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Mai, o bellasso! au mai t'aluque,
Au mai, pecaire! m'emberluque!. . .
Vegu�ere uno �guiero, un cop, dins moun camin,
Arrapado �a la roco nuso
Contro la baumo de Vau-Cluso:
Maigro, pecaire! i lagramuso
I�e dounari�e mai d'ombro un clot de jaussemin!

Un cop p�er an vers si racino
V�en ouqueja l'ondo vesino;
E l'aubret secarous, �a l'aboundouso font
Que mounto �a-n-�eu p�er que s'ab�eure
Tant que n'en v�ou, se bouto �a b�eure. . .
D'ac�o tout l'an n'a proun p�er vi�eure.
Coume �a l'an�eu la p�eiro, �a i�eu ac�o respond.

F. M.
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CHAPTER I

INTRODUCTION

1.1 Foreword

Safety and reliability are two foremost concerns in the design of high-speed rotat-

ing equipment. In order to reduce vibrations-induced wear and probability of failure,

dry friction damping is widely used. In bladed disk assemblies, like the ones used

in jet engines, friction damping may occur between two adjacent blades, between

the blades and the disk, and between the blades and friction dampers inserted for

that purpose below the platform of the blades. Figure 1.1 depicts a typical, indus-

trial 29-blade assembly [Kruse and Pierre, 1996]. Figure 1.2 shows a �nite-element

blade model, provided by the Soci�et�e Nationale D'�Etude et de Construction de Mo-

teurs d'Aviation (SNECMA) [Berthillier et al., 1998a], along with the disk section

to which the blade is attached. Manufacturers of such equipment are interested in

predicting the vibrations the rotating parts undergo. Many works have focused on

the study of the steady-state response of friction damped structural systems and

some of them are listed in the next section.

1
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Figure 1.1: Blade assembly model [Kruse and Pierre, 1996].
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Figure 1.2: Blade model [Berthillier et al., 1998a].



4

1.2 Literature review

In this section, previous works on the dynamics of friction damped systems are

presented. Some parts of this literature review are repeated throughout the dis-

sertation to introduce the di�erent chapters. Hopefully, this will put the present

dissertation into perspective and not confuse the reader.

Numerical time integration procedures, such as fourth-order Runge-Kutta, pro-

vide an easy way to calculate the dynamic response of friction damped systems.

Given the low level of viscous damping present in turbomachinery elements, the

time integration procedure has to be performed over a large number of periods in

order to reach the steady-state response, and the time step of the time integration

procedure has to be small enough to prevent numerical instabilities. Both the large

number of computation cycles and the small size of the time step required make nu-

merical time integration methods computationally very expensive. Thus they are not

suited to design and parametric analyses for which structural and friction parameters

must be varied to achieve optimal damper performance.

The steady-state response of friction damped systems can be found in a semi-

analytical way in some particular cases. Wang proposed an analytic solution when

a single-degree-of-freedom (DOF) system with an elastic friction damper attached is

considered [Wang, 1996], but the method cannot be readily extended to large-scale

systems with many friction dampers. Most analytical solutions for friction damped

systems are based on matching the solutions found for phases of the motion when

the damper is stuck and when it is slipping [Natsiavas and Gonzalez, 1992]. The

procedure implies knowing a priori how many slipping and sticking phases there are

during each cycle, something not readily available [Natsiavas, 1998]. Moreover, if
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several friction dampers were to be considered, the analytical method would result

in complex systems of non-linear equations, for which no analytical solutions can be

found. Wang also presented a �nite element in time (FET) approach: the friction

force is approximated by simple interpolation functions [Wang, 1997]. This approx-

imation may lead to numerical problems when large-scale systems are considered.

The dynamics of friction damped systems are often studied using methods de-

rived from the Harmonic Balance (HB) procedure [Nayfeh and Mook, 1979], with

a single temporal harmonic retained in the solution. Early works [Gri�n, 1980,

Sinha and Gri�n, 1983] used the single-harmonic approximation for single degree-of-

freedom (DOF) systems. The approximation was used to obtain both the forced and

free responses of friction damped blade systems [Sinha and Gri�n, 1984, 1985], hol-

low blades [Gri�n et al., 1998], and tuned and mistuned blade assemblies [Musz�ynska

and Jones, 1983, Gri�n and Sinha, 1985, Sinha et al., 1986]. The single-harmonic

method was also used on equations obtained by component mode analysis [Ferri

and Dowell, 1985], on bi-dimensional friction dampers [Sanliturk and Ewins, 1996,

Yang et al., 1998], and on dampers undergoing microslip [Menq et al., 1986, Sanl-

iturk et al., 1997]. Provided that a number of conditions are met [Mickens, 1984],

the HB method used with a single temporal harmonic is a fast and accurate way

to study the dynamics of friction damped systems. Although the method cannot

predict stick/slip motion, it can provide an acceptable approximation of the re-

sponse amplitude, provided the �rst harmonic dominates the response of the system.

Most single-harmonic studies have been limited to small- or medium-size models

[Wei and Pierre, 1989, Sanliturk and Ewins, 1996].

Including several temporal harmonics of the response allows for the approxi-

mation of stick/slip motions, not permitted by single-harmonics studies. When
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several temporal harmonics are considered, analytic approximations of the friction

force are often used [Ferri and Dowell, 1988, Berthillier et al., 1998b], and/or struc-

tural models with a single friction damper are considered [Wang and Chen, 1993,

Shiau and Yu, 1996, Shiau et al., 1998]. Two signi�cant outgrowths of the HB method

are the Incremental Harmonic Balance (IHB) [Lau et al., 1983, Pierre et al., 1985,

Lau and Zhang, 1992] and the Alternating Frequency Time (AFT) method [Cameron

and Gri�n, 1989]. Both methods are based on iterative algorithms that yield

a multi-harmonic, frequency-domain representation of the response. While they

can produce good results (particularly for systems with polynomial nonlinearities),

the IHB method can be numerically cumbersome, and the AFT one can su�er

slow convergence. These methods are known to have signi�cantly limiting con-

vergence problems when applied to non-analytic friction damping. Other multi-

harmonic works may involve determining the sticking and slipping transition times

[Wang and Chen, 1993] {a rather di�cult task that cannot be easily generalized to

multi-DOF systems. Receptance-based methods for friction damped systems are

sometimes used [Ren and Beards, 1994]: the method makes use of experimental data

to determine the linear part of the response and of perturbation methods to ob-

tain the steady-state response in non-linear cases. The receptance-based method

requires about the same computational time as direct time integration, and there-

fore it is not suited for parametric studies. To alleviate the numerical di�culties

of IHB methods, schemes involving Toeplitz Jacobian Matrices have been proposed

[Leung and Ge, 1995], but they have only been successfully applied to polynomial

nonlinearities.

In the studies of friction damped structural systems, friction damper elements

may be described as rigid friction dampers [Pierre et al., 1985]. In bladed-disk assem-
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blies, the damper interfaces undergo small motion prior to any slipping [Ferri, 1995].

Flexible friction dampers are needed to model this characteristic. The simplest model

of a exible friction damper is the hysteretic spring friction model, which is stud-

ied in this dissertation. By considering several exible friction dampers in parallel,

this model can take into account microslip [Menq et al., 1986]. The model can also

be extended to some particular, elliptical, planar motion, provided that only one

temporal harmonic is retained in the solution [Sanliturk and Ewins, 1996].

1.3 Dissertation outline

The goal of this dissertation is to present a new, e�cient technique to predict

the steady-state dynamics {both forced and free responses{ of dry-friction damped

structural systems.

In Chapter II, a single-harmonic approximation is presented. The traditional

single-harmonic method is enhanced to allow a more accurate computation of the

friction forces. The method is applied to multi-degree-of-freedom (DOF) systems in

an e�cient manner: complex, reduced dynamic and force matrices are introduced

to reduce the number of equations. Results are presented for various structural

parameters.

In Chapter III, a multi-harmonic, hybrid frequency/time method is developed for

the forced response analysis of friction damped structural systems. With this method,

the friction force transmitted by the dampers to the structure is evaluated in the time

domain. The equations of motion are transformed in the frequency domain by the

Harmonic Balance (HB) procedure and are solved using a robust, e�cient algorithm

derived from the Broyden method. The Broyden method is presented and compared

to the more traditional Newton-Raphson scheme.
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In Chapter IV, the multi-harmonic method presented in Chapter III is applied

to several systems for a variety of structural and friction parameters. Large-scale

systems with many friction dampers attached are considered. In particular, tuned

and mistuned blade assembly con�gurations subject to various traveling wave \engine

order" excitations are studied. Complex features of the non-linear response are

revealed, including subresonances and localization.

In Chapter V, the method presented in Chapter III is modi�ed to study the

free response and stability of friction-damped structural systems. The procedure

is developed for multi-DOF systems with a single friction damper attached, and

subject to negative viscous damping. Results are presented for various structural

and friction parameters. When several modes of vibration are negatively damped,

the HB method predicts multiple solutions and the stability analysis is often not

conclusive. When a single mode of vibration is negatively damped, which is usually

the case in turbomachinery applications, the method is able to predict in an e�cient

and reliable manner the steady-state response of the system and its stability.

In Chapter VI, a new friction damper model is introduced: the damper element is

treated as a general, massless structure with its own sti�ness matrix. Slip is possible

at several points of the interface between the damper and its adjacent structure (e.g.,

blade). Con�gurations where a damper is connected to two adjacent blades can be

considered with this model. A new formulation is presented to compute the force

transmitted by the damper element to the structure at the various contact points.

Results are presented for an example system and reveal the rich dynamics of such

general friction damper models.



CHAPTER II

SINGLE-HARMONIC BASED METHODS

2.1 Introduction

The dynamics of friction damped systems are often studied using methods de-

rived from the Harmonic Balance (HB) procedure [Nayfeh and Mook, 1979], with

a single temporal harmonic retained in the solution. Early works [Gri�n, 1980,

Sinha and Gri�n, 1983] used the single-harmonic approximation for single degree-

of-freedom (DOF) systems. The approximation was used to obtain both the forced

and free responses of friction damped blade systems [Sinha and Gri�n, 1984, 1985],

hollow blades [Gri�n et al., 1998], and tuned and mistuned blade assemblies [Mus-

z�ynska and Jones, 1983, Gri�n and Sinha, 1985, Sinha et al., 1986]. The single

harmonic method was also used on equations obtained by component mode analysis

[Ferri and Dowell, 1985], on bi-dimensional friction dampers [Sanliturk and Ewins,

1996, Yang et al., 1998], and on dampers undergoing microslip [Menq et al., 1986,

Sanliturk et al., 1997]. Provided that a number of conditions are met [Mickens,

1984], the HB method used with a single temporal harmonic is a fast and accurate

way to study the dynamics of friction damped systems. Although the method cannot

predict stick/slip motion, it can provide an acceptable approximation of the response

amplitude, provided the �rst harmonic dominates the response of the system.

9
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This chapter is organized as follows. First, the single-harmonic method [Grif-

�n, 1980] is applied to single-DOF systems. The procedure is improved so that the

friction force is computed more accurately than in the traditional single harmonic

approximation. Then, the method is extended to several-DOF, several-damper sys-

tems.

2.2 Single-Degree of Freedom Systems

2.2.1 System Model

A spring-mass-dashpot, single-DOF system with a exible friction damper at-

tached is considered, see Fig. 2.1. Only the forced response is studied in this chapter.

The equation of motion for this system can be written as:

m�x + c _x + kx+ fnl(x; _x) = P cos(!t) (2.1)

where m is the mass of the single-DOF system, c the viscous damping coe�cient, k

the sti�ness of the single-DOF system, x the displacement of the mass, and fnl(x; _x)

the force transmitted by the friction damper, and where an overdot represents a

time derivative. The system is subject to a harmonic excitation, P cos(!t). The

force transmitted by the non-linear damper is expressed as:

fnl(x; _x) =

8>>>><
>>>>:
kdz when jzj � Fd=kd (sticking)

Fd sign( _x) when jzj = Fd=kd (slipping)

(2.2)

where kd is the sti�ness of the damper, z is the damper displacement, and Fd is the

maximum force sustained by the damper.

2.2.2 Force-displacement relation

A coulomb-type dry-friction law is assumed, and no further assumption is made on

the nature of the force at the damper. Namely, the relative velocity at the frictional
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Figure 2.1: Single-DOF system with attached exible dry-friction damper

interface is taken to vanish when the damper is stuck. Therefore, an elastic/perfectly

plastic friction element is being considered.

Assuming that the motion of mass DOF is harmonic, the force transmitted by the

damper follows the hysteresis cycle depicted in Fig. 2.2. When the friction damper is

slipping, the force transmitted by the damper is constant and equal to its maximum

or minimum value, �Fd. When the damper is sticking, it can be viewed as a mere

spring of sti�ness kd. In this sticking case, the force transmitted by the damper can

be written as fnl(x; _x) = kdz = kdx+Q, where Q is a constant corresponding to the

initial value at the beginning of the sticking phase.
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2.2.3 Single-harmonic approximation

The mass DOF displacement x and the damper displacement z are assumed to

be harmonic. Therefore they can be written as

x = A cos(!t+ �) (2.3)

z = a cos(!t+ �) + b sin(!t+ �) (2.4)

where � is the phase angle between the external force P cos(!t) and the mass DOF

displacement x, and A, a and b are the amplitudes of the �rst harmonic of x and z.

Substituting the expansions Eqs. (2.3) and (2.4) in the equation of motion Eq. (2.1)

leads to

[(�!2m+ k)A + kda] cos(!t+ �) + (�c!A+ kdb) sin(!t+ �) = P cos(!t) (2.5)

Balancing the harmonics in Eq. (2.5) leads to the following single nonlinear equation:

[(�!2m + k)A+ kda]
2 + (�c!A+ kdb)

2 = P 2 (2.6)
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Since it is assumed that the motion of the mass DOF displacement, x, is harmonic,

the damper displacement amplitudes, a and b, may be computed as a function of the

mass displacement amplitude, A. Thus, a and b are given by

a =
2

�

Z �D

�B
z(�) cos(�)d� (2.7)

b =
2

�

Z �D

�B
z(�) sin(�)d� (2.8)

where � = !t, is a non-dimensionalized time, with � 2 [0; 2�]. The times, �B ; �C ,

and �D, refers to the times at points B, C, and D in Fig. 2.2. In order to evaluate

these expressions, the damper displacement must be determined from the state of

the damper (sticking or slipping):

z(�) =

8>>>><
>>>>:
x(�)� x(�B) + z(�B) = x(�)� A + Fd=kd; �B � � � �C

�Fd=kd; �C � � � �D

(2.9)

At point C in Fig. 2.2, the damper switches from slipping to sticking. Therefore

fnl(xC ; _xC) = �Fd (slipping) (2.10)

= kdz(�C) (sticking)

= kd(x(�C)� x(�B) + z(�B))

= kd(A cos(�C)� A+ Fd=kd) (2.11)

Hence, �C can be deduced:

�C = arccos(1�
2Fd
Akd

) (2.12)

Using Eqs. (2.9) and (2.12) in Eqs. (2.7) and (2.8), it can be shown that

a =
A

�
(�C +

1

2
sin 2�C) (2.13)

b = (
Fd
kdA

� 1)
4Fd
kd�

(2.14)
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Substituting Eqs. (2.13) and (2.14) in Eq. (2.6) leads to a single nonlinear equation

whose unique unknown is the amplitude, A, of the single-harmonic approximation

of the mass DOF displacement, x. This non-linear equation is solved by a standard

Newton procedure. Once the amplitude, A, is found, the sine and cosine terms, a

and b, in the expansion of the damper displacement, z, can be determined using

Eqs. (2.13) and (2.14), and the phase angle, �, can be computed from Eq. (2.5) as:

cos� = [(k � !2m)A + kda]P=det (2.15)

sin� = (�c!A+ kdb)P=det (2.16)

where det = [(k � !2m)A+ kda]
2 + (�c!A+ kdb)

2.

2.2.4 Improvement to the single-harmonic approximation

The procedure described in section 2.2.3 [Gri�n, 1980] gives a single-harmonic

approximation of the mass DOF displacement, x, and the damper displacement,

z. The damper undergoes periods of sticking motion when its velocity is equal to

that of the mass DOF, and periods of slipping motion when its velocity vanishes.

The velocity discontinuities cannot be reproduced accurately using a single-harmonic

approximation, since a combination of a single sine and a single cosine function

cannot precisely describe a function whose derivative is not continuous.

The results predicted by the single-harmonic method can be greatly improved

by performing a simple time-marching procedure (similar to a numerical time inte-

gration) over one period of the motion. When the damper is slipping, the damper

displacement is constant and equal to its maximum value �Fd=kd, the sign being the

same as that of the velocity of the mass. When the damper is sticking, the value of

the damper displacement is deduced from the value of the mass DOF displacement,
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since the velocities of the mass and the damper are equal:

_z = _x) z(�) = x(�)� x(�B) + z(�B) (2.17)

The procedure is summarized in Table 2.1. The slipping and sticking phases of the

State of the damper Damper displacement

Slipping z(�) =

8>>>><
>>>>:
Fd=kd if _x(�) > 0

�Fd=kd if _x(�) < 0

Sticking z(�) =

8>>>><
>>>>:
x(�)� x(�B) + z(�B) if � 2 [�B; �C ]

x(�)� x(�D) + z(�D) if � 2 [�D; �E]

Table 2.1: Improved update of the damper displacement z.

motion are determined from the instants of time when the damper starts slipping,

referred to as slipping time, �C , and when the damper starts sticking, referred to

as sticking time, �B = � (see Fig. 2.2). Figure 2.3 shows the damper displacement

as predicted by the fourth-order Runge-Kutta numerical time integration procedure,

by the standard single-harmonic solution [Gri�n, 1980], and the improved single-

harmonic approximation. The standard single-harmonic solution gives a rather poor

approximation of the damper displacement z, because it is unable to capture the non-

di�erentiable motion associated with the transition between sticking and slipping

phases. On the other hand, the agreement between the numerical time integration

and the improved single-harmonic approximation is excellent.
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2.2.5 Results

The improved single-harmonic approximation is applied to a speci�c model whose

parameter values are given in Table 2.2. In Figs. 2.4 and 2.5, the forced response of

the system is shown as a function of the excitation frequency for various force ampli-

tudes, ranging from a low level (P = 0:5Fd) for which the damper is mostly sticking

during one period of the motion, to a high level (P = 2Fd) for which the damper

is mostly slipping during one period of the motion. The numerical time integration

scheme used in this study is a fourth-order Runge-Kutta procedure. The agreement

between the numerical time integration procedure and the improved single-harmonic

approximation is of high quality. As could be expected, the single-harmonic approxi-

mation is not able to reproduce the subresonances (Fig. 2.5) of the frequency response

curves, since these are due to higher harmonic content of the forced response of the

system. The damper displacement amplitude cannot exceed its maximum value

Fd=kd, reached when the friction damper is slipping. Therefore, over the frequency

ranges where the friction damper slips, the amplitude of the damper displacement is

equal to its maximum value.

