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à café, à se promener dans le vent froid du parc du Palais d’été (idéal pour neu-
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3
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Introduction

0.1 Introduction (version française)

This introduction is written in French as required by ECP graduate school administra-
tion. A translation follows.

0.1.1 La plante, un système complexe ?

De manière générale, une plante ou un peuplement végétal peuvent être vus comme
un système complexe, au sens mathématique du terme, c’est-à-dire comme un système
constitué d’un grand nombre d’entités hétérogènes dans lequel des interactions fortes
créent différents niveaux d’organisation et induisent un comportement holistique (i.e.
dont certaines propriétés émergentes ne peuvent être déduites de l’étude indépendante
des sous-sytèmes). Dès lors, l’approche réductioniste prônée par exemple par Descartes
dans son “Discours de la Méthode”, c’est-dire la subdivision d’un problème en sous-
problèmes indépendants, ne peut pas être appliquée : il est nécessaire d’analyser le
système dans son ensemble [Ricard, 2003].

Une caractéristique des systèmes complexes est que leur étude nécessite de manière
intrinsèque une approche interdisciplinaire et multi-échelle. L’interdisciplinarité est liée
au fait que les questions posées et les méthodes développées pour y répondre sont issues
de différents domaines scientifiques. Elle permet ainsi de confronter les développements
théoriques aux problèmes spécifiques posés par les applications aux plantes réelles.
D’autre part, la complexité inhérente aux systèmes étudiés requiert une analyse à plu-
sieurs échelles d’espace et de temps. La théorie des hiérarchies décrit en particulier des
systèmes pouvant être représentés comme des empilements de sous-systèmes emboités
(“nested hierarchy”). Cette définition peut s’appliquer aux plantes, pour lesquelles les
différents niveaux peuvent être par exemple les organes, les phytomères, les unités de
croissance, les axes, les complexes branchés, la plante toute entière [Godin and Cara-
glio, 1998]. Le comportement des structures de chaque niveau conduit à l’émergence de
comportements collectifs et d’organisations à des niveaux supérieurs. Les interactions
entre les différents niveaux sont donc vues comme des contraintes ou des propriétés
émergentes selon le point de vue choisi.

Dans de nombreux cas, les systèmes complexes font preuve d’une grande robustesse à
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des perturbations même à large échelle ou multi-dimensionnelles et montrent une ca-
pacité inhérente à s’adapter ou bien à persister dans une situation stable. Perry [1995]
caractérise ces systèmes de “critiques” ou “métastables” : robustes pour des pertur-
bations auxquelles les composants du système sont adaptés mais sujets à de brusques
changements si certains seuils sont dépassés. Cela se vérifie pour les plantes qui ex-
hibent des propriétés macroscopiques une échelle n relativement robustes (qui sont la
base des modélisations s’appuyant sur les principes “d’équilibre fonctionnel”[Mäkelä,
2003]) même si à l’échelle n− 1 les processus physiologiques mis en jeu sont complexes
et parfois très différents selon les conditions de croissance. Si les niveaux sont suffi-
samment isolés, le développement d’un modèle “mécaniste” peut reposer sur l’étude du
comportement des constituants du système à l’échelle inférieure uniquement : inclure
un plus grand nombre de niveaux différents diminue la robustesse et la stabilité du
modèle [Mäkelä, 2003].

Ces théories se sont en grande partie développées pour des applications en écologie
ou à l’échelle du paysage [Li, 2000]. Cependant Mäkelä [2003] souligne que les pra-
tiques sylviculturales tendent à rapprocher la plantation exploitée d’un peuplement
naturel, c’est-à-dire un peuplement plus hétérogène en termes d’espèces présentes, de
classes d’âges et de disposition spatiale. L’auteur en tire la conclusion que l’on doit
considérer «l’écosystème forestier comme une entité hiérarchisée consituée de niveaux
d’organisation à différentes échelles spatiales et temporelles ». De manière plus mo-
deste, nous soulevons ici la question des changements d’échelle spatiale au niveau de
la plante seule. En ce qui concerne leur architecture, la description des plantes comme
des systèmes modulaires mettant en jeu des phénomènes multi-échelles est couram-
ment utilisée [Barthélémy and Caraglio, 2007]. Cela a naturellement guidé les premières
représentations de la forme des plantes vers des méthodes basées sur la notion d’autosi-
milarité comme la théorie des fractales. Même si ce type de représentation a vite révélé
ses limites, notamment du point de vue de la souplesse de représentation, c’est selon les
mêmes principes qu’ont été développés les concepts de modèle architectural et d’unité
architecturale. D’un point de vue architectural, la notion d’analyse multi-échelle est
donc une notion bien étudiée et pour laquelle un formalisme et des outils adaptés ont
été développés [Godin and Caraglio, 1998]. Reste à intégrer le fonctionnement dans ce
cadre, c’est-à-dire effectuer une analyse multi-échelle d’un modèle structure-fonction.

0.1.2 Complexité du modèle et identification paramétrique :
un équilibre à trouver.

Comme pour d’autres systèmes complexes, la confrontation aux observations réelles
pose des questions liées à la reconstruction de la dynamique du système à partir des
données, souvent sources de problèmes inverses difficiles. Cela soulève également le
problème de l’acquisition de données et de la définition d’un niveau pertinent de mesures
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et des variables associées. Nous allons donc chercher les compromis possibles entre la
complexité des processus à décrire et les simplifications apportées par la modélisation.

Nous présentons dans cette thèse des travaux appliqués au modèle de croissance des
plantes GreenLab, initié par Philippe de Reffye. Le premier chapitre de la thèse en
synthétise les principales caractéristiques en les situant par rapport aux méthodes com-
munément employées dans d’autres modèles de la bibliographie. Dans ce chapitre, nous
nous sommes principalement concentrés sur les modèles de croissance pour les arbres,
qui sont l’objetif premier de notre étude, même si certaines problématiques spécifiques
aux herbacées sont aussi abordées. Rappelons ici de manière brève les principales com-
posantes de GreenLab.

GreenLab est un modèle structure-fonction qui simule les processus de production de
biomasse et sa répartition dans la plante entière, à l’échelle de l’organe. L’organogénèse
est simulée par un automate double-échelle qui détermine les règles de branchaison entre
les axes, qui sont classés en différentes catégories selon leur stade de différentiation (âge
physiologique). Cet automate se décline en 3 versions selon le type de plante à décrire
et l’objectif visé : déterministe (GL1), stochastique (GL2) ou bien avec rétroaction
de la photosynthèse sur l’organogénèse (GL3). La production de biomasse est calculée
à chaque pas de temps selon la surface foliaire active par une fonction qui intègre
la compétition lumineuse à l’échelle de la plante (selon un formalisme de type loi de
Beer-Lambert). Cette biomasse est répartie entre les organes en expansion selon leur
demande, indépendamment de leur position (“pool” commun de biomasse), suivant un
modèle de compétition de puits.

Les travaux d’Amélie Mathieu [Mathieu, 2006] ont permis des progrès dans le domaine
de la simulation de plantes ramifiés à l’aide du modèle GreenLab. L’arbre est simulé
comme un système capable de s’auto-réguler, selon les conditions dans lesquelles se
déroule sa croissance. On dispose ainsi d’un outil efficace pour représenter la plasticité
du développement topologique des arbres selon les conditions environnementales et se-
lon la compétition qu’ils subissent de la part de leurs voisins. On peut également simuler
de manière plus réaliste les différents stades de croissance dans la vie d’un arbre, avec
notamment l’apparition progressive des ordres de branchements (“effet de base”). Le
modèle permet également de simuler des phénomènes cycliques observés chez certains
arbres ou herbacées comme l’alternance de périodes de fructification et de branchaison
[Mathieu et al., 2008].

L’un des objectifs majeurs de GreenLab est la prédiction et l’optimisation de la crois-
sance des plantes. Une étape importante est donc l’ajustement du modèle sur des plantes
réelles. Cela repose sur des ajustements en parallèle (multi-fitting) des masses de cha-
cun des organes et permet de retracer la dynamique de la répartition de biomasse au
cours de la vie de la plante et les seuils de branchaison et/ou fructification en fonc-
tion du rapport de l’offre de biomasse sur la demande. Les précédents travaux réalisés
autour de GreenLab ont permis son identification paramétrique pour plusieurs plantes
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agronomiques ou herbacées, dont par exemple :

– le blé [Zhan et al., 2000], [Kang et al., 2007b]
– le tournesol [Guo et al., 2003]
– le mäıs [Guo et al., 2006] [Ma et al., 2007]
– la tomate [Dong, 2006] [Dong et al., 2008]
– le chrysanthème [Kang et al., 2006b]
– le riz [Mathieu, 2006]
– le caféier [Mathieu, 2006]
– le jeune hêtre [Mathieu, 2006]

Un des enjeux cruciaux de ces études, en plus de la calibration du modèle en tant que
telle, est l’étude de la stabilité des paramètres : il est important de pouvoir déterminer
quel est le domaine de validité du modèle, sa robustesse et son pouvoir prédictif. Ma
et al. [2007] ont analysé la variabilité des paramètres de GreenLab pour le mäıs en
réponse à trois types de variabilité phénotypique : au sein d’une même population,
au cours de ses stades de développement et sous différentes conditions climatiques. Le
modèle n’explique pas la variabilité des plantes au sein d’une même population, puisque
la version utilisée était déterministe, avec un jeu de paramètres supposé spécifique à
l’espèce. En revanche une bonne stabilité des paramètres entre les stades de croissance
a été constatée. Concernant les conditions de croissance, le coefficient de variation des
mesures de biomasse atteint 18% alors que la variation correspondante des paramètres
est de 10%. Cela signifie que les deux facteurs environnementaux choisis (ETP pour
la production de biomasse et température pour le développment) contrôlent la ma-
jeure partie des variations phénotypiques dues aux variations environnementales. En
revanche, des changements significatifs des valeurs de certains paramètres ont été obte-
nus par Ma et al. [2008] (sur le mäıs) et Louarn et al. [2007] (sur la tomate) pour des
plantes croissant au sein de plantations de différentes densités. Cela montre que, si les
résultats restent fiables dans un intervalle limité de conditions environnementales, des
améliorations restent à apporter pour relier les variations des paramètres aux variations
environnementales influentes.

Les applications citées ci-dessus concernent des plantes dont les ordres de ramifications
restent faibles (au maximum 3 pour les talles du riz). Pour ce type de plantes, une
description détaillée et une prise de mesures organe par organe sont possibles. En re-
vanche, cela devient irréalisable lorsque les ordres de ramifications sont plus élevés. La
construction d’un fichier-cible 1 complet imposerait de peser et mesurer séparément
toutes les feuilles, tous les entre-noeuds et tous les fruits de la plante. S’il s’agit d’un
arbre âgé et avec une architecture complexe, ce travail devient rapidement beaucoup
trop fastidieux.

Ainsi, même si la simulation est performante, nous sommes limités dans la pratique par

1On appelle fichier-cible le fichier regroupant l’ensemble des données récoltées sur la plante et
utilisées comme cible pour l’identification paramétrique
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le travail de récolte de données. Les informations réelles auxquelles nous avons accès
sont partielles ou plus grossières que celles que nous pouvons simuler. Cela implique
une analyse de l’effet de l’agrégation de données ainsi qu’un travail de simplification du
modèle, de manière à adapter le niveau de détail de la simulation à celui que l’on peut
espérer obtenir en pratique à partir des mesures. C’est l’objectif du travail présenté ici.
La question à laquelle nous cherchons à répondre dans cette thèse est la suivante :

Comment appréhender la prise de mesure et l’identification paramétrique pour des
plantes branchées ayant un modèle architectural complexe ?

On peut pour traiter cette question distinguer les sous-problèmes suivants :

– Une description détaillée du système architectural complet n’étant pas accessible, la
plante simulée aura une architecture différente de celle de la plante réelle : quel est
l’effet d’un changement de structure topologique sur la production et l’allocation de
biomasse dans le modèle ?

– Pour un ajustement du modèle sur une plante réelle, quelles données concernant sa
topologie peuvent être incluses dans la cible ?

– Si aucune donnée topologique n’est disponible, est-il utile de simuler le développement
topologique et dans ce cas, comment fixer les règles d’une architecture simplifiée par
défaut ?

– Quelles sont les équations et les paramètres régissant le comportement d’un modèle
simplifié qui conserverait des équivalences avec le modèle complet ? Quel choix peut-
on envisager pour les niveaux d’agrégation et pour les variables à conserver lors de
ces changements d’échelle ?

0.1.3 Présentation générale de la démarche

L’objectif principal visé est donc l’ajustement du modèle GreenLab aux arbres. On verra
néanmoins au cours du manuscrit que les méthodes développées dans ce but s’appliquent
en fait dans un cadre plus large, pour des plantes ramifiées de types variés.

Pour répondre à cette problématique, nous avons tout d’abord étudié le comportement
du modèle dans sa formulation actuelle. Nous rappelons en premier lieu les grandes ca-
ractéristiques et les principaux choix de modélisation de GreenLab, que nous analysons
à la lumière d’une revue bibliographique succinte (chapitre 1). Nous détaillons ensuite
les équations du modèle et son formalisme pour les parties concernant la mise en place
de la structure (chapitre 2) et le fonctionnement physiologique (chapitre 3), en nous
attardant sur les nouveautés introduites depuis la thèse d’Amélie Mathieu [Mathieu,
2006]. L’introduction d’un nouveau type d’équation pour le calcul de la production de
biomasse (basée sur la loi de Beer) modifie les propriétés du modèle. Nous montrons
en particulier que, sous certaines conditions, la croissance de deux plantes peut être
identique, du point de vue de la biomasse affectée à leurs compartiments, alors que
leurs paramètres de développement et d’architecture sont différents (chapitre 4). Ces
caractéristiques sont importantes dans une optique d’analyse multi-échelle de la plante.
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Enfin, une étude particulière a été menée sur les conséquences du choix de modélisation
de l’allocation de biomasse à la croissance secondaire sur le comportement du modèle.
En effet, trois modes de calcul de cette allocation ont été introduits et l’étude de leurs
implications respectives sur la croissance peut aider à faire un choix. Les autres critères
qui guident ce choix sont bien sûr l’adéquation du modèle aux données mesurées et
la possible interprétation physiologique des variables de contrôle choisies (Nombres de
feuilles, rapport offre-demande Q/D, production de biomasse Q).

Pour compléter la présentation du modèle, nous résumons brièvement en chapitre 5
un travail finalisé durant la thèse qui concerne l’étude des apports possibles de la
modélisation de croissance des plantes à la génétique quantitative. Nous avons mis
en place le couplage de GreenLab avec un modèle génétique très simple, reliant par
des multiplications matricielles les valeurs des paramètres du modèle à des variables
représentant le génome de la plante. La définition de ce génotype virtuel a permis de
simuler des croisements entre plantes et donc de reproduire la châıne complète des pro-
cessus à mettre en oeuvre pour extraire l’information génétique associée aux paramètres
du modèle à partir de mesures sur les plantes. Cela passe par l’inversion successive des
deux modèles : le modèle de croissance GreenLab et le modèle génétique. L’inversion du
modèle génétique est résolue en utilisant les techniques développées par les généticiens
pour la détection de QTL (Quantitative Trait Loci), notamment le logiciel QTL Car-
tographer. Bien que ce travail soit resté entièrement théorique, il a permis de souligner
l’intérêt de s’appuyer sur la modélisation pour fournir de nouveaux critères pour la
sélection génétique.

Dans une seconde partie, nous nous intéressons à la description et à l’ajustement du
modèle selon différents niveaux de détails et d’agrégation des mesures. Pour répondre au
problème soulevé, nous avons confronté le modèle complet à des plantes réelles sur des
cibles simplifiées. Cela nous a amenés à aborder le développement de modèles simplifiés,
avec différents niveaux d’agrégation des variables.

Plus précisément, nous rappelons tout d’abord la procédure et l’ensemble des mesures
utilisées dans les applications précédentes pour l’ajustement du modèle en l’illustrant
par quelques applications réalisées au cours de la thèse (jeunes pins, Cecropia sciado-
phylla, chapitre 7.1). Puis nous présentons les différents niveaux de simplification des
mesures que nous avons considérés. Nous avons envisagé principalement trois niveaux :
le niveau 0 ou cible “cumulée” pour lequel seules des données par compartiment sont
accessibles, le niveau 1 ou cible “Lollipop” pour lequel on se focalise sur le tronc, le
reste de l’arbre étant décrit par compartiments et enfin le niveau 2 ou cible “Rattle”
pour lequel l’agrégation des données se fait seulement pour les branches d’ordre 2, le
tronc étant décrit à l’échelle de l’organe. Ces choix se justifient par les objectifs en-
visagés pour chaque type de cible (par exemple, le niveau 2 permet d’envisager des
applications dans le domaine de l’étude de contraintes biomécaniques dans le tronc) et
par la faisabilité pratique du protocole expérimental associé. Les niveaux choisis ont
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aussi l’avantage d’être plus cohérents avec le type de données mesurées lors des inven-
taires forestiers ou générées par les modèles de croissance de plantations classiquement
employés (en particulier pour le niveau 1). Nous avons distingué deux classes de cibles
selon leur nature : des cibles décrivant les poids et les dimensions d’organes ou de com-
partiments de la plante (associées donc à son fonctionnement) et des cibles décrivant des
nombres d’organes et/ou leurs connexions topologiques (associées au développement).
Nous nous servons de ces différents types de cibles pour analyser la croissance de plantes
selon les données accessibles (chapitre 8). Cette analyse est aussi très dépendante de la
version du modèle que l’on choisit (déterministe GL1, stochastique GL2, déterministe
avec rétroaction de l’état trophique sur le développment GL3). Nous présentons les
problématiques spécifiques aux types de situations rencontrées et les solutions retenues
en nous appuyant sur les applications à des plantes réelles réalisées dans le cadre de la
thèse. Une plante emblématique a été choisie pour chaque version du modèle : le pin
(tabulaeformis) pour la version GL1, le blé tallé pour la version GL2 et le hêtre pour
la version GL3. Cela nous amène finalement à présenter une ébauche de typologie pour
l’analyse de plantes à l’aide du modèle GreenLab.

Ces considérations nous ont amenés à envisager une étude plus théorique de ces niveaux
de simplifications (chapitre 9). On cherche à vérifier des équivalences entre le modèle
complet et différents modèles simplifiés. L’intérêt des modèles simplifiés est d’augmen-
ter la significativité des paramètres et d’en réduire le nombre. Les équivalences sont
imposées en cohérence avec le niveau d’agrégation des données correspondant aux sim-
plifications choisies. Il s’agit par exemple d’imposer la conservation de la production
totale de biomasse, de la demande totale de la plante (ce qui assure la conservation d’une
variable-clé de GreenLab, le rapport offre sur demande) et de l’allocation par comparti-
ments. On cherche à écrire un modèle agrégé à partir des équations du modèle complet :
on considère que l’on connâıt les paramètres du modèle complet et l’on cherche à en
extraire ceux du modèle simplifié. Les équations issues de cette procédure permettent
de conserver les équivalences recherchées mais ne sont pas forcément les plus perti-
nentes lorsqu’on les considère indépendamment du modèle complet. En particulier, la
répartition de la biomasse entre les cernes d’une structure est fortement dépendante de
sa topologie ce qui rend difficile le maintien d’équivalences strictes lors des changements
d’échelle. Il en va de même pour les variables dont les variations sont fonction de l’état
trophique de la plante (variables “GL3”). Pour l’application future de ces équations à la
croissance de plantes réelles, nous proposons donc des modifications du modèle simplifié
qui entrainent la non-conservation des équivalences avec le modèle complet mais dont
les principes sont en adéquation avec les choix de modélisation de GreenLab.
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0.1.4 Remarques préliminaires à la lecture du document

Nous donnons ici quelques précisions sur le vocabulaire employé. Ces précisions seront
rappelées au cours de la lecture.
– On nommera modèle complet le modèle GreenLab présenté dans la première partie,

qui peut être décliné selon les versions GL1, GL2 ou bien GL3 et dans lequel on
décrit toute la structure branchée, jusqu’aux ordres les plus élevés. Par extension, on
désigne par arbre complet un arbre simulé selon ce modèle.

– Par opposition, l’arbre simplifié est un arbre que l’on décrit de manière simplifiée
(ou agrégée ou cumulée) et que l’on simule à l’aide d’un modèle simplifié. Ce modèle
simplifié peut être de différents types, selon la plante considérée et le niveau de détails
que l’on peut espérer atteindre en pratique lors des mesures.

– Compartiments : certaines mesures pour une description simplifiée de la plante sont
décrites par compartiments. Un compartiment est constitué de l’ensemble des organes
de même type contenus dans une structure donnée. Par exemple, une structure me-
surée de façon simplifiée compte un compartiment bois, un compartiment feuilles et
un compartiment fleurs ou fruits.

– Remarque : Nous employons de manière abusive le terme “biomasse” et le terme
“poids” pour désigner la quantité de matière (fraiche ou sèche) contenue dans un
organe.

– Nous employons ici indifféremment les dénominations “métamère” et “phytomère”.
Pour faciliter la lecture du manuscrit, nous avons cherché à employer systématiquement
les mêmes notations pour les différents paramètres des équations et notamment pour les
nombreux indices nécessaires. En particulier, nous essayons dans la mesure du possible
de respecter la convention suivante : les entiers notés en indice représentent les âges
physiologiques, ceux notés entre parenthèses représentent des âges chronologiques ou
des cycles de croissance et les lettres en exposant représentent les types d’organes. Le
lecteur trouvera en annexe A un tableau récapitulatif de ces notations.

Les logiciels : Digiplante, GreenScilab

Les résultats de simulation et d’ajustement présentés dans cette these ont été réalisés
à l’aide des logiciels Digiplante et GreeenScilab. La participation au développement de
ces deux logiciels a fait partie du travail de thèse.
Digiplante est développé dans le laboratoire de Mathématiques Appliquées aux Systèmes
(MAS) de l’Ecole Centrale Paris. Il est basé sur le langage objet C++, qui est un langage
particulièrement bien adapté à la modélisation de la croissance des plantes du fait de la
structure modulaire d’une plante. En effet, une plante peut être décomposée en unités
élémentaires qui ont des propriétés similaires et qui interagissent en parallèle entre
elles en permanence. Digiplante comprend la version déterministe du modèle GreenLab
(GL1) ainsi que l’introduction de la rétroaction de l’état trophique de la plante sur son
développment (GL3).
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GreenScilab est une boite à outils du logiciel libre SciLab. Elle est développée principa-
lement au LIAMA. La simulation et les ajustements sont légèrement moins performants
mais le libre accès à son code en fait un vecteur privilégié pour la diffusion du modèle et
pour l’enseignement (utilisation pour des démonstrations et des TPs de modélisation).
GreenScilab inclut la version stochastique du modèle (GL2).

Les collaborations

Une partie importante de mon travail de thèse a été consacrée aux applications sur
des plantes réelles. Celles-ci se sont déroulées dans le cadre de collaborations avec des
instituts de recherche agronomique ou en foresterie :
– L’Université d’Agriculture de Chine (China Agricultural University, CAU), située à

Pékin : coton (Li Dong), riz (Zheng BangYou), pin (Wang Feng) sous la direction du
Pr Guo Yan, tomate (Pr Zhang BaoGui).

– l’Institut Forestier de Chine (Chinese Academy of Forestry, CAF), situé à Pékin : pin
tabulaeformis (Guo Hong et Hong LingXia)

– Le Laboratoire d’Etude des Ressources Forêt-Bois (LERFoB, Champenoux) : hêtre
(Thiéry Constant, Gérard Nepveu)

– Le Laboratoire d’Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE,
Montpellier SupAgro - INRA) : Arabidopsis thaliana (Angélique Christophe, Jérémie
Lecoeur)

– Le département Horticultural Supply Chain Group de l’université de Wageningen
aux Pays-Bas : blé, chrysanthème (Kang MengZhen)

– L’UMR Botanique et Bioinformatique de l’Architecture des Plantes (AMAP) du CI-
RAD (Montpellier) : Cecropia sciadophylla (Patrick Heuret, Camilo Zalamea, Daniel
Barthélémy)

0.2 Introduction (English version)

0.2.1 Plants, complex systems?

Plants and plant populations can be considered as complex systems, in a mathemati-
cal sense. Complex systems consist of high numbers of heterogeneous entities between
which multi-scale interactions generate holistic behaviours (i.e. some emergent proper-
ties of the system cannot be deduced from the independent studies of its components).
Therefore, a reductionist approach (that is to say the decomposition of problems into
independent sub-problems) is not adapted: it is necessary to analyze the system as a
whole [Ricard, 2003].
Dealing with complex systems intrinsically requires multi-disciplinary and multi-scale
approaches. Indeed, the problems raised and the methods developed to address them
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come from different scientific disciplines. It is also important to confront theoretical
developments to real systems. The inherent complexity of these systems implies that
their analysis must be performed at different spatial and temporal scales. The the-
ory of hierarchies describes systems that can be represented as nested sub-systems.
This definition can be applied to plants, the different levels being for instance organs,
phytomers, growth units, axes, structures, plants [Godin and Caraglio, 1998]. The
properties of structures at each level generate the emergence of collective behaviours
and high-level organization. Inter-level interactions are considered as constraints or as
emergent properties.

In many cases, complex systems reveal to be very robust and insensitive to small pertur-
bations. Perry [1995] characterizes these systems as “critical” or “metastable” : robust
for some perturbations but affected by rapid changes if some thresholds are exceeded.
This phenomenon can be observed for plants: they exhibit relatively robust properties
at a level n (that are the bases of some modelling approaches that rely on “functional
balance” principles [Mäkelä, 2003]) although at level n− 1 the physiological processes
involved may be of very different natures depending on the growth conditions. Ac-
cording to Mäkelä [2003], if the levels are independent enough, the development of a
mechanistic model can be based on studies of the interactions between the components
of the adjacent underlying level only: including processes at smaller scales would reduce
the robustness and stability of the system.

These theories have been mainly developed for applications at landscape scale in ecol-
ogy [Li, 2000]. Mäkelä [2003] underlines that forest management practices tend to
manage exploited stands like natural forests, i.e. introducing more and more hetero-
geneity regarding species, age classes and spatial distributions. The author concludes
that forest ecosystems must be considered as hierarchical entities consisting of organi-
zation levels at different spatial and temporal scales. More modestly, we raise here the
question of changes of scales for single plants only. Regarding plant architecture, it is
widely admitted that plants are modular systems that involve multi-scale phenomena
[Barthélémy and Caraglio, 2007]. In particular, this idea has led the first simulations
of virtual plants to methods based on self-similarity such as the fractal theory. Similar
principles have been applied to define the concepts of architectural model and architec-
tural unit. So the concepts, the adequate formalism and the tools for the multi-scale
analysis of plant architecture have been already developed [Godin and Caraglio, 1998].
But a further step remains to be achieved: the integration of functional processes into
this framework, i.e. the multi-scale analysis of a functional-structural model.
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0.2.2 Trade-off between model complexity and parameter iden-
tification

As for most complex systems, confrontation with real data raises several problems
related to the reconstruction of the system dynamics from data, which is often source
of difficult inverse problems. It also raises the problem of data acquisition and definition
of a relevant description scale for measurement data and variables. It implies finding a
trade-off between the complexity of real phenomena and the simplifications induced by
the modeling work.

The work presented in this thesis is applied to the GreenLab model of plant growth. The
first chapter synthesizes the main characteristics of this model with a short bibliography
review of other models of the same kind. We focus on tree growth models although
the case of herbaceous is also addressed. Let us remind here the main principles of
GreenLab:

GreenLab is a structural-functional model simulating the processes of biomass pro-
duction and allocation into organs at whole-plant scale. Organogenesis is driven by
a dual-scale automaton determining the topological rules of organ emission and or-
ganization. The state variable of this automaton is the differentiation state of apical
meristems, called their physiological age. Three versions of the model can be considered:
deterministic (GL1), stochastic (GL2) or mecanistic, i.e. deterministic with feedback
of photosynthesis on organogenesis (GL3). Biomass production is computed at each
time step (growth cycle) depending on the plant total foliar surface and taking into
account the effects of self-shadowing between leaves. Biomass is allocated to expanding
organs regardless of their position (common pool of biomass) according to a source-sink
model.

The work of Amélie Mathieu [Mathieu, 2006] has brought significant advances allow-
ing realistic simulations of branched plants with GreenLab. Trees are considered as
self-regulating systems with several physiological and developmental processes being
influenced by their internal trophic state. It allows reproducing the tree architectural
plasticity in response to environmental or ontogenic changes (e.g. progressive appear-
ance of higher ramification orders in branches at different growth stages). The model
also generates cyclic patterns as emergent property, similarly to what can be observed
on real plants (e.g. rhythmic appearance of fruits) [Mathieu et al., 2008].

A major objective of GreenLab is the prediction and optimization of plant growth.
Fitting the model on real data is therefore a crucial step. It relies on parallel fitting
(multi-fitting) of individual organ mass. It allows tracking back the dynamics of biomass
allocation through the plant life. The previous works with GreenLab have dealt with
its parameter identification for several plants such as:

� wheat [Zhan et al., 2000], [Kang et al., 2007b]
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� sunflower [Guo et al., 2003]

� maize [Guo et al., 2006] [Ma et al., 2007]

� tomato [Dong, 2006] [Dong et al., 2008]

� chrysanthemum [Kang et al., 2006b]

� rice [Mathieu, 2006]

� coffee tree [Mathieu, 2006]

� young beech trees [Mathieu, 2006]

These applications concern plants with a relatively low branching order (at most three
for wheat tillers). Detailed description and measurements are thus possible. But it is
not feasible for plants with higher branching orders. Gathering the set of data needed
for the identification of the model would require weighting and measuring independently
all leaves, internodes and fruits of any target plant. It represents a very tedious work
for an old plant with a complex architecture. Thus, although simulation is efficient,
limitations arise from the procedure of data collection. The level of details available for
the collection of data is coarser than that of simulations. It implies that some work is
needed to analyze the effects of data aggregation and to study the possibilities of model
simplifications so that the scale of simulation is consistent with that of observations.
This is our objective.

The main question raised in this work is the following:

How to deal with parameter identification and the associated experimental protocol for
branched plants having complex architectures ?

More precisely, several questions arise:

� In the process of fitting the model on plants, since detailed descriptions of com-
plete real systems are not available, simulated plants will necessary have a topo-
logical structure different from those of real plants. It raises the question: what
are the effects of changes in topological structure on biomass production and
allocation in the model ?

� For model parameterization, what kind of topological data can be included in the
target file ?

� If no topological data are available, how to set some default rules for the plant
topological development ?



0.2. INTRODUCTION (ENGLISH VERSION) 21

� What equations and which parameters can be defined to drive the growth of
a plant simulated with a simplified model where some aggregated key-variables
would be conserved ? What are the possible levels of simplification and which
key-variables are the most relevant ones ?

0.2.3 Presentation of the approach

Our main objective is the identification of the model for trees. However we will see
that the methods developed have a larger field of applications and can be applied to
different kinds of branched plants.

To address the questions presented above, we first analyzed the model behaviour in
its current formulation. We remind the main characteristics and modelling choices of
GreenLab at the light of a brief bibliography review (chapter 1). Then we detail the
model equations and the dedicated formalism that was developed for the description of
the plant topological development (chapter 2) and its physiological functioning (chapter
3). In these chapters, we focus on some new features of the model that were introduced
since the PhD of Amélie Mathieu [Mathieu, 2006]. In particular, the introduction of
a new kind of equation for biomass production (based on the Beer-Lambert law) has
deep implications on the model behaviour. We show that, under specific assumptions,
the growth of two plants can be identical for their compartment biomass although their
topological parameters are different (chapter 4). These properties are important in the
context of a multi-scale analysis of plant growth. A particular attention was also given
to the consequences of different modelling choices for secondary growth. Indeed, three
approaches were proposed, so analyzing the properties of the associated model for each
case provides interesting information to help choosing one of them. The other criteria
are of course the accordance of the model to real data and the relevance of the main
variables chosen, in terms of their physiological interpretation (Number of leaves, ratio
of biomass supply to demand Q/D, biomass production Q).

In addition to the presentation of the growth model itself, we present in chapter 5 a
work about the potential benefits of plant growth modelling for quantitative genetics.
We introduced the coupling of GreenLab with a simple genetic model: it uses matrix
multiplications to link the model parameters to virtual variables representing the plant
genome. Defining a virtual genome allowed simulating plant reproduction and thus
simulating the complete chain to extract genetic information related to the model pa-
rameters from phenotipic data. It requires the successive inversion of two models: the
growth model GreenLab and the genetic model. It is based on techniques developed by
geneticists for QTL detection (Quantitative Trait Loci). Although that work remains
entirely theoretical, it underlines that growth modelling can bring new criteria for ge-
netic selection.

In a second part, we focus on the model description and its parameterization with
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different levels of simplification and data aggregation. To address the problem, we
confronted the complete model to real plants with simplified targets. It has led to the
definition of simplified models with different levels of variable aggregation.

More precisely, we first remind the procedure and the set of data used for parameter
identification of the complete model. We illustrate it with some of the applications
realized during the PhD (young pines, Cecropia sciadophylla, chapter 7.1). Then we
present the different levels of measurement simplifications that were considered. Three
levels were defined: level 0 or “cumulated target” for which only compartment data
are available, level 1 or “lollipop” target for which the trunk is detailed and the crown
is described at compartment level and level 2 or “rattle” target for which data aggre-
gation is done only at branch level. These choices can be justified by the objectives
defined for each level (for instance, level 2 allows considering applications in predicting
biomechanical stresses in the trunk) and by the practical feasibility of the associated
experimental protocol. The aggregation levels are also chosen in adequacy with the kind
of data classically collected for forest inventories and generated by forestry models. We
distinguished two kinds of target data: those containing mass and dimensions of organs
and compartments (related to plant functioning) and those containing the topology of
the plant (related to plant development). This analysis is also strongly dependent on
the version of the model (GL1, GL2, GL3). We present some specific problems and
solutions developed for some real plants that were studied during the PhD. One repre-
sentative plant was chosen for each of the model version: pine (tabulaeformis) for GL1
version, tillering wheat for GL2 and beech tree for GL3. It eventually lead to defining
an attempt of typology for the analysis of plants with GreeenLab.

This work has also led to a more theoretical study of the different aggregation levels
(chapter 9). The objective was to keep some equivalences between simplified and com-
plete models. The interest of simplified models is to reduce the number of parameters
and to improve their significance. The choice of the variables to keep is consistent with
the level of data aggregation. It can be for instance the total biomass production and
the whole plant demand (which insures that the key-variable of the biomass supply to
demand ratio is conserved) or the biomass allocated to compartments. To define the
equations of the simplified models from those of the complete model, we first use the
method of variable aggregation. It allows keeping strict equivalences but the equations
that arise from this procedure are not necessary the most relevant ones when consid-
ered independently from the complete model. For instance, biomass partitioning for
ring growth is strongly dependent on the plant topology and therefore it is difficult to
keep these equivalences with changes of scales. The same problem is raised for some
variables that depend on the trophic state of the plant (“GL3” variables). Therefore, for
future applications of these equations to the simulation of real plant growth, we propose
modifications of the simplified model. These modifications imply non-conservations of
equivalences with the complete model but their principles are consistent with the Green-
Lab philosophy.
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0.2.4 Preliminary remarks

We give here some vocabulary remarks.

� We call complete model the current version of the GreenLab model as presented
in the first part (with its GL1 to GL3 versions). The whole branching structure
is described, including the highest branching orders. By extension, complete trees
refer to trees simulated according to this model.

� By opposition, simplified tree refers to a tree described in a simplified manner
and simulated with a simplified model. Simplified models can be of different kinds
depending on the plant and on the level of details that can be reached in practice.

� Some measurement data can be gathered at compartment scale. Compartments
consist of the set of organs of the same kind borne by any structure. For instance,
simplified measurements of structures can include wood, leaf and flower or fruit
compartments.

� Remark: we abusively use the terms of “biomass” and “weight” to refer to the
quantity of fresh or dry matter of organs.

� We equally use in the words “metamer” and “phytomer”.

To facilitate the reader’s task, we tried systematically to use the same notations for
the model parameters and their index. In particular, the following conventions were
adopted and applied as widely as possible: subscript integers represent physiological
ages, those between brackets represent chronological ages or growth cycles and letters
in exponents represent organ types. A list of some parameters and notations can be
found in Appendix A.

Softwares: Digiplante, GreenScilab

The results of simulation and fitting presented in this thesis were performed using the
Digiplante and GreeenScilab softwares. It was part of the PhD work to contribute to
the development of these softwares.
Digiplante is developed at the laboratory of applied mathematics (MAS) in Ecole Cen-
trale of Paris. It is based on the object-oriented language C++ which is adapted to
plant growth modelling due to plant modular structure. Indeed, plants can be decom-
posed into elementary units that have similar properties and that interact in parallel.
Digiplante includes the deterministic version of GreenLab (GL1) and the version with
feedback of the trophic state of the plant on its development (GL3).
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GreenScilab is a toolbox of the open source software SciLab. It is mainly developed
at LIAMA (Sino-french Laboratory of automatic, computer sciences and applied math-
ematics). It includes the deterministic (GL1) and the stochastic (GL2) versions of
GreenLab. As it is open source, it is a privileged support to teaching sessions on the
model.

Collaborations

An important part of the PhD work was dedicated to applications on real data. This
work was realized in collaboration with agronomy or forestry research institutes:

� China Agricultural University (CAU), in Beijing: cotton (Li Dong), rice (Zheng
BangYou), pine (Wang Feng) under the direction of Pr Guo Yan, tomato (Pr
Zhang BaoGui).

� The institute of Forest resource information techniques, (Chinese Academy of
Forestry, CAF), in Beijing: Pinus tabulaeformis (Guo Hong and Hong LingXia)

� The laboratory of wood and forest resources (LERFoB, Champenoux): beech tree
(Thiéry Constant, Gérard Nepveu)

� The laboratory of plant ecophysiology under environmental stress (LEPSE JRU,
Montpellier SupAgro - INRA): Arabidopsis thaliana (Angélique Christophe, Jérémie
Lecoeur)

� The Horticultural Supply Chains group of Wageningen university, the Nether-
lands: wheat, chrysanthemum (Kang MengZhen, Ma Yuntao, Ep Heuvelink)

� The joint research unit Botany and computational plant architecture (AMAP),
CIRAD (Montpellier): Cecropia sciadophylla (Patrick Heuret, Camilo Zalamea,
Daniel Barthélémy)
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The GreenLab model: description
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Chapter 1

Principles and hypotheses in the
bibliographical context

In this chapter, we present synthetically some main features of the GreenLab model
and we compare it with other existing models of plant growth.

The bibliography references address mainly tree growth models but other plants are
considered too, especially for descriptions of the physiological bases and justifications
of modelling choices for allocation processes.

1.1 Objectives of the model

In any modelling approach, it is important to identify clearly the model goals. The
characteristics of most models are strongly linked to their application fields. The pur-
pose of the GreenLab model is to be a generic mathematical model of plant growth for
agronomy and forestry applications. As such, its modelling concepts should be robust
and general enough to be applied to herbaceous as well as trees. It should produce a
performing simulation tool that simulates the minimal set of processes involved in the
growth of most plants. It deals with components and processes at mesoscale. It aims at
answering the following question: from the basic mechanisms that are common to most
plants, what observed phenomena can be reproduced ? It is oriented toward applications
for decision support systems to improve crop yield and forest management. Therefore,
particular focus is given to parameter identification, optimization and optimal control.
GreenLab has inherited from the knowledge acquired on one hand from the architec-
tural models based on botanical analysis and on the other hand from process-based
models describing ecophysiological processes. It is the result of a joint work between
researchers from several scientific disciplines: botany, ecophysiology, agronomy, applied
mathematics and computer sciences.

27
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1.2 A discrete-time and -space model

Spatial and temporal scales are of crucial importance as they are major determinants in
the model development. They must be carefully chosen according to the goals and the
potential applications. GreenLab is a dynamic discrete model, from both a temporal
and a spatial point of views. Concerning the temporal aspect, the growth dynamics
is sampled at different dates and the time units are called growth cycles (GC). Conse-
quently, equations of the model are recurrent equations (and not differential equations)
that appear under the form: Xn+1 = f(Xn, Un), where Xn is the vector of state vari-
ables of the system at cycle n and Un the vector of control variables that can influence
the plant growth. This formalism is detailed in the next chapter. An advantage of using
a discrete time scale is that it avoids facing the time-consuming problem of solving par-
tial derivative equations. The determination of the cycle duration depends on the plant
species studied and is detailed in chapters 2.2 and 2.3. Regarding spatial description,
the plant is decomposed into sets of organs. Six kinds of organs are mainly considered
in the model:

� internode (portion of stem situated between two nodes. It includes the pith and
several rings)

� blade (leaf lamina)

� petiole (leaf stem)

� flower (reproductive structure)

� fruit (ripened ovary)

� bud (embryonic shoot)

It is thus assumed that all vascular plants can be described from organized combinations
of these kinds of generic organs.

