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Outline

Part I : Parametric Statistical Prediction for a Stochastic Process.

Observe : X0, . . . , XT of a stochastic process (Xt) with law Pθ.
Predict : XT+h a future value.

Part II : A nonparametric quantile-copula approach to conditional density
estimation. Applications to prediction.

Observe : (Xi, Yi)i=1,...,n independent identically distributed.
Predict : Y , given that X = x.
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The Statistical Prediction Problem (1)

Let X = {Xt, t ∈ Z} a real-valued, square integrable, stochastic process, with
distribution Pθ, θ a parameter.
Observed data: (X0, . . . , XT ) := XT

0

Aim : Forecast Y := g(XT+h) by a function f(XT
0 ) = Ŷ

Criteria : Error L2

Lemma : Decomposition of the prediction error

Eθ(Y − Ŷ )2 = Eθ(Y − Eθ(Y |XT
0 ))2 + Eθ(Eθ(Y |XT

0 )− f(XT
0 ))2

The prediction error splits between a probabilistic prediction error term and a
statistical prediction error term.

The error is thus minimised by choosing the conditional expectation as a
predictor
f(XT

0 ) = Eθ(Y |XT
0 ) := Y ∗
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Introduction
Prediction by temporal separation

Limit law of the Predictor

The Statistical Prediction Problem
Prevision vs Regression
Towards asymptotic independence

The Statistical prediction problem (2)

Definition : the Probabilistic predictor

The Bayesian or Probabilistic predictor is defined as the random variable
Y ∗ := Eθ(Y |XT

0 ) := rθ(X
T
0 )

But : θ is unknown → to be estimated by θ̂T on XT
0

Definition : The Statistical predictor

We build the plug-in Statistical predictor : Ŷ := rθ̂T
(XT

0 )

2 mixed problems : on the same data
1 a probabilistic calculation problem : XT

0 as argument of rθ

2 a statistical estimation problem : XT
0 as data to estimate θ by θ̂T

→ behaviour difficult to study.
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Prevision versus Regression

Régression

1 estimation step : on the data Dn := {(Xi, Yi), i = 0, . . . , n}, estimate
r(x) = E[Y |X = x] by r̂(x, Dn)

2 prediction step : for a new (X, Y ), predict Y by r̂(X, Dn)

if (X, Y ) were independent of Dn, then E[Y |X, Dn] = E[Y |X] and

Eθ[r(X)− r̂(X, Dn)]2 =

∫
Eθ

[
(r(X)− r̂(X, Dn))2 |X = x

]
dPX(x)

=

∫
Eθ

[
(r(x)− r̂(x, Dn))2

]
dPX(x)

→ The Prediction error is the same as the MISE regression error.

Prediction

For a Markov process, (Xi, Yi) = (Xi, Xi+1) et (X, Y ) = (XT , XT+1)
⇒ Dn not independent of X
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Introduction
Prediction by temporal separation

Limit law of the Predictor

The Statistical Prediction Problem
Prevision vs Regression
Towards asymptotic independence

Prevision versus Regression
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Towards asymptotic independence

Issue

How to let X be independent of Dn ?

A solution : temporal separation

Let ϕ(T )→∞ and kT →∞ such that kT − ϕ(T )→∞.
Split the data (X0, . . . , XT ) :

1 estimate θ on [0, ϕ(T )] : θ̂ϕ(T )

2 predict on [T − kT , T ] : Ŷ := rθ̂ϕ(T )
(XT

T−kT
)

by using an assumption of asymptotic independence (short memory) on the
process.
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Some notions on α-mixing

Definition : α-mixing coefficients, Rosenblatt [1956]

Let (Ω,A, P ) a probability space and B, C two sub-sigma fields of A. The
α-mixing coefficient between B and C is defined by

α(B, C) = sup
B∈B
C∈C

|P (B ∩ C)− P (B)P (C)|

and the α-mixing coefficient of order k for the stochastic process
X = {Xt, t ∈ N} defined on the probability space (Ω,A, P ) as

α(k) = sup
t∈N

α(σ(Xs, s ≤ t), σ(Xs, s ≥ t + k))
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Model

Let X = (Xt, t ∈ N) a stochastic process. We assume that :

1 X is a second order, square integrable, α-mixing process.

2 the regression function rθ(.) depends approximately of the last kT values
(XT−i, i = 1, . . . , kT ) :

X∗
T+1 := Eθ

[
XT+1

∣∣∣XT
0

]
:=

kT∑
i=0

ri(XT−i, θ) + ηkT (X, θ).

