Développement d'outils et de méthodes de télédétection spatiale optique et radar nécessaires à la haute résolution spatiale

Lionel BOMBRUN

Directeurs de thèse : Michel Gay et Jérôme Mars GIPSA-lab Département des Images et des Signaux

18 novembre 2008

Contexte de la thèse

- Développement de méthodes de traitement des images Radar à Synthèse d'Ouverture (RSO) dans le contexte de la haute résolution spatiale :
 - L'interférométrie RSO.
 - La polarimétrie radar.

Estimation de déplacement

- Nombreux résultats sur les calottes glaciaires.
- Application sur les **glaciers tempérés** (alpins) :
 - Travaux préparatoires aux données à haute résolution spatiale.
 - Contexte de fort relief.

Visibilité des glaciers par les satellites ERS-1/2

Passe ascendante

Passe descendante

- Estimation de déplacement par interférométrie RSO.
- Contexte de fort relief et de forte pente.
- Étude de la faisabilité de l'interférométrie RSO.

Contexte de la thèse

La haute résolution spatiale dans les images polarimétriques

Résolution : $1.5m \times 1.5m$ RAMSES, bande X Brétigny, France $\begin{array}{l} \mbox{Résolution}: 57\mbox{cm}\times 57\mbox{cm}\\ \mbox{RAMSES, bande X}\\ \mbox{Toulouse, France} \end{array}$

Sommaire

L'interférométrie RSO

- Les principes de l'interférométrie RSO
- Analyse de la cohérence interférométrique
- \bullet Résultats sur une série d'interférogrammes ERS-1/2
- Évaluation des performances

La segmentation hiérarchique d'images polarimétriques basée sur la texture

3 Conclusions et Perspectives

$$\Phi = \Phi_1 - \Phi_2$$

$$\approx \frac{4\pi}{\lambda} (R_1 - R_2) = \frac{4\pi}{\lambda} \Delta R$$

Les informations contenues dans la phase interférométrique proviennent de plusieurs contributions :

$$\Delta \Phi = \Phi^{orb} + \Phi^{topo} + \Phi^{depl} + \Phi^{atm} + \Phi^{bruit}$$

$$\Delta \Phi = \Phi^{orb} + \Phi^{topo} + \Phi^{depl} + \Phi^{atm} + \Phi^{bruit}$$

Avant traitements

 Φ^{depl}

$$\Delta \Phi = \Phi^{orb} + \Phi^{topo} + \Phi^{depl} + \Phi^{atm} + \Phi^{bruit}$$

• Compensation des franges orbitales.

Après

$$\Delta \Phi = \Phi^{topo} + \Phi^{depl} + \Phi^{atm} + \Phi^{bruit}$$

• Utilisation d'un Modèle Numérique de Terrain (MNT).

Avant compensation

Altitude d'ambiguïté : 960m

Après compensation des franges topographiques

$$\Delta \Phi = \Phi^{depl} + \Phi^{atm} + \Phi^{bruit}$$

- La vitesse de propagation des ondes électromagnétiques dépend principalement de la **température** et de la **pression de vapeur d'eau**.
- Changements atmosphériques locaux.
- La faible pression de vapeur d'eau saturante autour de 0°C sur les glaciers rend **négligeable** a priori les **variations de vitesse** à l'échelle du glacier à 1 jour d'intervalle [1].

[1] E. Trouvé, G. Vasile, M. Gay, L. Bombrun, P. Grussenmeyer, T. Landes, J.-M. Nicolas, Ph. Bolon, I. Pétillot, A. Julea, L. Valet, J. Chanussot et M. Koehl, Combining Airborne Photographs and Spaceborne SAR Data to Monitor Temperate Glaciers. Potentials and Limits, *IEEE Transactions on Geoscience and Remote Sensing*, vol. 45, no. 6, pp. 905-924, Avril 2007

$$\Delta \Phi = \Phi^{depl} + \Phi^{bruit}$$

• Réduction du bruit par filtrage adaptatif.

$$\Rightarrow \Delta \Phi \approx \Phi^{dept}$$

Calcul d'un interférogramme

Soient u_1 et u_2 deux images acquises par le radar, **la cohérence** interférométrique ρ et la phase interférométrique ϕ sont définies par :

$$\rho e^{j\phi} = \frac{E\{u_1 u_2^*\}}{\sqrt{E\{|u_1|^2\}E\{|u_2|^2\}}}$$

Présentation des données

Image d'amplitude $100 \text{km} \times 100 \text{km}$

1024×1024 pixels 20km $\times 20$ km

6

Présentation des données

Image d'amplitude $100 \text{km} \times 100 \text{km}$

1024×1024 pixels $20 \text{km} \times 20 \text{km}$

Analyse de la cohérence interférométrique

 \Rightarrow Chute de la cohérence sur les glaciers en été à cause du changement d'état de surface.

Analyse de la cohérence interférométrique

⇒ Perte de cohérence due à une baseline perpendiculaire B_{\perp} élevée $(B_{\perp} = 208 \text{m}).$

Analyse de la cohérence interférométrique

 \Rightarrow Cohérence préservée sur les glaciers.