Figure 2.6 presents the forced response amplitude of the system normalized by

the force amplitude for various excitation amplitudes. There is a level of optimum

friction damping for which the peak response amplitude is minimum. Here, the

optimum is reached for values of the ratio of external force to maximum friction

force, P=Fd, ranging from 0:5 to 1. It is within this range that the friction damper

is the most e�ective at reducing the overall amplitude of vibrations of the system.

Since the viscous damping a�ecting the system is rather low, numerical time in-

tegration procedures have to be carried out over several hundred cycles in order to

reach steady-state. The single-harmonic approximation is therefore orders of mag-
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nitude faster than the numerical time integration. The speed of the single-harmonic

approximation makes it useful, even if some precision is lost with respect to the

time-based methods.

m = 944:6 kg c = 7700 kg=s

k = 2:4 107N=m kd = 2:4 107N=m

Fd = 246:048N ! 2 [20; 350](rad=s)

Table 2.2: Numerical values of the single-DOF system used to compare the results
of the time integration procedure and the results of the improved single-
harmonic approximation.

2.3 Multi-DOF systems with a single friction damper

2.3.1 System model

A multi-DOF linear structure with one exible dry friction damper attached

between any of the structure DOF's and the ground is considered. This model can

represent, for example, a single sector of a friction damped bladed-disk assembly.

The equations of motion for the N DOF's of the structure can be written as

M�x+C _x+Kx+ fnl(x; _x) = P cos(!t) (2.18)

where M is the mass matrix of the linear structure, K is its sti�ness matrix, C is

its viscous damping matrix, x is the vector made of the displacements of the DOF's

of the structure, P is the vector of the external forces applied to the DOF's of the

linear structure, and fnl(x; _x) is the vector of the nonlinear forces due to the friction

damper. Since only one friction damper is considered here, all components of fnl(x; _x)

are equal to zero except the one corresponding to the DOF of the structure to which

the friction damper is attached. All bold quantities refer to vectors, all underlined

quantities refer to matrices.
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harmonic approximation. The frequency responses are scaled by the force
amplitude.

M, K

F
d

k
d Pcosωt
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at 0:239L.



22

2.3.2 Reduction of the number of equations

Equation (2.18) is a set of (N � 1) linear equations coupled to a single non-linear

equation. These N equations can be reduced to a single nonlinear equation whose

only unknown is the amplitude of motion of the structure DOF attached to the

friction damper. Without loss of generality, the friction damper is assumed to be

attached to the �rst DOF of the system, x1. All displacement are assumed to be

mono-harmonic and the complex notation is used:

x = <(Xei!t) (2.19)

where X is a vector whose components are complex. Substituting Eq. (2.19) into

Eq.(2.18) leads to

�
�!2M + i!C+K

�
X = P� f?

nl
= R (2.20)

where fnl = <(f
?
nl
ei!t). Let us introduce the following notations:

X =

2
66664
X1

X2

3
77775 ; R =

2
66664
R1

R2

3
77775 ; (2.21)

(�!2M + i!C+K) =M?; M? =

2
66664
M11 M12

M21 M22

3
77775 (2.22)

where the index 1 refers to the �rst, nonlinear equation governing the displacement

of the structure DOF connected to the friction damper, and the index 2 refers to all

linear DOF's. The (N � 1) equations for the linear DOF's are separated from the

�rst, nonlinear equation. Substituting Eqs.(2.21) and (2.22) into Eq. (2.20) leads to

X2 =M�1
22
(R2 �M21X1) (2.23)

(M11 �M12M
�1
22M21)X1 = R1 �M12M

�1
22R2 (2.24)
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Equation (2.24) is a single nonlinear equation whose only unknown is X1, the am-

plitude of the displacement of the structure DOF connected to the friction damper.

Once Eq. (2.24) is solved, Eq. (2.23) can be used to obtain the amplitude, X2, of the

linear DOF's of the structure.

2.3.3 Single-harmonic approximation

The procedure for predicting the motion of a multi-DOF system with a single

friction damper attached is similar to the one for a single-DOF system, as developed

in Section 2.2.3. Let us denote X1 = Aei� with A a real number, and fnl the only

non-zero component of fnl(x; _x). The non-linear force is equal to fnl = kdz, with z

being the damper displacement. The single-harmonic expansion of z can be written

as

z = <(aei(!t+�) � ibei(!t+�)) (2.25)

where a and b are real, harmonic components given by Eqs. (2.7) and (2.8). The

force/displacement relationship depicted in Fig. 2.2 is still valid. Consequently, a and

b are still given by Eqs. (2.13) and (2.14). Let us introduce the complex, dynamic

and force quantities, mred and rred:

mred = M11 �M12M
�1
22
M21; and rred = P1 �M12M

�1
22
R2 (2.26)

Substituting Eqs. (2.25) and (2.26) into Eq. (2.24), leads to

(mredA+ kd(a� ib)) ei� = rred (2.27)

which can be re-written as

([<(mred)A+ kda] + i [�kdb+ =(mred)A]) e
i� = rred (2.28)
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Taking the modulus of these expressions leads to the non-linear equation in the

amplitude displacement of the structure DOF connected to the damper, A:

[<(mred)A+ kda]
2 + [�kdb + =(mred)A]

2 = <(rred)
2 + =(rred)

2 (2.29)

Equation (2.29) can be solved by a standard Newton procedure, and X2, the am-

plitude of the DOF's of the structure not connected to the friction damper, can be

deduced from Eq. (2.23). The phase angle � between the external force and the

structure displacement at the damper is given by:

cos� = [(�kdb+ =(mred)A)=(rred) + (<(mred)A+ kda)<(rred)]=det (2.30)

sin� = [(<(mred)A+ kda)=(rred) + (�kdb + =(mred)A)<(rred)]=det (2.31)

where det = (�kdb+ =(mred)A)
2 + (<(mred)A + kda)

2.

2.3.4 Results

The forced response in the transverse direction of a �xed-free beam with a exible

friction damper attached is obtained under a wide range of levels of external forces.

The beam is 1:33m long and the damper is attached at 0:318m from the clamped end.

The beam-damper system is depicted in Fig. 2.7. A three-DOF component mode

synthesis model was developed by the Soci�et�e Nationale d'�Etude et de Construction

de Moteurs d'Aviation (SNECMA), and the numerical parameters of the system are

the following:

M =

2
66664
6:67959 1:02115 0:6343

1:02115 1:22168 0:232108

0:6343 0:232108 0:121809

3
77775

K =

2
66664
4:43203 106 �3:77514 105 0

�3:77514 105 6:9626 104 0

0 0 1:85323 105

3
77775
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improved single-harmonic approximation. External force P = 16:563N .



26

C = �K+ �M; � = 2:6 10�5s; � = 7:49s�1

Fd = 246:048N; kd = 2:4 107N=m (2.32)

Here N = 3, and the �rst coordinate corresponds to the beam transverse displace-

ment at the damper location, while the second coordinate corresponds to the beam

tip displacement, where the external force is applied. The third coordinate corre-

sponds to a normal mode of vibration, for which the beam is �xed at the tip and at

the damper location. The complete system is presented in Berthillier et al. (1998),

where the 3-DOF model is validated by comparisons with experimental results. The

beam is referred to below as the SNECMA beam.

Figure 2.8 and 2.9 show, respectively, the beam displacement at the damper loca-

tion and the damper displacement, and the beam tip displacement, using the fourth-

order Runge-Kutta time integration procedure and the improved single-harmonic

approximation, for one particular level of external force. As was the case for the

single-DOF system in Section 2.2.5, the single-harmonic approximation is not able

to reproduce the subresonances, which are due to higher harmonic content of the

forced response, as depicted in Fig. 2.8. The agreement between the time integra-

tion procedure and the improved single-harmonic approximation is not as good for

the displacement at the tip of the beam as it is for the displacement at the damper

location. Since the damper is located at about one third of the beam span, the

di�erences between the results from time integration and single-harmonic approxi-

mation are probably ampli�ed along the beam. The di�erence between the peak tip

displacement amplitude predicted by the time integration and the single-harmonic

approximation is less than 17:2%, but it is less than 6:2% for all the cases near op-

timal damping, i.e., the cases where the most accuracy is needed, as shown in Table

2.3.



27

Forcing (N) 0.94 2.19 6.56 16.56 20.31 25. 31.47 38.44

Peak tip ampl. 0:37 0:68 0:72 1:22 1:45 1:82 2:98 5:99

(time int.) �103

Peak tip ampl. 0:37 0:71 0:87 1:18 1:36 1:73 2:82 5:22

(1-harm) �103

Error (%) 0 4.1 17.2 3.2 6.5 4.9 5.6 14.7

Peak ampl. at damp. 0:57 1:12 2:12 6:22 8:74 13:03 24:80 50:68

(time int.) �105

Peak ampl. at damp. 0:57 1:11 2:25 6:22 8:52 12:77 24:12 47:72

(1-harm) �105

Error (%) 0 0.9 6.1 0. 2.6 2.0 2.8 6.2

Table 2.3: Comparison of peak displacement amplitude predicted by the time inte-
gration procedure and the improved single-harmonic approximation, for
di�erent force amplitudes at the tip of the beam and at the damper loca-
tion.

Figure 2.10 depicts the forced response amplitude of the beam at the damper

location for various force amplitudes, normalized by the force amplitude. It can be

seen that for P = 6:563N or P = 16:653N , the peak response is approximately

minimum. Therefore, these cases correspond to the optimum dry-friction damping

of the structure, considering the displacement at the damper location. Similarly,

Fig. 2.11 shows the forced response amplitude of the tip of the beam under several

force amplitudes. Here again, there are some levels of excitation for which the peak

tip displacement is approximately minimum: from P = 16:563N to P = 25N . The

optimum damping is reached for levels of force amplitude slightly di�erent from the

ones in the case of the displacement at the damper location. Therefore, when the

forced response of a structure is studied, it is important to determine where the

maximum stresses are likely to occur, in order to know where to minimize the peak

displacements.
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2.4 Multi-DOF systems with multiple friction dampers

The method presented in Section 2.3 can be extended to systems with several

friction dampers. The equation of motion, Eq. 2.18, is still valid. However, the term

fnl(x; _x) has as many non-zero components as there are friction dampers attached

to the structure. For the sake of clarity, it is assumed that the �rst Nd coordinates

correspond to the DOF's connected to dry-friction dampers. Therefore, the �rst Nd

coordinates of fnl(x; _x) are di�erent from zero. Equations (2.19) and (2.20) are still

valid. The following notations are introduced:

X =

2
66664
X1

X2

3
77775 ; R =

2
66664
R1

R2

3
77775 ; (2.33)

(�!2M + i!C+K) =M?; M? =

2
66664
M11 M12

M21 M22

3
77775 (2.34)

where the index 1 refers to the Nd nonlinear equations governing the displacement

of the structure DOF's connected to the friction dampers, and the index 2 refers to

all linear DOF's. Substituting Eqs. (2.33) and (2.34) into Eq. (2.20) leads to:

X2 =M�1
22
(R2 �M21X1) (2.35)

(M11 �M12M
�1
22
M21)X1 = R1 �M12M

�1
22
R2 (2.36)

Equation (2.36) is a set of Nd coupled, non-linear equations, whose unknowns are the

Nd components of X1, that is, the displacement amplitudes of the structure DOF's

connected to the friction dampers.

The single-harmonic method followed for this multi-damper, multi-DOF system

is very similar to the one described in Section 2.3. When several dampers are consid-

ered, each component of the non-linear force can be written as fnl;j = kd;jzj, where
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j refers to the damper considered, j = 1; : : : ; Nd. The complex notation is adopted

for the amplitudes of the DOF's attached to friction dampers:

Xj = Aje
i�j 1 � j � Nd (2.37)

The single-harmonic expansion of any component zj of z can be written as

zj = <(aje
i(!t+�j ) � ibje

i(!t+�j)) 1 � j � Nd (2.38)

where aj and bj are still given by Eqs. (2.13) and (2.14), since the same assumptions

on the nature of the friction force are made as in Section 2.3. Let us introduce the

complex, reduced dynamic and force matrices, mred and rred:

mred =M11 �M12M
�1
22M21; and rred = P1 �M12M

�1
22R2 (2.39)

Substituting Eqs. (2.38) and (2.39) into Eq. (2.36) leads to0
@NdX
j=1

mred;ijAj + kd;i(ai � ibi)

1
A ei�ii = rred;i; 1 � i � Nd (2.40)

The following set of non-linear equations is deduced:2
4NdX
j=1

<(mred;ij)Aj + kd;iai

3
5
2

+

2
4�kd;ibi +

NdX
j=1

=(mred;ij)Aj

3
5
2

= <(rred;i)
2 + =(rred;i)

2 1 � i � Nd (2.41)

The system (2.41) can be solved using a non-linear solver. A multidimensional secant

method, based on the Broyden method has been implemented, which gives fast

results.

The displacements X2 of the linear DOF's can be obtained by using Eq. (2.35).

The phase angle �i between the external forcing and the structure displacement at

the ith damper is given by:

cos�i =

2
4(�kd;ibi +

NdX
j=1

=(mred;ij)Aj)=(rred;i)
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+(
NdX
j=1

<(mred;ij)Aj + kd;iai)<(rred;i)

3
5 =det (2.42)

sin�i =

2
4(NdX

j=1

<(mred;ij)Aj + kd;iai)=(rred;i)

+(�kd;ibi +
NdX
j=1

=(mred;ij)Aj)<(rred;i)

3
5 =det (2.43)

where det = (�kd;ibi +
PNd

j=1=(mred;ij)Aj)
2 + (

PNd
j=1<(mred;ij)Aj + kd;iai)

2.

Results for multi-DOF systems with multiple friction dampers are presented in

Fig. 4.19a.

2.5 Conclusion

An improved single-harmonic approximation was developed for the response of

a single-DOF mass-dashpot-spring system connected to a exible friction damper.

The forced response of the system under a wide range of force amplitudes has been

obtained. The agreement between the results given by this single-harmonic method

and a fourth-order Runge-Kutta numerical time integration procedure is virtually

perfect.

The method has been expanded to multi-DOF structures connected to a single

exible friction damper. Frequency response curves have been obtained for an ex-

ample beam system, for a wide range of force amplitudes. It was shown that the

agreement between the improved single-harmonic approximation and the numerical

time integration is acceptable for the displacement of the structure at the damper

location. This agreement is not as good for the displacement of the tip of the beam

considered in the present study. However, in general, errors are not too large (less

than 7%) in the range of external forcing levels which correspond to optimal damping,

i.e., levels which correspond in practice to desired damper con�gurations.



34

The contributions of this work are along three lines. First, the single-harmonic

approximation was improved so that the force transmitted by the friction dampers

is much more accurately represented than in standard single-harmonic methods -see

Fig. 2.3. Second, the single-harmonic approximation was extended to systems with

several dampers and several DOF's. Third, the reduction of the number of equations

to solve to the number of nonlinear DOF's was made in a systematic way, using

reduced, complex dynamic and force matrices.

The single-harmonic approximation is an e�cient, reliable method that is able to

predict in an economical fashion the forced response of a friction damped structural

system. It can also be used as an initial guess for the multi-harmonic method which

is presented in the next chapter.



CHAPTER III

MULTI-HARMONIC, HYBRID

FREQUENCY/TIME METHOD

3.1 Introduction

Many works on dry friction-damped structural systems are based on the harmonic

balance (HB) method [Nayfeh and Mook, 1979], which provides an e�cient alterna-

tive to the costly time integration procedure. Most studies have been limited to

single-harmonic approximations for small- or medium-size models [Wei and Pierre,

1989, Sanliturk and Ewins, 1996]. When several temporal harmonics are consid-

ered, analytic approximations of the friction force are used [Berthillier et al., 1998b],

and/or models with a single friction damper are considered [Shiau et al., 1998, Shiau

and Yu, 1996, Wang and Chen, 1993]. Convergence problems and robustness are

often cited as severe limitations of these methods.

In this chapter, the frequency-time method originally introduced in Guillen and

Pierre (1996) and Guillen and Pierre (1998) is presented and further developed. The

method allows for many exible friction dampers, a multi-harmonic representation

of the response, and large structural systems. A frequency-time algorithm is pro-

posed, derived from the HB method. The force transmitted by the friction damper

is evaluated solely in the time domain at each iteration, and transformed back into

35
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the frequency domain by Fast Fourier Transform (FFT). The resulting non-linear

equations are solved using a modi�ed Broyden's method, which greatly enhances the

robustness, convergence, and e�ciency of the procedure.

This chapter is organized as follows. First, the treatment of the non-linear

force transmitted by the damper is described. Then, the multi-harmonic hybrid

frequency/time method is presented. Finally, the Broyden method is explained.