Assumptions H0 on the process

(i) lim
T→∞

Eθ(η
2
kT

(X, θ)) = 0 ;

(ii) for all i ∈ N, ‖ri(XT−i, θ1)− ri(XT−i, θ2)‖ ≤ Hi(XT−i) ‖θ1 − θ2‖ ,
∀θ1, θ2;

(iii) there exists a r > 1 such that sup
i∈N

(
EθH

2r
i (XT−i)

)1/r
<∞.

This additive model is an extension of a model studied by Bosq [2007].
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Statistical Prediction and assumptions

We assume we have an estimator θ̂T of θ.

Assumptions H1 on the estimator θ̂T

(i) lim sup
T→∞

T.Eθ(θ̂T − θ)2 <∞ ;

(ii) there exists q > 1 such that lim sup
T→∞

T qE(θ̂T − θ)2q <∞ .

We build a statistical predictor : X̂T+1 :=
∑kT

i=0 ri(XT−i, θ̂ϕ(T ))

Assumptions H2 on the coefficients

(i)
k2

T
ϕ(T )

→
T→∞

0;

(ii) (T − kT − ϕ(T )) →
T→∞

∞.
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Consistency of the predictor

Theorem 2.5

Under the assumptions H0,H1,H2, we have that

lim sup
T→∞

Eθ(X̂T+1 −X∗
T+1)

2 = 0

Tool : Davydov’s covariance inequality

Let X ∈ Lq(P) and Y ∈ Lr(P), if q > 1, r > 1 and 1
r

+ 1
q

= 1− 1
p
, then

|Cov(X, Y )| ≤ 2p
(
2α(σ(X), σ(Y ))

) 1
p ‖X‖q‖Y ‖r.
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Example of process

For a linear, weakly stationary, centered, non deterministic, inversible process in
discrete time, its Wold decomposition writes:

XT = eT +

kT∑
i=1

ϕi(θ)XT−i+
∑

i>kT

ϕi(θ)XT−i

with
∞∑

i=1

ϕ2
i (θ) <∞. Set ηkT (X, θ) =

∑
i>kT +1

ϕi(θ)XT+1−i

Proposition

If X verifies the assumptions

1 ∀i, ϕi is differentiable and ‖ϕ′i(.)‖∞ <∞ ;

2 there exists a r > 1 such as (Xt) has a moment of order 2r;

3 X is α-mixing and such that
∑
i,j

ϕi+1(θ)ϕj+1(θ)α
1/p (|i− j|) <∞.

Then, X verifies the assumptions of theorem 2.5.
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Assumptions for the limit law

Assumptions H′
0 on the process

(i) θ 7→ ri(XT−i, θ) is twice differentiable w.r.t. θ;

(ii) sup
i

∥∥∂2
θri(XT−i, .)

∥∥
∞ = OP (1);

(iii) ηkT (X, θ) = oP

(√
1

ϕ(T )

)
;

(iv)
+∞∑
i=0

∂θri(XT−i; θ) exists and converge a. s. to a vector V as T → +∞.

Assumption H′
1 on the estimator θ̂T

(i)
√

T (θ̂T − θ)
L
 N(0, σ2(θ)).

Assumption H′
2 on the coefficients

(i) kT = o(
√

ϕ(T ));

(ii) (T − kT − ϕ(T )) →
T→∞

∞.
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Limit law of the predictor

Theorem 2.10

If the assumptions H′
0,H

′
1,H

′
2 are verified, then√

ϕ(T )(X̂T+1 −X∗
T+1)

L
 < U, V >

where U and V are two independent random variables, U with law N (0, σ2(θ))

and V is the limit of
+∞∑
i=0

∂θri(XT−i; θ) as T →∞
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Tool

An asymptotic independence lemma

Let (X ′
n) and (X ′′

n) two sequences of real-valued random variables with laws
P ′

n and P ′′
n respectively, defined on the probability space (Ω,A, P ). Assume

that (X ′
n) and (X ′′

n) are asymptotically mixing w.r.t. each other, in the sense
that there exists a sequence of coefficients α(n) with α(n) →

n→∞
0 such that,

for all Borel set A and B of R,∣∣P (X ′
n ∈ A, X ′′

n ∈ B)− P (X ′
n ∈ A)P (X ′′

n ∈ B)
∣∣ ≤ α(n)