Analyse de la cohérence interférométrique [1]

[1] L. Bombrun et al., Multi-date ERS Tandem Interferogram Analysis: Application to Alpine Glaciers, Fourth International Workshop on the Analysis of Multitemporal Remote Sensing Image, MULTITEMP, Leuven, Belgique, Juillet 2007

Calage de l'offset de la phase interférométrique [1]

La phase interférométrique déroulée est connue à un offset près.

Différentes méthodes sont envisageables pour fixer cet offset :

- Combinaison des passes ascendante et descendante.
- Connaissance d'une zone de vitesse nulle.
- Connaissance d'une **mesure de déplacement ponctuelle** *in situ* (balise, mesure GPS, corrélation d'images, ...).

[1] L. Bombrun *et al.*, Three Dimensional Surface Velocities of Argentière and Mer de Glace Glaciers, France, Derived from Radar Interferometry : Analysis and Comparison with *in-situ* Measurements, EGU, Vienne, Autriche, 2007.

Projection du déplacement en ligne de visée du satellite au sol

La phase interférométrique déroulée est reliée au **déplacement au sol** projeté dans la ligne de visée du satellite (d_{LOS}) par :

$$\Phi = \frac{4\pi}{\lambda} d_{LOS}$$

Hypothèses sur l'écoulement du glacier

- Un écoulement selon la ligne de plus grande pente.
- Pas d'ablation durant le temps ΔT (1 jour) qui sépare les deux acquisitions d'images radar.

Glacier	Altitude	Nombre de balises	Erreur moyenne sur la direction de l'écoulement	Déplacement vertical	Ablation
Argentière	2700m	11	8.9°	-5.0m	-0.9m

Résultats sur les images ERS-1/2

Premier champ de déplacement obtenu par interférométrie différentielle sur le glacier d'Argentière dans les Alpes françaises

Résultats sur les images ERS-1/2

Incertitudes liées aux données et aux traitements

La phase interférométrique mesurée est affectée par :

• Le bruit de speckle. Chacun des pixels de l'interférogramme est affecté par une variable aléatoire ϕ .

$$\sigma_{\phi} = \frac{1}{\sqrt{2M}} \frac{\sqrt{1 - \gamma^2}}{\gamma}$$

où γ est la cohérence du pixel considéré et M est le nombre de moyennages indépendants effectués pour estimer la phase $\hat{\phi}$.

- La présence de franges résiduelles qui ne sont pas dues au déplacement [1].
- Les incertitudes provenant de l'étape de déroulement de phase et du calage de l'offset.

[1] L. Bombrun *et al.*, DEM Error Retrieval by an Analysis of the Wrapped Phase Difference Between Differential Interferograms, *IEEE Geoscience and Remote Sensing Letters*, en révision, 2008

Incertitudes liées aux données et aux traitements

Pour caractériser ces incertitudes, nous avons ajouté sur la phase interférométrique :

• $\pm \sigma_{\phi}$ avec un nombre de vue équivalent M qui vaut environ 25 dans notre cas après filtrage.

• $\pm \frac{\pi}{2}$ (incertitude liée au développement de la phase).

La segmentation hiérarchique d'images polarimétriques

Sommaire

L'interférométrie RSO

- 2 La segmentation hiérarchique d'images polarimétriques basée sur la texture
 - Principe de la polarimétrie
 - Distribution de la matrice de covariance
 - Modélisation de la texture
 - Principe de la segmentation hiérarchique
 - Résultats de la segmentation

3 Conclusions et Perspectives

Principe de la polarimétrie

Émission : H et V Réception : H et V

$$\mathbf{S} = \left[\begin{array}{cc} S_{HH} & S_{HV} \\ S_{VH} & S_{VV} \end{array} \right]$$

• Hypothèse de réciprocité : $S_{HV} = S_{VH}$.

Cible pure

• Vecteur de rétrodiffusion k.

$$\mathbf{k} = \frac{1}{\sqrt{2}} \begin{bmatrix} S_{HH} + S_{VV} \\ S_{HH} - S_{VV} \\ 2S_{HV} \end{bmatrix}$$

Cibles distribuées

• Matrice de cohérence **T**.

$$\mathbf{T} = E\{\mathbf{k}\cdot\mathbf{k}^{\dagger}\}$$

14

La haute résolution spatiale dans les images polarimétrique radar

Objectifs :

- Faible nombre de rétrodiffuseurs présents dans chaque cellule de rétrodiffusion.
- Fouillis non Gaussien.
- Prise en compte de la **texture**.

Cas classique : fouillis Gaussien

La matrice de covariance L-vues, $\mathbf{Z}_h = \frac{1}{L} \sum_{k=1}^{L} \mathbf{x}_{hk} \mathbf{x}_{hk}^{\dagger}$, suit une distribution de Wishart :

$$p_{\mathbf{Z}_h}(\mathbf{Z}_h|\Sigma_h) = \frac{L^{Lp}|\mathbf{Z}_h|^{L-p}\exp\left\{-L tr\left(\Sigma_h^{-1}\mathbf{Z}_h\right)\right\}}{\pi^{\frac{p(p-1)}{2}}\Gamma(L)\cdots\Gamma(L-p+1)|\Sigma_h|^L}$$

Le modèle multiplicatif scalaire

Pour des zones texturées :

$$\mathbf{Z} = \mu \mathbf{Z}_h$$

• μ est indépendant du canal de polarisation.

