \text{ et } \sum_{i=1}^m \lambda_i = 1 \}$$
 (D.10)

Pour de tels cas, Λ est appelé unit simplex.

Bibliographie

- Adam-Medina, M. (2004). Diagnostic de défauts des systèmes à représentation multi-modèle linéaire invariant dans le temps. Phd thesis. UHP, Centre de Recherche en Automatique de Nancy.
- Adam-Medina, M., M. Rodrigues, D. Theilliol and H. Jamouli (2003). Fault diagnosis in non-linear systems through an adaptive filter under a convex set representation. In: Proc. of European Control Conference, Cambridge, U.K, CD Rom.
- Akhenak, A. (2004). Conception d'observateurs non linéaires par approche multimodèle : application au diagnostic. Phd thesis. INPL, Centre de Recherche en Automatique de Nancy.
- Alcorta-Garcia, E. and P.M. Frank (1997). Deterministic nonlinear observer based approaches to fault diagnosis: a survey. Control Engineering Practice 5(5), 663-670.
- Angeli, D., A. Casavola and E. Mosca (2000). Constrained predictive control of nonlinear plants via polytopic linear system embedding. International Journal of Robust and Nonlinear Control 10, 1091–1103.
- Angelis, G. Z. (2001). System Analysis, Modelling and Control with Polytopic Linear Models. Phd thesis. University of Eindhoven, The Netherlands.
- Apkarian, P;, P. Gahinet and G. Becker (1995). Self scheduled hinf control of linear parameter varying systems: a design example. Automatica 31(9), 1251-1261.
- Armeni, S. (2004). Robust Fault Detection and Isolation with a Sensitivity Constraint. Phd thesis. Dottorato di Ricerca in Ingegneria Informatica e dell'Automazione XVI Ciclo.
- Arzelier, D., D. Henrion and D. Peaucelle (2001). Robust state feddback d stabilization via a cone complementary algorithm. In: Proc. of European Control Conference, Porto, Portugal. pp. 390–395.
- Arzelier, D., J. Bernussou and G. Garcia (1993). Pole assignment of linear uncertain systems in a sector via a lyapunov-type approach. IEEE Trans. on Automatic Control 38(7), 1128–1132.
- Astrom, K. J. and B. Wittenmark (1995). Adaptive Control. Addison-Wesley Publishing Company, second edition.
- Athans, M., S. Fekri and A. Pascoal (2005). Issues on robust adaptive feedback control. In: Proc. 16th IFAC World Congress, Prague, Czech Republic.
- Banerjee, A., Y. Arkun, R. Pearson and B. Ogunnaike (1995). H_{∞} control of nonlinear processes using multiple linear models. In: Proc. of European Control Conference, Roma, Italy. pp. 2671–2676.

Bara, G.I. (2001). Estimation d'état des systèmes linéaires à paramétres variants. Phd thesis. Institut National Polytechnique de Lorraine, CRAN.

- Barmish, B.Ross. (1994). New Tools for Robustness of Linear Systems. Macmillan Publishing Company.
- Basseville, M. and Y.V. Nikiforov (1993). Detection of abrupts changes. Prentice-Hall.
- Bhagwat, A., R. Srinivasan and P. R. Krishnaswamy (2003). Multi-linear model-based fault detection during process transitions. Chemical Engineering Science 58, 1649–1670.
- Blanke, M., M. Kinnaert, J. Lunze and M. Staroswiecki (2003). Diagnosis and Fault-Tolerant Control. Edts Springer-Verlag.
- Blom, H.A.P. and Y. Bar Shalom (1988). The interacting multiple model algorithm for systems with Markovian switching coefficients. IEEE Trans. on Automatic Control 33, 780–783.
- Bodson, M. and J. Groszkiewiecki (1997). Multivariable adaptive control algorithms for reconfigurable flight control. IEEE Transactions on Automatic Control.
- Boskovic, J. and R. Mehra (1999). Stable multiple model adaptive flight control for accommodation of a large class of control effector failures. In: Proc. Proceedings of the American Control Conference.
- Boskovic, J. and R. Mehra (2003). Failures detection, identification and reconfiguration system for redundant actuator assembly. In: Proc. of the 5th Safeprocess, Whashington.D.C, USA. pp. 429-434.
- Boskovic, J. D. and R. K. Mehra. (1998). A multiple model-based reconfigurable flight control system design. In: Proceedings on the 37th IEEE Conference on Decision and Control.
- Boskovic, J., S. Li and R. K. Mehra. (2000). Reconfigurable flight control design using multiple switching controllers and on-line estimation of damage related parameters. In: Proceedings of the IEEE International Conference on Control Applications.
- Boskovic, J., S. Li and R. Mehra (1999). Intelligent control of spacecraft in the presence of actuator failures. In: Proc. of the 38th IEEE Conference on Decision and Control, Phoenix, Arizona.
- Boyd, S., L. El Ghaoui, E. Feron and V. Balakrishnan (1994). Linear Matrix Inequalities in System and Control Theory. SIAM Studies in Applied Mathematics.
- Chadli, M. (2002). Stabilité et commande de systèmes décrits par des Multimodèles. Phd thesis. Institut National Polytechnique de Lorraine.
- Chadli, M, D. Maquin and J. Ragot (2002). An lmi formulation for output feedback stabilization in multiple model approach. In: Proc. of the 41'st IEEE Conf. on Decision and Control, Las Vegas, USA. pp. 311–316.
- Chen, H., A. Kremling and F. Allgower (1995). Nonlinear predictive control of a benchmark cstr. In: Proc. 3rd European Control Conference, Italy. pp. 3247-3252.
- Chen, J. and R.J. Patton (1999). Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers.
- Chen, J. and R.J. Patton (2001). Fault-tolerant control systems design using the linear matrix inequality approach. In: Proc. of the 6th European Control Conference, Porto, Portugal.

