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Functional-structural models

Geometrical models:
Simulation of 3D architectural
development

Organogenesis + empirical
geometry rules
Applications: video games,
landscape/urbanism, design

Process-based models
Yield prediction as a function of
environmental conditions

Biomass acquisition
(Photosynthesis, root nutriment
uptake) and
allocation,. . . Compartment level

=⇒ functional-structural model
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Assets of functional-structural models

Interactions architecture =⇒ functioning:

e.g. assimilate production depends on light interception
(related to crown structure or leaf orientations)

Interactions functioning =⇒ architecture:

organ (e.g. fruit) abortion
tillers or branches appearance

Importance for applications

Yield prediction under environmental stresses in agronomy,
simulation of forest management practices, prediction of wood
quality and biomechanical stresses,. . .

But: Until now, most FSMs used for teaching and research only.

Partly because of problems for parameter identification.
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Parameter identification for FSMs

How to handle plants with complex architectures for growth
modelling, parameter identification and experimental
protocol ?

How to model topology-physiology interactions ?

How to analyze the model behaviour ?

Which levels of topological description are relevant :

in terms of data ?
in terms of modelling ?
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Plant development

A discrete dynamic model

Spatial unit = phytomer (meso-scale)
Time step = growth cycle (rhythmic or continuous growth)
Physiological age = characterization of the meristem
differentiation state.
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Plant development

Development rules

Dual-scale automaton

Structure factorization

Simulation time proportional to maximal PAs
and CAs
Structure formalism :

Sp(n, t) =
[∏

p≤q≤Pm
(mpq(n, t))upq(t+1−n) (Sq(n − 1, t))bpq(t+1−n)

]
Sp(n − 1, t)

upq : number of metamers; bpq : number of lateral branches
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Interactions topology-physiology

Flowchart of growth cycle

[A. Mathieu]
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Interactions topology-physiology

Source-sink model

Q(t): Biomass production at cycle t

D(t) = Dbud(t) + Dexp(t) + Dring (t) + Droot(t): Plant demand at cycle t

Po : sink strength of organ o
(Do

k (n) = Po
k φ

o(n), k ∈ {1 . . .Pm}, n ∈ {0 . . . t})
No : number of organs12/41



Introduction Model Analysis Parameter identification Perspectives

Interactions topology-physiology

Biomass production

Plant production at growth cycle t (with negligible axis resistances):

Parametric equation of the variable S(t) = blade
area at cycle t, with the environment E(t) as
control variable.
Q(t) = E(t)γ

(
1− e−ν·S(t)

)
Analogy with Beer law and LUE models:

Q(t) = E(t) · µ · Sp ·
(

1− e−k· S(t)
Sp

)
Sp/k, µSp: parameters of the parametric equation;

Production independent of the plant topology.
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Interactions topology-physiology

Biomass remobilization at organ senescence

Mass of organ of CA n after the end of its expansion (n ≥ Texp) :
∀n ≥ Texp + Te, q(n) = qmax

(
1− F ·

(
1− (1− k)n−Te−Texp

))

[Data Rice Zheng BangYou, CAU]

Te: beginning of emptying after end of
expansion
F : proportion of emptying

k: speed of emptying
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Interactions topology-physiology

Allocation to secondary growth: global demand

3 modes to compute the global demand for ring growth:
1 Pipes.

Ring demand proportional to numbers of
leaves Na(t).