Distribution de \mathbf{Z} pour une zone texturée

Distribution de la matrice de covariance ${\bf Z}$:

$$p_{\mathbf{Z}}(\mathbf{Z}|\Sigma_h, \alpha) = \int_{0}^{\infty} p_{\mathbf{Z}_h}(\mathbf{Z}|\mu\Sigma_h) \ p_{\mu}(\mu|\alpha) \ d\mu$$

où α représente l'ensemble des paramètres de la distribution de la texture.

Loi de texture

La distribution de Fisher, loi à trois paramètres définie par :

$$p_{\mu}(\mu|m,\mathcal{L},\mathcal{M}) = \frac{\Gamma(\mathcal{L}+\mathcal{M})}{\Gamma(\mathcal{L})\Gamma(\mathcal{M})} \frac{\mathcal{L}}{\mathcal{M}m} \frac{\left(\frac{\mathcal{L}\mu}{\mathcal{M}m}\right)^{\mathcal{L}-1}}{\left(1+\frac{\mathcal{L}\mu}{\mathcal{M}m}\right)^{\mathcal{L}+\mathcal{M}}}$$

$$\mathcal{F}[m, \mathcal{L}, \mathcal{M}] = \mathcal{G}[m, \mathcal{L}] \stackrel{\circ}{\star} \mathcal{GI}[1, \mathcal{M}]$$

Les cumulants de deuxième espèce (log-cumulants)

$$\kappa_{1} = \frac{1}{N} \sum_{i=1}^{N} [\ln (x_{i})]$$

$$\kappa_{2} = \frac{1}{N} \sum_{i=1}^{N} [\ln (x_{i}) - \kappa_{1}]^{2}$$

$$\kappa_{3} = \frac{1}{N} \sum_{i=1}^{N} [\ln (x_{i}) - \kappa_{1}]^{3}$$

La segmentation hiérarchique d'images polarimétriques Modélisation de la texture

Modélisation du fouillis en milieu urbain

- Extraction d'une zone urbaine (50 × 50 pixels) de l'image polarimétrique E-SAR en bande L sur le site test d'Oberpfaffenhofen (Allemagne).
- Résolution : $1.5m \times 1.5m$
- Modélisation de la texture par des distributions Gamma et Fisher.

Distribution de KummerU

$$p_{\mathbf{Z}}(\mathbf{Z}|\Sigma_h, \mathcal{L}, \mathcal{M}, m) = \int_{0}^{\infty} p_{\mathbf{Z}_h}(\mathbf{Z}|\mu\Sigma_h) \ p_{\mu}(\mu|\mathcal{L}, \mathcal{M}, m) \ d\mu$$

$$p_{\mathbf{Z}}(\mathbf{Z}|\Sigma_{h}, \mathcal{L}, \mathcal{M}, m) = \frac{L^{L_{p}}|\mathbf{Z}|^{L-p}}{\pi^{\frac{p(p-1)}{2}}\Gamma(L)\cdots\Gamma(L-p+1)|\Sigma_{h}|^{L}} \times \frac{\Gamma(\mathcal{L}+\mathcal{M})}{\Gamma(\mathcal{L})\Gamma(\mathcal{M})} \left(\frac{\mathcal{L}}{\mathcal{M}m}\right)^{L_{p}}\Gamma(Lp+\mathcal{M}) U(a, b, z)$$

avec $z = \frac{L \operatorname{tr} (\Sigma_h^{-1} \mathbf{Z}) \mathcal{L}}{\mathcal{M}m}$, $a = Lp + \mathcal{M}$ et $b = 1 + Lp - \mathcal{L}$. où $U(\cdot, \cdot, \cdot)$ est la fonction de confluente hypergéométrique de seconde espèce (KummerU).

• Pour une texture distribuée selon une loi de Fisher, la matrice de covariance suit **une distribution de KummerU** [1].

[1] L. Bombrun et J.-M. Beaulieu, Fisher Distribution for Texture Modeling of Polarimetric SAR Data, *IEEE Geoscience and Remote Sensing Letters*, vol. 5, no. 3, Juillet 2008.

La segmentation hiérarchique d'images polarimétriques Modélisation de la texture

Cas particulier de la distribution de KummerU

• Si \mathcal{M} tend vers l'infini, la loi de Fisher tend vers une distribution Gamma.

$$p_{\mathbf{Z}}(\mathbf{Z}|\Sigma_h, \alpha) = \int_0^\infty p_{\mathbf{Z}_h}(\mathbf{Z}|\mu\Sigma_h) \ p_{\mu}(\mu|\alpha) \ d\mu$$

Le principe de la segmentation hiérarchique

- Operation d'une partition initiale
- 2 Calcul du critère (SC) pour chaque paire de segments 4-connexes.
- Fusion des 2 segments 4-connexes qui minimisent ce critère.
- Itération des étapes 2 et 3 jusqu' à obtention du nombre désiré de segments dans la partition.