Chen, L. and K. Narendra (2001). Nonlinear adaptive control using neural networks and multiple models. Automatica 37(8), 1245–1255.

- Chilali, M. and P. Gahinet (1996). H_{∞} design with pole placement constraints: an LMI approach. IEEE Trans. on Automatic Control 41(3), 358–367.
- Clements, N. S. (2003). Fault tolerant control of complex dynamical systems. Phd thesis. Georgia Institute of Technology.
- Cocquempot, V., M. Staroswiecki and T. El Mezyani (2003). Switching time estimation and fault detection for hybrid systems using structured parity residuals. In: Proc. IFAC Symposium Safeprocess, Washington .D.C, USA, CD-Rom.
- Daafouz, J. and J. Bernussou (2001). Parameter Dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Systems and Control Letters 43, 355-359.
- Daafouz, J., P. Riedinger and C. Iung (2002). Stability analysis and control synthesis for switched systems: A switched lyapunov function approach. IEEE Transactions on Automatic Control 47, 1883–1887.
- Dai, Pan. Q.G., H. Zhang, Y. Zhang and L. Jiao (1997). Fault detection and identification of dynamic systems using multiple model adaptive estimation. In: IFAC Symposium Safeprocess'97, United Kingdom. Vol. 2. pp. 171–176.
- Darouach, M. and M. Zasadzinski (1994). Full-order observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control 39, 606-609.
- Demetriou, M. (2001). Adaptive reorganization of switched systems with faulty actuators. In: Proc. of the 40th IEEE Conference on Decision and Control, Orlando, Florida.
- Diao, Y. and K. M. Passino (2001). Fault tolerant stable adaptive fuzzy/neural control for a turbine engine. IEEE Transactions on Control Systems Technology 9(3), 494–509.
- Dionisio, R., E. Moska, J. Lemos and P. Shirley (2003). Adaptive fault tolerant control with adaptive residual generation.. In: Proc. IFAC Symposium Safeprocess, Washington .D.C, USA, CD-Rom.
- Edelmayer, A. (2002). Editorial special issue on fdi filters. International Journal of Robust and Nonlinear Control.
- Eide, P. and P. Maybeck (1996). An mmae failure detection system for the f-16. IEEE Transactions on Aerospace and Electronics Systems 32(3), 1125–1136.
- Eterno, J. S., D. P. Looze, J. L. Weiss and A. S. Willsky (1985). Design issues for fault-tolerant resstructurable aircraft control. In: Proc. of the 24th IEEE Conference on Decision and Control, Fort Lauderdale.
- Fairman, F., S. Mahil and L. Luk (1984). Disturbance decoupled observer design via singular value decomposition. IEEE Trans. on Automatic Control 24, 84–89.
- Fliess, M. (2001). Generalized controller canonical forms for linear and nonlinear dynamics. IEEE Transactions on Automatic Control 46, 853–865.
- Frank, P.M. and J. Wunnenberg (1989). Robust Fault Diagnosis using unknown input schemes. In fault Diagnosis in dynamic systems: theory and applications. Prentice Hall, Englewood Cliffs.

