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Abstract

In this dissertation, several algorithms to design linear phase Finite Im-

pulse Response (FIR) and Infinite Impulse Response (IIR) filters have been

discussed.

Contrary to various already existing standard algorithms,the proposed

methods approximate magnitude and phase characteristics simultane-

ously. The basic mechanism used in this study is polynomial based design

of digital filters. We have used several already existing polynomials; e.g.,

Chebyshev polynomials, Legendre polynomials, to develop linear phase

digital filters and developed some two dimensional polynomials following

orthogonal properties to design digital filters for image processing, their

design methodology have also been discussed.

Filters of proposed type can be used for applications where exact linear

phase is required. Another application of this type of filters is the design of

filters with zero group delay. IIR filters are designed with absolute linear

phase and zero group delay.

The algorithms proposed in the present thesis allow user to design fil-

ters with his set of constraints, which is required in practical filter design

problems. Very narrow band 1D and 2D linear phase FIR filters can eas-

ily be designed by the proposed methodology. The IIR filters proposed

provide the guarantee to result in a stable filter.

All the algorithms have been discussed stepwise to make sure that any

one with basic programming capability can easily design them. We have

not used any standard routine of any particular platform, therefore any

freely available programming platform (like C, C++, Scilab, Octave, etc.)

can be used to design these filters.
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1 Introduction

1.1 Digital Filters: An Introduction

The digital filter is a digital system that can be used to filter discrete-

time signals. The realization of a digital filter is accomplished by burning

a program on a reprogrammable device, like Field Programmable Gate

Array (FPGA), or by using a software program. Therefore, if we want to

change the characteristics of a digital filter, we only have to change the

program which defines the circuit. Figure 1.1 shows a typical discrete time

filtering system.

xa(t) ya(t)
H(e jω)x[n] y[n]

C/D D/C
Analog Signal Analog Signal

Figure 1.1: Typical system to process analog signals via a discrete time
filter.

In Figure 1.1, xa(t) is the analog input signal, ya(t) is the analog output

signal, x[n] is the digitized xa(t), y[n] is the digitized ya(t), H(exp( jω)) is

the transfer function of the filter, C/D is the continuous to digital signal

converter and D/C is the digital to continuous signal converter [1].

Why are we interested in designing digital filters? As stated earlier,

digital filters are used for processing digital signals. We interact with

digital devices (digital TV, mobile, computers, etc.) and in turn with

digital signals everyday, in fact all the time. These devices are used to

interact with outer world through some form of channel; for example,

space for TV and mobiles, and wire or space for computers (to connect

with the internet). Channel introduces noise in the signal due to various

well known reasons. These digital filters are used to remove the noise

from the digital signal received at the receiver end. Filters are also used to

enhance certain features of signal, like edges of an image, quality of audio

(treble and bass are enhancement of high and low frequency audio signals,



respectively).

Other than everyday life applications digital filters are used for ad-

vanced scientific applications too, like for satellite and medical images.

Satellite images are analyzed by applying different operations, filtering

being one of the most important. Medical images (like CT scan, X-ray,

etc.) and videos (like ultrasound video, etc.) are analyzed better by apply-

ing digital filters first, because they remove the noise or enhance certain

features and produce better quality images and videos to be analyzed by

the medical practitioner. In the present work we will show some satellite,

medical and other type of images, and the output produced by applying

the proposed filters.

Number of applications are increasing where digital signal processing

and digital filtering are used; therefore, digital filters have to be applied for

various requirements. Hence, there is a need to have designing procedures

which can realize filters with required constraints. In the present thesis,

we propose algorithms which can be used to design user defined type of

FIR and IIR filters.

Digital filter design had been an active area of research for last several

decades. One can design a digital filter having linear or non linear phase.

With respect to the last statement consider the Fourier transform pair

X(ω)e− jαω ⇐⇒ x[n − α] (1.1)

Equation (1.1) shows that applying a time delay α (in the discrete time

domain) is equivalent to a multiplication of the Fourier transform by a

factor of exp
(− jαω); which in turn implies the introduction of a linear

phase. When we transmit a signal, a time delay is introduced. Linear

phase filters delay all frequencies by the same amount, thereby preserving

the waveshape maximally. Therefore, linear phase filters introduce no

distortion and are preferred over non linear phase filters. All the proposed

filters in the present thesis are linear phase. Primarily, there are two types

of digital filters

1. Finite Impulse Response (FIR) or Non Recursive filters, and

2. Infinite Impulse Response (IIR) or Recursive filters.

FIR or non recursive filters are called by this name because to obtain the



current output sample value of the filter it uses only current and past input

samples of the signal, and none of the previous output samples of the filter.

Since, there is no feedback from the output there is no instability in these

filters and hence they are preferred. IIR or recursive filters use past output

samples of the filter also, which can cause instability due to feedback [2].

The order of a FIR filter is the number of previous inputs which have

to be stored in order to generate a given output. While the order of IIR

filter is the largest number of previous input or output values required to

compute the current output.

The nature of the problem coupledwith the desired frequency response

is – generally – the primary factor to decide which type of filter, FIR or IIR,

should be used. Because IIR filters use feedback they tend to be more

versatile in accurately approximating the desiredmagnitude response, but

they are not able to produce linear phase. On the other hand, it is easier

to design a FIR filter having linear phase. Therefore, if our application

requires a linear phase then we go for FIR filters. However, if phase is no

issue then we can implement any of the two types of filters provided we

make sure that the filter is stable [3].

1.1.1 Ideal Filter Characteristics

A signal is made up of one or more number of frequencies. If a filter

passes certain frequencies and stops rest of the frequencies of the signal

completely, it is called as an ideal filter. Frequencies which the filter allows

to pass through it constitute the pass band of the filter and rest form the stop

band. Figures 1.2(a), 1.3(a) and 1.4(a) show such filters.

1.1.2 Real Filter Characteristics

Real world but ideal filters are different from the ideal filters in the sense

that in addition to the pass band and stop band they also have transition

band. The transition band is the band of frequencies which necessarily has

to be present because filters with sharp characteristics are unrealizable.

Figures 1.2(b), 1.3(b) and 1.4(b) show these type of filters. In the present

thesis these type of digital filters are designed.
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Figure 1.2: Low Pass (LP) filter.
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Figure 1.3: High Pass (HP) filter.
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Figure 1.4: Band Pass (BP) filter.



1.2 Earlier Work in the Field of Digital Filter

Design

A lot of work has been done in the field of digital filter design. Fettweis [4]

gives an overview of past research in this field. We discuss some of the

recent works in the present section.

In the recent past various techniques have been developed to design

digital filters. Exchange algorithms [5, 6], like Remez exchange algorithm,

is relatively difficult to understand and apply. Although linear program-

ming [7] produces linear phase FIR filters but the algorithm is very slow,

apart from introducing a very large number of parameters to be optimized.

In fact a literature survey shows that all the algorithms which have been

proposed suffer from this defect.

To reduce the time requirements one can use semi-infinite program-

ming approach [8], but this technique does not reduces the time require-

ment drastically. Optimization methods [9, 10] work like the curve fitting

technique. They are iterative methods, therefore involve a great deal of

computation. To apply optimization techniques one has to give a complete

description of the transfer function, which increases the complexity and

computation time depending on either the number of poles and zeros, or

the coefficients of the transfer function. Optimization technique further

suffers from the defect that a global optimum point may not be reached.

In the Chebyshev approximation [11, 12] technique, pass band loss

oscillates between Amin and Amax. If one wants to put limit on stop band

also, then he has to use elliptic approximation techniques [2]. A very well

known technique was proposed by Parks andMcCllean [5,13] and is used

widely to get the optimized Chebyshev digital filters.

Weighted Chebyshev approximation [14] uses a point matching tech-

nique and generates an error function. The error function is formulated for

the desired filter in terms of a linear combination of cosine functions and is

then minimized using Remez exchange algorithm [15, 16]. Therefore, this

methods suffers from the same defects as we have outlined earlier.

The problems with these methods motivated us to propose a new

method to design digital filters.



1.3 Present Work

The present thesis is focused on conceptualizing a technique which will

give us a new method of designing digital filters, both recursive and non

recursive. The method does not use any optimization technique, which

requires recursion, therefore it does not suffer from the defects of com-

putational time requirements. The approach proposed in this thesis is

entirely new. Some of the algorithms discussed are based on the design of

antenna patterns [17]. Surprisingly this cross disciplinary approach gives

very good results.

We propose a polynomial based approach to design digital filters. Al-

though “polynomial based” approaches have been discussed by other au-

thors earlier, yet they are completely different from the present one. One

prevailing method for optimized design for FIR filters is Parks-McClellan

[18,19] algorithm. The Parks-McClellan algorithm is based on considering

filter design problem as a problem in polynomial approximation. In this

approach an approximation error function is calculated between desired

frequency response and Lth order polynomial (in cos ω) approximation of

frequency response. Various techniques have been proposed to calculate

the optimal solution for this error function [20]. Another method was

proposed by Hofstetter, Oppenheim, and Siegel [21] for designing maxi-

mal ripple filters. This algorithm is an iterative procedure for producing

a polynomial H⋆(e jω) that has extrema of desired values. But the number

of iterations depend on the initial guess. Similarly, there are other meth-

ods [22, 23] too in the litrature, but they also have no relationship with the

present work. The method proposed in the present thesis neither requires

any optimization technique to get the result nor any guess which has to be

minimized iteratively.

The filters proposed in the present thesis are easy to implement and

understand, produce excellent magnitude response and absolute linear

phase without any approximation. To date there is no optimal algorithm

to design absolute zero group delay IIR filters, the present dissertation

proposes a technique which results in an absolute zero group delay IIR

filter.

The major contribution of the present thesis is that we can design a

digital filter, FIR or IIR, having user defined requirements of pass band



and stop band with linear phase. In other words, we can design a low

pass, high pass, bandpass, band reject, multiband, etc. type of filters with

linear phase. Because of this feature the present design procedure can be

applied for a wide range of problems. The technique is extended to design

filters for processing images; that is, 2 dimensional digital recursive and

non recursive filters.

The outline of the procedure to design a digital filter with desired filter

characteristics is as follows:

1. First transform the filter characteristics to a function, whichwe call as object

function, by using a special transformation.

2. This object function is thereafter realized by using a previously defined set

of polynomials.

3. The realized object function is then converted back to filter characteristics

using inverse of the transform used in step 1.

Therefore, to design a filter we need to understand the transformation,

which will be used to frame the object function and later its inverse to

realize the filter characteristics itself. In the succeeding section we discuss

the transformation.

1.3.1 Transformation

In general, transformations (like bilinear transformation) are used to con-

vert analog filters to digital filters [24] or are used to convert one type of

filter to other type of filters [25–27]; for example, low pass filter to band

pass filter, low pass to high pass filter. Whereas, the transformation we are

going to use in the present work has a completely different function.

The present transformation and its inverse is used to design the digital

filters in the present discussion. Figure 1.5 depicts general steps required

to design the desired filter characteristics. It must be clear from the Figure

1.5 that first the inverse of the transformation (Equation (1.2)) is used

to find the object function, and then after approximation of the object

function transformation is used to get the desired filter characteristics.

This transformation is used in antenna theory [17] and we apply it to

design signal processing filters.



The transformation used in the procedure is

x = x0 cos(ω/2) (1.2)

where, x0 is themaximumvalue of x, itwill be clear how x0 is chosen. Figure

1.6 shows the transformation under discussion. The inference which we

can make from Equation (1.2) about the relationship between ω and x is as

follows

• when ω ∈ [0, π] then x ∈ [x0, 0], and

• when ω ∈ [−π, 0] then x ∈ [0, x0].

From the properties of Fourier transform we know that the signal spec-

trum occupies a range of 2π. We assume that ω ∈ [−π, π] in the present

work, wherever it is not explicitly mentioned.

Suppose we need to design a filter with characteristics shown in Figure

1.7. First, we apply the inverse of the transformation defined in Equation

(1.2) on the filter characteristics –H(ω) – and it results in an object function

– f (x) – as shown in Figure 1.8. Object function thus calculated and the

desired filter definition are inverse of each other; or in other words, the

maximum values of filter characteristics – pass band – will be mapped to

minimum values in object function and vice versa. Similarly, transition

region with positive slope becomes a ramp having negative slope and

vice versa in object function. This becomes clear if we look at Figures 1.7

and 1.8, which show desired filter characteristics and corresponding object

function, respectively. The transformation defined, Equation (1.2), is non

linear. Therefore, linearly increasing values of ω are mapped onto non

linearly increasing values of x.

Digital filters are defined in terms of delay elements, or z, as they have to

be realized using digital storage devices. The transformation of Equation

(1.2) gives us filter characteristics directly in terms of z, as shown below



Figure 1.5: Flow chart representing steps required to design digital filters
following the proposed design technique.
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x = x0 cos(ω/2)
x

x0
= cos(ω/2)

=
e jω/2 + e− jω/2

2

=
z1/2 + z−1/2

2
(replacing e jωwith z) (1.3)

Therefore, the object function – defined in terms of x – can directly be

converted to delay elements, in terms of z. But in the present form they

can not be realized (creating a delay element producing 1/2 delay is not

possible). We know that filter characteristics in frequency domain always

have even symmetry, therefore, while approximating the object function

we use only even power terms of variable which constitutes the polyno-

mial, like x0, x2, x4, . . . (this point will be clear in the successive chapters

where we design actual filters). Since we shall be using only even power

terms, Equation (1.3) will always appear as



[

z1/2 + z−1/2

2

]2n

or,

[

z

4
+
z−1

4
+
1
2

]n

Hence, we always have our filter response in terms of z and z−1 and can

be realized.

This transformation will be used in the successive chapters as the fun-

damental transformation, if there is any variation in the transform it will

be duly explained in the respective chapter.

1.4 Outline

The present thesis is organized in 9 chapters, including the present one.