Stepwise Criterion (SC)

 $SC_{i,j} = MLL(S_i) + MLL(S_j) - MLL(S_i \cup S_j)$

où MLL(S) est log-vraisemblance maximale du segment S.

Calcul du critère pour la distribution de KummerU

$$\begin{aligned} \operatorname{MLL}(S) &\approx -nL\ln|\hat{\Sigma}_{h}| + n\ln\left\{\Gamma(\hat{\mathcal{L}} + \hat{\mathcal{M}})\right\} \\ &- n\ln\left\{\Gamma(\hat{\mathcal{L}})\right\} - n\ln\left\{\Gamma(\hat{\mathcal{M}})\right\} + nLp\ln\left(\frac{\hat{\mathcal{L}}}{\hat{\mathcal{M}}\hat{m}}\right) \\ &+ n\ln\left\{\Gamma(Lp + \hat{\mathcal{M}})\right\} \\ &+ \sum_{\mathbf{Z}_{k} \in S} \ln\left\{\operatorname{U}\left(Lp + \hat{\mathcal{M}}; 1 + Lp - \hat{\mathcal{L}}; \frac{L\,tr\left(\hat{\Sigma}_{h}^{-1}\mathbf{Z}_{k}\right)\hat{\mathcal{L}}}{\hat{\mathcal{M}}\hat{m}}\right)\right\}\end{aligned}$$

Courbes Caractéristique Opérationnelle de Réception (COR)

Idée : Pour chaque nouvelle partition, on calcule un terme de détection et un terme de fausse alarme [1].

• probabilité de détection

• probabilité de fausse alarme

$$p_d(k) = \frac{1}{N} \sum_{x=1}^{N} \frac{|S_x \cap T_x|}{|T_x|}$$

$$p_{fa}(k) = \frac{1}{N} \sum_{x=1}^{N} \frac{|S_x \cap C_x|}{|C_x|}$$

 S_x : L'ensemble des pixels qui appartiennent au même segment que x. T_x : L'ensemble des pixels qui appartiennent au même segment de vérité

terrain que x.

 C_x : Le complémentaire de T_x .

|T|: Le cardinal de l'ensemble T.

[1] L. Bombrun et J.-M. Beaulieu, Fisher Distribution for Texture Modeling of Polarimetric SAR Data, *IEEE Geoscience and Remote Sensing Letters*, vol. 5, no. 3, Juillet 2008.

Segmentation d'une image synthétique $(200 \times 200 \text{ pixels})$

Distance de Kolmogorov pour les 4 textures.

$$d_K = \sup_x |F_1(x) - F_2(x)|$$

textures	1-2	1-3	1-4	2-3	2-4	3-4
d_K	0.049	0.074	0.102	0.063	0.092	0.072

Résultat de segmentation de l'image synthétique

- Partition initiale : chaque segment est composé de 10×10 pixels.
- Partitions contenant 50 à 4 segments.

25

Courbes Caractéristique Opérationnelle de Réception (COR)

Résultats de segmentation pour $p_{fa} = 0.05$ [1]

[1] L. Bombrun et J.-M. Beaulieu, Segmentation of Polarimetric SAR Data Based on the Fisher Distribution for Texture Modeling, *Geoscience and Remote Sensing*, IGARSS '08, Boston, États-Unis, Juillet 2008.

Résultat de segmentation sur l'image E-SAR en bande L

6 zones $(30 \times 30 \text{ pixels})$:

- 2 zones urbaines
- 2 zones de forêt
- 2 zones de champ

Comparaison des critères de Wishart, \mathcal{K} et Kummer U pour les six zones choisies

	Urbain 1	Urbain 2	Forêt 1	Forêt 2	Champ1
Distribution de Wishart					
Urbain 2	10290				
Forêt 1	6850	7178			
Forêt 2	6826	7238	201		
Champ 1	36116	47936	28600	28235	
Champ 2	36665	48201	29274	28812	116
Distribution ${\cal K}$					
Urbain 2	340				
Forêt 1	645	1221			
Forêt 2	609	975	199		
Champ 1	5159	5422	8172	7507	
Champ 2	6286	6351	9547	8696	100
Distribution de KummerU					
Urbain 2	68				
Forêt 1	471	1499			
Forêt 2	436	1244	200		
Champ 1	4239	4723	8147	7486	
Champ 2	8788	5667	9521	8672	100

Comparaison des critères de Wishart, \mathcal{K} et Kummer U pour les six zones choisies

