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Monique Thonnat Rapporteur



2



Contents

Acknowledgments 9

Introduction 13

I Shape Optimization 17

1 Shapes and Shape Metrics 19
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Characteristic function and distance function to a shape . . . 20
1.3 Shape metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Similarity measure based on characteristic function . . 23
1.3.2 Similarity measure based on distance functions . . . . . 25

1.4 Differentiable approximation of these similarity measures . . . 27
1.5 What can be done with only shape metrics: Shape Statistics . 30

2 Variational shape warping 33
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Gâteaux derivatives . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 Shape gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4 Actual computation of shape gradients and tangential velocity

field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.5 Numerical experiments . . . . . . . . . . . . . . . . . . . . . . 40

2.5.1 Computing the gradient of the approximation to the
Hausdorff distance . . . . . . . . . . . . . . . . . . . . 40

2.5.2 Computation of the gradient of the approximation to
the W 1,2 norm . . . . . . . . . . . . . . . . . . . . . . . 41

2.5.3 Direct minimization of the W 1,2 norm . . . . . . . . . . 42
2.5.4 Examples of warping . . . . . . . . . . . . . . . . . . . 42
2.5.5 Definition and examples of the mean of n shapes . . . . 44

3



4 CONTENTS

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3 Generalized gradient: priors on minimization flows 49

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Minimization and inner product . . . . . . . . . . . . . . . . . 51

3.3 New Inner Products and New Flows . . . . . . . . . . . . . . . 53

3.3.1 Designing new inner products . . . . . . . . . . . . . . 54

3.3.2 Designing new minimizing flows . . . . . . . . . . . . . 54

3.3.3 Adding an orthogonal term . . . . . . . . . . . . . . . 55

3.4 Some Spatially Coherent Minimizing Flows . . . . . . . . . . . 56

3.4.1 Motion decomposition . . . . . . . . . . . . . . . . . . 56

3.4.2 The Sobolev H1 gradient flow . . . . . . . . . . . . . . 60

3.4.3 Intrinsic Gaussian smoothing . . . . . . . . . . . . . . 62

3.5 Numerical Experiments With The New Inner Products . . . . 63

3.5.1 Shape warping . . . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 A generalized gradient method . . . . . . . . . . . . . . . . . . 67

3.6.1 The gradient seen as the result of a minimization problem 67

3.6.2 Generalization of the regularizing term . . . . . . . . . 69

3.6.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.6.4 Computing the extended gradient . . . . . . . . . . . . 72

3.6.5 Application: the semi-local rigidification . . . . . . . . 73

3.6.6 Numerical Example . . . . . . . . . . . . . . . . . . . . 75

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Reconciling landmarks and level sets 81

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Landmarks-guided warping . . . . . . . . . . . . . . . . . . . . 84

4.2.1 A naive definition . . . . . . . . . . . . . . . . . . . . . 84

4.2.2 A correct definition . . . . . . . . . . . . . . . . . . . . 85

4.2.3 Adapted gradient . . . . . . . . . . . . . . . . . . . . . 86

4.2.4 Matching . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Level set implementation . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 The original level set method . . . . . . . . . . . . . . 88

4.3.2 H1 gradient . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.3 Point Correspondences . . . . . . . . . . . . . . . . . . 89

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



CONTENTS 5

II Facial expression and epilepsy 95

5 The context 97

5.1 General presentation of epilepsy and epileptic seizures . . . . . 97

5.1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Epidemiology . . . . . . . . . . . . . . . . . . . . . . . 98

5.1.3 The causes of epilepsy . . . . . . . . . . . . . . . . . . 98

5.1.4 Why and how to treat epilepsy ? . . . . . . . . . . . . 99

5.2 Our specific problem . . . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Clinical tools . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Semiology of the epileptic seizures . . . . . . . . . . . . 103

5.2.3 Facial expressions during epileptic seizures . . . . . . . 103

6 Facial expression analysis: 3D model fitting 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 The 3D face Model . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2.1 Candide face model . . . . . . . . . . . . . . . . . . . . 106

6.2.2 The Reference Texture . . . . . . . . . . . . . . . . . . 108

6.2.3 The pros and the cons of our model . . . . . . . . . . . 111

6.3 Model Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.1 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Energy minimization . . . . . . . . . . . . . . . . . . . 113

6.3.3 Occlusions . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.4 Facial Expression . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 Electro-clinical correlation 125

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.2 Dynamic facial expression . . . . . . . . . . . . . . . . . . . . 126

7.3 Stereoelectroencephalography signal processing . . . . . . . . . 129

7.4 Correlation between facial parameters and SEEG signal . . . . 131

7.5 Application to a first case . . . . . . . . . . . . . . . . . . . . 133

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135



6 CONTENTS

General conclusion 143

Appendix 149

List of figures 155

Bibliography 161



Remerciements

7





Acknowledgments 9
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DEA ce qui a constitué ma première expérience de recherche.
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Initially motivated by its applications to robotics, computer vision aimed
to equip machines with an artificial visual system imitating as well as possi-
ble the human one. In particular it seemed to be essential to obtain three-
dimensional informations on objects surrounding the robot, in order to avoid
obstacles, recognize them and grab them. Classic robotic sensors was too
slow or not precise enough and therefore only methods inspired by biological
vision seemed to be appropriate. One typical example have been stereovi-
sion methods which retrieve three-dimensional informations from multiple
cameras.

Nowadays, principal applications of computer vision are not only robotic:
shape identification, remote detection, medical image processing, industrial
inspection, satellite images, etc. Among these topics, shape recognition hold
an important place and has many applications. For example in the medi-
cal domain when one wants to detect and locate tumors in an X-ray image
of a brain or reconstruct three-dimensional shapes from MRI images, but
also in other domain such as video surveillance for automatic early drowning
detection at pool. The studied objects are then generally represented by
their contours and the segmentation task consists in finding, in an image, a
shape that partition the domain into disjoint sub-regions of interest. Usually
this problem is resolved by defining an energy which measures for a given
partition of the image, the ”homogeneity” of the different parts. This ”ho-
mogeneity” criterion is defined according to each specific application. It is
often based on the intensity of the image inside each region (e.g. through
histograms or more complex measures such as texture) and on the shape of
the contour defining the partition. In character recognition for example the
shape of the contour is the most relevant information to build a measure
of quality of the segmentation. Once this energy is defined, the problem of
segmenting the image can be boiled down to the problem of minimizing an
energy functional with respect to the shape that partitions the image.

The first part of this work focuses on the theoretical point of view of
modeling prior knowledge about shapes. We will start in chapter 1, shapes
and shape metrics, by clarifying what we mean by shapes and defining sev-
eral shape metrics. Understanding shape and its basic empirical statistics is
important both in recognition and analysis, with applications ranging from
medicine to security to consumer photography. Constructing metrics on the
set of shapes is a first step in this direction since it provides a way to measure
the similarity between two shapes. It also enables to define the variational
shape warping problem, chapter 2. Continuously deforming one shape Γ1

into another Γ2 is one of the keys leading to statistical shape analysis. It
offers more than a way to compare shapes, but also to compute their mean,
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to analyze their variability, and eventually to obtain correspondence between
them. This problem is closely related to a question of optimization on shapes,
since we want to minimize a given distance between the two shapes Γ1 and
Γ2 by evolving Γ1. Once the gradient of a shape energy is defined, this can
be done by a gradient descent scheme. A great advantage of the gradient
descent method is that the energy functional to minimize can explicitly deal
with criteria dedicated to the contour itself. For instance the contour could
be asked to be attracted by regions of high intensity gradients in the image
intensity, which means that the contour will be attracted by areas of big het-
erogeneity in the image, at the boundary between two homogeneous regions.
But, even more interestingly, criteria concerning the shape of the object can
easily be defined. For instance its smoothness is easily measured by the cur-
vature of the boundary. And adding a restriction on the boundary (e.g. it
should be smooth) can be seen as a prior on the shape of the object. A new
way of adding prior knowledge in the shape optimization process will be pre-
sented in chapter 3, generalized gradient: priors on minimization flows. In
fact, having some control on the form of the deformation vector, the gradient,
also means controlling the kind of path that will be followed by the gradient
descent scheme. We will first demonstrate that this control on the gradient
can be assured by the choice of the inner product structure ruling the space
of deformations. Then we will present a generalization of the gradient notion
that can take into account priors on the deformation field form even without
deriving from an inner product. Imposing constraints on the gradient can
be useful in many case. This may be a way to avoid some unwanted local
minima but also to insure that the family of shapes resulting from the mini-
mization verifies some properties (e.g. spatial coherence during the evolution
by favoring rigid transformation). Since it changes the gradient, it can even
be used to transform a unusable deformation field in a better one. In chap-
ter 4, reconciling landmarks and level sets, we will present an extension of the
very well-known level set method which takes advantage of this property and
enables the introduction of correspondences between points on the shapes in
the energy functional. The warping is then guided by these landmarks points.

The second part focuses on the application side of our work. Interactions
between computer vision and medicine have been increasing in the last years.
A vast majority of theses interactions consists in medical image analysis: for
a medical imaging modality (e.g. X-ray, PET: positron emission tomog-
raphy, MRI: magnetic resonance imaging) image processing techniques are
applied to help or automate diagnosis. The topic of our work is exploring a
new aspect of the possible interactions between these two different scientific
domains. We developed a method for facial expression analysis under uncon-
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trolled imaging conditions and used it in the concrete case of the study of
epilepsy seizures. We will first briefly present in chapter 5, the context of this
problematic. Epilepsy is among the most common serious brain disorders,
can occur at all ages, and is characterized by a variety of presentations and
causes. It roughly affects about 1% of the world population. In a large major-
ity of cases, seizures will be controlled by drugs, but for the remaining ones, a
surgical treatment can be envisaged if the epileptic seizure is proved to come
from a relatively localized area in the brain. This area could then possibly
be removed by the surgical operation if this resection will not result in unac-
ceptable problems with memory, vision, language or movement. In addition
to the measurement of electrical activity produced by the brain during the
seizure, the semiology (the study of signs and symptoms) of the epileptic
seizures is therefore important for the medical team as it gives indications
on the localization of a possible epileptogenic area. Among all the signs and
symptoms studied during the seizure, the patient’s facial expression seems to
be a promising source of informations and a quantification of these expres-
sions appeared to be a potentially useful tool for the medical team. That is
why we developed a method for fitting a three-dimensional face model under
uncontrolled imaging conditions (chapter 6, facial expression analysis: 3D
model fitting). Although this work is not a direct application of the meth-
ods presented in the first part, we will see that it can also be written as
an optimization problem since we want to find the position of a shape (the
three-dimensional face model) that minimize a specific energy. This method
alone is already a useful tool for studying the semiology of facial expression
that may occur during epileptic seizures, since it produces a quantification
of the facial expression: one can for example look into the numerical opening
of the eyes or of the mouth and its variation during the seizure. Nevertheless
what would be very interesting is to find a way to interrelate electrical activ-
ity produced by the brain during the seizure and the facial expressions. In
chapter 7, electro-clinical correlation, we present a first step in this direction.
During pre-surgical exploration, patients are videotaped at the same time
as their electroencephalography or stereoelectroencephalography is recorded.
The anatomo-electro-clinical correlation is investigated: the ”anatomic” in-
formation comes from the knowledge of the electrodes localization on or in
the brain , the ”electrical” data are given by the electroencephalography
(EEG) or stereoelectroencephalography (SEEG) recordings and the ”clini-
cal” information is the object of semiology and is obtained by interrogating
the patient and observing the video. This close observation of clinical fea-
tures (including the order in which they occured) and their relation to the
region involved in the epileptic discharge, allows a temporal-spatial profile
of the seizure’s origin and propagation patterns to be established and the



16 Introduction

corresponding anatomical structures to be defined, thus aiding the decision
regarding surgical decision for each patient’s particular epilepsy. Our work
is an answer to the need of quantification of the electro-clinical correlation.

To conclude, let us note that a part of the material herein has led to
several publications: chapters 1 and 2 comes partly from a chapter Approx-
imations of shape metrics and application to shape warping and empirical
shape statistics in the book Statistics and Analysis of Shapes, H. Krim &
A. Yezzi editors, 2006, with Guillaume Charpiat, Olivier Faugeras and Re-
naud Keriven [23] and an article Distance-based Shape statistics [25] with the
same authors in the proceedings of the International Conference on Acous-
tics, Speech, and Signal Processing, special session Statistical Inferences on
Nonlinear Manifolds with Applications in Signal and Image Processing held
in 2006. Most of chapter 3 comes from the article Generalized gradients :
priors on minimization flows [26] with Guillaume Charpiat, Jean-Philippe
Pons, Renaud Keriven and Olivier Faugeras, published in the International
Journal of Computer Vision, 2007. The work presented in chapter 4 has
been published in the article Reconciling landmarks and level sets [93] with
Renaud Keriven and Olivier Faugeras in the proceedings of the International
Conference on Pattern Recognition held in 2006. And finally, the chapter 6 is
adapted from an article 3D model fitting for facial expression analysis under
uncontrolled imaging conditions [94] in the proceedings of the International
Conference on Pattern Recognition that will be held in December 2008.

Almost all our implementations have been done in C++, using libraries
developed by the Certis Team, CertisLibs 1, specially one for the Level-Set
methods and one for graphics. In chapter 6, we also used a C-code imple-
menting a quasi-Newton optimization method with non-linear constraints
developed by Andre Tits’ research group [84]. And in chapter 7, the treat-
ment of the SEEG signal is implemented under Matlab, using a version of the
”analytic wavelet transform” from the WaveLab toolbox (J. Buckheit and D.
Donoho [43]) modified by C. Benar and M. Clerc.

1http://certis.enpc.fr/~keriven/CertisLibs/

http://certis.enpc.fr/~keriven/CertisLibs/
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Chapter 1

Shapes and Shape Metrics

In order to compare shapes or to deform a shape into an other one, a way to
quantify the similarity between two shapes must be defined. In this chapter,
we present several shapes metrics. These metrics have been introduced and
studied by Guillaume Charpiat et al. in [22]. Here we principally review
their work.

1.1 Introduction

Understanding shape and its basic empirical statistics is important both in
recognition and analysis, with applications ranging from medicine to security
to consumer photography. The basic metrics and statistics of static shapes
have been the subject of numerous fundamental studies in recent years [15,
23, 45, 99, 127, 135].

There exist various definitions of the term shape in the literature. In 1977
David Kendall [75] for example defines shape as all the geometrical informa-
tion that remains when location, scale and rotational effects are filtered out
from a collection of point coordinates. Most research on statistical shape
modeling has been devoted to explicit contour representations: objects are
represented by a finite number of salient points or landmarks. We refer to the
book by Ian Dryden and Kanti Mardia (1998) [45] for an overview. Work-
ing with explicit contour representations, shape metrics are naturally been
defined based on this representation. One of the most used shape distance
based on discrete representation of the shapes is the Procrustes distance
([69]). Several work have been done by deriving some shape metrics from
this distance and it is still inspiring recent work (e.g. [76, 64, 52, 82, 83]).
We can also cite works based on the Riemannian metric (see for example
[118, 5, 96, 116])

19



20 Shapes and Shape Metrics

Our work deals explicitly with curves as such, independently of their sam-
pling or even parametrization. In fact, our work bears more resemblance with
that of several other authors. Ulf Grenander et al. [65, 67, 66] pioneered the
concept of considering shapes as points on an infinite dimensional manifold,
representing shape deformations as the action of Lie groups on this mani-
fold and computing statistics on the space of diffeomorphisms. Some more
recent advances were done by Alain Trouvé, Laurent Younes and colleagues
[147, 148, 138, 99]. For infinite dimensional groups such as diffeomorphisms
[47, 137] which smoothly change the objects shapes previous authors have
been dependent upon the choice of parameterizations and origins of coordi-
nates. For them, warping a shape onto another requires the construction of
families of diffeomorphisms that use these parameterizations.

Our approach, based upon the use of distance functions, does not require
the arbitrary choice of parameterizations and origins. This is already nice
in two dimensions but becomes even nicer in three dimensions and higher
where finding parameterizations and tracking origins of coordinates can be a
real problem: this is not required in our case. Another piece of related work
is the one from Anthony Yezzi and Stefano Soatto [145] who tackles the
problem of jointly extracting and characterizing the motion of a shape and
its deformation. In order to do this they find inspiration in the above work on
the use of diffeomorphisms and propose the use of a distance between shapes
(based on the set-symmetric difference ). This distance poses a number of
problems which have been addressed in [23]. Therefore we will describe others
distances which we believe to be more suitable.

1.2 Characteristic function and distance func-

tion to a shape

In our work we use a purely geometric definition of a shape. We define a shape
Γ to be a smooth manifold of dimension k embedded in Rn, for example a
planar curve or a surface in the space R3. Since we are driven by image
applications we also assume that all our shapes are contained in a hold-all
regular open bounded subset of Rn which we denote by Ω. We denote by S
the set of shapes. We refer the reader to [37] and [23] for a more rigorous
and complete analysis of the set of shapes.

Since, as mentioned in the introduction, we want to be independent of
any particular parametrization of the shape, we use two main ingredients,
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the characteristic function of a shape Γ:

χΓ : Ω → {0, 1}

x 7→
{

1 if x ∈ Γ
0 if x /∈ Γ

(1.1)

and the distance function to the shape Γ :

dΓ : Ω → R+

x 7→ inf
y∈Γ

d(x,y) (1.2)

where d(·, ·) a distance on Rn. Usually d(·, ·) is chosen to be the euclidean
distance on Rn. Fig. 1.1 illustrates the definitions of dΓ.

x

Γ

dΓ(x)

y

Figure 1.1: Distance between the point x and the shape Γ.

We also define the signed distance function to a shape Γ, denoted by d̃Γ.
d̃Γ is simply equal to dΓ outside Γ and equal to −dΓ inside Γ:

d̃Γ : Ω → R

x 7→
{
−dΓ(x) if x is inside Γ
dΓ(x) otherwise

(1.3)

Fig. 1.2 shows a graphic representation of the signed distance to a 2D-
shape (in that case, the shape is the Unit Circle). This function is often
used as a shape representation in the framework of the level set method (see
chapter 4 and [39, 108]). Shape metrics based on signed distance function
(or distance function) are then very convenient to compute, as we will see in
section 1.3.2. Nevertheless, let us stress the fact that the methods presented
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in the following chapters will be independent of the choice of the shape rep-
resentation. We did introduce above the signed distance function to a shape
but only in order to use it in the definition of several shape metrics (see the
next section). As explained earlier, using this function make the choice of
the level set method for representing the shapes the most convenient one and
that is why we used this method for our experiments. But, again, any shape
representation, such as explicit representation (a list of points), parametric
representation or implicit representation, will be suitable for our methods.

Figure 1.2: Graphic representation of the signed distance to a 2D-shape (the
Unit Circle) .

Let us now state some useful simple properties of the three functions we
introduced:

• The integral of the characteristic function is equal to the measure
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(length, area)of Γ, that we note |Γ| :

|Γ| =
∫

Ω

χΓ(x) dx

Note that this integral does not change if we add to or subtract from Γ
a measurable set of Lebesgue measure 0 (also called a negligible set).

• the distance functions are continuous, in fact Lipschitz continuous with
a Lipschitz constant equal to 1 [36, 38]:

|dΓ(x)− dΓ(y)| = | inf
z∈Γ

d(x, z)− inf
z∈Γ

d(y, z)|

≤ | inf
z∈Γ

(d(x,y) + d(y, z))− inf
z∈Γ

d(y, z)|

≤ |d(x,y) + inf
z∈Γ

d(y, z)− inf
z∈Γ

d(y, z)|

and finally:

|dΓ(x)− dΓ(y)| ≤ |x− y|, ∀(x,y) ∈ Ω2

• Thanks to the Rademacher theorem [51], this implies that dΓ is differ-
entiable almost everywhere in Ω, i.e. outside of a negligible set, and
that the magnitude of its gradient, where it exists, is less than or equal
to 1:

|∇dΓ(x)| ≤ 1, almost everywhere

1.3 Shape metrics

1.3.1 Similarity measure based on characteristic func-
tion

The similarity measure we are about to define is based upon the characteristic
functions of the two shapes we want to compare. We denote by X(Ω) the set
of characteristic functions of measurable subsets of Ω. Given two such sets
Γ1 and Γ2, we define their distance:

ρ(Γ1,Γ2) = ‖χΓ1 − χΓ2‖L2(Ω)

=

(∫
Ω

(χΓ1 (x)− χΓ2 (x))2dx

) 1
2

Since the integral does not change if we modify the values of χΓ1 or χΓ1 over
negligible sets, we immediately notice that this is not a distance between
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the two shapes Γ1 and Γ2 but between their equivalence classes [Γ1]m and
[Γ1]m of measurable sets. Given a measurable subset Γ of Ω, we define its
equivalence class [Γ]m as [Γ]m = {Γ′ | Γ′ is measurable and Γ∆Γ′ is negligible
}, where Γ∆Γ′ is the symmetric difference (see Fig. 1.3):

Γ∆Γ′ = {x ∈ Ω | x ∈ Γ,x /∈ Γ′ or x ∈ Γ′,x /∈ Γ}

Figure 1.3: The hachured area is the symmetric difference of this two shapes

We have the following property:

χΓ∆Γ′(x) = χΓ(x)(1− χΓ′(x)) + χΓ′(x)(1− χΓ(x))

= χΓ(x) + χΓ′(x)− 2χΓ(x)χΓ′(x)

= (χΓ (x)− χΓ′ (x))2

and finally we can write:

ρ(Γ1,Γ2) =

(∫
Ω

χΓ1∆Γ2(x)dx

) 1
2

and, using the first on the property mentioned above:

ρ(Γ1,Γ2) =
√
|Γ1∆Γ2|

This function has been used as a similarity measure in the work of Soatto
and Yezzi [145]. However, in [22], authors stressed that the set of character-
istic function does not satisfy important properties such as compactness and
therefore they introduce different similarity measure.
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1.3.2 Similarity measure based on distance functions

(a) dL2 and dW 1,2

Some other distances are based on signed distance functions. As said pre-
viously the signed distance function to a shape can be seen as an implicit
representation of the shape. These functions belong to the Sobolev space
W 1,2(Ω) of square integrable functions with square integrable derivatives.
As a matter of fact the gradient of a distance function is known to be of
magnitude equal to 1 except on a subset of measure 0 of Ω. We can then
define two metrics based on signed distance functions:

Definition 1. The L2 distance, noted dL2(Γ1,Γ2), between two shapes Γ1 and
Γ2 is defined as the ‖.‖L2 norm between their signed distance function:

dL2(Γ1,Γ2)2 =
∥∥∥d̃Γ1−d̃Γ2

∥∥∥2

L2(Ω,R)

=

(∫
Ω

(
d̃Γ1 (x)− d̃Γ2 (x)

)2

dx

) 1
2

Definition 2. The W 1,2 distance, noted dW 1,2(Γ1,Γ2), between two shapes Γ1

and Γ2 is defined as the Sobolev norm, ‖.‖W 1,2 between their signed distance
function:

dW 1,2(Γ1,Γ2)2 =
∥∥∥d̃Γ1−d̃Γ2

∥∥∥2

W 1,2(Ω,R)

=
∥∥∥d̃Γ1−d̃Γ2

∥∥∥2

L2(Ω,R)
+
∥∥∥∇d̃Γ1−∇d̃Γ2

∥∥∥2

L2(Ω,Rn)

=

(∫
Ω

(
d̃Γ1 (x)− d̃Γ2 (x)

)2

dx

) 1
2

+

(∫
Ω

∥∥∥∇d̃Γ1 (x)−∇d̃Γ2 (x)
∥∥∥2

dx

) 1
2

(b) Hausdorff distance, dH

One of the broadly used distance between shapes is the Hausdorff distance:

Definition 3. The Hausdorff distance between two shapes Γ1 and Γ2 is noted
dH(Γ1,Γ2) and defined by:

dH(Γ1,Γ2) = max

{
sup
x∈Γ1

dΓ2(x), sup
x∈Γ2

dΓ1(x)

}
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The Hausdorff distance is computing by finding the point of the shape Γ1

which is the farthest of the shape Γ2 and the point of the shape Γ2 which is
the farthest of the shape Γ1, and taking the maximum of these two distances.
Fig. 1.4 illustrates the definition of the Hausdorff distance. The Hausdorff
distance is a metric on the set of shapes. It means that it verifies the following
properties:

1. ∀(Γ1,Γ2,Γ3) ∈ S3, dH(Γ1,Γ2) ≤ dH(Γ1,Γ3) + dH(Γ3,Γ2)

2. ∀(Γ1,Γ2) ∈ S2, dH(Γ1,Γ2) = 0⇔ Γ1 = Γ2

This distance is one of the most known distance used when there is a need

sup
x∈Γ1

dΓ2
(x) = dH(Γ1,Γ2)

Γ2

Γ1

sup
x∈Γ2

dΓ1
(x)

Figure 1.4: Hausdorff Distance between the shapes Γ1 and Γ2.

to compare two shapes. Let us also mention the Gromov-Hausdorff distance
which measures how far two compact metric spaces are from being isometric.
If Γ1 and Γ2 are two compact metric spaces, then dGH(Γ1,Γ2) is defined to be
the infimum of all numbers dH(f(Γ1), g(Γ2)) for all metric spaces M and all
isometric embeddings f : Γ1 7→M and g : Γ2 7→M (the isometric embedding
is understood in the global sense, i.e it must preserve all distances). We will
not study in more details this distance but we mention that recently F.Memoli
studied the use of Gromov-Hausdorff Distances for Shape Comparison and
refer the reader to [100, 101].