Frank, P.M. and X. Ding (1997). Survey of robust residual generation and evaluation methods in observer-based fault detection systems. Journal of Process Control 7, 403–424.

- Frisk, E. (1996). Model-based fault diagnosis applied to an SI-Engine. Phd thesis. Examensarbete utf"ort i Fordonssystem vid Tekniska H"ogskolan i Link"oping.
- Ganguli, S., A. Marcos and G. Balasin (2002). Reconfigurable LPV Control Design for Boeing 747-100/200 longitudinal axis. In: Proc. of the American Control Conference, Anchorage, USA. pp. 3612-3617.
- Gao, Z. and P. Antsaklis (1992). Reconfigurable control system design via perfect model-following. Internationnal Journal of Control 56(4), 783-798.
- Gao, Z. and P.J. Antsaklis (1991). Stability of the pseudo-inverse method for reconfigurable control. International Journal of Control 53(3), 717-729.
- Garcia, E. Alcorta and P.M. Frank (1996). Analysis of a class of dedicated observer schemes to sensor fault isolation. UKACC Internationnal Conference on Control pp. 60–65.
- Garcia, G. and J. Bernussou (1995). Pole assignment for uncertain systems in a specified disk by state feedback. IEEE Trans. on Automatic Control 40(1), 184–190.
- Gasso, K. (2000). Identification des systèmes dynamiques non linéaires : approche multi-modèle. Phd thesis. INPL, Centre de Recherche en Automatique de Nancy.
- Gasso, K., G. Mourot and J. Ragot (2002). Structure identification of multiple models with output error local models. In: Proc. of the 15th Triennal World Congress, IFAC, Spain.
- Gatzke, E. and F. Doyle (1999). Multiple model approach for CSTR control. In: IFAC Symposium, Beijing, China, CD-Rom.
- Gatzke, E. and F. Doyle (2002). Use of multiple models and qualitative knowledge for on-line moving horizon disturbance estimation and fault diagnosis. Journal of Process Control 12, 339–352.
- Gertler, J.J. (1998). Fault detection and diagnosis in engineering systems. Marcel Dekker Inc. New York Basel Hong Kong.
- Glover, S. F. (2003). Modeling and Stability Analysis of Power Electronics based Systems. Phd thesis. Purdue University, USA.
- Griffin, G. and P. Maybeck (1991). Mmae/mmac control for blending with multiple uncertain parameters. IEEE Transactions on Aerospace and Electronics Systems 33(3), 903–911.
- Guerra, T.M., L. Vermeiren, F. Delmotte and P. Borne (1999). Lois de commande pour systèmes flous continus. APII-JESA 33(4), 489-527.
- Hadjili, M. L. and V. Wertz (2002). Takagi-sugeno fuzzy modeling incorporating input variables selection. IEEE Transactions on fuzzy systems 10, 728–742.
- Hamlon, P.D. and P.S. Maybeck (1997). Equivalent kalman filter bank structure for multiple model adaptative estimation (mmae) and generalized likelihood failure detection. In: Proc. of the 36th IEEE Conference on Decision and Control, San Diego, USA.
- Hammouri, H., P. Kabore and M. Kinnaert (2001). A geometric approach to fault detection and isolation for bilinear systems. IEEE Trans. on Automatic Control 46(9), 1451-1455.

Hensen, R.H.A., G.Z. Angelis and M.J.G. van de Molengraft (2000). Adaptive optimal friction control based on a polytopic linear model. In: Proc. of 14th International Symposium of Mathematical Theory of Networks and Systems MTNS, Perpignan, France.

