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Mathématiques pour l’Industrie et la Physique
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Université Paul Sabatier - 118 route de Narbonne - 31062 Toulouse Cedex 4



ii



Remerciements
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Résumé : La conception d’avions au stade avant-projet consiste à déterminer les princi-
pales caractéristiques d’un avion répondant à un cahier des charges donné. Ces études peuvent
être résumées par des problèmes d’optimisation globale sous contraintes avec typiquement un
millier de paramètres et presque autant de contraintes. Les contraintes expriment la faisabilité
physique ainsi que le cahier des charges à respecter, et les objectifs sont des performances de
l’avion guidées par des études de marché. De plus, le conception d’avions est un problème
d’optimisation multicritère du fait de la présence de fonctions objectifs antagonistes.

L’objectif de cette thèse est d’introduire de nouvelles méthodes mathématiques qui peu-
vent être utiles dans un outil de dimensionnement avant-projet pour résoudre le problème
d’optimisation d’une configuration d’avion. Nous avons contribué à l’amélioration des métho-
des d’optimisation qui sont couramment utilisées au département des Avant-Projets d’Airbus.
En utilisant les algorithmes génétiques, nous avons rendu le processus d’optimisation mono-
critère plus robuste. Ensuite, nous avons introduit des méthodes d’optimisation multicritère
car nous avions plusieurs critères conflictuels à considérer. Comme les temps de calcul sont
devenus importants, nous avons décidé de substituer au modèle d’avion un modèle approché.
Nous avons implémenté les fonctions à base radiale pour approcher les contraintes et les
fonctions objectifs. Enfin, nous avons propagé les incertitudes du modèle pour estimer la
robustesse des résultats de l’optimisation et nous avons proposé un aboutissement possible
de l’intégration de ces techniques : donner aux ingénieurs une perception opérationnelle de
l’espace de définition.
Mots-clés : Conception d’avions, optimisation multidisciplinaire et multicritère, approxi-
mation par un modèle de substitution, propagation d’incertitudes, aide à la décision.

Abstract: Aircraft sizing studies consist in determining the main characteristics of an
aircraft starting from a set of requirements. These studies can be summarized as global cons-
trained optimisation problems with typically one thousand parameters and almost as many
constraints. The constraints express physical feasibility and the requirements to be satisfied,
and the objectives are market driven performances of the aircraft. Moreover, aircraft sizing
is typically a multicriteria optimisation problem because of some competing objectives.

The aim of this thesis is to introduce new mathematical methods that can be useful
in a future project sizing tool to treat the aircraft configuration optimisation problem. We
contributed in improving the optimisation methods that are currently used in the Airbus
Future Project Office. By using genetic algorithms, we made the mono-criterion optimisation
process more robust. Then, we introduced multicriteria optimisation methods because we
had several conflicting criteria to consider. As the calculation times became important, we
decided to substitute the aircraft model by a surrogate model. We implemented radial basis
functions to approximate the constraint and the objective functions. Finally, we propagated
the model uncertainty to assess the robustness of the optimisation results and we proposed a
possible outcome of the integration of these different techniques in order to yield the engineers
a global and operational perception of the design space.
Keywords: Aircraft sizing, multidisciplinary and multicriteria optimisation, surrogate
model approximation, uncertainty propagation, help in decision making.
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Introduction

This Ph.D. work (called “thèse CIFRE1”) has been performed in collaboration with Airbus
France, at the Future Project Office. The role of the Future Project Office is to define the
conceptual and the preliminary design of military or civil transport aircraft. The main objec-
tive of this phase is to define and study an aircraft configuration, which will be frozen prior
to pursuing more detailed studies. To summarize, the role of the Future Project Office is to
perform aircraft sizing.

Generally, this first phase in designing an aircraft starts by a series of iterations
between target market predictions, strategic choices, and proposed technical solutions. These
iterations allow to determine the requirements and the objectives that the future aircraft
will have to fulfill. The role of the Future Project Office consists in providing the general
characteristics of an aircraft configuration that meets these requirements and objectives at
best. After this first phase, the configuration is given to the specialised departments that
work on the detailed design of the aircraft.

The difficulties that occur when designing an aircraft are that aircraft sizing is intrinsically:

• an inverse problem. The performances, given in the requirements and the objectives,
can be calculated once the aircraft geometry and characteristics are known.

• a multidisciplinary problem. There are several disciplines involved in the definition of
the aircraft, like the aerodynamics, the structure, the weights, the noise, the flight
handling qualities, ...

• a multiobjective optimisation problem. Indeed, the ideal best aircraft configuration is
the one having the minimum weight, while ensuring the best flight performances and
being the less expensive to produce.

Moreover, future project studies aim at defining not only one new configuration of
aircraft, but several configurations of aircraft that are sharing some components, like the
wing for instance. This means that aircraft sizing studies lead to the definition of an aircraft
family, the aim being to reduce development costs, or to increase the covering of the market
shared by wider products.

The Future Project tool used for sizing is able to handle some of these difficulties. It is an
open environment that allows to plug models that represent the different disciplines needed

1CIFRE means in french Convention Industrielle de Formation par la REcherche
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to calculate the performances of the aircraft, and it is also able to manage any direct or
reverse calculation of any input or output scalar variable. Thus, this tool is able to deal with
the multidisciplinary aspect and the inverse problem of aircraft sizing studies.

The objective of this study is to introduce new mathematical methods that can be useful
in a future project design tool. These methods mainly aim at:

• making the current optimisation process more robust,

• solving the multiobjective part of the aircraft sizing problem,

• reducing the calculation times by replacing the functions by a surrogate model,

• introducing the notion of uncertainty in the design process,

• and introducing mathematical tools that can be helpful to make decisions.

The first chapter of this manuscript consists in describing in more details what is the
role of the Future Project Office, the process of designing a new configuration of aircraft and
the models that are currently used in that purpose.

The second chapter describes the method we developed to improve the global optimisa-
tion processes in the current FPO tool. Indeed, it offers the possibility to use commercial
optimisation methods, but most of the time, the optimisation problem is too complicated
to be solved in one optimisation calculation. The problem has to be simplified before being
solved by the commercial optimisers. For instance, only one objective is optimised, and this
objective is a weighted sum of all the objectives that are needed to be optimised concurrently.
Moreover, the constraints reduce the design space in such a way that the optimisation fre-
quently fails because of non-admissible points that the process is not able to calculate. Thus,
the optimisation as it is currently performed is not robust.

We decided to first work on the mono-objective problem, the one currently treated
by the Future Project Office engineers, by introducing a more robust process. The aim
is to implement evolutionary algorithms to enhance the current global multidisciplinary
optimisations. Indeed, we identify that the failures of the optimisation processes are
due to the difficulty to find feasible points. Thus, before performing any optimisation,
we want to identify a large amount of points satisfying the constraints, and then to re-
duce the design space to the admissible space, which will improve the convergence robustness.

After improving the robustness of the mono-objective problem, we decided to treat
the problem as a multiobjective problem. Most of the time, the criterion to optimise in
future project studies is a function that is well-representative of the aircraft quality and
which integrates the impact of the operating costs. But the drawback in using this weighted
sum as the criterion of the optimisation is that the requirements can evolve during the
aircraft development. Thus, we also want to perform and validate multicriteria optimisation,
still using evolutionary algorithms. The aim is to be able to produce a set of compromise
solutions that are equivalent in solving the aircraft sizing process, to give the possibility to
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the decision-makers to make their choice on additional criteria that are more qualitative.
This is the topic of the third chapter.

When dealing with the multiobjective problem, we notice that the calculation time can
easily become too important, especially for a typical future project study, which has to be
reactive. As the whole problem is heavy and complex, we decided to introduce surrogate
models to replace the evaluation function in the optimisation process. These techniques
enable us to have an approximation of solutions in a shorter computation time. Once the
design point is close enough to the solutions, it is possible to have a better assessment by
using back the initial evaluation function. In chapter four, we present a short state-of-the-art
of approximation techniques before explaining the way we use some of them.

Concurrently to the introduction of multiobjective optimisation techniques, the other aim
of this study is to introduce the notion of uncertainty in the design process. We want to assess
the technical risks related to one particular configuration, and to improve the way to take
margins to ensure that the operational constraints are satisfied. Currently, the risk is assessed
thanks to the sensitivity analysis manually performed through Jacobian.

After defining precisely what we intend with these notions of risk, robustness and
uncertainty, because they do not exist in the vocabulary of designers of the Future Project
Office yet, we introduce in the chapter five some methods to propagate the model structure
uncertainty to the output of the system. Then, we tested one of these methods and compared
the results obtained in a deterministic study with the results when we take the uncertainty
into account.

In this last chapter, we also introduced a mean to help the users in understanding and
dealing with the results that the methods we developed can produce. The idea was to inscribe
an ellipsoid inside the feasible set to assess the volume and the shape of this set, and to
determine the centre of a given ellipsoid that minimises one criterion. These ellipsoids give
some information about the correlations between the design variables, or they model the
freedom or the uncertainty that we allow around design points.
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1.1 Future Project Office role

Defining a commercial transport aircraft is a complex process (described in [Pacull, 1990],
and in [Torenbeek, 1982]) because of industrial aspects, of the increasing number of involved
partners in a concurrent engineering process, or because of safety constraints.

The development of new airliners has always been stimulated mainly by the growth of
the traffic volume and the improvement of technical and operational standards [Torenbeek,
1982]. Growth in air traffic stems from:

• reduction of fares,

• improved quality of the aircraft (speed, comfort),

• increased business activity and growth of private incomes,

• aircraft capacity growth,

• increasing number of routes,

• increasing frequency on existing routes,

• greater utilization of aircraft and ground facilities.

Aircraft design process can be split into two main phases, the “future project” phase,
going from milestone M1 to M5 in the figure 1.1, and the “project” phase, from M5 to M13.

Figure 1.1: Milestones of a project
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Definition 1.1. [Schumann-Hindenberg, 2001]

A milestone is a significant event in a project, usually the completion of a major delive-
rable (in any case an end event of an activity). It has the character of a decision point until
the end of the definition phase (or Launch if before) and a target date subsequently.

The main objective of the first phase is to define and study an aircraft configuration,
which will be, more or less, frozen prior to pursuing more detailed studies.

Definition 1.2. [Torenbeek, 1982]

The expression configuration refers to the general layout, the external shape, dimensions
and other relevant characteristics.

Thus, the “future project” phase consists in a series of iterations between target market
predictions, strategic choices, and proposed technical solutions.

When a project gets mature enough from a commercial and technical point of view, but
also from an industrial and financial point of view, the“project”phase, or development phase,
starts. More detailed studies are performed to obtain the complete definition of the product,
and also the industrial means necessary for its manufacturing are determined.

This second phase is ended by flight tests, certification and finally by the delivery of the
aircraft to the airlines.

Remark 1.1. Any modifications in the “project” phase have a high impact on costs. This
emphasizes the role of the earlier phases to collect airlines needs and to propose an aircraft
configuration answering these requirements.

In the thesis, we will focus on conceptual and preliminary technical studies which
contribute in defining a future project of aircraft.

The conceptual design consists in investigating the viability of the project and obtaining
a first impression of its most important characteristics [Torenbeek, 1982]. The main products
of conceptual design are geometric description, configuration layout and drawings.

Then, the design obtained in conceptual studies that has scored the highest rating will
be elaborated in greater detail in the preliminary design phase [Torenbeek, 1982]. This phase
will detail research on the global aircraft, and will end when the configuration is sufficiently
accurate for pursuing developments.

Future Project Office, further denoted as FPO, plays an important role in the first
phase of an aircraft definition process, mainly working on the conceptual and the preliminary
design of the configuration. It provides the general characteristics of the aircraft to meet
requirements at best, it gives an initial configuration as a common starting point to the
specialised departements for the detailed studies, and then, during the development phase,
it links the different departments to ease collaborative work.
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Figure 1.2: Diagram of a future project study
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The general process leading to the definition of future project of aircraft is described on
figure 1.2.

The objective is to define the main characteristics of an aircraft to meet the already
established set of requirements (range, number of passengers, etc.). Obviously, several con-
figurations can satisfy a given set of requirements. Thus, it is necessary to define a criterion
to determine which solution is the best-adapted to the problem.

Engineers have to find the best configuration in some sense, but what does best configu-
ration mean? This question is very important because the final result strongly depends on this
notion of optimality. So one of the first task when designing a new aircraft is the establishment
of design requirements and objectives.

1.1.1 Design objectives and requirements

The objectives are defined by the Marketing and the Product Strategy departments, and by
the aircraft program manager. They are for instance weights, fuel burn, operating costs, etc.

The design requirements are collected in the Top Level Aircraft Requirements, further
called TLARs. Specific design requirements are based on airline requirements, certification
requirements, and aircraft manufacturer policy (including competitors).

Detailed sets of requirements and objectives include specification of aircraft performance,
safety, reliability and maintainability, systems properties and performance, etc. TLARs and
objectives are used to formally document the project goals, to help designers in ensuring that
the final design meets the requirements, and to aid in future product development.

1.1.1.1 Focus on Top Level Aircraft Requirements (TLARs)

Choosing the TLARs is a very important step. All the aircraft characteristics result from
these requirements, thus it has consequences on its economics, on the acceptance of airlines,
and on its possibilities of future evolution. An example of evolution is the definition of new
members in a family of aircraft, based on one aircraft configuration. For instance, the A320
family:

• it started with the A320, the first flight was in 1987,

• then, the A321, launched in 1993,

• the A319, launched in 1995,

• the Airbus Corporate Jetliner, ACJ, launched in 1997,

• finally, the A318, launched in 1999.

All these aircraft were defined based on the A320 configuration (see figure 1.3).

Today, development costs are so expensive that, usually, a new study leads to the definition
of not only one new aircraft, but to a new aircraft family. Indeed, deriving an aircraft from
a basic one, depending on the market evolution, is much less expensive than defining each
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Figure 1.3: A320 family in formation

time an entirely new configuration, due to commonality of some components, like the wing
aerodynamic shape, the forward and rear part of fuselage, the systems, etc. The price to
pay is that the derived aircraft is theoretically sub-optimal from a pure performance point of
view. But a loss on one performance criterion will maybe provide a gain on another criterion,
development cost for instance, with common components of several configurations.

The figure 1.4 is an illustration of member positionning of a family to cover a large range
of needs of the airliners.

All these considerations should be taken into account while elaborating requirements (see
in [Pacull, 1990], chapter XI).

1.1.1.2 Choosing TLARs, functional point of view

The functional objective of a commercial aircraft is to transport some payload (cargo or
passengers) from one point to another on the earth. The difference with other transportation
means is that it is through the air. The main reason is the higher travelling speed than the
one permitted on the ground, because of friction removal, and also because of the decrease
of the air density with altitude. Travelling in the air has some consequences, like noise, costs,
safety complexity, or complicated physical phenomena to take into account when designing
a product.
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Figure 1.4: Family positionning
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1.1.1.3 Choosing TLARs, airlines point of view

Each airline has its own needs, but the common ones are related to the transportation of
passengers. They are for instance:

• Number of passengers,

• Comfort standard,

• Cargo capacity,

• Range,

• Cruise speed,

• Specific routes, linking cities pairs,

• Direct Operating Cost, (further denoted as DOC)

• Noise,

• Maintenance, etc.

Airlines are looking for aircraft satisfying their needs at best and allowing them to make
the maximum profits, which means both minimise operational costs and justify a ticket
price as high as possible with good services (new technologies to ensure maximum comfort,
maximum speed, etc).

The aim of the airlines is to be competitive, thus they want to fill a short fall of their
operational network, in range or in payload, in a short-middle term.

1.1.1.4 Choosing TLARs, manufacturer point of view

The problem is quite different from the manufacturer point of view. Short term has its
importance because it is directly related to the program launch and to first aircraft sales.

The manufacturer has always to optimise the product, which has to contain some of the
latest technologies, and to be the less expensive, thus it means minimising both Non Recurring
Costs (further called NRC), which come from the engineering, and Recurring Costs (further
denoted RC), coming from the manufacturing.

Moreover, the manufacturer has to find a configuration that can be suitable for a large
number of customers, by diversifying the products, and widening the customer network (see
figure 1.5).

Furthermore, long term studies carry more difficulties. Indeed, typical time durations for
a new aircraft program are:

• Five or six years for preliminary studies,

• Four years for the development phase,
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Figure 1.5: Market positionning

• Five years of production for first aircraft,

• Thirty years of operating.

So the total life time for an aircraft is close to fifty years (see figure 1.6).

For the manufacturer, the requirements are to sell a maximum of aircraft, and to produce
them with minimum costs.

More requirements, used to translate the airline requirements, are added to those listed
previously. They are related to the aircraft operational performances:

• Low speed performances (for instance, take-off performance sometimes limits payload),

• Time duration of a typical mission,

• Operational limitations,

• Number of engines, etc.

This kind of requirements is used to translate the requirements of the airlines, which
are to transport the maximum payload with minimum costs. This means for instance to
decrease operational costs in minimising the flight time, or maintenance costs, two engines
are less expensive to maintain than four engines, etc.

Many other design requirements, related to safety, are also specified by the Federal
Air Regulations (FAR) in the U.S. or the Joint Airworthiness Requirements (JAR) in Europe.
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Figure 1.6: Life cycle of an aircraft
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When engineers face these considerations, they have two complementary ways of working
to define the first new configuration:

• Iterations considering market studies and contact with airlines is one way, oriented
towards short-term studies to target the airline future needs.

• The other is to take into account future evolutions of the requirements in the first
version of the configuration specifications, to allow family development.

1.1.2 Multidisciplinary aspects

A multidisciplinary problem appears when two, or more, disciplines are involved to collaborate
on achieving a common goal, with their own know-how and skills. The final result involving
all different disciplines is globally better than when disciplines are considered sequentially,
because interactions between disciplines are taken into account.

When defining a new aircraft, the manufacturer wants it to be the less expensive (in
producing and operating), the fastest, the most comfortable and also the simplest, the
lightest, having the best aerodynamic design. But one cannot make everything best at once.
The less expensive aircraft would surely not be the fastest, the most efficient would not be
the most comfortable. Similarly, the best aerodynamic design is rather different from the
best structural design, so that the best overall airplane is always a compromise in some sense
(see figure 1.7).

The compromise is made in a rational way, provided the right measure of the aircraft
quality is used. This choice allows to select the aircraft fundamental parameters. Various
quantities have been used for this purpose, including those listed below:

• Empty weight,

• Maximum take-off weight, (further denoted MTOW)

• Fuel consumption,

• Cash operating cost,

• Direct operating cost,

• Return on investment, etc.

MTOW has always been a significant parameter to consider to represent the aircraft
quality because it has a direct impact on costs. But with the increase of fuel price, MTOW
is not as relevant as it used to be. Indeed, to minimise the fuel consumption, a decrease
of 2% on mass has roughly the same impact than a decrease of 1% on drag. But engineers
have to yield a great effort to improve aerodynamic properties because they are already
well-optimised, whereas a decrease mass is easier for the engineers, by using composite for
instance. Thus, the right measure of the aircraft quality has to take all these characteristics
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Figure 1.7: Caricatural optimal configuration for each discipline [Nicolai, 1975]
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into account.

Currently, direct operating costs, DOCs, are considered as more representative of the air-
craft quality because they integrate in the same variable the impact of fuel cost, maintenance,
crew or taxes.

DOCs are expressed for a given mission in dollars per flight, or in dollars per nautical
mile, further denoted NM, per passenger (one nautical mile is equal to 1852 meters). The
main data contributing to the DOCs are (see in [Pacull, 1990], chapter IX):

• Fuel burn,

• Maintenance (of components and engines),

• Crew (technical crew and commercial crew),

• Depreciation,

• Interest,

• Insurance,

• Taxes (landing taxes and traffic taxes).

DOCs are a weighted sum of the data listed above, the weights depend on the airlines,
on the aircraft and its operation, on fuel price, etc.

As there are several ways to define a DOC, the optimisation of mission variables leads to
different results depending on the chosen DOC.

Today, direct operating costs are widely used as a measure of the aircraft quality.

1.1.2.1 Multidisciplinary issues

Once we have agreed on the definition of optimality, we must find a way of linking the design
variables to the goals. For aircraft design, this process is extremely complex. The number
of parameters needed to completely specify an aircraft like the A380 is astronomical and
difficult to assess, somewhere between 107 and 109. So one uses a combination of experience,
approximation, and statistical information on similar aircraft, to reduce the number of de-
sign variables to a reasonable number. This may range from 1 or 2 for back-of-the-envelope
feasibility studies to hundreds or even thousands of variables in the case of computer-aided
optimisation studies.

Even when the studied situation, mission simulation for instance, is simplified, the earth
is considered as flat, the model is usually complicated. One must generally use a hierarchy
of analysis tools ranging from the simplest to some rather detailed methods. For instance,
concerning aerodynamic efficiency, you can have three levels of formulation:

• a single line formula,
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• a lifting line in 2 dimensions,

• a Computational Fluid Dynamics, further called CFD (for steady and unsteady simu-
lations).

1.1.2.2 Influence on design

One of the most important part of the design process is the conceptual design phase. This
involves deciding on just what topology will be used to describe the design. Will this be a
flying wing? A twin-fuselage airplane? Often, designers develop several competing concepts
and try to develop each in some details. The final concept is “down-selected” and studied in
more details (see figure 1.8).

Figure 1.8: Example of unconventional aircraft configurations

For a given concept, in addition to the discrete parameters, the aircraft can be represented
through a reduced number of continuous parameters, generally related to the main charac-
teristics of the aircraft: the engine size and thrust, the wing area, the wing sweep angle, the
wing span, the fuselage length, or the empennage area.

Geometry is then specified in the preliminary design phase, allowing to assess aerodynami-
cal characteristics of the aircraft. In parallel, weight estimation can be performed. Finally,
low speed performances, for take-off or landing phases, and operating cost are calculated.
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1.1.3 Design iteration and optimisation

There are several methods used by engineers to choose the design variable values leading
to an “optimal” design. In a general way, designing and defining an initial topology of an
economical and physical system is a five step process. In this process, engineers take into
account that this topology will be the basis of its own detailed definition and will lead to its
realisation:

1. defining fundamental variables modeling the essential behaviour of the system,

2. building a model accurate enough to allow a reliable representation of the variable
influence on the overall system,

3. defining a mean to measure the quality of the system which depends on these variables,

4. translating TLARs into operational constraints, or into imposed values of design pa-
rameters,

5. choosing variable values which lead to an “optimal” behaviour of the system, while
ensuring the system meets requirement constraints.

All of these methods require that many elementary analyses are carried out (often thou-
sands of times). The steps 1 and 2 are related to the complexity of the models. This requires
that the model is simplified to the point that it is fast enough, but still being meaningfull.
The number of variables is generally reduced as much as possible to keep the understanding
of physical phenomena, while being sophisticated enough to have a reliable representation
of reality. Compromise between simplicity and representativeness is difficult to find, and is
significant of the overall model quality.

Future project objective is to fix the main characteristics of the configuration which
will impact the final product, not to obtain a detailed definition of the system. This is a
justification to use simplified models, since they are fast in calculation time.

The steps 3, 4 and 5 lead the engineers to a new problem because finding a good general
criterion representating the system quality is difficult, and ensuring constraints satisfaction
is not always possible. Moreover, some considerations of importance are not always modeled
nor quantified. For example, designing an aircraft is made more complicated by considering
an aircraft family at once. This part of the work can be modeled as concept constraints or
operating specifications, but it is difficult to quantify.

Nevertheless, evaluations of a future project configuration are still analytic studies where
aircraft parameter values are modified. During this process, changing in general architecture
choices can be considered, or even changing in some constraints defined in requirements, the
aim being to assess their impact on the aircraft definition.
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1.2 Needs and motivations

Future project designs are the basis of every new Airbus product. The knowledge on these
new products at this stage is not detailed, but technical choices have a great influence on
operational and economical performances of the future product and also on difficulties that
may occur during the development phase.

1.2.1 Why do most of aircraft look like each other?

At the beginning of Aeronautic History, different kinds of aircraft configurations were built,
like on the figure 1.9.

Biplane The H-4 Hercules, a military seaplane
roughly as big as the A380, 1947

The Capronissimo, a nine wing seaplane, The Dornier DO-X, a 12 engine seaplane,
able to transport 100 passengers, 1921 able to transport 169 passengers, 1929

Figure 1.9: Examples of old aircraft configurations

To ensure its function of transporting payload from one point to another point of the
earth, an aircraft requires the cooperation of four basic functions (see in [Badufle, 2003]):
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• The transport function, ensured by the fuselage which is more or less a pressurised
tube with some accommodations inside to allow human life and activity during the
journey.

• The lift function, ensured by the wing which is a sort of plate beam whose position
in reference to the air velocity allows to create and control a force that will be used to
compensate for gravity and to achieve a desired trajectory.

• The propulsion function, ensured by the engines, is mainly dedicated to compensate
the drag created by the movement in the air and the lift force itself. Aside of this, engines
will also generate almost all forms of energy used in the aircraft, as the electricity inside
the cabin, or the air heating.

• The control function, mainly ensured by the tail surfaces attached to the rear
part of the fuselage, and also by aileron, etc, will provide an adequate control of the
position of the wing in reference to the air velocity. The aim is to control the force
generated by the wing that will be used to allow and control the airborne trajectory.

We can see that all functions are ensured by physically different parts of the aircraft. This
particular topology is the main characteristic of what is called a “classical configuration”
(see figure 1.10). It provides some uncoupling between the four functions, even though, some
interactions still exist.

Figure 1.10: Example of a classical configuration

Thus, the classical configuration is characterised by a cylindrical fuselage, a wing under
the fuselage, classical horizontal and vertical empennages, and two or four engines under the
wing. Actually, this configuration is the one providing the less couplings between the different
physics existing around an aircraft. There are other existing configurations answering the
four transportation needs described above. The flying wing is one example. The fuselage is
included in the wing, which is a delta wing, and there is no horizontal empennage. Thus,
the transport function, the lift function and the control function are all ensured by the same
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part of the aircraft: the “body” (see figure 1.11).

Figure 1.11: Comparison between a classical configuration and a flying wing

Interactions can be seen from two different points of view: operational and design.

The operational point of view deals with a fixed aircraft, it enlightens:

• Mechanical interactions: all parts are supposed to be rigidly linked so they exchange
mechanical energy,

• Aerodynamic interactions: tail surfaces are in the downwash of the wing.

The design point of view deals with a scalable “rubber” aircraft. Couplings are not only
operational but conceptual. Fuel volume and wing structural weight depend on the global
weight of the aircraft, more generally: most of internal weights are interdependent. Wing
and engine sizes also depend on the global weight through engine thrust and aerodynamic
efficiency.

A great proportion of the recent flying civil transport aircraft look like each other because
the classical configuration is supposedly the best, and it is the one which has been the most
studied, we have a better knowledge on it, we have more experimental data and also a better
know-how coming from experiments.

This configuration is the most studied because it is the known one that
minimises interactions between the four functions ensured by an aircraft. Thus,
the multidisciplinary problem is simpler to study for the classical configuration.
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The design process in FPO is based on a multidisciplinary optimisation which brings
in interaction physical aspects like Geometry, Aerodynamics, Weights, Structures, Acous-
tics, etc. The available characteristics at that phase are about one hundred variables, the
main parameters are related to:

• wing area and span,

• fuselage length and diameter,

• engine maximum thrust,

• landing gear size and location,

• tail area, etc.

These parameters represent a classical configuration, like on figures 1.12 and 1.13, a
cabin layout description and a three view chart.

Figure 1.12: Cabin definition of the A3XX project

Figure 1.13: Three view chart of the A3XX project

An aircraft is not only represented through its geometry, but also with its properties,
calculated thanks to models. These properties are mainly:
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• element weights (wing, fuselage, pylons, etc.),

• aerodynamic values (lift, drag, lift over drag, etc.),

• operational performances (range, take-off field length, landing field length, etc.),

• economical performances (costs, product positioning related to already existing
aircraft, etc.).

The following section is a description of these models.

1.2.2 Model description

Among all different physics interacting around an aircraft, the main two used to describe an
aircraft at future project phase are Aerodynamics and Weights. Thus, we need to introduce
the two following models:

• Aerodynamic model provides a relation between dynamic state of the aircraft and forces
applied on its surface by the ambiant air.

• Weights model provides a relation between external forces and the aircraft structure
able to support these forces, like the aerodynamic forces, the ground reaction or the
aircraft weight itself.

A complete description of all these models can be found in [Pacull, 1990; Torenbeek, 1982].
First, the data mainly needed to calculate these models are given through a geometrical

description of the aircraft.

1.2.2.1 Geometry model

The geometry parameterisation at future project phase is a reduced set of scalars (around 100)
and also some discrete values (like the number of engines). This is valid supposing some
regularities on the shape of the configuration.

The geometry is basically what can be represented on a three view drawing, like on
figure 1.14, containing all what can be determined at future project phase, except the seat
layout, which is not represented on the figure.

1.2.2.2 Aerodynamic model

For aerodynamic assessment, only the geometry of the external skin of the aircraft is
significant.

Aerodynamic phenomena are extremely sensitive to tiny geometry variations. Simplified
models cannot completely describe the external skin with the required accuracy. Hence, strong
hypotheses are integrated in the parametrical description of the geometry.
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Figure 1.14: Three view graph

Moreover, future project design cannot allow using heavy mesh-based methods to solve
the Navier-Stokes equations. Statistical methods are used because of time constraints and
of a low granularity of data. These semi-empirical methods are more precise if the studied
configuration is close to a known one, included in the statistical data base (see figure 1.15).
These statistical data bases contain a set of aircraft whose aerodynamic model is known
through flight tests, allowing for aerodynamic model matching.

Figure 1.15: Aerodynamic model

Concerning unconventional configurations, simple mesh-based methods, in 2 dimensions
or based on linear theory (see figure 1.16) can be used because they are more representative
of physical reality and because we do not have any statistical data base.
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Figure 1.16: Fluid dynamic light modeling with linear methods

1.2.2.3 Weights model

This model is based on structure description. We distinguish two kinds of structures, the
primary structure, which ensures the stiffness of the aircraft, and the secondary structure,
which contains all structural elements not necessary participating in the stiffness, but hanging
on the primary structure. The secondary structure participates in the external shape of the
aircraft, to ensure its aerodynamic performances for instance, or its controlling, like the slats
or the ailerons.

The figure 1.17 represents the different kinds of structures composing the wing. The grey
parts are included in the secondary structure while white parts are in the primary structure.
From the FPO point of view, the wing box is globally considered as a beam.

Figure 1.17: Different parts of the structure of a wing

In a general way, wing and fuselage primary structures are evaluated taking into account
the envelope of global efforts (weight, inertia, aerodynamic, propulsion) acting on a simplified
physical model of the structure. To get real weights, engineers use formulas translating some
particular industrial know-how. Secondary structures are directly assessed using statistical
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data base depending on relevant parameters. For instance, the following formula is used to
calculate the wing weight:

Mwing = (K1 Awing + K2) · Awing

+

(
K3 ·

1

Lref · tuc
· MTOW · span

cos(Φ)
+ K4

)
· MTOW · span

cos(Φ)

where:

• Mwing is the wing weight,

• Awing is the wing area,

• Lref is the reference length,

• tuc is the thickness upon chord ratio,

• MTOW is the maximum take-off weight,

• span is the wing span,

• phi is the wing sweep angle.

See on figure 1.18 for a graphical representation of these data:

Figure 1.18: Wing shape with its characteristic data

We can see that the wing weight increases when the maximum take-off weight, the wing
area, the wing span and the wing sweep angle increase, and when the reference length and
the thick upon chord ratio decrease.

The parameter agregation is coming from engineers know-how, and the coefficients Ki are
determined from statistical regressions.
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1.2.3 Design processes

The design processes have been established in order to ensure the main constraint satisfaction.
Their origin is strongly linked to skill domains of specialised departments. They are all based
on iterative research of a unique solution.

The four following processes are considered as the main ones in future project design.
They are:

• the Weights calculation for structure design,

• the Mass-Mission adaptation,

• the Optimisation to meet requirement constraints,

• the Optimisation constrained by flight handling quality.

They have been progressively nested into each other as computational performance in-
creased.

1.2.3.1 Weights calculation for structure design

This process is the central one. The origin of this process is the structural design domain.
In past studies, it used to be a statistical method in preliminary design to simplify the
calculations. Currently, the complete process which answers future project needs, involves
specific aerodynamic, kinematic and dynamic models.

The aim of the process is to minimise the material mass which is necessary to
ensure a sufficient stiffness to the structure, whatever flight conditions are, for a
configuration which maximum take-off weight is given (see figure 1.19).

Difficulty comes from aeroelastic phenomena, the structure geometry under loads is modi-
fied through deformations which depend on its internal stiffness, and these deformations
modify loads repartition in return.

Moreover, this structure has to be strong enough, and thus thick enough, to support
loads during the aircraft operation, knowing that these loads depend on the structure weight.

As an illustration of this snowball effect, we can say that an increase of the MTOW makes
the MTOW increase. Indeed, we have:

↗ MTOW =⇒ ↗ Mwing =⇒ ↗ MWE =⇒ ↗ MTOW
loads structure mission

where MWE is the manufacturer weight empty.

This coupling, deformation on one side and weight on the other side, is treated as two
iterative loops, one inside the other, acting on a flight simulation under high loads. The
whole process is included inside a systematic exploration of different flight cases aiming at
producing the loads envelope.

The same kind of process exists concerning the fuselage, without the loop on deformation.
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Figure 1.19: Mass loop
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1.2.3.2 Mass-Mission adaptation

This process is under FPO responsability. It is traditionally called the “Mass-Mission loop”.

The aim is to define the maximum take-off weight of the configuration according
to nominal payload and operational range, given by requirements.

This process combines for two aspects. Mission simulation for a given distance needs some
fuel quantity on board, which impacts the maximum take-off weight. And a given take-off
weight leads to a certain structure weight, which impacts take-off weight.

This problem is traditionally solved iteratively, as shown on figure 1.20 by the black arrow.
The Mission line represents the relation between range and MTOW, and the Structure line
stands for the relation between payload and MTOW. The solution is situated where the
two linear operational constraints are satisfied simultaneously. There is no need inside this
process to perform an optimisation, like a minimisation of errors, to find the solution, a formal
iterative resolution of a system is enough.

Figure 1.20: Mass-Mission loop

1.2.3.3 Optimisation under operational constraints

This process is based on know-how of the Operational Performance Department.

The aim is to define at the same time at least the wing area and the engine
thrust, while ensuring that the aircraft fulfills the required operational perfor-
mances. Some other parameters can be optimised within this process, such as landing gear
or control surfaces.

This process is based on a constrained optimisation, because most of the requirements
are expressed as operational constraints and involve both wing area and engine thrust (see
figure 1.21). Operational constraints are calculated as mission trajectories, or through flight
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simulations where the aircraft is represented by a point located at the aircraft centre of
gravity. An example of operational contraint is the approach speed, calculated through a
landing simulation, and it should be lower than the required value.

Figure 1.21: Optimisation loop

The main difficulty in this design process is to ensure constraint satisfaction. Indeed,
some constrained variables cannot be calculated while some constraints are not satisfied,
there is sometimes no numerical solution. For instance, for some large MTOW, it can even be
impossible to take-off, thus the take-off field length, TOFL, performance is not even evaluable.

This kind of issue appeared when engineers first built their multidisciplinary integrated
tool. To avoid it, engineers have to find an initial point close enough to the solution, or to
reduce the research space.

This optimisation loop contains the mass-mission loop, which also contains the structure
double loop.

Remark 1.2. The wing area and the engine thrust are the most sensitive parameters acting
on the aircraft performances. They are always degrees of freedom in any constrained optimi-
sation. But some other parameters of importance, as the wing sweep angle or the wing span,
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can be degrees of freedom of the optimisation. Thus, with an increasing number of degrees
of freedom, the convergence may be more difficult, slower, or can even fail.

1.2.3.4 Optimisation under flight handling quality constraints

This process is based on know-how of Handling Quality Department.

The aim in FPO is to define at the same time empennage areas and longitudinal
position of the wing, ensuring the aircraft equilibrium and that the aircraft is
able to manoeuvre safely.

Most of handling quality constraints are simulations with strong dynamics, which need
a large amount of data. It is generally not available in future project studies. Thus, this
optimisation is based on knowledge of a particular kind of configuration.

Figure 1.22: Flight handling quality loop

The figure 1.22 is an illustration of this process. It is called a “cissor diagram”. As the
position of the centre of gravity is changing with the different way to load the aircraft, each
linear constraint expresses a limited position for the aircraft centre of gravity, beyond which
the constraints of equilibrium or of manoeuvrability, are not satisfied anymore.

All the loadings cases give the range of the centre of gravity. If the required range is bigger
than the possible one, the empennage area should be increased and the wing moved. These
changes modify the diagram and repeting this step will make the process converge.
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The aircraft is optimised when the cissors on the figure are tangent to all the necessary
position range of the centre of gravity. Moreover, this overall process is performed under the
condition to minimise the MTOW, i.e. empennage size in this context.

1.2.3.5 General considerations on design processes

The figure 1.23 is an illustration of the way the processes are nested. To calculate the aero-
dynamic variables, we mainly need to know the geometry. To calculate the structure weights,
we need to know the areodynamics, but it is not enough. We also need to know the MTOW,
which is calculated in the Mass-Mission loop.

The same scenario is repeated in the last two loops (as shown in figure 1.23).

Figure 1.23: Design process organisation

To summarize, the geometry is necessary to calculate aerodynamic properties, which allow
then to assess weights when you suppose the MTOW known. Then, you can calculate the
performances of the aircraft and verify constraints are satisfied, and finally, the configuration
is optimised under flight handling quality constraints.

Each stage of this process has to iterate several times before convergence, for instance on
figure 1.23, are estimated the iteration times of each loop, with 8 times for the mass-mission
loop for example. Finally, if the complete process is launched, it will require about 215 cal-
culations of the geometry, which means more than 32700 calculations. But this estimation
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of the number of calculations is a very rough order of magnitude.

This organisation has emerged from the knowledge engineers had on the problem. It has
been developed because of the need to answer the problem of designing an aircraft, but if
you only consider the mathematical equations, the complete system can be solved using a
different organisation of the equations. This organisation is an inheritance of the skill and
knowledge cut-out in the design office, of the models construction and of current mathematical
tools. But it may not be adapted for an exotic configuration, like the flying wing, because
more couplings appear (like between the performance optimisation and the handling quality
optimisation).

1.2.3.6 Conclusion on design processes

The four processes that we explained previously enable engineers to find values of the main
parameters of the aircraft configuration, like maximum take-off weight, lifting surfaces areas
or engine thrust. Many combinations of values for the design parameters are tested, and the
frozen configuration, prior to more detailed studies, will be the one optimising the chosen
criterion, or will be a compromise between several criteria.