Although dH , dL2 and dW 1,2 can be shown to be equivalent (see [23]),we
will see later that the choice of one or the other is not neutral with respect
to warping and to computational complexity.
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1.4 Differentiable approximation of these sim-

ilarity measures

In chapter 2 we will need to take the derivative of the distances with respect
to the shapes. Since the Hausdorff distance is not differentiable because it
involves infima and suprema, we propose a family of smooth approximations
which are continuous with respect to the Hausdorff topology. These family of
approximations have been introduced by Charpiat et al. in [22] and extended
by us to the 3D-case in [23].

Authors of [22] build a series of smooth approximations of the Hausdorff
distance dH(Γ1,Γ2) of two shapes Γ1 and Γ2. The definition of the Hausdorff
distance (Def. 3) involves the distance functions to the two shapes. We first
show how to approximate those two functions.

First we will introduce a notation. In the following we will have to inte-
grate several functions on shapes.

Definition 4. For f : Γ 7→ Rn and a shape Γ we denoted the integral of f
on Γ (also called the curvilinear integral) by:∫

Γ

f(x) dΓ(x)

where dΓ(x) stands for the area element of the contour at the point x ∈ Γ
such that the integral over Γ is intrinsic and does not depend on the parame-
trization. It means that for any parametrization PΓ of Γ:

PΓ : [0, 1] ⊂ Rk → Γ ⊂ Rn

σ 7→ PΓ(σ)

we have : ∫
Γ

f(x)dΓ(x) =

∫ 1

0

f (PΓ(σ)) |P ′Γ(σ)|dσ

Let us now focus on dΓ1 : Γ2 7→ R+. Since dΓ1 is Lipschitz continuous on
the bounded set Ω it is integrable on the compact set Γ2 and we have [121,
Chapter 3, problem 4]:

lim
β→∞

(
1

|Γ2|

∫
Γ2

(dΓ1(x))β dΓ2(x)

) 1
β

= sup
x∈Γ2

dΓ1(x) (1.4)

where |Γ2| is the length of Γ2: |Γ2| =
∫

Γ2
dΓ2(x) .
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Moreover the function R+ 7→ R+ defined by β →
(

1
|Γ2|

∫
Γ2

(dΓ1(x))β dΓ2(x)
) 1
β

is monotonously increasing [121, Chapter 3, problem 5]. Similar properties
hold obviously for dΓ2 .

However the definition of dΓ1 involves itself an infimum, since we have
dΓ1(x) = infy∈Γ1 d(x,y). Then we need to build an approximation also for
dΓ1 . Let us consider a continuous strictly decreasing function ϕ : R+ 7→ R+∗.
We have, for y ∈ Ω:

sup
x∈Γ2

ϕ
(
d(x,y)

)
= ϕ

(
inf
x∈Γ2

d(x,y)
)

= ϕ
(
dΓ2(y)

)
and therefore:

lim
α→∞

(
1

|Γ2|

∫
Γ2

ϕ
(
d(x,y)

)α
dΓ2(x)

) 1
α

= sup
x∈Γ2

ϕ
(
d(x,y)

)
= ϕ

(
dΓ2(y)

)
Because ϕ is continuous and strictly monotonously decreasing, it is one

to one andϕ−1 is strictly monotonously decreasing and continuous. Then:

dΓ2(y) = lim
α→∞

ϕ−1

((
1

|Γ2|

∫
Γ2

ϕ
(
d(x,y)

)α
dΓ2(x)

) 1
α

)
(1.5)

The definition of the Hausdorff distance (Def. 3) involves a last infimum:
the discrete maximum between the two sup. We will use the following rela-
tion:

lim
γ→∞

(aγ1 + aγ2)
1
γ = max(a1, a2) (1.6)

Using the three previous relation (1.4, 1.5, 1.6) and choosing a strictly
decreasing function for ϕ (such as ϕ(x) = 1

x+ε
, x > 0, ε > 0), we can de-

fine a family of approximations of the Hausdorff distance for each triplet
(α, β, γ) ∈ R+3

. For the sake of simplicity, we will first introduce a notation.
Let Γ be a shape and f : Γ 7→ Rn an integrable function on Γ. We denote by
bfcΓ the average of f on Γ:

bfcΓ =
1

|Γ|

∫
Γ

f(x)dΓ(x)

and by bfcϕΓ the ϕ-average of f on Γ for f positive integrable function and
for any continuous strictly monotonous (hence one to one) function ϕ : R+ 7→
R+:

bfcϕΓ = ϕ−1 (bϕ ◦ fcΓ) = ϕ−1

(
1

|Γ|

∫
Γ

ϕ(f(x))dΓ(x)

)
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Therefore equation 1.4 can be rewritten as:

sup
x∈Γ2

dΓ1(x) = lim
β→∞

bdΓ1c
pβ
Γ2

with pβ : r ∈ R+ 7→ rβ ∈ R+. And equation 1.5 as:

dΓ2(y) = lim
α→∞

bd(x, ·)cϕαΓ2

with ϕα : r ∈ R+ 7→ ϕ(r)α ∈ R+.
And finally, by extending this notation to the discrete case:

ba1, · · · , ancϕ = ϕ−1

(
1

n

n∑
i=1

ϕ(ai)

)

we obtain the following property:

dH(Γ1,Γ2) = lim
α,β,γ→∞

⌊⌊
bd(·, ·)cϕαΓ2

⌋pβ
Γ1
,
⌊
bd(·, ·)cϕαΓ1

⌋pβ
Γ2

⌋pγ
This naturally yields to an approximation of the Hausdorff distance:

Definition 5. For a strictly decreasing function ϕ and a triplet (α, β, γ) ∈ R+3
,

we will note:

ρϕ,α,β,γH (Γ1,Γ2) =
⌊⌊
bd(·, ·)cϕαΓ2

⌋pβ
Γ1
,
⌊
bd(·, ·)cϕαΓ1

⌋pβ
Γ2

⌋pγ
We refer the reader to [23] for a more precise study of this family of

function and its properties.
By using equation 1.5, one can also immediately define families of approx-

imations for the L2 and W 1,2 distances, replacing in their definition (Def. 1
and Def. 2) the signed distance functions by their approximations:

Definition 6. For a strictly decreasing function for ϕ and α > 0, we will
note:

ρϕ,αL2 (Γ1,Γ2) =

∥∥∥∥⌊d̃(x, ·)
⌋ϕα

Γ1

−
⌊
d̃(x, ·)

⌋ϕα
Γ2

∥∥∥∥
L2(Ω,R)

ρϕ,αW 1,2(Γ1,Γ2) =

∥∥∥∥⌊d̃(x, ·)
⌋ϕα

Γ1

−
⌊
d̃(x, ·)

⌋ϕα
Γ2

∥∥∥∥
W 1,2(Ω,R)

with, for x ∈ Γ, d̃(x,y) = −d(x,y) if y is inside Γ and d̃(x,y) = d(x,y)
otherwise.
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1.5 What can be done with only shape met-

rics: Shape Statistics

In the following chapters, we will use these shape metrics essentially for shape
warping: a shape energy is derived from a shape metric and the gradient of
this energy with respect to the shape is define and computed in order to
apply a gradient descent scheme. Let us first briefly present in this section
a technique concisely described in [25]. This work and the presented figure
has been done by G.Charpiat.

The objective is to build a low-dimensional map of a set of shapes: it is
possible to build such a map when given only the distances between shapes,
from a purely static geometrical point of view, thanks to the graph Laplacian
technique [7].

Let us denote by (Γ16i6n) a set of n shapes and consider a distance d on
this set, for example one of the distance described above. We fix a positive
integer K and search for the K nearest neighbors N i

16l6K of each shape Γi
for the chosen distance d. We then define a symmetric weight matrix W by

Wi,j = δi,j e−
d(Γi,Γj)2

2σ2

where

δi,j =

{
1 if i ∈ N j or j ∈ N i

0 otherwise

and we have chosen for σ the mean distance between neighbors:

σ =

∑
i,j d(Γi,Γj) δi,j∑

i,j δi,j
.

Then, let us consider the symmetric negative semi-definite matrix L = W−D
where Di,j =

∑
i Wi,j δi,j : it is a discrete approximation of the Laplacian

operator. Thus, as explained in [7], its eigenvectors Fk of highest (negative)
non-zero eigenvalues are the best functions from the shapes Γi to R that
could be used as coordinate system of the set of shapes. Consequently, we
obtain a natural map in Rm where each shape Γi is represented by a dot with
coordinates (F16k6m(Γi)). Let us try this approach on an artificial dataset.
We build a set of rectangles with same center and width but different lengths
and orientations, so there are two natural parameters we would expect the
algorithm to find. Rectangles are randomly chosen such that the distribution
of their corners is the uniform law in the authorized area (orientation between
−π

6
and +π

6
, and length between 2 and 4 times the width). Results vary
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Figure 1.5: Map from the graph Laplacian method for a set of rectangles
whose length and orientation have been chosen randomly (K = 15).

depending on the distribution density and the value of K: the higher the
density, the better the results. Fig. 1.5 has been computed for 700 rectangles.

Let us now study the more complicated case of some different classes in
a same connected component. We consider a set of 111 fish from the same
database as before. The resulting map for the two first coordinates (see
Fig. 1.6) shows some clusters of fish families.
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Figure 1.6: Two first coordinates for a set of 111 fish from different classes.
The elements from each family are got together into clusters (K = 25).



Chapter 2

Variational shape warping

This chapter is dedicated to deforming a shape into another one using the
minimization of the distance between them with respect to the shape in a
gradient descent framework. The differentiation of an energy with respect
to a curve is introduced and applied to the different distances introduced in
chapter 1. Results of warping are shown.

Publications related to this chapter: Approximations of shape met-
rics and application to shape warping and empirical shape statistics [23] in
the book Statistics and Analysis of Shapes, H. Krim & A. Yezzi editors,
2006, with Guillaume Charpiat, Olivier Faugeras and Renaud Keriven and
Distance-based Shape statistics [25] with the same authors in the proceedings
of the International Conference on Acoustics, Speech, and Signal Processing,
special session Statistical Inferences on Nonlinear Manifolds with Applica-
tions in Signal and Image Processing held in 2006.

2.1 Introduction

Continuously deforming one shape Γ1 into another Γ2 is one of the keys
leading to statistical shape analysis [15, 45]. It offers a way to compare
shapes, to compute their mean, to analyze their variability, and eventually
to obtain correspondence between them. Roughly speaking, the warping
problem consists in transforming an initial shape into a target one: the result
is the family of the intermediate shapes. Slightly different, though closely
related, is the matching problem, where a correspondence (sometimes one-
to-one, but not always) between two given shapes has to be established,
regardless to some path from one of the shape into the other one. Indeed,
if a warping process keeps track of the motion of every point of the initial
shape all along the transformation, it induces a matching.

33
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The diffeomorphic matching problem [99, 138] is often cited in that con-
text. Indeed, as far as applications like brain warping [135, 136] are con-
cerned, shapes (surfaces) and images are closely coupled. In that particular
case, considering the images (e.g. MR scans) from which the shapes (e.g. the
cortical surface) are extracted is natural and matching the images themselves
is justified. Depending on the particular method [147, 58, 60, 59], the shapes
are more or less involved in the image matching process, usually as two or
three-dimensional curves or points. However, one should not be confused:
here, the recovered matching is a diffeomorphism of the spaces in which the
shapes are embedded.

Rather different is the original problem of shape warping, motivated by
recognition, tracking or segmentation tasks. Since the beginning, it has been
formulated in purely geometric term of shape distance[37]. In this chapter we
present a variational shape warping method based on an energy minimization.
We assume that we are given a function E : S × S → R+, the energy. This
energy can be thought of as a measure of dissimilarity between two shapes,
such as one of the shape metrics introduced in chapter 1. Warping a shape Γ1

into another one Γ2 can be stated as the minimization of the energy E(.,Γ2)
starting from Γ1, i.e. finding a family of shapes {Γ(t), t ≥ 0} with Γ(0) = Γ1

and Γ(t) following some gradient descent toward Γ2.

2.2 Gâteaux derivatives

In the following we consider a shape Γ, seen as a manifold of dimension k
embedded in Rn. We denote by E(Γ) the energy functional to be minimized.
In the problem of warping a shape Γ into a target shape Γ2, we may have
E(Γ) = d(Γ,Γ2) where d(., .) is for example a distance on the set of shapes.
In order to minimize this energy, we first need to define the gradient of this
functional. We will use the Gâteaux differentiation framework.

Let us start by defining D , the deformation space, set of all velocity fields
defined on the shape Γ. A velocity field is a function defined on the shape Γ
with values in Rn:

D = {v | v : Γ→ Rn} (2.1)

Fig. 2.1 shows a graphic representation of a velocity field v defined on a
two-dimensional shape Γ.

Let us then define, for a given v ∈ D , the shape Γ + ε v. For any para-
metrization of Γ:
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v

Γ

Figure 2.1: Representation of a velocity field v defined on the two-dimensional
shape Γ.

PΓ : I ⊂ Rk → Γ ⊂ Rn

σ 7→ PΓ(σ)

the shape Γ + ε v is defined by the parametrization:

PΓ+ε v : I → Rn

σ 7→ PΓ+ε v(σ) = PΓ(σ) + ε v(PΓ(σ))

There is no guarantee that Γ + ε v actually belongs to the set of shapes S
in general but if v is C2 then we can find an ε small enough for Γ + ε v to be
in S. Fig. 2.2 shows, for the same v as in Fig. 2.1 and an ε < 1, the shape
Γ + ε v.

If we consider the shape Γ as a point in S, the manifold of all admissible
shapes, then D , the deformation space, can be seen as the tangent space
of Γ. Furthermore, we have the following definition. the Gâteaux derivatives
of the energy E(.) at Γ and in the direction of v ∈ D , denoted by GΓ(E(.), v)
can be defined as:

Definition 7. The Gâteaux derivatives of the energy E(.) at Γ and in the
direction of v ∈ D , denoted by GΓ(E(.), v) can be defined as:

GΓ(E(.), v) = lim
ε→0

E(Γ + ε v)− E(Γ)

ε
.
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Γ + εv

Γ

v

Figure 2.2: The shape Γ + ε v

2.3 Shape gradient

The vector space of velocity fields D can be considered as a vector subspace
of the Hilbert space L2(Γ,Rn) (of all square integrable functions of Γ with
values in Rn) with the usual Hilbert product:

〈v1 |v2 〉 =
1

|Γ|

∫
Γ

v1(x) · v2(x) dΓ(x)

where |Γ| is the length of Γ: |Γ| =
∫

Γ
dΓ(x) .

Therefore, if for a given shape Γ the application v 7→ GΓ(E(.), v) is linear
and continuous, it defines a continuous linear form on D and we can apply
the Riesz’s representation theorem (also called Fréchet-Riesz theorem) [121]
to this function. It says that it exists a unique velocity field, which we note
∇E(Γ) ∈ D , such that for any v ∈ D , GΓ(E(.), v) = 〈∇E(Γ) |v 〉. This
velocity field ∇E(Γ) is called the gradient of E(Γ).

Definition 8. The gradient of the energy E(·) at Γ is the velocity field, noted
∇E(Γ) ∈ D such that, for any v ∈ D :

GΓ(E(.), v) = 〈∇E(Γ) |v 〉

The linearity and continuity of the function v 7→ GΓ(E(.), v) is out of the
scope of this chapter. Indeed, it is highly dependent on the properties of each
particular energy E(.). Let us just say that each energy functional we are
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considering verifies these properties and this fact has been assessed during
the explicit computation of the gradient.

In Def. 8, it is important to stress that we implicitly took D as a subspace
of L2(Γ,Rn) with its usual inner product. Another Hilbert spaces and thus
another inner products could be considered and yield to a different gradient.
In chapter 3 We will expose the consequences of the change of the inner
product and show some example of possible inner product as well as their
effects on the gradient.

Equipped some shape gradient, we can define the warping of a shape Γ1

into another one Γ2 as finding the family Γ(t) solution of the following Partial
Differential Equation: 

Γ(0) = Γ1

dΓ

dt
= −∇DE(Γ)

(2.2)

where E(Γ) = d(Γ,Γ2) and d(·, ·) is a measure of dissimilarity between two
shapes.

2.4 Actual computation of shape gradients

and tangential velocity field

Let us consider the two-dimensional case of an energy functional which can
be written in the form of an integral of the shape:

E(Γ) =

∫
Γ

f(x)dΓ(x)

where f : Rn → R (we can for example think of the approximations of the
Hausdorff distance presented in 1.4). This kind of energy functional are only
based on the geometrical form of the shape.

In order to find a velocity field verifying the Riesz’s property (see Def. 8),
we have to write the expression of the Gâteaux derivative in the direction
of a v as an inner product between v and a velocity field w not depending
on v. If the Riesz’s representation theorem applies, w can be identified to
the gradient of E and it is unique. We recall the definition of the Gâteaux
derivative of E at Γ and in the direction of v:

GΓ(E(.), v) = lim
ε→0

E(Γ + ε v)− E(Γ)

ε
.

Let us note Λε,v = Γ + ε v and let PΓ : [0, 1] → Γ be a parametrization
of Γ. Then by definition of Λε,v a parametrization of Λε,v can be:
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PΛε,v : [0, 1] → Rn

σ 7→ PΛε,v(σ) = PΓ(σ) + ε v(PΓ(σ))

and we can write:

E(Λε,v)− E(Γ) =

∫
Λε,v

f(x)dΛε,v(x)−
∫

Γ

f(x)dΓ(x)

=

∫ 1

0

f
(
PΛε,v(σ)

) ∣∣∣P ′Λε,v(σ)
∣∣∣ dσ − ∫ 1

0

f (PΓ(σ))
∣∣∣P ′Γ(σ)

∣∣∣dσ
=

∫ 1

0

(
f
(
PΛε,v(σ)

) ∣∣∣P ′Λε,v(σ)
∣∣∣− f (PΓ(σ))

∣∣∣P ′Γ(σ)
∣∣∣) dσ

(2.3)

Now, if f is differentiable on Ω, we have, with ∇f(x) the gradient of f at x:

f(x + ε v(x)) = f(x) + 〈ε v (x) |∇f (x)〉+ o (ε)

and therefore:

f
(
PΛε,v(σ)

)
= f (PΓ(σ)) + ε

〈
v(PΓ(σ) | ∇f(PΓ(σ))

〉
+ o(ε) (2.4)

Besides (P ′Γ(σ) is the derivative of PΓ at σ on the shape):

P ′Λε,v(σ) =
[
PΓ(σ) + ε v(PΓ(σ))

]′
= P ′Γ(σ) + ε v′ (PΓ(σ)) · P ′Γ(σ)∣∣∣P ′Λε,v(σ)
∣∣∣ =

∣∣∣P ′Γ(σ) + ε 〈v′ (PΓ(σ)) |P ′Γ(σ)〉
∣∣∣

=
∣∣∣P ′Γ(σ)

∣∣∣+ ε

〈
P ′Γ(σ)

|P ′Γ(σ)|
|v′ (PΓ(σ)) · P ′Γ(σ)

〉
+ o(ε)

=
∣∣∣P ′Γ(σ)

∣∣∣+ ε
〈−→
T |v′ (PΓ(σ)) · P ′Γ(σ)

〉
+ o(ε) (2.5)

where
−→
T =

P ′Γ(σ)

|P ′Γ(σ)| is called the unit tangent vector to the shape Γ at P ′Γ(σ).

Introducing 2.4 and 2.5 in 2.3, we obtain:

E(Λε,v)− E(Γ)

ε
=

∫ 1

0

f (PΓ(σ))
〈−→
T | v′ (PΓ(σ)) · P ′Γ(σ)

〉
dσ +∫ 1

0

〈
∇f (PΓ(σ)) | v (PΓ(σ))

〉∣∣P ′Γ(σ)
∣∣ dσ + o(1) (2.6)
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The first term of 2.6 can be rewritten as:∫ 1

0

〈
f (PΓ(σ))

−→
T | [v (PΓ(σ))]′

〉
dσ

We now apply the method of integration by parts, and using the fact that
we are considering closed curves we can remove the first term and write:

=−
∫ 1

0

〈 [
f (PΓ(σ))

−→
T
]′
| v (PΓ(σ))

〉
dσ

=−
∫ 1

0

〈 [
∇f (PΓ(σ))P ′Γ(σ)

−→
T + f (PΓ(σ))κ

−→
N |P ′Γ(σ)|

]
| v (PΓ(σ))

〉
dσ

=−
∫ 1

0

〈 [〈
∇f (PΓ(σ))

∣∣∣|P ′Γ(σ)|
−→
T
〉−→
T + f (PΓ(σ))κ

−→
N |P ′Γ(σ)|

]
| v (PΓ(σ))

〉
dσ

=−
∫ 1

0

〈 [
∇f−→

T
+ f (PΓ(σ))κ

−→
N
]
| v (PΓ(σ))

〉∣∣P ′Γ(σ)
∣∣dσ

where κ(x) is the curvature of the shape at x,
−→
N (x) the unit normal vector

to the shape and ∇f−→
T

the tangential component of ∇f , that is to say:

∇f−→
T

=
〈
∇f (PΓ(σ))

∣∣∣−→T 〉−→T
And finally, going back to 2.6, we have:

E(Λε,v)− E(Γ)

ε
=

∫ 1

0

〈
∇f−→

N
−f (PΓ(σ))κ

−→
N | v (PΓ(σ))

〉∣∣P ′Γ(σ)
∣∣ dσ + o(1)

where ∇f−→
N

is the normal component of ∇f :

∇f−→
N

=
〈
∇f (PΓ(σ))

∣∣∣−→N 〉−→N
= ∇f (PΓ(σ))−

〈
∇f (PΓ(σ))

∣∣∣−→T 〉−→T
And after all:

∇E(Γ)(x) =
(〈
∇f(x)|

−→
N (x)

〉
− f(x)κ(x)

)−→
N (x) (2.7)

In conclusion, in addition of computing the general form of the gradient
of these kind of energy, we prove that for an energy functional based only on
the geometrical form of the shape, the shape gradient lies only on the normal
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vector to the shape (still considering only the L2 inner product). It means
also that the tangential part of a velocity field v does not have any influence
on the variation of the energy and therefore on the geometrical form on the
shape. We will see in chapter 3 that for instance, if we track some landmark
points during the evolution and take into account the position of these points
in the energy, this property does not hold as expected.

2.5 Numerical experiments

For our experiments we chose to use an implicit representation of the shapes
by placing ourself in the level set framework [39, 108]. The reader will find a
more circumstantial presentation of this method in chapter 4, section 4.3.1.
As the energy functional E(·) we chose the square of one of two of the metrics
introduced in chapter 1, approximated (see the same chapter) to be differen-
tiable. We therefore computed the gradients of these energies with respect
to the shape and apply the gradient descent scheme given by equation 2.2.