Dring (t) =
(

P rg
0 + P rg

1 ·
Q(t)
D(t)

)
· Na(t)

[Shinozaki et al., 1964]

2 Mode Q/D. Ring demand determined by the plant trophic

state Q/D: Dring (t) = P rg
0 + P rg

1 ·
(

Q(t)
D(t)

)γ
If γ 6= 1, the plant demand is solution of :
D = D0 + D1 ·

(
Q
D

)
+ D2 ·

(
Q
D

)γ
3 Mode Q. Ring demand determined by the plant production

Q: Dring (t) = P rg
0 + P rg

1 · Q(t)

P rg
0 and P rg

1 are parameters to identify.
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Interactions topology-physiology

Secondary growth: allocation sub-model

Pressler law and limitations

=⇒ Ring biomass increment of phytomer of physiological age p,
chronological age n, at growth cycle t:

qrg
p (n, t) =

(
1−λ

DPool (t) +
λ·Na,a

p (n,t)
DPressler (t)

)
· prg

p · lp(n, t) · Qring (t)

with: DPool (t) =
∑Pm

p=1

∑t
n=1 Nm

p (n, t) · prg
p · lp(n, t),

DPressler (t) =
∑Pm

p=1

∑t
n=1 Nm

p (n, t) · Na,a
p (n, t) · prg

p · lp(n, t)

λ ∈ [0; 1].

Na,a
p (n, t): Number of active leaves located above the phytomer of

PA p and CA n at GC n.
prg

p : linear sink strength of ring growth for phytomers of PA p.
Nm

p (n, t): number of phytomers of PA p and CA n at GC n.
lp(n, t): length of phytomers of PA p and CA n at GC n.16/41
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Interactions topology-physiology

Feedback interaction of physiology on topology

Simulation of plant architectural plasticity in response to
environmental or ontogenic changes (GL3) :
upq = f1(Q

D ), bpq = f2(Q
D )

[Mathieu, 2006]
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Limit production of the model

Analytical studies

Dynamic system for biomass production: Qt = f (Qt−1, ...Qt−ta)
with ta: functioning duration of leaves.

Q(t) = E(t)µSp

[
1− exp

(
−k

eSp
·

ta∑
i=1

Pm∑
k=1

Na
k (t − i + 1)Pa

k ·
i∑

j=1

φa(j) · Qt−(i−j)−1

Dt−(i−j)−1

)]

Na
k (t): number of PA k leaves appeared at GC t; Pa

k · φ
a(j): sink strength variation

of PA k leaves at CA j ; e: SLW

(Case of negligible resistances of internodes)

=⇒ analysis of limit behaviour.

Limit production and architectural models

Limit production with D independent of Q

Limit production with D function of Q
=⇒ Influence of global demand mode for ring growth

Influence of the value of leaf functioning duration
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Limit production of the model

Limit production

The production is bounded:∀t, Q(t) ≤ E (t)µSp

Case D independent of Q

The limit production is solution of : Q∞ = A(1− e−B·Q∞)
where A = E∞ · µ · Sp depends on the environmental conditions

and B = k
eSp

∑ta
i=1

∑i
j=1 φ

a(j) ·
∑Pm

k=1 Pa
k ·
(

Na
k

D

)
∞

depends on the

plant topology.

Solution if AB > 1: Q∞ = A + 1
B ·W0

(
−AB · e−AB

)
where W0 is the

principal branch of the Lambert function

Lambert function = multivalued inverse function of h(x) = xex .
Approximations of W0 given by truncations of its Taylor serie:

∀|x | < 1

e
, W0(x) =

∑∞
n=1

(−n)n−1

n! xn.
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Limit production of the model

Limit production for Corner and Leeuwenberg models

Values of B indicate the performance of architectural models:

BCorner =
k · Pa

e · Sp

2

Pa + P i
= 0.033, BLee =

kPa

e · Sp(Pa + P i )

(
3M2 + 2M + 1

M2 + M + 1

)
= 0.04
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Conditions for invariances of biomass production with different topologies

Invariances of biomass production

Invariances with topological changes

Is it possible to identify topological parameters from data on
biomass ?

Conditions for similar production sequences for plants with
different topologies:

Immediate expansion (texp = 1), Pm = 1, no rings (or ring

demand proportional to the number of leaves and a constant

number of leaves)

Expansion duration for several cycles (texp ≥ 1), Pm = 1 and
same sink variation shape for all organs, if:

Leaf functioning is infinite
or: Leaf senescence is progressive: every unit of leaf biomass
remains active during exactly ta growth cycles.