1.2.1 Choice of temporal scale

In GreenLab, the time step is based on the plant life-time and on its specific rhythm
of growth. For trees in temperate zones, it is generally one year. This time step
seems adequate to simulate the growth over more than 100 years, a typical duration
for simulating the long-term effects of silvicultural practices. It allows neglecting some
short-term phenomena such as the dynamics of organ expansion, considered as imme-
diate (two or three weeks) compared to the growth cycle duration (one year) for trees
like Mapple trees or Horse chestnut trees. However this assumption does not hold for
some trees, for example in the case of polycyclism (i.e. several growth flushes per year)
or for some tropical trees (e.g. Eucalyptus) that do not exhibit visible growth units
and have a fast continuous growth.
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1.2.2 Choice of spatial scale

Regarding spatial decomposition, organ scale appears as a natural scale for considering
the growth of individual plants. The choice of this level of decomposition unit allows
dealing with plants of diverse sizes from herbaceous such as Arabidopsis (20 cm high)
to trees such as Beech tree or Pine tree (more than 10 m). Indeed, plants can be seen
as modular systems where modules can be considered at different levels, the smallest
units being phytomers in our study. A phytomer is defined as the entity formed by an
internode, its leaves (and roots if any), and axillary buds (see section 2.1).

As stated in [Minchin and Lacointe, 2005] who recommend to switch from a reduc-
tionist approach to a holistic approach, there is currently a general trend to integrate
processes at molecular scales, in the hope of creating more mechanistic models with
growth processes appearing as emergent properties. On the contrary, GreenLab is vol-
untarily restricted to an analysis of the plant at the mesoscale. We consider that this
scale is appropriate (and sufficient) for most applications in crop yield prediction or
forest management. On the other hand, compared to simulations at compartment lev-
els (e.g. root/shoot, crown/stem/roots), organ scale has several assets for tree growth
models, as well for their potential applications as for the constraints on building the
model. It allows assessing the importance of structural development as an adaptation
mechanism in trees, for example to predict the effects of disturbances like pruning or
thinning or of an abrupt change in environmental conditions (e.g. light regime after gap
formation). Models at organ scale can also take into account biomechanical properties
that determine wood quality and that are highly related to branch positions. They
provide more accurate variables to include competition between trees and to simulate
the individual-based growth of heterogeneous stands. The choice of organ scale also
suppresses some problems met at compartment scale when developing models. Perhaps
the most important advantage is that no a priori crown shape has to be chosen. For
instance, in [Mäkelä, 1986], the lower limit of the live crown depends linearly on tree
height. The compartment demands have to be made artificially varying with a compe-
tition index ([Mäkelä, 1986]) or with soil water potential (for allocation to roots) (e.g.
[Zhang et al., 1994]). On the contrary for organ-based models, compartment demands
are simply the sum of individual organ demands and their dynamics are driven by the
tree ontogenetic development through variations of its number of organs. No senescence
rate has to be artificially incorporated in compartments: it is easily assessed from field
observations at organ scale. Table 1.1 gathers the spatial and temporal scales chosen
in some other tree growth models.

Such characteristics can be found for other models in [Le Roux et al., 2001]. Note
that when a daily computation step is considered, the model scope is generally limited
to young individuals with a growth extension of no more than a few years. Among
the models referenced here, only the LIGNUM model has similar characteristics to
GreenLab for both spatial and temporal scales.
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Model Target trees Spatial scale Temporal scale
SIMWALL young walnut tree organ hourly
ECOPHYS poplar organ hourly
EMILION maritime pine organ hourly
Zhang 1994 red pine compartment daily
L-PEACH peach tree organ daily
Sterck 2005 generic organ 10 days
LIGNUM generic organ 1 year
GreenLab generic organ 1 year

Table 1.1: Spatial and temporal scales of some tree growth models. The models are
referenced from: [Balandier et al., 2000], [Rauscher et al., 1990], [Bosc, 2000], [Zhang
et al., 1994], [Allen et al., 2005], [Sterck et al., 2005], [Perttunen et al., 1996]

1.3 A model relying on a sound mathematical for-

malism

A dedicated mathematical formalism was developed to describe the plant topology
through a recurrent formula ([de Reffye et al., 2003]; [Cournède et al., 2006]). Given this
formula, the number of organs and their spatial organization are completely determined
at each time step, at least for the deterministic version of GreenLab. In the same
way, the computation of biomass production at a given cycle can be explicitly written
according to the state variables of the model at the previous cycles. This mathematical
formalism has several advantages:

� the simulation software can be easily checked to detect possible errors and bugs:
it prevents from building a complicated black box whose outputs cannot be cal-
culated without running simulations.

� the model behaviour can be analytically studied and limit conditions can be de-
fined

� the simulation speed is enhanced since growth simulations rely on one key equation
and does not need to consider organ-by-organ calculations

� it allows using mathematical algorithms for model parameterization and optimal
control problems.

More generally, Kurth [1996] presents some arguments in favour of the use of an explicit
formalism to describe plant architectures. Equations are more elegant and condensed
than a complicated algorithm or flowchart that must be analyzed to understand the
model. The model gets a higher level of transparency and of universality when an exact
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specification language, designed for that purpose, is used. It allows applying general
theories that have been previously developed in other disciplines.

1.3.1 Model identification

A main characteristic of GreenLab, compared to other models, is the way chosen for
its identification (sensu Walter and Pronzato [1994]). In most models, parameters are
taken from bibliography or they are calibrated independently for each of the processes
involved in the model. On the contrary, GreenLab is associated to a dedicated fitting
procedure to calibrate the model to different species. All different outputs (weights of
organs and of compartments) are fitted together in parallel, including data from several
growth stages of the plant [Guo et al., 2006]. As such, it can be considered as a solver
to determine the source-sink dynamics in a plant from discrete measurement data.
Contrary to other fields of application of discrete dynamic models, the measurement
process is destructive. It implies that the growth of a particular single plant cannot
be followed through its whole life span. Rather, several individuals are measured and
considered as several realizations of the same plant.

1.4 A structural-functional model

1.4.1 Different classes of models

Kurth [1994] classifies tree growth models into three categories: aggregated models,
process models and morphological models. Aggregated models deals with production
of forest stands and often rely on statistical relationships between global key variables
such as crown volume, wood volume, basal area, height, diameter at breast height. . . .
Process-based models are more explanatory in the sense that variations of the state
variables are the emergent result of interactions between underlying processes: photo-
synthesis, assimilate allocation between plant compartments. Morphological models,
also called geometrical models or architectural models, focus on the 3D architecture
of plants. Organs are only decorative and do not play any functional role. They have
led to the emergence of several kinds of formalisms and simulation platforms allow-
ing the integration of plant structures. Recently, a new class has emerged that mixes
the specificities of both process-based and morphological models: functional-structural
plant models (FSPM), as reviewed in [Sievänen et al., 2000] and [Prusinkiewicz, 2004],
incorporate functional processes into the framework of tree architecture. Coupling
process-based models and architectural models has become a key issue in the fields of
tree growth prediction as well as crop yield prediction.
Although functional-structural models could appear as the most achieved modelling
approach, they are not yet used for industrial applications. Each of these four categories
of models has specificities that make it suitable to a particular user community. Table
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1.2 gives the major trends (non exhaustive) for the application field of each kind of
models.

Model Application field
Aggregated models forest management

Process-based models crop yield prediction
Morphological models video games, landscape/urbanism, design

Functional-structural models research and teaching

Table 1.2: Different types of models and their main application fields

GreenLab has some specificities that position it at an intermediate level between process-
based models and functional-structural models. It has inherited of the notions of self-
similarity and multi-level organization of plant topology from the morphological models.
It also includes the main laws of process-based models, although the environmental con-
trol is not yet as detailed. The 3D architecture is simulated but only partially taken
into account in the functional part. For several processes, only the numbers of organs
appeared at each cycle are important and not their spatial organization. Those choices
avoid some drawbacks inherent to functional-structural models, as presented below.

In the following paragraphs, we review the main characteristics of those four classes of
models. We discuss the reasons that have led to the emergence of functional-structural
models and we explain the positioning of GreenLab.

1.4.2 Aggregated models

Decision support systems for forest management generally rely on aggregated models
based on statistical analysis of data from the past. They are calibrated for specific
geographic areas and only for the major tree species of the region. They have good
predictive abilities because they are not limited by the lack of biological knowledge.
However, adding new input factors implies building a new model. And extrapolation
to other species or new locations is often impossible: when they are used outside their
ranges, their predictive values are limited [Marcelis et al., 1998].

1.4.3 Process-based models

These restrictions are partially solved by process-based models. They rely on biolog-
ical knowledge and thus the experimental data needed for their development is more
focused. They are more flexible because they integrate mechanistic interactions instead
of being mere data tables that need to be adapted to each new situation. They provide
more reliable predictions in changing environmental conditions. They have been mainly
applied to crop yield production and, in forestry field, to studies of the effects of global
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warming and other long-term climatic changes on large scales (e.g. [McMurtrie et al.,
2001]).

They have benefited from the advances of research in plant physiology. Most of them
consider plants or stands as sets of compartments that can produce or exchange matter
and information with each others and with their environment.

Process-based models have provided useful tools to predict crop yield under changing
conditions (temperature, light, CO2, water, nutrients) or to optimize water and fertil-
izer supplies. However, they have revealed several limitations that have restricted their
applications. They only integrate an empirical control of environmental stresses at com-
partment level ([Jeuffroy et al., 2002]) and do not account for the architectural response
to environmental factors, such as tillering or organ abortion ([Dingkuhn, 1996]; [Luquet
et al., 2007]). Yet yield determination is influenced by architectural plasticity, especially
under stress conditions, and this influence has to be considered at the phytomer level
instead of the square meter scale. Moreover, modellers often encounter difficulties to get
reliable computation of leaf area index (LAI) which is mostly the main component of
biomass production modules ([Marcelis et al., 1998]; [Heuvelink, 1999]). They also have
difficulties to deal with the inter-plant variability and to handle the often complex inter-
actions between all the different physiological modules: process-based models are often
presented as a complicated flowchart showing all the interactions between sub-models
that have been calibrated and tested independently but that are difficult to integrate
into a common system ([Heuvelink, 1999]). These drawbacks result from the fact that
process-based models do not take into account plant morphogenesis: at compartment
level, since all organs are mixed together, the memory of the growth process is lost and
so is the architectural plasticity that reflects feedbacks between growth and develop-
ment processes. The endogenous parameters that control both plant development and
plant growth are useful key-components for yield prediction.

Moreover, for trees, architecture is required in many applications. For instance, the
3D structure influences assimilate partitioning, light interception capacity and gas ex-
changes in the foliage [Sievänen et al., 2000]. Modelling the effects of pruning and
thinning strategies for fruit trees or for forest management imposes to have access to
plant structure. Wood quality is greatly influenced by biomechanical constraints in
stem which depend on tree shape and structure ([Fourcaud et al., 2003]; [Jirasek et al.,
2000]).

3D plant structures have not been considered in process-based models. There was a
general feeling that their implementation would be difficult, that it would require high-
performance computers and time-consuming experimental data collection and that the
resulting model would be too complex and difficult to manage. However the experience
of morphological models proved that those difficulties could be overcome. Thanks to
the rapid development of computer graphics and of dedicated formalisms, it is now
possible to take into account morphogenesis.
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1.4.4 3D models and methods for plant structure analysis

The first representations of tree structure were based on the notion of self-similarity,
based on the existence of repetitive patterns at different scales in plants. This observa-
tion has led naturally to the use of fractal rules (repetition of similar shapes at different
scales in an object) or iterated function systems (IFS) where several iteration of affine
transformations are applied to an initial figure. Different approaches to this concept are
listed in [Kurth, 1994]. It can generate beautiful tree-like shapes and landscape pictures
that look realistic. Those techniques are suitable for visual purposes but not for inte-
gration into process-based models. Indeed, their major drawback is that it is generally
not possible to consider independently the components of the structure (e.g. removing
one branch), as they are all linked together by multi-scale iterative processes. And the
simulated trees are not faithful to botany as they are generated by automatic applica-
tion of mathematical rules with no botanical knowledge included. Furthermore, while
it is quite easy to generate the IFS resulting image (its attractor), the inverse problem
has not necessary a unique solution [Shonkwiler et al., 1991] and its resolution generally
requires computationally heavy heuristic algorithms such as genetic algorithms [Cofino
et al., 2000].
Prusinkiewicz and Lindenmayer [1990] introduced the formalism of L-Systems for the
simulation of plant structure. L-systems are defined as parallel rewriting systems oper-
ating on strings. They are particularly suitable to describe the dynamics of structure
development with discrete time step (inherent to the concept of «rewriting»), as the
meristems of the plant also have a parallel functioning. They consist of:

� an alphabet, i.e. a set of symbols representing the constitutive elements of the
plant structure (e.g. internode, leaf, bud)

� a seed or initial string

� a set of replacement rules

L-Systems form a language dedicated to represent the growth of a branching structure
incorporating its spatial organization. A dedicated platform (L-Studio) is developed
in the University of Calgary to integrate L-Systems and to provide frameworks for
the integration of growth models and for the 3D visualizations of their outputs (e.g.
in [Prusinkiewicz, 1998]). To take into consideration some attributes of the elements
(e.g. internode length, branching angle), parametric L-systems allow associating a finite
sequence of real numbers to each symbol of the alphabet. The application of the re-
placement rules can be conditioned by external constraints and further extensions have
been developed such as stochastic L-Systems (with given probabilities for application
of the rules), context-sensitive L-Systems (the rewriting rules for a module depend on
the following and/or preceding modules), relational growth grammars (graph rewriting
rules that allows representing network structures) [Kurth, 1996]; [Kurth, 2007]. Dedi-
cated programming languages and modelling platforms have been developed within this
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framework: the «L+C »language and L-studio platform [Karwowski and Prusinkiewicz,
2003], the XL language and GroIMP platform [Kniemeyer et al., 2007].

A complementary approach has been developed since the 1970s by the AMAP research
group (CIRAD) after the pioneering work of Philippe de Reffye. It is based on an
analysis of tree architecture using the theory of stochastic processes ([de Reffye, 1979];
[de Reffye et al., 1988]). Tree structures result from the activity and trajectory of
meristems that can be characterized by their physiological age, as defined in the next
chapter. Meristems can take a finite number of states and thus tree structures can be
seen as the outputs of stochastic processes that can be analyzed from the renewal theory,
reliability theory, Markov chains . . . . It provides compact ways to represent some
architectural patterns of trees and thus provides tools to analyze their ontogenetic trends
and to disentangle genetic and environmental influences on architectural plasticity. It
allows producing simulations of realistic stands with stochastic trees having correct
branching distributions (consistent with sample measurements).

Description of tree architecture: MTG formalism

The AMAP team has also developed tools to represent plants as rooted multi-scale tree
graphs (MTG) [Godin and Caraglio, 1998]. Indeed, the choice of the description scale
is a crucial problem for trees. Topological models are inherently subjective [Godin
and Caraglio, 1998]: it depends on the botanical knowledge of the observer, on its
perception (e.g. according to the distance tree-observer, the observer may not be able
to distinguish the smallest modules or on the contrary, may only be able to detail a
part of the structure and to get a rough description of the rest of the tree), on the
presence of morphological markers (e.g. old scars tend to deform and to disappear due
to secondary growth), on the work-force needed for the measurement processes, that
make impossible an exhaustive description of the whole tree. Therefore it is important
to have an analysis method flexible enough to integrate various levels of description
in the same plant and to integrate the correspondences between those different levels.
This has been achieved through the MTG formalism. The plant is represented as a
set of finite quotiented directed graphs, a graph being defined as a set of vertices (V),
edges (E) and a mapping function from E into VxV. Each edge can be associated to
either a branch insertion or to a succession link. A change of scale is represented by a
projection of a quotiented graph (partition of the image set of vertices).

That formalism provides an essential framework to record data with a multi-level orga-
nization consistent with the tree structure and with different values of attributes that
can be input for each vertex. Thus it allows processing statistical analysis and building
models. Guédon et al. [2001] studied the branching and axillary flowering sequences for
Apple tree, Tassili cypress and Vanilla using Markovian models. Then, Durand et al.
[2005] introduced the formalism of hidden Markov tree to account for the branching
structure of plants (and not only sequences on a linear pathway). They calibrated the
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transition probability matrix on Apple tree and bush willow. That kind of analysis can
reveal patterns that are not directly apparent in the data but those patterns are not
modelled as a result of functional processes with environmental control. This is where
structural-functional models can play a role.

1.4.5 Functional-structural models

While process-based models were mainly developed by the communities of plant physi-
ologist and agronomy, geometric models have emerged in parallel from the communities
of computer sciences and applied mathematics. Thus integrating those two modelling
approaches requires strong interdisciplinary links. Two categories of FSPMs can be
distinguished: some of them have been created by integrating physiological knowledge
into a geometric model and others started from a process-based model into which data
describing the 3D structure of the plant were incorporated [Sievänen et al., 2000]. Most
FSPMs include the same basic processes, simulated at each time step:

� set up of new architectural units

� biomass production

� biomass partitioning

A definition of FSPM can be faound in Vos et al. [2007], in introduction to their book
on the use of FSPM for predicting crop production:

«Functional-structural plant models, FSPMs or virtual plant models, are
the terms used to refer to models explicitly describing the development over
time of the three-dimensional (3D) architecture or structure of plants as
governed by physiological processes, the timing of which is determined by
environmental factors. FSPMs are particularly suited to analyse problems in
which the spatial structure of the plant or plant canopy is an essential factor
contributing to the explanation of the behaviour of the system of study.
Applications of FSPMs therefore include the study of plant competition
(intra-plant, inter-plant, inter-species), and analysis of the effects of plant
configuration and plant manipulation (e.g. pruning and harvesting) on the
quantity and quality of the produce. »

For every FSPM, crucial questions to address concern the rules driving the set up of the
new architectural units, biomass acquisition and partitioning. Their prior characteristic
is to integrate effects of interactions between architectural and plysiological processes.
For example, plant architecture can influence the functional processes through different
ways:
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� assimilate production depends in particular on light interception which is de-
termined according to crown structure (for trees) or to leaf organization and
orientation (for trees and herbaceous)

� water transport from roots to leaves depends on the hydraulic resistance of the
branched network

� assimilate transport and partitioning depend on the relative positions of sources
and sinks.

Reciprocally, effects of plant functional variables on architecture can be for instance:

� organ (e.g. fruit) abortion

� tillers or branches appearance

� organ senescence or branch death

In that case, the changes in the plant architecture are generally modelled according to
thresholds of a functional variable (e.g. ratio of biomass supply over demand in Green-
Lab, Index of internal competition in Ecomeristem [Luquet et al., 2007]). For instance,
if the biomass supply is less than the needs for assimilates for the maintenance of an
organ, then it will not grow and possibly begin to be senescent.

Among the existing FSMs, we distinguish two approaches, each having a distinct ap-
plicative scope: (i) detailed models simulating the growth of young trees and of fruit
trees, with simulated growth periods of no more than a few years; (ii) simplified models
with efficient algorithms allowing longer simulated periods.
Models of the first type provide an accurate description of source-sink interactions
within fruit trees or young trees at organ level. The biomass production of each leaf
is usually computed on a hourly or daily basis according to the amount of intercepted
radiations. Dynamics of allocation patterns are defined with various degrees of details;
for instance using a transport-resistance model in L-PEACH ([Grossman and DeJong,
1994]; [Allen et al., 2005]), with a matrix of measured allocation coefficients for each
source-sink pair in ECOPHYS [Rauscher et al., 1990], using fitted regression equations
for allocation fractions in [Zhang et al., 1994] or including a function representing the
source-sink distance in SIMWAL [Balandier et al., 2000]. Those models can address
problems such as the effects of local environmental conditions on the growth of each
organ individually or the analysis of branch carbon autonomy within a growing sea-
son (EMILION, [Bosc, 2000]). They incorporate numerous environmental and internal
variables to represent the climatic control on physiological processes. Simulations are
generally run for growth periods ranging from several months to a few years.
L-PEACH takes into account an index of water stress calculated according to root
water uptake capacity in the soil in comparison with tree water demand (determined
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according to the light exposure of each leaf). Bud fates in each zone of a shoot are
regulated by the quantity of carbon available, using hidden semi-Markov chains to
reproduce the observed stochastic patterns of Peach tree branching systems [Costes
et al., 2007]. It accounts for local environmental and endogenous effects on the growth
of each fruit, according to its location in tree architecture. Qualitative user-defined
shapes of curves are introduced to relate the different physiological variables. The
results are qualitatively satisfying but the authors underline that more experimental
work is needed for calibration of the model, especially to investigate the values of carbon
availability threshold for bud breakouts in each zone. After being calibrated, it aims at
being used for decision support systems in horticulture.

SIMWAL simulates structural growth and carbon partitioning among organs of young
walnut trees (no more than five years). Photosynthesis is computed at hourly time
step and at leaf level considering direct and diffuse light from each azimuthal direc-
tion, crowns being simplified to ellipsoids when trees grow larger. A detailed algorithm
of carbon partitioning includes processes such as respiration, reserves and adaptation
of the demand to the current growth conditions. It account for a large set of envi-
ronmental conditions (temperature, radiation and air CO2 concentration) and pruning
interventions. Recently, the simulation platform PIAF-1 incorporated SIMWAL and
offers more flexibility: its modular structure allows selecting the processes to include
and different scales for spatial description [Lacointe and Donès, 2007].

The second type of models are more oriented towards forestry applications where the
growth period of interest can largely exceed one hundred years. It raises specific prob-
lems that are different from those encountered when studying young trees or for horticul-
ture. Only a few functional-structural models cope with the problem of tree simulation
at that time scale. Rather than a detailed reproduction of tree structure, their mod-
els allow exploring the global effects of model assumptions and parameter variations
[Sterck and Schieving, 2007]. They generally account for a more limited set of variables
(e.g. C balance) and processes with a yearly time step.

In LIGNUM, the representation of tree architecture is based on elementary units (tree
segments, branching points and buds) that were recently translated into L language
[Perttunen et al., 2005]. Assimilate production is uppermost used for respiration and
then distributed to different growing parts: new shoot segments, new root segments
and thickening of existing shoot segments. Allocation is based on empirically-derived
rules that aim at mimic functional balances (e.g. pipe model principles [Shinozaki et al.,
1964]). The production of each segment is proportional to the amount of intercepted
radiation coming from each sky sector. It is calculated according to the amount of trans-
mitted radiations through the foliage of shading segments (if a beam hits a woody part,
its propagation is interrupted). The length of new segments depends on the availability
of photosynthetates, on local light conditions of mother segments and on its location in
the crown, characterized by its branching order or by a vigour index calculated from the
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ratio between cross-sectional areas at the initial branching whorl. LIGNUM was vali-
dated on coniferous (e.g. Scots pine [Perttunen et al., 1996] and broadleaved trees (e.g.
Sugar maple [Perttunen et al., 2001]). Light interception through the crown with mu-
tual shading of leaves and local light effects on architectural and morphological growth
are the key points of LIGNUM.

Light influence is also the main environmental constraint introduced in the model de-
veloped by Sterck et al. [2005]. The probability of new shoot emergence is related to its
branching order and to the level of daily light intensity; the number of new metamers is
limited by the available carbon pool filled by photosynthetic production at the previous
time step. The construction cost of a new internode comprises losses due to growth
respiration and to the parallel construction of a woody pipe running from the leaf basis
to the roots. The plasticity of tree shape is mainly due to adaptations of numbers of
new metamers and not of their morphology.

Limitations of FSPMs

A drawback of FSPMs is that they become computationally heavy when a detailed
architecture is considered. Even if several strategies (object-oriented programming,
parallel processors. . . ) can be used to reduce simulation times, it is still a limitation in
many models. For instance, Isebrands et al. [2000] used a parallel computing strategy,
called “component object model”, to extend the scope of their model. They can simulate
the first three years of a juvenile poplar growing under multiple stress (weather: CO2,
O3, light, humidity, temperature; soil: water, nitrogen) with hourly computations of
light interception and shading by individual leaves (up to 7000 leaves, the third year).
But even when calculations are distributed on five parallel processors, the computational
time is still about one hour. Sterck et al. [2005] limit artificially their simulations: they
constraint the total number of leaves to be below 5000 to keep a reasonable simulation
time (without specifying the value). To do so, they choose a very high value for leaf
area to pipe cross-sectional area ratio: thus the high cost in assimilates for building the
pipes reduces the growth of the tree (at most 5m tall).

Moreover, FSPMs still generally lack the same level of predictive ability under various
environmental conditions as PBMs. The main efforts aimed at integrating function-
ing aspects into a complete description of plant structure and dynamics, but effects
of environmental control variables were often neglected. So their application fields are
currently restricted to research and teaching [Le Roux et al., 2001]. However, they have
a lot of applications providing other disciplines with a framework: studies of biome-
chanical stresses, of light interception, of root growth, of dynamics of plant-environment
interactions in heterogeneous environments [Sievänen et al., 2000], of irregular planting
with different species and uneven-aged stands, of competition for resources, of silvicul-
tural practices (thining, pruning). . . .
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1.4.6 Positioning of GreenLab

In GreenLab, the plant 3D structure is computed using a dual-scale automaton, based
on the concept of physiological age (see Chapter 2). It provides an efficient way of
parallelizing the computation by factorization of similar parts of the plant: simulation
of a 20 year-old tree with thousands of phytomers only requires a few seconds. It
also provides a natural formalism to describe plant structure at each growth cycle in
a very compact form. The botanical knowledge on ontogenetic trajectories acquired
from the morphological analysis of the AMAP team can be integrated in a simplified
way to define the potential architecture of a given tree species (see part II). GreenLab
can be considered situated at an intermediate level between process-based models and
functional-structural models. Plant 3D architecture is defined and represented but only
partially used in the functioning part of the model. In GreenLab, architecture has an
influence mainly for simulation of trees, for which hydraulic resistances of structure
networks can be considered and partitioning of ring biomass for secondary growth is
strongly dependent on tree topology. But for other functional processes modelled in
GreenLab, only the numbers of organs are important and not their precise location.
Indeed, the numbers of organs per category of physiological and chronological ages have
effect on demand calculation for biomass partitioning. There is no effect of architecture
in the new formulation of biomass production (see Chapter 3). GreenLab takes into
account neither the detailed influence of architecture on the light interception and
radiative balance nor the effects of source-sink distances for biomass partitioning. Dong
[2006] compared two methods for computation of light interception in GreenLab for a
tomato canopy: the equation of the Beer-Lambert law and an algorithm of detailed
light interception using radiosity on a hourly basis. They concluded that both methods
gave similar quality of results.

To conclude, GreenLab has inherited from the major concepts of morphological and
process-based models and has incorporated them with strong simplifications to avoid the
limitations cited above. Only a simplified representation of plant structure is considered
and topology has influence on a limited number of functional processes (e.g. the biomass
production of a plant is a simple function of its total leaf area; allocation to new organs
only depends on their number per category).

1.5 A source-sink model

The core of the functional part of GreenLab relies on the principle of source-sink equi-
librium, also called model of supply-demand in reference to economics models. In this
paragraph, we focus on the modelling choices for the sink balance. The source func-
tion will be detailed in chapter 3. As the main interest of foresters is to predict the
stand response to different forest management strategies, in particular to thinning, the
allocation part of models is of burning interest. Moreover allocation is the most re-
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active process allowing the plant to adapt to changes in environment [Deleuze, 1996].
Regarding crop growth, carbon allocation to seed or fruit compartment is also a major
component of the yield (e.g. in [Yin et al., 2002]). However, this is often the least mech-
anistic part of models and there is no general consensus on how to model it [Le Roux
et al., 2001]. Indeed, the biological processes involved have complex interactions at
different scales and are difficult to measure independently from each other. Canell and
Dewar [1994] state that «allocation is the outcome of many processes rather than a
process in its own right ». Consequently, when browsing the different models under
development, it is sometimes possible to find an assumption and the opposite one to
drive the simulation of biomass allocation.
In GreenLab, the exchanged matter is the amount of carbon, which is the main compo-
nent of photosynthetates and thus the main constituent of plant structure (80 to 90% of
dry matter in a growing organ in standard conditions [Brouwer, 1962]). In most models,
other elements are often considered as control variables, that is to say their presence
can enhance or inhibit processes linked to carbon assimilation and distribution. Some
organs, defined as sources, contain autotrophic cells (usually green due to the presence
of chlorophyll), i.e. they have the ability to synthesize the essential molecules needed
for growth and maintenance of the plant. Assimilates are partitioned between demand-
ing organs, called sinks, that are heterotrophic organs, relying on supplies from the
sources. They represent expanding organs of the plant. The quantity of assimilates
that they can get is determined according to a coefficient called sink strength. But
apart from sink-based models, other methods have been developed to represent the
allocation processes in plants.

1.5.1 Different approaches to model allocation

In several reviews on carbon allocation in functional-structural tree models ([Deleuze,
1996], [Lacointe, 2000], [Le Roux et al., 2001]), authors have classified the different
methods in four categories:

� empirical allocation coefficients

� functional balance or growth-rule based models (teleonomic models)

� transport-resistance models

� interactions among sinks: hierarchical or relative sinks.

Among those four methods, two very different approaches, in their philosophy, can be
distinguished: one focuses on the mechanisms of allocation and the other one on its re-
sults. The first class consists of transport-resistance models, including diffusion-reaction
models. They are derived from the Münch theory that describes the physiological basis
of flow transfers in phloem and in xylem. They aim at simulating carbon allocation
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as an emergent property of transport mechanisms. As underlined by DeJong (1999),
«dry matter partitioning does not direct the growth of the tree but is the result of the
growth and development of the organs that make up the tree ». On the other hand, the
three other categories of methods (empirical allocation coefficients, teleonomic models,
sink competition models) focus on the result of allocation and do not account for its
physiological causes. They deal with allocation by imposing growth rules, allometries or
sink coefficients to drive the partitioning. They are more empirical than models of the
first class, as they rely on observations of the growth results under given environmental
conditions.

Most models need to be positioned for those three key questions:

1. origin of assimilates: (a) individual sources (taking into account source-sink dis-
tances) vs (b) common pool

2. assumptions for assimilate allocation: (a) priority or hierarchical vs (b) propor-
tional vs (c) transport-resistance (mechanistic)

3. assumptions for definition of sink dynamics : (a) saturable vs (b) unlimited.

Only teleonomic models escape those questions. This approach is also defined as evolu-
tionary as it considers that plants optimize different growth compartment according to
environmental constraints. Mäkelä [1990] presents the assets of the functional carbon
balance, the pipe model theory and the height growth game. The author privileges
this approach to that of transport-resistance and sink-source models, stating that «re-
moving the problem of allocation, however, this method appears to have created one
of demand». We do not detail the teleonomic approach here but instead, we prefer to
discuss the consequences of the different choices in the related assumptions presented
above. In GreenLab, the choices are: (1b) common pool, (2b) proportional allocation
and (3b) unlimited sinks.

Note that Heuvelink and Marcelis [2007] add a fifth category that relies on canoni-
cal modelling concepts. Canonical modelling is described in [Renton et al., 2005] as
an appropriate framework for model development, especially in the case of functional-
structural models. It consists of representing the interactions (fluxes or controls) be-
tween the main compartments. The construction of this flowchart mainly relies on
qualitative knowledge and thus appears as a modelling approach at an intermediate
level between empirical models and mechanistic models. Variations of their associated
state variables can be driven for example by the generalized mass action system [Ren-
ton et al., 2007] with different possible shapes for the mathematical expression of fluxes
(e.g. power functions). Only global outputs are fitted against measurements. Thus it
does not require a detailed knowledge about underlying processes that would need to
be calibrated, as it is classically done. In that sense, this approach is similar to that
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of GreenLab. However, they need to be linked with an external representation of the
plant architecture, using for example the L-System formalism [Renton et al., 2005].

1.5.2 Physiological bases of biomass allocation

Transport of carbohydrates from their sites of synthesis (mainly in mature leaves) to
their sites of utilization and storage takes place in the sieve tubes of the phloem (external
side of the cambium). The set of processes of loading and unloading of the phloem as
well as carbon transfers is called translocation. We give here a simple description of
translocation physiology, oriented to a modelling point of view (in particular, we do not
evoke the influences of hormone signals and regulations).

Phloem loading

Photosynthesis produces glucides (triose phosphates) that are either transformed into
starch and temporarily stored in the leaves or transported under soluble form (sucrose)
to the phloem. The regulation between starch and sucrose is what physiologists usually
define as “allocation” ([Deleuze, 1996]). Starch storage allows the plant to maintain a
relatively constant loading of the phloem despite the day/night alternation and short-
term environmental fluctuations. Studies of allocation between starch and sucrose under
different conditions suggest that a fairly steady rate of translocation throughout the 24-
hour period is a priority for most plants [Taiz and Zeiger, 2006]. Consequently, in most
models, time steps are long enough (more than several days) to neglect this temporary
storage.

Phloem unloading

Phloem unloading is related to carbohydrate consumption at sink sites. Those car-
bohydrates are partitioned within cells between maintenance and growth respiration.
Carbohydrate requirements of a sink greatly influence phloem flows into it. The notion
of sink emerged in the 1970s to define the capacity of a growing zone to get carbohy-
drates when competing with other growing zones of a plant [Farrar, 1993]. Although
this notion has been commonly used for decades, its expressions in models vary depend-
ing on authors. Warren-Wilson [1967] defines it as the mass of sink tissues times sink
activity (its rate of uptake of photosynthates per unit mass of sink tissue):

Sink strength(g.d−1) = sink size(g) · sink activity(g.g−1.d−1)

Sink size can be considered as the number of active cells. For example, fruit development
proceeds in three phases: cell division, expansion and ripening. From their experiments
under limiting or non-limiting conditions and comparing the results at different stages
in the plant development, Bertin et al. [2001] report that cell division is affected by
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the level of assimilate competition among sinks. The other term of sink strength,
sink activity, is more difficult to define and may include various processes: unloading
from the sieve elements, metabolism in the cell wall, uptake from the apoplast and
metabolic processes that use photosynthates in either growth or storage. Sink activity
is also related to the presence of sucrose-splitting enzymes that catalyze the first step in
sucrose utilization. The abundance of this enzyme is driven by a gene whose expression
is regulated by carbohydrate supply (i.e. the more carbohydrate supply, the more
enzymes enhancing sink activities) [Taiz and Zeiger, 2006].

Transfer in the phloem

Translocation is driven by the mass-flow principle that was described by Münch in 1930
after his famous experiment (Figure 1.1). It states that flow speed in the phloem is
driven by osmotically-derived hydrostatic gradient pressure.

Figure 1.1: Münch experiment

Two cells with semi-permeable membranes (permeable to water, impermeable to sug-
ars), denoted A and B, are placed in a recipient full of water (W) and linked by a
tube (V). At the initial state, cell A is full of sugars and cell B is full of water. This
difference in sugar concentrations creates a gradient of osmotic pressure that induces
a mass flow from A towards B in the tube and in parallel, a hydrostatic pressure gra-
dient that induces a water flow from B to A in the recipient. The same mechanisms
occur in the sieve elements of the phloem: the concentration gradient is maintained by
assimilates production by the sources at one end and unloading by sinks at the other
end. Thus the phenomenon is automatically regulated by the sink and source activity
that generate the pressure gradients [Taiz and Zeiger, 2006]. However, an exact and
complete formulation of the Münch theory implies complex equations with often insta-
ble resolution schemes (see [Deleuze, 1996] for a commented review of models based on
the Münch theory). Nevertheless, they have confirmed that a good compromise was to
describe translocation using a diffusion model, where the flow rate J is yielded by the
Poiseuille-Hagen law:

J = k · P (1.1)
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where k depends on the pipe radius a, on the fluid viscosity η and on the tube length L
([Lacointe, 2000]). P is the osmotically generated hydrostatic pressure that is related
to solute concentration C using Van’t Hoff’s equation (related to the ideal gas law):

J = C/R (1.2)

with

R = 8 · L · η/(< · T · π · a4) (1.3)

where < is the gas constant and T the temperature. The diffusion model provides
the same long-term behaviour as the Münch theory (in steady state), but short-term
reactions are not considered and the resistivity parameter has to be empirically esti-
mated: it has no direct physiological reality since diffusion is not the real phenomenon.
Moreover, measurements of phloem flows are difficult to realize experimentally. They
require in vivo and non-invasive methods, as sieve tubes are very sensitive to mechanical
probing ([Deleuze, 1996], [Minchin, 2004]).
Note that in fact, differences in solute concentrations between sources and sinks are
not the only driving force for phloem transport. Numerical simulations of Münch’s
basic hypothesis have shown that it cannot account for the observed flow speed in files
of sieve tubes longer than several meters. There is continuously and simultaneously
leakage and reloading all along the pathway ([Minchin, 2004]). This is associated with
secondary growth that acts as a boost motor for translocation along the phloem. And
of course, not only physical signals (turgor pressure) but also hormonal signals affect
source-sink relationships.

1.5.3 Discussion on the transport term

Although the transport-resistance methods are conceptually justified and in adequacy
with the real phenomena, they are generally too complex to be fully integrated in
structural-functional models. They have been applied in models at compartment levels
for instance in [Berninger et al., 2000] or [Deleuze and Houllier, 1997]. Regarding plants
with complex architecture, Nikinmaa et al. [2004] applies a 1D reaction-diffusion scheme
to a young branching tree and uses finite-element methods to solve it. But he recognizes
that it is computationally heavy and does not detail how to parameterize it. One of
the most achieved approach is implemented in the L-PEACH model [Allen et al., 2005].
Plants are represented as networks of sources and/or sinks connected by conductive
elements, the driving force being the osmotically generated concentration gradient, as
described by the Münch theory. Using an analogy with an electric network to build
an equivalent circuit (folding phase), the carbon flows at each time step are calculated
(unfolding phase). The behavior of the resulting system is time-dependent and highly
non-linear. The equations of carbon flows in each component of the plant network are
solved using the L-System formalism.
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In all cases, the Achilles’ heel of those methods remains the determination of sink activ-
ity. As, finally, phloem unloading plays a great part in the regulation of sucrose transfer,
sink activity is the major actor. But it is still difficult to determine empirically and it
is often done under strong physiological hypotheses (see for instance the material and
methods part in [Bancal and Soltani, 2002]). Most importantly, the necessity of taking
into account resistance terms in allocation modelling is still under question, especially
for crops. Thornley (1998) states that transport-resistance principles should be included
in every process-based model as it takes into account the «only two significant processes:
transport and biochemical conversion ». However, the relative influence of each process
needs to be investigated to assess the significance of each of them. There are evidences,
both experimental and theoretical, that it may not be necessary to include transport
terms in allocation models. From their experimental results on tomatoes, Slack and
Calvert (1977) conclude that dry matter partitioning is influenced by pathway resis-
tances. But Heuvelink [1996] re-examined their interpretation at the light of his model
(TOMSIM) simulations and suggested that the observed data could be explained by
the temporal shift of truss growth, without necessary invoking the effects of transport
resistance. Indeed, the importance of phenology is underlined in [Wardlaw, 1990]. The
appearance order of new sinks and the timing of their development are key factors when
calculating the demand of the plant in an organ-based model [Letort et al., 2007a].

In [Heuvelink, 1995], the author reports the results of experiments with different prun-
ing strategies in tomato plants to investigate the influence of source-sink transport.
He compares double-shoot plants for which the fruit proportions are 100-0 (no fruits
on one shoot, all fruits on the other shoot) and 50-50 (half of the fruits was left on
each shoot). He concluded that, at least concerning assimilate allocation to fruits, the
experimental results support the assumption of common pool and that of a negligible
effect of transport resistance. In [De Reffye et al., 2008], the authors show the ex-
ample of the growth of a non photosynthetic shoot of Hedera helix. The size of the
non photosynthetic leaves is similar to that of photosynthetic ones. It means that the
source leaves supply in the same proportions their own shoot and the ’sink’ shoot. It
reinforces the theory that distance has a negligible effect. Bancal and Soltani [2002]
pointed out that, in every transport-resistance model, resistance should be dependent
on the fluid viscosity and hence on its concentration. They corrected the model of
[Minchin et al., 1993] in that way and studied it both numerically and with parameters
from measurements on wheat grain filling. They compared the partitioning coefficients
output in their corrected model to the former version of the model and to the classical
sink-based partitioning model. They showed that the resistance to flux propagation has
an influence on the partitioning coefficients only in pathologic cases of very low source
activity, that is to say nearly dying plants. This means that in most cases, flows are
mainly driven by sinks. They concluded that resistance terms in model could be aban-
doned in most cases as they are only a mathematical burden whose parameter values
are very difficult to measure experimentally. But is must be underlined that their study
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concerns only a very simple sink-source network and would be worth being extended to
more complex cases.