3.2 Friction force treatment

A multi-DOF linear structure is considered, with several exible friction dampers

attached between any two of the structure DOF's, or between one of the structure's

DOF and the ground. This model can represent, for example, a dry-friction damped

bladed disk assembly with several blade-to-blade or blade-to-ground dampers. For

such a N -DOF structure, the equations of motion are:

M�x+C_x+Kx+ fnl(x; _x) = P cos(!t) (3.1)

where M is the mass matrix of the linear structure, K is its sti�ness matrix, C is its

viscous damping matrix, x is the vector of the displacements (physical or modal) of

the structure, P is the vector of the external forces, and fnl(x; _x) is the vector of the

nonlinear forces due to the friction dampers. The external forcing is harmonic and

can be applied to any DOF's of the structure.

A model of the i-th friction damper is shown in Fig. 3.1. Denote by xs;i the

displacement of the structure at one end of the i-th damper, xe;i the displacement of

the structure at the other end, fs;i the force transmitted by the i-th damper to the

s-th DOF of the structure, Fd;i the maximum force transmitted by the i-th damper,

and kd;i the i-th damper sti�ness. The value of the non-linear force depends on

the state of the friction damper, sticking or slipping. According to the macroslip
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xs,i

xe,i
zi

kd,i , Fd,i

Figure 3.1: Model of the i-th friction damper.

Damper state Update Test for next time step

Sticking fs;i(j) = fs;i(j � 1) + kd;i(xs;i(j) jfs;i(j)j > Fd;i?

�xe;i(j)� xs;i(j � 1) + xe;i(j � 1))

Slipping fs;i(j) = fs;i(j � 1) vr;i(j)vr;i(j � 1) < 0?

Table 3.1: Update for the nonlinear force transmitted by the i-th friction damper.

approach, the friction force, fs;i, can be expressed as:

fs;i =

8>>>><
>>>>:
kd;i (zi � xe;i) when kdjxs;i � zij � Fd;i (sticking)

Fd;i sign( _xe;i � _xs;i) when kdjxs;i � zij = Fd;i (slipping)

(3.2)

The force transmitted by the i-th friction damper is computed in the time domain

by performing a time-marching procedure (similar to numerical time integration) over

one period of the motion. The force is fully determined from the displacements and

velocities of the structure DOF's to which the i-th friction damper is attached. The

time-marching procedure is presented in Table 3.1. This approach relies only on the

nature of the dry-friction force, and no other assumption than the Coulomb-type

friction law is made. The damper displacements are not treated as unknowns of the

system.
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3.3 Frequency domain treatment

When a high level of accuracy is desired for the forced response, several temporal

harmonics must be considered in the periodic solution. Practically, a few harmonics

will give a good approximation of the solution, and in all cases a couple dozens of

harmonics will predict virtually the same answer as the numerical time integration.

Assume that Nh harmonics are retained in the solution. The harmonic expansions

of the periodic displacement, x, and nonlinear force, fnl, are:

x(t) =
NhX
k=0

Xc

k cos(k!t) +
NhX
k=1

Xs

k sin(k!t) (3.3)

fnl(t) =
NhX
k=0

Fcnl;k cos(k!t) +
NhX
k=1

Fsnl;k sin(k!t) (3.4)

The harmonic expansions of the periodic displacement, x, and nonlinear force, fnl,

Eqs. (3.3) and (3.4), are substituted into Eq. (3.1):

�M
�PNh

k=1X
c

k
(k!)2 cos(k!t) +

PNh
k=1X

s

k
(k!)2 sin(k!t)

�

+C
�PNh

k=1X
c

k(�k!) sin(k!t) +
PNh

k=1X
s

k(k!) cos(k!t)
�

+K
�PNh

k=0X
c

k
cos(k!t) +

PNh
k=1X

s

k
sin(k!t)

�

+
�PNh

k=0F
c

nl;k cos(k!t) +
PNh

k=1 F
s

nl;k sin(k!t)
�
= P cos(!t) (3.5)

All sin(k!t) and cos(l!t) functions are orthogonal to each other over one period of

the motion:

Z T

0
sin(k!t) cos(l!t)dt = 0 0 � k � Nh; 0 � l � Nh (3.6)

Z T

0
sin(k!t) sin(l!t)dt =

�

!
�kl 1 � k � Nh; 1 � l � Nh (3.7)Z T

0
cos(k!t) cos(l!t)dt =

�

!
�kl 0 � k � Nh; 0 � l � Nh (3.8)
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where T = 2�=! is the period of the motion and � is the Kronecker symbol. Let us

introduce the notation:

X =

2
666666666666666664

Xc

0

Xc

1

Xs

1

...

Xc

Nh

Xs

Nh

3
777777777777777775

; Fnl =

2
666666666666666664

Fc
nl;0

Fc
nl;1

Fs
nl;1

...

Fc
nl;Nh

Fs
nl;Nh

3
777777777777777775

(3.9)

Using the orthogonality relations, Eqs. (3.6)-(3.8), a HB procedure [Nayfeh and

Mook, 1979] is applied to Eq. (3.5). This leads to the following system of equations:

�X+ Fnl(X) = P? (3.10)

where � is the block-diagonal linear Jacobian matrix whose �rst block is the sti�ness

matrix, K, and whose (k + 1)-th block is de�ned as:2
664 �(k!)

2M+K k!C

�k!C �(k!)2M +K

3
775 ; k = 1; : : : ; Nh (3.11)

The external forcing is also written in vectorial form: P? = [0P0 : : :0]T. Equation

(3.10) is a system of N(2Nh + 1) equations in the frequency domain. The equations

corresponding to the nonlinear DOF's, i.e., the DOF's attached to a friction damper,

can be uncoupled from the equations corresponding to the linear DOF's, i.e., the

DOF's not attached to a friction damper, as follows.

Let us partition the harmonic component vector X into linear and non-linear

parts, asX = (Xln;Xnl)
T [Guillen and Pierre, 1996, Berthillier et al., 1998b]. Equa-

tion (3.10) is thus written as2
664 �ln �ln;nl

�nl;ln �nl

3
775
8>><
>>:
Xln

Xnl

9>>=
>>;+

8>><
>>:

0

Fnl

9>>=
>>; =

8>><
>>:
P?
ln

P?
nl

9>>=
>>; (3.12)
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where the index nl refers to the nonlinear DOF's, i.e., the ones connected to a friction

damper, and the index ln refers to the linear DOF's, i.e., the ones not connected to

a friction damper. Equation (3.12) can be reduced to, and solved for the nonlinear

DOF's as

(�nl ��nl;ln�
�1
ln
�ln;nl)Xnl + Fnl = P?

nl
��nl;ln�

�1
ln
P?
ln

(3.13)

Let us introduce the reduced linear Jacobian matrix, �red, and the reduced external

forcing, Pred:

�red = (�nl ��nl;ln�
�1
ln
�ln;nl) (3.14)

Pred = P?
nl
��nl;ln�

�1
ln
P?
ln

(3.15)

Using Eqs. (3.14) and (3.15), Eq. (3.13) can be rewritten as:

�redXnl + Fnl(Xnl) = Pred (3.16)

which is a set of Nd(2Nh+1) non-linear equations, where Nd is the number of DOF's

of the structure attached to a friction damper. Once the displacement of nonlinear

DOF's, Xnl, have been calculated, the linear ones, Xln, are obtained as

Xln = ��1ln (P
?
ln ��ln;nlXnl) (3.17)

The size of the reduced system, Eq. (3.16), may be signi�cantly smaller than the

size of the initial system, Eq. (3.10), if many DOF's of the structure are linear, i.e.,

Nd � N .

3.4 Solving the nonlinear equations in the frequency domain

Most of the previous HB studies of dry friction-damped systems have used Newton-

Raphson (NR) schemes to solve the non-linear equations in the frequency domain
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[Pierre et al., 1985, Shiau et al., 1998]. However, signi�cant convergence problems

and long computation times were encountered, especially in stick-slip regions. There-

fore, a new nonlinear solution algorithm was implemented in order to ensure better

numerical stability.

3.4.1 QR vs. LU decomposition

The Newton-Raphson schemes used in the HB analysis of friction-damped sys-

tems are often presented as su�ering convergence problems. Oftentimes, these NR

procedures rely on a LU decomposition of the Jacobian matrix, J, as

J = LU

where L is a lower N�N triangular matrix, U is an upper N�N triangular matrix,

and N �N is the size of the Jacobian J. Generally, partial pivoting is necessary in

order to improve the numerical stability. Therefore, it is assumed that

PJ = LU

where P is a N �N permutation matrix. Even with partial pivoting, the numerical

stability problems of the LU method persist. This is probably due to the fact that

the amplitudes of the harmonic components of the modes retained to describe the

dynamics of the structure are of very di�erent orders of magnitude.

The Jacobian matrix can also be treated by a QR decomposition. In this case,

the Jacobian can be written as

J = QR

where Q is a N � N orthogonal matrix and R is a N � N , non-singular, upper

triangular matrix, i.e., R[i; j] = 0 for i > j and R[i; i] 6= 0. TheQR decompositions of
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the Jacobian do not require the scaling of the dependent variables and are numerically

stable without pivoting [Allgower and Georg, 1990].

LU and QR decompositions are often used to solve linear systems of equations

such as

J�X = �F (3.18)

When a LU decomposition of the Jacobian, J, is used, Eq. (3.18) can be resolved in

two steps. The lower system is �rst solved

LY = �F (3.19)

Then the upper one is solved using the results of the �rst sub-problem:

U�X = �Y (3.20)

Both Eqs. (3.19) and (3.20) are elementary: since L and U are triangular, the system

can be solved by back-substitution. When the QR decomposition is used, only one

step is needed since Eq. (3.18) is equivalent to

R�X = �QT F (3.21)

Eq. (3.21) is straightforward to solve by back-substitution since R is a non-singular

triangular matrix.

Although QR decompositions are more numerically stable than LU ones, they

require about twice as many operations as LU decompositions. Therefore, it is

important to examine algorithms which allow one not to compute Q and R at each

iteration. These methods are briey discussed in the next section.

3.4.2 Broyden method

Newton and Newton-Chord methods
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Denote by F the function whose zeros the method needs to �nd. In the case of

friction damped structural systems, F is deduced from Eq. (3.16):

F(X) = �redX+ Fnl(X)�Pred (3.22)

When a Newton method is used to solve Eq. (3.22), the n-th iterative step is

Xn+1 = Xn � J�1(Xn)F(Xn) (3.23)

where J is the Jacobian matrix of Eq. (3.22):

J(Xn) =
@F

@X

�����
Xn

(3.24)

The Newton procedure, as presented in Eq. (3.23), is locally quadratically convergent

and requires the computation and the inversion of the Jacobian matrix, J, after each

iteration. This is computationally very demanding and a Newton-Chord method is

often used. In the Newton-Chord method, the Jacobian is �xed:

A = J(X0) (3.25)

and the iterative step, Eq. (3.23), is substituted by

Xn+1 = Xn �A�1F(Xn) (3.26)

The iterative Newton-Chord method has only locally linear convergence. The Broy-

den and the other quasi-Newton, multidimensional secant methods involve the use of

the previously calculated data in order to improve the quality of the approximated

Jacobian A via successive rank-one updates. The quasi-Newton step substituting

Eq. (3.23) is

Xn+1 = Xn �A�1
n F(Xn) (3.27)
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where An is the approximate Jacobian at the n-th iteration.

Secant condition and Broyden's update

A �rst-order Taylor expansion of the function F(X) leads to the following relation:

F(Xn+1)� F(Xn) = J(Xn) (Xn+1 �Xn) (3.28)

which is called the secant condition and is naturally veri�ed by the Newton method,

as de�ned in Eq. (3.24):

JNewton (Xn+1 �Xn) = F(Xn+1)� F(Xn) (3.29)

where JNewton is the Newton Jacobian. When Newton-type steps are used, it is

natural to require that the next approximate Jacobian, An+1, satis�es the secant

condition:

An+1 (Xn+1 �Xn) = F(Xn+1)� F(Xn) (3.30)

Equation (3.30) provides Nd relations, which are not su�cient to determine the

Nd � Nd components of the new approximate Jacobian An+1. Since it is assumed

that the approximate Jacobian at the previous iteration,An, is a good approximation

of the real Jacobian, the new approximation is determined from the old one by the

least change principle. Therefore, among all matrices A which satisfy the secant

condition, Eq. (3.30), the new approximate Jacobian will be chosen to be the one

with the smallest distance from An.

The Broyden method uses the Frobenius norm, k � kF , in order to �nd the approx-

imate Jacobian, An+1, as the matrix satisfying the secant equation with the smallest

distance from the approximate Jacobian of the previous iteration:

An+1 = min
A

n
kA�AnkF ; A (Xn+1 �Xn) = F(Xn+1)� F(Xn)

o
(3.31)
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where the Frobenius norm is de�ned as:

kAkF =

0
@ NdX
i;j=1

(A[i; j])2

1
A

1

2

(3.32)

The solution of Eq. (3.31) can be found analytically, and is given by:

An+1 = An +
F(Xn+1)� F(Xn)�An (Xn+1 �Xn)

kXn+1 �Xnk
(Xn+1 �Xn)

T (3.33)

The Broyden update, Eq. (3.33), leads to superlinear convergence of the Broyden

method. The interested reader is referred to Allgower and Georg (1990) for more

details on the Broyden algorithm.

Given the particular form of the update, Eq. (3.33), the QR decomposition of

An+1 can be updated from the QR decomposition of An in O(N2) operations. All

that is needed is the initial guess A0, which is computed as a �nite-di�erence ap-

proximation of the Jacobian. Therefore, because of the improved updates of Q and

R, the Broyden iteration is faster than the Newton step, Eq. (3.23).

For the friction-damped systems considered in this study, the Broyden method

seems to have better stability than NR schemes [Ling and Wu, 1987]. The Broyden

algorithm needs more iterations to converge, but since there are fewer operations

involved at each iteration, the Broyden method turns out to be faster than the NR

algorithm. Moreover, the convergence of the method is nearly always guaranteed,

even with a poor initial guess. Bobylev et al. (1994) presents a proof of the conver-

gence of HB in the case of some nonlinearities.

3.5 Overview of the multi-harmonic, hybrid frequency/time
method

The multi-harmonic, hybrid frequency/time method can be summarized as fol-

lows:
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Procedure 1 Multi-harmonic, hybrid frequency/time method.

1. At a given frequency, the number of equations is reduced to the number of

nonlinear DOF's [Guillen and Pierre, 1996, Berthillier et al., 1998b], using a

reduced Jacobian matrix and external forcing.

2. An initial guess is obtained by, e.g., improved single-harmonic approximation,

see Chapter II.

3. The Broyden method is used iteratively until convergence criteria are met and

Eq. (3.16) is solved:

� From the harmonic components of the displacement, Xnl, the periodic

nonlinear displacement, xnl, is computed in the time domain by FFT.

� From the nonlinear displacement, xnl, the non-linear force transmitted by

the friction dampers, fnl, is computed in the time domain, following the

procedure presented in Section 3.2.

� From the non-linear friction forces in the time domain, fnl, the harmonic

component of the friction forces in the frequency domain, Fnl(X) are com-

puted by FFT.

� The objective function, F(X), is computed according to Eq. (3.22).

� A new estimate of the harmonic components, X is obtained by solving

Eq. (3.27).

� The new approximate Jacobian is computed using the Broyden update,

Eq. (3.33).

4. Move to the next frequency.
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3.6 Conclusion

A new multi-harmonic method was developed for the forced response analysis

of multi-DOF systems connected to several ground-to-ground or ground-to-blade

exible friction dampers. The main contributions of this work are as follows. First,

the force transmitted by the friction dampers is evaluated in the time domain only,

and no approximation other than Coulomb's law of friction is made. Second, the

equations of motion are transformed into the frequency domain in an e�cient way,

while retaining only the non-linear terms. Third, the Broyden method is implemented

for friction-damped systems.

The results of the method are presented in the next chapter.



CHAPTER IV

SELECTED FORCED RESPONSE RESULTS

4.1 Introduction

The method presented in Chapter III for the analysis of the forced response of

friction damped structural systems is applied in this chapter to several structures.

First, a simple beam attached to a exible friction damper is considered. Second, a

model of a blade used in a jet engine turbine stage, and attached to a exible friction

damper, is studied. Time histories and frequency responses are presented for both

systems. Complex features of the non-linear response are revealed such as: motions

for several stick-slip phases per period, subresonances, e�ects of higher harmonics,

optimal damping. Finally, large-scale models of dry-friction damped bladed disks

used in turbomachinery applications are examined. Both tuned con�gurations (with

all blades identical) and mistuned ones (with slightly di�erent blades) are considered.

Results obtained for mistuned systems evidence the occurrence of localized responses,

which are characterized by mostly sticking motion at most blades and mostly slipping

motion at a few blades.

48
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4.2 Forced response of beam system

4.2.1 System model and inuence of force amplitude

The �rst system considered is a beam undergoing transverse vibrations, �xed at

one end, excited at the other end, and attached to an elastic friction damper. The

system is the same as the one presented in Section 2.3.4 and whose characteristics

were provided by SNECMA [Berthillier et al., 1998b]. The system model is depicted

in Fig. 2.7. Three component modes are retained to describe the dynamics of the

beam: two constraint modes corresponding to the static shape of the beam with

unit displacement at the damper location and at the tip, respectively, and a normal

vibration mode, for which the beam is �xed at the tip and at the damper location.

Figures 4.1 and 4.2 present sample time histories of the displacement of the 3-

DOF SNECMA beam, as predicted by the hybrid frequency/time method (labeled as

\Broyden" on the �gures) and by numerical time integration. In Fig. 4.1, the damper

displacement and the displacement at the damper location have almost the same

amplitude, with the damper slipping only during a small portion of each period. It

can be observed that the occurrence of slipping introduces a small phase shift between

the damper displacement and the displacement at the damper location. Here a large

number of harmonics (Nh = 19) are considered in the solution, and the hybrid

frequency/time method is able to match almost perfectly the results predicted by

time integration. Figure 4.2 presents a case of near optimal damping. It is interesting

to notice that there are in this case more than two slipping phases during one period

of the motion. The hybrid frequency/time method is able to handle these cases and,

when 19 harmonics are accounted for, the results are almost identical to the ones

predicted by time integration.