Remark 1.3. The interweaving of the four processes leads quickly to a huge number of
calculations of the most internal process. The main consequence is an increase of calculation
time which is not admissible from the designer point of view.

Remark 1.4. The global resolution is not very stable because of the evaluation of configura-
tions which do not satisfy intrinsic constraints of some methods. Thus, these configurations
have some variables that are not calculable and in these cases, the global resolution fails. For
any optimisation loop, the information is lost because the current optimisation process is a
simple point iteration.

Remark 1.5. Experiment shows that the current criterion, a DOC, does not vary much
around optimal points, the optima are flat, thus, engineers are looking for complementary
means to classify solutions.

1.2.4 Known issues with the existing processes

1.2.4.1 Convergence of internal resolution processes

The first source of problems comes from the internal resolutions contained in the design
processes, which are used to ensure the satisfaction of an internal equality constraint for
example.

The numerical exploration of the design space leads to try to evaluate some properties of
configurations which are meaningless physically speaking, for instance when the engine size
and the lifting area are too small to be able to take off at a given weight. The consequence
is to make the convergence fail in internal processes.
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An example of an internal process is the mission calculation in the Mass-Mission adapta-
tion. It is an important part of some constraint assessment. A mission contains the following
phases:

• taxi-out,

• take-off,

• initial climb,

• first climb segment,

• second climb segment,

• cruise at different flight levels,

• descent,

• approach and landing,

• taxi-in.

The figure 1.24 illustrates a typical mission profile for a supersonic aircraft.

In a mission simulation, engineers calculate the necessary fuel and the payload, knowing
the take-off weight, the range and the OWE.

Take-Off Weight
Range

}
−→ Fuel

OWE

 −→ Payload

If the imposed parameter in a mission calculation is the payload, then the entire mission
is included in a resolution loop to calculate the take-off weight, if the range and the OWE
for instance are given. But other resolutions are hidden inside some mission phases.

Each phase can possibly contain complex resolutions, for instance the initial cruise
altitude is the altitude minimising fuel consumption per distance unit, further called specific
air range, while satisfying climb rate and flight ceiling constraints. Hence, this simple climb
segment is obtained through a constrained optimisation.

This internal process example illustrates that the current design process can spend many
time in optimising some internal properties of a configuration that finally will not succeed
in satisfying some operational constraints.

Besides stability and calculation time problems, the analysis of the numerical environment
raises other problems, like:

• the resulting information of the current mono-criterion optimisation as a central process
of the overall aircraft design is incomplete. In future project phase, engineers have to
provide a set of solution design points.
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Figure 1.24: Mission profile of a supersonic aircraft

• nothing is implemented to assess the uncertainty on results depending on known un-
certainty on hypotheses or on models,

• lack of means to help in choosing the best model of aircraft for a given definition of the
configuration,

• the black box effect of processes included in specialised modules,

• the non-homogeneity of the aircraft representation between the different modules,

1.2.4.2 The incomplete information of the mono-criterion optimisation

The variations of a typical criterion, for instance DOC, are very small in the design space, thus,
the optimisation process cannot rank solutions and fails finding best compromise solutions.
So, this function is of poor use for decision making.

1.2.4.3 Nothing implemented to assess the uncertainty

Here, we want to introduce the notion of robustness of design points. We know there is
uncertainty inside the process, like on the models, and we would like to have any kind
of information on the uncertainty produced on the results. The set of design constraints
does not help in understanding the relations between uncertainty on design parameters and
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uncertainty on the results. Our knowledge on the internal mechanism of the multidisciplinary
optimisation does not allow us to have a vision on the uncertainty propagation through the
global process. This uncertainty information would help us improving the solution robustness.

Let x the design parameter vector, f the model functions, y the evaluation outputs and
ε the uncertainty, then we have

x + εx

f+εf7−→ y + εy = (f + εf )(x + εx)

Figure 1.25: Deterministic and uncertain carpets

On the figure 1.25, two carpets are represented. The degrees of freedom are the wing area
and the engine size, and the constraints are the TOFL, the approach speed and a maximum
weight. The aim is to minimise the MTOW.

On the left carpet, the constraints are deterministic, thus the optimum is situated at
the intersection of the constraints. On the right figure, uncertainties are taken into account,
thus constraints are not straight lines anymore, they are blurred, and the optimum the more
robust is not situated at the intersection of the previous deterministic constraints neither.

The aim of this part is to introduce tools aiming at introducing this kind of information
in the early phase of the design process.

1.2.4.4 Nothing to help in choosing the best model of aircraft

The current evolution in FPO is to develop models that are more and more detailed, but
the reliability of results coming from these complex models has not been assessed. The main
advantage of this increased complexity is to have access to different modeling levels.

We claim that the rule “The more complex the model, the more accurate” is not true
everytime. Model complexity often hides our lack of knowledge on the way of working of the
global design process.

1.2.4.5 Black box effect of processes included in specialised modules

All calculation modules of operational constraints and, most of the time, of structural design,
have their own resolution algorithm (like a fixed point method, Newton, etc.). Their stopping
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criterion differs from one to another, and are not well-adapted for the use of these modules as
evaluation function inside a higher process. Moreover, the understanding of the overall process
evolution is impossible because of the module integration as black boxes in a multidisciplinary
context.

1.2.4.6 Non-homogeneity of the aircraft representation

The splitting in modules is defined by know-how on specialised fields. But it leads to the
reproduction of some models and of some important functions in a non-homogeneous way.
Following are two examples to give an illustration:

• The Aerodynamics and Weights models integrate both their own geometric represen-
tation of the configuration. Their parameterisations of the geometry are different from
the geometric representation used in the process of the configuration optimisation.

• All calculation modules of operational performances duplicate a calculation of flight
equilibrium coming from different sources.

1.2.4.7 Conclusion

The first point leads to search for new criteria to perform optimisation, and to try new
mathematical tools to help in decision making.

The other two points are related to general problems of uncertainty control in future
project design. Understanding of uncertainty propagation in design process is also linked to
the notion of technical risk. In this case, we have to select a solution which minimises the
consequences that may occur when the configuration does not achieve the performance goal.

The last points listed above are structural problems, the design tool has to be recoded to
overcome them.

1.2.5 Proposed evolutions and solutions

1.2.5.1 Proposed evolutions

We identified three main axes of evolution to improve general design process and to answer
the issues listed previously:

1. Introducing new mathematical tools like multicriteria optimisation, uncertainty
management, constraints propagation, robustness assessment, risk quantifica-
tion, etc.

2. Processing of unconventional configurations, like the flying wing. Particularities of
these configurations modify the architecture of the general design process, like taking
into account some handling qualities during the cabin definition.

3. Designing an aircraft family derived from a central product. Members of a family
share some components like the wing size, the forward fuselage part or the empennages.
Thus, some degrees of freedom disappear when designing each aircraft of the family,
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but an active constraint on one member of the family can have an influence on
performances and costs of the other aircraft. The consequence of deriving aircraft from
a basic one is the suboptimality of the performances versus optimising all aircraft
separately, but which is much more costly.

In a general way, the evolution of design methods tends to increase complexity in the
general calculation process, so we currently need an important rationalisation of models and
of calculation processes.

1.2.5.2 Multicriteria optimisation

The research of new optimisation criteria evolves with development of new design methods, so
we decide to introduce new techniques of multicriteria optimisation based on already existing
criteria which seem to be relevant during the study:

• Maximum take-off weight,

• Fuel burn,

• Cash operating cost,

• Direct operating cost,

• Recurrent cost,

• Non-recurrent cost,

• Robustness,

• Family extension capability, etc.

1.2.5.3 Uncertainty management

In this domain, two main axes have been defined. The first one aims at introducing statistical
tools of uncertainty calculations, which do not currently exist in FPO. The second axis aims
at taking advantage of the different available models with different levels of complexity,
when they exist.

Analysis functions will be introduced, coming from statistical tools. They will be used
when knowing the uncertainty on different data or intermediate variables of the general
design process, to deduce the uncertainty that we can expect on the results.

• Collecting information will be done to provide enough reference data on model and
input data uncertainty.
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• The design process will be improved to perform uncertainty propagation. Thus the
uncertainty on results can be translated into robustness of the design points. This in-
formation can be used for instance as a new criterion of the optimisation problem to
decide between the admissible configurations, which one minimises the global uncer-
tainty.

• A specific user interface will be associated with this new function handling.

The general calculation process will be rationalised in such a way that several levels of
models may be used concurrently according to several criteria, as proximity of the solution,
or to compare uncertainty. A typical example is the multiscale process, simple models will be
used when the current configuration is“far” from the admissible solutions, and then, when the
configuration gets closer to the admissible solutions, more complex models will automatically
be used to refine the solution. It is a coarse-to-fine approach.

• This important adaptation of the process will exploit the developing know-how in the
uncertainty management.

• We shall integrate the notion of linked constraints to ensure that a constraint will be
calculated only if its hypotheses coming from other constraints are already satisfied.

• A mean of intervention for the user will be introduce, for cases like skipping on outlier
points in the optimisation process.

• Adapted tools of visualization will be defined and developed to help the user keeping
control on the calculation process.

1.3 Global context

1.3.1 Other projects related to the thesis

There are several Airbus-internal or european projects interacting with the thesis subject.

The thesis participates in the european project VIVACE, Value Improvement through
Virtual Aeronautical Collaborative Enterprising, and it has the same main objective, adapted
to the FPO needs. The aim of VIVACE is to reduce global costs of an aircraft program by
improving the quality and by a deeper exploration of preliminary studies. The main result
will be an aeronautical collaborative design environment and associated processes, models
and methods.

The aims of the thesis related to VIVACE are to:

• Improve technical risk perception linked to a particular configuration, and implications
of technical choices on a given configuration.

• Compare in a homogeneous way conventional and unconventional configurations which
answer the same requirements.
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• Reduce maintenance and development costs of design tools thanks to an object driven
approach of the aircraft model structure.

• Reduce time scale.

The thesis is also related to the Airbus internal project ODISA, Object Driven Integrated
Sizing and Analysis. Basically, the objectives of the thesis are the same as the internal project
ODISA.

The aim of ODISA is the creation of an enhanced aircraft conceptual design en-
vironment. ODISA will enhance the Airbus transnational consistent approach for a future
integrated sizing and analysis environment, to finally have a common design tool shared
by the different national FPO groups in England (Filton), France (Blagnac, St Martin) and
Germany (Hambourg).

1.3.1.1 Problems to be solved and opportunities

Currently, for aircraft conceptual design and analysis, limitations are due to:

• Simplification of decision criteria, leading to application of margins for risk manage-
ment;

• Difficulty to introduce unconventional design criteria and target functions;

• Complex but static design process, again leading to application of margins for risk
management;

• Confinement in known cases which were used for validation, and thus, risks are increased
in case of extrapolations;

• Difficulty to evaluate unconventional configurations at consistent quality with conven-
tional configurations.

The new approach expected to be developed through ODISA will allow to:

• Introduce new technologies (IT, mathematics, etc.);

• Investigate different concepts consistently and at a higher level of detail;

• Introduce new aircraft development scenarios through recognition of more design pa-
rameters for a more robust design;

• Better evaluate risks before programme launch;

• Reduce technical risk after project milestone M5 (see figure 1.1) by providing decision
consistency before M5;

• Cut back the global aircraft cost (development time and entry in-service maturity).
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1.3.1.2 Potential benefits

At aircraft level:

• Potentially shorter and certainly higher quality concept phase,

• Higher maturity and solution robustness at start of development phase,

• Quicker identification of challenges and/or showstoppers.

In terms of product strategy:

• Support strategic decision process,

• Reduce aircraft development risk (and consequently cost),

• Improve aircraft environmental performance (as new design criteria).

Creation of a new design environment providing:

• Flexibility to cover design of new aircraft concepts (unconventional configurations),

• Capability to cover more complex design processes,

• Provisions to adapt to changing organisations including needs for extended enterprise
operations. The extended enterprise is in fact the main enterprise, here Airbus, which
is decomposed in several skill groups working together, and also the subcontractor
enterprises, or the collaborative laboratories,

• Better requirements capture and tracking with proposed solutions.

1.3.1.3 Restructuration of design tools

In current tools, software modules are representing specialised domains, like the Aerody-
namics, or Handling Qualities. We want to change this organisation by considering needs
in calculation concerning the aircraft model, or design constraints. Future choices taken to
make changes in this direction will lead to a complete restructuration of integrated design
environment.

The aircraft model will be an explicit and centralised module to avoid multiple models in
different specialised modules with a different parameterisation to represent the same physical
quantity (like the geometry for instance).

• The general organisation will be decomposed according to the aircraft components and
sub-components, for instance fuselage, nose, rear, wing, etc.

• Each component model will have the structure of an object [Druot, 2002].
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• Each object will manage all physical aspects associated with the component: geometry,
structure, weight, loads, etc.

• Calculation functions associated with models will be evolutive in case of configuration
modifications, etc.

All calculations of design constraints will be treated as a simulation applied to the
Aircraft object. The calculation functions of these simulations will be organised following
four levels:

• Static simulations or geometric simulations (for instance, taxiway width needed for a
turn)

• Static or dynamic simulations of the operating aircraft, where the aircraft is considered
as a material point, like in mission calculations. For instance, to calculate a flight
equilibrium in a stabilised step cruise.

• Static or dynamic simulations of the aircraft, where it is considered as a widen solid,
when the influence of deformations is unknown or ignored. For instance, to calculate the
dynamic equilibrium around pitch axis because we cannot calculate inertia momentum
around pitch axis with a material point.

• Static or dynamic simulations of the flexible aircraft, the most complicated case, the
flexible aircraft is modeled as a set of solids. For instance, to simulate a step cruise
change, the acceleration increases, thus the wing is bending due to the increase of
aerodynamic loads.

1.3.2 Description of the models

Three different models of aircraft were used during this study. The first one was the implicit
model included in AVION, the current FPO tool, and then, as soon as they were available,
the study was based on the USMAC, Ultra Simplified Model of AirCraft (from June 2005),
and on the SMAC, Simplified Model of AirCraft (from September 2005).

1.3.2.1 Current Future Project Office model

One of the current models used in FPO is an implicit model which is integrated in a specific
platform developed in FPO. The main modules composing this software are the four skill
design processes described previously (like the Aerodynamic model, the Weight model, etc.),
plus some additional modules for a better description of the whole problem to be solved.

Whenever it is possible, redundant variables are gathered as one, and some equations
are manually added to link some variables which have the same physical meaning, but differ
from a linear relation.

This model has no particular structure. All variables coming from different physical models
are included in the same list without any skill attribute. The number of variables in this model
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can differ according to the complexity of the modules that engineers use, but generally, it
is around 103 variables, and the calculation time to evaluate one design point is roughly
5 seconds.

This implicit model is included in AVION.

AVION is the current tool used in FPO. Its architecture is centralised around a calcula-
tion kernel, ForTab (Fortran-Tableur) (see in [Druot, 1993]), and composed by a cluster of
tools including a graphical interface (see in [Chabot and Obin, 2003]).

The main characteristics of AVION are:

• It is a structurally open environment that allows new models to be plugged in, avoiding
development task outside the new models themselves.

• It does not contain any built-in process to let the user free to define its own processes.

• It allows any direct or reverse calculation of any input or output scalar
variables of any linked module or interpreted relation. The user defines freely
the problem to be solved or optimised, based on available modules. Thus, with the
same set of equations given to ForTab, you can make a calculation in the direct
mode, you know the geometry of the aircraft and you want an assessment of its
properties. Or you can make a calculation in the reverse mode, you know the per-
formances the aircraft should achieve, and you want to know its geometrical description.

Within AVION, it is possible to handle multidisciplinary optimisation process as soon as
this process can be formalised as a sequence of system solvings embedded into an optimisation
loop. Indeed, the formulation of the problem is focused on disciplines analysis, by solving
their equation systems and intrinsic equality constraints, and on interdisciplinary consistency
constraints, and an optimisation algorithm ensures the design constraints to be satisfied at
the system level.

This formulation is called Multidisciplinary Feasible, further denoted as MDF (see in
[Alexandrov and Lewis, 1999; Cramer et al., 1994; Sobieszczanski-Sobieski and Haftka, 1997].
We will explain its principle in more details in the following chapter, section 2.1, page 61.

The figure 1.26 is an illustration of this formulation process within AVION. The degrees
of freedom, like the wing area on the figure, are given to the disciplines as inputs. The MDF
formulation ensures that disciplinary intrinsic constraints and interdisciplinary consistency
constraints are satisfied, on the figure in the green box. Finally, the next iteration is con-
ducted by the optimiser, in the biggest blue box on the figure, to ensure design constraints
satisfaction and to minimise one objective.

One feature of this particular design problem is the possible presence of local optimisation
loops in some discipline modules, like in the calculation module used to evaluate the TOFL.

The process is also containing what is called a “smart reanalyser” in [Sobieszczanski-
Sobieski and Haftka, 1997]. Only part of the original analysis affected by the design changes
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Figure 1.26: Iterative process illustration

is repeated, and thus, only variables affected by these changes are again computed.

The second model of aircraft which was used during this study is the USMAC, the Ultra
Simplified Model of AirCraft.

1.3.2.2 USMAC (Ultra Simplified Model of AirCraft)

The USMAC was defined to answer one specific need, being as simple as possible in term of
computations, but being sufficiently complex to keep illustrating the complexity of a multi-
disciplinary design problem.

Thus, simplifications could only be done on the models themselves, not on the relations
and couplings between the disciplines.

The USMAC is a set of Scilab (see in [INRIA Copyright, 1989]) functions that answers
the following requirements:

1. Capture most of the relevant aspects of preliminary aircraft design:

• Multidisciplinary approach,

• Heterogeneous data,

• Non linear functions,
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• Formulated as an inverse problem.

2. Be as simple and fast as possible in term of computation;

3. Be tunable in reference to a given set of data.

The USMAC Package provides a multilevel set of functions that is able to run most
important computation processes currently used in preliminary design:

• Given configuration analysis,

• Mass-Mission adaptation,

• Equality constraint satisfaction,

• Optimisation of configuration.

The USMAC is simple, computation time efficient and easy to manipulate. Therefore, as
it is a too simple modeling, and there are too few parameters to represent the aircraft, it does
not fit aircraft studies used in an industrial context. But it is an adapted research platform,
and it allows to test some existing mathematical methods which had never been tried in a
future project design tool.

1.3.2.2.1 Inputs The USMAC has around a dozen of input parameters that are design
parameters for fuselage, propulsion, wing geometry and flight conditions (see table 1.1).

Fuselage data Npax Number of passengers
NpaxFront Front passenger number
Naisle Number of aisles

Propulsion data FNslst Sea level static net thrust of one single engine
BPR Engine bypass ratio
ne Number of engines

Wing geometry Awing Wing area
phi Wing sweep angle
span Span
tuc Thick upon chord ratio

Flight conditions disa Delta ISA
mach Mach
alt Altitude

Table 1.1: USMAC input variables

FNslst is a reference thrust used for take off.
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BPR is a measurement that compares the amount of air blown past the engine to that
moving through the core. Higher bypass ratios generally infer better specific fuel con-
sumption as an increasing amount of thrust is being generated without burning more
fuel.

disa is the temperature shift in reference to the International Standard Atmosphere repre-
sentation.

1.3.2.2.2 Outputs The USMAC calculates the performances listed in table 1.2.

Vapp Approach speed
TOFL Take-Off Field Length
Kfn Cruise thrust
Vz Climb speed
Kff Fuselage fuel ratio
MTOW Maximum Take-Off Weight
OWE Operational Weight Empty
PL Payload
Fuel Fuel
RA Range

Table 1.2: USMAC output variables

Kfn is a scaling factor on engine thrust

Kff is the fuselage fuel ratio related to the fuel contained in the wing

1.3.2.2.3 USMAC tuning The USMAC can be tuned versus any aircraft of the Airbus
fleet database. The database contains two categories of data: basic identification data,
used to identify an aircraft and technical data used to characterize an aircraft.

Basic identification data describe an item of the aircraft model or aircraft configuration.
An aircraft is fully identified by a complete set of identification data (see table 1.3).

Model options Configuration options

Manufacturer: Airbus Fuel option: 1 ACT
A/C Type: A340 Layout: 298 pax
Version: A340-600 Under floor: LD3 + pallets
Engine: Trent 500 Weight rules: AEG LR
Weight variant: 275 t Mission rules: Marketing LR

Table 1.3: Basic identification data

ACT is the Auxiliary Centre Tank
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pax is the number of passengers

LD3 is a standard Load Device, or container

AEG LR are Airbus Evaluation Guidelines for Long Range

LR means Long Range

An aircraft is described by a set of technical data. Technical data items have been split
into 6 categories:

• Geometry,

• Weights and fuel,

• Payload,

• Aerodynamics,

• Engine,

• Performance.

1.3.2.2.4 USMAC architecture There are several levels of functions in the USMAC
architecture, basic functions are called by domain-level functions. Solving functions
are used for the mass-mission loop and there are also optimisation functions.

The first level of functions are the basic functions. They can be split into three main
categories:

• Definition,

• Regulation,

• Models.

Definition functions are stable and not sensitive to uncertainty.
Regulation functions are less stable than definitions, since regulations may change, but

it is very rare.
Models are composed of simple equations from physic laws, and from statistical regres-

sion.

• Physic laws are very stable, but models that are deduced from these physic laws are
based on hypotheses and approximations. That is why these models are subject to
changes.

• Statistical regressions are quite sensitive to changes. If the database is modified,
statistical functions are modified.

The models are the most sensitive functions to uncertainty.
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1.3.2.2.5 Basic functions The USMAC is a set of about 100 basic functions. Most of
them are not longer than a single line expression, for instance, range estimation is based
on Breguet-Leduc formula. A third of these equations come from statistical regressions
computed out of Airbus fleet data (see in [May, 2005]).

Following are examples of basic functions. An exhaustive list of basic function signatures
can be found in appendix A.1, page 221.

Definition lod is the lift over drag ratio. The function signature is:

function [lod] = lift_to_drag_#0(cz,cx)

and the function contains one line of formula, which is:

lod =
cz

cx

where cz is the lift and cx is the drag.

Regulation kvs TO is a security coefficient with respect to stall speed at take-off. The
function signature is:

function [kvs_TO] = Kvs_Take_Off_#0()

and the function contains one line of formula, which is:

kvs TO = 1.13

Models Model basic functions are composed by physic laws and statistical regressions.
We give here three examples of physic law basic functions, and one example of statistical
regression basic functions:

1. Physic laws
vsnd is the sound velocity, equal to

√
γRT , where γ is the adiabatic index, or isentropic

expansion factor, R is the universal gas constant, and T is the temperature.
The function signature is:

function [vsnd] = sound_velocity_#0(Tamb)

The following two examples are two model functions to assess geometry or mass variables.
The aim is to show the coarse granularity of these models.

2. Geometry model example
This function allows to calculate the length of the fuselage, lfus, when knowing the number

of passengers, Npax, the front passenger number, NpaxFront and the fuselage diameter, dfus.
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function lfus = fuselage_length_(Npax,NpaxFront,dfus)

//==================================
// Model: geometry

lfus = 5 * dfus + 0.75 * Npax/NpaxFront + 1;

endfunction

3. Mass model example
This function allows to calculate the weight of the fuselage, Mfus, when knowing the

length of the fuselage, lfus, and the fuselage diameter, dfus.

function Mfus = fuselage_mass_(dfus,lfus)

//===========================
// Model: weight

sfus = %pi*dfus*lfus ;

Mfus = ( 0.02 * sfus -2.6443584 ) * sfus + 6283.8838 ;

endfunction

4. Statistical regression
wAfus is the fuselage wetted area. There is a simple relation between the fuselage wetted

area and the fuselage diameter and length, which are obtained with linear regressions.

function [wAfus] = fus_wetted_area_#0(dfus,lfus)

//===========================
wAfus = 2.7 * dfus * lfus + (7.1) ;

endfunction

All these functions, definition, regulation and models, can be assembled to compute per-
formances data of table 1.2 at given flying conditions.

As an illustration of the complexity of this assembling, the figure 1.27 is an extract of the
complete flow graph with the 100 basic functions. The main comment to make about this
figure is that it is too much fuzzy to be able to handle data thanks to it.

1.3.2.2.6 Domain-level functions These functions are called to calculate perfor-
mances. They wrap the call to a series of basic functions.

Here is an example that calculates the approach speed:

function [vapp] = approach_speed_(alt_app,LDW,aircraft_data)

//non_scalar:aircraft_data

//=================================================================

global UF

//-----------------------------------------------------------------

[Aref,phi] = aircraft_data([’Aref’,’phi’]) ;
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Figure 1.27: Complete flow graph with the 100 basic functions



52 Aircraft design in Future Project Office

kvs_LD = Kvs_Landing_() ; // Basic function

g = gravity_acc_(alt_app) ; // Basic function

[KczmaxLD] = Cz_max_LD_factor_(UF.KczmLD) ; // Basic function

[czmax_LD] = Cz_max_LD_(KczmaxLD,phi) ; // Basic function

vapp = app_speed_(LDW,czmax_LD,Aref,g,kvs_LD) ; // Basic function

endfunction

On the figure 1.27, instead of having six boxes to represent the basic functions used to
calculate the approach speed, like gravity_acc_ for instance, we would only have one box
using domain-level functions (see on figure 1.28 page 51).

An exhaustive list of domain-level function signatures can be found in appendix A.2,
page 224.

1.3.2.2.7 Solving functions for the Mass/Mission loop To evaluate the maximum
take-off weight of an aircraft, we need to evaluate the weights of the aircraft components
(wing, fuselage, landing gear, etc.). But these methods are estimation methods that need to
know the maximum take-off weight.

On the other hand, to carry out the mission, the aircraft must take the necessary fuel,
and the structure of the aircraft must be adapted to the fuel weight.

It appears that there is a system to solve to find the maximum take-off weight; this is a
crucial point of the design.

Range constraint An aircraft is expected to perform a specified mission.

A nominal range, RANom, is associated with a nominal payload, PLNom. This nominal
payload corresponds to the maximum of passengers (and their luggages) in a typical configu-
ration (80 kg/pax in short range, 90 kg/pax in medium range, 95 kg/pax in long range).

MTOW = ZFWNom + FuelNom

where FuelNom is the necessary fuel quantity to perform the mission with the MTOW and
ZFW is the Zero Fuel Weight.

ZFWNom = OWE + PLNom

This means that

MTOW = OWE + PLNom + FNom

So, the OWE is

OWE = MTOW − PLNom − FNom

and

OWE = f(MTOW ) for a given mission
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Weight estimate The structure weight, and then the OWE must be estimated to
calculate the MTOW . The OWE depends on:

• MTOW : Maximum Take-Off Weight

• MLW : Maximum Landing Weight

• MZFW : Maximum Zero Fuel Weight

• PLMax: Maximum Payload

PLMax is linked to the fuselage volume that is a geometrical limitation, so it is a given
value.

MLW is linked to MZFW (MLW = k ·MZFW, k ∼ 1.06)
Thus,

OWE = g(MTOW, MLW, MZFW,PLMax) = g(MTOW, MZFW )

Then, by definition,

MZFW = OWE + PLMax = OWE(MTOW, MZFW ) + PLMax

For a given MTOW , we deduced that MZFW has to be adapted to get a OWE com-
patible with PLMax. The following equation is thus deduced:

OWE = h(MTOW )

The resolution of this system is handled by the environment and thus, it has not been
programmed in a dedicated function.

The figure 1.28 is a flow graph using domain-level functions as boxes to draw the graph,
where the solving of the Mass/Mission loop is represented.

1.3.2.2.8 Study-level functions The study-level functions are the ones allowing the
user to study a given aircraft configuration, or to perform an optimisation for instance. This
level is directly implemented in a particular platform, Odip, ODISA Integration Prototype
(see in [Mattei and Druot, 2005]), which is currently being developed, the aim is to create a
new platform allowing some research on multidisciplinary problems, and then, to replace the
platform of AVION.

An example of such functions is the all_in_one function, which performs a global analysis
of the overall discipline equations.

function [Ar,Vht,Vvt,wAwing,wAht,wAvt,wAfus,wAnac, ...

Mwing,Mht,Mvt,Mfus,Mgear,Mprop,Msys,Mfurn,Mop,Fuel_wing, ...

Ksfc,Kmto,Kmcl,Kmcr,Kcx0,Kcxi,Kcxc,Kdiv,KczmTO,KczmLD, ...

RA_eff,RA_time,LDW,Fuel_total,cz_mis,lod_mis,sfc_mis, ...

Fuel_div,time_div,cz_div,lod_div,sfc_div,MTOW_eff, ...

MLW,MZFW,PL_eff,PL_max,PL_nom,OWE,MWE,Fuel_max, ...
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Figure 1.28: Flow graph using domain-level functions as boxes. Three main regions appear on
this figure, the first one in the upper-right corner contains functions of the model construction,
like the geometry, the engines and the aerodynamic models. The second region is in the middle
of the figure, it concerns the Mass/Mission loop. The last region, the long lign of functions
in the lower side of the figure, contains analysis functions of the performances.
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mass_clb,vz_clb,mass_cth,kfn_cth, ...

mass_crz,sar_crz,tofl,vapp] = all_in_one_(Npax,NpaxFront,...

Naisle,lfus,dfus,ne,BPR,FNslst,dnac,Awing,span,phi,tuc,Aref,...

Lref,LAht,Aht,LAvt,Avt,MTOW,Fuel,KPL,RA,disa_mis,alt_mis,...

Mach_mis,leg_div,alt_div,Mach_div,km_clb,disa_clb,alt_clb,...

Mach_clbkm_cth,disa_cth,alt_cth,Mach_cth,km_crz,disa_crz,...

alt_crz,Mach_crz,disa_to,alt_to,alt_app,RV)

The Odip platform also allows to draw flow graphics like the ones on figures 1.27, 1.28
and 1.29.

Figure 1.29: Flow graph at study-level. Again, two main regions appear on this figure, the
first one in the upper-right contains functions of the model construction, with a detailed
geometry. The second region is long lign of functions in the lower side of the figure, containing
the Mass/Mission loop and analysis functions of the performances.

The table 1.4 summarizes all the information concerning the different levels of function.

The third model of aircraft which was used during this study is the SMAC, the Simplified
Model of AirCraft.
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Categories Basic Domain Study

Environment 6
Geometry assessment 13 4
Aerodynamic 14 1
Engine 6 1
Mass Estimation 23 1
Performance estimation 22 9

Configuration analysis 1
Mass-Mission loop 1
Generic solver 1
Optimisation 1
Design uncertainty solver 1

Table 1.4: USMAC package

1.3.2.3 SMAC (Simplified Model of AirCraft)

The SMAC has been developed to answer three main issues:

• the consistency between modules in the multidisciplinary design process,

• the maintenance cost,

• the lack of flexibility of the design process for the treatment of unconventional
configurations.

Indeed, concerning the consistency problem, in the current FPO model, each discipline
has its own representation of the aircraft geometry. The consequence is a lack of consistency
between the discipline geometry representations, which may imply some difficulties to connect
them. For instance, the aircraft geometry in the aerodynamic discipline only contains the
external skin and shape of the aircraft, while the mass discipline needs an internal description
of the aircraft components to assess weights.

The chosen solution was to change the overall structure of the model, by creating an
independent geometry module, rich enough to contain all the information the disciplines need.

The SMAC is an object oriented model. As for the USMAC, it is coded, executed and
launched in Scilab (see in [INRIA Copyright, 1989]). The core set of data is the geometry.
According to [Sobieszczanski-Sobieski and Haftka, 1997], mathematical modeling of an
aerospace vehicle critically depends on an efficient and flexible description of geometry, and
concerning this model, an important part of the development work has been yield to define
the geometry module.

In this structure, there are several levels of objects:

1. the first one is the global aircraft,
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2. the second level contains objects representing functional part of the aircraft, like the
propulsion or the control functions,

3. the third one is the aircraft description according to components, for instance the
number of engines for the propulsion part.

Another characteristic of the SMAC is a built-in 3D model (see figure 1.30) to first and
foremost model and represent the studied aircraft, and then, visualise the configuration that
the designer is developing.

Figure 1.30: SMAC 3D model

The main difference between the SMAC and the USMAC is a higher complexity in
the SMAC disciplines, which are the same than in AVION intrinsic model. And the main
difference between the SMAC and the intrinsic model of AVION is the built-in 3D model in
the architecture.

1.4 Global objectives of the thesis

The global objectives of the thesis are to:

1. introduce new mathematical methods that can be useful in a future project design
tool and improve aircraft preliminary design,

2. contribute in defining, testing and validating a new architecture of aircraft
model to perform multidisciplinary design based on a component cut-out approach.
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1.4.1 Robust global optimisation

The main objective of the thesis is to improve global optimisation processes in current FPO
tools. AVION offers the possibility to use commercial optimisation methods, like Dot (see
description in [VR&D Copyright, 1995]), FSQP (see details in [Zhou et al., 1997]) or a simplex
method (see in reference [Nelder and Mead, 1965]).

During the preparation of the thesis, we decided to implement, develop and test
evolutionary algorithms to enhance current global multidisciplinary optimisations
by introducing a more robust process. Indeed, before performing any optimisation, we want
to identify a large amount of points satisfying constraints, and then to reduce the design
space to the admissible space, which will improve the convergence robustness.

1.4.2 Multicriteria optimisation

Most of the time, the optimised criterion in future project studies is the DOC. But the
problem is that there are as many DOCs as airlines. Moreover, requirements can evolve
during the aircraft development. Thus, we also performed and validated multicriteria
optimisation, still using evolutionary algorithms.

1.4.3 Response surfaces

Then, as the whole problem is heavy and very complex, we decided to introduce a
response surface to replace the evaluation function in the optimisation process to
have an approximation of solutions in a shorter computation time. Once the design
point is close enough to the solutions, it is possible to have a better assessment by using back
the initial evaluation function.

1.4.4 Uncertainty

Another part of the objectives of the thesis is to introduce the notion of uncertainty in
the numerical design process. The aim is to assess the technical risks and to improve the
way to take margins to ensure that the operational constraints are satisfied. Indeed, there is
no ideal mean to define a robust configuration, thus, risk is assessed thanks to the sensitivity
analysis manually performed through finite differences.

But a first task is to define precisely these notions of risk, robustness and uncertainty as
they do not have been implemented in the current vocabulary of designers yet.

1.4.5 Help in decision making

Once we have implemented all the previously described mathematical methods, we have to
introduce something to help the user in understanding results.
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We explained in the previous chapter, in section 1.1 page 6, that aircraft sizing studies
consist in determining characteristics of an aircraft, starting from a set of requirements. These
studies can be summarized as global constrained optimisation problems with typically one
thousand parameters. Actually, the constraints express physical feasibility and the require-
ments to be satisfied, and the objectives are market driven characteristics of the aircraft.

With this kind of problem, the first difficulty engineers are facing is to satisfy simultane-
ously all the constraints. Indeed, one of the most important part of the resolution is to reach
the admissible domain before going on with further optimisations.

The objective of the work described in this chapter is to improve the mono-criterion
and constrained optimisation currently performed in FPO, by introducing a
new structure to the problem, and new resolution methods coming from the
Multidisciplinary Design Optimisation methodology.

It appears to us that it could be interesting to uncouple the research of optimum solutions
from the problem of admissible set extraction. Thus, to solve the aircraft sizing problem,
our method consists in decomposing it to first focus on constraint satisfaction, and then,
perform an optimisation without considering constraints anymore, starting from feasible
points found in the first step.

In this chapter, we mainly consider the constraint satisfaction problem, further denoted
CSP. Our aim is to automatically produce large amounts of design points
satisfying all the constraints, despite frequent evaluation failures. Indeed, as the
explored search space is vast, it contains meaningless design points (physically speaking), so
the evaluation function we use fails typically 50% of times.

This CSP can potentially be solved in two ways:

1. gradient-based methods, which are fast but non-robust to evaluation failures,

2. stochastic methods, which are slow but allow for failure handling.

Since we wanted to favor robustness, we decided to implement and test a
stochastic method. We showed that our dedicated implementation of genetic
algorithms exhibits good results in terms of robustness and convergence speed.
We compared it with a gold standard method in constraint satisfaction, FSQP
[Lawrence and Tits, 1998] on the same constraint satisfaction problem.

Before introducing the method we implemented to solve this optimisation problem, we
will introduce some general notions on the state-of-the-art methods developed to solve a
multidisciplinary optimisation problem. Then, we will briefly describe the way it is currently
solved in FPO. And finally, we will comment the results obtained with our genetic algorithm
implementation for solving the CSP.
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2.1 Multidisciplinary Design Optimisation (MDO)

2.1.1 Industrial needs

In the literature, several papers describe some industrial needs in Multidisciplinary Design
Optimisation, further denoted MDO, particularly concerning aerospace design. A wide va-
riety of industries are concerned with MDO processes, like airframe, automobile, rotorcraft,
jet engine, space, dealing with problems such as feasible design, trade studies, structural
sizing, sub-optimisation, dynamic response minimisation, and full configuration MDO.

The paper [Giesing and Barthelemy, 1998] presents a summary of ten papers dealing with
industry design processes, experiences and needs, with emphasis on the needs of industry in
the area of MDO. In particular, this paper summarizes the paper of [Wakayama and Kroo,
1998], which describes the optimisation of a detailed design of a flying wing, and illustrates
the numerous challenges to MDO use in industry.

Many papers describe the needs in frameworks or environments allowing to perform MDO,
like [MacMillin et al., 1995; Walsh et al., 2000a; Walsh et al., 2000b], or [Salas and Townsend,
1998], which makes a comparison of frameworks, like FIDO (Framework for Interdisciplinary
Design Optimization), iSIGHT, LMS Optimus, DAKOTA (Design Analysis Kit for OpTi-
mizAtion), etc.

According to [Bartholomew, 1998], although the software tools existing within individual
disciplines may be reasonably mature, the challenge is now to provide the tools necessary to
support such an integrated approach.

Another important need is about the problem formulation, i.e. posing the problem as a
set of mathematical statements amenable to solutions, because it has a direct influence on
methods and procedures for solving the problem once it has been posed.

Thus, after defining Multidisciplinary Design Optimisation, we will introduce some of the
existing formulations of an MDO problem.

2.1.2 General introduction

The area of Multidisciplinary Design Optimisation has grown to the point of gaining near
universal recognition in its ability to lead to “better” designs [AIAA White Paper, 1991].

Three definitions of MDO are given by the AIAA MDO Technical Committee (see [MDO
Technical Committee, 2007]).

Definition 2.1. What is MDO?

1. A methodology for the design of complex engineering systems and subsystems that
coherently exploits the synergism of mutually interacting phenomena.

2. Optimal design of complex engineering systems which requires analysis that accounts
for interactions amongst the disciplines (or parts of the system) and which seeks to
synergistically exploit these interactions.
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3. How to decide what to change, and to what extent to change it, when everything
influences everything else.