Then, if

1 X ′
n

L
 X ′ with law P ′;

2 X ′′
n

L
 X ′′ with law P ′′;

(X ′
n, X ′′

n)
L
 (X ′, X ′′), and the law (X ′, X ′′) is P ′ ⊗ P ′′.
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Conclusions

Some limits of the temporal decoupling method

1 heuristically under-efficient : gap in the data ;

2 the mixing coefficients = a real number which reduces the dependence
structure of the process to a property of asymptotic independence ;

3 practical applications are difficult to undertake.
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Setup and Motivation

Objective

observe a sample ((Xi, Yi); i = 1, . . . , n) i.i.d. of (X, Y ).

predict the output Y for an input X at location x

with minimal assumptions on the law of (X, Y ) (Nonparametric setup).

Notation

(X, Y )→ joint c.d.f FX,Y , joint density fX,Y ;

X → c.d.f. F , density f ;

Y → c.d.f. G, density g.
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Why estimating the conditional density ?

What is a good prediction ?

1 Classical approach (L2 theory): the conditional mean or regression
function r(x) = E(Y |X = x),

2 Fully informative approach: the conditional density f(y|x)
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Why estimating the conditional density?
Two classical approaches for estimation
The trouble with ratio shaped estimators

Why estimating the conditional density ?

What is a good prediction ?

1 Classical approach (L2 theory): the conditional mean or regression
function r(x) = E(Y |X = x),

2 Fully informative approach: the conditional density f(y|x)
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Why estimating the conditional density?
Two classical approaches for estimation
The trouble with ratio shaped estimators

Estimating the conditional density - 1

A first density -based approach

f(y|x) =
fX,Y (x, y)

f(x)
← f̂X,Y (x, y)

f̂(x)

f̂X,Y , f̂ : Parzen-Rosenblatt kernel estimators with kernels K, K′, bandwidths
h and h′.

The double kernel estimator

f̂(y|x) =

n∑
i=1

K′
h′(Xi − x)Kh(Yi − y)

n∑
i=1

K′
h′(Xi − x)

→ ratio shaped
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Estimating the conditional density - 2

A regression strategy

Fact: E
(
1|Y−y|≤h|X = x

)
= F (y + h|x)− F (y − h|x) ≈ 2h.f(y|x)

Conditional density estimation problem → a regression framework
1 Transform the data:

Yi → Y ′
i := (2h)−1

1|Yi−y|≤h

Yi → Y ′
i := Kh(Yi − y) smoothed version

2 Perform a nonparametric regression of Y ′
i on Xis by local averaging

methods (Nadaraya-Watson, local polynomial, orthogonal series,...)

Nadaraya-Watson estimator

f̂(y|x) =

n∑
i=1

K′
h′(Xi − x)Kh(Yi − y)

n∑
i=1

K′
h′(Xi − x)

→ (same) ratio shape.
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The trouble with ratio shaped estimators

Drawbacks

quotient shape of estimator is tricky to study;

explosive behavior when the denominator is small → numerical
implementation delicate (trimming);

minoration hypothesis on the marginal density f(x) ≥ c > 0.

How to remedy these problems?
→ build on the idea of using synthetic data:
find a representation of the data more adapted to the problem.
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The quantile transform

What is the “best” transformation of the data in that context ?

The quantile transform theorem

when F is arbitrary, if U is a uniformly distributed random variable on

(0, 1), X
d
= F−1(U);

whenever F is continuous, the random variable U = F (X) is uniformly
distributed on (0, 1).

→ use the invariance property of the quantile transform to construct a
pseudo-sample (Ui, Vi) with a prescribed uniform marginal distribution.

(X1, . . . , Xn) (Y1, . . . , Yn)
↓ ↓

(U1 = F (X1), . . . , Un = F (Xn)) (V1 = G(Y1), . . . , Vn = G(Yn))
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

The quantile transform
The copula representation
A product shaped estimator

The copula representation

→ leads naturally to the copula function:

Sklar’s theorem [1959]

For any bivariate cumulative distribution function FX,Y on R2, with marginal
c.d.f. F of X and G of Y , there exists some function C : [0, 1]2 → [0, 1], called
the dependence or copula function, such as

FX,Y (x, y) = C(F (x), G(y)) , −∞ ≤ x, y ≤ +∞.