- Hou, M. and P.C. Muller (1992). Design of observers linear systems with unknown inputs. IEEE Transactions on Automatic Control 37, 871–875.
- Hou, M. and P.C. Muller (1994). Disturbance decoupled obsever design: a unified view point. IEEE Transactions on Automatic Control 39, 1338–1341.
- Huang, C. Y. and R. F. Stengel (1990). Restructurable control using proportionnal-integral implicit model-following. Journal of guidance Control and Dynamics 13(2), 303-309.
- Huzmezan, M. (1998). Theory and Aerospace applications of contrained model based predictive control. Phd thesis. Department of Engineering University of Cambridge.
- Isidori, A. (1995). Nonlinear Control Systems. 3 ed.. Communications and control engineering series, Springer-Verlag.
- Jacques, P., F. Hamelin and C. Aubrun (2003). Optimal Fault Detection in a Closed-loop Framework: a joint Synthesis. In: Proc. IFAC Symposium Safeprocess, Washington. D.C, USA, CD-Rom.
- Jiang, B., M. Staroswiecki and V. Cocquempot (2003). Active fault tolerant control for a class of nonlinear systems. In: Proc. IFAC Symposium Safeprocess, Washington .D.C, USA, CD-Rom.
- Johansen, T.A. and B.A. Foss (1993). State-space modeling using operating regime decomposition and local models. In: IFAC 12th Tiennal World Congress, Australia.
- Johansen, T.A., K.J. Hunt, P.J. Gawthrop and H. Fritz (1998). Off-equilibrium linearisation and design of gain-scheduled control with application to vehicle speed control. Control Engineering Practice 6, 167–180.
- Join, C. (2002). Diagnostic des systèmes non linéaires Contribution aux méthodes de découplage. Phd thesis. UHP, Centre de Recherche en Automatique de Nancy.
- Jones, C. N. (2002). Reconfigurable flight control First year report. Rapport. Control Group Department of Engineering University of Cambridge.
- Kanev, S. (2004). Robust Fault-Control. Phd thesis. University of Twente, The Netherlands.
- Kanev, S. and M. Verhaegen (2002). Reconfigurable robust fault-tolerant control and state estimation. In: Proc. of the 15th Triennal World Congress, IFAC, Spain.
- Keller, J.Y. (1999). Fault isolation filter design for linear stochastic systems. Automatica 35, 1701–1706.
- Kinnaert, M. (1999). Robust fault detection based on observers for bilinear systems. Automatica 35(11), 1829–1842.
- Kinnaert, M. (2003). Fault diagnosis based on analytical models for linear and nonlinear systems: a tutorial.. In: Proc. IFAC Symposium Safeprocess, Washington .D.C, USA, CD-Rom.
- Konstantopoulos, I. and P. Antsaklis (1996). An eigenstructure assignment approach to control reconfiguration. In: Proc. of 4th IEEE Mediterranean Symposium On Control and Automation, Greece.

Kothare, M.V., V. Balakrishnan and M. Morari (1996). Robust constrained Model Predictive Control using Linear Matrix Inequalities. Automatica pp. 1361–1379.

- Kovacshazy, T., G. Pécéli and G. Simon (2001). Transient reduction in reconfigurable control systems utilizing structure dependence. In: Proc. of Instrumentation and Measurment Technology Conference, Budapest, Hungary. pp. 1143–1147.
- Landau, I.D. (1999). From robust control to adaptive control. Control Engineering Practice 7, 1113-1124.
- Lane, S. H. and R. F. Stengel (1988). Flight control design using non-linear inverse dynamics. Automatica 24, 471–483.
- Leith, D. J. and W. E. Leithead (2000). Survey of gain-scheduling analysis and design. International Journal of Control 73(11), 1001–1025.
- Lemos, J., L. Ratos and J. Marques (1999). Switching reconfigurable control based on hidden markov models. In: Proc. of the American Control Conference, San Diego, USA.
- Li, X. R. and Y. BarShalom (1993). Design of an interacting multiple model algorithm for air traffic control tracking. IEEE Transactions on Control Systems Technology 1(3), 186–194.
- Liu, G. and R.J Patton (1998). Eigenstructure Assignment for Control Systems Design. John Wiley and Sons.
- Liu, W. (1996). An on-line expert system-based fault-tolerant control system. Expert systems with applications 11(1), 59-64.
- Lopez-Toribio, C.J. and R.J. Patton (2000). Takagi-sugeno fuzzy fault-tolerant control for a nonlinear system. In: 38th Conference on Decision and Control, Phoenix, USA. pp. 4368–4373.
- Lopez-Toribio, C.J., R.J. Patton and S. Daley (1998). Supervisory fault tolerant system using fuzzy multiple inference modelling. In: Proceedings of the IFAC Worshop On-line Fault Detection and Supervision in the Chemical Process Industries, June, Lyon.
- Lopez-Toribio, C.J., R.J. Patton and S. Daley (1999). A mutiple-model approach to fault-tolerant control using takagi-sugeno fuzzy modelling: real application to an induction motor drive system. In: European Control Conference, ECC 99, Karlsruhe.
- Lou, X-C., A. S. Willsky and G. C. Verghese (1986). Optimally robust redundancy relations for failure detection in uncertain systems. Automatica 22(3), 333-344.
- Luenberger, D. (1966). Observers for multivariable systems. IEEE Trans. on Automatic Control 11, 190–197.
- Mahmoud, M., J. Jiang and Y. Zhang (2001). Stochastic stability analysis of fault tolerant control systems in the presence of noise. IEEE Transactions on Automatic Control 46(11), 1810–1815.
- Maki, M., J. Jiang and K. Hagino (2001). A stability guaranteed active fault-tolerant control system against actuator failures. In: Proc. of the 40th IEEE Conference on Decision and Control, Orlando, Florida.
- Maybeck, P. and R. Steven (1991). Reconfigurable flight control via multiple model adaptive control methods. IEEE Transactions on Aerospace and Electronics Systems 27(3), 470–479.