MDO in an aerospace context can be described as a methodology for the design of
systems where the interaction between several disciplines must be considered, and where the
designer is free to significantly affect the system performance in more than one discipline
[Sobieszczanski-Sobieski and Haftka, 1997]. Thus, it embodies a set of methodologies,
mathematical, numerical and organisational technics, which provide a mean of coordinating
efforts and possibly conflicting recommendations of various disciplinary with well-established
analytical tools and expertise.

Multidisciplinary design of aerospace systems is a computationally intensive process that
combines discipline analyses with design space search and decision making. Optimal de-
sign of complex systems, more specifically aerospace systems, is increasingly becoming a
geographically distributed activity, involving multiple decision teams and heterogeneous com-
puting environments.

Thus, one of the aim of MDO is to meet the needs for increased interdisciplinary
interaction and communication, and for reduced design cycle-time.

In engineering design problems, one attempts to improve or optimise several objectives,
frequently competing and conflicting measures of the system performance, subject to
satisfying a set of design and physical constraints (see in [Alexandrov and Lewis, 1999]).
MDO enables the efficiency of designs to be optimised and supports trade-off studies between
the design objectives of diverse disciplines (see in [Bartholomew, 1998]).

Currently, numerical optimisation is often applied sequentially, with certain parameters set
by one discipline, and others assigned by the next discipline (see in [Kroo, 1995]). Generally,
this approach does not lead to the optimal design of the complete system.

According to [Kroo, 1995], Prandtl solved a problem of wing design using an MDO
procedure that treated structural sizing and aerodynamics concurrently. His solution yields
11% less drag at any selected structural weight than could be achieved using the sequential
procedure (see in [Prandtl, 1933]).

According to [Bartholomew, 1998], MDO is seen as providing the means to avoid the
fragmentation inherent in established methods which extends the time required for the
design cycle and limits the efficiency of final designs. MDO permits the constraints of a
diverse range of disciplines to be reflected from the earliest stages of the design process.
This approach will facilitate the design of higher performance products with improved cost,
structural integrity and maintainability. The methods will also offer the opportunity to
maximise the exploitation of new materials technology within designs while minimising risk,
and will have significant impact on project design times and cost.

The conceptual components of MDO are given in [Sobieszczanski-Sobieski and Haftka,
1997]:

• Mathematical modeling of a system,
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• Design-oriented analysis,

• Approximation concepts,

• Optimisation procedures with approximations and decompositions,

• System sensitivity analysis,

• Human interface,

• Design space search.

Due to the extreme complexity of most MDO problems, [Cramer et al., 1994] believe it is
necessary to focus on problem formulation methods and their interdependence with nonlinear
programming algorithms, further denoted as NLP algorithms. According to [Alexandrov and
Lewis, 1999], it is the nature of some of the MDO problem constraints that distinguishes
the engineering design optimisation problem from the conventional NLP problem. The
method of treating the problem constraints provides the defining characteristics for various
approaches to solving MDO problems.

A conceptual or preliminary design problem can be formulated through an NLP formu-
lation of the form:

min f
(
X, Y, Z

)
s.t. g

(
X,Y, Z

)
≤ 0 (2.1)

where:

• X is the vector of design variables,

• Y is the vector of shared variables between the disciplines,

• Z is the vector of discipline outputs.

Y is a set containing variables calculated by one discipline and needed as input by another
discipline. This is the reason why it is distinguished from the set of design variables X. Some
of the shared variables can be contained in the set of the system outputs, Z.

The figure 2.1 is a graphical representation of the different sets we have introduced, and
their connections with the disciplines.

Thus, for one discipline Di, we have the relation(
yiout

zi

)
= Di(xi, yiin) (2.2)

where:
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Figure 2.1: Illustration of MDO system: Y is a set containing variables calculated by one
discipline and needed as input by another discipline.
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• xi ⊂ X and yiin ⊂ Y are the subsets of X and Y which contain the needed inputs for
the discipline i,

• zi ⊂ Z and yiout ⊂ Y are the subsets of Z and Y which contain the outputs of the
discipline i.

The classification of MDO problem formulation depends on the kind of feasibility that
must be maintained at each optimisation iteration. In our context, we distinguish three kinds
of constraints:

1. the Disciplinary analysis constraints, which are equality constraints implicit in
disciplinary analyses, (

yiout

zi

)
−Di(xi, yiin) = 0 (2.3)

2. the Interdisciplinary consistency constraints, which state for interdisciplinary cou-
plings,

yij − yji = 0 (2.4)

where yij are the interdisciplinary variables of the discipline i (inputs or outputs) which
are common to the discipline j, and the values of yij are the ones considered for the
discipline i.

3. the Design constraints, which are given by the requirements.

g
(
X, Y, Z

)
≤ 0 (2.5)

Based on this constraint distinction, we can classify the MDO formulations, according to
their treatment of these constraints. Following are examples of most common MDO formu-
lations:

• the Multidisciplinary Design Analysis, further called MDA, ensures that the
system of all equality and inequality equations, reaches an equilibrium state, all kinds
of constraints must be satisfied, the optimisation is a distinct operator, which only has
to manage the objective, and which is not a part of the MDA formulation,

• the Multidisciplinary Feasible, further called MDF, manages the disciplinary
analysis and the interdisciplinary consistency constraints during the analysis, and the
design constraints are handled by the optimiser,

• the Individual Discipline Feasible, further called IDF, handles the disciplinary
analysis constraints during the analysis, and the interdisciplinary consistency cons-
traints are added to the design constraints as optimisation constraints,
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• The Collaborative Optimisation, further called CO, treats the disciplinary analysis
and the design constraints during the analysis, and the interdisciplinary consistency
constraints are handled by the optimiser,

• the All-At-Once, further called AAO, considers that all of the analysis variables are
optimisation variables, and all of the analysis discipline equations are optimisation
constraints.

The MDO problem formulation has a great impact on the algorithm required to solve it
[Alexandrov and Lewis, 2000].

We now give more details about each of these MDO formulations, which are fully described
in [Alexandrov and Lewis, 1999; Cramer et al., 1994; Dennis and Lewis, 1994; Masmoudi and
Auroux, 2005]

2.1.2.1 The Multidisciplinary Design Analysis (MDA)

The MDA treats of the way to link shared variables coming from different disciplines to be
able to solve a global system including all these discipline equations. As an illustration, the
following is a simple example using equations balancing the weight of an aircraft with its lift
(see in [Buckley et al., 1992]):

WS = q CL (2.6)

q =
1

2
ρ v2 (2.7)

ρ = 1.225 (2.8)

These equations relate five parameters:

• WS is the wing loading, in N.m-2,

• q is the dynamic pressure, in Pa,

• CL is the lift coefficient, non-dimensional variable,

• v is the velocity, in m.s-1,

• ρ is the air density at sea level, in kg.m-3.
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To solve this system of equations, we have to make choices about which equations will
enable us to evaluate which variables. We have no choice for the equation (2.8), it directly
determines the air density ρ. Thus, we are left with four variables and two equations.
This implies that we need to specify two independent variables and let the system of
equations determine the other two. With this example, we have five possibilities of choosing
independent variables (see in figure 2.2).

Figure 2.2: Illustration of permutations of independent variables corresponding to the equa-
tion system (2.6, 2.7, 2.8). The variables in yellow are the independent variables of the system.
The variable rho is determined by the equation 2.8, thus it is always an input of the two left
equations.

This aspect of the problem, system analysis and resolution, is not a part of this work
because it is directly managed in the Future Project Office tools thanks to bipartite graphs
(see in [Druot, 1994]).

When dealing with large-scale systems, the analysis is not so straightforward because of
the amount of variables shared by different disciplines. In the previous example, only one
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variable was common to two equations.

MDA can be very costly because of the expense incurred by an MDA algorithm in
repeatedly executing the analysis code. One way to avoid some of this cost is not to re-
quire feasibility until convergence to optimality. However, there will be approaches in which
we will require partial feasibility for some good reasons. We are now going to describe other
formulations to treat an MDO problem, which vary according to the way they handle cons-
traints.

2.1.2.2 The Multidisciplinary Feasible (MDF)

This formulation is the most common way of posing an MDO problem, a complete multidis-
ciplinary feasibility is required.

The vector of design variables, X, is provided by the optimiser to the coupled system of
disciplines. A complete analysis is performed to solve the entire system, to obtain the shared
variable Y and output Z values. Then, the objective function and the design constraints
values can be evaluated and given back to the optimiser:

minimise f(X, Y, Z)
with respect to X
subject to g(X,Y, Z) ≤ 0

where


(

yiout

zi

)
= Di(xi, yiin),∀i ∈ 1, · · · , N

yij = yji,∀i, j ∈ 1, · · · , N, i 6= j

(2.9)

More details can be found in [Cramer et al., 1994].

2.1.2.3 The Individual Discipline Feasible (IDF)

One way to avoid a complete analysis of the coupled system of disciplines is to use a formu-
lation like the IDF formulation, where a specific decomposition of the work between analysis
and optimisation is done.

IDF maintains individual discipline feasibility while allowing the optimiser to drive the
individual disciplines toward interdisciplinary feasibility and optimality. In this approach, the
shared variables Y become degrees of freedom of the optimiser:

minimise f(X, Y, Z)
with respect to X, Y

subject to

{
g(X, Y, Z) ≤ 0
yij − yji = 0,∀i, j ∈ 1, · · · , N, i 6= j

where

(
yiout

zi

)
= Di(xi, yiin),∀i ∈ 1, · · · , N

(2.10)
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More details can be found in [Cramer et al., 1994].

2.1.2.4 The Collaborative Optimisation (CO)

Another way to decompose the problem is developed in Collaborative Optimisation formu-
lation. It consists of a bi-level optimisation architecture in which individual disciplinary is
charged with satisfying local constraints with the use of local optimisers on its own set of
local design variables. The goal of each local optimiser is to agree with the other groups on
values of the interdisciplinary variables, while a system-level optimiser provides coordination
and minimises the overall objective:

minimise f(X, Y, Z)
with respect to X, Y
subject to yij − yji = 0,∀i, j ∈ 1, · · · , N, i 6= j

where


g(X, Y, Z) ≤ 0(

yiout

zi

)
= Di(xi, yiin),∀i ∈ 1, · · · , N

(2.11)

More details and examples can be found in [Kroo et al., 1994; Braun and Kroo, 1995;
Kroo and Manning, 2000].

2.1.2.5 The All-At-Once (AAO)

In this formulation, we do not seek to obtain feasibility for the analysis problem for any
kind of constraint until optimisation convergence is reached. We spend no time to achieve
feasibility when we are far from an optimum. Moreover, the disciplines are treated explicitly
as equality constraints:

minimise f(X, Y, Z)
with respect to X, Y, Z

subject to


g(X, Y, Z) ≤ 0
yij − yji = 0,∀i, j ∈ 1, · · · , N, i 6= j(

yiout

zi

)
−Di(xi, yiin) = 0,∀i ∈ 1, · · · , N

(2.12)

More details can be found in [Cramer et al., 1994; Alexandrov, 1995].

2.1.2.6 The multi-level process

The multi-level process for aircraft design can be represented as a three level process [Coleman
et al., 2006]:
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1. the future project level: the optimisation is conducted at future project level to
identify roughly the optimum configurations associated with the requirements. This
can include the global topology (e.g. engines on fuselage or on wing) or values for
continuous parameters (e.g. wing sweep angle).

2. the discipline level: the optimisation goes further in the design process by conducting
systematic single discipline optimisation with heavier analysis (Computational Fluid
Dynamics, CFD, and Computational Structural Mechanics, CSM) for these configura-
tions. They are now all optimised with respect to lower level design variables and the
optimisation results are used to produce surrogate models or response surfaces that can
be further re-introduced in the FPO code (or similar formulations) for solving a MDO
problem. This time the MDO problem is not solved based on semi-empirical methods
but based on optimum results found with advanced numerical analysis.

3. the component level: it concerned the detailed design of the aircraft (refined aerody-
namic shape, structural sizing). The same kind of process than in the second step, can
be applied here.

Figure 2.3: Illustration of the multiple levels of a project

Multi-level description introduces a hierarchy of variables with a growing level of detail
and also a hierarchy of methods of growing fidelity and complexity.
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2.1.2.7 The multi-physics analysis

Multi-physics analysis is another emerging method to treat design problems. These ap-
proaches propose to integrate the disciplines at analysis level, for example mixing CFD and
CSM in a single mesh for aeroelastic studies based on Navier-Stokes.

Multidisciplinary optimisation is more intended to address optimisation based on the
today design process and discipline methods and tools. Multi-physics is probably the future,
but it is changing the process and the link with the company experience through the history,
state of the art, experimental data. It is true that for totally innovating configurations like a
flying wing, these methods can be very useful. So it is probable that these approaches have
to be worked out in parallel with integration of more standard approaches [Coleman et al.,
2006].

[Wakayama and Kroo, 1998] pointed out that currently some of the more successful
approaches use close-coupled, all-at-once procedures, however, their success depends, in part,
on the fact that automated, fast-running analysis codes are used.

After this short introduction to some of the different existing formulations of an MDO
problem, we now describe the way this problem is currently managed in FPO.

2.1.3 Current MDO process in Future Project Office

The general problem of aircraft sizing in FPO can be summarized as an optimisation problem
with typically:

• 15 degrees of freedom, like the engine size, the wing area, etc.

• 20 inequality constraints, like on the take-off field length, etc.

• and generally one criterion, like the MTOW or a DOC.

An example of a typical problem of aircraft sizing is described in appendix, the degrees
of freedom in appendix B.1, page 227, the constraints in appendix B.2, page 227 and the
criterion in appendix B.3, page 227. This problem is the basic one that we want to solve
during this work.

This general problem is not currently treated as an NLP problem, its generic formula-
tion. Indeed, the discipline equations and interconnections make it so complex that it is not
possible for classical optimisation algorithms to treat it directly numerically. Moreover, op-
timisation is often used within these disciplines, because they need the satisfaction of some
local constraints.

However, combining the computational tasks into a single optimisation problem is
impractical, because of the large number of variables and the amount of time required to
execute the analyses.

Furthermore, even if this would be possible, it would not be used by engineers, because:
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• they are cautious with the results produced by the optimisers; since the evaluation
function is not robust and sometimes fails, it makes the optimisers fail too,

• they need some more information than just finding an optimum, like knowing the
results of sensitivity analysis around the optimum point on the objectives and the
design variables.

Thus, optimisation in FPO is currently manually conducted by engineers, based on
experience and knowledge acquired during previous studies.

The MDO formulation of the problem in the FPO design tool has been formulated as
an intermediary formulation between MDF and CO, formulations described previously. In-
deed, the tool is able to perform an entire analysis on the discipline constraints and the
interdisciplinary consistency constraints, and it performs also some local optimisation inside
disciplines, like for the calculation of the take-off field length.

The FPO tool helps also engineers to find design points satisfying constraints. With its
ability to transform the problem by choosing freely the status of variables, fixed, dependent
or free, the design constraint values can be imposed to the process, which solves the inverse
problem to find admissible design variable values.

Once a design point satisfying TLARs is found, the design study can continue using a
direct resolution of the aircraft sizing system. Most design studies rely on sequential para-
metric trade studies in which one or two, sometimes three, but rarely more, design variables
are changed to examine the effect on the design. Carpet plots (like on figure 2.4) can be
presented, showing the effect of these variables on each of the system constraints or objectives.

On the figure 2.4, two degrees of freedom are considered, the engine size and the wing
area. The MTOW, the approach speed and the TOFL are calculated for several values of
these degrees of freedom. The limit value of the constraints, here the approach speed and
the TOFL, are interpolated to be represented on the graph. Then, the minimum value of the
criterion, here the MTOW, is found graphically, and the corresponding values of the degrees
of freedom are deduced.

The number of parameters in this type of study is limited by the dimensionality that can
be perceived graphically or by the complexity to collect all information coming from such
samplings when there are more than two parameters. When the number of parameters to be
optimised is too large such that trade studies on the interesting variables are not possible,
some kind of alternated optimisation is performed. Values of some important parameters are
manually changed and then, trade studies are performed again on the modified designs.

This kind of trade studies is not performed so frequently, because of the preparation work
that must be done before each sampling. Indeed, some a priori choices are made on which
trade variables to select, and some evolution rules are imposed to some other degrees of
freedom of the study, which are second order parameters. Because it is not possible to make
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Figure 2.4: Example of carpet plot with two degrees of freedom, the engine size and the wing
area, and two constraints, the approach speed and the TOFL, which delimits the admissible
domain. The aim of the process described here is to minimise the MTOW.

vary all the design parameters, the research cannot be exhaustive, which limits the generality
of the results.

Sometimes, these trade studies are replaced by inverse resolutions because, most of the
time, optimum solutions are located at the intersection of some constraints. Thus, thanks
to this knowledge engineers have on this problem, they do not spend time performing trade
studies, but directly calculate the configuration which is of their interest. For instance,
instead of minimising the MTOW according to the wing area, with a constraint on the
approach speed, like on the figure 2.4, they fix the approach speed at its limit value, and
they deduce the wing area.

At a preliminary stage, the sampled variables are the engine size and the wing area,
because it is known that these variables are the most important driving parameters of a
configuration. The other design variables are then fixed or linked to the scanning parameters
through some rules, imposed by the designer. For instance, the empennage area and leverarm
depends on the wing area, or the landing gear size depends directly on the engine size, at
given engine ground clearance.

The most important and difficult part of this work is to define the evolution rules, to
make them the most relevant and representative possible. This is the reason why such
scannings are not performed frequently.

This process progresses step by step, each configuration satisfying some particular re-
quirements is kept as a reference configuration, and then, some modifications are applied to
it, according to new informations on technologies, or on customer needs. This leads to new
trade studies, until a new reference configuration is found, and so on.
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Convergence of the overall process has not a real sense for this kind of study, because
there are always new technologies coming from research on the current aircraft program,
that can be added to the current future project of aircraft. Thus, it is to the decision-maker
to stop the study when he considers it is mature enough to begin the development phase.

Concerning multilevel, there are generally two levels of modelisation in FPO, but they
are rarely represented together in the design environment, mainly because these models do
not share the same geometrical representation of the aircraft.

Models with different grained precisions are not mixed in an integrated model of aircraft.
It can be technically possible, but the lack of information on the uncertainty related to these
models makes the engineers be not confident in the results obtained by coarse-grained models.

The general thinking is that coarsed-grained models may produce erroneous results, but
they can have a good representation of the variations of the model according to the variable
modifications, and sensitivity analyses can give good results using these models.

Thus, when multilevel formulation is used in FPO, it is done with a lot of precautions.
A really simplified model of aircraft is used to calculate the main parameters of the configu-
ration, and these values are given to a more sophisticated model of aircraft, but the transition
is made with caution.

2.2 Introduction to Genetic Algorithms (GAs)

Genetic Algorithms, further denoted GA, are stochastic search algorithms based on principles
of natural selection and recombination. They are one part of Evolutionary Algorithms, further
denoted EAs.

EAs indicate a subset of Evolutionary Computation, which is a part of Artificial
Intelligence [Schwefel, 1981]. It is a generic term used to indicate any population-based
metaheuristic optimisation algorithm that uses mechanisms inspired by biological evolution,
such as reproduction, mutation, recombination, natural selection and survival of the fittest,
or the luckiest [Roudenko, 2004]. Randomness has an important role in these algorithms.
Candidate solutions to the optimisation problem play the role of individuals in a population,
and the cost function determines the environment within which the solutions ”live”. Evo-
lution of the population then takes place after the repeated application of the above operators.

EAs contains also [Roudenko, 2004]:

• Evolutionary Programming,

• Evolution Strategy (see in [Bäck et al., 1991; Rechenberg, 1973]),

• Genetic Programming (see in [Koza, 1992]).

They are used in diverse fields such as engineering, biology, economics, genetics, opera-
tions research, robotics, and others.
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There are others metaheuristics that can solve these problems. As examples, we have [Dréo
et al., 2003]:

• Particle swarm optimisation, based on the ideas of animal flocking behaviour. Also
primarily suited for numerical optimisation problems.

• Ant colony optimisation, based on the ideas of ant foraging by pheromone communica-
tion to form path. Primarily suited for combinatorial optimisation problems.

• Taboo search, a single-point metaheuristic, described page 137 in a multiobjectif con-
text.

• Simulated annealing, also a single-point metaheuristic, described in paragraph 3.1.4.2
page 130 in a multiobjectif context.

2.2.1 Principle

Genetic Algorithms are inspired by the natural selection principle, as elaborated by Charles
Darwin. They were created by J. Holland [Holland, 1975], and used by D. Goldberg
[Goldberg, 1989] as the optimisation algorithm we currently know. Specific vocabulary
is directly coming from evolution and genetic theories. Following is a description of this
vocabulary, before explaining the way GA work.

We call (see figure 2.5):

• a population a set of points inside the design space,

• an individual is one point of the population,

• a genotype, or a chromosome, is another way of speaking about an individual, taken
as a set of values,

• a gene is what composes a chromosome, it is one degree of freedom of the optimisation
process,

• a phenotype is the result of the evaluation of one genotype, it contains the perfor-
mance, the finess or the properties of the individual.

Each individual is coded as a set of genes. In most implementation of genetic algorithms,
the individuals are composed of a binary string, a gene can only be 0 or 1. Thus one degree of
freedom is represented by a group of genes. But a degree of freedom can be either a discrete
or a continuous variable.

As we are dealing with discrete and continuous variables, in our formulation, one gene
represents one degree of freedom, and can take all possible values inside the definition space
of the variable it encodes.
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Figure 2.5: Illustration of Genetic Algorithm vocabulary

2.2.1.1 Initialisation

The first step of the algorithm is the definition of the initial population. There are mainly
two ways to create the initial population:

• points are randomly sampled inside the design space,

• points are well-distributed inside the design space, using methods like Sobol, Cross-
Validation or Latin Hypercube [Poles et al., 2006].

Generally, well-distributed samplings have best performances on the final convergence of
the algorithm [Poles et al., 2006].

The size of the initial population is an important point, and it is usually chosen to ensure
a compromise between calculation time and quality of the final results [Gao, 2003].

2.2.1.2 The fitness function

An efficiency is associated with each individual. This efficiency corresponds to the ability
of the individual to answer the problem. It is evaluated through the fitness function. For
instance, in a minimisation problem, the efficiency of an individual will increase with its
capacity to minimise the objective function. Generally, the fitness function is proportional
to the objective function of the optimisation problem.

Then, three genetic operators are applied to each individual, in different ways, depending
on the GA that you consider.
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2.2.1.3 The reproduction, or cross-over operator

The reproduction is applied on a pair of individuals. It consists in mixing the genes of these
two individuals to produce new points, called the children (see in figure 2.6).

Figure 2.6: Illustration of reproduction in aircraft sizing studies

The way to select the individuals in the reproduction process depends on the algorithm
one runs. If the algorithm is eugenicist, the individuals are chosen amongst the best points,
according to the fitness function. In other kinds of algorithms, the individuals are chosen
randomly, or you can create two sub-populations containing for the first, best individuals,
and for the second, points chosen randomly. There are other ways in between to select the
individuals for the reproduction, it depends on the choice to favor the convergence speed or
the globality of the optimum solution (vs locality). A comparison of the performance of four
commonly used selection schemes can be found in [Goldberg and Deb, 1991].

The figure 2.7 is an illustration of one way of individual selections for the reproduction
operator.

Figure 2.7: Illustration of individual selection

The cross-over operator favors the exploration of the design space by creating new points
to evaluate, the children, which are most of the time different from their parents.

2.2.1.4 The mutation operator

The mutation consists in changing randomly the value of one gene of an individual according
to a given probability. Generally, the probability for an individual to mutate is very small,
and if it happens, a new value for the concerned gene is randomly sampled inside the range
of definition of the corresponding variable (see in figure 2.8).

The mutation operator ensures as well as the reproduction a global search inside the
design space. It helps finding the global optimum. Moreover, if the population size is too
small, the Mutation operator prevent from the homogenization of the population.
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Figure 2.8: Illustration of mutation in aircraft sizing studies

2.2.1.5 The selection operator

After the reproduction, the new population size is larger than the initial size. In most
Genetic Algorithms, the population size has to remain globally constant. From one iteration
to another, the selection operator enables to get back to the initial population size, and the
selected individuals are the best ones amongst the parents and the children, according to
the fitness function (see in figure 2.9).

Figure 2.9: Illustration of selection in aircraft sizing studies

As for the selection of individuals in the reproduction operator, there are several ways to
select individuals for the next generation of the algorithm, the design points can be selected
according to a compromise of optimality and variability defined by the user.

2.2.1.6 Summary

There are as many Genetic Algorithms as users of such algorithms, as you can:

• combine the operators in different orders,

• tune the operators as you want, depending on your problem, like for instance the proba-
bility for one gene to mutate,

• fix the population size to have a good influence whether the algorithm can find good
solutions in an acceptable computational time, which strongly depends on the problem,

• adapt your selection operator to favor convergence speed on one hand, or space search
on the other hand, to find the global optimum.

In figure 2.10 is an example of a typical genetic algorithm.



2.2 Introduction to Genetic Algorithms (GAs) 79

Figure 2.10: Flow-chart of a typical genetic algorithm

2.2.2 Discussion

Genetic Algorithms do not need a priori knowledge on the problem. The main part of the
work is to formalise the data as chromosomes to be treated by the algorithm.

Calculation times do not increase with the number of variables but with the size of the
population, and strongly depend on the evaluation function, for instance on its shape, if it
is a convex function or not, etc.

This kind of algorithms can easily be parallelised, which promises a substantial gain in
performance. When there is an increase in the time required to find adequate solutions, one
of the most promising choice to make GA faster is to use parallel implementations.

The most popular parallel GA consists in multiple populations that evolve separately
most of the time and exchange individuals occasionally. The paper of [Cantú-Paz, 1997] is a
survey of the most representative publications on parallel genetic algorithms.

An important part of a genetic algorithm implementation is to choose the right values of
the control parameters, like the mutation rate, to find a good compromise between optimality
and variability according to the studied problem. This choice appears also when defining the
population size or the way to select individuals, for the reproduction or the next generation.

Most of the time, these tuning parameters are handled as global, external parameters,
which remain constant over time. Other approaches, described in [Bäck, 1992; Beyer and
Deb, 2001] consist in environment-dependent self-adaptation of appropriate settings for the
mutation distributions or the recombination rates.

Thus, the convergence of the algorithm, and the time it will spend to find optimum
solution depends on the choice of the control parameters. Some demonstrations on GA
convergence properties exist, like in [Srivastava and Goldberg, 2001], but the hypotheses
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taken in such papers are most of the time impossible to verify in an industrial context like ours.

Constraint handling is not so straightforward in evolutionary algorithms because the
search operators mutation and recombination are “blind” to constraints. Hence, there is no
guarantee that if the parents satisfy some constraints, children will satisfy them as well [Eiben,
2001; Michalewicz, 1992]. No standard evolutionary algorithm takes constraints into account,
they perform unconstrained search.

As we want to use Genetic Algorithms to solve our problem of aircraft sizing, we have
to find a way to handle constraints. There are many ways to overcome this question, like
indirect constraint handling, where constraints are incorporated in the fitness function, or
direct handling, where constraints are left as they are and the GA is adapted to enforce
them. Thus the following section is focused on the way we chose to handle constraints in our
implementation of Genetic Algorithms.

2.3 Ensuring constraint satisfaction

Constraint satisfaction in our initial aircraft sizing problem (described in appendix B,
page 227) proved to be hard to ensure. To explain the reasons of such a difficulty, we now
describe the mathematical characteristics of the problem of aircraft sizing, and the material
used to perform it, with a description of the architecture of the evaluation function and its
numerical and computational aspects.

Then, we will detail the methodology we decided to test, and the main reason why we
decided to uncouple the Constraint Satisfaction Problem, CSP, to the optimisation problem.

After that, we will present the results we obtained with our specific implementation of a
Genetic Algorithm, and we will compare them with the results obtained with FSQP on the
same problem. All these results have been presented in [Badufle et al., 2005].

2.3.1 Problem description

Aircraft Sizing activity is basically an inverse problem. We know the performance that the
system should achieve and we look for its physical characteristics. The studied system is an
aircraft evolving in its environment. It is complex enough to make it impossible to express
directly characteristics as a function of performance. For this reason, the core of Aircraft
Sizing is necessarily an iterative process driving an evaluation function that quantifies the
performance of a given aircraft configuration.

The design space is determined by validity intervals on the design parameters and the
property space is determined by the set of constraints. The domain we call the admissible
set is the antecedent of the intersection between the image of design space and the property
space (see in figure 2.11).

The necessity to find a simple answer a complex problem has led many engineers to
aggregate their evaluation function into a constrained mono-criterion optimisation process.
The main drawback of this approach is that it gives a limited view on compromise solutions,
since it is obvious that the final product is never a mathematical optimum but an alchemic
compromise.
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Figure 2.11: Admissible set representation: the admissible set (in green) is the antecedent of
the intersection (in blue) between the image of design space (dashed domain on the right)
and the admissible property space (in red)

The multi-criteria approach is an answer the research of compromise, but requirement
and performance formulations may change, or at least evolve, along the study duration.
Finally, it appears to us that it could be interesting to uncouple the problem of research of
compromise solutions from the problem of ensuring constraint satisfaction.

Thus in the following sections, we will focus on ensuring constraint satisfaction. We will
come back to the optimisation in section 2.4, page 92.

2.3.2 Material

2.3.2.1 Architecture of the evaluation function

To perform aircraft sizing, i.e. to assess the main characteristic parameters defining an
aircraft, we use a complex and dense ForTran code, coming from the current tool in FPO:
AVION. This code is described in the previous chapter, section 1.3.2.1, page 43. It is
composed of a set of modules, each one specific to a particular physical domain or to
an aircraft element, for instance aerodynamics, structure, performance, nominal mission,
or engines. The equations from Physics are formulated in their natural direction: from
descriptive data to properties. Until the end of this section, we will refer to this ForTran
code as our evaluation function.

In the framework of our problem, we have 16 scalar inputs, with 2 discrete variables,
representing the Design Parameters, which are our degrees of freedom, defined onto intervals.
We call X the design space, which is extended to a wider space, X̂, to get all necessary input
values to run the calculation. X̂, the Detailed Parameters space, is typically of dimension
2 000. Then, we compute the properties values on which our constraints are applied. We call
the property space Y . The calculation flow is represented in figure 2.12.
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Figure 2.12: Evaluation function architecture in AVION software
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2.3.2.2 Numerical and computational aspects

The practical implementation of the evaluation function brings one major issue. The iterative
resolutions, present in some modules to solve their internal equation systems, introduce nu-
merical noise. The consequence is that repeating the evaluation of one fixed point produces
results with small differences.

Another important problem is linked to the dimension of the design search space.
Values given to the evaluation function can be out of the definition space of some modules,
particularly if close to the “corners” of the domain. The evaluation function makes possibly
meaningless extrapolations, thus we cannot be confident in these results.

Because of the numerical complexity of the evaluation function, we have only little infor-
mation on its mathematical properties. But, at least the function is not continuous, because
of discrete variables, of possible evaluation failures and of the ForTran code itself (which
contains a lot of goto). And even if it is continuous, it may be a piecewise linear function, as
defined through the model. Consequently, we do not have any reliable gradient information.

Concerning the shape of the admissible set, we have no a priori information, but the
design space and the evaluation function are so complex that we cannot assume that the
admissible set is convex or connected.

Until the end of this section, we will consider the evaluation function as a black box.

The problem we are going to treat in the following parts is the one described in
appendix B, page 227. It contains 16 degrees of freedom, 2 of them are discrete variables. For
each input parameter, we define a search interval. Our search space is thus a 16-dimensional
hyperbox. Among all the calculated properties, we consider 16 of them, all continuous
variables, on which we apply inequality constraints. Finally, we have 21 constraints.

In the following section, we are going to explain the way we decided to handle constraints.

2.3.3 Indirect constraint handling

As we wanted to use Genetic Algorithms to solve our optimisation problem, the first idea we
had to manage constraints was to indirectly handle them, i.e. to add a penalty function to
the objective function to define the genetic algorithm fitness function [Eiben, 2001; Craenen
et al., 2001; Craenen et al., 2003]. This penalty function would quantify the violation of the
constraints.

This way to handle constraints means transforming the constrained optimisation problem
into an unconstrained problem. Our aim was to apply such technics as the one described in
[Craenen and Eiben, 2001]. The basic idea is that constraints that are not satisfied after a
certain number of search steps must be hard and therefore, be given more attention. This
is realized by using a weighted sum of constraint violations as fitness function and varying
these weights to direct the search.
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Thus, we decided to transform our initial problem, described in equation 2.13,

min f(x)
s.t. g(x) ≤ 0

where f : Rn 7→ Rm and g : Rn 7→ Rq, (2.13)

into the new unconstrained optimisation problem 2.14,

min h(x) = f(x) + γ

n∑
i=1

λi · S(gi(x)), i = 1, · · · , q (2.14)

where γ is used to favor the objective or the constraint aggregation during the optimisation,
λi are constant parameters to homogenize the sum of constraints, and S is the penalty
function, which is zero when the constraint is satisfied, and the absolute value of the violation
of the constraint, if not satisfied. The figure 2.13 page 87 is an illustration of such a penalty
function like S.

Starting from this new formulation, we decided to tune the parameters γ and λi before the
beginning of the optimisation. We performed a uniform random sampling inside our Design
Space of about 10 000 points, and we calculated the values of the constraints and of the
objective function for all these points.

Then, we noticed that among all the points we calculated, none of them satisfied the
constraints, and the variations of the objective function were small. Thus, as soon as we
noticed this, we envisaged another method to ensure the constraint satisfaction than the
indirect constraint handling, because finding an admissible point inside the vast Design
Space appears to be too difficult.

We decided then to uncouple the constraint satisfaction problem, further denoted CSP,
from the research of optimal solutions. Our aim is to produce large amounts of design points
satisfying all the constraints before considering the objective function.

2.3.4 Constraint Satisfaction Problem (CSP) of aircraft sizing
studies

CSPs are particular mathematical problems where one must find states or objects that satisfy
a number of constraints. CSPs are the subject of intense research in both artificial intelligence
and operational research. Many CSPs require a combination of heuristics and combinatorial
search methods to be solved in a reasonable time.

The paper [Dechter and Rossi, 2000] is a survey which describes all CSP categories, and
the existing methods to solve them.

We decide to treat this CSP as an optimisation problem to give an initial structure for
the next steps of the global optimisation. To choose the optimisation process, we have been
inspired by the FSQP principle, namely to reach the admissible set before performing any
optimisation.

Our aim is to automatically produce large amounts of design points satisfying the require-
ments, despite the numerical noise introduced by the evaluation function. Moreover, as the
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design space is vast, due to the large number of degrees of freedom, it contains meaningless
design points (physically speaking), making the evaluation function sometimes fail.

Two optimisation method classes can be envisaged to solve this problem of constraint
satisfaction:

1. gradient methods, which are supposedly fast but non-robust against evaluation failures,

2. stochastic methods, which are supposedly slow but can allow failure handling, through
some adaptations.

We implemented a genetic algorithm method dedicated to our context, with a
specific penalty function deduced from the constraints, applying linear penalties
with physically meaningful thresholds.

We compared our method with the FSQP gold standard in constraint satis-
faction. We performed this comparison under the same constraint satisfaction
problem.

2.3.4.1 Existence of solutions

Before starting our study, we knew the admissible set was not empty because engineers
currently working on the problem exhibited such a point, satisfying all the requirements.

To collect more information about the admissible set shape, we decided to try finding
other admissible points without using any constraint satisfaction method. This would also
give us a first guess of the difficulty to reach the admissible set.

We used a Monte Carlo method by performing a uniform random sampling inside the
search interval of each variable. Then, we simply applied the evaluation function on these
design parameters and checked the constraint values.

Finally, among 106 calculated points,

• 52% were evaluable,

• 5 were admissible,

• 190 satisfied all the constraints but 1.

Thus, finding admissible points is not trivial, and the contraints satisfaction method will
have to be adequately fitted.

2.3.4.2 Methods

2.3.4.2.1 Problem formulation We decided to solve the constraint satisfaction problem
as an optimisation problem using a penalty method as the objective function. To give a general
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structure to our formulation, we called X our design search space of dimension n. Suppose
we have p continuous variables and n− p discrete variables. We denote:

X = [l1, u1]× · · · × [lp, up]× {lp+1, lp+1 + 1, . . . , up+1} × · · · × {ln, ln + 1, . . . , un} (2.15)

Let G be the expansion function, to get from the Design Parameters to all the Detailed
Parameters, and let H be the practical evaluation function.

G : X → X̂; H : X̂ → Y. (2.16)

Let F be our evaluation function (see in figure 2.12):

F : X ⊂ Rn → Y ⊂ Rq

x 7→ F (x) = H(G(x)).
(2.17)

Then, we introduce our penalty function. Let ε : Y → R be a criterion on constraint
satisfaction: ε has global minima at all admissible design points.

The optimisation problem to be actually solved is:

min
x∈X

ε(F (x)) where


x ∈ X ⊂ Rn

F : X → Y ⊂ Rq

ε : Y → R
(2.18)

We had three main requirements to choose the optimisation method to solve our CSP:

• it had to be robust against possible evaluation failures,

• it had to manage discrete variables,

• at last, we wanted a homogeneous sampling of the admissible set, preferably with a
quite uniform distribution of feasible points in the admissible set.

Consequently, we chose to implement genetic algorithms, because they allow to manage
populations of design points, which could fulfill our needs.

2.3.4.2.2 Penalty function build-up As we said previouly, classical genetic algorithms
cannot manage constraints. Thus we had to implement a penalty function whose minimisation
would lead to the admissible set.

First, as constraints were simple or double inequalities, we transformed each constraint
to give them the same formulation.

Let (F (x))i be the ith component of the vector F (x) ∈ Y ⊂ Rq, n1 the number of double
bound inequalities, n2 the number of upper bound inequalities and n3 the number of lower
bound inequalities, then n1 +n2 +n3 = q. Let ξ(x) be the vector containing in its components
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ξi the new expressions of the constraint applying on F (x). ξ ∈ Rs where s = 2n1 + n2 + n3.
Indeed, we have:

• li ≤ (F (x))i ≤ ui ⇔


ξ2i−1 = li − (F (x))i ≤ 0

ξ2i = (F (x))i − ui ≤ 0
for i = 1, . . . , n1

• (F (x))i ≤ ui ⇔ ξn1+i = (F (x))i − ui ≤ 0 for i = n1 + 1, . . . , n1 + n2

• li ≤ (F (x))i ⇔ ξn1+i = li − (F (x))i ≤ 0 for i = n1 + n2 + 1, . . . , q
(2.19)

Then, we introduced the function S to be applied to ξi, i = 1, . . . , s:

S(ξi) =

{
0 if ξi ≤ 0,
ξi otherwise.