If F and G are continuous, this representation is unique with respect to (F, G).
The copula function C is itself a c.d.f. on [0, 1]2 with uniform marginals.

→ captures the dependence structure of the vector (X, Y ), irrespectively of the
marginals.
→ allows to deal with the randomness of the dependence structure and the
randomness of the marginals separately.
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A product shaped estimator

Assume that the copula function C(u, v) has a density c(u, v) = ∂2C(u,v)
∂u∂v

i.e. c(u, v) is the density of the transformed r.v. (U, V ) = (F (X), G(Y )).

A product form of the conditional density

By differentiating Sklar’s formula,

fY |X(y|x) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y))

A product shaped estimator

f̂Y |X(y|x) = ĝn(y)ĉn(Fn(x), Gn(y))
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Construction of the estimator - 1

→ get an estimator of the conditional density by plugging estimators of each
quantities.

density of Y : g ← kernel estimator ĝn(y) := 1
nhn

n∑
i=1

K0

(
y−Yi

hn

)

c.d.f.

F (x) ← Fn(x) = 1
n

n∑
j=1

1Xj6x

G(y) ← Gn(y) := 1
n

n∑
j=1

1Yj6y
empirical c.d.f.

copula density c(u, v)← cn(u, v) a bivariate Parzen-Rosenblatt kernel
density (pseudo) estimator

cn(u, v) :=
1

na2
n

n∑
i=1

K

(
u− Ui

an
,
v − Vi

an

)
(1)

with kernel K(u, v) = K1(u)K2(v), and bandwidths an.
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with kernel K(u, v) = K1(u)K2(v), and bandwidths an.
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The quantile-copula estimator

Recollecting all elements, we get,

The quantile-copula estimator

f̂n(y|x) := ĝn(y)ĉn(Fn(x), Gn(y)).

that is to say,

f̂n(y|x) :=

[
1

nhn

n∑
i=1

K0

(
y − Yi

hn

)]
.

[
1

na2
n

n∑
i=1

K1

(
Fn(x)− Fn(Xi)

an

)
K2

(
Gn(y)−Gn(Yi)

an

)]
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Hypothesis

Assumptions on the densities

i) the c.d.f F of X and G of Y are strictly increasing and differentiable;

ii) the densities g and c are twice differentiable with continuous bounded
second derivatives on their support.

Assumptions on the kernels

(i) K and K0 are of bounded support and of bounded variation;

(ii) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C;

(iii) K and K0 are second order kernels: m0(K) = 1, m1(K) = 0 and
m2(K) < +∞, and the same for K0.

(iv) K is twice differentiable with bounded second partial derivatives.

→ classical regularity assumptions in nonparametric literature.
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Asymptotic results - 1

Under the above regularity assumptions, with hn → 0, an → 0,

Pointwise Consistency

weak consistency hn ' n−1/5, an ' n−1/6 entail

f̂n(y|x) = f(y|x) + OP

(
n−1/3

)
.

strong consistency hn ' (ln ln n/n)1/5 and an ' (ln ln n/n)1/6

f̂n(y|x) = f(y|x) + Oa.s.

((
ln ln n

n

)1/3
)

.

asymptotic normality nhn →∞, na4
n →∞, na6

n → 0, and√
ln ln n/(na3

n)→ 0 entail√
na2

n

(
f̂n(y|x)− f(y|x)

)
d
 N

(
0, g(y)f(y|x)||K||22

)
.
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Asymptotic results - 2

Uniform Consistency

Under the above regularity assumptions, with hn → 0, an → 0, for x in the
interior of the support of f and [a, b] included in the interior of the support of g,

weak consistency hn ' (ln n/n)1/5, an ' (ln n/n)1/6 entail

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = OP

(
(ln n/n)1/3

)
.

strong consistency hn ' (ln n/n)1/5, an ' (ln n/n)1/6 entail

sup
y∈[a,b]

|f̂n(y|x)− f(y|x)| = Oa.s.

((
ln n

n

)1/3
)

.
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Asymptotic Mean square error

Asymptotic Bias and Variance for the quantile-copula estimator

Bias:

E(f̂n(y|x))− f(y|x) = g(y)m2(K).∇2c(F (x), G(y))
a2

n

2
+ o(a2

n)

with m2(K) = (m2(K1), m2(K2)), ∇2c(u, v) = ( ∂2c(u,v)

∂u2 , ∂2c(u,v)

∂v2 ).