2.5.1 Computing the gradient of the approximation to
the Hausdorff distance

In [22], authors show that the approximation ρH(Γ, Γ0) of the Hausdorff
distance dH(Γ, Γ0) presented in section 1.4, Def. 5, is differentiable with
respect to Γ and compute its gradient ∇ ρH(Γ, Γ0) in the two-dimensional
case. We extended this computation in the three-dimensional case.

To simplify notations we rewrite the expression of this approximation as

ρH(Γ,Γ0) =
⌊⌊
bd(·, ·)cϕΓ0

⌋ψ
Γ
, bbd(·, ·)cϕΓc

ψ

Γ0

⌋θ
(2.8)

and state the result, the reader interested in the proof being referred to [23]

Proposition 9. For Γ and Γ0 two curves embedded in R2 or two surfaces
embedded in R3, the gradient of ρH(Γ, Γ0) with respect to Γ at any point y
of Γ is given by :

∇ρH(Γ, Γ0)(y) =
1

θ′(ρH(Γ, Γ0))
(α(y)κ(y) + β(y)) , (2.9)

where κ(y) is the curvature (in the two-dimensional case) or the mean cur-
vature (in the three-dimensional case) of Γ at y and the functions α(y) and
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β(y) are given by

α(y) = ν

∫
Γ0

ψ′

ϕ′
(bd(x, ·)cϕΓ) [ ϕ ◦ bd(x, ·)cϕΓ − ϕ ◦ d(x,y) ] dΓ0(x)

+ |Γ0|η
[
ψ
(⌊
bd(·, ·)cϕΓ0

⌋ψ
Γ

)
− ψ

(
bd(·,y)cϕΓ0

) ]
, (2.10)

β(y) =

∫
Γ0

ϕ′◦d(x,y)

[
ν
ψ′

ϕ′
(bd(x, ·)cϕΓ) + η

ψ′

ϕ′
(
bd(·,y)cϕΓ0

)] y − x

d(x,y)
·
−→
N (y) dΓ0(x),

(2.11)

where ν =
1

|Γ| |Γ0|
θ′

ψ′

(
bbd(·, ·)cϕΓc

ψ

Γ0

)
and η =

1

|Γ| |Γ0|
θ′

ψ′

(⌊
bd(·, ·)cϕΓ0

⌋ψ
Γ

)
.

Note that the function β(y) is well-defined even if y belongs to Γ0 since
the term y−x

d(x,y)
is of unit norm.

2.5.2 Computation of the gradient of the approxima-
tion to the W 1,2 norm

The gradient ∇ρW 1,2(Γ, Γ0), of our approximation ρW 1,2(Γ, Γ0) of the dis-
tance dW 1,2(Γ, Γ0) presented in section 1.4, Def. 6 can also be computed. We
simply state the result:

Proposition 10. The gradient of ρW 1,2(Γ, Γ0) at any point y of Γ is given
by

∇ρW 1,2(Γ, Γ0)(y) =∫
Ω

[
B(x,y)

(
C1(x)− ϕ

′′

ϕ′
(
⌊
d̃(x, ·)

⌋ϕα
Γ

(
C2(x) · ∇

⌊
d̃(x, ·)

⌋ϕα
Γ

))
+ C2(x) · ∇B(x,y)

]
dx,

(2.12)

where

B(x,y) = κ(y) (bϕ ◦ d(x, ·)cΓ − ϕ ◦ d(x,y)) + ϕ′(d(x,y))
y − x

d(x,y)
·
−→
N (y),

κ(y) is the curvature of Γ at y,

C1(x) =
1

|Γ| ϕ′(
⌊
d̃(x, ·)

⌋ϕα
Γ

)
‖
⌊
d̃()
⌋ϕα

Γ
−
⌊
d̃()
⌋ϕα

Γ0

‖−1
L2(D)

(⌊
d̃(x, ·)

⌋ϕα
Γ
−
⌊
d̃(x, ·)

⌋ϕα
Γ0

)
,

and

C2(x) =
1

|Γ| ϕ′(
⌊
d̃(x, ·)

⌋ϕα
Γ

)
‖
⌊
d̃()
⌋ϕα

Γ
−
⌊
d̃()
⌋ϕα

Γ0

‖−1
L2(D) ∇(

⌊
d̃
⌋ϕα

Γ
−
⌊
d̃
⌋ϕα

Γ0

)(x),
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2.5.3 Direct minimization of the W 1,2 norm

An alternative to the method presented in the previous section is to evolve
not the curve Γ but its distance function dΓ. Minimizing dW 1,2(Γ, Γ0) with
respect to dΓ implies computing the corresponding Euler-Lagrange equation
EL. The reader will verify that the result is

EL =
dΓ − dΓ0

‖dΓ − dΓ0‖L2(D)

− div
(

∇ (dΓ − dΓ0)

‖∇(dΓ − dΓ0)‖L2(D))

)
(2.13)

To simplify notations we now use d instead of dΓ. The problem of warping Γ1

onto Γ0 is then transformed into the problem of solving the following PDE

dt = −EL
d(0, ·) = dΓ1(·).

The problem that this PDE does not preserve the fact that d is a distance
function is alleviated by ”reprojecting” at each iteration the current func-
tion d onto the set of distance functions by running a few iterations of the
”standard” restoration PDE [133]

dt = (1− |∇d|)sign(d)

d(0, ·) = d0

This method has the advantage to be easier and faster to compute but as
stressed above, nothing insure us that the family of shapes resulting from this
scheme will be the same as the one obtained by a actual gradient descent.

2.5.4 Examples of warping

Fig. 2.3 and Fig. 2.4 show few steps of the result of the warping of one two-
dimensional shape into another one. The first one (Fig. 2.3) uses the square
of the dL2 shape distance (see Def. 1) as energy functional, and the second
one (Fig. 2.4) the square of the dW 1,2 shape distance (see Def. 2). The effect
of the second term in the W 12 norm, the L2-norm between the gradient of
the distance function, is clear: the gradient descent scheme aim to align the
direction of the gradient of the distance function while aligning the value of
the function themselves.

Fig. 2.5 shows few steps of the result of the warping of one two-dimensional
shape of a rabbit into another one. These silhouettes have been borrowed
from a database of several images used as a benchmark for image-indexing
[125]. Here the energy functional is chosen to be the square of the approxi-
mation of the Hausdorff distance.
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Figure 2.3: L2 warping of the red shape into the blue one

Figure 2.4: W 1,2 warping of the red shape into the blue one

Fig. 2.6 exemplifies the difference between the L2 gradient descent scheme
and the Hausdorff one. The top row shows few steps of the result of the L2

warping: the branch of the red shape ”collapses on itself”. It is naturally
because the distance function of the red shape inside the top of its branch is
negative and wants to be positive (since it is located outside the blue shape).
The bottom row shows few steps of the result of the Hausdorff warping: the
points on the top of the red branch are the points farthest to the blue shape
and therefore they are the points concerned by the definition of the Hausdorff
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Figure 2.5: Hausdorff warping of the red rabbit into the blue one (shapes of
the rabbits come from [125])

distance and will tend to come closer to the blue shape.
Finally Fig. 2.7 shows an example of a warping resulting from a Hausdorff

gradient descent scheme in the case of two surfaces embedded in R3. The
initial shape is a teddy bear and it is evolving to Hayao Miyazaki’s character
Totoro.

2.5.5 Definition and examples of the mean of n shapes

As an example of what can be done with shape metrics and shape warping,
we will introduce the notion of the empirical mean of n shapes Γ1, . . . ,Γn.
Inspired by M. Frechet [57] and H. Karcher [73], we can provide the (classical)
following definition:

Definition 11. Let d(·, ·) be a distance on the set of shapes and Γ1, . . . ,Γn,
n static shapes. Their empirical mean is defined as any shape Γ̂ that achieves
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Figure 2.6: Difference between the L2 warping (top row) and the Hausdorff
warping (bottom row)

a local minimum of the function µ:

µ : S → R+

Γ 7→ 1

n

n∑
i=1

d(Γ,Γi)
2

An empirical mean can then be computed by a gradient descent mini-
mizing µ(Γ). The gradient of this energy is straightforward obtained from
the expression of the gradient of the distance d(·, ·). Fig. 2.8 shows some ex-
amples of empirical mean of shapes. Several works have been done starting
from this notion of the mean shape. For example, in [22], authors defined
the covariance of a set of shapes. In [95] and in collaboration with Guillermo
Sapiro, we extended the notion of mean for dynamic shapes using an adapta-
tion of dynamic time warping algorithm (often used for speech recognition).
In [50] authors used the mean of shapes to define an interpolation between
two shapes and then defined the projection of a shape on a manifold in the
S the set of shapes.

2.6 Conclusion

This chapter was dedicated to the derivation of shape-relevant metrics. We
introduced the concept of Gateaux derivatives as well as shape gradients
toward shape warping using different similarity metrics presented in the pre-
vious chapter. This question of deforming a shape onto another one is po-
tentially interesting for every problem of matching (point-to-point) between
shapes such as for example shape recognition or the tracking of natural mov-
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Figure 2.7: Hausdorff warping a closed surface to another one.

ing objects. It enables the comparison between a shape model and an un-
known object. Moreover, tracking points during the evolution gives us a
matching (not necessarily one-to-one, see chapter 4) between the shapes at
no additional cost. In our calculations of shape gradients, we considered
only closed curves. Considering an open curve would induce the apparition
of Dirac peaks on the extremities of the curve in the expression of the gra-
dient. One solution of this issue could be to use the Sobolev inner product
(see chapters 3 and 4) to transform these Dirac peaks in a smooth kernel.
Investigating in this direction can probably lead to interesting further devel-
opments.
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Figure 2.8: Examples of mean: in blue the initial shapes and in red their
mean. The distance used is the dW 1,2
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Chapter 3

Generalized gradient: priors on
minimization flows

This chapter tackles an important aspect of the variational problem underly-
ing active contours: optimization by gradient flows. As mentioned in chap-
ter 2, the definition of a gradient depends directly on the choice of an inner
product structure. This consideration is largely absent from the active con-
tours literature. Most authors, explicitly or implicitly, assume that the space
of admissible deformations is ruled by the canonical L2 inner product. The
classical gradient flows reported in the literature are relative to this particu-
lar choice. Here, we investigate the relevance of using other inner products,
yielding other gradient descents, and moreover, other minimizing flows not
deriving from any inner product. We report numerical experiments indicat-
ing that the sensitivity of the active contours method to initial conditions,
which seriously limits its applicability and efficiency, is alleviated by our
application-specific spatially coherent minimizing flows. We show that the
choice of the inner product can be seen as a prior on the deformation fields
and we present an extension of the definition of the gradient toward more
general priors.

This is a joint work with Guillaume Charpiat and Jean-Philippe Pons.
The example of the spatially coherent minimizing flows in section 3.4 have
been first introduced by G.Charpiat, J.P.Pons et al. in [24]. The generalized
gradient method in section 3.6 is a joint work with G.Charpiat.

Publication related to this chapter: Generalized gradients : priors
on minimization flows [26] with Guillaume Charpiat, Jean-Philippe Pons,
Renaud Keriven and Olivier Faugeras, published in the International Journal
of Computer Vision, 2007.

49
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3.1 Introduction

Many problems in computer vision can advantageously be cast in a varia-
tional form, i.e. as a minimization of an energy functional. In this chapter,
we focus on variational methods dedicated to the recovery of contours. In
this case, the problem consists in finding a shape which corresponds to a
global minimum of the energy. Unfortunately, in most cases, the exact min-
imization of the energy functional is computationally unfeasible due to the
huge number of unknowns. Hence, in most cases, a suboptimal strategy must
be adopted. A common minimization procedure consists in evolving an ini-
tial contour, positioned by the user or resulting from a preprocessing , in the
direction of steepest descent of the energy.

This approach, known in the literature as active contours or deformable
models, was pioneered by Kass. et al. in [74] for the purpose of image segmen-
tation. Since then, it has been applied in many domains of computer vision
and image analysis, such as image segmentation [20], surface reconstruction
[149, 46], stereo reconstruction [54, 71, 61]. Active contours have first been
used conjointly with edge-based energies (e.g. [20, 91, 77]) and region-based
energies (e.g. [103, 150, 146, 111, 21, 112]). More recently, prior-based ener-
gies (e.g. [88, 32, 120, 119]) and energies based on more complex geometrical
information (e.g. [78, 104]) have been introduced. This complexification of
the energies can be partly seen as a search of a way to avoid unwanted local
minima during gradient descent evolution.

In fact, due to the highly non-convex nature of most energy function-
als, a gradient descent flow is very likely to be trapped in a local minimum.
Also, this local minimum depends on the position of the initial contour. If
the latter is far from the expected final configuration, the evolution may be
trapped in a completely irrelevant state. This sensitivity to initial conditions
seriously limits the applicability and efficiency of the active contours method.
A balloon force that can either inflate or deflate the model was proposed by
L.Cohen in [27] to reduce the requirement to initialize the model near the
desired object boundaries. Furthermore there have been efforts in investi-
gating new optimization method that can obtain directly a global minimum
of an energy. For example, the minimal path technique [28] was designed to
find the global minimal solution of the edge-based energy considered in [20].
More recently the graph cuts method has been investigated. It is a powerful
energy minimization method which allows to find a global minimum or a
strong local minimum of an energy. In the last few years, this method has
been successfully applied to several problems in computer vision, including
stereovision [79] and image segmentation [18]. However, these global meth-
ods have a severe limitation: it cannot be applied to an arbitrary energy
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function [80], and, when applicable, it can be computationally expensive (for
the 3D case for example).

In this chapter we present a framework to specify some constraints on
the gradient and therefore on the minimization path induced by the gradient
descent. In the first place, we show that it can be done by carefully choosing
the inner product involved in the gradient definition. And later we show that
we can even define new minimization flows that we call generalized gradients
which do not derive from any inner product. This may be a way to avoid some
unwanted local minima but also to insure that the family of shapes resulting
from the minimization verifies some properties (e.g. spatial coherence during
the evolution).

3.2 Minimization and inner product

In chapter 2 we defined the Gâteaux derivatives of an energy functional E(Γ)
by:

GΓ(E(.), v) = lim
ε→0

E(Γ + εv)− E(Γ)

ε
.

In order to apply a gradient descent method, we then would like to pick
the gradient as the direction of steepest descent of the energy. However, it is
not yet possible at this stage: to be able to assess the steepness of the energy,
the deformation space needs additional structure, namely an inner product
introducing the geometrical notions of angles and lengths. This consideration
is largely absent from the active contours literature: most authors, explicitly
or implicitly, assume that the deformation space is ruled by the canonical L2

inner product on Γ, which is, for two deformation fields u and v in D :

〈u |v 〉L2 =
1

|Γ|

∫
Γ

u(x) · v(x) dΓ(x) ,

where dΓ(x) stands for the area element of the contour so that the integral
over Γ is intrinsic and does not depend on the parametrization (see chapter 1,
Def 4).

Here, for sake of generality, we model the space of admissible deformations
as an inner product space (D , 〈|〉D) (not necessarily the L2 one). If there
exists a deformation field u ∈ D such that

∀v ∈ D , GΓ(E(.), v) = 〈u |v 〉D ,

then u is unique, we call it the gradient of E relative to the inner product
〈|〉D , and we denote by u = ∇DE(Γ). The existence of u is related to the
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smoothness of E, or more exactly to the continuity of GΓ(E(.), v) with respect
to v (Riesz representation theorem, see [121] for more details).

Clearly, each choice of inner product yields its own gradient. This is often
neglected and most authors improperly refer to the gradient of the energy.
Thus, the classical gradient flows reported in the literature (mean curvature
flow, geodesic active contours [20, 62, 128], multi-view 3D reconstruction
[54, 71, 61]) are relative to the L2 inner product.

The gradient descent method consists in deforming an initial contour Γ0

in the opposite direction of the gradient.
Γ(0) = Γ0

dΓ

dt
= −∇DE(Γ)

(3.1)

The problem of the existence and the uniqueness of this minimizing flow
is out of the scope of this chapter. Indeed, it is highly dependent on the
properties of each particular energy functional. If this evolution exists, it
decreases the energy:

dE(Γ)

dt
= −‖∇DE(Γ)‖2

D ≤ 0 .

The standard choice for D is the Hilbert space of square integrable ve-
locity fields L2(Γ,Rn) equipped with its canonical inner product. Very few
authors in the active contours area have considered using other inner prod-
ucts, whereas this is an established technique in image registration [137].
More recently, in the context of shape representation and analysis, [98, 131]
have shown that slightly modifying the L2 inner product allows to build
well-behaved metrics in the space of curves. The particular case of the H1

inner product has been simultaneously and independently investigated by us
[24, 93] and by Sundaramoorthi et al. [130, 132].

Let us notice that the variations on the gradient descent theme, as in [14]
(e.g. the conjugate gradient method, Newton’s or quasi-Newton’s methods),
will still be applicable to the new gradients we propose, since these methods
are in fact not specific to the particular L2 gradient.

Minimizing flows not deriving from any inner product, that is to say
evolutions that decrease the energy, without any gradient interpretation, have
also been overlooked so far. Note that any evolution fulfilling the condition

dE(Γ)

dt
=

〈
∇DE(Γ)

∣∣∣∣dΓ

dt

〉
D

≤ 0 (3.2)



3.3 New Inner Products and New Flows 53

is a candidate to solve the minimization problem. This idea, proposed
in [128], is applied by the same authors to the alignment of curve in im-
ages in [109]: a complicated term in the gradient is safely neglected after
checking that the evolution still decreases the energy.

The spirit of our work is different. We do not focus either on a specific
inner product or on a particular energy functional. We rather explore general
procedures to build some new inner products and to compute the associated
gradients. We also address the design of non-gradient minimizing flows.

Our motivation is also different. Our primary concern in this work is
the sensitivity of the active contours method to initial conditions. There are
essentially two ways of dealing with this problem: positioning the initial con-
tour very close to the expected final configuration, or using a multiresolution
coarse-to-fine strategy, in other words running the optimization on a series
of smoothed and subsampled contours and input data. In this chapter, we
pioneer a third way to tackle the problem of unwanted local minima: the
careful design of the minimizing flow.

We do not modify the energy, hence the relief of the energy landscape
and in particular the ”number” of local minima remains unchanged. But
by using an evolution that favors certain types of directions, we expect to
decrease the probability of falling into unwanted energy basins. Typically, in
many applications, spatially coherent motions are to be preferred over erratic
evolutions. For example, in the tracking problem, the object of interest is
likely to have similar shapes in consecutive frames. So if we initialize the
contour with the result of the previous frame, it makes sense to encourage
the motions which preserve its overall appearance. This way, it may be
easier to dodge unexpected local low-energy configurations. A traditional L2

gradient descent definitely does not have this desirable property since the
L2 inner product completely disregards the spatial coherence of the velocity
field.

3.3 New Inner Products and New Flows

In this section, we suppose that the space D of all admissible deformations
of the shape Γ is initially equipped with the inner product 〈|〉D , for example
in the standard case we would have D = L2, and we study how to build new
inner products or new minimizing flows from the given one.
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3.3.1 Designing new inner products

Definition 12. For any symmetric positive definite linear operator L : D → D ,
a new inner product can be defined by

〈u |v 〉L = 〈Lu |v 〉D . (3.3)

Here, for simplicity, we assume that the domain and the range of L are
equal to D . A similar study is possible if they are strictly smaller than D ,
under certain conditions, using the Friedrichs extension of L (see [4] for
details). But these technical details are out of the scope of this chapter.

The following observation is central to our work:

Proposition 13. If ∇DE(Γ) exists and if L is also invertible, then ∇LE(Γ)
also exists and we have

∇LE(Γ) = L−1 (∇DE(Γ)) . (3.4)

Proof. Indeed:

∀v ∈ D , GΓ(E(.), v) = 〈∇DE(Γ) |v 〉D
=
〈
LL−1∇DE(Γ) |v

〉
D

=
〈
L−1∇DE(Γ) |v

〉
L .

The above procedure is of great practical interest because it allows to upgrade
any existing L2 gradient flow. However, it is not completely general in the
sense than all inner products cannot be expressed in this form.

Nevertheless, if D is a separable Hilbert space (i.e. complete with respect
to the norm ‖·‖D), the Riesz representation theorem tells us that any inner
product 〈|〉L such that

∃ C > 0, ∀u ∈ D , ‖u‖L 6 C ‖u‖D
can be written in the form of equation (3.3). This suggests that our

procedure accounts for a wide range of inner products.

3.3.2 Designing new minimizing flows

In this subsection, we follow the inverse approach. Instead of working with
the inner product, we apply a linear operator L : D → D to the gradient,
and we study the properties of the resulting flow:
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dΓ

dt
= −L

(
∇DE(Γ)

)
. (3.5)

This naturally sets up a hierarchy among different types of operators:

• if L is positive, the energy is non-increasing along the flow (3.5). Indeed,

dE(Γ)

dt
= −〈∇DE(Γ) |L∇DE(Γ)〉D 6 0 .

• if L is positive definite, the energy strictly decreases along the flow (3.5)
until a critical point of the original gradient flow (3.1) is reached.

• if L is symmetric positive definite and invertible, the flow (3.5) coincides
with a gradient descent relative to the inner product 〈|〉L−1 , as defined
in equation (3.3).

The third case is contained in Subsection 3.3.1. A useful example of the
second case is given in Subsection 3.4.3.

3.3.3 Adding an orthogonal term

The rate of decrease of the energy when following the direction of descent dΓ
dt

is given by:

dE(Γ)

dt
=

〈
∇DE(Γ)

∣∣∣∣dΓ

dt

〉
D

6 0

In particular, for the usual evolution dΓ
dt

= −∇DE(Γ), we have:

dE(Γ)

dt
= −‖∇DE(Γ)‖2

D

If we denote by v any vector field defined on Γ such as 〈∇DE(Γ) |v 〉D = 0,
then adding such a vector field v to the usual gradient descent term will not
change the amount of decreased energy:

dE(Γ)

dt
= 〈∇DE(Γ) |−∇DE(Γ) + v 〉D = −‖∇DE(Γ)‖2

D

so we can choose the field v as we like to add to the initial gradient. Rather
than choosing v = 0 as usual, we could for example choose one, noted v̂, that
minimizes a regularizing criterion R(−∇DE(Γ) + v):
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v̂ = arg min
v⊥∇DE(Γ)

R(−∇DE(Γ) + v) (3.6)

In fact this remark still stands when the choice of the direction of descent
is not the gradient itself. If we denote by u the initially proposed deforma-
tion field dΓ

dt
, then adding a vector field which is orthogonal to the gradient

∇DE(Γ) will not change the amount of decreased energy at this step of the
gradient descent (but will change the evolution):

dE(Γ)

dt
= 〈∇DE(Γ) |−u+ v 〉D = 〈∇DE(Γ) |−u〉D

Note that the notion of being orthogonal to the gradient is independent
from the chosen inner product. Indeed, if F and G are two different inner
products, ∇FE and ∇GE the associated gradients, and ⊥F and ⊥G the
associated notions of orthogonality, we have for any v ∈ D :

〈∇FE(Γ) |v 〉F = GΓ(E(.), v) = 〈∇GE(Γ) |v 〉G

so, consequently:

〈∇FE(Γ) |v 〉F = 0⇐⇒ 〈∇GE(Γ) |v 〉G = 0

∇FE(Γ) ⊥F v ⇐⇒ ∇GE(Γ) ⊥G v .

3.4 Some Spatially Coherent Minimizing Flows

This theoretical study has brought us the tools we need to better apprehend
minimizing flows and build new ones. We now present some minimizing flows
yielding different degrees of spatial coherence. This spatially coherent flows
have been introduced by G.Charpiat, J.P.Pons et al. in [24]. We insist on the
fact that this spatial coherence has nothing to do with an eventual regularity
term in the energy functional. We do not modify the energy, so the regularity
constraint on the contour remains unchanged. We modify the trajectory of
the minimizing flow, by favoring spatially coherent motions, but this does not
condition the regularity of the final contour. In the following, we sometimes
use differential geometry. We refer the reader to [42] for the basic notions.