(2.20)

If a constraint ξi is not satisfied, then S(ξi) returns an estimation on how much the
constraint is violated, else it is null. The figure 2.13 is an illustration of the penalty function S.

Figure 2.13: Elementary penalty function representation

The smoothness of S is not required as genetic algorithms do not regard gradients.
Finally, the global penalty function is a weighted sum of componentwise penalties. These

weights, λi ≥ 0, i = 1, . . . , s are set to ensure homogeneous contributions of all constraints.
Our final penalty function is:

ε(f(x)) =
s∑

i=1

λi.S(ξi(x)). (2.21)

2.3.4.2.3 Genetic algorithm implementation For the sake of the good exploration
of the admissible set and of the variety of admissible points, we decided to implement
the Non dominated Sorting Genetic Algorithm (NSGA) method, developed by Srinivas
and Deb [Srinivas and Deb, 1994]. In addition to the standard fitness, this method sorts
the population depending on the distance to the closest design point in the population.
Consequently, the individuals do not tend to aggregate.
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Our genetic algorithm implementation was done with the following specifications:

• Each gene represents one degree of freedom, thus each individual is composed of
16 genes.

• The initial population is composed of 50 individuals, whose genes are obtained from
uniform randomized sampling inside respective bounds.

• Reproduction is done by mixing genes of two population subsets: the first one is contain-
ing the best individuals, the second one is containing a random sample of the current
population. As a result, we get one child per crossing of two individuals. The number of
children is also 50, the crossed population size is thus between 50 and 100 individuals
once clones are removed.

• Selection of individual xj is done according to its fitness Fj, inversely proportional to its
penalty value ε(F (xj)). If several points have the same penalty value, they are allocated
the same fitness.

Then, as we want to explore uniformly the admissible set, the fitness is weighted ac-
cording to the distance between points in the population. Thus the final fitness fj for
the jth individual is:

fj =
Fj

mj

where mj =
K∑

k=1

Sh(d(j, k)), (2.22)

where K is the number of individuals in the crossed population, d(j, k) is the distance
between individuals indexed by j and k, Sh is a function depending on the distance
between two individuals and on a reference distance σshare defining an estimate of the
minimum distance we want between individuals.

Sh(d(i, j)) =

{
1−

(
d(i,j)
σshare

)2

if d(i, j) < σshare

0 otherwise.
(2.23)

The function Sh is represented in figure 2.14.

• Mutation strategy has to be done by a specific function. Considering that dx = ε(F (x))
is an estimate of the distance to the admissible set, the mutation probability is calcu-
lated through a function P , depending on dx. The function P has to satisfy 3 basic
properties:

1. P (0) = 0: if the distance to the admissible set is null, then the point has reached
it, there is no reason to mute any gene. The mutation probability is then 0.

2. P (dx) > 0 when dx → 0+: if dx is not null, even in the neighbourhood of 0, we
have to mute to increase chances to reach the admissible set.
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Figure 2.14: Representation of the sharing function Sh

3. P constant for one given dmax: The mutation probability must increase towards
a threshold because the probability to mute shall not increase once a certain
distance from the admissible set is reached.

We choose a piecewise linear function satisfying these three propositions, which is
continuous, except in zero. This function is represented in figure 2.15.

Figure 2.15: Mutation function representation

This mutation function is defined with three parameters, a distance threshold T above
which the mutation probability remains constant, and a low and a high probability
parameters, Lp and Hp, which define the slope of the function. Thus, we have:

P (dx) =


0 if dx = 0

Lp + Hp−Lp

T
dx if 0 < dx ≤ T

Hp if dx ≥ T

with

{
Lp ≤ Hp

Hp ≤ 1
(2.24)
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• Algorithm convergence is obtained when all population points have reached the admis-
sible set, i.e. max

x∈Population
ε(f(x)) = 0.

2.3.4.3 Numerical results

In test phases, the calculations were stopped after 50 generations. It is worth noting that
the evaluation of one design point takes typically 5 seconds. The calculation time for one
generation was roughly five minutes and it took globally six hours for the overall calculation.
Calculations were computed on an Ultra SPARC III machine at 1.2 GHz.

2.3.4.3.1 Tuning of the mutation function parameters We chose two values for
the threshold applied on the constraint satisfaction criterion ε, T : 1 and 3. Then, we chose
three different values for the high probability parameter Hp, 50%, 25% and 5%. The low
probability parameter Lp depended on the high probability parameter, its value was either
1

5
Hp or

1

10
Hp. Thus, we performed a comparison, based on convergence speed, on twelve

different configurations for the mutation function parameters, all calculations started with
the same initial population.

The figure 2.16 illustrates the convergence speed of the algorithm for two different sets
of the mutation function parameters, exihibiting completely different behaviours, depending
on the parameters choice.

T = 1, Hp = 50% and Lp = 5% T = 3, Hp = 5% and Lp = 0.5%

Figure 2.16: Comparison of convergence depending on mutation function parametrisation.
For two distinct parametrisations, we plotted the evolution of the average of the distance to
the admissible set, showing highly differing behaviours of the optimisation process.

Among all these possible parametrisations, we had to find a trade-off between optimality
and variability. We chose the parametrisation showing the fastest convergence speed, with a
sufficient global search inside the design space. The selected mutation function parameters
were: 

T = 3
Hp = 5%
Lp = 1%
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2.3.4.3.2 Success rate With this set of mutation function parameters, we tested our
algorithm on 10 different initial populations.

After 50 generations, in 8 cases, at least one point reached the admissible set, and all
points in the population were admissible in 5 cases.

2.3.4.4 Comparison with FSQP

We compared genetic algorithms with a gradient based-method: FSQP. We chose FSQP
among different softwares performing global optimisation (some of them are described in
[Mongeau et al., 2000]) because it is dedicated to problems where the objective evaluation is
difficult out of the admissible domain. Thus, this choice was natural as FSQP was designed
to first exhibit an admissible point, before optimising the criterion.

We used FSQP with its constraint satisfaction mode [Zhou et al., 1997], i.e. when there
is no objective function.

The main problem we had to deal with was about discrete degrees of freedom. As the
algorithm could not manage them, we split the process into two steps.

First, FSQP considered that all degrees of freedom are continuous. This process did not
make the calculation fail. Indeed, all the equations contained in our model of aircraft consider
that all the variables are continuous. When engineers are dealing with discrete variables, they
are always inputs of the equations, like the number of passengers or the number of engines.

Thus it allowed also FSQP to get a gradient relative to these discrete degrees of freedom
using finite differences.

After this first pass results, we rounded the discrete degrees of freedom values to the
nearest integers, and then, ran another FSQP optimisation, but this time, discrete variables
were fixed to these values and not optimised anymore.

To make an unbiased comparison between our genetic algorithm and FSQP methods on
their efficiency to reach the admissible set, first, we built a random initial population with
50 design points to run genetic algorithms. Then, we performed successively as many FSQP
constraint satisfaction using as starting point each individual of the initial genetic algorithm
population.

Genetic Algorithm results:

• It took nearly 2h10 for the genetic algorithms to produce one admissible point and 3h15
to converge, i.e. having 50 admissible points.

• If we consider the success rate as the number of admissible points over the number of
points to optimise, it was of 100% for genetic algorithms.

• If we consider the efficiency as the ratio of the number of admissible points over the
time needed to produce them, we had an efficiency of 15.4 points per hour for genetic
algorithms, concerning this test case.
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FSQP results:

• In the first pass results, FSQP produced 11 admissible points in nearly 3h50. With
these 11 points, we built 16 new starting points for the second step of our FSQP
constraint satisfaction method. And finally we got 16 points satisfying the constraints
with fixed discrete degrees of freedom values obtained in the first step. So, FSQP
produced 16 admissible points out of 50 starting design points in 5h40 of calculation.

• The success rate was 32% for FSQP.

• We had an efficiency of 2.8 points per hour for FSQP, concerning this test case.

In this context, genetic algorithms showed more robustness and efficiency than FSQP,
which is not really surprising. All results are summarised in table 2.1.

Genetic algorithms FSQP
Convergence time (h) 3.25 5.66

Admissible points (out of 50) 50 16
Success rate (adm point/initial point) 100% 32%

Efficiency (adm point/h) 15.4 2.8

Table 2.1: Test case numerical results

2.3.5 Conclusion

We presented a novel method to automatically produce large amounts of admissible design
points in the context of aircraft sizing. Our dedicated implementation of genetic algorithms
to solve a constraint satisfaction problem succeeds in 80% of the cases to produce roughly
50 admissible points, which correspond to the size of the population. Moreover, in this aircraft
sizing context, genetic algorithms show more robustness but also, more surprisingly, higher
productivity than a gold standard dedicated method like FSQP, producing in average one
admissible point every 15 minutes.

In addition, this is done in a relatively short time frame, compared with the time
engineers need to exhibit a single admissible point.

To explain the 20% of failure cases, we notice that the number of individuals in the current
population, nearly 100 individuals including the parents and the children, is small relatively
to the 16-dimensional design space. So the genetic algorithm can find a minimum which is
local.

Moreover all the calculations were stopped after 50 generations, they could surely have
converged if we had let them have enough time. But due to the limited time we had, we
could not afford to let the calculations go on until the convergence.

Our next step will be to improve the success rate of our algorithm, by increasing population
size and maximising population dispersion. The step after is to perform a mono-criterion
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optimisation under contraints, i.e simultaneously global optimisation of one figure of merit
with constraint satisfaction.

2.4 Robust mono-criterion optimisation

At this stage of the study, we decided to change the evaluation function, because the current
one, coming from AVION, is too heavy. It takes 5 seconds to calculate one point, when it
is evaluable, and the evaluation failures slow down the calculations of population of points,
thus the overall GA process can be launched only at night. For these reasons, development
and research were not easy to perform.

We decided to change the evaluation function to use a simplified model of aircraft which
has to be more research-friendly than the previous one. Thus, we decided to use the USMAC
model, which is described in details in the previous chapter, section 1.3.2.2, page 45. This
function is more robust and rarely fails, and the evaluation of one point lasts 0.11s of CPU
on a P4 with 1.70 GHz. The calculation times on this machine are comparable to those
previously obtained.

2.4.1 USMAC implementation

2.4.1.1 Variable description

2.4.1.1.1 Degrees of freedom The USMAC has possibly up to 6 degrees of freedom:

• the sea level static reference thrust, FNslst (daN),

• the engine by-pass ratio, BPR (no dimension),

• the wing area, Awing (m2),

• the wing span, span (m),

• the wing reference sweep angle, phi (deg),

• the wing reference thickness to chord ratio, tuc (no dimension).

The table 2.2 summarises the intervals of definition of the search space of our problem.

10000 ≤ FNslst ≤ 20000
5 ≤ BPR ≤ 8
40 ≤ Awing ≤ 400
16 ≤ span ≤ 80
15 ≤ phi ≤ 40

0.08 ≤ tuc ≤ 0.12

Table 2.2: Definition of the search space of our problem
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Most of the time, the methods we developed were tried on the two main ones, FNslst
and Awing, to be able to draw graphics, and visualise the results. The other four variables
are fixed to meaningful values, see table 2.3.

BPR = 6
span = 34 m
phi = 25 deg
tuc = 0.11

Table 2.3: Fixed values for secondary-level degrees of freedom

2.4.1.1.2 Constraints We are dealing with 6 constraints:

• the take-off field length, TOFL (m),

• the approach speed, V app (kt),

• the aspect ratio, AR (no dimension),

• the fuselage fuel ratio, Kff (no dimension),

• the climb speed, V z (ftpmin)

• the cruise thrust, Kfn (no dimension).

The figure 2.17 is a representation of ten isocurves of the constraints according to the
two main degrees of freedom FNslst and Awing.

The 6 constraints of this new aircraft sizing problem are defined by the following relations:

TOFL ≤ 2000 m
Vapp ≤ 120 kt
AR ≤ 11

0.75 ≤ Kff
500 ftpmin ≤ Vz

Kfn ≤ 1

Table 2.4: Definition of the constraint bounds of our problem

The boundary of the admissible set and the related constraints are represented on
figure 2.18.
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TOFL V app

AR Kff

V z Kfn

Figure 2.17: Isocurves of the constraints according to the two main degrees of freedom FNslst
and Awing
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Figure 2.18: Constraint position in the search space

2.4.1.1.3 Criteria Again, in this new problem, there are 4 criteria to minimise:

• the maximum take-off weight, MTOW (kg),

• the nominal fuel, Fuel (kg),

• the weight efficiency, the ratio of MWE, the manufacturer weight empty, over the
MTOW , MWEoMTOW (no dimension)

• the fuel efficiency, the ratio of the fuel over the number of passengers over the range,
FoPoNe6 (106kg/m/Pax).

The figure 2.19 is a representation of the isocurves of the criteria according to the two
main degrees of freedom FNslst and Awing with the limit curves of the constraints.

2.4.1.2 Adaptation of the previous work to the new problem

Once the framework has been established, and the new evaluation function plugged to our
implementation of genetic algorithms, the same work than in the previous section has been
done to calculate the parameters which define the mutation distribution. Finally, as the
evaluation function is more robust, as the calculation time is shorter and the design space
smaller, the values of the parameters changed to:

T = 3
Hp = 50%
Lp = 10%
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MTOW Fuel

MWEoMTOW FoPoNe6

Figure 2.19: Isocurves of the criteria according to the two main degrees of freedom FNslst
and Awing with the limit curves of the constraints
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2.4.2 Improvement of initial population repartition

Until now, the generation of the initial population was done randomly in previous sec-
tion 2.3.4.2.3, page 87, using a Monte Carlo sampling method with uniform distributions on
the definition intervals of the degrees of freedom.

According to [Poles et al., 2006], well-distributed samplings allow to gain more informa-
tion on the problem, and thus increase the robustness and the convergence speed of a generic
genetic algorithm. Indeed, if the information contained in the initial population is not suf-
ficient, the algorithm can suffer from premature convergence and get stuck in local optimal
solutions.

Poles et al. prove that a well-distributed population speeds up the convergence to the cor-
rect Pareto frontier independently from the GA and the problem. Thus, we decided to change
the way we generate the initial population to improve the convergence of our algorithm.

2.4.2.1 Generating well-distributed population

Among the techniques to generate well-distributed population, there are Design of Experi-
ments, further denoted DoE.

DoE are a series of tests organised to determine the influence of multiple parameters
on one or several responses in a minimum number of tests and with the maximum of
precision [Orsi, 1994].

DoE are widely used, not only in numerical applications. These methods were first
elaborated to reduce the number of real experiments, they are for instance widely used in
agronomy or oil field detection. The manuscript [Van Grieken, 2004] describes a systematic
approach to build DoE.

There are several other methods to generate well-distributed samplings, like:

• Sobol, which is a deterministic algorithm, also known as quasi-random. Its aim is to
obtain a uniform sampling of the design space.

• Cross-Validation, which distributes the points uniformly on the basis of the Kriging
algorithm used for response surfaces. This method estimates the error of the model
and then chooses a good new set of points in order to make the response surface more
reliable.

• Latin Hypercube Sampling, which is one form of stratified sampling that can reduce
the variance in the Monte Carlo estimate of the integrand.

We decided to implement a Latin Hypercube sampling method because it is simple to
manipulate in our context, and we don’t want to introduce any a priori knowledge on the
problem.
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2.4.2.2 Latin Hypercube Sampling (LHS)

The statistical method of Latin Hypercube Sampling, further denoted LHS, was developed to
generate a distribution of plausible collections of parameter values from a multidimensional
distribution.

In the context of statistical sampling, a square grid containing sample positions is a
Latin square if (and only if) there is only one sample in each row and each column. A Latin
hypercube is the generalisation of this concept to an arbitrary number of dimensions, whereby
each sample is the only one in each axis-aligned hyperplane containing it.

When sampling a function of N variables, the range of each variable is divided into
M equally probable intervals. M sample points are then placed to satisfy the Latin hypercube
requirements. Note that this forces the number of divisions, M, to be equal for each variable.
Note also that this sampling scheme does not require more samples for more dimensions
(variables). This independence is one of the main advantages of this sampling scheme.
Another advantage is that random samples can be taken one at a time, remembering which
samples were taken so far.

The figure 2.20 is an example of a Latin Hypercube sampling in two dimensions, and the
figure 2.21 is an example of a Latin Hypercube sampling in our context, with the represen-
tation of the constraint bounds. The admissible set is the smaller triangle containing the red
point.

X
X

X
X

X

Figure 2.20: Example of a Latin Hypercube sampling

In two dimensions, the difference between random sampling and LHS can be explained as
follows:

• In random sampling, new sample points are generated without taking into account
the previously generated sample points. Thus, one does not necessarily need to know
beforehand how many sample points are needed.

• In Latin Hypercube sampling, one must first decide how many sample points to use
and for each sample point remember in which row and column the sample point was
taken.

According to [Wang, 2003], LHS has desirable features, like:

• providing more information within a design space,



100 Robust global optimisation

Figure 2.21: Example of a Latin Hypercube sampling in our context

• no interrelationship is pre-assumed between design variables,

• the size of a sample is controllable and determined by the designer.

2.4.3 Producing admissible points with USMAC

Since we work with the USMAC, our dedicated implementation of a genetic algorithm never
fails producing admissible points, each time the entire population reaches the feasible set.

This is mainly because the admissible set is comparatively greater than with the AVION
evaluation function. When 5 points among 1 000 000 of randomly sampled points were
admissible with the AVION code, with the USMAC model, 15% of randomly sampled points
are admissible.

We can now compare the efficiency of producing admissible points according to the initial
population. The figure 2.22 is an example of two initial populations produced by a random
sampling on the left, and a LHS on the right.

Calculations on 100 initial populations for both cases were launched. The resolution of
the constraint satisfaction problem using these two kinds of initial populations succeeds in
each case in producing 50 admissible points, the size of the population. The convergence
speed is higher for the LHS sampling, the algorithm converges in nearly 26 seconds instead
of 27 seconds starting with the random initial population.

A comparison of the evolution of the population is detailed in table 2.5.

Then, we can see on the figure 2.23 the resulting populations inside the admissible set.
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Random sampling Latin Hypercube Sampling

Figure 2.22: Comparison of initial populations: the red circles enlighten some of the clusters
of randomly sampled points on the left figure. Such clusters cannot be found on the right
figure. The red point in the middle of the figure is not one particular point of the population,
but its centre of gravity.

Number of admissible Random Latin Hypercube
points at generation sampling Sampling
Sampled generation 9.91 10.075

N°1 17.49 18.36
N°2 28.03 29.13
N°3 40.04 41.36
N°4 47.32 48.98
N°5 49.67 49.98
N°6 49.99 50
N°7 50

Convergence time 27.13s 26.16s

Table 2.5: Test case numerical results
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Random sampling Latin Hypercube Sampling

Figure 2.23: Comparison of admissible populations produced with the two kinds of initial
populations. The results look like quite the same, but the dispersion of points inside the
admissible domain seems better using a Latin Hypercube Sampling.

2.4.4 Robust mono-criterion optimisation

Robust mono-criterion optimisation is done using FSQP, starting from an initial point
located at the centre of gravity of the admissible population found thanks to genetic
algorithms (the red point on the figures). Thus the initial point is already admissible, FSQP
does not have to put any initial point inside the admissible set.

The optimisation process is done for each criterion we have. FSQP always manages to
converge to the right optimum, which is located at the intersection of two constraints (see
on figure 2.24).

MTOW Fuel

Figure 2.24: Examples of results of the mono-criterion optimisations

By combining our dedicated genetic algorithm to find admissible points to
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the standard optimiser FSQP, we build a robust process to find global optimal
solutions of our aircraft sizing problem.

2.4.5 Going further

This robust mono-criterion optimisation has been successfully tested with a simplified model
of aircraft, USMAC. What would be interesting now is to test it on more realistic models of
aircraft like the one included in AVION.

As an intermediary stage, we made some tests on a more complex model of aircraft,
the SMAC, which is described in section 1.3.2.3 page 56. Compared with AVION intrinsic
model, the methods are almost the same, the platform to plug the disciplines is the main
difference.

With the SMAC, our dedicated implementation of a genetic algorithm never fails produ-
cing admissible points, each time the entire population reaches the feasible set. Like with
the USMAC, this is because the model is robust, thus the evaluation never fails, and the
admissible set with the SMAC model is greater than the one using AVION model.

The main difference with the USMAC is the calculation time, which lasts 36 seconds for
one point, instead of 0.11 seconds for the USMAC using the same machine. Thus calculation
were not launched very often.

2.4.5.1 Variables description

Like with the USMAC, we worked on two variables, the main driving characteristics in defi-
ning an aircraft configuration:

• a rubbering coefficient of the engine size, krub (no dimension),

• the wing area, wing area (m2).

Our search domain was defined as described in the table 2.6.

0.5 ≤ krub ≤ 2
350 ≤ wing area ≤ 600

Table 2.6: Definition of the search space of our problem using SMAC

The problem we defined with the SMAC model contained four constraints:

• the Take-Off Field Length, TOFL (m),

• the approach speed, app speed (kt),

• two climb rates, the top-of-climb at max climb rating cl rate 1 and the top-of-climb at
max cruise rating cl rate 2 (ft per min).

The admissible domain was thus defined as described in the table 2.7.
Finally, we computed a mono-criterion using FSQP on four criteria:
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TOFL ≤ 1800
app speed ≤ 155

500 ≤ cl rate 1
50 ≤ cl rate 2

Table 2.7: Definition of the admissible domain of our problem using SMAC

• the Maximum Take-Off Weight, MTOW (kg),

• the Cash Operating Cost, Cash cost (dollars per passenger per nautical mile),

• the Manufacturer Weight Empty, MWE (kg),

• the Operational Weight Empty, OWE (kg).

The cash operating cost is another expression of costs calculated like the DOC (see in
chapter 1, section 1.1.2, page 17), except that the depreciation, the interest and the insurance
are not taken into account in its calculation.

2.4.5.2 Results

First, to have an idea of the difficulty of producing admissible points using the SMAC
model, we started by interpolating the boundary of the admissible domain defined by the
constraints. The result can be seen on the figure 2.25.

Figure 2.25: Constraint position in the search space using the SMAC
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Then, we sampled the initial population using the Latin Hypercube Sampling, and we
tested our genetic algorithm dedicated to produce admissible points. Each time the calculation
was launched, the algorithm produced as many admissible points as the size of the initial
population. Thus, as we cannot afford to perform as many tests as when using the USMAC
model, we cannot evaluate the success rate of the algorithm, but we can say that it is good
enough for our general problem of aircraft sizing.

The figure 2.26 is an illustration of the kind of results we obtained with this model, still
working with a scaling factor of the engine size and the wing area.

Initial domain Admissible domain

Figure 2.26: Examples of results with the SMAC model

Finally, we launched again FSQP starting from the centre of gravity of the admissible
population as initial point. We obtained the same kind of results as for the USMAC. The
mono-criterion optimisation using FSQP is robust, and succeeds each time in finding the
global optimum of the optimisation problem.

The figure 2.27 shows an illustration of the results we obtained with FSQP, still working
with a scaling factor of the engine size and the wing area, and the criterion represented here
is the MTOW.

2.5 Conclusion

In the first chapter, we explained that aircraft sizing studies consist in determining
characteristics of an aircraft, starting from a set of requirements. These studies can be sum-
marized as global constrained optimisation problems with typically one thousand parameters.

Our aim in the work presented in this chapter was to improve the mono-criterion and
constrained optimisation currently performed in FPO, by introducing a new structure
to the problem, and new resolution methods coming from the Multidisciplinary Design



106 Robust global optimisation

Figure 2.27: Example of results of the mono-criterion optimisation

Optimisation methodology.

It appeared to us that it could be interesting to uncouple the research of optimum solutions
from the problem of admissible set extraction. Thus, to solve the aircraft sizing problem, we
proceeded in two steps:

1. We first focused on the constraint satisfaction problem, our aim was to automatically
produce large amounts of design points satisfying all the constraints, despite frequent
evaluation failures, to help the optimisation algorithm being more robust.

2. Then, we performed a global and mono-criterion optimisation with FSQP, starting
from feasible points found in the first step.

In this chapter, we presented a new method to automatically produce large amounts of
admissible design points in the context of aircraft sizing. Our dedicated implementation of
genetic algorithms to solve the CSP has a high success rate, depending on the model used to
represent the aircaft. In addition, this is done in a relatively short time frame, compared to
the time engineers need to exhibit a single admissible point.

Then, we applied FSQP on the reduced set of the search domain, the admissible domain.
Each calculation started from the centre of gravity of the population of admissible points
produced by the genetic algorithm and succeeded in finding the global optimum of the
mono-criterion optimisation problem.
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In our aircraft sizing study, we have several criteria to consider, which are most of the
time competing and conflicting measures of the system performance. In this chapter, we
performed mono-criterion optimisations, but these processes are not efficient when dealing
with conflicting objectives. Thus, one part of this work was to introduce some methods of
multicriteria optimisation, which is described in the following chapter.
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Chapter 3

Multicriteria optimisation
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As we said previously, aircraft sizing studies consist in determining the main characteristic
parameters of an aircraft, like its fuselage length or its wing reference area. In mathematical
words, aircraft sizing studies can be summarized as constrained global and multicriteria
optimisation problems, with typically one thousand variables and parameters. Actually,
the constraints express physical feasibility and the requirements to be satisfied, and the
objectives are market driven characteristics of the aircraft. Moreover, this is typically a
multicriteria optimisation problem because of some conflicting objectives.

In the previous chapter, we treated separately the constraint satisfaction problem related
to our aircraft sizing problem. We produced large amounts of admissible design points using
a dedicated implementation of genetic algorithm, further denoted GA. Now, having enough
design points satisfying the requirements, we can reintroduce the objectives to perform a
global optimisation, starting from admissible points and ensuring that the constraints are
not violated during the progress of the optimiser.

In section 2.4 page 92, when we reintroduced the objectives, we performed a mono-
criterion optimisation, trying to make it more robust than it is currently in FPO. Thus, after
finding large amounts of admissible points, we launched an optimisation using the optimiser
FSQP starting from the centre of gravity of this set of points. And most of the time, this
method to solve the mono-criterion optimisation managed to find the global optimum,
making our process more robust.

Before performing any multiobjective optimisation, as one of the main difficulty we faced,
especially with the initial aircraft sizing problem, was the huge design space, we decided to
refine once again the search space. Indeed, the search space was initially a 16-dimensional
hyperbox containing 5 admissible points among 1 000 000 of randomly sampled design points.

When solving the constraint satisfaction problem, we refined the design space a first time
to the admissible set, and now, what we intend to do is to refine it once more to a smaller
domain which is of the interest of engineers, and finally to focus on the smaller interesting
part of the domain, the compromise solution surface.

Thus, in this chapter, in a first part, we are going to explain what are the characteristics
of multicriteria optimisation, and what are the FPO needs and the conflicting objectives in
aircraft sizing studies. Then, we detail the methodology we developed to refine successively
the search space to finally obtain the compromise solution surface.

3.1 Multicriteria optimisation in engineering

3.1.1 Introduction

In most real-life engineering optimisation problems, one attempts to improve or optimise
several objectives, frequently competing and conflicting measures of system performance,
subject to satisfying a set of design and physical constraints [Alexandrov and Lewis, 1999].
In these cases, it is unlikely that the same values of design variables will result in the best
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optimal values for all the objectives. And the main difficulty with monocriterion optimisation
is to model the problem with a unique equation and with a unique objective which translates
the designer needs with the required accuracy. Multiobjective optimisation techniques are
means to find solutions to overcome this difficulty.

Examples of multiobjective problems are:

• in bridge construction, a good design is characterized by simultaneously low total mass
and high stiffness,

• in economics, the traditional portfolio optimisation problem attempts to simultaneously
minimize the risk and maximize the fiscal return.

[Nakayama, 2005] applies its Satisficing Trade-off Method to several real problems, like
blending plastic materials, cement production, portfolio, etc.

In these and most other cases, it is unlikely that the different objectives would be
optimised by the same alternative parameter choices. Hence, some trade-off between the
criteria is needed to ensure a satisfactory design.

Currently in FPO, the optimisation is done on one criterion, like the MTOW, or when
engineers want to consider several objectives, they aggregate them into another variable, like
a DOC, which is in fact a weighted sum of several costs concerning the aircraft operating or
maintenance (see a detailed description of DOC in section 1.1.2, page 17).

What we intend to do here is to separate the different objectives contained in such a
variable like the DOC, to perform multicriteria optimisation.

In the following part, we introduce some definitions and we survey different methods to
perform multiobjective optimisation.

3.1.2 Some definitions

3.1.2.1 Multiobjective optimisation problem

Multiobjective optimisation, also called multicriteria or vector optimisation, can be defined
as follows [Coello Coello, 2000]:

Definition 3.1 (Multiobjective optimisation). Multiobjective optimisation is the
problem of finding a vector of decision variables which satisfies constraints and optimises
a vector function whose elements represent the objective functions. These functions form
a mathematical description of performance criteria which are usually in conflict with each
other. Hence, the term “optimise” means finding such a solution which would give the values
of all the objective functions acceptable to the designer.
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The general multiobjective optimisation problem is posed as follows:

min


f1(x)
f2(x)

...
fk(x)

x ∈ X
subject to gj(x) ≤ 0, j = 1, 2, · · · , m

hl(x) = 0, l = 1, 2, · · · , e

(3.1)

where:

• X ⊂ Rn, n being the number of design parameters,

• k is the number of objective functions,

• m is the number of inequality constraints, e the number of equality constraints.

Let

F (x) =


f1(x)
f2(x)

...
fk(x)

, G(x) =


g1(x)
g2(x)

...
gm(x)

, H(x) =


h1(x)
h2(x)

...
he(x)

and
F = {x ∈ X : G(x) ≤ 0 and H(x) = 0}.

Then our general multiobjective optimisation problem is:

min F (x).
x ∈ F (3.2)

Solutions of a multiobjective problem are rarely a unique solution, but a set of al-
ternative solutions. After finding these solutions, another question arises, how to select
one particular solution among this set. This depends on the way the decision-maker
intervenes in the process.

Multiobjective optimisation methods are divided into four major categories [Marler and
Arora, 2004]:

1. methods with no articulation of preferences,

2. methods with a priori articulation of preferences, which implies that the user indi-
cates the relative importance of the objective functions or desired goals before running
the optimisation algorithm,

3. methods with a progressive articulation of preferences, in which the decision-
maker is continually providing input during the running of the algorithm,



3.1 Multicriteria optimisation in engineering 113

4. methods with a posteriori articulation of preferences, which means selecting a single
solution from a set of mathematically equivalent solutions.

3.1.2.2 Notion of dominance

Once the multiobjective optimisation problem has been solved, we can obtain a great amount
of solutions. But only a limited number of solutions is effectively interesting. To refine the
set of solutions to this interesting part, we have to introduce the notion of efficient solutions
and dominance [Ehrgott, 2005].

Definition 3.2. (Efficient solutions, dominance).

• A point x̂ is called efficient or Pareto optimal if and only if it is a feasible solution
and there is no other feasible x such that F (x) ≤ F (x̂),

(
i.e. fi(x) ≤ fi(x̂) for all

i = 1, · · · , k
)

and fi(x) < fi(x̂) for at least one function.

• If x̂ is efficient, F (x̂) is called non-dominated value point.

• If x1, x2 are feasible, and if F (x1) ≤ F (x2), we say x1 dominates x2 and F (x1)
dominates F (x2).

The Pareto front corresponds to the set of all efficient points [Pareto, 1896]. The image
of all Pareto optimal points lies on the boundary of the image of the feasible set (see on
figure 3.1). Pareto solutions are such that any improvement in one objective can occur only
if at least another objective is degraded. Therefore, it can be stated that no Pareto point is
objectively better than another, the choice of one versus another can only be made on the
basis of subjective human judgement.

Figure 3.1: Illustration of Pareto fronts, in a convex and a non-convex case, in the objective
space
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3.1.3 Resolution methods

In this section, we explain some selected methods to solve a multiobjective optimisation
problem, according to the way the decision-maker intervenes in the process. This survey is
not exhaustive, more detailed descriptions on resolution methods can be found in [Collette
and Siarry, 2002; Ehrgott, 2005; Marler and Arora, 2004; Miettinen, 1999].

3.1.3.1 Methods with no articulation of preferences

Methods with no articulation of preferences are used in cases when it is not possible for the
decision-maker to express what he/she prefers. We select two examples of methods with no
articulation of preferences, the Min-Max method and the Nash arbitration.

3.1.3.1.1 Min-Max method The basic min-max formulation is posed as follows:

min

{
max fi(x)

i

}
.

x ∈ F
(3.3)

It is the same kind of method as the general weighted sum method, explained in para-
graph 3.1.3.2.1, page 115, where:

• there is no weight because the decision-maker does not have to express his/her preferen-
ces,

• the norm used here is the L∞ norm,

• the difference with the weighted sum method is that there is no need to introduce one
goal to achieve the objectives.

In order to use this resolution method, objectives have to represent the same kind of
quantities, or to be normalised, especially in an MDO context. Indeed, how to compare mass
and aerodynamics, for instance, without normalising the criteria?

If the minimum of the optimisation problem (3.3) is unique, then it is Pareto optimal.
Otherwise, there are additional conditions for the algorithm to provide a Pareto optimal
point, but they are impractical in terms of computational applications [Marler and Arora,
2004].

3.1.3.1.2 Nash arbitration Nash arbitration [Nash, 1951] is a particular case of the
objective product methods, which consist in minimising the product of the objective functions.

The Nash arbitration approach consists in maximising the objective function Fg in the
equation (3.4):

Fg(x) =
k∏

i=1

(si − fi(x)) (3.4)
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where si is selected as an upper limit value on each objective function.

The solution to this approach depends on the values of si, and tends to improve most
significantly the objectives the farthest from si.

If si ≥ fi(x) is guaranteed for each objective function, then the solution of the maximi-
sation of the function Fg is a Pareto optimal point.

The method described in this section is derived from game theory. Based on predetermined
axioms of fairness, Nash suggests that the solution to an arbitration problem be the maximum
of the product of the player’s degrees of contentment. When no agreement is reached, in
absence of cooperation, the product is zero [Marler and Arora, 2004].

3.1.3.2 Methods with a priori articulation of preferences

The most common way of conducting multiobjective optimisation is by a priori articulation
of the decision-maker preferences. This means that the user has to specify its preferences in
terms of goals or relative importance of the different objectives. This method is also called
naive approach [Collette and Siarry, 2002; Coello Coello, 2000] because it is the most evident
one to solve a multiobjective problem.

Most of these methods incorporate information, which are coefficients, exponents, etc.,
that can be set by the decision-maker to reflect his/her preferences. Methods with a priori
articulation of preferences often use scalarised functions or aggregation functions as for the
effective objective function.

3.1.3.2.1 Weighted sum method This method is a particular case of weighted global
criterion methods, which consist in minimising the following function:

U =

{
k∑

i=1

wi(fi(x)− f o
i )p

} 1
p

(3.5)

where:

• F o =


f o

1 (x)
f o

2 (x)
...

f o
k (x)

is called the utopia point, i.e. for each i = 1, 2, · · · , k, f o
i = min fi(x),

• w is a vector of weights set by the decision-maker, such that
k∑

i=1

wi = 1 and wi > 0, for

all i = 1, 2, · · · , k,

• the exponent p is also defined by the user, depending on the distance measure he wants
to use.
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In a typical weighted sum method, p = 1 and the utopia point in the definition of the
utility function U is assigned to zero, f o

i = 0 for all i = 1, 2, · · · , k:

U =
k∑

i=1

wifi(x) (3.6)

The condition in hypotheses that all of the weights have to be positive ensures that the
minimum of the equation (3.6) is Pareto optimal [Marler and Arora, 2004].

There are mainly three difficulties in using a weighted sum method:

1. a priori selection of weights does not necessarily guarantee that the final solution will
be acceptable from the decision-maker point of view, he may have to solve the problem
once more with new weights,

2. it is impossible to obtain points on non-convex portions of the Pareto front,

3. varying the weights consistently and continuously may not necessarily result in an even
distribution of Pareto optimal points and an accurate complete representation of the
Pareto front.

3.1.3.2.2 Lexicographic method This method consists in first classifying the objectives
by order of importance, and then successively minimising the following optimisation problem
for each objective function:

min fi(x)
s.t. f1(x) = f ∗1 , · · · , fi−1(x) = f ∗i−1

G(x) ≤ 0
H(x) = 0

(3.7)

where i represents the position of the function in the classification, f ∗j is the optimum of the
jth function in the process iteration, j < i.

The last value of x is the one minimising the last objective function of the classification,
while the other objectives are fixed to the previously found minima. This last value of x is
the solution of the optimisation problem when using the lexicographic method.

This method is intuitive, but like for the weighted sum method, it requires an arbitrary
ordering by preference of the objective functions. Different ordering of the functions leads
generally to different solutions [Collette and Siarry, 2002].

3.1.3.2.3 Goal Programming method The first step of this method is for the decision-
maker to fix goals, or targets, for each criterion, denoted here Tj for the jth function.

These values are incorporated into the problem as additional constraints [Coello Coello,
2000]. The optimisation problem is now to minimise the sum of the absolute deviations from
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the targets to the actually achieved values of the objectives. The simplest form of this method
may be formulated as follows:

min
(
d1, · · · , dk

)
s.t. f1(x) = T1 + d1

...
fk(x) = Tk + dk

and x ∈ F

(3.8)

where di is the deviation from the target Ti, di = fi(x)− Ti.

3.1.3.3 Methods with progressive articulation of preferences

Methods with progressive articulation of preferences are interactive methods. They produce
only one solution, allowing the decision-maker to adapt his/her preferences during the opti-
misation process.

3.1.3.3.1 Surrogate Worth Trade off method This method is based on compromise
methods, where an interactive process is added to converge towards the preferences of the
decision-maker [Collette and Siarry, 2002].

This method is composed of several steps. The first one consists in minimising each ob-
jective function separately, except the first one:

min fi(x) for i = {2, · · · , k}
s.t. x ∈ F .

(3.9)

Let x̄i denote one solution of the equation (3.9) and f̄i = fi(x̄i), for i = {2, · · · , k}.

Then, the next step consists in introducing some coefficients εi, for i = {2, · · · , k}, and
the decision-maker has to fix adequate values for these coefficients such that:

• εi ≥ f̄i,

• the optimisation problem (3.10) has admissible solutions.

min f1(x)
s.t. f2(x) ≤ ε2, · · · , fk(x) ≤ εk

G(x) ≤ 0
H(x) = 0.

(3.10)
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The next step is now for the decision-maker to give his/her opinion whether he/she wants
to increase, or not, the objective function fi of the value λ1i to obtain a relative gain of 1 on
the first objective function f1, where:

λ1i = −∂f1

∂fi

. (3.11)

The opinion of the decision-maker is expressed through coefficients W1i, for i = {2, · · · , k},
varying from −10 to +10:

• −10 means unfavourable,

• +10 means favourable,

• 0 means that it does not matter.