1.5.4 The common pool concept

All these evidences lead to the conclusion that it is possible to build a model where
carbon partitioning is mainly driven by sinks and where the effects of source-sink dis-
tance are considered negligible, at least for crops. From a pure mathematical point
of view, assuming that the transfer resistance is equal to zero implies that all sinks
have a direct access within the step of growth to each source. This has for immediate
consequence the assumption of a centralistic carbon pool. But in some models (e.g.
SIMWAL [Balandier et al., 2000], ECOPHYS [Lacointe et al., 2002]) sink strength is
defined as a property of the couple (source i, sink j) as a decreasing function of the
distance between i and j. This definition is biologically relevant but we can wonder
whether the main limiting factor is geometrical distance or the topological organization
of source and sinks (i.e. the number of other sinks in a source-sink pathway).

Wardlaw [1990] states that distance between sources and sinks is not a major factor in
limiting the growth. Experiments on apple and soybean have shown that increasing the
distance from source leaves to the fruits induced no significant reduction of the fruit
growth rate. Wardlaw [1990] also reports from the experiments of Palit (1985) with
14C that a sink is generally supplied with photosynthetates from the nearest sources:
the top leaves supply carbon to the apical bud and young growing leaves, the central
leaves supply carbon to the stem and the basal leaves supply carbon to the lower stem
and the roots. This is confirmed by the coefficients of the allocation matrix of the
ECOPHYS model that controls the assimilate partitioning in a young poplar [Rauscher
et al., 1990]. Following displacements of assimilates issued from each source leaf, they
reveal a preferential local allocation. The experimental results of Pallas et al. [2008] also
suggest that the assumption of a common assimilate pool does not hold for grapevine.
Their pruning experiments revealed that cluster weight is more affected by its distance
to the main assimilate sources than by the global level of trophic competition in the
plant. Wardlaw [1990] reports that large sink dominate the overall supply and that
smaller sinks need to rely on local supplies. This could mean that what is important
is the topology of sink organization (organ relative positions) more than the geometry
(distances between organs).

As assimilate flows in the plant network are driven by osmotic gradient, it is reasonable
to assume that, at each intersection, the assimilate proportion that flows into each
branch is proportional to the demand of each terminal substructure. The assimilate
proportion kept by the leaf depends on its attractive ability but also on the demand
load of the rest of the plant (generating a potentially high osmotic gradient that can
reduce the assimilate proportion stored in the leaf). The same principle is applied
to assimilate allocation to other organs. The plant can be seen as a network where
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organs are represented by taps, as in [Wardlaw, 1990] (see his figure 5 page 359).
The assimilate flow generated by a source leaf is thus partitioned into each structure
proportionally to its cumulative sink. Thus after successive simplifications of the ratios
at each intersection, the quantity of biomass attributed to each organ is equal to its
sink multiplied by the ratio of biomass production over the total plant demand. When
several sources are considered, each organ receives the same proportion from each source
leaf:

qi =
∑

sources k

ci ·
Qk

D
= ci ·

Q

D
(1.4)

where Q is the plant production, defined as the sum of the contributions of each leaf, D
the plant demand, defined as the sum of the contributions of each organ demand (ci). So
this way of considering biomass allocation is equivalent to the equations derived from the
common pool assumption concept (or centralistic concept, as denominated in [Kurth,
1994]). Under those assumptions, it is not necessary to consider independently each
source (hypothesis (1a)) as the result can be simplified to the common pool hypothesis
(hypothesis (1b)).
From the same initial assumptions, another choice for sink definition would be to con-
sider ci as the proportion of biomass that can be taken by an organ from the flow at its
borders, regardless of the demand of the rest of the plant. It means that sinks would
be considered as absolute instead of relative values. In that case, the equations cannot
be reduced to the same kind of simplified form. The result would be a hierarchical
model (hypothesis 2a), with sink priorities depending on their positions relatively to
the source. It allows introducing reserves to store assimilates when the demand does
not match the supply. But it implies that leaves would have the highest priority as they
would be necessarily the first ones to receive a given proportion of the biomass they
produce. This proportion being independent of the changes of the rest of the structure,
the resulting model would be not as flexible to model the plasticity of the plant response
to environmental or internal changes. However this priority concept has been used for
models of assimilate allocation, but mainly at compartment scale, to give priority to
some vital processes (e.g. respiration as in most models including this process [Le Roux
et al., 2001]). At compartment levels, the priority orders are generally accepted as:

Seeds > fleshy fruit parts = shoot apices and leaves > cambium > roots > storage

[Minchin and Lacointe, 2005]. Several models mix hierarchical models (in a first step)
with proportional sub-models (for intra-compartment partitioning). According to the
common pool assumption, source organs contribute (but not necessarily in the same
proportions) to providing assimilates to all organs of the plant, including themselves.
As each leaf has both source and sink roles, it implies that, paradoxically, assimilates
required for its growth do not come mainly from the leaf itself but from all the active
leaves of the plant. Although this is not biologically relevant at this scale, it is justified
at a higher scale, as shown above from mathematical and experimental evidences. So
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here again we see that the choice of modelling concepts is strongly dependent on the
investigation scale: the common pool assumption is wrong at microscopic scale but
justified when the integrated result at mesoscale is considered.

Regarding trees, the same conclusions cannot be directly drawn: influence of source-sink
distance needs to be taken into account. «Decrease in C flux between source and sink
with increasing pathway length, [is] a major characteristic within trees.»([Lacointe,
2000]) Kurth [1994] opposes the concept of common pool to the concept of branch-
autonomy. It assumes that newly produced assimilates are locally consumed in their
source shoot or in the organs located on the path downwards to the roots (Figure 1.2).
In particular, that concept was adopted in [de Reffye et al., 1993]. The authors showed
that this mechanism was similar to the pipe model and in accordance with the Pressler
law (relating the sapwood sectional area to the above foliage quantity).

Figure 1.2: Common pool vs Branch autonomy concepts, from [Kurth, 1996].

However, the assumption of common pool can still hold as a modelling simplification.
It only requires a definition of sink strength depending on the organ position in the tree
topology. In GreenLab, this is done for the cambial growth demand of each internode
(see Section 3.2.3) and the same method could be easily applied to other kinds of
demand.

1.5.5 Definition of sink strength

Besides the modelling choices for the mechanisms of assimilate allocation, another key
point is to determine the shape of sink strength variation. So, finally, we keep raising
the problem of sink definition and determination as the major factor in allocation
models. Even for transport-resistance models, the sink shape evolution is determinant
(e.g. chosen as a Michaelis-Menten function in [Minchin et al., 1993]). Here again
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we meet the problem of choosing between a definition that would be more biologically
based and the practical applicability for modelling. Authors generally refer to the
macroscopic results of biomass allocation: they define the sink of an organ according to
the quantity of biomass that it can get for its incremental growth, without considering
the underlying biochemical processes such as cell division and metabolism.

An important choice to make is to decide whether sinks should be unlimited or saturable.
Indeed, it is observed in many cases that growth of an organ is limited by the saturation
of its storage capacity. For instance, Heuvelink [1996] noticed that the fruit growth rate
for tomato were the same when all fruits were pruned except one per truss and when two
fruits were left. They interpret the result by assuming that the growth of the fruits is
sink-limited and that they have reached their maximal potential growth rate. However,
it is difficult to distinguish between sink saturation and organ size saturation. Defining
saturable sinks allows a natural introduction of a reserve pool to store the quantity of
assimilate supply that exceeds the demand. Those assimilates are available for the next
growth step. The reserve pool plays a role of passive buffer to regulate the variations
of the ratio of supply over demand. But the definition of maximal growth rate is likely
to be dependent on the source supplies that can vary in time during organ growth.
Organ maximal size has the advantage of being easily measured: it is the maximal
size reached by the organ in the most favourable conditions. This maximal organ size
would result from physical and mechanical limitations. For instance, experiments on
sunflower (see [Rey, 2003, chap. 2]) have shown that when the cap is suppressed, some
organ dimensions (leaf area, stem diameter) do not differ from the measurements on an
isolated plant. It can even induce explosions of some superficial tissues.

In the definition of [Warren-Wilson, 1967], sink strength is defined as the mass flow
per time unit into a sink. This definition is the first one attempting to give some
biological foundations to the notion of sink strength, although the way to measure sink
activity remains unclear. But mass flow is not an intrinsic property of the sink but a
function of carbohydrate supply, transfer pathway and the competition of other sinks.
So this definition is not adequate. Patrick [1993] defines it as the potential import into
a sink under non limiting conditions. This definition has been since adopted in several
models. For instance, Heuvelink [1996] defines the sink shape as the first derivative of
a Richards function. It is measured in non-limiting supply conditions, assuming that
the growth rate is the maximal possible one. Then biomass is distributed to each organ
in proportion to its potential growth rate. If the supply is higher than the sum of
the potential growth rates, biomass is stored and available for the next growth cycle.
But that maximal import may be difficult to determine experimentally and remains
dependent on the environmental conditions. Moreover, the potential growth rate is
difficult to disentangle from the variations of the assimilate supply, related for example
to variations of the leaf area index.

To overcome these difficulties raised by experimental measurements of sink activity,
GreenLab can provide an alternative approach. By fitting the model on morphological
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data, it extracts the sink dynamics of individual organs. In this context, Greenlab can
be seen a source-sink solver (see the discussion part in [Dong et al., 2008]).
To summarize, GreenLab sinks are relative and get biomass from a common pool of
assimilates and no possible saturation is considered. No potential or maximal growth
rates are defined but a boundary to the growth of an organ can be set by defining a
maximal organ size if needed.
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Chapter 2

Organogenesis and topological rules

In the following chapters, we present the current developments of GreenLab. A very
complete description and analysis can be found in [Mathieu, 2006]. We focus here on
the new features that have been introduced during the phd.

We call organogenesis the series of processes resulting in the creation of new organs from
the functioning of meristems. The term apical meristem, or apex, refers to meristematic
cells in a bud located at the tip of a stem. The spatial organization of organs forms
the tree structure or its topological structure. More precisely, describing the topological
structure of trees consist in their decomposition into elementary constituents and in the
identification of their connections.

2.1 Modular description of plants

A plant can be considered as a population of basic structural units, called metamers
or phytomers [White, 1979]. It is the entity formed by a node, its associated leaf (or
leaves), its axillary buds, the subtending internode and potentially roots (Figure 2.1).

Modelling of tree architecture was initiated in 1978 by the botanists Francis Hallé and
Rudolphe Oldemann [Hallé et al., 1978]. They introduced the principles of architec-
tural organization in trees, as a result of the growth processes: rhythmic or continuous
growth, apical or lateral flowering, axis differentiation. They identified 23 architectural
models that represent the different classes of tree development. Their work is based on
the description of plants as modular organisms that develop by the repetition of elemen-
tary botanical units [Barthélémy and Caraglio, 2007]. Plants can be decomposed into
a set of constituents that have common nature and properties. As most plants share
the same basic growth processes, their structures reveal two main kinds of modularity:
nodal modularity, resulting from the apical process and axial modularity, resulting from
the branching process [Godin and Caraglio, 1998]. Describing the topological structure
of a plant means identifying its elementary constituents and the connections between
them. Natural ways of multi-scale decomposition have been identified by botanists.

53
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They are based on observations of repetitive structures that have similar patterns at
different scales in tree architecture. They also rely on morphological markers (cata-
phylls, nodes, scars) to separate elementary units. Morphological markers can give
some clues about the past development of a plant. It allows extrapolating the dynam-
ics of development from static measurements at a given date. Barthélémy and Caraglio
[2007] have reviewed four main features used as criteria to describe architecture. Some
of these notions will be referred to in the following parts of the manuscript; they are
briefly presented in Table 2.1.

Each species has a genetic predisposition to some of these features, leading to par-
ticular privileged architectural strategies, but it is also affected by the environmental
conditions. Architectural models provide criteria to define a typology of plants. The
architectural model is the result, visible at the whole-plant level, of a particular hierar-
chical organization and repetitive sequence of the same structures, named architectural
units [Barthélémy et al., 1997]. Indeed, axes in a plant can be sorted according to
their morphological or functional characteristics. Each category is produced during a
particular phase in the meristematic development, called its differentiation state. This
phase is characterized by the notion of physiological age (PA) of the apical meristem. It
is determined a posteriori according to a morphological analysis of the botanical entity
produced by the meristem. For most plant species, five or six physiological ages are
sufficient to cover all the categories of axes observed in a tree. For instance, architecture
of Cedrus atlantica (Pinaceae) is composed of trunk, branches, branchlets, twigs and
brachyblasts ([Sabatier and Barthélémy, 1999]).

2.2 Dynamics of these modular structures: growth

unit and growth cycle

In GreenLab, the time step for simulation is not determined a priori but is based on
the specific development of the plant considered. As plant topology is modular, plant
growth can be seen as a cyclic phenomenon whose period corresponds to the duration
of the set up of a new module. That period is called growth cycle. As stated above,
plant growth can be either rhythmic or continuous. Rhythmic growth is defined by the
alternation of periods of activity of the apical meristems and of resting periods. The
active period corresponds to a growth flush and creates a growth unit (Figure 2.1). The
set of growth units produced during one year forms the annual shoot. For trees, the
case of polycyclism (definition in Table 2.1) is not considered in the current version of
GreenLab. Hence the growth cycle lasts generally one year for temperate trees. The
choice of growth cycle as time step simplifies the model as it allows neglecting some
short-time variations such as high-frequency variations of environmental variables.

For plants with continuous growth, the growth cycle can be defined as the duration
(called plastochron) between the initiations of two successive phytomers. It has been
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Growth processes
Determinate The apex aborts or transforms after some period of functioning
Undeterminate The apex indefinitely maintains its growth potential
Rhythmic Shoot growth has marked endogenous periodicity
Continuous Shoots show no marked cessation of extension
Preformation All organs of the future elongated shoot are present at an embryonic

stage in a bud before the elongation of the shoot
Neoformation More organs than those included in the bud are elongated
Monocyclism The annual shoot consists of one growth unit
Polycyclism The annual shoot is made of a succession of several growth units

Branching processes
Terminal The apical meristem directly splits into to two or more new axes
Lateral The embryonic cells are located just aside the initiated leaf (axillary

meristems)
Immediate The lateral axis elongate immediately after meristem initiation (syllep-

tic)
Delayed The lateral axis elongate after a phase during which the lateral meristem

remains inactive (proleptic)
Monopodial Branching pattern associated to undeterminate growth
Sympodial Branching pattern associated to determinate growth: several branches

may develop after the death or transformation of the apical meristem. 1

Branching order Ordinal numbers used to define a branched system: the main stem is of
order 1; lateral axes it gives rise to are of order 2 and so on.

Acrotonic Prevalent development of lateral axes in the distal part of a parent shoot
Basitonic Prevalent development of lateral axes in the median part

Morphological differentiation of axes
Orthotropic General orientation of axes is vertical with radial symmetry
Plagiotropic Axes have a general horizontal to slanted orientation with bilateral sym-

metry (leaves and branches generally arranged in one plane)
Position of reproductive structure

Lateral The reproductive structure forms from a lateral meristem
Terminal The reproductive structure forms from a terminal meristem

Table 2.1: Table of botanical architectural concepts, summarized from [Barthélémy and
Caraglio, 2007]

observed that the number of initiated phytomers depends linearly on cumulated thermal
time. Cumulated thermal time (CTT ) is defined as the sum of the average daily

1Even if not edified by the same meristem, a sequence of such lateral branches may be considered
as an axis.
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Figure 2.1: Schematic representation of a growth unit (G.U.) of physiological age 1
(PA) with axillary buds of PAs 2, 3 and 4. A zone Zpq is characterized by its PA p and
the PA q of its axillary bud (see paragraph 2.4.2).

temperatures between two dates. A reference value, called base temperature (Tb), is
subtracted to the average daily temperature T (d). More precisely, cumulated thermal
time from day 1 to day n can be calculated as:

CTT (n) =
n∑

d=1

(T (d)− Tb)
+ (2.1)

with the usual definition of function + (takes the positive values of the argument and
zero everywhere else). The base temperature depends on the species and on the exper-
imental conditions. For instance Granier et al. [2002] set 3°C as the base temperature
for Arabidopsis thaliana. However, the determination of plastochron is often experi-
mentally tedious because dissections under binocular microscope are required to count
the number of primordia present in apical meristems. Often this number cannot be
determined with accuracy due to the small size of leaf embryos and to the necessity
of choosing an arbitrary limit size below which a leaf is not considered. Furthermore,
it is difficult to determine the number of primordia initially contained in the seed. To
overcome these difficulties, growth cycle can be defined according to the phyllochron,
that is to say the duration, in cumulated thermal time, between the expansions of two
successive phytomers. It is also ambiguous because the number of leaves that have
appeared depends on the limit size chosen. However, as the model considers biomass
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partitioning, a leaf really needs to be taken into account in the carbon balance only
when it is a non-negligible sink or source. So using a phyllochron basis to define the
growth cycle can also be a relevant choice. In GreenLab, the time step for simulation
is based on organogenesis rate and is common for all the processes. It is kept constant
even when organogenesis has ended. However, it could be easily dissociated for the
functional part if for instance daily computations of photosynthesis and organ expan-
sion are needed. The number of growth cycles spent since plant emergence is called its
chronological age. More generally, the age, expressed in growth cycles, of an organ or
an axis since its initiation is defined as its chronological age.

2.3 Rhythm ratio for development rate

2.3.1 Development rate at different scales: axis, plant, stand

For some plants, the emission rate of phytomers is not constant. Firstly, it can change
temporally, during the growth, after particular events of the plant phenology. For
instance, in Arabidopsis thaliana, the speed of phytomer emission increases dras-
tically after inflorescence induction (more than 2 times higher than during the first
growth phase, for plants grown in standard non-limiting conditions in growth chamber
[Christophe et al., 2008]). In rice, phyllochron is shorter during the reproductive phase
than during the vegetative phase. Secondly, phytomer emission rate can also change
spatially in cases when some axes have a different development rate than the rest of the
plant. For instance, cotton tree sympodial branches have a development rate about half
of that of the main stem. During the interval needed for initiation of two phytomers
of the main stem, only one phytomer is initiated on each branch. Thirdly, phytomer
emission rate can be different from one plant to another of the same stand, even if
their sowing and emergence dates are similar (e.g. sugar beet). To simulate the stand
growth, it is necessary to synchronize the schedulers for each plant, so that the incident
radiations during one growth cycle are the same. Thus, if two plants exhibit the same
leaf area, their biomass production per growth cycle is the same. The inverse method
allows fitting the growth rhythms for each plant. Thus it is possible to simulate a stand
with a distribution of different dates for plant emergence and a distribution of growth
rhythms. Those parameters have a strong influence on the further competitive capacity
of each plant.

2.3.2 Simulation of rhythm ratio

This variation in development rate is simulated using a parameter called rhythm ratio.
The growth cycle duration is defined arbitrarily by choosing the plastochron or phyl-
lochron value of a given growth phase or a given axis (usually the main stem). If the
rhythm ratio is higher for branches, it means that several phytomers appear during one
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growth cycle. On the contrary case (rhythm ratio less than one), the apical meristem
undergoes pauses: there is no phytomer production at some growth cycles. It must be
underlined that the duration of the growth cycle, based on thermal time relationship,
does not change. The time step of the model is constant throughout the whole simula-
tion. If the growth cycle duration would vary, it would imply that the cycle duration
δt should be taken into account in the biomass production equation (multiplied by δt
instead of 1) and changes in the sink variation functions.
The number of phytomers produced at each growth cycle is an integer and needs to
be computed so that a given rhythm ratio is reproduced. This is done according to
the principle of Bresenham’s line algorithm [Bresenham, 1965]. This algorithm was
designed to determine which points in a n-dimensional raster (e.g. pixels in a screen)
should be plotted in order to form a close approximation to a straight line between two
given points. We use a similar method to compute the discrete values of numbers of
metamer that must be initiated to approximate the real rhythm ratio (see figure 2.2).
For example, if the rhythm ratio is less than one, it is possible to represent the axis
development as a series of 0 and 1. A simple way is to say that the meristem makes a
break when at growth cycles i verifying bw · (i − 1)c = bw · ic where w is the rhythm
ratio.

Remark: a more accurate expression would be:bw · (i−1)+0.5c = bw · i+0.5c but as we
are only interested in the average slope (the rhythm ratio) and not on the actual values
of the series, the former one is as suitable as this one.

Figure 2.2: Simulation of number of phytomers on an axis with rhythm ratio
w = 0.57. The corresponding sequence for phytomer emission at each G.C. is:
0.1.0.1.0.1.0.1.1.0.1.0.1.0.1.1.0.1.0.1.0.1.1.0.1.0.1.0.1.1. . .
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2.4 Modelling plant development: formalism

2.4.1 A dual-scale automaton with different kinds of transition
rules

The plant topology dynamics is described through the fate of lateral and apical buds
on each phytomer. They can give birth to shoots with a set of parameters depending
on their location and on the date of their emergence. The set of parameter to use is
identified by the physiological age of the bud. GreenLab has inherited the basis concepts
developed in AMAPsim software [Barczi et al., 2008]. The sequence of every potential
state possibly taken by the meristem forms the reference axis. The topological rules
are defined through a finite state automaton implemented using a semi-Markov chain
where the occupancy probability distribution follows a binomial law. In GreenLab, the
same state variable (physiological age) is used in a dual-scale automaton as introduced
in [Zhao et al., 2001]. The basic concepts are the same as in L-systems, where the
evolution of the plant topology corresponds to parallel rewriting of a string of symbols
[Prusinkiewicz and Lindenmayer, 1990]. The microstate is defined as a phytomer with
a given physiological age and bearing potential buds of a given physiological age. A
macrostate, representing a growth unit, consists of the repetition of similar microstates
and of the succession of different microstates. Inside a given macrostate, all phytomers
have the same physiological age and only differ from the physiological ages of their
lateral buds. The succession of macrostates forms axes of the plant (see figure 2.3).
As the physiological age of an apical or lateral bud is usually higher than that of its
bearing phytomer, the automaton can be characterized as a left-right automaton. If the
physiological age of a branch is the same than that of the mother axis, the branch is
called a reiteration. Depending on the version of GreenLab, the transition rules can be
deterministic (GL1, [Yan et al., 2004]), stochastic (GL2, [Kang et al., 2003]) or function
of the source-sink ratio (GL3, [Mathieu, 2006]). But other kinds of dependencies could
be considered: the branching and transition rules could be determined as functions
of the time to reproduce for instance the changes due to ontogeny or they could be
determined as probabilities with thresholds depending on the source-sink ratio (included
in the GL4 version currently under development).

The version of GreenLab to use is determined according to the plant species studied and
to the objectives of the modelling. For instance, maize (Zea Mays) has a determined
growth with a nearly fixed number of organs: the GL1 model is sufficient to deal with
this cultivar [Guo et al., 2006]. On the contrary, coffee trees (Coffea robusta) reveal a
stochastic development and need to be studied with a probabilistic approach [de Reffye,
1979]. For cucumber plants, a specific objective is to analyze fruit abortion and thus
the GL3 version is appropriate [Mathieu et al., 2007].



60 CHAPTER 2. ORGANOGENESIS AND TOPOLOGICAL RULES

Figure 2.3: Dual-scale automaton for topological rules: deterministic (GL1), stochastic
(GL2) or function of the source-sink ratio (GL3)

2.4.2 Growth grammar and structure factorization

Defining the rules of the automaton is analogous to writing a growth grammar ([Kang
et al., 2006a]). Each symbol of the alphabet defines a constitutive element of the plant.
Following Cournède et al. [2006] and Mathieu [2006], we denote:

� t the chronological age of the plant (the maximal growth cycle)

� P = 1, 2, ..., Pm + 1 the physiological ages (PA) where Pm is the maximal PA
observed in the target plant

� mpq(n, t) the metamer of chronological age n and of PA p with axillary buds of
PA q. By convention, metamers with axillary buds of PA equal to Pm + 1 bear
no buds.

� sp(t) the bud of PA p at growth cycle t.
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The set of symbols consists of metamers mpq(n, t) and of buds sp(t). The alphabet
needed to represent a plant at age t is:

Ãt =
{
mpq(n, t), (p, q) ∈ P 2, q ≥ p, 1 ≤ n ≤ t

}⋃
{sp(t), 1 ≤ p ≤ Pm} (2.2)

These symbols are assembled to form structures using the concatenation operator, rep-
resented by the product symbol. A structure is defined as the set of organs generated
from an initial bud: it includes the main axis but also all the lateral axes branched on
this main axis. The use of structures as unit elements to describe the plant structure
differs from the classical method where organs are gathered in axes. It allows a very
compact writing of the whole-plant structure as the result of an inductive relationship.
A structure at growth cycle t can be unequivocally associated to its basis characteristics,
that is to say the physiological age p and the chronological age n of its basal growth
unit (except in case of a plant exhibiting reiterated complex). Thus each structure can
be described with a decomposition based on its basal growth unit (see figure 2.4). It
consists of the metamers forming the basal growth unit, the structure generated by its
apical bud and the set of structures generated by its lateral buds (these two structures
being of chronological age n−1, i.e. they appeared one cycle after their mother growth
unit). This decomposition can be transcripted as:

Sp(n, t) =

[ ∏
p≤q≤Pm

(mpq(n, t))
upq(t+1−n) (Sq(n− 1, t))bpq(t+1−n)

]
Sp(n− 1, t) (2.3)

� where Sp(n, t) represents the structure of chronological age n with a basis metamer
of PA p, the current growth cycle being t.

� where upq(n) is the number of repetitions of the microstate (p, q) initiated at cycle
n, i.e. the number of phytomers with axillary buds of PA q in a growth unit of
PA p.

� where bpq(n) is the number of lateral axes of PA q initiated at cycle n on a growth
unit of PA p.

Hereafter we call Zpq the set of metamers belonging to the same growth unit of PA p
that have lateral buds of PA q (see Figure 2.1). So upq(n) is the number of metamers
appearing at growth cycle n in a zone Zpq. This equation defines the structure Sp(n, t)
according to Sq(n − 1, t) and to the metamers of chronological age n. Using the same
principle, the structures Sq(n− 1, t) can be decomposed and thus recursively until the
structures Sq(0, t) representing the buds of physiological age q at growth cycle t. The
first growth unit at plant emergence is assumed being of PA 1 and is represented by the
structure S1(1, 1). The whole plant at cycle t is represented as the structure with a basis
of PA 1 and chronological age t: S1(t, t). Those equations are valid while the apical bud
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Figure 2.4: Inductive description of plant structure. Decomposition of the plant topol-
ogy for t = 3, Pm = 4, u14(1), b14(1) = 3, u13(1) = b13(1) = 3, u12(1) = b12(1) = 2.

of each axis is of the same physiological age than its bearing phytomer. If a change of
state occurs for the apical bud, the axis mutates or dies. The complete equation systems
accounting for mutation phenomena can be found in [de Reffye et al., 2003]. In that
case, the inductive relation is no longer only based on the basal growth unit but on the
set of basal growth units of the main axis before its mutation. Another particular case
concerns reiterations with a finite order. It imposes to introduce brackets or another
index to distinguish two structures of the same chronological and physiological ages
that have different reiteration orders.

2.4.3 Growth morphism

The growth morphism is analogous to defining the rewriting rules in L-Systems. Cournède
et al. [2006] define it as:{

Φ (mpq(k, n)) = mpq(k + 1, n+ 1)with(p, q) ∈ P 2, 1 ≤ k ≤ n

Φ (sp(n)) =
[∏

q≥pmpq(1, n+ 1)upq(n+1)sq(n)bpq(n+1)
]
sp(n+ 1)

(2.4)
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where the notations have been defined in Equation 2.3. The initial condition is given
by the seed s1(0).

The use of a small number of states (usually less than five physiological ages are sufficient
to describe a plant) implies that at a given cycle, a lot of identical growth units appear
at different locations in the plant, as can be observed in the example of Figure 2.4.
More generally, similar parts of the plant are repeated at different positions in its
architecture. From Equation 2.3 it can be seen that for example Sp(n−1) is a structure
that can be generated from lateral and apical bud of the basal growth unit of Sp(n).
It has led to the concept of substructure factorization, as presented in [Yan et al.,
2004] and [Cournède et al., 2006]. Each structure type is computed only once and then
the structures are stuck together, beginning from the simplest ones (the physiologically
oldest), to form the whole-plant structure. A structure being defined by its chronological
(n) and physiological (p) ages, only a set of at most N × Pm structures needs to be
computed to simulate a plant at age N . In the stochastic case (GL2), Equation 2.3 is
modified as:

[Sp(n, t)] =
∏

p≤q≤Pm

(mpq(n, t))
upq(t+1−n)

∏
1≤i≤bpq(t+1−n)

[Sq(n− 1, t)]i [Sp(n− 1, t)] (2.5)

where [Sp(n, t)] is a realization of the stochastic variable Sp(n, t) [Cournède et al., 2006].
Theoretically, each realization of a structure can be different. It means that the fac-
torization no longer holds in that case. However, it is still possible to keep its benefits
by computing only a limited number of each type of structure to create a library of
different potential realizations of each type of structure, as represented in Figure 2.5.
With a small number of repetitions for each type (e.g. 5), the algorithm is still efficient
and it is possible to build realistic realizations of plant structures with little bias from
the theoretical stochastic plant [Kang et al., 2003].
Thus the substructure factorization algorithm provides a very efficient way of simulat-
ing plants, even with complex architectures. The simulation time is only dependent on
the numbers of physiological states present in the plant and its chronological age, not
on the total number of phytomers. At the same time, it is a limitation of the model
as it restricts its flexibility to reproduce irregular architectures. But if this factoriza-
tion may not be necessary for herbaceous, it is appropriate for trees. Indeed, when
trees present complex branching structures, exact replication of their architecture is
unfeasible: firstly because many stochastic events have influenced architecture set up
and secondly because a complete description of whole-tree structures would require a
huge and tedious experimental work. To simulate stand growth, and particularly radial
increment of trees, a simplified description of tree architecture is sufficient. Moreover,
the distance from simulated tree to real tree architecture can be quantified. Based on
the notion of edit distance between two branched structures, Ferraro et al. [2005] define
a way to characterize self-similarity in plants.
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Figure 2.5: Strucutral decomposition of a plant with stochastic structure at growth
cycle t = 9, from [Kang et al., 2003]. [Sp(n)]r represents a set of realizations of the
stochastic structure Sp(n).

2.5 Numbers of organs and versions of GreenLab

Numbers of organs of given physiological ages in each substructure are the main state
variables for computing plant demand. Indeed, except for ring growth (see paragraph
3.2.3), the demand of the plant only depends on the number of expanding organs of
each physiological age and their initiation dates. If plant development is known, its
morphological growth can be deduced without any reference to its topology. The use of
structure formalism provides an analytical method to compute at any time numbers of
organs (or moments of numbers of organs for the stochastic version) without requiring
to time-consuming methods of Monte-Carlo simulations. The morphism defined in
[Cournède et al., 2006] provides the inductive formula to get the vector of size Pm,
containing the number of organs of each physiological age in the structure, ψ(Sp(n, t)):

ψ(Sp(n, t)) =
∑

p≤q≤Pm

upq(t+ 1− n) · Ip + bpq(t+ 1− n) · ψ(Sq(n− 1, t))+ψ(Sp(n−1, t))

(2.6)
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where the ith component of Ip is Ip(i) = δpi (Kronecker’s delta) and:

ψ(mpq(n, t)) = Ip (2.7)

The different versions of GreenLab (GL1, GL2, GL3) are characterized by the functions
defining the transition rules for the topological development.

2.5.1 Deterministic version: GL1

The transition rules of the automaton are constants. Numbers of metamers (u) and
numbers of active buds (b) per growth unit do not depend on growth cycle t:{

∀t, upq(t) = upq

bpq(t) = bpq
(2.8)

If the growth is undeterminate with no mutations of axes, the number of organs can be
written under a simplified matrix form as in [Cournède et al., 2006].

2.5.2 Stochastic version: GL2

In the GL2 version [Kang et al., 2003], the topological rules to build plant structure
are probabilistic: upq and bpq are stochastic variables. A simulated plant is a particular
realization of a plant distribution. In GL2, five processes of development are driven
by a random variable for each physiological age p (not only upq and bpq). The size of
probability vectors is equal to the maximal physiological age (Pm):

� survival probability of bud, PC : the PA p apical bud can die with probability
1 − PC(p) and the growth of the bearing axis is then definitively stopped. The
number of growth cycles from the axis initiation to its death follows a truncated
geometrical law of parameters (MA, PA) where MA components are the maximal
number of growth units in axes of each physiological age.

� starting probability of axillary buds, PB: the number of apical buds bpq that
can give birth to a new branch depends on probability PB(p). To simplify, it is
assumed to be dependent only on the physiological age of the bearing axis and
not on the physiological age of the potential lateral axis. PB(1) is the probability
of seed germination (main axis appearance). The number of new branches on a
metamer follows a binomial law B(NB, PB) where NB is the vector of bud number
on metamers of each physiological age.

� growth probability of apical bud, PA: at each cycle, the apical bud can produce
a new growth unit or pause. If PB and PC are equal to 1, the number of growth
units into an axis follows a binomial law B(MA, PA) where MA components are
the maximal number of growth units in axes of each physiological age (as in first
item).
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� metamer appearance probability, PI : the number of phytomers upq inside each
growth unit zone is not a constant. For each phytomer, its appearance is tested
against probability Pi(p). Thus the number of metamers per growth unit follows
a binomial law B(µ, PI) where µ is the maximum total number of metamers per
growth unit.

� probability of fruit appearance, Pf : there can be fruit abortion with the proba-
bility 1− Pf (p).

Those probabilities can be fixed or variable in time to account for ontogenetic changes
through plant life-time. It could also depend on environmental control.
Using these notations, the theoretical mean and variance of numbers of organs in each
kind of structure can be computed. Here we only recall the final result (needed for
fitting of stochastic development in Part II). We refer to [Kang et al., 2007a] for proofs
and details or to [Kang et al., 2006a] for more synthetic formulations based on growth
grammars and generating functions. The mean and variance of numbers of organs of
physiological age 1 in the plant at growth cycle n are defined in equations 2.9 and
2.10. For the sake of clarity, pC denotes the first component of the vector PC (value
corresponding to PA 1) and similarly for other probability values.

MS1,1
n

=
pC (1− pn

C)

1− PC

· pA · µ · pI (2.9)

VS1,1
n

=
pC (1− pn

C)

1− PC

[
pAµpI(1− pI) + pA(1− pA)(µpI)

2
]

+
pC

[
1− (2n+ 1)(1− pC)(pC)n − p2n+1

C

]
(1− pC)2

(pAµpI)
2 (2.10)

Similar equations can be written for physiological ages higher than one [Kang et al.,
2007a].

2.5.3 Mechanistic version: GL3

In the GL3 version, the variables driving plant development (in particular upq and bpq)
are influenced by the level of trophic competition inside the plant, as introduced by
Mathieu [2006]. This new modelling approach relies on a key state variable of the
model: the ratio of biomass supply to plant demand, as detailed in Chapter 3. It
requires a new decomposition of growth cycle course: first all active buds are taken into
account to calculate the potential demand; it allows setting the number of active buds
as a function of the ratio of biomass supply to potential demand and eventually, the
number of new organs and the biomass they receive are determined.
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Plant are seen as self-regulating systems that can react to exogenous (e.g. environmen-
tal stresses that reduce plant production; organ or branch pruning that reduce plant
demand) or endogenous (e.g. apparition of new branches or fruits that increase de-
mand) influences. Thus it allows simulating as well the ontogenetic changes in plant
topology throughout its growth phases as architectural plasticity in response to envi-
ronmental changes. In particular, it allows the progressive set up of architectural units
in tree architecture, as illustrated in Figure 2.6.

Figure 2.6: GL3: Structural plasticity of the growth units during plant development.

Several topological variables (number of metamers and of lateral axes per growth unit
zone, duration of axes growth in G.C.) but also some functional variables such as
expansion duration of organs or number of growth cycles of leaf activity. These variables
are determined as affine functions of the ratio of biomass supply (Q) to demand (D).
For instance, the number of lateral axes per growth unit zone is calculated as:

bpq(t) =

⌊
B1

pq +B2
pq ·

Q(t)

D(t)

⌋
(2.11)

where bxc denotes the integer part of x and B1
pq, B

2
pq are parameters depending on

the physiological ages of the bearing metamers and axillary buds. It implies that the
number of active buds that give birth to a new branch is the same for every growth
unit of given physiological and chronological ages. So the number of new growth units
appearing at each cycle is a piecewise constant function of Q/D.
At a given cycle t, the total number of active buds in zone Zpq for the whole plant is
a multiple of the number of newly created growth units of PA p. If there are K new
growth units of PA p, the total number of new branches appearing in zones Zpq can
take the values n ·K: (0, K, 2K, 3K,...). For trees, the value of K can be potentially
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high (more than 100) so the number of new axes appearing in the tree can only take a
limited set of discrete values.

Formula at whole-plant scale. For applications to real trees, it would be apprecia-
ble to have more flexibility for the number of branches that can appear at each cycle.
This can be achieved with a minimal change of the modelling approach and with an
identical number of parameters. Instead of calculating the number of active buds at
growth unit scale, the calculation is done at whole-plant scale, with the same formula.
The total number of new axes apq(t) appearing on zones Zpq in the tree depends on the
number of existing positions potentially bearing that kind of axes (Npq(t)) and on the
value of Q/D. It is given by the following equation:

apq(t) =

[
Npq(t) ·

(
A1

pq + A2
pq ·

Q

D
(t)

)]
(2.12)

where [x] represents the rounded value of x.

Figure 2.7: Global GL3: simulation of plant growth at G.C. t=5, the number of axes
being calculated at whole-plant level. Metamers of same physiological age (PA) and
chronological age (CA) but different ranks can bear different topological structures.

To compare, the former formulation gives:

apq(t) = Npq(t) · bB1
pq +B2

pq ·
Q

D
(t)c (2.13)
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In the new formulation, the total number of branches that appear can take values in a
subdivision of the set of discrete values that are possible in the former formulation.
However, even in this new formulation, not all integer values can be reached for the
number of new axes. Indeed, these new axes have to be positioned on existing growth
units. As done in the case of GL2, we keep the advantages of structure factorization by
choosing a number of repetitions for every type of structure. We set that the topology
of a structure depends on the rank (ontogenetic age) of its basal growth unit. It means
that two metamers with the same physiological and chronological ages but a different
rank can have different numbers of active axillary buds, as in Figure 2.7. In that
case, we face the problem of choosing how to partition the apq(t) among the potential
positions Npq(t). A possible algorithm is described in section 8.4.1. This new method
is illustrated through the example of beech tree analysis presented in that section.
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Chapter 3

Physiology

In GreenLab, biomass production and allocation are based on a source-sink model, as
presented in the first chapter. We detail here the equations driving morphogenesis, that
is to say the organ growth and dimensions at each growth cycle.

3.1 Biomass production : sources

Through the plant life cycle, biomass inputs come from several kinds of sources. The
initial input comes from the seed reserves that can be mobilized during several of the
first cycles of growth. Then the plant becomes autonomous and produces its biomass
by photosynthesis. Other potential sources of biomass, although not primary sources,
consist of biomass remobilized from senescent organs or storage compartment into the
rest of the plant. We present the GreenLab modelling choices for each of these processes.

3.1.1 Seed

During the first growth phase, the amount of biomass contained in seeds is transferred
to seedlings. When fresh biomass is considered, the weight of the seed in GreenLab
is equivalent to the total fresh weight of plant before the first leaves can perform sig-
nificantly photosynthesis. This consists largely of water in the newly produced tissues
during the seed germination and very early stage of seedling growth. Thus it surpass
greatly the hydrated seed in weight.
Seed emptying can last one or several cycles, depending on species. During this phase,
the growth is mainly heterotrophic and therefore the cumulated dry matter content of
seed reserves and plant shoot part decreases due to respiration losses. The end of this
heterotrophic growth phase can be determined as the end of this decrease [Asch et al.,
1999].
In GreenLab, the proportion of seed biomass used for plant growth at each cycle is
calculated according to a beta law density function whose parameters can be estimated
by fitting. For most plants, it is generally assumed that seed emptying is fast and ends
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after one growth cycle only. It means that the biomass included in the seed is equal
to the total plant mass (shoot and root) at the first cycle. In fact, this is likely to be
true at plant emergence but it may not be a good approximation if the cycle duration
is long.

3.1.2 Assimilate production

Source organs

Source organs are mainly leaves but it can also include other kinds of organs potentially
containing chlorophyll cells: stems, inflorescence parts, fruits (e.g. rape pods [Allirand
et al., 2007]). In trees, stem and branches also have chlorophyll cells to capture CO2 but
their low permeability to gas (e.g. stark permeability is only 10% of needles one) prevent
them from synthesizing high proportions of biomass [Deleuze, 1996]. In the model, all
organs have the same status, all being potentially sinks and sources. However in current
applications, only leaves have been considered as sources.