3.4.1 Motion decomposition

A simple and useful procedure, to design new inner products yielding spa-
tially coherent flows, is to decompose the deformation space into a sum of



3.4 Some Spatially Coherent Minimizing Flows 57

several mutually orthogonal linear subspaces, and to apply different penalty
factors to the different types of motions. Typically, the subspaces are chosen
according to an application-specific hierarchy of the motions. For example,
rigid/non-rigid, affine/non-affine, etc.

We suppose that such an orthogonal (with respect to 〈|〉D) decomposition
of the deformation space D into N closed linear subspaces is available:

D = D1 ⊥ D2 ⊥ · · · ⊥ DN .

Then a new inner product is derived from 〈|〉D by applying the procedure
of subsection 3.3.1 with

L =
N⊕
i=1

λi IdDi
,

where ∀i, λi > 0. The lower is λi, the shorter is the norm of the velocity
fields of subspace D i, and the stronger will be this type of motion in the new
gradient flow.

Obviously, L is symmetric positive definite and invertible. If ∇DE exists,
so does ∇LE and

∇LE =
N∑
i=1

1

λi
ΠDi

(∇DE) , (3.7)

where ΠDi
denotes the orthogonal projection on the ith subspace D i. Of

course, if all λi are equal to 1, ∇LE coincides with ∇DE.
We apply this general construction to two useful cases. In the first case,

we decompose the velocity field into a translation, an instantaneous rotation,
a rescaling motion and a non-rigid residual. In the second case, we isolate
the instantaneous affine motion.

In the following, we denote by

G =
1

|Γ|

∫
Γ

x dΓ(x)

the center of mass of the shape.

(a) Translation, rotation and scaling

In this paragraph, we focus on the two-dimensional and three-dimensional
cases. The expressions below are for the 3D case, but can easily be adapted
to 2D.

We denote by T , R and S the subspaces of the translations, the instan-
taneous rotations around the centroid, and the scaling motions centered on
the centroid, respectively, defined on the shape Γ:
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T =
{
v : x ∈ Γ 7→ t | t ∈ R3

}
,

R =
{
v : x 7→ (x−G) ∧ ω | ω ∈ R3

}
,

S = {v : x 7→ s(x−G) | s ∈ R} .

These subspaces are mutually orthogonal for the L2 inner product. In-
deed, the L2 product of any two fields of any two different subspaces (among
T , R and S) is zero. For instance, if v1 : x 7→ t1 is an element of T and
v2 : x 7→ (x−G) ∧ ω2 an element of R, then:

〈v1 |v2 〉L2 =
1

|Γ|

∫
Γ

t1 ·
(
(x−G) ∧ ω2

)
dΓ(x)

= t1 ·
([

1

|Γ|

∫
Γ

x dΓ(x)−G

]
∧ ω2

)
= 0

since G is the center of mass of Γ.
We suppose that these subspaces are included in the space of admissible

deformations D , and that the latter is ruled by the L2 inner product. We
denote by N the orthogonal complement of these subspaces: F = T ⊥ R ⊥
S ⊥ N . The orthogonal projection of a velocity field u on one of these
subspaces can be found by minimizing ‖u − v‖F with respect to v in the
considered subspace. As an example, we detail the computation of (ΠR u).

As for each element v of R there exists an ω such that v(x) = (x−G)∧ω
for all x, we minimize the quantity ‖u − (· −G) ∧ ω‖L2 with respect to ω.
We start by computing the derivative of this quantity with respect to ω, ∂ω:

∂ω

(∫
Γ

‖u(y)− (y −G) ∧ ω‖2dΓ(y)

)
=

∫
Γ

−
(
u(y)− (y −G) ∧ ω

)
∧ (y −G)dΓ(y)

= −
∫

Γ

u(y) ∧ (y −G) dΓ(y)+(∫
Γ

‖y −G‖2dΓ(y)

)
ω −

[∫
Γ

(y −G)(y −G)TdΓ(y)

]
ω

As this quantity is zero for the ωu which minimizes ‖u− (· −G) ∧ ω‖L2 ,
we have:

ωu = M−1

(∫
Γ

u(y) ∧ (y −G) dΓ(y)

)
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with:

M =

(∫
Γ

‖y −G‖2dΓ(y)

)
Id−

∫
Γ

(y −G)(y −G)TdΓ(y)

To guarantee that the linear application M, we prove it is a symmetric
positive definite matrix. We have indeed for any x:

xTMx =

∫
Γ

‖x‖2‖y −G‖2 −
(
x · (y −G)

)2
dΓ(y)

As for any x and z we have (x · z) 6 ‖x‖‖z‖, with equality only if the two
vectors are collinear, and as x cannot be collinear with all y−G for y in Γ,
we obtain xTMx > 0 for any x, so M is positive definite and consequently
invertible.

Note that if we had not taken for u the L2 gradient but the gradient for
another inner product F , we would have to ensure the subspaces are orthog-
onal for that inner product F , and compute new projections by minimizing
‖u− v‖F .

We apply the method we detailed for the subspace R to the other sub-
spaces T and S, and obtain:

(ΠT u) (x) = u := 1
|Γ|

∫
Γ
u(y) dΓ(y),

(ΠR u) (x) = (x−G) ∧ ωu ,

(ΠS u) (x) =
∫
Γ u(y)·(y−G) dΓ(y)∫

Γ‖y−G‖2 dΓ(y)
(x−G) ,

(ΠN u) (x) = u(x)− (ΠT + ΠR + ΠS) (u)(x) .

(3.8)

In the two-dimensional case, the expressions of the projections are the
same, and the expression of ωu can be simplified in:

ωu =

∫
Γ
(y −G) ∧ u(y) dΓ(y)∫

Γ
‖y −G‖2 dΓ(y)

.

The new gradient is deduced from the L2 gradient by equation (3.4) with

L−1 = Id +

(
1

λT
− 1

)
ΠT +

(
1

λR
− 1

)
ΠR +

(
1

λS
− 1

)
ΠS .

The weights λT , λR and λS are adapted to the user’s needs in each par-
ticular application. For example:
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• Boost rigid+scaling motions: λT , λR, λS � 1,

• Boost rigid motions: λT , λR � 1, λS = 1,

• Boost translations: λT � 1, λR = λS = 1.

(b) Affine motion

We can apply this same idea to the subspace A of instantaneous affine mo-
tions:

A =
{
v : x ∈ Γ 7→ Ax + b | A ∈ Rn×n, b ∈ Rn

}
.

The L2 orthogonal projection on this subspace writes:

(ΠA u) (x) = Ax + b ,

where

A =

[∫
Γ

u(y)(y −G)T dΓ(y)

] [∫
Γ

(y −G)(y −G)T dΓ(y)

]−1

,

b = u−A G .

3.4.2 The Sobolev H1 gradient flow

We consider the canonical inner product of the Sobolev space H1(Γ,Rn) of
square integrable velocity fields with square integrable derivatives, defined
on the shape Γ with values in Rn. For two such fields u and v its expression
is:

〈u |v 〉H1 = 〈u |v 〉L2 + l2 〈Dxu |Dxv 〉L2

= 1
|Γ|

∫
Γ
u(x) · v(x)dΓ(x) + 1

|Γ| l
2
∫

Γ
Dxu(x) ·Dxv(x)dΓ(x)

where Dx denotes the intrinsic derivatives on the contour and l is a char-
acteristic length for the derivation which acts as a weight between the two
integrals. The second term of this expression introduces a notion of spa-
tial coherence: not only the length of the velocity field, but also its varia-
tions along the contour are penalized. Indeed, Dxu(x) stands for the matrix
of the derivative of the vector field u at the point x on the manifold Γ
and consequently expresses how much the field u varies at point x. In
the two-dimensional case, Dxu(x) is simply a vector. In the general case,
Dxu(x) · Dxv(x) =

∑
i,j (Dxu(x))i,j (Dxv(x))i,j is the usual inner product

between matrices.
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By definition of the gradients of E(Γ), and then thanks to an integration
by parts on the manifold Γ, we have:

∀ v , 〈∇L2E(Γ) | v〉L2 = GΓ(E(.), v) = 〈∇H1E(Γ) | v〉H1

= 〈∇H1E | v〉L2 + l2 〈Dx∇H1E | Dxv 〉L2

=
〈
∇H1E − l2∆∇H1E

∣∣ v〉
L2

where ∆ denotes the intrinsic Laplacian operator on the contour, often called
the Laplace-Beltrami operator.

Thus the H1 inner product is related to the L2 inner product as proposed
in subsection 3.3.1 through the linear operator L(u) = u− l2∆u, As a con-
sequence, the H1 gradient can be obtained from the L2 gradient by solving
an intrinsic heat equation with a data attachment term:

l2 ∆u = u−∇L2E . (3.9)

Interestingly, the solution of equation (3.9) coincides with

arg min
u

∫
Γ

‖u(x) − ∇L2E(Γ)(x)‖2 dΓ(x) + l2
∫

Γ

‖Dxu(x)‖2 dΓ(x) (3.10)

Intuitively, the H1 gradient is a smoothed version of the L2 gradient and
can be obtained by a process similar to the image restoration process on
a manifold Γ, a problem familiar to the image processing community. The
factor l2 acts as a parameter balancing the influences of the data term and
the regularizing term. Actually, smoothing a gradient using this particular
inner product is a standard ”trick”, well-known in numerical analysis. As
we mentioned previously, this idea has been introduced in computer vision
simultaneously by us [24] and by Sundaramoorthi et al. [130]. However,
the main point remains that, introducing this smoothing via a modification
of the gradient rather than directly from equation (3.10), warrants that the
gradient descent will decrease the energy.

In the two-dimensional case, the shape is a curve which can be parametrized
by its arc length σ, so that any field u defined on Γ can be seen as an appli-
cation from [ 0, |Γ| ] to R2, where |Γ| is the length of the curve. The explicit
solution of the equation ∆u = u− v is then known and given by:

u(σ) =
1

2l

(
eσ/l

(
A−

∫ σ

0

e−τ/l v(τ) dτ

)
+ e−σ/l

(
B +

∫ σ

0

eτ/l v(τ) dτ

))
(3.11)
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with A =
e|Γ|/l

e|Γ|/l − 1

∮
Γ

e−τ/l v(τ) dτ

and B =
1

e|Γ|/l − 1

∮
Γ

eτ/l v(τ) dτ .

Of course, the choice of the initial point on Γ in order to define its para-
metrization by the arc length does not interfere with the resulting solution
considered as an application from Γ into R2.

In greater dimensions, we can obtain in practice the H1 gradient, solution
of equation (3.9), from an iterative minimization induced by (3.10). We will
see in chapter 4 that since the work introduced in [9], implementing a PDE
on a surface is affordable in the implicit framework with the level set method
[39, 108].

3.4.3 Intrinsic Gaussian smoothing

We apply the procedure of subsection 3.3.2 to design a useful minimizing
flow: it is a smoothed version of the L2 gradient flow. Hence, to some extent,
it resembles the H1 gradient flow of subsection 3.4.2. However, here, we
apply an ad hoc procedure to the L2 gradient without resorting to an inner
product.

We define a linear intrinsic smoothing operator which may be seen as the
counterpart on the contour of Gaussian smoothing in Rn−1, by considering
the solution ũ of the intrinsic heat equation on Γ with initial condition u:{

ũ(., 0) = u
∂ũ

∂τ
= ∆ ũ

, (3.12)

where ∆ denotes the Laplace-Beltrami operator. We then denote by Lτ u its
solution ũ(., τ) at time τ ≥ 0.

On the one hand, Lτ is symmetric positive. In particular, a flow (3.5)
based on this operator decreases the energy. The larger is τ , the smoother is
the flow.
Lτ is symmetric:

〈L0(u) |v 〉L2 = 〈u |L0(v)〉L2 = 〈u |v 〉L2 ,
∂

∂τ
〈Lτ (u) |v 〉L2 =

∂

∂τ
〈u |Lτ (v)〉L2 = −〈Dxu |Dxv 〉L2

Lτ is positive:
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〈Lτ (u) |u〉L2 =
〈
Lτ/2Lτ/2(u) |u

〉
L2 =

∥∥Lτ/2(u)
∥∥2

L2 ≥ 0

But on the other hand, the inversion of Lτ for τ > 0 is an ill-posed anti-
diffusive process. So a gradient interpretation is not available.

3.5 Numerical Experiments With The New

Inner Products

The approach presented in this chapter can be applied to virtually any active
contour evolution. In this section, we have chosen some particular applica-
tions to demonstrate the interest of our contribution.

Moreover, the content of this chapter is not specific to a particular im-
plementation of the contour evolution. In our experiments, we have used
the level set framework [39, 108, 124, 106, 107], motivated by its numerical
stability and its ability to handle topological changes automatically. The im-
plicit framework also offers an elegant formulation of the Laplace-Beltrami
operator [9] and of the average of a quantity along the contour [115]. We
will see in chapter 4 an elegant example of what can be done using our new
gradients in the level set framework.

The additional computational cost of our approach depends on the type
of minimizing flow we consider. The extra time is barely noticeable for the
rigid plus scaling and affine flows of paragraphs 3.4.1(a) and 3.4.1(b). The
latter only require to compute a handful of integrals on the contour. The
smooth minimizing flows of subsections 3.4.2 and 3.4.3 are more demanding.
In 2D, the implicit diffusion equations (3.9) and (3.12) are equivalent to
some convolutions with respect to the curvilinear coordinate on Γ. In 3D
(and eventually more), they must be solved with some iterative methods, for
each time step.

3.5.1 Shape warping

We illustrate our approach in the problem of shape warping. In this context,
the energy functional to be minimized is a measure of dissimilarity between
the evolving contour and a target contour. The study of shape metrics is still
an active research area [147, 145, 22], and there are many candidates for the
dissimilarity measure. In this chapter, we use the differentiable approxima-
tion of the well-known Hausdorff distance, as proposed in [22] and presented
in chapter 1, to warp the contours of two different hands.



64 Generalized gradient: priors on minimization flows

Let us first illustrate an important aspect of our method: Modifying
the gradient by changing the inner product involved in its definition and
reprojecting the velocity field onto specifics subspaces of D while favoring
particular deformation field (such as spatially coherent one) does not change
the intrinsic informations contained in the field. Fig.3.1 and Fig.3.2 illustrate
this notion. The first one (3.1) shows on top row a ”classic” L2 warping
and on bottom row a L2 warping ”rigidified” by our spatially coherent flows
(favoring rigid plus scaling motions), while the second one (3.2) shows on top
row a ”classic” Hausdorff warping and on bottom row a Hausdorff warping
with the same ”rigidification”. In both examples our ”rigidification” forced
the evolving square to keep being a square during the evolution. However
the two evolutions are not the same at all. In the L2 warping, the initial field
contains at first principally a scaling component, although in the Hausdorff
warping the initial field contain directly a translating component.

Figure 3.1: L2 warping (top row) and L2 warping with a modified gradient
descent favoring rigid plus scaling motions (bottom row)

Fig. 3.3 (by G. Charpiat) compares the evolution of the contour when
using the L2 gradient descent (top row) and a modified gradient descent
favoring rigid plus scaling motions (bottom row) as in paragraph 3.4.1(a).

Both evolutions achieve a perfect warping. However, despite the similarity
of the two input shapes, the L2 gradient flow goes through some states of
completely different appearances. The trajectory followed by this flow looks
particularly inefficient and unnatural, because the notion of length contained
in the L2 inner product is very far from our intuition. In contrast, the
behavior of our gradient flow is natural and visually pleasing.

In Fig .3.4, we show a three-dimensional warping example from a teddy
bear to Hayao Miyazaki’s character Totoro. We use here the W 1,2-norm
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Figure 3.2: Hausdorff warping (top row) and Hausdorff warping with a mod-
ified gradient descent favoring rigid plus scaling motions (bottom row)

Figure 3.3: Shape warping with the L2 gradient descent (top) and with
a modified gradient descent favoring rigid plus scaling motions (bottom):
λT = λR = λS = 0.025.

of the distance functions as proposed in chapter 1. Despite an initial rigid
registration, the L2 gradient descent is unable to give satisfying results. A
modified gradient descent favoring rigid plus scaling motions leads to better
results.

This suggests that our approach can infer relevant correspondences be-
tween the two contours, as a byproduct of the warping process. This point-
to-point matching is obtained by tracking the points along the evolution.
It does not make much sense with a L2 gradient flow, because the latter
yields a strictly normal velocity field as showed in chapter 2, section 2.4. But
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Figure 3.4: 3D shape warping with the L2 gradient descent (top) and with
a modified gradient descent favoring rigid plus scaling motions (bottom):
λT = λR = λS = 0.025.

when using our approach, the velocity field has a meaningful tangential part.
Maintaining point correspondences during the evolution is straightforward in
an implementation with meshes. It is also feasible in a level set implementa-
tion, with an extension proposed in [117]. In chapter 4 we will describe more
circumstantially this technique and present a framework using it.

3.5.2 Tracking

We now illustrate the better robustness to local minima of spatially coherent
minimizing flows with a naive experiment. We insist on the fact that this
example is illustrative: we did not look for the method and the energy that
gave the best results of tracking for the particular sequence we worked on;
we focus more on the improvements brought by our change of inner product
rather than on the results themselves.

We track a moving hand in a monocular video sequence. For each frame,
we minimize the contour-based energy of the original geodesic active contours
method [20], starting from the result of the segmentation of the previous
frame. Note that a region-based approach [113] or a background subtraction
method would give better results on our particular test sequence.

Fig. 3.5 (by G.Charpiat) compares the evolution of the contour when
using the L2 gradient descent (top row) and a modified gradient descent
favoring affine motions (bottom row) as in paragraph 3.4.1(b). Due to large
displacements between consecutive frames, the L2 gradient flow fails and the
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Figure 3.5: Tracking a hand in a video sequence with the L2 gradient descent
(top) and with a modified gradient descent favoring affine motions (bottom):
λA = 0.025.

contour finally locks between two fingers, whereas our gradient flow manages
to dodge this unwanted low-energy configuration.

3.6 A generalized gradient method

In this section, we go further and consider the definition of the gradient
of an energy from a new point of view, which leads us to a larger class of
minimization algorithms. The thread we follow is the fact that the gradient
of the energy can be obtained as the result of another minimization problem.

3.6.1 The gradient seen as the result of a minimization
problem

To help developing the reader’s intuition let us recall that the usual gradient
descent method can be seen, up to first order, as minimizing E(Γ + u) with
respect to the deformation field u through the linearization of the energy E
in the neighborhood of the shape Γ:

E(Γ + u) ' E(Γ) + GΓ(E(.), u)

But since GΓ(E(.), u) is linear with respect to the deformation field u,
there is no minimum. This is of course a direct consequence of the first-order
approximation. It is therefore more sensible to speak in terms of the direction
of the deformation field u. The notion of direction implies the choice of a
norm: the set of all directions is the set of all fields with norm equal to 1.
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Once a norm F has been chosen (related to an inner product preferably),
a natural solution appears as the direction uF that minimizes the energy
GΓ(E(.), v):

uF = arg min
{v∈D s.t. ‖v‖F=1}

[ GΓ(E, v) ] = − ∇FE(Γ)

‖∇FE(Γ)‖F
(3.13)

The main point here is that the opposite of the gradient −∇FE(Γ) of the
energy E for the inner product related to the norm F is precisely in the di-
rection uF . This gradient has been introduced previously as the deformation
field linked to the continuous linear form GΓ(E, ·) for the inner product F
thanks to the Riesz theorem. Note that the influence of the inner product F
upon the best direction uF lies in the fact that it changes the shape of the
unit sphere (the set of all directions u with unit norm ‖u‖F = 1).

It turns out that the gradient itself (not only its direction) can be ob-
tained as the solution of a minimization problem. This also explicits the link
between the norm F and the gradient. This is shown in the following

Theorem 14. The gradient ∇FE(Γ) for the inner product F satisfies:

−∇FE(Γ) = arg min
v∈D

[
GΓ(E, v) +

1

2
‖v‖2

F

]
Proof. We have indeed, for any v:

GΓ(E, v) +
1

2
‖v‖2

F =
1

2

[
‖v‖2

F + 2 〈v |∇FE(Γ)〉F
]

=
1

2

[
‖v +∇FE(Γ)‖2

F − ‖∇FE(Γ)‖2
F

]
So that:

arg min
v∈D

[
GΓ(E, v) +

1

2
‖v‖2

F

]
= arg min

v

[
‖v +∇FE(Γ)‖2

F

]
= −∇FE(Γ)

The expression between brackets in Theorem 14 breaks up into two parts:
the first one, GΓ(E, v), comes from the energy E(Γ) and stands for the quan-
tity to minimize, whereas the second one, R(v) = 1

2
‖v‖2

F , is a regularizing
term which imposes to the solution to be smooth and small enough in the
sense of the norm F . Different choices of the smoothing term thanks to
different choices of the norm F imply different final gradients ∇FE(Γ).
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For example, the choice of the H1 inner product leads to the regularizing
term:

R(v) =
1

2
‖v‖2

L2 +
1

2
l2‖Dv‖2

L2

and consequently the gradient ∇H1E(Γ) is the deformation field which min-
imizes:

GΓ(E, v) +
1

2
‖v‖2

L2 +
1

2
l2‖Dv‖2

L2

This leads us to an elegant proof of a property of the H1 gradient stated
in section 3.4.2, without considering PDEs:

Proposition 15. The opposite of the H1 gradient is the solution of:

arg min
v∈D

[
‖u− v‖2

L2 + l2‖Dv‖2
L2

]
where u = −∇L2E(Γ) is the opposite of the usual L2-gradient.

Proof. Indeed, for any v:

‖u− v‖2
L2 = ‖u‖2

L2 − 2 〈u |v 〉L2 + ‖v‖2
L2

Therefore,

‖u− v‖2
L2 + l2‖Dv‖2

L2 = ‖u‖2
L2 + 2GΓ(E, v) + ‖v‖2

H1

since by definition of u, GΓ(E, v) = 〈−u |v 〉L2 . And thanks to theorem
14:

arg min
v

[
‖u− v‖2

L2 + l2‖Dv‖2
L2

]
= arg min

v

[
GΓ(E, v) +

1

2
‖v‖2

H1

]
= −∇H1E(Γ)

3.6.2 Generalization of the regularizing term

We have stressed the influence of the choice of an inner product 〈|〉F on the
associated gradient:

−∇FE(Γ) = arg min
v

[ GΓ(E, v) + R(v) ]

where R(v) = 1
2
‖v‖2

F , and ‖ · ‖F is the norm related to the chosen inner
product. Since the choice of the inner product is equivalent to the choice of
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the regularizing term R(v) and acts qualitatively upon the gradient descent
paths, we can see R(v) as a prior on the deformation fields.

Let us now generalize our framework and allow R(v) to be (almost) any
positive real function, not necessarily related to an inner product, and com-
pute (when it exists) the associated field which we will denote, with a slight
abuse of notation, by −∇RE(Γ) (note that if R is related as previously to
the inner product F , then ∇FE = ∇RE):

−∇RE(Γ) = arg min
v∈D

[ GΓ(E, v) + R(v) ] (3.14)

Under some reasonable assumptions about R(v), the new “gradient”∇RE(Γ)
exists and has interesting properties.

The question of the existence and unicity of ∇R in general is not the
main point here, it depends on the particular chosen application R. Here,
R is supposed to stand for an application approximatively “looking like” the
square of a norm; for reasonable choices of R from this point of view, the
existence is guaranteed, and so is the uniqueness in most cases.

We now present the fundamental property of the extended gradient ∇RE
as the

Theorem 16. If R is differentiable and reaches its global minimum at the
zero field, then the flow −∇RE(Γ), if it exists, decreases the energy E.