This process is repeated until all values of W1i, for i = {2, · · · , k}, are zero during the
iterations of the expression of the opinion.

Once satisfaction has been reached, the solution is determined by solving the pro-
blem (3.12):

min f1(x)
s.t. f2(x) = f ∗2 , · · · , fk(x) = f ∗k

G(x) ≤ 0
H(x) = 0

(3.12)

where f ∗i is the value of the ith objective function corresponding to the case when the coeffi-
cient W1i is zero.

3.1.3.3.2 Fandel method In Fandel method, the preference information from the
decision-maker is used to refine step by step the research space. The aim is to help the
decision-maker in defining the weights of an aggregation method.

The initial problem (3.2) (described page 112) is modified as follows:

min
k∑

i=1

wifi(x)

s.t. x ∈ F
(3.13)

where w is a vector of weights such that
k∑

i=1

wi = 1 and wi > 0 for all i = 1, · · · , k.

Like for the weighted sum method, described in paragraph 3.1.3.2.1 page 115, the
variation of the coefficients wi allows to find points on the compromise surface. But the
difference with this method is that these coefficients are not known a priori. The aim of
the Fandel method is to find a solution which is as close as possible to an “ideal” solution,
according to the decision-maker. This method is a guidance for assigning numerical weights
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to the decision-maker mind-oriented weights.

The first step of the method consists in minimising each objective function separately,
while ensuring constraint satisfaction:

min fi(x) for i = {1, · · · , k}
s.t. x ∈ F .

(3.14)

We denote:

• x̄i a solution of the equation (3.14),

• f̄i = fi(x̄i),

• F ∗
i = F (x̄i) = (f1(x̄i), · · · , fi−1(x̄i), f̄i, fi+1(x̄i), · · · , fk(x̄i)),

• F̄ = (f̄1, · · · , f̄k). F̄ is the “ideal” vector, but it is impossible to get it.

• B = (F ∗
1 , · · · , F ∗

k ). B is a matrix containing the values f̄i on its diagonal, and fj(x̄i),
with i 6= j, elsewhere.

Then, we calculate a vector FM which will be used to refine the search space:

FM =
1

k

k∑
i=1

F ∗
i . (3.15)

This vector is represented on the figure 3.2 page 120.

Finally, the search space will be refined by adding a constraint to the problem (3.14),
which depends on the new vector FM that we have introduced:

min fi(x) for i = {1, · · · , k}
s.t. G(x) ≤ 0

H(x) = 0
F (x) ≤ FM .

(3.16)

We note:

• x̂i a solution of the equation (3.16),

• f̂i = fi(x̂i),

• F̂i = F (x̂i) = (f1(x̂i), · · · , fi−1(x̂i), f̂i, fi+1(x̂i), · · · , fk(x̂i)),

• B̂ = (F̂1, · · · , F̂k).
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B̂ defines a hyperplane of equation:

B̂.a = c.e (3.17)

where :

• a = (a1, · · · , ak)
t,

• a > 0,
k∑

i=1

ai = 1,

• c = constant,

• e = (1, · · · , 1)t.

The last step of the method consists in finding the value of the constant c so that the
hyperplane is tangent to the admissible domain. The intersection point is the compromise
solution (see an illustration on figure 3.2).

If this compromise point is not convenient to the decision-maker, then he/she has to
modify the added constraints through the vector FM to refine the search space to another
domain, and thus, he/she has to define a different problem (3.16) to finally solve it again.

3.1.3.3.3 Other methods There are several other methods with progressive articulation
of preferences than the two described previously. There are for instance:

• the STEP method,

• the Jahn method,

• the Geoffrion method,

• a simplex method, etc.

These methods will not be described here. Further details on the methods listed above
can be found in [Collette and Siarry, 2002].

3.1.3.4 Methods for a posteriori articulation of preferences

These methods generally help in producing a set of alternative design points, allowing the
decision-maker to make his/her choice among a set of possible solutions. They are also called
Generate First–Choose Later.



3.1 Multicriteria optimisation in engineering 121

Figure 3.2: Illustration of Fandel method on an optimisation problem with 2 objective func-
tions to minimise and with 2 constraints.
F is the set of all coupled points

(
f1(x), f2(x)

)
, for x in the search space, F ∗

1 =
(
f1min, f2(x̄1)

)
where x̄1 = argmin(f1), F ∗

2 =
(
f2(x̄2), f2min

)
where x̄2 = argmin(f2) and FM =

1

2

(
F ∗

1 +F ∗
2

)
.

The search space is refined to the intersection of the green and the grey sets on the figure.
The compromise solution is the tangent point to the plane defined through the new extremum
vectors F̂1 and F̂2.
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3.1.3.4.1 Physical programming This method was first developed for a priori articu-
lation of preferences [Messac, 1996] but it can be effectively adapted as well for progressive
articulation of preferences [Tappeta et al., 2000], or for a posteriori articulation of preferences
[Messac and Mattson, 2002].

Physical programming method consists in minimising the function g(x) defined in equa-
tion (3.18).

g(x) = log10

(
1

nsc

n∑
i=1

ḡi

(
gi(x)

))
(3.18)

where:

• gi represents an objective to be optimised, or a constrained quantity to satisfy,

• ḡi is a preference function introduced according to the decision-maker preferences, and
defined like in the table 3.1. Hard class-functions reflect the presence of constraints,
and soft class-functions reflect the preferences settled for objective functions.

• nsc is the number of soft criteria.

In Physical programming, some region boundaries are introduced to translate the degrees
of desirability of the decision-maker. They are composed of six ranges:

• unacceptable,

• highly-undesirable,

• undesirable,

• tolerable,

• desirable,

• highly-desirable.

An illustration of these regions can be found on the figure 3.3 in the case of the
minimisation of the objective function gi.

The interest in introducing these regions is to compare the evolution of objective
functions in a qualitative way. For instance, it can be better for one criterion to travel across
the tolerable region than for all the others to travel across the desirable region.

For each criterion, one must first define the class-type among those described on table 3.1.
This is followed by the prescription of scalar values that quantitatively define the preferred
behaviour of the criterion via region limits, gik on the figure 3.3.

The values of the class function ḡi are the same regardless of class-type or criterion. As a
consequence, as one travels across a given region-type, the change in the class-function will
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SOFT HARD

SMALLER
IS

BETTER
(Class-1)

LARGER
IS

BETTER
(Class-2)

CENTER
IS

BETTER
(Class-3)

Table 3.1: Preference function classification for Physical programming

Figure 3.3: Example of preference regions on the class function 1-S
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always be of the same magnitude, ḡk on the figure 3.3. This property makes each generic
region-type have the same numerical consequence for different criteria. This same behaviour
also has a normalizing effect, and results in favorable numerical conditioning properties
[Messac, 1996].

The use of Physical programming in the case of a posteriori articulation of preferences
is made possible by using pseudo-preferences. Indeed, as the decision-maker has no a priori
preference, he/she is not intended to give particular scalar values to the variables gik to define
his/her regions of interest. Thus, this method is used in this case to generate points on the
Pareto frontier.

Pseudo-preferences are generic numbers generated to represent likely preference values of
the decision-maker. Their values vary in the entire objective space. They depend on extrema
values of the objective functions, or on the boundaries of the desired region of investigation.
Each time pseudo-preferences are fixed, Physical programming computes a point of the Pareto
frontier.

The way to generate points of the Pareto frontier using Physical programming is
interesting because it enables the decision-maker to have a well-distributed set of points,
facilitating the a posteriori decision.

To have more informations, the basis principles of Physical programming are described
in [Messac, 1996], and more details to use this method to generate well-distributed points on
the Pareto frontier are given in [Messac and Mattson, 2002].

An interesting work has been done in Cranfield university, which is described in [Guenov
et al., 2005; Utyuzhnikov et al., 2005]. They modify the Physical programming method to
make it simpler and more efficient for generating an evenly distributed Pareto set. Their
algorithm does not provide non-Pareto solutions while local Pareto solutions may be easily
recognised and removed in the framework of this method.

3.1.3.4.2 Normal boundary intersection method The Normal Boundary Intersec-
tion method, further denoted NBI, is another method for generating Pareto optimal points
of a general nonlinear multicriteria optimisation problem [Das and Dennis, 1998]. NBI is a
technique intended to find the portion of the objective set frontier which contains the Pareto
optimal points.

Again, to explain the general notions of this method, we call:

• x∗i a solution of the equation (3.14), and f ∗i = fi(x
∗
i ),

• F ∗
i = F (x∗i ),

• F ∗ =


f ∗1
f ∗2
...

f ∗k

 is the utopia vector.
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These vectors are represented on the figure 3.4 for an example in two dimensions.

Figure 3.4: Illustration of Normal boundary intersection vectors in two dimensions with no
constraint

Then we introduce the matrix Φ = [F ∗
i − F ∗], for i = 1, · · · , k, which has the following

properties:

• Φ(i, i) = 0, for all i = 1, · · · , k,

• Φ(i, j) > 0, for all i, j = 1, · · · , k and i 6= j.

With this matrix, we define the Convex Hull of Individual Minima, CHIM :

CHIM = {Φβ : β ∈ Rk,
k∑

i=1

βi = 1, βi ≥ 0}. (3.19)

The set of attainable objective vectors, {F (x) : G(x) ≤ 0, H(x) = 0} is denoted by F , its
boundary by ∂F .

The idea behind the NBI approach is that the intersection points between the boundary
∂F and the normal vector pointing towards the origin emanating from any point in the
CHIM is a point on the portion of ∂F containing the efficient points.

Such boundary points can be found by solving the following optimisation problem:

max t
x, t
s.t. Φβ + tn̂ = F (x)

G(x) ≤ 0
H(x) = 0

(3.20)
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where n̂ is the unit normal vector to the CHIM pointing towards the origin and t is a
scalar. The figure 3.5 is an illustration of this process.

Figure 3.5: Illustration of the method Normal boundary intersection

All NBI points are not Pareto optimal. However, according to [Das and Dennis, 1998], the
components of the utopia vector F ∗ being global minima of the objectives and the convexity
of the Pareto surface are sufficient, though far from necessary, conditions for the NBI points
to be globally Pareto optimal.

An example of a not Pareto optimal point produced by the NBI method can be found on
figure 3.6. This point lies on the “concave part” of the boundary of the objective set.

Nevertheless, these points can be useful since they help in constructing a smoother
approximation of the Pareto boundary.

Figure 3.6: Example of not Pareto optimal points produced by the NBI method. The Pareto
frontier is represented in red. The “concave part” of the boundary is not part of the Pareto
frontier but it can be easily a posteriori removed from the results.
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3.1.4 Resolution algorithms

After this not so short introduction to some existing methods to solve multicriteria optimi-
sation problems, we now describe some available algorithms based on game strategies, on
simulated annealing or on evolutionary algorithms.

3.1.4.1 Non-cooperative multiple objective scheme

Until now, we only considered Pareto optimality and dominance notions to solve our general
multiobjective optimisation problem. Pareto ranking and sharing can be considered as a
cooperative game which computes the set of non-dominated solutions.

We now introduce other multiple objective schemes, Nash Equilibrium and Stackelberg
Equilibrium, which are respectively a non-cooperative and a hierarchical, or competitive,
game. These approaches introduced the notion of player and aimed at solving multiobjective
optimisation problems originating from Game Theory and Economics [Périaux et al., 2006].

Definition 3.3 (Nash Equilibrium). Nash strategy consists in having k players, each
optimising its own criterion while all the other criteria are fixed by the rest of the players.
When no player can further improve his criterion, it means that the system has reached an
equilibrium state called Nash Equilibrium [Périaux et al., 2006].

As an illustration of this definition, let us consider two criteria and two sets of variables
x ∈ X ⊂ Rn and y ∈ Y ⊂ Rk−n, a strategy pair

(
x̄, ȳ
)
∈ X × Y is said to be in Nash

equilibrium if and only if:

fX

(
x̄, ȳ
)

= inf fX

(
x, ȳ
)

x ∈ X
fY

(
x̄, ȳ
)

= inf fY

(
x̄, y
)
.

y ∈ Y

(3.21)

Definition 3.4 (Stackelberg Equilibrium). In a Stackelberg game, there are two kinds
of players, the leaders and the followers. The followers have to optimise their criterion using
fixed values imposed by the leaders on the variables they manage. Then the leaders get back
the results of the follower optimisations, and optimise their criterion using best values coming
from the followers. The Stackelberg Equilibrium is achieved when the leaders cannot improve
their criterion.

Again, as an illustration of this definition, let us consider two players, let X denote the
search space of the leader, and Y the search space of the follower; a Stackelberg equilibrium
is characterized as follows:

fX

(
x̄, ȳ
)

= inf fX

(
x, ȳ∗

)
x ∈ X

(3.22)

where fX denotes the gain of the first player, ȳ∗ is the solution of the following minimisation
problem with respect to the decision variable y:

fY

(
x∗, ȳ∗

)
= inf fY

(
x∗, y

)
y ∈ Y

(3.23)
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where fY denotes the gain of the second player, and x∗ is the design variable value received
by the first player.

A Stackelberg game has a non-symmetrical structure with completely different roles of
players. During a Nash game, the two players choose their best strategies according to the one
decided by the other player to improve their own criterion. The players associated to a Nash
game have a symmetric role, while a Stackelberg game has a hierarchical definition of the roles.

If we consider a multiobjective optimisation problem with k criteria, each player manages
a subset of the design variables. For the repartition of the variables between the players, i.e.
which player should optimise which variable, it depends on the structure of the problem.
In most real-life problems, the structure of the problem is likely to suggest a way to divide
those variables.

Nash and Stackelberg equilibria are very difficult to find with classical approaches
[Sefrioui and Périaux, 2000]. It is generally easier to prove that a given solution is an
equilibrium, but exhibiting such a solution may reveal to be a hard task. And it becomes
even harder if the criteria are non-differentiable functions. The idea developed in [Sefrioui
and Périaux, 2000; Gonzalez et al., 2005; Périaux et al., 2006] is to merge game strategy and
genetic algorithms to make GA build the equilibria.

In the following, we consider two players to clarify the explanations, but everything is
easily applicable to more than two players.

Let X denote the subset of variables handled by Player-1 and optimised along the first
criterion, let Y denote the subset of variables handled by Player-2 and optimised along the
second criterion.

3.1.4.1.1 Merging Nash Equilibrium and GAs The next step consists in building
two different populations, one for each player. Let Xk−1 be the best value found by Player-1
at generation k − 1, and Yk−1 be the best value found by Player-2 at generation k − 1. At
generation k, the first player optimises its criterion using the values Yk−1 and at the same
time, the second player optimises its criterion using the values Xk−1. After the optimisation
process, Player-1 sends the best value Xk to Player-2 who will use it at generation k +1, and
similarly, Player-2 sends the best value Yk to Player-1 who will use it at generation k + 1
[Périaux et al., 2006].

Nash equilibrium is reached when neither Player-1 nor Player-2 can further improve their
criteria. The figure 3.7 is an illustration of this process.

3.1.4.1.2 Merging Stackelberg Equilibrium and GAs In this game strategy, we
consider that the first player is the leader, and the second player is the follower.

For each individual X̄ frozen of the leader’s decision, the follower searches the correspon-
ding Y ∗ to improve his criterion. Once all individuals of the leader’s decision set have received
the corresponding Y ∗ values, then the leader changes X to improve his criterion.
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Figure 3.7: Illustration of the merging of Nash Equilibrium and Genetic Algorithms

This process is repeated until the leader could not further improve his criterion. The
figure 3.8 is an illustration of this process.

Figure 3.8: Illustration of the merging of Stackelberg Equilibrium and Genetic Algorithms

3.1.4.2 Multi-Objective Simulated Annealing

Simulated Annealing is based upon a metallurgical principle [Collette and Siarry, 2002]: to
find an internal arrangement close to perfect crystal, i.e. of minimal energy, the temperature
is increased and then decreased slowly to give enough time for the atoms to get the regular
ordering.

In mathematical words, let T denote the temperature. Starting from a randomly sampled
point x0, F is evaluated at a point y in its neighbourhood. This difference between the two
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evaluations, ∆F = F (y)− F (x0), is assessed. If ∆F is negative, y becomes the new starting

point, if it is positive, it can also be the new starting point, with the probability e−
∆F
T .

During this process, the temperature decreases step by step until it reaches a given
minimum.

To perform multiobjective optimisation using a simulated annealing method, the following
can be done:

1. to aggregate the objective functions to build a new criterion G such as:

G(x) =
k∑

i=1

ln
(
fi(x)

)
. (3.24)

The optimisation process is applied directly on the function G such as described pre-
viously and it is repeated for a given number of initial points. Each time the process is
run, the solutions are compared to the ones obtained previously. Non-dominated solu-
tions are stored in a set of non-dominated solutions, while new dominated points are
removed from this set.

This method is called Pareto Archived Simulated Annealing, P.A.S.A.

2. to adapt the probability of acceptation of one point, depending on the relative impor-
tance of the criteria, by introducing the variable Πi for each objective function:

Πi =

 exp
(−∆fi

Tn

)
if∆fi > 0

1 if∆fi < 0.
(3.25)

Then the probability of acceptation is defined through the formula:

p =
k∏

i=1

Πwi
i , (3.26)

where wi are the weights of the aggregate function feq to be minimised:

feq =
k∑

i=1

wifi(x) (3.27)

This method is called Multiple Objective Simulated Annealing, M.O.S.A.

3.1.4.3 Multi-Objective Evolutionary Algorithms (MOEA)

It was recognized early in their development that Evolutionary Algorithms, further denoted
EAs, were possibly well-suited to multiobjective optimisation [Fonseca and Fleming, 1995].
Multiple individuals can search for multiple solutions in parallel, eventually taking advan-
tages of any similarities available in the solution set. The ability to handle complex problems,
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involving features such as discontinuities, disjoint feasible spaces and noisy function evalu-
ations, reinforces the potential effectiveness of EAs in multiobjective search and optimisation.

The general principle of genetic algorithms has been described in the section 2.2.1 page 75.
The method we now describe shortly can be found in the following overviews of genetic
algorithms in multiobjective optimisation: [Fonseca and Fleming, 1995; Coello Coello, 2000;
Van Veldhuizen and Lamont, 2000; Coello Coello, 2001; Deb, 2001]

3.1.4.3.1 Multiple Objective Genetic Algorithm (MOGA) This method has been
developed by Fonseca and Fleming [Fonseca and Fleming, 1993]. The approach consists in a
scheme in which the rank of an individual is given by the number of individuals that dominate
the considered point. For instance, if the number of points which dominate the considered
individual xi is p

(t)
i , than we have:

rank(xi, t) = 1 + p
(t)
i .

All non-dominated individuals are assigned rank 1.

Fitness value is calculated following these steps:

1. Sort population according to rank,

2. Assign fitness to individuals by interpolating from the best (rank 1) to the worst
(rank n) according to some function, usually affine like in the figure 3.9.

Figure 3.9: Example of interpolation function to calculate the fitness in the MOGA method

More details can be found in the algorithm 3.1.
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Algorithm 3.1. MOGA
Initialisation of the population
Evaluation of objective functions
Rank affectation based on dominance
Fitness affectation based on rank
For i = 1 to G

Random selection proportional to the fitness values
Crossover
Mutation
Evaluation of objective functions
Rank affectation based on dominance
Fitness affectation based on rank

End For

3.1.4.3.2 Niched Pareto Genetic Algorithm (NPGA) The specifics of this method
are the implementation of the selection process [Horn et al., 1994]. Instead of having a
classic tournament selection, which consists in keeping for the next generation the best
individual among a sub-group of the population, the selection is based on Pareto dominance
tournaments.

In a classic tournament selection, the population generally converges towards a uniform
solution. The Pareto dominance tournament selection is used to maintain multiple Pareto
optimal solutions. Two candidates for selection are picked at random from the population.
A set of individuals is also picked, for comparison, randomly from the population, its size
is denoted tdom in the literature. Each candidate is then compared against each individual
in the comparison set. If one candidate is dominated by the comparison set, and the other
is not, the latter is selected for reproduction. If neither or both are dominated by the
comparison set, then we must use sharing to choose a winner.

Fitness sharing is used to distribute the population over a number of different peaks of the
search space [Horn et al., 1994]. Each peak receives a fraction of the population in proportion
to the height of this peak.

This distribution is obtained by degrading an individual’s fitness fi by a niche count mi.
This degradation is obtained by simply dividing the fitness by the niche count to find the

shared fitness:
fi

mi

. The niche count mi is an estimate of how crowded is the neighbourhood,

or niche, of the individual i. It is calculated over all individuals in the current population:

mi =
∑

j∈Pop

Sh
(
d(i, j)

)
where:

• d(i, j) is the distance between individuals i and j,

• Sh(d) is the sharing function. It is a decreasing function of d(i, j) such that Sh(0) = 1
and Sh(d ≥ σshare) = 0, σshare being the minimal separation desired or expected
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between the goal solutions. Typically, the sharing function is a piecewise affine function,
like on the figure 3.10.

Figure 3.10: Representation of the NPGA sharing function

Another example of the calculation of the niche count can be seen in paragraph 2.3.4.2.3,
page 88, concerning the fitness sharing evaluation of the method NSGA, with a different
sharing function than the triangular.

More details can be found in the algorithm 3.2.

Algorithm 3.2. NPGA
Initialisation of the population
Evaluation of objective functions
For i = 1 to G

Pareto dominance tournament selection
If candidate 1 is dominated, candidate 2 is selected
If candidate 2 is dominated, candidate 1 is selected
If both candidates are dominated:

Perform sharing fitness
Candidate with smaller number of individuals
in its neighbourhood is selected

Crossover
Mutation
Evaluation of objective functions

End For

The convergence behaviour of this method strongly depends on the parameters tdom and
σshare, which have to be well-tuned according to the optimisation problem. Explanations and
discussions on this topic can be found in [Coello Coello, 2000; Fonseca and Fleming, 1993;
Horn et al., 1994] for both NPGA and MOGA methods.
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3.1.4.3.3 Strength Pareto Evolutionary Algorithm (SPEA) SPEA uses a mixture
of established and new techniques in order to find multiple Pareto-optimal solutions in parallel
[Zitzler and Thiele, 1999]. It combines the three following techniques in a single algorithm:

• Non-dominated solutions found so far are stored in an external population,

• Pareto dominance is used in order to assign scalar fitness values to individuals,

• Clustering is performed to refine the number of non-dominated solutions stored
without destroying the characteristics of the trade-off front.

The fitness assignment is a two-stage process. First the individuals in the external non-
dominated set P ′ are ranked. Afterwards, the individuals in the population P are evaluated:

1. Each solution i ∈ P ′ is assigned a real value si ∈ [0, 1), called strength. si is proportional
to the number of individuals j ∈ P for which i dominates j. Let n denote this number,
then the fitness fi is equal to n

N+1
, where N is the size of the population.

2. The fitness of an individual j ∈ P is calculated as follows:

fj = 1 +
∑

i dominating j

si.

The figure 3.11 is an illustration of the calculation of the fitness of the individuals in two
examples.

Figure 3.11: Examples of SPEA fitness assignment: Individuals represented with a cross are
non-dominated points of the set P ′. Individuals represented with a dot are points of the
current population P . All the numbers on these figures are the fitness of the corresponding
individuals.

More details can be found in the algorithm 3.3.
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Algorithm 3.3. SPEA
Initialisation of the population P
Creation of an empty external non-dominated set P ′

For i = 1 to G
Copy non-dominated points of P to P ′

Remove solutions within P ′ which are dominated by any other member of P ′

If the number of externally stored non-dominated solutions exceeds a given
maximum, prune P ′ by means of clustering
Calculate the fitness of each individual in P as well as in P ′

Select individuals form P + P ′ using a binary tournament
Crossover
Mutation

End For

For more explanations on the SPEA method, refer to [Zitzler and Thiele, 1999; Sbalzarini
et al., 2000].

3.1.4.3.4 Hierarchical Asynchronous Parallel Evolutionary Algorithms
(HAPEA) The HAPEA method is described in [Périaux et al., 2006; Gonzalez et al.,
2005]. It has two main characteristics:

1. it is a hierarchical algorithm,

2. the calculations are paralleled asynchronously, which is effective in calculation time
because any machine does not have to wait for all the population point evaluations
before starting a new calculation.

Hierarchical genetic algorithms use multi-populations on different granularity of models
of the same physics. If we consider a three level hierarchical algorithm, we have:

1. The bottom layer is devoted to the exploration of the design space. Thus, the algorithm
can make large leaps in the search space.

2. The intermediate layer is a compromise between exploration and exploitation.

3. The top layer concentrates on refining solutions. This can be achieved by tuning the
algorithm in a way that takes very small steps between successive points.

The main feature is the interaction between the given layers. The best solutions progress
from the bottom layer to the top layer where they are refined.

Bottom layer can use a less accurate, faster model to compute the fitness functions of the
individuals. Even though these solutions may be evaluated rather roughly, the hierarchical
topology allows their information content to be used. During the migration phase, they are
re-evaluated by more precise models until reaching the top layer.
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The figure 3.12 is an illustration of the hierarchical concept and the interaction between
the different layers.

Figure 3.12: Hierarchical topology of the algorithm HAPEA

Parallelisation strategies are common with genetic algorithms. In the case of the HAPEA
algorithm, solvers do not need to run at the same speed. This is allowed by the modification
of the population evaluation, which is usually performed simultaneously for each individual
of the population. The distinctive method of an asynchronous approach is that it generates
only one candidate solution at a time and only re-incorporates one individual at a time,
rather than an entire population at every generation.

Applications of HAPEA are described in [Gonzalez et al., 2005; Gonzalez et al., 2006] on
the design and the optimisation of UAV, Unmanned Air Vehicle, systems.

3.1.4.3.5 Tests suites Various and numerous MOEA implementations and applications
are published in scientific papers. [Deb, 1999; Van Veldhuizen and Lamont, 1999] define a
set of test problems with known and controlled difficulty measure for systematically testing
the performance of an optimisation algorithm. They also show procedures for constructing
multiobjective test problems and offer a methodology for quantitatively comparing MOEA
performances.

According to [Deb, 1999], there are two tasks that a MOEA should accomplish in solving
multiobjective optimisation problems:

1. guide the search towards the global Pareto-optimal region,

2. maintain population diversity (in the function space, parameter space or both) in the
current non-dominated front.
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Discussions about these two tasks can be found in [Deb, 1999] and in [Van Veldhuizen
and Lamont, 1999]; an explicit description of test functions can be found in [Collette and
Siarry, 2002].

3.1.4.4 Other multiobjective programming methods

There are other genetic algorithms used to solve multiobjective problems, like:

• Vector Evaluated Genetic Algorithm, VEGA [Schaffer, 1985],

• Non dominated Sorting Genetic Algorithm, NSGA [Srinivas and Deb, 1994; Deb et al.,
2000] (already described in paragraph 2.3.4.2.3 page 87)

• Multiple Objective Particle Swarm Optimization, MOPSO [Coello Coello and
Lechunga, 2002], · · ·

There are further methods to solve multiobjective optimisation problems, using evolu-
tionary algorithms or not. For instance:

• Taboo search. This method consists in evaluating a set of points in the neighbourhood
of the current point xn and to keep the point which minimises the objective function for
the next step. Taboo search allows to keep a point xn+1 such that f(xn) < f(xn+1) but
xn+1 has to be different from previously selected points, xn+1 6= xk, for k = n, · · · , n− i,
i being generally equal to 7 [Collette and Siarry, 2002].

• Differential Evolution, DE [Rai, 2006a]. DE is a population-based method for finding
global optima. As with other evolutionary algorithms, the three main ingredients are
mutation, recombination and selection. The main characteristic of this method is the
mutation operator. Mutations are obtained by computing the difference between two
randomly chosen parameter vectors in the population, and adding a portion of this
difference to a third randomly chosen parameter vector to obtain a candidate vector.
Thus, the mutation operator adapts to the particular objective function, and this results
in an automatically reduction of the magnitude of mutation as the optimisation process
converges.

• Adjoint approaches. [Gauger, 2006] uses this method in aerodynamic shape optimisa-
tion, which is a single discipline optimisation, and in an aero/structure test case as an
illustration of an MDO study. But this method has not been extended to more than
two disciplines in the quoted paper.

After this introduction to different methods and algorithms existing to solve a multiobjec-
tive optimisation problem, we now describe the multiobjective optimisation problem
that FPO engineers are dealing with, and the way we treat it using our dedicated
method.
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3.2 Conflicting objectives in our problem

3.2.1 Aircraft sizing objectives

The multiple objectives in aircraft sizing studies were described in section 1.1.2 page 15 as a
measure of the aircraft quality.

MTOW has always been a significant parameter to consider to represent the aircraft
quality because it has a direct impact on costs. But with the increase of fuel price, MTOW
is not as relevant as it used to be.

Currently, DOCs or COC, Cash Operating Cost, are considered as more representative
of the aircraft quality because they integrate in the same variable the impact of fuel cost,
maintenance, crew or taxes. A detailed definition of the DOC is given in section 1.1.2 page 17.

One of the aims of our work was to perform multiobjective optimisation with no a priori
articulation of preferences, as it is currently done with a DOC. Indeed, with the DOC, the
multiobjective optimisation method used in FPO is a weighted sum method. Thus, one of
the aims is to implement an a posteriori articulation of preferences. The objectives we want
to consider are for instance:

• MWE, Manufacturer Weight Empty,

• MTOW,

• Fuel consumption,

• Maintenance costs (of components and engines),

• Depreciation,

• Taxes (landing taxes and traffic taxes),

• Return on investment, etc.

The four last items of objectives listed above, related to economics, are not available in
the models of aircraft we developed and on which we tested our methodology. Thus, we now
describe the different objectives we considered during our implementation work of a method
with a posteriori articulation of preferences.

3.2.2 Conflicting objectives in our models

3.2.2.1 When using the USMAC model

The optimisation problem treated with the USMAC model has already been described in
paragraph 2.4.1.1.3 page 94. To summarize, there are 4 criteria to minimise:

• MTOW, the maximum take-off weight (kg),



3.2 Conflicting objectives in our problem 139

• Fuel, the nominal fuel (kg),

• MWEoMTOW, the weight efficiency, i.e. the ratio of MWE, the manufacturer weight
empty, over the MTOW (no dimension)

• FoPoNe6, the fuel efficiency, i.e. the ratio of the fuel over the number of passengers over
the range (106kg/m/Pax).

The figure 2.19 page 97 represents the iso-curves of the criteria according to the two
main degrees of freedom of the USMAC.

In the previous chapter, we performed a robust mono-criterion optimisation using GA
to refine the search space to the admissible space, and then we used FSQP to perform the
optimisation.

Thanks to these first results, we noticed that the optimum of the four criteria were all
located at the intersection of two constraints (see on figure 2.24 page 102). Thus, there was
no interest in performing multicriteria optimisation with these four criteria, because there is
no compromise to define.

As no other criterion of the previous list was available with this model, we decided to
introduce the approach speed as a new criterion, even if it is not used in practice as a
criterion. The technical interest in introducing the approach speed as a criterion is to be able
to land on a short landing field length, like for instance for military aircraft, or business jet
willing to land in London City.

3.2.2.2 When using the SMAC model

The criteria used with the SMAC model are also described in paragraph 2.4.5.1 page 103.
There are 4 criteria to minimise:

• MTOW, the Maximum Take-Off Weight (kg),

• Cash cost, the Cash Operating Cost (dollars per passenger per nautical mile),

• MWE, the Manufacturer Weight Empty (kg),

• OWE, the Operational Weight Empty (kg).

When dealing with our first model of aircraft, the one contained in AVION, the first
problem we faced was the huge design space, which is a sixteen-dimension hypercube. Thus,
our methodology to perform robust mono-criterion optimisation was to refine the search space
to the admissible space.

What we intend to do now is to apply the same kind of methodology to refine once more
the design space to what we call the acceptable domain.
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3.3 Refinement of the admissible set

3.3.1 Introducing the acceptable domain

Our aim is to define a method to refine the design space to its most interesting part,
increasing chances to find best aircraft configurations.

Our method is composed of three steps:

1. First, find the admissible set, because it is difficult to produce feasible points inside the
design space. In a real case study, the proportion of admissible points is about 5 among
1 000 000 points.

2. Then introduce a new kind of constraints, named quality constraints, which are actually
acceptable margins applied on each criterion, and based on the optimal values of these
criteria through acceptable degradation ratios.

3. Finally refine the admissible set to an acceptable domain, where not only operational
constraints are satisfied but also quality constraints.

We are thus progressing step by step to reach smaller and smaller subspaces contained in
the original search space, the final aim being to find the Pareto front, which most interesting
part is included in the acceptable domain.

The first step of this method was the topic of the second chapter. We implemented a
genetic algorithm to solve the constraints satisfaction problem related to our aircraft sizing
problem. We focused on the mutation operator of the GA to make the design points of the
population gather step by step in the requested domain, i.e. the admissible set.

The second objective of the chapter 2 was to perform a robust optimisation. Thanks to
FSQP, we get the optimum values of each of our criteria, optimised separately.

3.3.2 Method to refine the admissible set

To refine the admissible set to a smaller set, we decided to introduce the notion of quality of
the results. Quality is based on allowed degradation of the best values of criteria that can be
found inside the admissible set. Quality is thus based on the decision-maker needs, wishes
and experiments.

Let Cmax
i denote the best value of the ith criterion, and Ri denote the degradation ratio,

Rmax
i being the maximum degradation value allowed for the ith criterion. The degradation

ratio is defined as in the formula (3.28):

Ri =
|Cmax

i − Ci|
Cmax

i

≤ Rmax
i (3.28)
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where Ci is the current value of the ith criterion.

The relation (3.28) is similar to a constraint equation in an optimisation problem. We
want the degradations of the values of each criterion of the current point to be less than the
upper bound given by Rmax

i . The quality of a point depends on the position of the values
of its criteria related to the values of each degradation ratio. Thus, we can consider that a
new kind of constraints has been added to our initial problem, and we call these constraints
quality constraints.

Definition 3.5 (Acceptable Domain). What we called the Acceptable Domain is defined
by the subset of the admissible set where degradation ratios are less than Rmax

i , for all
criteria, i.e. where quality constraints are satisfied.

The figures 3.13 and 3.14 are illustrating quality constraints based on different criteria.
In the first test case (on figure 3.13), the four optima are located at the same point. But in a
more general case (like on figure 3.14), the optima are not obtained at the same point. Thus
a compromise has to be defined.

Figure 3.13: Illustration of quality constraints. The black lines are the operational constraints,
the blue ones are the quality constraints. In this example, the four optima are located at the
red point.

Remark 3.1. A part of the Pareto front is included in the boundary of the acceptable
domain.

Remark 3.2. The definition of the acceptable domain requires that the optimal values of
each criterion be known.
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Figure 3.14: Two examples of an acceptable domain. The black lines are the operational
constraints, the blue ones are the quality constraints and the red points are the location of
the optimal points for each criterion. In these examples, the acceptable domain is the polygon
in blue.

All this work has been presented in [Badufle et al., 2006a].

3.4 Pareto front

The Pareto front is the last subset of the admissible domain we want to reach. It contains all
the Pareto points, as they are defined in the definition 3.2, page 113. It is the final answer of
our multicriteria optimisation problem.

3.4.1 The selected method

To produce some points on the Pareto front, we decided to keep on working with the GA
we implemented, NSGA, with some modifications to adapt it to our problem. The basic
principles of the NSGA method are described in section 2.2.1 page 75.

We now give some general principles on the adaptations we made on this algorithm to
produce the Pareto front of our aircraft sizing problem, refined to the domain which is of our
interest, the acceptable domain.

3.4.1.1 The ranking function

The ranking function is used to classify the points according to their Pareto rank, i.e. if they
are non-dominated, their rank is the smallest, it is assigned to 1, but if they are dominated,
their rank is higher than 1. To calculate it, non-dominated points are removed from the
current population, and then, the non-dominated points among the remaining points have
their rank assigned to 2, and so on.
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In our problem, ensuring constraint satisfaction is a complex task, especially with the
introduction of the quality constraints. Thus, ranking is performed in two steps. The popu-
lation is split into two subpopulations, depending on constraints. If one point satisfies all the
operational and quality constraints, it is included in the first population, if it does not satisfy
one of these constraints, it is included in the second population.

Then, ranking is performed as described above, the best rank is set to the non-dominated
points of the population which satisfy all the constraints, and the non-dominated points of
the second population have their rank assigned to the last rank value of the first population,
plus 1.

The other ranking function, the fitness function, is the same as already described in
section 2.2.1 page 75. It depends on the distance between points in the population.

3.4.1.2 The mutation function

As we know the optimal values of each criterion, we decided to influence the mutation operator
by imposing a direction to the mutation. Thus, the resulting point is obtained as follows:

Mutated Point = Original +
α∑k

i=1 βi

k∑
i=1

βi

(
Optimumi −Originali

)
(3.29)

where

• Mutated Point is the point produced by the mutation operator,

• Original is the point which mutates,

• α and βi for i = 1, · · · , k are randomly sampled scalars, their values vary between 0
and 1,

• Optimumi are the optimal points found with FSQP at each criterion.

Dividing by the sum of βi, for i = 1, · · · , k, ensures that the movement is contained in the
convex hull defined by the original point and the extremum points given by the optimisation
run with FSQP.

3.4.1.3 The selection function

At each generation of the process, the currently produced non-dominated points are saved
in another population containing already produced non-dominated points. The new ones are
compared to the others, and only the non-dominated points of this pool will remain for
the next generation. This method is inspired by the SPEA algorithm, which is described in
paragraph 3.1.4.3.3, page 134.

Another condition is added in the selection function. One point will remain in the non-
dominated population if it is at a distance to its neighbours greater than the minimum one
imposed by the decision-maker. This condition ensures that the points of the Pareto front
are well-distributed in the design space.
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3.4.2 Test problems

To assess the capability of our adaptation of the NSGA algorithm to produce Pareto points,
we decided to test it on some of the test problems we found in the literature, like in the
papers already mentioned in paragraph 3.1.4.3.5, page 136.

We decided to test the algorithm on three typical multicriteria problems, which are bi-
objective problems with 2 degrees of freedom. The first one is a classical multiobjective
optimisation problem, where the Pareto front is convex. Thus, it enables us to see if our
algorithm can produce a well-distributed set of points of the front.

The second problem is a more difficult test case where the Pareto front is not convex.
It enables us to know if our algorithm can find Pareto points of any kind of multiobjective
optimisation problem, where the shape of the Pareto front has no particular property, like
convexity.

The last one is an optimisation problem where the Pareto front is not connected. Once
again, this problem enables us to assess the robustness of our algorithm in finding the Pareto
front, whatever shape it has.

3.4.2.1 A classical convex front

The first test problem is to find a convex front by minimising the two following objectives:

min

{
f1(x) = x2

1 + x2
2

f2(x) = (x1 − 5.0)2 + (x2 − 5.0)2

x1, x2 ∈ [−5; 10]
(3.30)

The exact solution of this problem can be seen on figure 3.15.