Hydraulic network of the plant

Dry matter production is related to plant water transpiration [Jones, 1992]. Leaf tran-
spiration generates a pressure gradient that can induce water flows of several hundreds
of liters per day in some trees, circulating until heights of more than 100m [Cruiziat,
1991]. That flow is limited by water uptake from roots and by water transport inside
the plant architecture. We refer to [Mathieu, 2006] for detailed explanations of the
formula presented below. The resistance to water flow circulation is defined for each
organ:

� Leaf: Rleaf =
R1

S
+R2 where S is the blade one-side area and R1, R2 are resistance

parameters.

� Internode: Rin =
ρk · h
s

where ρk denotes the layer resistivity of internode of phys-

iological age k, h the internode length and s its transversal section area (Figure
3.1). For herbaceous, internodes are considered as perfect conductive cylinders.
For trees, internodes are seen as pipes with concentric layers where only the re-
cently created layers (sapwood) are conductive. The heartwood consists of dead
cells (sometimes distinguished by a different colour due to chemical changes) that
cannot conduct any flow and whose main role is to contribute to plant mechanical
stability.

These organs are connected in parallel or in series to form the hydraulic network
into which water circulates from the roots to every leaf under the control of evapo-
transpiration potential (mm.day−1) as defined in [Allen et al., 1998]. Under the as-
sumption that every leaf is subjected to the same potential of evapotranspiration E,
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plant biomass production can be calculated as:

Q =
E

Req

(3.1)

where Req is the equivalent resistance of the whole network calculated by analogy with
the classical laws of electric network (Kirschhoff’s laws). We can benefit from the
substructure decomposition of the plant presented in section 2.4.2 to get efficient ways
of calculating Req. In the example provided in Figure 3.1, the equivalence resistance is
given by the recurrence relation:

Req (S1(n, 3)) =
ρ1 · h1(n)

s1(n)
+

1
1

Req (S2(n− 1, 3))
+

1

Req (S1(n− 1, 3))

(3.2)

Figure 3.1: Hydraulic resistance of the plant architecture

The general formula can be found in [Mathieu, 2006]. This method could be easily
extended to the case of a different potential for each leaf: an equivalent circuit can be
computed by the method of successive “foldings” described in [Allen et al., 2005] and
[Prusinkiewicz et al., 2007] (based on the Millman theorem, with the evapotranspiration
potential at each location represented by a generator with a different electromotive
force). However, this representation would not be fully compatible with the structure
factorization of the plant. Indeed, structures of same physiological and chronological
ages are branched at several locations in the plant and thus do not receive the same
amount of radiations, although in our model they would have the same potential.

Req introduces a limitation of the biomass production to account for high resistivities
of axes or for cases where the hydraulic network becomes so long and complex that
it influences biomass production. It is negligible in most cases as Cruiziat and Tyree
[1990] showed that hydraulic resistance of a young tree (6 m high) consists for 95% in
evapotranspiration at blade surface, 3% in the root system and only 2% in the resistance
of axes.
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Light interception

In the previous versions of GreenLab (from [de Reffye et al., 1997] to [Mathieu, 2006]),
only the simulation of individual plants is considered. It is based on the formalism
of water use efficiency without self-shadowing of leaves. However leaf transpiration
depends on the amount of intercepted radiations. Computing the leaf exposed area
requires a detailed description of the plant architecture with the inclination angle and
orientation of each leaf. Then the calculation should take into account the directions of
incident radiations depending on the moment of the growing period and the phenomena
of diffusion, transmission and reflection. An example of such detailed algorithm can be
found for the LIGNUM model in [Perttunen et al., 1998].

In GreenLab, a simplified representation of plant architecture is used and there are
no accurate measurements of leaf positions and orientations. Consequently, using a
detailed algorithm for computing light interception is meaningless. As in many models
[Marcelis et al., 1998], a simplified expression of light interception surface (LIS) can
be derived from the Beer-Lambert law, assuming that light propagates into a turbid
medium:

LIS = Sp ·
(
1− e−k· S

Sp

)
(3.3)

where k is an extinction coefficient related to leaf inclination and radiation direction.
The surface Sp is the potential projection area of the plant silhouette onto a plane or-
thogonal to the main direction of the incident radiation. The ratio S/Sp represents the
ratio of blade surface of the plant to a reference ground surface. It can be compared to
the variable “Leaf Area Index” (LAI) that intervenes in the classical formulation of light
intercepted by crop stands [Cournède et al., 2008]. However, in GreenLab, the param-
eters of this equation are considered as empirical, that is to say they are determined by
fitting real data of plant production. Indeed, the conditions for Beer law application are
not likely to be verified (leaf size infinitely small, leaves randomly located with uniform
density) and moreover, the parameters Sp and k should take different values according
to the direction of incident light. Thus they can be considered as global parameters
that integrate the cumulated effects of light interception in different directions during
the whole growth cycle.

Considering the parameters as empirical has also the advantage of allowing more flexi-
bility. In the classical formulations of dry matter production per square meter for crop
stands [Howell and Musick, 1984], different viewpoints lead to the same formalism. In
the formulations based on water use efficiency (WUE), biomass acquisition is propor-
tional to plant transpiration. In the formulations based on light use efficiency (LUE),
it is proportional to the amount of absorbed radiations. In both cases, dry matter
production is described as a negative exponential function of LAI. Howell and Musick
[1984] compared the two approaches and concluded that computation of dry matter
production based on transpiration is the most stable for their set of experiments. They
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argue that in most regions of the world, water is usually the main limiting factor of
crop production but admit that intercepted light may be easier to measure than crop
transpiration, for example using remote sensing methods. In greenhouses, water is usu-
ally not a limiting factor. The effect of light interception (more precisely the PAR) is
thus preponderant (e.g. TOMSIM [Heuvelink, 1999]).
In GreenLab, the same empirical equation can be used, its parameter meanings being
interpreted differently according to the situation (water or light as preponderant factor).
The environmental factor En can include different kinds of environmental influences (see
paragraph 3.1.4).

General formula and parameter analysis

Eventually, we choose the following expression for biomass acquisition at growth cycle
t:

Q(t) =
E(t)

Req

· Sp
S(t)

·

1− e
−k·

S(t)

Sp

 (3.4)

The term
Sp

S(t)
·
(
1− e−k·S(t)

Sp

)
is a dimensionless factor representing the limitation of

biomass production due to self-shading of leaves (see figure 3.2).

Figure 3.2: Representation of the plant for the general expression of biomass production.

When the hydraulic resistances of petioles and internodes are negligible, the equivalent
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resistance writes: Req =
R1

S(t)
with S being the sum of all active blade areas. Thus the

equation simplifies and can be written as follows:

Q(t) = E(t) · µ · Sp ·

1− e
−k·

S(t)

Sp

 (3.5)

where µ = 1/R1 is a parameter of biomass conversion efficiency.
Regarding trees, Sp is a parameter representing a reference surface used to account for
the effects of self-shading and modulated by the competition of neighbouring plants.
The long-term development of tree crown and the step by step metamorphosis of tree
architecture make Sp varies with S(t). In GreenLab, as no precise geometrical data are
included for crown description, a simple allometric relationship is proposed to compute
the variations of the reference surface according to the blade surface:

Sp(t) = Sp0 ·
(
S(t)

Sp0

)α

(3.6)

Practically, parameters Sp0 and α must be identified by inverse method so that the
progression of Sp induces the measured value of biomass production.

Effect of parameter Sp

For crops, parameter Sp is considered as a constant through plant life time. It is
estimated by fitting as the virtual reference surface that gives the observed biomass
production under the measured environment values. It drives the saturation of biomass
production: if Sp is small, the maximal potential biomass production is small.
In the simplified case of negligible hydraulic resistances, the biomass production of the
plant at young stages does not depend on Sp but it is approximately proportional to
the plant leaf area: If S(t) << Sp, Q(t) ≈ µ · k · S(t).
Sp influences the growth of the plant at older stages: it controls the limit value of
the biomass production (see figure 3.3). It also controls the value of S(t) for which
there is “saturation”: 99% of the limit value for biomass production is reached when
kS(t)/Sp > 4.6. It is important to note that above that limit, increasing the plant
blade surface does not increase its production.
Lastly, an advantage of this formalism is its easy extension to modelling of stand growth,
including effects of competition for light on biomass production of each plant. The
parameter Sp can be used to account for density effects on the biomass production (Ma
et al. [2007]). Inter-plant competition is quantified by the intersection areas between
influence zones of each plant (characterized by the value of Sp for every neighbour
plants [Cournède and de Reffye, 2007]).
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Figure 3.3: Effect of Sp variations (in cm2) on biomass production (Q) as a function of
total leaf area (Sf) with E = 1, k = 1, µ = 0.05. The limit value is µ · k · Sp.

Effect of parameter α (Variation of Sp)

Parameter α defines the allometry between plant total leaf surface and its reference
surface Sp that influences the saturation of biomass production, as presented in the
previous paragraph (3.1.2). It accounts for the crown shape. If α = 0 it means that the
reference surface can be considered as a constant: this can be an effect of high density
(tree production is calculated as if its development was constrained inside a cylinder
of basal area Sp). If α = 1, the reference surface grows proportionally to the total
leaf area. It can correspond to grass or to tabular-shaped trees such as Albizia. We
show in Figure 3.4 the influence of α on the simulated biomass production and plant
morphology.
Figure 3.5 shows the influence of α on the architectural development of a tree simulated
with the GL3 version (see section 2.5.3).

Parameter identification

Introducing a new kind of equation (or model structure [Walter and Pronzato, 1994])
raises the problem of parameter identification. Indeed, the comparison between two
alternative modelling options with regards to real data provides arguments to privilege
one or the other one. The parametric identification of models relies on the comparison
between their outputs and observations on real phenomena. The criterion of this com-
parison is an objective function that can be for example the sum of squared differences
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Figure 3.4: Effect of parameter α on biomass production and plant morphology, case
GL1.

between observed and simulated data (see section 7.2). For a given model structure
assumed to be representative of the true process, the procedure consists in finding the
most probable parameter values that generate the observed outputs. Different criteria
have been developed to discriminate the best model structure. Walter and Pronzato
[1994] suggest taking into consideration the accuracy of the estimator and the complex-
ity of the model. The complexity of the model is simply characterized by the dimension
of the parameter vector (dimP ) in the widely used AIC criterion (An Information Cri-
terion). A high dimensional parameter vector penalizes the objective function. Other
criteria make different penalization expressions intervene. For instance, in the Final
Prediction Error (FPE) criterion, it is:

ln

(
1 + dim(P )/nt

1− dim(P )/nt

)
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Figure 3.5: Effect of parameter α on plant architectural development in theGL3 version.

and in the Bayesian Information Criterion (BIC), it is:

dim(P ) · ln nt

nt

nt represents the number of measurement dates: the highest it is, the less important is
the parameter vector dimension.

In our case, both equations 3.1 and 3.5 for biomass production have the same number of
parameters: R1 and R2 for the hydraulic equation (3.1); µSp and k/Sp for the Beer law
equation (3.5). Therefore the only criterion to consider is the fitting accuracy. Several
tests were performed on isolated plants [de Reffye et al., 2006]. Table 3.1 presents the
results for the values of final error (based on the weighted least square criterion as
defined in 7.2).

Plant Error Eq.3.1 Error Eq.3.5
Cotton 6.26 6.06
Wheat 3.27 3.89

Sunflower 46.1 45.9
Maize 47.7 47.8

Tomato 1.76 1.64

Table 3.1: Comparison of fitting accuracy for two model structures for biomass produc-
tion [de Reffye et al., 2006].
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The final error is of the same range for both model structures. Fitting results are of the
same quality. Therefore both functions are adequate. The choice of the Beer-Lambert
law is reasonable as it is classically used and as it can be interpreted on physical bases.
Moreover, introducing the reference surface Sp allows defining the rules of competition
for light in a stand, as done in [Cournède et al., 2008].

Variations of RUE

For some plants (e.g. pea [Lecoeur and Ney, 2003]), it has been reported that the radi-
ation use efficiency (RUE) can vary according to the growth stage. By fitting the model
on real data, GreenLab can be used as a tool to explore such variations. For exam-
ple, it was investigated in the case of Arabidopsis thaliana (joint work with Angélique
Christophe, LEPSE, Montpellier) [Christophe et al., 2008]. A different equation of
biomass production was chosen, although the same study could be realized with the
equations defined above. It was calculated from Monteith’s equation (1977) adapted to
the case of an isolated plant and considering only vertical direction of incident radia-
tions. The vertical light interception efficiency was assumed to be equal to the ratio of
the plant vertical projected area (S ′(t)) to its total blade area. It gives:

Q(t) = RUE · S ′(t) · PAR (3.7)

where PAR is the incident photosynthetically active radiation. Dry weights of organs,
blade areas and projected area of the basal rosette were measured at five growth stages.
Those data were used to build a model of light interception by the rosette leaves and
to get the variations of the RUE parameter (g of dry biomass MJ−1) as represented in
Figure 3.6.
However, in the results of Arabidopsis fitting, it was difficult to disentangle the effects of
complex interactions between several phenomena: self-shading (especially for leaves of
the basal rosette), leaf senescence, respiration losses (see section 3.1.2), light absorption,
reflection and effective variations of radiation use efficiency.

Respiration

Modelling of respiration classically consists of two parts: growth respiration, propor-
tional to biomass production, and maintenance respiration, proportional to biomass
of living organs [Le Roux et al., 2001]. In GreenLab, respiration losses are implicitly
taken into account at the whole plant scale. The calculation of biomass production (Q)
represents the plant neat production, that is to say only the biomass amount effectively
available for structural growth. It is analogous to considering respiration as a priority
sink to which a fixed proportion of the production is systematically allocated [Lacointe,
2000]. However, a more mechanistic approach would consist in considering the indi-
vidual respiration process of each organ. It would allow a more accurate analysis of
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Figure 3.6: Variations of total leaf area, projected leaf area and RUE from fitting of
Arabidopsis thaliana [Christophe et al., 2008].

biomass production and allocation as not only structural biomass but also construction
and maintenance costs could be attributed to every organ.

3.1.3 Remobilization

Biomass can also come from secondary sources, that is to say from re-allocation of
biomass already present in the plant organs. In particular, when organs become senes-
cent, they can give back part of their biomass to other growing organs of the plant.
That kind of process is modelled for example in VICA by Wernecke et al. [2007] where
reversible fluxes can be exchanged between different types of organs.

In GreenLab, it is assumed that after an organ stops growing, it can release part of
its biomass into the common pool. It is modelled using three parameters: the time
duration between the end of expansion of the organ and the beginning of its emptying
(Te), the maximal proportion of biomass that can be given to the common pool (F )
and the speed of emptying (k). It is assumed that those parameters only depend on
the kind of organ considered and not on its physiological age. Thus the mass of an
organ of chronological age n that has finished its expansion (n ≥ Texp) and that begins
emptying, is calculated as follows:

∀n ≥ Texp + Te, q(n) = qmax

(
1− F ·

(
1− (1− k)n−Te−Texp

))
(3.8)

Figure 3.7 presents the shape of the remobilization curve for different values of k.
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Figure 3.7: Variations of organ biomass with remobilization process, Texp = 10, Te = 3,
F = 0.7.

The time duration before the beginning of emptying (Te) must be assessed by the
modeller, whereas the proportion (F ) and speed (k) of emptying can be fitted from
data of organ biomass. An initial value can be input for F from the ratio between
the maximal and final weights of an organ. This model for remobilization process was
tested for the first time on rice data from the China Agricultural University (Zheng
BangYou).

Figure 3.8 presents the fitting results for the compartment of biomass.

All compartments undergo a decrease at the last growth stages, except the fruit com-
partment (panicles). In the model, the biomass lost by the internode, blade and sheath
(denominated as petiole) compartments is given back to the common pool and then
reallocated (mainly to the panicle which is the only organ still growing). Table 3.2
presents the parameter values for the remobilization process.

Parameter Te k F
Internodes 4 0.51 0.23
Blades 4 0.046 0.42
Petioles 4 0.037 0.54

Table 3.2: Table of fitted parameters for remobilization in rice (joint work with Zheng
BangYou, CAU).
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Figure 3.8: Fitting results for compartment biomass of rice cultivar Peiai64S/E32 (joint
work with Zheng BangYou, CAU).

It can be observed that the dynamics of the emptying process is different for internodes
than for blades and petioles. The speed of emptying is the highest for internodes
(k = 0.51 compared to less than 0.05) but the final proportion of biomass that they
can lose is twice less than for blades and petioles.

3.1.4 Environmental variable

In the current version of GreenLab, the environmental conditions have only effect on
biomass production through the global vector variable E. That global variable can
incorporate the cumulated effects of temperature, light and water conditions. A propo-
sition for the quantification of these effects is given in [Wu, 2005]: a beta density law is
used for temperature, a negative exponential function for light, a rational function for
water. It is possible to apply optimal control algorithms to get the best environmental
conditions to maximize the growth. An example of optimization of the water supply
strategy can be found in [Wu et al., 2005].

The effect of environmental variables is visible in the organ weights at each cycle. An
interesting consequence is that it is possible to trace back the environmental variations
by fitting the model on measurement data. For example, several plants of Cecropia
sciadophylla were measured in 2007 in French Guyana (joint work with Patrick Heuret
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and Camilo Zalamea (AMAP, CIRAD)). In the case of this tropical tree, the main
environmental variable represents rainfalls. The Guyanese climate can be represented
by the succession of dry seasons and wet seasons. It can be modulated by a short period
around March where the rainfalls rate is reduced (“short summer of March”)
For this first fitting, it was chosen to represent the variations of pluviometry using a
sinusoid function:

E(t) = max(0, E + A · cos
(

2 · t · Π · ω
T

+ φ

)
(3.9)

where E is a default environmental value characterizing the more or less favourable
conditions of growth, T is the period of environmental fluctuations (one year), A is their
amplitude and φ the phase. The phase can be assessed directly from an estimation of
the tree age (the sampling date being known) or fitted. For Cecropia, these sinusoidal
variations induce a similar periodic variation of internode length, mass (Figure 3.9) and
pith diameter.

Figure 3.9: Cecropia. Internode mass on the main stem: data vs simulation with a
sinusoidal environment (joint work with Patrick Heuret and Camilo Zalamea, FTH
2007).

3.2 Biomass allocation : sinks

The pool of biomass production is partitioned between four major compartments: roots,
buds, expansion of existing organs, rings. Biomass is first allocated globally to these
four compartments then distributed to each organ individually in a second step (Figure
3.10).
As no reserve compartment is considered, the whole biomass pool produced at growth
cycle t is distributed at the end of that growth cycle:

∀t ≥ 0, Q(t) = Qbud(t) +Qexp(t) +Qring(t) +Qroot(t) (3.10)
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Figure 3.10: Two steps for biomass allocation

where Qbud(t) represents the biomass allocated to new organs (abusively called “buds”)
at cycle t, Qexp(t) the biomass allocated to the growth of already existing organs (expan-
sion), Qring(t) the biomass allocated to cambial growth of internodes and Qroot(t) the
biomass allocated to the growth of the root compartment (Figure 3.10). The biomass
attributed to a compartment C is proportional to its demand:

∀C ∈ {Bud,Exp,Ring,Root}, QC(t) = DC(t) · Q(t)

D(t)
(3.11)

D(t) is the plant total demand, calculated as the sum of the four compartment demands:

D(t) = Dbud(t) +Dexp(t) +Dring(t) +Droot(t) (3.12)

Two different modelling choices can be distinguished for the calculation of DC(t). For
buds and expansion, it depends on the underlying number of organs whereas for roots
and rings, demand is calculated at compartment level, regardless of the plant topology
and development.

In the next paragraphs, we define the demand for each of those four compartments and
we describe the intra-compartment partitioning procedure.
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3.2.1 Bud and expansion compartments: organ-based demand

There is no formal distinction between the calculation of bud and expansion compart-
ment demands. Both are calculated as the sum of the individual organ demands in
the compartment. Thus those compartment demands only depend on the number of
organs in each class of physiological and chronological ages. The demand of an organ is
expressed as the factor of two components: its sink strength and a function defining its
variation throughout its life. As sink strength is defined as a relative value, a reference
must be chosen. It is generally assumed that the sink strength of leaves of physiological
age 1 is equal to 1. Let Do(k, n) denote the demand of an organ of physiological age k
and chronological age n (with 0 ≤ n ≤ t, including n = 0 for buds). It is assumed that
the variables n and k can be separated: the sink strength of an organ depends only on
k and the sink variation function depends only on n:

Do
k(n) = P o

kφ
o(n) with k ∈ {1 . . . Pm}, n ∈ {0 . . . t} (3.13)

Let qo
k(n, t) denote the biomass allocated to organ o of physiological age k and chrono-

logical age n at growth cycle t:

qo
k(n, t) = Do

k(n)
Qbud

Dbud

(t)

= P o
kφ

o(n)
Q

D
(t)

(3.14)

The sink variation function is defined with a generic shape of beta law density function.
It depends on three parameters, a, b and Texp:

φo(n) =
1

N

(
n+ 0.5

Texp

)a−1(
1− n+ 0.5

Texp

)b−1

(3.15)

Texp represents the duration of organ expansion, expressed in growth cycles. It is
estimated from measurements of organ sizes. Parameters a and b drive the curve shape.
These two parameters are empirically determined from fitting the model on real data. N
is a multiplicative factor introduced to normalize the sink variation function. This factor
can be defined following different methods, as detailed in Appendix B. Figures 3.11
represent different shapes of beta law density function, for several values of parameters
a and b, and the resulting organ weight in the virtual case of Q/D = cte = 1. Note
that asymmetrical shapes can be obtained when a 6= b.
The main advantages of the beta law were described in Yin et al. [2003] who compared
it to six families of functions classically used to represent growth phenomena:

� at initial time t=0, its value is zero (as for the Weibull function)

� the values of the final growth rate is null, which is consistent with the definition
of Texp as the expansion duration.
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Figure 3.11: Sink variation function and evolution of organ biomass.

� it has a high flexibility and can describe asymmetric growth trajectories (as
Richards law)

� it has stable parameters for statistical estimation (similar to Gompertz or logistic
functions)

The normalization factor N

The choice of the normalization method is particularly important when the expansion
duration of organ can vary for organs of the same kind. We expose four possible ways to
choose of N in Appendix B. The choice of the method can influence the interpretation
of the notion of “sink strength” (parameter P o

k ). In the three first methods, the sink
strength is defined as the cumulated demand coefficients through the organ growth
duration. By contrast, in the last method described, the sink strength corresponds to
the maximal value taken by organ demand.

Saturation of organ weight

In the current version of GreenLab, no saturation of organ sink or size is set a priori.
However, Heuvelink [1996] reports that the growth rates of tomato fruits remain un-
changed when one tomato or two tomatoes per fruit were left. If the production is stable
(case of saturation of the ground surface by blade surface), then biomass allocation to
the fruit should be reduced when a second fruit is present as a mechanistic consequence
of sink competition. Since it is not the case, a reason can be that there should be a
physical or physiological limitation of organ growth, at least for some species. That
limitation can be included in the model. For example, let qmax denote the maximal
weight of an organ. The biomass increment of that organ at chronological age n, the
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plant being at cycle t, can be expressed as follows:

qo
k(n, t) = P o

kφ
o(n)

Q(t)

D(t)

(
1−

t−1∑
j=t−n+1

q(n− (t− j), j)

qmax

)+

with 2 ≤ n ≤ t (3.16)

If the maximal biomass qmax is very high, the introduction of the limiting factor has
few influence.

Sink variations according to growth conditions

In the model presented above, sinks of organs are independent of the biomass supply
and of the changes in environmental conditions. However, it has been often observed
that allocation coefficients depend on the level of carbohydrate supply. For instance, if
only one leaf is left on a seedling, there is a change in allocation proportion in favour to
young leaves [Taiz and Zeiger, 2006]. This effect is the basis of the functional balance
principle (presented for instance in [Canell and Dewar, 1994]): the plant invests more
in the compartment (shoot or root) that can provide the limiting factor needed for an
optimal growth (carbon or nitrogen). Changes in allocation are an emergent property
in transport-resistance models as a result of the resistances of the pathways between
the different sources and sinks ([Minchin et al., 1993], [Minchin, 2004]).
Ma et al. [2007] analyzed the stability of GreenLab parameters for maize in response
to three kinds of phenotypic variability: within populations, among seasons and among
growth stages. As the model is deterministic with species-specific parameter values, it
does not explain the inter-plant variability. Parameters were found stable for different
growth stages and more stable than the phenotypic data (organ weights and dimen-
sions) when the environmental conditions change (the average variation was 18% for
phenotypic data whereas it was 10% for parameter values). The authors concluded that
the two environmental factors considered (ETP for biomass production and temperture
for development are major contributors to phenotypic changes). However, Ma et al.
[2008] for maize and Louarn et al. [2007] for tomato found that several parameters
varied with plant density: blade resistance, internode sink and fruit sinks. The shape
of sink variation functions remained the same but expansion durations also varied.
Therefore, some parameters should be made dependent on the growth conditions. An-
other possibility is to introduce feedback controls of the state of the plant on sink
values. If the sink of an organ depends on the ratio of the biomass supply to the de-
mand (Q/D), it allows simulating processes where the plant adjusts its allocation to
different types of organs according to its growing conditions. For instance, the weight
of tomato fruits depends on its number of cells, which is determined during a period of
a few cycles at its initiation [Bertin et al., 2001]. To model that effect, sinks of intern-
odes of physiological age k and chronological age n can be expressed as the sum of two
components: a constant sink Pi0, representing the demand associated to cell expansion
and a variable sink depending on the ratio Q/D at its initiation cycle, representing the
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sink strength associated to the number of cells [Mathieu, 2006]. Thus its demand at
cycle t is calculated as:

Di
k(n, t) =

(
P i

k,0 + P i
k,1 ·

Q(t− n)

D(t− n)

)
· φi(n) (3.17)

where P i
k,0 and P i

k,1 represent constant and mass sinks of internodes of PA k. By fitting
on real data, GreenLab can be used as a tool to evaluate whether sinks are constant
during the plant growth or if they vary according to Q/D.

Expansion delays

In some herbaceous plants, the final topology becomes visible only at the end of the
growth after elongation of lateral axes. In GreenLab, we only consider delays to expan-
sion but not delays to initiation. When there are expansion delays, the whole structure
can be already initiated long before its appearance. In that case, phyllochron can be
very different from plastochron. For some herbaceous such as Arabidopsis or Chrysan-
themum, the growth is determinate and it is the mutation of apical bud that triggers
the extension of organs and axillaries. This phenomenon has been defined as apical
dominance in [Cline, 1997]. Development and expansion are completely independent
and can even occur in opposite temporal sequences: in Arabidopsis thaliana, organ initi-
ation is bottom-up whereas extension of lateral axes is top-down. The acrotonic aspect
of its branching structure is a consequence of this top-down extension: the lower lateral
axes have a shorter growth duration and they are subject to higher trophic competition
due to the simultaneous growth of upper axes. In GreenLab, this is modelled using
delays. Organs can be initiated in the meristem but remain undeveloped, in a stage of
primordium, for several cycles. They exist inside the meristem but their demand for
biomass is zero or negligible. Thus, the complete expression of the demand of an organ
of physiological age k (1 ≤ k ≤ Pm), of chronological age n (1 ≤ n ≤ t) and belonging
to axis j (1 ≤ j ≤ t) is defined as:

Do
k(n, j) = P o

k · f o(n) · do
k(n, j) where do

k(n, j) =

{
ε if n ≤ d′ok (j)
1 else

(3.18)

These delays can be fixed or dependent on the Q/D ratio. For instance, in growth
simulations of Arabidopsis thaliana, delays of the lateral axes were set according to the
Q/D ratio after the appearance of the main flower, from the top axis to the lower ones:

d′ok (j) = Ao(k) +Bo(k) · Q
D

(2(TF + 4− j) + j − 1) (3.19)

where TF is the cycle of the apical flower appearance. The 3D output is shown in Figure
3.12.
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Figure 3.12: 3D visualization of Arabidopsis thaliana with delays of lateral axes func-
tions of the Q/D ratio

The delay parameter can be set different according to the organ type. For example,
delays can be shorter for leaves than for internodes. As noted by Wardlaw [1990],
«stems and leaves of cereals have a distinct pattern of growth, with the stem below the
point of insertion of the leaf only growing after the leaf is fully expanded ». Indeed, for
some plants (e.g. radish, chrysanthemum), a few leaves (usually two leaves, called alpha
and beta) appear first. Then they are pushed out when internodes elongate afterwards.

3.2.2 Organ geometrical shapes : Allometries

Organ volume is proportional to its weight. It is assumed that the volumic mass is
constant for each organ type.

Leaf

Petiole volume is simply proportional to its biomass. Petiole dimensions are not con-
sidered. Blade area Sa is proportional to blade volume and therefore to blade weight
qa:

qa = SBM · Sa (3.20)
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The proportionality constant is called specific leaf weight (SLW) or Specific Blade Mass
(SBM) and expressed in g.cm−2. As only blade area is important in the model, blade
length and width depend only the shape of the symbol chosen for the 3D visualisation.
SBM is an input parameter that can be assessed from measurements on the plant. It
can be determined as a function of the environmental conditions or of the growth cycle
of leaf appearance.

Internode

Internode is considered as a perfect cylinder. Its shape is determined by the allometric
relationship linking the internode length l to its transversal section s:

l = a · sb (3.21)

Therefore the length and transversal section can be computed according to the internode
weight:  l =

√
Be · q

1+β
2

s =
1√
Be

· q
1−β

2
with

 Be = a
2

b+1

β =
b− 1

b+ 1

(3.22)

Figure 3.13: Allometric relationships between internode length and weight for young
pines (data from Guo Hong, CAF Beijing)

Allometric relationships are determined in a preliminary step to any simulation from
the measurement of internode dimensions (e.g. for young pines, Figure 3.13). These
measurement are taken from axis tips only: for other metamers, several ring layers
cover the pith and its dimensions are not observable. Internode allometric parameters
can vary with the metamer rank.
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3.2.3 Secondary growth

Specificities of cambial growth

For trees, cambial growth is a predominant factor for determining the quality of the log
so modelling of allocation to the ring compartment is of crucial importance. There are
numerous evidences in the literature that cambial growth is more sensitive to changes
in the growth conditions than primary growth [Collet et al., 2001]. Several authors
have reported the relative insensivity of height growth to spacing [Lanner, 1985]. By
contrast, diameter growth can be influenced by many factors: competition, change in
competition, tree size, age, length of suppression and genotype [Haywood, 2002]. Trees
suffering from high competition can produce long primary shoots but usually narrow
rings [Nicolini et al., 2001]. In bad light conditions, the growth in height is increased
compared to the growth of other compartments [Mäkelä, 1986].
A pioneer modelling work was realized by Mitchell [1975] on Douglas-fir: he took into
account crown competition through their projected surfaces and stipulated that ring
growth increment is proportional to the number of leaves above the ring position in the
tree. Then Houllier et al. [1995] adapted that model to spruce (CEP). In many models
(e.g. [Mäkelä, 1990], [Perttunen et al., 1996], [Sterck et al., 2005]), secondary growth is
based on the principles of pipe model theory, as introduced by Shinozaki et al. [1964].
It was formulated as follows:

«A unit amount of leaves is provided with a pipe whose thickness or cross-
sectional area is constant. The pipe serves both as the vascular passage
and as the mechanical support and runs from the leaves to the stem base
through all the intervening strata.»

Figure 3.14: Pipe model theory, from [Shinozaki et al., 1964].

In those models, when a new leaf is created, a corresponding pipe unit is created at
the same time, running from the leaf position to the stem base (see figure 3.14). The
pipe model mechanistically generates the Pressler law (Pressler, 1865, in Assmann 1970
[Deleuze, 1996]):

«The area increment on any part of the stem is proportional to the foliage
capacity in the upper part of the tree, and therefore is nearly equal in all
parts of the stem, which are free from branches.»



3.2. BIOMASS ALLOCATION : SINKS 93

However, limitations of the Pressler rule have been also pointed out. Pouderoux et al.
[2001] note that this rule was verified for coniferous but not for oaks where ring thickness
(and not cross-sectional area) are related to the foliage volume. According to Deleuze
and Houllier [2002], the Pressler rule is too rigid and would need adaptations to be
applied with more flexibility. Indeed, the authors report that the stem profile is affected
by changes in environmental conditions, by the social status of trees and by fertilization.
Pressler rule does not account for those effects, nor for the formation of the buttress.
Recently, some attempts have been made to bridge the gap between process-based mod-
els and dendrometric models that output global relationships between radial growth and
crown size ([Ottorini et al., 1996]; [Pouderoux et al., 2001]). Deleuze and Houllier [2002]
used a reaction-diffusion model for radial growth but it was not related to crown struc-
ture and to assimilate allocation in the whole tree. But to consider specific applications
such as studies of the biomechanical stresses in the main stem (e.g. in [Fourcaud et al.,
2003]), the branching architecture is essential. Indeed, the weight and position of the
main branches of order 2 influence the bending of the main stem and the formation of
reaction wood.

First step: global allocation

The modelling of cambial growth in GreenLab was developed from those considerations.
In a first step, biomass is allocated to a pool used for the cambial growth of the whole
plant (step 1 in Figure 3.10). From that pool, biomass is then partitioned for the
cambial growth of each metamer. The definition of that virtual pool for ring growth is
not physiologically relevant, as no pool of this kind exists in the real plant. However,
it allows conceptual simplifications by considering the cambial growth as a whole-plant
phenomenon and it is consistent with the modelling point of view adopted for biomass
production (common pool at the whole plant level). Thus the ring compartment plays
a buffer role: the simulated tree invests more in secondary growth if the conditions are
favorable.
Three methods are defined for the global allocation step.

� First method: Number of leaves. In that case, the demand for ring compartment
is proportionally higher when the number of leaves is higher. The demand of the
ring compartment is calculated according to the number of active leaves at cycle
t following the equation:

Dring(t) =

(
P rg

0 + P rg
1 · Q(t)

D(t)

)
·Na(t) (3.23)

where P rg
0 is a constant demand (dimensionless) and P rg

1 is a mass sink (g−1). As
the demand is associated to the number of leaves Na(t), it is analogous to the
pipe model approach but the pipe length is not taken into account (i.e. in the
demand of a pipe is calculated regardless of its length).
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� Second method: Model Q/D. Cambial growth is set to depend on the “vigour”
of the plant, which is associated to the main driving variable of the model, the
ratio of biomass production of a plant to its demand (Q/D) [Mathieu, 2006]. This
ratio is representative of the level of trophic competition inside the plant. A low
value of that variable means a high level of trophic competition between organs.
In that case, the demand of the ring compartment is:

Dring(t) = P rg
0 + P rg

1 ·
(
Q(t)

D(t)

)γ

(3.24)

where P rg
0 and P rg

1 are defined above and γ is a model parameter driving the
relative importance of the Q/D variable. The ring compartment acts as a buffer.
In good conditions, relatively more biomass can be allocated to cambial growth
whereas this compartment is the first to be sacrificed in case of bad conditions.
That equation can also represent the ontogenetic changes in cambial growth in-
vestment. At young growth stages, a plant generally has low values of Q/D which
implies in turn low allocation to the ring compartment by comparison to primary
growth compartments. Note that in that case, the total plant demand D must be
calculated as the solution of the equation:

D = D0 +D1 ·
(
Q

D

)
+D2 ·

(
Q

D

)γ

(3.25)

whereD0 is the constant term of the plant demand, D1 quantifies the demand part
that have a linear variation as function of Q/D (e.g. demand of root compartment
or of new organs with sinks depending on Q/D) and D2 account for variations as
functions of power of Q/D. If D2 6= 0, this equation is solved numerically using
the Newton method (see Appendix C).

� Third method : Model Q. The demand of the ring compartment is set according
to the value of the biomass production at the previous cycle :

Dring(t) = P rg
0 + P rg

1 ·Q(t) (3.26)

It means that the higher the production is, the more the plant invests in the ring
compartment, relatively to other growth compartments. These three methods
need to be tested against experimental data.

Second step: allocation to metamers

Let Qring denote the biomass allocated to the ring compartment, according to its de-
mand and to the Q/D ratio as in Equation 3.11. This biomass is then partitioned
between all metamers for their cambial growth depending on their positions in the
plant topology. To overcome the limitations of the Pressler rule or of the Pipe model
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theory, we define a flexible sub-model of allocation with two modes of partitioning. In
the first mode (“Pool”), all metamers can receive the same biomass for their cambial
growth: it only depends on their chronological and physiological ages. In the second
mode (“Pressler”), the metamer position influences the biomass amount that it re-
ceives: it is a function of the number (or area) of leaves above the metamer in the plant
topology. Those two modes can be mixed together with a coefficient λ in [0;1] (see
figure 3.15).

Figure 3.15: Influence of blade position on ring biomass partitioning: effect of parameter
λ.

More precisely, the biomass qrg allocated at growth cycle t to a metamer of physiological
age p, chronological age n and ontogenetic1 age (OA) m can be written as follows:

qrg
p (n,m, t) =

(
1− λ

DPool(t)
+
λ ·Na,a

p (n,m, t)

DPressler(t)

)
· prg

p · lp(n, t) ·Qring(t) (3.27)

where

� Na,a
p (n,m, t) is the number of leaves located above the metamer of PA p, CA

n and OA m at GC t (we recall that a list of abbreviations can be found in
appendix A). If there is no reiteration (as defined in section 2.4.1), this number is
unequivocally associated to each metamer, i.e. metamers characterized by these
four indices “see” a fixed number of above leaves. In case of reiteration with a
finite reiteration order, one extra index is required to identify every axis, as two
axes with the same physiological and chronological ages can bear different number
of axes.

1Age of the apical bud that initiated the metamer. In most of our simulation cases, the ontogenetic
age of a phytomer can be considered as its rank along the branch



96 CHAPTER 3. PHYSIOLOGY

� prg
p are linear secondary sinks for cambial growth (in m−1) that determine the

relative demands of metamers of each physiological age. The secondary sink
value is calculated by multiplying prg by the metamer length, lp(n, t). As they
are parameters of an independent allocation sub-model, a reference value can be
chosen. For instance, it can be assumed that the secondary sink of metamers of
physiological age 1 is prg

1 = 1.

� DPool is the demand of all metamers for their cambial growth calculated with the
first mode. It only depends on the number of metamers Nm

p (n, t) and not on
their positions. So in that case, the biomass for ring growth of a metamer can be
provided by leaves from the whole tree and not only by leaves located above it as
in the Pressler mode.

DPool(t) =
Pm∑
p=1

t∑
n=1

Nm
p (n, t) · prg

p · lp(n, t) (3.28)

� DPressler is the demand of all metamers for their cambial growth calculated in
keeping with the Pressler law: it depends on the relative position of leaves and
metamers in the plant topology.

DPressler(t) =
Pm∑
p=1

t∑
n=1

t∑
m=1

Nm
p (n,m, t) ·Na,a

p (n,m, t) · prg
p · lp(n, t) (3.29)

where Nm
p (n,m, t) is the number of metamers of PA p, CA n and OA m at GC t.

The coefficient λ is used to assess the level of influence of the number of leaves and
their positions on the partitioning of ring biomass. Another interpretation (although
not theoretically equivalent) is to consider λ as the proportion of leaf biomass produc-
tion (for cambial growth) that can go up in the tree architecture. It is not an exact
equivalence because in GreenLab, biomass production is computed at the whole plant
level and not for each leaf independently; only global allocation is considered.

The Pressler law corresponds to the case λ = 1. Indeed, in that case, the sectional area
of the annual ring sp(n,m, t) at cycle t is proportional to the number of leaves above
the metamer position m in the plant architecture, as stated by the Pressler rule:

sp(n,m, t) =
qrg
p (n,m, t)

lp(n, t)

= Na,a
p (n,m, t) ·

prg
p ·Qrg(t)

DPressler(t)

(3.30)
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3.2.4 Root system compartment

In the current version of GreenLab, roots are considered as a compartment. No topo-
logical structure is considered but this could be done based on the same principles as
for the aerial part. However, the associated data are scarcely available.
Three kinds of modes are defined for the calculation of the root demand:

� Proportional allocation. At each growth cycle, the root system receives a fixed
proportion of the biomass production. This option can be useful when few infor-
mation is available concerning the root system. It is also a good approximation
of the principle of functional balance in steady state: the root growth rate is pro-
portional to that of the shoot [Canell and Dewar, 1994]. It was done for instance
on young Chinese pines (joint work with Guo Hong, CAF, Beijing) but the pro-
portional relationship was valid only in a limited range of growth stages (from 1
to 5 year-old, Figure 3.16).

Figure 3.16: Root weight as a linear function of total plant weight for young pines (1
year-old to 5 year-old). Data from a joint work with Guo Hong and Hong LingXia,
CAF.