Figure 4.3 shows the frequency response of the 3-DOF SNECMA beam, at the
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Figure 4.1: Time histories of displacement at the damper location, x1, and damper
displacement, xd, for the 3-DOF SNECMA beam, for a force amplitude
of 20:313N , at 170rad=s, as predicted by the 19-harmonic hybrid fre-
quency/time method (Broyden), and numerical time integration.

damper location, for various force amplitudes, as predicted by the multi-harmonic hy-

brid frequency/time method. The amplitudes have been normalized by the external

force amplitude. Three sets of curves can be identi�ed: the �rst one corresponds to

cases where the damper is slipping most of the time. This is the case for high force

amplitudes, namely for P = 31:475N and P = 38:438N . As the force amplitude

increases, the resonance frequency of these response curves tends to the so-called

slipping resonance frequency, equal to the natural frequency of the beam without

any friction damper attached to it. The second group of curves corresponds to cases

where the damper is sticking during most of the motion. This is the case for low

levels of force amplitude, from P = 0:938N to P = 6:563N . As the force amplitude



51

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7 8

A
m

pl
itu

de
 (

m
m

)

Non dimensionalized time

x1, Broyden, 19H
xd, Broyden, 19H

x1, Time Int.
xd, Time Int.

Figure 4.2: Time histories of displacement at the damper location, x1, and damper
displacement, xd, for the 3-DOF SNECMA beam, for a force ampli-
tude of 25:0N , at 200rad=s, as predicted by the 19-harmonic hybrid
frequency/time method (Broyden), and numerical time integration.

decreases, the resonance frequency of these response curves tends to the so-called

sticking resonance frequency, equal to the natural frequency of the beam with an

attached sti�ness connected to ground at the damper location, equal to the sti�-

ness of the exible friction damper. Finally, the third group of curves corresponds

to cases where the damper undergoes both signi�cant slipping and sticking phases

during each period of the motion. These cases correspond to intermediate levels of

force amplitude, from P = 6:563N to P = 16:563N , and it can be seen that they

also correspond to the optimal friction damper e�ect. Since the ratio of maximum

amplitude over force amplitude is minimum for the curves of the third group, the

damper is most e�ective at reducing the response amplitude in these regions.



52

0

2e-06

4e-06

6e-06

8e-06

1e-05

1.2e-05

1.4e-05

0 50 100 150 200 250 300 350 400 450

A
m

pl
itu

de
 (

m
/N

)

Frequency (rad/s)

Beam Displacement at Damper Location

0.938N
2.188N

6.563
16.563N
20.313N

25.0N
31.475N
38.438N

Figure 4.3: Frequency responses at the damper location, for the 3-DOF SNECMA
beam, for various force amplitudes, as predicted by the 15-harmonic hy-
brid frequency/time method.

Figure 4.4 also shows the frequency response of the beam system, but at the tip

of the 3-DOF SNECMA beam. Several levels of external force are considered and

results are obtained by the multi-harmonic hybrid frequency/time method with 15

harmonics. As in Fig. 4.3, there are three groups of curves which correspond to

the cases described above. It is interesting to notice that the force amplitude that

corresponds to optimal damping for the beam's tip response is not the same as the

one yielding optimal damping for the response at the damper location. For the beam

tip response, P = 20:313N for optimal damping, while P = 6:563N for minimum

peak response at the damper location. Therefore, when a system is designed, the

maximum stress location must be �rst determined so that the proper friction damper

will minimize the vibrations at this location.
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Figure 4.4: Frequency responses at the tip of the beam, for the 3-DOF SNECMA
beam, for various force amplitudes, as predicted by the 15-harmonic hy-
brid frequency/time method.

4.2.2 Inuence of the damper sti�ness

The damper sti�ness is an important characteristic of friction damped systems.

Its inuence on the response of the 3-DOF beam attached to a single friction damper

presented in Section 4.2.1 is investigated here. The amplitude of the external force is

held constant to P = 20:313N , which is the value corresponding to optimal damping

at the beam's tip, and the damper sti�ness is varied. Figures 4.5 and 4.6 depict the

beam's frequency responses at the damper location and at the tip, respectively, for

various damper sti�nesses. For low values of the damper sti�ness, kd � 2:4�105N=m,

the damper is hardly slipping because the force in the damper cannot build up to

the slipping value. With the damper hardly slipping and the damper sti�ness small,

the response of the system is very similar to the response of the beam without an
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attached friction damper, and the frequency of the motion approaches the natural

frequency of the cantilevered beam, !beam = 159:39 rad=s.
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Figure 4.5: Beam frequency response at the damper location, x1, for the 3-DOF
SNECMA beam, for various damper sti�nesses, kd, as predicted by the
15-harmonic hybrid frequency/time method, and for force amplitude P =
20:313N .

As the damper becomes sti�er, there is more slipping and thus more friction

during each cycle of the motion and more energy is dissipated. Therefore, as seen

in Figs. 4.5 and 4.6, the overall amplitude of the motion decreases when the damper

sti�ness increases, all other parameters remaining constant, and the amplitude versus

frequency trend is the same for the tip displacement, x2, and the displacement at

the damper location, x1.

Figures 4.7 and 4.8 show the beam's frequency responses at the damper location

and at the tip, respectively, for various, large values of the damper sti�ness. Observe

that, as the damper sti�ness becomes large, the frequency response of the system
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Figure 4.6: Beam frequency response at the tip, x2, for the 3-DOF SNECMA beam,
for various damper sti�nesses, kd, as predicted by the 15-harmonic hybrid
frequency/time method, and for force amplitude P = 20:313N .

converges toward the response of the beam attached to a rigid damper, that is, a

damper with an in�nite sti�ness. The proof of this convergence is not presented

here, but the interested reader is referred to Section 5.2.3 for a similar study in

the free response case. Therefore, using the method presented in Chapter III, it

is possible to study the dynamics of structural systems attached to rigid friction

dampers: the dampers must be modeled as exible dampers with sti�nesses large

enough to represent correctly the dynamics of rigid dampers.

4.3 Forced response of turbine blade system

A model of a turbine blade of a jet engine provided by SNECMA is considered in

this section and is depicted in Fig. 4.9 [Berthillier et al., 1998a]. The blade is shown
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Figure 4.7: Beam frequency response at the damper location, x1, for the 3-DOF
SNECMA beam, for various damper sti�nesses, kd, as predicted by the
15-harmonic hybrid frequency/time method, and for force amplitude P =
20:313N .

with the disk section to which it is attached and the location of the dampers, i.e.,

cavities underneath the blade platform, is indicated. The blade properties, including

the natural resonance frequencies, are proprietary. The �nite element model of the

blade contains more than 50000 DOF's, but a reduced order modeling technique is

performed to reduce the size of the model to 18 modes of vibration. Of those 18

component modes, 2 are constraint modes corresponding to the static shape of the

blade with unit displacement at the damper location and at the tip, respectively,

and 16 are normal vibration modes, for which the blade is �xed at the tip and at the

damper location. A single, blade-to-ground exible friction damper is inserted inside

a cavity, underneath the blade platform, as indicated on Fig. 4.9. All DOF's of the

blade are externally excited, and the excitation data was computed by SNECMA
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Figure 4.8: Beam frequency response at the tip, for the 3-DOF SNECMA beam,
x2, for various damper sti�nesses, kd, as predicted by the 15-harmonic
hybrid frequency/time method, and for force amplitude P = 20:313N .

using aeroelastic models of the forces exerted on the blade. The equations of motion

for the blade are derived from Eq. (3.1):

M�x+C_x+Kx+ fnl(x; _x) = P cos(!t) (4.1)

where N = 18 and Nd = 1. Since there is a single friction damper connecting to a

single DOF of the blade, only one of the 18 components of fnl(x; _x) is di�erent from

zero. The viscous damping present in the system is assumed to be proportional:

C = �K+ �M (4.2)

The values of the damping coe�cients, � and �, are proprietary, but the viscous

damping is smaller than 0:1%. Of particular interest here is the �fth mode of vi-

bration, which has been shown to yield a large response amplitude at the tip of
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the blade (third DOF). Thus, excitation frequencies near the �fth blade mode are

considered in this study. For con�dentiality reasons, the amplitude and frequency in

Figs. 4.10-4.13 are normalized to the linear values when the damper is fully stuck.

The maximum force transmitted by the friction damper, Fd, is normalized to its

optimal damping value, Fd0.

Frequency responses were obtained for various levels of maximum force transmit-

ted by the friction damper. Figures 4.10 and 4.11 show the response amplitudes at

the damper location and at the tip of the blade versus frequency, when nine temporal

harmonics are used. As noticed for the beam system in Section 4.2.1, three groups of

frequency responses can be observed. The group at the lower frequencies corresponds

to motions where the friction damper is mostly slipping during one period of the mo-

tion. The group at the higher frequencies corresponds to motions where the friction

damper is mostly sticking during one period of the motion. The intermediate group

corresponds to cases where the friction damper has a truly stick/slip intermittent

motion. The energy dissipation by friction is optimal in these latter cases.

Given the very low level of viscous damping present in the case considered here,

the time integration calculations had to be performed over a very large number of

cycles (> 10000) in order to reach steady state. Figures 4.12 and 4.13 show the

comparison between the results predicted by the hybrid frequency/time Broyden

method, and by the time integration procedure, at the damper location and at the

tip of the blade, for a value of the maximum force transmitted by the friction damper

close to the optimal damping value. The results predicted by the two methods are

virtually identical. Therefore, the hybrid frequency/time Broyden method appears to

be a robust and e�cient design tool, which could be used, for example, to determine

the optimal design parameters of the friction damper, so that the peak response
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Damper Location

Figure 4.9: 18-mode turbine blade model [Berthillier et al., 1998a]. Friction dampers
are inserted between the blade and the platform.
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Figure 4.10: Blade frequency response at the damper location, normalized by the
peak amplitude when the damper is totally stuck, for various levels of
maximum force transmitted by the damper, Fd=Fd0, as predicted by the
hybrid frequency/time (Broyden) method, with 9 harmonics used.
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Figure 4.11: Blade frequency response at the tip, normalized by the peak tip ampli-
tude when the damper is totally stuck, for various levels of maximum
force transmitted by the damper, Fd=Fd0, as predicted by the hybrid
frequency/time (Broyden) method, with 9 harmonics.
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Figure 4.12: Blade frequency response at the damper location, at optimal damping,
Fd = Fd0, as predicted by the Runge-Kutta time integration method,
and by the hybrid frequency/time (Broyden) method, with 9 harmonics.

amplitude at the tip of the blade is minimized. Notice that the overall aspect of

the frequency response, Figs. 4.10-4.13, is very similar to the one of the frequency

response of the beam system presented in Section 4.2.1.

4.4 Performance of the hybrid frequency/time method

In Section 4.2 and 4.3, the results predicted by the hybrid frequency/time method

presented in Chapter III are compared with those of the numerical time integration.

It was observed that the hybrid frequency/time is able to capture accurately the

dynamics of friction-damped structural systems. In this section, the two methods,

i.e., the hybrid frequency/time method and the numerical time integration, are com-

pared in terms of computational e�ciency. Table 4.1 presents the CPU time needed



63

0.017

0.033

0.050

0.067

0.083

0.100

0.117

0.133

0.94 0.95 0.96 0.97 0.98 0.99 1.00 1.01 1.02 1.03 1.04

N
or

m
al

iz
ed

 A
m

pl
itu

de

Normalized Frequency

Broyden, Fd=Fd0
Runge, Fd=Fd0

Figure 4.13: Blade frequency response at the tip, at optimal damping, Fd = Fd0,
as predicted by the Runge-Kutta time integration method, and by the
hybrid frequency/time (Broyden) method, with 9 harmonics.
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Case 3-DOF SNECMA beam 18-DOF blade

Method CPU time (s) CPU time (s)

Broyden (1 harm.) 1.87 9.74

Broyden (3 harm.) 4.43 16.69

Broyden (5 harm.) 5.83 25.38

Broyden (7 harm.) 5.04 95.01

Broyden (9 harm.) 7.89 94.72

Broyden (11 harm.) 12.96 405.84

Broyden (13 harm.) 8.02 419.05

Broyden (15 harm.) 18.15 416.25

Broyden (21 harm.) 22.05 407.64

Time integration 3807.6 167685.6

Table 4.1: Computational time needed by the multi-harmonic frequency/time
method and numerical time integration for the determination of the fre-
quency response of the SNECMA beam presented in Section 4.2.1 and of
the blade presented in Section 4.3.

on a C240 HP workstation to determine the frequency response of the beam and the

blade systems presented in Sections 4.2.1 and 4.3, respectively, when the time inte-

gration procedure is used and when the multi-harmonic hybrid frequency/method

is performed. The level of external force for the beam case, P = 20:313N , and the

level of maximum slipping force for the blade case, Fd = Fd0, correspond to a near

optimal damping situation where the Broyden method is the slowest. The response

is computed at 400 di�erent frequencies.

The hybrid frequency/time method is much faster than the numerical time in-

tegration, even when as many as 21 temporal harmonics are retained in the solu-

tion. For both systems, the 3-DOF beam and the 18-DOF blade, the time inte-

gration requires several hundreds more times computational time than the hybrid

frequency/time method.
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4.5 Large-scale tuned and mistuned beam assemblies

The multi-harmonic Broyden solution method was applied to large-scale beam

assemblies, that may be viewed as simple models of bladed disk assemblies found

in turbomachinery rotors. Most of the previous studies on friction damped systems

have been limited to structures connected to one, or possibly two friction dampers. In

the present study, large-scale structures with many friction dampers are considered.

A cyclic structural system made of 36 SNECMA beams, each attached to a

ground-connected friction damper is considered. The characteristics of the beam

and the dampers are the same as these in Section 2.3.4, and are given in Eq. (2.32).

The beams are elastically coupled at their tips, kc = 105N=m. The 36-th beam is

connected to the 35th and to the �rst, making the beam assembly cyclic. This may

represent a friction-damped bladed-disk assembly, where the disk is assumed rigid,

and the blades are coupled through shrouds. Figure 4.14 shows a typical blade as-

sembly with shrouds [Bladh et al., 1998] and the coupled beam assembly considered

here is depicted in Fig. 4.15.

A harmonic external force is applied at the tip of each beam, and the external

force is assumed to be with engine order 2: there are two waves of excitation traveling

from blade to blade. Denote by Fex;i(t) the excitations on the i-th blade and by Fex

the amplitude of the external force. Assume that the excitation is harmonic at

frequency ! and that the engine order is E, we have:

Fex;i = Fex cos(!t+
2i�E

36
) (4.3)

where the phase of the 36-th blade is arbitrarily set to zero. In the present case,

given that there are 36 beams and that the engine order is 2, the phase di�erence

between two adjacent beams is �=9 radians, or 20 degrees.
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Figure 4.14: Blade assembly with shrouds [Bladh et al., 1998].
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Figure 4.15: 36-beam, 36-damper, cyclic, coupled beam assembly.
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Figure 4.16: Beam frequency responses at the damper location (x1), for beams 13
through 24 from a tuned, 36-beam assembly with engine order two
excitation, coupled by a sti�ness of k = 105N=m, for a force ampli-
tude of 20:313N , as predicted by the 3-harmonic hybrid frequency/time
method.

Both tuned and mistuned beam assembly con�gurations are considered. In the

tuned case, all beams are identical with nominal characteristics given in Section 2.3.4.

However, in industrial bladed disks, the blades are slightly di�erent from each other,

due to manufacturing defects. In order to account for these di�erences, responsible

for the mistuning of the blade assemblies, the Young's modulus of the material is

assumed to change from one beam to the other. The introduction of the mistuning

is done in the following way. A series of 36 random numbers, ri; i = 1; : : : 36, of

zero-average and unit standard deviation is generated. If a level of S% mistuning is

considered, the Young's modulus Ei of the i-th beam is given by Ei = (1 + Sri)E0,

where E0 is the nominal Young's modulus of the beams.
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Figure 4.17: Beam frequency response at the tip (x2), for beams 13 through 24 from
a tuned, 36-beam assembly with engine order two excitation, coupled
by a sti�ness of k = 105N=m, for a force amplitude of 20:313N , as
predicted by the 3-harmonic hybrid frequency/time method.
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Figures 4.16 and 4.17 show the frequency response of beams number 13 through

24 in the tuned case, at the damper location and at the tip of the beams, respectively.

The level of force amplitude considered in this study is near the level, P = 20:313N ,

which corresponds to optimal friction damping for the standard 3-DOF SNECMA

beam, as detailed in the Section 4.2.1. As expected, the frequency response is iden-

tical for all beams in the tuned case. While the beam response amplitude are the

same, there is a 20-degree phase di�erence in the responses of adjacent beams, as

illustrated in Fig. 4.18. The same phase di�erence characterizes the displacements

of adjacent dampers, as seen again in Fig. 4.18.

Figure 4.19 depicts the time histories for selected beams in a mistuned 36-beam

assembly (the beam frequencies are generated from a uniform random distribution

with 7% standard deviation), for an engine order 3 excitation. The one-harmonic

calculation, shown in Fig. 4.19a, provides a fair approximation of the amplitude of

the response, but does poorly at describing the complex dynamic response of the sys-

tem. It is important to notice the results predicted by the one-harmonic calculation

are identical to the ones predicted by the improved single-harmonic approximation

presented in Section 2.4. On the other hand, results obtained with the hybrid fre-

quency/time method with 9 harmonics, depicted in Fig. 4.19b, describe accurately

the truly stick/slip motions or the mostly slipping motions, with several stick/slip

phases per cycle. For the results presented in Fig. 4.19b, 2052 equations are solved

by the hybrid frequency/time Broyden method, of which 684 are non-linear. No con-

vergence problems were ever encountered, and, even with such a level of accuracy,

the Broyden method is still several orders of magnitude faster than the numerical

time integration.