The graphical result of the numerical optimisation of this problem can be seen on
figure 3.16. The calculations were stopped after 100 generations. We see that the points
on the Pareto front are quite well-distributed, and cover almost all the objective space. Thus,
we observe that our algorithm is able to produce well-distributed Pareto points.

3.4.2.2 A non-convex front

The second test problem consists in finding a non-convex Pareto front, because we know that
some multiobjective optimisation methods can fail finding a non-convex Pareto front, like the
weighted sum methods. This optimisation problem was defined by Deb in [Deb, 1999]:

max

{
f1(x) = f(x1)
f2(x) = g(x2) · h(f, g)

x1, x2 ∈ [0; 1]
(3.31)

where:

f(x1) = 4 · x1
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Figure 3.15: Analytical solution of the convex Pareto front test case

Figure 3.16: Experimental result for the convex Pareto front test case
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g(x2) =


4− 3 · exp

(
−
(x2 − 0.2

0.02

)2
)

if 0 ≤ x2 ≤ 0.4

4− 2 · exp

(
−
(x2 − 0.7

0.2

)2
)

if 0.4 ≤ x2 ≤ 1

and

h(f, g) =

 1−
(

f

β · g

)α

if f ≤ β · g

0 otherwise

with

α = 0.25 + 3.75 ·
(
g(x2)− 1

)
and β = 1

The exact solution of this problem can be seen on figure 3.17.

Figure 3.17: Analytical solution of the non-convex Pareto front

The graphical result of the optimisation of this problem can be seen on figure 3.18. Again,
the calculations were stopped after 100 generations. We observe that the points on the Pareto
front are quite well-distributed, and cover almost all the front.

In conclusion with this test case, we observe that our algorithm is able to produce Pareto
points of a non-convex front.

3.4.2.3 A disconnected front

The third test problem is a biobjective optimisation problem where the Pareto front is not
connected. According to [Collette and Siarry, 2002], most of the multiobjective optimisation
methods are unable to manage disconnected Pareto fronts. Thus we want here to assess
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Figure 3.18: Experimental result for the non-convex Pareto front coming from a multiobjective
optimisation problem defined by Deb.

the robustness of our algorithm. This problem is also one from the test case proposed by
Deb [Deb, 1999]:

min

{
f1(x) = f(x1)
f2(x) = g(x2) · h(f, g)

x1, x2 ∈ [0; 1]
(3.32)

where:

f(x1) = x1

g(x2) = 1 + 10 · x2

and

h(f, g) = 1−
(

f

g

)α

−
(

f

g

)
· sin(2π · q · f)

with

α = 2 and q = 5.

The parameter q defines the number of disconnected regions on the front.

The analytical solution of this problem is represented on figure 3.19, with the Pareto
front in red; the graphical result of the optimisation process on this problem can be seen on
figure 3.20.
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Figure 3.19: Analytical solution of the disconnected Pareto front problem

Figure 3.20: Experimental results for a disconnected Pareto front. The Pareto points are the
bold diamonds.



3.5 Results 149

On the figure 3.20, the left-part is a representation of the evolution of the front during the
optimisation process. The Pareto points are represented by bold diamonds. The figure on the
right represents the Pareto points resulting from the optimisation. We see that our algorithm
manages to find the five regions of the Pareto front, which is the main difficulty related to this
problem. Points are not well-distributed, but the conclusion is that our algorithm is robust
enough to treat this kind of problem.

3.5 Results

After satisfactory results for our algorithm to find discontinuous Pareto fronts, we can use it
on our aircraft sizing problem.

We still work on the aircraft sizing problem where we have two objectives, the maximum
take-off weight and the approach speed.

The first result is obtained using the USMAC model with two degrees of freedom, the
sea level static reference thrust, FNslst, which varies between 10000 and 20000 daN, and
the wing area, Awing, which varies between 40 and 400 m2. The figure 3.21 is a graphical
representation of one of the results we obtained.

We see that the points are well-distributed along the front, but some of them do
not reach exactly the Pareto front. The main reason is that a minimal distance between
points in the design space has been imposed and the calculations were stopped after 100
generations. But it is not a problem that all the points do not reach exactly the Pareto
front. Indeed, it brings some additional information on the neighbourhood of the Pareto front.

The second result we show is obtained using the SMAC model with two degrees of
freedom, a rubbering coefficient of the engine size, denoted krub, which varies between 0.5
and 2, and the wing area, denoted wing area, which varies between 350 and 600 m2. The
figures 3.22 and 3.23 are graphical representations of one of the results we obtained. The
black lines still represent the operational constraints, the blue lines represent the quality
constraints.

Again, on the figure 3.22, we can see that the points are quite well-distributed along the
Pareto front, but some of them do not reach exactly the front, which is on the boundary
of the admissible set near the red points on the figure. The main reason is the same as
with the USMAC model: a minimal distance has been imposed between points in the design
space, and the calculations were stopped after 100 generations. This time, using the SMAC
model, the calculation of the 100 generations lasts 18.5 hours of CPU on a bi-pentium M at
1.8 GHz. Thus, some improvement has to be done on the imposed minimal distance to get a
more homogeneous front, because we cannot afford spending more time in calculating more
generations.
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Figure 3.21: Experimental result for the Pareto front using the USMAC model. The black
lines represent the operational constraints, the blue lines represent the quality constraints
and the blue arrows the descent direction. The acceptable domain is located between the two
quality constraints, one operational constraint and the upper bound of the abscissa. The red
points are Pareto points produced by our adaptation of the algorithm NSGA. The real Pareto
front is the part of the operational constraint near the red points and contained between the
blue lines.
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Figure 3.22: Pareto front in the design space using the SMAC model. The black lines still
represent the operational constraints, the blue lines represent the quality constraints.

Figure 3.23: Experimental result for the Pareto front in the objective space using the SMAC
model
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3.6 Conclusion

As for a conclusion of this chapter, we say that we managed to extract some points of the
search space that enjoy the following properties:

• they satisfy the constraints defined by the requirements related to the aircraft sizing
problem, i.e. the operational constraints,

• they lie at a given distance of the optimal values of all the criteria of the multiobjective
optimisation problem, i.e. they satisfy the quality constraints,

• they are located on, or near the Pareto front of the multiobjective optimisation problem.

Thus, our multiobjective optimisation problem has been solved. Moreover, some know-
ledge on the problem has been added by the decision-maker to define the quality constraints.
The resulting points of our methodology are thus located in a subset of interest for the
engineers.

But our methodology enlightens another kind of problem. Calculation times are too im-
portant to widely use our algorithm on the models currently used in FPO. These models are
of the same complexity as the SMAC model, and calculations using the SMAC model were
very time consuming.

Thus, we decided to consider further another approach, by substituting our model by a
response surface, which is the topic of the following chapter.
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The aim of this study was to solve a typical aircraft sizing problem, which consists in
determining characteristics of an aircraft, starting from a set of requirements. These studies
can be summarized as constrained, global and multiobjective optimisation problems, where
constraints express requirements and physical feasibility, and objectives are market-driven
characteristics of the aircraft.

One of the issues we face in aircraft sizing studies comes from the expensive computation
time. Indeed, optimisation problems that arise in engineering design are often characterised
by objective functions that are computationally intensive [Torczon and Trosset, 1998].

An attractive alternative to such prohibitive computational costs is to make use of
approximations within an optimisation context, since approximations are far less
expensive to compute. Moreover, the way to construct these approximations can be chosen
and directed by the decision-maker.

In the framework of our study, we decided to implement and test concurrently four
approximation techniques: two linear and one quadratic response surfaces and an artificial
neural network model, based on Radial Basis Functions, further denoted RBF. Response
surfaces are the most used approximation techniques, because they are easy to implement
and naturally understandable. But one advantage in using RBF is that a minimal error can
be fixed a priori by the user to fix the accuracy of the approximation.

Then, we compared the results that we obtained in approximating with the different
approximation techniques we developed. Finally, we replaced the initial function by the
approximations to perform the mono-criterion optimisation before defining the quality
constraints introduced in the previous chapter.

Thus, in this chapter, we survey in a first part some approximation techniques, then, we
detail the different methods we developed and tested, and finally, we show the compared
results we obtained using these approximation techniques to replace our computationally
expensive evaluation function.

4.1 Motivation

According to [Dennis and Torczon, 1995], a consistent theme in the engineering optimisation
literature is that the time and cost required for the detailed analysis of a single design is
often so great that it becomes prohibitive to implement a “black-box” optimisation approach
to the design problem. The point of using approximation techniques is to reduce the number
of full or detailed analyses required during the course of the optimisation iterations.

Typically, the objective function is expensive to evaluate because there are large numbers
of system variables that must be determined for each choice of design parameters before the
criteria can be evaluated [Booker et al., 1999].

Approximation models have several properties that make them attractive for use with
optimisation [Simpson, 1998; Sobieski and Kroo, 2000]:
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• They yield insight into the relationship between input design variables and output
responses,

• they provide fast analysis tools for optimisation and design space exploration,

• they avoid potential numerical difficulties that some have experienced near the solution,

• they represent noisy analysis with an inherently smooth model,

• they provide a natural way of implementing coarse-grained parallelisation,

• they facilitate the integration of discipline dependent analysis codes.

Some multidisciplinary optimisation methods like collaborative optimisation, introduced
in section 2.1.2 page 65 and denoted CO, need such properties like coarse-grained parallelisa-
tion to execute the optimisation of discipline subproblem on multiple processors. Moreover,
in this method, some optimisation algorithms have difficulties with interdisciplinary cons-
traints. Thus, the use of approximation models avoids the computational expense associated
with successive evaluations of the interdisciplinary constraints.

There is a standard engineering practice for attacking multidisciplinary optimisation pro-
blems with expensive evaluation functions f [Booker et al., 1999]:

1. Choose a surrogate s for f that is either

(a) a simplified physical model of f ; or

(b) an approximation of f obtained by evaluating f at selected design sites and inter-
polating or smoothing the function values thus obtained.

2. Minimise the surrogate s on its definition space to obtain xs.

3. Compute f(xs) to determine if improvement has been made over the best x found to
date.

Many papers deal with the open question of how to manage the interplay between the
optimisation and the fidelity of the approximation models, the aim being to insure that the
process converges towards a solution of the original problem.

Some methods like those described in [Booker et al., 1999; Dennis and Torczon, 1995;
Alexandrov et al., 2001; Wang, 2003; Cramer et al., 2006] increase the fidelity of the
approximation during the optimisation, getting it more precise in the vicinity of a minimiser,
or when it becomes clear that the approximation is not doing a good job of identifying
trends in the objective [Torczon and Trosset, 1998]. The aim is to compromise between the
research of a minimiser and the construction of an approximation that gives a reasonable
estimation of the behaviour of the objective.
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In the following section, we deal with the first point of the standard practice described
previously when working with expensive evaluation functions, i.e. choosing a surrogate for
our objective and constraint functions. Thus, we survey some approximation techniques,
among which we have chosen to compare the properties and the results of two main tech-
niques, response surface approximations and artificial neural network models, by replacing
our expensive evaluation function during the optimisation.

4.2 State-of-the-art of approximation techniques

According to [Giunta et al., 1998], the use of approximation models has grown in popularity,
and a variety of modeling methods have been employed. In this section, we describe some of
the most known approximation techniques:

1. the polynomial response surfaces,

2. kriging interpolations,

3. artificial neural network models.

4.2.1 Polynomial response surfaces

The most popular techniques involve polynomial models, typically linear or quadratic func-
tions, created by performing a least squares surface fit to a set of data, or with Taylor series
developments.

Polynomial-based modeling methods have come to be known as response surface models.

Response surface modeling postulates a model of the form:

f(x) = P (x) + ε (4.1)

where [Simpson, 1998]:

• f(x) is the unknown function of interest,

• P (x) is a known polynomial function of x,

• ε is random error which is assumed to be normally distributed with mean zero and
variance σ2.

4.2.1.1 First order

The general form of an affine response surface in n variables is:

P (x) = c0 +
n∑

i=1

cixi (4.2)



4.2 State-of-the-art of approximation techniques 157

The number of unknown coefficients in this equation is n + 1. Determining these
coefficients requires at least n + 1 different values of f , using least squares method.

Early work in the development of approximation concepts concentrated on using linear
approximations so that mathematical programming techniques such as linear programming
could be employed [Alexandrov et al., 1998].

4.2.1.2 Second order

The general form of a quadratic response surface in n variables is:

P (x) = c0 +
n∑

i=1

cixi +
∑

1≤i≤j≤n

cijxixj (4.3)

The number of unknown coefficients in this equation is
(n + 2)(n + 1)

2
.

4.2.1.3 Least squares method

One of the reasons of the popularity of polynomial models is the relatively computationally in-
expensive and straightforward use of least squares method. Suppose these polynomial models
are written in matrix notation as follows:

P (x) = cT x̄ (4.4)

where:

• c = [c0, c1, · · · , ct−1]
T , t being the number of unknown coefficients,

• x̄ = [1, x1, · · · , xn, x
2
1, x1x2, · · · , xixj, · · · , x2

n]T is a vector of size t, with i ≤ j.

Here, we consider the equations for a quadratic response surface, but for a linear response
surface, the equations are the same, without any term of second order.

Estimating the unknown coefficients requires to make a number of analyses greater or at
least equal to t.

If we denote X the matrix containing on its rows the t sampled data x̄,

X =

 1 x
(1)
1 · · · (x

(1)
n )2

...
...

. . .
...

1 x
(t)
1 · · · (x

(t)
n )2


and y the vector of the results of the t analyses of all the design sites contained in the rows
of X,

y = [f(x(1)), · · · , f(x(t))]T

then, we have the relation:
y ≈ Xc (4.5)



158 Surrogate model of the evaluation function

If the rank of X is t, i.e. if the rows of X are linearly independent, the least squares
solution of 4.5 is unique and is given by:

c =
(
XT X

)−1
XT y. (4.6)

Then, we can predict the values of f at any point x in the design space using the approxi-
mation given in equation 4.4.

4.2.1.4 Taylor series approximation

Another method to approximate a function with a polynomial is to use Taylor series
developments.

Linear approximations are given through the following equation:

f̃(x) = f(xk) +
n∑

i=1

∂f

∂xi

(
xi − xi

k

)
(4.7)

and quadratic approximations are given by:

f̃(x) = f(xk) +
n∑

i=1

∂f

∂xi

(
xi − xi

k

)
+

n∑
i=1

n∑
j=1

∂2f

∂xixj

(
xi − xi

k

)(
xj − xj

k

)
(4.8)

where xi is the ith component of the vector x of dimension n.

According to [Alexandrov et al., 1998], a first-order Taylor series approximation could be
computationally effective but such approximations are not always accurate. And second-order
approximation is efficient as a local approximation, but some other existing approximations
are better on a large neighbourhood.

Moreover, gradient vectors and Hessian matrices are not always available. It is rare to
have them in their analytical expression, and it is expensive to compute them using finite
differences.

4.2.2 Kriging interpolations

Among the large number of interpolation techniques (like Legendre polynomials, Newton
polynomials, splines, etc.) are the class of interpolation techniques based on Bayesian statistics
termed kriging models [Rodriguez et al., 2000].

Kriging model is an interpolation model to approximate response data obtained from
deterministic computer simulations [Giunta et al., 1998]. This interpolation model was
originally developed in the fields of spatial statistics and geostatistics.

Kriging model expresses the unknown function as:

f(x) = P (x) + Z(x) (4.9)

where [Simpson, 1998]:
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• f(x) is the unknown function of interest,

• P (x) is a known polynomial function of x,

• Z(x) is the realisation of a normally distributed Gaussian random process with mean
zero, variance σ2 and non-zero covariance.

The P (x) term in equation 4.9 is similar to the polynomial model in a response surface
and provides a “global” model of the design space. In many cases, it is simply taken to be a
constant β as an estimate of the mean of the data.

While P (x) “globally” approximates the design space, Z(x) creates “localised” deviations
so that the kriging model interpolates the sampled data points. The construction of the
interpolation is based on spatial covariance between points in the sampled data sites:
cov
(
Z(xi), Z(xj)

)
. The correlation function which defines this covariance is specified by the

user. See [Giunta et al., 1998; Simpson, 1998] or [Rodriguez et al., 2000] for a short and clear
description of the principle of construction of a kriging interpolation.

The aim of the papers of [Giunta et al., 1998; Simpson, 1998; Simpson et al., 1998] is to
compare the performance and the accuracy of a kriging interpolation model with polynomial
response surfaces.

Kriging models are suitable for many engineering applications because they can be
calibrated, i.e. additional values can be incorporated in the model to improve its prediction
capacity [Cramer et al., 2006]. Moreover, they can capture oscillatory (multi-modal) response
trends whereas quadratic polynomials are by definition unimodal.

According to [Simpson, 1998], the use of response surfaces for approximating deterministic
computer analyses is statistically questionable due to the lack of random error in the com-
puter model. The use of kriging models is more appropriate and perhaps more justified from
a statistical point of view for approximating deterministic computer experiments. Indeed,
kriging models interpolate between data points which may be yield more accurate results
since computer experiments typically do not contain random errors. Moreover, an important
by-product of kriging models construction processes is an estimate of the uncertainty in their
prediction.

4.2.3 Artificial neural network approaches

The last category of approximation techniques we survey is artificial neural network, further
denoted ANN. The concept of ANN is inspired by human brain behaviour. It consists of
multiple simple computation units, neurons, which nonlinearly transform their input signal
[Giannakoglou and Karakasis, 2006; Giannakoglou, 2004]. At each neuron, the input signal
is the weighted sum of the outputs of all the neurons connected to it (see figure 4.1). The
entire network is stored in the form of the weights associated with the synaptic connections.

Advantages of neural networks are their ability to approximate arbitrarily well any func-
tion and, in particular, to successfully model abrupt changes in the function.
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Figure 4.1: General structure of an artificial neuron

4.2.3.1 Multi-layer perceptrons

In a multi-layer perceptron, we can identify the following elements [Van Grieken, 2004]:

• a set of inputs, xi, which represent the independent parameters of the problem,

• a set of synaptic weights, wi, which represent the connection between the input xi and
the neuron,

• a bias, b,

• a sum operator,
∑

,

• an activation function f .

A real value, z, is associated with each neuron and is calculated through the formula:

z = f

(
k∑

i=1

wixi + b

)
. (4.10)

The most used activation function is the sigmoidal function:

f(x) =
1

1 + e−(x−θ)/τ
. (4.11)

See the figure 4.2 for different representations of activation functions.

The choice of the multi-layers structure is known as choosing the architecture in the
neural network framework and is analogous to model selection in the regression framework.
The figure 4.3 is an illustration of a three layer structure.

The user needs to decide the number of input nodes, the number of hidden layers and
hidden nodes, the number of output nodes and the activation functions [Balkin and Lin,
2000]. The number of input nodes corresponds to the number of variables to consider for the
model. The hidden layer and node parameter selection is very important in that it is this
feature that allows the ANN to perform the nonlinear mapping between inputs and outputs.
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Figure 4.2: Activation functions of a classical neural network. Here, θ = 0 and τ = 1 for the
black function, τ = 10 for the red function and τ = 100 for the blue function.

Figure 4.3: Three-layer neural network
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The number of output nodes is specified directly by the problem.

According to [Balkin and Lin, 2000], there is currently no widely accepted method for
making these model design decisions, but any standard three-layer feed-forward neural net-
work is capable of approximating any function from one finite dimensional space to another
to any desired degree of accuracy, provided sufficiently many hidden units are available.

4.2.3.2 Support Vector Machines

Another kind of ANN that we introduce here is Support Vector Machine, further denoted
SVM. It is grounded in the framework of statistical learning theory [Smola and Schölkopf,
2004]. It was initially designed to solve pattern recognition problems [Vapnik et al., 1997],
where, in order to find a decision rule with a good generalisation ability, one selects some
(small) subset of the training data, called Support Vectors (SVs). Optimal separation of the
SVs is equivalent to optimal separation of the entire data.

Suppose we are given training data {(x1, y1), · · · , (x`, y`)} ∈ Rd × R. In SVM regression,
the goal is to find a function f(x) that has at most ε deviation from the currently obtained
targets yi for all the training data, and at the same time is as flat as possible.

SVMs approximate the function by a linear regression. The general SVM formulation is
given in the following equation:

f(x) = 〈w, Φ(x)〉+ b with x ∈ X , w ∈ F and b ∈ R (4.12)

where Φ : X → F maps x into some feature space F and 〈·, ·〉 denotes the inner product in
F .

As an example, we describe the case of linear functions as in [Smola and Schölkopf, 2004]:

f(x) = 〈w, x〉+ b with x, w ∈ X and b ∈ R. (4.13)

In this case, ensuring the flatness means to minimise the norm of w; thus, this problem
can be written as a convex optimisation problem:

min
1

2
‖w‖2

subject to

{
yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉+ b− yi ≤ ε.

(4.14)

[Smola and Schölkopf, 2004] gives an overview of the basic ideas underlying SVMs
for function estimation. It begins by explaining the principles in a linear case, in using a
Lagrangian formulation to solve the optimisation problem stated in equation 4.14, and it
continues in the general case, with nonlinear algorithms.

Note that what is interesting with SVMs is that the complete algorithm can be described
in terms of inner products between the data xi. Hence, in the nonlinear case, it suffices to
know k(x, x′) := 〈Φ(x), Φ(x′)〉 rather than Φ explicitly. An implicit mapping is done via
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kernels which corresponds to an inner product in some feature space F .

According to [Vapnik et al., 1997], the complexity of the solution of the function approxi-
mation problem using SVM representation depends on the complexity of the desired solution
rather than on the dimensionality of the space.

See [Barzilay and Brailovsky, 1999] for applications in pattern recognition, [Shin and Chob,
2006] for applications in direct marketing or [Fan et al., 2005] for applications in aerodynamic
data modeling.

4.2.3.3 Radial Basis Functions

The last kind of artificial neural networks we survey here are radial basis functions, further
denoted RBF. This kind of network is formed from three layers of neurons [Giannakoglou
and Karakasis, 2006]. The activation function depends on the distance of the input x from
the corresponding centre c:

h(x, c) = h
(∥∥x− c

∥∥
2

)
. (4.15)

The network output is obtained by linearly combining the responses of the hidden neurons
to the input:

y =
k∑

i=1

wih
(∥∥x− ci

∥∥
2

)
. (4.16)

Finding an approximation using RBF can be viewed as a minimisation problem, where
the objective function is the error as it is defined in the following equation:

E(f̃) =
1

2

k∑
i=1

(
yi − f̃(xi)

)2
+

1

2
λ
∥∥Df̃

∥∥2
(4.17)

where the regularisation parameter λ controls the tradeoff between attaching strictly to the
training patterns and reconstructing a smooth mapping as reflected in the measure of deriva-
tives

∥∥Df̃
∥∥.

The simplest RBF network is obtained by setting the inputs of all training patterns as
centres, ci = xi, and λ = 0.

[Krishnamurthy, 2003] describes the construction of the approximation based on classical
RBF, compactly supported RBF and augmented RBF. Here, we only consider classical RBF.

In classical RBF based methods, the interpolation of a surface is performed as a linear
combination of radial functions as:

f̃(x) =
k∑

i=1

wih
(∥∥x− ci

∥∥
2

)
(4.18)

where:

• the radial functions h are functions of the radial distance
∥∥x − ci

∥∥
2

from node i. The
table 4.1 lists the most commonly used classical RBF.
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• the wi are interpolation constants to be determined,

• k is the number of sample or data points with known function values yi such that
f̃(xi) = yi.

The constant σ in basic functions is adjusted to obtain the best fit. A way to adjust both
the centres of the functions, ci, and the width, σi for all i ∈ 1, · · · , k, can be found in [Orr,
1998; Benoudjit et al., 2002].

According to [Fritzke, 1994], RBF networks offer an interesting alternative to multi-layer
perceptrons since they can be trained much faster. Training involves the placement of the
localised units in input vector space. The difficulty and critical part with RBF networks is
the placement and parameterisation of the local units as well as the choice of their number.

[Carr et al., 2001] employ RBF networks in a different way, not to build a surrogate
model. They use RBFs to reconstruct smooth, manifold surfaces from point-cloud data and
to repair incomplete meshes.

There are other approximation techniques that are not described here, like for instance
splines (that are extensively used at Boeing according to [Grandine, 2005]). The aim here
was not to make an exhaustive review of all existing approximation techniques, but to survey
the ones that can be the most interesting to be used in our problem.

After this survey, we now explain the choices we made among all these possibilities, and we
detail the results we obtained by replacing our objective and constraint functions by different
surrogate models.

4.3 Selected methods

In this section, we describe the way we implemented the different surrogate models we decided
to test and use in our aircraft sizing problem, in the chronological order in which we develop
them. In each subsection, we explain the general problem of the interpolation, or learning,
data basis, and the choice we made to fill this data basis.

4.3.1 Polynomials using Taylor series developments

The first idea came from the observation that most of the time, the admissible set is convex
and the different optima of the mono-criterion optimisation are located on the boundary of
the admissible space, more precisely at points where some constraints are binding.

Thus, to simplify the expression of the constraints in the general optimisation problem,
i.e. G(x) ≤ 0 in its nonlinear form, we decided to replace them by a linear inequation of the
form:

Ax ≤ b (4.19)
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Basis function name Linear

Equation ϕ(r) = σr

Graphical

Representation

Cubic Thin plate spline

ϕ(r) = (r + σ)3 ϕ(r) = r2 log(σr2)

Gaussian Multi-quadratic

ϕ(r) = e−( r
σ

)2 ϕ(r) =
(
r2 + σ2

) 1
2

Table 4.1: Classical RBF functions, where r =
∥∥x− ci

∥∥
2

and ci = −0.5
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Then, the general optimisation problem

min F (x)
s.t. G(x) ≤ 0

(4.20)

becomes:
min F (x)
s.t. Ax ≤ b

(4.21)

where only the constraints are linearised.

Our aim is to be able to use optimisation techniques coming from Linear Programming
or Quadratic Programming.

To find this approximate expression of the constraints, we have to linearise the constraints
around the boundary of the admissible set. Thus, we have to obtain more information on this
boundary. To do this, we decided to project the admissible points, obtained when solving
the constraint satisfaction problem in the previous step of our optimisation process, on the
boundary of the admissible space.

We still worked with Genetic Algorithms. The algorithm described in the previous chapter
has been adapted to project points on the boundary of the admissible space.

This time, the fitness function of the GA depends on the distance of the current point from
the boundary of the admissible set, thus from the closest constraint to it. The way to create
children is unchanged. Only the mutation operator has been modified. The points mutate in
the direction of the constraints that move them the farthest away from the barycentre. The
distance of the displacement is randomly sorted between zero and the distance to this closest
constraint.

A minimum distance is also imposed between points in the design space, like it is done in
NSGA (described in in paragraph 2.3.4.2.3, page 88). The aim is to obtain a well-distributed
repartition of the points along the boundary of the admissible space.

Because of the intrinsic randomness of GA operators, like the mutation operator, it is
difficult for the algorithm to find points that exactly reach the boundary of the admissible
set. Thus, we decided to fix a small distance such that when the distance of a particular point
from the constraint is smaller than this minimum distance, it is considered that the process
has converged. When all points have converged this way, they are projected on the boundary
by using a Newton projection method.

This minimum distance is a compromise between convergence and well-distributed
repartition of points. It has to be not too small to allow the algorithm to converge, but also
not too large. Otherwise, the algorithm would manage to converge too fast and would not
have enough time to distribute the points along the boundary of the admissible space.

The figure 4.4 represents each step of the Genetic Algorithm when projecting the points
on the boundary of the admissible set.
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Admissible population obtained when First iteration, 2 points
solving the constraint satisfaction problem among 50 have reached the boundary

Second iteration, 15 points Third iteration, 27 points
among 50 have reached the boundary among 50 have reached the boundary

Fourth iteration, 45 points Fifth iteration, 50 points
among 50 have reached the boundary among 50 have reached the boundary

Figure 4.4: Evolution of the points during their projection on the boundary of the admissible
set. We notice that the points go far from the barycentre during the evolution of the popu-
lation. The last step is just before the projection of the points on the boundary by using a
Newton projection method.
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Now that we have well-distributed points on the boundary of the admissible set, we can
linearise the constraints around these points. We calculate the gradient using finite differences,
but since this operation is expensive in general, we decided not to linearise systematically
around every point that has reached a constraint.

Thus, for each active constraint, we identified the points located on the extremities of this
particular constraint, in each direction. We linearise the constraint around these points. Then,
we calculate the values of the other points that have reached the same constraint using the
linearised expressions. If this value is not sufficiently precise, i.e. the difference between this
value and the exact value of the constraint is too important according to the decision-maker,
then the constraint is linearised once again around this particular point.

The figure 4.5 is the graphical representation of the result of the linearisation process in
a design space of two dimensions.

Figure 4.5: Graphical result of the linearisation of the constraints. The constraints vz is
linearised around four points, and the constraint Vapp is linearised around two points.

The figure 4.6 represents the result of the optimisation of the MTOW in the same design
space using an optimisation technique coming from Linear Programming. This method is an
intrinsic function in Scilab [INRIA Copyright, 1989], named linpro. This method solves the
following optimisation problem:

min cT x
s.t. Ax ≤ b

xmin ≤ x ≤ xmax

(4.22)

As we have linearised only the constraints, we called this function by using the gradient of
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the criterion at the barycentre of the admissible population. Moreover, we use the barycentre
as the initial point for the algorithm, because we know that this particular point is feasible,
and it is the one located the farthest from the boundary of the admissible set, hence it would
not influence the result of the optimisation. Thus, we called the function by the following
command:

linpro(grad(criterion), A, b, xmin, xmax, Barycentre)

Figure 4.6: Result of the optimisation of the MTOW using a Linear Programming optimiser

As we can see on the figure 4.6, the Linear Programming optimiser manages to find the
right optimum.

This method could not be applied to the second criterion because linpro fails in finding
the right step to make the process converge towards the optimum. We suppose this failure is
due to the gradient values of the criterion. They are too close to zero, so the function linpro
gives the error message that the domain is not bounded.

But as the method works for the MTOW, we can say that the failure of the process is
not imputable to our methodology.

Since it seems difficult to use a linearisation of the constraints to simplify the optimisation
formulation, we decided to test other approximation methods, the first one being polynomial
response surfaces.
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4.3.2 First order polynomials

The first step in using polynomial response surfaces is to establish a data basis on which the
regression can be applied to determine the coefficients of the polynomial.

We have already calculated some points in the previous steps of our general process:

1. the initial population which was given by a Latin Hypercube Sampling, noted LHS,

2. the admissible population which was produced by solving the constraint satisfaction
problem related to our optimisation problem,

3. and now the population of points which were projected on the boundary of the
admissible set (see the previous paragraph).

We decided to test the results of the regression when we use the different populations.
The coefficients of the polynomial are determined by using the Least Squares method such
as described in the paragraph 4.2.1.3 page 157.

The figures 4.7, 4.8 and 4.9 are the graphical representations of the results of the different
approximations depending on the population used for the regression.

Figure 4.7: First order polynomial response surface using the LHS initial population for the
regression

The first figure was obtained by using only the LHS initial population for the regression.
The second one was obtained by using the LHS initial population and the admissible
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Figure 4.8: First order polynomial response surface using the LHS initial population and the
admissible population for the regression

Figure 4.9: First order polynomial response surface using the LHS initial population, the
admissible population and the projected population for the regression



172 Surrogate model of the evaluation function

population, and the last one was obtained by using all the populations we had, i.e. the LHS
initial population, the admissible population and the projected population.

It is difficult to assess graphically which solution is the best. We decided to compare the
approximations at a point that was not used for the regressions, the barycentre. This com-
parison gives us a more objective mean to make a choice between the three approximations.

The result of this comparison can be seen in the table 4.2 for the exact values of the
constraints against the approximate values, while the relative errors in percentage are
written in the table 4.3.

Constraint name Real values First population Second population Last population
TOFL (m) 1079.71 1522.83 1455.92 1330.38
Vapp (kt) 106.95 121.72 114.20 112.25

AR (no dim) 5.45 8.33 7.09 6.58
Kff (no dim) 1.57 1.54 1.66 1.62
vz (ft/min) 1127.95 1131.89 712.59 860.23

Kfn (no dim) 0.76 0.77 0.89 0.84

Table 4.2: Comparison of the evaluation of the constraints in the barycentre

Constraint name Regression on the Regression on the Regression on the
first population second population last population

TOFL 41% 34% 23%
Vapp 13% 6% 4%
AR 52% 30% 20%
Kff 2% 5% 3%
vz 0.35% 36% 23%

Kfn 1.7% 17% 11%

Table 4.3: Relative errors in the approximation of the constraints

As we can see in these two tables, the results we obtained with the three data bases we
used to construct a linear response surface of our constraints are not satisfactory. Errors in
the three approximations are too important to be neglected. Thus, we decided to increase
the degree of the approximating polynomial and to make the same kind of comparison.

4.3.3 Second order polynomials

We now perform the same study as for first order polynomial response surfaces, here for a
second order polynomial response surface. We use the same three populations as data bases
on which we perform a Least Squares method to determine the coefficients of the polynomial.
We made the same kind of graphical representations, as can be seen in the figures 4.10, 4.11
and 4.12.
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Figure 4.10: Second order polynomial response surface using the LHS initial population for
the regression

Figure 4.11: Second order polynomial response surface using the LHS initial population and
the admissible population for the regression
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Figure 4.12: Second order polynomial response surface using the LHS initial population, the
admissible population and the projected population for the regression

Considering these graphical representations, we are lead to the same conclusion as
previously: it is difficult to assess the quality of the approximations by looking at these
figures. The only comment we can make is that some approximate constraints do not have
the same curvature than the real constraints. The most evident difference can be seen for
the TOFL or the Kfn constraints.

To assess the quality of the approximations, we compare them at the barycentre as it was
done in the previous paragraph. The result of this comparison can be seen in the table 4.4
for the exact values of the constraints against the approximate values, and the relative errors
in percentage are written in the table 4.5.

Constraint name Real values First population Second population Last population
TOFL (m) 1079.71 1385.76 1408.02 1278.96
Vapp (kt) 106.95 118.36 113.11 111.05

AR (no dim) 5.45 7.24 6.57 6.11
Kff (no dim) 1.57 1.47 1.65 1.61
vz (ft/min) 1127.95 1167.32 685.04 844.48

Kfn (no dim) 0.75 0.74 0.89 0.84

Table 4.4: Comparison of the evaluation of the constraints in the barycentre

When we compare these results with those obtained with a first order polynomial response
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Constraint name Regression on the Regression on the Regression on the
first population second population last population

TOFL 28% 30% 18%
Vapp 10% 5% 3%
AR 32% 20% 12%
Kff 6% 4% 2%
vz 3% 39% 25%

Kfn 2% 18% 11%

Table 4.5: Relative errors in the approximation of the constraints

surface, we see that they are globally much less important, except in a few cases. Thus a second
order polynomial response surface is more efficient in approximating the constraints of our
problem.

But errors are still too important to be acceptable. Thus, we decided to test a new kind of
approximation technique than response surfaces. We decided to test Radial Basis Functions
networks, noted RBF, because they are easy to implement and to adapt to our particular
problem.

4.3.4 Radial Basis Functions networks

For the simplicity of the implementation, we decided that each node of our RBF network
will be one of the points of all the populations we have at our disposal, i.e. ci = xi, and
the parameter λ, defined in equation 4.17 page 163, that ensures the compromise between
the interpolation and the smoothness of the approximation, is assigned to zero, to avoid
calculating any gradient of the function.

To construct the network, we proceed as [Fritzke, 1994], we add the network one more
basis function until the mean error of the approximated function calculated on the known
points has reached the decision-maker threshold. And the centre of this new basis function is
localised at the point of largest error in the learning data basis.

Remark 4.1. The required precision of the RBF network should not be higher than what
allows the intrinsic uncertainty of the model.

As in the previous paragraphs, we construct two different learning data bases with the
populations we have already calculated. The first learning data basis contains the initial
population, coming from a LHS, and the points projected on the constraints. The second
population contains the first one plus the population of the admissible points.

The figures 4.13 and 4.14 are graphical representations of the results.

We can see graphically on the figure 4.13 a main difference with the response surface
approximations: the RBF approximations have at least the same curvature as the real cons-
traints. On the other hand, the figure 4.14 shows that the network does not manage to
approximate the variation direction of the constraints, it is oscillating.
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Figure 4.13: RBF approximation using the LHS initial population and the projected popula-
tion as the learning data basis

Figure 4.14: RBF approximation using the LHS initial population, the admissible population
and the projected population as the learning data basis
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Again, to have a more objective comparison of the two learning data bases, we calculate
the differences they produce related to the real function at the barycentre of the admissible
population. The result of these comparisons can be seen in the tables 4.6 and 4.7.

Constraint name Real values First population Second population
TOFL (m) 1079.71 1108.19 1259.64
Vapp (kt) 106.95 107.04 108.62

AR (no dim) 5.45 5.75 5.80
Kff (no dim) 1.57 1.57 1.76
vz (ft/min) 1127.95 1181.10 618.11

Kfn (no dim) 0.75 0.75 0.92

Table 4.6: Comparison of the evaluation of the constraints in the barycentre

Constraint name First population Second population
TOFL 2.6% 16.6%
Vapp 0.08% 1.5%
AR 5.5% 6.4%
Kff 0.3% 11.5%
vz 4.6% 45.1%
Kfn 0.4% 21.9%

Table 4.7: Relative errors in the approximation of the constraints

In all the approximation techniques described in the section 4.2 page 156, one of the
important issues for the construction of accurate models is to choose a proper set of initial
design sites.

[Kodiyalam, 2001] compares two sampling methods, which are variations of DoE, a
uniform dispersal of design points, and a hyper-sphere method. His conclusion is that
uniform distribution of points inside the design space maximises the amount of information
extracted from the design space using a fixed number of samples.

When we analyse the comparison results in the tables 4.6 and 4.7, we can say that the
number of learning design points is also important. Indeed, the first learning data basis
contains the LHS initial population, thus it is distributed in all the design space, as advised by
[Kodiyalam, 2001]. It contains also the points projected on the boundary of the admissible set,
because it is the region where we want the approximation to be the more precise. According
to the results in the table 4.6 and on the figure 4.13, we can say that this learning data basis
is efficient.

The second learning data basis contains the first one, and we add to it the points of the
admissible population. In this case, there are much more points to perform the learning of
the network, and according to the results described in table 4.6 and on the figure 4.14, we
can say that this learning data basis is not efficient.
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The table 4.8 allows us to confirm what we just said. It lists the number of nodes each
network needs to approximate the constraints at a given precision. For the second network,
this precision had never been reached, and the calculations were stopped because the mean
error on the design space did not decrease when adding more nodes.