Each of the following chapters, except Chapter 9, propose a new technique

for designing digital filters. The organization of the thesis is as follows

Chapter 2 discusses a method where the object function is designed

using simple or elementary polynomials. This chapter, primarily, shows

the relationship between object function and filter characteristics with the

help of simple polynomials.

Chapter 3 presents a design technique which uses Chebyshev polyno-

mials to construct the object function. It also discusses the fundamental

limitations of this technique.

Chapter 4 is a filter design technique where 2 dimensional (2D) filter

designed by using 2D Chebyshev polynomials. .

Chapter 5 gives a design procedure by which user specific filter can be

designed by the help of orthogonal polynomials.

Chapter 6 is for designing 2D filters with the help of orthogonal poly-

nomials.

Chapter 7 gives a way to design IIR filters with zero phase, using

orthogonal polynomials.

Chapter 8 address the issue of designing 2DIIR filters with zero phase.

Chapter 9 is the concluding chapter of thesis it also addresses future

scope of the work.



Let usmove to have a look on the design technique to generate new type

of digital filters.





2 Design of 1 Dimensional Linear
Phase FIR Filter with Elementary
Polynomials

2.1 Procedure

In this chapter we present an approach to realize FIR filters using ele-

mentary polynomials. A stepwise description to design the FIR filter is

discussed below

Step 1. Choose a polynomial, f (x), with following properties

1. It should have zeros near the origin; that is, 0 ≤ |x| ≤ 1, and

2. It should increase sharply for real values of x, which are far away

from x = 1; that is, x > 1.

Such a polynomial is shown in Figure 2.1. From figure we can comprehend

that as x varies from 0 to some point x0, function f (x) traces out a pattern

of several side bands and one major band. The side bands are 1/b times

down from the major band. This ratio can be selected at will by choosing

the value of x0.

Step 2. We use the transformation discussed in Chapter 1 for mapping

the polynomial variable x to frequency variable ω of filter characteristics.

The transformation is repeated below for convenience

x = x0 cos(ω/2) (2.1)

where, x0 represents the maximum value of x. At the value when x is x0
the polynomial has the value b, Figure 2.1.

Step 3. The zeros of the transfer function of FIR filter are calculated

next. Let these zeros be represented by zi = exp( jωi), where i = 1, 2, . . .n.

The ωis are calculated using the inverse of the transformation of Equation

(2.1); that is,



ωi = 2 cos−1
(

xi
x0

)

(2.2)

Note that xis are the zeros of the original polynomial f (x). The FIR filter

transfer function is given by

H(z) =
n
∏

i=1

(z − zi) (2.3)

or,

H(ω) =
n
∏

i=1

(e jω − e jωi) (2.4)
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Figure 2.1: Example Polynomial.

Itwill be clear in the next section, wherewe consider some specific cases

of filter design, that the values of x0 and b are related to the bandwidth of

the filter and the ripples in the stop-band, respectively.



2.2 Application

In this section, we consider different types of object functions which, in

turn, will give us low pass filters having different magnitude and phase

characteristics. Standard frequency transformation routines [2] can be

applied on the resulting low pass filter to get the other type of filters; that

is, high pass, band pass, etc. The examples below give a perspective of

design from object function’s side, but once one understood this he can

design the filter other way round as well.

2.2.1 Design 1

Let us consider a polynomial where the values of xi’s are all equal to 0;

that is, all the zeros of the object function lie on the origin. In this case the

polynomial is

f (x) = xn (2.5)

This polynomial satisfies all the conditions specified in Step 1. Figure 2.2

shows this polynomial for n = 6.

The value of the function, where we want our stop band to start, can

be taken at x = 1. This value is arbitrary, but x = 1 gives good results.

Therefore, at the start of the stop band

xn = 1 (2.6)

Looking at the transformation x = x0 cos(ω/2) we observe that x = 0

transforms to ω = π, x = 1 transforms to ω = 2 cos−1(1/x0) which is the

frequency where the stop-band starts.

2.2.1.1 Calculation of stop band frequency, ωs, and pass band

frequency, ωp

Using above mentioned ideas, we desire that at x = x0 the value of the

function f (x0) should be ’b’ times its value than it has at the stop band.

Thus,

xn0 = b (2.7)
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Figure 2.2: Polynomial x6.

x0 = b(1/n) (2.8)

We use the transform, Equation (2.1), to calculate stop band frequency,

ωs. The stop band starts when the value of x is 1, as discussed above, and

x0 = b1/n. Therefore, Equation (2.1) converts to

1 = b(1/n) cos(ωs/2) (2.9)

and,

ωs = 2cos−1(1/b(1/n)) (2.10)

The pass band frequency,ωp, of filter characteristic occurwhen function

is b/
√
2 times, or 3 dB down, of its peak value than that at the stop band.

Thus,

xnp = b/
√
2 (2.11)

and,



xp =
b1/n

21/2n
(2.12)

where, xp is the point on the object function which corresponds to the pass

band frequency, ωp.

Using the transform, Equation (2.1), with Equation (2.12) we can calcu-

late the value of pass band, ωp, as follows

b1/n

21/2n
= b1/n cos(ωp/2) (2.13)

therefore,

ωp = 2 cos−1(1/21/2n) (2.14)

All the zeros of f (x) lie at x = 0, so there is no need of calculation

involved in Step 3 in this case.

2.2.1.2 Calculation of b

As discussed above the maximum value of the object function is b times its

value than that at the stop band. Thus, if we want our stop band to be, let

us say, p dB down when compared with the maximum value of pass band,

the value of b is absolute value of p dB; that is,

b = 10p/20 (2.15)

Suppose in the polynomial discussed above, the value of n is 6; that is,

our filter is of the order of 6. We want stop band to be 40 dB down; that is,

b = 1040/20 = 100 (Equation (2.15)). The value ofωs is 2.17622 radians andωp

is 0.6733 radians, calculated using Equations (2.10) and (2.14), respectively.

The transfer function for this FIR filter, where ωi = π and i = 1, 2, . . .6, is

H(ω) = {x0 cos(ω/2)}6 (2.16)

The polynomial, magnitude response in dB, and phase response for

low pass FIR filter of Equation (2.16) is shown in Figures 2.2, 2.3 and 2.4,

respectively. As expected the phase comes out to be zero. The magnitude

characteristics is not very good but it gives us an insight into – what our

transformation is going to do with the object function after application.
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Figure 2.3: Magnitude response in dB for Polynomial x6.
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2.2.2 Design 2

Let us consider another polynomial with zeros not concentrated at the

origin. The polynomial is defined in Equation (2.17) and it follows the

characteristics discussed in Step 1, as well as it has zeros at locations other

than x = 0 except one (Figure 2.5).

f (x) = (x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5) (2.17)

Order of the filter is 6. Suppose we want our stop band to be 40 dB down;

that is, b = 100.

We calculate the value of stop band for the above polynomial by equat-

ing, as in previous case, f (x) to 1; that is,

(x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5) = 1 (2.18)

When we solve Equation (2.18) we get six different values of x. Any of

the values of x can be used, apart from the fact that every value will give

rise to a different value of the frequency where the stop band ends, we

choose 1.2646, this point correspond to ωs and we call it by name xs.

To calculate the value of x0 we equate f (x) to b (=100); that is,

(x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5) = 100 (2.19)

The solution of Equation (2.19) gives us six different values of x, here

again we consider any one positive value amongst them (see Figure 2.1),

we retain x0 = 2.4112.

The value of stop band, ωs, can be calculated by using the transform

discussed in Step 2; that is,

1.2646 = 2.41121 cos(ωs/2) (2.20)

ωs = 2.0374 radians (2.21)

Similarly, the value of pass band, ωp, can be calculated by equating the



polynomial to b/
√
2 or 100/

√
2; that is,

(x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5) = 100/
√
2 (2.22)

Above equationgivesus sixdifferent values, we consider anyone value.

In this case every valuewill correspond to a different value of the frequency

where the stop band starts; that is, 3 dB down from the maximum value of

the pass band of the filter. The value of the solution is xp = 2.29069. We

use the same transformation as discussed in Step 2 to get the pass band

frequency; that is, ωp

2.29069 = 2.41121 cos(ωp/2) (2.23)

ωp = 0.6350 radians (2.24)

We follow Step 2 for the transformation and Step 3 to calculate the posi-

tion of zeros for this polynomial. The zeros (in radians) for this polynomial

are calculated from Equation (2.2):

ω1 = 2cos−1
0
x0
= π, ω2 = 2cos−1

0.1
x0
= 3.0586,

ω3 = 2cos−1
0.2
x0
= 2.9755, ω4 = 2cos−1

0.3
x0
= 2.8921,

ω5 = 2cos−1
0.4
x0
= 2.8083, ω6 = 2cos−1

0.5
x0
= 2.7238. (2.25)

The transfer function for this FIR filter is (Step2)

H(ω) = x0 cos(ω1/2)∗x0 cos(ω2/2)∗x0 cos(ω3/2)∗x0 cos(ω4/2)∗x0 cos(ω5/2)∗x0 cos(ω6/2)

(2.26)

Figures 2.5 and 2.6 show the polynomial and magnitude response in

dB for this low pass FIR filter. The magnitude characteristics in dB show

that the transition band starts becoming steep when compared with the

previous design. It is notworthy that the phase, in this case, will not be

linear because zeros are not symmetrical.
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Figure 2.5: Polynomial (x − 0)(x − 0.1)(x − 0.2)(x − 0.3)(x − 0.4)(x − 0.5).
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Figure 2.6: Magnitude response in dB of H(z) of Equation (2.26).



2.3 Conclusion

In this chapter an insight into the connection of object function with filter,

using the transformation function, is presented. With this technique we

can design linear phase FIR filter with user defined values of zeros of the

filter function and decide how many dB down the stop band should be

with respect to the pass band; that is, the value of b.



3 Design of 1 Dimensional Linear
Phase FIR Filter with Chebyshev
Polynomials

3.1 Introduction

Due to large number of applications [28,29], several approaches have been

proposed for designing a Chebyshev FIR filter. To design a linear phase

Chebyshev FIR filter one has to convert the filter design problem into an

approximation problem [28, 29]. Imposing the linear phase restriction in

the pass band it leads to a complex approximation problem. An approach

discussed by Cuthbert [30] proposes a techniquewhere real and imaginary

parts of the filter frequency response are separately approximated todesign

a non linear phase FIR filter. This approach was further extended using

Remez-exchange algorithm [31, 32] by Attikiouzel et al [33] for two real

approximations. Linear programming was used by Delves et al [34] to

approximate real and imaginary parts simultaneously. These papers in

general discuss approximation methods, while the approach discussed in

the present chapter gives exact design of FIR filter in Chebyshev sensewith

linear phase.

In this chapter, we are going to discuss a new approach to realize

FIR filters using Chebyshev polynomials. Chebyshev polynomials play a

vital role in antenna as well as in signal processing theory. The Dolph-

Chebyshev distribution of currents feeding the elements of a linear array,

comprising an antenna, gives a sharp main lobe and small side lobes all of

which have the same power level [17], we use this concept in the present

discussion.

This chapter presents a method by which we can design a filter with

linear phase and,

(i) A given pass band to stop band ratio,

(ii) A given pass band to stop band transition, and to some extent



(iii) The frequency band of the pass band.

3.2 Preliminaries

A linear equispaced antenna array with n elements, labeled from left to

right gives rise to a far field of [17]

|E| = |A0e
j0 +A1e

jψ + A2e
j2ψ + . . . +An−2e

j(n−2)ψ + An−1e
j(n−1)ψ| (3.1)

where,

ψ = βdcosφ + γ (3.2)

|E| is themagnitude of the far field, β = 2π/λ,λ is the free spacewavelength,

d is the spacing between elements, φ is the angle from the normal to

the linear array, γ is the progressive phase shift from left to right, and

A0,A1,A2,. . . are complex amplitudes which are proportional to the current

amplitudes.

If we substitute z = e jψ and rewrite Equation (3.1), it leads to

H(z) = A0 + A1z + A2z
2 + . . . +An−2z

n−2 + zn−1 (3.3)

this equation represents an FIR filter. Where, H(z) represents the impulse

response of the filter with z = e jω, and A0, A1, A2,. . . represent amplitudes

at the corresponding frequencies.

The Chebyshev polynomials are given by

Tm(x) =



















cos(m cos−1 x) 0 < |x| < 1

cosh(m cosh−1 x) |x| > 1
(3.4)

3.3 Procedure

Let us assume that the order of the filter, which we intend to design, is m.

The step vise procedure to design the required FIR filter is as follows:

Step 1 : As discussed earlier the pass band to stop band ratio is user

dependent. Therefore, first we calculate the absolute value of attenuation,



defined by the user, in the stop band, b (refer Chapter 1),

b = 10(attenuation in dB)/20 (3.5)

Step 2 : We find the stop band, ωs, and pass band, ωp, frequencies

following the steps discussed in [17]

ωs = 2cos−1












1

cosh(1/m cosh−1 b)













(3.6)

ωp = 2cos−1
















cosh
{

(1/m) cosh−1(b/
√
2)
}

cosh(1/m cosh−1 b)

















(3.7)

Step 3 : The location of zeros on unit circle, ωm, are calculated by the

following equation, which is discussed in [17]

ωm = 2cos−1










cos(ωk)

cosh(1/m cosh−1 b)











(3.8)

where, ωk = (2k − 1)π/2m, and k = 1 . . .m.

Step 4 : Applying the relation zm = e jwm we can write frequency re-

sponse, H(z), in z domain using Equation (3.3) as follows

H(z) = (z − z1)(z − z2) . . . (z − zm) (3.9)

where, z1, z2,. . . are location of zeros of the transfer functionH(z). Replacing

z by e jω and zm’s by e jωm’s in Equation (3.9) we get frequency response in

frequency domain as follows

H(ω) = (e jω − e jω1)(e jω − e jω2) . . . (e jω − e jωm) (3.10)

To get a vivid picture of the procedure discussed above, we design

some actual filters in the following section.