Figures 4.20 and 4.21 show the frequency responses of the �rst 12 beams of the
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mistuned system for various values of the coupling sti�ness. It can be seen that, for

low and high values of the coupling, the beams respond in a similar way. For in-

termediate values of the coupling, however, the beam assembly exhibits localization,

where some beams exhibit a slipping-type resonance, and others exhibit a sticking-

type resonance, with large di�erences in the peak resonant amplitudes of the various

beams [Guillen and Pierre, 1998]. Although the system is only 7%-mistuned, there

is up to a factor �ve between the peak response amplitudes of the beams: the local-

ization caused by small mistuning is strong. Beams 13 through 36 are not shown, but

would reveal similar behavior. The multi-harmonic method is also able to capture

subresonances, as seen in Fig. 4.21f.

The magni�cation factor, de�ned as the ratio of the maximum resonant ampli-

tude of the mistuned structure (for any beam) over a frequency range to that of the

tuned system, is a measure of the localization taking place due to mistuning. Figure

4.22 presents the inuence of the coupling sti�ness on the magni�cation factor, M.

It can be seen that the localization is stronger at the damper locations than at the

tip of the beams, where the coupling sti�nesses are attached. Also, the localization

factor is stronger for intermediate values of the coupling sti�ness, and the number

of harmonics has a signi�cant inuence on the degree of localization. This is con-

sistent with results published in the literature on localization in nonlinear mistuned

assemblies [Wei and Pierre, 1989].

4.6 Conclusion

Results for the forced response of various friction damped structural systems were

presented. Small- to large-scale systems were considered for a variety of structural

and friction parameters. The multi-harmonic method developed in Chapter III is
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Figure 4.19: Displacement at the damper location, x1, and damper displacement, xd,
for the 7% mistuned 36-beam assembly. Beams numbered 8, 11 and 22
are shown, coupled by a sti�ness, kc = 7:103N=m, for engine order three
excitation and a force amplitude of 20:313N at 200rad=s, as predicted
by (a) the 1-harmonic Broyden method and (b) 9-harmonic Broyden
method, and numerical time integration.
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Figure 4.20: Frequency response of beams 1 through 12, at the damper locations,
x1, for the 7% mistuned 36-beam assembly, coupled by a sti�ness,(a)
kc = 103N=m, (b) 3:103N=m, and (c) 5:103N=m, for engine order three
excitation and a force amplitude of 20:313N , as predicted by the 3-
harmonic Broyden method.
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Figure 4.21: Frequency response of beams 1 through 12, at the damper locations,
x1, for the 7% mistuned 36-beam assembly, coupled by a sti�ness, (d)
6:103N=m, (e) 1:2:104N=m, and (f) 105N=m, for engine order three
excitation and a force amplitude of 20:313N , as predicted by the 3-
harmonic Broyden method.
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e�cient and reliable and revealed complex features of the non-linear response, in-

cluding localization and optimal damping. The method can e�ortlessly predict the

forced response of large-scale models of dry-friction damped bladed disks, and the

associated computer code may e�ciently be used for the design of such friction-

damped systems. The computational time savings provided by the multi-harmonic,

hybrid frequency/time method with respect to the numerical time integration make

the method attractive to study the inuence of structural and friction parameters.



CHAPTER V

FREE RESPONSE AND STABILITY

5.1 Introduction

Chapters II to IV have dealt with the forced response of friction damped struc-

tural systems. In some instances, for example for the fan stage of jet engines, free

response and stability may become relevant issues of importance. Friction damping

is an e�ective way to reduce vibrations and dissipate the energy brought into the

system by, for example, aerodynamic forces, and thus to reduce the occurrence of

utter and enhance stability.

This chapter is organized as follows. First, the free response and stability of a

single-DOF friction damped system with negative viscous damping is considered.

Then, the method is extended to a multi-DOF system connected to a single friction

damper. Finally, some considerations are made on the stability of a multi-DOF

friction damped system.

5.2 Free response of single-DOF systems

A single-DOF system, consisting of a spring-mass-dashpot connected to an elastic

friction damper is considered, as shown in Fig. 2.1. Negative viscous damping is

considered, which may be a model for motion-dependent aerodynamic forces. The

78
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system is autonomous, thus there is no external forcing: the only source of energy

is the negative viscous damping, which can induce a utter instability. Friction

damping is the only phenomenon responsible for dissipation of energy. Since the

friction damper can dissipate energy only when it is slipping, it is expected that all

periodic motions predicted by a harmonic balance analysis will exhibit at least some

slipping during each period of the motion, so as to balance the energy brought into

the system by the negative viscous damping.

5.2.1 Single-harmonic approximation

The single-DOF system depicted in Fig. 2.1 and considered here has the following

equation of motion:

m�x + c _x + kx+ fnl(x; _x) = 0 (5.1)

where m; c, and k are, respectively, the mass, the (negative) viscous damping co-

e�cient, and the sti�ness of the single-DOF system, x represents the amplitude of

the mass displacement, fnl(x; _x) is the force transmitted by the friction damper of

sti�ness kd and maximum force Fd. The force transmitted by the damper is equal to

fnl = kdz, where z denotes the position of the friction damper. The negative viscous

damping coe�cient is taken as follows:

c = �r(�k + �m) (5.2)

where � and � are constant coe�cients, and r is a numerical parameter greater than

zero, referred to below as the viscous damping ratio. The single-harmonic procedure

is very similar to the one presented in the case of the forced response in Section 2.2.3.

It is assumed that x and z can be written as:

x = A cos!t (5.3)
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z = a cos!t+ b sin!t (5.4)

Unlike Eqs. (2.3) and (2.4), Eqs. (5.3) and (5.4) do not need to include a phase di�er-

ence, since the system is autonomous and the phase of x can be de�ned arbitrarily.

The expressions of a and b are unchanged with respect to the forced response case:

�c = arccos
�
1�

2Fd
Akd

�
(5.5)

a =
A

�

�
�c +

1

2
sin 2�c

�
(5.6)

b =
�
Fd
kdA

� 1
�
4Fd
kd�

(5.7)

Substituting Eqs. (5.3-5.7) into the equation of motion, Eq.(5.1), and balancing the

cosine term, leads to the following nonlinear equation for the unknown displacement

amplitude, A:

�A

 
kdb

cA

!2

m+ kA + kda = 0 (5.8)

where the cosine harmonic component, a, of the damper displacement, z, is a function

of the amplitude, A. Balancing the sine term leads to the following equation for the

frequency, !:

! =
kdb

cA
(5.9)

Equation (5.8) can be solved by any standard secant Newton method, and the fre-

quency can be deduced from the value of the mass displacement amplitude using

Eq. (5.9).

The method was tested on a single-DOF system whose characteristics are listed

in Table 5.1. The damper characteristics are the same as the ones of the damper

presented in Section 2.3.4. The mass and the sti�ness are chosen so that the sticking

and slipping resonance frequencies of the single-DOF system are identical to the ones

of the 3-DOF beam presented in Section 2.3.4.
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Parameter (unit) Value

m(kg) 944.6

k(N=m) 2:4 107

kd(N=m) 2:4 107

Fd(N) 246:048

�(s) 2:6 10�5

�(s�1) 7:49

Table 5.1: Values of the parameters for the single-DOF case.

Figure 5.1 depicts the amplitude of the mass displacement as predicted by the

single-harmonic balance method, as a function of the negative viscous damping ra-

tio, r. The results are similar to the ones presented in numerous previous studies

[Sinha and Gri�n, 1983, Sinha and Gri�n, 1985]. For values of the negative viscous

damping ratio large enough, r > rmax, the friction damper is not able to dissipate all

the energy brought into the system by negative viscous damping. Therefore, there is

a net increase of energy, and no stable motion. For lower values of the damping ratio,

there are two amplitudes of harmonic motion predicted by the method. The lower

one corresponds to a mostly sticking motion, and the higher one corresponds to a

mostly slipping motion. The hybrid frequency/time method is able to �nd periodic

solutions, but it cannot predict their stability. In the case of a single-DOF system,

the curves presented in Fig. 5.1 have been studied extensively. The higher amplitude

curve depicts unstable equilibrium positions: the system is unstable when the initial

displacement is larger than the amplitude of the high branch, and the initial veloc-

ity is zero. When the initial displacement is lower than the converged amplitude of

the high branch, and the initial velocity is zero, the system is stable, and converges
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toward the lower branch.

Figure 5.2 presents the frequency of the mass displacement as predicted by the

single-harmonic balance method, as a function of the negative viscous damping ratio

r. As seen in the amplitude curve in Fig. 5.1, there can be no stable motion for

negative viscous damping ratios larger than a maximum value, r > rmax, and, when

a solution exists, there are two possible frequencies at which the system can oscillate.

The higher one is stable and corresponds to the mostly sticking motion, and the lower

one is unstable and corresponds to the mostly slipping motion. System oscillations

can only take place at a frequency between the slipping natural frequency and the

sticking natural frequency, as explained below.

Since friction damping is the only way to dissipate energy in the system, periods

of slip alternated with periods of stiction are always present in the steady-state free

response. Therefore, the system is less sti� than it would be if it was connected to a

sti�ness equal to the damper sti�ness. However, since the damper is sticking between

periods of slip, the system is sti�er than it would be if it was not connected to the

damper at all. Consequently, the frequency of the motion has to be lower than the

frequency when the friction damper is fully stuck, !max (sticking natural frequency)

and it has to higher to the slipping natural frequency, !min, where

!min =
q

k
m
= 159:40 rad=s (5.10)

!max =
q

k+kd
m

= 225:42 rad=s (5.11)

The values of the limiting resonance frequencies computed in Eqs. (5.10) and (5.11)

match the values found by the method as the negative viscous damping tends to

zero, as shown in Fig. 5.2. It can also be veri�ed from Fig. 5.2 that the frequency of

the motion is indeed bounded by the two limiting values, !min and !max.
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5.2.2 Multi-harmonic method

In this section, the single-DOF model is now analyzed using a multi-harmonic

balance approach. The equation of motion, Eq. (5.1), remains unchanged. However,

the harmonic expansion of the mass amplitude, x, and that of the non-linear force,

fnl, become:

x = A1 cos!t+
NhX
i=2

(Ai cos(i!t) +Bi sin(i!t)) (5.12)

fnl =
NhX
i=1

(fnl;ci cos(i!t) + fnl;si sin(i!t)) (5.13)

where Nh is the number of temporal harmonics taken into account in the solution.

Since an autonomous system is considered, the phase of the mass displacement is

arbitrary. Consequently, the coe�cient of the fundamental sine term of the expansion

of the mass displacement is taken to be zero: B1 = 0. The expressions (5.12) and

(5.13) are substituted in the equation of motion, Eq. (5.1). By balancing all sine and

cosine terms, the following set of nonlinear equations is obtained:8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(cos!t term ) �mA1!
2 + kA1 + fnl;c1 = 0

(sin!t term ) �A1c! + fnl;s1 = 0

(cos i!t term ) �mi2!2Ai + ci!Bi + kAi + fnl;ci = 0 i = 2; : : : ; Nh

(sin i!t term ) �mi2!2Bi � ci!Ai + kBi + fnl;si = 0 i = 2; : : : ; Nh

(5.14)

This set of nonlinear equations is solved using a hybrid frequency/time procedure,

and the Broyden method, as presented in Chapter III. As in Section 3.2, the co-

e�cients fnl;ci and fnl;si are deduced at each iteration from the values of the mass

displacement, x, and the mass velocity, _x, over one period of the motion. There-

fore, there are 2Nh equations for 2Nh unknowns, which are the (2Nh � 1) harmonic

coe�cients of the expansion of the mass displacement, x, and the frequency !.
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Figure 5.3: Mass displacement amplitude, as predicted by the Broyden method, with
1 and 31 harmonics used, as a function of the negative viscous damping
ratio.

Figure 5.3 shows the mass displacement amplitude as a function of the negative

viscous damping ratio, as predicted by the hybrid frequency/time Broyden method,

using both one and 31 harmonics. Note that the number of harmonics has nearly

no e�ect on the response. The free response of a single-DOF system attached to a

exible friction damper is mostly mono-harmonic, as can be checked by looking at

the amplitudes of the di�erent harmonic components retained in the solution.

Figures 5.4-5.7 show the amplitude and the frequency of the single-DOF system,

as a function of the negative viscous damping ratio, as predicted by the 5-harmonic

hybrid frequency/time Broyden method and by numerical time integration. The

agreement between the two methods is very good. Only the stable, mostly sticking

motion could be obtained by forward numerical integration.
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5.2.3 Inuence of the friction damper sti�ness, kd

The damper sti�ness is a parameter critical to the dynamics of friction damped

systems. In this section, the inuence of the damper sti�ness on the free response

of the single-DOF system presented in Section 5.2 is considered. Two limiting cases

are studied: very large and very small values of the friction damper sti�ness.

For small values of the damper sti�ness, kd, large values of the amplitude of

motion are required for the damper to slip. Therefore, with all other parameters

�xed, the lower the damper sti�ness, the less slipping during each cycle of motion.

For values of the damper sti�ness low enough, no slipping is possible. Since there

must be some slipping in order to dissipate the energy brought into the system by

negative viscous damping, no periodic motion is possible if the damper sti�ness is

too small. As stated in Section 5.2.1, the frequency of motion, !, is bounded as:

!min � ! � !max (5.15)

Given the expressions of the minimum and maximum frequencies, Eqs. (5.10) and

(5.11), the range of possible oscillation frequency decreases as the damper sti�ness

decreases. Therefore, the mostly sticking and the mostly slipping solutions de�ned

in Section 5.2.1 tend toward a unique solution as the damper sti�ness decreases to

zero.

For values of the friction damper sti�ness large enough, the damper can be con-

sidered as rigid. Using the same notations and the same procedure as in Section

5.2.1, the one-harmonic approximation leads to the following values of the cosine

and sine coe�cients, a and b, of the force transmitted by the friction damper:

a =
2

�

Z �

0
z(�) cos(�)d�

=
2

�

Z �

0

Fd
kd

cos(�)d� =
2Fd
kd�

sin �
����
�

0

= 0 (5.16)
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b =
2

�

Z �

0
z(�) sin �)d�

=
2Fd
�kd

cos(�)
����
�

0

= �
4Fd
�kd

(5.17)

Substituting Eqs. (5.16) and (5.17) in Eq. (3.1) leads to the following set of equations

for the amplitude, A, and the frequency, !:

8>>>><
>>>>:

(�m!2 + k)A = 0 (cosine)

�c!A� 4Fd
�

= 0 (sine)

(5.18)

There are two solutions to this system. The �rst solution is the trivial one: A =

0. The second solution corresponds to the following values for the frequency and

amplitude of the motion:

! =
q
k=m = !min (5.19)

A = 4Fd
�c!min

(5.20)

Figures 5.8 and 5.9 present, respectively, the amplitude and the frequency of the

single-DOF system, as predicted the Broyden method using 3 and 21 harmonics,

as a function of the ratio, v, of friction damper sti�ness. The ratio, v, is de�ned

such that kd = v kd0, where kd0 is the nominal value of the damper sti�ness used

in Section 5.2.1. As explained above, there is no periodic solution for values of the

friction damper sti�ness that are small enough, and then the frequency of oscillation

tends towards the minimum frequency, !min. For large values of the friction damper

sti�ness, the solution predicted by the hybrid frequency/time method tends towards

the rigid friction damper solutions: there are two periodic solutions. One solution

corresponds to the trivial case: A = 0, and the other one has an amplitude and

frequency independent of the damper sti�ness. According to Eqs. (5.19) and (5.20),

the one-harmonic approximation in the rigid friction damper case predicts !min =
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Figure 5.8: Amplitude of the displacement of a single-DOF friction damped system,
as a function of the ratio of friction damper sti�ness, v, as predicted by
the multi-harmonic free-response method.

159:5rad=s, and A = 2:65 10�4m, and these are the values also found by the multi-

harmonic, Broyden method, as shown in Figs. 5.8 and 5.9.

5.3 Free response of multi-DOF system

5.3.1 Equations of motion and multi-harmonic solution method

The method presented in Section 5.2 was further extended to a multi-DOF sys-

tem, attached to a single friction damper. The equation of motion is:

M�x+C_x +Kx + fnl(x; _x) = 0 (5.21)

where M and K are the mass and sti�ness matrices of the system, and the negative

viscous damping matrix C is de�ned as

C = �r(�K+ �M) (5.22)
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where � and � are constants, de�ned in Section 2.2.5, r is the viscous damping ratio

(positive), and fnl(x; _x) is the vector of the forces exerted by the friction damper.

Proportional damping, as de�ned in Eq. (5.22), makes all three modes of vibration of

the beam negatively damped. In this study, only one friction damper is considered,

and therefore, all but one of the coordinates of fnl are equal to zero.

In the forced response case, it is possible to reduce the number of equations

in the frequency domain, as presented in Section 3.3. The harmonic components

of the linear DOF's, i.e., the DOF's not attached to any friction damper, can be

computed from the harmonic components of the nonlinear DOF's, i.e., the DOF's

attached to a friction damper. To reduce the number of equations, the mass and

sti�ness matrices of the system are needed, as well as the frequency of the response

[Berthillier et al., 1998b]. Since the frequency of the response is not known a priori

when the free response is studied, all equations, the ones corresponding to the non-

linear DOF's as well as the ones corresponding to the linear DOF's, must be solved

simultaneously. Thus, the system size cannot be reduced.

Assume that the system has N DOF's, and that Nh harmonics are retained in

the solution. The harmonic time expansion of the i-th DOF displacement is de�ned

as:

xi(t) =
NhX
j=1

(Ai;j cos(j!t) +Bi;j sin(j!t)) i = 1; : : : ; N (5.23)

As described in Section 5.2, the phase of the free response of the system is arbitrary.