Proof. We start by proving that GΓ(E,−∇RE(Γ)) 6 0.
We have −∇RE(Γ) = arg minv [ GΓ(E, v) + R(v) ]. It can be written as:

∀v ∈ D : GΓ(E,−∇RE(Γ)) + R(−∇RE(Γ)) 6 GΓ(E, v) + R(v)

Therefore, in particular, considering the zero field v = 0:

GΓ(E,−∇RE(Γ)) + R(−∇RE(Γ)) 6 GΓ(E, 0) + R(0)

GΓ(E,−∇RE(Γ)) 6 R(0)−R(−∇RE(Γ))

since GΓ(E, 0) = 0 by definition of the Gâteaux derivatives (Def. 7). As, by
hypothesis, v = 0 is the global minimum of R, we have R(−∇RE(Γ)) > R(0),
so:

GΓ(E,−∇RE(Γ)) 6 0

Moreover, this last inequality is strict if the usual gradient ∇L2E(Γ) is
not zero. Indeed, in that case, as R(v) reaches its global minimum at the zero
field v = 0, its derivative is zero for v = 0. Consequently, the L2 gradient of
GΓ(E, v) +R(v) with respect to v at the zero field equals ∇L2E(Γ), which is
not zero by hypothesis. Therefore infv [ GΓ(E, v) + R(v) ] is not reached at
v = 0 and all inequalities in the proof are strict.
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Note that the application R is specific to the shape Γ (or, more exactly,
to its tangent space) and there is no assumption about a “regularity” of the
applications RΓ with respect to Γ. However, as in the previous part where we
had to associate to each shape an inner product and naturally chose the same
general expression for all of them, we will restrict ourselves to the case where
the application RΓ has the same general expression R(Γ) for all shapes Γ and
consequently will commit a slight abuse of notation between R and RΓ.

3.6.3 Remarks

(a) Addition of an orthogonal term

Note that the method proposed in section 3.3.3, which consists in adding
an orthogonal term to the gradient (see equation (3.6)), can be seen as a
variation on the extended gradient theme, where the search for the infimum
has been restricted to the affine hyperplane H containing the opposite of the
gradient −∇FE and orthogonal to it. Indeed:

arg min
v∈H

[GΓ(E, v) +R(v)] = arg min
w;w⊥∇FE

[GΓ(E,−∇FE + w) +R(−∇FE + w)]

= arg min
w;w⊥∇FE

R(−∇FE + w)

(b) Directional formulation

We have seen earlier (equation (3.13)) that the direction of the gradient
could be defined as the field v of the unit sphere UF = {v s.t. ‖v‖F = 1}
which most decreases the energy, and that changing the inner product F
was precisely acting on the gradient by changing the unit sphere. One way
to generalize the notion of gradient could have been to set any hypersurface
S instead of the unit sphere UF and to search for the best field v in S.
However, this would lead to some difficulties in practice (how to search for
a minimum on an hypersurface of infinite dimension, how to represent this
hypersurface?). A slightly better way to do this would be to focus on the
hypersurfaces of the form UR = {v s.t. R(v) = 1}, which is in the spirit of
the level-set method. Note that this approach would be very close in practice
to the one we described, the main difference being that we would only obtain
a direction, without the magnitude.

(c) Temporal coherence

The application R(v) does not necessarily only deal with spatial coherence
and can also be designed to favor temporally coherent motions. For example,
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at time step t of an evolution, one could force the new deformation field ut to
resemble the previous one ut−1. If we transport ut−1 from the previous shape
Γt−1 to the new one Γt, we obtain a new field noted T (ut−1) defined on the
same space as ut, and we can compare them, e.g., with ‖T (ut−1) − ut‖. We
are thus led to define R(v) = ‖T (ut−1)− v‖. This function however does not
satisfy in general the condition R(0) = 0 which is necessary in theorem 16.
Nevertheless this problem can be solved by defining R(v) to be the norm of
the projection of v orthogonally to T (ut−1).

3.6.4 Computing the extended gradient

If R is simple enough so that the inverse application of v 7→ DvR(v) is easily
computable, then the computation of the extended gradient ∇RE is imme-
diate from the knowledge of the usual L2-gradient. Indeed, the application
v 7→ GΓ(E, v)+R(v) has a local minimum at v = −∇RE(Γ), so its derivative
with respect to v is zero at this point:

Dv

(
GΓ(E, v) +R(v)

)∣∣
v=−∇RE

= 0

Dv

(
〈∇L2E(Γ) |v 〉L2 + R(v)

)∣∣
v=−∇RE

= 0

∇L2E(Γ) + DvR
(
−∇RE(Γ)

)
= 0

∇RE(Γ) = − (DvR)−1 (−∇L2E(Γ)
)

This formula generalizes the one obtained previously in proposition 13 in
section 3.3 concerning the relation between the gradient for an inner prod-
uct P and the usual L2 gradient. Now, for the extended gradient, the appli-
cation (DvR)−1 which stands in for L in this proposition is not supposed to
be linear anymore.

In more general cases, if we cannot compute the application (DvR)−1,
we can still solve the infimum problem with a Partial Differential Equation
(PDE) which is equivalent to a . . . infinitesimal gradient descent! The defini-
tion in equation (3.14) can be seen indeed as a minimization problem which
leads to the evolution:{

v(0) = 0
dv

dt
= −∇L2E(Γ)−DvR(v)

(3.15)

This evolution leads to a local minimum of GΓ(E, v) +R(v). Even if this
local minimum is not the global one (if R has not been well-chosen) or if
the evolution is stopped before the convergence, the final flow v computed
will strictly decrease the energy E(Γ) (same proof as in theorem 16). This
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point may be important in practice. Note also that there exist many other
methods [14] than the usual gradient descent to solve that kind of problem,
since the quantity to minimize is a sum of a linear term GΓ(E, v) and another
term R(v) which “looks like” a quadratic term since it is supposed to play a
role similar to the square of a norm.

3.6.5 Application: the semi-local rigidification

We now present an example for which the previous framework appears to
be useful. We consider an energy E(Γ) defined on plane curves. These
curves are assumed to lie in an image Ω, in fact a bounded subset of R2.
Instead of following a usual gradient descent in order to minimize E(Γ) with
respect to Γ, we would like to favor the deformation fields which preserve
the rigidity of the shape as much as possible, or, more exactly, we would like
to favor more rigid deformations, so that some kinds of local minima could
be avoided. In section 3.4.1(a) we showed how to change the inner product
so as to favor global rigid transformations. In case of articulated movement,
this global method may not be sufficient, so we would like to favor fields
containing parts close to rigid motions; this leads us to the notion of “semi-
local rigidification”. We use the expression “semi-local” in order to emphasize
the contrast with usual smoothing methods such as Gaussian smoothing or
H1 smoothing, which we will qualify of “local”.

Let us consider a shape Γ and any field v defined on it. We would like
to find the parts, if any, of the field v which are well approximated by a
translation or a rotation acting on the corresponding parts of Γ. In order to
model this, we associate to each point x of Γ a rigid deformation wx defined
on the whole image Ω. In order to describe wx we introduce three functions
defined on Γ:

• a translation T (x)

• a center of rotation C(x)

• the magnitude A(x) of the instantaneous rotation

so that:

∀y ∈ Ω, wx(y) = A(x) (y − C(x))⊥ + T (x)

where a⊥ stands for the vector a rotated by +π/2. We suppose that this
rigid deformation wx varies slowly with respect to x, that is to say we sup-
pose the L2(Ω,R2) norm of its derivative ‖Dxwx(·)‖L2 to be small for each
point x of the curve Γ. We consider the L2(Γ,R) norm of this application
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defined on Γ and obtain the criterion
∥∥‖Dxwx(·)‖L2(Ω,R2)

∥∥
L2(Γ,R)

to quantify

the smoothness of the field wx of rigid deformations on Γ.
It is always possible to express any field v on Γ as a member of the class

rigid motions:

∀x ∈ Γ, v(x) = wx(x) = A(x)(x− C(x))⊥ + T (x) (3.16)

The field v is then completely defined by the knowledge of T , A and C. For
a given field v, there exist of course many triplets (T,A,C) satisfying (3.16),
the simplest one being (v, 0, G), where GΩ is the center of mass of the image
Ω. In order to lift this ambiguity we define a deformation prior R which
depends on T , A and C that should be seen as parameters of v:

R(T,A,C) = ‖v‖2
L2 +

∥∥‖Dxwx(·)‖L2(Ω,R2)

∥∥2

L2

which in fact can also be written simpler (by expanding and integrating the
expression ‖Dxwx(y)‖2) as:

R(T,A,C) = ‖v‖2
L2 +

∥∥DT +DA (GΩ − C)⊥ − A DC⊥
∥∥2

L2 + σ2
Ω‖DA‖L2

where:

σ2
Ω =

∫
Ω

(y −GΩ)2dy

is a characteristic squared “length” of the image. The middle term represents
the interaction between T , A and C; for example, changing the center of ro-
tation DC(x) has no consequence on the rigid motion wx if it is compensated
by the adequate added translation DT = A DC⊥. Note that the quantities
GΩ and σΩ are the only ones where the influence of the image Ω appears.

In order to compute the generalized gradient ∇R of an energy E(Γ), we
first compute the usual L2 gradient ∇L2E, initialize (T,A,C) = (0, 0, GΩ) so
that the corresponding field v(T,A,C) is zero, as required in equation (3.15),
and let (T,A,C) evolve to minimize GΓ(E(.), v) + R(T,A,C). The corre-
sponding PDEs are


∂tT (x) = −

(
∇L2E(Γ)(x) + v(x)

)
+ ∆wx

∂tA(x) = −
(
∇L2E(Γ)(x) + v(x)

)
·
(
x− C(x)

)⊥
+
(
GΩ − C(x)

)⊥ ·∆wx + σ2
Ω∆A(x)

∂tC(x) = −A(x)
(
∇L2E(Γ)(x) + v(x)

)⊥
+ A(x)∆wx

⊥

where wx = wx(GΩ) is the mean of the linear application y 7→ wx(y) on Ω.
Let us notice that if we had considered only translations T (and not

rotations), we would have wx = T (x) = v(x) and the algorithms would act
as an H1 smoothing.
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3.6.6 Numerical Example

We now apply this method to a specific choice of the energy E(·) to minimize.
We would like to warp a given initial shape Γ1 onto a given target shape Γ2,
that is to say, we would like to minimize the shape distance between Γ1 and
Γ2 with respect to Γ1. We choose for E(·) the smooth approximation of
the Hausdorff distance described in chapter 1, which we will denote here by
dH(Γ1,Γ2).

This energy E achieves generally good warping between any two shapes
which are relatively close one to the other, but, in case of large deformations,
it can suffer from an important lack of spatial coherence if a part A of the
moving shape Γ1 has to cross a part B of the target one on its way to another
parallel part C of the target shape (see Fig; 3.6 for an example), because the
part A tries to minimize its distance to both parts B and C at the same time.
The major problem of this smooth approximation is hat its usual gradient
sometimes lacks spatial coherence.

A global coherence can nonetheless be recovered by an adequate change of
inner product which favors rigid transformations, as presented before. How-
ever, this is not sufficient for dealing with local deformations. The methods
of Gaussian or H1 smoothing studied in sections 3.4.3 and 3.4.2 could be
helpful, since their action is local. But even if their influence is appreciable,
these smoothing techniques do not favor semi-locally rigid deformations like
the movements of an articulated object. We have noticed that, in practice,
the quality of the matching between two shapes Γ1 and Γ2 generally depends
on the quality of the path that has been followed during the evolution from
one shape to the other, or, more precisely, on how natural a human observer
would judge this path. This statement is very intuitive and qualitative but
we believe that this quality precisely relies on notions such as articulated
motion. There is clearly room here for further work. In any case this is
the reason why we think that methods like the ones proposed in this chap-
ter, which allow to set priors on the deformation fields can have interesting
practical applications.

We use the framework presented above and compare the evolutions result-
ing from three different approaches on a difficult example of shape warping
in the case of the Hausdorff distance: the usual L2 gradient method, the
H1 smoothing method of section 3.4.2 (for the best value of the smooth-
ness parameter l in equation (3.10)) and the semi-local rigidification method
(Fig. 3.6). The last one achieves the best path and the best correspondences
(Fig. 3.7).

The gradient descent framework in the case of an extended gradient ∇R

could have needed some important additional time if we had to wait until
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Figure 3.6: Warping the red shape onto the blue one (top) with the L2

gradient descent (first row), with a H1 gradient descent (second row) and
with a modified gradient descent favoring semi-local rigid motion (third row)
for the same energy (Hausdorff distance). All evolutions converge to the
same shape, but with different paths.

the evolution of ∇R converges at each time step of the global evolution of
Γ1. Fortunately, when necessary, thanks to the remark in section 3.6.4, we
can choose to stop the evolution of ∇R before convergence in order to keep
the additional cost into reasonable limits. The result presented here was
computed so that the total evolution time was multiplied by two, but the



3.6 A generalized gradient method 77

Figure 3.7: Comparison of the correspondences between the initial curve
(left) and two final curves resulting from the H1 gradient evolution (middle)
and from the semi-local rigidification (right). The different parts of the curves
are shown with different colors, so that their respective evolutions can be
followed. The correspondences for the semi-local rigidification case are more
geometrically meaningful.

effect of the semi-local rigidification is already noticeable for an added cost
time of 10%.

For the particular example presented in Fig. 3.6, one could object we
should have considered other distances, such as the L2 norm between the
signed distance functions of the shapes, which always leads to very smooth
evolutions. However, those smooth evolutions are not very sensible, in that
they often miss entirely the similarity between the two shapes to match
(see Fig. 3.8). As a consequence their gradient does not contain a lot of
geometric information and cannot be very much improved by changes of
inner products. This is why, despite the sometimes irregular behavior of
the gradient of the Hausdorff distance, we prefer to use it in combination
with new inner products, because this has both advantages of guaranteeing
smoothness and making geometric sense.

In Fig. 3.9 we show an example with real contours from hand segmen-
tation of pictures. As in the previous example, we show the evolution path
obtained by minimization of the approximation of the Hausdorff distance
between the two curves, with the semi-local rigidification approach. The
evolution mainly consists in four local rotations (arms and legs), which fits
well our intuition. We have colored, as previously, different parts of the initial
curve in order to follow them through the evolution and notice how relevant
the correspondences are. A usual gradient descent for this energy would
have faced the same irregularity problems as in the first evolution presented
in Fig. 3.6, and the choice of other usual energies, like the L2 norm between
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Figure 3.8: Comparison with a L2 gradient descent on the L2 norm of the
signed distance functions associated to the curves. The gradient is naturally
smooth but lacks geometric information.

the signed distance functions to the curves, would lack geometric sense, as
in Fig. 3.8.

3.7 Conclusion

The impact of the inner product structure of the deformation space on the
behavior of the active contours method had been overlooked so far in the com-
puter vision community. We have explored several families of inner products,
as well as some minimizing flows not deriving from any inner product by ex-
tending the notion of gradient. Given an energy, we now have several ways to
minimize it, each of the proposed flows being a minimizing flow but leading
to different kinds of evolutions. The inner products and the extended gradi-
ents should consequently be seen as priors on the deformation fields, that is
to say priors on the evolution paths. They can be used to introduce different
degrees of spatial coherence (local, semi-local or global) in the evolution of
the contour. We have shown, with some numerical experiments, that these
evolutions better fit our intuitive notion of deformation cost and that they
can mimic the behavior of the objects of interest. As a result, they are at
the same time more meaningful and more robust to local minima attraction.

In our experiments, we only considered shapes with no auto-occlusion.
And yet, most of natural moving objects (e.g. the profile silhouette of a walk-
ing person) present auto-occlusion, the topology of the 2D shape is therefore
always changing and as a consequence the matching between the correspond-
ing 2D shapes is quite difficult. Future work could investigate the application
of our methods on the 3D moving shapes and develop techniques to use the
corresponding warping and matching for the projective 2D shapes.
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Figure 3.9: Warping real contours by minimization of the approximation of
the Hausdorff distance with the semi-local rigidification approach. The colors
show the correspondences between the moving curve and the initial one.
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Chapter 4

Reconciling landmarks and
level sets

Shape warping is a key problem in statistical shape analysis. This chap-
ter proposes a framework for geometric shape warping based on both shape
distances and landmarks. Taking advantage of the previously presented spa-
tially coherent flows (see chapter 3), our method is mathematically well-posed
and uses only intrinsic shape information, namely some similarity measure
between shapes and the correspondence of landmarks provided on the shape
surface. No extrinsic quantity is considered, neither a diffeomorphism of the
embedding space nor point correspondences in this space. Thanks to a recent
extension of the level set method allowing point tracking and tangential ve-
locities, our method is compatible with implicit representations. Moreover, a
matching between shape surfaces is provided at no additional cost. Although
some recent work deals with implicit representations and landmarks, it is, to
our knowledge, the first time that landmarks and shape distances are recon-
ciled in a pure geometric level set framework. The feasibility of the method is
demonstrated with two- and three-dimensional examples. Combining shape
distance and landmarks, our approach reveals to need only a small number
of landmarks to obtain improvements on both warping and matching.

Publication related to this chapter: Reconciling landmarks and level
sets [93] with Renaud Keriven and Olivier Faugeras in the proceedings of the
International Conference on Pattern Recognition held in 2006.

4.1 Introduction

As seen in chapter 2, the problem of shape warping is one of the keys lead-
ing to statistical shape analysis [15, 45]. It offers a way to compare shapes,

81
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to compute their mean, to analyze their variability, and eventually to ob-
tain correspondence between them. This problem, motivated by recognition,
tracking or segmentation tasks, has been since the beginning formulated in
purely geometric term of shape distance[37]. Landmarks have most of the
time been part of the proposed methods, sometimes as guides, given by the
user (e.g. anatomical landmarks) or geometrically determined (e.g. high cur-
vature points), sometimes to define the shapes themselves (pseudo-landmarks
between the landmarks). Among successful methods, let us cite the Pro-
crustes analysis [69, 76], the thin-plate splines [16, 17] (still inspiring more
recent work like [142]), the active shape models [30] (later extended into the
active appearance models [29], in which the underlying images are consid-
ered).

Introduced as a way to cope with interface evolution simulation, the level
set method [39, 108] is based on an implicit representation of surfaces. The
natural choice for the implicit representation is often the signed distance func-
tion to the closed surface. In the original version of this method, the signed
distance function was only a convenient choice to get an implicit represen-
tation of the initial surface. Then, some methods were designed [63, 115] to
preserve this distance during the whole evolution: the evolving implicit func-
tion remains the distance to its zero level set. Consequently, the emergence
of shape statistics in the implicit framework is not surprising. The pioneering
piece of work considered the distance function as the only object of analysis:
warping, matching, or statistical analysis were directly performed on the dis-
tance functions [87, 114, 145]. Nevertheless, mainly because the combination
of two distance functions is not a distance function anymore, these methods
could not be considered as definitive answers.

More recently, in a large collection of papers [90, 89, 86, 85], the au-
thors proposed to mix implicit representations and landmarks. Yet, their
work belongs to the diffeomorphic matching family: a space diffeomorphism
is recovered thanks to the implicit representation of the landmarks (closed
curves, but also open curves or points). It does not consider any surface evo-
lution, thus, to our opinion, cannot be really seen as a true level set method
application.

As we saw in chapter 1 the Hausdorff distance [37, 22] can also be used as
shape similarity measure. The warping induced by the minimization of such
shape distances can be improved in some manner using spatially coherent
minimizing flows presented in chapter 3. The Hausdorff distance has always
been one of the most considered shape similarity measure [37]. Hopelessly,
trying to make a shape evolve toward another one minimizing their Hausdorff
distance yields an irregular motion. That is why, the authors of [22] intro-
duced a family of smoothing approximations of the Hausdorff distance that
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makes this warping possible (see chapter 1). Although mathematically well
justified, the resulting warping does not seem to be completely satisfying, in
the sense that it does not reveal to be the one a human observer would have
chosen. As shown in chapter 3, the generalized gradient method can be a
way to correct this unwanted behavior.

Though, in the case of complex shapes, providing corresponding land-
marks on both the initial and the target shapes reveals to be inevitable
[55, 68]. In [1], the authors proposed a first try to modify a curve evolu-
tion in the implicit framework in a way that encourages the motion of the
landmarks toward their respective targets. Turning back to simple ideas, the
natural way to guide an evolution with landmarks is to try to minimize the
distance between the landmarks on the evolving shape and the correspond-
ing ones on the target shape. Again, this yields an irregular motion. In this
chapter, we present a novel usage of the generalized gradients introduced in
chapter 3 that turns this motion into a regular and well posed one.

Remarkably, recent advances in the level set method make our shape evo-
lution compatible with it. To do this, two techniques are required. First, a
way to simulate a Partial Differential Equation (PDE) embedded on a sur-
face. This has been affordable for some times[9]. Second, a way to deal
with surface evolutions involving non normal velocities (and, but this is re-
lated, to track the surface points along time). This last need is not usual in
the level set framework, but a recent work[117] proposed a solution to that
problem. As a result, we present what is, to our knowledge, the first usage
of landmarks for true geometrical shape warping in the level set framework.
Moreover, tracking points during the evolution gives us a matching (again,
not necessarily one-to-one) between the shapes at no additional cost.

As a benchmark, we test the effect of adding our landmark-guided force to
the distance-based spatially coherent evolution presented in previous chap-
ters. Our method proves to be robust and gives the expected improvements:
the obtained warping is more satisfying. Although not required, we track
points in the original method too, and show that adding landmarks greatly
improves the induced matching, even in cases where the original warping
seems to be good enough. Again, our landmark-based evolution could be
added to any other shape warping scheme. Yet, we have found the tested
scheme, namely shape distance plus landmarks (plus eventually spatially co-
herent flows), an interesting combination that reveals to need only a small
number of landmarks to obtain improvements on both warping and matching.
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4.2 Landmarks-guided warping

In chapter 2 we presented the variational shape warping framework. In this
chapter we will keep using the same notations. We place ourselves in the
case where we want to warp an initial shape Γ1 into a target one Γ2 by
minimizing a given shape energy E(Γ1,Γ2) and by specifying some points on
the two shapes that “correspond” each other. It means that we want those
points to be matched at the end of the evolution.

The addition of landmark points can be necessary for example if the
considered shapes are complex and we want to guide the evolution by this
additional information. It can also be useful if the user want to specify some
correspondences which are not only geometrical: one can think for instance
of the case of two squares on which correspondence between corners are given
by an external information (e.g. if the square come from a segmentation on
two images), see Fig. 4.2.

Provided by the user (anatomical landmarks), or automatically extracted
(geometric landmarks), we assume that we are given p pairs of corresponding
points on the initial and on the target shapes :

landmark points:
{

(x1,i , x2,i) ∈ Γ1 × Γ2, 1 ≤ i ≤ p
}

(4.1)

We would like to use the information given by theses correspondences to
guide the evolution.

4.2.1 A naive definition

As an example, let us suppose we want to provide landmark guidance to the
evolution presented in chapter 2 given by equation (2.2):

Γ(0) = Γ1

dΓ

dt
= −∇DE(Γ,Γ2)

where ∇DE(Γ) is the gradient of E() relative to some inner product on D .
We do this by adding a landmark term EL to the energy, obtaining a new
energy, noted Etot:

Etot(Γ,Γ2) = E(Γ,Γ2) + EL (Γ,Γ2) (4.2)

The new equation of the evolution is then:
Γ(0) = Γ1

dΓ

dt
= −∇DEtot(Γ,Γ2)

(4.3)
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A first idea would be to track the evolution of the landmarks with points
xi(t). We would like xi(t) to be the position of the point on Γ(t) which
corresponds to x1,i at time t :

xi(0) = x1,i

∂xi(t)

∂t
= −∇DEtot(Γ,Γ2)(xi(t)) (4.4)

and to simply choose for EL the L2 square norm between the vectors (xi(t))
and (x2,i):

EL (Γ(t),Γ2) =

p∑
i=1

d(xi(t),x2,i)
2 (4.5)

Hopelessly, this is not well posed: the existence of point xi(t) is not even
guaranteed! The framework of viscosity solutions adapted to PDEs like equa-
tion (4.3) allows some points to disappear (see [31, 124]).

4.2.2 A correct definition

In fact, forward correspondences may not exist if the interface evolution
forms shocks; the interface may even collapse and merely disappear. On
the contrary, backward correspondences are guaranteed: each point of the
evolving interface comes from one point at time 0 (see [117]).