3.4 Application

Let us design some Chebyshev low pass FIR filters with side band 40 dB

down from the pass band; that is, b = 1040/20 = 100.



3.4.1 Design 1

Let us design a filter with order 6; that is, m = 6. From Equations (3.6) and

(3.7) we calculate

ωs = 1.5732,

ωp = 0.5622.

The values of the ωm’s can be calculated by using Equation (3.8)

ω1 = 1.64,

ω2 = 2.0958,

ω3 = 2.7739,

ω4 = 3.5093,

ω5 = 4.1874,

ω6 = 4.6431.

From Equation (3.10) we can write H(ω) as

H(ω) =

(e jω − e j1.64)(e jω − e j2.0958)(e jω − e j2.7739)(e jω − e j3.5093)(e jω − e j4.1874)(e jω − e j4.6431)

If we plot the filter characteristics; that is, |H(ω)| verses frequencyω, the
results will become clear. The dark continuous lines in Figures 3.1, 3.2, and

3.3 show the magnitude response, magnitude response in dB, and phase

response of above mentioned FIR filter, respectively. Figure 3.1 confirms

that the location of ωs and ωp are at the points where we have calculated

them. Figure 3.2 show that side bands are 40 dB down. From Figure 3.3 it

is clear that the phase is linear.
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Figure 3.1: Magnitude response of 6th order Chebyshev low pass FIR filter.
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Figure 3.2: Magnitude response in dB of 6th order Chebyshev low pass FIR
filter.
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Figure 3.3: Phase response of 6th order Chebyshev low pass FIR filter.

3.4.2 Design 2

Let us calculate the frequency response of 3rd order filter by using the steps

mentioned in previous section. The values of ωs and ωp for 3rd order filter

are

ωs = 2.4641,

ωp = 0.9136.

Zeros, ωm’s, for this filter are as follows

ω1 = 2.5578,

ω2 = 3.1416,

ω3 = 3.7254.

While the dark continuous lines in Figure 3.4 represents the magnitude

response of 3rd order FIR filter, Figure 3.5 shows the magnitude response

in dB. The side bands are 40 dB down and the bandwidth of the filter is



increased when compared with Figure 3.2. The transition band is wider

than the previous design, or in other words filter will pass some of the non

required frequencies. Phase remains linear and can be verified easily.
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Figure 3.4: Magnitude response of 3rd order Chebyshev low pass FIR filter.

3.4.3 Design 3

Next we calculate the frequency responses of 24th order filter. Suppose we

design the filter with side bands 40 dB down, the values of ωs and ωp for

the 24th order filter are as follows

ωs = 0.4380,

ωp = 0.1558,

Values of ωm’s are as follows

ω1 = 0.4568, ω2 = 0.5861;

ω3 = 0.7831, ω4 = 1.0088;
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Figure 3.5: Magnitude response in dB of 3rd order Chebyshev low pass FIR
filter.

ω5 = 1.2478, ω6 = 1.4935;

ω7 = 1.7432, ω8 = 1.9952;

ω9 = 2.2488, ω10 = 2.5033;

ω11 = 2.7584, ω12 = 3.0138;

ω13 = 3.2694, ω14 = 3.5248;

ω15 = 3.7799, ω16 = 4.0344;

ω17 = 4.2879, ω18 = 4.5400;

ω19 = 4.7896, ω20 = 5.0354;

ω21 = 5.2743, ω22 = 5.5001;

ω23 = 5.6970, ω24 = 5.8264.



The dark continuous lines in Figure 3.6 represents themagnitude response

of this order FIR filter and Figure 3.7 shows the magnitude response in dB.

When Figure 3.6 is compared with Figures 3.1 and 3.4, we found that the

present filter has narrow pass band and sharper transition band while side

bands remains 40 dB down. Therefore, to design a narrow band filter we

have to increase the order of the filter.
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Figure 3.6: Magnitude response of 24th order Chebyshev lowpass FIR filter.

3.5 Discussion

It is clear from the Figures 3.1, 3.4 and 3.6 and Figures 3.2, 3.5 and 3.7 that

the width of the pass band decreases as the order of filter increases, and the

transition band becomes steeper, or in other words, it follows brick-wall

or ideal characteristics of a filter more closely.

Figure 3.3 shows the phase response of the 6th order FIR filter designed

above, which clearly shows its linear nature. The phase responses of 3rd

and 24th order filters is also linear and can be verified easily by following

the same steps.
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Figure 3.7: Magnitude response in dB of 24th order Chebyshev low pass
FIR filter.

By using the procedure discussed, we can not control the bandwidth

of the resulting filter with predefined order. In the next section we modify

the design procedure to overcome this problem.

3.6 Modified Chebyshev Filter

We introduce a new parameter in the Chebyshev polynomial to have some

control over the bandwidth, when m and b are already defined. In the

original Chebyshev polynomial (Equation (3.4)) we multiply a new pa-

rameter ’α’ with parameter ’x’ ( α controls the bandwidth of the filter).

Thus, Equation (3.4) becomes

Tm(αx) =



















cos(m cos−1 αx) 0 < |x| < 1

cosh(m cosh−1 αx) |x| > 1
(3.11)

Whenwemultiply ’x’ with ’α’, it results in a change inωs only, whileωp

remains the same. The reason is because ’α’ is present in both numerator



as well as in denominator terms (see Equations (3.6) and (3.7)).

Therefore, new stop band frequency, ωs−new, is

ωs−new = 2 cos−1
[

1/α
{

cosh(1/m cosh−1 b)
}]

(3.12)

and,

ωp−new = ωp (3.13)

We can calculate the location of zeros for modified Chebyshev polyno-

mials by

ωm−new = 2 cos−1
[

cos(ωk)/
{

α(cosh(1/m cosh−1 b))
}]

(3.14)

where, ωk=(2k − 1)π/2m, and k=0 . . .m. We can write H(ω) as

H(ω) =
n
∏

m−new=0
(e jω − e jωm−new) (3.15)

3.7 Application

Plotting the magnitude response of Design 1 – with the new parameter α

taken into consideration – we get the magnitude response and magnitude

response indBas shown inFigures 3.1 and 3.2, respectively ("dash followed

by dot" for values α > 1 and "dots" for values α < 1, respectively). It is

evident from figures that the bandwidth of our filter is increased in case of

α > 1 and the stop band is further down.

Figure 3.3 shows that our modified Chebyshev FIR filter has linear

phase characteristics, further it confirms that the filter retains its linear

phase even after introducing the new parameter α. Similarly Figures 3.4

and 3.5, Figures 3.6 and 3.7 show the magnitude response and magnitude

response in dB for 3rd and 24th order FIR filter having side bands 40 dB

down, respectively. For lower order filter α makes very small difference,

this can be verified by looking at Figures 3.4 and 3.5.

It is noteworthy that when α has value less than 1, see Figures 3.1 and

3.6, the magnitude of the stop band is approximately equal to the pass

band. Thus we should not use filters designed using value of α < 1.



3.8 Discussion

Figure 3.8 shows the magnitude response in dB for various values of α for

32nd order low pass FIR filter. It is clear from the figure that as we increase

the value of our newparameter α, the bandwidth of our filter increases and

the level of sidebands goes further down. One should note that the value

of α less than 1 will give us a poor design, where pass band and stop band

are approximately at the same level, and thus should not be used. The

value of α is obtained by trial to obtain the desired bandwidth. A filter was

designed and synthesized based on this technique to control burst noise,

and it produced good results.
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Figure 3.8: Magnitude responses of 32nd order Chebyshev low pass FIR
filter for various values of α.

3.9 Conclusion

We can say that the FIR filter design technique discussed in the present

chapter can easily be implemented for given sideband specifications and

bandwidth. The new parameter α further pulls the side band levels down



and increases the bandwidth, while maintaining the phase linear. By this

techniquewe candesign bandpass, band reject, multiband andother filters

using the standard frequency transformation techniques.

We extend this concept to two dimensions, thus making use of such

filters for image processing applications as well, in the next chapter.





4 Design of 2 Dimensional Linear
Phase FIR Filter with Chebyshev
Polynomials

4.1 Introduction

The design of 2 dimensional (2D) linear phase Chebyshev FIR filters has

been discussed previously by some authors. An application of linear pro-

gramming to design such filters was introduced by Hu and Rabiner [35].

But due to its very high computational requirements Fiasconaro [36] de-

veloped a better algorithm. Though this algorithm was an improvement

but it was still slow. Lu [37] and, Lu and Hinamoto [38] introduced meth-

ods based on semi definite programming (SDP) and sequential quadratic

programming (SQP). These methods work quite well except for the fact

that the design complexity becomes rather high even for filters ofmoderate

order. The approach we discuss in this chapter presents the Chebyshev

filter design with a new purview, it results in a linear phase Chebyshev

2DFIR filter. The computation time is less, as the parameters involved to

design the filter are few.

4.2 Procedure

1 dimensional (1D) Chebyshev polynomials are given by

Tm(x) =



















cos(m cos−1 x) 0 < |x| < 1

cosh(m cosh−1 x) |x| > 1
(4.1)

We desire to design a 2D linear phase FIR filter and for that we require

2D polynomials. To convert 1D Chebyshev polynomial, defined in Equa-

tion (4.1), to 2D Chebyshev polynomial we change the variable x with a

new variable ρ, which will represent the Chebyshev polynomial in cylin-
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Figure 4.1: First few Chebyshev polynomials in 2 dimension.

drical coordinate system. ρ is a mapping function, in other words, the

values of ρ are mapped onto variables x and y (Cartesian coordinates) by

the relationship ρ =
√

x2 + y2. Thus, Equation (4.1) with new variable ρ is

represented as

Tm(ρ) =



















cos(m cos−1 ρ) 0 <
∣

∣

∣ρ
∣

∣

∣ < 1

cosh(m cosh−1 ρ)
∣

∣

∣ρ
∣

∣

∣ > 1
(4.2)

Some of these polynomials are shown in Figure 4.1.

We call these polynomials as object functions and use them to design

our filter. The design is performed by transforming the object function

to filter characteristics using the transformation function in the cylindrical

coordinate system, in terms of ρ. The transformation is defined as follows

ρ = ρ0 cos
(

ω

2

)

− π ≤ ω ≤ π (4.3)

where ρ0 is the maximum value of ρ.

It is apparent from the discussion of Chapter 1 that this transformation

converts the object function, Equation (4.2), to low pass filter; that is, lower



values of the object function will be converted to higher values in filter

characteristics and vice versa.

After transformation is applied, object function (Equation (4.2)) trans-

forms to filter characteristics and is given by

Hm(ω) =



















cos
[

m cos−1
{

ρ0 cos(ω/2)
}

]

−π < |ω| < π
cosh
[

m cosh−1
{

ρ0 cosh(ω/2)
}

]

|ω| > π
(4.4)

ω (Equation (4.4)) is mapped onto a 2D frequency domain – defined by u

and v – by the relationship ω =
√
u2 + v2. After mapping Equation (4.4)

converts to

Hm(u, v) =



















cos
[

m cos−1
{

ρ0 cos
( √

u2+v2

2

)}]

−π < |u, v| < π
cosh
[

m cosh−1
{

ρ0 cosh
( √

u2+v2

2

)}]

|u, v| > π
(4.5)

To realize the filter defined in Equation (4.5) we first have to find out

the value of ρ0. Following the procedure given in [17] we can state that the

value of ρ0 is given by

ρ0 = cosh{cosh−1(b/m)}

where, m is the order of the filter, and b is the absolute value of the attenu-

ation and is given by

b = 10(attenuation in dB/20) (4.6)

We use this approach of design to model a filter whose stop band

attenuation is user defined. Following the procedure outlined in [17] we

can find out the values of stop band, ωs, and pass band, ωp, frequencies

ωs = 2 cos−1












1

cosh(1/m cosh−1 b)













(4.7)

ωp = 2cos−1
















cosh
{

(1/m) cosh−1(b/
√
2)
}

cosh(1/m cosh−1 b)

















(4.8)

Therefore, to design such filters we need to work out following steps

Step 1 : Calculate the absolute value of attenuation in the stop band, b,



Equation (4.6).

Step 2 : Calculate the stop band, ωs, and pass band, ωp, frequencies,

Equations (4.7) and (4.8).

Step 3 : The location of zeros, ωm, on unit circle can be calculated by the

following equation [17]

ωm = 2cos−1










cos(ωk)

cosh(1/m cosh−1 b)











(4.9)

where, ωk = (2k − 1)π/2m, and k = 1 . . . m.

Step 4 : Calculate the value of Hm(u, v) using Equation (4.5).

To make the approach and procedure clear we design some such linear

phase FIR filters in the next section.

4.3 Application

Supposewewant to design low pass FIR filters with stop band 40 dBdown;

that is, b = 1040/20 = 100.

4.3.1 Design 1

Let us design a filter of order 6; that is, m = 6. The values of ωs and ωp are

calculated by using Equations (4.7) and (4.8) and result in 1.5732 radian

and 0.5622 radian, respectively. When we realize the filter characteristics

of Equation (4.5) with these values of m and b, and plot the magnitude

characteristics they result as shown in Figure 4.2, the side bands are 40 dB

down. The phase characteristics are shown in Figure 4.3, it is clear from

the figure that phase is linear in pass band and stop band.

Ifwe replaceρ0 cos(
√

(u2 + v2)/2) inEquation (4.5) byρ0sin(
√

(u2 + v2)/2)

we get high pass filter, since sinusoidal function transforms low values in

object function to low values of filter magnitude characteristics and vice

versa. This high pass filter is shown in Figure 4.4.

4.3.2 Design 2

We extend our design to a filter whose order is 20; that is,m = 20. Againwe

follow the steps of previous section and calculate the filter characteristics.
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Figure 4.4: Magnitude response in dB of 6th order Chebyshev high pass
FIR filter.

The low pass and high pass filter magnitude characteristics of this order

are shown in Figures 4.5 and 4.6, respectively. The resulted filter has side

bands which are 40 dB down and filter pass band becomes narrower when

comparedwith the previous design. Transition bands are also sharper than

the previous design.