	Urbain 1	Urbain 2	Forêt 1	Forêt 2	Champ1
Distribution de Wishart					
Urbain 2	10290				
Forêt 1	6850	7178			
Forêt 2	6826	7238	201		
Champ 1	36116	47936	28600	28235	\frown
Champ 2	36665	48201	29274	28812	116
Distribution ${\cal K}$					$\overline{}$
Urbain 2	340				
Forêt 1	645	1221			
Forêt 2	609	975	199		
Champ 1	5159	5422	8172	7507	\bigcirc
Champ 2	6286	6351	9547	8696	100
Distribution de KummerU					$\overline{}$
Urbain 2	68				
Forêt 1	471	1499			
Forêt 2	436	1244	200		
Champ 1	4239	4723	8147	7486	\cap
Champ 2	8788	5667	9521	8672	100

Comparaison des critères de Wishart, \mathcal{K} et Kummer U pour les six zones choisies

	Urbain 1	Urbain 2	Forêt 1	Forêt 2	Champ1
Distribution de Wishart					
Urbain 2	10290				
Forêt 1	6850	7178			
Forêt 2	6826	7238	201		
Champ 1	36116	47936	28600	28235	
Champ 2	36665	48201	29274	28812	116
Distribution ${\cal K}$					
Urbain 2	340				
Forêt 1	645	1221			
Forêt 2	609	975	199		
Champ 1	5159	5422	8172	7507	
Champ 2	6286	6351	9547	8696	100
Distribution de KummerU					
Urbain 2	68				
Forêt 1	471	1499			
Forêt 2	436	1244	200		
Champ 1	4239	4723	8147	7486	
Champ 2	8788	5667	9521	8672	100

$\mathbf{T}_{11}\mathbf{T}_{33}\mathbf{T}_{22}$

5000 segments, critère de KummerU

5000 segments, critère de KummerU

Conclusions et Perspectives

Sommaire

- 1 L'interférométrie RSO
- 2 La segmentation hiérarchique d'images polarimétriques basée sur la texture
- 3 Conclusions et Perspectives

Partie Interférométrie

- Étude du **potentiel** et des **limites** de l'interférométrie différentielle satellitaire dans le contexte des **forts reliefs**.
- Analyse de la cohérence sur une série multi-temporelle d'interférogrammes.
- Validation des hypothèses simplificatrices sur l'écoulement des glaciers.
- Obtention du premier champ de vitesse par traitements interférométriques radar dans les Alpes françaises.

Partie Polarimétrie

- Modélisation de la texture par une distribution de Fisher.
- Distribution de **KummerU**.
- Implémentation dans un algorithme de **segmentation hiérarchique**.
- Résultats sur des images synthétiques et réelles.
- Nécessité de modéliser la texture par une distribution appropriée pour segmenter les images polarimétriques.

Perspectives

- Corrélation d'images basée sur la texture.
- Modélisation atmosphérique :
 - GPS installés sur le glacier d'Argentière et dans la vallée.
 - Correction des franges atmosphériques.
- Utilisation de ces travaux pour les nouveaux satellites à haute résolution spatiale :
 - TerraSAR-X
 - SAR Lupe
 - Cosmo Skymed

Perspectives

- Extraction de paramètres polarimétriques (entropie, anisotropie, angle α , TSVM) à partir d'une partition sur-segmentée.
- Adaptation de ces travaux dans le cas où la texture est dépendante du canal de polarisation.
- Modélisation de la texture en utilisant un développement en série de Edgeworth.

Publications

- Revues internationales (3) :
 - L. Bombrun et J.-M. Beaulieu, Fisher Distribution for Texture Modeling of Polarimetric SAR Data, *IEEE Geoscience and Remote Sensing Letters*, Juillet 2008, Vol. 5, n. 3, pp. 512-516.
 - 2 L. Bombrun, M. Gay, E. Trouvé, G. Vasile et J. Mars, DEM Error Retrieval by an Analysis of the Wrapped Phase Difference Between Differential Interferograms, *IEEE Geoscience and Remote Sensing Letters*, 2008, en révision.
 - 3 E. Trouvé, G. Vasile, M. Gay, <u>L. Bombrun</u>, P. Grussenmeyer, T. Landes, J.-M. Nicolas, P. Bolon, I. Pétillot, A. Julea, L. Valet, J. Chanussot et M. Koehl, **Combining** Airborne Photographs and Spaceborne SAR Data to Monitor Temperate Glaciers. Potentials and Limits, *IEEE Transaction on Geoscience and Remote* Sensing, 2007, Vol. 45, n. 4, pp. 905-924.
- \bullet Revue nationale (1) :
 - M. Koehl, <u>L. Bombrun</u>, M. Gay, E. Trouvé, P. Bolon, J.-M. Nicolas, G. Vasile, I. Pétillot, T. Landes et P. Grussenmeyer, **Recalage de Mesures Satellitaires de** Vitesse d'Écoulement du Glacier d'Argentière par Mesures Géodésiques *in-situ*, *Traitement du Signal*, 2008, en révision.