We note ψt : Γ(t)→ Γ1 the family of functions giving for each point x of
Γ(t) the point ψt(x) on Γ1 from which x comes. Let γi(t) be the subset of
Γ(t) coming from x1,i (possibly empty):

γi(t) = ψ−1
t ({x1,i})

Equipped with this correspondence, we are now able to define a correct
landmark-based energy as the sum, for each landmark of Γ2, of the squared
distance between this point and the corresponding set γi(t):

EL =
∑
i

d(x2,i, γi(t))
2 (4.6)

with the convention that the distance to an empty set is zero. Note that
some landmarks might disappear (shock) or become a continuous infinity
of points (rarefaction). Actually, we conjecture that, for reasonable choices
of the landmarks, rarefaction does not happen with smooth shapes. Yet,
depending on the initial energy E, there might be some shocks, even with
smooth shapes. Such considerations are beyond the scope of our work and
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might still be open questions. So far, we can only mention that we have
observed in our experiments that with the addition of our landmark-based
energy EL landmarks points are not likely to disappear.

In the sequel, we will suppose that either an initial landmark x1,i re-
mains one point xi(t) (γi(t) = {xi(t)}), or it disappears (γi(t) = ∅). Under
these hypothesis, the difference between our energy (equation (4.6)) and the
”naive” one (equation (4.5) boils down to the possible disappearance of some
landmarks:

EL =
∑

{i,γi(t)6=∅}

d(xi(t),x2,i)
2 (4.7)

keeping in mind that point xi(t) are not given by evolution (4.4), but come
from the backward correspondences ψt.

4.2.3 Adapted gradient

Formally, the energy given by equation (4.7) yields Dirac peaks in the ex-
pression of the usual L2-gradient of the energy:

∇L2Etot(x) = ∇L2E(x) +
∑

{i,γi(t)6=∅}

δxi(t)(x)(xi(t)− x2i) (4.8)

where δx denotes the Dirac function centered at point x. This is indeed not
a good candidate for a gradient descent.

The solution here is to change the inner product and to use the H1 inner
product as introduced in chapter 3. Let us detail what is actually a standard
“trick” in numerical analysis. We change the inner product which appears in
the definition of the gradient. Let H1(Γ,Rn) be the Sobolev space of square
integrable velocity fields with square integrable derivatives. We consider the
canonical inner product of H1(Γ,Rn):

〈f |g〉H1 =

∫
Γ

f(x) · g(x) dΓ(x) + l2
∫

Γ

Dxf(x) ·Dxg(x) dΓ(x)

where Dx denotes the intrinsic derivatives on the contour and l is a char-
acteristic length for the derivation which acts as a weight between the two
integrals. Recalling the definition of the gradient given chapter 2, we get:

∀ v , 〈∇L2Etot | v〉L2 = GΓ

(
E(Γ,Γ2),v

)
= 〈∇H1Etot | v〉H1

= 〈∇H1Etot | v〉L2 + 〈Dx ∇H1Etot | Dx v 〉L2

We get that the H1 gradient can be obtained from the L2 gradient by solving
an intrinsic heat equation with a data attachment term: ∇H1Etot is solution
of

∆Γ u = u − ∇L2Etot (4.9)
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where ∆Γ denotes the intrinsic Laplacian operator on the surface, often called
the Laplace-Beltrami operator. The solution of this equation coincides with:

arg min
u

∫
Γ

| u(x) − ∇L2Etot(x) |2 dΓ(x) +

∫
Γ

| Dxu(x) |2 dΓ(x) (4.10)

and the H1 gradient is finally a smoothed version of the L2 gradient, given
by an image restoration process on a manifold Γ, a problem familiar to the
image processing community. However, let us make two remarks:

• Introducing this smoothing via a modification of the gradient rather
than directly from equation (4.10) warrants that the gradient descent
will decrease the energy (as shown in chapter 3).

• We have knowingly omit to mention the space of admissible velocities.
All the computations have been written formally. A rigorous demon-
stration would have involved the theory of distributions. Sketchily, in
an appropriate distribution space, we should have considered the PDE
obtained from (4.9) when replacing the formal symbol ∇L2Etot by the
second term of equation (4.8). The solution of this PDE can be shown
to be a member of H1 and exactly the desired smooth gradient∇H1Etot.

In summary, starting from the irregular gradient ∇L2Etot given by equa-
tion (4.8), we obtain a smooth gradient ∇H1Etot, given by the PDE (4.9)
and mathematically justified by an adapted choice of inner product that
guarantees a decrease of the energy.

4.2.4 Matching

Let us suppose that the warping process of Γ1 into Γ2 has converged. More
precisely, we suppose there exists some time T such that Γ(T ) is very close
to Γ2 (e.g. dH(Γ(T ),Γ2) < ε or Etot(Γ(T ),Γ2) < ε′), and a way to assimilate
points of Γ2 to points of Γ(T ) (e.g. taking the closest point1). Then, the
backward correspondence ψT supplies a natural matching from Γ2 to Γ1.
This matching is not one to one if some points of Γ1 have disappeared during
the evolution (shocks).

4.3 Level set implementation

Implementing our scheme in the level set framework [39, 108] requires two
adaptations of the original method: implementing a PDE on an implicit

1This could be a problem if the evolution gets stuck into some local minimum. Yet, we
have never experienced this case.
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surface and being able to track points during the evolution.

4.3.1 The original level set method

Let us present briefly the broadly known level set method (we refer the reader
to [108, 105] for more details). The key idea of the level set method is to use
an implicit representation of the shape Γ(t) i.e. to represent Γ as the zero
level of some function φ(x, t) defined for x ∈ Ω:

Γ(t) =
{
x ∈ Ω | φ(x, t) = 0

}
Usually φ is negative inside Γ(t) and positive outside. It can be proved

that, if the level set function φ evolves according to:

∂φ(x, t)

∂t
+ v(x) · ∇φ = 0 (4.11)

then, its zero level, which is Γ(t) by hypothesis, evolves according to the

required equation dΓ(t)
dt

= v. Here, v(x) is defined on Ω and is equal to the
desired velocity on Γ(t) and is theorically arbitrary elsewhere (see below).

The advantages of the level set method are well known: stability, accu-
racy, convergence to the correct solution, easy extension to higher dimensions,
correct handling of topological changes such as breaking and merging.

An important issue is that the velocity field v ∈ D is only defined on the
shape Γ in the partial differential equation dΓ(t)

dt
= v. In many cases, v has a

natural extension everywhere in domain Ω, so that equation ∂φ(x,t)
∂t

+ v(x) ·
∇φ = 0 is defined. For instance, when v(x) is the curvature of Γ at point
x ∈ Γ, one could choose, at each point x ∈ Ω, v(x) equal to the curvature of
the level set of φ going through x. In some other cases, like ours, v can only
be computed on Γ and some extension procedure has to be used to expand
v everywhere in Ω. This is now classical [115, 2, 63].

Useful intrinsic geometric properties of the shape may be easily deter-
mined from the level function φ. For example, at any point of the shape, the

normal vector
−→
N is given by:

−→
N =

∇φ
|∇φ|

and the curvature κ is easily obtained from the divergence of the gradient of
the unit normal vector to front, i.e.,

κ = ∇ ·
(
∇φ
|∇φ|

)
= −

φxxφ
2
y − 2φxφyφxy + φ2

xφyy

(φ2
x + φ2

y)
3/2
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In our case, the velocity field we consider often involves the distance
function to the shape Γ which we would like to be known without extracting
the zero level of φ. Usually the initial value of φ is taken equal to the signed
distance function to the initial shape Γ(0). As a matter of fact this function
verify all the necessary properties for a level set function. Therefore, φ(·, 0)
can be used to compute our velocity field at time t = 0. However, φ(·, t)
has no reason to remain the signed distance to Γ(t). In fact the solution to
equation 4.11 is not a distance function ([63]). In [63], the authors propose
a method in which the implicit representation always remains a distance
function by construction during the evolution. We chose to use this method
and we can then use at any time t, φ(·, t) as the signed distance function to
Γ(t).

Let us finally notice that in the original level set method, the velocity
field is often considered as collinear with the normal field of the shape Γ. In
our case, because of the addition of the landmark-based energy term EL , we
will obtain a non-normal velocity field and it is important to keep the general
expression of this velocity field.

4.3.2 H1 gradient

We have shown in section 4.2.3 that the H1 gradient is solution of equation
(4.9). Since the work introduced in [9], implementing a PDE on a surface is
affordable in the implicit framework. The only hard point in our case could
be the Dirac peaks in the data term. We indeed use a smooth approximation
of them.

It should also be mentioned that, in the two dimensional case, the explicit
solution of the equation ∆Γ u = u− v is known and given by:

u(x) = eσ(x)

2

(
A−

∫ σ(x)

0
e−σ v(σ) dσ

)
+ e−σ(x)

2

(
B +

∫ σ(x)

0
eσ v(σ) dσ

)
with A = e|Γ|

e|Γ|−1

∮
Γ
e−σ v(σ) dσ

and B = 1
e|Γ|−1

∮
Γ
eσ v(σ) dσ

where σ is the arc length and |Γ| the length of the shape. Using this explicit
solution might be attractive to avoid the iterative minimization giving u.
Yet, it requires the extraction of the zero level set Γ of the implicit function,
a process generally considered awkward in the level set community.

4.3.3 Point Correspondences

Because it codes interfaces with implicit representations, the original level
set method can not follow the evolution of each point of the initial interface.
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Only the geometric location of the whole interface is recovered. For the same
reason, considered velocities are usually normal to the interface (or projected
onto the normal for simplification reasons because it does not modify the
location of the interfaces). In our case, we need to follow the landmark
points through the backward correspondences ψt and to cope with the non
normal velocity −∇H1Etot. In [117], the authors propose an approach to
maintain an explicit backward correspondence from the evolving surface to
the initial one. Let the shape Γ(t) be represented by a level set function
φ(·, t) : Rn → R, and v be the (non necessarily normal) velocity fields. φ
evolves according to:

φ(x, 0) = d̃Γ1(x)

∂φ

∂t
+ v · ∇φ = 0

Let us consider a function Ψ : Rn × R+ → Rn such as:

Ψ(x, 0) = x

∂Ψ

∂t
+DΨ v = 0

(4.12)

where DΨ stands for the Jacobian matrix of Ψ. It is shown in [117] that
Ψ(x, t) holds the position that this point was occupying at time t = 0. Our
needed backward correspondence is then straightforward: ψt(x) = Ψ(x, t).

4.4 Experiments

As a benchmark, we warp some artificial two dimensional curves with the
original energy E = dW 1,2 and test how our landmark-guided force modi-
fies the warping and the final matching. Figure 4.1 shows the warping of a
rectangle into another one. The different parts of the curves are shown with
different colors, so that their respective evolution can be followed. Although
the initial warping without any landmark seems natural, it fails discover-
ing the matching between the edges of the rectangles, a matching indeed
recovered when providing landmarks.

Fig. 4.2 shows the warping of a square onto another one, the energy is here
the Hausdorff distance and we used the spatially coherent flows in addition
of landmarks on the corners.

Figure 4.3 shows the warping between two hand shapes. The energy
E = dW 1,2 yields an unnatural warping. Adding spatially coherent flows
makes the warping a bit better but still fails in some parts, mainly because
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Figure 4.1: Warping of a rectangle shape into another one. Top row: evo-
lution with E = dW 1,2 . Bottom row: evolution with the same energy, aug-
mented with four provided landmarks, marked by color spots. The colors on
the evolving curve shows the evolution of different parts of it. See text for
comments.

the difference between the two shapes can not be summed up to a global
motion. With three landmarks only, both a satisfying warping and a good
matching are recovered.

Figure 4.4 shows the warping of a teddy bear into a cartoon character.
Without any landmarks, the top row evolution fails matching the ears and
arms of the characters. The bottom row shows the evolution with four land-
marks. Red spots allow to check a good matching between landmarks.

4.5 Conclusion

We proposed a framework for shape warping based on both shape distances
and landmarks. Our method is purely geometric and no extrinsic quantity
like a space diffeomorphism has to be considered. Thanks to recent advances
in the level set techniques, a level set implementation is possible, reconciling
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Figure 4.2: Warping of the blue square into the red one. Evolution with the
Hausdorff distance, plus spatially coherent flows, plus landmarks points on
the corners (marked by black spots).

landmarks and the level set methods. Moreover, a matching between shapes
is provided at no additional cost. Two- and three-dimensional examples, com-
bining shape distance and landmarks, demonstrate the improvement brought
by our approach on both warping and matching, even with a small number
of landmarks. Further work includes investigating for a one-to-one matching
between shapes, and a way to cope with other landmarks, such as curves on
surfaces in R3.

One could say that this method implies a loss of autonomy in the warping
operation since several landmark points have to be specified. However, in
addition of allowing to process more complex shapes, let us stress again that
only a few number of landmark points is enough to largely improve the results
(in our examples, the number of specified landmarks is typically less than
5). Moreover we can imagine a way to stay completely automated by using a
detector of characteristic points (e.g. points of high curvature) and by taking
the result of this detection as potential landmarks points.
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Figure 4.3: Warping of a hand shape into another one. Top row: evolution
with E = dW 1,2 . Middle row: evolution with the same energy plus spatially
coherent flows. Bottom row: evolution with the same energy plus coherent
flows plus three provided landmarks. See text for comments.
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Figure 4.4: Warping of a teddy bear into a cartoon character. Top row:
evolution with E = dW 1,2 . Bottom row, first image: four landmarks provided
on the two shapes, indicated by blue spots. Bottom row, remaining images:
evolution with E = dW 1,2 plus the provided landmarks. In red, some parts
of the shapes are tracked. See text for comments.



Part II

Facial expression and epilepsy
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Chapter 5

The context

Epilepsy is among the most common serious brain disorders, can occur at
all ages, and is characterized by a variety of presentations and causes. In
this chapter we will present the context of our work on facial expression
analysis during epileptic seizures. After a general presentation of epilepsy
and epileptic seizures, we will characterize our specific problem.

5.1 General presentation of epilepsy and epilep-

tic seizures

5.1.1 Definitions

Epilepsy is the name of a brain disorder characterized predominantly by
recurrent and unpredictable interruptions of normal brain function, called
epileptic seizures. Epilepsy is not a singular disease entity but a variety of
disorders reflecting underlying brain dysfunction that may result from many
different causes. In [56] the authors propose a general definition of those two
terms:

Definition 17. An epileptic seizure is a transient occurrence of signs
and/or symptoms due to abnormal excessive or synchronous neuronal activity
in the brain.

The epileptic neuronal activity is a specific dysfunction, characterized by
abnormal synchronization, excessive excitation and/or inadequate inhibition,
and can affect small or large neuronal populations. The clinical manifesta-
tions are sudden, transient and usually brief. They include motor, psychic,
autonomic and sensory phenomena, with or without alteration in conscious-
ness or awareness. As we will see later, the symptoms depend on the part
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of the brain involved in the epileptic neuronal discharge, and the intensity of
the discharge.

Definition 18. Epilepsy is a disorder of the brain characterized by an en-
during predisposition to generate epileptic seizures and by the neurobiologic,
cognitive, psychological, and social consequences of this condition. The defi-
nition of epilepsy requires the occurrence of at least one epileptic seizure.

Etymologically the word seizure comes from the Greek meaning to take
hold. Nowadays this word is used to design any sudden and severe event.
Many of these paroxysmal events can look like an epileptic seizure but do
not involve abnormal, rhythmic discharges of cortical neurons. They can
be caused by either physiological or psychological conditions. To emphasize
this difference we will preferentially refer to an epileptic seizure. Epilep-
tic Seizures can be divided into two types according to whether the source
of the seizure within the brain is localized, partial seizures, or distributed
throughout the cortex, generalized seizures.

5.1.2 Epidemiology

Epidemiology is a branch of medical science that deals with the incidence,
distribution, and control of disease in a population. In epidemiology context,
the incidence is a measure of the risk of developing some new condition within
a specified period of time and the prevalence of a disease is defined as the
total number of cases of the disease in the population at a given time divided
by the number of individuals in the population.

The estimated incidence of epilepsy is approximately one case per 2000
persons in the Western population per year and the prevalence of active
epilepsy (with recent seizures) is around 5 − 10 per 1000. Yet unexplained,
the incidence of epilepsy is highest in the first year of life and for those over
50 years of age (see Fig. 5.1). The cumulative incidence, that is the chance
of having epilepsy during a lifetime of 80 years, is about 3%. The fact that
prevalence is much lower than cumulative incidence demonstrates that in
many cases epilepsy remits. In fact within 5 years of the onset of seizures,
50 − 60% of patients will have entered long remission. However, in about
20% of cases, epilepsy, once developed, never remits.

5.1.3 The causes of epilepsy

Epilepsy is often multifactorial. The range of causes can vary in different age
groups, patient groups and geographical locations. Broadly speaking, ge-
netic, congenital, and developmental conditions are the most common causes
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Figure 5.1: Age-specific incidence rates based on combined results from stud-
ies in USA, Iceland and Sweden (figure taken from [126])

of early childhood onset epilepsy, whereas in adult life epilepsy is more likely
to be due to external nongenetic causes [126]: tumor and vascular disease
is increasingly common. Head trauma and central nervous system infections
may occur at any age and in certain parts of the world, endemic infections
(such as tuberculosis, cysticercosis, HIV) are common causes. There are still
many people for whom the cause of their epilepsy cannot, as yet, be identi-
fied. In such cases, the theory most commonly accepted is that this epilepsy
is the result of an unbalance of certain chemicals in the brain (especially
chemical messengers known as neurotransmitters) causing them to have a
low convulsive threshold.

5.1.4 Why and how to treat epilepsy ?

(a) The aims of drug treatment

• Seizure control: The antiepileptic drugs are remarkably effective in
suppressing seizures. Population surveys have shown that between 80
and 90% of patients will gain 1− 2 year remissions from seizures when



100 The context

therapy is started, and long-term remission is gained in about 70% of
all patients treated with antiepileptic drugs.

• Avoidance of social consequences of epilepsy and secondary handicap:
epilepsy has a number of potential social consequences which can be
more important than the immediate effects of individual seizures. ”Be-
ing epileptic” can be far worse than simply having seizures.

• Reduction of mortality and morbidity: Epilepsy is a potentially life-
threatening condition. Deaths associated with epilepsy can be classified
into three categories: (i) those caused directly by the seizures (such as
accidental death or SUDEP: sudden unexpected death in epilepsy), (ii)
those related indirectly, or only partly, to epilepsy (for instance suicide),
and (iii) those due to other factors, for example the underlying causes
of the epilepsy (such as a tumor or infection). Successful antiepileptic
drug (AED) therapy should prevent deaths in the first category, may
prevent some deaths in the second category, but will have no preventive
effect in the third category.

(b) Pharmacologic treatment

The first 5 years of treating epilepsy in patients with new-onset epilepsy is
crucial. The modern antiepileptic drugs (AEDs) provide satisfactory control
of seizures for most patients with epilepsy. According to [49], about 65% of
patients with new-onset epilepsy respond, seizure recurrence occurs in 5%,
and 35% have uncontrolled epilepsy (see Fig. 5.2).

(c) Surgical treatment

For patients with epilepsy not controlled by adequate attempts with multiple
medications, surgical treatment can be an option. Generally patients selected
for a pre-surgical observation present a partial epilepsy because this kind of
epileptic seizures comes from a relatively localized area in the brain. This
area could possibly be removed by a surgical operation. The pre-surgery
exploration consists principally in trying to accurately locate the area at the
origin of the seizures (see the next section) and assessing whether removal
of concerned brain tissue will result in unacceptable problems with memory,
vision, language or movement.

The evolution of the surgical treatment of epilepsy in the past century
has been dependent on technical developments. The first resective surgery
was performed in 1880, following improvements in anesthetics and surgical
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Figure 5.2: Overview on management principles and estimates of seizure
freedom after treatment in the first 3− 5 years of new-onset epilepsy (figure
taken from [49])

instrumentation. In the late 1930s, the introduction of Electroencephalogra-
phy (EEG) provided the first objective method for localizing epileptic tissues.
EEG and clinical localization were combined and this approach, which is still
the basis of epilepsy surgery today, improved both diagnostic accuracy and
surgical outcome. Nowadays approximately 80% of patients who had a sur-
gical operation will not present any seizure in the next three years. But
this good statistics should be relativized by the fact that the most impor-
tant determinant of a successful surgical outcome is the good pre-selection
of patients.

5.2 Our specific problem

In La Timone hospital, Marseille, France, Dr. Patrick Chauvel and his team
receive patients in pre-surgical exploration. These patients present a phar-
macoresistant epilepsy: medical therapy failed to sufficiently control seizures,
and therefore patients no longer have the ability to maintain their quality of
life. Hence the possibility of an surgical treatment is considered and patients
stay under observation from several days to few weeks.
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5.2.1 Clinical tools

(a) Magnetic resonance imaging (MRI)

This is a medical imaging technique introduced in the early 1980’s. It pro-
duces a two- or three-dimensional view of a body part, the brain among
others. Each patient with new-onset epilepsy usually have an MRI to de-
tect possible structural lesions caused by for example cortical malformation,
traumatic brain injury, brain tumor, and cerebrovascular disease, which are
the most common causes of symptomatic (with a known cause, by opposite
of idiopathic) epilepsy.

(b) Electroencephalography (EEG)

EEG is the measurement of electrical activity produced by the brain as
recorded from electrodes placed on the scalp. It is a completely painless
and non-invasive method. Human EEG were first done by Hans Berger in
the 1920’s, but its use for medical purpose and in particular epilepsy really
began from the 1950’s. EEG presents a number of advantage, compared for
example to functional MRI: the subject does not have to hold as still during
the recording and the temporal resolution is much better. However since
the electrical activity is recorded from the surface of the scalp, the spatial
resolution is poor and the problem of reconstructing intracranial sources for
a given EEG signal, referred as the inverse problem is very difficult.

(c) Stereoelectroencephalography (SEEG)

This is the recording of electroencephalographic signal via depth electrodes,
i.e. electrodes surgically implanted into the brain tissue. 12 to 14 electrodes,
with 10 to 15 recording points each, are usually implanted in several loca-
tions selected using a preliminary EEG study. It has a much higher spatial
resolution than surface EEG and thus contributes to define with accuracy
the boundaries of the ”epileptogenic zone”, i.e. the area of brain generating
the seizures.

(d) Video-EEG or Video-SEEG

In video-EEG (video-SEEG), patients are videotaped at the same time as
their EEG (SEEG) is recorded. The recording is carried out for a long
period of time, often several days. The doctor usually views the video and
EEG (SEEG) images side by side. In this way the doctor can see precisely
how the behavior of the patients during seizures is related to the electrical
activity in the brain. This is closely related to the semiology of the seizure.
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5.2.2 Semiology of the epileptic seizures

The semiology is the branch of linguistics concerned with signs and symp-
toms. In our case it designs the study of every sign and symptom, and
their temporal evolution, during the epileptic seizure. During focal epileptic
seizures patients may manifest abrupt modifications of behavior [126] such
as: motor manifestations (e.g. jerking, spasm or posturing), special sensory
manifestations (e.g. tingling, numbness, pain or feeling of heat), autonomic
manifestations (e.g. changes in skin color, blood pressure, heart rate, pupil
size and piloerection), psychic manifestations (e.g. dysphasic symptoms, dis-
turbance of memory, affective symptoms including fear, depression, anger
and irritability, . . . ).

The observation, study and analysis of all the signs and symptoms occur-
ring during the epileptic seizure is an important tool for the clinical team.
Along with the EEG or SEEG recordings, it constitutes a crucial set of clues
which can confirm or refute a localization of a possible epileptogenic area. For
this reason, epileptologists pay very careful attention to these signs during
patient observation: the seizures are videotaped and can thus be rewatched,
the patients are encouraged to described in detail their sensory experiences
and their feelings. In addition examination is carried out where possible dur-
ing and immediately after the seizure, allowing assessment of various aspects
including level of responsiveness, language function, memory as well as motor
and sensory function.

In spite of the fact that the EEG or SEEG recordings are naturally the
most important source of informations among this set of clues, other signs
are fundamental too. This set of clues can be very useful to get a rough
idea about in which part of the brain is located the epileptogenic zone and
therefore it can for example enable the clinical team to reduce the number
of SEEG-electrodes implanted in the brain. If only for that reason, it proves
its importance: the implantation of SEEG-electrodes is already a surgical
operation with the associated potential risks.