� Organ mode. The root system has the same demand as a generic organ. It
requires four parameters: its sink strength and the three parameters of its sink
variation function (a, b, Texp). This mode was adopted for instance in the fitting of
Arabidopsis thaliana (joint work with A. Christophe, LEPSE Montpellier). The
results for organ sink variations are presented in Figure 3.17. The expansion
duration of the root system was set to last the whole plant life. Root sink is twice
higher than that of the reference rosette leaf but as there are many leaves and
only one root system, the leaf compartment attracts more biomass than the root
compartment.
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Figure 3.17: Sink variation for rosette leaf, inflorescence internode and root system of
Arabidopsis thaliana (fruit sink is not represented) and biomass partitioning at each
growth cycle into the plant compartments. The parameter values are:

Organ Sink Texp a b
Leaf 1 40 3.1 5.6

Internode 0.7 30 2.6 3
Fruit 21.5 40 3.6 2.6
Roots 2.6 85 3.6 2.6

� Mode Q/D or Q. This mode is analogous to the demand of the ring compartment
as defined in section 3.2.3. The root demand is dependent on the plant trophic
state (Q/D) or on its production (Q):

Droot(t) = P root
0 + P root

1 · Q(t)

D(t)
or Droot(t) = P root

0 + P root
1 ·Q(t) (3.31)

where P root
0 and P root

1 are model parameters. However, this last mode is difficult
to justify from a physiological point of view. In the current version of GreenLab,
roots are considered as mere sinks that do not play any role in the source process.
But when the uptake function of the root system is considered, its growth is more
likely to depend on soil properties and on the nitrogen concentrations (principle
of functional balance) than on a simple trophic balance.



Chapter 4

Model analysis

4.1 Recurrent formula of GreenLab

GreenLab can be written as a discrete dynamic model. Let Nm be the final considered
growth cycle. With the notations of Mathieu [2006], it can be formulated as a recurrent
system: {

Q(t+ 1) = F (Q(t), T (t+ 1), P, E(t))
T (t+ 1) = G(Q(t), T (t), P, E(t))

(4.1)

where:

� Q(t) is a vector of the past biomass productions (of size Nm).

� T(t) is a vector of the numbers of organs until cycle t (size Nm). It characterizes
the topological development.

� P is the vector of parameters of the model. Its size depends on the number of
parameters considered.

� E(t) is the set of control variables until growth cycle t (size Nm).

Note that P consists of two classes of parameters: observable parameters (e.g. expansion
durations, specific leaf weight) and hidden parameters (e.g. sinks, resistance). We can
also distinguish functional parameters from topological parameters (driving the plant
architecture). Eventually, the set of parameters P can be written as :

P = (Pt, P
′
t , Pf , P

′
f )

where

� Pt: topological parameters to fit (e.g. GL2 probabilities, GL3 coefficients)

� P ′
t : observed topological parameters (e.g. GL1 number of phytomers per growth

unit)

99
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� Pf : functional parameters to fit (e.g. source parameters, sink strengths)

� P ′
f : observed functional parameters (e.g. expansion durations, SLW)

The first equation of the system 4.1 allows calculating the biomass production at each
cycle as a function of the state variables at the previous growth cycles. Let us assume
that the resistivities of internodes and petioles are negligible. In that case, the equation
of biomass production is Equation 3.5 where the biomass production only depends on
the plant total blade area. However, the plant development influences the value of S(t),
as blades have to compete with other organs to get their biomass. S(t) is calculated as
a function of the cumulated biomass attributed throughout their expansion to leaves
that are still active, i.e. with a chronological age less than ta:

S(t) =
1

e

ta∑
i=1

Pm∑
k=1

Na
k (t− i+ 1) · P a

k ·
i∑

j=1

φa(j) ·Qt−(i−j)−1

Dt−(i−j)−1

(4.2)

where e denotes specific blade mass (as defined in paragraph 3.2.2) and Na
k (t − i + 1)

is the number of leaves of PA k appearing at cycle t − i + 1. Blade sinks are defined
by their sink strengths P a

k and their sink variation functions φa(j) (see paragraph 3.2.1).

Remark: The domain of definition of the sink variation function of every organ o,
φo : j 7→ φo(j), initially defined on {0, . . . , texp}, is extended to {0, . . . , ta}. The func-
tion takes the value 0 in the interval {texp, . . . , ta}.

By replacing S(t) by its expression in equation 3.5, it gives:

∀t ≥ ta,

Q(t) = E(t)µSp

[
1− exp

(
−k
eSp

·
ta∑

i=1

Pm∑
k=1

Na
k (t− i+ 1)P a

k ·
i∑

j=1

φa(j) ·Qt−(i−j)−1

Dt−(i−j)−1

)]
(4.3)

This expression shows that the plant development influences the production through
the demand and the numbers of organs.

4.2 Limit production

In this section, we study the limit production of the model, i.e. the production of the
plant after an infinite number of growth cycles. We investigate under which conditions
the plant production can reach a stable non-zero phase. Of course the notion of infinite
number of growth cycles is purely theoretical but in practice the stable regime can
be reached after a phase of growth establishment. In this stable regime, the plant
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production is equal (or tends to) the limit production. If the limit production is zero, it
means that the simulated plant does not survive. Therefore it is interesting to compare
the performances of different architectural models.
Firstly, we notice that:

∀t, Q(t) ≤ E(t)µSp (4.4)

The production is always bounded. For further considerations, we distinguish two cases:
(1) demand independent of Q and (2) demand dependent on Q. This last case occurs
for instance when sinks of organs or of compartments depend on the Q/D ratio.

4.2.1 Case 1: D independent of Q

Equation verified by the limit production

Let us consider the ideal case of a plant with a fixed deterministic development (GL1)
with no or negligible ring compartment growing under constant environmental condi-
tions or at least under conditions that tend to stabilize ( limt→∞E(t) = E∞). If it
exists, the limit production Q∞ must be solution of the equation:

Q∞ = E∞µSp

(
1− exp

(
−k
eSp

ta∑
i=1

i∑
j=1

φa(j) ·Q∞ ·
Pm∑
k=1

P a
k ·
(
Na

k

D

)
∞

))
(4.5)

where

(
Na

k

D

)
∞

= lim
t→∞

Na
k (t)

D(t)
. Its value depends on the plant development. Let us

detail the limit behaviour of this ratio.
The total demand of the plant aerial part can be written as follows:

∀t ≥ texp, D(t) =
∑

o∈{a,i,f}

Pm∑
k=1

texp∑
j=1

N o
k (t− j + 1) · P o

k · φo(j) (4.6)

Indeed, the plant demand is equal to the sum of organ demands: there are N o
k (t−j+1)

organs of kind o (o ∈ {a, i, f} with the respective index a for leaf, i for internode, f
for fruit or flower) of physiological age k and chronological age j (these organs were
born at cycle t− j + 1). Organs have a non-null demand if they are still in their active
expansion phase: j ≤ texp where texp is the maximum of expansion durations of all
kinds of organs. In that case, their demand is P o

k · φo(j) (see Paragraph 3.2.1).
Hence, we can show that the term in the exponential factor of Equation 4.5 does not
increase to infinity. Indeed :

D∞ ≥
texp∑
j=1

φa(j)︸ ︷︷ ︸
=Cte

·
Pm∑
k=1

P a
k (Na

k )∞ (4.7)
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Thus the term
Pm∑
k=1

P a
k ·
(
Na

k

D

)
∞

is bounded. This assertion is verified whatever nor-

malization mode is chosen for the sink variation function (Appendix B). Moreover, we
can check easily that the limit of this sum is non null. Indeed, in the GL1 version, the
number of organs per metamer is constant for a given physiological age. So, choosing
p = Arg max{Na

k , 1 ≤ k ≤ Pm}, we have:

∀o ∈ {a, i, f}, ∀k ∈ {1..Pm},
(
N o

k

Na
p

)
∞
< K (4.8)

where K is a constant depending on the proportionality constants of numbers of organs
on metamers. It implies that:(

Na
p

D

)
∞

=
1∑

o∈{a,i,f}

Pm∑
k=1

texp∑
j=1

(
N o

k

Na
p

)
∞
· P o

k · φo(j)

> 0 (4.9)

At least one term of the sum is non null so, all terms being positive, the sum is non
null.
We conclude that in the general case (ta, texp and Sp taking finite values), the limit
production is solution an equation of the following form:

Q∞ = A(1− e−B·Q∞) (4.10)

where A = E∞ · µ · Sp but B depends on the plant development and on the duration
of leaf activity ta. We have shown above that 0 < B < ∞. Note that the limit
production Q∞ is strictly inferior to E∞µSp: this maximal potential limit production
is never reached. In practice, if for instance ta is high, the limit production is close to
the maximal one (see section 4.3).

4.2.2 Solutions

Let us define the function f : R → R as: f(x) = A(1 − e−Bx). Solving Equation 4.10
amounts to finding the positive solutions of f(x) = x. It admits a non-null solution if
and only if f ′(0) > 1, i.e. AB > 1:

E∞µk

e

ta∑
i=1

i∑
j=1

φa(j) ·
Pm∑
k=1

P a
k ·
(
Na

k

D

)
∞
> 1 (4.11)

Grange [2006] (see also [Corless et al., 1996]) has proved that in that case, the solution
of this equation is:

Q∞ = A+
1

B
·W

(
−AB · e−AB

)
(4.12)
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whereW is the Lambert function. The Lambert function, also called the omega function,
is the inverse function of h defined by h(w) = wew. It means that W (x) is solution of
the equation:

W (x)eW (x) = x (4.13)

As h is non injective, W is multivalued: on the interval [−1

e
; 0), W (x) takes two values,

as shown in Figure 4.1. One can easily check that for x = 0 both solutions W (x) = 0
and W (x) → −∞ satisfy the equation.

Figure 4.1: Lambert function for x ≥ −1

e
. There are two branches on the interval

[−1

e
; 0) [Corless et al., 1996]. The continuous line represents the principal branch W0.

As AB > 1, we are interested on the values of W on this interval: −AB ·e−AB ∈ [−1

e
; 0).

One value is higher than −1 and the other one is smaller. Fortunately, one of the
solutions is known: it is W (x) = −AB (that gives the solution Q∞ = 0). Therefore the
positive solution f(x) = x is given by:

Q∞ = A+
1

B
·W0

(
−AB · e−AB

)
(4.14)

where W0 is referred to as the principal branch of the W function [Corless et al., 1996].
It is the non-dotted part of the curve represented in Figure 4.1.
It implies the following comparisons:

0 < A− 1

B
< Q∞ < A (4.15)
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The Taylor series for W0, converging for |x| < 1

e
, is given by:

W0(x) =
∞∑

n=1

(−n)n−1

n!
xn (4.16)

[Corless and Jeffrey, 1997]. A truncated sum provides good approximations of the
values of W0(x).
Using this development ofW0, we can see that Q∞ is an increasing function of B. There-
fore calculating the value of B for different topological parameters provides a criterion
to evaluate the performance of different architectural models. Q∞ is also an increasing
function of A which is coherent with the interpretation of A (= E∞µSp): increasing the
environmental variable E or the coefficient of biomass conversion efficiency µ naturally
results in increasing the limit production.

4.2.3 Application for some architectural models

In application, we give the expression of the constant B of equation 4.10 for two par-
ticular architectural models: Corner and Leeuwenberg models, as represented in Figure
4.2.

Figure 4.2: Corner and Leeuwenberg architectural models: comparison of biomass pro-
ductions. The simulated values are consistent with the numerical results found after
solving eq. 4.10 as shown in fig. 4.3.
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The case of the Roux model can be found in [Grange, 2006]. No fruits are considered
and all organs are of the same physiological ages. P a and P i represent respectively
blade and internode sink strength while φa and φi are sink variation functions.

� Corner model: there is one more metamer at each growth cycle.

∀t ≥ 1, Na(t) = N i(t) = 1

∀t ≥ texp, D(t) =

texp∑
j=1

P a · φa(j) + ·P i · φi(j)

B =
kP a

eSp

ta∑
n=1

n∑
j=1

φa(j)

texp∑
j=1

P aφa(j) + P iφi(j)

(4.17)

If ta = 1, B does not depend on the sink variation coefficients and the condition
for a strictly positive limit production (AB > 1) can be further simplified to:

E∞µk

e

P a

P a + P i
> 1 (4.18)

A numerical value of the limit production is given in the example of Figure 4.3.

� In Leeuwenberg model, each apical bud gives birth to M new metamers:

∀t ≥ 1, Na(t) = N i(t) = M t−1

∀t ≥ texp, D(t) =

texp∑
j=1

M t−j+1 ·
(
P a · φa(j) + ·P i · φi(j)

)
B =

kP a

eSp

ta∑
n=1

n∑
j=1

φa(j)
texp∑
j′=1

M j−j′(P aφa(j′) + P iφi(j′))

(4.19)

In the illustration presented in Figures 4.3 and 4.2, the limit production for the
Leeuwenberg model is higher than that of the Corner model. In that case (Texp =
3), it can be shown that as soon as its number of buds per metamer is M > 1,
the limit production of a Leeuwenberg model is necessary higher than that of a
Corner model. As all functional parameters are chosen identical, this difference is
purely related to the architectural model through the development. However, this
trend would be likely to change if hydraulic resistances of axes were considered.

Note that φa(j) = 0 if j > texp.
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Figure 4.3: Graphical resolution of Eq.4.10: Q∞ = A(1 − e−B·Q∞) for Corner and
Leeuwenberg (M=3) architectural models. The parameter values are given in ta-
ble 4.1. Numerically (eq. 4.16), the limit productions are: Q∞ Corner = 33.79 and
Q∞ Leeuwenberg = 40.16

ta=3 Sp = 500 E=1 k=1 e=0.06 µ=0.1
texp=3 P a, P i = 1 φa, φi = 1

It gives: A = 50

BCorner =
k · P a

e · Sp
2

P a + P i
= 0.033

BLee =
kP a

e · Sp(P a + P i)

(
3M2 + 2M + 1

M2 +M + 1

)
= 0.04

Table 4.1: Table of parameter values of simulations of Figure 4.3.

Remark 1: This case 1 also includes the cases where the demand of the ring compart-
ment does not depend on Q/D. In particular, it includes the case of the model Number
of leaves (Eq 3.23) when P rg

1 = 0.

Remark 2: The seed biomass has no effect neither on the limit production nor on the
condition (AB > 1) to reach a stable positive value.

4.2.4 Case 2: D dependent of Q

The demand depends on the production in cases where compartment demands are
functions of the ratio Q/D as in Eqn. 3.24 or of the variable Q as in Eqn. 3.26
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(especially for ring or root compartments, sections 3.2.3 and 3.2.4). The conditions to
get a strictly positive limit production are calculated differently.
We assume for instance that ring demand follows the mode Q/D . To simplify the
study, we assume here that γ = 1 and that only the ring compartment has a demand
function of Q/D. Therefore the total plant demand can be written under the form (see
Eqn. C.2 in Appendix C):

D(t) = K1 +
√
K2 +K3Q(t) (4.20)

where: 

K1 =
1

2

 ∑
o∈{a,i,f}

Pm∑
k=1

texp∑
j=1

N o
k (t− j + 1) · P o

k · φo(j) + P rg
0


K2 =

1

4

 ∑
o∈{a,i,f}

Pm∑
k=1

texp∑
j=1

N o
k (t− j + 1) · P o

k · φo(j) + P rg
0

2

K3 = P rg
1

Case A: The number of leaves increases to infinity

Firstly, we notice that if the number of leaves increases to infinity, the limit is the same
as for case 1. The ring compartment has no influence on the long-term behaviour of
the model. Indeed, the demand of new organs increases to infinity whereas the ring
demand remains constant. The ratio Q/D decreases and the biomass allocated to the
ring decreases to zero. However the convergence may be slower than when no ring
compartment is present, as shown in Figure 4.4 for the Leeuwenberg model.

Case B: The number of leaves stabilizes

Let us assume now that the number of new metamers tends to a finite limit. For the
sake of clarity, we study the case of the Corner model with immediate expansion and
one growth cycle of functioning duration for leaves. The demand at GC t can be written
as follows:

D(t) = P a + P i +Dring(t) (4.21)

We distinguish several cases according to the mode chosen to compute the ring demand.

� Number of leaves mode with constant sink (no influence of Q/D). As there is only
one active leaf at each growth cycle, the demand is written D(t) = P a + P i + P r

where P r represents the ring sink. Thus this case comes down to the previous case
and the limit production can be calculated using the Lambert function. There is a

strictly positive limit production if
EkµP a

e(P a + P i + P r)
> 1. The maximal potential

limit value is Qmax
∞ = E∞µSp.
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Figure 4.4: Biomass production for the Leeuwenberg model with parameters of table

4.1 with ring demand calculated as: Dring(t) = P rg

(
1 +

Q

D
(t)

)
. The limit production

is the same but the largest the sink of rings P rg is, the lowest the convergence is.

� Q/D Mode. If the ring demand is proportional to Q/D ratio, the total demand
of the plant at GC t is:

D(t) =
1

2

(
P a + P i +

√
(P a + P i)2 + 4P r ·Q(t)

)
(4.22)

The limit production is solution of the following equation:

Q∞ = E∞µSp

(
1− exp

(
−kP a

eSp
· 2 ·Q∞

P a + P i +
√

(P a + P i)2 + 4P r ·Q∞

))
(4.23)

After differentiating this expression, we find the following condition for a strictly
positive solution:

E∞ · k · µ · P a

e · (P a + P i)
> 1 (4.24)

The maximal potential limit value is as in the previous case: Qmax
∞ = E∞µSp.

� Q Mode. If the ring demand is proportional to the biomass production Q, we
obtain:

Q∞ = E∞µSp

(
1− exp

(
−kP a

eSp
· Q∞

P a + P i + P r ·Q∞

))
(4.25)

The condition for a strictly positive limit production is the same as in the previous
case:

E∞ · k · µ · P a

e · (P a + P i)
> 1 (4.26)
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But here the maximal potential limit value is reduced in comparison to the two

previous cases: Qmax
∞ = E∞µSp

(
1− exp

(
−k

e · Sp · P r

))
.

Note that for the modes Q/D and Q, the condition for a strictly positive solution does
not depend on the sink of ring compartment P r. It takes the same value as in the case
of no ring demand (Eqn. 4.18, ta=texp = 1). This is consistent with the assumption
that the plant behaves like a self-regulating system that adapts its ring demand to the
growth conditions. It generates an intrinsically stable system.
The maximal value that Q∞ can take is inferior for the case of mode Q than for the two
other cases. For Corner model, the mode Q for ring demand is the one that penalizes
the most the growth. Figure 4.5 presents the graphical resolution for the three modes.

Figure 4.5: Limit production according to the method chosen for ring global allocation.

4.3 Influence of ta values

4.3.1 Particular case: ta = ∞
This particular case was excluded in the paragraphs above but the corresponding limit
production is easy to determine. It means that the leaves are always active. The amount
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of photosynthetic foliage increases indefinitely. In that case, the term in exponential
factor of Equation 4.5 increases indefinitely and thus:

Q∞(ta = ∞) = E∞µSp (= A) (4.27)

4.3.2 General case

Equations 4.17 and 4.19 show that ta has a preponderant influence in the value of B
and therefore on the value of the limit production. Figure 4.6 gives an illustration for
a Roux architectural model.

Figure 4.6: Biomass production per growth cycle in Roux model for different values of
ta. For ta > 10, the curves are indissociable.

4.4 Invariances by topology changes

In this paragraph, we explore the consequences of the new formulation of the biomass
production equation (Equation 3.5). In particular, we show that under some conditions,
plants with different topologies can have the same biomass production at every cycle
of their growth (not only the limit production of the steady state but also during
the transitory phase !). The interest of that property is underlined in part II where
equivalences between plant descriptions at different levels are studied.

4.4.1 Case 1: immediate expansion (Texp = 1) of all organs with
only one physiological age (Pm = 1) and no rings

In that case, there is proportionality between the numbers of organs and of leaves with
the proportionality constant ko. Thus the demand of the shoot part is the sum of the
demand of new organs only (internodes with sink P i and fruits or flowers with sink P f ):

D(t) = (P a + ki · P i + kf · P f ) ·Na(t+ 1) (4.28)
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where Na(t + 1) is the number of new leaves at GC t + 1 (the demand is calculated
at end of GC so D(t) account for the new organs appearing at the following GC).
Therefore the recurrent equation giving the biomass production at GC t (Eqn.(4.3))
can be simplified to:

Q(t) = EµSp

[
1− exp

(
−kP

a

eSp

ta∑
i=1

Na(t− i+ 1)
Q(t− i)

D(t− i)

)]

= EµSp

[
1− exp

(
− k

eSp
· P a

P a + kiP i + kfP f

ta∑
i=1

Q(t− i)

)] (4.29)

Thus, if the initial condition (biomass of the seed Q0) is fixed, the sequence (Qt)t∈N

Figure 4.7: Simulation of plant growth with different topologies but same biomass
production (Case 1: texp = 1, Pm = 1, Dring = 0). The functional parameters are:
ta = 5, P a = 1, P i = 1.5, µ = 0.1, e = 0.06, Sp = 500.

is fixed. It means that two plants verifying these assumptions and having leaves with
the same functioning duration produce exactly the same biomass amount at each GC,
whatever their topology is. Figure 4.7 shows some simulation illustrations with Corner
and Leeuwenberg models (GL1) and with a plant simulated with the GL3 version. The
same arguments remain valid if there are several physiological ages in the plant(Pm > 1)
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but with a constant proportionality between sinks of organs of each PA, i.e. under the
following condition:

∃ko, ∀k ∈ 1 . . . Pm, P
o
k ·N o

k (t) = ko · P a
k ·Na

k (t) (4.30)

4.4.2 Case 2: immediate expansion (Texp = 1) of all organs with
only one physiological age (Pm = 1) and ring demand
depending on the number of leaves

In that case, the demand of ring compartment also depends on the numbers of leaves.
However, the ring demand is a function of the number of leaves at the current cycle
whereas the demand of the other compartment is a function of the number of leaves
that appear at the next growth cycle. Therefore it is possible to have similar production
for plants with different topologies only if the number of leaves is constant during the
plant life span. Such examples are shown in Figure 4.8. This case is of course purely
theoretical.

Figure 4.8: Example of two plants with different topologies but exactly same biomass
production at all G.C. The number of leaves remains constant throughout each plant
life span and thus ring demand is always proportional to the number of leaves.
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4.4.3 Case 3: expansion duration of several G.C. (texp ≥ 1) with
same shape of sink variation function for all organs, one
physiological age (Pm = 1), no ring compartment

Again, the number of internodes is proportional to the number of leaves so we can write:

D(t) = (P a + ki · P i)

Min(t,texp)∑
i=1

Na(t− i+ 1)φa(i) (4.31)

Therefore the recurrent equation for the biomass production is:

Qt = EµSp

1− exp


−kP a

eSp(P a + kiP i)

ta∑
i=1

i∑
j=1

Na(t− i+ 1)φa(j)Qt−(i−j)−1

texp∑
k=1

Na(t− (i− j)− k)φa(k)




(4.32)

Intuitively, it would seem possible to simplify this ratio, as the same sink variation
coefficients and numbers of leaves appear in the ratio of the exponential factor. We will
see that it is not always true (and this can be checked from the examples of Figure 4.2).
More precisely, after several rearrangements, the above equation can be written under
the form:

Qt = EµSp

1− exp


−kP a

eSp(P a + kiP i)

ta∑
i=1

Qn−i

ta−i+1∑
j=1

Na(t− i− j + 2)φa(j)

texp∑
j=1

Na(t− i− j + 2)φa(j)




(4.33)

One can see that the ratio does not simplify as the number of terms in the sums are
different. The residual terms are due to the fact when a leaf dies, its whole biomass
ceases activity regardless of the time it was allocated to the leaf.

Residual term due to leaf senescence

An alternative possibility would be to consider progressive senescence of leaf. The total
amount of leaf biomass allocated at GC t would cease activity at GC t + ta. In that



114 CHAPTER 4. MODEL ANALYSIS

case, the recurrent expression simplifies to:

Q(t) = EµSp

(
1− exp

(
−kP a

eSp

ta∑
i=1

Q(t− i)

D(t− i)

t−i+1∑
j=1

Na(t− i− j + 2)φa(j)

))

= EµSp

(
1− exp

(
−kP a

eSp(P a + kiP i)

ta∑
i=1

Q(t− i)

))
(4.34)

Figure 4.9: Leaf senescence: in the current version of GreenLab, leaf activity ceases
abruptly: it engenders a residual term in the recurrent equation of biomass production.
An alternative choice would be considering that leaf senescence is progressive: every
unit of leaf biomass would remain active during ta growth cycles.

Thus with this modelling of leaf senescence, it is possible to find plants with different
topological development but similar sequences of biomass production. Note that this
last equation is the same than Eqn. 4.29: expansion durations and sink variation shapes
have no influence on the sequences of biomass production.

Case of infinite functioning duration of leaves

Apart from this question, the simplification can also be done when the functioning
duration of leaves (ta) is infinite. Indeed in this case, leaves never become senescent.
Figure 4.10 presents some example of simulated plant growth with same biomass pro-
duction and allocation to leaf and internode compartments.

Remark: in fact, this last case includes case 1: if there is immediate expansion, it
implies obviously that sink variation shapes are identical for all organs. However as
case 3 imposes more constraints, we choose to present it separately.
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Figure 4.10: Examples of simulated plants with same biomass production and allocation
to blade and internode compartments. Leaf functioning time is infinite. Expansion is
immediate or infinite. For each plant, all organ kinds have the same shape of sink
variation.

4.4.4 Conclusion

To conclude, similar production sequences can be found for plants with different topo-
logical development under the following conditions:

� Immediate expansion (texp = 1), one physiological age (Pm = 1), no rings (or ring
demand proportional to the number of leaves and a constant number of leaves)

� Expansion duration for several cycles (texp ≥ 1), one physiological age (Pm = 1)
and same sink variation shape for all organs, provided that one of the following
conditions is verified:

– Leaf functioning duration is infinite (at least equal to the plant chronological
age)

– Leaf senescence is progressive: every unit of leaf biomass remains active
during exactly ta growth cycles.
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Chapter 5

Introducing a genetic model and
application to simulation of QTL
detection

In this chapter we present an extension of GreenLab for applications in the field of plant
genetics and breeding. More details can be found in [Letort et al., 2008b]. We model
the chain from genotype to phenotype (set of physical traits) and simulate the inverse
procedure (from phenotype to genotype). As illustrated in Figure 5.1, models can play
the role of missing link between plant genotype and phenotype. Environment variables
are considered as control variables: as they influence the model output variables but
not its input parameters (ideally), models can help unraveling the complex genotype ×
environment interactions.

5.1 Interest of models for plant breeding

The main objective of plant genetic studies is to link chromosome loci to specific agricul-
tural traits in the hope of increasing breeding efficiency for crop yield improvement. The
recently developed marker-assisted selection strategies rely on attempts to identify and
quantify the genetic contributions to the phenotype (set of physical traits). The identi-
fication of the number and position of loci or genes controlling the target quantitative
traits is based on a population of individuals (called mapping population) segregating
for the target traits and for molecular markers. Markers are “flags” regularly spaced on
the whole genome map and representing intergenic (usually non-coding) short strands
of DNA that can be hybridised with their counterparts on the target genome, thereby
marking a certain location (see [Ribaut et al., 2001]). Thus it is possible to establish
a statistical link between polymorphism at these markers and variability of the target
quantitative traits in all individuals of the mapping population. The chromosomal seg-
ments, bordered by two adjacent significant markers, are called Quantitative Trait Loci
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Figure 5.1: Global flowchart of simulation chain from plant genotype to phenotype.

(QTL). They contain the gene of interest but have a confidence interval largely over-
taking the gene itself because of the limited power of the classical statistical detection
methods.

The main phenotypic traits that are classically studied for crops are yield, duration,
plant height, resistance to biotic and abiotic stresses, seedling vigour and quality ([de Vi-
enne, 1998]). Although it has allowed significant advances in crop genetic improvement,
there is nowadays a slowdown in yield potential increase for some crops such as rice ([Yin
et al., 2003]). One major difficulty lies in the complex interactions between genotype
and environment (G×E) since those traits integrate many physiological and biological
phenomena and interactions with field and climatic conditions. To overcome this dif-
ficulty, a growing interest for the use of ecophysiological models is currently emerging
through several studies that underlined the potential interest of building such a link
([Hammer et al., 2002], [Tardieu, 2003], [Yin et al., 2004], [Hammer et al., 2006]).

To deal with the gene level, it seems easier to make the linkage with low-level physio-
logical phenomena at the molecular scale. Some attempts to reduce the gap between
genetic and ecophysiological models are bottom-up, as in [Tomita et al., 1999]. But
it requires identifying all the genes involved in each process and the multi-scale in-
teractions resulting in the plant growth processes. Tardieu [2003] argued that using
gene regulatory networks to simulate complex gene effects on phenotypic traits was not
feasible, due to the large amount of unknown information concerning gene role and
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regulation rules and to the high number of different genotypes that would have to be
analysed.

The top-down approach, considering ecophysiological modelling at a higher organi-
zational level, is more promising. The role of models is to provide helpful tools for
the dissection of physiological traits into their constitutive components ([Yin et al.,
2002]) and for unravelling the G×E interactions ([Hammer et al., 2005]). For exam-
ple, Buck-Sorlin [2002] detected QTL for tillering and number of grains per ear in a
winter barley population and he integrated them into a morphological growth model.
Dingkuhn et al. [2005] linked a peach tree model with QTL but the predictive ability
of the model decreased when linked with the genetic model. Despite that unconvincing
result, their paper illustrates the interest to test further QTL detection for high level
model parameters and emphasizes the necessary condition that those parameters should
act independently from each other and be subjected to minimal G×E interactions. A
successful work was achieved by Reymond et al. [2003] who focused on the equation
linking leaf elongation rate (LER) to meristem temperature. The link between genetic
and ecophysiological models was used to predict leaf elongation rate of non-tested com-
binations of genotypes and climatic conditions, with satisfactory success (the model
explained 74% of the observed variability for LER).

The interest of this approach for breeding strategies is quantified in [Hammer et al.,
2005] using gene-to-phenotype simulations of sorghum: they linked the yield to four ba-
sic traits (duration prior to floral initiation, osmotic adjustment, transpiration efficiency,
stay-green), the values of which were simulated under three different environmental con-
ditions according to a genetic model built from the relative information found in the
bibliography. The simulation results showed that the predictive power and efficiency
of marker-assisted selection was enhanced by the link with ecophysiological modelling.
They finally discussed the pertinence of such an approach at the plant scale and the
level of detail that may be required for the growth model.

Since the target traits, such as yield, are the results of the whole plant functioning, it is
important to study them in association with all the other processes in the dynamic con-
text of plant growth instead of considering them independently from each other. That
is why models such as GreenLab can play a role, not pretending that their parameters
are directly related to gene expression but assuming that they should, at least, allow
detection of more stable QTLs than classically used phenotypic traits. Indeed, parame-
ters for models at organ or plant level already integrate several interacting physiological
processes but they are likely to be more stable under diverse environmental conditions
than the phenotypic traits that they drive.
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5.2 Genetic model: from chromosomes to model pa-

rameters

Some of the parameters were chosen to be considered as genetically determined and a
simple genetic model was built to introduce a plant genotype into the growth model.
To illustrate this study, the GreenLab parameters chosen for the simulations are taken
from the calibration results of Guo et al. [2006] and Ma et al. [2007] on Zea mays L.
The main endogenous parameters can be distinguished on the basis of the stability
study made by Ma et al. [2007] but here, twelve parameters were arbitrarily chosen:
photosynthetic resistance, blade SLA, sinks of sheaths, internodes and cob, parameters
of sink variation function for blades, sheaths, internodes and cob, number of shorter
internodes at the plant base, cob rank on the main stem, expansion time for all organs.
For sake of clarity, it is assumed that the virtual genome consists of one pair of homolo-
gous chromosomes, although maize has in reality ten pairs of chromosomes; the general
case is easily deduced. They are represented as vectors whose components are numbers
that can take several values (as in [Buck-Sorlin and Bachmann, 2000]), called alleles.
The rules driving the choice of allele values can be defined by the user in adequacy with
the information available about the considered species, such as uneven distribution of
genotype frequencies or the skewed distribution of alleles. From the two virtual chro-
mosomes C1 and C2, an application f defines the rules of allele expression (dominance
or additivity) and then the ’genetic’ vector of parameters Y is calculated as a product
of matrices:

Y = D · A · f(C1, C2) (5.1)

The components of the vector Y are the endogenous parameters that are assumed
to be genetically determined. A is a matrix defining the influence of genes on each
parameter, including pleiotropic rules (one gene has an influence on several parameters)
or combinations of several gene effects on one parameter. Here the matrix A is of size
(12 × 15), i.e. 12 parameters were genetically determined by a set of 15 genes. D is
a diagonal matrix whose coefficients are scaling factors to have range compatibility.
Indeed, the ith parameter is defined by its variation around its reference value Yr(j)
(e.g. allele value of 0.9 induces a variation of −10% on the parameters it is related to)
so the diagonal coefficients D(i, i) of matrix D are defined as:

D(i, i) =
Yr(i)∑n

k=1A(i, k)
(5.2)

Simulation of plant reproduction

The reproduction mechanisms are defined for a diploid plant, that is to say a plant
having pairs of homologous chromosomes. For each pair of chromosomes, the ’child’
inherits one chromosome from each of its parents. This inherited chromosome can



5.3. SIMULATION OF QTL DETECTION 121

be the result of a crossing-over (exchange of two segments) between the homologous
chromosomes of the corresponding parent. Within a population of chromosomes, the
number of crossing-over between two markers determines the number of recombinants
and is a function of the distance between the two markers. It is assumed here to follow
a Poisson law and the points where the cutting occurs are chosen randomly.

5.3 Simulation of QTL detection

5.3.1 Procedure

The previous section introduced the matrix A that represents the effect of genes on
the model parameters. For real experiments, determining the values of the coefficients
of matrix A is analogous to QTL detection on model parameters since it relates to
searching the associations between locations on genome and parameter values. In our
study, the model is used to simulate the phenotypic values and the detection of QTL for
the endogenous parameters of GreenLab. For application to real plants, a preliminary
step would thus be the estimation of the hidden parameters of the model from the organ
– or compartment– level experimental measurements on plants (as in [Ma et al., 2007]).
Several software packages are used by geneticists to detect QTL, such as QTL Cartog-
rapher ([Basten et al., 2005]). In the simulation, the detection of QTL associated to
given traits was done on a mapping population that was generated from recombinant
inbred lines: the procedure can be represented as in Figure 5.2. First, two individuals
are chosen to be the parents, generally with the criterion of being as different and com-
plementary as possible for the considered traits. In the ideal case, those two parents
are completely homozygous (i.e. same allele values for all genes) so that all individuals
issued from their reproduction have the same genome: one chromosome from one parent
line (noted 1111. . . ) and one chromosome from the second parent line (noted 2222. . . ).
From that F1 generation, several selfings are done until a population whose individuals
are homozygous for almost all their genes (97% for the F6 generation) is obtained. To
study a real population, the measurements are done on that F6 generation: geneticists
genotype each plant with molecular markers covering the whole genome, and measure
the target quantitative traits such as cob weight (details can be found in [de Vienne,
1998]).

In our simulation, each QTL corresponded exactly to one virtual gene and it was placed
at a marker location. Markers were regularly spaced all along the chromosome with a
distance of 10 cM between two consecutive markers and three markers were intercalated
between two successive QTL. Single marker analysis was sufficient to detect QTL, since
in this virtual study, QTL were represented by the position of non zero components
of the matrix A. The single marker analysis method uses linear regression to test the
presence of a QTL at each marker by using a likelihood ratio test whose statistic can
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Figure 5.2: Procedure to build data for QTL detection using QTL Cartographer with
recombinant inbred lines, from [Letort et al., 2008b].

be converted into a LOD (Logarithm of odds) score as:

LOD = −log
(
L0

L1

)
(5.3)

where L0/L1 is the ratio of the likelihood under the null hypothesis (there is no QTL in
the interval of markers) to the alternative hypothesis (there is a QTL in the interval).
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5.3.2 Results

The first trait selected is the first parameter of the model, that is to say the first com-
ponent of the vector Y . If the first line of the matrix A is: (0 0 1 0 0 0 0 1 0 0 0 0 0 0 0),
then the LOD curve showing the probability of QTL presence at a marker is presented
in Figure 5.3(A). The position of the two detected QTL is denoted by grey triangles.
The LOD scores are very high because, in the genetic model presented in the previous
section, alleles have a linear effect on the parameter values. When the trait is a pa-
rameter depending on three QTLs with different weights, like in the second line of the
matrix A: (0 0 3 0 0 0 0 2 0 0 0 0 0 1 0), it gives the curve shown in Figure 5.3(B). Those
examples illustrate that, as expected since virtual data are considered, QTL controlling
the endogenous parameters of GreenLab are correctly detected by QTL Cartographer.

Use of a virtual population allows comparing easily the QTL detection on model pa-
rameters to QTL detection on the classical direct measurements of plant architecture,
got from the growth simulation. Cob fresh weight was chosen as a classical phenotypic
trait and the relationship between genes and model parameters (matrix A) is defined in
Figure 5.3. Figure 5.3(E) gives the results of QTL detection for cob weight: only one
major QTL can be detected. The coefficients of the matrix A reveal that its position
corresponds to genes influencing blade resistance that have a very strong influence on
cob weight in the model. However, in graphs 5.3(A-D), other QTL are detected when
considering the parameters independently. It means that, for the classical criteria such
as plant height, leaf surface or ear weight, only part of the QTL can be detected, even
in the ideal case of our simulation. Indeed, those characteristics are the result of a step
by step plant growth process where all the genetic parameters are interactively involved
through complex equations.

5.4 Optimization and model-based ideotype

After solving the QTL×parameter interactions, the simulation tool can be used to
determine the allelic combination that gives the optimal cob weight. Thus models
provide new criteria to define plant ideotypes (defined in [Donald, 1968] as the set of
desirable traits that a plant should present to enhance yield or any other objective trait
under specified climatic conditions.). Genetic correlations can be added as constraints
to represents the cases of gene influence on several parameter values (pleiotropy) with
opposite variation or with opposite effects on the cob weight. A genetic algorithm has
been implemented to calculate the set of parameter values and their associated genetic
values that gives the highest cob weight [Letort et al., 2007b]. The results are gathered
in Table 5.1. The variation range for each parameter was ±30% around the reference
value. The case where matrix A is the identity matrix (one gene for one parameter) can
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Figure 5.3: QTL detection on four model parameters (Y (1), Y (2), Y (3), Y (4)) and
on the corresponding cob weight. The curves show the probability of QTL presence
at each marker position along the chromosome (X-axis represents marker positions in
cM). The matrix A coefficients define the effect of each gene on the model parameters.
Grey triangles indicate the most probable QTL positions.

be compared to the probably more realistic case where matrix A defines correlations
between the parameters (arbitrarily chosen and represented by superscript indices in
Table 5.1: parameters with the same index are controled by the same genes). When
genetic correlations are introduced, the potential cob mass is reduced of 38% and the
dynamics of biomass partitioning are radically different: the optimal coordinates are
not anymore positioned at the search domain boundaries for parameters concerning cob
sink and plant topology.
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Parameter Ref. values Optim. values Optimal values
(A=Id) with correlations

SLA (cm2.g−1) 1 35.7 46.4 (max) 25 (min)
Resistance 1 354 248 (min) 248 (min)
Sheath sink 2 0.7 0.49 (min) 0.91 (max)
Internode sink 3 2.17 1.52 (min) 2.82 (max)
Cob sink 4 202 222 161
Blade sink variation param. 2 0.4 0.31 (min) 0.31 (min)
Sheath sink variation param. 2 0.53 0.41 (min) 0.41 (min)
Internode sink variation param. 3 0.79 0.61 (min) 0.61 (min)
Cob sink variation param.4 0.62 0.43 (min) 0.5
Nb of short base internodes5 6 8 (max) 6
Cob rank 5 15 9 (min) 14
Expansion duration 6 12 16 (max) 12
Cob mass (g) 750.2 2325 1428

Table 5.1: Results of genetic algorithm without or with genetic correlations. The
superscript indices denote the parameters linked by the same genetic control. It is
indicated whether the optimum value is found at the search interval boundary.

5.5 Conclusion

In this study, some important aspects of the chain from genetic model to plant growth
model were simulated, ending with QTL detection. It illustrates the statement of
Dingkuhn et al. [2005]: “Classical, descriptive phenotyping is based on traits that are
too integrative or utilitarian (e.g. yield or leaf area index) and, therefore, insufficiently
based on biological functioning to be directly related to gene level information.” Indeed,
in the simulation, better QTL detection was observed on model parameters than on
classical phenotypic traits.