Therefore, it can be assumed that Bi0;1 = 0, where i0 is the DOF of the structure

attached to the friction damper. The friction force is expanded in the same way as

the displacement xi, and is expressed as:

fnl;i(t) =
NhX
j=1

(Fi;j cos(j!t) +Gi;j sin(j!t)) i = 1; : : : ; N (5.24)
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Since only one friction damper is considered in this study, all coe�cients Fi;j and

Gi;j are equal to zero, except the ones when i = i0, where i0 is the DOF attached

to the friction damper. Substituting Eqs. (5.23) and (5.24) into (5.21) leads to the

following equations, governing the i-th DOF of the system and its l-th harmonic,

�
NX
j=1

Mi;jl
2!2Aj;l +

NX
j=1

Ki;jAj;l +
NX
j=1

Ci;jl!Bj;l

+Fi;l = 0 i = 1; : : : ; N l = 1; : : : ; Nh (5.25)

�
NX
j=1

Mi;jl
2!2Bj;l +

NX
j=1

Ki;jBj;l �
NX
j=1

Ci;jl!Aj;l

+Gi;l = 0 i = 1; : : : ; N l = 1; : : : ; Nh (5.26)

As in Section 5.2, the coe�cients Fi;l and Gi;l are the harmonic components of fnl;i,

which is deduced at each iteration from the time histories of the displacement and

velocity of the i-th DOF. Writing Eqs. (5.25) and (5.26) for all DOF's and all harmon-

ics leads to a set of 2NNh equations for 2NNh unknown variables, the N(2Nh)� 1

harmonic components of the displacements, xi(t), with i = 1; : : : ; N (remember that

Bi0;1 = 0), and the frequency, !. This set of equations is solved using a modi�ed

Broyden algorithm, as presented in Chapter III.

5.3.2 Multiplicity of solutions

In the free response case, since the frequency of the response is not dictated by

the external forcing, the system has the possibility to respond in all its modes of

vibration. Numerical time integration reveals that it is indeed the case. Figures

5.10-5.12 depict the time histories of the three DOF's of the SNECMA beam, as

predicted by numerical time integration, and for the three sets of initial conditions

listed in Table 5.2. Recall that the model parameters for this system are given in

Eq. (2.32). All simulation results are after the initial transient has died out, and

once a steady-state solution has developed, if there is one.
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Case number x1(0) (m) x2(0) (m) x3(0) (m)

1 10�5 10�3 10�5

2 10�5 10�5 3:0 10�4

3 10�6 10�6 10�5

Table 5.2: Three sets of initial conditions, used for the numerical time integration of
the free response of the 3-DOF SNECMA beam. All initial velocities are
taken to be zero.

Figures 5.10 shows the time histories of the displacements of all three DOF's, as

predicted by numerical time integration, for the �rst set of initial conditions. For

these conditions, the steady state reached by the system corresponds to the �rst

mode of vibration of the beam, because the frequency of the motion belongs to the

range de�ned by the limiting frequencies of the �rst mode of vibration, as shown in

Table 5.3, and because the displacement amplitudes match the ones of the �rst mode

of vibration, as shown in Figs. 5.13-5.15. Similarly, Fig. 5.11 shows that the system

motion converges towards the second mode of vibration with the initial conditions

of case 2. Figure 5.12 demonstrates that, with the initial conditions of case 3, the

system can reach the steady-state of the third mode of vibration. The time scales

are di�erent for each mode of vibration: the shorter periods correspond to the higher

modes of vibration.

The steady-state response in all three modes of vibrations was computed using the

multi-harmonic, hybrid frequency/time method presented in Section 5.3.1. Figure

5.13 depict the amplitude of displacement of the �rst DOF of the SNECMA beam,

for the three modes of vibration, as a function of the negative viscous damping ratio,
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Figure 5.10: Time history of displacement of the three DOF's of the SNECMA beam
and of the friction damper, for the �rst case listed in Table 5.2 (the
time origin is shifted). The steady-state reached corresponds to the
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and of the friction damper, for the third case listed in Table 5.2 (the
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101

as predicted by the hybrid frequency/time method. The results for the three modes

of vibration are somehow similar: for each mode, there is a higher branch, which

corresponds to a mostly slipping motion, and a lower branch, which corresponds to

a mostly sticking motion. For each mode, there is a di�erent maximum negative

viscous damping ratio beyond which no periodic solution can be found by the hybrid

frequency/time method. In the same way, Figs. 5.14 and 5.15 depict, respectively,

the amplitude of displacement of the second and the third DOF of the system, as

a function of the negative viscous damping ratio, and as predicted by the hybrid

frequency/time method. The general aspects of the curves are similar: there is a

higher branch and a lower one for each mode of vibration, as in Fig. 5.1. Figure

5.16 shows the frequencies of the motion in the three modes, as a function of the

negative viscous damping ratio, as predicted by the hybrid frequency/time method.

The frequencies for the �rst mode are the lowest ones: the lower part of the curve

corresponds to the mostly slipping motion, and the upper part corresponds to the

mostly sticking motion. The curve with the intermediate frequencies depicts the

second mode of vibration, and the curve with the highest frequency depicts the third

one.

As the negative viscous damping tends toward zero, the motion of the system

becomes almost linear: it tends either towards the linear, totally stuck case, in which

the friction damper is stuck during all the motion, or towards the piecewise linear,

totally slipping case, when the force transmitted by the friction damper is negligible

compared to other forces acting on the system. The frequencies of motion in these

two limiting cases can be computed analytically and are listed in Table 5.3. These

computed frequencies match well with the frequencies of the motion of the beam as

the negative viscous damping ratio tends towards zero, as shown in Fig. 5.16.
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Mode number Sticking frequency (rad/s) Slipping frequency (rad/s)

1 225.42 159.40

2 1404.38 901.76

3 3273.79 2167.54

Table 5.3: Slipping and sticking natural frequencies of the SNECMA beam.

5.4 Stability considerations for multi-DOF systems

5.4.1 Stability of SNECMA beam with all three modes negatively damped

The hybrid frequency/time method presented in Section 5.3.1 predicts the har-

monic free response of a system with an attached exible friction damper, but the

method is unable to predict aperiodic solutions, or solutions with multiple mode

contents. Moreover, the hybrid frequency/time method is not able to predict the

stability of the solutions it �nds.

Ferri studied the stability of multi-DOF systems [Ferri, 1985]. He noticed that

stability maps for the initial conditions were extremely di�cult to generate since

the space of initial conditions has dimension 2N . Another di�culty is that those

modes which possess nodes at the location of the dry friction damper are completely

uncoupled from the system. With no positive damping contribution from the fric-

tion damper, these modes are always unstable. Moreover, when damping is assumed

to be proportional, as in Eq. (5.22), the higher modes, though possessing the same

negative viscous damping constants, � and �, feature higher damping, due to the

higher frequencies. Therefore, the higher modes are relatively less stable than the

lower ones. He found that the response of the dry friction element was dominated

by the highest coupled mode included in the numerical integration. Ferri also men-
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tioned that prescribing equal damping ratios over all beam modes could be a major

reason for the highly unstable nature of negatively damped multi-mode systems.

Dowell mentioned that, typically, an actual blade undergoing utter would acquire

negative damping in only one mode while all other modes remain positively damped

[Dowell, 1995].

In order to study the stability of the solutions predicted by hybrid frequency/time

method method, forward numerical time integration is used. The initial conditions

for the time integration are the following. All initial velocities are taken to be zero,

and, for each DOF, the initial displacement is taken to be two percent lower or

higher than the amplitudes predicted by the hybrid frequency/time method, when

�ve harmonics are used. Since the SNECMA beam considered in the study has three

DOF's, there are 23 = 8 such sets of initial conditions for every point of every branch

of every mode of vibration. The time integration convergence test is based on the

amplitude of the displacements: the steady-state is considered to be reached when,

for all DOF's, the di�erence in amplitude of displacement between two consecutive

periods of the motion is smaller than a given percentage of the amplitude, e.g. 1%.

A given set of initial conditions is considered to yield an unstable solution when any

of the DOF's grow without bound. Finally, there are initial conditions for which the

system fails to reach a converged solution at the end of the time integration range

but is not unstable: either the solution is aperiodic, or the range of computation

should be increased. When the time integration procedure fails to converge, or when

the system is unstable, the amplitudes and frequency of the response are shown as

zero on all the following �gures.

Figures 5.17-5.20 present the results of the stability analysis, as described above,

of the sticking branch of the third mode of vibration of the SNECMA beam. Figure
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5.17 depicts the �rst-DOF amplitude of the sticking branches for the three modes

of vibration, as predicted by hybrid frequency/time method, and the results of nu-

merical time integration for a few values of the negative viscous damping ratio. For

each value of the negative viscous damping ratio, there are eight time integration

data points, which correspond to the results of the Runge-Kutta procedure for the

eight sets of initial conditions around the corresponding, converged point, predicted

by the hybrid frequency/time method for the third mode. As mentioned above, the

frequency and the amplitude of the system are shown as zero when the time integra-

tion fails to converge or when the system is unstable. It can be seen that, for low

values of negative viscous damping, the time integration procedure fails to converge

or is unstable: see the �rst two values of the ratio in Fig. 5.17. For larger values of

the ratio, the time integration procedure predicts that, after having started around

the converged point on mode 3, the system tends most times towards mode 3. There

is a range of damping ratio, 2 to 4:5, for which mode 3 seems to be stable. Outside

this range, the system fails to converge or is unstable, or converges towards mode 2

for low values of the negative viscous damping.

The system is unstable for larger values of the negative viscous damping ra-

tio. Whenever one of the modes is unstable, the response of the system becomes

unbounded, even if the initial conditions were exclusively in another mode. For ex-

ample, in Fig. 5.17, for values of the negative viscous ratio damping greater than

4:9, mode 1 is unstable, since no harmonic motion could be found by the hybrid

frequency/time method. For values of the viscous damping ratio greater than 4:9,

the time integration procedure shows that there is no stable motion, even when the

initial conditions are given around mode 3, which should be stable at these viscous

damping ratios. Figures 5.18 and 5.19 present, respectively, the second and third
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DOF amplitude displacement, as predicted by the hybrid frequency/time method,

and by the time integration procedure, using initial conditions around the converged

points of mode 3. The same conclusions are reached as for the case of the �rst DOF:

(1) for low values of negative viscous damping, the time integration procedure fails

to converge, or converges toward mode 2, (2) mode 3 is stable over an intermedi-

ate range of negative viscous damping ratio, and (3) when one mode is unstable

(here, mode 1), the system is unstable. Figure 5.20 shows the frequency of the three

DOF's of the system, as predicted by the hybrid frequency/time method for the

three modes of vibration, and as predicted by numerical time integration for initial

conditions around the sticking branch of the third mode. The results are identical

to the ones deduced from Figs. 5.17 to 5.19.

As mentioned by Ferri [Ferri and Dowell, 1985], the stability maps are di�cult

to generate, given the large number of cases to consider. It is also found that the

higher mode seems to be the preponderant one in the free response of the system.

This is in agreement with Ferri's analysis.

Some of the aperiodic solutions found in Figs. 5.17 to 5.20 can be close to a mode

of vibration of the system. For example, Figs. 5.21-5.23 display the time histories of

the three DOF's of the beam, as predicted by time integration after a large number

of periods, and the time histories of the three DOF's, in the �rst mode of vibration,

as predicted by hybrid frequency/time method with 15 harmonics used. The solution

predicted by the time integration procedure was shifted in time in order to ensure

phase matching with that predicted by the hybrid frequency/time method. The

initial conditions used for the time integration are slightly below (2%) the slipping

branch of the third mode of vibration, for a negative viscous damping ratio of 0:361.

It is seen that, although the given initial conditions are close to the slipping branch
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hybrid frequency/time method, with 3 harmonics used, and by forward
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Figure 5.21: Time history of the �rst DOF of the SNECMA beam, as predicted by
hybrid frequency/time method (sticking branch of mode 1), and by time
integration (initial conditions 2% below the slipping branch of mode 3).
The negative viscous damping ratio is 0:361.

of mode 3, the motion of the system almost converges towards the sticking branch of

mode 1. The agreement between time integration and hybrid frequency/time method

is almost perfect for the second DOF, and is good for the �rst and third DOF.

Several possibilities were examined in order to explain the discrepancies between

the solution predicted by time integration and by hybrid frequency/time method.

The time step used in the Runge-Kutta procedure was reduced by several orders of

magnitude, up to several millions steps per cycle, but no improvement was observed.

The time integration results were checked after several thousand cycles, but the

discrepancies were of the same order of magnitude as after several hundreds of cycles.

Figure 5.24 shows the power spectral density of the third DOF displacement time

history presented in Fig. 5.23. It is observed that the harmonic content of the signal is
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Figure 5.22: Time history of the second DOF of the SNECMA beam, as predicted by
hybrid frequency/time method (sticking branch of mode 1), and by time
integration (initial conditions 2% below the slipping branch of mode 3).
The negative viscous damping ratio is 0:361.
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almost exclusively localized around 35Hz, which corresponds nearly to the sticking

frequency of the �rst mode, equal to 225:42 rad=s, or 35:91Hz. There is a small

amplitude component around 225Hz, which corresponds to the sticking frequency

of the second mode, equal to 1404:38 rad=s, or 223:51Hz. Finally, there are two

other small components around 180Hz and 250Hz, which correspond, respectively,

to the �fth harmonic and the seventh harmonic of the sticking motion of the �rst

mode. In this case, the hybrid frequency/time method cannot predict the presence

of a non-zero component in the second mode of vibration, since it only gives the

�rst mode solution. On the other hand, the multi-harmonic Broyden method should

be able to determine the �fth and seventh harmonic components of the �rst mode.

However, the power spectral density analysis of the solution predicted by the hybrid

frequency/time method revealed no such components. These higher harmonics may

be present in the solution predicted by the time integration because it takes into

account the higher frequency second mode and because the modes of vibrations are

possibly coupled.

5.4.2 Stability of SNECMA beam with a single negatively damped mode

The free response of the SNECMA beam was studied when only one mode is

negatively damped. In this particular study, the damping matrix, C, is no longer

considered to be a linear combination of the sti�ness matrix, K, and of the mass

matrix, M, as de�ned in Eq. (5.22). The damping matrix is computed as follows.

First, the modal damping coe�cients of the proportional damping case are computed

using a transition matrix, T, the matrix of eigenvectors of the beam without friction

dampers, which diagonalizes simultaneously the mass and sti�ness matrices:

M = TDiag(m1; m2; m3)T
T (5.27)
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K = TDiag(k1; k2; k3)T
T (5.28)

where Diag denotes a diagonal matrix, and mi and ki are, respectively, the modal

masses and sti�nesses, i = 1; 2; 3. Since the mass and sti�ness matrices are sym-

metric, the transition matrix is orthogonal. Because of Eqs. (5.27) and (5.28), the

transition matrix, T, also diagonalizes the proportional damping matrix, C, de�ned

in Eq. (5.22):

C = TDiag(c1; c2; c3)T
T (5.29)

where the ci are the modal damping coe�cients, i = 1; 2; 3. In the positively damped

case presented in Section 5.4.1, all coe�cients ci, are positive. They are computed

from the nominal SNECMA values given in Eq. (2.32):

c1 = 5:789; c2 = 27:627; c3 = 12:095 (5.30)

In this section, the third mode is assumed to be the only mode negatively damped,

so the nominal modal damping coe�cient for mode 3 is taken to be c3 = �12:095.

In order to study the inuence of the negative damping on the free response of the

SNECMA beam, the modal damping coe�cient is actually equal to:

c3 = �r : 12:095 (5.31)

where r is the viscous damping ratio (positive). For each value of the viscous damping

ratio, the damping matrix, C is computed using Eq. (5.29), and the periodic solution

is found using the method presented in Section 5.3.1. The other two modal damping

coe�cients, c1 and c2, remain equal to their nominal value given in Eq. (5.30).

Figures 5.25-5.27 present the displacement amplitude of the 3 DOF's of the

SNECMA beam, as a function of the viscous damping ratio, when the third mode is
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negatively damped. Figure 5.28 depicts the free vibration frequency of the SNECMA

beam, as a function of the viscous damping ratio under the same conditions. It can

be seen from these �gures that the system only vibrates in the third mode of vibra-

tion, the one which is negatively damped. This makes sense since the other modes

are positively damped. The curves are very similar to the ones obtained in the

single-DOF case (see Section 5.2): for each DOF, there is an upper and a lower

branch, corresponding respectively to the mostly slipping and mostly sticking mo-

tion of the beam. By using a method similar to the one used in Section 5.2, it can

be seen that the upper branch determines the stability limit: any motion with an

initial displacement larger than the value at the upper branch will be unstable, and

any motion initiated below the upper branch will be stable and converge towards

to mostly sticking motion. This stability analysis was checked by numerical time

integration.

In the case of a single negatively damped mode, the harmonic solution is unique

and its stability is the same as the one predicted in the single-DOF case. It is

expected that \real" fan blades feature only one negatively damped mode. In this

case, the study presented here shows that the hybrid frequency/time method is able

to determine the upper and lower branches of the free response, and that the stability

of the system can be determined from the results derived for single-DOF systems.

5.5 Conclusion

A multi-harmonic method was developed to study the free response and stability

of multi-DOF systems connected to a exible friction damper and with negative

viscous damping. The method is based on harmonic balance and uses the Broyden

method to solve the equations in the frequency domain. If several modes of vibrations
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are negatively damped, the solution predicted by the method is non-unique. The

stability analysis shows that (1) the overall motion becomes unstable once a single

mode cannot be stabilized by friction damping, (2) the higher modes tend to be

preponderant in the solution because they are more unstable, (3) the solutions found

by time integration often combine several modes and the hybrid frequency/time

method is not able to �nd those. When a single mode of vibration is negatively

damped, the multi-DOF results are very similar to the single-DOF ones.