5.2.3 Facial expressions during epileptic seizures

The appearance of facial and ocular motor signs during seizures, including
modification of facial expression, would appear to offer important opportu-
nity for detailed semiological study and electro-clinico-anatomical correla-
tions. Indeed facial emotional expression has long been considered a subject
of scientific interest, with work in the 19th century including Charles Darwin
[34] and Duchenne amongst others being the point of departure for research
in this domain. Perhaps surprisingly, relatively little detailed study has so far



104 The context

been performed on the semiology of facial expression that may occur during
epileptic seizures. One of the main expressions studied so far has been that
of fear particularly in the context of frontal lobe seizures ([10], see Fig. 5.3).

However as well as the study of complex facial expressions, analysis of
individual components of facial motor modifications during seizures could be
of great interest. Although certain facial signs such as in ”versive” seizure
(meaning a partial seizure associated with head and eye deviation to one side)
or asymmetric facial contraction may occur relatively commonly in seizures,
little previous work has focused on the electroclinical correlations of such
semiological features. Previous authors have considered aspects such as the
value of eye version in lateralising frontal seizures [6, 72] and observed the
pattern of eye closure in partial epileptic seizures as compared to in non-
epileptic seizures of psychogenic origin ([40]) but more detailed analysis of
patterns of facial movements with regards to EEG data is so far lacking. In
addition the subtle and sometimes transitory nature of certain facial signs
can make analysis difficult even with the benefit of simultaneous video-EEG
recording, especially with regards to comparison between different patients
presenting similar facial modifications.

Figure 5.3: Example of fear expression during epileptic seizures

This aspect leads Dr Chauvel and his team to search for a way to quantify
this symptom: the facial expression. This is the purpose of this part of our
work: to develop a tool for automatically analyzing the facial expressions
during the epileptic seizure (see chapter 6) and quantifying them in order to
enable for example the numerical correlation between them and other signals,
such as SEEG recordings (see chapter 7).



Chapter 6

Facial expression analysis: 3D
model fitting

This chapter addresses the recovering of 3D pose and animation of the human
face in a monocular single image under uncontrolled imaging conditions. Our
goal is to fit a 3D animated model in a face image with possibly large varia-
tions of head pose and facial expressions. Our data were acquired from filmed
epileptic seizures of patients undergoing investigation in the videotelemetry
unit, La Timone hospital, Marseille, France 1.

Publication related to this chapter: 3D model fitting for facial ex-
pression analysis under uncontrolled imaging conditions [94] in the proceed-
ings of the International Conference on Pattern Recognition that will be held
in December 2008.

6.1 Introduction

Facial expression analysis has been an active research topic for behavioral
scientists and psychologists since the work of C.Darwin in 1872 [34, 48]. In
1978, Suwa et al. [134] presented a preliminary investigation on automatic
facial expression analysis by tracking the motion of several identified spots on
an image sequence. Since then considerable progress has been made in build-
ing computer systems that attempt to automatically analyze and recognize
facial motions [53, 110].

Two principal classes of approaches have been developed for facial ex-
pression analysis: Image-based [12, 97] and Model-based approaches [41, 44].
Image-based methods extract features from images without relying on elab-

1Written informed consent was obtained from all patients for the use of their video
recordings, including for publication.
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orate knowledge about the object of interest, here, a face. Their principal
qualities are their quickness and their simplicity. However, if the data images
are very diverse (e.g. variation of illumination, of view, of head pose) image-
based approaches can become erratic and unsatisfactory. On the other hand
model-based methods use models which maintain the essential characteristics
of the face (position of the eyes relative to the nose for example), but which
can deform to fit a range of possible facial shapes and expressions.

In this work, we are interested in analyzing the facial expression of sev-
eral patients during epileptic seizures. In fact, detailed study of such facial
expressions produced during epileptic seizures could help in understanding
the cerebral organization of the seizures (see chapter 5). Because of the un-
supervised nature of the data acquisition (a fixed camera in a hospital room),
we chose to use a model-based approach. A large class of methods developed
in the last decade was based on the Active Appearance Model [29] and more
recently on 3D Morphable Model [13]. These methods construct a model
from a learning set of several images of different persons showing different
expressions. A certain number of points of interest has to be placed in the
images of the learning set and a Principal Component Analysis is applied: on
the position of the points in the case of the Active Shape Model [30] and on
the position of the points and on the textures of the images in the case of the
Active Appearance Model. In our case, the expressions of the epileptic pa-
tients during their crises could be individual and complex and consequently
a model built from a learning set of common expressions (typically such as
anger, sadness or happiness) would not have been sufficient. This is why we
chose to use the Candide [3] model in our work.

We first introduce the 3D face model we used in this work. Then we
present our method to fit this model on a facial image. The next section
deals with the analysis of a facial expression. The final section shows some
of the results on the real data.

6.2 The 3D face Model

6.2.1 Candide face model

(a) The three dimensional mesh

In this work we use a modified version of the Candide 3D face model [3].
Candide is a parameterized face mask specifically developed for model-based
coding of human faces. The original Candide Model contains 113 vertices
and 184 triangles. Fig. 6.1 shows the mesh of the model. Nevertheless our
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Figure 6.1: The original Candide face model

method does not depend on the choice of the model and we state these two
notations:

(P i)1≤i≤np ∈ (R3)np is the set of np points of the initial mesh M.(
Ti = (ai, bi, ci)

)
1≤i≤nt

∈ (N3)nt the set of nt triangles of the mesh M.

It means that the i-th triangle of the mesh has Pai , Pbi , Pci as vertices.

(b) Controlling the model

To control the model, 14 shape units, noted (SU i), and 71 animation units,
noted (AU i), are also provided. Fig. 6.2 shows some examples of these de-
formation vectors, and we have the following notations:(

SU i =
(
vsi,1, . . . ,v

s
i,np

))
1≤i≤nsu

are the nsu shape units,

(
AU i =

(
vai,1, . . . ,v

a
i,np

))
1≤i≤nau

are the nau animations units,

where vsi,j and vai,j ∈ R3 are the deformation vectors for the point Pj :

∀i ∈ {1, . . . ,nsu},
SU i(λ) : Pj 7→ P j + λvsi,j ∀j ∈ {1, . . . , np}
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and similarly for AU i:

∀i ∈ {1, . . . ,nau},
AU i(λ) : Pj 7→ P j + λvai,j ∀j ∈ {1, . . . , np}

Therefore we can write:

g = g + Sσ + Aα (6.1)

where g is a 3np dimensional vector containing the (P ix, P iy, P iz) coordinates
of the vertices. And the column of S and A are the Shape and Animation
units respectively and thus the vectors σ and α contain the shape and ani-
mation parameters.

We also want to perform global motion, we need a few more parameters
for rotation, scaling, and translation. Thus, we replace 6.1 with:

g = sR(g + Sσ + Aα) + t (6.2)

where R is a rotation matrix, s is the scale, and t a translation vector.
The geometry of our model is thus parameterized by the parameter vector:
p = [v, σ, α], where v is the vector of global motion parameters:

v = [θx, θy, θz, s, tx, ty, tz].

(c) Our modifications

For our work we chose to slightly modify the original model, principally in
order to remove the top part of the head (see Fig. 6.3) and to add some
specific animation units. These modifications were motivated by the speci-
ficity of our images. The patients in fact wore EEG or SEEG electrodes on
the head and the forehead was often hidden. Furthermore, the expressions
encountered during the crises were often asymmetric and some additional
animation parameters were necessary to cover all the scope of the possible
expressions. For example the last animation unit presented in Fig 6.2 (on
the bottom right) was not in the initial model.

6.2.2 The Reference Texture

We also added a reference texture to the model. This texture has been
computed as the average between a few number of faces on which the model
has been manually placed. We chose to use a monochromatic texture. Fig. 6.4
illustrates this process and shows this reference texture on the model. We
note Iref this image and (P ref

i )1≤i≤np the points of the 2D mesh on this image
(the triangles are the same as for the 3D one).
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Figure 6.2: first row: four examples of shape units, second and third row:
eight examples of animation units
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Figure 6.3: Our modified version of the mesh of the Candide face model

Figure 6.4: Reference texture, Iref
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6.2.3 The pros and the cons of our model

There is a lot of related work in the field of facial expression analysis. We
have briefly presented the active appearance models and the morphable faces
in the introduction (see section 6.1). These methods construct a model from
a learning set of several images of different persons showing different expres-
sions. A certain number of points of interest has to be placed in the images
of the learning set and a Principal Component Analysis is applied. In our
case, the expressions of the epileptic patients during their crises could be
individual and complex and consequently a model built from a learning set
of common expressions (typically such as anger, sadness or happiness) would
not have been sufficient in order to represent the set of possible expressions.
On the contrary the positions of our model are more free and can represent
a larger set of expressions. On the other hand, by not using one of these sta-
tistical models, we lose some model capacity regarding to the texture: in our
case we just have a simple average model for the texture. This drawback will
sometimes give cause for some problems which we will address in the result
section. In a word let us say that our priority was to have a model able to
model large variations between faces even if it means that we sometimes will
have to manually place some points of the model on the neutral image.

6.3 Model Fitting

6.3.1 Energy

For a new image of a face, we want to find the best position of the 3D model
and the best values of the shape and animation parameters in the sense that
the projection of the mesh M in the image matches the face (see Fig. 6.5).
We need to define an energy which measures the quality of a given position
of the 3D model (and its projection).

Let us first introduce some notations, we denote by Π the projection
function:

Π : R3 → R2

P 7→ Π(P )

with Π(P ) = Π

PxPy
Pz

 =

(
X
Z
Y
Z

)
where:

XY
Z

 = M ·


Px
Py
Pz
1

 and M is the

3×4 projection matrix. We chose a constant matrix and make the assumption
that the difference between the chosen matrix and the actual matrix of the
camera used to take the image will be compensated by the fact that we are
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just interested in the 2D projection of the mesh and that we allow rotation,
translation and scaling of the 3D mesh.

And lastly, an application ϕ(Pi) from the reference image and the actual
one (see Fig. 6.6):

ϕp : Itext → I
P 7→ ϕp(P )

with, for P ∈ Iref and Tj such as P lies inside the triangle T refj :

T refj = (P ref
aj
, P ref

bj
, P ref

cj
) = (A,B,C),

ϕp(P ) = α(P )Π(Paj) + β(P )Π(Pbj) + γ(P )Π(Pcj)

and

α(P ) =
P ∧ C − P ∧B −B ∧ C

BA ∧ AC
β(P ) =

P ∧ A− P ∧ C − C ∧ A
BA ∧ AC

γ(P ) =
P ∧B − P ∧ A− A ∧B

BA ∧ AC

Notice that A ∧B is the vector product between A and B and is taken as a
simple scalar in our case, where A and B are 2D-vector. Although ϕp depends

Figure 6.5: Projection of the 3D model in a 2D image, I
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on the parameters p (and thus on the position of the (Pi)), we will sometimes
denote it only by ϕ with a slight abuse of notation. Furthermore ϕ is only
defined on

⋃
T refj and we supposed here that for each point P ∈ Iref there is

no more than one triangle in which P lies (T refj ∩T
ref
k = ∅ for any j, k). That

is true if there were no occlusions in the meshes which were used to compute
the reference texture. We will talk about occlusions in section 6.3.3.

Now, in order to measure the quality of a given position of the 3D model,
we will use the cross-correlation between the reference texture, Iref , and the
image in which we want to fit the model, I, using the projection Π and the
function ϕ. The support of the cross correlation is, for each vertex Pi, the
set of triangles Vi incidents to this vertex (see Fig. 6.6):

Vi =
{
Tj = (aj, bj, cj)

∣∣ aj = i or bj = i or cj = i
}

ρϕ,i =
∑
Tj∈Vi

∫
T refj

(
Iref (P )− Iref ,i

)(
I(ϕ(P ))− Iϕ,i

)
dP

with T refj is the triangle of Iref composed by P ref
aj
, P ref

bj
and P ref

cj
and:

Iref ,i =
1∑
|T refj |

∑
Tj∈Vi

∫
T refj

Iref (P )dP

Iϕ,i =
1∑
|T refj |

∑
Tj∈Vi

∫
T refj

I(ϕ(P ))dP

Let us then define:

〈Iref , I〉ϕ =

np∑
i=0

ρϕ,i

And finally the energy:

ρI,ϕ(M) =
〈Iref , I〉ϕ√

〈Iref , Iref〉
√
〈I, I〉ϕ

(6.3)

This energy has the advantage of being invariant to any affine transfor-
mation of the histogram of the images.

6.3.2 Energy minimization

(a) Computation of the gradient of the energy

We now will compute the derivatives of the energy ρI,ϕ(M) with respect
to the 3D global position of the model, and to the shape and animation
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Figure 6.6: Support of the cross correlation and ϕ, the application between
the reference texture and the current projection of the model in the image

parameters. Let start by computing the derivative of the projection function
Π at point P .Which means that we want to find an application (or matrix)
∂Π(P ), such as, for any P and Q in R3, we have:

Π(P +Q) = Π(P ) + ∂Π(P ) ·Q+ o(Q)

M ·
(
P +Q

1

)
= M ·

(
P
1

)
+ M ·

(
Q
0

)
=

XY
Z

+

X ′Y ′
Z ′


Π(P +Q) =

(
X+X′

Z+Z′
Y+Y ′

Z+Z′

)
=

(
X/Z −XZ ′/Z2 +X ′/Z + o(Q)
Y/Z − Y Z ′/Z2 + Y ′/Z + o(Q)

)

= Π(P ) +

(
1/Z 0 −X/Z2

0 1/Z −Y/Z2

)X ′Y ′
Z ′

+ o(Q)

Therefore:

Π(P +Q) = Π(P ) +

(
1/Z 0 −X/Z2

0 1/Z −Y/Z2

)
M3×3 ·Q+ o(Q)

with M =

 Vx
M3×3 Vy

Vz

 and

XY
Z

 = M · P . And we finally have:
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∂Π(P ) =

(
1/Z 0 −X/Z2

0 1/Z −Y/Z2

)
M3×3 (6.4)

(Π(P ) is a 2× 3 matrix).
Now we have to compute the derivative of ϕ with respect to the position

of the three-dimensional point Pi, ∂iϕ. We have, for P such as for all Tj ∈ Vi,
P /∈ T refj , ϕPi+δPi(P ) = ϕPi(P ). And if there exists Tj ∈ Vi such as P ∈ T refj ,
it means that, by definition of Vi, Tj = (aj, bj, cj), with aj = i or bj =
i or cj = i. Let suppose aj = i. We write:

ϕPi+δPi(P ) = α(P ) Π
(
Pi + δPi

)
+ β(P ) Π

(
Pbj
)

+ γ(P ) Π
(
Pcj
)

= α(P )
(
Π(Pi) + ∂Π(Pi) · δPi

)
+ β(P ) Π(Pbj) + γ(P ) Π(Pcj)

= ϕPi(P ) + α(P ) ∂Π(Pi) · δPi

As a matter of fact, α(P ), β(P ) and Γ(P ) does not depend on the position
of the Pi since they are defined from P ref

i which are fixed. And therefore:

∂iϕ(P ) =

{
χ(P ) ∂Π(Pi) if ∃ Tj ∈ Vi such as P ∈ T refj

0 otherwise.
(6.5)

where:

χ(P ) =
P ∧ Pcj − P ∧ Pbj − Pbj ∧ Pcj

PbjPaj ∧ PajPcj
(∂iϕ(P ) is a 2× 3 matrix).

We finally compute the derivative of the correlation energy with respect
to the position of the three-dimensional point Pi. Let us write the expression
of the derivative of the different term composing this energy:

• ∂iI(ϕ(P )) = ∇I(ϕ(P ))T ·∂iϕ(P ). ∂iI is a 3d-vector and is equal to zero
if P does not lie inside a triangle which has Pi for one of its vertices.

• for k ∈ {1, . . . , np}:

∂iIϕ,k =
1∑

j|Tj∈Vk |T
ref
j |

∑
j|Tj∈Vk,Tj∈Vi

∫
T refj

∂iI(ϕ(P ))dP

The second sum implies that:

– if k = i, every triangles in Vi (for which Pi is a vertex) are con-
sidered,
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– if Pk is a neighbor of Pi, only the triangles having Pi and Pk as
vertices are considered,

– otherwise ∂iIϕ,k = 0.

•

∂i〈I, I〉ϕ = ∂i

[ np∑
k=0

∑
Tj∈Vk

∫
T refj

(
I(ϕ(P ))− Iϕ,k

)2

dP
]

= 2

np∑
k=0

∑
j|Tj∈Vk,Tj∈Vi

∫
T refj

(
I(ϕ(P ))− Iϕ,k

)(
∂iI(ϕ(P ))− ∂iIϕ,k

)
dP

= 2

np∑
k=0

∑
j|Tj∈Vk,Tj∈Vi

(∫
T refj

I
(
ϕ(P )

)
∂iI(ϕ(P )) dP − Ik

∫
T refj

∂iI(ϕ(P )) dP

)

in fact we have:

∫
T refj

(
I(ϕ(P ))− Iϕ,k

)
dP = 0)

•

∂i〈Iref , I〉ϕ = ∂i

[ np∑
k=0

∑
Tj∈Vk

∫
T refj

(
Iref (P )− Iref ,k

)(
I(ϕ(P ))− Iϕ,k

)
dP
]

=

np∑
k=0

∑
j|Tj∈Vk,Tj∈Vi

∫
T refj

(
Iref (P )− Iref ,k

)(
∂iI(ϕ(P ))− ∂iIϕ,k

)
dP

=

np∑
k=0

∑
j|Tj∈Vk,Tj∈Vi

∫
T refj

(
Iref (P )− Iref ,k

)
∂iI(ϕ(P ))dP

And finally, using all these terms, we can write:

∂ρI,ϕ(M)

∂Pi
= ρI,ϕ(M)

(∂〈Itext, I〉ϕ
〈Itext, I〉ϕ

− 1

2

∂〈I, I〉ϕ
〈I, I〉ϕ

)
We now just have to write the derivatives of the energy with respect to

each of the evolving parameters in p. Let us start by the derivative with
respect to the translation vector t = (tx, ty, tz):

∂ρI,ϕ(M)

∂t
=

np∑
j=1

∂ρI,ϕ(M)

∂Pj
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For i ∈ {1, . . . , nsu}, the derivative with respect to the i-th shape param-
eter is:

∂ρI,ϕ(M)

∂σi
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
· sRvsi,j

)
For i ∈ {1, . . . , nau}, the derivative with respect to the i-th animation

parameter is:

∂ρI,ϕ(M)

∂αi
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
· sRvai,j

)
The derivative with respect to s, the scale parameter, is:

∂ρI,ϕ(M)

∂s
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
·R(g + Sσ + Aα)

)
And finally the derivatives with respect to θx, θy, θz the rotation parame-

ters are:

∂ρI,ϕ(M)

∂θx
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
· s∂R

∂θx
(g + Sσ + Aα)

)
∂ρI,ϕ(M)

∂θy
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
· s∂R

∂θy
(g + Sσ + Aα)

)
∂ρI,ϕ(M)

∂θz
=

np∑
j=1

(∂ρI,ϕ(M)

∂Pj
· s∂R

∂θz
(g + Sσ + Aα)

)

(b) The optimization procedure

We then perform a multi-scale gradient descent and we use a quasi-Newton
method with non-linear constraints [84]. The multi-scale method means pro-
ducing reduced versions of the image and applying the minimization process
to the smallest one and then using the result as the initial state for the mini-
mization on the next image. It makes the process less dependent on the first
initialization of the minimization and quicken the convergence. Furthermore
we imposed several constraints in the minimization algorithm:

• arbitrary boundaries on the shape and animation parameters to keep
the mesh in the set of ”reasonable” faces and ”reasonable” facial ex-
pressions (e.g. we do not want the mouth to be ”inside” the nose),

• some specific conditions on the mesh: the eyelids and the lips must not
pass through each other,
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• and the fact that the projection of the mesh should not exceed the
borders of the image.

6.3.3 Occlusions

As mentioned earlier, in our formulas we supposed that when projecting the
mesh in an image, there were no overlaps, meaning no occlusions. To a first
approximation, the mesh representing the face can be considered as a 2D-
plane (i.e. with no occlusions). But occlusions can occur in two cases: if the
face is rotated (in profile or almost) and if animation units make a part of
the mesh to occlude an other part (principally true for the eyelid when eye
closure). Therefore we cope with this problem thanks to two modifications:
first we make sure that the reference texture is defined on the whole mesh
(by averaging images with no occlusions) and secondly we compute for each
position of the meshM an occlusion function O() which for a point P lying
on M says if this point is ”visible” in the image I or ”occluded”, and in
every integral composing the energy or the gradient expression we do not
take into account ”occluded” points . Unfortunately this function is not
differentiable and that is why we did not include this function in the energy
expression. Although our mathematical formulas are not exact anymore, we
did not encounter any related problems in our numerical experiments.

6.4 Facial Expression

Once the model is fitted in an initial image of a subject, we define a new
reference texture using the image and the projection of the fitted model. If
there were occlusions in the position of the mesh we chose to use the previous
reference texture (obtained by average) for the occluded parts. Given a new
image of the same subject with a new facial expression, we use this new
reference texture in order to fit the model in this image. The minimization
is now done only with respect to global position and animation parameters
(the shape parameters are supposed to be constant for two images of the
same person). The facial expression can then be represented as the variation
of the animation parameters between the neutral image of the subject and
the expressive one. Our first idea was to used this variation of the animation
parameters to compare different facial expressions by different persons. As
a matter of fact taking the variation of the parameters and not directly the
value makes the result independent on the shape of the person face. For
example if the person has naturally (meaning even in ”neutral state”) his
eyebrows in higher (further from the pupil) than an other person and these
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Figure 6.7: the two steps of the analysis of an expression. Left: the model
is fitted on a neutral image. Middle: the new reference texture. Right: the
model is fitted on the expressive image.

two persons raise their eyebrows (see Fig. 6.8), we want to be able to compare
the eyebrows raise without taking into account their initial position. That
is the purpose of considering the variation. We can then for example apply
these variations to an average face and compare these two facial expressions,
see Fig. 6.9.

6.5 Results

During seizures, large movements can occur and occlusion of the image may
be produced by intervention of medical personnel. Therefore we manually
selected several images for each patient: one of a neutral expression and some
during seizures. Fig. 6.10 and 6.11 show some of the results of the algorithm:
the selected images and the final fit of the 3D model. We will talk in the
next chapter about what can be done with video on which the model can
fitted during the all seizures.

In some unusual cases (such as thick beard or dark glasses), we had to help
the minimization procedure for the first image (the neutral one). It is made
easier by the fact that the points of reference texture are two dimensional:
we can do a first minimization, take the result as the new reference texture
and then modify the position of a few number of misplaced points and finally
apply a new minimization procedure. As explained earlier we then just have
to take the result of the fitting process as the new reference texture and to

3http://cvc.yale.edu/projects/yalefaces/yalefaces.html

http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 6.8: Two persons raising their eyebrows and the result of the model
fitting (images taken from the Yale database 3)

Figure 6.9: The two facial expressions extracted from Fig. 6.8 applied to an
average face. From left to right: the average face in neutral expression, the
first expression from Fig. 6.8, the second expression from Fig. 6.8

fit the model in the expressive image.

Once the model is fitted on the neutral image and on the expressive one,
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Figure 6.10: Some results: left column shows a neutral view and other
columns are images taken during the seizure

we can compute the variation of the animation parameters from the first
image to the second one and for example apply that variation to another
position of the model (Fig. 6.12). The process of fitting the model in a new
image took in the order of a few seconds.

Our idea was to apply this process in a sufficient number of seizures, to
extract one or several facial expressions (as the variation of the animation
parameters) by seizure, in order to be able to do some statistics or classifi-
cation (like in section 1.5). Unfortunately the data set was not large enough
and that is why we focused our attention on the treatment of several videos
and the correlation between the facial parameters with the electrical activity
produced by the brain, see next chapter.