=⇒ Possible difficulties to identify.
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Conditions for invariances of biomass production with different topologies

Invariances of biomass production

Q(t) = EµSp

(
1− exp

(
− k

eSp
· Pa

Pa + k iP i + k f P f

ta∑
i=1

Q(t − i)

))
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Procedure

Procedure

Objective criteria Y ∈ Rn = observed data ; F = model.
Estimator Û minimizing J =t (Y − F (U))Ω(Y − F (U)) with

Ωi =
∑ni

j=1 yi,j−ŷi,j

ni
· n

n−p

Generalized Least Squares Algorithm + Heuristic algorithms
for discrete optimization: simulated annealing, particle swarm
optimization.

Parameters: Ỹ = F (Pt ,P
′
t ,Pf ,P

′
f )

Pt : topological parameters to fit (e.g. GL2 probabilities, GL3

coefficients)

P ′t : observed topological parameters (e.g. GL1 number of

phytomers per growth units)

Pf : functional parameters to fit (e.g. source parameters, sink

strengths)

P ′f : observed functional parameters (e.g. expansion durations,

SLW)

24/41



Introduction Model Analysis Parameter identification Perspectives

Procedure

Vector of observation data

Y consists of two kinds of data :

Biomass data = measurements of organ (or
compartment) weights and sizes.

Topology data = information on numbers of organs
and their hierarchical organization.

Multi-date fitting (several growth stages for the same
individual)
Multi-plant fitting (different individuals sharing the same
parameter values).
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Procedure

Applications and experimental protocol

Plants analyzed with complete set of data:

Young chinese pines [Guo Hong, Hong

LingXia, CAF]

Rice [Zheng BangYou, CAU]

Cotton trees [Li Dong, CAU]

Tomato [Zhang BaoGui, CAU]

Cecropia sciadophylla [Patrick Heuret, Camilo

Zalamea, AMAP]

6 persons
one week
=⇒ 1050 metamers measured

Heavy protocol.
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Multi-scale data aggregation

Different levels of data aggregation

Regarding biomass data, 3 levels of data aggregation were
considered:
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Multi-scale data aggregation

Different levels of topological description

T2 Topology fully observed: no topological parameters to fit
(dim Pt = 0), GL1: e.g. Arabidopsis thaliana [A. Christophe,

LEPSE], pinus tabulaeformis

Numbers of phytomers
Axis av. observed nb std dev simulated nb

Axis 1 (top) 4.1 0.3 4
Axis 2 4.8 1.0 5
Axis 3 6.2 0.4 6
Axis 4 6.5 1.0 7
Axis 5 6.4 1.0 8

T1 Topological data = mean and variance of numbers of organs,
topological parameters to fit Pt = GL2 probabilities: Wheat
with tillers, Cotton tree [Li Dong, CAU]

T0 No topological data: default botanical rules (P ′t), topological
parameters to fit Pt = GL3 coefficients (using biomass data
only): Beech tree
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Multi-scale data aggregation

GL1. Targets for adult Chinese pine [Guo Hong, CAF].

Two kinds of target formats: Fitting results:

Param. Meaning Values
Complete target Rattle target

R1 = 1/µ Needle resistance 7.4 7.6
Prg

1 Cambial sink (mode Q) 0.037 0.038
λ Leaf influence 0.57 0.59

on ring biomass partitioning young pines: 0.14
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Multi-scale data aggregation

GL2. Parameter identification of stochastic development

Application to wheat with tillers [Data from Wageningen University,

Kang MengZhen]

Procedure:

Topological data: means and variances of numbers of organs
=⇒ topological parameters (probabilities of apical growth, branching,

apical death, fruit abortion)

using the expression of theoretical demand expectation:
Dth(t) =

∑
o organ

∑Pm
p=1

∑t
n=1 (MS

p
1 (n,n) −MS

p
1 (n−1,n−1))︸ ︷︷ ︸ ·Po

p (t − n + 1)

M
S

1,1
n

=
pC

(
1− pn

C

)
1− PC

· pA · µ · pI : Expectation of numbers of organs

Computing the plant production from the theoretical demand
expectation.