Publications

- Conférences internationales avec actes (10):
 - 1 <u>L. Bombrun</u> et J.-M. Beaulieu, Segmentation of Polarimetric SAR Data based on the Fisher Distribution for Texture Modeling, *IGARSS*, Boston, États-Unis, 2008.
 - 2 G. Vasile, J.-P. Ovarlez, F. Pascal, C. Tison, <u>L. Bombrun</u>, M. Gay, E. Trouvé, Normalized Coherency Matrix Estimation under the Sirv Model - Alpine Glacier Polsar Data Analysis, *IGARSS*, Boston, États-Unis, 2008.
 - 3 E. Trouvé, I. Pétillot, P. Bolon, M. Gay, <u>L. Bombrun</u>, J.-M. Nicolas, F. Tupin, A. Walpersdorf, N. Cotte, I. Hajnsek et M. Keller, Monitoring Alpine Glacier Activity by a Combined use of TerraSAR-X Images and Continuous GPS Measurements the Argentière Glacier Experiment, EUSAR, Friedrichshafen, Allemagne, 2008.
 - 4 L. Bombrun, I. Pétillot, G. Vasile, M. Gay, E. Trouvé, P. Bolon, J-M. Nicolas et T. Landes, Multi-date ERS Tandem Interferogram Analysis : Application to Alpine Glaciers, MULTITEMP, 2007, Leuven, Belgique.
 - 5 T. Landes, M. Gay, E. Trouvé, J.-M. Nicolas, <u>L. Bombrun</u>, G. Vasile et I. Hajnsek, Monitoring Temperate Glaciers by High Resolution Pol-InSAR Data : First Analysis of Argentière E-SAR Acquisitions and *in-situ* Measurements, *IGARSS*, Barcelone, Espagne, 2007, pp. 184-187
 - 6 G. Vasile, E. Trouvé, L. Valet, J.-M. Nicolas, <u>L. Bombrun</u>, M. Gay, I. Pétillot, P. Bolon, et V. Buzuloiu, Coherent-Stable Scatterers Detection in SAR Multi-Interferograms: Feature Fuzzy Fusion in Alpine Glacier Geophysical Context, *IGARSS*, Barcelone, Espagne, 2007, pp. 4862-4865.
 - 7 G. Vasile, E. Trouvé, L. Valet, J.-M. Nicolas, M. Gay, <u>L. Bombrun</u> et P. Bolon, Feature Detection in POLinSAR Images by an Interactive Fuzzy Fusion Approach. Application to Glacier Monitoring, *POLinSAR*, Frascati, Italie, 2007.
 - 8 <u>L. Bombrun</u>, F. Maussang, E. Moisan et A. Hétet, **Use of Statistical Hypothesis Test for Mines** Detection in SAS Imagery, *EUSIPCO*, Florence, Italie, 2006.
 - 9 G. Vasile, I. Petillot, A. Julea, E. Trouvé, P. Bolon, <u>L. Bombrun</u>, M. Gay, T. Landes, P. Grussenmeyer et J.-M. Nicolas, High Resolution SAR Interferometry: Influence of Local Topography in the Context of Glacier Monitoring, *IGARSS*, Denver, Etats-Unis, 2006.
 - 10 J. Chanussot, P. Bas et <u>L. Bombrun</u>, Airborn³⁴ Remote Sensing of Vineyards for the Detection of Dead Vine Trees, *IGARSS*, Seoul, Corée du Sud, 2005, Vol. 5, pp. 3090-3093.

Collaboration

• Projet **MEGATOR**

- Mesure de l'Évolution des Glaciers Alpins par Télédétection Optique et Radar, www.gipsa-lab.inpg.fr/megator.
- Action Concertée Incitative "Masse de données" du Ministère de la Recherche de 2004 à 2007.
- Action soutenue par le CNES dans le cadre du volet méthodologique du programme préparatoire ORFEO (Optical and Radar Federated Earth Observation).

• Mobilité de 6 mois à l'Université Laval à Québec en collaboration avec Messieurs **Jean-Marie Beaulieu** et **Ridha Touzi** du Centre Canadien de Télédétection à Ottawa. Développement d'outils et de méthodes de télédétection spatiale optique et radar nécessaires à la haute résolution spatiale

Lionel BOMBRUN

Directeurs de thèse : Michel Gay et Jérôme Mars GIPSA-lab Département des Images et des Signaux

18 novembre 2008

Analyse l'angle α

Analyse de l'angle α du modèle α/β

Modèle TSVM : Target Scattering Vector Model

Le TSVM est basé sur la décomposition de Huynen.

$$\tilde{\mathbf{S}} = \tilde{\mathbf{R}}(\psi)\tilde{\mathbf{T}}(\tau_m)\tilde{\mathbf{S}}_{\mathbf{d}}\tilde{\mathbf{T}}(\tau_m)\tilde{\mathbf{R}}(-\psi)$$

avec :

$$\tilde{\mathbf{S}}_{\mathbf{d}} = \begin{bmatrix} m \cdot e^{2j(\nu+\rho)} & 0\\ 0 & m \cdot \tan^2 \gamma \ e^{-2j(\nu-\rho)} \end{bmatrix} = \begin{bmatrix} \mu_1 & 0\\ 0 & \mu_2 \end{bmatrix}$$

$$\tilde{\mathbf{R}}(\psi) = \begin{bmatrix} \cos\psi & -\sin\psi\\ \sin\psi & \cos\psi \end{bmatrix} \text{ et } \tilde{\mathbf{T}}(\tau_m) = \begin{bmatrix} \cos\tau_m & -j\sin\tau_m\\ -j\sin\tau_m & \cos\tau_m \end{bmatrix}$$