Maybeck, P.S. (1999). Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems. International Journal of Robust and Nonlinear Control 9, 1050–1070.

- Médar, S., P. Charbonnaud and F. Noureddine (2002). Active fault accommodation of a three tank system via switching control. In: Proc. of the 15th Triennal World Congress of IFAC, Barcelona, Spain.
- Meyer, G. and L. Hunt (1984). Application of non-linear transformations to automatic flight control. Automatica 20, 103–107.
- Millerioux, G. and J. Daafouz (2004a). Unknown input observers for message-embedded chaos synchronization of discrete-time systems. International Journal of Bifurcation 14, 1–12.
- Millerioux, G. and J. Daafouz (2004b). Unknown input observers for switched linear discrete time systems. In: American Control Conference, Boston, USA.
- Morse, W. and K. Ossman (1990). Model-following reconfigurable flight control system for the afti/f-16. Journal of guidance Control and Dynamics 13(6), 969-976.
- Murray-Smith, R. and T.A. Johansen (1997). Multiple Model Approaches to Modelling and Control. Taylor and Francis.
- Napolitano, M. R. and R. L. Swaim (1991). New technique for aircraft flight control reconfiguration. Journal of guidance Control and Dynamics 14(1), 184–190.
- Narendra, K., J. Balakrishnan and M. Kermal (1995). Adaptation and learning using multiple models, switching and tuning. IEEE Contr. Syst. Mag. pp. 37–51.
- Narendra, K. S., O. A. Driollet, M. Feiler and K. George (2003). Adaptive control using multiple models, switching and tuning. International Journal of Adaptive Control and Signal Processing 17, 87–102.
- Niemann, H. and J. Stoustrup (2003). Passive fault tolerant control of double inverted pendulum-a case study example. In: Proc. of the 5th Symposium Safeprocess, Washington.D.C, USA. pp. 1029–1034.
- Noura, H., D. Sauter, F. Hamelin and D. Theilliol (2000). Fault-tolerant control in dynamic systems: Application to a winding machine. IEEE Control Systems Magazine pp. 33-49.
- Ozkan, L., M.V. Kothare and C. Georgakis (2003). Control of a solution copolymerization reactor using multi-model predictive control. Chemical Engineering Science 2, 1207–1221.
- Park, J., G. Rizzoni and W.B. Ribbens (1994). On the representation of sensors faults in fault detection filters. Automatica 30(11), 1793-1795.
- Patton, R.J. (1997). Fault-tolerant control: the 1997 situation. In: Proc. IFAC Symposium Safeprocess, Kingston Upon Hull, U.K. Vol. 2. pp. 1033–1055.
- Patton, R.J. and C.J. Lopez-Toribio (2000). Multiple-model fault-tolerant control of an induction motor in the presence of uncertainty. In: IFAC Symposium SAFEPROCESS 2000, Budapest. pp. 1139–1144.
- Persis, C. De and A. Isidori (2001). A geometric approach to nonlinear fault detection. IEEE Trans. on Automatic Control 46(6), 853-865.
- Porfirio, C. R., E. A. Neito and D. Odloak (2003). Multi-model predictive control of an industrial c3/c4 splitter. Control Engineering Practice 11, 765-779.

Rauch, H. (1994). Intelligent fault diagnosis and control reconfiguration. IEEE Control Systems Magazine 14(3), 6–12.