CHAPTER VI

ADVANCED FRICTION DAMPERS

6.1 Introduction

Friction dampers are routinely used in turbomachinery rotors to reduce blade

vibrational response. These friction damper elements may be described as rigid

friction dampers [Pierre et al., 1985], but they usually consist of a exible struc-

tural element which, for example, is inserted in cavities underneath the platforms

of two adjacent blades and is in frictional contact with both blades. The simplest

and most widely used model of a exible friction damper is one-dimensional, and

consists of a friction element in series with a linear sti�ness. By considering sev-

eral exible friction dampers in parallel, this model can take into account microslip

[Menq et al., 1986]. The model can also be extended to some particular, elliptical,

planar motion, provided that a single temporal harmonic is retained in the solution

[Sanliturk and Ewins, 1996]. The hysteretic model, presented in Section 2.2.1 and

analyzed in Chapters II-V, essentially characterizes the fundamental shape of defor-

mation of the damper at a particular point of contact with the adjacent structure.

However, in general, several such points of contact may be needed to capture e�ec-

tively the frictional interactions between a damper and its adjacent structures. In

such cases the simple hysteretic friction damper model is no longer su�cient, and

126
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the damper itself must be considered as a structure. The elementary exible fric-

tion models presented in Section 2.2.1 and used in the majority of works on friction

damped structural systems are not able to represent the damper element as a struc-

ture. In this chapter, a new, advanced friction damper model is introduced. Since

friction dampers are generally lightweight, it is assumed that the damper inertia

forces may be neglected compared to the friction and elastic forces and the damper

element is considered massless. Thus, the damper is modeled as a general, massless

structure characterized by its own sti�ness matrix. The damper is connected to two

(possibly more) structural systems at several friction points where slip can occur.

The chapter is organized as follows. First, the force transmitted by the elemen-

tary, exible friction damper used in Chapters II-V is reformulated in a way that per-

mits generalization. Second, the advanced damper element model is introduced and

the force it transmits at each frictional interface is evaluated. The multi-harmonic,

hybrid frequency/time method is modi�ed to handle this advanced damper model.

Finally, the method is applied to a 4-DOF friction damper connecting two beams

at four frictional points. Several complex features and properties of the non-linear

response are revealed, such as: situations where there is slip at some frictional points

and stiction at the other points, and extreme complexity of the frequency response

where many modes of vibration can be excited.

6.2 Friction force for elementary damper model

Research e�orts on the dynamic response of friction damped structures have

mostly considered elementary friction damper models, such as the ones examined in

Chapters II-V: these are comprised of a slipping element in series with a sti�ness,

as depicted in Fig. 6.1. Let x1 denote the displacement of the structure at one
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Figure 6.1: Model of the elementary friction damper.

end of the damper, x2 the displacement of the structure at the other end, f1 the

force transmitted by the friction damper, Fd the maximum force transmitted by the

damper, and kd its sti�ness.

The force transmitted by the friction damper is computed by performing the

equivalent of a simple numerical time integration over one period of the motion,

see Section 3.2. The expression of the force depends on the state of the damper,

sticking or slipping, as shown in Table 6.1. Here vr denotes the relative velocity at

the damper, vr(j) = _x1(j)� _x2(j).

Damper state Update Test for next time step

Sticking f1(j) = f1(j � 1) + kd(x1(j) If jf1(j)j > Fdj

�x2(j)� x1(j � 1) + x2(j � 1))

Slipping f1(j) = f1(j � 1) If vr(j)vr(j � 1) < 0

Table 6.1: Update for the nonlinear force transmitted by the elementary friction
damper in Fig. 6.1.

The force transmitted by the friction damper, f1, can be computed from an

iteration to the next using the update of Table 6.1. An initial condition must be
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given so that the time-marching scheme used to calculate the non-linear friction

force over one period is correct. For the elementary damper depicted in Fig. 6.1,

it is possible to �nd an exact initial condition, as follows. When the stretch of the

damper sti�ness element is maximum, the relative velocity at the damper changes

sign. Therefore, according to Coulomb's law of friction, the damper starts sticking.

This means that, at the time the damper extension is maximum, the value of the

force is known and equal to the maximum force transmitted by the friction damper,

Fd, and the state of the damper is sticking. Consequently, the initial condition used

to compute the force transmitted by the friction damper is the following:

Property 1 When the damper relative displacement is maximum, the force trans-

mitted by the friction damper is equal to its maximum value, Fd, and the damper

starts sticking.

If there is no slipping during one period of the motion, then the system is linear and

there is no need to use the update presented in Table 6.1.

6.3 Friction force for advanced structure-like dampers

In this section, the elementary damper in Fig. 6.1 is generalized. A damper is

modeled as a massless structure, represented by a general sti�ness matrix, which

is connected to the adjacent structural systems at several slipping or non-slipping

interface points. An example of such a structure is depicted in Fig. 6.2: in this

particular case, the damper element connects with the adjacent structure at four

frictional points, and slipping can take place at any of these points. Let fnl be

the vector of forces transmitted by the damper element to the structure at the NC

points where they interface, D the sti�ness matrix of the damper, z the vector of

damper displacements, zi; i = 1; : : : ; NC , and xi; i = 1; : : : ; NC the displacement of
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Figure 6.2: Model of an advanced, structure-like friction damper.

the structure DOF connected to the damper at the i-th frictional point. The force

transmitted by the damper is expressed as:

fnl = Dz (6.1)

For this advanced friction damper model, the damper displacements, zi, are not

readily available. The update used for an elementary friction damper and presented

in Table 6.1 cannot be easily extended to structure-like dampers.

6.3.1 New force update for elementary damper

The update presented in Section 6.2 is modi�ed in a way that makes it applicable

to structure-like dampers. Denote by �q the increment of quantity q between the

j-th and the (j + 1)-th time step. Table 6.2 presents the update formulas of Table

6.1 using increments.

Since the damper displacement, z1, and the displacement at the second end of
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Damper state Update Test for next time step

Sticking �f1 = kd(�x1 ��x2) If jf1(j)j > Fdj,

Slipping �f1 = 0 If vr(j)vr(j � 1) < 0,

Table 6.2: Update for the nonlinear force transmitted by the elementary friction
damper in Fig. 6.1 using increments.

the damper, x2, have the same velocity when the damper is slipping, we have

�z1 = �x2 when slipping (6.2)

Similarly, the damper displacement, z1, and the displacement of the adjacent struc-

ture at the �rst end of the damper, x1, have the same velocity when the damper is

sticking. Therefore, we have:

�z1 = �x1 when sticking (6.3)

Using Eqs. (6.2) and (6.3), both updates of Table 6.2 can be written as:

�f1 = kd(�z1 ��x2) (6.4)

Equation (6.4) provides an expression to compute the force update, �f1, which is

valid for both the sticking and the slipping phases of the motion.

6.3.2 New update for structure-like dampers

The elementary friction damper studied in Section 6.2 and depicted in Fig. 6.1

can be viewed as a structure-like friction damper with two points connecting to the

adjacent structure. The second end point of such a damper is always sticking: this

may represent for example the case of a damper where the normal load is so large
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that the damper is never slipping at this point: F2 = +1 (or one with F2 > F1, as

proved below). Therefore, since the damper is always sticking at this point, we have,

using the notations previously introduced:

z2(j) = x2(j); j = 1; : : : ; Ntime (6.5)

where Ntime is the number of sampling points per period of the motion. The sti�ness

matrix of the elementary damper in Fig. 6.1 is the following

D =

2
66664

kd �kd

�kd kd

3
77775 (6.6)

where z = [z1; z2]
T . Using Eq. (6.5), the single update de�ned in Eq. (6.4) can be

written as

�f1 = kd�z1 � kd�z2 (6.7)

Given the de�nition of the damper sti�ness matrix, Eq. (6.6), Eq. (6.7) leads to

�f1 = D11�z1 +D12�z2 (6.8)

Since f2(j) = kd(x2 � z1), Eq. (6.5) leads to

�f2 = kd�z2 � kd�z1 (6.9)

Eqs. (6.6) and (6.9) give

�f2 = D21�z1 +D22kd�z2 (6.10)

Hence, from Eqs. (6.8) and (6.10), the new update for the elementary dampers is

�fnl = D�z (6.11)
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The update of Eq. (6.11) is valid for both the sticking and slipping periods of the

motion, regardless of how many dampers are slipping. In this section, the update

of Eq. (6.11) was derived for an elementary friction damper treated as a structure

damper. However, this update is also valid for advanced damper elements, as can be

proven by \di�erentiating" the general force expression, Eq. (6.1). Hence, Eq. (6.11)

can be used for structure-like dampers, as in Fig. 6.2.

6.3.3 Time-marching procedure for structure-like dampers

Since it is not possible to determine directly the damper displacements, zi, the

update by increments presented in Eq. (6.11) is implemented over one period of the

motion in order to compute the force transmitted by the friction damper in the time

domain. The procedure is the following:

Procedure 2 Time-marching step:

1. The damper displacement increments, �zi, i = 1; : : : ; NC , are determined from

the state (slipping or sticking) at the various damper interfaces.

2. The force increments, �fnl;i, i = 1; : : : ; NC , are computed using the update for-

mula, Eq. (6.11), from the damper displacement increments, �zi, i = 1; : : : ; NC.

3. The state at the damper interfaces (slipping or sticking) for the next time step

is determined from the new values of the friction forces at the damper.

The second step of this procedure, i.e., the computation of the force increments

using the displacement increments, has been presented in Eq. (6.11) and presents no

di�culty. The other steps are detailed in the next sections, as follows.
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Determination of the displacement increments from the state of the damper

If the i-th damper is sticking, then its velocity is equal to the velocity of the point

of the structure to which the damper is attached. Therefore, the i-th increment is

�zi = �xi when the i-th damper is sticking (6.12)

If the i-th damper is slipping, then the force is transmits is constant and equal to

�Fi. Therefore, the i-th force increment is equal to zero:

�fi =
NCX
j=1

Dij�zj = 0 when the i-th damper is slipping (6.13)

Let S be the set of the NS friction dampers slipping at a given time step (NS � NC).

From Eq. (6.13):

NCX
j=1

Dij�zj = 0; i 2 S (6.14)

Eq. (6.14) is a system of NS linear equations whose NS unknowns are the displace-

ment increments of the slipping dampers, �zi, i 2 S. Denote by Ri, i 2 S the

following quantity:

Ri =
X
j =2S

Dij�zj; i 2 S (6.15)

The Ri, i 2 S are computed from the values of the sticking damper displacement

increments. From Eqs. (6.14) and (6.15) we have

X
j2S

Dij�zj = �Ri; i 2 S (6.16)

Let DS be the NS�NS submatrix of the damper sti�ness matrix, D, whose rows and

columns corresponds to the slipping damper interfaces of set S. Using Eq. (6.16),

we have

�zi = �
X
j2S

D�1
S;ijRj; i 2 S (6.17)
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In certain particular cases, it might not be possible to compute the inverse of the

sti�ness submatrix, DS. In particular, if all NC dampers are slipping, DS = D,

and the inversion is impossible to perform because the sti�ness matrix D is singular.

However, it is very unlikely that all dampers will be slipping at the same time, unless

some very speci�c conditions are met regarding the symmetry of the damper. Since

an actual damper will most certainly not be totally symmetric in terms of geometry

and maximum transmitted forces, the potential inversion problems can most likely

be overlooked. Section 6.3.3 provides an analysis of the inversion problems possibly

caused by damper symmetry.

Equations (6.12) and (6.17) allow to compute all the damper displacement incre-

ments for both the sticking and the slipping states. Hence, the �rst step of Procedure

2 has been explained.

Determination of the state of the damper for next time step

Once the damper displacement increments are computed, as presented in Section

6.3.3, the force increments are computed using Eq. (6.11). The values of the friction

forces at the NC frictional points of the damper are then deduced from their value

at the previous time step:

fnl(j + 1) = fnl(j) +�fnl j = 1; : : : ; Ntime � 1 (6.18)

The test to determine whether the i-th damper starts slipping is unchanged with

respect to the elementary damper case:

If jfnl;i(j + 1)j � Fi; then the i-th damper is slipping (6.19)

The test to determine whether the i-th damper starts sticking relies on the change

of sign of the relative velocity of the damper to the structure at the slipping point.
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Since the relative displacement at the i-th damper is (zi � xi), the relative velocity

is equal to ( _zi � _xi). However, the damper velocity at the i-th friction point, _zi, is

not readily available. Since time is sampled at Ntime instants over one period of the

motion, the relative velocity test is performed using increments instead of velocities:

If (�zi ��xi)(�z
�
i ��x�i ) < 0; then the i-th damper starts sticking (6.20)

where �q� refers to the increment of the quantity q at the previous time step:

�q� = q(j) � q(j � 1). Equations (6.19) and (6.20) provide the tests to determine

whether the friction dampers will be slipping or sticking at the next time step. Hence,

the third step of Procedure 2 has been explained.

Problems induced by �nite sampling

Since there is a �nite number of sampling points, Ntime, over one period of the

motion, the transition times from slipping to sticking might not coincide with the

sampling times. Therefore, overshooting might occur. Some of the associated poten-

tial problems are:

1. The force transmitted by the i-th friction damper can be greater than its max-

imum value, Fi, before the slipping increment update, Eq. (6.17), is used.

2. The sum of the friction forces at the NC points might not add to zero, com-

promising the overall equilibrium of the system.

3. The upper and lower slipping positions might not be opposite from each other,

resulting in an o�set of the friction force.

If not addressed, any of these problems hinders the convergence of the method

and results in the failure of the solution algorithm. These problems are numerical,

and do not arise from the procedure chosen to compute the friction forces.
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All the overshooting problems may be corrected by making sure that the slipping

value of the i-th friction force is equal to the maximum force transmitted by the

friction damper, Fi. To that purpose, Eq. (6.13) is modi�ed as follows:

�fi = �Fi � fnl;i(j) when the i-th damper point is slipping (6.21)

Equations (6.18) and (6.21) lead to

fnl;i(j + 1) = �Fi (6.22)

With this simple correction, it is ensured that the slipping values of the friction

forces are equal to the maximum values, �Fi, Eq. (6.22). Equation (6.21) ensures

that the symmetry of each damper force and the overall equilibrium of the system

are enforced.

Potential problems due to sti�ness matrix singularity

As presented in Section 6.3.3, the inversion of a submatrix, DS, is needed to com-

pute the displacement increments of the slipping damper points. If not all dampers

are slipping, it is reasonable to assume that the system will be su�ciently asymmet-

ric so that the submatrix, DS, is not singular. This is justi�ed because it is very

unlikely that the sti�ness of the system at the various friction points will all be equal.

Since the sti�ness matrix, D, is singular, there might be an inversion problem if

all friction dampers are slipping. It is very unlikely that this will ever happen, as

we will show now. Given the particular structure of the damper sti�ness matrix, we

have:

NCX
i=1

Dij = 0; j = 1; : : : ; NC

Therefore, the following is true:

NCX
i=1

Dijzj = 0; j = 1; : : : ; NC
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By adding up the previous expressions for all NC values of j, we have

NCX
j=1

NCX
i=1

Dijzj = 0

Permuting the summation signs and using Eq. (6.1) yields

NCX
i=1

fnl;i = 0 (6.23)

From Eq. (6.23), we deduce the following property of the structure-like friction

damper:

Property 2 The sum of the forces transmitted by the damper element to the struc-

ture is equal to zero.

Let us assume that a given time step, (NC � 2) friction points are slipping. The

values of the forces transmitted by these slipping friction interfaces are equal to their

maximum values, �Fi, i 2 S. Let us assume now that another friction point starts

slipping at this particular time and that the i0-th friction point is the only interface

left sticking. From Property 2 we deduce that

fnl;i0 = �
X
i6=i0

fnl;i (6.24)

By assumption, we have:

fnl;i = �Fi (= constant) 8i 6= i0 (6.25)

Therefore, we deduce from Eq. (6.24) that the force transmitted by the i0-th friction

damper is constant. Since the i0-th damper is sticking and its force is constant

(below slipping value), the i0-th damper remains stuck and cannot start slipping until

another damper starts sticking. Therefore, all dampers cannot be simultaneously

slipping.
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The previous conclusion could be false if one could �nd a system and a situation

where two dampers can start slipping at the same time. This requires some very

particular symmetry in the damper and consequently this case is not considered in

the present study.

6.3.4 Initial conditions

Procedure 2 allows one to compute the forces transmitted by the damper to the

structure from one time step to the next one. However, an initial condition is needed

to start the process.

In the case of an elementary friction damper, an exact initial condition can be

found, as described in Property 1. When a structure-like damper is considered, it

is not possible to �nd an exact initial condition for the forces transmitted by the

friction damper. The proposed alternative is the following. It is assumed that at

the beginning of the period, all dampers are sticking and that the forces at all the

dampers are equal to zero. These conditions are not correct, but they verify all static

and dynamic conditions of the friction dampers:

1. The sum of the forces is indeed equal to zero (Property 2 is veri�ed).

2. The forces being equal to zero, the dampers are indeed sticking.

The time-marching procedure starts from these assumed initial conditions. Since

all the dampers are stuck at the beginning, there is no friction damping. Therefore,

the amplitude of the displacements will grow until some of the dampers start slipping:

at this stage it is assumed that the friction forces will be accurately computed.

By repeating this time-marching procedure over several periods, we assume that

the true solution is reached and that the forces are correctly determined. This time

integration is performed over a very small number of periods: the intent is not to
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wait until the transient regime has died out, but rather to ensure that there is a

balance between the energy brought into the system by external forcing and the

energy dissipated by friction and viscous damping.

6.4 Results for an example system

6.4.1 Time histories

The system considered in this section consists of two coupled SNECMA beams,

each represented by a three-DOF component mode model. Each beam is clamped at

one end (base) and subject to external, harmonic excitation at the other end (tip).