4.3.3 Design 3

We design a filter of order 40, following the steps outlined in the the

previous section. Figures 4.7 and 4.8 show the magnitude response of low

and high pass filters of 40th order, respectively. Note the very narrow pass

band of resulting filters.

4.4 Discussion

If we look at Figures 4.2, 4.5 and 4.7, and Figures 4.4, 4.6 and 4.8 we can

easily state that the pass band of the filters successively become narrower



Figure 4.5: Magnitude response in dB of 20th order Chebyshev low pass
FIR filter.

Figure 4.6: Magnitude response in dB of 20th order Chebyshev high pass
FIR filter.



Figure 4.7: Magnitude response in dB of 40th order Chebyshev low pass
FIR filter.

Figure 4.8: Magnitude response in dB of 40th order Chebyshev high pass
FIR filter.



and narrower as we increase the order of the Chebyshev polynomials,

which are used to design the filter.

To show the performance of the filters designed by using the proposed

methodology in the present chapter, we pass an image through some of

these filters. Figure 4.9 shows an image, which we pass through our

6th order filter, Figures 4.10 and 4.11 are low pass and high pass filtered

results, respectively. In an image large blurred details are low frequencies,

and small, sharp details represent high frequencies. In image of Figure

4.10 only large overview of the image is available for view, while Figure

4.11 shows the sharp details of the original image.

original

Figure 4.9: Image-1.

Lowpassed

Figure 4.10: Image-1 passed through Chebyshev low pass filter of 6th order.

Application of high pass filter becomes more clear if we apply it to

an image having a lot of high frequency components. A satellite image

is such an image, it consists of a large number of sharp details. Figures



HIGHpassed

Figure 4.11: Image-1 passed through Chebyshev high pass filter of 6th

order.

original

Figure 4.12: Image-2.



Figure 4.13: Image-2 passed through Chebyshev high pass filter of 6th

order.



4.12 and 4.13 show such an image and its high pass filtered outcome

when it is passed through a 6th order high pass FIR filter, respectively. The

filtered outcome shows, in general, the edges present in the original image.

Therefore, we can use this filter to enhance the edges of a satellite image.

This sharper image can be used for further analysis, like finding a street

or building on a city map. Further, an edge detection algorithm together

with the filter may generate excellent results.

4.5 Conclusion

An alternate approach to design 2D linear phase FIR filters, using Cheby-

shev polynomials, with the help of the transformation has been examined.

By this approach filters can directly be designed from defined 2D Cheby-

shev polynomials. The filters designed are equiripple and as we increase

the order of the filter the sideband goes further down, thus improving the

filter characteristic by the rejection of parts which are not required. One

can design very narrow band filter using the present technique, thus pass-

ing only those frequencies which are required (useful for satellite, medical,

astronomical, etc. type of images). Any other type of filter can be realized

by shifting the pass band of filter using any of the standard frequency

transformation techniques.



5 Design of 1 Dimensional Linear
Phase FIR Filter with Orthogonal
Polynomials

5.1 Introduction

To design linear phase FIR filters, various techniques have been discussed

by several authors. Some of them, like Remez exchange algorithm [18] [6],

are generally used for efficient implementation of linear phase FIR filters,

but as the number of conditions grow the computational time increases

exponentially.

Linear programming (LP), semi-infinite programming (SIP) and itera-

tive re-weighted least square (IRLS) algorithmsaregenerallyused todesign

filters with constraints. Liang et al. [7] used LP technique to design some

filters with constraints, like optimal Nyquist filters, partial response filters,

etc. but this method consumes a great deal of CPU time. Potchinkov [8]

applied SIP technique for constrained filters but the time requirements

were still high. IRLS algorithms by Burrus et al [39] and many others

have good computational efficiency. But they are bad when convergence

is considered, because it is not guaranteed that they will converge.

Some techniques to design FIR filter are discussed by various authors,

where either the filter has goodmagnitude response but poor phase charac-

teristics or if they possess exact linear phase thenmagnitude characteristics

are poor or they can not be controlled completely. Chan and Tsui [40] dis-

cusses an approachwhere the groupdelay is not constant and consequently

the phase is not linear. Hanna [41] discusses amethodwhere as bandwidth

of the filter increases, the level of sidebands increases and also when the

cutoff frequency goes far from the origin pass band characteristic becomes

less flat. These requirements motivate us to discuss a new technique to

design an arbitrary magnitude response and exact linear phase FIR filter

using a very simple technique.



5.2 Preliminaries

A sequence of orthogonal polynomials with weight W(x) satisfies the rela-

tion

〈

fi(x), f j(x)
〉

=

∫ x1

x2

fi(x) f j(x)W(x)dx = 0 i , j (5.1)

where, fi(x) and f j(x) are any two members of the orthogonal set, and

〈•, •〉 represents the inner product.

In the present discussion, we consider only Legendre polynomials as an

example of orthogonal polynomials. Since they are the simplest orthogonal

polynomials among all – generally used – yet the procedure is general

in nature and one can use any of the other orthogonal polynomials and

consider their interval of orthogonality.

For Legendre polynomials the interval of orthogonality is [−1, 1] and
weight function is 1. We can generate the Legendre polynomials by using

Rodrigues’ Formula [42] given by

Pn(x) =
1

2nn!
dn

dxn
(x2 − 1)n (5.2)

where, n=1, 2, 3, . . .. The first few polynomials are defined below:

P0(x) = 1 (5.3)

P1(x) = x (5.4)

P2(x) =
3x2 − 1

2
(5.5)

P4(x) =
5x3 − 3x

2
(5.6)

...

These all are orthogonal to each other over [ − 1, 1]; that is

∫ 1

−1
Pm(x)Pn(x)dx = 0 whenever m , n (5.7)

The plot of the first few Legendre polynomials is shown in Figure 5.1.
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Figure 5.1: Plot of first few Legendre polynomials.

5.3 Procedure

Suppose user needs to design a low pass filter (LPF), whose magnitude

response, H(ω), is shown in Figure 5.21 where,

Amax represents the amplitude of the pass band of the filter,

Amin represents the amplitude of the stop band of the filter,

ωOH is the end of pass band and the start of the transition band, and

ωOL is the end of transition band and start of the stop band.

H(ω) (Figure 5.2) is first converted to an object function (independent

variable x), shown in Figure 5.3. The mapping from Figure 5.2 to 5.3 is

done by previously defined transformation (repeated below)

x = x0cos(ω/2) − π < ω < π (5.8)

The object function is then approximated using a linear combination

of several Legendre polynomials2. Note that we approximate the object

1Though here an LPF is considered, any other ideal magnitude characteristic may be
used. The procedure is general in nature.

2The proof that any object function can be approximated by a linear combination of



function with even Legendre polynomial terms only; that is, P0,P2,P4, . . .,

since the characteristics of Figure 5.3 are symmetric.

Let us call the object function of Figure 5.3 as f (x), and it is given by

f (x) =
∞
∑

n=0

a2nP2n(x) (5.9)

where, a0, a2, a4, ... are coefficients which have to be multiplied with the

corresponding Legendre polynomials to get the required characteristics,

shown in Figure 5.3.

Amin

Amax

π−π

−ω0L ω0L

−ω0H ω0H

3 dB of Amax

ω

|H(ω)|

Figure 5.2: Desired characteristics of low pass filter.

Let us discuss the procedure to design the filter step by step.

Step 1 : To calculate the coefficients (a0, a1, a2, . . .) we obtain a set of

equations by multiplying Equation (5.9) by P0(x), P2(x), . . . one by one

and integrating over the interval [−1, 1] 3this leads to following array of

equations

even powered Legendre polynomial terms is given in Appendix A.
3See Appendix A



Amin

Amax

x0−x0 −x0 cos(ω0L/2) x0 cos(ω0L/2)

−x0 cos(ω0H/2) x0 cos(ω0H/2)
f (x)

x

Figure 5.3: Object function, for filter characteristics of Figure 5.2, to be
approximated using Legendre polynomials.

2
∫ 1

0
f (x)P0(x)dx = 2

∫ 1

0













∞
∑

n=0

a2nP2n(x)













P0(x)dx (5.10)

2
∫ 1

0
f (x)P2(x)dx = 2

∫ 1

0













∞
∑

n=0

a2nP2n(x)













P2(x)dx (5.11)

2
∫ 1

0
f (x)P4(x)dx = 2

∫ 1

0













∞
∑

n=0

a2nP2n(x)













P4(x)dx (5.12)

...

Thenumber of equationswhichwehave to solvedepends onhowmany

coefficients we desire, or in other words howmany Legendre polynomials

we are going to use for the approximation of our object function, this point

will be clear soon.

Using the orthogonality property Equations (5.10), (5.11), . . . reduce to

∫ 1

0
f (x)P0(x)dx =

∫ 1

0
a0(P0(x)P0(x))2dx (5.13)



∫ 1

0
f (x)P2(x)dx =

∫ 1

0
a2(P2(x)P2(x))2dx (5.14)

...

From the above equations, it is clear that the coefficients a0, a2, . . . are

calculated directly by using

ai =

∫ 1

0
f (x)Pi(x)dx

∫ 1

0
Pi(x)Pi(x)dx

(5.15)

where, i = 0, 2, 4, . . ..

Step 2 : The coefficients are replaced in Equation (5.9), and the resulting

approximate polynomial fa(x) is calculated. Note that fa(x) has a limited

number of terms, up to N, when compared with f (x) Equation (5.9); that

is,

fa(x) =
N
∑

n=0

a2nP2n(x) (5.16)

Step 3 : To transform from polynomial (or ’x’) domain to frequency (or

’ω’) domain we use the transformation, Equation (5.8). We choose x0 to be

1, albeit one can choose any value.

Step 4 : The zeros of fa(x) are calculated using any standard routine and

the zeros of fa(ω) are obtained by using

xi
T−→ ωi

here xis are the zeros of fa(x) andT is the transformation. The zeros ofH(z)

are zi = exp( jωi), where i = 1, 2, 3 . . ..

Step 5 : Using these zeroswe calculate the transfer function in zdomain;

that is,

H(z) = (z − z1)(z − z2)(z − z3) . . . (5.17)

and replace z = e jω to find H(ω).



5.4 Application and Discussion

Let us design a filter with following values (refer Figure 5.2)

Amax = 1000,

Amin = 0,

ωOL = 2.3186,

ωOH = 2.0007,

ω3dB = 2.0944.

Then, the “object function” characteristics are calculated to be

f (x) =































0 if 0 ≤ x < 0.4

7142.86(x − 0.4) if 0.4 ≤ x < 0.54

1000 if 0.54 ≤ x < 1.0

(5.18)

Let us consider some specific cases for above mentioned values.

5.4.1 Design 1

As we keep increasing the number of terms to approximate the object

function we get better and better results. It is up to the designer, where

he would like to stop. For example, when ten even Legendre polynomial

terms are used to approximate the object function then

fa(x) = a0P0 + a2P2 + a4P4 + a6P6 + . . . + a18P18 (5.19)

where, fa(x) is the approximation to f (x).

Using Equation (5.15) we calculate the coefficients a0 to a18, and

fa(x) = 530 + 909.685P2 − 586.385P4 − 4.6429P6 + 401.108P8 + . . . (5.20)

The approximated, together with ideal, object function is shown in Figure

5.4. It is clear from the figure that approximated object function follows



the user defined characteristics, but not very closely (in Design 2 we try to

improve this).

Using the transformation described in Step 3, we transform fa(x) to

frequency domain. Step 4 will give the position of the eighteen zeros in

the frequency domain.

Following Step 5 we can write H(z) as

H(z) =
18
∏

i=1

(z − zi) (5.21)

where, zi’s are e jωi ; i = 1, 2, . . .18. This H(z) gives the magnitude response

shown in Figure 5.5 and is following the required filter characteristics, also

shown in the figure. Magnitude response in dB is shown in Figure 5.6. If

we look at it we found that the pass band is very linear and stop bands are

approximately 25dB down from the pass band.
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Figure 5.4: Approximation of object function using first 10 Legendre poly-
nomials terms, P0 to P18 (the object function here is not showing the non
linearities for simplicity).
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Figure 5.5: Magnitude response of the low pass FIR filter corresponding to
the object function shown in Figure 5.4.
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Figure 5.6: Magnitude response in dB of the low pass FIR filter correspond-
ing to the object function shown in Figure 5.4.



5.4.2 Design 2

Let us approximate our object function of Equation (5.18) using 17 even

Legendre polynomial terms. We get the magnitude response and the

magnitude response indBas shown inFigures 5.7 and5.8, respectively. The

object function and thus magnitude response are following the required

characteristics more closely than in Design 1 (Figure 5.5), which shows that

as we increase the number of terms to approximate our object function

we get better approximation of magnitude response. The dB magnitude

response (Figure 5.8) shows that the first side band is approximately 35dB

down; that is, there is an improvement of 10dB over previous design.

Figure 5.9 shows the phase response for the present design, the phase is

exactly linear.

0 0.5 1 1.5 2 2.5 3 3.5
200

0

200

400

600

800

1000

1200
e

Frequency in Radians

A
m

pl
itu

de

Approximation 

using 

Polynomials

Ideal Magnitude 

Response

Figure 5.7: Magnitude response of low pass FIR filter when object function
is approximated using 17 Legendre polynomial terms, P0 to P32.

5.4.3 Design 3

Following the above procedure we can easily design a high pass filter also.

Let us consider the following values for the filter to be designed

Amax = 1000,
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Figure 5.8: Magnitude response in dB of low pass FIR filter when object
function is approximated using 17 Legendre polynomial terms, P0 to P32.
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Figure 5.9: Phase response of low pass FIR filter when object function is
approximated using 17 Legendre polynomial terms, P0 to P32.



Amin = 0,

ωOH = 2.3186,

ωOL = 2.0007,

ω3dB = 2.0944.