Constraint name Number of centres Number of centres
for the first network for the second network

TOFL 20 35
Vapp 13 21
AR 17 27
Kff 9 28
vz 5 28

Kfn 9 23

Table 4.8: Number of centres needed to interpolate each constraint

Our implementation of the RBF network can be improved. The first way is by assigning
the nodes to other points than the learning points. The second, according to [Benoudjit
et al., 2002], is that identical widths σ for all Gaussian kernels, as we did, should be avoided,
since their width should depend on the positions of the centres, which in turn depend
on the data distribution in the input space. And, unfortunately, most real-life problems
show non-uniform data distributions. The option is to estimate the width of each Gaussian
functions independently.

The aim of this chapter was to test and compare the different results we obtain with
different approximation techniques. When analysing all the results we get, we decided to
continue to use RBF networks. The way we implemented them is sufficient for our study. We
know it could be improved, but we decided not to spend more time on it.

Thus, we now compare the results of the mono-objective optimisation on the real evalua-
tion function and when we use RBF networks to approximate the constraints and the objective
functions of our problem.

4.4 Comparison of the results

We built two RBF networks to approximate the criteria in the same way we constructed
them for the constraints.

According to the table 4.9 and the figures 4.15 and 4.16, we see that the results concerning
the two criteria, using the real functions or the approximations, are similar. The maximum
error is of 2.14% for the Vapp. This error is acceptable in our context of preliminary design
of an aircraft, but depending on the kind of study we want to perform, the network may have
to be refined for more precise studies.

Just as a remark, we can see on the figure 4.16 that the quality constraint Vapp (in blue
on the figure) is worse approximated than the operational constraint Vapp (in black on the
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FNslst (daN) Awing(m2) Optimum value Relative error
Real

119818.99 149.72 80130.60
0.16%

MTOW function
(kg) Approximate

119644.13 150.36 80003.61
function

Real
200000.00 333.38 91.63

2.14%
Vapp function
(kt) Approximate

200000.00 328.27 89.67
function

Table 4.9: Comparison of the results of the optimisation using the real function and the
approximation

Figure 4.15: Result of the optimisation using the real functions
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Figure 4.16: Result of the optimisation using the approximate functions

figure). The RBF network is more oscillating for the quality constraint. This observation
allows us to confirm that the learning population must contain the points we projected on
the boundary of the admissible set, the approximation is then more precise on this region,
which is exactly what we intended to obtain.

Thus, we validate our approach for the next steps of our process, any optimisation of one
or several criteria will be done using the approximation functions built with RBF networks.

We now test the approach on our more complex model of aircraft, the SMAC. We
produced the same graphical and numerical results, which are shown in the table 4.10 and
on figure 4.17.

The calculation times to compute the optimisation when using the RBF network on the
SMAC model were exactly the same as when using them on the USMAC model, and the
errors introduced by the approximation are quite negligible. Thus, the RBF network plays
its role of approximating the constraint and criteria functions with the required accuracy,
and of making the optimisation faster.

In the next chapter, we will introduce some means for the decision-maker to understand
the properties of a typical aircraft sizing problem, like the uncertainty related to the model
of aircraft he/she uses.
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krub wing area Optimum value Relative error
(no dimension) (m2)

Real
1.17 450.05 178017.49

0.4%
MTOW function

(kg) Approximate
1.17 444.46 177320.42

function
Real

2 591.52 139.43
3.4%

app speed function
(kt) Approximate

1.99 600 134.67
function

Table 4.10: Comparison of the results of the optimisation using the real function and the
approximation using the SMAC model

Figure 4.17: Result of the optimisation using the approximate functions and the SMAC model
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Until now, we solved our aircraft sizing problem as a constrained, global and multiobjec-
tive optimisation problem. As for the need for compromise solutions, the risk quantification
has become more and more necessary. The chosen configuration must be stable to small dis-
turbances of the considered hypotheses, coming from changes in the needs of the customers,
in the requirements, from uncertainty on the intrinsic parameters of the evaluation function
or from the model itself. By managing uncertainty in the early phases of the sizing process,
we can improve both the quality of the results and the overall response time.

Nowadays, the typical approach is deterministic and the output quality is not quantified.
Risk is covered with margins that are figured out using sensitivity studies. Robustness is
estimated manually, calculating partial derivatives with finite difference methods around
design points.

As this study is a preliminary stage in introducing uncertainty in aircraft sizing studies,
we use a simplified model of aircraft to simulate aircraft sizing, the USMAC. This model, as
it is described in the first chapter in paragraph 1.3.2.2 page 45, has been adapted to perform
uncertainty propagation.

Today, the properties acting as cost functions are related to weights, operating costs or
fuel consumption. From a global point of view, all these criteria tend at pushing some design
characteristics in the same direction, namely minimising the wing area for instance. Thus,
most of the time, the optimum of the deterministic optimisation is located on the boundary
of the admissible set. In practice, if we take the uncertainty into account, we find that this
optimum has a weak probability to really satisfy these constraints. Consequently, a pure
cost-optimised design point may present a high industrial risk.

Introducing robustness will help us to increase likelihood of meeting requirements. In fact,
robustness tends in a global point of view at pushing the design characteristics in the opposite
direction than the classical criteria. For instance, the design points will have typically larger
lifting areas and higher thrust.

Knowing that the results of the performance evaluation contain uncertainty, we need
to be confident in the design point resulting from these calculations. Thus, we aim at
introducing the robustness as a new criterion to handle risks.

Until now, in the previous chapters, we supported engineers in defining a preliminary
aircraft design that answers requirements like those we can find in TLARs (see the definition
in chapter 1, paragraph 1.1.1 page 9). During this study, first we found feasible designs of
aircraft that answer the initial question of fulfilling TLARs, then we optimised criteria with
a robust method, and we produced compromise solutions that are equivalent in solving the
aircraft sizing problem.

In this chapter, after introducing uncertainties in the FPO processes, we try to go further
to support engineers making decisions, thanks to the methods and tools we can implement
and test during this study. The FPO role, after defining a preliminary design of aircraft,
is to help the specialised departments which work on the detailed design, to be consistent
when modifying their part of the aircraft.

The idea is to represent the correlations between design parameters, inside
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the design space. For that purpose, we work with ellipsoids, whose main axes
represent these correlations. This way, engineers can control and bound the
different variations that they can allow the specialised departments to use. They
can also identify which disciplines are the most coupled.

The objectives of this last chapter are, in a first part, to introduce uncertainty
in FPO tools and in a second part, to yield means to help the FPO engineers con-
trolling the modifications they can allow the specialised departments to perform
on the detailed design of the aircraft.

5.1 Introducing robustness

Up to now, data are represented with deterministic values. Deterministic optimisation tech-
niques have been successfully applied to our aircraft sizing problem, in a simplified test case
and on a real problem. However, it is recognised that there always exist uncertainties in any
engineering system due to variations in design conditions, such as loading, material properties,
physical dimensions of parts, and operating conditions.

An issue in simulation-based multidisciplinary design is that the uncertainties of one
discipline may be propagated to another discipline through the linking variables, so that the
final output from the integrated multidisciplinary system gets an uncertainty that is the
sum of the uncertainties coming from all the disciplines [Du and Chen, 2000a].

[Du and Chen, 2000a] list three sources of uncertainties in simulation predictions. Suppose
we have a simulation model F which maps the input variables x to the output z, i.e.

z = F (x, p)

where p is the model parameter vector. The sources of uncertainties are then coming from:

• the variability of input x, called input parameter uncertainty,

• the uncertainty due to limited information in estimating the characteristics of model
parameters p, called model parameter uncertainty, and

• the uncertainty in the model structure F itself, referred to as model structure
uncertainty.

There are other kinds of uncertainties that we will not consider here, like the representa-
tion of real figures thanks to a finite quantity of digits, or the algorithmic errors related to
computer implementations, for instance stop conditions in iteration loops.

Deterministic approaches do not consider the impact of such variations. Moreover, deter-
ministic optimisation lacks the ability to achieve specified levels of constraint satisfaction [Du
and Chen, 2000c].
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There are several methods to propagate and manage the effect of uncertainties, which are
mainly classified in two categories:

• methods that require probability and statistical analyses, and

• methods that do not require such analyses.

We are now describing some of these methods, beginning by the easiest to employ.

5.1.1 Short state-of-the-art

5.1.1.1 Worst case analysis

Worst case analysis is a simplistic approach, which do not need the distribution of random
variables to be given. This method assumes that all fluctuations may occur simultaneously
in the worst possible combinations.

Assuming that uncertainty of all variables is represented by intervals,

[x̄−∆x, x̄ + ∆x, ]

the effect of variations on a function F is estimated from a first order Taylor’s development
as follows:

∆F '
n∑

i=1

∣∣∣∣∣∂F

∂xi

∆xi

∣∣∣∣∣. (5.1)

According to [Du and Chen, 2000c], in most cases, the worst case analysis is conservative
because it is unlikely that the worst cases of variable deviations will simultaneously occur.

But in the case of a function F that is non-monotonous inside the intervals [x̄−∆x, x̄ +
∆x, ], it is possible that ∆F does not cover the entire range of variation of the function. This
method is certainly not adapted to our problem.

5.1.1.2 Extreme condition approach

The extreme condition approach was also developed to obtain an interval, or the extremes,
of the final output from a chain of simulation models. The term extreme is defined as the
minimum or the maximum value of the end performance corresponding to the given ranges
of all the uncertainties of the simulation [Du and Chen, 2000b].

With this approach, the variable uncertainties are characterised by intervals,

[x̄−∆x, x̄ + ∆x].

Correspondingly, the outputs of the simulation models are described by intervals, [zmin, zmax].
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Optimisations are used to find the maximum and minimum of the outputs. For a given
set of variables x, the function F such that z = F (x) is minimised and maximised with x
varying in its definition range:

min F (x)
s.t. x ∈ [x̄−∆x, x̄ + ∆x]

(5.2)

and
max F (x)
s.t. x ∈ [x̄−∆x, x̄ + ∆x]

(5.3)

Contrary to the worst case analysis approach, this method finds the variation range of the
outputs for any kind of function, even the nonlinear ones. But to find these extreme values,
we have to solve two optimisation problems, which may be computationally expensive.

5.1.1.3 Probabilistic formulation

Probabilistic formulations consider the probability of events to be satisfied. It should be
greater than the user specified probability. A general probabilistic formulation can be ex-
pressed as follows:

P [F (x) ≤ 0] ≥ Pd (5.4)

where Pd is the desired probability specified by the decision-maker.

If the distributions of all the variables x are known, the probability P of equation (5.4) can
be obtained accurately by integrating the joint probability density function of the variables
on the corresponding region.

But practically, it is very difficult, or even impossible, to get an analytical or numerical
solution of this integration [Du and Chen, 2000c; Green et al., 2002] for several reasons:

• the joint probability density function is generally not known,

• the boundary over which the integral is to be evaluated is generally not known, and

• even when the previously listed points are known, the multidimensional integral itself
is difficult to evaluate.

In the case where the analytical method is not applicable, simulation-based approaches,
such as Monte Carlo simulation, are often used to obtain an estimation of the probability:

P [F (x) ≤ 0] ≈
1

N

N∑
i=1

I
[
− F (xi)

]
(5.5)

where:

• N is the number of sampled data,

• xi are the sampled points over the range of the distribution of x,
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• I[.] is the Heaviside function, defined as

I[F ] =

{
1 if F ≥ 0
0 otherwise.

Simulation methods are flexible for any type of distributions and the results are often of
a high accuracy if a sufficient number of simulations is used.

5.1.1.4 Moment matching formulation

Probabilistic formulations can become computationally expensive because of the number of
simulations needed to have an accurate estimation of the probability. The moment matching
formulation is then used to reduce the computational burden [Du and Chen, 2000c].

The name of this method comes from the fact that it uses the first and second moments
of statistical distributions. With this approach, if F is assumed to be normally distributed,
the probability of the event F ≤ 0 becomes:

P [F ≤ 0] = Φ

(
µF

σF

)
(5.6)

where:

• Φ is the cumulative distribution function of a standard normal distribution,

• µF and σF are respectively the mean value and the standard deviation of F .

The relation (5.4) is then equivalent to:

µF + k.σF ≤ 0 (5.7)

where k = Φ−1(Pd). For example, when the desired probability Pd is equal to 0.90, the
corresponding k is then equal to 1.2816.

There are other existing methods, like the most probable point, that are not described
here but some details can be found in [DeLaurentis and Marvris, 2000; Du and Chen, 2002;
Green et al., 2002; Du and Chen, 2005]; some of these papers focus on model structure
uncertainty, while others only propagate parameter uncertainties. The last one deals with a
multidisciplinary problem.

In the following, we focus on the model structure uncertainty; the impact of model pa-
rameter uncertainty has been studied during a training on the same USMAC-based problem
using statistical approaches, Monte Carlo methods and analytical methods. Results can be
found in [May, 2005].

The same kind of study can be done on input parameter uncertainty. All principles are the
same as for model parameter uncertainty because model parameters p and input parameters
x are playing the same role for our evaluation function F = F (x, p).
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5.1.2 Uncertainty propagation, an emergent technique in FPO
tools

Robustness is a new notion in FPO. Currently, risk is covered with margins that are figured
out using sensitivity studies. The propagation of input and model parameter uncertainty
has been introduced during a master thesis [May, 2005], thus here, we will focus on model
structure uncertainty.

Quantification of model structure uncertainty is more complicated compared to pa-
rameter, input and model, uncertainty [Du and Chen, 2000a]. Hence, for simplicity in this
preliminary stage in introducing uncertainty, we decide to add to each deterministic variable
a random variable ε representing the uncertainty. An additive error model is used to represent
model structure uncertainty in this study, though its real form can be much more complicated.

The uncertainty variable ε is modeled all along the study thanks to normal distributions
N (µ, σ2) with expectation µ and variance σ2. This assumption simplifies the implementations
and helps quantifying the output uncertainty.

This uncertainty is propagated through the calculation process to compute the uncertainty
on performances using the First Order Second Moment method, further denoted FOSM, like
in [Green et al., 2002], who applied this method on aircraft analysis and preliminary design.

Thus, if in the deterministic process, to calculate the performance y knowing the design
point x, we have:

y = F (x, p), (5.8)

now considering all kinds of uncertainty, we have:

y + εy = F (x + εx, p + εp) + εF (5.9)

considering x, p and y as deterministic variables.

Then, using first order Taylor’s developments, we have:

y + εy = F (x, p) +
∂F

∂x
(x, p) · εx +

∂F

∂p
(x, p) · εp + εF . (5.10)

Hence, we have

εy =
∂F

∂x
(x, p) · εx +

∂F

∂p
(x, p) · εp + εF . (5.11)

If we consider that εy is modeled according to the normal distribution N (µy, σ
2
y) with

expectation µy and variance σ2
y , then we have:

µy =
∑

i

∂F

∂xi

(x, p) · µxi
+
∑

j

∂F

∂pj

(x, p) · µpj
+ µF (5.12)

and

σ2
y =

∑
i

(
∂F

∂xi

(x, p) · σxi

)2

+
∑

j

(
∂F

∂pj

(x, p) · σpj

)2

+ σ2
F . (5.13)
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To summarise, the following system is the formulation we will use to consider the uncer-
tainty in our design process:

y = F (x, p)
µy =

∑
i

∂F
∂xi

(x, p) · µxi
+
∑

j
∂F
∂pj

(x, p) · µpj
+ µF

σ2
y =

∑
i

(
∂F
∂xi

(x, p) · σxi

)2

+
∑

j

(
∂F
∂pj

(x, p) · σpj

)2

+ σ2
F

(5.14)

Computationally speaking, uncertainty is propagated through the calculation process the
same way that values are propagated through the process to obtain the output values.

Yet, when taking uncertainty into account, the input vector x is no longer containing
deterministic values, but the first two moments are added to its components. The input is
now the vector  x

µx

σ2
x

 .

The basic functions of the model of aircraft that we use here, the USMAC, are calibrated
with statistical regressions, as it is explained in [May, 2005] and in the paragraph 1.3.2.2.3
page 47. Thanks to these regressions, we know the bias and the standard deviation of the
basic functions of the model, which are propagated along the calculation process via the
formulation in the equation (5.14).

For that purpose, the USMAC model has been adapted to have as inputs our three
dimensional vectors, and to produce three dimensional vectors as outputs, with the same
kind of components.

We want to consider both the robustness of design criteria and the robustness of design
constraints, the aim is to make the product least sensitive to the potential variations without
eliminating the sources of uncertainty. The robust optimisation objective is achieved by si-
multaneously ”optimising the mean performance” and ”reducing the performance variation”,
while maintaining design feasibility under variations, which is a critical part of the problem.

According to [Rai, 2006b], robust design is in essence multiobjective optimisation because
of the presence of the additional objective, robustness, and the addition of the robustness
criterion may result in an optimal solution that is substantially different from the one
obtained without this criterion.

[Baghdasaryan et al., 2002] also use uncertainty propagation to perform model validation,
i.e. they assess how accurately the mathematical model represents the real world. This is
another application of uncertainty propagation that we will not use here, but that may be
considered in the future.

According to [DeLaurentis and Marvris, 2000], from an industrial perspective, the
goal of multidisciplinary design should primarily be to design a vehicle that satisfies the
requirements, and then to determine the robustness of the design to changes in assumptions
made along the way. In their paper, they focus on describing the formal design uncertainty
model that has been developed for uncertainty propagation, and they take the example of a
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supersonic transport aircraft.

Following the same methodology as when we were dealing with the deterministic multiob-
jective optimisation problem, we will focus first on the constraint satisfaction problem before
introducing the criteria to optimise. Thus, we are now dealing with the feasibility robust-
ness, before introducing the robustness as a new criterion in our multiobjective optimisation
problem. All this work has been presented in [Badufle et al., 2006b].

5.1.3 Feasibility robustness

Feasibility robustness in design can be explained by the following definition:

Definition 5.1. [Du and Chen, 2000c]:
A design is described to have feasibility robustness if it can be characterised by a

definable probability, set by the designer, to remain feasible relative to the nominal constraint
boundaries as it undergoes variations.

With this definition, feasibility in robust design can be considered as the fact that the
probability of constraints to be satisfied should be greater than the user specified probability.

According to [Rai, 2006b], the effect of uncertainties on constraint satisfaction is
important from a reliability perspective. In this paragraph, we focus on reliability-based
optimisation.

It is obvious that, compared with the deterministic feasible region, the size of the
admissible set will be reduced under the robustness consideration. In addition, based on the
above definition, we note that the degree of feasibility can be defined by the desired level of
probability chosen by the decision-maker.

A general formulation for the feasibility robustness can be:

P
[
G(x) ≤ 0

]
≥ Pd (5.15)

where Pd is the desired probability for satisfying the constraint G set by the decision-maker.

Following the same procedure as in the deterministic optimisation, we split our problem
to first focus on constraints, thus on feasibility robustness.

To reduce the computational burden, we use the moment matching method since
we assume all variables to be normally distributed. The principle is that the decision-maker
chooses the desired probability Pd for the satisfaction of the constraint G, and we deduce the
following relation:

P
[
G(x) ≤ 0

]
= Pd ⇐⇒ G(x) + µG + k · σG ≤ 0 (5.16)

with k = Φ−1(Pd), where Φ is the cumulative distribution function of a standard normal
distribution.
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We decided to test the impact of the different components of the uncertainty, the bias µ
and the standard deviation σ, of the model structure uncertainty. By graphically repre-
senting these different components, we can observe the influence they have on each constraint.

The figure 5.1 shows the model structure uncertainty when we only consider the bias µ
of the constraint uncertainty. To draw the constraints when considering the bias of the un-
certainty, instead of representing

G(x) = 0,

as in the deterministic case, we draw

G(x) + µG = 0.

The table 5.1 shows numerically the impact of the bias on the constraints calculated at
the barycentre of the admissible population produced previously using Genetic Algorithms.

Figure 5.1: Influence of the bias of the model structure uncertainty. The deterministic cons-
traints are represented in black, and the constraints considering the uncertainty are repre-
sented in blue.

We see in the table 5.1 that the bias has different influences on the constraints. The
approach speed, Vapp, has a bias close to zero, whereas the climb speed, vz, has an important
bias. This influence can be seen on the figure 5.1, where the deterministic constraints are
represented in black, and the constraints considering the bias are represented in blue. We
can observe on this figure that the two constraints representing the approach speed, Vapp,
have merged.
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Constraint name Deterministic values Uncertain values Relative differences
TOFL (m) 1127.14 1186.70 5.28%
Vapp (kt) 108.98 108.83 0.14%
vz (ft/min) 1501.47 1071.77 28.61%

Kfn (no dim) 0.68 0.74 9.88%

Table 5.1: Effect of the bias of the model structure uncertainty on the constraints calculated
at the barycentre.

After considering the effect of the bias of the model structure uncertainty on the cons-
traints of our problem, we now consider the effect of the standard deviation alone, without
the bias. The figures 5.2 and 5.3 show the impact of the standard deviation caused by the
model structure uncertainty on the constraints for the desired probabilities of 80% and 90%.
To draw the constraints when considering the standard deviation of the uncertainty, we work
like with the deterministic constraints, but instead of representing

G(x) = 0,

we draw

G(x)± k · σG = 0,

with k defined depending on the desired probability set by the decision-maker, like in equa-
tion (5.7), and the sign of the relation is set according to the boundary of the constraint, if
it is a minimal or a maximal bound.

The tables 5.2 and 5.3 show numerically the impact of the deviation on the constraints
calculated at the barycentre, like in the previous table.

Constraint name Deterministic values Uncertain values Relative differences
TOFL (m) 1127.14 1267.87 12.48%
Vapp (kt) 108.98 114.17 4.76%
vz (ft/min) 1501.47 957.72 36.21%

Kfn (no dim) 0.68 0.85 26.09%

Table 5.2: Effect of the standard deviation of the model structure uncertainty on the cons-
traints calculated at the barycentre for a desired probability of 80% to reach the constraints.

Constraint name Deterministic values Uncertain values Relative differences
TOFL (m) 1127.14 1341.43 19.01%
Vapp (kt) 108.98 116.88 7.25%
vz (ft/min) 1501.47 673.49 55.14%

Kfn (no dim) 0.68 0.95 39.72%

Table 5.3: Effect of the standard deviation of the model structure uncertainty on the cons-
traints calculated at the barycentre for a desired probability of 90% to reach the constraints.
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Figure 5.2: Influence of the standard deviation of the model structure uncertainty for a desired
probability of 80% to reach the constraints. The deterministic constraints are represented in
black, and the constraints considering the uncertainty are represented in blue.

Figure 5.3: Influence of the standard deviation of the model structure uncertainty for a desired
probability of 90% to reach the constraints. The deterministic constraints are represented in
black, and the constraints considering the uncertainty are represented in blue.
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We can see in the tables 5.2 and 5.3 that the standard deviation, like the bias, has
different influences on the constraints. The approach speed, Vapp, has a standard deviation
relatively small compared with the standard deviation applied on the climb speed, vz, which
has finally an important bias and an important standard deviation. This constraint is very
sensitive to uncertainty. This influence can be seen on the figures 5.2 and 5.3.

After taking into account separately the effects of the bias and of the standard deviation of
the model structure uncertainty on the constraints of our problem, we now look at the effect
of the two moments together. The figures 5.4 and 5.5 finally show the impact of uncertainty
on the constraints for the desired probabilities of 80% and 90%. To draw the constraints when
considering the bias and the standard deviation of the uncertainty, instead of representing

G(x) = 0,

as in the deterministic case, we draw

G(x) + µG ± k · σG = 0,

with k defined like in equation (5.7), depending on the desired probability set by the decision-
maker, and the sign of the relation is set according to the boundary of the constraint, if it is
a minimal or a maximal bound.

The tables 5.4 and 5.5 show numerically the impact of the model structure uncertainty
on the constraints calculated at the barycentre, like in the previous tables.

Constraint name Deterministic values Uncertain values Relative differences
TOFL (m) 1127.14 1327.43 17.76%
Vapp (kt) 108.98 114.02 4.61%
vz (ft/min) 1501.47 528.02 64.83%

Kfn (no dim) 0.68 0.92 35.97%

Table 5.4: Effect of the model structure uncertainty on the constraints calculated at the
barycentre for a desired probability of 80% to reach the constraints.

Constraint name Deterministic values Uncertain values Relative differences
TOFL (m) 1127.14 1400.99 24.29%
Vapp (kt) 108.98 116.73 7.10%
vz (ft/min) 1501.47 243.79 83.76%

Kfn (no dim) 0.68 1.01 49.61%

Table 5.5: Effect of the model structure uncertainty on the constraints calculated at the
barycentre for a desired probability of 90% to reach the constraints.

We can see in the tables 5.4 and 5.5 that the model structure uncertainty has also dif-
ferent influences on the constraints. The approach speed, Vapp, has still a model structure
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Figure 5.4: Influence of the model structure uncertainty on the constraints for a desired
probability of 80% to reach the constraints. The deterministic constraints are represented in
black, and the constraints considering the uncertainty are represented in blue.

Figure 5.5: Influence of the model structure uncertainty on the constraints for a desired
probability of 90% to reach the constraints. The deterministic constraints are represented in
black, and the constraints considering the uncertainty are represented in blue.
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uncertainty relatively small compared with the model structure uncertainty applied for ins-
tance on the climb speed, vz, which has finally an important model structure uncertainty.
This constraint is very sensitive to uncertainty, the two first moments are cumulating to give
the final uncertainty for this constraint. This influence can also be seen on the figures 5.4
and 5.5.

Moreover, we observe on these figures that the admissible set is really reduced when
considering the model structure uncertainty.

Remark 5.1. If we now consider the robustness with a desired probability of 90% as in the
table 5.5, we see that the barycentre of our deterministic admissible population is not feasible
anymore. Indeed, the constraints on the climb speed, vz, and on the scaling factor on engine
thrust, Kfn, are not satisfied. The value of the climb speed vz should be greater than 500
ft/min, and the value of the scaling factor on engine thrust Kfn should be lower than 1.

Figure 5.6: Illustration of the barycentre becoming non-admissible when willing to satisfy the
constraints with the desired probability of Pd = 90%

Remark 5.2. Considering the robustness has enlightened that some functions, here
modeling constraints, are not precise, and that all the functions of the model have not the
same precision. Thus, propagating the uncertainty allows us to know which are the functions
that need to be reformulated to become of the same precision than the other functions.

Now that we have assessed the impact of the model structure uncertainty on the admissible
set of our aircraft design problem, we work on the constraint satisfaction problem related to
our optimisation problem, as we did in the chapter 2.

All that we have implemented with genetic algorithms to find admissible design points
in the deterministic case can be re-used here to find the robust feasible set, according to the
way the decision-maker defines it. We use the previous formula to build the penalty function
that defines the criterion to optimise. The resulting set of admissible points is then robust.
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Thus, as with the deterministic problem, the initial population is built using a Latin
Hypercube Sampling, denoted LHS. An example of such an initial population can be seen in
the figure 5.7.

Figure 5.7: Initial distribution of points using a Latin Hypercube Sampling. One point is
admissible when wanting the constraints to be satisfied with a probability of 80%.

Then, the points of the current population are driven to the admissible set using a penalty
function of the violation of the constraints as the objective function of our dedicated imple-
mentation of a genetic algorithm, denoted GA. In the deterministic problem, this penalty
function was built with the vector function G(x), and now, when taking uncertainty into
account, the penalty function is built using G(x) + µG ± k · σG.

The admissible population produced for a desired probability of 80% can be seen in the
figure 5.8.

The following step is now to test the mono-criterion and robust optimisation method we
implemented in the chapter 2. We keep on working with the same problem, minimising the
maximum take-off weight, MTOW, and the approach speed, Vapp.

Using the USMAC functions, the optimiser FSQP did not manage to calculate all the
points it needed. FSQP has to calculate large amounts of points in the neighbourhood of
the initial point before finding the descent direction of the gradient. The USMAC model
adapted for uncertainty propagation is not robust enough, the calculations fail when trying
to solve the Mass-Mission loop, which is described in paragraph 1.2.3.2 page 30. USMAC is
not able to calculate all the points FSQP needs, thus we have to find another mean to make
the process more robust.
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Figure 5.8: Admissible population using the model of aircraft which propagates uncertainty.
The desired probability of reaching the constraints is of 80%.

To make the mono-criterion optimisation more robust, we decided to replace the objective
and constraint functions by RBF networks as we did in the previous chapter. This time, the
RBF networks replace the uncertain constraints, thus, we consider the constraint formulation
G(x) + µG ± k · σG to be approximated.

To construct the RBF network, we project the admissible points we produced previously
on the boundary of the feasible space when taking uncertainty into account. This is done using
the GA which was adapted for that purpose in the chapter 4, this adaptation is described in
paragraph 4.3.1 page 165.

A minimal distance is imposed between points when they reach the boundary of the
admissible set. This minimal distance has to be adapted depending on the volume of the
feasible set to have a well-distributed repartition of points on the boundary. The figure 5.9
shows the result we obtained when projecting points on the boundary of the admissible set
when taking uncertainty into account.

Now that we have points on the boundary of the admissible set, we can construct the
learning data basis to build the RBF network as it is done in the chapter 4.

The figures 5.10, 5.11 and 5.12 are illustrations of such RBF networks which will be used
to replace the constraints, depending on the moment of the uncertainty we consider. We do
not make the same numerical validation of the surrogate here because it was done in the
previous chapter, we only see graphically that the results are reasonably accurate for our
study, especially on the boundary of the admissible set, which is the most important.
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Figure 5.9: Projection of points on the boundary of the admissible set when taking uncertainty
into account. The desired probability of reaching the constraints is of 80%.

Figure 5.10: RBF network of the constraint when we consider the bias
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Figure 5.11: RBF network of the constraint when we consider the standard deviation, with a
desired probability of 80% to satisfy the constraints.

Figure 5.12: RBF network of the constraint when we consider the two moments, with a desired
probability of 80% to satisfy the constraints.
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Once the surrogate model of our evaluation function is built, we use it to perform the
mono-criterion optimisation. The problem here is that, due to the lack of robustness of the
adaptation of the USMAC model to handle uncertainties, we are not able to assess the
quality of the approximated optima. These optima can be seen on the figure 5.13 and their
numerical values in tables 5.6 and 5.7.

Figure 5.13: Mono-criterion optimisations of the maximum take-off weight, MTOW, and of
the approach speed, Vapp, using RBF networks. The desired probability of reaching the
constraints is of 80%.

MTOW Vapp
FNslst (daN) 16737.48 18726.65
Awing (m2) 170.46 207.03

Table 5.6: Values of the degrees of freedom resulting from the optimisation considering un-
certainty.

We observe graphically and numerically that the optimisation process reaches the right
optimum for the MTOW criterion, which is located at the intersection of two constraints, the
approach speed, Vapp, and the climb speed, vz.

Concerning the second criterion, each time we launched the optimisation process, it never
succeeded in finding the right optimum, that we know to be located at the upper bound of
the first degree of freedom, the sea level static thrust FNslst, and is limited by the constraint
on the climb speed, vz.
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MTOW Vapp
Constraint Deterministic Uncertain Deterministic Uncertain

name values values values values
TOFL (m) 1281.65 1525.02 1085.96 1274.3992
Vapp (kt) 114.54 120.14 106.99 111.83
vz (ft/min) 1445.40 464.32 1478.90 513.00

Kfn (no dim) 0.68 0.93 0.68 0.93

Table 5.7: Values of the constraints resulting from the optimisation considering uncertainty.

This result is not satisfying, especially as we wanted the optimisation to be more robust
in finding the global optimum. We know that we have to work more on the tuning of the
different parameters required in the implementation of FSQP, like the steps for searching the
descent direction of the gradient.

Our aim here is not to perform robust mono-criterion optimisation as we did in the chap-
ter 2, but to introduce the robustness as a new criterion in our multiobjective optimisation
problem. Thus we decided not to spend time on this problem, but instead to go on with our
multiobjective and robust optimisation problem.

Now that we found the optimum for the MTOW criterion in a deterministic case and
when considering the uncertainty, we can compare the different results we obtained on the
design parameter values and the difference on the criterion values. This comparison can be
observed in the table 5.8.

Deterministic Uncertain Relative
case case differences

FNslst (daN) 11981.89 16737.48 39.68%
Awing (m2) 149.72 170.46 13.85%

MTOW (kg) 80130.62 86336.35 7.74%

Table 5.8: Comparison of the results coming from the optimisation of the MTOW in a deter-
ministic case and when considering uncertainty.

Ensuring the constraint satisfaction with a desired probability of 80% means increasing
the optimal weight of roughly 8%, which is not so important compared to that, in the de-
terministic case, the probability of the operational constraints to be satisfyied is weak. We
did not calculate this probability in the deterministic case, but we can make the assumption
that it is much lower than 50% because:

• the constraints are satisfied with the probability of 50% when the bias is considered,

• we can see graphically that the optimum in the deterministic case is located in a sharp
angle of the admissible set.

On the figure 5.14, we can graphically make the observation of what causes the increase
of the values of the degrees of freedom. Concerning the Fnslst variable, the increase is
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mainly due to the uncertainty on the climb speed constraint vz, while concerning the Awing
variable, the increase is mainly due to the uncertainty on the approach speed constraint Vapp.

Influence of the uncertainty on the Influence of the uncertainty on the
FNslst. It is mainly due to the Awing. It is mainly due to the

uncertainty on the vz uncertainty on the Vapp

Figure 5.14: Influence of the uncertainty on the degrees of freedom

Before introducing the robustness as a new criterion, we tested our multiobjective opti-
misation process, as it is described in the paragraph 3.4 page 141, to find the Pareto front
when we consider the feasibility robustness with a desired probability of 80% to satisfy the
constraints.

The figures 5.15 and 5.16 are graphical representations of the results that we obtained
after 30 generations when we work on our two-objective problem.

We can see that the points are quite well-distributed in the design and objective spaces.
Our algorithm manages to find the Pareto front where points satisfy the constraints with
the probability of 80%. The only issue is the calculation time. As expected, it is much longer
than when we do not propagate uncertainty. It takes 1 second 15 to calculate one point
when propagating uncertainty, instead of 0.05 second when we work on the deterministic
problem. Thus, to find the Pareto front in an uncertain context, calculation time becomes
really important. In our test case, calculating 30 generations took 1 hour and 30 minutes of
CPU time on a Pentium 4 at 1.70 GHz.

We have tested all the processes that we implemented previously in a study case where we
wanted to ensure that the constraints are satisfied with a desired probability of 80%. The next
study will be to propagate the input and parameter uncertainty too, the aim being to obtain
the total uncertainty of the final output. This problem is important because the design will be
slightly modified during the detailed studies, but the constraints must be satisfied whatever
the modifications are.
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Figure 5.15: Representations of the points in the design space that are on the Pareto front.

Figure 5.16: Representations of the points on the Pareto front.
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We also want to take into account the uncertainty of the criterion, and this is the purpose
of the following paragraph.

5.1.4 Robustness: a new criterion

Going back to the multiobjective optimisation problem, what we intend to do here is to
introduce the robustness as a new criterion added to those we considered previously.

If the deterministic formulation is

min F (x, p)
s.t. G(x, p) ≤ 0

(5.17)

with x ∈ Rn, p ∈ Rk and F ∈ Rp, we now consider the optimisation problem

min

{
F (x, p) + µF

σF

s.t. G(x, p) + µG + k · σG ≤ 0.
(5.18)

Thus, we are simultaneously optimising the expected performance and minimising the
performance variance, while ensuring robust feasibility.

Suppose we are still working on our two-objective optimisation problem. Considering the
robustness as a new criterion, we have now four criteria, the two objectives which are the
maximum take-off weight, MTOW, and the approach speed, Vapp, and their variances, with
still two degrees of freedom, the sea level static thrust, FNslst, and the wing area, Awing. As
expected, the problem we face now is that all the admissible points are part of the Pareto front.

Introducing the variances of the objectives as new criteria to be minimised means that we
want to refine the precision of the results we obtain. In our test case, when dealing with two
criteria (which means four criteria to optimise when considering the robustness), we need to
have more than two degrees of freedom to have a meaningful problem.

Here, we are working with a simplified model of aircraft. By definition, refining the
precision of the results obtained with a simplified model has no sense. The USMAC is thus
not adapted for that purpose. Hence, we cannot perform this study with this model, it
makes more sense to work on a realistic model of aircraft, which results are supposed to
be less sensitive to structure model uncertainty. But such a model, allowing to propagate
uncertainty in a more relevant way, is not available yet.

What we intend to do as a future work is to evaluate these methods on more complex
models of aircraft, which are more realistic from geometrical and physical points of view, as
soon as we will be able to propagate uncertainty with this kind of model. With these more
complex models, we will be able to increase the number of degrees of freedom, of constraints
and of criteria in the optimisation problem.

Performing optimisation when taking uncertainty into account was tested on a simplified
model of aircraft in order to achieve a short calculation time. In the following, when
dealing with realistic models, we will face the problem of important calculation time, and
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certainly, we will have to generalise the idea of working with surrogate model and parallel
implementation to perform the optimisation when propagating uncertainty.

During this first study in trying to introduce robustness in our design process, we decided
to try and test Genetic Algorithms to solve this multiobjective optimisation problem,
although we know there exist other multiobjective optimisation methods that can deal
with robustness as well, like the evolutionary algorithm HAPEA [Lee et al., 2007], Physical
programmning [Chen et al., 1999; Messac and Ismail-Yahaya, 2002], or chaos polynomials
[Molina-Cristobal et al., 2006]. As uncertainty management is gaining more interest in
general design problems, these methods may be studied in further studies in FPO.

The aim of this last chapter of the manuscript is to help engineers in making decisions.
The first part of this chapter was about uncertainty management, we wanted the preliminary
aircraft design to be robust to uncertainties on the input variables, model parameters and
the model structure itself.

The other point we want to treat here to help engineers in making decisions is to exhibit
model internal links, which is the purpose of the next paragraph.

5.2 Exhibiting model internal relations

5.2.1 FPO need

Until now, all the processes we implemented help engineers in defining a preliminary aircraft
design that answers requirements defined in TLARs (which are defined in paragraph 1.1.1
page 9). During this study, we first found feasible designs of aircraft that answer the initial
question of fulfilling TLARs, then we optimised the criteria separately with a robust method,
and we produced compromise solutions that are equivalent in solving the aircraft sizing
problem. Finally in this chapter, we introduced uncertainties in the FPO processes to assess
the robustness of the different solutions we produced.

In this paragraph, we go further to help engineers in driving the specialised departments,
which work on the detailed design, when modifying their part of the aircraft, while ensuring
that these modifications are consistent with the ones made by the other departments.

Currently, this is done by using sensitivity analyses on the main variables to know
which are the ones having the most important influence on a criterion or a constraint. This
kind of analyses can only be performed at a future project phase, as the models used in
specialised departments are too complicated to make these analyses. Most of the time, it is
approximated thanks to the engineers know-how on the problem.