- Reberga, L., D. Henrion, J. Bernussou and F. Vary (2005). Lpv modeling of a turbofan engine. In: Proc. 16th IFAC World Congress, Prague, Czech Republic.
- Rodrigues, M., D. Theilliol and D. Sauter (2005a). Design of a Robust Polytopic Unknown Input Observer for FDI: Application for Systems described by a Multi-Model Representation. In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC, Sevilla, Spain.
- Rodrigues, M., D. Theilliol and D. Sauter (2005b). Design of an Active Fault Tolerant Control and Polytopic Unknown Input Observer for Systems described by a Multi-Model Representation. In: Proc. 44th IEEE Conference on Decision and Control and European Control Conference ECC, Sevilla, Spain.
- Rodrigues, M., D. Theilliol and D. Sauter (2005c). Design of an Active Fault Tolerant Control for Nonlinear Systems described by a Multi-Model Representation. In: Proc. The 20th IEEE International Symposium on Intelligent Control (ISIC'05) and the 13th Mediterranean Conference on Control and Automation (MED'05), Limassol, Cyprus.
- Rodrigues, M., D. Theilliol and D. Sauter (2005d). Fault Tolerant Control Design of Nonlinear Systems using LMI gain Synthesis. In: Proc. 16th IFAC World Congress, Prague, Czech Republic.
- Rodrigues, M., D. Theilliol and D. Sauter (2005e). Synthèse d'une loi de commande tolérante aux défauts actionneurs : Application aux systèmes non linéaires décrits par de multiples modèles. In : Journées Doctorales et Nationales du GDR MACS du 5 au 7 Septembre, Lyon, France.
- Rodrigues, M., D. Theilliol, M. Adam-Medina and D. Sauter (2002). Fault isolation and estimation in nonlinear systems: an adaptive filter solution based on multiple model approach. In: Proc. IAR, Grenoble, France.
- Rodrigues, M., M. Adam-Medina, D. Theilliol and D. Sauter (2004). Fault Diagnosis on Industrial Systems based on a Multiple Model approach. In: Proc. IFAC Symposium on Automation in Mining, Mineral and Metal processing, Nancy, France.
- Rong, Q., S. K. McLoone and G. W. Irwin (2002). On hidden coupling in multiple model based PID controller networks. In: 15th World Congress of IFAC. Vol. CD-Rom. Barcelone, Espagne. pp. 1622–1627.
- Rosinova, D. and V. Vesely (2004). Robust Static Output Feedback for Discrete Time Systems Lmi Approach. Periodica Polytechnica 48(3-4), 151-163.
- Rugh, W. J. (1992). Analytical framework for gain scheduling. IEEE Control System Magazine 11, 79–84.
- Shamma, J. and M. Athans (1992). Gain scheduling: potential hazards and possible remedies. IEEE Control System Magazine 10, 101–107.
- Shin, J-Y. (2003). Parameter transient behavior analysis on fault tolerant control system. Technical Report NASA-CR-2003-212682-NIA Report No. 2003-05. National Institute of Aerospace. Hampton, Virginia, USA.

Shorten, R., R. Murray-Smith, R. Bjorgan and H. Gollee (1999). On the interpretation of local models in blended multiple model structures. International Journal of Control **72**(7/8), 620–628.

- Staroswiecki, M. (2002). On reconfigurability with respect to actuator failures. In: Proc. of the 15th Triennal World Congress of IFAC, Barcelona, Spain.
- Staroswiecki, M. (2005). Fault Tolerant Control: the pseudo-inverse method revisited. In: Proc. 16th IFAC World Congress, Prague, Czech Republic.
- Stepaniak, M.J. and P.S. Maybeck (1997). Mmae-based control redistribution applied to the vista f-16. In: Proc. of the American Control Conference, Albuquerque, USA.
- Stiwell, D. J. and W. J. Rugh (1999). Interpolation of observer state feedback controllers for gain scheduling. International Journal of Control 72(7/8), 620-628.
- Suyama, K. (2002). What is reliable control?. In: Proc. of the 15th Triennal World Congress IFAC, Barcelona, Spain.
- Takagi, T. and M. Sugeno (1985). Fuzzy identification of systems and its application to modeling and control. IEEE Transactions. Systems, Man, and Cybernetics 15, 116–132.
- Tanaka, K., T. Ikeda and H.O. Wang (1996). Robust stabilization of a class of uncertain non-linear systems via fuzzy control: quadratic stabilizability, hinf control theory, and linear matrix inequalities. IEEE Trans. on Fuzzy systems 4(1), 1–13.
- Tayebi, A. and M.B. Zaremba (2002). Iterative learning control for non-linear systems described by a blended multiple model representation. International Journal of Control 75(16/17), 1376–1384.
- Theilliol, D., D. Sauter and J.C. Ponsart (2003a). A multiple model based approach for Fault Tolerant Control in nonlinear systems. In: Proc. IFAC Symposium Safeprocess, Washington .D.C, USA, CD-Rom.
- Theilliol, D., H. Noura and D. Sauter (1998). Fault tolerant control method for actuator and component faults. In: Proc. of the 37th IEEE Conference on decision & control, Tampa, Florida, USA.
- Theilliol, D., H. Noura and J.C. Ponsart (2002a). Fault diagnosis and accommodation of three-tank system based on analytical redundancy. ISA Transactions 41, 365–382.
- Theilliol, D., M. Rodrigues, E. Quintero-M-M, M. Adam-Medina and D. Sauter (2002b). Adaptive Filter Design for Fault Detection and Isolation of Non Linear Systems described by Interpolated L. T.I. Models. In: Proc. Latinamerican Congress of Automatic Control, CL-CA'2002, Guadalajara, Jalisco, Mexico.
- Theilliol, D., M. Rodrigues, M. Adam-Medina and D. Sauter (2003b). Adaptive filter design for FDI in nonlinear systems based on multiple model approach. In: Proc. IFAC Symposium Safeprocess, Washington D.C, USA, CD Rom.
- Tyler, M. and M. Morari (1994). Optimal and robust design of integrated control and diagnostic modules. In: Proc. of the American Control Conference, Baltimore, USA. pp. 2060-2064.
- Val, J. B. R. Do, J. C. Geromel and Alim P. C. Gonçalves (2002). The h2-control for jump linear systems: cluster observations of the markov state. Automatica 38(2), 343-349.