It gives the opportunity to discuss further the assets of functional-structural models,
and in particular of GreenLab, as candidate plant growth models for QTL detection
on their parameters. In the first papers exploring the possibility to link genetic models
to plant growth models, the QTL were associated either to the parameters controlling
specific physiological phenomena ([Rey, 2003], [Yin et al., 1999]) or to the parameters
of crop models ([Hammer et al., 2005]). However, process-based models present several
limitations that could restrict applications in genetics. Indeed, their main drawbacks
are: a poor predictive ability of architectural response to environmental factors, such
as tillering or organ abortion ([Dingkuhn, 1996], [Luquet et al., 2007]), difficulties to
get reliable computation of leaf area index (LAI) which is mostly the main component
of biomass production modules ([Marcelis et al., 1998], [Heuvelink, 1999]), an empirical
control of environmental stresses at compartment level ([Jeuffroy et al., 2002]), difficul-
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ties to deal with the inter-plant variability and to handle the often complex interactions
between all the different physiological modules ([Heuvelink, 1999]). These drawbacks
result from the fact that process-based models do not take into account plant morpho-
genesis: at compartment level, since all organs are mixed together, the memory of the
growth process is lost and so is the architectural plasticity that reflects the feedbacks
between growth and development processes. The endogenous parameters that control
both plant development and plant growth are useful key components for yield predic-
tion. Thus they provide new information to renew the breeding process. It provides
an adequate strategy to measure plant morphogenesis and to analyze its dynamical
biomass production and partitioning.

Several authors (Hammer et al. [2002], Chapman et al. [2003], Tardieu [2003], Ham-
mer et al. [2006]) discussed the properties that growth models should have to expect
reasonable chances of success when applied to genetics. Hammer et al. [2002] state
that their main quality should be a good predictive ability under various environmental
conditions. This property can be verified if the growth model parameters define the
environmental control of growth phenomena at the different biological levels. Although
further analysis still remains to be done, the predictive ability of GreenLab has been
demonstrated in [Ma et al., 2007]. The authors found that parameters were stable
along development stages and that the model could explain part of the inter-seasonal
phenotypic variability. This paper confirmed the analysis of Dingkuhn et al. [2005]
who discussed the use of GreenLab as a link to genetics. The main drawback they
detected was the absence of detailed biological knowledge; however, they suggested
that it was “worthwhile to test the GreenLab approach in a genetic context, despite its
rudimentary physiology”. Indeed, Hammer et al. [2002] also emphasized the point that
gene-to-phenotype prediction did not require an increase in model complexity, as long
as it allowed understanding some key processes so that various combinations of phe-
notypic responses could be generated through different G×E conditions. The stability
analysis of GreenLab parameters tends to reinforce this conviction since it revealed that
a small set of chosen rules was sufficient to reproduce plant response to environmental
variations [Ma et al., 2007]. In the most recent development of GreenLab, it is possible
to simulate the complex plasticity of plant architectural and functional responses to
environmental factors [Mathieu, 2006]. Indeed, the parameters are driven by a state
variable of the model: the ratio of global biomass supply Q to total plant demand D.
The environmental conditions strongly affect the biomass supply and the genetic back-
ground of the plant intervenes in the determination of the demand at each growth cycle.
That Q/D ratio can be considered as an index of plant vigour and can in particular
reflect the environmental impact on plant growth, in interaction with its genome effect.
Consequently, the model follows the rules defined by Chapman et al. [2003] that stated
that a growth model should include “principles of responses and feedbacks” to “han-
dle perturbations to any process and self-correct, as do plants under hormonal control
when growing in the field” and to “express complex behaviour (...) even given simple
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operational rules at a functional crop physiological level”.

Another key point is that QTL detection implies heavy data processing on populations
of high individual numbers. As in most models, some GreenLab parameters (e.g. organ
sinks) cannot be directly measured on plants: those hidden parameters have to be
estimated from experimental data collected with destructive measurements. The data
collection process for each individual can seem tedious if done on complete measurement
[Guo et al., 2006] but, as shown in [Ma et al., 2007], the number of needed data can be
reduced by methods of aggregation or samplings at different levels. Also, the speed of
the fitting procedure is a key factor for processing the large size populations required
for QTL detection. Thanks to its mathematical formalism, the inverse problem can be
computed. GreenLab is associated to a dedicated fitting tool for parameter estimation
that relies on the generalized non linear least squares method [Zhan et al., 2003], which
allows a very fast resolution (usually, ten iterations are sufficient and the computation
time is generally a few seconds).

Finally, it is worthwhile to anticipate what could be the limitations in the use of Green-
Lab for QTL detection. First, the model’s ability to discriminate genotypes with close
allelic composition is an important issue [Tardieu, 2003] and depends on the accuracy of
the fitting procedure. Also, the level of required accuracy still needs to be determined.
Other criteria such as geometrical shape of organs might need to be taken into account,
since it is one of the main features used by breeders to differentiate genotypes. In their
generic framework for combining crop modelling and QTL mapping to select the best
crop ideotype for a specific environment, Yin et al. [2003] particularly recommended to
test the growth model under several environments: thus the G×E interactions would
be analysed in a biological way and not only statistically as in classical genetic models.
Concerning the GreenLab model, testing under several environments has been under-
taken in [Ma et al., 2007] but this step should be further investigated. Moreover, the
integrative scale of the growth model may be too large. The basic rules that drive
plant growth would thus be unlikely to be the direct expression of independent genes,
even if they proved stable in various environmental conditions. Indeed, Luquet et al.
[2007] investigated the phenotypic impact of a single-gene mutation in the genome of
the ’Nipponbare’ rice cultivar. They used a model simulating phenotypic plasticity
through resource allocation by introducing an internal competition index for the plant.
Apart from detailed observations of differences between the growths of mutant and wild
cultivars, the estimation of model parameters highlighted that many traits affected by
the mutation closely interacted and it was difficult to reconstruct their causal chronol-
ogy. It means that some traits can be artificially associated to the same QTL even
though the underlying gene influences only one physiological function of the plant. Us-
ing growth model at the plant level can thus induce artificial pleiotropic effects since
the determination of some parameters could be driven by common primary mechanisms
[Yin et al., 2003].

A genetic algorithm was used to optimize the parameters in order to get the highest
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cob weight for maize. One advantage of this kind of optimization algorithm is that it
can take into account complex constraints (by defining the viability of individuals) and
multi-objective criteria (with weighted fitness values, for example). Thus, if one single
allele has combined effects on the phenotype, with positive influence on some traits
and negative on others, the algorithm can help to find the best compromise. Here,
the optimization procedure was realized on twelve parameters that were considered as
genetically determined but in a complete study, more parameters, and their interacting
effects, could be included. In the same way, new constraints should be added to have
more realistic optimized values. Considering for example plant height, the biomechani-
cal constraints in the internodes were not implemented, thus allometric relationships for
internodes were also kept constant and the optimization algorithm gave a sink value for
internodes as small as possible. Therefore, the optimization criteria should be adapted
and made more complex to answer specific objectives on real species. But such opti-
mization results are anyway an interesting contribution of modellers to breeders’ work,
even if the model relies on simplifying assumptions. The modeller can determine the
best allelic combination of genes controlling a given trait through the model under
specified conditions. Then the production of the genotype can be more or less difficult
depending on the positions of the considered genes and the distances between them,
but breeders have developed strategies to separate closely linked genes, involving large
segregation populations to get and select the proper recombinant. In any case, it is
extremely useful for genotype building to have an idea of the value of virtual ideal
genotype without having really to build them, especially in case of pleiotropy when
compromises have to be done. This approach could broaden the set of morphological,
physiological, biochemical and phenological traits commonly used to characterize ideop-
types, as defined by Donald [1968] and Rasmusson [1987]. Using model parameters to
build ideoptypes should help overcoming the limitations due to environment pressure on
QTL detection [Beattie et al., 2003]. Their exploitation in breeding programs, however,
is conditioned by their heritability, by the level of genetic variations in the populations
and by the genetic correlations among them [Reynolds et al., 2007].
To conclude, GreenLab parameters should have higher heritability since they are ex-
pected to be less dependent on the environmental conditions and to be more direct
gene expression than classical phenotypic measurements. Optimization algorithms al-
lows determining the key parameters influencing the yield, even when complex genetic
correlations are introduced, and providing new promising criteria for ideotype defini-
tion.



Part II

Model identification and multi-scale
analysis
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Chapter 6

Interest of simplified architecture
for trees

In this part, we raise the problem of GreenLab parameter identification in the case of
plants with complex topology. In this introduction, we discuss the use of GreenLab for
specific applications in forestry field (adapted from Letort et al. [2008a]). In a second
and third chapters, we present the fitting procedure and the adaptations required to deal
with complex branched plants. In a last chapter, we study theoretically the different
levels of simplifications of the model.

6.1 Characteristics of tree-level models for stand

growth

Predictions of stand growth for forestry applications traditionally rely on models re-
lated to the theory of population dynamics and on statistical analysis of correlations
between different descriptive variables. Those models are classically divided into three
categories (Munro 1974): (i) stand-level models, (ii) distance-independent tree-level
models and (iii) distance-dependent tree level models. Regarding the resolution scale,
tree level seems a promising scale. Indeed, results obtained from models with lower
resolution (stand level) can also be obtained by aggregation of models outputs with
higher resolution (tree level). When the associated data are not available, a stand sim-
ulator can generate a coherent virtual stand structure as it is done for instance in the
SILVA simulator [Pretzsch, 2002]. Tree-level models provide more flexibility to deal with
heterogeneous stands and new management practices [Pretzsch, 2002]. Most of those
models incorporate a simplified description of the crown shape and are based on defini-
tions of site indices and competition indices. An usual way to simplify the crown shape
is to consider only its exterior surface and to fit the equation of a species-dependent
geometrical surface [Pretzsch, 2002].
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6.2 Why introducing tree architecture

Parameterizing of these models usually requires a high number of observations. A
possible reduction of the experimental work could be gained by inserting more physio-
logically based processes to improve the mechanistic ability of the models. In parallel,
some of the descriptive variables (e.g. crown surface, competition index) could possibly
be calculated with more accuracy if a less coarse description of the tree architecture was
taken into account. The simplified representation of the crown may be sufficient to com-
pute the average light intercepted by trees but the variations of the crown shapes under
different growth conditions cannot be accurately represented. Indeed, crown shapes
result from the combined influences of branch appearances, morphogenesis, positions
and orientations. The competition index of a tree is likely to be dependent on its crown
architecture, especially in heterogeneous stands where species-specific architectural pat-
terns can play a predominant role in determining the interactions effects. Moreover, a
major field of study concerns the biomechanical stresses in the trunk that contribute
to determining the value of the log. To build predictive models of the biomechanical
stresses, it is crucial to know the insertion points of branches, their orientations and
weight dynamics ([Fourcaud et al., 2003], [Jirasek et al., 2000]). Besides, more precise
information is provided by botanical analysis concerning the species-specific architec-
tural trends, such as the 23 architectural models defined by Hallé and Oldemann (1970).
Such knowledge could provide a useful framework to define simplified species-specific
rules driving the topological development of trees [Barthélémy and Caraglio, 2007].
The objective of functional-structural models (FSMs) is precisely to simulate interac-
tively the architectural development of trees and their physiological functioning ([Sievänen
et al., 2000]; [Prusinkiewicz, 2004]). But despite the research effort involved in their de-
velopment, the use of those models remains confined to research and teaching contexts
and forestry applications are scarce [Le Roux et al., 2001]. Besides the problem of simu-
lation efficiency, a reason could be that parameterization and validation of such models
remain a critical point due to the complexity of tree architecture. Indeed, although
many models can provide a very accurate description of the tree at organ scale, only
global, aggregated or sampled measurements are reasonably expectable. For instance,
LIGNUM has been parameterized for Scots pine [Perttunen et al., 1996] and Sugar
maple [Perttunen et al., 2001] considering independently the physiological processes
involved and comparing the model output to more aggregated data (e.g. taper curve,
height, leaf area). Moreover, any model inversion procedure relies on a large number of
direct model simulations so a time-consuming simulation algorithm is not suitable for
an efficient calibration.
In this context, it is important to find a balance between the complexity of the simula-
tion rules and the adequate level of simplifications. Similarly, the level of details chosen
for the variables of interest (as outputs of the simulation) should be coherent with the
experimental data collected on real trees. This is the objective of this part.



Chapter 7

Fitting with complete target

7.1 Target description

The classical set of data included in a GreenLab target consists of data at organ level.
It is consistent with the simulation outputs that provide organ weights and dimensions.

Figure 7.1: Complete target data on a 15-year-old virtual pine: every branch is described
at G.U. level for all branching orders.

It consists of:

� A complete description of the plant topology: number of metamers per growth
unit, number, position and physiological age of each axis. Axes are characterized
by their physiological age (PA) and chronological age (CA).
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� For each growth unit, the average weight of internodes, leaves and fruits; average
length and diameter of metamers; average blade area.

Each axis of given PA and CA is decomposed into its constituent metamers and mea-
sured following a same procedure, as illustrated in Figure 7.1 with the example of a 15
year-old virtual pine. Every branch is described at G.U. level for all branching orders.
With this level of details, even measurements of simple single-stem plants represent a
tedious work. It takes two hours to two persons to measure single-stem maize at final
stage for each existing metamer [Ma et al., 2006].

GreenLab parameters are considered species-specific. To reproduce the complete growth
dynamics through time, several stages can be included in the target (multi-date fitting).
As measurement are destructive, a given plant cannot be measured twice. If the target
plants are of the same cultivar and grown in same conditions, they are considered as
clones and fitted as a single plant at different stages of its life. If their growth conditions
differ, the targets are considered as different plants (multi-plant fitting). In both cases,
a single set of hidden parameters is obtained.

Comparison fresh/dry biomass Organ mass data consist of either fresh biomass
or dry biomass. Indeed, the resulting sink values are simply proportional to the dry
matter content of organs compared to that of leaves:

P o(DW ) = P o(FW ) ·%DW o/%DW leaf

Where P o(DW ) is the sink strength value estimated from dry weights of organs,
P o(FW ) is the sink strength value estimated from fresh weights and %DW o repre-
sents the dry matter content in organ o [Louarn et al., 2007]. That relation was con-

Figure 7.2: Comparison between sink ratios and dry matter content ratios, from [Louarn
et al., 2007]

firmed by data on greenhouse tomatoes grown under different densities at the Chinese
Agricultural University (Figure 7.2, Dong Qiaoxue and Gaetan Louarn).
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7.2 Optimization procedure

Objective function. In section 4.1, we have presented the GreenLab recurrence
equations under the generic form of a discrete dynamic system. Let us consider now
the system representing the entire plant growth. Inputs are model parameters, P .
Control parameters are the same as in Equation 4.1 (mainly environmental variables).
Outputs Y are numbers of organs and their weights at each growth cycle. As we are
concerned here by the problem of parameter identification, we distinguish observable
parameters from hidden parameters. Observable parameters are for example those
controlling the default topological rules (defining the physiological age of potential buds
on the metamers) or physiological parameters that can be directly measured on plants,
such as expansion duration of organs or specific blade mass (SBM). They are taken
as model inputs. The values of the hidden parameters need to be estimated using the
following procedure.
The model can be formally represented as a function F of the vector of hidden pa-
rameters U ∈ Rp. Given a set of observed data Y ∈ Rn, we search an estimator Û
minimizing the following objective criterion:

J =t (Y − F (U))Ω(Y − F (U)) (7.1)

where Ω is a symmetric positive-definite matrix of observation weights. For a linear
model (F (U) = A·U , A with constant coefficients), the best unbiased estimator is given
for Ω = Σ−1 where Σ is the covariance matrix of the error vector, ε (assumed to be a
vector of random centered variables). If Σ is unknown, an iterative procedure provides
an estimator [Houllier, 1999].
Although our model is not linear, it can be locally approximated by a linear model and
therefore the same method is applied with several iterations. In practice, the vector
Y consists of ni observations for each variable yi, denoted (yj,i)j=1..ni

. If errors are
independent, Ω is diagonal and its coefficients can be chosen as:

Ωi =

∑ni

j=1 yi,j − ŷi,j

ni

· n

n− p
(7.2)

Generalized Least Squares Algorithm. The parameter estimator Û is computed
after several iterations of the following relationship:

Ûn+1 = Ûn +
(

tXΩX
)−1 tXΩ

(
Y − F (Ûn)

)
(7.3)

where X is the Jacobian matrix of F (the partial derivative for each dimension are
numerically computed using the finite difference method). As our model is not linear,
several iterations are needed to converge to the solution.
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This method can be applied for parameters with continuous variations and generating
continuous variations of F (U) on the search domain. In the deterministic version of the
model (GL1), the plant development as function of thermal time is set as input. Other
environmental variables have no effect on the development. This is reasonable for some
plants such as maize [Ma et al., 2007] or Cecropia (see section 7.3.2) that have stable
development rates. For these plants, only functional parameters need to be assessed.
Their topology is fixed from observations. Therefore, the development (numbers of
organs) is not considered as target data and the objective function is continuous for the
functional parameters.
When GL2 or GL3 versions of the model are considered, plant development is not fixed.
Therefore, development can be included in the set of target data. Moreover, plant
development is a non-continuous function of the topological parameters. Indeed, the
corresponding data are numbers of organs at different growth stages. These variables
take only discrete values, even for continuous variations of their driving parameter.
Equations of GL3 (e.g. Eq2.11) involve rounded values or integer parts. In that case,
the generalized least square method cannot be applied as the objective function is not
differentiable. We resort to heuristic algorithms.

Heuristic algorithms. Several algorithms have been implemented in the DigiPlante
software: simulated annealing [Kirkpatrick et al., 1983], particle swarm optimization
[Shi and Eberhart, 1998], genetic algorithm [Sastry et al., 2005], tree annealing [Bilbro
and Snyder, 1991], tabu search [Cvijovic and Klinowski, 1995].
In practice, we use mainly simulated annealing and particle swarm optimization as they
have reasonable convergence time and robustness.

7.3 Some applications

We present applications of parameter identification for plants with a branched structure
but simple enough to be completely described at the organ level: young Chinese pines
(Pinus tabulaeformis, joint work with Guo Hong and Hong LingXia from the Chinese
Academy of Forestry (CAF) of Beijing) and Cecropia sciadophylla (joint work with
Patrick Heuret and Camilo Zalamea with the help of Valentin Bellassen, Susanne Braun,
Oyétoundé Djiwa, Valentin Le Tellier (CIRAD)).

7.3.1 Young Chinese pines

Modelling assumptions

Like for many temperate trees, the growth cycle duration was set to one year. Shoot
elongation last only a few weeks of the first year after bud breakout. Therefore we made
the assumption of immediate expansion in the model, i.e. organs primary growth lasts
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only one growth cycle. From our observations and from the literature, needles remain
active during three growth cycles. We consider that needle biomass and activity of a
shoot are constant during these three years, although the shoots usually loose part of
their needles and although the remaining needles are less efficient.
The growth unit is regarded as a single virtual metamer and the set of needle that it
bears is considered as a leaf. A simple allometric relationship taken from Yang and
Yang [2004] links the virtual blade area Sa (needed to compute photosynthesis) to the
needle biomass qa:

Sa = 12.4 · qa

Physiological ages were attributed according to branching order.

Measurements and targets. Data were collected on eight Chinese pine saplings.
These included two one-year-old trees, two two-year-old trees, two three-year-old trees
and two five-year-old trees. They were taken from the open-field nursery garden in
Shisanling forest farm, Beijing (39°50’N;116°25’E) in the spring 2006.
The eight plants were gathered into three target files according to their branching
topology. Plants with similar topology were considered as repetitions of the same plant
(at different growth stages). The simulated topology was set identical to that defined
from the measurements for each of the three virtual trees. We assumed that all trees
were grown under the same conditions which is reasonable as they were taken from the
same plantation.

Results

The needle-internode ratios (assumption of constant sink strengths). This
study offered the opportunity to test a strong assumption of the model: sink strength
of organs of the same type and belonging to the same PA-based class are constant. We
compared internode mass to needle mass of every one-year-old growth units. Results
are shown in Figure 7.3. We found that the assumption of constant sink ratios was

Param. Meaning Values
PA 1 PA 2 PA 3 PA 4

Be Internode allometry 62 127 148 211
β Internode allometry -0.01 -0.12 0.1 0.38
P i Internode sink 0.8 0.38 0.11 0.02
P a Blade sink 1 0.71 0.28 0.07
e Needle “SLW” 0.08 g.cm−2

Table 7.1: Sinks and allometry coefficients for young Chinese pines.

reasonable. Only for PA 1, we observed a decrease of the needle to internode mass ratio
in time. For all PAs, the slope coefficients revealed that the average ratio of needle
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Figure 7.3: Internode-needle mass ratios on young pine shoots [Guo et al., 2007] for
each branch order (physiological age, PA). Joint work with Guo Hong, CAF.

mass to internode mass increases with branching order. It means that for Chinese
pine saplings, allocation to internodes decreases with branching order to the benefit of
needles of the shoot. Sinks and allometry coefficients can be found in table 7.1.

Fitting results. The complete set of fitting graphs can be found in [Guo et al., 2007].
We present only the results on internodes in Figure 7.4. The fitted parameter values are
gathered in table 7.2. The choice of the model for ring biomass global allocation (3.2.3)
was based on successive trials with each method. The mode Q/D allowed the smallest
final weighted mean square error. Concerning ring biomass partitioning at the metamer
level (3.2.3), the fitted value of λ is λ = 0.14. It means that biomass partitioning for
ring growth is mostly done regardless of leaf positions. This result is reasonable because
the trees are very young (no more than five year-old), so biomass allocation is likely to
be managed at the whole-plant scale.

To conclude, this study revealed that it is possible to reproduce the growth of several
young pines with a single set of parameter values. These young pines can be considered
as mere repetitions of the same tree even if their topologies are different, since they
were grown in similar conditions.
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Param. Meaning Value CV(%)
r=1/µ Needle resistance 0.64 3.5
P rg

0 Sink of ring pool (g) 2.64 47.5
P rg

1 Slope for ring sink variation 0.77 41.6
λ Parameter for ring partitioning 0.14 74.8
prg

2 Linear density of PA 2 ring sinks 0.11 39.7

Table 7.2: Fitted parameter values for young Chinese pines. P rg
0 and P rg

1 concern
biomass allocation to the ring pool (global step) that conforms the second mode (Q/D).
λ and prg

2 concern biomass partitioning to cambial growth of each metamer. The linear
density of sinks of PA 3 and PA 4 branches was close to zero.

Figure 7.4: Fitting results for internodes of young Chinese pines (Data CAF) for the
main stem (PA 1: graph A) and for branches (PA 2, 3, 4: graph B). In graph B, data
are gathered per branch: all simulated (empty symbols) and measured (black symbols)
internode mass of a branch are represented with the same x-absciss value.

7.3.2 Cecropia sciadophylla

Cecropia is a pioneer species that appears preferentially in forest gaps with high light
levels.[Zalamea et al., 2008] have studied the phenology of Cecropia sciadophylla and
have developed methods to assess tree age which provides also accurate ways to estimate
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the age of the disturbance that caused the initial forest gap. It also revealed strong
rhythmic patterns: synchronous branching periods cyclically alternate with flowering
periods. These patterns might be linked to the dynamics of trophic competition during
plant growth: [Mathieu et al., 2008] has shown that similar cyclic patterns can be
generated as emergent properties in the GL3 version of GreenLab. Therefore a study
was undertaken to assess the parameter values of this species. Eleven young individuals

Figure 7.5: Cecropia sciadophylla. A: Rauh architectural model; B: A nine-year-old
individual; C: phtytomer succession; D: leaf organization (light interception surface)

of Cecropia sciadophylla were measured in September 2007 in French Guiana near Saint-
Elie road (5° 30’ N, 53° W). This is a joint work with Patrick Heuret and Camilo Zalamea
with the help of students from the “Forêt Tropical Humide 2007” module. Cecropia
has a simple architecture with orthotropic axes (Rauh’s model [Heuret et al., 2000], see
Figure 7.5A) made of a succession of nodes and internodes whose length and associated
lateral productions remain visible and measurable over years (Figure 7.5C). In average
25 phytomers are emitted each year. Each node bears three lateral buds that potentially
give rise to a branch (central bud) and two inflorescences [Zalamea et al., 2008].
All phytomers have the same physiological ages (organ weights are identical whatever
the branching order, see figure 7.6). However, at branch emergence, a “transitory
phase” can be observed during which phytomer characteristics vary. Then there is
stabilization to a “steady state”. From our observations, we can hypothesize that
during the transitory phase, the following characteristics are affected:
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Figure 7.6: Cecropia sciadophylla: tips of branches. In their transitory phase, branches
invest less biomass in leaves than they do in their steady state. Therefore creating new
branches induces a decrease of the trophic balance that reaches back its steady state
after a while.

� internode allometries vary: just after branch emergence, internodes are longer and
with smaller diameter. Then the internode shape progressively tends to that of
the steady state

� pith diameters increase linearly (the slope being presumably related to environ-
mental conditions: a quick increase was observed for individuals grown in favor-
able environment). This phenomenon can be observed on Figure 7.5C.

� just after branch emergence, internode mass is about 50% of that of the main
stem, blade and petiol mass are about 15% of that of the main stem, as shown in
Figure 7.6.

� leaf functioning duration is about smaller than that of leaves on the main stem
(need to be confirmed with further measurement)

Most of these characteristics might be related to meristem size: its diameter is smaller
at branch emergence. It can also be analyzed as an efficient strategy in terms of light
interception: as Cecropia bears large leaves, the space around the stem is already
saturated so newly created leaves would insignificantly increase the light interception
surface (see Figure 7.5D). Thus it is a good strategy to privilege long internodes even
at the expense of blades: these blades would not be strong contributors to the plant
photosynthetic activity. This also implies that new phytomers are probably more sink
components than sources. Therefore setting in place a new branch is a costly operation
for trees.

These qualitative hypotheses can be investigated at the lights of the fitting results on
branched individuals. During the transitory phase, simulated sink strengths vary with
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rank as:
P o(k) = P o · (1− ak

o) (7.4)

where P o(k) is the sink strength of organ o at rank k and ao (ao ∈ [0; 1]) is a parameter
depending on the organ type. In the fitted tree shown in Figure 7.7, the maximal Q/D
ratio reached during a period decreases after the first branch appearance (at GC=229).
It is consistent with the assumption that branch appearance induces an increase in
the plant demand which penalizes the tree growth for a while before it can recover its
previous trophic balance.

Figure 7.7: Cecropia sciadophylla: variations of the Q/D ratio and influence of appear-
ance of a new branch (from fitting results of tree nb 8, 10 year-old). Joint work with
Patrick Heuret and Camilo Zalamea, CIRAD.
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Fitting with simplified targets

Ma et al. [2007] pointed out that even for plants as simple as maize, «the use of many
complete target files (describing observations on all metamers at a specific date) results
in an unreasonably large experimental effort ». The measurement protocol followed
for the previous fitting exercises of GreenLab (e.g. [Zhan et al., 2000], [Guo et al.,
2006],[Kang et al., 2007b]) is simply not applicable for plants with complicated topol-
ogy and large numbers of organs such as bushes or trees. Moreover, due to complex
stochastic events interacting during plant growth, such a detailed representation would
not be relevant. Reproducing the exact growth of a particular plant has no interest.
These remarks have led our efforts to define more adequate target formats, fitting pro-
cedures and experimental protocols.

8.1 Different levels of simplified targets

This section only describes the different kinds of targets that have been considered in
the present work. Some of them have been applied to real plants. Target files consist
of information used to describe the real plant to analyze. It is also the set of possible
criteria used to validate the simulation by comparing the virtual plant and the real one.
We classify the data into three main categories according to their nature:

� Biomass data. This denomination covers measurements of organ (or compart-
ment) weights and sizes (geometrical dimensions).

� Topology data. It consists of information on numbers of organs and their hierar-
chical organization (physiological age, topological connections, architecture. . . )

� Ring data. This is a specific category for trees where ring widths can be measured.

The set of data used to describe a plant for GreenLab analysis usually requires one
target of type biomass and one target of typetopology. If available, measurements on
rings can be included in addition.
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8.1.1 Simplified measurements of biomass

Three levels of aggregation of biomass data have been defined. The choice of these
definitions have been led by considerations on the measurement practicability and on
their potential applications (forestry and biomechanical stresses). They are consistent
with the level of details of inputs and outputs of forestry models.

Cumulated target (B0)

The simplest level of simplification consists in considering the plant as a mere pool of
organs of different kinds. This is a classical representation of the plant in process-based
models, especially for crops. A compartment is denoted as the set of organs of the
same kind (leaves, internodes, fruit. . . ). No topology is considered: organs of different
chronological and physiological ages are mixed together. Thus the cumulated target
B0 (“level 0 for Biomass”) contains weights of the different compartments of the plant:
wood, leaves, fruits, flowers.
That kind of target was used to reduce the experimental work needed for the fitting
procedure on Maize by Ma et al. [2006]. Their target included several growth stages.
The young stages were described as cumulated target while only the last stage was
described at organ level. This simplification implies a significant gain in experimental
work: it takes two hours to two persons to measure a maize at maturity stage at
metamer level while it takes only 20 minutes for measurements at compartment level.
The authors show that this kind of fitting provide the same accuracy for parameter
values as a fitting on complete targets for all growth stages. The same method was
applied in [Mathieu, 2006] for fitting of rice with tillers.

“Sparse” target. Another kind of simplification was introduced in Ma et al. [2006].
For one of the measured growth stages, the target contains sparse data: only three out
of the 21 phytomers are measured. These measurement were sufficient to retrace the
entire morphological dynamics of maize growth. Note that including data collected at
phytomer level, even partially, is necessary to follow the evolution of individual organ
weights and to assess the values of sink variation functions.

Target “Lollipop” (B1)

This level of simplification was designed for trees. In forestry models, one of the prod-
ucts of interest is the trunk. So we define a particular target including detailed mea-
surement of the trunk and including only compartment data for the crown (Figure 8.1).
More precisely, this target consists of:

� mass, length and diameter of internodes of the trunk growth units; mass of blades
and flowers or fruits, if they exist, on the trunk growth units; internode numbers
of each growth units and their number of lateral branches.
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� for the whole crown, total mass of internodes, leaves, fruits and flowers (if they
exist)

An interest of this level of target is that it is consistent with the level of details available
from forestry inventories. It allows incorporating data that would be generated by
classical forestry models.

Figure 8.1: Schematic representation of the three level of biomass data aggregation.

Target “Rattle” (B2)

This target is an extension of the previous one. Indeed, an important potential applica-
tion field of our work concerns the study of biomechanical stresses in the trunk. Models
for their prediction require simulating the weight and shape dynamics of branches of
order 2 (Figure 8.1). The set of data included in this target consists of:

� a complete description of the trunk, as in the Lollipop target: mass, length and
diameter of internodes of the trunk growth units; mass of blades and flowers or
fruits, if they exist, on the trunk growth units; internode numbers of each growth
units and their number of lateral branches.

� for each branch of order 2 (born on the trunk): total mass of internodes, leaves,
fruits and flowers. Additional data can be also included at this level such as the
length of the branch main axis. It allows defining criteria for determining its
physiological age and can help assessing the position of its gravity center.
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8.1.2 Ring data

When available, measurement of ring diameters is particularly important as it gives
access to information about the past growth of trees (Figure 8.2). This information is
especially precious since it is the only source of information to get the growth temporal
dynamics, as multi-date fitting is generally impossible for trees: it would require clones
growing in exactly the same conditions.

Figure 8.2: Target ring profile for Beech tree: longitudinal cross-section (data from
joint work with Thiéry Constant, INRA Champenoux). The lines link the layers that
appeared the same year.

The modelling approach presented in 3.2.3 provides an analytical relationship between
ring widths of an axis and the amount of leaves that was present in the plant at different
heights along this axis. If λ = 1 (case of Pressler law), the ring sectional area at GC t
is:

sp(n, t) =
qp(n, t)

lp(n, t)
= prg

p ·Na,a
p (n, t) · Qring(t)

DPressler(t)
(8.1)

As only the number of leaves depends on index n (chronological age of the underlying
metamer), it implies that the ratio between ring sectional areas at different positions
of a given axis gives access to the ratio of the numbers of leaves above (Na,a) those
positions:

∀(n, n′) ∈ {1..t}2,
sp(n, t)

sp(n′, t)
=
Na,a

p (n, t)

Na,a
p (n′, t)

(8.2)

This relationships involves two metamers of chronological ages n and n′ that can be
arbitrarily chosen as long as they have the same physiological age p. Thus, it is possible
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to trace back the evolution of numbers of leaves from information on the corresponding
ring sectional areas.
If λ 6= 1, the Pressler rule is not verified. However, a relationship between the ring
sectional area of different metamers and the number of leaves above their positions can
still be extracted. Given four different metamers of the same axis and characterized by
their chronological ages n, n′, ñ, ñ′, we have:

sp(n, t)− sp(n
′, t)

sp(ñ, t)− sp(ñ′, t)
=
Na,a

p (n, t)−Na,a
p (n′, t)

Na,a
p (ñ, t)−Na,a

p (ñ′, t)
(8.3)

If we choose the metamers so that n′ = n− 1 and ñ′ = ñ′ − 1, we get:

sp(n, t)− sp(n− 1, t)

sp(ñ, t)− sp(ñ− 1, t)
=
Na

p (n− 1, t)

Na
p (ñ− 1, t)

(8.4)

where Na
p (n − 1, t) is the number of leaves at GC t on the metamer of chronological

age n and its lateral structures. It would correspond to the number of leaves located in
the horizontal layer of the metamer (provided that branches are included in horizontal
planes). Note we could write the above equations with leaf areas instead of leaf numbers,
which would be more relevant if leaves are of different sizes.
Unfortunately, we did not have any data to test this last relationship. It would require
the surfaces of blades of year t and rings of year t+1 that are fed by these leaves. These
data are not accessible from destructive measurements but it would be possible to use
sampling ratios or allometric relationships to estimate these values.

8.1.3 Simplified measurements of topology

Sample data (T0)

For adult trees, complete topological descriptions would be too tedious. Only sampling
information is reasonable to expect. These sample data can consist for example in
numbers of phytomers per growth units of different physiological and chronological
classes or in numbers of lateral axes that they bear. Although the number of individuals
per class are not large enough to provide significant results, figure 8.3 shows an example
of such target data. It consists in numbers of phytomers per growth unit for a 21 year-
old Beech tree (tree number one): this is a joint work with Thiéry Constant, LerFob,
see section 8.4.1.

Numbers of organs for each physiological age-based category (T1)

This target is dedicated to shrubs. It is possible to count the organs but the topology
is too complex to be accurately described. As organ counting is a non destructive
measurement, it is possible to measure a large number of plants. For each measurement
stages, the data consists of:
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Figure 8.3: Example of target T0: sample data for the number of phytomers per growth
unit in Beech tree (Thiéry Constant, LerFob).

� mean and variance of numbers of metamers for each physiological class

� mean and variance of numbers of fruits (if any) for each physiological class

Figure 8.4 shows an example of such target file.

Figure 8.4: Format of Target T1. For each growth stages (t), mean and variance of
numbers of metamers and fruits are given. From data on 18 cotton plants collected by
LI Dong (CAU, Beijing).

Mean (regular) automaton rules, measured or arbitrarily chosen (T2)

In many cases, pieces of information about the plant architecture are available prior
to the fitting procedure. From direct observations or from botanical knowledge on
some species, it is possible to determine the main rules of the topology of the target
species. At this level, the data are not included in target file but input directly in
the simulation. We illustrate this kind of description with two very different plants:
Arabidopsis thaliana L. and Fagus Sylvatica L.
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Arabidopsis thaliana L. For instance, from the numbers of phytomers on lateral
axes of Arabidopsis inflorescence, we implemented a regular topology consistent with
our observations: four phytomers on the top lateral axis, one more phytomer on the axis
below and so on. Regarding lateral axes emerged from the basal rosette, the number
of phytomers was more difficult to count precisely and was bounded to eight in the
simulation. Because of expansion delays, not all the phytomers could elongate. Only
leaves belonging to these basal lateral axes were visible. Although not exact, these
topological rules provide reasonable numbers of phytomers and adequate development
sequences that allow reproducing the measured data on lateral compartments (if for
instance target B2 is associated).

Numbers of phytomers
Axis av. observed nb std dev simulated nb

Axis 1 (top) 4.1 0.3 4
Axis 2 4.8 1.0 5
Axis 3 6.2 0.4 6
Axis 4 6.5 1.0 7
Axis 5 6.4 1.0 8

Figure 8.5: Topology of Arabidopsis thaliana (joint work with Angélique Christophe,
LEPSE). The average number and standard deviation (std. dev.) of phytomers are
calculated from data collected on 10 plants (including six plants grown under moderated
hydric stress).

Fagus Sylvatica L. For beech trees, the topology of the trunk (PA 1) was measured
and set as input of the simulation. The growth unit of physiological age 1 presented in
Figure 8.6 is a virtual growth unit exhibiting the maximal numbers of phytomers per
zone that were observed on the two beech trees. For branches, the choice was based on
our observations (as for instance Fig. 8.3) and on the botanical studies reported about
that species.
Beech tree follows the rules of a Troll architectural model (Hallé and Oldeman [1970]).
In our observations, polycylic shoots (definition in Table 2.1) were scarce (or sometimes
difficult to identify) so that phenomenon was not considered, which is reasonable since
the trees were grown in understorey.
Beech development rely on two kinds of shoots: short shoots composed of a few
metamers with negligible internodes and long shoots with elongated internodes. Long
shoots are dedicated to space exploration whereas short shoots are high contributors
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Figure 8.6: T2 level for description of topology.

to the plant production (Thiebaut and Puech [1984]). Besides the trunk, we sorted the
shoots into three PA-based categories.

Following Thiebaut and Puech [1984], we distinguished these three classes according
to their elongation and ramification characteristics: short shoots bearing no branches
(PA 4), long shoots bearing only short shoots (PA 3) and long ramified shoots (PA 2).
The default topology for those three kinds of growth units are defined in Figure 8.6.
Growth units of PA 2 consist of four zones made of metamers that can bear respectively
no branches, axes of PA 4, PA 3 and even PA 2 (partial reiterations). Branches of PA
2 and PA 3 are both composed of long shoots with similar physiological characteristics
but differ on their ramification parameters.

For short shoots of PA 4, the number of metamers is relatively stable [Thiebaut and
Puech, 1984]: from our observations, it can be 3 or 4. The value of 3 was chosen and
kept constant. The sequence of zones along growth units follows the botanical principle
of acrotony, as described by Rauh for beech trees (Nicolini [1998]). Note that figure
8.6 only gives the default topology. The GL3 version was used which implies that at
each growth cycle, the parameters driving the development are updated according to
the Q/D ratio (see section 8.4.1).
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8.2 Fitting the parameters of plant development

and growth from simplified target: case of de-

terministic development (GL1)

Depending on the level of description available for topology (i.e. target T0 to T2),
simulations account for the plant topology in different ways. The objective is to find the
rules of an automaton that would be consistent with both the biomass and the topology
measurements. These topological rules can be deterministic or stochastic depending on
the GL version considered. In the following sections, we present the fitting procedure
and results for different plant species using the target types defined above. When the
GL1 version is considered, the development is considered as deterministic so we can
generally input the plant topology directly from the observations. It has been done so
for Arabidopsis thaliana and Pinus tabulaeformis.

8.2.1 A priori choice of a mean topological automaton (Ara-
bidopsis)

Arabidopsis has been defined as a model plant to study the molecular genetics of plant
development and to build gene-based models of growth processes [White and Hoogen-
boom, 2003]. It has a rapid generation time (six weeks) and a small stature (around
20 cm high), allowing making it easily grow in controlled conditions. But few models
exist that consider Arabidopsis at plant scale and all of them only simulate its geo-
metrical and topological development [Mündermann et al., 2005]. A model such as
GreenLab, linking architectural and functional development of the plant, allows testing
the plasticity of the plant response to environmental factors such as hydric stress and
allows studying the performances of different genotypes depending on the environmen-
tal conditions[Christophe et al., 2008]. A preliminary step is parameter identification
of the model and simplification of the experimental protocol so that many plants can
be considered in a further step. Arabidopsis thaliana(L.) Heynh. plants were grown in
a growth chamber under non-limiting conditions. At five growth stages (characterized
according to Boyes et al. [2001]), four plants were sampled and measured following
the “rattle” description (B2): we measured dry weights of organs for the main stem
and dry weights of compartments for the lateral axes of the inflorescence (last growth
stage only). Root dry weight, individual blade area and projected rosette area were
also measured (see section 3.1.2 about RUE variations). Phytomers were counted to
assess the phyllochron. A change in phyllochron was found during the vegetative phase
(presumably at inflorescence induction) and was modelled using rhythm ratio as pre-
sented in section 2.3. The topological structure was recorded and an average number
of phytomers was chosen on each lateral axis for the simulation, as described in section
8.1.3. The PA-based categories were chosen according to Doerner [2001]: the basal
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rosette was set PA 1 and the inflorescence was set PA 2 [Christophe et al., 2008].

Physiological age of inflorescence axes. In a prior version, the inflorescence lat-
eral axes were attributed different PAs than that of the main axis. Indeed, biomass
partitioning and organ mass of lateral axes were apparently different from those of the
main axis. Figure 8.7 shows the comparison between compartment weights on the main
axis and the cumulated data on the lateral axes.

Figure 8.7: Arabidopsis thaliana L.: Biomass partitioning in rosette and inflorescence
at stage 6.00.