Figures 5.10 and 5.11 show the magnitude response, and magnitude

response in dB, respectively, of the high pass filter. The high pass filter is

derived from the object function which is approximated using 21 Legendre

polynomials.
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Figure 5.10: Magnitude response of high pass FIR filter when object func-
tion is approximated using 21 Legendre polynomial terms, P0 to P40.

It is clear from the Figures 5.10 and 5.11 that the pass band of the result-

ing high pass filter is very flat, phase of this filter is absolutely linear, and

the realized filter closely follows the restrictions; that is, cutoff frequency

and pass band frequency.
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Figure 5.11: Magnitude response in dB of high pass FIR filter when object
function is approximated using 21 Legendre polynomial terms, P0 to P40.

5.4.4 Design 4

Next we design a band pass filter with the transition band, stop band, and

pass band characteristics as follows

Amax = 1000,

Amin = 0,

ωOL1 = 1.5908,

ωOH1 = 2.0944,

ωOL2 = 2.7389,

ωOH2 = 2.5322.

Note that the filter has unequal transition bands.

The magnitude response, andmagnitude response in dB are calculated

using 21 Legendre polynomial terms to approximate the corresponding
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Figure 5.12: Magnitude response of band pass FIR filter when object func-
tion is approximated using 21 Legendre polynomial terms, P0 to P40.
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Figure 5.13: Magnitude response in dB of band pass FIR filter when object
function is approximated using 21 Legendre polynomial terms, P0 to P40.



object function and are shown in Figures 5.12 and 5.13, respectively. Un-

equal side bands are distinguishable in Figure 5.12. The pass band is not as

flat aswe need but if we increase the number of terms, used to approximate

object function, it will become better. The phase response remains linear

and can be verified easily.

5.5 Results

Wecanconclude that aswe increase thenumberof terms inourpolynomial,

the approximation of the object function becomes more and more like the

desired object function (see Figures 5.5 and 5.7).
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Figure 5.14: Magnitude response in dB of low pass FIR filter when object
function is approximated using 21 Legendre polynomial terms, P0 to P40.

Figures 5.6, 5.8, and 5.14 show a steady improvement in all round

performance in the magnitude responses. It is evident from the figures

that the sharpness of the transition band, side band level and ripple in the

pass band are all improved. We can also easily deduce from the figures

that the filter characteristics are in accordance with the defined values of

ωOL, ωOH and ω3dB.



Figures 5.11 and 5.13 make it clear that the method proposed can easily

be implemented to design FIR filters of another kind; that is, high pass,

bandpass, as well as band reject, multiband, and any other type, all we

have to do is write down the corresponding object function characteristics

and follow the procedure discussed.

Important Note: If we approximate the “ideal brick wall characteristics”;

that is, with an abrupt change at a particular point in place of a gradual

change, the results show serious limitations because of Gibbs type of phe-

nomenon. In the case of an abrupt change the approximation gives us a

flat pass band but it turns out that the stop band does not reduce below a

certain value irrespective of how ever many terms we use.

5.6 Conclusion

An alternative simple approach has been presented to design the linear

phase FIR filters, whose characteristics are modeled using orthogonal

polynomials. The orthogonal polynomials give us good frequency do-

main characteristics in terms of sharp cutoff, low stop band, low ripple in

the pass band and linear phase. These may be improved to any desired

level by increasing the number of terms used to approximate the object

function. Further, there is no restriction on the type of filter to be designed.



6 Design of 2 Dimensional Linear
Phase FIR Filter with Orthogonal
Polynomials

6.1 Introduction

Due to rapid development in the field of image processing, sonar signal

processing and other related fields, the design of 2 dimensional (2D) digital

filters has become very important. 2D finite impulse response (FIR) filters

are preferred over infinite impulse response (IIR) filters because of their

inherent stability. These 2DFIR filters may have linear phase1.

Various techniques have been discussed in the literature to design

2DFIR digital filters. If we take into consideration least square (LS) er-

ror criterion, we observe that an overshoot of the frequency response

at the pass band and the stop band edges occur due to Gibb’s phe-

nomenon [43]. Whereas, a minmax design approach results in an equirip-

ple solution [44, 45].

Efficient 2DFIR filters can also be designed by using transformations. J.

H. McClellen [46,47] has proposed a powerful technique, where 1DFIR fil-

ters are used with a transformation to design 2DFIR filters. This technique

is very efficient and fast. This technique was implemented by [48]. But in

this technique the transformation steps are very complicated and difficult

to implement, and can be used to design 2D square filters only.

What we are presenting here is a new method to design 2DFIR filter

with linear phase through the transformation and orthogonal polynomials.

The whole procedure is simple and produce excellent results. Any type of

filter can be designed by this approach.

1It is intuitively clear that non linear phase will introduce a distortion.



6.2 Procedure

Because we are going to design an orthogonal polynomial based 2D FIR

filter, therefore first we have to calculate 2D orthogonal polynomials.

We know that a sequence of orthogonal polynomials, Pn(ρ) in cylindri-

cal coordinates, must satisfy the relation

〈

Pi(ρ),P j(ρ)
〉

=

∫ 2π

0

∫ 1

0
Pi(ρ)P j(ρ)ρdρdφ = 0 i , j (6.1)

where,

Pi(ρ) and P j(ρ) are any two members of the orthogonal set,

〈•, •〉 represents the inner product, and
ρdρdφ is the element of area.

The polynomials can be obtained by applying the well known Graham-

Schmidt procedure [49] over the interval [−1, 1] for ρ. Equation (6.2) repre-

sents some of the even polynomials.

P0(ρ) = 1,

P2(ρ) = 1 + 2ρ2,

P4(ρ) = 1 − 6ρ2 + 6ρ4,

P6(ρ) = 1 − 192
31 ρ

2 + 190
31 ρ

4 + 20
31ρ

6

... (6.2)

Figure 6.1 shows some of these polynomials.

The filters which we propose to design are circularly symmetric 2DFIR

filters, half of the symmetric magnitude response of such a filter is shown

in Figure 6.2, other half being mirror image. Since the design is circularly

symmetric, we use the cylindrical co-ordinate system – (ρ, φ) – to represent

the object function in 2D.ρ is amapping function and is related toCartesian

coordinates (x, y) by

ρ2 = x2 + y2 − 1 ≤ ρ ≤ 1 (6.3)

Since the filter is circularly symmetric, therefore, if we take the cross

section of the 2D FIR filter perpendicular to u − v plane passing through
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Figure 6.1: First few 2D orthogonal polynomials calculated using Equation
(6.1).

the origin, it will look like a 1D filter. Figure 6.3 shows the 1D equivalent

magnitude response for the filter shown in Figure 6.2. In Figure 6.3

Amax represents the amplitude of the pass band of the filter,

Amin represents the amplitude of the stop band of the filter,

ωOH is the end of pass band and start of the transition band, and

ωOL is the end of transition band and start of the stop band.

The relationship between the 1D frequency axis, ω-axis, of Figure 6.3

and 2D frequency axis, u, v-axis, of Figure 6.2 is given by

ω2 = u2 + v2 − π ≤ ρ ≤ π (6.4)

The transformationused for conversion fromobject function –ρdomain

– to frequency characteristics – ω domain – is carried out by

ρ = ρ0 cos
(

ω

2

)

− π ≤ ω ≤ π (6.5)

Because the filter is circularly symmetric, therefore, the object function

will also be circularly symmetric around the z-axis. Figure 6.4 shows this

object function in 3D and its corresponding 1D representation in Figure

6.5.
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Figure 6.5: 1D object function, to be approximated using Legendre poly-
nomials.



To transform the 2D filter function, in terms of u − v, to 2D object

function, in terms of x − y, we use

u = 2cos−1(x/ρ0) π ≤ |u| , ρ0 < |x|
v = 2cos−1(y/ρ0) π ≤ |v| , ρ0 <

∣

∣

∣y
∣

∣

∣ (6.6)

f (x, y)
T−→ H(u, v)

where, ρ0 is the maximum value of ρ and T is the transformation of

Equation (6.6), it is also the maximum value of x and y, Equation (6.3).

We approximate the object function using a linear combination of sev-

eral orthogonal polynomials 2, calculated above. Note that approximation

of the object function will be done using even polynomials only; that is,

P0(ρ),P2(ρ), . . ., because the object function and frequency response both

are symmetric in nature, and polynomials with even power will give us

the required symmetrical characteristics.

Let us denote the object function of Figure 6.4 by f (ρ) (recall Equation

(6.3)), which can be written as

f (ρ) =
∞
∑

n=0

a2nP2n(ρ) (6.7)

where, a0, a2, . . . are coefficients to be multiplied with orthogonal polyno-

mials to get the required characteristics, shown in Figure 6.4. To calculate

these coefficients, a0, a2, . . ., we use 3

ai =

∫ 1

0
f (ρ)Pi(ρ)ρdρ

∫ 1

0
Pi(ρ)Pi(ρ)ρdρ

(6.8)

where, i = 0, 2, 4, . . ..

We calculate the approximate object function fa(ρ) by

fa(ρ) =
N
∑

i=0

aiPi(ρ) (6.9)

2Any function can be represented as a linear combination of several orthogonal poly-
nomials, refer Appendix A.

3Refer Appendix A.



Note that fa(ρ) tends to f (ρ) when we use infinite number of terms to

approximate the object function. Therefore, as we increase number of

terms in fa(ρ) we get better approximation of f (ρ).

This approximate object function is then transformed from (x, y) or ρ

domain to frequency domain, or (u, v) or ω domain, by using Equation

(6.5).

The zeros of fa(ρ) can be calculated by using any standard routine, and

zeros of fa(ω) are obtained by using

ρi
T−→ ωi

here ρis are the zeros of fa(ρ), and ρ is transformation of Equation (6.5).

6.3 Application and Discussion

Suppose we want to design a 2DFIR filter with transfer function defined

as

|H(ω)| =























1000 0 ≤ ω < 1.5908

transition band 1.5908 ≤ ω < 2.0944

10 2.0944 ≤ ω < π
(6.10)

Comparing these characteristics with Figure 6.2, we note that

Amax = 1000,

Amin = 10.

First we find the corresponding object function by using the transfor-

mation given in Equation (6.5). The object function comes out to be

f (ρ) =























10 0 ≤ ρ < 0.5

transition band 0.5 ≤ ρ < 0.7

1000 0.7 ≤ ρ < 1.0

(6.11)

Let us design this filter.



6.3.1 Design 1

To calculate the value of fa(ρ) (Equation (6.9)), we first calculate the values

of ai’s using Equation (6.8). As mentioned earlier, when we increase the

number of terms to approximate our object function the approximation

becomes better and better. Therefore, it is up to the designer where he

wants to stop.

Let us approximate the object function using 8 orthogonal polynomials.

We calculate the coefficients using Equation (6.8). The approximate object

function is

fa(ρ) = 750P0 − 562.5P2 − 468.75P4 + 59.04P6 + 263.6712P8

+306.152P10 + 66.65048P12 − 198.4407P14 (6.12)

We apply Equations (6.3) and (6.6) on the approximated object function

and get the filter in frequency domain. Themagnitude response of the filter

is shown in Figure 6.6, its cross section in Figure 6.7 and the magnitude

response in dB is shown in Figure 6.8. When we look at Figures 6.6 and

6.7, we find that the pass band of the filter has some ripples. Figure 6.8

shows that first side band is approximately 35dB down.

In the next classification we consider the same problem while using

more number of orthogonal polynomial terms to approximate the object

function.

6.3.2 Design 2

In the present case we use 15 orthogonal polynomial terms to approximate

the object function. This object function is then transformed using the

transformation of Equation (6.5). The resulting 2DFIR is shown in Figure

6.9, the cross section in Figure 6.10 and the magnitude response in dB is

shown in Figure 6.11, the first side band is approximately 45dB down.

Comparing Figures 6.7 and 6.10, it is clear that as we increase the

number of terms to calculate object function, which in turn is used to

construct the required filter, the sharpness of the transition band of the

filter increases and ripples in the pass band decreases. The filter shown in

Figure 6.11 has lower side bands than the filter represented in Figure 6.8.
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Figure 6.6: Magnitude response of low pass FIR filter when object function
is approximated using 8 orthogonal polynomial terms.

6.3.3 Design 3

We can easily design high pass, bandpass, band reject, and other type of

filters using the same approach. We only have to calculate the coefficients

required to design the filter.

Let us design a high pass filter with characteristics as below

|H(ω)| =























10 0 ≤ ω < 2.0944

transition band 2.0944 ≤ ω < 2.5322

1000 2.5322 ≤ ω < π
(6.13)

The corresponding object function is

f (ρ) =























1000 0 ≤ ρ < 0.3

transition band 0.3 ≤ ρ < 0.5

10 0.5 ≤ ρ < 1.0

(6.14)

Suppose this object function is approximated using 15 orthogonal poly-

nomial terms. The resulting high pass filter is shown in Figure 6.12, and
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Figure 6.7: Cross section of the magnitude response of low pass FIR fil-
ter when object function is approximated using 8 orthogonal polynomial
terms.
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Figure 6.8: Magnitude response in dB of low pass FIR filter when object
function is approximated using 8 orthogonal polynomial terms.
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Figure 6.9: Magnitude response of low pass FIR filter when object function
is approximated using 15 orthogonal polynomial terms.



0 0.5 1 1.5 2 2.5 3 3.5 0

2

4

−1500

−1000

−500

0

500

v

u

H
(u

,v
)

Figure 6.10: Cross section of the magnitude response of low pass FIR filter
when object function is approximated using 15 orthogonal polynomial
terms.
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Figure 6.11: Magnitude response in dB of low pass FIR filter when object
function is approximated using 15 orthogonal polynomial terms.

the cross section of this filter is represented in Figure 6.13. From the figures

it is clear that the filter has flat pass band and if we pass an image through

it the filter will be able to cut off non required frequencies (we will pass

some images through this filter in the next section). Phase remains linear

and can easily be verified.