Variance:

V ar(f̂(y|x)) = 1/(na2
n)g(y)f(y|x)||K||22 + o(1/(na2

n)).
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Sketch of the proofs

Decomposition diagram

ĝ(y)ĉn(Fn(x), Gn(y))
↓

g(y)ĉn(Fn(x), Gn(y)) → g(y)ĉn(F (x), G(y)) → g(y)cn(F (x), G(y))
↓

g(y)c(F (x), G(y))

↓ : consistency results of the kernel density estimators
→ : two approximation lemmas

1 ĉn from (Fn(x), Fn(y))→ (F (x), G(y))

2 ĉn → cn.

Tools: results for the K-S statistics ||F − Fn||∞ and ||G−Gn||∞.
→ Heuristic: rate of convergence of density estimators < rate of approximation
of the K-S Statistic.
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Theoretical asymptotic comparison - 1

Competitor: e.g. Local Polynomial estimator, f̂
(LP )
n (y|x) := θ̂0 with

R(θ, x, y) :=

n∑
i=1

(
Kh2(Yi − y)−

∑r

j=0
θj(Xi − x)j

)2

K′
h1(Xi − x),

where θ̂xy := (θ̂0, θ̂1, . . . , θ̂r) is the value of θ which minimizes R(θ, x, y).

Comparative Bias

BLP =
h2

1m2(K
′)

2

∂2f(y|x)

∂x2
+

h2
2m2(K)

2

∂2f(y|x)

∂y2
+ o(h2

1 + h2
2)

BQC = g(y)m2(K).∇2c(F (x), G(y))
a2

n

2
+ o(a2

n)
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Theoretical comparison
Finite sample simulation

Theoretical asymptotic comparison - 2

Asymptotic bias comparison

All estimators have bias of the same order ≈ h2 ≈ n−1/3;

Distribution dependent terms:
difficult to compare
sometimes less unknown terms for the quantile-copula estimator

c of compact support : the “classical” kernel method to estimate the
copula density induces bias on the boundaries of [0, 1]2

→ techniques to reduce the bias of the kernel estimator on the edges
(boundary kernels, beta kernels, reflection and transformation methods,...)
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Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

Ratio shaped estimators: V ar(LP ) := f(y|x)
f(x)

→ explosive variance for

small value of the density f(x), e.g. in the tail of the distribution of X.

Quantile-copula estimator: V ar(QC) := g(y)f(y|x) → does not suffer
from the unstable nature of competitors.

Asymptotic relative efficiency: ratio of variances

V ar(QC)

V ar(LP )
:= f(x)g(y)

→ the QC has a lower asymptotic variance for a large amount of x,y
values.
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Theoretical comparison
Finite sample simulation

Theoretical asymptotic comparison - 3

Asymptotic Variance comparison

Main terms in the asymptotic variance:

Ratio shaped estimators: V ar(LP ) := f(y|x)
f(x)

→ explosive variance for

small value of the density f(x), e.g. in the tail of the distribution of X.

Quantile-copula estimator: V ar(QC) := g(y)f(y|x) → does not suffer
from the unstable nature of competitors.

Asymptotic relative efficiency: ratio of variances

V ar(QC)

V ar(LP )
:= f(x)g(y)

→ the QC has a lower asymptotic variance for a large amount of x,y
values.
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Finite sample simulation

Model

Sample of n = 100 i.i.d. variables (Xi, Yi), from the following model:

X, Y is marginally distributed as N (0, 1)

X, Y is linked via Frank Copula .

C(u, v, θ) =
ln[(θ + θu+v − θu − θv)/(θ − 1)]

ln θ

with parameter θ = 100.