Veillette, R. (2002). Design of reliable control systems. IEEE Transactions on Automatic Control 37, 290–304.

- Venkat, A. N., P. Vijaysai and R. D. Gudi (2003). Identification of complex nonlinear processes based on fuzzy decomposition of the steady state space. Journal of process control 13, 473–488.
- Wan, Z. and M.V. Kothare (2003). Efficient scheduled stabilizing model predictive control for constrained nonlinear systems. International Journal of Robust and Nonlinear Control 13, 331-346.
- Wan, Z. and M.V. Kothare (2004). Efficient scheduled stabilizing output feedback model predictive control for constrained nonlinear systems. IEEE Transactions on Automatic Control.
- Wang, H.O., K. Tanaka and M.F. Griffin (1996). An approach to fuzzy control of nonlinear systems: stability and design issues. IEEE Trans. on Fuzzy systems 4(1), 14–23.
- Willsky, A. S. (1976). A survey of design methods for failure detection in dynamic systems. Automatica 12(6), 601-611.
- Wu, N. E. (2001). Reliability of fault tolerant control systems: Part I and II. In: Proc. of the 40th IEEE Conf. on Decision and Control, Orlando, USA. pp. 1460-1471.
- Wu, N. E., Y. Zhang and K. Zhou. (2000). Detection, estimation and accommodation of loss of control effectiveness. Int. J. of Adaptive Control and Signal Processing 14(7), 775-795.
- Yamé, J. and M. Kinnaert (2003). Performance-based switching for fault tolerant control. In: Proc. of the 5th Symposium Safeprocess, Washington.D.C, USA. pp. 555–560.
- Zadeh, L. (1965). Fuzzy sets. Information and Control 8, 338-353.
- Zhang, Y. and J. Jiang (1999a). Design of integrated fault detection, diagnosis and reconfigurable control systems. In: Proc. of the 38th IEEE Conference on decision & control, Phoenix, Arizona, USA.
- Zhang, Y. and J. Jiang (1999b). An interacting multiple-model based fault detection diagnosis and faulttolerant control approach. In: Proc. of the 38th IEEE Conference on decision & control, Phoenix, Arizona, USA.
- Zhang, Y. and J. Jiang (2000). Design of proportionnal-integral reconfigurable control systems via eigenstructure assignment. In: Proc. of the American Control Conference, Chicago, Illinois, USA.
- Zhang, Y. and J. Jiang (2001). Integrated active Fault-Tolerant Control using IMM approach. IEEE Transactions on Aerospace and Electronics Systems 37(4), 1221–1235.
- Zhang, Y. and J. Jiang (2002). Design of restructurable active fault-tolerant control systems. In: Proc. of the 15th Triennal World Congress IFAC, Barcelona, Spain.
- Zhang, Y. and J. Jiang (2003a). Bibliographical review on reconfigurable Fault-Tolerant Control systems. In: Proc. IFAC Symposium Safeprocess, Washington. D.C, USA, CD-Rom.
- Zhang, Y. and J. Jiang (2003b). Fault Tolerant Control system design with explicit consideration of performance degradation. IEEE Transactions on Aerospace and Electronic Systems 39(3), 838–848.
- Zhang, Y. and X. R. Li (1998). Detection and diagnosis of sensor and actuator failures using IMM estimator. IEEE Transactions on Aerospace and Electronic Systems 34(4), 1293–1313.