Modèle TSVM: Target Scattering Vector Model

$$\overrightarrow{e_T}^{\mathbf{SV}} = m \cdot |\overrightarrow{e_T}|_m e^{j\Phi_s} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(2\psi) & -\sin(2\psi) \\ 0 & \sin(2\psi) & \cos(2\psi) \end{bmatrix} \begin{bmatrix} \cos\alpha_s \cos(2\tau_m) \\ \sin\alpha_s e^{j\Phi_{\alpha_s}} \\ -j\cos\alpha_s \sin(2\tau_m) \end{bmatrix}$$

Modèle α/β

$$\mathbf{k} = e^{j\theta} \begin{bmatrix} \cos \alpha \\ \sin \alpha \cos \beta e^{j\delta} \\ \sin \alpha \sin \beta e^{j\gamma} \end{bmatrix}$$

Comparaison des modèles α/β et TSVM

• Pour une cible symétrique ($\tau_m = 0$), l'angle α du modèle α/β est égal à l'angle α_s du modèle TSVM.

Courbes COR Définiton

Courbes Caractéristique Opérationnelle de Réception (COR)

$$S_x$$

Vé<u>rité terrain:</u>

détection =
$$\frac{|S_x \cap T_x|}{|T_x|} = \frac{1}{4}$$

fausse alarme = $\frac{|S_x \cap C_x|}{|C_x|}$
= $\frac{4}{3 \times 4}$

 $T_{x_{41}}$

$$p_d = \frac{1}{N} \sum_{x=1}^{N} \frac{|S_x \cap T_x|}{|T_x|} \approx 0.469$$
$$= \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{P} \frac{(K_{ij})^2}{card(classe\ j)}$$

Matrice de confusion:

K _{ij}	1	2	3	4
1	1	0	0	0
2	1	3	0	1
3	2	1	2	1
4	0	0	2	0
5	0	0	0	2

- k: Nombre de segments dans la partition
- P : Nombre de classes (vérité terrain)

$$card(classe j) = \sum_{i=1}^{k} K_{ij}$$

$$p_{fa} = \frac{1}{N} \sum_{x=1}^{N} \frac{|S_x \cap C_x|}{|C_x|} \approx 0.208$$
$$= \frac{1}{N} \sum_{i=1}^{k} \sum_{j=1}^{P} \frac{K_{ij} (K_i - K_{ij})}{card(\overline{classe j})}$$

Matrice de confusion:

K _{ij}	1	2	3	4
1	1	0	0	0
2	1	3	0	1
3	2	1	2	1
4	0	0	2	0
5	0	0	0	2

- $k \;\; : \;$ Nombre de segments dans la partition
- P : Nombre de classes (vérité terrain)

$$K_i = \sum_{j=1}^{P} K_{ij}$$

$$card(\overline{classe \ j}) = N - \sum_{i=1}^{k} K_{ij}$$

Cas particulier de la distribution de KummerU

Cas particulier de la distribution d<u>e KummerU</u>

• Si \mathcal{L} tend vers l'infini, la distribution de Fisher tend vers la distribution Gamma Inverse.

Distribution de \mathbf{Z} si la texture est distribuée selon une loi Gamma Inverse

La phase topographique d'un interférogramme est définie par :

$$\Phi^{i}_{topo} = \frac{4\pi}{\lambda} \frac{B^{i}_{\perp}}{R_{1}\sin\theta} \Delta z^{MNT} + \frac{4\pi}{\lambda} \frac{B^{i}_{\perp}}{R_{1}\sin\theta} \Delta z^{err}$$
$$= \Phi^{i,MNT}_{topo} + \Phi^{i,err}_{topo}$$

La différence de phase entre interférogramme différentiel $\Delta \Phi^{i-j}$ se décompose alors comme la somme de quatre termes par :

$$\begin{aligned} \Delta \Phi^{i-j} &= \left(\Phi^i - \Phi^{i,MNT}_{topo} \right) - \left(\Phi^j - \Phi^{j,MNT}_{topo} \right) \\ &= \Delta \Phi^{ij}_{topo} + \Delta \Phi^{ij}_{atm} + \Delta \Phi^{ij}_{depl} + \Delta \Phi^{ij}_{bruit} \end{aligned}$$