However, the fitting results revealed that the same sink strength values could generate
these observations. The differences in dry weights are simply induced by expansion
delays (top-down flowering, see section 3.2.1). Thus the fitting results presented in figure
8.8 were obtained with a single set of parameter values for organs on the main stem
and for organs on lateral axes (i.e. lateral axes can be considered as mere reiterations
of the main stem).
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Figure 8.8: Arabidopsis thaliana L.: fitting of leaf dry weights on the rosette and of
biomass compartments on lateral axes (joint work with Angélique Christophe, LEPSE).

8.2.2 Creation of a regular target consistent with the structure
factorization (adult Chinese pine)

From measured data to target data

To test the effects of data aggregation on fitting results, data were collected on an adult
pine tree by Guo Hong and Hong LingXia (Chinese Academy of Forestry, Beijing).
From growth units counting, the tree was estimated to be 41-year-old. Due to the large
number of data to measure, the following experimental procedure was adopted: at each
node, one average branch was selected and measured in details. For the rest of the
whorl branches, needles were separated from woody parts and each compartment was
weighted. The measured data can be represented as in figure 8.9 where the semi-ellipses
represent compartment mass (wood or needle) and the coloured lines represent detailed
measures (mass and dimensions of each growth unit). From this semi-complete set of
measurement, we built two kinds of target data.

In the first one, we created a virtual complete tree with a full branched structure. That
branched structure was generated by sticking at each node several repetitions of the
selected branch. The number of repetitions in the whorl was chosen so that the global
mass of needle and internode compartments were conserved (see “average” tree in figure
8.9). Then an average topology (axes numbers per whorl, GU numbers per axis) was
defined so that the tree structure would be consistent with the structure factorization of
the tree. It implies that two structures that appeared at the same time with the same
physiological age are supposed to be identical. We sorted the branches according to their
physiological and chronological ages and we created an average representative branch
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Figure 8.9: Chinese pine (Pinus tabulaeformis Carr.): from measurement data to target
data.

for each class. Concerning the morphological data, metamer fresh weights (needles and
internodes) were averaged for each axis class; length and diameter were kept from the
measured axis that was the closest from the average one in terms of biomass. At each
node, the average number of axes was calculated with the same principle as described
above (see “structure” tree in figure 8.9). At each step, we checked that the total
compartment weights were conserved (cumulated data shown in graph of figure 8.11).
The second kind of target was formatted as described in section 8.1.1: Rattle target
for biomass (B2). The topology was input in the simulation directly from the observed
one (level T2 for topology, section 8.1.3). The set of target data can be represented as
shown in figure 8.9 (“simplified” tree).

Modelling assumptions and fitting results

The modelling assumptions were set identical to those of young pine trees (section
7.3.1): physiological age varies with branching order; growth units consist of one single
virtual metamer; organ growth lasts one cycle; sink ratios are constant (although with
different values than for young pines, see table 7.1) The assumption of constant sink
ratios for organs of each physiological age (branching order) was tested and validated
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on the data, except for organs of physiological age 1, the sink of which seems to vary
during the tree growth.

Param. Meaning Values
PA 1 PA 2 PA 3 PA 4 PA 5

Be Internode allometry - 27 28 4.6 19.8
β Internode allometry - -0.02 0.7 0.5 0.4
P i Internode sink 0.0097 0.043 0.013 0.024 0.011
P a Blade sink 1 0.48 0.13 0.3 0.15

Table 8.1: Sinks and allometry coefficients for the adult Chinese pine.

Note that there is a relatively constant proportion between internode and needle sinks.
Whereas it varies from 0.8 (PA 1) to 2.9 (PA 4) with branching order for young pines
(i.e. a relative difference of more than 100%), the needle to internode weight ratio only
varies from 8.7 to 11.7 for the adult pine (i.e. the relative difference is around 30%).
It means that the internode to needle weight ratio becomes more homogeneous for the
different branching orders when the tree grows older.

Param. Meaning Values
Complete target Rattle target

R1 = 1/µ Needle resistance 7.4 7.6
P rg

1 Slope for sink variation 0.037 0.038
λ Leaf influence 0.57 0.59

on ring biomass partitioning

Table 8.2: Comparison of fitting results for complete and “rattle” target format.

The fitting parameters are presented in table 8.2 and figures 8.10 and 8.11 shows the
comparison between observed and simulated data for data collected at G.U. level or at
compartment level. Close parameter values are found with both target types (“struc-
ture” or “simplified” at rattle level). This is reasonable since the topology was input
from the observations and thus kept the same in both cases. Surprisingly enough, the
model structure for ring global allocation that allowed getting the smallest final error
was the third method (mode Q) which was thus selected for these simulations. The
value found for parameter λ was close to 0.6. It means that the amount of leaf biomass
located above the metamer influences for around 60% of the biomass partitioning for
cambial growth of metamers.
The illustrations of 8.12 show some 3D simulation outputs. It shows that it is possible
to mimic relatively well the growth of real trees with a simulated tree having a regular
topology. The simulated tree and the real one have similar mass, length and diameter
for internodes of the main stem and similar mass for needle and wood compartments
on order 2 branches. The fitting accuracy was reduced for the detailed measurements
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Figure 8.10: Chinese pine (Pinus tabulaeformis Carr.): fitting results at G.U. scale:
data (dots) vs simulated (lines) G.U. weights and diameters of the trunk and G.U.
weights of two branches (branch 1 and branch 23)

on higher order branches (branch 1 and branch 23 presented in figure 8.10 were among
the best ones) but their global masses were conserved.
We can observe strong differences when comparing these results with the values found
for young pines (section 7.3.1). The most important one is that the best model structure
found for global allocation to secondary growth is different: mode Q/D for young pines
and mode Q for the adult pine. These differences can be due to several effects that are
difficult to unravel:

� ontogenetic changes: some parameters such as sink coefficients may vary with the
tree development

� environmental influences: the young and adult pines were grown in different lo-
cations and hence did not undergo the same climatic conditions. Moreover, the
adult tree was probably subjected to high competition from its neighbours.

� for young pines: the effect of transplanting from the nursery to the open field
certainly had an impact on the growth, that we did not take into account in the
simulation
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Figure 8.11: Chinese pine (Pinus tabulaeformis Carr.): fitting results at compartment
scale for internode weight and needle weight on branches. The last graph represents
the respective mass of (i) wood of the trunk, (ii) cumulated wood of the crown and (iii)
cumulated needles of the crown. The red bars are the measured data, the pink bars are
the “average” tree data, the purple bars are the “structure” tree data, the blue bars
are data of the simulated tree after fitting on simplified target and the dark blue bars
are data of simulated tree after fitting on “structure” target (see Figure 8.9.

� for the adult pine: determination of the tree age was difficult and the result was
uncertain. Above the position of the reiteration, counting the growth units on
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Figure 8.12: Simulation output of pine tree.

different branches provided different values. It seems that the some branches
developed while others observed pauses during their growth, the causes of these
pauses being unknown.

� introduction of errors with several potential sources:

– measurement errors, especially for the adult pine (more than 3000 data mea-
sured: some errors were detected during the analysis but other may remain)

– errors introduced when building the average target and the “structure” tar-
gets

– residual errors from the fitting procedure

� modelling choices: regarding resistances, the value is much higher for the adult
tree. It would be interesting to include hydraulic resistivity of branches: as the
tree is old, it may have an influence on biomass production. Regarding allocation
to ring compartment, we chose the method that reduced the most the final weight
mean square error which may not be the most physiologically relevant strategy.

However, a positive conclusion is that the same parameter values can be found when
a “rattle” or a complete target format are used. Note that here the topology of the
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simulated tree was set from observations and therefore was the same in both cases.
Further tests would be needed to confirm it and to analyze more precisely the effect of
data aggregation.

8.3 Fitting the topological parameters of stochastic

development (GL2)

This section is oriented to applications on plants for which it is possible to count the
organs but maybe too fastidious to describe their topological connexions (typically for
shrubs). We assume in this section that there is at most one phytomer per growth unit
and that the probability of apical death is zero.

8.3.1 Analysis of axis development

Kang et al. [2007a] take advantage of some useful results from the theory of differential
statistics. If X, Y and Z are stochastic variables so that Z = f(X,Y ) then a first-order
approximation of the expectation of Z is:

MZ = f(MX ,MY )

and similarly, an approximation of the variance is:

VZ = f ′X(MX ,MY )2VX + f ′Y (MX ,MY )2VY + 2f ′X(MX ,MY )f ′Y (MX ,MY )CovX,Y

These formula are easily extended to the case of more than two stochastic variables.
In GL2, the production at growth cycle t depends on the demand and production at
previous growth cycles, Q(t′) and D(t′) with t − ta < t′ < t where ta is the life span
of leaves (in GC). It implies that computing the plant production from the theoretical
demand expectation (Equation (2.9)) provides an approximation of the expectation of
the production. The same arguments prove that computing individual organ weights
from theoretical demand expectation at each growth cycle provides correct approxima-
tions of organ weight expectations. Thus we can build a theoretical plant which is an
approximation of the ’average plant’ of a population. Note that this theoretical plant
has non-integer numbers of phytomers in each PA-based category. If such a plant needs
to be represented, all potential phytomers are represented but their sink strengths are
weighted by their probabilities of presence.

Linking phytomer rank to its chronological age: effect of apical growth prob-
ability

Let us consider a single-stem plant (or a branch) growing with a probability a < 1
of phytomer appearance at each growth cycle. Using the notations of 2.5.2, we have
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in fact PA(p) = a where p is the branch physiological age. The number of phytomers
follows a Bernouilli process: it is impossible to determine the exact age of the observed
phytomers (Figure 8.13).

Figure 8.13: Several sequences of activity/pause of the apical bud can produce the same
branch.

However we can get a relationship between the observed rank of a metamer and its
probability to be of a certain age. Let Xi be the variable representing the number of
growth cycles needed to see the ith metamer of the axis. Its probability distribution
follows the Pascal law:

P (Xi = k) = Ci−1
k−1a

i(1− a)k−i (8.5)

and thus the expectation of the chronological age of a metamer of rank i in the plant
at growth cycle t is t− i

a
+ 1. If Yi is the variable representing the weight of an organ

of rank i, the expectation of Yi can be calculated as a function of the weights of organs
appeared at growth cycles k with i ≤ k ≤ t:

E(Yi) =
t∑

k=i

P (Xi = k) ·Wk(t)

=
t∑

k=i

Ci−1
k−1a

i(1− a)k−i ·Wk(t)

(8.6)

This expression allows analyzing the metamers’ weights according to their respective
ranks (which we can measure, contrary to their exact chronological ages). But it requires
the preliminary determination of the probability value a.
The probability a possibly interacts with the branch rhythm ratio, w (section 2.3).
In that case, the sequence of growth cycles of pause and activity of the apical bud is
periodic. The rhythm ratio determines the potential positions where phytomers can
appear. The effective appearance is driven by the apical growth probability. Thus it is
possible to generate a deterministic branch with the same average number of phytomers
by setting a rhythm ratio w′ = a · w (but of course the variance is null).

From these considerations we draw the following conclusions:

� From the topological parameters, namely development probabilities PA, PB, etc
and rhythm ratio w, of the stochastic model GL2, it is possible to simulate a
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deterministic plant that approximates the development and growth of the average
plant of a population whose individuals share these same parameter values. The
development is calculated from the expressions of mean numbers of organs for
each physiological age (see 2.5.2):

Dth(t) =
∑

o organ

Pm∑
p=1

t∑
n=1

(MSp
1 (n,n) −MSp

1 (n−1,n−1))︸ ︷︷ ︸
Nb of PA p organs
appeared at GC n

·P o
p (t− n+ 1) (8.7)

where P o
p (t − n + 1) is the sink value of organ o (o representing respectively all

kinds of existing organs: leaf, internode, fruit. . . ) of physiological age p and
chronological age t − n + 1. MSp

1 (n,n) is the number of metamers of PA p in the
structure S1(n, n), i.e. the whole plant at growth cycle n. The number of organs
appearing at cycle n is simply the difference of the numbers of organs in the plant
between cycle n and cycle n−1. Note that this formula is valid only if the number
of organs is equal to the number of metamers. The opposite case can be generated
by two kinds of factors:

– each metamer bears several organs of the same kind (e.g. two leaves)

– flower abortion is possible. In that case, the probability of fruit appearance
needs to be taken into account.

In these two cases, it is sufficient to multiply the expression by the adequate
constant factor.

� We can take advantage of these properties to fit the development parameters of
the model. From mean and variance of numbers of organs in a population, we can
find the parameters generating the corresponding theoretical mean and variance
of the virtual population. The procedure is as follows: from target data consisting
of mean and variance of numbers of organs, it is possible to use the theoretical
expressions for means and variances to fit the parameters of development, namely
apical growth probability, branching probability, apical death probability, fruit
abortion probability. These parameter values being set, we can calculate the
theoretical demand expectation. It provides expectation of biomass production,
the parameter of which (efficiency, reference surface) can be fitted using a second
set of data consisting of compartment mass at different growth cycles. Parameters
driving allocation to individual organs (sinks and sink variation functions) are
fitted using a third data set consisting of organ weights for branch tips only. As
organs are sorted according to their rank, equation 8.6 is used to assess their
average chronological age (which is important for determining their individual
demand and hence their sink variation). This method was applied to tillering
wheat as described in the following paragraphs.
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8.3.2 Tillering wheat

This section presents the results of the first application of the method described above.
It has been applied on wheat data from Wageningen University (joint work with KANG
MengZhen) for plants grown at a density of 100 plants per m2. Although wheat topology
is relatively simple, analysis of repetition measurements have revealed some variability
in the development and thus the stochastic version of GreenLab has been chosen. The

Mean of organ numbers Variance of organ numbers

Weight of individual leaves Weight of fruit compartment

Figure 8.14: Some fitting results for stochastic modelling of wheat with tillers. Dots
represent measured data and lines are simulated values. Data are from Wageningen
University (Kang MengZhen).

wheat topology was set as follows: main stem is of physiological age 1, first-order tillers
are of PA 2 and second order tillers are of PA 3. For each measurement growth stage,
the target file consists of:

� a cumulated target B0 (weights of biomass compartments)



8.4. DEVELOPMENT DRIVEN BY THE TROPHIC STATE (GL3) 163

� a “sparse” target B3 i.e. description at phytomer level but with data of axis tips
only

� a target T1 (mean and variance of numbers of organs for each PA category)

It was assumed that apical death probability was zero and that growth probability was
equal to one (as all fruits appeared at the same growth cycle and with the same rank
(depending on physiological age). Thus only branching probability (for tiller appear-
ance) and fruit appearance probability remained to be assessed. If the fruit does not
appear, the tiller dies. Figure 8.14 presents some fitting graphs for development (mean
and variance of numbers of organs) and growth (mass of organs and compartments). A
study on the influence of density on the development parameters is currently in progress.

8.4 Deterministic development driven by the trophic

state (GL3)

8.4.1 Beech trees

Modelling choices

Beech trees are known for their architectural plasticity in response to ontogenetic and
environmental changes [Nicolini, 2000]. Owing to the feedback control of the level of
trophic competition on topological and functional variables of the model (GL3 version),
it is possible to simulate these responses. The simulated trees reproduced qualitatively
the behaviour of observed trees such as the progressive appearance of branches of higher
vigour (called base effect) that characterizes the young growth phase of a tree [Mathieu,
2006]. However those parameters remained to be quantified.
We selected two of the main GL3 variables in this study [Letort et al., 2008a]: number
of new axes of each physiological age initiated and number of metamers per growth unit
zone. At growth cycle n, the total number of new axes apq(n) appearing on zones Zpq

in the tree (i.e. the number of branches of PA q borne by metamers of PA p) depends
on the number of existing positions potentially bearing that kind of axes Npq(n) and
on the value of Q/D. It is given by the following equation:

apq(n) =

[
Npq(n) ·

(
Apq,1 + Apq,2 ·

Q

D
(n)

)]
(8.8)

where [x] represents the rounded value of x. The apq(n) axes are distributed on the
Npq(n) positions under the following constraints:

� growth units that appeared at the same growth cycle, with same physiological
age and same rank on their mother axis bear the same number of axes
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� axes distribution begins from the oldest branches to the youngest ones (less ram-
ified)

� the distribution is as uniform as possible (all existing positions receive one axis
before one position receives one more axis).

Similarly, the number of metamers upq(n) per growth unit zone is determined according
to the default topological rules and modulated in function of the value of Q/D:

upq(n) =

⌊
Upq,1 + Upq,2 ·

Q

D
(n)

⌋
(8.9)

Note that the number of metamers per zone is calculated at growth unit level whereas
the number of axes is determined at whole-plant level.

Measurement procedure and data

Two common beech trees (Fagus sylvatica L.) grown in understorey were measured in
May 2006 from the natural stand of Champenoux, near Nancy (North-Eastern part
of France). The tree ages were estimated from data on growth unit numbers and ring
counting. One tree (“tree 1”) was 21 year-old and the second (“tree 2”) was 46 year-old.

Measurement of simulation input data The default topology was set as described
in paragraph 8.1.3. The position and number of metamers of growth units on the main
stem were recorded while the separation markers were still visible (not possible at the
stem basis). Branches numbers and positions were noted, including scars indicating the
positions of dead branches. To allow comparing the biomass compartment data, the
branch numbers and positions on the trunk were input directly from the measurement.
It means that the variations driven by the topological parameters (namely Apq,1, Apq,2,
Upq,1 and Upq,2) were considered only for physiological ages higher than 1 (p=2, 3). At
random locations, blade area was measured on samplings in order to have an estimation
of the specific leaf weight (SLW). It ranges from 0.0072 g.cm−2 for tree 1 to 0.0093
g.cm−2 for tree 2. In GreenLab, the variations of SLW according to leaf position in
the crown were not considered, although several studies have revealed that a gradient
can be observed in relation to light exposure [Beaudet and Messier, 1998]. However,
no visible gradient was observed from our sampling data. As our trees were grown in
the understorey and were still covered by higher neighbor tree shading when they were
measured, the light they received was mainly diffuse light. So the light environment
was likely to be relatively isotropic and similar for both trees. Nicolini and Chanson
[1999] report that SLW also varies with the tree age because of ontogenic modifications
of cell structures. Consequently, the same SLW evolution was set in the simulation for
the two trees according to their age. From sampling data collected, allometric ratios
for biomass partitioning inside the new growth units were found in coherence with the
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literature [Comps et al., 1994]. The following values were taken: the average long shoot
to short shoot weight ratio is 5.25; the ratio of internode weight over leaf weight is 0.065
in a new short shoot and 0.7 in a new long shoot.

Measurement of target data The target data chosen as criteria to evaluate the
accuracy of the simulation were the complete profile of the trunk and compartment
biomass on each branch of order two. For each growth unit of the main stem, fresh
mass, mean diameter and length were measured. At regular intervals, annual ring
widths were recorded along four directions. For each branch of order 2, its total fresh
weigh, its main axis length and basal diameter were measured. For PA 4 and PA
3 branches, leaves were separated from internodes and weighted. Concerning PA 2
branches, the number of leaves was too high to get complete measurements. The fol-
lowing procedure was adopted to get an estimation of the wood and leaf weights: the
basal part of the branch, bearing no leaves, was weighted separately and recorded as a
woody part. For the rest of the branch, a representative branchlet was chosen. Its leaf
and wood weights were measured. The same wood-leaf ratio was kept to get the com-
partment weights from the total weight of that part of the branch. If several branches
of same PA are located on the same GU, the average values for the leaf and internode
compartments are put in the target. Of course, the cumulated value remains the same
when summed on all branches. To summarize, the following data were included in the
target file: average internode length, diameter and fresh mass for each growth unit on
the trunk, average ring diameters for some of those growth units, weights of leaf and
wood compartments for each branch of order 2.

Fitting procedure These data were fitted using the generalized non linear least
square method for the functional parameters and the simulated annealing algorithm
for topological parameters (see section 7.2). The particle swarm optimization was also
tested and gives similar results. As no quantitative topological information was recorded
concerning the branching structure of order 2 branches, the topological parameters were
fitted on aggregated data of biomass compartments only. The model parameters were
fitted to create an average structure with a global demand at each growth cycle similar
to the real one. The average simulated weights of blade and internode were compared
to the measured data to ensure that the total number of metamers is globally coherent
with that of the target. Data of the two trees were fitted simultaneously with the
same set of parameter values, to test if the model was generic and robust enough to
represent the growth of two different trees. Only a single parameter representing the
environmental conditions (chosen as a constant) was set different between the two trees.
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Topological parameters
Bearing PA Axill. PA Nb of metamers Param Nb of axes Param

(p) (q) Upq,1 Upq,2 Apq,1 Apq,2

0 1* 0.4 - -
2 4 1* 4.35 0* 2.05

3 1* 0.1 0* 0.1
2 0* 0.2 0* 0.09

3 0 1* 1 - -
4 1* 2.8 0* 0.6

Physiological parameters
R1 = 1/µ Resistance to biomass conversion (3.5) 85.5
Sp0 Reference surface (3.6) 0.0046
α Variations of the reference surface area (3.6) 0.75
P rg

1 Sink for ring compartment (3.24) 2.3
γ Exponent for ring demand (3.24) 2.95
prg Linear sink density for rings (3.27) PA2:0.1; PA3: 0.05; PA4:0.01
λ Blade influence on ring partitioning (3.27) 0.13

E(1) Environment value for tree 1 (3.5) 5.6

Table 8.3: Parameter values after simultaneous fitting on data measured on tree 1 and
tree 2. The topological parameters are estimated for each zone Zpq (PA p with axillary
buds of PA q). * denotes a fixed parameter (value defined a priori). Into brackets are
the references of equations where the parameters intervene.

Fitting results

The two trees were fitted together with a single set of parameters (Table 8.3). However,
their environment may be different and thus the variable representing the environmental
conditions was fitted for tree 1. As it is a relative value, tree 2 was given the reference
value 10. A smaller value of environment was found for tree 1 (5.6) which is coherent
with the difference measured between SLW of the two trees. As a higher SLW is
generally correlated to favorable light conditions, tree 2 that has a higher SLW, has
probably grown in better conditions.
Fitting results are presented in graphs 8.15 and 8.16. Although data from tree 1 and
tree 2 are of different ranges, they could be fitted in parallel with satisfactory success.
The residual differences between simulated and measured data are mainly due to our
modelling assumptions. Indeed, only three PA-based classes of branches were distin-
guished and it was assumed that all branches of a class have similar characteristics. If
this assumptions may be relevant for short axes, it is not the case for long axes that
exhibits more variability. Similarly, residual differences may also come from the kind of
rules chosen to drive the plant topological development. For instance, numbers of new
axes are piecewise constant functions of the Q/D ratio. This choice may not provide
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enough flexibility to get a perfect fitting of the real tree lateral structures.

Figure 8.15: Fitting results: observed and simulated G.U. weights and diameters on the
trunk; ring profile for tree 2. Series represent the successive ring diameters of growth
units according to the year of their appearance.

Topology. Concerning topological parameters, several optima are possible, in par-
ticular because the equations 8.8 and 8.9 include transformations from real values to
integers. Thus the set of values presented in that table is only one possible solution, not
the unique one. The topological parameters were not fitted for branches on the trunk:
to allow for comparison with the data, the exact position was recorded and simulated.
This approach can be useful for biomechanics where branch positions can be measured
precisely on a target tree. When other applications are concerned, such as growth of a
simulated beech stand, such detailed information may not be available. In that case, it
would require defining the values of branching parameters for the trunk also.
The topological structures and 3D outputs of the fitted trees are shown in Figures 8.17
and 8.18. The numbers of axes are not the same than in the target tree but their
demands are similar enough to reproduce the biomass allocation to each compartment
and to each growth unit of the stem.

Rings The target data of tree 2 included sequences of ring width for 12 growth units
located at different heights near the bottom of the trunk (see Figure 8.2 in section
8.1.2). The fitting results are shown in figure 8.15. There is a slight over-estimation of
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Figure 8.16: Fitting results: Simulated and measured compartment weight on branches
of PA 2 for tree 1 and tree 2.

internode pith mass but the global trends are respected. The accuracy of simulation
of ring diameters is particularly important as it gives access to information about the
past growth of the tree. Thus, not only the last stage but the complete source-sink
evolution in time is likely to be correct in the simulated tree.

The value of the exponent γ for ring demand is found to be nearly 3. It is coherent with
the common observation that ring width is particularly sensitive to changes of growth
conditions. As in the simulation, the environmental conditions were considered as con-
stant, this parameter is likely to be over-estimated to account for higher variations than
those generated by source-sink dynamics (Q/D). Concerning the partitioning sub-model
for rings to each metamer, the influence of the blade surface located above the consid-
ered metamer is limited. The value of the parameter driving the proportion between
the two allocation modes is λ=0.13. It means that the ring diameter profile in associ-
ation with the simulated leaf areas does not follow the Pressler rule. In compensation,
a strong effect of branching order was found in the simulation, through the secondary
sinks for ring partitioning. Indeed, the value of prg is much smaller for branches (PA=2,
3, 4) than for the main stem (PA=1). It means that assimilate propagation from leaves
to cambial sinks is nearly uniform in axes and preferentially directed into the trunk.

Although further study is needed, these first fitting results show that a simulated tree
with a simplified structure can mimic the morphological plasticity of a target tree when
the branching structure is controlled by a dynamic feedback of its trophic state on
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Figure 8.17: Tree 1: 3D output.

its organogenesis processes (GL3). The structural factorization results in a natural
simplification of the topology: it is no longer based on a detailed description of each
branch growth, which would entail facing an inextricable variability. For this reason,
GreenLab focuses on the average behavior of the plant and tries to define global rules
from botanical observations and estimations of empirical parameters. These first results
show that it is possible to reproduce the source-sink dynamics of order 2 branches even if
the topology of the plant is not accurately described, as soon as the average development
is equivalent.

8.5 Conclusion and plant typology

As presented in section 4.4, several topological structures can give the same variations
of biomass compartments. So in some particular cases, the solution for fitting the de-
velopment may not be unique. That is why it is interesting to take into account the
botanical knowledge that have been developed on species-specific trends for tree archi-
tecture and development. It can add constraints by defining a maximal or a default
topology. A refinement of this methodology would consist in including more detailed
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Figure 8.18: Comparison between Tree 1 and Tree 2.

criteria to compare tree architectures. Based on the formalism introduced by Godin
and Caraglio [1998] that represents the tree as a rooted multi-scale graph, methods have
been developed to define the distance between two tree structures [Ferraro and Godin,
2000] that could be incorporated in the definition of the objective function to minimize.
It could provide a precious indicator about the reliability of the simulated architecture
which is a weak point of our work. However in our context, the topological structures
to compare should be carefully chosen. Ideally, the distance between the whole crown
architectures of the simulated and the real trees would be taken into account. But the
applicability of that method is questionable. First, except maybe from heavy measure-
ment processes involving 3D digitizing, the complete architecture of a tree cannot be
accurately measured. Secondly, in our modeling approach, the simplifications imposed
by the complex structure of a tree crown imply that the exact replication of its topol-
ogy is nearly impossible. Thirdly, the crown architecture is the result of a quasi-infinite
number of interactions between unknown events (weather, local competition, insect at-
tacks. . . ) creating the stochastic aspect of the structure, especially for beech trees. The
simulation cannot retrace the historic succession of those events and it thus intrinsically
restricted to reproducing only its average or global dynamics. So the distance should
be computed at an intermediate level to compare structures of branch samples from the
target tree to the equivalent average structure of the simulated tree. The comparison
procedure is maybe more straightforward when a stochastic simulation of the branching
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structure is chosen, since distributions of descriptive variables can be compared. For
our experiments on Beech trees, our goal was to find a set of parameters that allows
reproducing the growth of two given trees for their trunk dimensions and compartment
weights on order 2 branches so the deterministic approach was sufficient. But it opens
access to further work including the interactions between stochastic processes driving
the topological development and physiological variables.

Figure 8.19 classifies some of the plants studied in applications according to the level
of details for their measurements. Another dimension could be added to this graph to
account for the GreenLab version considered.

Figure 8.19: Typology of some plants according to the kind of description considered
for biomass (X-axis) and topology (Y-axis). A third dimension would account for the
model version used for the simulation (not represented).

In this chapter, we have considered the problem of model fitting using simplified tar-
gets of different kinds. The simulations took into account the whole topology of the
plant with the “complete” model (see definition below). It is useful for all kinds of
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applications where the plant architecture needs to be considered, as we have argued in
chapter 6. For other applications such as visualization of functional landscapes (e.g.
[Le Chevalier et al., 2007]), a lower level of details is needed in particular to reduce
the computational cost of tree simulations. But the correct biomass weights and their
dynamics are still required. In that context, defining simplified models that have the
same global behaviour as the complete one for some aggregated variables has some in-
terest. It is the objective of the next chapter to study the possibility of building such
a simplified model from the equations of GreenLab.



Chapter 9

A new perspective for multi-scale
analysis

Confrontations of the model to data from branched plants brought the idea that only
key-variables of the model could be taken into account so that simplified equations with
aggregated variables could be defined. Introducing simplified equations implies reducing
the number of parameters and hence the number of degrees of freedom compared to the
complete model. Therefore it was important to first test the procedure of parameter
identification on the complete model, as done in the previous chapter (chapter 8). The
problems solved in this latter step helped designing the new approaches presented here.
Note that this part remains a theoretical study and still needs to be applied to real
data.

9.1 Preliminary remarks and definitions

Let us give some precisions about the vocabulary and assumptions used in this chapter.

� The complete model refers to the model versions that were described in part
I. It can be declined in GL1, GL2 or GL3 versions. It means that the whole
structure is described up to the highest branching orders. By extension, we call
the corresponding simulated tree complete tree.

We set several assumptions concerning the complete tree, although not all trees
and shrubs follow these rules:

– Expansion is immediate for all organs (texp = 1)

– Leaf functioning time is one growth cycle (ta = 1)

– SBM (specific blade mass) does not depend on leaf position in trees

� By contrast, the simplified model refers to a model version where some variables
are aggregated. It can be described at different levels of simplifications. Of course,

173



174 CHAPTER 9. A NEW PERSPECTIVE FOR MULTI-SCALE ANALYSIS

the simplification levels of the models are chosen in adequacy with the level of
data aggregation for the targets as described in section 8.1. The corresponding
simulated tree is referred to as simplified tree.

Remark: Regarding branching orders, we remind that the trunk is of order 1, its lateral
branches are of order 2 and so on.

9.1.1 “Meta-organ”

We introduce the term “meta-organ” to define an organ that is used to replace a pool
of organs when switching from the complete model to simplified ones. In the general
case, it consists of four biomass compartments: internode, rings, leaf and fruit (and/or
flower). A petiole compartment could be distinguished if needed. It has hopefully
the same general behaviour as the structure it stands for (named the equivalent struc-
ture). At a given time, two structures, or a meta-organ and a structure, are said to be
equivalent if they have same compartment biomass and same production. This is an
equivalence relation in the mathematical sense of the term.

Let Ωt denote the set of meta-organs at growth cycle t. S̃t is the set of plant structures
at growth cycle t generated from the alphabet Ã(t). We define ω : S̃t → Ωt as the
application that associates to a structure its equivalent meta-organ. In section 4.4,
we proved that ω is non-injective, i.e. that two different structures can generate the
same meta-organ as soon as they have identical compartment weights and biomass
production. By definition, the physiological age of the meta-organ ω(Sp(n, t)) is the
physiological age of the basis of the structure Sp(n, t), namely p.

In the simplest case, meta-organs consist only of wood and blade compartments. Meta-
organs can thus be represented as growing axes with one more internode and one blade
added at each growth cycle. The problem is to determine the demand of these compart-
ments and the rules defining their variations and biomass allocation. Hereafter we use
the following abbreviation: if P is a parameter driving the meta-organ functioning: Pω

stands for P (ω(Sp(n, t))) whenever there is no ambiguity on the structure to consider.
For example, P i

ω is the sink of the internode compartment of the meta-organ ω(Sp(n, t)).
If there is possible ambiguity, we adopt the notation Pω(Sp(n, t)).

9.2 Objective equivalences

We present the equivalences that we want to keep when switching from simplified to
complete models. In particular, at all scales, we impose conservation of the key vari-
able Q/D. The chosen set of equivalences is consistent with the target data formats
presented in section 8.1 (See Figure 8.1).



9.3. FROM COMPLETE TO SIMPLIFIED MODELS 175

9.2.1 “Cumulated” level

The whole tree is transformed into a meta-organ: ω(S1(t, t)). The objective criteria
that we impose to the Cumulated model in reference to the complete model are:

� Equality of the total biomass production of the plant at every growth cycle

� Equality of biomass compartments of the tree: total wood weight, blade weight,
ring weight, fruit or flower weight.

9.2.2 “Lollipop” level

The whole crown is considered as a meta-organ but the trunk is detailed. The objective
criteria that we impose to the Lollipop model in reference to the complete model are:

� Equality of the total biomass production of the plant at every growth cycle

� Equality of biomass compartment of the crown

� Equality of internode masses and dimensions (length, diameter) on the trunk

9.2.3 “Rattle” level

Branches of order 2 are transformed into meta-organs whereas the trunk is modeled at
the level of phytomers as in the complete model. The objective criteria that we impose
to the Rattle model in reference to the complete model are:

� Equality of the total biomass production of the plant at every growth cycle

� Equality of biomass compartment on branches of order 2

� Equality of internode masses and dimensions (length, diameter) on the trunk

9.3 Theoretical equivalences: aggregation of the com-

plete model variables to build simplified models

In this part, we assume that the parameters of the complete model are known and
we try to deduce information at aggregated levels, i.e. for the simplified models. We
build a simplified model by aggregating the variables of the complete model so that we
may keep some key-variables constant from one scale to another one. We express the
parameters of simplified models as functions of that of the complete model. For the
sake of clarity, we focus on the “Rattle” level; all results can be easily transposed to
the other two levels. Similarly, we do not consider fruit compartments of meta-organs:
they follow the same equations as internode compartments.
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Notations: Hereafter we write vectors with square brackets ([V ]) and · denotes the usual
definition of the scalar product in Rn. Wherever it is not specified, the notation [V ][k]
will represent the k-th component of [V ] with k ∈ {1..Pm}.

9.3.1 Equation of biomass production

Formalism based on hydraulic resistances

If the hydraulic structure of the plant needs to be taken into account, the topology
influences biomass production. Calculating the biomass production of the simplified
model requires defining the equivalent resistance of the structures that are replaced by
meta-organs. Let us consider for instance the particular case of negligible hydraulic
resistance of axes: the tree is considered as a network of leaves connected in parallel.
We study the conditions to get the same production from a structure Sp(n, t) as from
its meta-organ ω(Sp(n, t)).
We remind that the biomass production of a blade with area S(t) at growth cycle t is
(paragraph 3.1.2) :

q(t) =
E(t)

R1

S(t)
+R2

(9.1)

The meta-organ production is determined by:

qω(t) =
E(t)

Rω

(9.2)

where Rω denotes the resistance of the meta-organ. So, to get similar production at
every growth cycle, we impose that

∀t, 1 ≤ t ≤ Nm,
1

Rω

=
Pm∑
k=p

[ψa(Sp(n, t))][k]
R1

Sa
k(t)

+R2

(9.3)

We can use this equality to deduce an expression of Rω as a function of the model
parameters (and independent of Sa

k(t) that are variables of the model).
Let us consider a meta-organ of physiological age p and chronological age n, ω(Sp(n, t)),
having its blade area equal to the cumulated areas of all blades of the corresponding
structure:

∀p ∈ {1..Pm}, ∀n ≤ t, Sω(Sp(n, t)) =
Pm∑
k=p

[ψa(Sp(n, t))][k] · Sa
k(t) (9.4)

where [ψa(Sp(n, t))][k] is the kth component of the vector ψa(Sp(n, t)) as defined in
section 2.5, i.e. the number of leaves of PA k in the structure Sp(n, t). S

a
k(t) denotes
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the area of a blade of PA k in that structure. Let us define [Sa(t)] as the vector of size
Pm whose components are Sa

k(t). Thus eq. 9.4 can be written under a more compact
form as:

Sω(Sp(n, t)) = [ψa(Sp(n, t))] · [Sa(t)] (9.5)

where · denotes the scalar product. Note that the components [ψa(Sp(n, t))][k] are null
if k < p. As we assume that expansion duration lasts only one growth cycle, blade area
only depends on its appearance cycle and not on its chronological age. Moreover, this
assumption implies the following relation between blade areas of different physiological
ages:

∀(p, k) ∈ {1..Pm}2, Sa
p (t) =

P a
p

P a
k

· Sa
k(t) (9.6)

Indeed, these leaves competed for the same biomass pool and got amounts of biomass
in proportion to their respective sinks. To get the same biomass production from the
meta-organ as from the complete structure, we need to set the equivalent resistance
of the meta-organ equal to the resistance of the network composed of the structure
leaves. It implies in particular that the blade area of each leaf of PA k can be expressed
depending on the blade area of the meta-organ Sω:

∀k ∈ {1..Pm}, Sa
k(t) =

Sω

Pm∑
k′=p

P a
k′

P a
k

· [ψa(Sp(n, t))][k
′]

=
Sω · P a

k

[ψa(Sp(n, t))] · [P a]

(9.7)

where [P a] is the vector of size Pm whose components are respectively the sinks of blades
for each PA. Therefore from the equality of hydraulic resistances of the meta-organ and
of the structure (eq. 9.3), an expression of Rω can be deduced by replacing Sa

k(t) by its
expression:

Rω =
1

Pm∑
k=p

[ψa(Sp(n, t))][k]

R1 · [ψa(Sp(n, t))] · [P a]

P a
k · Sω

+R2

(9.8)

with the abbreviated notation Sω = S (ω(Sp(n, t))) representing the blade area of the
meta-organ corresponding to the structure Sp(n, t).

So if the resistance of the meta-organ ω(Sp(n, t)) is calculated at every G.C. as in
expression 9.8 as a function of its area Sω and of the parameters of the complete model,
then the biomass production of the meta-organ is identical to that of the structure
Sp(n, t).



178 CHAPTER 9. A NEW PERSPECTIVE FOR MULTI-SCALE ANALYSIS

Beer Law formalism

This part simplifies a lot if the Beer law formalism only is chosen, that is to say if we
consider that water uptake is not a limiting factor and that hydraulic resistances have
only a weak impact. In that case, the equation of biomass production is Eqn. 3.5:

Q(t) = E(t) · µ · Sp ·

1− e
−k·

S(t)

Sp


Here biomass production is considered at whole-plant scale only. As soon as the total
blade area is the same in the simplified model as in the complete model, the equation
of biomass production with the same parameters gives the same result. Hence char-
acterizing the parameters of the simplified model amounts to the problem of biomass
allocation. If allocation to the biomass compartment is the same in the simplified model
as in the complete model, the biomass production will be also identical.

9.3.2 Allocation

Sinks of equivalent structures

The demand of a meta-organ ω(Sp(n, t)) is defined as the aggregated demand of the
set of organs of the structure Sp(n, t). Therefore the sinks of internode and blade
compartments, respectively noted P i

ω and P a
ω , are expressed as follows:

P i
ω =

Pm∑
k=p

[ψi(Sp(n, t))− ψi(Sp(n− 1, t− 1))][k] · P i
k

P a
ω =

Pm∑
k=p

[ψa(Sp(n, t))− ψa(Sp(n− 1, t− 1))][k] · P a
k

(9.9)

with the definitions of section 2.5: ψo gives the number of existing organs on the
structures. To simplify the notations, let [ψ′ (Sp(n, t))] be the vector of the numbers of
new metamers in the structure Sp(n, t), i.e. the number of metamers appearing in the
structure of PA p and CA n at GC t. Note that [ψ′ (Sp(n, t))][k] = 0 if k < p as there
are no metamers of PA less than p on a structure of PA p. Therefore the meta-organ
sinks are written as scalar products:{

P i
ω = [ψ′i(Sp(n, t))] · [P i]
P a

ω = [ψ′a(Sp(n, t))] · [P a]
(9.10)

At each growth cycle, a new internode appears in the internode compartment of the
meta-organ. Its sinks depend on its rank. Figure 9.1 shows the shape of meta-organ
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sinks for internodes in the rattle simplified model. The sink shape is similar for blades
(but not identical, as blade sinks are set different from those of internodes in the com-
plete model). As the GL1 version is considered, all branches of order 2 have the same
development with only a temporal shift that depends on the time of their initiation.
Therefore the graphs representing the demand of internode compartment of meta-organs
as functions of time all have the same shape: there are only translated of one GC when
switching from one meta-organ to the upper one. These values are calculated prelim-
inary to the simulation and are given as inputs to simulate the simplified tree. The

Figure 9.1: Simplified model with equivalent structures (meta-organs) at “rattle” level:
shape of sink variation function for branches of order 2. Case of deterministic devel-
opment (GL1) with no ring demand. The graphs represent the sink of meta-organ
internode P i

ω as a function of time.

complete and simplified trees presented in this figure thus have exactly the same profiles
of biomass production and of allocation to compartments on branches of order 2. Their
trunks are identical. The meta-organ sinks for blades and internodes only depend on
the structure development and not on its topology nor on the structure morphology.
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This is not the case for the ring compartment.