6.3.4 Design 4

Let us design a band pass filter with frequency domain characteristics

|H(ω)| =























1000 1.4455 ≤ ω < 2.6362

transition bands 1.1096 ≤ ω < 1.4455 and 2.6362 ≤ ω < 2.8405

10 2.8405 ≤ ω < π and 0 ≤ ω < 1.1096
(6.15)

The corresponding object function is
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Figure 6.12: Magnitude response of high pass FIR filter when object func-
tion is approximated using 15 orthogonal polynomial terms.

f (ρ) =























1000 0.25 ≤ ρ < 0.75

transition bands 0.15 ≤ ρ < 0.25 and 0.75 ≤ ρ < 0.85

10 0.0 ≤ ρ < 0.15 and 0.85 ≤ ρ < 1.0

(6.16)

Using the procedure discussed and approximating the object function

of Equation (6.16) with 15 polynomial terms we get the required filter

characteristics, which are shown in Figure 6.14. The magnitude response

in dB is shown in Figure 6.15, the pass band of filter is very flat and side

bands are approximately 25 dB down.

6.4 Results

The results produced by the algorithm, proposed in this chapter, give

promising results. By increasing the number of terms to approximate the

object function we can design better filters; that is, filters with sharp cutoff,

lower side band and less ripples in the pass band. This technique can
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Figure 6.13: Cross section of magnitude response of high pass FIR filter
when object function is approximated using 15 orthogonal polynomial
terms.
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Figure 6.14: Cross section of magnitude response of band pass FIR filter
when object function is approximated using 15 orthogonal polynomial
terms.
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Figure 6.15: Full view of magnitude response in dB of band pass FIR filter
when object function is approximated using 15 orthogonal polynomial
terms.



easily be used to design low pass, high pass, band pass, band reject, and

other type of filters.

Ifwepass some images through these filters, we can estimate the quality

of our filter. Passing an image through a high pass filter means that the

details of the image are kept, while the large scale gradients are removed,

while in the case of low pass filter opposite of this happens.

Figure 6.16 shows an imagewhichwhen passed through a high pass fil-

ter, designed using 15 orthogonal polynomial terms, becomes as shown in

Figure 6.17, which depicts that only high frequency components (changes

in the different gray levels of the image) are retained. When this image

is passed through a low pass filter the resulting image is shown in Figure

6.18, which removes high frequency components (small details of image)

of the image and only blurred details of the image are retained.

Similarly, an image with more details than the previous one is shown

in Figure 6.19, its high pass filtered output is shown in Figure 6.20 and low

pass in Figure 6.21, respectively.

A daily life image with a fair combination of changes is shown in

Figure 6.22, its high pass filtered result is shown in Figure 6.23 and low

pass filtered output is the Figure 6.24.

One more image is shown in Figure 6.25 its high pass and low pass

filtered outputs are shown in Figures 6.26 and 6.27, respectively. We have

shown various type of images to show that the filter designed can be

used for any type of image. The filters used above are designed using

15 orthogonal polynomial terms to approximate the corresponding object

function.

Original Image

Figure 6.16: Image-1.



Highpass Filtered Image

Figure 6.17: Image-1 passed through high pass filter designed using 15
orthogonal polynomial terms.

Lowpass Filtered Image

Figure 6.18: Image-1 passed through low pass filter designed using 15
orthogonal polynomial terms.



original

Figure 6.19: Image-2.

6.5 Conclusion

A simple new approach has been discussed here for designing 2D linear

phase FIR filters. The cut off characteristics and ripples in the pass band

can be controlled by using the method proposed in this chapter. As we

increase the number of terms, the resulting filter becomes more flat in pass

band and the transition region approximates the defined value. We can

design any type of filter; that is, band pass, band reject, etc., using the

present technique.



highpassed

Figure 6.20: Image-2 passed through high pass filter designed using 15
orthogonal polynomial terms.



lowpassed

Figure 6.21: Image-2 passed through low pass filter designed using 15
orthogonal polynomial terms.



Original IIIIImage

Figure 6.22: Image-3.



HIGHpass Filtered IIIIImage

Figure 6.23: Image-3 passed through high pass filter designed using 15
orthogonal polynomial terms.



lowpassed

Figure 6.24: Image-3 passed through low pass filter designed using 15
orthogonal polynomial terms.



original

Figure 6.25: Image-4.



highpassed

Figure 6.26: Image-4 passed through high pass filter designed using 15
orthogonal polynomial terms.



lowpassed

Figure 6.27: Image-4 passed through low pass filter designed using 15
orthogonal polynomial terms.



7 Design of 1 Dimensional Zero or
Linear Phase IIR Filter with
Orthogonal Polynomials

7.1 Introduction

In the past two to two and half decades a great deal of work has been

carried out in the field of design of linear phase IIR filters. In general,

design of exact linear phase IIR filter is not possible, schemes have been

proposed to approximate pass band linearity. Conventionally, first the

magnitude specifications of an IIR filter are met, and then all pass equal-

izers are applied to linearize the phase response [50, 51]. Mostly IIR filters

are designed with equiripple or maximally flat group delay [52]. But their

magnitude characteristics are poor. Optimization techniques are used to

simultaneously approximate magnitude and phase response characteris-

tics [53, 54]. To meet with the magnitude and phase characteristics at the

same time, generally, linear programming is used [55]. Lu et al [56] gives

an iterative procedure to directly design a linear phase IIR filter, it is based

on a weighted least-squares algorithm. Xiao et al [57] discusses a method

to design a linear phase IIR filter with frequency weighted least square

error optimization using Broyden-Flether-Goldfarb-Shanno (BFGS) [58]

method.

Model reduction approach has also been proposed by various authors

[59,60]. A procedure to design linear phase IIR filter from linear phase FIR

filter has been discussed by Holford et al [61] using frequency weighting

model reduction, for highly elective filters. He [61] gives good compromise

for order of the filter, pass band maximum ripple and stop bandminimum

attenuation. None of the techniques discussed above give perfect zero

group delay IIR filter. The use of zero group delay filters makes it possible

to obtain much higher data rates than with ordinary filters, since the rise

time is extremely fast and there is less accumulated loss due to rise time [62,



63], various problems arising due to non zero group delay are disscussed

in [64]. In the present chapter, we discuss a new technique to design the IIR

filters having perfectly linear or zero phase response which consequently

will lead to zero group delay. Group delay is defined as:

τg = −
∣

∣

∣

∣

∣

dφ(ω)
dω

∣

∣

∣

∣

∣

(7.1)

where, φ(ω) is the phase as a function of frequency and ω is frequency in

rad/s.

7.2 Preliminaries

Proposed zero group delay IIR filter design uses linear phase high pass

and low pass FIR filters. To design a linear phase low pass IIR filter

(Hiirlowpass(ω)), we divide linear phase low pass FIR filter characteristics

(HLP(FIR)N(ω), Figure 7.1) 1 with linear phase high pass FIR filter character-

istics, (HHP(FIR)D(ω), Figure 7.2) 2. The required FIR filters can be designed

by using the procedure discussed in Chapter 5. The magnitude character-

istics of two FIR filters are such that the pass band of low pass FIR filter is

the stop band of high pass FIR filter and vice-versa; the transition bands

overlap, when one transition band goes from lower value to higher value

other goes from higher to lower. Therefore, the low pass IIR filter function

is given by

Hiirlowpass(ω) =
HLP(FIR)N(ω)
HHP(FIR)D(ω)

=

∣

∣

∣HLP(FIR)N

∣

∣

∣ ∠HLP(FIR)N
∣

∣

∣HHP(FIR)D

∣

∣

∣ ∠HHP(FIR)D

=

∣

∣

∣HLP(FIR)N

∣

∣

∣

∣

∣

∣HHP(FIR)D

∣

∣

∣

∠

(

HLP(FIR)N −HHP(FIR)D

)

(7.2)

It is clear from Equation (7.2) that at every point the amplitudes of the

low pass and high pass filters will be divided and phase subtracted, to get

1The subscript indicates Low Pass FIR filter to be used as Numerator.
2The subscript indicates High Pass FIR filter to be used as Denominator.
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Figure 7.1: Desired filter characteristics for LPF to be used as numerator.
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Figure 7.2: Desired filter characteristics for HPF to be used as denominator.
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Figure 7.3: Object function for LPF of Figure 7.1, showing slight non lin-
earity in the transition region.

the amplitude and phase characteristics of the low pass IIR filter at these

points, respectively. To calculate the pass band values of the IIR filter we

divide pass band values of
∣

∣

∣HLP(FIR)N

∣

∣

∣ with stop band values of
∣

∣

∣HHP(FIR)D

∣

∣

∣

and vice versa to get the stop band. Because both, high pass and low

pass, filters have linear phase, therefore, resulting IIR filter will have a

zero phase (if the phase response is same for both of the numerator and

denominator) or linear phase, Equation (7.2).

From Equation (7.2) we can deduce that while designing the FIR high

pass filter; that is, HHP(FIR)D(ω), we have to ensure that the filter has no

zeros in 0 ≤ ω ≤ π region, otherwise these zeros will make the resulting

IIR filter unstable. IfHHP(FIR)D(ω) has zero crossings, then before designing

the IIR filter we add a constant term (a term with zero frequency) to make

sure that HHP(FIR)D(ω) is above ω-axis; that is, there is no zero in 0 ≤ ω ≤ π.
Also, because the phase of both of the FIR filters is linear the division will

result in a linear phase IIR filter.

If our application requires a zero/constant phase IIR filter, then we

can design such filter as well. It is clear from Equation (7.2) that to get

zero phase we have to make sure that the phase characteristics of low

pass and high pass FIR filters are identical; furthermore the linear phase



low pass FIR filter must not cross the ω-axis, because every such crossing

results in a phase change of π. We can control magnitude as well as phase

characteristics of resulting IIR filter, it will be discussed shortly. Since we

need to have FIR filters to get the IIR filter; we have to design them first.

To design a low pass FIR filter (HLP(FIR)N(ω)), shown in Figure 7.1, we

first have to construct a corresponding object function ( fl(ω)), shown in

Figure 7.3, as discussed and designed in Chapter 5. Similarly, we can

design the high pass FIR filter, Figure 7.2, and its corresponding object

function shown in Figure 7.4. Once we have the required FIR filters we

move to design the IIR filter.

AminDhp

AmaxDhp

x0−x0 −x0 cos(ω0L/2) x0 cos(ω0L/2)

−x0 cos(ω0H/2) x0 cos(ω0H/2)
fD(x)

x

Figure 7.4: Object function for HPF of Figure 7.2, showing slight non
linearity in the transition region.

Based on the method discussed above, we discuss the procedure to

design the IIR filters in detail in the next section.

7.3 Procedure

Let us design a low pass, zero group delay IIR filter. To have a zero phase

and consequently zero group delay, we have to make sure that pass/stop

band of numerator and corresponding stop/pass band of denominator,



and transition bands of both numerator and denominator must match.

From here onwards we represent HLP(FIR)N(ω) by HN(ω) and HHP(FIR)N(ω)

by HD(ω) for simplicity. To design such a filter we divide low pass FIR

filter characteristics (HN(ω)), shown in Figure 7.1, by high pass FIR filter

characteristics (HD(ω)), shown in Figure 7.2.

As discussed in the last section these FIR filter characteristics will be

realized by their corresponding object functions – fN(x) for HN(ω) and

fD(x) for HD(ω) – as shown in Figures 7.3 and 7.4, respectively. The object

functions are given by

fN(x) =
∞
∑

n=0

a2nP2n (7.3)

fD(x) =
∞
∑

n=0

b2nP2n (7.4)

where, P0,P2,P4 . . . are the Legendre polynomials of the order of 0, 2, 4, . . .,

and a2n and b2n are coefficients which are multiplied with the Legendre

polynomials to approximate the required object function characteristics

shown in Figures 7.3 and 7.4, respectively. Only even terms of Legen-

dre polynomials are used, considering the fact that filter characteristics in

frequency domain are symmetrical in nature.

Following steps outline the procedure to design zero group delay IIR

filters.

Step 1 : Because polynomials are orthogonal to each other we can

calculate the coefficients a0, a2, a4, . . . and b0, b2, b4, . . . by using the following

formulae3

ai =

∫ 1

0
fN(x)Pidx
∫ 1

0
PiPidx

(7.5)

bi =

∫ 1

0
fD(x)Pidx
∫ 1

0
PiPidx

(7.6)

where, i = 0, 2, 4, . . .

Step 2 : We use finite number of ai’s and bi’s in Equations (7.3) and

3see Appendix A.



(7.4), therefore, we get the approximate object functions fNa(x) and fDa(x)

in place of fN(x) and fD(x), respectively; that is,

fNa(x) =
N
∑

n=0

a2nP2n (7.7)

fDa(x) =
M
∑

n=0

b2nP2n (7.8)

Step 3 : The polynomials fNa(x) and fDa(x) are converted to HNa(ω) and

HDa(ω), respectively, using the transformation discussed in Chapter 1 and

repeated below for convenience

x = x0cos(ω/2) (7.9)

We consider x0 to be equal to 1, one can assume other values also.

The discussion in the previous section makes it clear that HNa(ω) and

HDa(ω) represent the approximate LPFandHPFcharacteristics correspond-

ing to fNa(x) and fDa(x), respectively.

Step 4 : Calculate the rational function in cos(ω/2)

Hiirlowpass(ω) =
HNa(ω)
HDa(ω)

(7.10)

Notice that the denominator must not have a zero in 0 ≤ ω ≤ π and 0 ≤ x ≤ π,
since this will lead to instability.

Step 5 : We find the zeros of HNa(ω) and HDa(ω) by solving HNa(ω) = 0

and HDa(ω) = 0, respectively. They are represented by ziN = exp( jωiN)

and ziD = exp( jωiD); where, i = 1, 2, 3, . . ., and ωiN and ωiD’s are the zeros

calculated.

Step 6 : Transfer function of the resulting IIR filter is

Hiirlowpass(z) =
(z − z1N)(z − z2N)(z − z3N) . . .
(z − z1D)(z − z2D)(z − z3D) . . .