Practical implementation:

Beta kernels for copula estimator, Epanechnikov for other.

simple Rule-of-thumb method for the bandwidths.
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Application to prediction - definitions

Point predictors: Conditional mode predictor

Definition of the mode: θ(x) := arg supy f(y|x)

→ plug in predictor : θ̂(x) := arg supy f̂n(y|x)

Set predictors: Level sets

Predictive set Cα(x) such as P (Y ∈ Cα(x)|X = x) = α
→ Level set or Highest density region Cα(x) := {y : f(y|x) ≥ fα} with fα the
largest value such that the prediction set has coverage probability α.
→ plug-in level set: Cα,n(x) := {y : f̂n(y|x) ≥ f̂α} where f̂α is an estimate of
fα.
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Application to prediction - results

Point predictors: Conditional mode predictor

Under regularity conditions, uniform convergence on a compact set of the
conditional density estimator entails that

θ̂(x)
a.s.→ θ(x)

Set predictors: Level sets

Under regularity conditions, uniform convergence on a compact set of the
conditional density estimator entails that

λ(∆(Cα,n(x), Cα(x)))
a.s.→ 0

where ∆(., .) stands for the symmetric difference, and λ for Lebesgue measure.
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On the efficiency estimation of the empirical margins

Deficiency of the empirical distribution functions

the order statistics X1,n < . . . < Xn,n is complete sufficient for estimating
F with a density f .
→ Fn is the UMVU estimator of F .

its smoothed version F̂ (x) = n−1∑n
i=1 L

(
Xi−x

bn

)
where bn bandwidth

and L(x) =
∫ x

−∞ l(t)dt, with l density kernel, is such that∣∣∣∣E(F̂ (x)− F (x))2 − E(Fn(x)− F (x))2 + 2h/nF ′(x)

∫
tl(t)L(t)dt

∣∣∣∣
≤ h4AC2 + O(h2/n)

→ Fn is deficient w.r.t F̂ .
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Implication for the quantile copula estimator

The doubly smoothed quantile copula conditional density estimator

→ replace Fn and Gn by F̂ and Ĝ

beneficial for small samples

graphically more appealing: less wiggly behaviour

Consequence for local averaging

With smooth margin estimators F̂ and Ĝ,

F̂ (x)− F̂ (Xi) ≈ f̂(Xi)(x−Xi) (2)

or F̂ (Xi)− F̂ (x) ≈ f̂(x)(Xi − x) (3)
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Connection with the variable bandwidth kernel estimators

Connection with the variable bandwidth kernel estimators

Therefore, the copula density part of the estimator writes

ĉn(F̂ (x), Ĝ(y)) = (nanbn)−1
n∑

i=1

K1

(
F̂ (Xi)− F̂ (x)

an

)
K2 (. . .)

≈ (nanbn)−1
n∑

i=1

K1

(
Xi − x

an/f̂(Xi)

)
K2

(
Yi − y

bn/ĝ(Yi)

)
with approximation (2), and

≈ (nanbn)−1
n∑

i=1

K1

(
Xi − x

an/f̂(x)

)
K2

(
Yi − y

bn/ĝ(y)

)
with approximation (3).
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Connection with the variable bandwidth kernel estimators

Connection with the variable bandwidth kernel estimators

→ the copula density estimator with smoothed margin estimates is like a kernel
estimator with an adaptive local bandwidth

an/f̂(Xi) : sample smoothing bandwidth

an/f̂(x) : balloon smoothing bandwidth
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Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Outline

4 Introduction
Why estimating the conditional density?
Two classical approaches for estimation
The trouble with ratio shaped estimators

5 The Quantile-Copula estimator
The quantile transform
The copula representation
A product shaped estimator

6 Asymptotic results
Consistency and asymptotic normality
Sketch of the proofs

7 Comparison with competitors
Theoretical comparison
Finite sample simulation

8 Application to prediction and discussions
Application to prediction
Discussions

9 Summary and conclusions

Olivier P. Faugeras Thèse de Doctorat de l’Université Pierre et Marie Curie



Introduction
The Quantile-Copula estimator

Asymptotic results
Comparison with competitors

Application to prediction and discussions
Summary and conclusions

Conclusions

Summary

ratio type into the product → consistency and limit results where obtained
by combination of the previous known ones on (unconditional) density
estimation,

nonexplosive behavior in the tails of the marginal density,

no need for trimming or clipping.
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Conclusions

Some perspectives and work-in-progress

Adaptive bandwidth choices to the regularity of the model with an
efficient kernel estimation of the copula density by Boundary-corrected
kernels (with A. Leblanc).

To design applications-specific conditional estimators:
estimation in the tail of the marginal distribution, to relate with extreme
value theory, with applications in insurance, risk analysis, environmental
sciences.
estimation for censored data with Kaplan-Meier estimators of the marginals.

Extension to time series by coupling arguments for Markovian models.

Alternative nonparametric methods of estimation by wavelets and minimax
analysis with K.Tribouley, E. Masiello.
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Thank you !
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