6.6 Conclusion

We have proposed a method to fit a 3D animated model in a monocular sin-
gle image under uncontrolled imaging conditions. Our method is based on
an energy defined with a cross-correlation term and an energy minimization
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process. We fitted the model on real-world data obtained in a medical frame-
work. The principal drawback of our approach is the time of computation of
the optimization process which is quite far from real-time. However real-time
processing was not one of our requirements, since our work was motivated
by a need for an analysis tool. Further work includes investigating on the
potential clinical use of this tool and on a more sophisticated model (such as
including more advanced texture statistics than just an average).
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Figure 6.11: Some results: left column shows a neutral view and right column
images taken during the seizure
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Figure 6.12: first column: a neutral expression, second column: image of the
facial expression during an epileptic seizure and last column: the expression
mapped on a new image



Chapter 7

Electro-clinical correlation

During pre-surgical exploration, patients are videotaped at the same time as
their EEG or SEEG (see chapter 5, section 5.2.1), is recorded. The anatomo-
electro-clinical correlation is investigated [35, 129, 11, 122]: the ”anatomic”
information comes from the knowledge of the electrodes localization on or in
the brain , the ”electrical” data are given by the EEG or SEEG recordings and
the ”clinical” information is the object of semiology and obtained by interro-
gating the patient and observing the video. This close observation of clinical
features (including the order in which they occurred) and their relation to
the region primarily or secondarily involved in the epileptic discharge, allows
a temporal-spatial profile of the seizure’s origin and propagation patterns to
be established and the corresponding anatomical structures to be defined,
thus aiding the decision regarding surgical decision for each patient’s par-
ticular epilepsy. Our work is an answer to the need of quantification of the
electro-clinical correlation.

In this chapter we present our work on the treatment of dynamic facial ex-
pression in video and on the search of a relation between the facial expression
and the electrical activity in the brain during the epileptic seizures.

7.1 Introduction

Facial expressions have been used in clinical research to evaluate deficits
in emotional expression and social cognition in neuropsychiatric disorders
[102, 92]. It is particularly present in schizophrenia studies. Schizophre-
nia is a mental disorder characterized by abnormalities in the perception or
expression of reality which often imply difficulties in interpreting and un-
derstanding facial expressions and emotions. However, most of the current
clinical methods are based on subjective ratings and therefore provide qual-
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itative measurements. The Facial Action Coding System (FACS) [48] is a
widely used method to describe facial expressions using a combination of ac-
tion units. Each action unit corresponds to a specific muscular activity that
produces changes in facial appearance. It usually requires intensive human in-
teraction. Thanks to recent advances in automatic facial expression analysis
[70], Peng Wang and his colleagues recently presented an automated video-
based facial expression analysis of neuropsychiatric disorders [141, 140]: they
used videos of persons which have been asked to mimic ”classic” expressions
(happiness, sadness, anger and fear) to automatically detect schizophrenia
disorder. Nevertheless their data capturing system is quite restrictive: they
used six grayscale stereo cameras, one color camera and a video camera and
the patients are supposed not to move too much and stay in front of the
recording system. In our case, we almost do not have any control on the
recording system: one camera is fixed to a top corner of the room and is just
recording what is happening in the hospital room. Furthermore, epileptic
seizures are often unforeseen and then the conditions in which it happens are
uncontrollable.

7.2 Dynamic facial expression

The automatic interpretation of video have been a productive field in the
past decade. It has principally been used for video-surveillance [139, 19] con-
sisting in recognizing pre-defined scenarios describing human behaviors from
video sequence. But some applications to medical imaging have also been
done, see for example [33] in which authors developed a knowledge-based pro-
gram supervision system for automating the management of medical imaging
processing libraries.

In our case we are just interested in the evolution of the facial expression
present in the videos. Therefore we first start by selecting videos of epileptic
seizures in which the facial expressions were visible during a large part of the
seizure. As a matter of fact, in a number of videos just a few frames were
showing a workable facial image because of the uncontrolled aspect of the
video recording: quality of the images was sometimes not good enough (if
the patient was moving too fast or if there was not enough light), the face
was sometimes not visible (if an object, e.g. a book, or a person occluded
the face).

We then extracted frames from these videos and fitted the face model
in these images. Since we did not seek for a real-time video processing, we
just applied the fitting procedure presented in the previous chapter on each
frame, using the result of the minimization on a frame as the initial position
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Figure 7.1: Evolution of facial parameters during an epileptic seizure. The
time is on the x-axis. Top row: the red curve is the left opening of the mouth
and the blue one is the right opening of the mouth. Bottom row: the red
curve is the opening of the left eye and the blue one the opening of the right
eye. Letters mark some instants showed by Fig. 7.2

of the model for the following one and defining our reference texture on the
first frame. In fact this method is quite far from real-time since it requires
few seconds by frame (and the frame rate was 25 frames by second) but
once again since our work was motivated by a need for an analysis tool,
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Figure 7.2: Images corresponding to the letters written on Fig. 7.1. For each
column, from left to right: the image frame, the result of the minimization,
the frontal view of the model
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real-time processing was not one of our requirements and we gave priority to
robustness.

Once the model is fitted in every frames we can get the positions of the
points of the mesh without any global transformation. That is to say, we
apply the shape σ and animation α parameters obtained by optimization to
the initial points g but not the global transformations R, s and t (see the
previous chapter, section 6.2.1 (b)). It also can be seen as extracting a frontal
view from the mesh position in the frame. And on this frontal view we can
evaluate any facial quantities we are interested in, for example eye position,
the opening of the mouth , mouth position. Therefore we can compute the
evolution of the features in order to characterize the evolution of the dynamic
facial expression. Fig. 7.1 and Fig. 7.2 show an example of such a treatment.
For example we can detect events in the dynamic facial expression, such as
: eye blinking (e.g., both eyes: letters A, H and L; only one eye: letter I),
asymmetry in the mouth opening (e.g., letter D, the right side of the mouth
is more opened than the left side).

7.3 Stereoelectroencephalography signal pro-

cessing

As presented in chapter 5, section 5.2.1 (c), Stereoelectroencephalography
(SEEG) is an investigation technique consisting in recording electrical ac-
tivities in different brain regions thanks to depth electrodes. Generally, the
number of electrodes is less than 10 and on each electrodes about ten sensors
(called leads) are positioned, each lead has a diameter of 0.8 mm, a contact
length of 2 mm and leads are placed 1.5 mm apart. Usually the signal which
is studied is a bipolar recording, it means that we consider the difference be-
tween one given lead and the consecutive one on the same electrodes. Then
a first pre-treatment is often apply in order to remove some of the possible
noise: we used the eegfilt function in the EEGLAB matlab toolbox. It is
a frequency filter that we applied to remove too low (< 1 Hz) and too high
(> 120 Hz) frequencies in the signal. Fig. 7.3 shows examples of such bipolar
recording during an epileptic seizure.

One of the classical ways to study such SEEG signals is to use a time-
frequency analysis [144, 81, 143, 123, 8]. While the technique of Fourier
transform is useful to obtain the frequency spectrum of a signal whose com-
ponent frequencies are constant in time, it is not really relevant for analyzing
a signal whose component frequencies vary over time which is the case here.
Therefore we chose to apply an analytical wavelet transform to each bipolar
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time (in sec)2 64 8 10 12

Figure 7.3: Examples of bipolar recordings during an epileptic seizure. The
seizure onset is at 2.5 sec.

signal, it give us for each instant and for a given frequency the intensity of
this frequency component in the signal at this instant. Fig 7.4 shows a rep-
resentation of this time-frequency analysis for a SEEG bipolar signal. This
analysis has been done using a version of a Matlab function from the Wave-
Lab toolbox (J. Buckheit and D. Donoho [43]) modified by C. Benar and M.
Clerc.

This algorithm starts with a Fast Fourier Transform (FFT) on our signal.
Then for each frequency we want to study, we construct a wavelet (we chose
a Gabor wavelet here). This wavelet is then used to extract the contribution
of the considered frequency to our original signal from the result of the FFT.
This is done by pointwise multiplying the gabor filter and the FFT result.
The result of this operation is the contribution of the considered frequency
to the SEEG signal in the frequency domain. Finally an inverse FFT of this
result comes back to the temporal domain and give the contribution of the
considered frequency to our signal along the time.
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Figure 7.4: Representation of the analytical wavelet transform of a SEEG
bipolar signal. Top row: the signal. Bottom row: the time-frequency image,
on the x-axis is the time and on the y-axis is the discretized frequency domain
F

7.4 Correlation between facial parameters and

SEEG signal

Our treatment of the video can be seen as a quantification of some facial
features characterizing the evolution of the facial expression. Once these
characteristics are quantified, we now have the possibility of designing a way
to measure the possible relation between the dynamic facial expression and
the electrical recording in the brain during the epileptic seizure.

We will use the time-frequency analysis on the SEEG bipolar signals (see
previous section). The result of the time-frequency transform is a function
that we note ω : I×F → C where I ⊂ R+ is the time domain and F the fre-
quency domain given by this analysis. Typically we have F ⊂ [1 Hz, 120 Hz]
since we have applied a band-pass filter to remove too low and too high fre-
quencies. In Fig. 7.4, the image in bottom row is a representation of the
complex modulus (magnitude) of ω(t, f) for t ∈ I and f ∈ F .

Let us then define for a given frequency f ∈ F the function ψf repre-
senting the variation along time of the intensity of the signal component of
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frequency f :
ψf : I → R+

t 7→
∑
g∈F

σ(g − f) |ω(g, t)|

where σ() is a one-dimensional centered Gaussian function of variance a:

σ(x) =
1

a
√

2π
e
−x2

2a2

Fig. 7.5 shows ψf for f = 5 and a = 2 computed on the signal represented
on Fig 7.4.

Figure 7.5: Representation of ψf (top row) for f = 5 and a = 2. On bottom
row representation of the time-frequency image for a restrained portion of F
centered on f = 5 Hz

And finally, for a frequency f ∈ F and a facial feature p : t ∈ I 7→ p(t) ∈
R, we can define the correlation between these two real signals by:

ρ(f, p) =

∑
t∈I

(ψf (t)− ψf )(p(t)− p)√∑
t∈I

(ψf (t)− ψf )2
∑
t∈I

(p(t)− p)2
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where:

ψf =
1

|I|
∑
t∈I

ψf (t) and p =
1

|I|
∑
t∈I

p(t)

are the mean of the functions ψf and p on the time domain I. This correlation
function ρ(f, p) has its values in [−1, 1] and is equal to 1 or −1 if one signal
is an affine transformation of the other signal (1 if it is an increasing affine
transformation and −1 if it is a decreasing one). The signals are told to be
strongly correlated if the correlation between them is close to the extreme
values −1 or 1 and linearly independents if the correlation is close to 0.

7.5 Application to a first case

Now that we have this measure of similarity between two signals, we can
search for any frequency in F , which one will best correlate with a given
facial parameter p, and finally compare for different bipolar signals this value
of correlation. This will give us our electro-clinical correlation concerning the
chosen facial parameter p. We applied this framework on a first ”simple” case
in order to validate our method.

The epileptic seizure we chose is clinically characterized by a deviation
of the eyes and afterward a deviation of the head. We first applied our
dynamic facial expression analysis method on the video and chose to focus
on the position of the eyes and the rotation of the head. We extracted 435
frames (around 17 seconds, at 25 frames by second) and fitted the model in
every frame and finally computed our facial quantities. Results are shown
on Fig. 7.6 and Fig. 7.7.

SEEG-electrodes have been implanted in the brain of this same patient.
The localization of these electrodes have been done thanks to MRI scans
of the brain, see Fig. 7.8. 6 electrodes were considered and a total of 46
channels have been recorded. We focused at the bipolar signals (obtained
from subtraction of signals recorded on two adjacent leads) as explained
earlier which gave us 40 signals (46− 6 number of channels minus number of
electrodes). The sampling frequency of the recordings was 512 Hz.

Fig. 7.9 and Fig. 7.10 show the result of our correlation computation: for
each bipolar signal, we compute the correlation between one facial parame-
ter and this signal for every frequency in the frequency domain F (with a
variance for the gaussian function of a = 5, but let us note that according to
our experiments the choice of the variance does not change significantly the
results) and keep the maximum correlation. Fig. 7.11 and Fig. 7.12 indicate
for each bipolar signal which was the frequency implying the maximum cor-
relation. We focused only on the parameters concerning the eyes (opening
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Figure 7.6: Evolution of facial parameters during the studied epileptic
seizure. The time is on the x-axis. Top row: the red curve is the open-
ing of the left eye and the blue one is the opening of the right eye. Bottom
row: the red curve is the horizontal deviation of the left eye and the blue one
the deviation of the right eye, the black curve is the head rotation. Letters
mark some instants showed by Fig. 7.7

and position), because unfortunately the parameter concerning the rotation
of the head did not produced interesting correlations. This might be because
this parameter was not varying enough to contain enough characteristic in-
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formation to differentiate correlations between different electrodes.

The signal in which we found a frequency component who best correlates
with the eye facial parameters (opening and position) is thus located on
the electrode called ”SA” (bipolar signals number 22 or 23). What is very
interesting is that this electrodes was pointed out before our processing by
the medical team as the one with the most worthwhile potential regarding
the information of eye movement and position. This electrode was indeed
exploring the premotor cortex which is part of the frontal cortex of the brain.
And a part of this region is an area of the brain called the frontal eye field
(FEF), known to be activated during eye movement. The reader interested
in the approximative location of FEF will look back at the position of the
electrode SA in Fig. 7.8.

Although we are aware that this first case is not sufficient to draw defini-
tive conclusions about the validity of our method, this result is a preliminary
validation and indicates that our facial parameters contain informations that
can be correlated with SEEG signals through a time-frequency decomposi-
tion of these signals through the presented method. More work still remains
to be done and in particular investigating the significance of our correla-
tion. For instance in our first study, the electrode ”C” presented also a good
correlation with our facial parameters. This electrode was implanted in the
posterior temporal area of the brain which is not known as a primary source
for eyes movements. Nevertheless the activation of this region seems to be
able the provoke such movements under specific circumstances. This could
be the subject of further investigations.

7.6 Conclusion

We defined a procedure for measuring the potential interrelation existing be-
tween the facial expression that may occur during an epileptic seizure and the
region in the brain at the origin of the seizure. This first step in the direction
of applying techniques coming from domain of computer vision to a problem
at the cutting edge of epilepsy research domain calls for further investigations
on this question of the above-mentioned interrelation, including improving
our 3D face model (e.g. building a more sophisticated statistical model of the
facial texture) for the computer vision side and examining more seizures and
their SEEG-recordings, for the medical side. Furthermore, the automation of
the image selection step (to keep only frames with non-occluded faces) would
enable the treatment of a larger number of videos and facilitate a statisti-
cal study of these facial expressions. One can also imagine an extension of
this method which not only considers the evolution of the facial expressions
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during the seizure but also takes into account the deformation of body parts
such as hands or legs.
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Figure 7.7: Images corresponding to the letters written on Fig. 7.6. For each
column, the image frame and the result of the minimization
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Figure 7.8: Localization of the implanted SEEG-electrodes thanks to MRI
scans of the brain.



7.6 Conclusion 139

C BGL CU GC SA

m
a

x
im

u
m

 c
o

r
r
e
la

ti
o

n

Figure 7.9: Maximum correlations between each signals and the facial pa-
rameter ”opening of the eyes”: in red the left eye, in blue the right eye. On
the y-axis is the maximum correlation for every frequency in F and on the
x-axis are the 40 bipolar signals. Letters under x-axis are the 6 electrodes
names.

GL CU GC SA C B

m
a
x
im

u
m

 c
o
r
r
e
la

ti
o
n

Figure 7.10: Maximum correlations between each signals and the facial pa-
rameter ”position of the eyes”: in red the left eye, in blue the right eye. On
the y-axis is the maximum correlation for every frequency in F and on the
x-axis are the 40 bipolar signals. Letters under x-axis are the 6 electrodes
names.
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Figure 7.11: Frequencies which give the maximum correlations between each
signals and the facial parameter ”opening of the eyes”: in red the left eye, in
blue the right eye.
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Figure 7.12: Frequencies which give the maximum correlations between each
signals and the facial parameter ”position of the eyes”: in red the left eye,
in blue the right eye.
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From a theoretical point of view, this work consists in several investi-
gations in the domain of shape statistics and on shape-based energy opti-
mization. The shape warping problem is an important and difficult issue. A
rigorous study on this question of deforming a shape onto another one is po-
tentially interesting for every problem of matching (point-to-point) between
shapes such as for example shape recognition or the tracking of natural mov-
ing objects. We have shown that it is possible to build metrics on the set of
shapes and to define energy based on these distances. These energy can then
be minimized through a gradient descent scheme.

The impact of the inner product structure of the deformation space on
the behavior of the active contours method had been overlooked so far in
the computer vision community. We have explored several families of in-
ner products, as well as some minimizing flows not deriving from any inner
product by extending the notion of gradient. Given an energy, we now have
several ways to minimize it, each of the proposed flows being a minimizing
flow but leading to different kinds of evolutions. The inner products and the
extended gradients should consequently be seen as priors on the deformation
fields, that is to say priors on the evolution paths. They can be used to
introduce different degrees of spatial coherence (local, semi-local or global)
in the evolution of the contour. We have shown, with several numerical ex-
periments, that these evolutions better fit our intuitive notion of deformation
cost and that they can mimic the behavior of the objects of interest. As a
result, they are at the same time more meaningful and more robust to local
minima attraction. An example with semi-locally rigid motions was specially
designed. Although the results were satisfying, the particular flow resulting
from our definition required to resolve a minimization problem at each step
of the shape evolution and this happened to be difficult to minimize in prac-
tice by variational method. The design of more stable similar priors or the
search for other minimization methods such as graph cuts for the proposed
criterion should be investigated. More generally, the incorporation of linear
or non-linear flow priors into the gradient descent framework can probably
lead to interesting further developments.

Taking advantage of these advances on the issue of modeling prior knowl-
edge about shapes and motivating by the practical difficulties described
above, we also proposed a framework for shape warping based on both shape
distances and landmarks. Our method is purely geometric and no extrinsic
quantity like a space diffeomorphism has to be considered. Thanks to recent
advances in the level set techniques, a level set implementation is possible,
reconciling landmarks and the level set methods. Moreover, a matching be-
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tween shapes is provided at no additional cost. Two- and three-dimensional
examples, combining shape distance and landmarks, demonstrate the im-
provement brought by our approach on both warping and matching, even
with a small number of landmarks. Our approach can be seen as a prior on
the matching between the shapes (the landmarks points had to be matched)
and also as a prior on the deformation field, since knowing which point on
the first shape correspond to which point on the second one intuitively give
us a preference on the path followed to deform the shape. The first prior was
imposed by the modification of the shape energy to minimize and the second
prior was induced by the choice of an appropriate inner product structure.
One could say that this method implies a loss of autonomy in the warping
operation since several landmark points have to be specified. However, in
addition of allowing to process more complex shapes, let us stress that only
a few number of landmark points is enough to largely improve the results
(in our examples, the number of specified landmarks is typically less than
5). Moreover we can imagine a way to stay completely automated by using
a detector of characteristic points (e.g. high curvature points) and by taking
the result of this detection as potential landmarks points.

On the application side, the collaboration with professor Patrick Chauvel
and his team at La Timone Hospital, Marseille, on the task of interrelating
facial expressions and epilepsy aetiology, has proved to be very challenging,
both from the computer vision point of view (capturing 3D facial expressions
during crisis from low quality videos) and from the mutual discovering of a
completely different world, as often with multidisciplinary project. We have
proposed a method to fit a three-dimensional animated model in a monocu-
lar single image under uncontrolled imaging conditions. Our method is again
based on an energy defined with a cross-correlation term and an energy min-
imization process. We fitted the model on real-world data obtained in a
medical framework. And finally this tool has been used to investigate on its
potential clinical use. We defined a procedure for measuring the potential
interrelation existing between the facial expression that may occur during
an epileptic seizure and the region in the brain at the origin of the seizure.
This first step in the direction of applying techniques coming from domain
of computer vision to a problem at the cutting edge of epilepsy research do-
main calls for further investigations on this question of the above-mentioned
interrelation, including improving our 3D face model (e.g. building a more
sophisticated statistical model of the facial texture) for the computer vision
side and examining more seizures and their SEEG-recordings, for the medical
side.
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Of course, there is still place for improvement in many parts of this thesis.
In the first part, we are convinced that our theoretical work on shape analysis
can be used in number of computer vision problems, such as segmentation
with a priori knowledge, shape recognition or articulated shape tracking,
but a detailed inventory of these problems and a thorough experimental
evaluation should be carried out. In the second part of this thesis our first
results are promising and make conceivable a multi-sensor monitoring of the
patients. One can also imagine an extension of this method which not only
considers the evolution of the facial expressions during the seizure but also
takes into account the deformation of body parts such as hands or legs.
Future works should therefore include investigations in these directions.
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Some additional results: 3D
face model fitting in videos

We will present some results of our 3D fitting method of a face model in
several videos of epileptics seizures. For each seizure, we chose to look into
several facial parameters (see figures’ caption) and we displayed their varia-
tions along time and the x-axis represent the time.

EA FC DB

Figure 7.13: The red curve is the distance between the left of the mouth and
the nose. The black curve is the distance between the middle of the mouth
and the nose. The blue curve is the distance between the right of the mouth
and the nose. Letters mark some instants showed by Fig. 7.14
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Figure 7.14: Images corresponding to the letters written on Fig. 7.13. For
each column, the image frame and the result of the minimization
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Figure 7.15: Top row: the red curve is the opening of the left eye and the
blue one is the opening of the right eye. Bottom row: the red curve is the
left opening of the mouth and the blue one the right opening of the mouth.
Letters mark some instants showed by Fig. 7.16
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Figure 7.16: Images corresponding to the letters written on Fig. 7.15. For
each column, the image frame and the result of the minimization
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Figure 7.17: Top row: the back curve is the rotation of the head (zero for
initial image), the red curve is the opening of the left eye and the blue one is
the opening of the right eye. Bottom row: the red curve is the left opening
of the mouth and the blue one the right opening of the mouth. Letters mark
some instants showed by Fig. 7.18
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Figure 7.18: Images corresponding to the letters written on Fig. 7.17. For
each column, the image frame and the result of the minimization
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Symmetry-based indexing of image databases. Journal of Visual Com-
munication and Image Representation, 9(4):366–380, December 1998.
(Cited on pages 42, 44, and 155.)

[126] Simon D. Shorvon. Handbook of epilepsy treatment. Blackwell Science,
2000. (Cited on pages 99, 103, and 157.)

[127] Christopher G. Small. The Statistical Theory of Shapes. Springer-
Verlag, 1996. (Cited on page 19.)



174 BIBLIOGRAPHY

[128] Jan Erik Solem and Niels Chr. Overgaard. A geometric formulation of
gradient descent for variational problems with moving surfaces. In In-
ternational Conference on Scale Space and PDE Methods in Computer
Vision, pages 419–430, 2005. (Cited on pages 52 and 53.)

[129] Ivan Soltesz and Staley Kevin. Computational Neuroscience in
Epilepsy. Academic Press, 2008. (Cited on page 125.)

[130] Ganesh Sundaramoorthi, Anthony J. Yezzi, and Andrea C. Mennucci.
Sobolev active contours. In IEEE Workshop on Variational and Level
Set Methods, pages 109–120, Beijing, China, 2005. (Cited on pages 52
and 61.)

[131] Ganesh Sundaramoorthi, Anthony J. Yezzi, and Andrea C. Mennucci.
Sobolev active contours. Int. J. Comput. Vision, 73(3):345–366, 2007.
(Cited on page 52.)

[132] Ganesh Sundaramoorthi, Anthony J. Yezzi, Andrea C. Mennucci, and
Guillermo Sapiro. New possibilities with sobolev active contours.
(Cited on page 52.)

[133] Mark Sussman, Peter Smereka, and Stanley Osher. A level set approach
for computing solutions to incompressible two-phase flow. Journal of
Computational Physics, 114(1):146–159, 1994. (Cited on page 42.)

[134] Motoi Suwa, Noboru Sugie, and Keisuke Fujimora. A preliminary note
on pattern recognition of human emotional expression. 4th Interna-
tional Joint Conference on Pattern Recognition, pages 408–410, 1978.
(Cited on page 105.)

[135] Arthur W. Toga, editor. Brain Warping. Academic Press, 1998. (Cited
on pages 19 and 34.)

[136] Arthur W. Toga and Paul Thompson. The role of image registration
in brain mapping. Image and Vision Computing, 19(1-2):3–24, 2001.
(Cited on page 34.)
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