Le terme résiduel dû à la topographie s'exprime par :

$$\begin{split} \Delta \Phi_{topo}^{ij} &= \left(\Phi_{topo}^{i} - \Phi_{topo}^{i,MNT} \right) - \left(\Phi_{topo}^{j} - \Phi_{topo}^{j,MNT} \right) \\ &= \frac{4\pi}{\lambda} \frac{\left(B_{\perp}^{i} - B_{\perp}^{j} \right)}{R_{1} \sin \theta} \Delta z^{err} \\ &= \frac{4\pi}{\lambda} \frac{\Delta B_{\perp}^{ij}}{R_{1} \sin \theta} \Delta z^{err} \\ &= \frac{2\pi}{\Delta e_{a}^{ij}} \Delta z^{err} \end{split}$$

avec ΔB_{\perp}^{ij} la baseline perpendiculaire équivalente et Δe_a^{ij} l'altitude d'ambiguïté équivalente définies par :

$$\Delta B^{ij}_{\perp} = B^i_{\perp} - B^j_{\perp} \quad \text{et} \quad \Delta e^{ij}_a = \frac{\lambda}{2} \frac{R_1 \sin \theta}{B^i_{\perp} - B^j_{\perp}} = \frac{1}{\frac{1}{e^i_a} - \frac{1}{e^j_a}}$$

Soit $N_{ij}(X, Y)$ le nombre de franges observées sur l'image de différences de phases entre interférogrammes différentiels $\Delta \Phi^{i-j}$ entre les points X et Y. Posons $\Delta z(X, Y)$ l'élévation non prise en compte par le MNT entre les deux points X et Y (l'erreur du MNT).

$$\Delta \Phi_{topo}^{ij} = 2\pi N_{ij}(X, Y)$$

On relie l'erreur du MNT entre les points X et Y au nombre de franges observé entre ces points par :

$$\Delta z(X, Y) = N_{ij}(X, Y) \Delta e_a^{ij}$$

Pour les différentes paires d'interférogrammes, on teste :

$$N_{ij}(X, Y)\Delta e_a^{ij} = K(X, Y) \; \forall i, j$$

Différences de phases entre interférogrammes différentiels :

Avril-Mars Avril-Décembre Avril-Octobre Après suppression des franges résiduelles topographiques :

Avril-Mars

Avril-Décembre

Avril-Octobre

Combinaison des passes ascendante et descendante

Objectif : Estimer les offsets sur les passes ascendante et descendante à partir d'un ensemble de points (P_1, \dots, P_N) visibles dans les deux passes du satellite.

$$v(P_i) \overrightarrow{e}_{ec}(P_i) \cdot \overrightarrow{e}_{LOS_{asc}} = \phi_{asc}(P_i) + K_{asc} \forall i = 1 \cdots N$$

$$v(P_i) \overrightarrow{e}_{ec}(P_i) \cdot \overrightarrow{e}_{LOS_{desc}} = \phi_{desc}(P_i) + K_{desc} \forall i = 1 \cdots N$$

Soient K_{asc} et K_{desc} les constantes à appliquer sur les phases en LOS en passe ascendante et descendante. On cherche K_{asc} et K_{desc} de sorte que l'erreur quadratique moyenne R soit minimale

$$R = E\left[\left(K_{asc} - \widehat{K}_{asc}\right)^2 + \left(K_{desc} - \widehat{K}_{desc}\right)^2\right]$$

Combinaison des passes ascendante et descendante

Exemple synthétique : offset de 4 sur la phase en passe ascendante $(K_{asc} = -4)$ et un offset de -2 sur la phase en passe descendante $(K_{desc} = 2)$.

passe descendante

passe ascendante

Glacier	nombre de points	\widehat{K}_{asc}	\widehat{K}_{desc}
Mer de Glace	9191	-4.00579	2.0206
Argentière	8107	-3.98358	1.99097

Mécanisme de rétrodiffusion moyen

Vecteur de rétrodiffusion associé au mécanisme de rétrodiffusion moyen :

$$\overline{\mathbf{k}} = \sqrt{\lambda_1} e^{j\theta_1} \mathbf{k_1} + \sqrt{\lambda_2} e^{j\theta_2} \mathbf{k_2} + \sqrt{\lambda_3} e^{j\theta_3} \mathbf{k_3}$$

$$\overline{\mathbf{T}} = \overline{\mathbf{k}} \ \overline{\mathbf{k}}^{\dagger} = \mathbf{T} + \mathbf{T}_{\mathbf{N}}$$

avec

$$\begin{aligned} \mathbf{T_N} &= \sqrt{\lambda_1 \lambda_2} \left(\mathbf{k_1 k_2^{\dagger}} e^{j(\theta_1 - \theta_2)} + \mathbf{k_2 k_1^{\dagger}} e^{j(\theta_2 - \theta_1)} \right) \\ &+ \sqrt{\lambda_1 \lambda_3} \left(\mathbf{k_1 k_3^{\dagger}} e^{j(-\theta_2)} + \mathbf{k_3 k_1^{\dagger}} e^{j(\theta_2)} \right) \\ &+ \sqrt{\lambda_2 \lambda_3} \left(\mathbf{k_2 k_3^{\dagger}} e^{j(-\theta_1)} + \mathbf{k_2 k_3^{\dagger}} e^{j(\theta_1)} \right) \end{aligned}$$

On cherche θ_1 et θ_2 de sorte que la somme du module des carrés des termes diagonaux de la matrice $\mathbf{T}_{\mathbf{N}}$ soit minimale.