Compartment mass at different growth cycles =⇒ parameters
of theoretical mean biomass production.
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Multi-scale data aggregation

GL2. Parameter identification of stochastic development

Organ weights for branch tips only (sorted according to their
rank) =⇒ parameters of sink variation functions

E.g.: probability of apical growth. Problem = how to relate
phytomer ranks to their chronological ages ?
Yi = stochastic variable of weight of rank i organ,

Wk = weights of organs appeared at GC k (i ≤ k ≤ t):

E(Yi ) =
t∑

k=i

C i−1
k−1ai (1− a)k−i ·Wk (t)

Results :
Parameter PA 1 PA 2 PA 3
Apical growth proba 1 0.86 0.80
Fruit proba 1 0.81 0.50

Mean Numbers Internode compartment Internodes at branch tips
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Multi-scale data aggregation

GL3 topology

Two beech trees (21 and 46 GC) [data from LERFoB, Thiéry Constant]

Default topology from botanical analysis :

Fitting of GL3 development parameters:
Total number of new axes apq(t) appearing on zones Zpq

instead of numbers of axes per growth unit:

apq(t) =
[
Npq(t) ·

(
A1

pq + A2
pq · Q

D (t)
)]
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Multi-scale data aggregation

GL3 topology

Fitting results: trunk

Problem: several solutions, parameter significance.
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Multi-scale model aggregation

Model aggregation

Meta-organ : ω : S̃t → Ωt

Conservation of key-variables

Total biomass production of the plant at every growth cycle

Allocation to biomass compartments

Trunk description
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Multi-scale model aggregation

Conservation of key-variables

Expansion is immediate for all organs (texp = 1)

Leaf functioning time is one growth cycle (ta = 1)

SBM (specific blade mass) does not depend on leaf position in trees

ω = ω(Sp(n, t)):
Conservation of biomass production:

Sω = meta-organ blade surface (=
∑

i∈Sp(n,t) Si (t)).

Q(t) = E (t) · µ · Sp ·

1− e
−k·

Sω(t)

Sp

 =⇒ same equation.
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Multi-scale model aggregation

Biomass allocation

Rattle level:
Meta-organ sinks for
primary growth:

P i
ω =

Pm∑
k=p

[ψ′i (Sp(n, t))][k] · P i
k

Pa
ω =

Pm∑
k=p

[ψ′a(Sp(n, t))][k] · Pa
k

From compartment data:
∀n ∈ {1..d}, ∀k ∈ {1..Pm},

P i
ω(Sk(n, d)) =

W i
k(n, d)

W a
k (0, d)

Pa
ω(Sk(n, d)) =

W a
k (n, d)

W a
k (0, d)
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Multi-scale model aggregation

Biomass allocation

Same method for allocation to ring compartment but more complex
expressions.

GL3 buds:



B1
p,ω =

Pm∑
k=p

Pm∑
q=k

ψω [p][q] · Ppb
q · min{bpb

pq(t), bB1
pqc}

B2
p,ω =

Pm∑
k=p

Pm∑
q=k

ψω [p][q] · Ppb
q ·

(
bpb
pq(t)− bB1

pqc
)+

maxp, q

{
bpb
pq(t)− B1

pq

B2
pq

}

=⇒ perspectives for simplified models:

GL1 potential topology and meta-organ default primary sinks

active meta-organ sink: Pω = Pω,GL1 · (B1
p · qb

ω(t − 1) + B2
p · Q

D (t))

allocation to meta-organ ring compartment: similar equation.

=⇒ No equivalences but consistent with the GreenLab approach.
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Perspectives: fields of applications

Stand simulation, functional
lanscape

Biomechanics

QTL detection
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Merci de votre attention !
Thanks for your attention !
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