- Zhang, Y., J. Jiang, Z. Yang and A. Hussain (2005). Managing performance degradation in Fault Tolerant Control Systems. In: Proc. 16th IFAC World Congress, Prague, Czech Republic.
- Zhao, Q. and J. Jiang (1998). Reliable state feedback control system design against actuator failure. Automatica 34(10), 1267–1272.
- Zheng, F., Q-G. Wang and T. H. Lee (2002). Output tracking control of mimo fuzzy nonlinear systems using variable structure control approach. IEEE Transactions on fuzzy systems 10, 686–697.
- Zhou, K. (2000). A new controller architecture for high performance, robust and fault tolerant control. In: Proc. of the 39th IEEE Conference on Decision and Control, Sydney, Australia.
- Zolghadri, A., D. Henry and M. Monsion (1996). Design of nonlinear observers for fault diagnosis: a case study. Control Engineering Practice 4(11), 1535–1544.

Cette thèse traite de la synthèse de méthodes de diagnostic et de lois de commandes actives tolérantes aux défauts pour des systèmes décrits par des multi-modèles.

Dans le premier volet consacré à la synthèse de méthodes de diagnostic : deux approches ont été développées. La première concerne la synthèse d'un filtre "adaptatif" permettant de générer deux types de résidus : l'un étant sensible aux défauts et l'autre insensible. Le résidu insensible est utilisé à des fins d'obtention de fonctions de pondération robustes aux défauts tandis que le résidu sensible est quant à lui utilisé à des fins de détection, d'isolation et d'estimation des défauts capteur ou actionneur. La stabilité de ce filtre adaptatif est analysé au moyen d'Inégalités Matricielles Linéaires (LMI). La seconde approche traite de la conception d'Observateurs polytopiques à entrées inconnues (UIO). Cette synthèse permet de rejeter des informations indésirables lors de la génération de résidus telles les erreurs de modélisation au moyen de contraintes égalités et de LMI. L'analyse de la stabilité et le placement de pôles de ces observateurs sont essentiellement basés sur l'analyse convexe par LMI ou ramenés à de tels cas. Enfin, des lois de commande actives tolérantes aux défauts sont synthétisées par retour d'état et de sortie. Le cas de défaillance d'actionneurs, perte d'actionneur, y est largement abordé en reconfigurant le régulateur tout en préservant la stabilité du système en BF par placement de pôles en régions LMI. L'approche est étendue aux systèmes Linéaires à Paramètres Variants dans le temps (LPV) mis sous forme polytopique ainsi qu'aux systèmes hybrides à commutations.

Mots-clés : diagnostic, commande active tolérante aux défauts, multi-modèles, filtre, observateur polytopique à entrées inconnues, stabilité, LMI

Abstract

The main work presented in this document deals with diagnosis and Active Fault Tolerant Control (AFTC) for systems described by multi-models. The first part of the thesis presents some methods for diagnosis purposes in multi-models framework: the first step consists in an Adaptive Filter design through a multi-model representation (of a nonlinear system for example). The main contribution is a decoupling of adaptive filter residual which provides two types of residual: one is insensitive to faults and the other one is sensitive to fault. The last one is used in order to generate probabilities robust to fault that allow to obtain a global state space representation of the system. The stability is ensured by use of LMI. The second step takes into account modeling errors through polytopic Unknown Inputs Observers (UIO) in multi-models framework. These polytopic UIO allow to consider different distribution matrices for each model by LMI consideration. A pole placement is also considered with LMI so as to guarantee a decayrate of the UIO. A CSTR example is given with diagnosis purposes.

The third step is devoted to Active FTC design. This method considers a FDI scheme which provides an accurate fault magnitude estimation. Based on it, two control laws are synthesized: one uses a state feedback and the other one considers an output feedback. These two control laws ensure closed-loop system stability through pole placement in the unit circle despite of multiple actuator failures. The method is applied to the well known Three-Tank system, LPV systems and switched systems.

Key words: diagnosis, active Fault Tolerant Control, multi-models, filter, polytopic Unknown Inputs Observer (UIO), stability, LMI