We want here to make the process more systematic, by yielding a mean to help the FPO
engineers in:

• anticipating the problems that may occur when working on the detailed design of the
aircraft,
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• determining the variables that are the most coupled, and

• controlling the modifications they can allow the specialised departments to perform on
the detailed design of the aircraft.

The idea is to work with ellipsoids, whose main axes represent the correlations between
design variables, inside the design space. This way, engineers can control and bound the
different variations they can allow the specialised departments to use, and identify which
disciplines are strongly coupled. Maybe other applications of ellipsoids will be found when
working with them on this kind of problems.

5.2.2 Why ellipsoids?

There are two kinds of ellipsoids that we introduce:

1. the ellipsoid with the maximum volume that can be inscribed inside the admissible set,
or the domain of our interest,

2. the ellipsoid whose main axes are a priori defined, and whose center minimises a crite-
rion while its boundary is tangent to the admissible set boundary.

In both cases, determining these ellipsoids is an optimisation problem. For simplicity, we
decided to approximate the set where the ellipsoids are fitted by a convex polyedral set. But
all this can be generalised to any kind of convex set.

To approximate the convex set of our interest by a convex polyedral one, we use what we
had already implemented in the previous chapter, in paragraph 4.3.1 page 165. We consider
the points we projected on the boundary of the set of our interest, and with a Taylor’s
developments, we linearise the active constraints at some points. An illustration of what we
obtain can be observed on the figure 5.17.

5.2.2.1 Ellipsoid with the maximum volume inscribed in a convex set

The first kind of ellipsoid we decided to inscribe inside the set of our interest is the one having
the maximum volume.

This ellipsoid allows us to identify, in an easy manner, the inner shape and a rough
approximation of the maximum volume of the set of freedom that is available. This can
also be done more precisely thanks to multidimensional polyedral sets, but these polyedral
sets are not easy and expensive to obtain, especially when willing to approximate a
high-dimensional domain. Moreover, the needed geometrical information thus obtained with
this approximation will remain difficult to be exploited.

In the case of ellipsoids, we know that some interesting theory exists to determine them
in a convex set. The practical interest in determining a maximum volume ellipsoid that fits
our feasible domain is that:
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Figure 5.17: Illustration of the linearisation of the constraints. The envelop of the convex
polyedral set replacing the domain of our interest is represented in green.

• representations of our two-dimension problem seem trivial, but for more general studies
with more than two dimensions, geometrical information is difficult to obtain. Ellipsoids
give a geometrical information that can easily be exploited. For instance, the shape
of the ellipsoid gives an idea of the correlations between design variables. If it is a
sphere, the variables are relatively independent, and if it is flat in some directions, the
corresponding parameters are correlated.

• It gives a first guess of the volume of the set of our interest, even if the angular parts
of this domain are missing in the calculation of the volume.

Remark 5.3. In fact, the angular parts are of poor interest, they always correspond to
non-robust part of the design space because of the proximity of at least two constraints.
This lack of robustness in this part of the feasible set is due to probable changings in the
initial aircraft sizing problem, or to the presence of uncertainties.

To determine this ellipsoid, we have to solve an optimisation problem, which formulation
comes directly from the convex optimisation and analysis discipline [Hiriart-Urruty, 1998;
Ben-Tal and Nemirovski, 2001].

Let P be a convex polyedral set which is bounded and of a non-empty interior. We have:

P :=
{
x ∈ Rn

∣∣ 〈ai, x〉 ≤ bi for all i = 1, · · · , m
}

(5.19)

where:
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• ai is a vector of Rn, and

• bi is a real number.

Then, let E be an ellipsoid of Rn. We can represent E as

E := c +
{
Bu
∣∣ ||u|| ≤ 1

}
(5.20)

where:

• c is a vector of Rn, and

• B is a (n, n) symmetric and positive definite matrix.

The volume of E is proportional to the determinant of B, det(B).

The condition that the ellipsoid is included inside the convex polyedral set is a constraint
of the optimisation problem. The formulation of this constraint is:

E ⊂ P ⇐⇒ gi(c, B) ≤ 0
⇐⇒ 〈ai, c〉+ ||Bai|| − bi ≤ 0, because B is symmetric.

(5.21)

With this definition, we know that gi is convex.

Now, we have to define the objective function of our optimisation problem, which consists
in maximising the volume of an ellipsoid. This volume is proportional to the determinant of
the matrix defining the ellipsoid (this relation is deduced from the equation (5.20)). Thus,
we have the following formulation to define the objective function, coming from the convex
optimisation and analysis discipline [Hiriart-Urruty, 1998; Ben-Tal and Nemirovski, 2001]:

f(B) = −ln(det(B)). (5.22)

Finally, the optimisation problem we have to solve (to find the ellipsoid having the maxi-
mum volume inside a given convex polyedral) is:

min −ln
(
det
(
B
))

s.t. 〈ai, c〉+ ||Bai|| − bi ≤ 0 for all i = 1, · · · , m
B definite positive.

(5.23)

To solve numerically this optimisation problem, we decided to work again with FSQP.
The problem we met by directly solving the problem (5.23) with FSQP is that the logarithm
makes the variations of the objective function too smooth.
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Thus, we decided to replace the problem formulated in equation (5.23) by a simpler one,
removing the logarithm:

min −det
(
B
)

s.t. 〈ai, c〉+ ||Bai|| − bi ≤ 0 for all i = 1, · · · , m.
(5.24)

Nevertheless, this new problem still answers the question of finding the ellipsoid of maxi-
mum volume inside a convex polyedra set, because the volume of the ellipsoid is proportional
to the determinant of the matrix, with no logarithm.

Indeed, the logarithm of the determinant of the matrix defining the ellipsoid was
introduced to make the objective function strictly convex. Thus, the problem formulated in
equation (5.23) is a convex problem having a unique solution.

When removing the logarithm, we also removed the condition that B has to be definite
positive, because this condition was set to ensure that the determinant had to be non-zero.
Moreover, to describe numerically that the matrix B is definite positive is neither easy nor
intuitive.

The figure 5.18 is an illustration of the result we obtained in our two-dimensional set
bounded by the operational and the quality constraints.

Figure 5.18: Ellipsoid of maximum volume included in the set of our interest
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5.2.2.2 Fixed ellipsoid minimising a criterion

The second kind of ellipsoids we decided to include inside the set of our interest is an ellipsoid
which main axes are a priori defined and fixed, and are also parallel to the directions of the
axes of the degrees of freedom.

The practical interest of this second kind of ellipsoids we introduce here is that it allows
us to a priori fix a set of freedom, or uncertainty, around design points to reduce the search
space. Knowing the maximum volume of the set of our interest, as we defined it in the previous
paragraph, the fixed ellipsoid should have a volume that is lower. Thus, a preliminary study
with the ellipsoid of maximum volume that can be included inside the domain of our interest
would be necessary for the decision-maker to choose if one wants to keep the entire domain,
or to reduce it with the fixed ellipsoid.

In the case of the reduction of the domain with fixed ellipsoids, the main axes of these
ellipsoids are set parallel to the axes of the degrees of freedom to avoid introducing artificial
couplings between the parameters. It is of course possible to introduce these couplings, but
we will not do it during this study to be able to understand the results, as it is a first
attempt in dealing with ellipsoids.

This time, the optimisation problem consists in finding the centre of the ellipsoid such
that it minimises one criterion, under the constraint that the boundary of this ellipsoid is
tangent to the boundary of the set inside which it is included. The problem we face to solve
numerically this optimisation problem is to ensure the constraint to be satisfied. Indeed,
the direct method consists in discretising the boundary of the ellipsoid and to evaluate the
aircraft sizing constraints at each point of the discretisation. If we want the results to be
precise, the number of evaluations of points on the boundary of the ellipsoid becomes too
large. Thus, we have to find another method to solve this problem, avoiding the evaluation
of the aircraft sizing constraints.

To change this problem into the problem of just finding the location of the centre of the
ellipsoid, the idea is to translate the constraints virtually in the direction of the centre of
the ellipsoid when this fixed ellipsoid is tangent to this particular constraint. The length of
this displacement is calculated to make the virtual constraint passing through the centre
of the ellipsoid, in such a way that the optimised centre of the ellipsoid will be located on
a displaced constraint, or at the intersection of displaced constraints. The figure 5.19 is an
illustration to explain this method.

Moving the constraints in the direction of the centre of the ellipsoid when it is tangent to
this constraint is not so easy. We do not know the direction of the displacement because we
do not know at which point of the ellipsoid the constraint is tangent.

The idea is to transform the space where we work into a space where the ellipsoid becomes
a circle of radius 1. Indeed, we want to use the fact that the vector normal to a plane that is
tangent to a circle is also pointing towards the centre of the circle when it is located at the
tangent point. Thus, when going back to the initial space, we will have the direction in which
we have to move the constraint, and the length of this displacement is easy to calculate when
having the direction.
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Figure 5.19: Illustration of the principle of the method to find the centre of the ellipsoid

The algorithm we implemented follows these steps:

1. Finding the directing vectors ~Vd of the hyperplanes
defining the convex polyedral set where we want to
inscribe the ellipsoid.

2. Transforming the design space in such a way that
the ellipsoid becomes a circle of radius 1.

3. Finding the vector ~Vn that is normal to the

transformed directing vectors ~Vd of the constraints,
~Vn is thus pointing towards the centre of the
circle from the tangent point.

4. Making the inverse transformation to go back to
the design space. The angles are thus changed,

but ~Vn is still pointing towards the center of the
ellipsoid.

5. Calculating the length of the displacement.
Repeat this operation for each hyperplane that
linearises one constraint.

6. Optimising the criterion to find the centre of
the ellipsoid.

Once again, we use FSQP to perform the optimisation. The figure 5.20 is an illustration
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of the results we obtained on our two-objective optimisation problem.

Figure 5.20: Ellipsoids with fixed main axes which centres minimise the criteria

To illustrate the use of these ellipsoids, we can imagine the following scenario: let’s suppose
that about fifteen degrees of freedom have been selected. Five of them are in the scope of
Engine discipline, five others in the scope of Aerodynamic discipline, and the last five in the
area of System architecture. Each of the disciplines are handled by different groups of people.

A first run has exhibited the inscribed ellipsoid of maximum volume and a second run, with
targeted uncertainty, has exhibited a relevant design point. The characteristics of this design
point are now supposed to be distributed to discipline departments to start the detailed
design. Thanks to ellipsoid analysis, we can also provide guidelines for design parameter
modifications. For instance, if the Engine group wants to move the value of one parameter
which is strongly coupled with a parameter under the responsability of the Aerodynamic
group, the Engine group people already know what is their range of freedom if they want to
play alone and they already know with which groups they have to play with if they need to
go beyond their own independent limits.

5.3 Conclusion

In this chapter, we implemented in a first part a method that helps the engineers in quanti-
fying the risk and in ensuring that the constraints are satisfied with the desired probability.
This method uses the propagation of model structure uncertainty to assess the uncertainty
on the constraint and criteria variables. What we intend to do as a future work is to ensure
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the constraint satisfaction while optimising the criteria and minimising the uncertainty on
these criteria.

In a second part, we introduced ellipsoids to represent the correlations between design
parameters. The ellipsoid with the maximum volume that can be included inside the design
space is a good approximation of the useful part of the search space. Obviously, some parts
of the design space are not included in this ellipsoid, in particular sharp corners. But this is
not synonimous to a loss of information because these sharp corners are not the parts of the
design space where the optimum configuration has to be located. Indeed, we know that these
sets are non robust parts of the search space.

5.4 Going further

Another tool that could be useful, to help engineers in using the methods we developed during
this study, is a mean to understand the results obtained from the multicriteria optimisation.
The result of this optimisation process is a set of multidimensional vectors that we need to
represent in a two-dimensional map to extract all the available information it contains.

We know that such a tool can be developed by using self-organising maps, further
denoted SOM, as it is described in [Pediroda and Poloni, 2006; Sasaki and Obayashi, 2004].
Such maps allow the decision-maker to identify groupings and relationships in the data, and
further examinations may then reveal what features the members of a cluster have in common.

According to [Johnson and Rokhsaz, 2001], SOM is a neural network based on competi-
tion among neurons. It can be used in a pattern recognition system to order multiple input
vectors according to their degrees of similarity. Such a map is a topology-preserving map,
meaning that it associates each input vector with a single neuron and places similar input
vectors near each other. The network is competitive in the sense that each neuron competes
to be the one that corresponds to the input vector.

[Büche et al., 2002] uses SOM to adapt the mutation and the recombination operators in
their implementation of a genetic algorithm. [Johnson and Rokhsaz, 2001] also use SOM for
detecting airframe ice accretion.

Such a tool would be interesting to support engineers when they want to choose the
best configuration, to their opinion, among the set of compromise solutions produced by the
multicriteria optimisation process.
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Conclusion

The aim of this study was to introduce new mathematical methods that can be useful
in a future project sizing tool. During this study, we implemented methods like genetic
algorithms, radial basis functions, moment matching formulation, and evaluated their utility
in the context of aircraft sizing.

We contributed with this work in improving the optimisation methods that are currently
used in the Future Project Office. Indeed, the lack of robustness of the optimisation processes
is mainly due to a large design space that contains few feasible points. As the calculation of
points that do not satisfy the constraints sometimes fails, the optimisation tools are not able
to systematically find the optimum.

We first presented a new method, using genetic algorithms, to automatically produce large
amounts of admissible design points, to be able to reduce the search space of the optimisation
process to the admissible set. Our dedicated implementation of genetic algorithms solved the
constraint satisfaction problem related to our aircraft sizing problem with a high success
rate. Moreover, this was done in a short time frame, compared to the time engineers need to
exhibit a single admissible point.

Then, we applied FSQP to solve the mono-criterion optimisation problem currently
treated by the future project engineers. The research space was directly the admissible
domain and each calculation succeeded in finding the global optimum. Hence, with our
methodology, we managed to make the mono-criterion optimisation more robust.

In our aircraft sizing study, we have several criteria to consider, which are most of the time
competing and conflicting measures of the system performance. Thus, one part of this work
was to introduce some methods of multicriteria optimisation. We decided to keep working
with genetic algorithms. We adapted the Non-dominated Sorting Genetic Algorithm to our
problem and to make it answer our needs. With this algorithm, we managed to extract some
points of the search space that were located on, or near the Pareto front of the multiobjective
optimisation problem while satisfying the operational constraints, defined by the requirements
related to the aircraft sizing problem, and the quality constraints, which were added to
represent the knowledge of the engineers on this particular problem.

Thus, our multiobjective optimisation problem has been solved. Moreover, some know-
ledge on the problem has been added by the decision-maker to define the quality constraints.
The resulting points of our methodology are thus located in a subset of interest for the
future project engineers.
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But our methodology revealed another kind of problem. Calculation times on a simplified
model of aircraft were more important when we consider the uncertainty than in the deter-
ministic studies. Thus, we supposed that the calculation times will be too long to widely use
our algorithm on the models currently used in the Future Project Office to perform multi-
criteria optimisation. Hence, we decided to consider another approach, by substituting the
aircraft model by a surrogate model.

We identified several methods that can be useful to our aircraft sizing problem, like
support vector machines or kriging interpolations. We decided to implement radial basis
functions mainly because they are easy to implement and to adapt to a particular problem.
Moreover, with radial basis function networks, we can easily fix a a priori given precision to
reach for the approximation.

To construct the surrogate model, we fixed a precision to reach for the approximation,
and we added the network one more basis function until this precision has been reached. The
points we used as centres of the basis functions to build the approximation were the points
obtained with the genetic algorithms, i.e. the initial population, the admissible population
and the points that were projected on the constraints. Hence, we used the knowledge we
obtained when making the previous studies.

The calculation times to compute the mono-criterion optimisations when using this
approximation technique on a realistic model of aircraft were exactly the same as when using
it on a simplified model of aircraft, and the errors introduced by the approximation were
acceptable in the context of future project studies. Thus, the radial basis function network
played its role of approximating the constraint and criteria functions with the required
accuracy, and of making the optimisation faster.

The last part of this work consisted in introducing some mathematical tools in order
to support the engineers of the Future Project Office when they have to give hints to the
decision-makers. There are several methods that we wanted to implement and test during
this work.

The first one was to introduce the notion of uncertainty related to the model of aircraft
that is used to perform aircraft sizing. The aim was to assess the robustness of the design
solutions of the aircraft sizing problem. Nowadays, the typical approach is deterministic.
Risk is covered with margins and the robustness is estimated manually, by calculating partial
derivatives with finite difference methods around design points. Most of the time, the optimum
of the deterministic optimisation is located on the boundary of the admissible set.

In practice, when taking the uncertainty into account, we found that this deterministic
optimum has a weak probability to really satisfy the active constraints. Consequently, intro-
ducing robustness helped us to increase likelihood of meeting the requirements. Finally, it
appeared that the optimised maximum take-off weight had to be increased a bit to ensure
that the constraints were satisfied with a high probability.

To be confident in the design point resulting from these calculations, we can also
introduce the robustness as a new criterion to handle risks. This study has been envisaged in
the framework of this study, but finally, it has not been performed here because the model
of aircraft we used did not allow us to make this work. Indeed, introducing the robustness
as a new criterion means minimising the variance of the criteria, and thus, refining the
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precision of the results. The model of aircraft we used to propagate the uncertainty was a
simplified model, thus refining its results had no sense and no realistic model of aircraft that
propagates the uncertainty was available yet.

The second tool we wanted to implement was a mean which would support us to help the
specialised departments which work on the detailed design, to be consistent when modifying
their part of the aircraft. The idea was to represent the correlations between the design
parameters, inside the design space, thanks to ellipsoids, whose main axes represented these
correlations. This way, the engineers of the Future Project Office can control and bound the
different variations they can allow the specialised departments to use, and identify which
disciplines are the most coupled.

During this study, we experimented several techniques to treat the whole aircraft opti-
misation problem in the framework of the Future Project Office. We wanted the process to
be more systematic in the exploration and the exploitation of the entire design space, but
we also wanted to introduce multicriteria optimisation methods that are able to take the
uncertainty of the models into account.

In the last part, we proposed a possible outcome of the integration of these different
techniques. The aim was to yield the engineers a global and operational perception of the
part of the design space that presents the greatest interest for them.

Of course, we know that we only explored a little part of all what it is possible to do in
this context, but we worked on all the steps of the process, i.e. starting from a model of
aircraft that is able to calculate its performance, we provided synthetic results of a global,
multicriteria and robust optimisation.

In parallel to this work, another Ph.D. thesis is being performed on the same problematic
of preliminary aircraft design. [Welcomme et al., 2006] presented a method based on self-
regulating multi-agent system that answers the problem of multidisciplinary optimisation.
They used the notions of cooperation and self-regulation offered by multi-agent systems to
produce compromise solutions.

The next steps concerning this work is the industrialisation and the implementation. Step
by step, all methods we tested during this study will be used by the engineers of the Future
Project Office.

The first methodology we developed that will be industrialised is the research of the
admissible space. Indeed, we showed in the second chapter that finding admissible design
points was a difficult task. The aim is to use our method to generate the initial points
starting classical mono-criterion optimisations.

The second industrialised method will be the approximation of the initial problem with
surrogate models. In the chapter 4, we showed that using an optimiser on the entire aircraft
sizing problem is costly in calculation time. The aim is to make the classical mono-criterion
optimisations faster in approximating the optimum design point.

Another method that will be used by the engineers is the way we represent the corre-
lations between design parameters inside the design space. This method will be a new tool
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to support engineers in working with other specialised departments. Indeed, ellipsoids are a
shared and an understandable representation of the correlations between design parameters,
and also a good way to approximate the design space in which we work.

The advantage of all these methodologies is that the number of degrees of freedom can
be increased up to 10, while it is currently about 3 or 4. This is an important improvement
because the current way to perform the optimisation with 10 degrees of freedom is done
manually by the engineers of the Future Project Office.

During this study, we implemented and tested some particular methods that can answer
our aircraft sizing problem, like Genetic Algorithms or Radial Basis Functions. It would be
interesting to compare the results we obtained here with what can produce other methods,
like Particle Swarm optimisation, or Kriging interpolation. There are also some other
tools that can be useful to support engineers in making decisions, like self-organising maps,
as we mentioned in the chapter 5. This comparison could be done in a subsequent Ph.D. study.

The part of this work that is not planned to be industrialised at this stage is a part
of the multicriteria optimisation. Initially, another part of the work that should have been
done during this study was to perform aircraft sizing not only for one new configuration,
but to design an aircraft family whose members share some components. Indeed, one way to
reduce costs is to conceive a family of aircraft which share common parts and characteristics,
satisfying different mission requirements [Willcox and Wakayama, 2002]. Traditionally, this
has been achieved through the use of derivatives. The aim here is, as a future work, to optimise
these shared components to design the aircraft family at once, in order to improve the common
solution instead of having an optimum baseline aircraft and sub-optimum derivatives.

Using multicriteria optimisation takes fully its sense in this context of optimising an
aircraft family at once. Indeed, in the chapter 3, it was not obvious to find relevant conflicting
criteria to optimise. In this context, we would have one criterion to optimise, the direct
operating cost, DOC, but for several aircraft. And minimising costs for one aircraft probably
means degrading costs for the other members of the family. Then, working on optimising an
aircraft family at once will be the main development that can be done on this study.



Appendix A

USMAC functions, detailed
description

A.1 USMAC basic function signatures

A.1.1 Definition functions

A.1.1.1 Aerodynamics

function [Lref] = reference_length_(Awing,Ar,U_Lref)

function [Aref] = reference_area_(Awing,U_Aref)

A.1.1.2 Geometry

function [ar] = aspect_ratio_(span,Awing)

A.1.1.3 Lift over Drag

function [lod] = lift_to_drag_(cz,cx)

A.1.1.4 Criteria

function Kff = fus_fuel_ratio_(Fuel_nom,Fuel_max)

function FoPoNe6 = fuel_by_pax_by_NM_(Fuel,Npax,RA_eff)

function MWEoMTOW = MWE_over_MTOW_(MWE,MTOW)

A.1.2 Regulation functions

function kvs_TO = Kvs_Take_Off_()

function kvs_LD = Kvs_Landing_()
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A.1.3 Models

A.1.3.1 Environment

Earth function

function g = gravity_acc_(alt)

Atmosphere functions

function [Pamb,Tamb] = non_stand_atmos_(disa,alt)

function [Pstd,Tstd] = standard_atmosphere_(Alt)

function rho = air_density_(Pamb,Tamb)

function vsnd = sound_velocity_(Tamb)

function dTodZ = Tstd_gradiant_(alt)

A.1.3.2 Engine functions

function [Ksfc] = sfc_factor_(U_Ksfc)

function sfc = spec_fuel_cons_(BPR,Ksfc)

function [Kmto] = max_take_off_factor_(U_Kmto)

function [Kmcl] = max_climb_factor_(U_Kmcl)

function [Kmcr] = max_cruise_factor_(U_Kmcr)

function Fn = net_thrust_(Mach,rho,FNslst)

A.1.3.3 Geometry functions

function dnac = nacelle_diameter_(BPR,FNslst,U_dnac)

function dfus = fuselage_diameter_(NpaxFront,Naisle,U_dfus)

function lfus = fuselage_length_(Npax,NpaxFront,dfus,U_lfus)

function Npax = number_of_pax_(NpaxFront,lfus,dfus,U_lfus)

function [Aht] = tail_size_(Awing,Lref,LAht,Vht,U_Aht)

function [Avt] = fin_size_(Awing,span,LAvt,Vvt,U_Avt)

function [wAwing] = wing_wetted_area_(Awing,U_wAwing)

function [wAht] = tail_wetted_area_(Aht,U_wAht)

function [wAvt] = fin_wetted_area_(Avt,U_wAvt)

function [wAfus] = fus_wetted_area_(dfus,lfus,U_wAfus)

function [wAnac] = nac_wetted_area_(ne,dnac,U_wAnac)

function Fwing = wing_fuel_(Awing,tuc,U_Fwing)

function Fuel_max = max_fuel_weight_(Fwing,U_Fmax)

A.1.3.4 Aerodynamic functions

function [tuc] = thickness_o_chord_(tcr,tck,tct)

function [Kdiv] = mach_number_factor_(U_Kdiv)

function [Mdiv] = ref_mach_number_(cz,phi,tuc,Kdiv)

function [Kcxc] = press_drag_factor_(U_Kcxc)
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function [cxc] = pressure_drag_(Mach,Mdiv,Kcxc)

function [Kcxi] = ind_drag_factor_(U_Kcxi)

function [cxi] = induced_drag_(cz,ar,span,dfus,Kcxi)

function [Kcx0] = fric_drag_factor_(U_Kcx0)

function [cx0] = friction_drag_(Mach,Pamb,Tamb,wAwing,wAht,wAvt,wAfus,...

wAnac,lfus,Lref,Aref,Kcx0)

function [cx] = drag_factor_(cx0,cxi,cxc)

function [KczmTO] = Cz_max_TO_factor_(U_KczmTO)

function [czmax_TO] = Cz_max_TO_(phi,KczmTO)

function [KczmLD] = Cz_max_LD_factor_(U_KczmLD)

function [czmax_LD] = Cz_max_LD_(phi,KczmLD)

A.1.3.5 Mass functions

function Mwing = wing_mass_(MTOW,Awing,Lref,span,phi,tuc,U_Mwing)

function Mht = tail_mass_(Aht,U_Mht)

function Mvt = fin_mass_(Avt,U_Mvt)

function Mfus = fuselage_mass_(dfus,lfus,U_Mfus)

function Mgear = landing_gear_mass_(MTOW,U_Mgear)

function Mprop = engine_mass_(ne,FNslst,U_Mprop)

function Msys = system_mass_(MTOW,U_Msys)

function Mfurn = furnishing_mass_(Npax,U_Mfurn)

function Mop = operator_item_mass_(RA,Npax,U_Mop)

function MWE = manu_weight_empty_(Mfus,Mwing,Mht,Mvt,Mgear,Mprop,Msys,...

Mfurn,U_MWE)

function OWE = ope_weight_empty_(MWE,Mop)

function LDW = landing_weight_(MTOW,Fuel)

function Wpax = one_pax_weight_(U_Pax_nom)

function Wpax = max_pax_weight_(U_Pax_max)

function PL = Payload_(Npax,Wpax)

function Fuel_total = Total_Fuel_(Fuel,Fuel_div)

function TOW = take_off_weight_(Fuel,PL,OWE)

function Payload = mission_payload_(TOW,Fuel_total,OWE)

function ZFW = Zero_Fuel_Weight_(PL,OWE)

function MLW = Max_Landing_Weight_(MZFW,U_MLW)

function mass = mean_cruise_mass_(MTOW,Fuel)

function [mass_ratio] = mass_ratio_(mass,ratio)

function PLeff = Payload_effective_(PLnom,PLmax,KPL) ;

A.1.3.6 Mission Model functions

function RA = range_(TOW,LDW,Mach,vsnd,g,lod,sfc,U_RA)

function fuel = fuel_(mass,leg,Mach,vsnd,g,lod,sfc)

function time = time_(RA,Mach,vsnd)
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A.1.3.7 Handling Quality Model functions

function [Vht] = tail_volume_factor_(U_Vht)

function [LAht] = tail_lever_arm_(lfus,U_LAht)

function [Vvt] = fin_volume_factor_(U_Vvt)

function [LAvt] = fin_lever_arm_(LAht,U_LAvt)

A.1.3.8 Performance Model functions

function Mach = Mach_from_Vcas_(Pamb,Vcas)

function Vcas = Vcas_from_Mach_(Pamb,Mach)

function Veas = Veas_from_Vtas_(rho,Vtas)

function acc_mach = iso_mach_acc_(dTodZ,Tamb,disa,Mach)

function acc_cas = iso_cas_acc_(dTodZ,Tamb,disa,Mach)

function Mach_stall = Mach_stall_(mass,Aref,czmax_TO,Pamb,g)

function Mach = secured_Mach_(kvs_TO,Mach_stall)

function tofl = tofl_(Fn,Kmto,mass,czmax_TO,rho,ne,Aref,kvs_TO,U_tofl)

function vapp = app_speed_(LDW,czmax_LD,Aref,g,kvs_LD,U_vapp)

function pth = path_iso_cas_(mass,acc_cas,Fn,Kmcl,lod,g,ne,U_path)

function vz = clb_rate_iso_cas_(mass,Mach,acc_cas,Fn,Kmcl,lod,vsnd,g,...

ne,U_vz)

function vz = clb_rate_iso_mach_(mass,Mach,acc_mach,Fn,Kmcl,lod,vsnd,...

g,ne,U_vz)

function kfn = cruise_thrust_(mass,Fn,Kmcr,lod,g,ne,U_kfn)

function sar = cruise_VoC_(mass,sfc,lod,Mach,vsnd,g,U_sc)

function cz = level_flight_(mass,g,Mach,Pamb,Aref)

A.2 USMAC domain-level functions

A.2.1 Model functions

function [dfus,lfus] = geom_fus_(Npax,NpaxFront,Naisle,RV)

function [dnac] = geom_prop_(BPR,FNslst,RV)

function [Aht,LAht,Vht,Avt,LAvt,Vvt,Aref,Lref,ar] = geom_lift_(lfus,...

Awing,span,RV)

function [wAwing,wAht,wAvt,wAfus,wAnac] = wetted_area_(dfus,lfus,dnac,...

ne,Awing,Aht,Avt,RV)

function [Kmto,Kmcl,Kmcr,Ksfc] = engine_(BPR,RV)

function [Kcx0,Kcxi,Kcxc,Kdiv,KczmaxTO,KczmaxLD] = aerodynamic_(Awing,...

span,phi,tuc,ar,RV)

function [MTOW_eff,MLW,MZFW,PL_eff,PL_max,PL_nom,OWE,MWE,Fuel_max,...

Fuel_wing,bkdn] = mass_(MTOW,Fuel_total,KPL,Npax,RA,FNslst,...

ne,dfus,lfus,Awing,span,phi,tuc,Aht,Avt,Lref,RV)
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A.2.2 Operational Performance functions

function [RA_eff,RA_time,LDW,fuel_total,cz_mis,lod_mis,sfc_mis,fuel_div,...

time_div,cz_div,lod_div,sfc_div] = mission_(TOW,Fuel,disa_mis,...

alt_mis,Mach_mis,leg_div,alt_div,Mach_div,BPR,Ksfc,wAwing,wAht,...

wAvt,wAfus,wAnac,lfus,dfus,ar,span,phi,tuc,Lref,Aref,Kcx0,Kcxi,...

Kcxc,Kdiv,RV)

function [Y] = Point_A(Fuel)

function [Y] = Point_B(Fuel)

function [Y] = Point_C(X)

function [vz_clb] = iso_mach_climb_(mass_clb,disa_clb,alt_clb,Mach_clb,...

FNslst,Kmcl,ne,wAwing,wAht,wAvt,wAfus,wAnac,lfus,dfus,ar,span,...

phi,tuc,Lref,Aref,Kcx0,Kcxi,Kcxc,Kdiv,RV)

function [kfn_cth] = cruise_(mass_cth,disa_cth,alt_cth,Mach_cth,FNslst,...

Kmcr,ne,wAwing,wAht,wAvt,wAfus,wAnac,lfus,dfus,ar,span,phi,tuc,...

Lref,Aref,Kcx0,Kcxi,Kcxc,Kdiv,RV)

function [sar_crz,lod_crz,sfc_crz] = VoC_cruise_(mass_crz,disa_crz,...

alt_crz,Mach_crz,BPR,Ksfc,wAwing,wAht,wAvt,wAfus,wAnac,lfus,...

dfus,ar,span,phi,tuc,Lref,Aref,Kcx0,Kcxi,Kcxc,Kdiv,RV)

function [tofl] = take_off_(TOW,disa_to,alt_to,FNslst,Kmto,ne,phi,...

KczmaxTO,Aref,RV)

function [vapp] = approach_speed_(LDW,alt_app,phi,KczmaxLD,Aref,RV)
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Appendix B

Initial optimisation problem
description

B.1 Degrees of freedom

Degrees of freedom of a civil aircraft configuration design are specified in the table B.1. They
define the wing, the engines, the main landing gear and the control surfaces (horizontal and
vertical). Most of them are continuous variables, and the variation intervals are given with
lower and upper bounds. Variables annoted with the symbol * are discrete variables.

Figure B.1: Illustration of current degrees of freedom

B.2 Constraints

Constraints applied to the optimisation problem are mainly coming from the TLARs of
the current study. They are operational or geometrical constraints. There are 21 constraints
described in B.2

B.3 Criterion

The criterion to optimise is described in B.3
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Description Name Lower Current Upper
bound value bound

External wing sweep PHI25 30° 34.4° 36°
Wing reference area SREF 320 359.5 400
Wing half span YEXT 25m 29m 33m
Internal kink spanwise relative position EINT DYN 29% 35% 40%
External kink spanwise relative position EMED DYN 60% 65% 70%
Driver for slat area K CBEC 0.5 0.71 1
Additional fuselage frames NBCAD XCEMP* -2 0 +2
before the wing
Number of frames corresponding to NBCAD CCEMP* 8 10 12
the wing box length
Wing root tuc ratio ER EMP 12% 13.5% 15%
Internal kink tuc ratio ER INT 8% 9.1% 10%
External kink tuc ratio ER MED 8% 9.2% 10%
Wing tip tuc ratio ER EXT 8% 9.2% 10%
Engine rubbering factor K FNC 0.8 0.85 0.9
RTO throttle push K RTO 0.8 0.92 1
Engine spanwise relative position EYM INT DYN 30% 38% 40%
Main landing gear spanwise position YTPR 4m 5m 10m

Table B.1: Degrees of freedom

Figure B.2: Illustration of current constraints

Figure B.3: Illustration of current value of the project criterion
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Description Name Current Constraint
value

Cabine length ratio KLC25 51.5 KLC25
at 25% of MAC (%) =51.5
Time to climb for TM CLIMB 29 TM CLIMB
nominal mission (min) ≤29
Climb ceiling ALTP PMM 37130 ALTP PMM

(ft) ≥ 35000
Buffeting ceiling ALTP PBUF 43322 ALTP BUF

(ft) ≥ 35000
Cruise ceiling ALTP PCR 37251 ALTP PCR

(ft) ≥ 35000
Approach calibrated VCAS VAPP 140.2 VCAS
air speed (kt) ≤ 140.2
Maximal pitch TETA MAX 11.56 TETA MAX
on ground (°) ≥ 11.56
Regulatory take-off LP DEC RG A 2773 LP DEC RG A
field length (m) 2750≤ · ≤ 2800
Fuel margin MARGE FUEL 1.6151 MARGE FUEL

() ≥ 1.6151
Ground clearance GARDE SOL 0.8351 GARDE SOL

(m) ≥ 0.8351
Air inlet to JEU EA PORTE 2.5315 JEU EA PORTE
door clearance (m) ≥ 2
Maximum bank angle BANK ANGLE 7.9244 BANK ANGLE
on ground (°) ≥ 6
Slat to wing SVBA SREF 8.0437 SVBA SREF
area ratio (%) 8%≤ · ≤9%
Aileron to wing SAILRN SREF 3.1509 SAILRN SREF
area ratio (%) 3%≤ · ≤4%
Rear spar clearance for PINTLE MARGIN 1.4541 PINTLE MARGIN
landing gear integration (m) ≥0
Slat to wing chord ratio CBEC1E CVOIL 12 CBEC1E CVOIL
at internal kink position (%) 12% ≤ · ≤ 14%

Table B.2: Constraints

Description Name Current value Constraint
Direct operating cost DOC AI 50722$ per flight TO MINIMISE

Table B.3: Criterion
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Appendix C

Graphical representations in three
dimensions

Figure C.1: Illustration of the initial population in 3 dimensions



232 Graphical representations in three dimensions

Figure C.2: Illustration of admissible population

Figure C.3: Illustration of frontier of the admissible domain
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Figure C.4: Illustration of the result of the mono-criterion optimisations
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Résumé : La conception d’avions au stade avant-projet consiste à déterminer les princi-
pales caractéristiques d’un avion répondant à un cahier des charges donné. Ces études peuvent
être résumées par des problèmes d’optimisation globale sous contraintes avec typiquement un
millier de paramètres et presque autant de contraintes. Les contraintes expriment la faisabilité
physique ainsi que le cahier des charges à respecter, et les objectifs sont des performances de
l’avion guidées par des études de marché. De plus, le conception d’avions est un problème
d’optimisation multicritère du fait de la présence de fonctions objectifs antagonistes.

L’objectif de cette thèse est d’introduire de nouvelles méthodes mathématiques qui peu-
vent être utiles dans un outil de dimensionnement avant-projet pour résoudre le problème
d’optimisation d’une configuration d’avion. Nous avons contribué à l’amélioration des métho-
des d’optimisation qui sont couramment utilisées au département des Avant-Projets d’Airbus.
En utilisant les algorithmes génétiques, nous avons rendu le processus d’optimisation mono-
critère plus robuste. Ensuite, nous avons introduit des méthodes d’optimisation multicritère
car nous avions plusieurs critères conflictuels à considérer. Comme les temps de calcul sont
devenus importants, nous avons décidé de substituer au modèle d’avion un modèle approché.
Nous avons implémenté les fonctions à base radiale pour approcher les contraintes et les
fonctions objectifs. Enfin, nous avons propagé les incertitudes du modèle pour estimer la
robustesse des résultats de l’optimisation et nous avons proposé un aboutissement possible
de l’intégration de ces techniques : donner aux ingénieurs une perception opérationnelle de
l’espace de définition.
Mots-clés : Conception d’avions, optimisation multidisciplinaire et multicritère, approxi-
mation par un modèle de substitution, propagation d’incertitudes, aide à la décision.

Abstract: Aircraft sizing studies consist in determining the main characteristics of an
aircraft starting from a set of requirements. These studies can be summarized as global cons-
trained optimisation problems with typically one thousand parameters and almost as many
constraints. The constraints express physical feasibility and the requirements to be satisfied,
and the objectives are market driven performances of the aircraft. Moreover, aircraft sizing
is typically a multicriteria optimisation problem because of some competing objectives.

The aim of this thesis is to introduce new mathematical methods that can be useful
in a future project sizing tool to treat the aircraft configuration optimisation problem. We
contributed in improving the optimisation methods that are currently used in the Airbus
Future Project Office. By using genetic algorithms, we made the mono-criterion optimisation
process more robust. Then, we introduced multicriteria optimisation methods because we
had several conflicting criteria to consider. As the calculation times became important, we
decided to substitute the aircraft model by a surrogate model. We implemented radial basis
functions to approximate the constraint and the objective functions. Finally, we propagated
the model uncertainty to assess the robustness of the optimisation results and we proposed a
possible outcome of the integration of these different techniques in order to yield the engineers
a global and operational perception of the design space.
Keywords: Aircraft sizing, multidisciplinary and multicriteria optimisation, surrogate
model approximation, uncertainty propagation, help in decision making.
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