The characteristics of the beams are given in Section 2.3.4. The two beams are

connected through a four-DOF friction damper element. The system is represented

in Fig. 6.3. The �rst and second DOF's of the damper element connect to the �rst

DOF of each beam, that is, to the point where the elementary friction dampers were

connected in Chapters II and IV. The third and the fourth DOF's of the friction

element connect to the tips of the beams, where the external forcing is applied. The

amplitude, Fex, and frequency, !, of the external forcing are the same for both beams,

but the phases are opposite: we are primarily exciting the antisymmetric modes of

vibration of the system. The sti�ness matrix of the damper element is taken to be

the following:

D =

2
6666666666666664

2:88 107 �2:4 107 0 �4:8 106

�2:4 107 2:64 107 �2:4 106 0

0 �2:4 106 2:64 106 �2:4 105

�4:8 106 0 �2:4 105 5:04 106

3
7777777777777775

(6.26)

The maximum friction forces transmitted at the friction points are constant and their

values are listed in Table 6.3. Since F4 = +1, the force transmitted by the fourth
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Figure 6.3: 4-DOF damper element connected to two SNECMA beams.

friction damper never reaches its maximum value. Therefore, the fourth friction

damper is always sticking and never slips.

Damper friction point, i = 1 2 3 4

Maximum force (N), Fi = 24.60 100.0 246.05 +1

Table 6.3: Maximum forces transmitted by the structure-like friction element.

Figures 6.4-6.7 depict, at a particular frequency, the time histories of the forces

transmitted by the four friction dampers for various force amplitudes, Fex. Also

represented are the time histories of the friction forces if the four dampers were

stuck all the time. When all dampers are always stuck, the damper element behaves

like an elastic structure and the whole system, beams and damper element, is linear.

In Figs. 6.4-6.7, the friction forces computed assuming that there is no slipping at any

frictional point are referred to as sticking linear forces. Finally, the sum of the friction



142

forces at the four interfaces is represented. The case shown in Fig. 6.4 corresponds to

a situation where no damper is slipping during the period of the motion. In this case,

the forces transmitted by the friction dampers are identical to the forces transmitted

if the dampers are stuck all the time. We can verify that the sum of the forces is

equal to zero, as predicted in Eq. (6.23). In Fig. 6.4, the damper structure acts like

a mere sti�ness and there is no non-linearity.

In Fig. 6.5, damper 1 undergoes some slipping during the period of the motion.

The time history of the friction force at damper 1 is very similar to the time histories

of elementary friction dampers. Since the displacements at the four friction dampers

are coupled, the non-linearity introduced by the slipping motion of damper 1 inu-

ences the motion of the other friction dampers. In particular, it can be seen that the

force at damper 2 is non-smooth, although damper 2 is never slipping. Similarly, the

forces at dampers 3 and 4 are o�set with respect to the values they would have if all

dampers were sticking all the time. Finally, the forces of the 4 dampers add to zero,

as predicted in Eq. (6.23).

In the case represented in Fig. 6.6, there are times when damper 1 alone is

slipping, times when damper 1 and 2 are slipping, and times when dampers 1 and 3

are slipping. For this particular force amplitude and at this frequency, two dampers

at most are slipping at the same time. As in Fig. 6.5, it can be seen that even the

force transmitted by the non-slipping damper, damper 4, is non-smooth. It can also

be seen that there are discontinuities in the force derivatives due to the rapid change

of relative velocities at the damper interfaces. The force transmitted by a slipping

damper point can be greater than the force this damper interface would transmit if

all the dampers were sticking, see for example damper 2. This never happens with

elementary friction dampers: for an elementary friction damper, the friction force is
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Figure 6.4: Time histories of the four friction forces, of the sticking linear forces at
the damper locations, and of the sum of the forces transmitted by the
friction element, when no damper is slipping, for ! = 250rad=s and
Fex = 15N .
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Figure 6.5: Time histories of the four friction forces, of the sticking linear forces at
the damper locations, and of the sum of the forces transmitted by the
damper element, when only damper 1 is slipping, for ! = 550rad=s and
Fex = 35N .
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always smaller than the force the damper would transmit if it was never slipping.

Finally, we can verify again that the sum of the forces transmitted by the dampers

is equal to zero.

In Fig. 6.7, the external forcing is large enough to make three dampers slipping

at the same time, namely dampers 1, 2, and 3. When three dampers are slipping,

the force transmitted by the sticking damper, damper 4, remains constant, as shown

in Section 6.3.3. Therefore, when three dampers are slipping, all four friction forces

are constant. Once again, we can verify that the sum of the forces transmitted by

the damper element is equal to zero.

6.4.2 Frequency response results

In this section, the frequency response of the system considered in Section 6.4.1

is obtained for various amplitudes of external forcing. Figures 6.8 and 6.9 depict

the frequency response of the beam system at the locations of dampers 1 and 2, for

various force amplitudes, while Figs. 6.10 and 6.11 show the frequency response of

the beam system at the locations of dampers 3 and 4.

For a low force amplitude, Fex = 20N , none of the dampers slip at any time and

the response of the system is linear. In this case, the displacement amplitudes at

dampers 1 and 2 on one hand, and at damper 3 and 4 on the other hand, are very

similar. As the amplitude of external forcing increases, Fex � 30N , the displacements

at dampers 1 and 2, and 3 and 4, become increasingly di�erent. There starts to

be some slipping: the presence of slipping a�ects drastically the displacements at

dampers 3 and 4. For larger amplitudes of external forcing, Fex = 50N , as a result

of more dampers undergoing slipping, more resonance frequencies of the system are

excited and another group of resonances appears. As the force amplitude increases
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Figure 6.6: Time histories of the four friction forces, of the sticking linear forces at
the damper locations, and of the sum of the forces transmitted by the
damper element, when only two dampers are slipping at the same time,
for ! = 550rad=s and Fex = 140N .
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Figure 6.7: Time histories of the four friction forces, of the sticking linear forces at
the damper locations, and of the sum of the forces transmitted by the
damper element, when at most three dampers are slipping at the same
time, for ! = 550rad=s and Fex = 550N .
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Figure 6.8: Beam displacement amplitude at dampers 1 and 2, as a function of the
frequency, for di�erent force amplitudes: Fex = 20; 30; 40; 50; 55; and
60N (from left to right, top to bottom).
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Figure 6.9: Beam displacement amplitude at dampers 1 and 2, as a function of the
frequency, for di�erent force amplitudes: Fex = 70; 80; 90; 100; 110; and
120N (from left to right, top to bottom).
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further, Fex � 60N , the groups of resonances merge together and it is observed that,

depending on the number of friction dampers slipping, many resonance frequencies

are excited. The dynamics of this advanced damper are thus signi�cantly richer and

more complex than the ones of elementary friction dampers.

In order to understand better the presence of all the resonances observed in

Figs. 6.8-6.11, the �rst three resonance frequencies of the beam system in various

con�gurations are given in Table 6.4. The boldfaced resonance frequencies corre-

spond to frequencies in the interesting ranges of Figs. 6.8-6.11, i.e., from 500 to 700

rad=s. A superscript 2 indicates a multiplicity of order two of a resonance frequency.

Con�guration 1st frequency 2nd frequency 3rd frequency

No damper slipping 541.26 1090.2 2026.59

Damper 1 slipping 336.38 680.84 1004.61

Damper 2 slipping 342.83 693.58 1006.11

Damper 3 slipping 191.15 678.17 1358.67

Dampers 1 and 2 slipping 159.59 512.98 901.76

Dampers 2 and 3 slipping 159.59 664.94 901.76

Dampers 1 and 3 slipping 159:592 901:762 2167:542

Dampers 1, 2, and 3 slipping 159:592 901:762 2167:542

Table 6.4: First three natural resonance frequencies of the two-beam/damper system
in various slip/stick damper con�gurations (in rad=s).

There are six separate resonance frequencies from 500 rad=s to 700 rad=s. This

might explain the fact that for force amplitudes greater than 60N , there is a con-
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Figure 6.10: Beam displacement amplitude at dampers 3 and 4, as a function of the
frequency, for di�erent force amplitudes: Fex = 20; 30; 40; 50; 55; and
60N (from left to right, top to bottom).
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Figure 6.11: Beam displacement amplitude at dampers 3 and 4, as a function of the
frequency, for di�erent force amplitudes: Fex = 70; 80; 90; 100; 110; and
120N (from left to right, top to bottom).
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tinuum of resonant response of the beam system. When both dampers 1 and 3 are

slipping, the two SNECMA beams are actually independent from each other. We can

see in Table 6.4 that the natural frequencies of the system when dampers 1 and 3 are

slipping are equal to the natural frequencies of the SNECMA beams not attached to

any friction damper.

Finally, one might wonder why the resonant curves are so steep in the case of

an advanced friction damper. The external excitation is antisymmetric, i.e., the

amplitude of the external forcing is the same for each beam but the phases are

opposite of each other. The steepness of the resonant curves may be attributed to

the antisymmetry of the external forcing, as similar results were obtained when two

beams, each attached to a exible friction damper and coupled through a linear

sti�ness were subject to antisymmetric external forcing.

6.5 Conclusions and Future work

A new model of friction damper element was introduced. The advanced friction

damper is considered to be a general, massless structure connecting at several friction

points to the adjacent structural system, with a possibility of slipping motion at

any of these connecting interfaces. A new methodology was developed in order

to compute the forces transmitted by an advanced friction damper to an adjacent

structure.

Results were obtained for a four-DOF damper element connecting two SNECMA

beams. It was found that there are di�erent con�gurations of the system where sev-

eral dampers can slip at the same time. Consequently, numerous natural resonance

frequencies of the system are excited and the dynamic response of the system is

complex.
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The case presented in Sections 6.4.1 and 6.4.2 corresponds to an arbitrary sys-

tem, which might bear little similarity with an actual blade-damper con�guration.

However, the results presented are interesting, because they demonstrate:

� the applicability of the method developed for elementary friction dampers to

advanced, structure-like friction dampers,

� the richness of the dynamics of structures attached to advanced friction dampers.

Future work will focus on the studies of the dynamics of systems attached to

advanced, structure-like friction dampers.



CHAPTER VII

CONCLUSIONS

7.1 Main contributions

The main contributions of this work are as follows:

� A one-harmonic approximation was derived for the prediction of the forced

response of friction damped structural systems. The computation of the force

transmitted by the friction dampers was enhanced with respect to the tradi-

tional single-harmonic method by performing a time-marching procedure over

one period of the motion. The number of equations to solve was reduced by

the introduction of complex, reduced dynamic and force matrices. The pro-

cedure was successfully and e�ciently applied to multi-DOF systems. Several

limitations of the one-harmonic methods were pointed at.

� The forced transmitted by a damper element to an adjacent structure was

evaluated in the time domain in a new fashion: the friction force is deduced

from the relative displacement and velocity of the structure at the damper

location. No assumption besides Coulomb's law is made on the friction force,

allowing for a high level of accuracy. Several slip and stick phases per period

are allowed, and the inuence of higher harmonics can be totally accounted
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for.

� A new method, based on the harmonic balance procedure and the Broyden

algorithm, and a time-domain treatment of the friction force were developed

and used to study in an e�cient and accurate manner the dynamics of friction

damped systems. The method can include as many temporal harmonics as

desired to capture the dynamics of the system. The procedure is fast and

reliable, and can be applied to large-scale models of turbomachinery elements.

To the author's knowledge, this is the �rst time that the harmonic balance

method has been used along with the Broyden method to study the dynamics

of friction-damped structures.

� Results were presented for several large-scale systems, under a variety of struc-

tural and friction parameters. Complex features of the non-linear response were

identi�ed, such as: motions with multiple stick-slip phases during each period,

subresonances, and localization. The multi-harmonic, hybrid frequency/time

method provides very signi�cant time savings over the more traditional numer-

ical time integration procedures.

� The multi-harmonic method developed for the study of the forced response was

expanded to the analysis of the free response and stability of friction damped

systems: the procedure is similar to the one used for the forced response,

with the frequency of vibration being an unknown. It was observed that the

dynamics are very rich when several modes of vibration are negatively damped

and that the stability analysis is often not conclusive. When a single mode

of vibration is negatively damped {as expected in actual blades undergoing

utter, the hybrid frequency/time method is able to predict in an e�cient and
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reliable manner the free steady-state response and the stability of the system.

� A new, general model of a friction damper was introduced, which may represent

more accurately damped bladed disk assemblies. The new damper element

is a massless structure with its own sti�ness matrix. The model allows for

several contact points at each interface between the damper and the structure.

The motions at all the contact points are coupled through the sti�ness of

the damper element. A new, general method was presented to compute the

force transmitted by the general damper element to the adjacent structures:

the method is based on a time-marching procedure over a few periods of the

motion. Several properties of the forces transmitted by structure-like dampers

were identi�ed, such as the fact that the sum of all the forces equals to zero.

Results were presented for an example system and revealed rich dynamics.

7.2 Direction for future work

Following are some suggestions of investigation topics that, if addressed, would

enhance the analysis of the dynamics of friction damped blade assemblies presented

in this dissertation.

� Microslip

In the analysis of friction damped structural systems, single point contact

Coulomb friction is often assumed. This model is acceptable as long as gross

slip occurs at the interface, usually as a consequence of the normal load be-

ing small. However, for high normal loads, partial slip is expected. Since one

single-point contact Coulomb damper alone can only represent fully slipping or

stuck situations, more re�ned models of the friction interface have to be used
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in order to accurately predict the energy dissipated at an interface undergoing

microslip.

In the past, microslip has often been introduced using three di�erent mod-

els. Since the main characteristic of micro-slip is that the slope of the loading

curve decreases gradually, due to partial slip, as the contact displacement in-

creases, the �rst approach is to approximate this loading curve by an exponen-

tial [Sanliturk et al., 1997]. The second approach is to use distributed element

models for hysteresis. One such model is based on an array of elastoplastic el-

ements in parallel or in series. The parallel-series model has been widely used

[Iwan, 1967, Sanliturk and Ewins, 1996]. Finally, the third approach is based

on a continuous model of the friction interface, represented by an elastoplastic

shear layer [Menq et al., 1986]. Even if this third approach seems more general,

it does not seem to bring more accuracy than the �rst two methods and the

analytical complexity of this model make it di�cult to implement this method

for large scale systems.

� Variable normal load

It might be important to consider the e�ects of the variations of the normal load

across the frictional interface. Such e�ects have been found to be signi�cant

[Ferri, 1995, Whiteman and Ferri, 1999]. Yang et al. (1998) have introduced

a new contact interface model, with a friction contact point and a massless

elastic element. The sti�ness of the elastic element is characterized by two

linear springs, which account for the shear and normal sti�ness properties.

This model can represent tangential stick slip motion as well as intermittent

separation, and the contact interface can either have a preload or initial gap.
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Analytical criteria must be developed to predict the transitions between various

states of the interface and, with these transitions established, the hysteresis

loop can be obtained in order to characterize the sti�ness and damping of the

interface.

� Two-dimensional friction contact

Most of the research e�orts on friction damped structural systems have been

directed to analyzing friction interfaces constrained to move in one-dimension:

i.e., a contact point which moves back and forth along a straight line. This

assumption may not always be valid, especially if there is coupling between

motions of the structure in more than one direction: for example bending and

torsion of a turbine blade. Menq et al. (1991) studied the two-dimensional in-

terface motion when the contacting point moves in an elliptical path. Sanliturk

and Ewins (1996) extended the method to more general, planar paths. The

friction is supposed to take place between two nodes of the structures whose

location is determined by their x- and y- coordinate in the plane of the motion.

The damper extension is computed at each iteration over several cycles until

the trajectory stabilizes. Once this trajectory is known, the friction force and

its direction angle can be computed and resolved into the x- and y- directions.

This approach can be generalized to any hysteresis loop and may take into

account microslip.

� To represent more accurately the actual assemblies used in turbomachinery

equipment, the dampers may need to be considered as wedge elements connect-

ing two adjacent blades. This damper model combines both the structure-like

approach presented in Chapter VI and variable normal loads, as de�ned above.
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� In Chapter VI, the damper inertia forces are neglected compared to the elastic

and friction forces. In some cases, the mass of the damper may need to be

taken into account in the model.
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ABSTRACT

STUDIES OF THE DYNAMICS OF DRY-FRICTION-DAMPED BLADE

ASSEMBLIES

by

J�erôme Guillen

Chairperson: Christophe Pierre

The steady-state response to periodic excitation of multi-degree of freedom (DOF)

structural systems with several elastic/perfectly plastic attached dry friction dampers

is studied. The force transmitted by a friction damper is deduced in the time domain

from the displacement and velocity of the corresponding DOF to which the friction

damper is attached. The convergence of the method is ensured by a modi�ed Broy-

den's algorithm, which is used to solve iteratively the set of multi-harmonic nonlinear

equations in the frequency domain. The solution algorithm is thus hybrid in the fre-

quency and time domains. The method proposed can handle both friction dampers

that are attached to ground and the general case of dampers that connect two DOF's

of the structure. Results are obtained for both tuned and mistuned con�gurations of

large-scale models of dry-friction damped bladed disks used in turbomachinery ap-

plications, subject to various traveling wave \engine order" excitations, for a variety



of structural and friction parameters. Interesting, complex features of the nonlinear

response are revealed, such as: motions for several stick-slip phases per period; lo-

calized motions for mistuned systems, which feature mostly sticking motion at most

blades and mostly slipping motion at a few blades; subresonances; e�ects of higher

harmonics. Free response and stability analyses are also presented for structural sys-

tems attached to a single friction damper. Finally, a novel, general model of friction

damper is introduced: the damper element is a general, massless structure connected

at multiple punctual interfaces to the adjacent structures. This model allows for a

rich combination of stick/slip dynamic motion at the various interfaces. It is believed

to provide an accurate behavior of dry friction-damped blade assemblies.