Allocation to ring compartments

Global allocation. Regarding secondary growth, let us first deal with the step of
global allocation.

� If modes Q/D or Q (equations (3.24) and (3.26)) are chosen, the equality of
biomass allocated to the ring compartments in the complete and simplified models
is straightforward since we impose the conservation of these variables. Therefore
the parameters of the global secondary sinks of the simplified model can be simply
set identical to that of the complete model.

� In the case of the first allocation mode (Leaf Number), the parameters of the
simplified model are of the form:

P rg
0 ω = P rg

0 ·
Pm∑
k=1

[ψa(S1(t, t))][k] (9.11)

where P rg
0 is the sink of the ring compartment of the complete model and the

sum represents the total number of leaves of the tree (structure of PA 1 and of
CA equal to the current GC, t).

Thus we can have the same biomass allocated to the ring compartment Qring(t) in the
simplified model as in the complete model.

Local allocation. More difficulties are raised for the step of local allocation (section
3.2.3). Let us write the expression of the biomass allocated to the ring compartment of
the meta-organ ω(Sp(n, t)) at GC t. It imposes classifying the different metamers not
only according to their physiological and chronological ages but also to their ontogenetic
age. Let [ψ′o(Sp(n, t))] be the vector of the numbers of new metamers for each PA in
the structure Sp(n, t). Thus we have:

qrg
ω =

Pm∑
k=p

n∑
m=1

t∑
o=1

[ψ′o (Sp(n−m+ 1, t−m+ 1))] [k]︸ ︷︷ ︸
Nb phyto of CA m, PA k and OA o in Sp(n,t)

·qrg
k (m, o, t) (9.12)

Remark: Contrary to chronological age, ontogenetic age of a newly created organ can
be higher than 1. This is why the index of the summation on o can reach the maximal
value of t.



9.3. FROM COMPLETE TO SIMPLIFIED MODELS 181

We remind that the biomass qrg
k (m, o, t) allocated at growth cycle t to a metamer of

physiological age k, chronological age m and ontogenetic age o is calculated as:

qrg
p (m, o, t) =

(
1− λ

DPool(t)
+
λ ·Na,a

p (m, o, t)

DPressler(t)

)
· prg

p · lp(m, t) ·Qring(t) (9.13)

where the notations have been defined in section 3.2.3. It depends in particular on the
number of leaves located above the metamer in the architecture Na,a

k (m, o, t) (topo-
logical information) and on the length of the metamer lk(m, t) (morphological infor-
mation). It is possible to deal with the topology problem since the number of leaves
above a metamer can be defined from the parameters of the model in the GL1 case
(see paragraph 2.5). But the metamer length varies with the dynamics of Q/D. Thus
metamer length cannot be included as such in the expression of the parameters of the
simplified model.
To express qrg

ω as a function of the parameters of the complete model and of the state
variables of the simplified model only, we can take advantage of the proportionality
relation between weights of internodes that appeared at the same G.C.:

qi
k(n, t) =

P i
k

P i
k′
· qi

k′(n, t) (9.14)

where qi
k(n, t) is the weight of internode of PA k and CA n at GC t. As internode

expansion lasts no longer than one growth cycle, internode sink is defined as a constant
and noted P i

k. Therefore a relation between internode weights in the complete model
and the internode weight of the meta-organ qi

ω can be derived:

qi
ω =

Pm∑
k=p

[ψ′i(Sp(n, t))][k] · qi
k(n, t)

=⇒ qi
k(n, t) = qi

ω ·
P i

k

[ψ′i(Sp(n, t))] · [P i]

= qi
ω ·

P i
k

P i
ω

(9.15)

where qi
ω stands for qi

ω(Sp(n, t)). It represents the amount of biomass that appeared at
cycle t in the internode compartment of structure Sp(n, t)).
The metamer length is obtained from the allometric rules defined in section 3.2.2:

lk(n, t) =
√
Be
(
qi
k(n, t)

) 1+β
2

= lω ·
(
P i

k

P i
ω

) 1+β
2 (9.16)

By replacing lk(n, t) in equation 9.13 and then in equation 9.12, qrg
ω eventually becomes:

qrg
ω =

(
1− λ

DPool(t)
·Kω,Pool +

λ

DPressler(t)
·Kω,Pressler

)
·Qring(t) (9.17)
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with the following notations:


Kω,Pool =

n∑
m=1

liω(Sp(m,t))

P i
ω(Sp(m,t))

1+β
2

[ψ′(Sp(n−m+ 1, t−m+ 1))] · [prg(P i)
1+β

2 ]

Kω,Pres =
n∑

m=1

t∑
o=1

liω(Sp(m,t))

P i
ω(Sp(m,t))

1+β
2

· [ψ′o(Sp(n−m+ 1, t−m+ 1))] · [prg(P i)
1+β

2 Na,a(m, o, t)]

(9.18)

where lω(Sp(m, t)) is the length of the new metamer in meta-organ Sp(m, t), assuming

that the allometric rules are conserved (i.e. that liω =
√
Be(qω)

1+β
2 ). DPool(t) and

DPressler(t) are calculated as the respective sums of the demands of growth units of the
trunk and the sum of factors Kω,Pool and Kω,Pressler of all meta-organs of the plant at
GC t. This formulation allows defining the equations and the parameters of a simplified
model with conservation of the amount of biomass allocated to the ring compartment.
Note that equations of the simplified model (eqn. 9.17) have not the same form as that
of the complete model. It implies that in the simplified model, the calculation of the
demand of growth units of the stem and that of meta-organs do not follow the same
rules.

The shapes of parameter variations Kω,Pool and Kω,Pressler are given in figure 9.2 for a
GL1 virtual tree. It represents the changes of Kω with time for a meta-organ (in GL1,
the shape is identical for all meta-organs). In the KPressler calculation, the major com-
ponents are demands of growth units of main axis: indeed, their demand is multiplied
by the number of leaves of all their lateral structures. Hence mutations of the main
axis induce the decline of this factor. By contrast in KPool parameter, all substructures
have similar influences and therefore death of lateral branchlets can be observed in the
variations of KPool.

To summarize, we have extracted the parameters that allows calculating the demand
of a meta-organ as functions of the parameters defining the behaviour of its equiva-
lent structure in the complete model. Under our assumptions (no fruits), meta-organ
primary demand is characterized by two parameters: internode sink and blade sink.
These parameters depend on meta-organ physiological age. They vary with time when
meta-organs age (curves of figures 9.1). Meta-organ ring demand is characterized by
two variables (Kω,Pool, Kω,Pressler). Note that these are variables and not parameters
since they depend on pith length lω (figure 9.2).

If the formalism of Beer-Lambert law is chosen for biomass production (section 9.3.1),
the equations of the simplified model are the same as that of the complete model (except
for ring biomass repartition among meta-organs that conforms to equation 9.17).
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Figure 9.2: Changes of parameters Kω,Pool and Kω,Pressler with time for meta-organs of
a virtual GL1 tree.

9.3.3 GL3 buds

Let us consider now the case where numbers of axillary axes per growth unit are not
constant, as in the GL3 version [Mathieu, 2006]. We remind that hereafter new growth
units are abusively named “buds”.

First step: global allocation (number of potential buds). Biomass is first
allocated to bud compartment (Qbud) according to the demand of potential buds at
whole-plant scale. We denote P pb

p the sink strength of potential buds of physiological

age p. The plant demand for potential bud compartment at growth cycle t, Dpb
bud(t), is:

Dpb
bud(t) =

Pm∑
p=1

[ψ′pb (S1(t, t))][p] · P pb
p (9.19)

with the notations of the previous section: [ψ′pb (S1(t, t))][p] is the number of potential
buds of physiological age p at growth cycle t. Therefore the demand of potential buds of
a meta-organ can be defined as the sum of demands of potential buds of its equivalent
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structure. This is similar to the method applied for defining sink strengths of internode
and blade compartments (section 9.3.2). Sink strengths of meta-organ potential buds
(P pb

ω ) are thus defined as follows:

P pb
ω =

Pm∑
k=p

[ψ′pb(Sp(n, t))][k] · P pb
k (9.20)

The plant demand for bud compartments is calculated as the sum of meta-organs bud
compartment demands.

Second step: Number of active buds. After the step of global allocation to bud
compartments, the number of active buds per growth unit zone, i.e. buds that effectively

gives rise to new shoots, are determined as affine function of the ratio
Qbud

Dpb
bud

(t) in the

complete model [Mathieu, 2006]. It can be bounded by the number of potential buds
per zone as:

bpq(t) = min

{
bpb
pq(t), bB1

pq +B2
pq ·

Qbud

Dpb
bud

(t)c

}
(9.21)

where bpb
pq(t) is the number of potential buds in a zone Zpq at growth cycle t. It varies

with time if there are bud dormancy or if the number of metamer per zone is variable.

To aggregate the variables of this complete model equation, we introduce the notion
of active bud sink of a meta-organ. Indeed, determining the number of active buds in
the complete structure amounts to determining which proportion of potential bud sink
becomes active in the simplified model. There is a switch from discrete variables in the
complete model to continuous variables in the simplified model. Therefore equivalences
will be of course only approximate for that part. Active bud sink strength of a meta-
organ ω(Sp(n, t)) can be bounded by its potential bud sink strength P pb

ω . It is written
as:

P ab
ω = min

{
P pb

ω , B
1
p,ω +B2

p,ω ·
Qbud

Dpb
bud

(t)

}
(9.22)

The number of active buds in a structure is a piecewise constant function of Q/D in
the complete model; we choose an affine function for the active bud sink strength in
the simplified model (see figure 9.3).

We get the parameters of this equation 9.22 by calculating a line equation approximating
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Figure 9.3: Variations with Q/D of structure bud sinks in the complete model (piece-
wise constant functions) and equivalent meta-organ bud sink (affine function) in the
simplified model for two sets of parameter values2

the piecewise constant function:

B1
p,ω =

Pm∑
k=p

Pm∑
q=k

ψω[p][q] · P pb
q ·min{bpb

pq(t), bB1
pqc}

B2
p,ω =

Pm∑
k=p

Pm∑
q=k

ψω[p][q] · P pb
q ·
(
bpb
pq(t)− bB1

pqc
)+

maxp, q

{
bpb
pq(t)−B1

pq

B2
pq

} (9.23)

where ψω[p][q] denotes the total number of zones Zpq in the structure Sp(n, t).
These equations are sufficient if the number of potential buds per zone does not depend
on time. But parameters bpb

pq(t) vary in particular with the number of metamers per

2Parameter values for a virtual structure containing three zones:

� Parameter values, set 1. Bud sinks: P pb
2 = 1, P pb

3 = 1.5; Zone Z12: bpb
12 = 1, B1

12 = 1, B2
12 = 0.5;

Zone Z23: bpb
23 = 1, B1

23 = 0.5, B2
23 = 2; Zone Z13: bpb

13 = 7, B1
13 = 2, B2

13 = 1

� Parameter values, set 2. Same values as set 1 except: bpb
12 = 3; bpb

23 = 10
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zone which is also an affine function of Q/D ratio in the GL3 version [Mathieu, 2006]:

bpb
pq(t) = Mpq(t− 1) ·mpq with Mpq(t− 1) = bM1

pq +M2
pq · qb

p(t)c (9.24)

where Mpq(t) is the number of metamers in zone Zpq at growth cycle t, mpq is the
number of buds per metamer,qb

p(t) is the biomass amount allocated to a growth unit of
physiological p at growth cycle t, M1

pq and M2
pq are parameters of the affine function.

No simple expression was found: the parameters have to be defined after successive
iterations of the model to get the values of Q/D. What is important at this point is
that active bud sinks of meta-organ depend on potential bud sink P pb

ω , on the ratio
Qbud

Dpb
bud

(t) but also on the biomass allocated to each growth unit of the meta-organ at the

previous growth cycle.

9.4 Perpsectives for simplified models

In the previous section, we have extracted the values of the parameters of the simplified
model as functions of the parameters of the complete model. These equations allow
keeping strict equivalences between complete and simplified models, at least in the
GL1 version. It raises now the problem: how to deal with real trees ? Answering this
question requires defining the equations of simplified models for applications to fitting
of real trees. The equations presented above can help for this choice.

9.4.1 First approach: beta functions to define parameter vari-
ations.

The variations of aggregated parameters, i.e. meta-organ sinks, mainly take bell shapes
(see figures 9.1 and 9.2), at least in GL1. Therefore they can be approximated by beta
density functions. So a reasonable strategy would be to define the meta-organ sinks as
beta functions whose parameters would be fitted against the data. This is of course
an option but it does not take advantage of the knowledge acquired from the complete
model. Moreover, it does not account for the tree species: beech trees or pine trees
would differ only from their final fitted values for beta law parameters. It means no a
priori information would be integrated before fitting, such as general branching rules
or the hierarchical organization of physiological ages.
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9.4.2 Second approach

Discrete coefficient values for internode and blade sinks.

Case GL1

We can benefit from the GL1 property that the sequence of structures of order 2 at
a given time from the top branch to the bottom of the tree represent the topological
development of a structure that would be one GC older from one level to the following
one. Their sink shapes are the same for all meta-organs (see figure 9.1). Therefore it is
possible to extract these data from biomass measurements at rattle level.
Let W i

k(n, d) and W a
k (n, d) denote respectively the internode and blade biomass incre-

ments added at cycle d on the structure of CA n and PA k. Thanks to the common
pool assumption, we get:

Q

D
(d) =

W i
k(0, d)

P i
ω(Sk(0, d))

= · · · = W i
k(d, d)

P i
ω(Sk(d, d))

=
W a

k (0, d)

P a
ω(Sk(0, d))

= · · · = W a
k (d, d)

P a
ω(Sk(d, d))

(9.25)

where W a
k (0, d) is the biomass of the trunk blade whose axillary bud gives rise to the

structure Sk. By definition, the blade sink of PA 1 is set to one. Therefore we can
extract the expression of the meta-organ sinks:

∀n ∈ {1..d}, ∀k ∈ {1..Pm},


P i

ω(Sk(n, d)) =
W i

k(n, d)

W a
k (0, d)

P a
ω(Sk(n, d)) =

W a
k (n, d)

W a
k (0, d)

(9.26)

Figure 9.4 shows the curves obtained from this calculation on data from the simulated
tree of figure 9.1. Of course, the sink shape is the same as the theoretical one (calculated
from numbers and sinks of organs on the structure). It allows simulating the simplified
tree presented in figure 9.1 with conservation of the variables listed in section 9.2.3.
As the GL1 version is considered, these equivalences are verified for the whole growth
duration although data are virtually collected only at the last growth cycle (d = 20 on
figure 9.4).
Thus it is possible to define the variations of internode and blade compartment sinks
as vectors of coefficients giving their value in function of meta-organ chronological age.
Unfortunately, the variations of Kω,Pool and Kω,Pressler cannot be directly assessed from
the data in the same way. They remain to be represented by beta functions and fitted.
Another option is to give up equation 9.17, as discussed in section 9.4.2.

For trees, the GL1 case is hardly ever encountered: the topological structure is not as
regular and depends strongly on ontogenetic or environmental changes. However, we
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Figure 9.4: Fitting at rattle level for a virtual tree: meta-organ sinks calculated from
“rattle” data and corresponding variations of meta-organ compartment weights for each
PA. The sink shape is the same as the theoretical one (figure 9.1).

can use the corresponding tree topology as a reference framework to propose solutions
for the GL3 version.

Case GL3

In the GL3 case, the method of parameter aggregation did not provide simple ex-
pressions of parameters for a simplified model. Moreover, when considering real trees,
the GL3 parameters driving numbers of new axes and new metamers would need to
assessed. Therefore we propose the following approach:

1. From botanical analysis, from bibliography or from direct observations, a reference
(or potential) topology can be chosen. This was done for example for beech trees
in section 8.1.3: it corresponds to the level of topology description referenced as
T2 level. It means defining the topological rules of a GL1 automaton that the
plant would follow in its steady state.

2. From sample data on branches tips, the values of sink strengths for organs of each
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physiological age can be obtained. Indeed, assuming that expansion duration
is one growth cycle only implies that sink ratios can be directly assessed from
measurements. This was done for pine trees (e.g. see figure 7.3 for young pine
trees sinks).

3. These data are sufficient to calculate the meta-organ sinks of the reference GL1
tree, using equations 9.10. Thus we have the shapes of internode and blade sink
variations of meta-organs. They are respectively denoted P i

ω,GL1, P
a
ω,GL1. Note

that in the GL3 case, we can also include bud sink variation, P b
ω,GL1 (bud sinks

can be estimated from sample data the same way as internode or blade sinks: it
was done for beech trees, section 8.4.1).

4. These sink variation shapes are input as default values for these parameters. They
are then updated at each simulation growth cycle depending on Q/D ratio. To be
consistent withGL3 modelling choices and equation 9.22, we propose the following
expression:

Pω = Pω,GL1 · (B1
p · qb

ω(t− 1) +B2
p ·

Q

D
(t)) (9.27)

where Pω stands for respective meta-organ sinks and qb
ω(t − 1) is the biomass

received by meta-organ bud compartment (i.e. new shoots) at cycle t − 1. This
term accounts for the influence of number of metamers initiated at growth cycle
t − 1 on the number of potential buds at cycle t, as presented in equation 9.24.
B1

p and B1
p are parameters of the simplified model that need to be fitted. They

take different values according to the type of parameter (internode, blade or bud
sinks) and according to meta-organ physiological age (p).

An advantage of this method is that we keep information on the default branching
rules. Therefore, species-specific topological characteristics are taken into account in
the fitting procedure and in the results. In the GL1 case, the equivalences between
simplified and complete models are verified since we use equations with aggregated
variables derived directly from the equations of the complete model. In GL3, there is
no strict equivalence with a complete model that would be fitted on the same data but
it is consistent with the GL3 philosophy.

Simplified model for ring biomass partitioning

Ring sinks. Firstly we can notice that it is possible to estimate the secondary sinks
for ring biomass allocation to metamers (prg

k ) from sample data as it was done for
primary growth. Indeed, equation 9.13 implies a relationship between ring sinks of
several physiological ages that appeared at the same growth cycle. Let us introduce the
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following variable:

Fk =

qrg
k (m, t)

lk(m, t)
− qrg

k (m′, t)

lk(m′, t)

Na,a(m, t)−Na,a(m′, t)
with m, m′ ∈ {1..t} (9.28)

We have:

∀k, k′ ∈ {1..Pm},
prg

k

prg
k′

=
Fk

Fk′
(9.29)

As we set for reference value that prg
1 = 1, this relation provides estimations of ring

sinks for every higher physiological age.
Therefore it would be possible to define simplified equations for ring partitioning using
the same method as presented above for primary growth. It implies adding a new
assumption on internode lengths in the complete model: they have to be arbitrarily
fixed. It amounts to considering that structure demand for ring increment is calculated
according to numbers of metamers rather than metamer lengths. Under this strong
assumption, it is possible to define Kω,Pool,GL1 and Kω,Pressler,GL1 as parameters that
can be calculated from parameters of the complete model.
An immediate consequence is that if pruning is taken into account in the calculation
of default parameters Kω,Pool,GL1 and Kω,Pressler,GL1, then ring demand is calculated
considering only living branches.

More relevant choice for ring biomass partitioning A major inconvenient of
the simplified model issued from variable aggregation is that simulation of ring biomass
partitioning among meta-organs is not mechanistic enough. Indeed, it relies on equation
9.17 where the effective meta-organ blade biomass does not intervene. The influence of
blade biomass on ring partitioning is only taken into account through the definition of
variables Kω,Pressler,GL1 i.e. through the default GL1 topology. This modelling choice
allowed conserving equivalences with the complete model. But it could be modified if
more degrees of freedom were left to the simplified model. We propose a solution based
on studies of possible slight modifications of the complete model in some particular
cases. It does not strictly respect the equivalences in the general case but it provides a
mechanistic model consistent with the GreenLab modelling approach.
A first remark is that defining simplified models would be easier if continuous additive
variables were used in the complete model. For instance in the process of ring biomass
partitioning, blade areas could be considered instead of numbers of leaves as driving
variables. Under our assumptions, cumulated blade areas are conserved when switching
from the simplified to the complete model whereas numbers of leaves change (several
leaves on a structure but only one leaf on its associated meta-organ). Similarly, we
switch from internode pith length to pith biomass which is an additive variable in the
equation of ring biomass partitioning.
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Let us consider that all internodes of a given structure have the same primary and
secondary sinks (i.e. P i and P rg do not depend on physiological age). In that case,
leaf areas above every internode appeared at a given growth cycle forms a partition of
total leaf area at the current cycle (see figure 9.5).

Figure 9.5: Blade area of a meta-organ is partitioned between leaf areas seen by sets of
metamers appeared at every growth cycles.

Meta-organ blade area can be factorized in the second term of equation 9.17 which
implies the following simplified expression for ring biomass increment of this structure
at cycle t:

qrg
ω = (

1− λ

DPool(t)

n∑
m=1

qi
ω(Sp(n−m+ 1, t−m+ 1)) +

λ

DPressler(t)
· Sa

ω

·
n∑

m=1

P i

P i
ω(Sp(n−m+ 1, t−m+ 1))

qi
ω(Sp(n−m+ 1, t−m+ 1))) · P rg ·Qring(t)

(9.30)

where qi
ω(Sp(n−m + 1, t−m + 1)) is the amount of biomass allocated to meta-organ

internode compartment at cycle t − m + 1. It corresponds to biomass of piths of
chronological age m.
Therefore, a coherent proposal for calculation of biomass allocated to meta-organ ring
compartment is the following:

qrg
ω = (

λSω

DPressler(t)
·

n∑
m=1

qi
ω(Sp(n−m+ 1, t−m+ 1))

P i
ω(Sp(n−m+ 1, t−m+ 1))

+
1− λ

DPool(t)
·

n∑
m=1

qi
ω(Sp(n−m+ 1, t−m+ 1))) ·Qring(t) (9.31)
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We remind that DPool and DPressler are calculated by summing the components of plant
ring demand (demand of growth units of the main stem and demands of existing meta-
organs).

To summarize, we have studied in this chapter the consequences of variable aggregation
of the complete model in order to extract the equations of a simplified model. We
focused on “Rattle” level which is the most detailed so that the results are easily
generalized. Given a set of equivalences to conserve at every scale change, we first
defined the equations of the simplified model. These equations are similar to those of
the complete model except for biomass allocation to rings and GL3 parameters that
drive the topological development. These last processes are strongly dependent on plant
topology and thus only approximative equivalences can be obtained.
Then we proposed solutions to deal with real plants. The equations derived from
variable aggregation of the complete model do not necessary provide the more rele-
vant modelling choice. Therefore other options can be considered: equivalences with
complete model are not conserved but the approach is consistent with the GreenLab
philosophy.
Concerning biomass allocation to primary growth (meta-organ internode and blade
compartments), two approaches are distinguished according to the model version. In
GL1, meta-organ sinks can be assessed directly from data (figure 9.1). In GL3, we
propose to take advantage of a GL1 reference automaton to define the default shapes of
meta-organ sinks. The effective values are then updated at each growth cycle depending
on Q/D ratio.
Concerning biomass allocation to rings, a similar method can be applied under the
assumption that structure demand for ring increment is calculated according to numbers
of metamers rather than metamer lengths. But a more mechanistic modelling is that
of equation 9.31 where meta-organ leaf area is taken into account.



Conclusion

This work took place in a particular development phase of the GreenLab model. Green-
Lab is a mathematical model of plant growth that can be expressed under the form
of a discrete dynamic system. It is a generic structure-function model that accounts
for processes of plant topological development, biomass production and allocation at
mesoscale (organ level). After the Phd of Amélie Mathieu [Mathieu, 2006] who intro-
duced feedback effects of plant trophic balance on its development, an important step
of confrontation of the model to real plants was needed (which is of course an on-going
work). To deal with real plants, we needed to consider the specificities of each of them:
it implied introducing some new features in the model such as biomass remobilization
at organ senescence or variations of several functional and topological variables (sinks,
allometries, RUE, number of axes . . . ) with time or with phytomer rank. We studied
the changes in biomass production and allocation due to changes of plant topology. We
found that similar production sequences could be generated by plants with different
development sequences under some conditions: either if organ expansion duration is
equal to one growth cycle or if blade functioning time is infinite.

We presented in this work several methods to deal with parameter identification of
branched plants with complex topology. The most detailed target data include a com-
plete topological description of plants and weights of their individual organs. This
kind of data was for instance collected on young Chinese pines (Pinus tabulaeformis,
data from Guo Hong, CAF) and on Cecropia sciadophylla (Patrick Heuret and Camilo
Zalamea, CIRAD). We defined three levels of simplification of target data both for
topological and dimensional plant description. Regarding dimensional data, these lev-
els were characterized as cumulated (B0, compartment weights only), “lollipop” (B1,
complete description of main stem, compartment weights of all lateral branches) and
“rattle”(B2, complete description of main stem, compartment weights of each lateral
branch). Regarding topology, three levels of simplification were also distinguished:
sample data (T0), mean and variance of numbers of organs per physiological age (T1),
description of a default automaton (T2).

For instance, Arabidopsis thaliana was measured following a rattle pattern for biomass
(B0 level) and complete topological description was recorded. It allowed defining its
development rules for inflorescence axes (T2 level). Pine trees (Pinus tabulaeformis,
data from Guo Hong, CAF) were simulated with a complete average topology defined
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from the measurement (T2). The fitting results were compared in the case of a complete
average target and a simplified target (section 8.2.2).

Measurements on wheat with tillers included numbers of organs at several growth stages
with repetitions (Kang MengZhen, Univ. of Wageningen-LIAMA). Although wheat
topology is not really stochastic (the numbers of tillers can be related to plant density),
the data were adequate to test our method. It was thus possible to fit the stochastic
version of the model using the theoretical mean and variance of the numbers of organs
(T1). Only a maximal topology was set; the effective number of organs that appeared at
each growth cycle was determined according to the probability values. These numbers
were non-integer values since theoretical expressions of average demand were considered.
Then functional parameters were estimated using the mean number of organs at each
growth cycle. Therefore parameter identification is done for the average plant and not
on particular realizations of stochastic plants that would each have a different topology
(section 8.3.2). Similar procedure is on progress for cotton tree data with Li Dong
(CAU).

Regarding beech trees (Thiéry Constant, LERFoB), a potential topology was chosen
according to the botanical knowledge on its architecture. Then the topological and
functional parameters were fitted on data from biomass compartments for branches and
individual organs for the trunk (B2). Measurement of ring widths at several positions
along the trunk allowed testing the model for biomass allocation and partitioning to
ring growth. Including ring profile in the set of target data provides precious clues
about the past trophic dynamics of trees. In particular in the model, it is possible to
link ring width variations to variations of blade area ratios of meta-organs at each level
and at different growth cycles (section 8.4.1). We wish to point out that both for pine
trees and beech trees, a major difficulty in the experimental work associated to the
fitting procedure was to determine the age of the target tree. As several morphological
markers tend to disappear or to be deformed with time and as ring separations are not
always clear, there might be errors on the determination of tree chronological age. This
can be an important source of errors since morphogenesis processes are strongly linked
with time.

Plants can be classified according to the level of details of their description (figure 8.19)
and to the model version chosen for their simulation (deterministic GL1, stochastic
GL2, mechanistic GL3. . . ). These choices also depend on the objectives of the fitting
procedure and on the potential applications. For real trees, the GL1 case is hardly
ever encountered: the topological structure is not as regular and depends strongly on
ontogenetic or environmental changes. However, it is possible to consider a regular GL1
topology as a working approximation. But it is also important to propose solutions for
the GL3 version as done for beech trees and in the perspectives presented in chapter
9. Note that the GL2 version could be considered also for trees: the same procedure
as presented in section 8.3.1 for wheat could be applied at plant level. Means and vari-
ances would be calculated from branch and metamer numbers of a single tree instead
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of being calculated from measurements of several plants of a population.

The applications presented in that work consist of parameter identification for equations
of the complete model but with simplified targets (section 8). Different procedures have
been proposed according to the model version (GL1, GL2, GL3). From this work, a
second approach has emerged. It consists in defining new equations and variables that
are consistent with the level of target description (chapter 9).

For some applications, the first solution should be privileged. As discussed in chapter 6,
GreenLab trees have a simplified architecture that allows computational efficiency and
realistic simulations of topological changes due to ontogenetic or environmental con-
straints. Moreover, tree architecture is important for several kinds of applications, even
under its simplified form: for instance to simulate biomechanical stresses in the trunk,
to account for - and to be influenced by - competition effects (especially competition
for light), for visualization at tree scale. As branching rules are defined according to
botanical knowledge, it allows characterizing tree species and their architectural models.

However, a more simplified model can be useful for stand- or landscape-scale simulations
where only the dynamics of biomass allocation are required or where large numbers of
individuals are involved (even with structural factorization, reducing computational can
be necessary if trees are old and with potentially high physiological ages). Visually, all
trees look the same regardless of their species (they take “lollipop” shape or “rattle”
shape). For visualization purpose, representations of simplified trees would need to be
improved, for instance using foliar density instead of a single blade in meta-organs.
Different meta-organ shapes could be defined according to tree species.

As described in paragraph 9.4, we can benefit from topological information derived from
the complete model to define default shapes for meta-organ sinks. In GL1, these de-
fault sinks gives the same biomass partitioning in meta-organs as in the corresponding
structure of the complete model. In GL3, it provides reference values for meta-organ
sinks that are then updated at each growth cycle according to values of Q/D ratio. It
implies that meta-organ growth conforms to the same growth phases as the correspond-
ing structures. Their default sink curves account for basal effect in the first stages of
structure development and for aging effects until branch death. Thus defining simpli-
fied rules for meta-organ growth is analogous to defining rules of the automaton in the
complete model. Another argument in favour to simplified models is the reduction of
the number of parameters. With simplification of target description comes a reduction
of the number of data available. Therefore it is important to reduce also the num-
ber of parameters. This is precisely the objective of simplified models: simulating the
dynamics of aggregated variables with a limited set of parameters.

Equations of simplified models were extracted from these of the complete model using a
method of variable aggregation. These equations gives exact equivalences between the
complete and simplified models for a set of key state variables (determined according
to the level of simplification chosen). However they are not suitable as such to define
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the simplified model because parameters and variables of the complete model cannot be
separated. Moreover, these formulations would have to be updated when the complete
model changes. Therefore we proposed other solutions in adequacy with GreenLab
modelling approach.
To conclude, we proposed in this work several procedures for parameter identification
of the GreenLab model on plants with complex architectures. It opens access to ap-
plications concerning prediction and optimization of tree growth for decision support
systems in forest management. It can also be used as a framework for other research
fields such as analysis of biomechanical stresses in tree trunks.
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Table A.1: Table of main abbreviations and parameter notations. To facilitate the
reading, the same index meanings were chosen in most formulae.

Abbreviations
G.C. Growth Cycle
G.U. Growth Unit (set of metamers produced during one growth cycle)
P.A. Physiological Age
C.A. Chronological Age
O.A. Ontogenetic Age (number of GC since the initiation of the axis)
GL GreenLab
GL1 Deterministic version with fixed development [Yan et al., 2004]
GL2 Version with stochastic development [Kang et al., 2003]
GL3 Deterministic version with Q/D feedback control [Mathieu, 2006]

Index conventions
t Growth cycle (chronological age of the plant)
n Organ chronological age
p Physiological age of bearing metamer
q Physiological age of axillary metamer
o Organ
a Leaf
i Internode
f Fruit, flower
r Root
rg Ring

Parameters
Pm Maximal Physiological age
Nm Maximal growth cycle of simulation

Sp(n, t) Structure of basis of PA p and CA n at G.C. t
[ψo(Sp)][k] Number of organs o of PA k in the structure Sp

Zpq Set of metamers of PA p and axillary buds of PA q
bpq(t, t) Number of active buds in a zone Zpq at GC t
apq(t, t) Total number of active buds in plant zones Zpq at GC t
Qt Biomass production at GC t
ta Duration of leaf photosynthetic activity (in G.C.)
Et Value of environmental variable at GC t
µ Parameter of biomass conversion efficiency
Sp Reference ground surface of the plant
Dt Plant demand at GC t
texp Duration of organ expansion (in G.C.)
P o

k Sink strength of organ o and PA k
φo Sink variation function of organ o



Appendix B

Normalization factor for sink
variation function

We remind that the final weight of an organ of physiological age j appeared at cycle k
can be written:

Qo(j, k) = P (j) ·
Texp∑
i=1

φ(i, Texp) ·
Q(k + i− 1)

D(k + i− 1)
(B.1)

We adopt the following notation:

β[a, b, Texp](i) =

(
i+ 0.5

Texp

)a−1

·
(

1− i+ 0.5

Texp

)b−1

(B.2)

Expansion duration Texp can be variable according to the appearance cycle of organs,
k. The sink variation coefficient at chronological age j for an organ appeared at cycle
k can be written:

φ(j, k) =
1

N(k)
· β[a, b, Texp(k)](j) (B.3)

The role of this normalization factor is important when Texp is variable. In the following
paragraph, shapes of sink variation functions are defined for a reference value of Texp

(usually the maximal one), denoted T ref
exp , and we analyze the changes in this shape for

a different value of Texp.

B.1 First method: normalization of integral value

In this mode, we normalize the area covered by the curve associated to sink variation
functions. As only discrete values are considered for coefficients of sink variation, it
boils down to normalizing the sum of the beta coefficients:

N =

Texp∑
i=1

β[a, b, Texp(k)](i) (B.4)
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The calculation of N depends on the expansion duration Texp. It has to be calculated
for each organ independently if the expansion durations are different (see graph B.1A).
Thus the sum of the coefficients φ(j) is always equal to 1. In that case, when the
expansion duration Texp decreases, the values of the sink variation function increase.
The notion of sink strength corresponds to the cumulated demand of the
organ through its whole life-time. It implies that the sink strength of an organ can
be defined as the final weight that the organ would take if the ratio of biomass supply
over demand (Q/D) were constant and equal to 1:

Qo = P ·
Texp∑
i=1

·φ(i)︸ ︷︷ ︸
=1

= P (B.5)

The final weight does not depend on the sink variation function. The shape of the beta
law only influences the dynamics of the organ growth but not the final biomass.

B.2 Second method: homothetic transformation

When expansion duration changes, all points of the curve are multiplied by the ratio of
initial to final expansion duration.

N(k) =
T ref

exp

Texp(k)
·

T ref
exp∑

i=1

β[a, b, T ref
exp ](i) (B.6)

Therefore sink variation coefficients of an organ appeared at cycle k are written:

φ(j, k) =
Texp(k)

T ref
exp ·

∑T ref
exp

i=1

· β[a, b, Texp(k)](j) (B.7)

The sum of coefficients for all chronological ages j is equal to 1 only for organs having
an expansion duration equal to T ref

exp (see graph B of figure B.1). If expansion duration
decreases, organ sink strength decreases also.

B.3 Third method: contraction transformation

The same normalization factor is kept for all organs regardless of their expansion du-
ration. It is calculated for the reference expansion duration and kept as a constant:

N(k) =

T ref
exp∑

i=1

β[a, b, T ref
exp ](i) (B.8)
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Therefore sink variation coefficients of an organ appeared at cycle k are written:

φ(j, k) =
1

N
· β[a, b, Texp(k)](j) (B.9)

As the normalization factor is independent of k, the sum of coefficients for all chrono-
logical ages j is also equal to 1 only for organs having an expansion duration equal to
T ref

exp (see graph C of figure B.1).

B.4 Fourth method : maximum set to 1

We choose to normalize the sink variation function by setting its maximum to one. If
a > 1 and b > 1, we get:

N(k) =

(
a− 1

a+ b− 2

)a−1

·
(

b− 1

a+ b− 2

)b−1

(B.10)

It is independent of k and more importantly, it is independent of expansion durations.
In cases where a ≤ 1 or b ≤ 1, the normalization factor is equal to the maximal value
taken by coefficients β[a, b, T ref

exp ](j). In that case, sink strength is defined as the
maximal value taken by organ demand.
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Figure B.1: Two curves representing the function of sink variations multiplied by sink
strength (P=1.35), with different methods for the calculation of the normalization fac-
tor(N): integral value set to one (A), homothetic transformation (B), contraction (C)
and maximum set to one (D).



Appendix C

Computation of the plant total
demand

In the GreenLab model, the demand of some of the plant compartments (bud, root,
ring) is a function of the ratio of Q/D (see section 3.2). Hence the total plant demand
is calculated at each time step as the solution of the following equation:

D(t) = d0
bud(t) + d0

exp(t) + d0
ring(t) + d0

root(t)

+
(
d1

bud(t) + d1
ring(t) + d1

root(t)
)
· Q(t)

D(t)
+ d2

ring(t) ·
(
Q(t)

D(t)

)γ

(C.1)

with 0 < γ < 1. This is the most general expression but in many cases, several factors
can be equal to zero.
In this section, we prove that this equation always has a unique strictly positive solution
and we describe how to choose a good initial point so that the Newton method con-
verges to this solution. We recall that Newton’s method (also called Newton-Raphson’s
method) for a function f ∈ C2(R) consists in building the sequence (xn)n∈N defined by

the recurrence relation: xn+1 = xn −
f(xn)

f ′(xn)
. For any zero z of f , it exists a neighbor-

hood Bz so that if x0 ∈ Bz, then (xn)n∈N converges to z. For a zero of multiplicity one
verifying f ′(z) 6= 0, the convergence is quadratic.

Case 1: γ = 1. In that case, we also have d2
ring = 0 (see section 3.2). The equation

to solve is simply polynomial of degree 2. The only positive solution is:

D(t) =
1

2

(
d0

bud(t) + d0
exp(t) + d0

ring(t) + d0
root(t)

)
+

1

2

√(
d0

bud(t) + d0
exp(t) + d0

ring(t) + d0
root(t)

)2
+ 4

(
d1

bud(t) + d1
ring(t) + d1

root(t)
)
Q(t)

(C.2)
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If at least the demand of one compartment is non zero (which is necessary the case if
the plant is not dead), then the demand value is strictly positive.

Case 2: γ > 1. Let us define the function f : R+ → R as:

f(D) = Dγ+1 − d1D
γ − d2D

γ−1 − d3 (C.3)

where the positive time-dependent coefficients d1, d2 and d3 are deduced from equation
C.1 (multiplied by Dγ). f is continuous and its values at its domain boundaries are of
opposite signs. Therefore the equation f(D) = 0 has at least one solution. The first
derivative of f can be written:

f ′(D) = Dγ−2 ·
(
(γ + 1)D2 − d1γD − d2(γ − 1)

)
(C.4)

The positive zero of f ′ is

δ =
γd1 +

√
γ2d2

1 + 4d2(γ2 − 1)

2(γ + 1)

Therefore f is decreasing on [0; δ] and increasing on [δ; 0]. Thus we know that the
unique positive zero of f is higher than δ and that any initial point higher than δ allows
for the Newton method to converge to the solution.

Case 3: γ < 1. Similarly, let us define the function g : R+ → R as:

g(D) = D2 − e1D − e2 − e3D
1−γ (C.5)

where e1, e2 and e3 are positive coefficients deduced from equation C.1 (multiplied by
D). With the same arguments as above, g(D) = 0 has at least one solution. We have:

g′(D) = 2D − e1 − e3(1− γ)D−γ (C.6)

The second derivative of g, g′′, takes strictly positive values on R+. Therefore g′ is
continuously increasing. Let ε be the unique zero of g′. g is decreasing on [0; ε] and
increasing on [ε; +∞[. Thus the unique positive zero of g is higher than ε. An adequate
initial point is given by any point x0 so that g′(x0) > 0.
If e1 ≥ 1 and e1 ≥ e3:

g′(e1) ≥ e1

(
1− 1− γ

eγ
1

)
> 0

If 1 ≥ e1 ≥ e3:
g′(1) = 2− e1 − e3(1− γ) > 0

The cases where e3 ≥ e1 are symmetrical.
Hence choosing x0 = max{e1, e3, 1} as initial point for the Newton algorithm ensures
the convergence to the positive solution.
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des végétaux. Colloque INRA-CIRAD Modélisation et Simulation de l’architecture
des arbres fruitiers et forestiers, Montpellier, pages 255–423. INRA Science update,
Paris, 1993.

P. de Reffye, T. Fourcaud, F. Blaise, D. Barthélémy, and F. Houllier. A functional
model of tree growth and tree architecture. Silva Fennica, 31(3):297–311, 1997.

P. de Reffye, M. Goursat, J. Quadrat, and B. Hu. The dynamic equations of the tree
morphogenesis, GreenLab model. Technical Report 4877, INRIA, 2003.
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Incorporating Lindenmayer systems for architectural development in a functional-
structural tree model. Ecological Modelling, 181:479–491, 2005.



BIBLIOGRAPHY 225
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