(7.11)

The transfer function given in the above equation is used to find out the

magnitude response and phase response of our IIR filter.

To design high pass filter we have to divide high pass FIR filter charac-

teristics by low pass FIR filter characteristics.



For clear understanding of the above procedure we design some IIR

filters using the procedure discussed above.

7.4 Application and Discussion

Suppose we intend to design an IIR filter with following characteristics

Amax = 500 (pass band amplitude)

Amin = 0 (stop band amplitude)

ωOL = 2.3186 (start of transition band)

ωOH = 2.0007 (end of transition band)

Therefore, as per the discussion of the previous section we have to design

the low pass and high pass FIR filters first. The, assumed, filter character-

istics are as follows

Low pass FIR (Figure 7.1) filter

AmaxN = 1000

AminN = 0

ωOL = 2.3186

ωOH = 2.0007

High pass FIR (Figure 7.2) filter

AmaxD = 1

AminD = 2

ωOL = 2.0007

ωOH = 2.3186

from the previous section it must be clear to the reader that above values

will lead to zero phase IIR filter.

Note that as of nowwe showonly positive half of the graph the negative

half being amirror image. Nowwe consider some specific cases in the next



section.

7.4.1 Design 1

Suppose we take 10 Legendre polynomial terms to approximate the object

functions (both for LPF and HPF characteristics). The object functions are

approximated in the following manner

fNa(x) = a0P0 + a2P2 + . . . + a18P18 (7.12)

fDa(x) = B + b0P0 + b2P2 + . . . + b18P18 (7.13)

where, fNa(x) and fDa(x) are discussed in the previous section, B is added

to the object function to make sure that the condition stated in Step 4 is

met. According to Equations (7.3) and (7.4) we calculate the coefficients

a0, a1, a2, . . . and b0, b1, b2, . . .. Then,

fNa(x) = 530P0 + 909.685P2 − 586.385P4

−4.64292P6 + 401.108P8 − 379.026P10 + . . . (7.14)

fDa(x) = 100 + 470P0 − 909.685P2 + 586.385P4

+4.64292P6 − 401.108P8 + 379.028P10 + . . . (7.15)

Here we have assumed the value of B as 100, one can assume any value of

B provided the condition stated in Step 4 is satisfied.

Using the transformation (Equation (7.9)) we transform our object func-

tions to approximate LPF and HPF characteristics; that is, HNa(ω) and

HDa(ω), respectively. The zeros (in frequency domain) ωiN and ωiD’s corre-

sponding toHNa(ω) andHDa(ω), as given in Step 5 and Step 6, are calculated

next which in turn gives the transfer function Hiirlowpass(z) as follows

Hiirlowpass(z) =
∏18

i=1(z − ziN)
∏18

i=1(z − ziD)
(7.16)

where, zi’s are e jωi ; i = 1, 2...18.

ThisHiirlowpass(z) gives themagnitude response andmagnitude response

in dB, which are shown in Figures 7.5 and 7.6, respectively. The pass band



of resulting filter has many ripples, although side bands are very low, but

even then the design is not good. Let us approximate the object functions

with more number of terms in the following section to have a better filter.
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Figure 7.5: Magnitude response of low pass IIR filter designed using 10
orthogonal polynomial terms to approximate object function.

7.4.2 Design 2

Twenty Legendre polynomial terms are used to approximate the object

functions (both for LPF and HPF characteristics) in the present example.

After following the steps outlined in Section 2, we get the approximate

object functions fNa(x) and fDa(x) and eventually Hiirlowpass(ω). The magni-

tude response, magnitude response in dB and phase response are shown

in Figures 7.7, 7.8 and 7.9, respectively.

It becomes evident from the comparison of Figures 7.6 and 7.8 that

the magnitude response becomes better in terms of flatness of pass band,

and the second side band levels (they go almost 20dB further down when

comparedwith the previous design). The transition band becomes sharper

in thepresentdesignwhencomparedwith thepreviousdesign. In the same
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Figure 7.6: Magnitude response in dB of low pass IIR filter corresponding
to the object function approximated using 10 orthogonal polynomial terms.
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Figure 7.7: Magnitude response of low pass IIR filter corresponding to the
object function approximated using 20 orthogonal polynomial terms.
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Figure 7.8: Magnitude response in dB of low pass IIR filter corresponding
to the object function approximated using 20 orthogonal polynomial terms.
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Figure 7.9: Phase response of low pass IIR filter corresponding to the object
function approximated using 20 orthogonal polynomial terms.



fashion, if we increase the number of terms to approximate object functions

further we get better and better results. The phase is zero and is shown in

Figure 7.9.

7.4.3 Design 3

Hithertowe have considered that the order of object functions, correspond-

ing to HPF and LPF, are same. Now we consider the case when the object

function fNa(x) is synthesized using less number of Legendre polynomials

than fDa(x). Suppose the order of fNa(x) is 10 and that of fDa(x) is 20, Figure

7.10 shows the magnitude response in dB.

ComparingFigures 7.8 and 7.10, we infer that ifwedecrease the number

of terms to approximate numerator, side bands are not as lower as they

were when both numerator and denominator were approximated using

equal number terms. The transition band is also not that sharp in the

present case, the reason becomes clear if we look at Equation (7.2). The

phase, in this case, is linear.
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Figure 7.10: Magnitude response in dB when numerator and denominator
object functions are approximated using 10 and 20 orthogonal polynomial
terms, respectively.



7.4.4 Design 4

In this design we consider that the object function fDa(x) is synthesized

using 10 and fNa(x) using 20 orthogonal polynomial terms, respectively.

The magnitude response in dB for this kind of IIR filter is shown in Figure

7.11.
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Figure 7.11: Magnitude response in dB when numerator and denominator
object functions are approximated using 20 and 10 orthogonal polynomial
terms, respectively.

Figures 7.10 and 7.11 make it clear that as we increase the number of

terms in the denominator, or in other words as we increase number of

zeros in the denominator of our IIR filter, it has pass band which is more

flat than of Design 4. The side band level is better if we design the IIR filter

with less number of terms to approximate denominator object function

(corresponding to high pass FIR filter). User has to decide, depending on

application, which amongst them he would like to use. If we increase the

number of terms used to approximate object function then definitely both

type of filters will become better.



7.5 Conclusion

Above discussion makes it clear that an IIR filter with linear or zero phase

and consequently zero group delay can easily be designed by using the

orthogonal polynomials. The proposed IIR filter gives good cutoff charac-

teristics. By increasing the number of polynomial terms, we can approx-

imate our object function very closely, which in turn will produce good

frequency characteristics both in the pass band and transition band. The

ripples in the pass band becomes negligible as we increase the number of

terms to approximate our object function. Second side band amplitudes

decreases as we increase the number of terms in our object functions. In

all, wemay state that the alternate approach discussed in this chapter gives

a much better design of IIR filter, with absolute zero group delay, when

compared with the currently available methods [55, 57, 60, 65, 66], none of

them have zero group delay.





8 Design of 2 Dimensional Zero or
Linear Phase IIR Filter with
Orthogonal Polynomials

8.1 Introduction

Medical imaging [67], face recognition [68], and image processing [69] are

some of the potential applications areas where 2 dimensional (2D) filters

are used. Some applications; for example, multirate signal processing,

and biomedical applications (ECG, EEG etc.) [70, 71] need zero group de-

lay characteristics coupled with good pass band characteristics. Huang

et al [72] pointed out that for restoration of images, linear phase plays an

important role. In the last few years various approaches have been dis-

cussed by various researchers to design a linear phase 2D IIR filter [73–77].

The procedures discussed in these papers either first design a 2D filter

with desired amplitude response which is followed by 2D all pass transfer

function to linearize the phase, or minimize the error of desiredmagnitude

and phase response. Computer aided optimization techniques [78–80] are

also used, but they are computationally very extensive.

Present method discusses a new approach which results in absolute

linear phase and zero group delay 2D IIR filters without using any opti-

mization.

8.2 Procedure

We extend the proposed idea of previous chapter to design 2D IIR filters

with zero phase. To design such filters, first we need to calculate the 2D

orthogonal polynomials (in cylindrical or ρ domain). These polynomials,

as previously, will be used for realizing object functions. The procedure

and the resulting polynomials are given in Chapter 6.



Todesign the lowpass IIRfilter, weneed to divide the lowpass FIRfilter

characteristics with the high pass FIR filter characteristics, as discussed in

the previous chapter and repeated below

Hiirlowpass(ω) =
HLP(FIR)N(ω)
HHP(FIR)D(ω)

=

∣

∣

∣HLP(FIR)N

∣

∣

∣ ∠HLP(FIR)N
∣

∣

∣HHP(FIR)D

∣

∣

∣ ∠HHP(FIR)D

=

∣

∣

∣HLP(FIR)N

∣

∣

∣

∣

∣

∣HHP(FIR)D

∣

∣

∣

∠

(

HLP(FIR)N −HHP(FIR)D

)

(8.1)

We proceed to design the object functions, fN(ρ) and fD(ρ), correspond-

ing to numerator and denominator object functions respectively, as dis-

cussed in the previous chapter. ρ is in cylindrical co ordinate and is related

with Cartisan co-ordinates (x,y) by ρ2 = x2+ y2. For low pass and high pass

filters (shown in Figures 8.1 and 8.2, respectively) example object functions

are shown in Figures 8.3 and 8.4, respectively. Figures show half of the

filter characteristics and object function, rest being mirror image of it.

From the previous chapter, we know that the object functions, fN(ρ)

and fD(ρ), are weighted linear combinations of polynomials, and are rep-

resented as follows

fN(ρ) =
∞
∑

m=0

a2mP2m(ρ)

fD(ρ) =
∞
∑

m=0

b2mP2m(ρ) (8.2)

where, P2m are the orthogonal polynomials calculated in Chapter 6, and

a2m are the coefficients.

Becauseweuse finite number of polynomials to design object functions,

therefore, fN(ρ) and fD(ρ) become fNa(ρ) and fDa(ρ), respectively, and are

given by
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fNa(ρ) =
N
∑

m=0

a2mP2m(ρ) (8.3)

fDa(ρ) =
N
∑

m=0

b2mP2m(ρ) (8.4)

The values of am and bm are calculated by1

am =

∫ 1

0
fN(ρ)Pm(ρ)dρ

∫ 1

0
Pm(ρ)Pm(ρ)dρ

(8.5)

bm =

∫ 1

0
fD(ρ)Pm(ρ)dρ

∫ 1

0
Pm(ρ)Pm(ρ)dρ

(8.6)

The object functions – fNa(x, y) and fDa(x, y) or fNa(ρ) and fDa(ρ) – are

transformed to filter characteristics – HNa(u, v) and HDa(u, v) or HN(ω) and

HD(ω) – by using the transformation discussed previously and repeated

below

ρ = ρ0cos(ω/2) (8.7)

where, ω2 = u2 + v2 and we assume ρ0 equal to 1.

The zeros of fNa(ρ) and fDa(ρ) can be calculated by using any standard

routine, and zeros of HN(ω) and HD(ω) are obtained by using the transfor-

mation

ρ j
T−→ ω j

where ρ js are the zeros of fa(ρ) andT is transformation defined in Equation

(8.7).

Next, we calculate the rational function by

Hiirlowpass(u, v) =
HNa(u, v)

B +HDa(u, v)
(8.8)

B in Equation (8.8) is added to make sure that the division does not yield

an infinite value and consequently an unstable filter, whenever |HDa(u, v)|
crosses zero.

1see Appendix A.



From the previous discussion we know that where |HDa(u, v)| has small

values (in its stop band),
∣

∣

∣Hiirlowpass(u, v)
∣

∣

∣ will have large values (in its pass

band). Very large oscillations in the pass band will correspond to a pass

band which is not smooth. Thus to have a smooth pass band we need a

sufficiently large value of B.

We can design a high pass filter by dividing high pass FIR filter charac-

teristics by low pass FIR filter characteristics. If we are going to use same

object functions then for high pass filter Equation (8.8) converts to

Hiirhighpass(u, v) =
B +HDa(u, v)
HNa(u, v)

(8.9)

As discussed earlier to avoid zero crossing to occur in the denominator

term, which is |HNa(u, v)|, we have to add a constant term, say A. Thus,

Equation (8.9) becomes

Hiirhighpass(u, v) =
B +HDa(u, v)
A +HNa(u, v)

(8.10)

andwewrite Equation (8.8) as, assuming that same object functions are

going to be used to realize both high pass and low pass filter,

Hiirlowpass(u, v) =
A +HNa(u, v)
B +HDa(u, v)

(8.11)

From the previous discussion it is clear that A should be sufficiently

large so as to make sure that there are no oscillations in the pass band.

How different values ofA and Bwill change the characteristics of resulting

filter is shown in Table 8.1.

Type of Filter A B Figure Number
Low Pass 0 1100 8.5
Low Pass 0 2000 8.6
Low Pass 2000 2000 8.7
High Pass 1100 0 8.8
High Pass 2000 0 8.9
High Pass 2000 2000 8.10

Table 8.1: Values of A and B vs. figures.

The stepwise procedure to design the low pass IIR filter is as follows

Step 1 : Calculate a2m and b2m.
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Figure 8.5: Example low pass filter with A=0 and B=1100.
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Figure 8.6: Example low pass filter with A=0 and B=2000.
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Figure 8.7: Example low pass filter with A=2000 and B=2000.
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Figure 8.8: Example high pass filter with A=1100 and B=0.
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Figure 8.9: Example high pass filter with A=2000 and B=0.
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Figure 8.10: Example high pass filter with A=2000 and B=2000.



Step 2 : Calculate the approximate object functions; that is, fNa(ρ) and

fDa(ρ).

Step 3 : Calculate

Hiirlowpass(u, v) =
A +HNa(u, v)
B +HDa(u, v)

Step 4 : Calculate the transfer function in z domain; that is, Hiirlowpass(z).

Step 5 : Find the zeros of HNa(ω) and HDa(ω) represented by ziN =

exp( jωiN) and ziD = exp( jωiD); where, i = 1, 2, 3, . . ., and ωiN and ωiD’s are

the calculated zeros.

Step 6 : The transfer function of the resulting low pass filter is given as

Hiirlowpass(z) =
A + (z − z1N)(z − z2N)(z − z3N) . . .
B + (z − z1D)(z − z2D)(z − z3D) . . .

(8.12)

in the similar fastion we can design a high pass filter.

8.3 Application and Discussion

Let us design IIR filter with the following values:

Low pass FIR filter (to be used as numerator to design the IIR filters),

Figure 8.11

AmaxN = 0dB (pass band magnitude)

AminN = −60dB (stop band magnitude)

ωOL = 2.0944

ωOH = 1.5908

High pass FIR filter (to be used as denominator to design the IIR filters),

Figure 8.12

AmaxD = 60dB (pass band magnitude)

AminD = 0dB (stop band magnitude)

ωOL = 1.5908

ωOH = 2.0944



and

A = 2000,

B = 2000.
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ω
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Figure 8.11: Desired filter characteristics for LPF.

8.3.1 Design 1

Let us design an IIR filter with 9 Legendre polynomial terms used to

approximate both the object functions; that is, to calculate fNa(ρ) and fDa(ρ).

Following the procedure discussed in the previous section we design the

resulting filter.

Figures 8.13 and 8.14 represent the designed IIR low pass and high pass

filters, respectively. Figures 8.15 and 8.16 show the low and high pass filter

response in dB. It is clear from the Figures 8.13 and 8.15 that the pass band

of the resulting IIR filter has oscillations in the pass band and stop band.

Similarly, if we look at Figures 8.14 and 8.16 we find the same.

When an image (Figure 8.17) is passed through the low pass IIR filter,

we have designedusing 9 Legendre polynomial terms, the output is shown
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Figure 8.12: Desired filter characteristics for HPF.
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Figure 8.13: Magnitude response of low pass IIR filter when object func-
tions are approximated using 9 orthogonal polynomial terms.
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Figure 8.14: Magnitude response of high pass IIR filter when object func-
tions are approximated using 9 orthogonal polynomial terms.
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Figure 8.15: Magnitude response in dB of low pass IIR filter when object
functions are approximated using 9 orthogonal polynomial terms.
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Figure 8.16: Magnitude response in dB of high pass IIR filter when object
functions are approximated using 9 orthogonal polynomial terms.

in Figure 8.18 and if it is passed through the high pass filter then the output

is represented in Figure 8.19. In Figure 8.18 we can clearly see that the high

frequency components; that is, the changes or edges of the original image,

are lost and only the slow changes or low frequency components are intact.

Figure 8.19 shows that only the high frequency components (small, sharp

details) of the image are present and low frequency components are lost.

8.3.2 Design 2

Let us calculate approximate object functions using 15 polynomial terms

and then design the filter. The resulting IIR low pass filter is shown in

Figure 8.20. Similarly, if we design a high pass filter using 15 polynomial

terms then the filter is shown in Figure 8.21.

From Figures 8.20 and 8.21 it becomes evident that there is an improve-

ment in the pass band and stop band characteristics of the filter. If we

draw the frequency characteristics in dB, Figures 8.22 and 8.23, then the

improvement can be seen clearly. The pass band is very flat and has less



Original IIIIImage

Figure 8.17: Image-1.

oscillations, and also the stop band is lower than in the previous case.

Passing the previous image, Figure 8.17, through this filter we get

Figures 8.24 and 8.25 resulting from high pass and low pass filtering,

respectively. The images make it clear that increment in the number of

terms to approximate the object function improves the filter performance.

The difference between the images of Figures 8.18 and 8.25 is very small

and in general we can not make out the difference in one look. We have

shown one such difference by encircling it in Figures 8.18 and 8.25. The

human eye behaves as a low pass filter, therefore it is very difficult to see

any difference between images of Figures 8.19 and 8.24, the high passed

results, through naked eyes.

If we filter an image with greater details (like an image having text)

through our 15th order high pass filter, the resultant images can show the

quality of our filter in a better way. Figure 8.26 is such an image while

Figure 8.27 shows the high pass filtered output. It is evident from the high

pass filtered image, Figure 8.27, that it is clearer than the original image;

that is, we can view the text better. Figures 8.28 and 8.29 shows the closer



LOWpass Filtered IIIIImage

Figure 8.18: Image-1 passed through low pass filter designed using 9
orthogonal polynomial terms.



HIGHpass Filtered IIIIImage

Figure 8.19: Image-1 passed through high pass filter designed using 9
orthogonal polynomial terms.
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Figure 8.20: Magnitude response of low pass IIR filter when object func-
tions are approximated using 15 orthogonal polynomial terms.
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Figure 8.21: Magnitude response of high pass IIR filter when object func-
tions are approximated using 15 orthogonal polynomial terms.



−4
−2

0
2

4

−4

−2

0

2

4
−10

−8

−6

−4

−2

0

2

uv

A
m

pl
itu

de
 in

 d
B

Figure 8.22: Magnitude response in dB of low pass IIR filter when object
functions are approximated using 15 orthogonal polynomial terms.
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Figure 8.23: Magnitude response in dB of high pass IIR filter when object
functions are approximated using 15 orthogonal polynomial terms.



HIGHpass Filtered IIIIImage

Figure 8.24: Image-1 passed through high pass filter designed using 15
orthogonal polynomial terms.



LOWpass Filtered IIIIImage

Figure 8.25: Image-1 passed through low pass filter designed using 15
orthogonal polynomial terms.



view of a part of these images shown in Figures 8.26 and 8.27, respectively.

Original IIIIImage

Figure 8.26: Image-2.

Ifwe apply our high pass filter on anultrasound image of a fetus, Figure

8.30, the result is shown in Figure 8.31. Another image which is of human

bone structure and its high pass filtered output is shown in Figures 8.32

and 8.33, respectively. The filtered output show that the edges present in

the original image are enhanced and therefore it is easier to find different

parts of fetus in Figure 8.30 and defects, if there is any, from the bone

structure.

Next we pass a satellite image through our IIR filter. The satellite

images have a lot of high frequency details (like outlines of the street of a

city, river, buildings, etc.). Figure 8.34 shows the original satellite image

and when it is passed through 2DIIR filter the outcome is shown in Figure

8.35. The edges of the original image are retained in the resulting image.



HIGHpass Filtered IIIIImage

Figure 8.27: Image-2 passed through high pass filter designed using 15
orthogonal polynomial terms.



Original IIIIImage

Figure 8.28: Image-3.

8.4 Conclusion

Above discussion makes it clear that an IIR filter with zero phase and con-

sequently zero group delay can easily be designed by using the orthogonal

polynomials. The IIR filter designed above gives good cutoff characteris-

tics. By increasing the number of polynomial terms, we can approximate

our object function very closely, which in turnwill produce good frequency

characteristics both in the pass band and the transition region. The ripples

in the pass band becomes negligible as we increase the number of terms

to approximate our object function. Stop band amplitude decreases as we

increase the number of terms in our object functions. One can use these

filters for specific purposes like, satellite images, medical image enhance-

ment also. In all, wemay state that the alternate approach discussed in this

chapter gives a much better design of IIR filter, with absolute zero group

delay, when compared with the currently available methods.



HIGHpass Filtered IIIIImage

Figure 8.29: Image-3 passed through high pass filter designed using 15
orthogonal polynomial terms.



Figure 8.30: Image-4.



Figure 8.31: Image-4 passed through high pass filter designed using 15
orthogonal polynomial terms.



Figure 8.32: Image-5.



Figure 8.33: Image-5 passed through high pass filter designed using 15
orthogonal polynomial terms.



Original IIIIImage

Figure 8.34: Image-6



HIGHpass Filtered IIIIImage

Figure 8.35: Image-6 passed through high pass filter designed using 15
orthogonal polynomial terms.





9 Conclusion and Future Work

In this dissertation, we have proposed design methodologies to design the

linear phase, 1D and 2D, FIR and IIR digital filters. Due to the simplicity

of the procedure and excellent magnitude and phase characteristics, filters

designed in the present work have a broad range of applications [2]. Most

standard methods deal only either on the magnitude or phase characteris-

tics, whereas, we have proposed algorithms which produce digital filters

with user defined magnitude characteristics with the linear phase. The

methods discussed give us unique design in terms of magnitude charac-

teristics. Method to design zero group delay IIR filters is also discussed.

The proposed 1D and 2DChebyshev FIR filter designmethodology can

be used to realize filters having equripple side bands, and for designing

narrow to very narrow band filters with side band level defined by the

user. Narrow band filters are very useful if we want to remove a partic-

ular frequency (it may be due to noise or in case of image representing a

particular color or gray level) from the signal spectrum. The bandwidth of

the filter can be controlled by using the modified approach to design the

Chebyshev filters. When a satellite image is passed through this type of

high pass filter edges (high frequency components of an image) were well

retained.

We have proposed 1D and 2D FIR and IIR filter design based on orthog-

onal polynomials. It can be used for designing digital filters with linear

phase and used specific magnitude characteristics. This type of design

technique can be used to design multiband, notch, low pass, high pass,

band pass and band reject digital filters. Depending on the application

requirements we can design required type of filters.

We have passed different types of images through proposed 2D filters

and shown the simulated results. Medical images, satellite images, text

as images, everyday life images, and other type of images are passed

through these digital filters. The filtered images show the quality of our

filters. When an ultrasound image is passed through our 2DIIR digital



filter, it is enhanced by fairly good amount. If one realizes application

specific digital filter, the results will be promising. Satellite images were

passed and a better and enhanced outcome was received. The filter design

parameters are less in number, therefore, computational requirements are

less.

There are various fields where present approach can be extended.

Adaptive filters have various applications [81], one can extend the con-

cept presented in the present thesis to design such filters. Development

of video processing filters is another area where present technique can be

extended. One can design a wavelet filter bank, designing wavelet using

polynomials, which can be used to generate very narrow band to wide

band filters. The discussed 2D filters can be used in conjunction with edge

detecting algorithm to enhance edges of an image.



A Appendix

The sum of Legendre polynomials multiplied by suitable coefficients

approximates the ideal polynomial in the least mean square error

sense.

Proof :

Suppose a polynomial f (x) is approximated by fa(x) and its representa-

tion is

fa(x) =
N
∑

n=0

a2nP2n(x)

The mean squared error (MSE) polynomial between the original poly-

nomial and approximated polynomial is given by

E(x) =
{

f (x) − fa(x)
}2

or,

E(x) =















f (x) −
N
∑

n=0

a2nP2n(x)















2

(A.1)

Note that E(x) is either positive or zero hence the minimum value of its

integral is zero. We define

ǫ(a0, a2, . . .) =
∫ 1

−1
E(x)dx =

∫ 1

−1















f (x) −
N
∑

n=0

a2nP2n(x)















2

dx (A.2)

We need to find the coefficients a0, a2, . . . from the above equation so

that this integral is minimized. The general way of solving this problem is

well known, and is described below

∂

∂ai

∫ 1

−1















f (x) −
N
∑

n=0

a2nP2n(x)















2

dx = 0 i = 1 . . .N (A.3)

or



∂

∂ai

∫ 1

−1

















{

f (x)
}2
+















N
∑

n=0

a2nP2n(x)















2

−2 f (x)














N
∑

n=0

a2nP2n(x)





























dx = 0i = 1 . . .N (A.4)

which is

∫ 1
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spelt out this is

∫ 1

−1

[

∂

∂ai

{

a0
2P0

2 + 2a0a2P0P2 + . . . + ai
2Pi

2

+2aiai+2PiPi+2 + 2aiai+4PiPi+4 + . . .} dx

−2
∫ 1

−1
f (x)aiPi

]

dx = 0 (A.6)

The orthogonality property of the Legendre polynomials reduces this

integral to

2
∫ 1

−1
aiPi

2dx − 2
∫ 1

−1
f (x)Pidx = 0 i = 1 . . .N (A.7)

ai =

∫ 1

−1 f (x)Pidx
∫ 1

−1 Pi
2dx

i = 1 . . .N (A.8)
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ear Phase FIR Filter”, IEEE International Conference on Industrial

Technology, April 21-24, 2008, pp- 1-6.



7. Sunil Bhooshan and Vinay Kumar, “Design of Chebyshev FIR Fil-

ter Based On Antenna Theory Approach”, Proceedings of the 6th

WSEAS International Conference on Signal Processing, Robotics and

Automation, Corfu Island, Greece, February 16-19, 2007, pp-97-101.

8. Sunil Bhooshan and Vinay Kumar, “A Novel Approach Towards

The Design Of Chebyshev FIR Filter With Linear Phase”, WSEAS

Transactions on Signal Processing, Issue 2, Volume 3, February 2007,

pp- 179-185.

9. Sunil Bhooshan and Vinay Kumar, “A Polynomial Approach To-

wards the Design of Linear Phase FIR Filters”, IEEE International

Conference on Industrial Technology, December 15-17, 2006, pp- 632-

636 .

10. Shalini Priti, Saurabh Shyam Mittal, Udai Singh, and Vinay Kumar,

“Approximation byMatrixMean ofWalsh Fourier Series”, Advances

in Mathematics Research, Volume 5, 2005, pp- 31-45.

11. Vinay Kumar, “Hidden Markov modeling for Speech Recognition”,

Operation Research Society of India, 2004.

WORK EXPERIENCE

1. Jaypee University of Information and Technology (2005-till now)

Working as a senior lecturer in the Department of Electronics and

Communication Engineering , teaching "Digital Signal and Speech

Processing" and "Signal Processing Techniques", and "Digital Image

Processing".

2. Indreprastha Engineering College (2003-2005)

Worked as a lecturer in the Department of Electronics and Commu-

nication Engineering, taught "Digital Communication", and "Digital

Signal Processing".


